Communications Toolbox™ 4
User’s Guide

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science

X L9

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Communications Toolbox™ User’s Guide
© COPYRIGHT 1996-2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 1996

May 1997
September 2000
May 2001

July 2002

June 2004
October 2004
March 2005
September 2005
October 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009

First printing
Second printing
Third printing
Online only
Fourth printing
Fifth printing
Online only
Online only
Online only
Reprint

Online only
Sixth printing
Online only
Online only
Online only
Online only
Online only

Version 1.0

Revised for Version 1.1 (MATLAB 5.0)
Revised for Version 2.0 (Release 12)
Revised for Version 2.0.1 (Release 12.1)
Revised for Version 2.1 (Release 13)
Revised for Version 3.0 (Release 14)
Revised for Version 3.0.1 (Release 14SP1)
Revised for Version 3.1 (Release 14SP2)
Revised for Version 3.2 (Release 14SP3)
Version 3.0 (Notice updated)

Revised for Version 3.3 (Release 2006a)
Revised for Version 3.4 (Release 2006b)
Revised for Version 3.5 (Release 2007a)
Revised for Version 4.0 (Release 2007b)
Revised for Version 4.1 (Release 2008a)
Revised for Version 4.2 (Release 2008b)
Revised for Version 4.3 (Release 2009a)

Getting Started

Product Overviewcoi .. 1-2
Section OVervVIEW .. .ov vttt et 1-2
Expected Background, 1-2

Studying Components of a Communication System . .. 14

Section OVErVIEWvvitt i i et 1-4
Modulating a Random Signal 14
Plotting Signal Constellations 1-11
Pulse Shaping Using a Raised Cosine Filter 1-15
Using a Convolutional Code 1-19
Simulating a Communication System 1-23
Section OVErvIEWvvitt v et 1-23
Using BERTool to Run Simulations 1-23

Varying Parameters and Managing a Set of Simulations .. 1-31

Learning More00ttt innnnn. 1-35
OnlineHelp 1-35
Demos ... e 1-35
The MathWorks Online 1-35

2

White Gaussian Noisec .. 2-2
Random Symbols 2-3

Random Integers 2-4

vi

Contents

Random Bit Exrror Patterns 2-5

Performance Evaluation

3

Performance Results via Simulation 3-2
Section OVErVIEW ...ttt 3-2
Using Simulated Data to Compute Bit and Symbol Error

Rates ... i 3-2
Example: Computing Error Rates 3-3
Comparing Symbol Error Rate and Bit Error Rate 3-4

Performance Results via the Semianalytic

Technique 3-5
Section OVEIVIEW ...ttt ittt ittt e e 3-5
When to Use the Semianalytic Technique 3-5
Procedure for the Semianalytic Technique 3-6
Example: Using the Semianalytic Technique 3-7
Theoretical Performance Results 3-10
Computing Theoretical Error Statistics 3-10
Plotting Theoretical Error Rates 3-10
Comparing Theoretical and Empirical Error Rates 3-11
Error RatePlots 3-14
Section OVEIVIEW ...ttt ittt et e 3-14
Creating Error Rate Plots Using semilogy 3-14
Curve Fitting for Error Rate Plots 3-15
Example: Curve Fitting for an Error Rate Plot 3-15
EyeDiagrams 0. 3-20
Section OVEIVIEW . ..ttt ittt ittt e 3-20
EyeScope ... 3-20
Scatter Plots i, 3-21
Section OVEIVIEW ...ttt ittt et 3-21
Example: Scatter Plots 3-21

EVM Measurementsc.ouiiiiineennneenn. 3-34

Section OVervIewWottt 3-34
MER Measurementsc..uouiiiiuuneennneenn. 3-35
Section OVervIewW iiii it 3-35

Selected Bibliography for Performance Evaluation ... 3-36

BERTool: A Bit Error Rate Analysis GUI

q |

Summary of Features 4-2
Opening BERTool iiiuo... 4-3
The BERTool Environment 4-4
Components of BERTool 4-4
Interaction Among BERTool Components 4-6
Computing Theoretical BERs 4-8
Section OVErVIEW vvitt i i nite e, 4-8
Example: Using the Theoretical Tab in BERTool 4-9
Available Sets of Theoretical BER Data 4-11

Using the Semianalytic Technique to Compute

BERS ... e e 4-16
Section OVErvIEWvvitt i v eite i, 4-16
Example: Using the Semianalytic Tab in BERTool 4-17
Procedure for Using the Semianalytic Tab in BERTool ... 4-19
Running MATLAB Simulations 4-22
Section OVErvIEWv vttt vttt 4-22
Example: Using a MATLAB Simulation with BERTool ... 4-22
Varying the Stopping Criteriac.... 4-25
Plotting Confidence Intervals 4-26

Fitting BER Pointstoa Curve 4-28

viii

Contents

Preparing Simulation Functions for Use with
BERToOL
Requirements for Functions
Template for a Simulation Function
Example: Preparing a Simulation Function for Use with

BERTo00l i e e

Running Simulink Simulations
Section OVErvVIEW ...ttt ettt
Example: Using a Simulink Model with BERTool
Varying the Stopping Criteria

Preparing Simulink Models for Use with BERTool
Requirements for Models
Tips for Preparing Models
Example: Preparing a Model for Use with BERTool

Managing BERData
Exporting Data Sets or BERTool Sessions
Importing Data Sets or BERTool Sessions
Managing Data in the Data Viewer

Source Coding

5

Quantizinga Signal
Section OVErvIEWv vttt v et
Representing Partitions
Representing Codebooks
Scalar Quantization Example 1
Scalar Quantization Example 2
Determining Which Interval Each InputIsIn

Optimizing Quantization Parameters
Section OVErvIEWv vttt v eite i,
Example: Optimizing Quantization Parameters

Differential Pulse Code Modulation

5-2
5-2
5-2
5-3
5-3
5-4
5-4

5-6
5-6
5-6

5-8

Section OVervIeWottt 5-8

DPCM Terminologyvviimmnneeeeeeennnnnnnnnnn 5-8
Representing Predictors 5-8
Example: DPCM Encoding and Decoding 5-9
Optimizing DPCM Parameters 5-11
Section OVErVIEW ...ttt ittt et 5-11
Example: Comparing Optimized and Nonoptimized DPCM
Parameters e 5-11
Compandinga Signal 5-13
Section OVErvVIEW ...ttt 5-13
Example: A p-Law Compander 5-13
Huffman Coding 5-15
Section OVErVIEW ..ottt ettt 5-15
Creating a Huffman Code Dictionary 5-15
Example: Creating and Decoding a Huffman Code 5-16
Arithmetic Coding 5-17
Section OVErVIEW ..ottt ettt 5-17
Representing Arithmetic Coding Parameters 5-17

Example: Creating and Decoding an Arithmetic Code 5-18

Selected Bibliography for Source Coding 5-19

Error Detection and Correction

6

Block Coding 6-2
Section OVErVIEWttt ettt ittt 6-2
Block Coding Features of the Toolbox 6-4
Block Coding Terminologycouuuiiieenoo... 6-5
Representing Words for Reed-Solomon Codes 6-5
Parameters for Reed-Solomon Codes 6-6
Creating and Decoding Reed-Solomon Codes 6-8
Representing Words for BCH Codes 6-12
Parameters for BCH Codescuiui.n.. 6-13
Creating and Decoding BCH Codes 6-13

ix

LDPC Codesovii i e e e 6-15

Representing Words for Linear Block Codes 6-16
Parameters for Linear Block Codes 6-20
Creating and Decoding Linear Block Codes 6-24
Performing Other Block Code Tasks 6-27
Selected Bibliography for Block Coding 6-30
Convolutional Coding 6-31
Section OVErvVIEW ...ttt ettt 6-31
Convolutional Coding Features of the Toolbox 6-31
Polynomial Description of a Convolutional Encoder 6-31
Trellis Description of a Convolutional Encoder 6-35
Creating and Decoding Convolutional Codes 6-38
Examples of Convolutional Coding 6-41
Selected Bibliography for Convolutional Coding 6-44
Cyclic Redundancy Check Coding 6-45
L0 =) T 1= 6-45
CRC Algorithm i, 6-45
Selected Bibliography for CRC Coding 6-47
Interleaving

Block Interleavers 7-2
Section OVErVIEW ...ttt ittt 7-2
Block Interleaving Features of the Toolbox 7-2
Example: Block Interleavers 7-3
Convolutional Interleavers 7-5
Section OVerVIEW ...ttt ittt 7-5
Convolutional Interleaving Features of the Toolbox 7-6
Example: Convolutional Interleavers 7-7
Delays of Convolutional Interleavers 7-9
Selected Bibliography for Interleaving 7-14

Contents

Modulation

8

Modulation Features of the Toolbox 8-2
Modulation Techniquescciiiiiiinn... 8-2
Baseband vs. Passband Simulation 8-3

Modulation Terminology 8-4

Analog Modulation 8-5
Representing Analog Signals 8-5
Analog Modulation Example 8-6

Digital Modulation 8-8
Section OVErvVIEWttt ettt 8-8
Representing Digital Signals 8-8
Baseband Modulated Signals Defined 8-9
Gray Encoding a Modulated Signal 8-9
Examples of Digital Modulation and Demodulation 8-12
Plotting Signal Constellations 8-14

Using Modem Objectsccoiiiiiininnn... 8-19
Section OVErVIEWttt n ittt 8-19
Constructing a Modem Object 8-19
Managing Object Propertiesccvvvn... 8-20
Copying a Modem Object 8-20
Displaying a Modem Object 8-21
Resetting a Modem Object 8-22
Modulating a Signal 0 0., 8-23
Demodulating a Signal 8-24
Example of Basic Modulation and Demodulation 8-25
Exact LLR Algorithm 8-25
Approximate LLR Algorithm 8-26

Selected Bibliography for Modulation 8-27

xi

xii

Special Filters

2

Noncausality and the Group Delay Parameter 9-2
Section OVErvIEWv vttt i eiie i, 9-2
Example: Compensating for Group Delays in Data

Analysis 9-3

Designing Hilbert Transform Filters 9-5
Section OVErvIEW v vttt vt 9-5
Example with Default Parameters 9-5

Filtering with Raised Cosine Filters 9-7
Section OVErvIEWv vttt v eit e, 9-7
Sampling Rates0 ... 9-7
Designing Filters Automatically 9-8
Specifying Filters Using Input Arguments 9-9
Controlling the Rolloff Factor 9-10
Controlling the Group Delay 9-10
Combining Two Square-Root Raised Cosine Filters 9-12

Designing Raised Cosine Filters 9-14
Section OVErvIEWvvitt vt 9-14
Sampling Rates, 9-14
Example Designing a Square-Root Raised Cosine Filter .. 9-14
Other Options in Filter Design 9-15

Selected Bibliography for Special Filters 9-16

Channels

Channel Features of the Toolbox 10-2

AWGN Channel i 10-3
Section OVErvIEWvvittt vttt 10-3
Describing the Noise Level of an AWGN Channel 10-3

Contents

MIMO Channels 10-6

Fading Channels, 10-7
Section OVErVIEW ...ttt ittt et 10-7
Overview of Fading Channels 10-7
Simulation of Multipath Fading Channels: Methodology .. 10-9
Specifying Fading Channels 10-11
Specifying the Doppler Spectrum of a Fading Channel ... 10-15
Configuring Channel Objects 10-20
Using Fading Channels 10-23
Examples Using Fading Channels 10-24
Using the Channel Visualization Tool 10-34

Binary Symmetric Channel 10-48
Section OVErvVIEW ...ttt ittt 10-48
Example: Introducing Noise in a Convolutional Code 10-48

Selected Bibliography for Channels 10-50

Equalizers

Equalizer Features of Communications Toolbox

Software i e 11-2
Overview of Adaptive Equalizer Classes 11-3
Section OVErvIEWvvitt i v eite i, 11-3
Symbol-Spaced Equalizers 11-3
Fractionally Spaced Equalizers 11-5
Decision-Feedback Equalizers 11-6
Using Adaptive Equalizer Functions and Objects 11-8
Section OVErvIEWv vttt vttt 11-8
Basic Procedure for Equalizing a Signal 11-8
Example Illustrating the Basic Procedure 11-8
Learning More About Adaptive Equalizer Functions 11-9
Specifying an Adaptive Algorithm 11-10

xiii

Choosing an Adaptive Algorithm 11-10

Indicating a Choice of Adaptive Algorithm 11-11
Accessing Properties of an Adaptive Algorithm 11-12
Specifying an Adaptive Equalizer 11-13
Defining an Equalizer Object 11-13
Accessing Properties of an Equalizer 11-14
Using Adaptive Equalizers 11-17
Section OVErvVIEWttt ettt 11-17
Equalizing Using a Training Sequence 11-17
Equalizing in Decision-Directed Mode 11-19
Delays from Equalization 11-21
Equalizing UsingaLoop, 11-22
Using MLSE Equalizers 11-28
Section OVErvVIEWttt ittt 11-28
Equalizing a Vector Signal 11-29
Equalizing in Continuous Operation Mode 11-30
Using a Preamble or Postamble 11-33
Selected Bibliography for Equalizers 11-36

Galois Field Computations

12

Galois Field Terminology 12-3
Representing Elements of Galois Fields 12-4
Section OVErvIEWv vttt vt 12-4
Creating a Galois Arrayc.oviiiineennneennn.. 12-4
Example: Creating Galois Field Variables 12-5
Example: Representing Elements of GF(8) 12-7
How Integers Correspond to Galois Field Elements 12-8
Example: Representing a Primitive Element 12-9
Primitive Polynomials and Element Representations 12-9
Arithmetic in Galois Fields 12-14

xiv Contents

Section OVervIeWottt 12-14

Example: Addition and Subtraction 12-15
Example: Multiplication 12-16
Example: Division0iiiiiiinnnnnne... 12-17
Example: Exponentiation 12-18
Example: Elementwise Logarithm 12-19
Logical Operations in Galois Fields 12-20
Section OVErvVIEWttt ittt 12-20
Testing for Equality 12-20
Testing for Nonzero Values 12-21
Matrix Manipulation in Galois Fields 12-23
Basic Manipulations of Galois Arrays 12-23
Basic Information About Galois Arrays 12-24
Linear Algebra in Galois Fields 12-25
Inverting Matrices and Computing Determinants 12-25
Computing Ranks 12-26
Factoring Square Matricesccvviiue.... 12-26
Solving Linear Equations 12-27
Signal Processing Operations in Galois Fields 12-29
Section OVErvVIEWttt et e, 12-29
Filtering i 12-29
Convolutionuiiiiiiniiiiiii i 12-30
Discrete Fourier Transform 12-31
Polynomials over Galois Fields 12-33
Section OVErvVIEW ...ttt ettt e 12-33
Addition and Subtraction of Polynomials 12-33
Multiplication and Division of Polynomials 12-34
Evaluating Polynomials 12-34
Roots of Polynomials 12-35
Roots of Binary Polynomials 12-36
Minimal Polynomials, 12-37
Manipulating Galois Variables 12-38
Section OVErvVIEW ...ttt ittt 12-38
Determining Whether a Variable Is a Galois Array 12-38
Extracting Information from a Galois Array 12-38

XV

xvi

13

Contents

Speed and Nondefault Primitive Polynomials 12-41

Selected Bibliography for Galois Fields 12-43

EyeScope: An Eye Diagram Analysis Tool

Introduction 13-2

EyeScope Tutorial 13-3

Galois Fields of Odd Characteristic

Galois Field Terminology A-2
Representing Elements of Galois Fields A-3
Section OVerviewttt A-3
Exponential Format A-3
Polynomial Format A-4
List of All Elements of a Galois Field A-5
Nonuniqueness of Representations A-6
Default Primitive Polynomials A-7
Converting and Simplifying Element Formats A-8
Converting to Simplest Polynomial Format A-8
Example: Generating a List of Galois Field Elements A-10
Converting to Simplest Exponential Format A-10
Arithmetic in Galois Fields A-12
Section OVerviewoi it A-12
Arithmeticin Prime Fields A-12
Arithmetic in Extension Fields A-13

Polynomials over Prime Fields A-15

Section OVErvVIEWttt ettt A-15
Cosmetic Changes of Polynomials A-15
Polynomial Arithmetic A-16
Characterization of Polynomials A-17
Roots of Polynomials, A-17
Other Galois Field Functions A-20
Selected Bibliography for Galois Fields A-21

Analytical Expressions Used in berawgn,
bercoding, berfading, and BERTool

Common Notation B-2
Analytical Expressions Used in berawgn B-5
M- PSK o e e B-5
DE-M-PSK ... e e B-6
OQPSK . e e B-7
DE-OQPSK ... e e B-7
M-DPSK .. e e B-7
M- PAM e e B-8
M-QAM .. e e B-8
Orthogonal M-FSK with Coherent Detection B-10
Nonorthogonal 2-FSK with Coherent Detection B-10
Orthogonal M-FSK with Noncoherent Detection B-11
Nonorthogonal 2-FSK with Noncoherent Detection B-11
Precoded MSK with Coherent Detection B-12

Differentially Encoded MSK with Coherent Detection B-12
MSK with Noncoherent Detection (Optimum

Block-by-Block) B-12
CPFSK Coherent Detection (Optimum Block-by-Block) ... B-12

Analytical Expressions Used in berfading B-14
Notation ittt B-14
M-PSKwithMRC B-16
DE-M-PSKwithMRC i, B-17

xXvii

xviii

Contents

M-PAMwithMRCo i B-17

M-QAM with MRC i i i B-17
M-DPSK with Postdetection EGC B-19
Orthogonal 2-FSK, Coherent Detection with MRC B-20

Nonorthogonal 2-FSK, Coherent Detection with MRC B-20
Orthogonal M-FSK, Noncoherent Detection with EGC ... B-20
Nonorthogonal 2-FSK, Noncoherent Detection with No

Diversity ... B-21

Analytical Expressions Used in bercoding and

BERTOOL e B-23
Common Notation for This Section B-23
Block Coding i, B-23
Convolutional Coding, B-26
Selected Bibliography B-28
Algorithms

Cl

Algorithms Used to Decode BCH and Reed-Solomon
Codes ... i e C-2
Errors-only Decoding i, C-2

Compute Optimum Quantizer Boundaries for use with

D

Soft-Decision Type of Viterbi Decoder C-6
References C-11
Examples

Modulation i D-2
Special Filters D-2

Convolutional Coding D-2

Simulating Communication Systems D-2
Performance Evaluation D-3
Source Coding, D-3
Block Coding, D-3
Interleaving D-4
Equalizers D-4
Channels i D-4
Galois Field Computations D-4

Index

xix

XX Contents

Getting Started

This chapter first provides a brief overview of the Communications Toolbox™
product and then uses several examples to help you get started using the
toolbox. This chapter assumes very little about your prior knowledge of the
MATLAB® technical computing environment, although it does assume that
you have a basic knowledge about communications subject matter.

® “Product Overview” on page 1-2

¢ “Studying Components of a Communication System” on page 1-4

¢ “Simulating a Communication System” on page 1-23

® “Learning More” on page 1-35

1 Getting Started

Product Overview

1-2

In this section...

“Section Overview” on page 1-2

“Expected Background” on page 1-2

Section Overview

Communications Toolbox software extends the MATLAB technical computing
environment with functions, plots, and a graphical user interface for
exploring, designing, analyzing, and simulating algorithms for the physical
layer of communication systems. The toolbox helps you create algorithms for
commercial and defense wireless or wireline systems.

The key features of the toolbox are

¢ Functions for designing the physical layer of communications links,
including source coding, channel coding, interleaving, modulation, channel
models, and equalization

¢ Plots such as eye diagrams and constellations for visualizing
communications signals

¢ Graphical user interface for comparing the bit error rate of your system
with a wide variety of proven analytical results

® Galois field data type for building communications algorithms

Expected Background

This guide assumes that you already have background knowledge in the
subject of communications. If you do not yet have this background, then you
can acquire it using a standard communications text or the books listed in one
of this guide’s sections titled “Selected Bibliography for... .”

For New Users

The discussion and examples in this chapter are aimed at new users.
Continue reading this chapter and try out the examples. Then read those
subsequent chapters that address the specific areas that concern you. When

Product Overview

you find out which functions you want to use, refer to the online reference
pages that describe those functions.

For Experienced Users

The online reference descriptions are probably the most relevant parts of this
guide for you. Each reference description includes the function’s syntax as
well as a complete explanation of its options and operation. Many reference
descriptions also include examples, a description of the function’s algorithm,
and references to additional reading material.

You might also want to browse through nonreference parts of this
documentation set, depending on your interests or needs.

1-3

1 Getting Started

1-4

Studying Components of a Communication System

In this section...

“Section Overview” on page 1-4

“Modulating a Random Signal” on page 1-4

“Plotting Signal Constellations” on page 1-11

“Pulse Shaping Using a Raised Cosine Filter” on page 1-15

“Using a Convolutional Code” on page 1-19

Section Overview

Communications Toolbox software implements a variety of
communications-related tasks. Many of the functions in the toolbox perform
computations associated with a particular component of a communication
system, such as a demodulator or equalizer. Other functions are designed
for visualization or analysis.

While the later chapters of this document discuss various toolbox features in
more depth, this section builds an example step by step to give you a first
look at the toolbox. This section also shows how Communications Toolbox
functionalities build upon the computational and visualization tools in the
underlying MATLAB environment.

Modulating a Random Signal

This first example addresses the following problem:

Problem Process a binary data stream using a communication system that
consists of a baseband modulator, channel, and demodulator. Compute the
system’s bit error rate (BER). Also, display the transmitted and received
signals in a scatter plot.

The following table indicates the key tasks in solving the problem, along with
relevant Communications Toolbox functions. The solution arbitrarily chooses

Studying Components of a Communication System

baseband 16-QAM (quadrature amplitude modulation) as the modulation
scheme and AWGN (additive white Gaussian noise) as the channel model.

Task Function or Method

Generate a random binary data stream randint

Modulate using 16-QAM modulate method on
modem. gammod object

Add white Gaussian noise awgn

Create a scatter plot scatterplot

Demodulate using 16-QAM modulate method on

modem. gamdemod object

Compute the system’s BER biterr

Solution of Problem

The discussion below describes each step in more detail, introducing M-code
along the way. To view all the code in one editor window, enter the following
in the MATLAB Command Window.

edit commdoc_mod

1. Generate a Random Binary Data Stream. The conventional format
for representing a signal in MATLAB is a vector or matrix. This example uses
the randint function to create a column vector that lists the successive values
of a binary data stream. The length of the binary data stream (that is, the
number of rows in the column vector) is arbitrarily set to 30,000.

Note The sampling times associated with the bits do not appear explicitly,
and MATLAB has no inherent notion of time. For the purpose of this example,
knowing only the values in the data stream is enough to solve the problem.

The code below also creates a stem plot of a portion of the data stream,
showing the binary values. Your plot might look different because the
example uses random numbers. Notice the use of the colon (:) operator in

1-5

1 Getting Started

MATLAB to select a portion of the vector. For more information about this
syntax, see “The Colon Operator” in the MATLAB documentation set.

%% Setup

% Define parameters.

= 16; % Size of signal constellation
log2(M); % Number of bits per symbol
= 3e4; % Number of bits to process
nsamp = 1; % Oversampling rate

S X =
1]

%% Signal Source
% Create a binary data stream as a column vector.
X = randint(n,1); % Random binary data stream

% Plot first 40 bits in a stem plot.
stem(x(1:40), 'filled");

title('Random Bits');

xlabel('Bit Index'); ylabel('Binary Value');

[rigue RI=TE
File Edit Wiew Insert Tools Desktop Window Help N
Random Bits
1 (e LB O L Lo L

08r
Z 06
o
>
=
c
£ 04
02r
0 - Nl e o &
0 & 10 15 20 25 30 35 40
Biit Index

1-6

Studying Components of a Communication System

2. Prepare to Modulate. The modem.qgammod object implements an M-ary
QAM modulator, M being 16 in this example. It is configured to receive
integers between 0 and 15 rather than 4-tuples of bits. Therefore, you must
preprocess the binary data stream x before using the modulate method of the
object. In particular, you arrange each 4-tuple of values from x across a row of
a matrix, using the reshape function in MATLAB, and then apply the bi2de
function to convert each 4-tuple to a corresponding integer. (The . ' characters
after the reshape command form the unconjugated array transpose operator
in MATLAB. For more information about this and the similar ' operator, see
Reshaping a Matrix” in the MATLAB documentation set.)

%% Bit-to-Symbol Mapping
% Convert the bits in x into k-bit symbols.
xsym = bi2de(reshape(x,k,length(x)/k)."'," 'left-msb');

%% Stem Plot of Symbols

% Plot first 10 symbols in a stem plot.

figure; % Create new figure window.
stem(xsym(1:10));

title('Random Symbols');

xlabel('Symbol Index'); ylabel('Integer Value');

[JFigwe2 g [=TE
File Edit Wiew Insert Tools Desktop Window Help N
Random Symbaols
15+ o] o]
o]
o]
o]
o]

10+
a
=
i
>
o
f=2]
3
I=

5t

D T

0 2 4 B 8 10

Symbol Index

1-7

1 Getting Started

1-8

3. Modulate Using 16-QAM. Having defined xsym as a column vector
containing integers between 0 and 15, you can use the modulate method of the
modem.gammod object to modulate xsym using the baseband representation.
Recall that M is 16, the alphabet size.

%% Modulation
y = modulate(modem.gammod(M),xsym); % Modulate using 16-QAM.

The result is a complex column vector whose values are in the 16-point
QAM signal constellation. A later step in this example will show what the
constellation looks like.

To learn more about modulation functions, see Chapter 8, “Modulation”. Also,
note that themodulate method of the modem.gammod object does not apply
any pulse shaping. To extend this example to use pulse shaping, see “Pulse
Shaping Using a Raised Cosine Filter” on page 1-15. For an example that
uses rectangular pulse shaping with PSK modulation, see basicsimdemo.

4. Add White Gaussian Noise. Applying the awgn function to the
modulated signal adds white Gaussian noise to it. The ratio of bit energy to
noise power spectral density, E,/N,, is arbitrarily set at 10 dB.

The expression to convert this value to the corresponding signal-to-noise ratio
(SNR) involves k, the number of bits per symbol (which is 4 for 16-QAM), and
nsamp, the oversampling factor (which is 1 in this example). The factor k is
used to convert E,/N, to an equivalent E /N, which is the ratio of symbol
energy to noise power spectral density. The factor nsamp is used to convert
E/N, in the symbol rate bandwidth to an SNR in the sampling bandwidth.

Note The definitions of ytx and yrx and the nsamp term in the definition of
snr are not significant in this example so far, but will make it easier to extend
the example later to use pulse shaping.

%% Transmitted Signal
ytx = y;

%% Channel
% Send signal over an AWGN channel.

Studying Components of a Communication System

EbNo = 10; % In dB
snr = EbNo + 10*1og10(k) - 10*1log10(nsamp);
ynoisy = awgn(ytx,snr, 'measured');

%% Received Signal
yrx = ynoisy;

To learn more about awgn and other channel functions, see Chapter 10,
“Channels”.

5. Create a Scatter Plot. Applying the scatterplot function to the
transmitted and received signals shows what the signal constellation looks
like and how the noise distorts the signal. In the plot, the horizontal axis is
the in-phase component of the signal and the vertical axis is the quadrature
component. The code below also uses the title, legend, and axis functions
in MATLAB to customize the plot.

oP

% Scatter Plot
Create scatter plot of noisy signal and transmitted
% signal on the same axes.
h = scatterplot(yrx(1:nsamp*5e3),nsamp,0,'g."');
hold on;
scatterplot(ytx(1:5e3),1,0, 'k*',h);
title('Received Signal');
legend('Received Signal', 'Signal Constellation');
axis([-5 5 -5 5]); % Set axis ranges.
hold off;

o°

1-9

1 Getting Started

1-10

2\ Figure 3: Scatter Plok 10l =|

File Edit Wiew Insert Tools Desktop Window Help

Received Signal

5

+

Received Signal
4 Signal Constellation

CQuadrature
(o]

In-Phase

To learn more about scatterplot, see “Scatter Plots” on page 3-21.

6. Demodulate Using 16-QAM. Applying the demodulate method of the
modem.gamdemod object to the received signal demodulates it. The result is a
column vector containing integers between 0 and 15.

%% Demodulation
% Demodulate signal using 16-QAM.
zsym = demodulate(modem.qgamdemod(M),yrx);

7. Convert the Integer-Valued Signal to a Binary Signal. The previous
step produced zsym, a vector of integers. To obtain an equivalent binary signal,
use the de2bi function to convert each integer to a corresponding binary
4-tuple along a row of a matrix. Then use the reshape function to arrange all
the bits in a single column vector rather than a four-column matrix.

%% Symbol-to-Bit Mapping

% Undo the bit-to-symbol mapping performed earlier.

= de2bi(zsym, 'left-msb'); % Convert integers to bits.
% Convert z from a matrix to a vector.

z = reshape(z.',prod(size(z)),1);

N

Studying Components of a Communication System

8. Compute the System’s BER. Applying the biterr function to the original
binary vector and to the binary vector from the demodulation step above
yields the number of bit errors and the bit error rate.

o°

% BER Computation

Compare x and z to obtain the number of errors and
% the bit error rate.
[number_of_errors,bit_error_rate] = biterr(x,z)

o°

The statistics appear in the MATLAB Command Window. Your results might
vary because the example uses random numbers.

number_of_errors =

71

bit_error_rate =
0.0024

To learn more about biterr, see “Performance Results via Simulation” on
page 3-2.

Plotting Signal Constellations

The example in the previous section created a scatter plot from the modulated
signal. Although the plot showed the points in the QAM constellation, the plot
did not indicate which integers between 0 and 15 the modulator mapped to a
given constellation point. This section addresses the following problem:

Problem Plot a 16-QAM signal constellation with annotations that indicate
the mapping from integers to constellation points.

The solution uses the scatterplot function to create the plot and the text
function in MATLAB to create the annotations.

1-11

1 Getting Started

1-12

Solution of Problem

To view a completed M-file for this example, enter edit commdoc_const in
the MATLAB Command Window.

1. Find All Points in the 16-QAM Signal Constellation. The
Constellation property of the modem.gammod object contains all points in the
16-QAM signal constellation.

M = 16; % Number of points in constellation
h=modem.qgammod (M) ; % Modulator object
mapping=h.SymbolMapping; % Symbol mapping vector

pt = h.Constellation; % Vector of all points in constellation

2. Plot the Signal Constellation. The scatterplot function plots the
points in pt.

% Plot the constellation.

scatterplot(pt);
lolx]
File Edit Wiew Insert Tools Desktop Window Help
Scatter plot
3l
2
1ts
i)
Ei
20
o
=
i
te
-2
3 .
-3 2 1 0 1 2 3
In-Phase

Studying Components of a Communication System

3. Annotate the Plot to Indicate the Mapping. To annotate the plot to
show the relationship between mapping and pt, use the text function to place
a number in the plot beside each constellation point. The coordinates of the
annotation are near the real and imaginary parts of the constellation point,
but slightly offset to avoid overlap. The text of the annotation comes from
the binary representation of mapping. (The dec2bin function in MATLAB
produces a string of digit characters, while the de2bi function used in the last
section produces a vector of numbers.)

% Include text annotations that number the points.
text(real(pt)+0.1,imag(pt),dec2bin(mapping));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.

L=
File Edit View Insert Tools Desktop ‘Window Help
Scatter plot

4
3 0000 +0100 +1000 +1100H
2
o | 0001 <0101 «1001 +110714
E
£
£
= +0010 «0110 «1010 +111H
-2
-3 0011 <0111 «1011 11114
4 . . .
-4 -2 0 2 4

In-Phase

Binary-Coded 16-QAM Signal Constellation

Examining the Plot

In the plot above, notice that 0001 and 0010 correspond to adjacent
constellation points on the left side of the diagram. Because these

binary representations differ by two bits, the adjacency indicates that the
modem. gammod object did not use a Gray-coded signal constellation. (That is, if
it were a Gray-coded signal constellation, then the annotations for each pair
of adjacent points would differ by one bit.)

1-13

1 Getting Started

1-14

By contrast, the constellation below is one example of a Gray-coded 16-QAM
signal constellation.

. Figure 2: Scatter Plokt =10l]

File Edit Wiew Insert Tools Desktop Window Help

Scatter plot
4

3 0000 +0100 «1100 +1000H

1 0001 <0101 1101 +10014

CQuadrature
(o]

-1 0011 <0111 1111 +10114

-3 +0010 «0110 «1110 +1010H

-4 -2 0 2 4
In-Phase

Gray-Coded 16-QAM Signal Constellation

The only difference, compared to the previous example, is that you configure
modem.gammod object to use a Gray-coded constellation.

%% Modified Plot, With Gray Coding
M = 16; % Number of points in constellation

h = modem.qammod('M',M, 'SymbolOrder','Gray'); % Modulator object

mapping = h.SymbolMapping; % Symbol mapping vector
pt = h.Constellation; % Vector of all points in constellation

scatterplot(pt); % Plot the constellation.
% Include text annotations that number the points.

text(real(pt)+0.1,imag(pt),dec2bin(mapping));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.

Studying Components of a Communication System

Pulse Shaping Using a Raised Cosine Filter

This section further extends the example by addressing the following problem:

Problem Modify the Gray-coded modulation example so that it uses a pair
of square root raised cosine filters to perform pulse shaping and matched
filtering at the transmitter and receiver, respectively.

The solution uses the rcosine function to design the square root raised cosine
filter and the rcosflt function to filter the signals. Alternatively, you can use
the rcosflt function to perform both tasks in one command; see “Filtering
with Raised Cosine Filters” on page 9-7 or the rcosdemo demonstration for
more details.

Solution of Problem

This solution modifies the code from commdoc_gray.m. To view the original
code in an editor window, enter the following command in the MATLAB
Command Window.

edit commdoc_gray

To view a completed M-file for this example, enter edit commdoc_rrc in the
MATLAB Command Window.

1. Define Filter-Related Parameters. In the Setup section of the example,
replace the definition of the oversampling rate, nsamp, with the following.

nsamp = 4; % Oversampling rate

Also, define other key parameters related to the filter by inserting the
following after the Modulation section of the example and before the
Transmitted signal section.

%% Filter Definition

% Define filter-related parameters.

filtorder = 40; % Filter order

delay = filtorder/(nsamp*2); % Group delay (# of input samples)
rolloff = 0.25; % Rolloff factor of filter

1-15

1 Getting Started

2. Create a Square Root Raised Cosine Filter. To design the filter and
plot its impulse response, insert the following commands after the commands
you added in the previous step.

% Create a square root raised cosine filter.
rrcfilter = rcosine(1,nsamp, 'fir/sqrt',rolloff,delay);

% Plot impulse response.
figure; impz(rrcfilter,1);

[rigue3 R lolx]
File Edit Wiew Insert Tools Desktop Window Help N
Impulse Response

0.6 . T .
*
0sr
L L
0.4r
2 03f
%
g o2t
0.1 T T]
nheette, o1t L2h AP
b3 & [T

lé élé
0.1 1 1 1 1 1
a 5 10 15 20 25 30 35 40

n (sarmples)

3. Filter the Modulated Signal. To filter the modulated signal, replace the
Transmitted Signal section with following.

%% Transmitted Signal
% Upsample and apply square root raised cosine filter.
ytx = rcosflt(y,1,nsamp, 'filter',rrcfilter);

% Create eye diagram for part of filtered signal.
eyediagram(ytx(1:2000),nsamp*2);

The rcosflt command internally upsamples the modulated signal, y, by a

factor of nsamp, pads the upsampled signal with zeros at the end to flush the
filter at the end of the filtering operation, and then applies the filter.

1-16

Studying Components of a Communication System

The eyediagram command creates an eye diagram for part of the filtered
noiseless signal. This diagram illustrates the effect of the pulse shaping. Note
that the signal shows significant intersymbol interference (ISI) because the
filter is a square root raised cosine filter, not a full raised cosine filter.

lolx]
File Edit Wiew Insert Tools Desktop ‘Window Help N
Eye Diagram for In-Phase Signal
3
2
L
=
L -1
a8
-3
-0.
3
2
= 1F
=
E 0
< -1F
-2
-3
-0.5 0 0.5
Time

To learn more about eyediagram, see “Eye Diagrams” on page 3-20.

4. Filter the Received Signal. To filter the received signal, replace the
Received Signal section with the following.

%% Received Signal
% Filter received signal using square root raised cosine filter.

yrx = rcosflt(ynoisy,1,nsamp,'Fs/filter',rrcfilter);
yrx = downsample(yrx,nsamp); % Downsample.
yrx = yrx(2*delay+1:end-2*delay); % Account for delay.

These commands apply the same square root raised cosine filter that the
transmitter used earlier, and then downsample the result by a factor of nsamp.

1-17

1 Getting Started

1-18

The last command removes the first 2*delay symbols and the last 2*delay
symbols in the downsampled signal because they represent the cumulative
delay of the two filtering operations. Now yrx, which is the input to the
demodulator, and y, which is the output from the modulator, have the same
vector size. In the part of the example that computes the bit error rate, it 1s
important to compare two vectors that have the same size.

S5.

Adjust the Scatter Plot. For variety in this example, make the scatter

plot show the received signal before and after the filtering operation. To do
this, replace the Scatter Plot section of the example with the following.

%% Scatter Plot

% Create scatter plot of received signal before and

% after filtering.

h = scatterplot(sqrt(nsamp)*ynoisy(1:nsamp*5e3),nsamp,0,'qg."');
hold on;

scatterplot(yrx(1:5e3),1,0, 'kx',h);

title('Received Signal, Before and After Filtering');
legend('Before Filtering', 'After Filtering');

axis([-5 5 -5 5]); % Set axis ranges.

Notice that the first scatterplot command scales ynoisy by sqrt(nsamp)
when plotting. This is because the filtering operation changes the signal’s
power.

« Figure 5: Scatter Plot =1al x|

File Edit Wiew Insert Tools Desktop Window Help

CQuadrature

Received Signal, Before and After Filtering

Befare Filtering

Studying Components of a Communication System

Using a Convolutional Code

This section further extends the example by addressing the following problem:

Problem Modify the previous example so that it includes convolutional
coding and decoding, given the constraint lengths and generator polynomials
of the convolutional code.

The solution uses the convenc and vitdec functions to perform encoding
and decoding, respectively. It also uses the poly2trellis function to define
a trellis that represents a convolutional encoder. To learn more about these
functions, see “Convolutional Coding” on page 6-31.

See also vitsimdemo for an example of convolutional coding and decoding.

Solution of Problem

This solution modifies the code from “Pulse Shaping Using a Raised Cosine
Filter” on page 1-15. To view the original code in an editor window, enter the
following command in the MATLAB Command Window.

edit commdoc_rrc

To view a completed M-file for this example, enter edit commdoc_code in the
MATLAB Command Window.

1. Increase the Number of Symbols. Convolutional coding at this value
of EbNo reduces the BER markedly. As a result, accumulating enough errors
to compute a reliable BER requires you to process more symbols. In the Setup
section, replace the definition of the number of bits, n, with the following.

n = 5e5; % Number of bits to process

Note The larger number of bits in this example causes it to take a noticeably
longer time to run compared to the examples in previous sections.

1-19

1 Getting Started

1-20

2. Encode the Binary Data. To encode the binary data before mapping it to
integers for modulation, insert the following after the Signal Source section
of the example and before the Bit-to-Symbol Mapping section.

%% Encoder

Define a convolutional coding trellis and use it
to encode the binary data.

t = poly2trellis([5 4],[23 35 0; 0 5 13]); % Trellis
code = convenc(x,t); % Encode.

coderate = 2/3;

o°

oP

The poly2trellis command defines the trellis that represents the
convolutional code that convenc uses for encoding the binary vector, x. The
two input arguments in the poly2trellis command indicate the constraint
length and generator polynomials, respectively, of the code. A diagram
showing this encoder is in “Example: A Rate-2/3 Feedforward Encoder” on
page 6-41.

3. Apply the Bit-to-Symbol Mapping to the Encoded Signal. The
bit-to-symbol mapping must apply to the encoded signal, code, not the original
uncoded data. Replace the first definition of xsym (within the Bit-to-Symbol
Mapping section) with the following.

% B. Do ordinary binary-to-decimal mapping.
xsym = bi2de(reshape(code,k,length(code)/k)."', " 'left-msb');

Recall that k is 4, the number of bits per symbol in 16-QAM.

4. Account for Code Rate When Defining SNR. Converting from E,/N, to
the signal-to-noise ratio requires you to account for the number of information
bits per symbol. Previously, each symbol corresponded to k bits. Now, each
symbol corresponds to k*coderate information bits. More concretely, three
symbols correspond to 12 coded bits in 16-QAM, which correspond to 8
uncoded (information) bits, so the ratio of symbols to information bits is 8/3

= 4*(2/3) = k*coderate

Therefore, change the definition of snr (within the Channel section) to the
following.

snr = EbNo + 10*log10(k*coderate)-10*1og10(nsamp);

Studying Components of a Communication System

5. Decode the Convolutional Code. To decode the convolutional
code before computing the error rate, insert the following after the entire
Symbol-to-Bit Mapping section and just before the BER Computation
section.

%% Decoder

% Decode the convolutional code.

tb = 16; % Traceback length for decoding

z = vitdec(z,t,tb, 'cont','hard'); % Decode.

The syntax for the vitdec function instructs it to use hard decisions. The
‘cont' argument instructs it to use a mode designed for maintaining
continuity when you invoke the function repeatedly (as in a loop). Although
this example does not use a loop, the 'cont' mode is used for the purpose of
illustrating how to compensate for the delay in this decoding operation. The
delay is discussed further in “More About Delays” on page 1-22.

6. Account for Delay When Computing BER. The continuous operation
mode of the Viterbi decoder incurs a delay whose duration in bits equals the
traceback length, tb, times the number of input streams to the encoder. For
this rate 2/3 code, the encoder has two input streams, so the delay is 2*tb bits.

As a result, the first 2*tb bits in the decoded vector, z, are just zeros. When
computing the bit error rate, you should ignore the first 2*tb bits in z and the
last 2*tb bits in the original vector, x. If you do not compensate for the delay,
then the BER computation is meaningless because it compares two vectors
that do not truly correspond to each other.

Therefore, replace the BER Computation section with the following.

oP

% BER Computation

% Compare x and z to obtain the number of errors and

% the bit error rate. Take the decoding delay into account.
decdelay = 2*tb; % Decoder delay, in bits
[number_of_errors,bit_error_rate] = ...
biterr(x(1:end-decdelay),z(decdelay+i:end))

1-21

1 Getting Started

1-22

More About Delays

The decoding operation in this example incurs a delay, which means that
the output of the decoder lags the input. Timing information does not
appear explicitly in the example, and the duration of the delay depends

on the specific operations being performed. Delays occur in various
communications-related operations, including convolutional decoding,
convolutional interleaving/deinterleaving, equalization, and filtering. To find
out the duration of the delay caused by specific functions or operations, refer
to the specific documentation for those functions or operations. For example:

The vitdec reference page

“Delays of Convolutional Interleavers” on page 7-9

“Delays from Equalization” on page 11-21

“Example: Compensating for Group Delays in Data Analysis” on page 9-3
“Fading Channels” on page 10-7

The “Effect of Delays on Recovery of Convolutionally Interleaved Data” on
page 7-10 discussion also includes two typical ways to compensate for delays.

Simulating a Communication System

Simulating a Communication System

In this section...

“Section Overview” on page 1-23
“Using BERTool to Run Simulations” on page 1-23

“Varying Parameters and Managing a Set of Simulations” on page 1-31

Section Overview

The examples so far have performed tasks associated with various components
of a communication system. In some cases, you might need to create a more
sophisticated simulation that uses one or more of these techniques:

* Looping over a set of values of a specific parameter, such as E /N, the
alphabet size, or the oversampling rate, so you can see the parameter’s
effect on the system

® Processing data in multiple smaller sets rather than in one large set, to
reduce the memory requirement

¢ Dynamically determining how much data to process to get reliable results,

instead of trying to guess at the beginning

This section discusses these issues and provides examples of constructs that
you can use in your simulations of communication systems.

Using BERTool to Run Simulations

Communications Toolbox software includes a graphical user interface called
BERTool. Using the BERToo0l GUI, you can solve problems like the following:

Problem Modify the modulation example in “Modulating a Random Signal”
on page 1-4 so that it computes the BER for integer values of EbNo between
0 and 7. Plot the BER as a function of EbNo using a logarithmic scale for
the vertical axis.

1-23

1 Getting Started

1-24

BERTool solves the problem by managing a series of simulations with
different values of E;/N, collecting the results, and creating a plot. You
provide the core of the simulation, which in this case is a minor modification
of the example in “Modulating a Random Signal” on page 1-4.

This section introduces BERTool as well as some simulation-related issues, in
these topics:

® “Solution of Problem” on page 1-24
® “Comparing with Theoretical Results” on page 1-28
® “More About the Simulation Structure” on page 1-30

However, this section is not a comprehensive description of BERTool; for
more information about BERTool, see Chapter 4, “BERTool: A Bit Error
Rate Analysis GUTI”.

Solution of Problem

This solution uses code from commdoc_gray.m as well as code from a template
file that is tailored for use with BERTool. To view the original code in an
editor window, enter these commands in the MATLAB Command Window.

edit commdoc_gray
edit bertooltemplate

To view a completed M-file for this example, enter edit commdoc_bertool
in the MATLAB Command Window.

1. Save Template in Your Own Directory. Navigate to a directory
where you want to save your own files. Save the BERTool template
(bertooltemplate) under the filename my commdoc_bertool to avoid
overwriting the original template.

Also, change the first line of my_commdoc_bertool, which is the function
declaration, to use the new filename.

function [ber, numBits] = my_commdoc_bertool(EbNo, maxNumErrs, maxNumBits)

2. Copy Setup Code Into Template. In the my_commdoc_bertool file,
replace

Simulating a Communication System

o°

--- Set up parameters. ---
--- INSERT YOUR CODE HERE.

o°

with the following setup code adapted from the example in commdoc_gray.m.

o°

Setup

Define parameters.

= 16; % Size of signal constellation

= 1log2(M); % Number of bits per symbol
1000; % Number of bits to process
nsamp = 1; % Oversampling rate

o°

S X =

To save time in the simulation, the code above changes the value of n from its
original value. At small values of EbNo, it is not necessary to process tens of
thousands of symbols to compute an accurate BER; at large values of EbNo,
the loop structure in the template file (described later) causes the simulation
to include at least 100 errors even if it must iterate several times through the
loop to accumulate that many errors.

3. Copy Simulation Code Into Template. In the my_commdoc_bertool
file, replace

o°

--- Proceed with simulation.
--- Be sure to update totErr and numBits.
% --- INSERT YOUR CODE HERE.

o°

with the rest of the code (that is, the code following the Setup section) from
the example in commdoc_gray.m.

Also, type a semicolon at the end of the last line of the pasted code (the biterr
command) to suppress screen output when BERTool runs the simulation.

4. Update numBits and totErr. After the pasted code from the last step
and before the end statement from the template, insert the following code.

%% Update totErr and numBits.
totErr = totErr + number_of_errors;
numBits = numBits + n;

1-25

1 Getting Started

1-26

These commands enable the function to keep track of the number of bits
processed and the number of errors detected.

5. Suppress Earlier Plots. Running multiple iterations would result in a
large number of plots, which this example suppresses for simplicity. In the
my_commdoc_bertool file, remove the lines of code that use these functions:
stem, title, xlabel, ylabel, figure, scatterplot, hold, legend, and axis

6. Omit Direct Assignment of EbNo. When BERTool invokes a simulation
function, it specifies a value of EbNo. The my commdoc_bertool function must
not directly assign EbNo. Therefore, remove or comment out the line that you
pasted into my_commdoc_bertool (within the Channel section) that assigns
EbNo directly.

% EbNo = 10;

o°

In dB % COMMENT OUT FOR BERTOOL

7. Save Simulation Function. The simulation function,
my_commdoc_bertool, is complete. Save the file so that BERToo0l can use it.

8. Open BERTool and Enter Parameters. To open BERTool, enter

bertool

in the MATLAB Command Window. Then click the Monte Carlo tab and
enter parameters as shown below.

Simulating a Communication System

Theoreﬁcall Semianalytic Mante Carlo |

E, M, range: [210 B

Sirnulation M-file or modsl: Imy_commdoc_ber‘tool.m

BER: variable name: I

Browse... |

Sirmulation limits:

Mumber of errors: |1 uli}

or
Mumber of bits: 1ed

These parameters tell BERTool to run your simulation function,

my_commdoc_bertool, for each value of EbNo in the vector 2:10 (that is, the
vector [2 3 4 5 6 7 8 9 10]). Each time the simulation runs, it continues
processing data until it detects 100 bit errors or processes a total of 1e8 bits,

whichever occurs first.

9. Use BERTool to Simulate and Plot. Click the Run button on BERTool.
BERTool begins the series of simulations and eventually reports the results

to you in a plot like the one below.

1-27

Getting Started

1-28

<) BER Figure M= E3
File Edit Tools Window £
gaafneEE

+ simulationd |

BER

To compare these BER results with theoretical results, leave BERTool open
and use the procedure below.

Comparing with Theoretical Results

To check whether the results from the solution above are correct, use BERTool
again. This time, use its Theoretical panel to plot theoretical BER results in
the same window as the simulation results from before. Follow this procedure:

1 In the BERTool GUI, click the Theoretical tab and enter parameters
as shown below.

Simulating a Communication System

Thearetical | Semianaly’ticl Monte Carlol

E My range: 210 dE

Channel type: I ANGH T l
Modulstion type: I M =~ l
I 16 ~ l

Modulation order:

The parameters tell BERTool to compute theoretical BER results for
16-QAM over an AWGN channel, for E,;/N,, values in the vector 2:10.

2 Click the Plot button. The resulting plot shows a solid curve for the
theoretical BER results and plotting markers for the earlier simulation
results.

File Edit Tools ‘Window £
& & 2 e E

10 p

* simulationd |
thearetical-exact(|}

BER

Notice that the plotting markers are close to the theoretical curve. It is
relevant that the simulation code used a Gray-coded signal constellation,
unlike the first modulation example of this chapter (in “Modulating a

1-29

1 Getting Started

1-30

Random Signal” on page 1-4). The theoretical performance results assume a
Gray-coded signal constellation.

To continue exploring BERTool, you can select the Fit check box to fit a curve
to the simulation data, or set Confidence Level to a numerical value to
include confidence intervals in the plot. See also Chapter 4, “BERTool: A Bit
Error Rate Analysis GUI” for more about BERTool.

More About the Simulation Structure

Looking more closely at the simulation function in this example, you might
make a few observations about its structure, and particularly about the loop
marked with the comments

% Simulate until number of errors exceeds maxNumErrs
% or number of bits processed exceeds maxNumBits.

The loop structure means that the simulation processes some data,
accumulates bit errors, and then decides whether to repeat the process with
another set of data. The advantage of this approach is that you do not have to
guess in advance how much data you need to process to obtain an accurate
BER estimate. This is very useful when your series of simulations spans a
large E,/N, range because simulations at higher values of E,/N, require more
data processing to maintain the same level of accuracy in the BER estimate.
Another advantage of this approach is that you avoid memory problems
caused by excessively large data sets.

However, a potential complication from dividing large data sets into a series
of smaller data sets that you process in a loop is that you might need to take
steps to ensure the continuity of computations from one iteration to the
next. For example, continuity is important when the simulation includes
convolutional decoding, convolutional interleaving/deinterleaving, continuous
phase modulation, fading channels, and equalization. To learn more about
how to maintain continuity, see the examples in

¢ The vitdec reference page

® The viterbisim demonstration function (designed to be used with
BERTool)

e The muxdeintrlv reference page

Simulating a Communication System

® The mskdemod reference page

¢ “Fading Channels” on page 10-7

¢ “Equalizing Using a Loop” on page 11-22

e “KEqualizing in Continuous Operation Mode” on page 11-30

If you divide your data set into a series of very small data sets, then the large

number of function calls might make the simulation slow. You can use the
Profiler tool in MATLAB to help you make your code faster.

Varying Parameters and Managing a Set of
Simulations

A common task in analyzing a communication system is to vary a parameter,
possibly a parameter other than E,/N, and find out how the system responds.
This section addresses the following problem:

Problem Modify the modulation example in “Modulating a Random Signal”
on page 1-4 so that it computes the BER for alphabet sizes (M) of 4, 8, 16, and
32 and for integer values of EbNo between 0 and 7. For each value of M, plot
the BER as a function of EbNo using a logarithmic scale for the vertical axis.

The earlier section (“Modulating a Random Signal” on page 1-4) presented
a model of the system that computes the BER for specific values of M and
EbNo. Therefore, the only remaining task is to vary M and EbNo and collect
multiple error rates. For simplicity, this solution uses the same number of
bits for each value of M and EbNo, unlike the example in “Using BERTool
to Run Simulations” on page 1-23.

Solution of Problem

This solution modifies the code from “Modulating a Random Signal” on page
1-4 by introducing and exploiting a nested loop structure. To view the original
code in an editor window, enter the following command in the MATLAB
Command Window.

edit commdoc_mod

1-31

1 Getting Started

1-32

To view a completed M-file for this example, enter edit commdoc_mcurves
in the MATLAB Command Window.

1. Define the Set of Values for the Parameter. At the beginning of
the script, introduce variables that list all the values of M and EbNo that the
problem requires. Also, preallocate space for error statistics corresponding
to each combination of M and EbNo.

%% Ranges of Variables
Mvec = [4 8 16 32]; % Values of M to consider
EbNovec = [0:7]; % Values of EbNo to consider

%% Preallocate space for results.
number_of_errors = zeros(length(Mvec),length(EbNovec));
bit_error_rate = zeros(length(Mvec),length(EbNovec));

2. Introduce a Loop Structure. After Mvec and EbNovec are defined and
space is preallocated for statistics, all the subsequent commands can go inside
a loop, as illustrated below.

%% Simulation loops
for idxM = 1:1length(Mvec)
for idxEbNo = 1:1length(EbNovec)

% OTHER COMMANDS

end % End of loop over EbNo values
end % End of loop over M values

3. Inside the Loop, Parameterize as Appropriate. The M-code
fromcommdoc_gray.m specifies fixed values of M and EbNo, while this problem
requires using a different value for each iteration of the loop. Therefore,
change the definitions of M (within the Setup section) and EbNo (within the
Channel section) as follows.

M = Mvec(idxM); % Size of signal constellation

EbNo = EbNovec (idxEbNo); % In dB

Simulating a Communication System

Also, the original M-code returns scalar values for the BER and number of
errors, while it makes sense in this case to save the whole array of error
statistics instead of overwriting the variables in each iteration. Therefore,
replace the BER Computation section with the following.

oP

% BER Computation

% Compare x and z to obtain the number of errors and

% the bit error rate.

[number_of_errors(idxM,idxEbNo),bit_error_rate(idxM,idxEbNo)]
biterr(x,z);

Note An earlier step preallocated space for the matrices number_of_errors

and bit_error_rate. While not strictly necessary, this is a better MATLAB

programming practice than expanding the matrices’ size in each iteration. To
learn more, see “Preallocating Arrays” in the MATLAB documentation set.

4. Suppress Earlier Plots. Running multiple iterations would result in a
large number of plots, which this example suppresses for simplicity. Remove
the lines of code that use these functions:stem, title, xlabel, ylabel,
figure, scatterplot, hold, legend, and axis

5. Create BER Plot. The semilogy function in MATLAB creates a plot with
a logarithmic scale in the vertical axis. The following commands, placed just
before the end of the loop over M values, create the desired BER plot curve by
curve during the simulation.

%% Plot a Curve.

markerchoice = '.xo0*';

plotsym = [markerchoice(idxM) '-']; % Plotting style for this curve
semilogy (EbNovec,bit_error_rate(idxM,:),plotsym); % Plot one curve.
drawnow; % Update the plot instead of waiting until the end.

hold on; % Make sure next iteration does not remove this curve.

You might also want to customize the plot at the end by adding this code
after the end of both loops.

%% Complete the plot.
title('Performance of M-QAM for Varying M');
xlabel('EbNo (dB)'); ylabel('BER');

1-33

1 Getting Started

legend('M = 4','M = 8','M = 16','M = 32',...
'Location', 'SouthWest');

6. Run the Entire Script. The script creates a plot like the one shown in
the following figure.

[JFiguet ~=lol x|

File Edit Wiew Insert Tools Desktop Window Help

Perfarmance of M-QAM for Varying M

1-34

Learning More

Learning More

In this section...

“Online Help” on page 1-35
“Demos” on page 1-35

“The MathWorks Online” on page 1-35

Online Help

To find online documentation, select Product Help from the Help menu

in the MATLAB desktop. This launches the Help browser. For a more
detailed explanation of any of the topics covered in this chapter, see the
Communications Toolbox documentation in the left pane of the Help browser.

Besides this chapter, the online documentation set contains these components:

¢ A chapter about each of the core areas of functionality of the toolbox (such
as error-control coding, modulation, and equalizers)

¢ A reference page for each function in the toolbox, indexed alphabetically

and by category

You can also use the online index of examples to find code examples that are
relevant for the tasks you want to do.

Demos

To see more Communications Toolbox examples, select Demos from
the Help menu in the MATLAB desktop. This opens the Help browser
to the demonstration area. Double-click Toolboxes and then select
Communications to list the available demos.

The MathWorks Online

To read the Communications Toolbox documentation on the MathWorks Web
site, point your Web browser to

http://www.mathworks.com/access/helpdesk/help/toolbox/comm/

1-35

http://www.mathworks.com/access/helpdesk/help/toolbox/comm/

1 Getting Started

Other resources for the Communications Toolbox product are available at

http://www.mathworks.com/products/communications/

1-36

http://www.mathworks.com/products/communications/

Signal Sources

Every communication system has one or more signal sources. This chapter
describes how to use Communications Toolbox to generate random signals,
which are useful for simulating noise, errors, or signal sources. The sections
are as follows.

® “White Gaussian Noise” on page 2-2

¢ “Random Symbols” on page 2-3

¢ “Random Integers” on page 2-4

¢ “Random Bit Error Patterns” on page 2-5

For more random number generators, see the online reference pages for the
built-in MATLAB functions rand and randn.

2 Signal Sources

White Gaussian Noise

2-2

The wgn function generates random matrices using a white Gaussian noise
distribution. You specify the power of the noise in either dBW (decibels
relative to a watt), dBm, or linear units. You can generate either real or
complex noise.

For example, the command below generates a column vector of length 50
containing real white Gaussian noise whose power is 2 dBW. The function
assumes that the load impedance is 1 ohm.

y1 = wgn(50,1,2);

To generate complex white Gaussian noise whose power is 2 watts, across a
load of 60 ohms, use either of the commands below. The ordering of the string
inputs does not matter.

wgn(50,1,2,60, 'complex', 'linear');
wgn(50,1,2,60, 'linear', 'complex');

y2
y3

To send a signal through an additive white Gaussian noise channel, use the
awgn function. See “AWGN Channel” on page 10-3 for more information.

Random Symbols

Random Symbols

The randsrc function generates random matrices whose entries are chosen
independently from an alphabet that you specify, with a distribution that you
specify. A special case generates bipolar matrices.

For example, the command below generates a 5-by-4 matrix whose entries
are independently chosen and uniformly distributed in the set {1,3,5}. (Your
results might vary because these are random numbers.)

randsrc(5,4,[1,3,5])

a

W = = =2 W

5
5
3
1
1

- W wWww-—=
W o = wao

If you want 1 to be twice as likely to occur as either 3 or 5, use the command
below to prescribe the skewed distribution. The third input argument has two
rows, one of which indicates the possible values of b and the other indicates
the probability of each value.

b = randsrc(5,4,[1,3,5; .5,.25,.25])

b =

W= 2 aw
— WO =W
W= = ao
—_ W = =

2-3

2 Signal Sources

2-4

Random Integers

The randint function generates random integer matrices whose entries are in
a range that you specify. A special case generates random binary matrices.

For example, the command below generates a 5-by-4 matrix containing
random integers between 2 and 10.

¢ = randint(5,4,[2,10])

2
4 1

oo r~DN
W o~ O A
O W o oo

If your desired range is [0,10] instead of [2,10], you can use either of the
commands below. They produce different numerical results, but use the same
distribution.

d
e

randint(5,4,[0,10]);
randint(5,4,11);

Random Bit Error Patterns

Random Bit Error Patterns

The randerr function generates matrices whose entries are either O or 1.
However, its options are different from those of randint, because randerr
1s meant for testing error-control coding. For example, the command below
generates a 5-by-4 binary matrix, where each row contains exactly one 1.

f randerr(5,4)

o+ 0O O0Oo
oo -+ 0O0

1
1
0
0
1

O OO oo

You might use such a command to perturb a binary code that consists of five
four-bit codewords. Adding the random matrix f to your code matrix (modulo
2) introduces exactly one error into each codeword.

On the other hand, to perturb each codeword by introducing one error with
probability 0.4 and two errors with probability 0.6, use the command below
instead.

o°

Each row has one '1' with probability 0.4, otherwise two '1's
= randerr(5,4,[1,2; 0.4,0.6])

«
|

o+~ 0O 0o
L1 OO0 4 =
—_, A a0 =
oo =00

Note The probability matrix that is the third argument of randerr affects
only the number of 1s in each row, not their placement.

2-5

2 Signal Sources

As another application, you can generate an equiprobable binary 100-element
column vector using any of the commands below. The three commands
produce different numerical outputs, but use the same distribution. The
third input arguments vary according to each function’s particular way of
specifying its behavior.

binarymatrixi = randsrc(100,1,[0 1]); % Possible values are 0,1.
binarymatrix2 = randint(100,1,2); % Two possible values
binarymatrix3 = randerr(100,1,[0 1;.5 .5]); % No 1s, or one 1

2-6

Performance Evaluation

Simulating a communication system often involves analyzing its response to
the noise inherent in real-world components, studying its behavior using
graphical means, and determining whether the resulting performance meets
standards of acceptability. The sections in this chapter are as follows.

¢ “Performance Results via Simulation” on page 3-2

e “Performance Results via the Semianalytic Technique” on page 3-5

e “Theoretical Performance Results” on page 3-10

¢ “Error Rate Plots” on page 3-14

¢ “Eye Diagrams” on page 3-20

e “Scatter Plots” on page 3-21

o “EVM Measurements” on page 3-34

e “MER Measurements” on page 3-35

e “Selected Bibliography for Performance Evaluation” on page 3-36

Because error analysis is often a component of communication system
simulation, other portions of this guide provide additional examples.

3 Performance Evaluation

Performance Results via Simulation

3-2

In this section...

“Section Overview” on page 3-2
“Using Simulated Data to Compute Bit and Symbol Error Rates” on page 3-2

“Example: Computing Error Rates” on page 3-3

“Comparing Symbol Error Rate and Bit Error Rate” on page 3-4

Section Overview

One way to compute the bit error rate or symbol error rate for a communication
system is to simulate the transmission of data messages and compare all
messages before and after transmission. The simulation of the communication
system components using Communications Toolbox is covered in other parts
of this guide. This section describes how to compare the data messages that
enter and leave the simulation.

Another example of computing performance results via simulation is in “Curve
Fitting for Error Rate Plots” on page 3-15 in the discussion of curve fitting.

Using Simulated Data to Compute Bit and Symbol
Error Rates

The biterr function compares two sets of data and computes the number of
bit errors and the bit error rate. The symerr function compares two sets of
data and computes the number of symbol errors and the symbol error rate. An
error is a discrepancy between corresponding points in the two sets of data.

Of the two sets of data, typically one represents messages entering a
transmitter and the other represents recovered messages leaving a receiver.
You might also compare data entering and leaving other parts of your
communication system, for example, data entering an encoder and data
leaving a decoder.

If your communication system uses several bits to represent one symbol,
counting bit errors is different from counting symbol errors. In either the bit-

Performance Results via Simulation

or symbol-counting case, the error rate is the number of errors divided by the
total number (of bits or symbols) transmitted.

Note To ensure an accurate error rate, you should typically simulate enough
data to produce at least 100 errors.

If the error rate is very small (for example, 10® or smaller), the semianalytic
technique might compute the result more quickly than a simulation-only
approach. See “Performance Results via the Semianalytic Technique” on page
3-5 for more information on how to use this technique.

Example: Computing Error Rates

The script below uses the symerr function to compute the symbol error rates
for a noisy linear block code. After artificially adding noise to the encoded
message, it compares the resulting noisy code to the original code. Then it
decodes and compares the decoded message to the original one.

m=3; n=2*m-1; K = n-m; % Prepare to use Hamming code.
msg = randint(k*200,1,2); % 200 messages of k bits each
code = encode(msg,n,k, "hamming');

codenoisy = rem(code+(rand(n*200,1)>.95),2); % Add noise.
% Decode and correct some errors.

newmsg = decode(codenoisy,n,k, "hamming');

% Compute and display symbol error rates.
[codenum,coderate] = symerr(code,codenoisy);
[msgnum,msgrate] = symerr(msg,newmsg);

disp(['Error rate in the received code: ',num2str(coderate)])
disp(['Error rate after decoding: ',num2str(msgrate)])

The output is below. The error rate decreases after decoding because the
Hamming decoder corrects some of the errors. Your results might vary
because this example uses random numbers.

Error rate in the received code: 0.054286
Error rate after decoding: 0.03

3-3

3 Performance Evaluation

Comparing Symbol Error Rate and Bit Error Rate

In the example above, the symbol errors and bit errors are the same because
each symbol is a bit. The commands below illustrate the difference between
symbol errors and bit errors in other situations.

a=1[123]"'; b=1[1414]";
format rat % Display fractions instead of decimals.
[snum,srate] symerr(a,b)
[bnum,brate] = biterr(a,b)

The output is below.

snum =

srate =

2/3

bnum =

brate =
5/9

bnum is 5 because the second entries differ in two bits and the third entries
differ in three bits. brate is 5/9 because the total number of bits is 9. The
total number of bits is, by definition, the number of entries in a or b times the
maximum number of bits among all entries of a and b.

Performance Results via the Semianalytic Technique

Performance Results via the Semianalytic Technique

In this section...

“Section Overview” on page 3-5
“When to Use the Semianalytic Technique” on page 3-5
“Procedure for the Semianalytic Technique” on page 3-6

“Example: Using the Semianalytic Technique” on page 3-7

Section Overview

The technique described in “Performance Results via Simulation” on page
3-2 works well for a large variety of communication systems, but can be
prohibitively time-consuming if the system’s error rate is very small (for
example, 10 or smaller). This section describes how to use the semianalytic
technique as an alternative way to compute error rates. For certain types of
systems, the semianalytic technique can produce results much more quickly
than a nonanalytic method that uses only simulated data.

The semianalytic technique uses a combination of simulation and analysis

to determine the error rate of a communication system. The semianalytic
function in Communications Toolbox helps you implement the semianalytic
technique by performing some of the analysis.

For more background information on the semianalytic technique, refer to [3].

When to Use the Semianalytic Technique

The semianalytic technique works well for certain types of communication
systems, but not for others. The semianalytic technique is applicable if a
system has all of these characteristics:

® Any effects of multipath fading, quantization, and amplifier nonlinearities
must precede the effects of noise in the actual channel being modeled.

® The receiver is perfectly synchronized with the carrier, and timing jitter is
negligible. Because phase noise and timing jitter are slow processes, they
reduce the applicability of the semianalytic technique to a communication
system.

3-5

3 Performance Evaluation

® The noiseless simulation has no errors in the received signal constellation.
Distortions from sources other than noise should be mild enough to keep
each signal point in its correct decision region. If this is not the case,
the calculated BER 1is too low. For instance, if the modeled system has a
phase rotation that places the received signal points outside their proper
decision regions, the semianalytic technique is not suitable to predict
system performance.

Furthermore, the semianalytic function assumes that the noise in the
actual channel being modeled is Gaussian. For details on how to adapt
the semianalytic technique for non-Gaussian noise, see the discussion of
generalized exponential distributions in [3].

Procedure for the Semianalytic Technique

The procedure below describes how you would typically implement the
semianalytic technique using the semianalytic function:

1 Generate a message signal containing at least M symbols, where M is
the alphabet size of the modulation and L is the length of the impulse
response of the channel in symbols. A common approach is to start with an
augmented binary pseudonoise (PN) sequence of total length (log,M)M-. An
augmented PN sequence is a PN sequence with an extra zero appended,
which makes the distribution of ones and zeros equal.

2 Modulate a carrier with the message signal using baseband modulation.
Supported modulation types are listed on the reference page for
semianalytic. Shape the resultant signal with rectangular pulse shaping,
using the oversampling factor that you will later use to filter the modulated
signal. Store the result of this step as txsig for later use.

3 Filter the modulated signal with a transmit filter. This filter is often a
square-root raised cosine filter, but you can also use a Butterworth, Bessel,
Chebyshev type 1 or 2, elliptic, or more general FIR or IIR filter. If you use
a square-root raised cosine filter, use it on the nonoversampled modulated
signal and specify the oversampling factor in the filtering function. If you
use another filter type, you can apply it to the rectangularly pulse shaped
signal.

3-6

Performance Results via the Semianalytic Technique

4 Run the filtered signal through a noiseless channel. This channel can
include multipath fading effects, phase shifts, amplifier nonlinearities,
quantization, and additional filtering, but it must not include noise. Store
the result of this step as rxsig for later use.

5 Invoke the semianalytic function using the txsig and rxsig data from
earlier steps. Specify a receive filter as a pair of input arguments, unless
you want to use the function’s default filter. The function filters rxsig
and then determines the error probability of each received signal point by
analytically applying the Gaussian noise distribution to each point. The
function averages the error probabilities over the entire received signal to
determine the overall error probability. If the error probability calculated
in this way is a symbol error probability, the function converts it to a bit
error rate, typically by assuming Gray coding. The function returns the
bit error rate (or, in the case of DQPSK modulation, an upper bound on
the bit error rate).

Example: Using the Semianalytic Technique

The example below illustrates the procedure described above, using 16-QAM
modulation. It also compares the error rates obtained from the semianalytic
technique with the theoretical error rates obtained from published formulas
and computed using the berawgn function. The resulting plot shows that
the error rates obtained using the two methods are nearly identical. The
discrepancies between the theoretical and computed error rates are largely
due to the phase offset in this example’s channel model.

% Step 1. Generate message signal of length >= M"L.

M = 16; % Alphabet size of modulation

L = 1; % Length of impulse response of channel

msg = [0:M-1 0]; % M-ary message sequence of length > M"L

% Step 2. Modulate the message signal using baseband modulation.
modsig = gammod(msg,M); % Use 16-QAM.

Nsamp = 16;

modsig = rectpulse(modsig,Nsamp); % Use rectangular pulse shaping.

% Step 3. Apply a transmit filter.
txsig = modsig; % No filter in this example

% Step 4. Run txsig through a noiseless channel.

3-7

3 Performance Evaluation

rxsig txsig*exp(j*pi/180); % Static phase offset of 1 degree
Step 5. Use the semlanalytlc function.

% Specify the receive filter as a pair of input arguments.

% In this case, num and den describe an ideal integrator.

num = ones(Nsamp,1)/Nsamp;

den = 1;

EbNo = [0:20]; % Range of Eb/No values under study

ber = semianalytic(txsig,rxsig, ‘gam',M,Nsamp,num,den,EbNo);

o°

% For comparison, calculate theoretical BER.
bertheory = berawgn(EbNo, 'qam',M);

% Plot computed BER and theoretical BER.

figure; semilogy(EbNo,ber, 'k*"');

hold on; semilogy(EbNo,bertheory,'ro');

title('Semianalytic BER Compared w1th Theoretical BER');

legend('Semianalytic BER with Phase Offset',
'Theoretical BER Without Phase Offset', 'Location', 'SouthWest');

hold off;

This example creates a figure like the one below.

3-8

Performance Results via the Semianalytic Technique

T RI=TE
File Edit Wiew Insert Tools Desktop Window Help N
q Semianalytic BER Compared with Theaoretical BER
10 T T T T T T T T T
Rk op g
J &
10t | LI 1
&
1wt b ® _
&
g &
0° b .
ol
o | o .
o't % _
12| + |
10 &
1o
i 4 Semianalytic BER with Phase Offset *
O Theoretical BER Without Phase Offset o]
10'16 1 1 1 1 1 1 | | |
0 2 4 B 8 10 12 14 16 18 20

3-9

3 Performance Evaluation

Theoretical Performance Results

3-10

In this section...

“Computing Theoretical Error Statistics” on page 3-10
“Plotting Theoretical Error Rates” on page 3-10

“Comparing Theoretical and Empirical Error Rates” on page 3-11

Computing Theoretical Error Statistics

While the biterr function discussed above can help you gather empirical
error statistics, you might also compare those results to theoretical error
statistics. Certain types of communication systems are associated with
closed-form expressions for the bit error rate or a bound on it. The functions
listed in the table below compute the closed-form expressions for some types
of communication systems, where such expressions exist.

Type of Communication System | Function
Uncoded AWGN channel berawgn
Coded AWGN channel bercoding
Uncoded Rayleigh and Rician fading | berfading
channel

Uncoded AWGN channel with bersync
imperfect synchronization

Each function’s reference page lists one or more books containing the
closed-form expressions that the function implements.

Plotting Theoretical Error Rates

The example below uses the bercoding function to compute upper bounds
on bit error rates for convolutional coding with a soft-decision decoder. The
data used for the generator and distance spectrum are from [5] and [2],
respectively.

coderate = 1/4; % Code rate

Theoretical Performance Results

% Create a structure dspec with information about distance spectrum.
dspec.dfree = 10; % Minimum free distance of code
dspec.weight = [1 0 4 0 12 0 32 0 80 0 192 0 448 0 1024
0 2304 0 5120 0]; % Distance spectrum of code
EbNo = 3:0.5:8;
berbound = bercoding(EbNo, 'conv', 'soft',coderate,dspec);
semilogy (EbNo,berbound) % Plot the results.
xlabel('E_b/N_O0 (dB)'); ylabel('Upper Bound on BER');
title('Theoretical Bound on BER for Convolutional Coding');
grid on;

This example produces the following plot.

Jrgwes -0l

File Edit Wiew Insert Tools Desktop Window Help

5 Thearetical Bound an BER for Convalutional Cading

Upper Bound on BER

Comparing Theoretical and Empirical Error Rates

The example below uses the berawgn function to compute symbol error rates
for pulse amplitude modulation (PAM) with a series of E, /N, values. For
comparison, the code simulates 8-PAM with an AWGN channel and computes
empirical symbol error rates. The code also plots the theoretical and empirical
symbol error rates on the same set of axes.

% 1. Compute theoretical error rate using BERAWGN.
M = 8; EbNo = [0:13];
[ber, ser] = berawgn(EbNo, 'pam',M);

H

3-11

3 Performance Evaluation

% Plot theoretical results.

figure; semilogy(EbNo,ser,'r');

xlabel('E_b/N_O0 (dB)'); ylabel('Symbol Error Rate');
grid on; drawnow;

o°

2. Compute empirical error rate by simulating.

Set up.

= 10000; % Number of symbols to process

= 1og2(M); % Number of bits per symbol

Convert from EbNo to SNR.

Note: Because No = 2*noiseVariance”2, we must add 3 dB
to get SNR. For details, see Proakis book listed in
"Selected Bibliography for Performance Evaluation."
snr = EbNo+3+10*10og10(k);

ynoisy=zeros(n,length(snr)); % Preallocate to save time.

X X T o°

o°

o°

o°

Main steps in the simulation
randint(n,1,M); % Create message signal.
= pammod(x,M); % Modulate.
Send modulated signal through AWGN channel.
Loop over different SNR values.
for jj = 1:length(snr)
ynoisy(:,jj) = awgn(real(y),snr(jj), 'measured');
end
z = pamdemod(ynoisy,M); % Demodulate.

< X
| I

o°

% Compute symbol error rate from simulation.
[num,rt] = symerr(x,z);

% 3. Plot empirical results, in same figure.

hold on; semilogy(EbNo,rt,'b."');

legend('Theoretical SER', 'Empirical SER');
title('Comparing Theoretical and Empirical Error Rates');
hold off;

This example produces a plot like the one in the following figure. Your plot
might vary because the simulation uses random numbers.

3-12

Theoretical Performance Results

<) Figure 1 M= E3

File Edit

Wiews Insert Tools Desktop Window Help

]

DEE& K RaO® |2 0B =0

Syrmhbol Error Rate

10°

Comparing Theoretical and Empirical Error Rates

I I
_____ — Theaoretical SER (]
------- + Empirical SER

g_________
o) I
Foey
=]
]
=

3-13

3 Performance Evaluation

Error Rate Plots

3-14

In this section...

“Section Overview” on page 3-14
“Creating Error Rate Plots Using semilogy” on page 3-14
“Curve Fitting for Error Rate Plots” on page 3-15

“Example: Curve Fitting for an Error Rate Plot” on page 3-15

Section Overview

Error rate plots provide a visual way to examine the performance of a
communication system, and they are often included in publications. This
section mentions some of the tools you can use to create error rate plots,
modify them to suit your needs, and do curve fitting on error rate data. It
also provides an example of curve fitting. For more detailed discussions
about the more general plotting capabilities in MATLAB, see the MATLAB
documentation set.

Creating Error Rate Plots Using semilogy

In many error rate plots, the horizontal axis indicates E,/N, values in dB
and the vertical axis indicates the error rate using a logarithmic (base 10)
scale. To see an example of such a plot, as well as the code that creates it, see
“Comparing Theoretical and Empirical Error Rates” on page 3-11. The part of
that example that creates the plot uses the semilogy function to produce a
logarithmic scale on the vertical axis and a linear scale on the horizontal axis.

Other examples that illustrate the use of semilogy are in these sections:
¢ “Example: Using the Semianalytic Technique” on page 3-7, which also
illustrates
= Plotting two sets of data on one pair of axes
= Adding a title
= Adding a legend

¢ “Plotting Theoretical Error Rates” on page 3-10, which also illustrates

Error Rate Plots

= Adding axis labels
= Adding grid lines

Curve Fitting for Error Rate Plots

Curve fitting i1s useful when you have a small or imperfect data set but want
to plot a smooth curve for presentation purposes. The berfit function in
Communications Toolbox offers curve-fitting capabilities that are well suited
to the situation when the empirical data describes error rates at different
E,/N, values. This function enables you to

e Customize various relevant aspects of the curve-fitting process, such as the
type of closed-form function (from a list of preset choices) used to generate
the fit.

® Plot empirical data along with a curve that berfit fits to the data.

¢ Interpolate points on the fitted curve between E /N, values in your
empirical data set to make the plot smoother looking.

® (Collect relevant information about the fit, such as the numerical values of
points along the fitted curve and the coefficients of the fit expression.

Note The berfit function is intended for curve fitting or interpolation, not
extrapolation. Extrapolating BER data beyond an order of magnitude below
the smallest empirical BER value is inherently unreliable.

For a full list of inputs and outputs for berfit, see its reference page.

Example: Curve Fitting for an Error Rate Plot

This example simulates a simple DBPSK (differential binary phase shift
keying) communication system and plots error rate data for a series of E./N,
values. It uses the berfit function to fit a curve to the somewhat rough set of
empirical error rates. Because the example is long, this discussion presents it
in multiple steps:

e “Setting Up Parameters for the Simulation” on page 3-16
® “Simulating the System Using a Loop” on page 3-16

3-15

3 Performance Evaluation

3-16

* “Plotting the Empirical Results and the Fitted Curve” on page 3-18

Setting Up Parameters for the Simulation

The first step in the example sets up the parameters to be used during the
simulation. Parameters include the range of E /N, values to consider and the
minimum number of errors that must occur before the simulation computes
an error rate for that E,/N, value.

Note For most applications, you should base an error rate computation on
a larger number of errors than is used here (for instance, you might change
numerrmin to 100 in the code below). However, this example uses a small
number of errors merely to illustrate how curve fitting can smooth out a
rough data set.

% Set up initial parameters.
siglen = 100000; % Number of bits in each trial
M = 2; % DBPSK is binary.
hMod = modem.dpskmod('M', M); % Create a DPSK modulator
hDemod = modem.dpskdemod(hMod); % Create a DPSK

% demodulator using the modulator object
EbNomin = 0; EbNomax = 9; % EbNo range, in dB
numerrmin = 5; % Compute BER only after 5 errors occur.
EbNovec = EbNomin:1:EbNomax; % Vector of EbNo values
numEbNos = length(EbNovec); % Number of EbNo values
% Preallocate space for certain data.
ber = zeros(1,numEbNos); % BER values
intv = cell(1,numEbNos); % Cell array of confidence intervals

° 1

Simulating the System Using a Loop

The next step in the example is to use a for loop to vary the E,/N, value
(denoted by EbNo in the code) and simulate the communication system for
each value. The inner while loop ensures that the simulation continues to use
a given EbNo value until at least the predefined minimum number of errors
has occurred. When the system is very noisy, this requires only one pass
through the while loop, but in other cases, this requires multiple passes.

Error Rate Plots

The communication system simulation uses these toolbox functions:

randint to generate a random message sequence

dpskmod to perform DBPSK modulation

awgn to model a channel with additive white Gaussian noise
dpskdemod to perform DBPSK demodulation

biterr to compute the number of errors for a given pass through the while
loop

berconfint to compute the final error rate and confidence interval for a
given value of EbNo

As the example progresses through the for loop, it collects data for later use
in curve fitting and plotting:

ber, a vector containing the bit error rates for the series of EbNo values.

intv, a cell array containing the confidence intervals for the series of EbNo
values. Each entry in intv is a two-element vector that gives the endpoints
of the interval.

% Loop over the vector of EbNo values.
for jj = 1:numEbNos
EbNo = EbNovec(jj);
snr = EbNo; % Because of binary modulation
ntrials = 0; % Number of passes through the while loop below
numerr = 0; % Number of errors for this EbNo value
% Simulate until numerrmin errors occur.
while (numerr < numerrmin)
msg = randint(siglen, 1, M); % Generate message sequence.
txsig = modulate(hMod, msg); % Modulate.
rxsig awgn(txsig, snr, 'measured'); % Add noise.
decodmsg = demodulate(hDemod, rxsig); % Demodulate.
if (ntrials==0)
% The first symbol of a differentially encoded transmission
% is discarded.
newerrs = biterr(msg(2:end),decodmsg(2:end));
% Errors in this trial
else

3-17

3 Performance Evaluation

newerrs = biterr(msg,decodmsg); % Errors in this trial
end
numerr = numerr + newerrs; % Total errors for this EbNo value
ntrials = ntrials + 1; % Update trial index.
end
% Error rate and 98% confidence interval for this EbNo value
[ber(jj), intv1] = berconfint(numerr,(ntrials * siglen)-1,.98);
intv{jj} = intv1l; % Store in cell array for later use.
disp(['EbNo = ' num2str(EbNo) ' dB, ' num2str(numerr)
' errors, BER = ' num2str(ber(jj))])
end

This part of the example displays output in the Command Window as it
progresses through the for loop. Your exact output might be different,
because this example uses random numbers.

EbNo = dB, 189 errors, BER = 0.18919
EbNo = dB, 139 errors, BER = 0.13914
EbNo = dB, 105 errors, BER = 0.10511
EbNo = dB, 66 errors, BER = 0.066066
EbNo = dB, 40 errors, BER = 0.04004

= 0.018018

EbNo = dB, 6 errors, BER = 0.006006

EbNo = dB, 11 errors, BER = 0.0055028
EbNo = dB, 5 errors, BER = 0.00071439
EbNo = dB, 5 errors, BER = 0.00022728

0
1
2
3
4
EbNo = 5 dB, 18 errors, BER
6
7
8
9
EbNo = 10 dB, 5 errors, BER = 1.006e-005

Plotting the Empirical Results and the Fitted Curve

The final part of this example fits a curve to the BER data collected from the
simulation loop. It also plots error bars using the output from the berconfint
function.

% Use BERFIT to plot the best fitted curve,

% interpolating to get a smooth plot.

fitEbNo = EbNomin:0.25:EbNomax; % Interpolation values
berfit (EbNovec,ber,fitEbNo,[], 'exp"');

% Also plot confidence intervals.

3-18

Error Rate Plots

hold onj;
for jj=1:numEbNos

semilogy ([EbNovec(jj) EbNovec(jj)],intv{ij}, 'g-+"');
end

hold off;
rgwes lolx]
File Edit Wiew Insert Tools Desktop Window Help N
N ES (KRR OTDEL-20E DO
q BER vs. Eb/MNo with a User-Specified Curve Fit
10 T T T T T T
L S R -
T R I SN SN PR Ot Sy S S -
o
i}
i}
10'3 ______ [, [, [, A N PP F—
i - bememmmeeees bememmmeeees bememmmeeees doeemneees L N L
* Empirical BER
5 Exp Fit H H H
10 T T 1 1 1
0 2 4 B 8 10
Eb/MNo (dB)

3-19

3 Performance Evaluation

Eye Diagrams

3-20

In this section...

“Section Overview” on page 3-20

“EyeScope” on page 3-20

Section Overview

An eye diagram is a simple and convenient tool for studying the effects

of intersymbol interference and other channel impairments in digital
transmission. To construct an eye diagram, plot the received signal against
time on a fixed-interval axis. At the end of the fixed time interval, wrap
around to the beginning of the time axis. The resulting diagram consists
of many overlapping curves.

To obtain a more useful eye diagram, create vertical histograms of the input
signal. A vertical histogram is defined as the histogram of the amplitude
crossings of the input signal at a given time. The eye diagram can be
constructed by combining a series of vertical histograms from zero to T
seconds, where T is a multiple of the symbol duration.

To produce an eye diagram from a signal, use the commscope.eyediagram
object. For more information, see the reference page for
commscope.eyediagram, and the demo, scattereyedemo.

EyeScope
Use EyeScope to examine eye diagram results in a user-friendly, graphical

environment. EyeScope shows both the eye diagram figure and measurement
results in a unified GUI, providing a more efficient means for viewing results.

Scatter Plots

Scatter Plots

In this section...

“Section Overview” on page 3-21

“Example: Scatter Plots” on page 3-21

Section Overview

A scatter plot of a signal shows the signal’s value at a given decision point.
In the best case, the decision point should be at the time when the eye of the
signal’s eye diagram is the most widely open.

To produce a scatter plot from a signal, use the scatterplot object.

Scatter plots are often used to visualize the signal constellation associated
with digital modulation. For more information, see Plotting Signal
Constellations. A scatter plot can be useful when comparing system
performance to a published standard, such as 3GPP or DVB standards.

The scatter plot feature is part of the commscope package. Users can
create the scatter plot object in two ways: using a default object or
by defining parameter-value pairs. For more information, see the
commscope.ScatterPlot help page.

Example: Scatter Plots

In this example, you will observe the received signals for a QPSK modulated
system. The output symbols are pulse shaped, using a raised cosine filter.

1 Create a QPSK modulator object. Type the following at the MATLAB
command line:

hMod = modem.pskmod('M', 4, 'PhaseOffset', pi/4);

2 Create an upsampling filter, with an upsample rate of 16. Type the
following at the MATLAB command line:

Rup = 16; % up sampling rate
hFilDesign = fdesign.pulseshaping(Rup, 'Raised Cosine',

3-21

3 Performance Evaluation

'Nsym,Beta',Rup,0.50);
hFil = design(hFilDesign);

3 Create the transmit signal. Type the following at the MATLAB command

line:
d = randi([0 hMod.M-1], 100, 1); % Generate data symbols
sym = modulate(hMod, d); % Generate modulated symbols
xmt = filter(hFil, upsample(sym, Rup));

4 Create a scatter plot and set the samples per symbol to the upsampling rate
of the signal. Type the following at the MATLAB command line:

hScope = commscope.ScatterPlot
hScope.SamplesPerSymbol = Rup;

In this simulation, the absolute sampling rate or symbol rate is not
specified. Use the default value for SamplingFrequency, which is 8000.
This results in 2000 symbols per second symbol rate.

5 Set the constellation value of the scatter plot to the expected constellation.
Type the following at the MATLAB command line:

hScope.Constellation = hMod.Constellation;

6 Since the pulse shaping filter introduces a delay, discard these transient
values by setting MeasurementDelay to the group delay of the filter,
which is four symbol durations or 4/Rs seconds. Type the following at the
MATLAB command line:

groupDelay = (hFilDesign.NumberOfSymbols/2);
hScope.MeasurementDelay = groupDelay /hScope.SymbolRate;

7 Update the scatter plot with transmitted signal by typing the following at
the MATLAB command line:

update (hScope, xmt)

3-22

Scatter Plots

1o

File Edit View Insert Tools Desktop Window Help

O de | B[R0 E % -

s08 ~

Scatter Plot

[oo et EEEESSER -

Quadrature [AU)

In-phase (AU)

[~ signal Trajectary

¥ Grid Autoscale Axes

The Figure window updates, displaying the transmitted signal.

8 Display the ideal constellation and evaluate how closely it matches the

transmitted signal. To display the ideal constellation, type the following at
the MATLAB command line:

hScope.PlotSettings.Constellation = 'on';

3-23

3 Performance Evaluation

1o

File Edit View Insert Tools Desktop Window Help

D89 | h|AXANDE -

s08 ~

Scatter Plot

I — S

=)
<
2
= | e -
it
S
=
S
a

Df- oo —

77| S SR SNSS S—
PSRN N S —

DB [R R S

In-phase (AU)

[~ signal Trajectary

¥ Grid Autoscale Axes

The Figure window updates, displaying the ideal constellation and the
transmitted signal.

9 One way to create a better match between the two signals is to normalize
the filter. Normalize the filter by typing the following at the MATLAB

command line:

hFil.Numerator = hFil.Numerator / max(hFil.Numerator);

10 Refilter the signal using a normalized filter.

xmt = filter(hFil, upsample(sym, Rup));

11 Reset the scope before displaying the transmitted signal. Resetting the
scope also resets the counter for measurement delay, discarding the

transient filter values. To reset the scope, type the following at the
MATLAB command line:

3-24

Scatter Plots

reset (hScope)
12 Update the scatter plot so it displays the signal.
update (hScope, xmt)

-iBix]

Fil= Edit View Insert Tools Desktop Window Help

Dode| k|l PeL- 2|08 »

Scatter Plot

Quadrature (AU}

In-phase (AU}

I Consteliatior:

[~ signal Trajectory

v Grid Autoscale Axes

The match between the ideal constellation points and the transmitted
signal is nearly identical.

13 To view the transmitted signal more clearly, turn off the ideal constellation
by clicking Constellation in the Figure window.

3-25

3 Performance Evaluation

1o

File Edit View Insert Tools Desktop Window Help

O de | B[R0 E % -

s08 ~

Scatter Plot

Quadrature [AU)

In-phase (AU)

[~ signal Trajectary

¥ Grid Autoscale Axes

The Figure window updates, displaying only the transmitted signal.

14 View the signal trajectory. Type the following at the MATLAB command
line:

hScope.PlotSettings.SignalTrajectory = 'on';

3-26

Scatter Plots

1o

File Edit View Insert Toals Deshnp‘w‘indow Help

s | k|30 LL-2/08 »
Scatter Plot
T T T T T
1| A e P N -
08 ___i _______________ : __________ _ __________i __________ - L
' * o " *
5
<
o
=
® ! ! ; H H
= X | " H f
g _02 - __._..______:__._._....._:,___. g ey -- -l -r - -
c ! ' ! : J
04 -3 b T L L RITa s
06} N e b INGNY
H e H i
08--I e - - [PRRRPEEEt s o T ete s 4
AL e _________________________ 4
1 0.5 0 0.5 1

In-phase (AU)

¥ Signal Trajectary

¥ Grid Autoscale Axes

The Figure window updates, displaying the trajectory. An alternate way to
display the signal trajectory is to click the Signal Trajectory.

15 Change the line style. Type the following at the MATLAB command line:

hScope.PlotSettings.SignalTrajectoryStyle = ':m';

3-27

3 Performance Evaluation

1o

File Edit View Insert Tools Desktop Window Help

=~ Y AN 9 E A

s08 ~

Scatter Plot

Quadrature [AU)

In-phase (AU)

¥ Signal Trajectary

¥ Grid Autoscale Axes

The Figure window updates, changing the line style making up the signal
trajectory.

16 Autoscale the scatter plot display to fit the entire plot. Type the following

at the MATLAB command line:

autoscale(hScope)

3-28

Scatter Plots

1ol

File Edit View Insert Tools Desktop Window Help

EF BRI PR
Scatter Plot

05¢-

Quadrature [AU)
L=}

05

-1 04 0 0.5 1
In-phase (AU)

¥ Signal Trajectary

¥ Grid Autoscale Axes

The Figure window updates. An alternate way to autoscale the fit is to
click the Autoscale Axes button.

17 Create a noisy signal by Passing xmt through an AWGN channel. Type the
following at the MATLAB command line:

rcv = awgn(xmt, 20, 'measured'); % Add AWGN

18 Send the received signal to the scatter plot. Before sending the signal,

reset the scatter plot to remove the old data. Type the following at the
MATLAB command line:

reset (hScope)
update (hScope, rcv)

3-29

3 Performance Evaluation

1o

File Edit View Insert Tools Desktop Window Help

D E@e|k|AAMD R L-

s08 ~

Scatter Plot

Quadrature (AU)

In-phase (AU)

¥ Signal Trajectary

¥ Grid Autoscale Axes

The Figure window updates, displaying the noisy signal.

19 Turn off the signal trajectory by clicking Signal Trajectory in the Figure
window.

3-30

Scatter Plots

1o

File Edit View Insert Tools Desktop Window Help

O de | B[R0 E % -

s08 ~

Scatter Plot

Quadrature [AU)

In-phase (AU)

[~ Consteliation
I™ &ig

¥ Grid Autoscale Axes

The Figure window updates, displaying the signal plot without the signal
trajectory. An alternate way to turn off the signal trajectory is typing the
following at the MATLAB command line:

hScope.PlotSettings.SignalTrajectory = 'off';

20 View the constellation by clicking Constellation in the Figure window.

3-31

3 Performance Evaluation

1o

File Edit View Insert Tools Desktop Window Help

O de | B[R0 E % -

s08 ~

Scatter Plot

Quadrature [AU)

In-phase (AU)

¥ Consteliation
I™ &ig

¥ Grid Autoscale Axes

The Figure window updates, displaying both the ideal constellation and
the transmitted signal. An alternate way to view the constellation is by
typing the following at the MATLAB command line:

hScope.PlotSettings.Constellation

21 Print the scatter plot by making the following selection in the Figure

window: File > Print

3-32

Scatter Plots

Scater Plat

Cuadratuna (oLl

H i i i H H
4 0B OB 04 N2 0O 02 04X D6 DA 1
Ir-phaee (ALD

When you print the scatter plot, you print the axes, not the entire GUI.

3-33

3 Performance Evaluation

EVM Measurements

3-34

Section Overview

Communications Toolbox can perform Error Vector Magnitude (EVM)
measurements. EVM is a measurement of demodulator performance in
the presence of impairments. These types of measurements are useful for
determining system performance in communications applications. For
example, determining if an EDGE system conforms to the 3GPP radio
transmission standards requires accurate RMS, EVM, Peak EVM, and 95th
percentile for the EVM measurements.

Users can create the EVM object in two ways: using a default object or

by defining parameter-value pairs. As defined by the 3GPP standard, the
unit of measure for RMS, Maximum, and Percentile EVM measurements is
percentile (%). For more information, see the commmeasure.EVM help page.

MER Measurements

MER Measurements

Section Overview

Communications Toolbox can perform Modulation Error Ratio (MER)
measurements. MER is a measure of the signal-to-noise ratio (SNR) in a
digital modulation applications. These types of measurements are useful
for determining system performance in communications applications. For
example, determining if an EDGE system conforms to the 3GPP radio
transmission standards requires accurate RMS, EVM, Peak EVM, and 95th
percentile for the EVM measurements.

The MER object is part of the commmeasure package. As defined by the DVB
standard, the unit of measure for MER is decibels (dB). For consistency, the
unit of measure for Minimum MER and Percentile MER measurements is
also in decibels. For more information, see the commmeasure.MER help page.

3-35

3 Performance Evaluation

Selected Bibliography for Performance Evaluation

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase
Modulation, New York, Plenum Press, 1986.

[2] Frenger, Pal, Pal Orten, and Tony Ottosson, “Convolutional Codes with
Optimum Distance Spectrum,” IEEE Communications Letters, Vol. 3, No.

11, Nov. 1999, pp. 317-319.

[3] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation
of Communication Systems, New York, Plenum Press, 1992.

[4] Lindsey, William C., and Marvin K. Simon, Telecommunication Systems
Engineering, Englewood Cliffs, NJ, Prentice-Hall, 1973.

[56] Proakis, John G., Digital Communications, 4th ed., New York,
McGraw-Hill, 2001.

[6] Spilker, James J., Digital Communications by Satellite, Englewood Cliffs,
NJ, Prentice-Hall, 1977.

3-36

BERTool: A Bit Error Rate
Analysis GUI

The following sections describe the Bit Error Rate Analysis Tool (BERToo0l)
and provide examples showing how to use this GUI.

“Summary of Features” on page 4-2

“Opening BERTool” on page 4-3

“The BERTool Environment” on page 4-4

“Computing Theoretical BERs” on page 4-8

“Using the Semianalytic Technique to Compute BERs” on page 4-16
“Running MATLAB Simulations” on page 4-22

“Preparing Simulation Functions for Use with BERToo0l” on page 4-29
“Running Simulink Simulations” on page 4-37

“Preparing Simulink Models for Use with BERTool” on page 4-43
“Managing BER Data” on page 4-52

4 BERTool: A Bit Error Rate Analysis GUI

Summary of Features

BERTool is an interactive GUI for analyzing communication systems’ bit
error rate (BER) performance. Using BERToo0l you can

® Generate BER data for a communication system using

= Closed-form expressions for theoretical BER performance of selected
types of communication systems.

= The semianalytic technique.

= Simulations contained in MATLAB simulation functions or Simulink®
models. After you create a function or model that simulates the system,
BERTool iterates over your choice of E;/N, values and collects the results.

® Plot one or more BER data sets on a single set of axes. For example,
you can graphically compare simulation data with theoretical results or
simulation data from a series of similar models of a communication system.

® Fit a curve to a set of simulation data.

¢ Send BER data to the MATLAB workspace or to a file for any further
processing you might want to perform.

For an animated demonstration of BERTool, see the Bit Error Rate Analysis
Tool demo.

Note BERTool is designed for analyzing bit error rates only, not symbol
error rates, word error rates, or other types of error rates. If, for example,
your simulation computes a symbol error rate (SER), convert the SER to a
BER before using the simulation with BERTool.

4-2

Opening BERTool

To open BERTool, type

bertool

<) Bit Error Rate Analysis Tool
File Edit ‘Window Help

=10l x|

confidence Level | Fit [Piot| BERDataset | BBl | EeR

of Btz

Thearetical | Semianaly’ticl Monte Carlol

E M, range: 015 B

Channel type: | 8WGHN ™

& Caherent

Modulation type: I PSH h l Democulation type:

Modulation order:

€ Moncoherent
[Ditterertial encoding

Channel Coding: Synchronization:

& None ' Perfect syhchronization

7 Convolutionsl
" Block

(o Mormalized timing errar: ID
" RMS phase noise (rad): ID

Opening BERTool

4 BERTool: A Bit Error Rate Analysis GUI

The BERTool Environment

In this section...

“Components of BERToo0l” on page 4-4
“Interaction Among BERTool Components” on page 4-6

Components of BERTool

® A data viewer at the top. It is initially empty.

confidence Level | Fit [Piot| BERDataset | Emg@B) | BER | #ofBis

After you instruct BERTool to generate one or more BER data sets, they
appear in the data viewer. An example that shows how data sets look
in the data viewer is in “Example: Using a MATLAB Simulation with
BERToo0l” on page 4-22.

® A set of tabs on the bottom. Labeled Theoretical, Semianalytic, and
Monte Carlo, the tabs correspond to the different methods by which
BERToo0l can generate BER data.

The BERTool Environment

4 BERTool: A Bit Error Rate Analysis GUI

To learn more about each of the methods, see
= “Computing Theoretical BERs” on page 4-8
= “Using the Semianalytic Technique to Compute BERs” on page 4-16

= “Running MATLAB Simulations” on page 4-22 or “Running Simulink
Simulations” on page 4-37

® A separate BER Figure window, which displays some or all of the BER
data sets that are listed in the data viewer. BERTool opens the BER Figure
window after it has at least one data set to display, so you do not see the
BER Figure window when you first open BERTool. For an example of how
the BER Figure window looks, see “Example: Using the Theoretical Tab in
BERToo0l” on page 4-9.

Interaction Among BERTool Components

The components of BERTool act as one integrated tool. These behaviors
reflect their integration:

¢ Ifyou select a data set in the data viewer, BERTool reconfigures the tabs to
reflect the parameters associated with that data set and also highlights the
corresponding data in the BER Figure window. This is useful if the data
viewer displays multiple data sets and you want to recall the meaning
and origin of each data set.

e If you click data plotted in the BER Figure window, BERToo0l reconfigures
the tabs to reflect the parameters associated with that data and also
highlights the corresponding data set in the data viewer.

Note You cannot click on a data point while BERTool is generating Monte
Carlo simulation results. You must wait until the tool generates all data
points before clicking for more information.

¢ [f you configure the Semianalytic or Theoretical tab in a way that
1s already reflected in an existing data set, BERTool highlights that
data set in the data viewer. This prevents BERTool from duplicating its
computations and its entries in the data viewer, while still showing you the
results that you requested.

The BERTool Environment

e If you close the BER Figure window, then you can reopen it by choosing
BER Figure from the Window menu in BERTool.

¢ If you select options in the data viewer that affect the BER plot, the BER
Figure window reflects your selections immediately. Such options relate
to data set names, confidence intervals, curve fitting, and the presence or
absence of specific data sets in the BER plot.

Note If you want to observe the integration yourself but do not yet have any
data sets in BERTool, then first try the procedure in “Example: Using the
Theoretical Tab in BERTool” on page 4-9.

Note If you save the BER Figure window using the window’s File menu,
the resulting file contains the contents of the window but not the BERTool
data that led to the plot. To save an entire BERTool session, see “Saving a
BERTool Session” on page 4-55.

4 BERTool: A Bit Error Rate Analysis GUI

4-8

Computing Theoretical BERs

In this section...

“Section Overview” on page 4-8

“Example: Using the Theoretical Tab in BERTo0l” on page 4-9

“Available Sets of Theoretical BER Data” on page 4-11

Section Overview

You can use BERTool to generate and analyze theoretical BER data.
Theoretical data is useful for comparison with your simulation results.

However, closed-form BER expressions exist only for certain kinds of
communication systems.

To access the capabilities of BERTool related to theoretical BER data, use the
following procedure:

1 Open BERTool, and go to the Theoretical tab.

Thearetical | Semianaly’ticl Monte Carlol

E M, range: 015 B

Channel type: I ANGH T l

& Caherent

Modulation type: I PSH h l Democulation type:

Modulstion order:
€ Moncoherent
[Ditterertial encoding

Channel Coding: Synchronization:

' None ' Perfect syhchronization
" Convaolutionsl “ Mormalized timing errar: ID
" Block " RMS phase noise (rad): ID

Plot

Computing Theoretical BERs

2 Set the parameters to reflect the system whose performance you want
to analyze. Some parameters are visible and active only when other
parameters have specific values. See “Available Sets of Theoretical BER
Data” on page 4-11 for details.

3 Click Plot.

For an example that shows how to generate and analyze theoretical BER
data via BERTool, see “Example: Using the Theoretical Tab in BERTool”
on page 4-9.

Also, “Available Sets of Theoretical BER Data” on page 4-11 indicates which
combinations of parameters are available on the Theoretical tab and which
underlying functions perform computations.

Example: Using the Theoretical Tab in BERTool

This example illustrates how to use BERToo0l to generate and plot theoretical
BER data. In particular, the example compares the performance of a
communication system that uses an AWGN channel and QAM modulation of
different orders.

Running the Theoretical Example

1 Open BERTool, and go to the Theoretical tab.

2 Set the parameters as shown in the following figure.

Thearetical | Semianaly’ticl Monte Carlol

E M, ranges Joqg dE

Channel type: I ANGH T l

Modulstion type: I M =~ l
I 4 - l

Modulation order:

3 Click Plot.

4 BERTool: A Bit Error Rate Analysis GUI

BERTool creates an entry in the data viewer and plots the data in the
BER Figure window. Even though the parameters request that E,/N, go
up to 18, BERTool plots only those BER values that are at least 108, The
following figures illustrate this step.

confidence Level | Fit [Piot| BERDataset | EMyeE® | B | #otEts |

| ¥ |thecreticaio 018 [0.0755 00545 | |
<) BER Figure M= E3
File Edit Tools ‘Window £
gaafneEE

theoretical-exactd

BER

i 1] i | i
0 2 4 B 8 10 12 14 16 18
EbeD (dB)

4 Change the Modulation order parameter to 16, and click Plot.

BERTool creates another entry in the data viewer and plots the new data
in the same BER Figure window (not pictured).

5 Change the Modulation order parameter to 64, and click Plot.

BERTool creates another entry in the data viewer and plots the new data
in the same BER Figure window, as shown in the following figures.

4-10

Computing Theoretical BERs

Confidence Level | Fit | Flot BER. Data Set E My (dB) BER. # of Bits
¥ |theoretical-sxactn 0:13 0.0786 0.0..
[« |theoretical-exact1 0:13 0.1409 0.1...
¥ |theoretical-exactz 0:13 0.1993 0.1...
<) BER Figure M= E3
File Edit Tools ‘Window £
& 8 o O E|E

theoretical-exactD |
theoretical-exact? |
eoretical-exact2 |

BER
=]

B 10
E,/N, (0B}

6 To recall which value of Modulation order corresponds to a given curve,
click the curve. BERTool responds by adjusting the parameters in the
Theoretical tab to reflect the values that correspond to that curve.

7 To remove the last curve from the plot (but not from the data viewer), clear
the check box in the last entry of the data viewer in the Plot column. To
restore the curve to the plot, select the check box again.

Available Sets of Theoretical BER Data

BERTool can generate a large set of theoretical bit-error rates, but not all
combinations of parameters are currently supported. The Theoretical tab
adjusts itself to your choices, so that the combination of parameters is always
valid. You can set the Modulation order parameter by selecting a choice
from the menu or by typing a value in the field. The Normalized timing
error must be between 0 and 0.5.

4-11

4 BERTool: A Bit Error Rate Analysis GUI

BERTool assumes that Gray coding is used for all modulations.

For QAM, when logg M is odd (M being the modulation order), a rectangular
constellation is assumed.

Combinations of Parameters for AWGN Channel Systems

The following table lists the available sets of theoretical BER data for systems
that use an AWGN channel.

Modulation | Modulation Other Choices
Order
PSK 2,4 Differential or nondifferential encoding.

8, 16, 32, 64, or a
higher power of 2

0QPSK 4 Differential or nondifferential encoding.

DPSK 2,4, 8, 16, 32, 64,
or a higher power
of 2

PAM 2,4, 8, 16, 32, 64,
or a higher power
of 2

QAM 4, 8, 16, 32, 64,
128, 256, 512,
1024, or a higher
power of 2

FSK 2 Orthogonal or nonorthogonal; Coherent
or Noncoherent demodulation.

4, 8, 16, 32, or a Orthogonal; Coherent demodulation.
higher power of 2

4, 8, 16, 32, or 64 | Orthogonal; Noncoherent
demodulation.

4-12

Computing Theoretical BERs

Modulation | Modulation Other Choices
Order
MSK 2 Coherent conventional or precoded
MSK; Noncoherent precoded MSK.
CPFSK 2,4, 8,16, or a Modulation index > 0.
higher power of 2

BER results are also available for the following:
¢ block and convolutional coding with hard-decision decoding for all
modulations except CPFSK

¢ block coding with soft-decision decoding for all binary modulations
(including 4-PSK and 4-QAM) except CPFSK, noncoherent non-orthogonal
FSK, and noncoherent MSK

¢ convolutional coding with soft-decision decoding for all binary modulations
(including 4-PSK and 4-QAM) except CPFSK

¢ uncoded nondifferentially-encoded 2-PSK with synchronization errors
For more information about specific combinations of parameters, including
bibliographic references that contain closed-form expressions, see the
reference pages for the following functions:

® berawgn — For systems with no coding and perfect synchronization

® bercoding — For systems with channel coding

® bersync — For systems with BPSK modulation, no coding, and imperfect
synchronization

Combinations of Parameters for Rayleigh and Rician Channel
Systems

The following table lists the available sets of theoretical BER data for systems
that use a Rayleigh or Rician channel.

When diversity is used, the SNR on each diversity branch is derived from the
SNR at the input of the channel (EbNo) divided by the diversity order.

4-13

4 BERTool: A Bit Error Rate Analysis GUI

4-14

Modulation | Modulation Other Choices
Order
PSK 2 Differential or nondifferential encoding
Diversity order =1
In the case of nondifferential encoding,
diversity order being 1, and Rician
fading, a value for RMS phase noise (in
radians) can be specified.
4, 8, 16, 32, 64, or | Diversity order =1
a higher power of
2
0OQPSK 4 Diversity order 21
DPSK 2,4, 8,16, 32, 64, | Diversity order =1
or a higher power
PAM 2,4, 8,16, 32, 64, | Diversity order 21
or a higher power
of 2
QAM 4, 8, 16, 32, 64, Diversity order 21
128, 256, 512,
1024, or a higher
power of 2
FSK 2

Correlation coefficient € =111,
Coherent or Noncoherent
demodulation

Diversity order 21

In the case of a nonzero correlation
coefficient and noncoherent
demodulation, the diversity order
is 1 only.

4, 8, 16, 32, or a
higher power of 2

Noncoherent demodulation only.
Diversity order =1

Computing Theoretical BERs

For more information about specific combinations of parameters, including
bibliographic references that contain closed-form expressions, see the
reference page for the berfading function.

4-15

4 BERTool: A Bit Error Rate Analysis GUI

4-16

Using the Semianalytic Technique to Compute BERs

In this section...

“Section Overview” on page 4-16
“Example: Using the Semianalytic Tab in BERToo0l” on page 4-17
“Procedure for Using the Semianalytic Tab in BERTool” on page 4-19

Section Overview

You can use BERToo0l to generate and analyze BER data via the semianalytic
technique. The semianalytic technique is discussed in “Performance Results
via the Semianalytic Technique” on page 3-5, and “When to Use the
Semianalytic Technique” on page 3-5 is particularly relevant as background
material.

To access the semianalytic capabilities of BERToo0l, open the Semianalytic
tab.

Thearetical Semisnalytic | Mante Carlol

E M, range: 015 B

Channel type: AWGH

Modulstion type: IPSK =~ Modulstion order: |2 'l [Ditterertial encoding
Samples per symbaol: |1 B

Transmitted signal: Iredpulse(pskmod(randimm B, 1,2,9973),2), 16)

Received signal: Iredpulse(pskmod(randimm B, 1,2,9973),2), 16)

Receiver fiter coefficients:

Murnerstor: Iones(1 B, 11716 Denorminstar: |1

Plot

Using the Semianalytic Technique to Compute BERs

For further details about how BERTool applies the semianalytic technique,
see the reference page for the semianalytic function, which BERTool uses to
perform computations.

Example: Using the Semianalytic Tab in BERTool

This example illustrates how BERTool applies the semianalytic technique,
using 16-QAM modulation. This example is a variation on the example in
“Example: Using the Semianalytic Technique” on page 3-7, but it is tailored
to use BERTool instead of using the semianalytic function directly.

Running the Semianalytic Example

1 To set up the transmitted and received signals, run steps 1 through 4 from
the code example in “Example: Using the Semianalytic Technique” on page
3-7. The code is repeated below.

% Step 1. Generate message signal of length >= M"L.

M = 16; % Alphabet size of modulation

L =1; % Length of impulse response of channel

msg = [0:M-1 0]; % M-ary message sequence of length > M"L

% Step 2. Modulate the message signal using baseband modulation.
modsig = gammod(msg,M); % Use 16-QAM.

Nsamp = 16;

modsig = rectpulse(modsig,Nsamp); % Use rectangular pulse shaping.

% Step 3. Apply a transmit filter.
txsig = modsig; % No filter in this example

% Step 4. Run txsig through a noiseless channel.
rxsig = txsig*exp(j*pi/180); % Static phase offset of 1 degree

2 Open BERTool and go to the Semianalytic tab.

3 Set parameters as shown in the following figure.

4-17

4 BERTool: A Bit Error Rate Analysis GUI

4-18

Thearetical Semisnalytic | Mante Carlol

E M, ranger 016 dE

Channel type: AWGH

Modulstion type: IQAM 'l Modulstion order: |16 =~
Samples per symbaol: |1 B

Transmitted signal: Itxsig

Received signal: Irxsig

Receiver fiter coefficients:

Murnerstor: Iones(1 B, 11116 Denorminstar: |1

4 Click Plot.

Visible Results of the Semianalytic Example
After you click Plot, BERTool creates a listing for the resulting data in the
data viewer.

confidence Level | Fit [Piot| BERDataset | EmyeE® | B | #otEts |
| [V |semianattico [n:1s 01199 01044 . [272) |

BERTool plots the data in the BER Figure window.

Using the Semianalytic Technique to Compute BERs

2110

File Edit Tools ‘Window

& a®meE

semianalyticd]

BER

Procedure for Using the Semianalytic Tab in BERTool

The procedure below describes how you typically implement the semianalytic
technique using BERTool:

1 Generate a message signal containing at least M symbols, where M is
the alphabet size of the modulation and L is the length of the impulse
response of the channel in symbols. A common approach is to start with an
augmented binary pseudonoise (PN) sequence of total length (log,M)M-. An
augmented PN sequence is a PN sequence with an extra zero appended,
which makes the distribution of ones and zeros equal.

2 Modulate a carrier with the message signal using baseband modulation.
Supported modulation types are listed on the reference page for
semianalytic. Shape the resultant signal with rectangular pulse shaping,
using the oversampling factor that you will later use to filter the modulated
signal. Store the result of this step as txsig for later use.

4-19

4 BERTool: A Bit Error Rate Analysis GUI

4-20

3 Filter the modulated signal with a transmit filter. This filter is often a
square-root raised cosine filter, but you can also use a Butterworth, Bessel,
Chebyshev type 1 or 2, elliptic, or more general FIR or IIR filter. If you use
a square-root raised cosine filter, use it on the nonoversampled modulated
signal and specify the oversampling factor in the filtering function. If you
use another filter type, you can apply it to the rectangularly pulse shaped

signal.

4 Run the filtered signal through a noiseless channel. This channel can
include multipath fading effects, phase shifts, amplifier nonlinearities,
quantization, and additional filtering, but it must not include noise. Store
the result of this step as rxsig for later use.

5 On the Semianalytic tab of BERTool, enter parameters as in the table

below.

Parameter Name

Meaning

Eb/No range

A vector that lists the values of E,/N, for which
you want to collect BER data. The value in
this field can be a MATLAB expression or the
name of a variable in the MATLAB workspace.

Modulation type

Modulation order

These parameters describe the modulation
scheme you used earlier in this procedure.

Differential encoding

This check box, which is visible and active for
MSK and PSK modulation, enables you to
choose between differential and nondifferential
encoding.

Samples per symbol

The number of samples per symbol in the
transmitted signal. This value is also the
sampling rate of the transmitted and received
signals, in Hz.

Transmitted signal

The txsig signal that you generated earlier
in this procedure

Received signal

The rxsig signal that you generated earlier
in this procedure

Using the Semianalytic Technique to Compute BERs

Parameter Name Meaning

Numerator Coefficients of the receiver filter that BERTool

applies to the received signal

Denominator

Note Consistency among the values in the GUI is important. For example,
if the signal referenced in the Transmitted signal field was generated
using DPSK and you set Modulation type to MSK, the results might not
be meaningful.

6 Click Plot.

Semianalytic Computations and Results
After you click Plot, BERTool performs these tasks:

Filters rxsig and then determines the error probability of each received
signal point by analytically applying the Gaussian noise distribution to
each point. BERTool averages the error probabilities over the entire
received signal to determine the overall error probability. If the error
probability calculated in this way is a symbol error probability, BERTool
converts it to a bit error rate, typically by assuming Gray coding. (If the
modulation type is DQPSK or cross QAM, the result is an upper bound on
the bit error rate rather than the bit error rate itself.)

¢ Enters the resulting BER data in the data viewer of the BERTo0o0l window.

® Plots the resulting BER data in the BER Figure window.

4-21

4 BERTool: A Bit Error Rate Analysis GUI

4-22

Running MATLAB Simulations

In this section...

“Section Overview” on page 4-22

“Example: Using a MATLAB Simulation with BERToo0l” on page 4-22
“Varying the Stopping Criteria” on page 4-25

“Plotting Confidence Intervals” on page 4-26

“Fitting BER Points to a Curve” on page 4-28

Section Overview

You can use BERToo0l in conjunction with your own MATLAB simulation
functions to generate and analyze BER data. The MATLAB function
simulates the communication system whose performance you want to study.
BERTool invokes the simulation for E,/N, values that you specify, collects the
BER data from the simulation, and creates a plot. BERTool also enables you
to easily change the E,;/N, range and stopping criteria for the simulation.

To learn how to make your own simulation functions compatible with
BERTool, see “Preparing Simulation Functions for Use with BERTo0l” on
page 4-29.

Example: Using a MATLAB Simulation with BERTool

This example illustrates how BERTool can run a MATLAB simulation
function. The function is viterbisim, one of the demonstration files included
with Communications Toolbox software.

To run this example, follow these steps:

1 Open BERTool and go to the Monte Carlo tab. (The default parameters
depend on whether you have Communications Blockset™ software
installed. Also note that the BER variable name field applies only to
Simulink models.)

2 Set parameters as shown in the following figure.

Running MATLAB® Simulations

Theoreﬁcall Semianalytic Monte Carlo |

Eb"NU range: Ig;s dB

Simulation k-file ar mocel: Iviterbisim.m Erowse... |
BER: variable name: I

Sirmulation limits:

Mumber of errors: |1 uli}

or
Mumber of bits: 1ed

3 Click Run.

BERTool runs the simulation function once for each specified value of E,/N,
and gathers BER data. (While BERTool is busy with this task, it cannot
process certain other tasks, including plotting data from the other tabs

of the GUL)

Then BERTool creates a listing in the data viewer.

Confidence Level | Fit | piot | BERDataset | EjmyE) | BER | #ofBts |
oft A" [|simulstiono o5 03794 02735 .. [10000 10000 .. |

BERTool plots the data in the BER Figure window.

4-23

4 BERTool: A Bit Error Rate Analysis GUI

ETT=EY

File Edit Tools ‘Window

& a®meE

4 simulation0 f

4 To change the range of E,/N, while reducing the number of bits processed
in each case, type [5 5.2 5.3] in the Eb/No range field, type 1e5 in the
Number of bits field, and click Run.

BERTool runs the simulation function again for each new value of E,/N,
and gathers new BER data. Then BERTool creates another listing in the
data viewer.

confidence Level | Fit [Piot| BERDataset | EMyeE® | B | #otEts |
off A" [|simulstiono o5 (03794 02735 .. [10000 10000 .. |
oft M |simulstiont 55253 [[F01E-4 5456 [ao744 go7ad |

BERTool plots the data in the BER Figure window, adjusting the horizontal
axis to accommodate the new data.

4-24

Running MATLAB® Simulations

2110

File Edit Tools ‘Window

& a®meE

+ simulation0 [
simulation? []

The two points corresponding to 5 dB from the two data sets are different
because the smaller value of Number of bits in the second simulation
caused the simulation to end before observing many errors. To learn more
about the criteria that BERTool uses for ending simulations, see “Varying
the Stopping Criteria” on page 4-25.

For another example that uses BERTool to run a MATLAB simulation
function, see “Example: Preparing a Simulation Function for Use with
BERToo0l” on page 4-33.

Varying the Stopping Criteria

When you create a MATLAB simulation function for use with BERTool, you
must control the flow so that the simulation ends when it either detects a
target number of errors or processes a maximum number of bits, whichever
occurs first. To learn more about this requirement, see “Requirements

for Functions” on page 4-29; for an example, see “Example: Preparing a
Simulation Function for Use with BERTo00l” on page 4-33.

4-25

4 BERTool: A Bit Error Rate Analysis GUI

4-26

After creating your function, set the target number of errors and the
maximum number of bits in the Monte Carlo tab of BERTool.

Simulation limits:

Mumber of errars: |1 uli}

or
Mumber of bits: 1ed

Typically, a Number of errors value of at least 100 produces an accurate
error rate. The Number of bits value prevents the simulation from running
too long, especially at large values of E,/N,. However, if the Number of bits
value is so small that the simulation collects very few errors, the error rate
might not be accurate. You can use confidence intervals to gauge the accuracy
of the error rates that your simulation produces; the larger the confidence
interval, the less accurate the computed error rate.

As an example, follow the procedure described in “Example: Using a MATLAB
Simulation with BERToo0l” on page 4-22 and set Confidence Level to 95 for
each of the two data sets. The confidence intervals for the second data set are
larger than those for the first data set. This is because the second data set
uses a small value for Number of bits relative to the communication system
properties and the values in Eb/No range, resulting in BER values based on
only a small number of observed errors.

Note You can also use the Stop button in BERTool to stop a series of
simulations prematurely, as long as your function is set up to detect and
react to the button press.

Plotting Confidence Intervals

After you run a simulation with BERTool, the resulting data set in the data
viewer has an active menu in the Confidence Level column. The default
value is off, so that the simulation data in the BER Figure window does
not show confidence intervals.

To show confidence intervals in the BER Figure window, set Confidence
Level to a numerical value: 90%, 95%, or 99%.

Running MATLAB® Simulations

Confidence Level | Fit | Plot | BER Data Set

zitnulationd

of Btz
00 300 60D ..

E, My (o)

[012 0.06 0.0

The plot in the BER Figure window responds immediately to your choice. A
sample plot is below.

. BER Figure

2l =13l

File Edit Tools Window
EY R]

10°

10"

107
o
w
[1m]

10°

1

10'5 H H H H H H H

-2 i 2 4 B g m 12 14

E,/M, (4B)

For an example that plots confidence intervals for a Simulink simulation, see
“Example: Using a Simulink Model with BERTool” on page 4-38.

To find confidence intervals for levels not listed in the Confidence Level
menu, use the berconfint function.

4-27

4 BERTool: A Bit Error Rate Analysis GUI

4-28

Fitting BER Points to a Curve
After you run a simulation with BERTool, the BER Figure window plots

individual BER data points. To fit a curve to a data set that contains at least
four points, select the box in the Fit column of the data viewer.

The plot in the BER Figure window responds immediately to your choice. A
sample plot is below.

2110

File Edit Tools ‘Window

& a®meE

10

BER

For an example that performs curve fitting for data from a Simulink
simulation and generates the plot shown above, see “Example: Using a
Simulink Model with BERToo0l” on page 4-38. For an example that performs
curve fitting for data from a MATLAB simulation function, see “Example:
Preparing a Simulation Function for Use with BERToo0l” on page 4-33.

For greater flexibility in the process of fitting a curve to BER data, use the
berfit function.

Preparing Simulation Functions for Use with BERTool

Preparing Simulation Functions for Use with BERTool

In this section...

“Requirements for Functions” on page 4-29
“Template for a Simulation Function” on page 4-30

“Example: Preparing a Simulation Function for Use with BERTool” on
page 4-33

Requirements for Functions

When you create a MATLAB function for use with BERTool, ensure the
function interacts properly with the GUI. This section describes the inputs,
outputs, and basic operation of a BERTool-compatible function.

Input Arguments

BERTool evaluates your entries in fields of the GUI and passes data to the
function as these input arguments, in sequence:

® One value from the Eb/No range vector each time BERTool invokes the
simulation function

¢ The Number of errors value

¢ The Number of bits value

Output Arguments
Your simulation function must compute and return these output arguments,
in sequence:

e Bit error rate of the simulation

¢ Number of bits processed when computing the BER

BERTool uses these output arguments when reporting and plotting results.

Simulation Operation
Your simulation function must perform these tasks:

4-29

4 BERTool: A Bit Error Rate Analysis GUI

4-30

¢ Simulate the communication system for the E,/N, value specified in the
first input argument.

® Stop simulating when the number of errors or the number of processed bits
equals or exceeds the corresponding threshold specified in the second or
third input argument, respectively.

® Detect whether you click Stop in BERTool and abort the simulation in
that case.

Template for a Simulation Function

Use the following template when adapting your code to work with BERTool.
You can open it in an editor by entering edit bertooltemplate in the
MATLAB Command Window. The description in “Understanding the
Template” on page 4-31 explains the template’s key sections, while “Using
the Template” on page 4-32 indicates how to use the template with your own
simulation code. Alternatively, you can develop your simulation function
without using the template, but be sure it satisfies the requirements described
in “Requirements for Functions” on page 4-29.

Note The template is not yet ready for use with BERTool. You must insert
your own simulation code in the places marked INSERT YOUR CODE HERE.
For a complete example based on this template, see “Example: Preparing a
Simulation Function for Use with BERTo0l” on page 4-33.

function [ber, numBits] = bertooltemplate(EbNo, maxNumErrs, maxNumBits)
% Import Java class for BERTool.
import com.mathworks.toolbox.comm.BERT001l;

% Initialize variables related to exit criteria.
totErr = 0; % Number of errors observed
numBits = 0; % Number of bits processed

o°

--- Set up parameters. ---

--- INSERT YOUR CODE HERE.

Simulate until number of errors exceeds maxNumErrs
or number of bits processed exceeds maxNumBits.
while((totErr < maxNumErrs) && (numBits < maxNumBits))

o® of

o°

Preparing Simulation Functions for Use with BERTool

% Check if the user clicked the Stop button of BERTool.
if (BERTool.getSimulationStop)

break;
end

o°

--- Proceed with simulation.

--- Be sure to update totErr and numBits.
% --- INSERT YOUR CODE HERE.

end % End of loop

o°

% Compute the BER.
ber = totErr/numBits;

Understanding the Template

From studying the code in the function template, observe how the function
either satisfies the requirements listed in “Requirements for Functions” on
page 4-29 or indicates where your own insertions of code should do so. In
particular,

¢ The function has appropriate input and output arguments.

¢ The function includes a placeholder for code that simulates a system for
the given E,/N, value.

¢ The function uses a loop structure to stop simulating when the number
of errors exceeds maxNumErrs or the number of bits exceeds maxNumBits,
whichever occurs first.

Note Although the while statement of the loop describes the exit criteria,
your own code inserted into the section marked Proceed with simulation
must compute the number of errors and the number of bits. If you do not
perform these computations in your own code, clicking Stop is the only
way to terminate the loop.

¢ In each iteration of the loop, the function detects when the user clicks Stop
in BERTool.

4-31

4 BERTool: A Bit Error Rate Analysis GUI

4-32

Using the Template
Here is a procedure for using the template with your own simulation code:

1 Determine the setup tasks you must perform. For example, you might
want to initialize variables containing the modulation alphabet size, filter
coefficients, a convolutional coding trellis, or the states of a convolutional
interleaver. Place the code for these setup tasks in the template section
marked Set up parameters.

2 Determine the core simulation tasks, assuming that all setup work
has already been performed. For example, these tasks might include
error-control coding, modulation/demodulation, and channel modeling.
Place the code for these core simulation tasks in the template section
marked Proceed with simulation.

3 Also in the template section marked Proceed with simulation, include
code that updates the values of totErr and numBits. The quantity totErr
represents the number of errors observed so far. The quantity numBits
represents the number of bits processed so far. The computations to update
these variables depend on how your core simulation tasks work.

Note Updating the numbers of errors and bits is important for ensuring
that the loop terminates. However, if you accidentally create an infinite
loop early in your development work using the function template, click
Stop in BERTool to abort the simulation.

4 Omit any setup code that initializes EbNo, maxNumErrs, or maxNumBits,
because BERToo0l passes these quantities to the function as input
arguments after evaluating the data entered in the GUI.

5 Adjust your code or the template’s code as necessary to use consistent
variable names and meanings. For example, if your original code uses a
variable called ebn0 and the template’s function declaration (first line) uses
the variable name EbNo, you must change one of the names so they match.
As another example, if your original code uses SNR instead of E;/N, you
must convert quantities appropriately.

Preparing Simulation Functions for Use with BERTool

Example: Preparing a Simulation Function for Use
with BERTool

This section adapts the function template given in “Template for a Simulation
Function” on page 4-30 to use simulation code from the documentation
example in “Example: Curve Fitting for an Error Rate Plot” on page 3-15.

Preparing the Function
To prepare the function for use with BERTool, follow these steps:

1 Copy the template from “Template for a Simulation Function” on page 4-30
into a new M-file in the MATLAB Editor. Save it in a directory on your
MATLAB path using the file name bertool simfcn.

2 From the original example, the following lines are setup tasks. They are
modified from the original example to rely on the input arguments that
BERTool provides to the function, instead of defining variables such as
EbNovec and numerrmin directly.

% Set up initial parameters.
siglen = 1000; % Number of bits in each trial
M = 2; % DBPSK is binary.
hMod = modem.dpskmod('M', M); % Create a DPSK modulator
hDemod = modem.dpskdemod(hMod); % Create a DPSK
% demodulator using the modulator object
snr = EbNo; % Because of binary modulation
ntrials = 0; % Number of passes through the loop

Place these lines of code in the template section marked Set up
parameters.

3 From the original example, the following lines are the core simulation
tasks, after all setup work has been performed.

msg = randint(siglen, 1, M); % Generate message sequence.
txsig = modulate(hMod, msg); % Modulate.

rxsig = awgn(txsig, snr, 'measured'); % Add noise.
decodmsg = demodulate(hDemod, rxsig); % Demodulate.
newerrs = biterr(msg,decodmsg); % Errors in this trial
ntrials = ntrials + 1; % Update trial index.

4-33

4 BERTool: A Bit Error Rate Analysis GUI

4-34

Place the code for these core simulation tasks in the template section
marked Proceed with simulation.

4 Also in the template section marked Proceed with simulation (after the
code from the previous step), include the following new lines of code to
update the values of totErr and numBits.

% Update the total number of errors.
totErr = totErr + newerrs;

% Update the total number of bits processed.
numBits = ntrials * siglen;

The bertool_simfcn function is now compatible with BERTool. Note that
unlike the original example, the function here does not initialize EbNovec,
define EbNo as a scalar, or use numerrmin as the target number of errors; this
is because BERTool provides input arguments for similar quantities. The
bertool_simfcn function also excludes code related to plotting, curve fitting,
and confidence intervals in the original example because BERTool enables
you to do similar tasks interactively without writing code.

Using the Prepared Function

To use bertool_simfcn in conjunction with BERTool, continue the example
by following these steps:

1 Open BERTool and go to the Monte Carlo tab.

2 Set parameters on the Monte Carlo tab as shown in the following figure.

Preparing Simulation Functions for Use with BERTool

Theoreﬁcall Semianalytic Mante Carlo |

E M, ranges o0 dE

Simulation M-file or model: Ibertool_simfcn.m

BER: variable name: I

Erowse... |

Sirmulation limits:

Mumber of errors: IS

ar

Mumber of bits: 1ed

3 Click Run.

BERTool spends some time computing results and then plots them. They

do not appear to fall along a smooth curve because the simulation required
only five errors for each value in EbNo.

J BER Figure

(0]
File Edit Tools ‘Window
g ® 8 M

+ simulationd

4-35

4 BERTool: A Bit Error Rate Analysis GUI

4 To fit a curve to the series of points in the BER Figure window, select the
box next to Fit in the data viewer.

BERTool plots the curve, as shown in the following figure.

ETT=TE

File Edit Tools ‘Window

g ® 8 M

4-36

Running Simulink® Simulations

Running Simulink Simulations

In this section...

“Section Overview” on page 4-37

“Example: Using a Simulink Model with BERTool” on page 4-38

“Varying the Stopping Criteria” on page 4-41

Section Overview

You can use BERTool in conjunction with Simulink models to generate and
analyze BER data. The Simulink model simulates the communication system
whose performance you want to study, while BERTool manages a series of
simulations using the model and collects the BER data.

Note To use Simulink models within BERTool, you must have a Simulink
license. Communications Blockset software is highly recommended. The
rest of this section assumes you have a license for both Simulink and
Communications Blockset applications.

To access the capabilities of BERToo0l related to Simulink models, open the
Monte Carlo tab.

4-37

4 BERTool: A Bit Error Rate Analysis GUI

4-38

Theoreﬁcall Semianalytic Mante Carlo |

E, M, range: |0:3:1 2 dB

Simulation M-file or model: Igraycode.mdl Browvse... |
BER warishle narme: IgrayBER

Sirmulation limits:

Mumber of errors: |1 uli}

or
Mumber of bits: 1ed

For further details about confidence intervals and curve fitting for simulation
data, see “Plotting Confidence Intervals” on page 4-26 and “Fitting BER
Points to a Curve” on page 4-28, respectively.

Example: Using a Simulink Model with BERTool

This example illustrates how BERTool can manage a series of simulations of a
Simulink model, and how you can vary the plot. The model is commgraycode,
one of the demonstration models included with Communications Blockset
software. The example assumes that you have Communications Blockset
software installed.

To run this example, follow these steps:

1 Open BERTool and go to the Monte Carlo tab. The model’s file name,
commgraycode.mdl, appears as the Simulation M-file or model
parameter. (If viterbisim.m appears there, select to indicate that
Communications Blockset software is installed.)

2 Click Run.

Running Simulink® Simulations

BERTool loads the model into memory (which in turn initializes several
variables in the MATLAB workspace), runs the simulation once for each

value of E,/N,, and gathers BER data. BERTool creates a listing in the
data viewer.

confidence Level | Fit [Piot| BERDataset | Emye® | B | #otEts |
oft A" [|simulstiono o2 01233 0068 ... [900 1500 480.. |

BERTool plots the data in the BER Figure window.

ETT=TE

File Edit Tools ‘Window

g ® 8 M

10°

#* simulatiand

3 To fit a curve to the series of points in the BER Figure window, select the
box next to Fit in the data viewer.

BERTool plots the curve, as below.

4-39

4 BERTool: A Bit Error Rate Analysis GUI

ETT=TE

File Edit Tools ‘Window

& a®meE

10

sirulation0 F3

BER

4 To indicate the 99% confidence interval around each point in the simulation
data, set Confidence Level to 99% in the data viewer.

BERTool displays error bars to represent the confidence intervals, as below.

4-40

Running Simulink® Simulations

2110

File Edit Tools ‘Window

& a®meE

+* simulationd E

BER

Another example that uses BERTool to manage a series of Simulink
simulations is in “Example: Preparing a Model for Use with BERTo00l” on
page 4-46.

Varying the Stopping Criteria

When you create a Simulink model for use with BERTool, you must set it up
so that the simulation ends when it either detects a target number of errors
or processes a maximum number of bits, whichever occurs first. To learn
more about this requirement, see “Requirements for Models” on page 4-43;
for an example, see “Example: Preparing a Model for Use with BERTo00l”
on page 4-46.

After creating your Simulink model, set the target number of errors and the
maximum number of bits in the Monte Carlo tab of BERTool.

4-41

4 BERTool: A Bit Error Rate Analysis GUI

4-42

Simulation limits:

Mumber of errars: |1 Juli}

or
Mumber of bits: 1ed

Typically, a Number of errors value of at least 100 produces an accurate
error rate. The Number of bits value prevents the simulation from running
too long, especially at large values of E,/N,. However, if the Number of bits
value 1s so small that the simulation collects very few errors, the error rate
might not be accurate. You can use confidence intervals to gauge the accuracy
of the error rates that your simulation produces; the larger the confidence
interval, the less accurate the computed error rate.

You can also click Stop in BERTool to stop a series of simulations
prematurely.

Preparing Simulink® Models for Use with BERTool

Preparing Simulink Models for Use with BERTool

In this section...

“Requirements for Models” on page 4-43
“Tips for Preparing Models” on page 4-43

“Example: Preparing a Model for Use with BERToo0l” on page 4-46

Requirements for Models

A Simulink model must satisfy these requirements before you can use it
with BERTool, where the case-sensitive variable names must be exactly as
shown below:

e The channel block must use the variable EbNo rather than a hard-coded
value for E/N,.

¢ The simulation must stop when the error count reaches the value of the
variable maxNumErrs or when the number of processed bits reaches the
value of the variable maxNumBits, whichever occurs first.

You can configure the Error Rate Calculation block in Communications
Blockset software to stop the simulation based on such criteria.

¢ The simulation must send the final error rate data to the MATLAB
workspace as a variable whose name you enter in the BER variable name
field in BERTool. The variable must be a three-element vector that lists
the BER, the number of bit errors, and the number of processed bits.

This three-element vector format is supported by the Error Rate
Calculation block.

Tips for Preparing Models

Here are some tips for preparing a Simulink model for use with BERTool:

¢ To avoid using an undefined variable name in the dialog box for a Simulink
block in the steps that follow, set up variables in the MATLAB workspace
using a command such as the one below.

EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;

4-43

4 BERTool: A Bit Error Rate Analysis GUI

4-44

You might also want to put the same command in the model’s preload
function callback, to initialize the variables if you reopen the model in

a future MATLAB session.

When you use BERTool, it provides the actual values based on what you
enter in the GUI, so the initial values above are somewhat arbitrary.

To model the channel, use the AWGN Channel block in Communications

Blockset software with these parameters:

= Mode =Signal to noise ratio (Eb/No)

= Eb/No = EbNo

E1Block Parameters: AWGN Channel 2=l

—&WGEN Channel [mask)

Add white Gauzzian noize to the input gsignal. The input and output signals can be real
or complex. Thiz block supports multichannel input and output signals as well as
frame-bazed processing.

‘when using either of the variance modes with complex inputs, the variance values are
equally divided among the real and imaginary components of the input zsignal.

=

Initial seed:
Je7

Mode: I Signal to noige ratio [Eb/Ma] LI
Eb/MNo (dB):

[EbNG

Mumber of bits per symbal:

Jh
Input gignal power [wattz]:
Jh
Symbol period [z]:

Jh

Lancel | Help | Apply

= Check Stop simulation.

= Target number of errors = maxNumErrs

= Maximum number of symbols = maxNumBits

® To compute the error rate, use the Error Rate Calculation block in
Communications Blockset software with these parameters:

Preparing Simulink® Models for Use with BERTool

Z1Block Parameters: Error Rate Calculation 2=l

—Emor Rate Calculation [mazk]

Compute the errar rate of the received data by comparing it to & delayed version of the
transmitted data. The block output iz a three-element vector congisting of the error
rate, followed by the number of errors detected and the total number of symbals
compared. This vector can be zent ta either the workspace or an output port.

The delays are specified in number of samples, regardless of whether the input iz a
zealar or a vector. The inputs to the ‘Tx' and 'Rx' ports must be sample-bazed scalars
o frame-based column vectars.

The 'Stop simulation’ option stops the simulation upon detecting a target number of
erors of a masimurm number of symbols, whichever comes first.

=
F

Feceive delay:

Jo

Computation delay:
Jo

Computation mode: I Entire frame

L L«

Output data: I Port
™ Reset port
[V Stop simulation

Target number of errors:

ImaxN umErrs

M aximum number of symbols:

ImaxN umnBits

Lancel | Help | Apply |

® To send data from the Error Rate Calculation block to the MATLAB
workspace, set Output data to Port, attach a Signal to Workspace block
from Signal Processing Blockset™ software, and set the latter block’s
Limit data points to last parameter to 1. The Variable name parameter

in the Signal to Workspace block must match the value you enter in the
BER variable name field of BERTool.

¢ [If your model computes a symbol error rate instead of a bit error rate, use
the Integer to Bit Converter block in Communications Blockset software
to convert symbols to bits.

¢ Frame-based simulations often run faster than sample-based simulations
for the same number of bits processed. The number of errors or number of
processed bits might exceed the values you enter in BERTool, because the
simulation always processes a fixed amount of data in each frame.

¢ [f you have an existing model that uses the AWGN Channel block using a
Mode parameter other than Signal to noise ratio (Eb/No), you can
adapt the block to use the Eb/No mode instead. To learn about how the

4-45

4 BERTool: A Bit Error Rate Analysis GUI

4-46

block’s different modes are related to each other, press the AWGN Channel
block’s Help button to view the online reference page.

If your model uses a preload function or other callback to initialize
variables in the MATLAB workspace upon loading, make sure before you
use the Run button in BERTool that one of these conditions is met:

= The model is not currently in memory. In this case, BERTool loads the
model into memory and runs the callback functions.

= The model is in memory (whether in a window or not), and the variables
are intact.

If you clear or overwrite the model’s variables and want to restore their
values before using the Run button in BERTool, you can use the bdclose
function in the MATLAB Command Window to clear the model from
memory. This causes BERTool to reload the model after you click Run.
Similarly, if you refresh your workspace by issuing a clear all or clear
variables command, you should also clear the model from memory by
using bdclose all.

Example: Preparing a Model for Use with BERTool

This example starts from a Simulink model originally created as an example in
the Communications Blockset Getting Started documentation, and shows how
to tailor the model for use with BERTool. The example also illustrates how
to compare the BER performance of a Simulink simulation with theoretical
BER results. The example assumes that you have Communications Blockset
software installed.

To prepare the model for use with BERTool, follow these steps, using the
exact case-sensitive variable names as shown:

1 Open the model by entering the following command in the MATLAB

Command Window.

bpskdoc

Preparing Simulink® Models for Use with BERTool

L T Errar Rate

JM,,. F e Calculation
ANIGN —m BPsKk | —mlRx

B B BFSK

Binany Display
Error Rate Caleulation

¥

Bernoulli Binary BFSK AUNGEN BESK
Generator Modulator Channel Demaodulator
Baseband Baseband

2 To initialize parameters in the MATLAB workspace and avoid using

undefined variables as block parameters, enter the following command in
the MATLAB Command Window.

EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;

3 To ensure that BERTool uses the correct amount of noise each time it
runs the simulation, open the dialog box for the AWGN Channel block
by double-clicking the block. Set Es/No to EbNo and click OK. In this
particular model, E /N, is equivalent to E,/N, because the modulation type
is BPSK.

4 To ensure that BERTool uses the correct stopping criteria for each iteration,
open the dialog box for the Error Rate Calculation block. Set Target
number of errors to maxNumgrrs, set Maximum number of symbols to
maxNumBits, and click OK.

5 To enable BERTool to access the BER results that the Error Rate
Calculation block computes, insert a Signal to Workspace block in the
model and connect it to the output of the Error Rate Calculation block.

Note The Signal to Workspace block is in Signal Processing Blockset
software and is different from the To Workspace block in Simulink.

Signal Ta
Mioksp ace

L9

w T Errar Rate
R Caleulation

¥

Errar Rate Calculation

Dizplay

4-47

4 BERTool: A Bit Error Rate Analysis GUI

6 To configure the newly added Signal to Workspace block, open its dialog
box. Set Variable name to BER, set Limit data points to last to 1, and
click OK.

Z1Block Parameters: Signal To Workspace 2=l

—Signal To Workspace [mazk] (link]

wiite input to specified array in MATLAB's main workspace. Data iz not available until
the simulation is stopped or paused.

=
F

Y ariable name:
|BER

Limit data points to last:
Jh
Decimation:

Jh

Frames: | Concatenate frames [2-D array) LI

™ Log fised-point data a3 a fi object

Lancel | Help | Apply |

7 (Optional) To make the simulation run faster, especially at high values of
E,/N,, open the dialog box for the Bernoulli Binary Generator block. Select
Frame-based outputs and set Samples per frame to 1000.

8 Save the model in a directory on your MATLAB path using the file name
bertool_bpskdoc.mdl.

9 (Optional) To cause Simulink to initialize parameters if you reopen this
model in a future MATLAB session, enter the following command in the

MATLAB Command Window and resave the model.

set_param('bertool_bpskdoc', 'preLoadFcn',...
"EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;');

The bertool bpskdoc model is now compatible with BERTool. To use it in
conjunction with BERTool, continue the example by following these steps:

10 Open BERTool and go to the Monte Carlo tab.

11 Set parameters on the Monte Carlo tab as shown in the following figure.

4-48

Preparing Simulink® Models for Use with BERTool

Theoreﬁcall Semianalytic Monte Carlo |

Eb"NU range: Ig;g dB

Simulation M-file or model: Ibertool_bpskdoc.mdl Browvse... |
BER: variable name: IBER

Sirmulation limits:

Mumber of errors: 100
or
Mumber of bits: 1ed

12 Click Run.

BERToo0l spends some time computing results and then plots them.

ETT=TE

File Edit Tools ‘Window

g ® 8 M

4-49

4 BERTool: A Bit Error Rate Analysis GUI

13 To compare these simulation results with theoretical results, go to the
Theoretical tab in BERTool and set parameters as shown below.

Thearetical | Semianaly’ticl Monte Carlol
E, Mg range: ID:Q (5]

Channel type: | 8WGHN ¥

& Caherent
Modulation order:

Modulation type: I PSH - l Democulation type:

€ Moncoherent
[Ditterertial encoding

Channel Coding: Synchronization:

' None ' Perfect syhchronization

" Convaolutionsl “ Mormalized timing errar: ID
" Block " RMS phase noise (rad): ID

14 Click Plot.

BERTool plots the theoretical curve in the BER Figure window along with
the earlier simulation results.

4-50

Preparing Simulink® Models for Use with BERTool

File Edit Tools ‘Window £
gaafneEE

simulation0 :
theoretical-exactd |

4-51

4 BERTool: A Bit Error Rate Analysis GUI

4-52

Managing BER Data

In this section...

“Exporting Data Sets or BERTool Sessions” on page 4-52
“Importing Data Sets or BERTool Sessions” on page 4-55

“Managing Data in the Data Viewer” on page 4-57

Exporting Data Sets or BERTool Sessions

BERTool enables you to export individual data sets to the MATLAB workspace
or to MAT-files. One option for exporting is convenient for processing the data
outside BERTool. For example, to create a highly customized plot using data
from BERTool, export the BERTo0l data set to the MATLAB workspace and
use any of the plotting commands in MATLAB. Another option for exporting
enables you to reimport the data into BERTool later.

BERTool also enables you to save an entire session, which is useful if your
session contains multiple data sets that you want to return to in a later
session.

This section describes these capabilities:

* “Exporting Data Sets” on page 4-52
* “Examining an Exported Structure” on page 4-54

* “Saving a BERTool Session” on page 4-55

Exporting Data Sets
To export an individual data set, follow these steps:

1 In the data viewer, select the data set you want to export.

2 Choose File > Export Data.

Managing BER Data

<) Data Expork x|
Export to: I ‘Workspace arrays =~ l

Wariahle names:
Ep My IebnoD
BER: IberD

[Owerwrite variables

Cancel |

3 Set Export to to indicate the format and destination of the data.

a If you want to reimport the data into BERTool later, you must choose
either Workspace structure or MAT-file structure to create a
structure in the MATLAB workspace or a MAT-file, respectively.

A new field called Structure name appears. Set it to the name that you
want BERTool to use for the structure it creates.

If you selected Workspace structure and you want BERTool to use your
chosen variable name, even if a variable by that name already exists in
the workspace, select Overwrite variables.

b If you do not need to reimport the data into BERTool later, a convenient
way to access the data outside BERTool is to have BERTool create a pair
of arrays in the MATLAB workspace. One array contains E,/N, values,
while the other array contains BER values. To choose this option, set
Export to to Workspace arrays.

Then type two variable names in the fields under Variable names.

If you want BERToo0l to use your chosen variable names even if variables
by those names already exist in the workspace, select Overwrite
variables.

4 Click OK. If you selected MAT-file structure, BERTool prompts you for
the path to the MAT-file that you want to create.

To reimport a structure later, see “Importing Data Sets” on page 4-56.

4-53

4 BERTool: A Bit Error Rate Analysis GUI

4-54

Examining an Exported Structure

This section briefly describes the contents of the structure that BERTool
exports to the workspace or to a MAT-file. The structure’s fields are indicated
in the table below. The fields that are most relevant for you when you want to
manipulate exported data are paramsEvaled and data.

Name of Field Significance

params The parameter values in the
BERTool GUI, some of which might
be invisible and hence irrelevant for

computations.

paramsEvaled The parameter values that BERTool
uses when computing the data set.

data The E,/N,, BER, and number of bits
processed.

dataView Information about the appearance in

the data viewer. Used by BERTool
for data reimport.

cellEditabilities Indicates whether the data viewer
has an active Confidence Level or
Fit entry. Used by BERTool for data
reimport.

Parameter Fields. The params and paramsEvaled fields are similar to
each other, except that params describes the exact state of the GUI whereas
paramsEvaled indicates the values that are actually used for computations.
As an example of the difference, for a theoretical system with an AWGN
channel, params records but paramsEvaled omits a diversity order parameter.
The diversity order is not used in the computations because it is relevant
only for systems with Rayleigh channels. As another example, if you type
[0:3]+1 in the GUI as the range of E,/N, values, params indicates [0:3]+1
while paramsEvaled indicates 1 2 3 4.

The length and exact contents of paramsEvaled depend on the data set
because only relevant information appears. If the meaning of the contents
of paramsEvaled is not clear upon inspection, one way to learn more is to
reimport the data set into BERTool and inspect the parameter values that

Managing BER Data

appear in the GUI. To reimport the structure, follow the instructions in
“Importing Data Sets or BERToo0l Sessions” on page 4-55.

Data Field. If your exported workspace variable is called ber0, the field
ber0.data is a cell array that contains the numerical results in these vectors:
® ber0.data{1} lists the E;/N, values.

® ber0.data{2} lists the BER values corresponding to each of the E /N,
values.

® per0.data{3} indicates, for simulation or semianalytic results, how many
bits BERTool processed when computing each of the corresponding BER
values.

Saving a BERTool Session

To save an entire BERTool session, follow these steps:

1 Choose File > Save Session.

2 When BERTool prompts you, enter the path to the file that you want
to create.

BERTool creates a text file that records all data sets currently in the data
viewer, along with the GUI parameters associated with the data sets.

Note If your BERToo0l session requires particular workspace variables (such
as txsig or rxsig for the Semianalytic tab), save those separately in a
MAT-file using the save command in MATLAB.

Importing Data Sets or BERTool Sessions

BERTool enables you to reimport individual data sets that you previously
exported to a structure, or to reload entire sessions that you previously saved.
This section describes these capabilities:

¢ “‘Importing Data Sets” on page 4-56
® “Opening a Previous BERToo0l Session” on page 4-56

4-55

4 BERTool: A Bit Error Rate Analysis GUI

4-56

To learn more about exporting data sets or saving sessions from BERTool, see
“Exporting Data Sets or BERToo0l Sessions” on page 4-52.

Importing Data Sets

To import an individual data set that you previously exported from BERTool
to a structure, follow these steps:

1 Choose File > Import Data.

<} Data Import x|
Impart from: I ‘Workspace structure ™ l
Structure name: IbersD

o |

2 Set Import from to either Workspace structure or MAT-file structure.
If you select Workspace structure, type the name of the workspace
variable in the Structure name field.

3 Click OK. If you select MAT-file, BERTool prompts you to select the file
that contains the structure you want to import.

After you dismiss the Data Import dialog box (and the file selection dialog
box, in the case of a MAT-file), the data viewer shows the newly imported data
set and the BER Figure window plots it.

Opening a Previous BERTool Session

To replace the data sets in the data viewer with data sets from a previous
BERTool session, follow these steps:

1 Choose File > Open Session.

Note If BERTool already contains data sets, it asks you whether you
want to save the current session. If you answer no and continue with the
loading process, BERTool discards the current session upon opening the
new session from the file.

Managing BER Data

2 When BERTool prompts you, enter the path to the file you want to open. It
must be a file that you previously created using the Save Session option
in BERTool.

After BERTool reads the session file, the data viewer shows the data sets
from the file.

If your BERTool session requires particular workspace variables (such as
txsig or rxsig for the Semianalytic tab) that you saved separately in a
MAT-file, you can retrieve them using the load command in MATLAB.

Managing Data in the Data Viewer

The data viewer gives you flexibility to rename and delete data sets, and to
reorder columns in the data viewer.

® To rename a data set in the data viewer, double-click its name in the BER
Data Set column and type a new name.

Confidence Level | Fit | Plotl BER Data Set | EyMy (dB) BER # of Bits

heoreﬁcalﬂ [0.0 1.0 20 3. |[00755 0.0346 ...

] ﬂ RN (0.0 30 6.0 [012 006 0.02

® To delete a data set from the data viewer, select it and choose Edit >
Delete.

Note If the data set originated from the Semianalytic or Theoretical
tab, BERTool deletes the data without asking for confirmation. You cannot
undo this operation.

¢ To move a column in the data viewer, drag the column’s heading to the left
or right with the mouse. For example, the image below shows the mouse
dragging the BER column to the left of its default position. When you
release the mouse button, the columns snap into place.

Confidence Level | Fit | Plot | BER Data Set # of Btz
ﬂ theoreticalo i) 1|| [0.0755 0.054% ...
AT |V |simulationd [0.0 3.0 042 008 002] [300 300 G00]

4-57

4 BERTool: A Bit Error Rate Analysis GUI

4-58

Source Coding

Source coding, also known as quantization or signal formatting, is a way
of processing data in order to reduce redundancy or prepare it for later
processing. Analog-to-digital conversion and data compression are two

categories of source coding.

This chapter describes the source coding features of Communications Toolbox

software in the sections listed below.

“Quantizing a Signal” on page 5-2

“Optimizing Quantization Parameters” on page 5-6
“Differential Pulse Code Modulation” on page 5-8
“Optimizing DPCM Parameters” on page 5-11
“Companding a Signal” on page 5-13

“Huffman Coding” on page 5-15

“Arithmetic Coding” on page 5-17

“Selected Bibliography for Source Coding” on page 5-19

This toolbox does not support vector quantization.

5 source Coding

Quantizing a Signal

5-2

In this section...

“Section Overview” on page 5-2
“Representing Partitions” on page 5-2
“Representing Codebooks” on page 5-3
“Scalar Quantization Example 1” on page 5-3

“Scalar Quantization Example 2” on page 5-4

“Determining Which Interval Each Input Is In” on page 5-4

Section Overview

Scalar quantization is a process that maps all inputs within a specified range
to a common value. It maps inputs in a different range of values to a different
common value. In effect, scalar quantization digitizes an analog signal. Two
parameters determine a quantization: a partition and a codebook.

This section describes how to represent these parameters. It also shows, via
examples, how to use the partition and codebook with the quantiz function.

Representing Partitions

A quantization partition defines several contiguous, nonoverlapping ranges of
values within the set of real numbers. To specify a partition in the MATLAB
environment, list the distinct endpoints of the different ranges in a vector.

For example, if the partition separates the real number line into the four sets

o {x: x<0}
e {x: 0<x<1}
e {x: 1<x<3}

e {x: 3<x}

then you can represent the partition as the three-element vector

Quantizing a Signal

partition = [0,1,3];

The length of the partition vector is one less than the number of partition
intervals.

Representing Codebooks

A codebook tells the quantizer which common value to assign to inputs that
fall into each range of the partition. Represent a codebook as a vector whose
length is the same as the number of partition intervals. For example, the
vector

codebook = [-1, 0.5, 2, 3];

1s one possible codebook for the partition [0,1,3].

Scalar Quantization Example 1

The code below shows how the quantiz function uses partition and
codebook to map a real vector, samp, to a new vector, quantized, whose
entries are either -1, 0.5, 2, or 3.

partition = [0,1,3];
codebook = [-1, 0.5, 2, 3];
samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];
[index,quantized] = quantiz(samp,partition,codebook);
quantized
The output is below.
quantized =
Columns 1 through 6
-1.0000 -1.0000 -1.0000 -1.0000 0.5000 0.5000
Columns 7 through 12
2.0000 2.0000 2.0000 2.0000 2.0000 3.0000

Column 13

5 source Coding

3.0000

Scalar Quantization Example 2

This example illustrates the nature of scalar quantization more clearly. After
quantizing a sampled sine wave, it plots the original and quantized signals.
The plot contrasts the x’s that make up the sine curve with the dots that
make up the quantized signal. The vertical coordinate of each dot is a value in
the vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function
sig = sin(t); % Original signal, a sine wave

partition = [-1:.2:1]; % Length 11, to represent 12 intervals
codebook = [-1.2:.2:1]; % Length 12, one entry for each interval
[index,quants] = quantiz(sig,partition,codebook); % Quantize.
plot(t,sig, 'x',t,quants,'.")

legend('Original signal', 'Quantized signal');

axis([-.2 7 -1.2 1.2])

[JFigwet -(of x|
File Edit Wiew Insert Tools Deskkop ‘Window Help ~
1r W&S& ® Original signal |
j.e.?: e * Quantized signal
Ed Xx
Foe P
0sr ¢ ®
o i
" Ed
. o
Ed Ed
0 e o §
. & “
Ed
o i
051 . 2
bt X..
* 3
el wzf"
1 e AN
] 1 2 3 4 5 B 7

Determining Which Interval Each Input Is In

The quantiz function also returns a vector that tells which interval each
input is in. For example, the output below says that the input entries lie

5-4

Quantizing a Signal

within the intervals labeled 0, 6, and 5, respectively. Here, the Oth interval
consists of real numbers less than or equal to 3; the 6th interval consists of
real numbers greater than 8 but less than or equal to 9; and the 5th interval
consists of real numbers greater than 7 but less than or equal to 8.

partition = [3,4,5,6,7,8,9];
index = quantiz([2 9 8],partition)

The output 1s
index =

0
6
5

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];

then the equation below relates the vector index to the quantized signal
quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you
instead phrase the example more concisely as below.

partition = [3,4,5,6,7,8,9];
codebook = [3,3,4,5,6,7,8,9];
[index,quants] = quantiz([2 9 8],partition,codebook);

5-5

5 source Coding

Optimizing Quantization Parameters

In this section...

“Section Overview” on page 5-6

“Example: Optimizing Quantization Parameters” on page 5-6

Section Overview

Quantization distorts a signal. You can lessen the distortion by choosing
appropriate partition and codebook parameters. However, testing and
selecting parameters for large signal sets with a fine quantization scheme can
be tedious. One way to produce partition and codebook parameters easily is to
optimize them according to a set of so-called training data.

Note The training data you use should be typical of the kinds of signals you
will actually be quantizing.

Example: Optimizing Quantization Parameters

The 11oyds function optimizes the partition and codebook according to the
Lloyd algorithm. The code below optimizes the partition and codebook for one
period of a sinusoidal signal, starting from a rough initial guess. Then it
uses these parameters to quantize the original signal using the initial guess
parameters as well as the optimized parameters. The output shows that

the mean square distortion after quantizing is much less for the optimized
parameters. The quantiz function automatically computes the mean square
distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."
t = [0:.1:2*%pi];

sig = sin(t);

partition = [-1:.2:1];

codebook = [-1.2:.2:1];

% Now optimize, using codebook as an initial guess.
[partition2,codebook2] = 1lloyds(sig,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);
[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);

5-6

Optimizing Quantization Parameters

% Compare mean square distortions from initial and optimized
[distor, distor2] % parameters.

The output is
ans =

0.0148 0.0024

5-7

5 source Coding

Differential Pulse Code Modulation

In this section...

“Section Overview” on page 5-8
“DPCM Terminology” on page 5-8

“Representing Predictors” on page 5-8

“Example: DPCM Encoding and Decoding” on page 5-9

Section Overview

The quantization in the section “Quantizing a Signal” on page 5-2 requires
no a priori knowledge about the transmitted signal. In practice, you can
often make educated guesses about the present signal based on past signal
transmissions. Using such educated guesses to help quantize a signal is
known as predictive quantization. The most common predictive quantization
method is differential pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a
DPCM predictive quantizer with a linear predictor.

DPCM Terminology

To determine an encoder for such a quantizer, you must supply not only a
partition and codebook as described in “Representing Partitions” on page 5-2
and “Representing Codebooks” on page 5-3, but also a predictor. The predictor
is a function that the DPCM encoder uses to produce the educated guess at
each step. A linear predictor has the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y (k) attempts to predict the value of x (k), and
p is an m-tuple of real numbers. Instead of quantizing x itself, the DPCM
encoder quantizes the predictive error, x-y. The integer m above is called the
predictive order. The special case when m = 1 is called delta modulation.

Representing Predictors
If the guess for the kth value of the signal x, based on earlier values of x, is

Differential Pulse Code Modulation

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)
then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

Note The initial zero in the predictor vector makes sense if you view the
vector as the polynomial transfer function of a finite impulse response (FIR)
filter.

Example: DPCM Encoding and Decoding

A simple special case of DPCM quantizes the difference between the signal’s
current value and its value at the previous step. Thus the predictor is just
y(k) = x (k - 1). The code below implements this scheme. It encodes a
sawtooth signal, decodes it, and plots both the original and decoded signals.
The solid line is the original signal, while the dashed line is the recovered
signals. The example also computes the mean square error between the
original and decoded signals.

predictor = [0 1]; % y(k)=x(k-1)
partition = [-1:.1:.9];

codebook = [-1:.1:1];

t = [0:pi/50:2*pi];

x = sawtooth(3*t); % Original signal
% Quantize x using DPCM.

encodedx = dpcmenco(x,codebook,partition,predictor);

% Try to recover x from the modulated signal.

decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx,'--")

legend('Original signal', 'Decoded signal', 'Location', 'NorthOutside');
distor = sum((x-decodedx)."2)/length(x) % Mean square error

The output 1s
distor =

0.0327

5 source Coding

T ~=lol x|

File Edit Wiew Insert Tools Desktop Window Help N

Original signal

— — Decoded signal

5-10

Optimizing DPCM Parameters

Optimizing DPCM Parameters

In this section...

“Section Overview” on page 5-11

“Example: Comparing Optimized and Nonoptimized DPCM Parameters”
on page 5-11

Section Overview

The section “Optimizing Quantization Parameters” on page 5-6 describes
how to use training data with the 11loyds function to help find quantization
parameters that will minimize signal distortion.

This section describes similar procedures for using the dpcmopt function
in conjunction with the two functions dpcmenco and dpcmdeco, which first
appear in the previous section.

Note The training data you use with dpcmopt should be typical of the kinds
of signals you will actually be quantizing with dpcmenco.

Example: Comparing Optimized and Nonoptimized
DPCM Parameters

This example is similar to the one in the last section. However, where the last
example created predictor, partition, and codebook in a straightforward
but haphazard way, this example uses the same codebook (now called
initcodebook) as an initial guess for a new optimized codebook parameter.
This example also uses the predictive order, 1, as the desired order of the
new optimized predictor. The dpcmopt function creates these optimized
parameters, using the sawtooth signal x as training data. The example goes
on to quantize the training data itself; in theory, the optimized parameters
are suitable for quantizing other data that is similar to x. Notice that the
mean square distortion here is much less than the distortion in the previous
example.

t
X

[0:pi/50:2*pi];
sawtooth(3*t); % Original signal

5-11

5 source Coding

5-12

initcodebook = [-1:.1:1]; % Initial guess at codebook

% Optimize parameters, using initial codebook and order 1.
[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);
% Quantize x using DPCM.

encodedx = dpcmenco(x,codebook,partition,predictor);

% Try to recover x from the modulated signal.

decodedx = dpcmdeco(encodedx,codebook,predictor);

distor = sum((x-decodedx)."2)/length(x) % Mean square error

The output is

distor =

0.0063

Companding a Signal

Companding a Signal

In this section...

“Section Overview” on page 5-13

“Example: A p-Law Compander” on page 5-13

Section Overview

In certain applications, such as speech processing, it is common to use a
logarithm computation, called a compressor, before quantizing. The inverse
operation of a compressor is called an expander. The combination of a
compressor and expander is called a compander.

The compand function supports two kinds of companders: p-law and A-law
companders. Its reference page lists both compressor laws.

Example: A p-Law Compander

The code below quantizes an exponential signal in two ways and compares the
resulting mean square distortions. First, it uses the quantiz function with

a partition consisting of length-one intervals. In the second trial, compand
implements a p-law compressor, quantiz quantizes the compressed data, and
compand expands the quantized data. The output shows that the distortion

is smaller for the second scheme. This is because equal-length intervals are
well suited to the logarithm of sig, but not well suited to sig. The figure
shows how the compander changes sig.

Mu = 255; % Parameter for mu-law compander

sig = -4:.1:4;

sig = exp(sig); % Exponential signal to quantize

V = max(sig);

% 1. Quantize using equal-length intervals and no compander.
[index,quants,distor] = quantiz(sig,0:floor(V),0:ceil(V));

% 2. Use same partition and codebook, but compress

% before quantizing and expand afterwards.

compsig = compand(sig,Mu,V, 'mu/compressor');
[index,quants] = quantiz(compsig,0:floor(V),0:ceil(V));

5-13

5 source Coding

newsig = compand(quants,Mu,max(quants), 'mu/expander');
distor2 = sum((newsig-sig)."2)/length(sig);
[distor, distor2] % Display both mean square distortions.

plot(sig); % Plot original signal.

hold onj;

plot(compsig,'r--'); % Plot companded signal.
legend('Original', 'Companded', 'Location', 'NorthWest')

The output and figure are below.
ans =
0.5348 0.0397

T E—— ~=lol x|

File Edit Wiew Insert Tools Desktop Window Help

B0

Criginal

— — Companded /

a0t

40

30t

20t

100

5-14

Huffman Coding

Huffman Coding

In this section...

“Section Overview” on page 5-15
“Creating a Huffman Code Dictionary” on page 5-15
“Example: Creating and Decoding a Huffman Code” on page 5-16

Section Overview

Huffman coding offers a way to compress data. The average length of a
Huffman code depends on the statistical frequency with which the source
produces each symbol from its alphabet. A Huffman code dictionary, which
associates each data symbol with a codeword, has the property that no
codeword in the dictionary is a prefix of any other codeword in the dictionary.

The huffmandict, huffmanenco, and huffmandeco functions support
Huffman coding and decoding.

Note For long sequences from sources having skewed distributions and
small alphabets, arithmetic coding compresses better than Huffman coding.
To learn how to use arithmetic coding, see “Arithmetic Coding” on page 5-17.

Creating a Huffman Code Dictionary

Huffman coding requires statistical information about the source of the data
being encoded. In particular, the p input argument in the huffmandict
function lists the probability with which the source produces each symbol in
its alphabet.

For example, consider a data source that produces 1s with probability 0.1, 2s
with probability 0.1, and 3s with probability 0.8. The main computational
step in encoding data from this source using a Huffman code is to create a
dictionary that associates each data symbol with a codeword. The commands
below create such a dictionary and then show the codeword vector associated
with a particular value from the data source.

symbols = [1 2 3]; % Data symbols

5-15

5 source Coding

5-16

p =[0.1 0.1 0.8]; % Probability of each data symbol
dict = huffmandict(symbols,p) % Create the dictionary.
dict{1,:} % Show one row of the dictionary.

The output below shows that the most probable data symbol, 3, is associated
with a one-digit codeword, while less probable data symbols are associated
with two-digit codewords. The output also shows, for example, that a Huffman
encoder receiving the data symbol 1 should substitute the sequence 11.

dict =
[1] [1x2 double]
[2] [1x2 double]
[3] [0]
ans =
1
ans =
1 1

Example: Creating and Decoding a Huffman Code

The example below performs Huffman encoding and decoding, using a
source whose alphabet has three symbols. Notice that the huffmanenco and
huffmandeco functions use the dictionary that huffmandict created.

sig = repmat([3 31333332 3],1,50); % Data to encode
symbols = [1 2 3]; % Distinct data symbols appearing in sig
p =[0.1 0.1 0.8]; % Probability of each data symbol

dict = huffmandict(symbols,p); % Create the dictionary.
hcode = huffmanenco(sig,dict); % Encode the data.

dhsig = huffmandeco(hcode,dict); % Decode the code.

Arithmetic Coding

Arithmetic Coding

In this section...

“Section Overview” on page 5-17

“Representing Arithmetic Coding Parameters” on page 5-17

“Example: Creating and Decoding an Arithmetic Code” on page 5-18

Section Overview

Arithmetic coding offers a way to compress data and can be useful for data
sources having a small alphabet. The length of an arithmetic code, instead
of being fixed relative to the number of symbols being encoded, depends on
the statistical frequency with which the source produces each symbol from its
alphabet. For long sequences from sources having skewed distributions and
small alphabets, arithmetic coding compresses better than Huffman coding.

The arithenco and arithdeco functions support arithmetic coding and
decoding.

Representing Arithmetic Coding Parameters

Arithmetic coding requires statistical information about the source of the data
being encoded. In particular, the counts input argument in the arithenco
and arithdeco functions lists the frequency with which the source produces
each symbol in its alphabet. You can determine the frequencies by studying a
set of test data from the source. The set of test data can have any size you
choose, as long as each symbol in the alphabet has a nonzero frequency.

For example, before encoding data from a source that produces 10 x’s, 10 y’s,
and 80 z’s in a typical 100-symbol set of test data, define

counts = [10 10 80];

Alternatively, if a larger set of test data from the source contains 22 x’s, 23
y’s, and 185 z’s, then define

counts = [22 23 185];

5-17

5 source Coding

5-18

Example: Creating and Decoding an Arithmetic Code

The example below performs arithmetic encoding and decoding, using a
source whose alphabet has three symbols.

seq = repmat([3 31333332 3],1,50);
counts = [10 10 80];

code = arithenco(seq,counts);

dseq = arithdeco(code,counts,length(seq));

Selected Bibliography for Source Coding

Selected Bibliography for Source Coding

[1] Cover, Thomas M., and Joy A. Thomas, Elements of Information Theory,
New York, John Wiley & Sons, 1991.

[2] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley & Sons,
1994.

[3] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan
Kaufmann, 2000.

[4] Sklar, Bernard, Digital Communications: Fundamentals and Applications,
Englewood Cliffs, NJ, Prentice-Hall, 1988.

5-19

5 source Coding

5-20

Error Detection and
Correction

Error detection and correction techniques detect and possibly correct errors
that occur when messages are transmitted in a digital communication system.
To accomplish this, the encoder transmits not only the information symbols,
but also one or more redundant symbols. The decoder uses the redundant
symbols to detect and possibly correct whatever errors occurred during
transmission. The sections of this chapter are as follows.

e “Block Coding” on page 6-2
e “Convolutional Coding” on page 6-31

e “Cyclic Redundancy Check Coding” on page 6-45

6 Error Detection and Correction

Block Coding

In this section...

“Section Overview” on page 6-2

“Block Coding Features of the Toolbox” on page 6-4

“Block Coding Terminology” on page 6-5

“Representing Words for Reed-Solomon Codes” on page 6-5
“Parameters for Reed-Solomon Codes” on page 6-6
“Creating and Decoding Reed-Solomon Codes” on page 6-8
“Representing Words for BCH Codes” on page 6-12
“Parameters for BCH Codes” on page 6-13

“Creating and Decoding BCH Codes” on page 6-13

“LDPC Codes” on page 6-15

“Representing Words for Linear Block Codes” on page 6-16
“Parameters for Linear Block Codes” on page 6-20
“Creating and Decoding Linear Block Codes” on page 6-24
“Performing Other Block Code Tasks” on page 6-27
“Selected Bibliography for Block Coding” on page 6-30

Section Overview

Block coding is a special case of error-control coding. Block coding techniques
map a fixed number of message symbols to a fixed number of code symbols.
A block coder treats each block of data independently and is a memoryless
device.

Some topics are relevant only for specific block coding techniques, while other
topics apply to all supported block coding techniques. The table below suggests
which topics you should read based on the coding techniques you want to use.

Block Coding

Block Coding Technique

Relevant Sections

All supported block coding
techniques

¢ “Block Coding Features of the
Toolbox” on page 6-4

¢ “Block Coding Terminology” on
page 6-5

e “Performing Other Block Code
Tasks” on page 6-27

e “Selected Bibliography for Block
Coding” on page 6-30

Reed-Solomon

® “Representing Words for
Reed-Solomon Codes” on page 6-5

e “Parameters for Reed-Solomon
Codes” on page 6-6

® “Creating and Decoding
Reed-Solomon Codes” on page 6-8

Bose-Chaudhuri-Hocquenghem
(BCH)

¢ “Representing Words for BCH
Codes” on page 6-12

e “Parameters for BCH Codes” on
page 6-13

e “Creating and Decoding BCH
Codes” on page 6-13

Low-density parity-check (LDPC)

e “LDPC Codes” on page 6-15

Cyclic, Hamming, and generic linear
block

e “Representing Words for Linear
Block Codes” on page 6-16

e “Parameters for Linear Block
Codes” on page 6-20

e “Creating and Decoding Linear
Block Codes” on page 6-24

6-3

6 Error Detection and Correction

Block Coding Features of the Toolbox

The class of linear block coding techniques includes categories shown below.

Linear block codes

/N

Cyclic codes LDPC codes

BCH codes

7\

Homming codes Reed-Solomon codes

Communications Toolbox supports general linear block codes. It also includes
functions to process cyclic, LDPC, BCH, Hamming, and Reed-Solomon codes
(which are all special kinds of linear block codes). Functions in the toolbox
can accomplish these tasks:

¢ Encode or decode a message using one of the techniques mentioned above

¢ Determine characteristics of a technique, such as error-correction capability
or valid message length

® Perform lower level computations associated with a technique, such as
= Compute a decoding table
= Compute a generator or parity-check matrix
= Convert between generator and parity-check matrices

= Compute a generator polynomial

Note The functions in this toolbox are designed for block codes that use an
alphabet whose size is a power of 2.

6-4

Block Coding

The table below lists the functions that are related to each supported block
coding technique.

Block Coding Technique Toolbox Functions and Objects

Linear block encode, decode, gen2par, syndtable

Cyclic encode, decode, cyclpoly, cyclgen,
gen2par, syndtable

BCH bchenc, bchdec, bchgenpoly

LDPC fec.ldpcenc, fec.ldpcdec

Hamming encode, decode, hammgen, gen2par,
syndtable

Reed-Solomon rsenc, rsdec, rsgenpoly, rsencof,
rsdecof

Block Coding Terminology

Throughout this section, the information to be encoded consists of a sequence
of message symbols and the code that is produced consists of a sequence of
codewords.

Each block of k message symbols is encoded into a codeword that consists
of n symbols; in this context, k is called the message length, n is called the
codeword length, and the code is called an [n,k] code.

Representing Words for Reed-Solomon Codes

This toolbox supports Reed-Solomon codes that use m-bit symbols instead of
bits. A message for an [n,k] Reed-Solomon code must be a k-column Galois
array in the field GF(2™). Each array entry must be an integer between 0 and
2m.1. The code corresponding to that message is an n-column Galois array in
GF(2™). The codeword length n must be between 3 and 2™-1.

6-5

6 Error Detection and Correction

Note For information about Galois arrays and how to create them, see
“Representing Elements of Galois Fields” on page 12-4 or the reference page
for the gf function.

The example below illustrates how to represent words for a [7,3] Reed-Solomon
code.

n=17; k =38; % Codeword length and message length
m = 3; % Number of bits in each symbol
msg = gf([1 6 4; 0 4 3],m); % Message is a Galois array.

c = rsenc(msg,n,k) % Code will be a Galois array.

The output is

c = GF(273) array. Primitive polynomial = D*3+D+1 (11 decimal)
Array elements =

1 6 4 4 3 6 3
0 4 3 3 7 4 7

Parameters for Reed-Solomon Codes

This section describes several integers related to Reed-Solomon codes and
discusses how to find generator polynomials.

Allowable Values of Integer Parameters

The table below summarizes the meanings and allowable values of some
positive integer quantities related to Reed-Solomon codes as supported in
this toolbox. The quantities n and k are input parameters for Reed-Solomon
functions in this toolbox.

Symbol Meaning Value or Range

m Number of bits per Integer between 3 and
symbol 16

n Number of symbols per | Integer between 3 and
codeword 2m.1

Block Coding

Symbol Meaning Value or Range
k Number of symbols per | Positive integer less
message than n, such that n-k is
even
t Error-correction (n-k)/2
capability of the code

Generator Polynomial

The rsgenpoly function produces generator polynomials for Reed-Solomon
codes. This is useful if you want to use rsenc and rsdec with a generator
polynomial other than the default, or if you want to examine or manipulate a
generator polynomial. rsgenpoly represents a generator polynomial using a
Galois row vector that lists the polynomial’s coefficients in order of descending
powers of the variable. If each symbol has m bits, the Galois row vector is in
the field GF(2™). For example, the command

r rsgenpoly(15,13)

S
1l

GF(274) array. Primitive polynomial = D"4+D+1 (19 decimal)
Array elements =
1 6 8

finds that one generator polynomial for a [15,13] Reed-Solomon code is
X2+ (A2 + A)X + (A%, where A is a root of the default primitive polynomial for
GF(@16).

Algebraic Expression for Generator Polynomials. The

generator polynomials that rsgenpoly produces have the form

X -AP)X - AP (X - AP*261) where b is an integer, A is a root of the primitive
polynomial for the Galois field, and t is (n-k) /2. The default value of b is

1. The output from rsgenpoly is the result of multiplying the factors and
collecting like powers of X. The example below checks this formula for the
case of a [15,13] Reed-Solomon code, using b = 1.

n = 15;

6-7

6 Error Detection and Correction

6-8

a = gf(2,lo92(n+1)); % Root of primitive polynomial
f1 = [1 a]; f2 = [1 a*2]; % Factors that form generator polynomial
f = conv(f1,f2) % Generator polynomial, same as r above.

Creating and Decoding Reed-Solomon Codes

The rsenc and rsdec functions create and decode Reed-Solomon codes, using
the data described in “Representing Words for Reed-Solomon Codes” on page
6-5 and “Parameters for Reed-Solomon Codes” on page 6-6.

This section illustrates how to use rsenc and rsdec. The topics are

“Example: Reed-Solomon Coding Syntaxes” on page 6-8

¢ “Example: Detecting and Correcting Errors in a Reed-Solomon Code” on
page 6-9

¢ “Excessive Noise in Reed-Solomon Codewords” on page 6-10

¢ “Creating Shortened Reed-Solomon Codes” on page 6-11

Example: Reed-Solomon Coding Syntaxes

The example below illustrates multiple ways to encode and decode data using
a [15,13] Reed-Solomon code. The example shows that you can

¢ Vary the generator polynomial for the code, using rsgenpoly to produce
a different generator polynomial.

® Vary the primitive polynomial for the Galois field that contains the
symbols, using an input argument in gf.

e Vary the position of the parity symbols within the codewords, choosing
either the end (default) or beginning.

This example also shows that corresponding syntaxes of rsenc and rsdec use
the same input arguments, except for the first input argument.

m = 4; % Number of bits in each symbol

n=2m-1; k = 13; % Codeword length and message length
data = randint(4,k,2"m); % Four random integer messages
msg = gf(data,m); % Represent data using a Galois array.

% Simplest syntax for encoding

Block Coding

c1 = rsenc(msg,n,Kk);
rsdec(c1,n,k);

o
—ry
1l

% Vary the generator polynomial for the code.
2 rsenc(msg,n,k,rsgenpoly(n,k,19,2));
2 rsdec(c2,n,k,rsgenpoly(n,k,19,2));

o O

% Vary the primitive polynomial for GF(16).
msg2 = gf(data,m,25);

c3 = rsenc(msg2,n,k);

d3 = rsdec(c3,n,k);

% Prepend the parity symbols instead of appending them.
4 = rsenc(msg,n,k, 'beginning');

c
d4 = rsdec(c4,n,k, 'beginning');

% Check that the decoding worked correctly.

chk = isequal(d1,msg) & isequal(d2,msg) & isequal(d3,msg2) &...

isequal(d4,msqg)
The output is

chk =

Example: Detecting and Correcting Errors in a Reed-Solomon
Code

The example below illustrates the decoding results for a corrupted code.
The example encodes some data, introduces errors in each codeword, and
invokes rsdec to attempt to decode the noisy code. It uses additional output
arguments in rsdec to gain information about the success of the decoding
process.

= 3; % Number of bits per symbol
n=2m-1; k = 3; % Codeword length and message length
t = (n-k)/2; % Error-correction capability of the code
nw = 4; % Number of words to process
msgw = gf(randint(nw,k,2”m),m); % Random k-symbol messages

6-9

6 Error Detection and Correction

6-10

c = rsenc(msgw,n,k); % Encode the data.

noise = (1+randint(nw,n,2"m-1)).*randerr(nw,n,t); % t errors/row
choisy = ¢ + noise; % Add noise to the code.

[dc,nerrs,corrcode] = rsdec(cnoisy,n,k); % Decode the noisy code.
% Check that the decoding worked correctly.

isequal(dc,msgw) & isequal(corrcode,cC)

nerrs % Find out how many errors rsdec corrected.

The array of noise values contains integers between 1 and 2”m, and the
addition operation ¢ + noise takes place in the Galois field GF(2"m) because
c is a Galois array in GF(2"m).

The output from the example is below. The nonzero value of ans indicates
that the decoder was able to correct the corrupted codewords and recover the
original message. The values in the vector nerrs indicates that the decoder
corrected t errors in each codeword.

ans =

nerrs =

NN DN

Excessive Noise in Reed-Solomon Codewords

In the previous example, rsdec corrected all of the errors. However, each
Reed-Solomon code has a finite error-correction capability. If the noise is so
great that the corrupted codeword is too far in Hamming distance from the
correct codeword, that means either

® The corrupted codeword is close to a valid codeword other than the correct
codeword. The decoder returns the message that corresponds to the other
codeword.

Block Coding

® The corrupted codeword is not close enough to any codeword for successful
decoding. This situation is called a decoding failure. The decoder removes
the symbols in parity positions from the corrupted codeword and returns
the remaining symbols.

In both cases, the decoder returns the wrong message. However, you can
tell when a decoding failure occurs because rsdec also returns a value of -1
in its second output.

To examine cases in which codewords are too noisy for successful decoding,
change the previous example so that the definition of noise is

noise = (1+randint(nw,n,n)).*randerr(nw,n,t+1); % t+1 errors/row

Creating Shortened Reed-Solomon Codes

Every Reed-Solomon encoder uses a codeword length that equals 2™-1 for an
integer m. A shortened Reed-Solomon code is one in which the codeword
length is not 2™-1. A shortened [n,k] Reed-Solomon code implicitly uses an
[n,,k,] encoder, where

e n, =2™- 1, where m is the number of bits per symbol

ek =k+(n,-n)

The rsenc and rsdec functions support shortened codes using the same
syntaxes they use for nonshortened codes. You do not need to indicate
explicitly that you want to use a shortened code. For example, compare the
two similar-looking commands below. The first creates a (nonshortened) [7,5]
code. The second causes rsenc to create a [5,3] shortened code by implicitly
using a [7,5] encoder.

m = 3; ordinarycode = rsenc(gf([1 111 1]1,m),7,5);
m 3; shortenedcode = rsenc(gf([1 1 1],m),5,3);

How rsenc Creates a Shortened Code. When creating a shortened code,
rsenc performs these steps:

® Pads each message by prepending zeros

¢ Encodes each padded message using a Reed-Solomon encoder having an
allowable codeword length and the desired error-correction capability

6-11

6 Error Detection and Correction

® Removes the extra zeros from the nonparity symbols of each codeword

The example below illustrates this process. Note that forming a [12,8]
Reed-Solomon code actually uses a [15,11] Reed-Solomon encoder. You do not
have to indicate in the rsenc syntax that this is a shortened code or that
the proper encoder to use is [15,11].

n =12; k = 8; % Lengths for the shortened code

m = ceil(log2(n+1)); % Number of bits per symbol

msg = gf(randint(3,k,2"m),m); % Random array of 3 k-symbol words
code = rsenc(msg,n,k); % Create a shortened code.

% Do the shortening manually, just to show how it works.

n_pad = 2"m-1; % Codeword length in the actual encoder

k_pad = k+(n_pad-n); % Message length in the actual encoder
msg_pad=[zeros(3, n_pad-n), msgl; % Prepend zeros to each word.
code_pad = rsenc(msg_pad,n_pad,k_pad); % Encode padded words.
code_eqv = code_pad(:,n_pad-n+1:n_pad); % Remove extra zeros.
ck = isequal(code_eqv,code); % Returns true (1).

Representing Words for BCH Codes

A message for an [n,k] BCH code must be a k-column binary Galois array. The
code that corresponds to that message is an n-column binary Galois array.
Each row of these Galois arrays represents one word.

The example below illustrates how to represent words for a [15, 11] BCH code.

n =15; k = 5; % Codeword length and message length
msg = gf([1 0010; 1011 1]); % Two messages in a Galois array
cbch = bchenc(msg,n,k) % Two codewords in a Galois array.

The output 1s
cbch = GF(2) array.
Array elements =
Columns 1 through 5

1 0 0 1 0

6-12

Block Coding

1 0 1 1 1
Columns 6 through 10

0 0 1 1 1
0 0 0 0 1

Columns 11 through 15

1 0 1
0 1 0 0 1

o
—

Parameters for BCH Codes
BCH codes use special values of n and k:

® n, the codeword length, is an integer of the form 2™-1 for some integer m > 2.

® Kk, the message length, is a positive integer less than n. However, only
some positive integers less than n are valid choices for k. See the bchenc
reference page for a list of some valid values of k corresponding to values of
n up to 511.

Creating and Decoding BCH Codes

The bchenc and bchdec functions create and decode BCH codes, using the
data described in “Representing Words for BCH Codes” on page 6-12 and
“Parameters for BCH Codes” on page 6-13. This section illustrates how to use
bchenc and bchdec.

The topics are
e “Example: BCH Coding Syntaxes” on page 6-13

¢ “Example: Detecting and Correcting Errors in a BCH Code” on page 6-14

Example: BCH Coding Syntaxes

The example below illustrates how to encode and decode data using a [15, 5]
Reed-Solomon code. The example shows that

6-13

6 Error Detection and Correction

6-14

® You can vary the position of the parity symbols within the codewords,
choosing either the end (default) or beginning.

® Corresponding syntaxes of bchenc and bchdec use the same input
arguments, except for the first input argument.

n =15; k = 5; % Codeword length and message length
dat randint(4,k); % Four random binary messages
msg gf(dat); % Represent data using a Galois array.

% Simplest syntax for encoding
c1 = bchenc(msg,n,k);

d1 = bchdec(c1,n,k);

% Prepend the parity symbols instead of appending them.
c2 = bchenc(msg,n,k, 'beginning');

d2 = bchdec(c2,n,k, 'beginning');

% Check that the decoding worked correctly.
chk = isequal(d1,msg) & isequal(d2,msg)

The output is below.

chk =

Example: Detecting and Correcting Errors in a BCH Code

The example below illustrates the decoding results for a corrupted code.

The example encodes some data, introduces errors in each codeword, and
invokes bchdec to attempt to decode the noisy code. It uses additional output
arguments in bchdec to gain information about the success of the decoding
process.

n =15; k = 5; % Codeword length and message length

[gp,t] = bchgenpoly(n,k); % t is error-correction capability.
nw = 4; % Number of words to process

msgw = gf(randint(nw,k)); % Random k-symbol messages

¢ = bchenc(msgw,n,k); % Encode the data.
noise = randerr(nw,n,t); % t errors/row

Block Coding

cnhoisy = ¢ + noise; % Add noise to the code.
[dc,nerrs,corrcode] = bchdec(cnoisy,n,k); % Decode cnoisy.

% Check that the decoding worked correctly.
chk2 = isequal(dc,msgw) & isequal(corrcode,c)
nerrs % Find out how many errors bchdec corrected.

Notice that the array of noise values contains binary values, and that the
addition operation ¢ + noise takes place in the Galois field GF(2) because
c is a Galois array in GF(2).

The output from the example is below. The nonzero value of ans indicates
that the decoder was able to correct the corrupted codewords and recover the
original message. The values in the vector nerrs indicate that the decoder
corrected t errors in each codeword.

chk2 =

nerrs =
3 3 3 3

Excessive Noise in BCH Codewords. In the previous example, bchdec
corrected all the errors. However, each BCH code has a finite error-correction
capability. To learn more about how bchdec behaves when the noise is
excessive, see the analogous discussion for Reed-Solomon codes in “Excessive
Noise in Reed-Solomon Codewords” on page 6-10.

LDPC Codes
Low-Density Parity-Check (LDPC) codes are linear error control codes with:

® Sparse parity-check matrices

® Long block lengths that can attain performance near the Shannon limit
(see fec.ldpcenc and fec.ldpcdec)

6-15

6 Error Detection and Correction

6-16

The decoding process is done iteratively. If the number of iterations is too
small, the algorithm may not converge. You may need to experiment with the
number of iterations to find an appropriate value for your model. For details
on the decoding algorithm, see Decoding Algorithm.

Unlike some other codecs, you cannot connect an LDPC decoder directly to the
output of an LDPC encoder, because the decoder requires log-likelihood ratios
(LLR). Thus, you may use a demodulator to compute the LLRs.

message
—_—

LDPC
Encoder

LDPC
Decoder

Modulator Channel Demodulator

Also, unlike other decoders, it is possible (although rare) that the output of
the LDPC decoder does not satisfy all parity checks.

Representing Words for Linear Block Codes

The cyclic, Hamming, and generic linear block code functionality in this
toolbox offers you multiple ways to organize bits in messages or codewords.
These topics explain the available formats:

® “Binary Vector Format” on page 6-16

* “Binary Matrix Format” on page 6-18

® “Decimal Vector Format” on page 6-19

To learn how to represent words for BCH or Reed-Solomon codes, see

“Representing Words for BCH Codes” on page 6-12 or “Representing Words
for Reed-Solomon Codes” on page 6-5.

Binary Vector Format

Your messages and codewords can take the form of vectors containing Os
and 1s. For example, messages and codes might look like msg and code in
the lines below.

n=2=6; k =4; % Set codeword length and message length
% for a [6,4] code.
msg=[100110101011]"'; % Message is a binary column.

Block Coding

code = encode(msg,n,k,'cyclic'); % Code will be a binary column.
msg'
code'

The output is below.
ans =
Columns 1 through 5
1 0 0 1 1
Columns 6 through 10
0 1 0 1 0
Columns 11 through 12

1 1

ans =

Columns 1 through 5

1 1 1 0 0
Columns 6 through 10

1 0 0 1 0
Columns 11 through 15

1 0 0 1 1
Columns 16 through 18

0 1 1

6-17

6 Error Detection and Correction

In this example, msg consists of 12 entries, which are interpreted as three
4-digit (because k = 4) messages. The resulting vector code comprises three
6-digit (because n = 6) codewords, which are concatenated to form a vector of
length 18. The parity bits are at the beginning of each codeword.

Binary Matrix Format

You can organize coding information so as to emphasize the grouping of digits
into messages and codewords. If you use this approach, each message or
codeword occupies a row in a binary matrix. The example below illustrates
this approach by listing each 4-bit message on a distinct row in msg and each
6-bit codeword on a distinct row in code.

n=2=6; k =4; % Set codeword length and message length.
msg=[1001; 1010; 101 1]; % Message is a binary matrix.
code = encode(msg,n,k,'cyclic'); % Code will be a binary matrix.
msg

code

The output is below.

msg =
1 0 0 1
1 0 1 0
1 0 1 1

code =
1 1 1 0 0 1
0 0 1 0 1 0
0 1 1 0 1 1

Note In the binary matrix format, the message matrix must have k columns.
The corresponding code matrix has n columns. The parity bits are at the
beginning of each row.

6-18

Block Coding

Decimal Vector Format

Your messages and codewords can take the form of vectors containing
integers. Each element of the vector gives the decimal representation of the
bits in one message or one codeword.

Note If 2"n or 2"k is very large, you should use the default binary format
instead of the decimal format. This is because the function uses a binary
format internally, while the roundoff error associated with converting many
bits to large decimal numbers and back might be substantial.

Note When you use the decimal vector format, encode expects the leftmost
bit to be the least significant bit.

The syntax for the encode command must mention the decimal format
explicitly, as in the example below. Notice that /decimal is appended to the
fourth argument in the encode command.

n==6; k =4; % Set codeword length and message length.
msg = [9;5;13]; % Message is a decimal column vector.

% Code will be a decimal vector.

code = encode(msg,n,k, 'cyclic/decimal')

The output is below.

code =

39
20
54

Note The three examples above used cyclic coding. The formats for messages
and codes are similar for Hamming and generic linear block codes.

6-19

6 Error Detection and Correction

6-20

Parameters for Linear Block Codes

This subsection describes the items that you might need in order to process
[n,k] cyclic, Hamming, and generic linear block codes. The table below lists
the items and the coding techniques for which they are most relevant.

Parameters Used in Block Coding Techniques

Parameter Block Coding Technique
“Generator Matrix” on page 6-20 Generic linear block
“Parity-Check Matrix” on page 6-20 Generic linear block
“Generator Polynomial” on page 6-22 Cyclic

“Decoding Table” on page 6-23 Generic linear block, Hamming

Generator Matrix

The process of encoding a message into an [n,k] linear block code is determined
by a k-by-n generator matrix G. Specifically, the 1-by-k message vector v is
encoded into the 1-by-n codeword vector vG. If G has the form [I, P] or [P L],
where P is some k-by-(n-k) matrix and I, is the k-by-k identity matrix, G is
said to be in standard form. (Some authors, e.g., Clark and Cain [2], use the
first standard form, while others, e.g., Lin and Costello [3], use the second.)
Most functions in this toolbox assume that a generator matrix is in standard
form when you use it as an input argument.

Some examples of generator matrices are in the next section, “Parity-Check
Matrix” on page 6-20.

Parity-Check Matrix

Decoding an [n,k] linear block code requires an (n-k)-by-n parity-check matrix
H. It satisfies GH* = 0 (mod 2), where H* denotes the matrix transpose of
H, G is the code’s generator matrix, and this zero matrix is k-by-(n-k). If

G =[I, P] then H = [-P" I ,]. Most functions in this toolbox assume that a
parity-check matrix is in standard form when you use it as an input argument.

The table below summarizes the standard forms of the generator and
parity-check matrices for an [n,k] binary linear block code.

Block Coding

Type of Matrix Standard Form Dimensions
Generator (I, Pl or [P L] k-by-n
Parity-check [(P'I Jor[l -P'] (n-k)-by-n

I, is the identity matrix of size k and the ' symbol indicates matrix transpose.
(For binary codes, the minus signs in the parity-check form listed above are
irrelevant; that is, -1 = 1 in the binary field.)

Examples. In the command below, parmat is a parity-check matrix
and genmat is a generator matrix for a Hamming code in which
[n,k] = [23-1, n-3] = [7,4]. genmat has the standard form [P I,].

[parmat,genmat] = hammgen(3)

parmat =
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

genmat =
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

The next example finds parity-check and generator matrices for a [7,3] cyclic
code. The cyclpoly function is mentioned below in “Generator Polynomial”
on page 6-22.

genpoly = cyclpoly(7,3);
[parmat,genmat] = cyclgen(7,genpoly)

parmat =
1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

6-21

6 Error Detection and Correction

6-22

genmat =
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

The example below converts a generator matrix for a [5,3] linear block code
into the corresponding parity-check matrix.

genmat = [1 0010; 01011; 0010 1];
parmat = gen2par(genmat)
parmat =

1 1 0 1 0

0 1 1 0 1

The same function gen2par can also convert a parity-check matrix into a
generator matrix.

Generator Polynomial

Cyclic codes have algebraic properties that allow a polynomial to determine
the coding process completely. This so-called generator polynomial is a
degree-(n-k) divisor of the polynomial x®-1. Van Lint [5] explains how a
generator polynomial determines a cyclic code.

The cyclpoly function produces generator polynomials for cyclic codes.
cyclpoly represents a generator polynomial using a row vector that lists
the polynomial’s coefficients in order of ascending powers of the variable.
For example, the command

genpoly = cyclpoly(7,3)

genpoly =

1 0 1 1 1

Block Coding

finds that one valid generator polynomial for a [7,3] cyclic code is
1+ x2+x%+ x4

Decoding Table

A decoding table tells a decoder how to correct errors that might have
corrupted the code during transmission. Hamming codes can correct any
single-symbol error in any codeword. Other codes can correct, or partially
correct, errors that corrupt more than one symbol in a given codeword.

This toolbox represents a decoding table as a matrix with n columns and
2~ (n-k) rows. Each row gives a correction vector for one received codeword
vector. A Hamming decoding table has n+1 rows. The syndtable function
generates a decoding table for a given parity-check matrix.

Example: Using a Decoding Table. The script below shows how to use

a Hamming decoding table to correct an error in a received message. The
hammgen function produces the parity-check matrix, while the syndtable
function produces the decoding table. The transpose of the parity-check matrix
is multiplied on the left by the received codeword, yielding the syndrome. The
decoding table helps determine the correction vector. The corrected codeword
is the sum (modulo 2) of the correction vector and the received codeword.

% Use a [7,4] Hamming code.
m=3; n=2"m-1; k = n-m;
parmat = hammgen(m); % Produce parity-check matrix.
trt = syndtable(parmat); % Produce decoding table.
recd = [1 00111 1] % Suppose this is the received vector.
syndrome = rem(recd * parmat',2);
syndrome_de = bi2de(syndrome, 'left-msb'); % Convert to decimal.
disp(['Syndrome = ',num2str(syndrome_de),...
' (decimal), ',num2str(syndrome),' (binary)'])
corrvect = trt(1+syndrome_de,:) % Correction vector
% Now compute the corrected codeword.
correctedcode = rem(corrvect+recd,2)

The output is below.

recd =

6-23

6 Error Detection and Correction

6-24

Syndrome = 3 (decimal), 0 1 1 (binary)
corrvect =

0 0 0 0 1 0 0
correctedcode =

1 0 0 1 0 1 1

Creating and Decoding Linear Block Codes

The functions for encoding and decoding cyclic, Hamming, and generic linear
block codes are encode and decode. This section discusses how to use these
functions to create and decode generic linear block codes, cyclic codes, and
Hamming codes.

Generic Linear Block Codes

Encoding a message using a generic linear block code requires a generator
matrix. If you have defined variables msg, n, k, and genmat, either of the
commands

code = encode(msg,n,k, 'linear',genmat);
code encode(msg,n,k, 'linear/decimal',genmat) ;

encodes the information in msg using the [n,k] code that the generator matrix
genmat determines. The /decimal option, suitable when 2°n and 2"k are not
very large, indicates that msg contains nonnegative decimal integers rather
than their binary representations. See “Representing Words for Linear Block
Codes” on page 6-16 or the reference page for encode for a description of

the formats of msg and code.

Decoding the code requires the generator matrix and possibly a decoding
table. If you have defined variables code, n, k, genmat, and possibly also
trt, then the commands

newmsg = decode(code,n,k,'linear',genmat);
newmsg = decode(code,n,k,'linear/decimal',genmat);

Block Coding

newmsg = decode(code,n,k,'linear',genmat,trt);
newmsg decode(code,n,k, 'linear/decimal',genmat,trt);

decode the information in code, using the [n,k] code that the generator matrix
genmat determines. decode also corrects errors according to instructions in
the decoding table that trt represents.

Example: Generic Linear Block Coding. The example below encodes a
message, artificially adds some noise, decodes the noisy code, and keeps track
of errors that the decoder detects along the way. Because the decoding table
contains only zeros, the decoder does not correct any errors.

n=4; k = 2;

genmat = [[1 1; 1 0], eye(2)]; % Generator matrix

msg = [0 1; 0 O; 1 0]; % Three messages, two bits each

% Create three codewords, four bits each.

code = encode(msg,n,k,'linear',genmat);

noisycode = rem(code + randerr(3,4,[0 1;.7 .3]),2); % Add noise.
trt = zeros(2”(n-k),n); % No correction of errors

% Decode, keeping track of all detected errors.

[newmsg,err] = decode(noisycode,n,k, 'linear',genmat,trt);
err_words = find(err~=0) % Find out which words had errors.

The output indicates that errors occurred in the first and second words. Your
results might vary because this example uses random numbers as errors.

err_words =

1
2

Cyclic Codes

A cyclic code is a linear block code with the property that cyclic shifts of a
codeword (expressed as a series of bits) are also codewords. An alternative
characterization of cyclic codes is based on its generator polynomial, as
mentioned in “Generator Polynomial” on page 6-22 and discussed in [5].

Encoding a message using a cyclic code requires a generator polynomial. If you
have defined variables msg, n, k, and genpoly, then either of the commands

6-25

6 Error Detection and Correction

6-26

code = encode(msg,n,k, 'cyclic',genpoly);
code encode(msg,n,k, 'cyclic/decimal',genpoly);

encodes the information in msg using the [n,k] code determined by the
generator polynomial genpoly. genpoly is an optional argument for encode.
The default generator polynomial is cyclpoly(n,k). The /decimal option,
suitable when 2°n and 2"k are not very large, indicates that msg contains
nonnegative decimal integers rather than their binary representations. See
“Representing Words for Linear Block Codes” on page 6-16 or the reference
page for encode for a description of the formats of msg and code.

Decoding the code requires the generator polynomial and possibly a decoding
table. If you have defined variables code, n, k, genpoly, and trt, then the
commands

newmsg = decode
newmsg = decode
newmsg = decode
newmsg = decode

code,n,k, 'cyclic',genpoly);

code,n,k, 'cyclic/decimal',genpoly);
code,n,k, 'cyclic',genpoly,trt);
code,n,k, 'cyclic/decimal',genpoly,trt);

Py

decode the information in code, using the [n,k] code that the generator matrix
genmat determines. decode also corrects errors according to instructions in
the decoding table that trt represents. genpoly is an optional argument

in the first two syntaxes above. The default generator polynomial is
cyclpoly(n,k).

Example. You can modify the example in the section “Generic Linear Block
Codes” on page 6-24 so that it uses the cyclic coding technique, instead of
the linear block code with the generator matrix genmat. Make the changes
listed below:

e Replace the second line by

genpoly = [1 0 1]; % generator poly is 1 + x"2

¢ In the fifth and ninth lines (encode and decode commands), replace genmat
by genpoly and replace 'linear' by 'cyclic’.

Another example of encoding and decoding a cyclic code is on the reference
page for encode.

Block Coding

Hamming Codes

The reference pages for encode and decode contain examples of encoding and
decoding Hamming codes. Also, the section “Decoding Table” on page 6-23
illustrates error correction in a Hamming code.

Performing Other Block Code Tasks

This section describes functions that compute typical parameters associated
with linear block codes, as well as functions that convert information from
one format to another. The topics are

¢ “Finding a Generator Polynomial” on page 6-27

¢ “Error Correction Versus Error Detection for Linear Block Codes” on page
6-29

¢ “Finding the Error-Correction Capability” on page 6-29
¢ “Finding Generator and Parity-Check Matrices” on page 6-29

* “Converting Between Parity-Check and Generator Matrices” on page 6-30

Finding a Generator Polynomial

To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code,
use the cyclpoly, bchgenpoly, or rsgenpoly function, respectively. The
commands

genpolyCyclic = cyclpoly(15,5) % 1+X"5+X"10
genpolyBCH = bchgenpoly(15,5) % X"10+X"8+X"5+X"4+Xx"2+x+1
genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output is
below.

genpolyCyclic =

genpolyBCH = GF(2) array.

Array elements =

6-27

6 Error Detection and Correction

genpolyRS = GF(2"4) array. Primitive polynomial = D~4+D+1 (19 decimal)
Array elements =
1 4 8 10 12 9 4 2 12 2 7
The formats of these outputs vary:

® cyclpoly represents a generator polynomial using an integer row vector
that lists the polynomial’s coefficients in order of ascending powers of the
variable.

® bchgenpoly and rsgenpoly represent a generator polynomial using
a Galois row vector that lists the polynomial’s coefficients in order of
descending powers of the variable.

® rsgenpoly uses coefficients in a Galois field other than the binary field
GF(2). For more information on the meaning of these coefficients, see
“How Integers Correspond to Galois Field Elements” on page 12-8 and
“Polynomials over Galois Fields” on page 12-33.

Nonuniqueness of Generator Polynomials. Some pairs of message length
and codeword length do not uniquely determine the generator polynomial.
The syntaxes for functions in the example above also include options for
retrieving generator polynomials that satisfy certain constraints that you
specify. See the functions’ reference pages for details about syntax options.

Algebraic Expression for Generator Polynomials. The generator
polynomials produced by bchgenpoly and rsgenpoly have the form

X - AP)(X - AP (X - AP*261) where A is a primitive element for an
appropriate Galois field, and b and t are integers. See the functions’ reference
pages for more information about this expression.

6-28

Block Coding

Error Correction Versus Error Detection for Linear Block Codes
You can use a liner block code to detect d_.. -1 errors or to correct ¢ =

1 . . .
L%(dmm - I)J errors. If you compromise the error correction capability of a
e, you car detect more than ¢ errors. For example, a code with d_; =7 can
correct ¢t = 3 errors or it can detect up to 4 errors and correct up to 2 errors.

Finding the Error-Correction Capability

The bchgenpoly and rsgenpoly functions can return an optional second
output argument that indicates the error-correction capability of a BCH or
Reed-Solomon code. For example, the commands

[g,t] = bchgenpoly(31,16);
‘t:
3

find that a [31, 16] BCH code can correct up to three errors in each codeword.

Finding Generator and Parity-Check Matrices

To find a parity-check and generator matrix for a Hamming code with
codeword length 2°m-1, use the hammgen function as below. m must be at
least three.

[parmat,genmat] = hammgen(m); % Hamming

To find a parity-check and generator matrix for a cyclic code, use the cyclgen
function. You must provide the codeword length and a valid generator
polynomial. You can use the cyclpoly function to produce one possible
generator polynomial after you provide the codeword length and message
length. For example,

[parmat,genmat] = cyclgen(7,cyclpoly(7,4)); % Cyclic

6-29

6 Error Detection and Correction

6-30

Converting Between Parity-Check and Generator Matrices

The gen2par function converts a generator matrix into a parity-check
matrix, and vice versa. The reference page for gen2par contains examples
to illustrate this.

Selected Bibliography for Block Coding

[1] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill,
1968.

[2] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals
and Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

[4] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes, 2nd
ed., Cambridge, MA, MIT Press, 1972.

[56] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag,
1982.

[6] Wicker, Stephen B., Error Control Systems for Digital Communication
and Storage, Upper Saddle River, NdJ, Prentice Hall, 1995.

[7] Gallager, Robert G., Low-Density Parity-Check Codes, Cambridge, MA,
MIT Press, 1963.

[8] Ryan, William E., “An introduction to LDPC codes,” Coding and Signal
Processing for Magnetic Recoding Systems (Vasic, B., ed.), CRC Press, 2004.

Convolutional Coding

Convolutional Coding

In this section...

“Section Overview” on page 6-31

“Convolutional Coding Features of the Toolbox” on page 6-31
“Polynomial Description of a Convolutional Encoder” on page 6-31
“Trellis Description of a Convolutional Encoder” on page 6-35
“Creating and Decoding Convolutional Codes” on page 6-38
“Examples of Convolutional Coding” on page 6-41

“Selected Bibliography for Convolutional Coding” on page 6-44

Section Overview
Convolutional coding is a special case of error-control coding.

Unlike a block coder, a convolutional coder is not a memoryless device. Even
though a convolutional coder accepts a fixed number of message symbols and
produces a fixed number of code symbols, its computations depend not only on
the current set of input symbols but on some of the previous input symbols.

Convolutional Coding Features of the Toolbox

Communications Toolbox supports feedforward or feedback convolutional
codes that can be described by a trellis structure or a set of generator
polynomials. It uses the Viterbi algorithm to implement hard-decision and
soft-decision decoding.

For background information about convolutional coding, see the works listed
in “Selected Bibliography for Convolutional Coding” on page 6-44.

Polynomial Description of a Convolutional Encoder

A polynomial description of a convolutional encoder describes the connections
among shift registers and modulo 2 adders. For example, the figure below
depicts a feedforward convolutional encoder that has one input, two outputs,
and two shift registers.

6-31

6 Error Detection and Correction

6-32

First output

Second output

A polynomial description of a convolutional encoder has either two or three
components, depending on whether the encoder is a feedforward or feedback

type:

® Constraint lengths
® Generator polynomials

¢ Feedback connection polynomials (for feedback encoders only)

Constraint Lengths

The constraint lengths of the encoder form a vector whose length is the
number of inputs in the encoder diagram. The elements of this vector indicate
the number of bits stored in each shift register, including the current input
bits.

In the figure above, the constraint length is three. It is a scalar because the
encoder has one input stream, and its value is one plus the number of shift
registers for that input.

Generator Polynomials

If the encoder diagram has k inputs and n outputs, the code generator matrix
is a k-by-n matrix. The element in the ith row and jth column indicates how
the ith input contributes to the jth output.

For systematic bits of a systematic feedback encoder, match the entry in
the code generator matrix with the corresponding element of the feedback
connection vector. See “Feedback Connection Polynomials” on page 6-33
below for details.

Convolutional Coding

In other situations, you can determine the (i,j) entry in the matrix as follows:

1 Build a binary number representation by placing a 1 in each spot where
a connection line from the shift register feeds into the adder, and a 0
elsewhere. The leftmost spot in the binary number represents the current
input, while the rightmost spot represents the oldest input that still
remains in the shift register.

2 Convert this binary representation into an octal representation by
considering consecutive triplets of bits, starting from the rightmost bit. The
rightmost bit in each triplet is the least significant. If the number of bits is
not a multiple of three, place zero bits at the left end as necessary. (For
example, interpret 1101010 as 001 101 010 and convert it to 152.)

For example, the binary numbers corresponding to the upper and lower
adders in the figure above are 110 and 111, respectively. These binary
numbers are equivalent to the octal numbers 6 and 7, respectively, so the
generator polynomial matrix is [6 7].

Note You can perform the binary-to-octal conversion in MATLAB by using
code like str2num(dec2base (bin2dec('110'),8)).

For a table of some good convolutional code generators, refer to [2] in the
section “Selected Bibliography for Block Coding” on page 6-30, especially
that book’s appendices.

Feedback Connection Polynomials

If you are representing a feedback encoder, you need a vector of feedback
connection polynomials. The length of this vector is the number of inputs

in the encoder diagram. The elements of this vector indicate the feedback
connection for each input, using an octal format. First build a binary number
representation as in step 1 above. Then convert the binary representation
into an octal representation as in step 2 above.

If the encoder has a feedback configuration and is also systematic, the

code generator and feedback connection parameters corresponding to the
systematic bits must have the same values.

6-33

6 Error Detection and Correction

6-34

For example, the diagram below shows a rate 1/2 systematic encoder with
feedback.

First output (systematic)

'

Input

»

Second output

This encoder has a constraint length of 5, a generator polynomial matrix of
[37 33], and a feedback connection polynomial of 37.

The first generator polynomial matches the feedback connection polynomial
because the first output corresponds to the systematic bits. The feedback
polynomial is represented by the binary vector [1 1 1 1 1], corresponding to the
upper row of binary digits in the diagram. These digits indicate connections
from the outputs of the registers to the adder. The initial 1 corresponds to the
input bit. The octal representation of the binary number 11111 is 37.

The second generator polynomial is represented by the binary vector [1 1 0
1 1], corresponding to the lower row of binary digits in the diagram. The octal
number corresponding to the binary number 11011 is 33.

Using the Polynomial Description in MATLAB

To use the polynomial description with the functions convenc and vitdec,
first convert it into a trellis description using the poly2trellis function. For
example, the command below computes the trellis description of the encoder
pictured in the section “Polynomial Description of a Convolutional Encoder”
on page 6-31.

trellis = poly2trellis(3,[6 7]);

The MATLAB structure trellis is a suitable input argument for convenc
and vitdec.

Convolutional Coding

Trellis Description of a Convolutional Encoder

A trellis description of a convolutional encoder shows how each possible input
to the encoder influences both the output and the state transitions of the
encoder. This section describes trellises, and how to represent trellises in
MATLAB, and gives an example of a MATLAB trellis.

The figure below depicts a trellis for the convolutional encoder from the
previous section. The encoder has four states (numbered in binary from 00 to
11), a one-bit input, and a two-bit output. (The ratio of input bits to output
bits makes this encoder a rate-1/2 encoder.) Each solid arrow shows how the
encoder changes its state if the current input is zero, and each dashed arrow
shows how the encoder changes its state if the current input is one. The octal
numbers above each arrow indicate the current output of the encoder.

State State

State transition when input is 0

- — — State fransition when input is 1

As an example of interpreting this trellis diagram, if the encoder is in the 10
state and receives an input of zero, it outputs the code symbol 3 and changes
to the 01 state. If it is in the 10 state and receives an input of one, it outputs
the code symbol 0 and changes to the 11 state.

Note that any polynomial description of a convolutional encoder is equivalent

to some trellis description, although some trellises have no corresponding
polynomial descriptions.

6-35

6 Error Detection and Correction

6-36

Specifying a Trellis in MATLAB

To specify a trellis in MATLAB, use a specific form of a MATLAB structure
called a trellis structure. A trellis structure must have five fields, as in the
table below.

Fields of a Trellis Structure for a Rate k/n Code

Field in Trellis Dimensions Meaning

Structure

numInputSymbols Scalar Number of input
symbols to the encoder:
2k

numOutputsymbols Scalar Number of output

symbols from the
encoder: 2"

numStates Scalar Number of states in the
encoder
nextStates numStates-by-2¥ Next states for all
matrix combinations of current

state and current input

outputs numStates-by-2k Outputs (in octal) for all
matrix combinations of current
state and current input

Note While your trellis structure can have any name, its fields must have
the exact names as in the table. Field names are case sensitive.

In the nextStates matrix, each entry is an integer between 0 and
numStates-1. The element in the ith row and jth column denotes the

next state when the starting state is i-1 and the input bits have decimal
representation j-1. To convert the input bits to a decimal value, use the first
input bit as the most significant bit (MSB). For example, the second column
of the nextStates matrix stores the next states when the current set of

Convolutional Coding

input values is {0,...,0,1}. To learn how to assign numbers to states, see the
reference page for istrellis.

In the outputs matrix, the element in the ith row and jth column denotes
the encoder’s output when the starting state is i-1 and the input bits have
decimal representation j-1. To convert to decimal value, use the first output
bit as the MSB.

How to Create a MATLAB Trellis Structure

Once you know what information you want to put into each field, you can
create a trellis structure in any of these ways:

® Define each of the five fields individually, using structurename.fieldname
notation. For example, set the first field of a structure called s using the
command below. Use additional commands to define the other fields.

s.numInputSymbols = 2;

The reference page for the istrellis function illustrates this approach.

¢ (Collect all field names and their values in a single struct command. For
example:

s = struct('numInputSymbols',2, 'numQutputSymbols',2,...
"numStates',2, 'nextStates',[0 1;0 1], 'outputs',[0 0;1 1]1);

e Start with a polynomial description of the encoder and use the
poly2trellis function to convert it to a valid trellis structure. The
polynomial description of a convolutional encoder is described in
“Polynomial Description of a Convolutional Encoder” on page 6-31.

To check whether your structure is a valid trellis structure, use the istrellis
function.

Example: A MATLAB Trellis Structure

Consider the trellis shown below.

6-37

6 Error Detection and Correction

6-38

State transition when input is 0

- — - State fransifion when input is |

To build a trellis structure that describes it, use the command below.

trellis = struct('numInputSymbols',2, 'numOutputSymbols',;4,...
"numStates',4, 'nextStates',[0 2;0 2;1 3;1 3],...
"outputs',[0 351 2;3 0;2 1]);

The number of input symbols is 2 because the trellis diagram has two types
of input path: the solid arrow and the dashed arrow. The number of output
symbols is 4 because the numbers above the arrows can be either 0, 1, 2, or 3.
The number of states is 4 because there are four bullets on the left side of the
trellis diagram (equivalently, four on the right side). To compute the matrix
of next states, create a matrix whose rows correspond to the four current
states on the left side of the trellis, whose columns correspond to the inputs of
0 and 1, and whose elements give the next states at the end of the arrows on
the right side of the trellis. To compute the matrix of outputs, create a matrix
whose rows and columns are as in the next states matrix, but whose elements
give the octal outputs shown above the arrows in the trellis.

Creating and Decoding Convolutional Codes

The functions for encoding and decoding convolutional codes are convenc and
vitdec. This section discusses using these functions to create and decode
convolutional codes.

Convolutional Coding

Encoding

A simple way to use convenc to create a convolutional code is shown in the
commands below.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Define trellis.
code = convenc(ones(100,1),t); % Encode a string of ones.

The first command converts a polynomial description of a feedforward
convolutional encoder to the corresponding trellis description. The second
command encodes 100 bits, or 50 two-bit symbols. Because the code rate in
this example is 2/3, the output vector code contains 150 bits (that is, 100
input bits times 3/2).

To check whether your trellis corresponds to a catastrophic convolutional
code, use the iscatastrophic function.

Hard-Decision Decoding

To decode using hard decisions, use the vitdec function with the flag 'hard'
and with binary input data. Because the output of convenc is binary,
hard-decision decoding can use the output of convenc directly, without
additional processing. This example extends the previous example and
implements hard-decision decoding.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Define trellis.
code = convenc(ones(100,1),t); % Encode a string of ones.
tb = 2; % Traceback length for decoding

decoded = vitdec(code,t,tb, 'trunc','hard'); % Decode.

Soft-Decision Decoding

To decode using soft decisions, use the vitdec function with the flag 'soft'.
Specify the number, nsdec, of soft-decision bits and use input data consisting
of integers between 0 and 2"nsdec-1.

An input of 0 represents the most confident 0, while an input of 2"nsdec-1
represents the most confident 1. Other values represent less confident
decisions. For example, the table below lists interpretations of values for
3-bit soft decisions.

6-39

6 Error Detection and Correction

Input Values for 3-bit Soft Decisions

Input Value Interpretation
Most confident 0

Second most confident 0
Third most confident 0
Least confident 0

Least confident 1
Third most confident 1

Second most confident 1

Most confident 1

|| O |W[(N| =[O

Example: Soft-Decision Decoding. The script below illustrates decoding
with 3-bit soft decisions. First it creates a convolutional code with convenc
and adds white Gaussian noise to the code with awgn. Then, to prepare for
soft-decision decoding, the example uses quantiz to map the noisy data
values to appropriate decision-value integers between 0 and 7. The second
argument in quantiz is a partition vector that determines which data values
map to 0, 1, 2, etc. The partition is chosen so that values near 0 map to 0, and
values near 1 map to 7. (You can refine the partition to obtain better decoding
performance if your application requires it.) Finally, the example decodes the
code and computes the bit error rate. When comparing the decoded data
with the original message, the example must take the decoding delay into
account. The continuous operation mode of vitdec causes a delay equal to
the traceback length, so msg(1) corresponds to decoded(tblen+1) rather
than to decoded(1).

msg = randint(4000,1,2,139); % Random data

t = poly2trellis(7,[171 133]); % Define trellis.
code = convenc(msg,t); % Encode the data.

ncode = awgn(code,6, 'measured',244); % Add noise.

% Quantize to prepare for soft-decision decoding.
qcode = quantiz(ncode,[0.001,.1,.3,.5,.7,.9,.999]);

6-40

Convolutional Coding

tblen = 48; delay = tblen; % Traceback length
decoded = vitdec(qcode,t,tblen, 'cont', 'soft',3); % Decode.

% Compute bit error rate.
[number,ratio] = biterr(decoded(delay+1:end),msg(1:end-delay))

The output is below.

number =

5

ratio =

0.0013

Examples of Convolutional Coding
This section contains more examples of convolutional coding:

® The first example determines the correct trellis parameter for its encoder
and then uses it to process a code. The decoding process uses hard decisions
and the continuous operation mode. This operation mode causes a decoding
delay, which the error rate computation takes into account.

® The second example processes a punctured convolutional code. The
decoding process uses the unquantized decision type.

Example: A Rate-2/3 Feedforward Encoder

The example below uses the rate 2/3 feedforward encoder depicted in this
schematic. The accompanying description explains how to determine the
trellis structure parameter from a schematic of the encoder and then how to
perform coding using this encoder.

6-41

6 Error Detection and Correction

6-42

First output

»

A

First input

»

\

Second input

Third output

»

A

Determining Coding Parameters. The convenc and vitdec functions can
implement this code if their parameters have the appropriate values.

The encoder’s constraint length is a vector of length 2 because the encoder has
two inputs. The elements of this vector indicate the number of bits stored in
each shift register, including the current input bits. Counting memory spaces
in each shift register in the diagram and adding one for the current inputs
leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal
numbers, use the element in the ith row and jth column to indicate how the
ith input contributes to the jth output. For example, to compute the element
in the second row and third column, the leftmost and two rightmost elements
in the second shift register of the diagram feed into the sum that forms the
third output. Capture this information as the binary number 1011, which

is equivalent to the octal number 13. The full value of the code generator
matrix is [23 35 0; 0 5 13].

To use the constraint length and code generator parameters in the convenc
and vitdec functions, use the poly2trellis function to convert those
parameters into a trellis structure. The command to do this is below.

Convolutional Coding

trel = poly2trellis([5 4],[28 35 0;0 5 13]); % Define trellis.

Using the Encoder. Below is a script that uses this encoder.

len = 1000;

msg randint(2*len,1); % Random binary message of 2-bit symbols
trel = poly2trellis([5 4],[283 35 0;0 5 13]); % Trellis

code = convenc(msg,trel); % Encode the message.

ncode = rem(code + randerr(3*len,1,[0 1;.96 .04]),2); % Add noise.
decoded = vitdec(ncode,trel,34,'cont', 'hard'); % Decode.
[number,ratio] = biterr(decoded(68+1:end),msg(1:end-68));

convenc accepts a vector containing 2-bit symbols and produces a vector
containing 3-bit symbols, while vitdec does the opposite. Also notice that
biterr ignores the first 68 elements of decoded. That is, the decoding delay is
68, which is the number of bits per symbol (2) of the recovered message times
the traceback depth value (34) in the vitdec function. The first 68 elements of
decoded are Os, while subsequent elements represent the decoded messages.

Example: A Punctured Convolutional Code

This example processes a punctured convolutional code. It begins by
generating 30,000 random bits and encoding them using a rate-3/4
convolutional encoder with a puncture pattern of [1 1 1 0 0 1]. The resulting
vector contains 40,000 bits, which are mapped to values of -1 and 1 for
transmission. The punctured code, punctcode, passes through an additive
white Gaussian noise channel. Then vitdec decodes the noisy vector using
the 'unquant' decision type.

Finally, the example computes the bit error rate and the number of bit errors.

len = 30000; msg = randi([O0 1], len, 1); % Random data

t = poly2trellis(7, [133 171]); % Define trellis.

punctcode = convenc(msg, t, [1 1 1 00 1]); % Length is (2*len)*2/3.
tcode = 1-2*punctcode; % Map "0" bit to 1 and "1" bit to -1

ncode = awgn(tcode, 3, 'measured'); % Add noise.

% Decode the punctured code

decoded = vitdec(ncode, t, 96, 'trunc',

'unquant', [1 1 1 00 1]); % Decode.

[numErrP, berP] = biterr(decoded, msg); % Bit error rate

6-43

6 Error Detection and Correction

6-44

% Erase the least reliable 100 symbols, then decode

[dummy idx] = sort(abs(ncode));

erasures = zeros(size(ncode)); erasures(idx(1:100)) = 1;
decoded = vitdec(ncode, t, 96, 'trunc', 'unquant',

[1 1100 1], erasures); % Decode.

[numErrPE, berPE] = biterr(decoded, msg); % Bit error rate

fprintf('Number of errors with puncturing: %d\n', numErrP)
fprintf ('Number of errors with puncturing and erasures: %d\n', numErrPE)

Selected Bibliography for Convolutional Coding

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data
Communications Principles, New York, Plenum Press, 1992.

Cyclic Redundancy Check Coding

Cyclic Redundancy Check Coding

In this section...

“Overview” on page 6-45
“CRC Algorithm” on page 6-45
“Selected Bibliography for CRC Coding” on page 6-47

Overview

Cyclic redundancy check (CRC) coding is an error-control coding technique
for detecting errors that occur when a message is transmitted. Unlike block
or convolutional codes, CRC codes do not have a built-in error-correction
capability. Instead, when an error is detected in a received message word, the
receiver requests the sender to retransmit the message word.

In CRC coding, the transmitter applies a rule to each message word to create
extra bits, called the checksum, or syndrome, and then appends the checksum
to the message word. After receiving a transmitted word, the receiver applies
the same rule to the received word. If the resulting checksum is nonzero, an
error has occurred, and the transmitter should resend the message word.

Open the Error Detection and Correction library by double-clicking its icon
in the main Communications Toolbox library. Open the CRC sublibrary by
double-clicking on its icon in the Error Detection and Correction library.

CRC Algorithm

The CRC algorithm accepts a binary data vector, corresponding to a
polynomial M, and appends a checksum of r bits, corresponding to a
polynomial C. The concatenation of the input vector and the checksum

then corresponds to the polynomial T'= M*x* + C, since multiplying by x*
corresponds to shifting the input vector r bits to the left. The algorithm
chooses the checksum C so that T is divisible by a predefined polynomial P of
degree r, called the generator polynomial.

The algorithm divides T by P, and sets the checksum equal to the binary

vector corresponding to the remainder. That is, if T= @*P + R, where R
is a polynomial of degree less than r, the checksum is the binary vector

6-45

6 Error Detection and Correction

6-46

corresponding to R. If necessary, the algorithm prepends zeros to the
checksum so that it has length r.

The CRC generation feature, which implements the transmission phase of the
CRC algorithm, does the following:

1 Left shifts the input data vector by r bits and divides the corresponding
polynomial by P.

2 Sets the checksum equal to the binary vector of length r, corresponding to
the remainder from step 1.

3 Appends the checksum to the input data vector. The result is the output
vector.

The CRC detection feature computes the checksum for its entire input vector,
as described above.

The CRC algorithm uses binary vectors to represent binary polynomials, in
descending order of powers. For example, the vector [1 1 0 1] represents
the polynomial x®+ x2 + 1.

Note The implementation described in this section is one of many valid
implementations of the CRC algorithm. Different implementations can yield
different numerical results.

v
h

¥ Y Y

R T e I e

Cyclic Redundancy Check Coding

Bits enter the linear feedback shift register (LFSR) from the lowest index
bit to the highest index bit. The sequence of input message bits represents
the coefficients of a message polynomial in order of decreasing powers. The
message vector is augmented with r zeros to flush out the LFSR, where r
1s the degree of the generator polynomial. If the output from the leftmost
register stage d(1) is a 1, then the bits in the shift register are XORed with
the coefficients of the generator polynomial. When the augmented message
sequence is completely sent through the LFSR, the register contains the
checksum [d(1) d(2) . . . d(r)]. This is an implementation of binary long
division, in which the message sequence is the divisor (numerator) and
the polynomial is the dividend (denominator). The CRC checksum is the
remainder of the division operation.

Selected Bibliography for CRC Coding

[1] Sklar, Bernard., Digital Communications: Fundamentals and
Applications, Englewood Cliffs, NdJ, Prentice Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication
and Storage, Upper Saddle River, NJ, Prentice Hall, 1995.

6-47

6 Error Detection and Correction

6-48

Interleaving

An interleaver permutes symbols according to a mapping. A corresponding
deinterleaver uses the inverse mapping to restore the original sequence of
symbols. Interleaving and deinterleaving can be useful for reducing errors
caused by burst errors in a communication system. This chapter describes
the interleaving features of Communications Toolbox software in the sections
listed below.

¢ “Block Interleavers” on page 7-2

¢ “Convolutional Interleavers” on page 7-5

e “Selected Bibliography for Interleaving” on page 7-14

Each interleaver function in this toolbox has a corresponding deinterleaver
function. In typical usage of the interleaver/deinterleaver pairs, the inputs

of the deinterleaver match those of the interleaver, except for the data being
rearranged.

7 Interleaving

Block Interleavers

In this section...

“Section Overview” on page 7-2

“Block Interleaving Features of the Toolbox” on page 7-2

“Example: Block Interleavers” on page 7-3

Section Overview

A block interleaver accepts a set of symbols and rearranges them, without
repeating or omitting any of the symbols in the set. The number of symbols in
each set 1s fixed for a given interleaver.

Block Interleaving Features of the Toolbox

The set of block interleavers in this toolbox includes a general block
interleaver as well as several special cases. Each special-case interleaver
function uses the same computational code that the general block interleaver
function uses, but provides a syntax that is more suitable for the special case.
The interleaver functions are described below.

Type of Interleaver Function Description

Interleaver

General block intrlv Uses the permutation table

interleaver given explicitly as an input
argument.

Algebraic algintrlv Derives a permutation

interleaver table algebraically, using

the Takeshita-Costello
or Welch-Costas method.
These methods are described

in [4].
Helical scan helscanintrlv Fills a matrix with data
interleaver row by row and then sends

the matrix contents to the
output in a helical fashion.

Block Interleavers

Type of Interleaver Function Description
Interleaver

Matrix matintrlv Fills a matrix with data
interleaver elements row by row and

then sends the matrix
contents to the output
column by column.

Random randintrlv Chooses a permutation table
interleaver randomly using the initial
state input that you provide.

Example: Block Interleavers

The following example illustrates how an interleaver improves the error
rate in a communication system whose channel produces a burst of errors.
A random interleaver rearranges the bits of numerous codewords before two
adjacent codewords are each corrupted by three errors.

Three errors exceed the error-correction capability of the Hamming code.
However, the example shows that when the Hamming code is combined with
an interleaver, this system is able to recover the original message despite the
6-bit burst of errors. The improvement in performance occurs because the
interleaving effectively spreads the errors among different codewords so that
the number of errors per codeword is within the error-correction capability
of the code.

st1 = 27221; st2 = 4831; % States for random number generator
n=17; k =4; % Parameters for Hamming code
msg = randint(k*500,1,2,st1); % Data to encode

code = encode(msg,n,k, 'hamming/binary'); % Encoded data
% Create a burst error that will corrupt two adjacent codewords.
errors = zeros(size(code)); errors(n-2:n+3) = [1 1 1 1 1 1];

% With Interleaving

inter = randintrlv(code,st2); % Interleave.

inter_err = bitxor(inter,errors); % Include burst error.
deinter = randdeintrlv(inter_err,st2); % Deinterleave.
decoded decode(deinter,n,k, '"hamming/binary'); % Decode.

7-3

7 Interleaving

disp('Number of errors and error rate, with interleaving:');
[number_with,rate_with] = biterr(msg,decoded) % Error statistics

% Without Interleaving
code_err = bitxor(code,errors); % Include burst error.
decoded = decode(code_err,n,k, "hamming/binary'); % Decode.

disp('Number of errors and error rate, without interleaving:');
[number_without,rate without] = biterr(msg,decoded) % Error statistics

The output from the example follows.
Number of errors and error rate, with interleaving:
number_with =

0

rate_with =

0
Number of errors and error rate, without interleaving:
number_without =

4

rate_without =

0.0020

7-4

Convolutional Interleavers

Convolutional Interleavers

In this section...

“Section Overview” on page 7-5
“Convolutional Interleaving Features of the Toolbox” on page 7-6

“Example: Convolutional Interleavers” on page 7-7

“Delays of Convolutional Interleavers” on page 7-9

Section Overview

A convolutional interleaver consists of a set of shift registers, each with a
fixed delay. In a typical convolutional interleaver, the delays are nonnegative
integer multiples of a fixed integer (although a general multiplexed interleaver
allows unrestricted delay values). Each new symbol from an input vector feeds
into the next shift register and the oldest symbol in that register becomes part
of the output vector. A convolutional interleaver has memory; that is, its
operation depends not only on current symbols but also on previous symbols.

The schematic below depicts the structure of a general convolutional
interleaver by showing the set of shift registers and their delay values D(1),
D(2),..., D(N). The kth shift register holds D(k) symbols, where k = 1,2,...,N.
The convolutional interleaving functions in this toolbox have input arguments
that indicate the number of shift registers and the delay for each shift register.

D)

;D)

—| ,DN) [—eo

7 Interleaving

7-6

Convolutional Interleaving Features of the Toolbox

The set of convolutional interleavers in this toolbox includes a general
interleaver/deinterleaver pair as well as several special cases. Each
special-case function uses the same computational code that its more general
counterpart uses, but provides a syntax that is more suitable for the special
case. The special cases are described below.

Type of Interleaving Function | Description
Interleaver

General muxintrlv Allows unrestricted delay
multiplexed values for the set of shift
interleaver registers.

Convolutional convintrlv The delay values for the
interleaver set of shift registers

are nonnegative integer
multiples of a fixed integer
that you specify.

Helical helintrlv Fills an array with input

interleaver symbols in a helical fashion
and empties the array row
by row.

The helscanintrlv function and the helintrlv function both use a helical
array for internal computations. However, the two functions have some
important differences:

® helintrlv uses an unlimited-row array, arranges input symbols in the
array along columns, outputs some symbols that are not from the current
input, and leaves some input symbols in the array without placing them in
the output.

® helscanintrlv uses a fixed-size matrix, arranges input symbols in the
array across rows, and outputs all the input symbols without using any
default values or values from a previous call.

Convolutional Interleavers

Example: Convolutional Interleavers

The example below illustrates convolutional interleaving and deinterleaving
using a sequence of consecutive integers. It also illustrates the inherent delay
of the interleaver/deinterleaver pair.

x = [1:10]"'; % Original data

delay = [0 1 2]; % Set delays of three shift registers.
[y,state_y] = muxintrlv(x,delay) % Interleave.

z = muxdeintrlv(y,delay) % Deinterleave.

In this example, the muxintrlv function initializes the three shift registers
to the values [], [0], and [0 0], respectively. Then the function processes
the input data [1:10] ', performing internal computations as indicated in
the table below.

Current Input | Current Shift Current Output | Contents of
Register Shift Registers

1 1 1

[]

(0]

[0 0]
2 2 0

[]

[2]

[0 0]
3 3 0

[]

[2]

[0 3]
4 1 4

[]

[2]

[0 3]
5 2 2

[]

[5]

[0 3]

7 Interleaving

7-8

Current Input

Current Shift

Current Output

Contents of

Register Shift Registers
6 3 0
[1
[5]
[3 6]
7 1 7
[1
[5]
[3 6]
8 2 5
[1
(8]
[3 6]
9 3 3
[1
[8]
[6 9]
10 1 10
[1
(8]
[6 9]

The output from the example is below.

y:

—_

OCwWuUu~NOMNPMOO—

Convolutional Interleavers

state_y =

value: {3x1 cell}
index: 2

AP OWON-=+O0OO0O0O0CO0OO

Notice that the “Current Output” column of the table above agrees with the
values in the vector y. Also, the last row of the table above indicates that the
last shift register processed for the given data set is the first shift register.
This agrees with the value of 2 for state_y.index, which indicates that any
additional input data would be directed to the second shift register. You can
optionally check that the state values listed in state_y.value match the
“Contents of Shift Registers” entry in the last row of the table by typing
state_y.value{:} in the Command Window after executing the example.

Another feature to notice about the example output is that z contains

six zeros at the beginning before containing any of the symbols from the
original data set. The six zeros illustrate that the delay of this convolutional
interleaver/deinterleaver pair is length(delay)*max(delay) = 3*2 = 6.
For more information about delays, see “Delays of Convolutional Interleavers”
on page 7-9.

Delays of Convolutional Interleavers

After a sequence of symbols passes through a convolutional interleaver and a
corresponding convolutional deinterleaver, the restored sequence lags behind

7-9

7 Interleaving

7-10

the original sequence. The delay, measured in symbols, between the original
and restored sequences is indicated in the table below. The variable names
in the second column (delay, nrows, slope, col, ngrp, and stp) refer to the
inputs named on each function’s reference page.

Delays of Interleaver/Deinterleaver Pairs

Interleaver/Deinterleaver | Delay Between Original and Restored
Pair Sequences

muxintrlv, muxdeintrlv length(delay)*max(delay)

convintrlv, convdeintrlv | nrows*(nrows-1)*slope

helintrlv, heldeintrlv col*ngrp*ceil(stp*(col-1)/ngrp)

Effect of Delays on Recovery of Convolutionally Interleaved
Data

If you use a convolutional interleaver followed by a corresponding
convolutional deinterleaver, then a nonzero delay means that the recovered
data (that is, the output from the deinterleaver) is not the same as the original
data (that is, the input to the interleaver). If you compare the two data sets
directly, then you must take the delay into account by using appropriate
truncating or padding operations.

Here are some typical ways to compensate for a delay of D in an
interleaver/deinterleaver pair:

® Interleave a version of the original data that is padded with D extra
symbols at the end. Before comparing the original data with the recovered
data, omit the first D symbols of the recovered data. In this approach, all
the original symbols appear in the recovered data.

® Before comparing the original data with the recovered data, omit the last D
symbols of the original data and the first D symbols of the recovered data.
In this approach, some of the original symbols are left in the deinterleaver’s
shift registers and do not appear in the recovered data.

The following code illustrates these approaches by computing a symbol error
rate for the interleaving/deinterleaving operation.

Convolutional Interleavers

X = randint(20,1,64); % Original data
nrows = 3; slope = 2; % Interleaver parameters
D = nrows*(nrows-1)*slope; % Delay of interleaver/deinterleaver pair

% First approach.

x_padded = [x; zeros(D,1)]; % Pad x at the end before interleaving.
al = convintrlv(x_padded,nrows,slope); % Interleave padded data.

b1 = convdeintrlv(al,nrows,slope)

b1_trunc = b1(D+1:end); % Remove first D symbols.

ser1 = symerr(x,b1_trunc) % Compare original data with truncation.

% Second approach.

a2 = convintrlv(x,nrows,slope); % Interleave original data.

b2 = convdeintrlv(a2,nrows,slope)

x_trunc = x(1:end-D); % Remove last D symbols.

b2 _trunc = b2(D+1:end); % Remove first D symbols.

ser2 = symerr(x_trunc,b2_trunc) % Compare the two truncations.

The output is shown below. The zero values of ser1 and ser2 indicate that the
script correctly aligned the original and recovered data before computing the
symbol error rates. However, notice from the lengths of b1 and b2 that the two
approaches to alignment result in different amounts of deinterleaved data.

b1 =

[N elNeNelNelNelNolNolNolNolNolNo]

A O
- N ©

7-11

7 Interleaving

28
52
54
43

56

35
37
48
17
28
62
10
31
61
39

serl =

b2

OO O0OO0OO0OO0ODO0ODO0OO0OO0OO0oOOo

A O
N ©

7-12

Convolutional Interleavers

28
52
54
43

Combining Interleaving Delays and Other Delays

If you use convolutional interleavers in a script that incurs an additional
delay, d, between the interleaver output and the deinterleaver input (for
example, a delay from a filter), then the restored sequence lags behind the
original sequence by the sum of d and the amount from the table Delays of
Interleaver/Deinterleaver Pairs. In this case, d must be an integer multiple of
the number of shift registers, or else the convolutional deinterleaver cannot
recover the original symbols properly. If d is not naturally an integer multiple
of the number of shift registers, then you can adjust the delay manually by
padding the vector that forms the input to the deinterleaver.

7-13

7 Interleaving

Selected Bibliography for Interleaving

[1] Berlekamp, E.R., and P. Tong, “Improved Interleavers for Algebraic Block
Codes,” U. S. Patent 4559625, Dec. 17, 1985.

[2] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Commaunications, New York, Plenum Press, 1981.

[3] Forney, G. D. Jr., “Burst-Correcting Codes for the Classic Bursty
Channel,” IEEE Transactions on Communications, vol. COM-19, October
1971, pp. 772-781.

[4] Heegard, Chris and Stephen B. Wicker, Turbo Coding, Boston, Kluwer
Academic Publishers, 1999.

[6] Ramsey, J. L, “Realization of Optimum Interleavers,” IEEE Transactions
on Information Theory, IT-16 (3), May 1970, pp. 338-345.

[6] Takeshita, O. Y. and D. J. Costello, Jr., “New Classes Of Algebraic

Interleavers for Turbo-Codes,” Proc. 1998 IEEE International Symposium on
Information Theory, Boston, Aug. 16-21, 1998. pp. 419.

7-14

Modulation

In most media for communication, only a fixed range of frequencies is
available for transmission. One way to communicate a message signal whose
frequency spectrum does not fall within that fixed frequency range, or one
that is otherwise unsuitable for the channel, is to alter a transmittable signal
according to the information in your message signal. This alteration is called
modulation, and it is the modulated signal that you transmit. The receiver
then recovers the original signal through a process called demodulation.

The sections of this chapter are as follows.

e “Modulation Features of the Toolbox” on page 8-2

¢ “Modulation Terminology” on page 8-4

® “Analog Modulation” on page 8-5

¢ “Digital Modulation” on page 8-8

e “Using Modem Objects” on page 8-19

e “Selected Bibliography for Modulation” on page 8-27

8 Modulation

Modulation Features of the Toolbox

In this section...

“Modulation Techniques” on page 8-2

“Baseband vs. Passband Simulation” on page 8-3

Modulation Techniques

The available methods of modulation depend on whether the input signal is
analog or digital. The tables below show the modulation techniques that
Communications Toolbox software supports for analog and digital signals,

respectively.
Analog Modulation | Acronym Function or Method
Method
Amplitude modulation | AM ammod, amdemod

(suppressed or
transmitted carrier)

Frequency modulation | FM fmmod, fmdemod
Phase modulation PM pmmod, pmdemod
Single sideband SSB ssbmod, ssbdemod

amplitude modulation

Digital Modulation Acronym Function or Method
Method

Differential phase shift | DPSK modulate method on
keying modulation modem. dpskmod object,

demodulate method
on modem.dpskdemod
object

Frequency shift keying | FSK fskmod, fskdemod
modulation

8-2

Modulation Features of the Toolbox

Digital Modulation
Method

Acronym

Function or Method

General Quadrature
amplitude modulation

General QAM

modulate method
on modem.gengammod
object, demodulate
method on
modem.gengamdemod
object

Minimum shift keying | MSK modulate method on
modulation modem.mskmod object,
demodulate method on
modem.mskdemod object
Offset quadrature 0OQPSK modulate method on
phase shift keying modem.ogpskmod object,
modulation demodulate method
on modem.oqpskdemod
object
Phase shift keying PSK modulate method on
modulation modem.pskmod object,
demodulate method on
modem.pskdemod object
Pulse amplitude PAM modulate method on
modulation modem.pammod object,
demodulate method on
modem.pamdemod object
Quadrature amplitude | QAM modulate method on

modulation

modem. gammod object,
demodulate method on
modem. gamdemod object

Baseband vs. Passband Simulation

For a given modulation technique, two ways to simulate modulation
techniques are called baseband and passband. Baseband simulation, also
known as the lowpass equivalent method, requires less computation. This
toolbox supports baseband simulation for digital modulation and passband
simulation for analog modulation.

8 Modulation

8-4

Modulation Terminology

Modulation is a process by which a carrier signal is altered according to
information in a message signal. The carrier frequency, denoted Fc, is the
frequency of the carrier signal. The sampling rate is the rate at which the
message signal is sampled during the simulation.

The frequency of the carrier signal is usually much greater than the highest
frequency of the input message signal. The Nyquist sampling theorem
requires that the simulation sampling rate Fs be greater than two times the
sum of the carrier frequency and the highest frequency of the modulated
signal in order for the demodulator to recover the message correctly.

Analog Modulation

Analog Modulation

In this section...

“Representing Analog Signals” on page 8-5

“Analog Modulation Example” on page 8-6

Representing Analog Signals

To modulate an analog signal using this toolbox, start with a real message
signal and a sampling rate Fs in hertz. Represent the signal using a vector

X, the entries of which give the signal’s values in time increments of 1/Fs.
Alternatively, you can use a matrix to represent a multichannel signal, where
each column of the matrix represents one channel.

For example, if t measures time in seconds, then the vector x below is the
result of sampling a sine wave 8000 times per second for 0.1 seconds. The
vector y represents the modulated signal.

Fs = 8000; % Sampling rate is 8000 samples per second.

Fc = 300; % Carrier frequency in Hz

t = [0:.1*Fs]'/Fs; % Sampling times for .1 second
X = sin(20*pi*t); % Representation of the signal
y = ammod(x,Fc,Fs); % Modulate x to produce y.

figure;
subplot(2,1,1); plot(t,x); % Plot x on top.
subplot(2,1,2); plot(t,y)% Plot y below.

8-5

8 Modulation

T ~=lol x|

File Edit Wiew Insert Tools Desktop Window Help

1

05t

-05F

05t

05r

As a multichannel example, the code below defines a two-channel signal in
which one channel is a sinusoid with zero initial phase and the second channel
1s a sinusoid with an initial phase of pi/8.

-n
()
1l

8000;
t = [0:.1*Fs]'/Fs;
X = [sin(20*pi*t), sin(20*pi*t+pi/8)];

Andalog Modulation Example

This example illustrates the basic format of the analog modulation and
demodulation functions. Although the example uses phase modulation, most
elements of this example apply to other analog modulation techniques as well.

The example samples an analog signal and modulates it. Then it simulates an
additive white Gaussian noise (AWGN) channel, demodulates the received
signal, and plots the original and demodulated signals.

% Prepare to sample a signal for two seconds,
% at a rate of 100 samples per second.

Fs = 100; % Sampling rate

t = [0:2*Fs+1]'/Fs; % Time points for sampling

% Create the signal, a sum of sinusoids.

Analog Modulation

X = sin(2*pi*t) + sin(4*pi*t);

Fc = 10; % Carrier frequency in modulation
phasedev = pi/2; % Phase deviation for phase modulation

y pmmod(x,Fc,Fs,phasedev); % Modulate.
y = awgn(y,10, 'measured',103); % Add noise.
z pmdemod(y,Fc,Fs,phasedev); % Demodulate.

% Plot the original and recovered signals.
figure; plot(t,x,'k-',t,z,'9g-"');
legend('Original signal', 'Recovered signal');

Other examples using analog modulation functions appear in the reference
pages for ammod, amdemod, ssbdemod, and fmmod.

8-7

8 Modulation

Digital Modulation

In this section...

“Section Overview” on page 8-8

“Representing Digital Signals” on page 8-8

“Baseband Modulated Signals Defined” on page 8-9

“Gray Encoding a Modulated Signal” on page 8-9

“Examples of Digital Modulation and Demodulation” on page 8-12
“Plotting Signal Constellations” on page 8-14

Section Overview

Like analog modulation, digital modulation alters a transmittable signal
according to the information in a message signal. However, in this case,

the message signal is restricted to a finite set. Using this toolbox, you can
modulate or demodulate signals using various digital modulation techniques,
listed in “Modulation Features of the Toolbox” on page 8-2. You can also plot
signal constellations.

Note The modulation and demodulation functions do not perform pulse
shaping or filtering. See Chapter 9, “Special Filters” or “Combining Pulse
Shaping and Filtering with Modulation” on page 8-13 for more information
about filtering.

Representing Digital Signals

To modulate a signal using digital modulation with an alphabet having M
symbols, start with a real message signal whose values are integers from 0 to
M-1. Represent the signal by listing its values in a vector, x. Alternatively,
you can use a matrix to represent a multichannel signal, where each column
of the matrix represents one channel.

For example, if the modulation uses an alphabet with eight symbols, then
the vector [2 3 7 1 0 5 5 2 6]"' is a valid single-channel input to the
modulator. As a multichannel example, the two-column matrix

Digital Modulation

WWwww

b
b
b
b

oONWwN

]

defines a two-channel signal in which the second channel has a constant
value of 3.

Baseband Modulated Signals Defined

If you use baseband modulation to produce the complex envelope y of the
modulation of a message signal x, then y is a complex-valued signal that is
related to the output of a passband modulator. If the modulated signal has
the waveform

Y7 (t) cos(2nf,t +6) — Yo (£)sin(2nf, ¢ +6)

where f, is the carrier frequency and 0 is the carrier signal’s initial phase,
then a baseband simulation recognizes that this equals the real part of

[(Y1(8) + jYo(8))e’® lexp(j2nf.t)

and models only the part inside the square brackets. Here j is the square root
of -1. The complex vector y is a sampling of the complex signal

(Y1(8) + jY5(£))e’®

If you prefer to work with passband signals instead of baseband signals,
then you can build functions that convert between the two. Be aware that
passband modulation tends to be more computationally intensive than
baseband modulation because the carrier signal typically needs to be sampled
at a high rate.

Gray Encoding a Modulated Signal

For the PSK, DPSK, FSK, QAM, and PAM modulation types, Gray
constellations are obtained by selecting the Gray parameter in the
corresponding modulation function or method.

8 Modulation

For modulation objects, you can set the symbol order property to Gray to
obtain Gray-encoded modulation.

The following example demonstrates use of the symbol order property. The
Scatter plot shows the modulated symbols are Gray-encoded.

y = [0:7];

xmap = modulate(modem.pskmod('M',8,'SymbolOrder', 'Gray'),y);

k=1092(8);

scatterplot(xmap);

set(get(gca, 'Children'), 'Marker','d', 'MarkerFaceColor', 'auto');

hold on;

for jj=1:length(xmap)
text(real(xmap(jj))-0.15,imag(xmap(jj))+0.15,...
dec2base(jj-1,2,3));

end

set(gca, 'yTick', (-(k+1)/4:(k+1)/4), 'xTick',(-(k+1)/4:(k+1)/4),...

‘XLim',[-(k+1)/2 (k+1)/2],'YLim',[-(k+1)/2 (k+1)/2],...
‘Box','on','YGrid','on', 'XGrid','on');
hold off;

8-10

Digital Modulation

=10/ x|
File Edit Wiew Inserk Tools Deskiop ‘Window Help u
D& kRO se (€| 08|00
scatter plot
2 T
16¢ .
a11
1} o :
10 a1
i &
0&t .
=
% 110 aoa
5 a o & .
G
05 111 100 I
i
101
At o]
16¢ .
_2 1 1 1
-2 -1 0 1 2
In-Phase

For modulation functions, set the symbol order argument to Gray.

Looking at the map above, notice that this is indeed a Gray-encoded map; all
adjacent elements differ by only one bit.

8-11

8 Modulation

Examples of Digital Modulation and Demodulation

This section contains examples that illustrate how to use the digital
modulation and demodulation functions.

Computing the Symbol Error Rate

The example generates a random digital signal, modulates it, and adds noise.
Then it creates a scatter plot, demodulates the noisy signal, and computes
the symbol error rate. For a more elaborate example that is similar to this
one, see “Modulating a Random Signal” on page 1-4.

o°

Create a random digital message
= 16; % Alphabet size
randint (5000,1,M);

x =

o°

Use 16-QAM modulation to produce y.
y=modulate(modem.qgammod (M) ,x);

% Transmit signal through an AWGN channel.
ynoisy = awgn(y,15, 'measured');

% Create scatter plot from noisy data.
scatterplot(ynoisy);

% Demodulate ynoisy to recover the message.
z=demodulate (modem.qamdemod (M) ,ynoisy);

% Check symbol error rate.
[num,rt]= symerr(x,z)

The output and scatter plot follow. Your numerical results and plot might
vary, because the example uses random numbers.

num =

83

rt

8-12

Digital Modulation

0.0166

. Figure 1: Scatter Plot =10l]

File Edit Wiew Insert Tools Desktop Window Help

Scatter plot

CQuadrature
R . RO A R 2L R

The scatter plot does not look exactly like a signal constellation. Where
the signal constellation has 16 precisely located points, the noise causes
the scatter plot to have a small cluster of points approximately where each
constellation point would be.

Combining Pulse Shaping and Filtering with Modulation

Modulation is often followed by pulse shaping, and demodulation is often
preceded by a filtering or an integrate-and-dump operation. This section
presents an example involving rectangular pulse shaping. For an example
that uses raised cosine pulse shaping, see “Pulse Shaping Using a Raised
Cosine Filter” on page 1-15.

Rectangular Pulse Shaping. Rectangular pulse shaping repeats each
output from the modulator a fixed number of times to create an upsampled
signal. Rectangular pulse shaping can be a first step or an exploratory step in
algorithm development, though it is less realistic than other kinds of pulse
shaping. If the transmitter upsamples the modulated signal, then the receiver
should downsample the received signal before demodulating. The “integrate
and dump” operation is one way to downsample the received signal.

8-13

8 Modulation

The code below uses the rectpulse function for rectangular pulse shaping at
the transmitter and the intdump function for downsampling at the receiver.

M = 16; % Alphabet size
X = randint(5000,1,M); % Message signal
Nsamp = 4; % Oversampling rate

% Use 16-QAM modulation.
y = modulate(modem.qgammod(M),Xx);

% Follow with rectangular pulse shaping.
ypulse = rectpulse(y,Nsamp);

% Transmit signal through an AWGN channel.
ynoisy = awgn(ypulse,15, 'measured');

% Downsample at the receiver.
ydownsamp = intdump(ynoisy,Nsamp);

% Demodulate to recover the message.
z = demodulate(modem.gamdemod (M) ,ydownsamp) ;

Plotting Signal Constellations

To plot the signal constellation associated with a modulation process, follow
these steps:

1 If the alphabet size for the modulation process is M, then create the signal
[0:M-1]. This signal represents all possible inputs to the modulator.

2 Use the appropriate modulation function to modulate this signal. If
desired, scale the output. The result is the set of all points of the signal
constellation.

3 Apply the scatterplot function to the modulated output to create a plot.

Examples of Signal Constellation Plots
The following examples produce plots of signal constellations:

® “Constellation for 16-PSK” on page 8-15

8-14

Digital Modulation

® “Constellation for 32-QAM” on page 8-15
® “Gray-Coded Signal Constellation” on page 8-16
e “Customized Constellation for QAM” on page 8-17

The reference entries for the modnorm and gengammod functions provide
additional examples.

Constellation for 16-PSK. The code below plots a PSK constellation having

16 points.
M= 16;
X = [0:M-17;

scatterplot(modulate (modem.pskmod(M),x));

J\ Figure 1: Scatter Plot =10]x]
k|

File Edit Wiew Insert Tools Desktop ‘Window Help

Scatter plot

08t

06}

04F «
0.2t

CQuadrature
(o]

02r

O4r *

0B
08¢

In-Phase

Constellation for 32-QAM. The code below plots a QAM constellation
having 32 points and a peak power of 1 watt. The example also illustrates
how to label the plot with the numbers that form the input to the modulator.

M = 32;
X [O:M-17;

8-15

8 Modulation

y = modulate(modem.qgammod(M),Xx);

scale = modnorm(y, 'peakpow',1);

y = scale*y; % Scale the constellation.
scatterplot(y); % Plot the scaled constellation.

% Include text annotations that number the points.
hold on; % Make sure the annotations go in the same figure.
for jj=1:1length(y)

text(real(y(jj)),imag(y(ij)),[" ' num2str(jj-1)]);

end
hold off;
lolx]
File Edit Wiew Insert Tools Desktop ‘Window Help N
Scatter plot
1_
ogl 0 1 +29 28
06
4 8 12«16 20 24
0.4F
z 02r *5 +B #1317 «21 e25
£ 0
o
& o2t *B +10 14 +18 22 B
0.4+
7 1 15«19 23 27
06
08y 3 .2 .3 .3
A F
1 0.5 0 05 1
In-Phase

Gray-Coded Signal Constellation. The example below plots an 8-QAM
signal Gray-coded constellation, labeling the points using binary numbers so
you can verify visually that the constellation uses Gray coding.

M = 8;
X = [0:M-1];
y = modulate(modem.qgammod('M',M, 'SymbolOrder', 'Gray'),Xx);

8-16

Digital Modulation

% Plot the Gray-coded constellation.
scatterplot(y,1,0,'b."'); % Dots for points.

% Include text annotations that number the points in binary.
hold on; % Make sure the annotations go in the same figure.
annot = dec2bin([0:1length(y)-1],1l092(M));
text(real(y)+0.15,imag(y),annot);

axis([-4 4 -4 4]);

title('Constellation for Gray-Coded 8-QAM');

hold off;

. Figure 1: Scatter Plot =10l]

File Edit Wiew Insert Tools Desktop Window Help

Constellation for Gray-Coded 8-QAM

4

3
2
o | 0oo 010 10 100
Ei
L0
o
=
T «001 «011 <111 +101 A
-2
-3
4 . . .
-4 -2 0 2 4
In-Phase

Customized Constellation for QAM. The code below describes and plots a
constellation with a customized structure.

% Describe constellation.

inphase = [1/2 -1/2 1 0 3/2 -3/2 1 -1];

quadr = [1 1 02112 2];

inphase = [inphase; -inphase]; inphase = inphase(:);
quadr = [quadr; -quadr]; quadr = quadr(:);

const = inphase + j*quadr;

% Plot constellation.
scatterplot(const,1,0,'*");
hold on;

axis([-3 3 -3 31]);

8-17

8 Modulation

title('Customized Constellation for QAM');

hold off;
lolx]
File Edit Wiew Insert Tools Desktop Window Help
Customized Constellation for QAM
3
2 + + o+
1 + o+ o+ #
i)
Ei
L0 + +
o
=
]
1 + o+ o+ #
2 + + o+
3 .
-3 2 1 0 1 2 3
In-Phase

8-18

Using Modem Objects

Using Modem Obijects

In this section...

“Section Overview” on page 8-19

“Constructing a Modem Object” on page 8-19

“Managing Object Properties” on page 8-20

“Copying a Modem Object” on page 8-20

“Displaying a Modem Object” on page 8-21

“Resetting a Modem Object” on page 8-22

“Modulating a Signal” on page 8-23

“Demodulating a Signal” on page 8-24

“Example of Basic Modulation and Demodulation” on page 8-25

“Exact LLR Algorithm” on page 8-25

“Approximate LLR Algorithm” on page 8-26

Section Overview

Signal modulation generally requires the use of functions, such as fskmod or
ssbmod. For DPSK, General QAM, MSK, OQPSK, PAM, PSK, and QAM,
however, you modulate signals through the use of modem objects. This section
gives an overview of how you use these objects.

A modem object is a type of MATLAB variable that contains information
about the modulation algorithm, such as the name of the modulation class,
M-ary number, and the constellation mapping. The object can be operated
upon using specific methods to perform certain tasks.

Constructing a Modem Obiject

To construct modulator and demodulator objects, use the functions
(constructors) shown in the following table.

Modulation Type Constructors
DPSK modem.dpskmod and modem.dpskdemod

8-19

8 Modulation

Modulation Type Constructors

General QAM modem.gengammod and modem.gengamdemod
MSK modem.mskmod and modem.mskdemod
0QPSK modem.ogpskmod and modem.oqpskdemod
PAM modem.pammod and modem. pamdemod

PSK modem.pskmod and modem.pskdemod

QAM modem.gammod and modem.qgamdemod

See individual reference pages for details.

Managing Object Properties

To view the properties of a modem object, use its disp method, as shown in
the following example:

h=modem.pskmod; % Construct a PSK modulator object.
h.disp % Display object properties.

You can directly assign a value to a property as follows:

h=modem.pskmod(8) ; % Construct a PSK modulator object.
% Set the 'symbolorder' property of the object to 'gray'.
h.symbolorder='gray';

The properties can also be set to specific values when constructing the object.
See reference pages of individual objects for details.

Copying a Modem Object

The syntax h = copy(refobj) creates a new instance of an object, h, of the
same type as refobj, and copies the properties of refobj into h.

Setting another variable equal to an object just copies its handle, and is not
creating an independent copy of it. Thus, in the previous example, if you
set a = h, then a points to the same object h and any changes made to h
are also reflected in a.

8-20

Using Modem Objects

Displaying a Modem Obiject

The syntax disp(h) displays relevant properties of object .

If a property is not relevant to the object’s configuration, it does not display.

For example, for a MODEM.PSKDEMOD object, NoiseVariance property
is not relevant when DecisionType property is set to 'Hard decision’, hence
NoiseVariance property does not display.

The following is an example of using disp:

h = modem.pskmod; % create an object with default properties
disp(h); % display object properties

The output for this example looks like:

Type: 'PSK Modulator'
M: 2
PhaseOffset: 0O
Constellation: [1 -1+1i*1.22464679914735e-16]
SymbolOrder: 'Binary’
SymbolMapping: [0 1]
InputType: 'Integer’

The following is an example of using disp:

h = modem.gamdemod('M', 32) % note the absence of semicolon

The output for this example looks like:

Type: 'QAM Demodulator'
M: 32
PhaseOffset: O

Constellation: [1x32 double]

SymbolOrder: 'Binary'
SymbolMapping: [1x32 double]

OutputType: 'Integer'
DecisionType: 'Hard decision'

8-21

8 Modulation

8-22

Resetting a Modem Object

The MSK, OQPSK, and DPSK modem objects (i.e., only those with memory)
have a reset method that resets the internal states of the object.

It assumes that the number of channels of the input signal to the modulate or
demodulate methods are one (i.e., the input is a column vector).

reset (h,nchan) resets the internal states of the object, h, assuming nchan
number of channels, where the input to the modulator is a matrix of nchan
columns. If the modulate or demodulate method is called with an input with
number of channels different from nchan, the object automatically resets itself
with the correct number of channels.

The following is an example of using reset:

= modem.mskmod; % create an object with default properties
= randint (100, 1, 2); % generate input bits

modulate(h, x); % modulate x

= randint (100, 1, 2); % generate new input bits

reset(h); % reset the modulator

y = modulate(h, x); % modulate x with the same initial state
% as the first call

X< X =
I

Using Modem Objects

Modulating a Signal

The basic procedure for modulating a signal with DPSK, MSK, OQPSK, PAM,
PSK, QAM, or general QAM involves these steps:

”

1 Construct a modulator object as shown in “Constructing a Modem Object
on page 8-19, depending on your modulation type.

2 Adjust properties of the modulator object, if necessary, to tailor it to your
needs. For example, you can change the phase offset or symbol order.

3 Modulate your signal by applying the modulate method of the modulator
object, as described in the following section.

Modem Modulation Method

Modulator objects have a method modulate that is used to modulate signals.

The syntax is y = modulate(h, x), where h is the handle to a modulator
object and x is a signal. This syntax outputs the baseband signal y.

x can be a multichannel signal. The columns of x are considered individual
channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the most
significant bit.

For h.inputtype = “bit' (i.e., x represents binary input), nBits consecutive
elements in each channel or column represent a symbol, where nBits =
log,(h.M). The number of elements in each channel must be an integer
multiple of nBits, and elements of x must be 0 or 1. For an input x of size

RxC , an output y of size (R/nBits)xC is computed.

For h.inputtype = “integer' (i.e., X represents symbol input), elements of
x must be in the range [0, h.M-1]. For an input x of size RxC, an output
y of size RxC 1is computed.

8-23

8 Modulation

8-24

Demodulating a Signal

The basic procedure for demodulating a signal with DPSK, MSK, OQPSK,
PAM, PSK, QAM, or general QAM involves these steps:

1 Construct a demodulator object as shown in “Constructing a Modem Object”
on page 8-19, depending on your modulation type.

2 Adjust properties of the demodulator object, if necessary, to tailor it to your
needs. For example, you can change the phase offset or symbol order.

3 Demodulate your signal by applying the demodulate method of the
demodulator object, as described in the following section.

Modem Demodulation Method

Demodulator objects have a method demodulate that is used to demodulate
signals.

The syntaxisy = demodulate(h, x), where his the handle to a demodulator
object and x is a signal. This syntax processes the binary words (bits) or
symbols (integers) in signal x with the PSK or QAM demodulator object and
output the baseband signal y.

x can be a multichannel signal. The columns of x are considered individual
channels, while the rows are time steps.

The demodulator object’s property DecisionType should be set depending
on whether you want hard or soft (LLR or approximate LLR) decisions. To
allow for soft decisions, the demodulator object’s property OutputType must
be set to 'bit'.

For h.outputtype = “bit', an output y of size Rx(nBitsxC) is computed
for an input x of size RxC, where nBits = log,(h.M).

For h.outputtype = “integer', an output y of size RxC is computed for an
input x of size RxC'.

Using Modem Objects

Example of Basic Modulation and Demodulation

This code briefly illustrates the steps in modulation and demodulation.

o°

X = randint(10,1,8);
h = modem.gammod(8)

Create a signal source.
Create a modulator object
and display its properties.
Modulate the signal x.
Create a demodulator object
from a modem.gammod object
and display its properties.
Demodulate the signal y.

o® o°

o°

y = modulate(h,x);
g = modem.gamdemod (h)

o° o° o°

o°

z = demodulate(g,y);

Exact LLR Algorithm

The log-likelihood ratio (LLR) is the logarithm of the ratio of probabilities
of a 0 bit being transmitted versus a 1 bit being transmitted for a received
signal. The LLR for a bit b is defined as:

L) = 1Og{Pr(b =0|r= (x,y))J

Pr(b=1|r="(x,y)

Assuming equal probability for all symbols, the LLR for an AWGN channel
can be expressed as:

—%((x—sx)2 +y-s,)*)

L(b) = log| =5
Y e
seS;

where the variables represent the values shown in the following table.

_é((x—sx)2 +(y—sy)2)

Variable What the Variable Represents
Received signal with coordinates (x, y).
r
Transmitted bit (one of the K bits in an M-ary symbol,
b assuming all M symbols are equally probable.

8-25

8 Modulation

8-26

Variable What the Variable Represents

Ideal symbols or constellation points with bit 0, at the
So given bit position.

Ideal symbols or constellation points with bit 1, at the
S given bit position.

In-phase coordinate of ideal symbol or constellation point.

Sx
Quadrature coordinate of ideal symbol or constellation
Sy point.
Noise variance of baseband signal.
(52
Noise variance along in-phase axis.
ox
Noise variance along quadrature axis.
o

Note Noise components along the in-phase and quadrature axes are assumed

to be independent and of equal power (i.e., G% = G?, = 02/2).

Approximate LLR Algorithm

Approximate LLR [4] is computed by taking into consideration only the
nearest constellation point to the received signal with a 0 (or 1) at that bit
position, rather than all the constellation points as done in exact LLR. It
is defined as:

L(b) = —%(I‘Slg?((x—sx)z + (y_s-y)z)‘rﬁisfl((x_sx)z + (y—sy)z))

Selected Bibliography for Modulation

Selected Bibliography for Modulation

[1] Jeruchim, M. C., P. Balaban, and K. S. Shanmugan, Simulation of
Communication Systems, New York, Plenum Press, 1992.

[2] Proakis, J. G., Digital Communications, 3rd ed., New York, McGraw-Hill,
1995.

[3] Sklar, B., Digital Communications: Fundamentals and Applications,
Englewood Cliffs, NJ, Prentice-Hall, 1988.

[4] Viterbi, A. J., “An Intuitive Justification and a Simplified Implementation

of the MAP Decoder for Convolutional Codes,” IEEE Journal on Selected
Areas in Communications, vol. 16, No. 2, pp. 260-264, Feb. 1998.

8-27

8 Modulation

8-28

Special Filters

Communications Toolbox software includes several functions that can help
you design and use filters. Other filtering capabilities are in Signal Processing
Toolbox™ software. The sections of this chapter are as follows.

® “Noncausality and the Group Delay Parameter” on page 9-2

¢ “Designing Hilbert Transform Filters” on page 9-5

¢ “Filtering with Raised Cosine Filters” on page 9-7

® “Designing Raised Cosine Filters” on page 9-14

e “Selected Bibliography for Special Filters” on page 9-16

For a demonstration involving raised cosine filters, type showdemo rcosdemo.

9 Special Filters

Noncausality and the Group Delay Parameter

In this section...

“Section Overview” on page 9-2

“Example: Compensating for Group Delays in Data Analysis” on page 9-3

Section Overview

Without propagation delays, both Hilbert filters and raised cosine filters are
noncausal. This means that the current output depends on the system’s
future input. In order to design only realizable filters, the hilbiir, rcosine,
and rcosflt functions delay the input signal before producing an output.
This delay, known as the filter’s group delay, is the time between the filter’s
initial response and its peak response. The group delay is defined as

d
-=9
dm (©)

where 0 is the phase of the filter and ® is the frequency in radians. This
delay is set so that the impulse response before time zero is negligible and
can safely be ignored by the function.

For example, the Hilbert filter whose impulse is shown below uses a group
delay of one second. In the figure, the impulse response near time 0 is small
and the large impulse response values occur near time 1.

Noncausality and the Group Delay Parameter

T —— ~=lol x|

File Edit Wiew Insert Tools Desktop Window Help

Impulse Response: blue. |deal Response: red. Axis of symmetry: black

TT¢?$$M‘*A~» it b e ke g b

Armnplitude
o (o]
—— T
*_

a 2 4 G g 10
Time (second)

Example: Compensating for Group Delays in Data
Analysis

Comparing filtered with unfiltered data might be easier if you delay the
unfiltered signal by the filter’s group delay. For example, suppose you use the
code below to filter x and produce vy.

tx = 0:4; % Times for data samples

x=[01111]"'; % Binary data samples
% Filter the data and use a delay of 2 seconds.
delay = 2;

[y,ty] = rcosflt(x,1,8,'fir',.3,delay);

The elements of tx and ty represent the times of each sample of x and vy,
respectively. However, y is delayed relative to x, so corresponding elements
of x and y do not have the same time values. Plotting y against ty and x
against tx is less useful than plotting y against ty and x against a delayed
version of tx.

% Top plot

subplot(2,1,1), plot(tx,x,'*',ty,y);
legend('Data', 'Filtered data');
title('Data with No Added Delay');

% Bottom plot delays tx.

9-3

Special Filters

9-4

subplot(2,1,2), plot(tx+delay,x,'*',ty,y);
legend('Data','Filtered data');
title('Data with an Added Delay');

For another example of compensating for group delay, see the raised cosine
filter demo by typing showdemo rcosdemo.

g -0l

File Edit Wiew Insert Tools Desktop Window Help

Data with No Added Delay
15 T T T T T T

+ Data

1 Filtered data

0.5

Data with an Added Delay
15 T T T T T T

+ Data
1 Filtered data |

05k B

[}
|

Designing Hilbert Transform Filters

Designing Hilbert Transform Filters

In this section...

“Section Overview” on page 9-5

“Example with Default Parameters” on page 9-5

Section Overview

The hilbiir function designs a Hilbert transform filter and produces either

* A plot of the filter’s impulse response

® A quantitative characterization of the filter, using either a transfer function
model or a state-space model

Example with Default Parameters
For example, typing

hilbiir

plots the impulse response of a fourth-order digital Hilbert transform filter
having a one-second group delay. The sample time is 2/7 seconds. In this
particular design, the tolerance index is 0.05. The plot also displays the
impulse response of the ideal Hilbert transform filter having a one-second
group delay. The plot is in the figure in “Noncausality and the Group Delay
Parameter” on page 9-2.

To compute this filter’s transfer function, use the command below.

[num,den] = hilbiir

num

-0.3183 -0.3041 -0.5160 -1.8453 3.3105

den

1.0000 -0.4459 -0.1012 -0.0479 -0.0372

9-5

9 Special Filters

9-6

The vectors num and den contain the coefficients of the numerator and
denominator, respectively, of the transfer function in ascending order of
powers of z'1,

The commands in this section use the function’s default parameters. You
can also control the filter design by specifying the sample time, group delay,
bandwidth, and tolerance index. The reference entry for hilbiir explains
these parameters. The group delay is also mentioned in “Noncausality and
the Group Delay Parameter” on page 9-2.

Filtering with Raised Cosine Filters

Filtering with Raised Cosine Filters

In this section...

“Section Overview” on page 9-7

“Sampling Rates” on page 9-7

“Designing Filters Automatically” on page 9-8
“Specifying Filters Using Input Arguments” on page 9-9
“Controlling the Rolloff Factor” on page 9-10
“Controlling the Group Delay” on page 9-10

“Combining Two Square-Root Raised Cosine Filters” on page 9-12

Section Overview
The rcosflt function applies a raised cosine filter to data. Because rcosflt

1s a versatile function, you can
® Use rcosflt to both design and implement the filter.
® Specify a raised cosine filter and use rcosflt only to filter the data.

® Design and implement either raised cosine filters or square-root raised
cosine filters.

® Specify the rolloff factor and/or group delay of the filter, if rcosflt designs
the filter.

® Design and implement either FIR or IIR filters.

This section discusses the use of sampling rates in filtering and then covers
these options. For an additional example, type showdemo rcosdemo in the
MATLAB Command Window.

Sampling Rates

The basic rcosflt syntax

y = rcosflt(x,Fd,Fs...) % Basic syntax

9 Special Filters

9-8

assumes by default that you want to apply the filter to a digital signal x
whose sampling rate is Fd. The filter’s sampling rate is Fs. The ratio of Fs
to Fd must be an integer. By default, the function upsamples the input data
by a factor of Fs/Fd before filtering. It upsamples by inserting Fs/Fd-1 zeros
between consecutive input data samples. The upsampled data consists of
Fs/Fd samples per symbol and has a sampling rate of Fs.

An example using this syntax is below. The output sampling rate is four
times the input sampling rate.

y1 = rcosflt([1;0;0],1,4,'fir'); % Upsample by factor of 4/1.

Maintaining the Input Sampling Rate

You can also override the default upsampling behavior. In this case, the
function assumes that the input signal already has a sampling rate of Fs
and consists of Fs/Fd samples per symbol. You might want to maintain the
sampling rate in a receiver’s filter if the corresponding transmitter’s filter
has already upsampled sufficiently.

To maintain the sampling rate, modify the fourth input argument in rcosflt
to include the string Fs. For example, in the first command below, rcosflt
uses its default upsampling behavior and the output sampling rate is four
times the input sampling rate. By contrast, the second command below uses
Fs in the string argument and thus maintains the sampling rate throughout.

y1

rcosflt([1;0;0],1,4,'fir'); % Upsample by factor of 4/1.
y2)

rcosflt([1;0;0],1,4, 'fir/Fs'); % Maintain sampling rate.

The second command assumes that the sampling rate of the input signal is 4,
and that the input signal contains 4/1 samples per symbol.

An example that uses the 'Fs' option at the receiver is in “Combining Two
Square-Root Raised Cosine Filters” on page 9-12.

Designing Filters Automatically

The simplest syntax of rcosflt assumes that the function should both design
and implement the raised cosine filter. For example, the command below
designs an FIR raised cosine filter and then filters the input vector [1;0;0]
with it. The second and third input arguments indicate that the function

Filtering with Raised Cosine Filters

should upsample the data by a factor of 8 (that is, 8/1) during the filtering
process.

y = rcosflt([1;0;0],1,8);

Types of Raised Cosine Filters

You can have rcosflt design other types of raised cosine filters by using a
fourth input argument. Variations on the previous example are below.

b

= rcosflt([1;0;0],1,8,'fir'); % Same as original example
= rcosflt([1;0;0]1,1,8, 'fir/sqrt'); %
([1;0;01,1,8
([1;0;01,1,8

b

b

= rcosflt ,'1ir'); % IIR raised cosine filter
= rcosflt

b

b

<K<K <
|

Specifying Filters Using Input Arguments

If you have a transfer function for a raised cosine filter, then you can provide
it as an input to rcosflt so that rcosflt does not design its own filter.
This is useful if you want to use rcosine to design the filter once and then
use the filter many times. For example, the rcosflt command below uses
the 'filter' flag to indicate that the transfer function is an input argument.
The input num is a vector that represents the FIR transfer function by listing
its coefficients.

num = rcosine(1,8); y = rcosflt([1;0;0],1,8, 'filter',num);

This syntax for rcosflt works whether num represents the transfer function
for a square-root raised cosine FIR filter or an ordinary raised cosine FIR
filter. For example, the code below uses a square-root raised cosine FIR filter.
Only the definition of num is different.

num = rcosine(1,8,'sqrt'); y = rcosflt([1;0;0],1,8, 'filter',num);

You can also use a raised cosine IIR filter. To do this, modify the fourth input
argument of the rcosflt command above so that it contains the string 'iir'
and provide a denominator argument. An example is below.

delay = 8;
[num,den] = rcosine(1,8,'iir',.5,delay);
y = rcosflt([1;0;0]1,1,8,"'iir/filter',num,den,delay);

s FIR square-root RC filter

, 'iir/sqrt'); % IIR square-root RC filter

9-9

9 Special Filters

9-10

Controlling the Rolloff Factor

If rcosflt designs the filter automatically, then you can control the rolloff
factor of the filter, as described below. If you specify your own filter, then
rcosflt does not need to know its rolloff factor.

The rolloff factor determines the excess bandwidth of the filter. For example,
a rolloff factor of .5 means that the bandwidth of the filter is 1.5 times the
input sampling frequency, Fd. This also means that the transition band of the
filter extends from .5 * Fdto 1.5 * Fd.

The default rolloff factor is .5, but if you want to use a value of .2, then you
can use a command such as the one below. Typical values for the rolloff factor
are between .2 and .5.

y = rcosflt([1;0;0]1,1,8,'fir',.2); % Rolloff factor is .2.

Controlling the Group Delay

If rcosflt designs the filter automatically, then you can control the group
delay of the filter, as described below. If you specify your own FIR filter, then
rcosflt does not need to know its group delay.

The filter’s group delay is the time between the filter’s initial response and its
peak response. The default group delay in the implementation is three input
samples. To specify a different value, measure it in input symbol periods and
provide it as the sixth input argument. For example, the command below
specifies a group delay of six input samples, which is equivalent to 6 *8 /1
output samples.

y = rcosflt([1;0;0]1,1,8,'fir',.2,6); % Delay is 6 input samples.

The group delay influences the size of the output, as well as the order of the
filter if rcosflt designs the filter automatically. See the reference page for
rcosflt for details that relate to the syntax you want to use.

Example: Raised Cosine Filter Delays

The code below filters a signal using two different group delays. A larger
delay results in a smaller error in the frequency response of the filter. The
plot shows how the two filtered signals differ, and the output pt indicates that
the first peak occurs at different times for the two filtered signals. In the plot,

Filtering with Raised Cosine Filters

the solid line corresponds to a delay of six samples, while the dashed line
corresponds to a delay of eight samples.

[y,t] = rcosflt(ones(10,1),1,8, 'fir',.5,6); % Delay = 6 samples
[y1,t1] = rcosflt(ones(10,1),1,8, 'fir',.5,8); % Delay = 8 samples

plot(t,y,t1,y1,'--') % Two curves indicate the different delays.
legend('Delay = 6 samples', 'Delay = 8 samples', 'Location', 'NorthOutside’
peak = t(find(y == max(y))); % Times where first curve peaks

peak1 = t1(find(y1 == max(y1))); % Times where second curve peaks
pt = [min(peak), min(peak1)] % First peak time for both curves

The output is below.
pt =
14.6250 16.6250

If Fs/Fd is at least 4, then a group delay value of at least 8 works well in many
cases. In the examples of this section, Fs/Fd is 8.

[Jrgwes -0l

File Edit Wiew Insert Tools Desktop Window Help

Delay = 6 samples

— — Delay =8 samples

30

Delays of Six Samples (Solid Line) and Eight Samples (Dashed Line)

9-11

9 Special Filters

9-12

Combining Two Square-Root Raised Cosine Filters

If you want to split the filtering equally between the transmitter’s filter and
the receiver’s filter, then you can use a pair of square-root raised cosine
filters. In theory, the combination of two square-root raised cosine filters

is equivalent to a single normal raised cosine filter. However, the limited
impulse response of practical square-root raised cosine filters causes a slight
difference between the response of two successive square-root raised cosine
filters and the response of one raised cosine filter.

Using rcosine and rcosflt to Implement Square-Root Raised
Cosine Filters

One way to implement the pair of square-root raised cosine filters is to follow
these steps:

1 Use rcosine with the 'sqrt' flag to design a square-root raised cosine
filter.

2 Use rcosflt in the transmitter section of code to upsample and filter the
data.

3 Use rcosflt in the receiver section of code to filter the received data
without upsampling it. Use the 'Fs' flag to avoid upsampling.

An example of this approach is below. The syntaxes for rcosflt use the
'filter' flag to indicate that you are providing the filter’s transfer function
as an input.

% First approach

X = randint(100,1,2,1234); % Data

num = rcosine(1,8,'sqrt'); % Transfer function of filter

y1 = rcosflt(x,1,8, 'filter',num); % Filter the data.

z1 = rcosflt(yl1,1,8,'Fs/filter',num); % Filter the received data
% but do not upsample it.

Using rcosflt Alone

Another way to implement the pair of square-root raised cosine filters is to
have rcosflt both design and use the square-root raised cosine filter. This
approach avoids using rcosine. The corresponding example code is below.

Filtering with Raised Cosine Filters

The syntaxes for rcosflt use the 'sqrt' flag to indicate that you want it to
design a square-root raised cosine filter.

% Second approach

X = randint(100,1,2,1234); % Data (again)

y2 = rcosflt(x,1,8,'sqrt'); % Design and use a filter.

z2 = rcosflt(y2,1,8,'sqrt/Fs'); % Design and use a filter
s but do not upsample the data.

°

Because these two approaches are equivalent, y1 is the same as y2 and z1 is
the same as z2.

9-13

9 Special Filters

Designing Raised Cosine Filters

9-14

In this section...

“Section Overview” on page 9-14
“Sampling Rates” on page 9-14

“Example Designing a Square-Root Raised Cosine Filter” on page 9-14

“Other Options in Filter Design” on page 9-15

Section Overview
The rcosine function designs (but does not apply) filters of these types:

¢ Finite impulse response (FIR) raised cosine filter
¢ Infinite impulse response (IIR) raised cosine filter
¢ FIR square-root raised cosine filter
e IR square-root raised cosine filter

The function returns the transfer function as output. To learn about applying
raised cosine filters, see “Filtering with Raised Cosine Filters” on page 9-7.

Sampling Rates

The rcosine function assumes that you want to apply the filter to a digital
signal whose sampling rate is Fd. The function also requires you to provide
the filter’s sampling rate, Fs. The ratio of Fs to Fd must be an integer.

Example Designing a Square-Root Raised Cosine
Filter
For example, the command below designs a square-root raised cosine FIR

filter with a sampling rate of 2, for use with a digital signal whose sampling
rate is 1.

num
num =

rcosine(1,2, 'fir/sqrt')

Designing Raised Cosine Filters

Columns 1 through 7

0.0021 -0.0106 0.0300 -0.0531 -0.0750 0.4092 0.8037
Columns 8 through 13

0.4092 -0.0750 -0.0531 0.0300 -0.0106 0.0021

Here, the vector num contains the coefficients of the filter, in ascending order
of powers of z1.

Other Options in Filter Design

You can also control the filter design by specifying the rolloff factor, group
delay, and (for IIR filters) tolerance index explicitly, instead of having
rcosine use its default values. The reference page for rcosine explains these
parameters. The group delay is also mentioned above in “Noncausality and
the Group Delay Parameter” on page 9-2.

9-15

9 Special Filters

Selected Bibliography for Special Filters

[1] Korn, Israel, Digital Communications, New York, Van Nostrand Reinhold,
1985.

[2] Oppenheim, Alan V., and Ronald W. Schafer, Discrete-Time Signal
Processing, Englewood Cliffs, NJ, Prentice Hall, 1989.

[3] Proakis, John G., Digital Communications, 3rd ed., New York,
McGraw-Hill, 1995.

9-16

Channels

Communication channels introduce noise, fading, interference, and other
distortions into the signals that they transmit. Simulating a communication
system involves modeling a channel based on mathematical descriptions of
the channel. Different transmission media have different properties and
are modeled differently. This chapter describes the channel features of
Communications Toolbox software in the sections listed below.

¢ “Channel Features of the Toolbox” on page 10-2

¢ “AWGN Channel” on page 10-3

e “MIMO Channels” on page 10-6

¢ “Fading Channels” on page 10-7

® “Binary Symmetric Channel” on page 10-48

¢ “Selected Bibliography for Channels” on page 10-50

1 0 Channels

Channel Features of the Toolbox

10-2

This toolbox supports these types of channels:

e Additive white Gaussian noise (AWGN) channel
e Multiple-Input Multiple-Output (MIMO) channel
¢ Fading channel

¢ Binary symmetric channel, for binary signals

These channels accept MATLAB arrays as inputs and output a channel
impaired version of the input.

Many applications use a channel model that combines fading with AWGN.
In such cases, you should use the fading channel function first, followed by
the AWGN function.

AWGN Channel

AWGN Channel

In this section...

“Section Overview” on page 10-3

“Describing the Noise Level of an AWGN Channel” on page 10-3

Section Overview

An AWGN channel adds white Gaussian noise to the signal that passes
through it. To model an AWGN channel, use the awgn function. Several
examples that illustrate the use of awgn are in Chapter 1, “Getting Started”.
The following demos also use awgn: basicsimdemo, vitsimdemo, and
scattereyedemo.

Describing the Noise Level of an AWGN Channel

The relative power of noise in an AWGN channel is typically described by
quantities such as

® Signal-to-noise ratio (SNR) per sample. This is the actual input parameter
to the awgn function.

® Ratio of bit energy to noise power spectral density (E,/N,). This quantity is
used by BERTool and performance evaluation functions in this toolbox.

® Ratio of symbol energy to noise power spectral density (E/N)

Relationship Between E,/N, and E,/N,
The relationship between E /N, and E,/N,, both expressed in dB, is as follows:

E, /Ny (dB) = E, / Ny (dB)+10log;o (k)

where k is the number of information bits per symbol.

In a communication system, k might be influenced by the size of the
modulation alphabet or the code rate of an error-control code. For example,

if a system uses a rate-1/2 code and 8-PSK modulation, then the number of
information bits per symbol (k) is the product of the code rate and the number

10-3

1 0 Channels

of coded bits per modulated symbol: (1/2) log,(8) = 3/2. In such a system, three
information bits correspond to six coded bits, which in turn correspond to
two 8-PSK symbols.

Relationship Between E,/N, and SNR
The relationship between E /N, and SNR, both expressed in dB, is as follows:

E,/ Ny (dB) =10logqg (Tsym ! Tsamp) +SNR (dB) for complex input signals
E, /Ny (dB) =10logy (0.5Ty,, / Tyump)+ SNR (dB) for real input signals

where T_ is the signal’s symbol period and T
period.

samp 18 the signal’s sampling

For example, if a complex baseband signal is oversampled by a factor of 4,
then E /N, exceeds the corresponding SNR by 10 log,,(4).

Derivation for Complex Input Signals. You can derive the relationship
between E /N, and SNR for complex input signals as follows:

E, /Ny (dB) =10logy ((S- Ty,) (N / B,))
=10logyg (T Fy) - (S/N))
=1010g1¢ (Tyym / Tsamp) + SNR (dB)

where

S = Input signal power, in watts

¢ N = Noise power, in watts

B, = Noise bandwidth, in Hertz

* F_= Sampling frequency, in Hertz

Note that B,= F, = 1/T

samp*

10-4

AWGN Channel

Behavior for Real and Complex Input Signals. The following figures
illustrate the difference between the real and complex cases by showing the
noise power spectral densities S (f) of a real bandpass white noise process
and its complex lowpass equivalent.

Sn(f)
No
f
-B/2 B/2
Complex Lowpass Noise Power Speciral Density
Sn(f)
—— B —— —— B——
tNg/2
t t f
-fc fc

Real Bandpass Noise Power Spectral Density

10-5

1 0 Channels

MIMO Channels

The new MIMO channel object supports multiple-input multiple output
simulations. You can specify correlated or uncorrelated fading between
channels. For more information, see the mimochan help page.

10-6

Fading Channels

Fading Channels

In this section...

“Section Overview” on page 10-7

“Overview of Fading Channels” on page 10-7

“Simulation of Multipath Fading Channels: Methodology” on page 10-9
“Specifying Fading Channels” on page 10-11

“Specifying the Doppler Spectrum of a Fading Channel” on page 10-15
“Configuring Channel Objects” on page 10-20

“Using Fading Channels” on page 10-23

“Examples Using Fading Channels” on page 10-24

“Using the Channel Visualization Tool” on page 10-34

Section Overview

Rayleigh and Rician fading channels are useful models of real-world
phenomena in wireless communications. These phenomena include multipath
scattering effects, time dispersion, and Doppler shifts that arise from relative
motion between the transmitter and receiver. This section gives a brief
overview of fading channels and describes how to implement them using

the toolbox.

Overview of Fading Channels

The figure below depicts direct and major reflected paths between a stationary
radio transmitter and a moving receiver. The shaded shapes represent
reflectors such as buildings.

7
-, (<
o7 Dind I
2 4

=~ - _ ’
_____ , 7 Reflected

Transmitter

10-7

1 0 Channels

10-8

The major paths result in the arrival of delayed versions of the signal at the
receiver. In addition, the radio signal undergoes scattering on a local scale
for each major path. Such local scattering is typically characterized by a
large number of reflections by objects near the mobile. These irresolvable
components combine at the receiver and give rise to the phenomenon known
as multipath fading. Due to this phenomenon, each major path behaves as
a discrete fading path. Typically, the fading process is characterized by a
Rayleigh distribution for a nonline-of-sight path and a Rician distribution
for a line-of-sight path.

The relative motion between the transmitter and receiver causes Doppler
shifts. Local scattering typically comes from many angles around the mobile.
This scenario causes a range of Doppler shifts, known as the Doppler
spectrum. The maximum Doppler shift corresponds to the local scattering
components whose direction exactly opposes the mobile’s trajectory.

Fading Channel Features of the Toolbox

The toolbox implements a baseband channel model for multipath propagation
scenarios that include

® N discrete fading paths, each with its own delay and average power gain. A
channel for which N =1 is called a frequency-flat fading channel. A channel
for which N > 1 is experienced as a frequency-selective fading channel by a
signal of sufficiently wide bandwidth.

¢ A Rayleigh or Rician model for each path.

e By default, each path of the channel is modeled with a Jakes Doppler
spectrum, with a maximum Doppler shift that can be specified. Other types
of Doppler spectra are allowed (identical or different for all paths): flat,
restricted Jakes, asymmetrical Jakes, Gaussian, bi-Gaussian, and rounded.

If the maximum Doppler shift is set to 0 or omitted during the construction
of a channel object, then the channel is modeled as static (i.e., the fading
does not evolve with time), and the Doppler spectrum specified has no
effect on the fading process.

Some additional information about typical values for delays and gains is in
“Choosing Realistic Channel Property Values” on page 10-21.

Fading Channels

Simulation of Multipath Fading Channels:
Methodology

The Rayleigh and Rician multipath fading channel simulators of this toolbox
use the band-limited discrete multipath channel model of section 9.1.3.5.2 in
[1]. It is assumed that the delay power profile and the Doppler spectrum of
the channel are separable [1]. The multipath fading channel is therefore

modeled as a linear finite impulse-response (FIR) filter. Let {s;} denote the
set of samples at the input to the channel. Then the samples {y;} at the
output of the channel are related to {s;} through:

N,
Yi = Z Si-n8n
n=-N,

where {g,} is the set of tap weights given by:
K T
8, = zaksinc|:—k—n], —N;i<n<Ny
i1 T

In the equations above:

e T, is the input sample period to the channel.

e {1}, where 1<k <K, is the set of path delays. K is the total number of
paths in the multipath fading channel.

* {a;}, where 1<k <K, is the set of complex path gains of the multipath
fading channel. These path gains are uncorrelated with each other.

* N; and Ny are chosen so that |g,| is small when n is less than —Ny

or greater than Nj.

Each path gain process a; is generated by the following steps:

10-9

1 0 Channels

10-10

1 A complex uncorrelated (white) Gaussian process with zero mean and unit
variance 1s generated in discrete time.

2 The complex Gaussian process is filtered by a Doppler filter with frequency

response H(f)=./S(f), where S(f) denotes the desired Doppler power
spectrum.

3 The filtered complex Gaussian process is interpolated so that its sample

period is consistent with that of the input signal. A combination of linear
and polyphase interpolation is used.

4 The resulting complex process Z, is scaled to obtain the correct average
path gain. In the case of a Rayleigh channel, the fading process is obtained

as:
a = \/Q—kzk

where

Q =E|[a[]

In the case of a Rician channel, the fading process is obtained as:

el K.\ ien fusoss t +000s5)
a, = Q k + Sk €J d,LOS i LOS &
* g [\/Kr,k 1 K, +1]

where Kr,k is the Rician K-factor of the k-th path, fd,Los,k is the Doppler

shift of the line-of-sight component of the k-th path (in Hz), and 9Los,k is
the initial phase of the line-of-sight component of the k-th path (in rad).

At the input to the band-limited multipath channel model, the transmitted
symbols must be oversampled by a factor at least equal to the bandwidth
expansion factor introduced by pulse shaping. For example, if sinc pulse
shaping is used, for which the bandwidth of the pulse-shaped signal is equal
to the symbol rate, then the bandwidth expansion factor is 1, and, in the ideal
case, at least one sample-per-symbol is required at the input to the channel.
If a raised cosine (RC) filter with a factor in excess of 1 is used, for which

the bandwidth of the pulse-shaped signal is equal to twice the symbol rate,

Fading Channels

then the bandwidth expansion factor is 2, and, in the ideal case, at least two
samples-per-symbol are required at the input to the channel.

References

[1] Jeruchim, M. C., Balaban, P., and Shanmugan, K. S., Simulation
of Communication Systems, Second Edition, New York, Kluwer
Academic/Plenum, 2000.

Specifying Fading Channels
This toolbox models a fading channel as a linear FIR filter. Filtering a signal
using a fading channel involves these steps:

1 Create a channel object that describes the channel that you want to use.
A channel object is a type of MATLAB variable that contains information
about the channel, such as the maximum Doppler shift.

2 Adjust properties of the channel object, if necessary, to tailor it to your
needs. For example, you can change the path delays or average path gains.

Note Setting the maximum path delay greater than 100 samples may
generate an ‘Out of memory’ error.

3 Apply the channel object to your signal using the filter function.

This section describes how to define, inspect, and manipulate channel objects.
The topics are:

e “Creating Channel Objects” on page 10-12

e “Viewing Object Properties” on page 10-12

® “Changing Object Properties” on page 10-14

e “Linked Properties of Channel Objects” on page 10-15

10-11

1 0 Channels

Creating Channel Objects

The rayleighchan and ricianchan functions create fading channel objects.
The table below indicates the situations in which each function is suitable.

Function Object Situation Modeled
rayleighchan Rayleigh fading One or more major
channel object reflected paths
ricianchan Rician fading channel One direct line-of-sight
object path, possibly combined
with one or more major
reflected paths

For example, the command below creates a channel object representing a
Rayleigh fading channel that acts on a signal sampled at 100,000 Hz. The
maximum Doppler shift of the channel is 130 Hz.

c1 = rayleighchan(1/100000,130); % Rayleigh fading channel object

The object c1 is a valid input argument for the filter function. To learn
how to use the filter function to filter a signal using a channel object, see
“Using Fading Channels” on page 10-23.

Duplicating and Copying Objects. Another way to create an object is to
duplicate an existing object and then adjust the properties of the new object, if
necessary. If you do this, it is important to use a copy command such as

c2 = copy(c1); % Copy c1 to create an independent c2.

instead of c2 = c1. The copy command creates a copy of c¢1 that is
independent of ¢1. By contrast, the command c2 = c1 creates c2 as merely a
reference to ¢1, so that c1 and ¢2 always have indistinguishable content.

Viewing Obiject Properties

A channel object has numerous properties that record information about
the channel model, about the state of a channel that has already filtered a
signal, and about the channel’s operation on a future signal. You can view
the properties in these ways:

10-12

Fading Channels

® To view all properties of a channel object, enter the object’s name in the
Command Window.

® To view a specific property of a channel object or to assign the property’s
value to a variable, enter the object’s name followed by a dot (period),
followed by the name of the property.

In the example below, entering ¢c1 causes MATLAB to display all properties
of the channel object ¢c1. Some of the properties have values from the
rayleighchan command that created c1, while other properties have default
values.

= rayleighchan(1/100000,130); % Create object.
% View all properties of c1.
= c1.PathGains % Retrieve the PathGains property of c1.

ct
ct
9

The output 1s
cl =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005
DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 130

PathDelays:
AvgPathGaindB:
NormalizePathGains:
StoreHistory:
StorePathGains:
PathGains:
ChannelFilterDelay:
ResetBeforeFiltering:
NumSamplesProcessed:

o

.2104 - 0.6197i

O+ 0000—=+0

g:
0.2104 - 0.61971

A Rician fading channel object has an additional property that does not
appear above, namely, a scalar KFactor property.

10-13

1 0 Channels

10-14

For more information about what each channel property means, see the
reference page for the rayleighchan or ricianchan function.

Changing Object Properties

To change the value of a writeable property of a channel object, issue an
assignment statement that uses dot notation on the channel object. More
specifically, dot notation means an expression that consists of the object’s
name, followed by a dot, followed by the name of the property.

The example below illustrates how to change the ResetBeforeFiltering
property, indicating you do not want to reset the channel before each filtering
operation.

c¢1 = rayleighchan(1/100000,130) % Create object.
c1.ResetBeforeFiltering = 0 % Do not reset before filtering.

The output below displays all the properties of the channel object before and
after the change in the value of the ResetBeforeFiltering property. In
the second listing of properties, the ResetBeforeFiltering property has
the value 0.

cl =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005
DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 130

PathDelays:
AvgPathGaindB:
NormalizePathGains:
StoreHistory:
StorePathGains:
PathGains:
ChannelFilterDelay:
ResetBeforeFiltering:
NumSamplesProcessed:

o

.2104 - 0.61971

O -+~ 00000-—=-0

c1

ChannelType: 'Rayleigh'

Fading Channels

InputSamplePeriod: 1.0000e-005
DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 130

PathDelays:
AvgPathGaindB:
NormalizePathGains:
StoreHistory:
StorePathGains:
PathGains:
ChannelFilterDelay:
ResetBeforeFiltering:
NumSamplesProcessed:

o

.2104 - 0.6197i

[eNelNelNelNelNoR el

Note Some properties of a channel object are read-only. For example, you
cannot assign a new value to the NumSamplesProcessed property because the
channel automatically counts the number of samples it has processed since
the last reset.

Linked Properties of Channel Objects

Some properties of an channel object are related to each other such that when
one property’s value changes, another property’s value must change in some
corresponding way to keep the channel object consistent. For example, if you
change the vector length of PathDelays, then the value of AvgPathGaindB
must change so that its vector length equals that of the new value of
PathDelays. This is because the length of each of the two vectors equals the
number of discrete paths of the channel. For details about linked properties
and an example, see the reference page for rayleighchan or ricianchan.

Specifying the Doppler Spectrum of a Fading Channel

The Doppler spectrum of a channel object is specified through its
DopplerSpectrum property. The value of this property must be either:

¢ A Doppler object. In this case, the same Doppler spectrum applies to each
path of the channel object.

10-15

1 0 Channels

10-16

® A vector of Doppler objects of the same length as the PathDelays vector
property. In this case, the Doppler spectrum of each path is given by the
corresponding Doppler object in the vector.

A Doppler object contains all the properties used to characterize the Doppler
spectrum, with the exception of the maximum Doppler shift, which is a
property of the channel object. This section describes how to create and
manipulate Doppler objects, and how to assign them to the DopplerSpectrum
property of channel objects.

Creating Doppler Objects

The sole purpose of Doppler objects is to specify the value of the
DopplerSpectrum property of channel objects. Doppler objects can be created
using one of seven functions: doppler.ajakes, doppler.bigaussian,
doppler.jakes, doppler.rjakes, doppler.flat, doppler.gaussian, and
doppler.rounded. For a description of each of these functions and the
underlying theory, refer to their corresponding reference pages.

For example, a Gaussian spectrum with a normalized (by the maximum
Doppler shift of the channel) standard deviation of 0.1, can be created as:

d = doppler.gaussian(0.1);

Duplicating Doppler Objects

As in the case of channel objects, Doppler objects can be duplicated using the
copy function. The command.:

d2 = copy(dl);

creates a Doppler object d2 with the same properties as that of d1. d1 and d2
are then separate instances of a Doppler object, in that modifying either one
will not affect the other. Using d1 = d2 instead will cause both d1 and d2 to
reference the same instance of a Doppler object, in that modifying either one
will cause the same modification to the other.

Viewing and Changing Doppler Object Properties

The syntax for viewing and changing Doppler object properties is the same as
for the case of channel objects (see “Viewing Object Properties” on page 10-12

Fading Channels

and “Changing Object Properties” on page 10-14). The function disp can be
used with Doppler objects to display their properties.

In the following example, a rounded Doppler object with default properties is
created and displayed, and the third element of its CoeffRounded property
is modified:

dr = doppler.rounded
dr =

SpectrumType: 'Rounded’
CoeffRounded: [1 -1.7200 0.7850]

dr.CoeffRounded(3) = 0.8250

SpectrumType: 'Rounded’
CoeffRounded: [1 -1.7200 0.8250]

Note that the property SpectrumType, which is common to all Doppler objects,
is read-only. It is automatically specified at object construction, and cannot
be modified. If you wish to use a different Doppler spectrum type, you need
to create a new Doppler object of the desired type.

Using Doppler Objects Within Channel Objects

The DopplerSpectrum property of a channel object can be changed by
assigning to it a Doppler object or a vector of Doppler objects. The following
example 1llustrates how to change the default Jakes Doppler spectrum of a
constructed Rayleigh channel object to a flat Doppler spectrum:

>> h = rayleighchan(1/9600, 100)

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0417e-004
DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 100

10-17

1 0 Channels

PathDelays:
AvgPathGaindB:
NormalizePathGains:
StoreHistory:
StorePathGains:
PathGains:
ChannelFilterDelay:
ResetBeforeFiltering:
NumSamplesProcessed:

>> dop_flat =

dop_flat =
SpectrumType: 'Flat'’

>> h.DopplerSpectrum =

h:

ChannelType:
InputSamplePeriod:
DopplerSpectrum:
MaxDopplerShift:
PathDelays:
AvgPathGaindB:
NormalizePathGains:
StoreHistory:
StorePathGains:
PathGains:
ChannelFilterDelay:
ResetBeforeFiltering:
NumSamplesProcessed:

doppler.flat

oo —=+0O0

0.4007 - 0.2748i

o = O

dop_flat

‘Rayleigh'
1.0417e-004

[1x1 doppler.flat]
100

0

oo =0

0.4121 - 0.25361

o = O

The following example shows how to change the default Jakes Doppler
spectrum of a constructed Rician channel object to a Gaussian Doppler
spectrum with normalized standard deviation of 0.3, and subsequently display
the DopplerSpectrum property, and change the value of the normalized

standard deviation to 1.1:

10-18

Fading Channels

>> h = ricianchan(1/9600,
>> h.DopplerSpectrum =

h:

ChannelType:
InputSamplePeriod:
DopplerSpectrum:
MaxDopplerShift:

100, 2);
doppler.gaussian(0.3)

'Rician’

1.0417e-004

[1x1 doppler.gaussian]
100

o

PathDelays:
AvgPathGaindB:
KFactor:
DirectPathDopplerShift:
DirectPathInitPhase:
NormalizePathGains:
StoreHistory:
StorePathGains:
PathGains:
ChannelFilterDelay:
ResetBeforeFiltering:
NumSamplesProcessed:

.8073 - 0.0769i

O 20000 —+00NO

>> h.DopplerSpectrum
ans =

SpectrumType: 'Gaussian'
SigmaGaussian: 0.3000

>> h.DopplerSpectrum.SigmaGaussian = 1.1;

The following example illustrates how to change the default Jakes Doppler
spectrum of a constructed three-path Rayleigh channel object to a vector of
different Doppler spectra, and then change the properties of the Doppler
spectrum of the third path:

>> h = rayleighchan(1/9600, 100, [0 1e-4 2.1e-4]);
>> h.DopplerSpectrum = [doppler.flat doppler.flat doppler.rounded]

h =

10-19

1 0 Channels

10-20

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0417e-004
DopplerSpectrum: [3x1 doppler.baseclass]
MaxDopplerShift: 100
PathDelays: [0 1.0000e-004 2.1000e-004]
AvgPathGaindB: [0 O 0]
NormalizePathGains: 1
StoreHistory: 0
StorePathGains: 0
PathGains: [0.4233 - 0.11131 -0.0785 + 0.16671
-0.2064 + 0.35311i]
ChannelFilterDelay: 3
ResetBeforeFiltering: 1
NumSamplesProcessed: 0

>> h.DopplerSpectrum(3).CoeffRounded = [1 -1.21 0.7];
If the DopplerSpectrum property of a channel object is a vector:

e [f the length of the PathDelays vector property is increased, the length
of DopplerSpectrum is automatically increased to match the length of
PathDelays, by appending Jakes Doppler objects.

e [f the length of the PathDelays vector property is decreased, the length
of DopplerSpectrum is automatically decreased to match the length of
PathDelays, by removing the last Doppler object(s).

Configuring Channel Objects

Before you filter a signal using a channel object, make sure that the properties
of the channel have suitable values for the situation you want to model. This
section offers some guidelines to help you choose realistic values that are
appropriate for your modeling needs. The topics are

® “Choosing Realistic Channel Property Values” on page 10-21
e “Configuring Channel Objects Based on Simulation Needs” on page 10-23

The syntaxes for viewing and changing values of properties of channel objects
are described in “Specifying Fading Channels” on page 10-11.

Fading Channels

Choosing Realistic Channel Property Values

Here are some tips for choosing property values that describe realistic
channels:

Path Delays

® By convention, the first delay is typically set to zero. The first delay
corresponds to the first arriving path.

¢ For indoor environments, path delays after the first are typically between 1
ns and 100 ns (that is, between 1e-9 s and le-7 s).

¢ For outdoor environments, path delays after the first are typically between
100 ns and 10 ps (that is, between 1le-7 s and 1e-5 s). Very large delays
in this range might correspond, for example, to an area surrounded by
mountains.

Note Setting the maximum path delay greater than 100 samples may
generate an ‘Out of memory’ error.

¢ The ability of a signal to resolve discrete paths is related to its bandwidth.
If the difference between the largest and smallest path delays is less than
about 1% of the symbol period, then the signal experiences the channel
as if it had only one discrete path.

Average Path Gains

® The average path gains in the channel object indicate the average power
gain of each fading path. In practice, an average path gain value is a large
negative dB value. However, computer models typically use average path
gains between -20 dB and 0 dB.

¢ The dB values in a vector of average path gains often decay roughly
linearly as a function of delay, but the specific delay profile depends on the
propagation environment.

¢ To ensure that the expected value of the path gains’ total power is 1, you
can normalize path gains via the channel object’s NormalizePathGains

property.

10-21

1 0 Channels

10-22

Maximum Doppler Shifts

Some wireless applications, such as standard GSM (Global System for
Mobile Communication) systems, prefer to specify Doppler shifts in terms
of the speed of the mobile. If the mobile moves at speed v (m/s), then the
maximum Doppler shift is calculated as follows, where f is the transmission
carrier frequency in Hertz and c is the speed of light (3e8 m/s).

_u

c

fa

Based on this formula in terms of the speed of the mobile, a signal from

a moving car on a freeway might experience a maximum Doppler shift of
about 80 Hz, while a signal from a moving pedestrian might experience a
maximum Doppler shift of about 4 Hz. These figures assume a transmission
carrier frequency of 900 MHz.

A maximum Doppler shift of 0 corresponds to a static channel that comes
from a Rayleigh or Rician distribution.

K-Factor for Rician Fading Channels

The Rician K-factor specifies the ratio of specular-to-diffuse power for a
direct line-of-sight path. The ratio is expressed linearly, not in dB.

For Rician fading, the K-factor is typically between 1 and 10.
A K-factor of 0 corresponds to Rayleigh fading.

Doppler Spectrum Parameters

See the reference pages for the respective Doppler objects for descriptions
of the parameters and their significance.

Fading Channels

Configuring Channel Objects Based on Simulation Needs

Here are some tips for configuring a channel object to customize the filtering
process:

e [f your data is partitioned into a series of vectors (that you process within
a loop, for example), you can invoke the filter function multiple times
while automatically saving the channel’s state information for use in a
subsequent invocation. The state information is visible to you in the
channel object’s PathGains and NumSamplesProcessed properties, but also
involves properties that are internal rather than visible.

Note To maintain continuity from one invocation to the next, you must set
the ResetBeforeFiltering property of the channel object to 0.

¢ [fyou set the ResetBeforeFiltering property of the channel object to 0
and want the randomness to be repeatable, use the reset function before
filtering any signals to reset both the channel and the state of the internal
random number generator.

¢ If you want to reset the channel before a filtering operation so that it does
not use any previously stored state information, either use the reset
function or set the ResetBeforeFiltering property of the channel object
to 1. The former method resets the channel object once, while the latter
method causes the filter function to reset the channel object each time
you invoke it.

¢ [If you want to normalize the fading process so that the expected value of
the path gains’ total power is 1, set the NormalizePathGains property
of the channel object to 1.

Using Fading Channels

After you have created a channel object as described in “Specifying Fading
Channels” on page 10-11, you can use the filter function to pass a signal
through the channel. The arguments to filter are the channel object and the
signal. At the end of the filtering operation, the channel object retains its state
so that you can find out the final path gains or the total number of samples
that the channel has processed since it was created or reset. If you configured
the channel to avoid resetting its state before each new filtering operation

10-23

1 0 Channels

(ResetBeforeFiltering is 0), then the retention of state information is
important for maintaining continuity between successive filtering operations.

For an example that illustrates the basic syntax and state retention, see
“Power of a Faded Signal” on page 10-25.

If you want to use the channel visualization tool to plot the characteristics of
a channel object, you need to set the StateHistory property of the channel
object to 1 so that it is populated with plot information. See “Using the
Channel Visualization Tool” on page 10-34 for details.

Compensating for Fading

A communication system involving a fading channel usually requires
component(s) that compensate for the fading. Here are some typical
approaches:

¢ Differential modulation or a one-tap equalizer can help compensate for a
frequency-flat fading channel.
® An equalizer with multiple taps can help compensate for a

frequency-selective fading channel.

See Chapter 11, “Equalizers” to learn how to implement equalizers in this
toolbox. See the dpskmod reference page or the example in “Comparing
Empirical Results to Theoretical Results” on page 10-26 to learn how to
implement differential modulation.

Examples Using Fading Channels
The following examples use fading channels:

e “Power of a Faded Signal” on page 10-25

¢ “Comparing Empirical Results to Theoretical Results” on page 10-26
e “Working with Delays” on page 10-28

® “Quasi-Static Channel Modeling” on page 10-29

¢ “Filtering Using a Loop” on page 10-31

e “Storing Channel State History” on page 10-33

10-24

Fading Channels

Power of a Faded Signal

The code below plots a faded signal’s power (versus sample number). The
code also illustrates the syntax of the filter and rayleighchan functions
and the state retention of the channel object. Notice from the output that
NumSamplesProcessed equals the number of elements in sig, the signal.

¢ = rayleighchan(1/10000,100);
sig = j*ones(2000,1); % Signal
y = filter(c,sig); % Pass signal through channel.
Cc % Display all properties of the channel object.

% Plot power of faded signal, versus sample number.
plot(20*1log10(abs(y)))

The output and the plot follow.
C =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-004
DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 100
PathDelays: 0

AvgPathGaindB: 0
NormalizePathGains: 1
StoreHistory: 0
StorePathGains: 0

PathGains: -1.1700 + 0.12881i
ChannelFilterDelay: O
ResetBeforeFiltering: 1
NumSamplesProcessed: 2000

10-25

1 0 Channels

T —— ~=lol x|

File Edit Wiew Insert Tools Desktop Window Help

10

250
30k

.35 L L L
0 500 1000 1500 2000

Comparing Empirical Results to Theoretical Results

The code below creates a frequency-flat Rayleigh fading channel object and
uses it to process a DBPSK signal consisting of a single vector. The example
continues by computing the bit error rate of the system for different values
of the signal-to-noise ratio. Notice that the example uses filter before

awgn; this is the recommended sequence to use when you combine fading
with AWGN.

% Create Rayleigh fading channel object.
chan = rayleighchan(1/10000,100);

nerate data and apply fading channel.
2; % DBPSK modulation order
hMod = modem.dpskmod('M', M); % Create a DPSK modulator
hDemod = modem.dpskdemod(hMod); % Create a DPSK

% demodulator using the modulator object
tx = randint (50000,1,M); % Random bit stream
dpskSig = modulate(hMod, tx); 9% DPSK signal
fadedSig = filter(chan,dpskSig); % Effect of channel

% Ge

=

% Compute error rate for different values of SNR.
SNR = 0:2:20; % Range of SNR values, in dB.
for n = 1:1ength(SNR)

10-26

Fading Channels

end

rxSig = awgn(fadedSig,SNR(n)); % Add Gaussian noise.
rx = demodulate(hDemod, rxSig); % Demodulate.

reset (hDemod) ;

% Compute error rate.

[nErrors, BER(n)] = biterr(tx,rx);

% Compute theoretical performance results, for comparison.
BERtheory = berfading(SNR, 'dpsk',M,1);

% Plot BER results.

semilogy (SNR,BERtheory, 'b-',SNR,BER, 'r*');
legend('Theoretical BER', 'Empirical BER');
xlabel('SNR (dB)'); ylabel('BER');

title('Binary DPSK over Rayleigh Fading Channel');

With the parameters in the preceding code, the fading is slow enough to be
considered the same across two consecutive samples.

The resulting plot shows that the simulation results are close to the
theoretical results computed by berfading.

Ty —— ~=lol x|

File Edit Wiew Insert Tools Desktop Window Help

BER

Binary DPSK over Rayleigh Fading Channel

Theoretical BER
4 Empirical BER

SNR (dE)

10-27

1 0 Channels

10-28

Working with Delays

The value of a channel object’s ChannelFilterDelay property is the number
of samples by which the output of the channel lags the input. If you compare
the input and output data sets directly, you must take the delay into account
by using appropriate truncating or padding operations.

The example illustrates one way to account for the delay before computing
a bit error rate.

M = 2; % DQPSK modulation order
bitRate = 50000;
hMod = modem.dpskmod('M', M); % Create a DPSK modulator
hDemod = modem.dpskdemod(hMod); % Create a DPSK
% demodulator using the modulator object

% Create Rayleigh fading channel object.
ch = rayleighchan(1/bitRate,4,[0 0.5/bitRate],[0 -10]);
delay = ch.ChannelFilterDelay;

tx = randint(50000,1,M); % Random bit stream

dpskSig = modulate(hMod,tx); % DPSK signal

fadedSig = filter(ch,dpskSig); % Effect of channel

rx = demodulate(hDemod,fadedSig); % Demodulated signal

% Compute bit error rate, taking delay into account.

% Truncate to account for channel delay.

tx_trunc = tx(1:end-delay); rx_trunc = rx(delay+i:end);
[num,ber] = biterr(tx_trunc,rx_trunc) % Bit error rate

The output below shows that the error rate is small. If the example had not
compensated for the channel delay, the error rate would have been close to 1/2.

num =

0.0169

Fading Channels

More Information About Working with Delays. The discussion in
“Effect of Delays on Recovery of Convolutionally Interleaved Data” on page
7-10 describes two typical ways to compensate for delays. Although the
discussion there is about interleaving operations instead of channel modeling,
the techniques involving truncating and padding data are equally applicable
to channel modeling.

Quasi-Static Channel Modeling

Typically, a path gain in a fading channel changes insignificantly over a
period of 1/(100f,) seconds, where f; is the maximum Doppler shift. Because
this period corresponds to a very large number of bits in many modern
wireless data applications, assessing performance over a statistically
significant range of fading entails simulating a prohibitively large amount
of data. Quasi-static channel modeling provides a more tractable approach,
which you can implement using these steps:

1 Generate a random channel realization using a maximum Doppler shift
of 0.

2 Process some large number of bits.
3 Compute error statistics.

4 Repeat these steps many times to produce a distribution of the performance
metric.

The example below illustrates the quasi-static channel modeling approach.

M = 4; % DQPSK modulation order
hMod = modem.dpskmod('M', M); % Create a DPSK modulator
hDemod = modem.dpskdemod(hMod); % Create a DPSK

% demodulator using the modulator object
numBits = 10000; % Each trial uses 10000 bits.
numTrials = 20; % Number of BER computations

o°

Note: In reality, numTrials would be a large number
to get an accurate estimate of outage probabilities
or packet error rate.

Use 20 here just to make the example run more quickly.

o® o°

o°

10-29

1 0 Channels

10-30

% Create Rician channel object.

chan = ricianchan; % Static channel

chan.KFactor = 3; % Rician K-factor

% Because chan.ResetBeforeFiltering is 1 by default,
% FILTER resets the channel in each trial below.

% Compute error rate once for each independent trial.
for n = 1:numTrials
tx randint (numBits,1,M); % Random bit stream
dpskSig = modulate(hMod, tx); DPSK signal
fadedSig = filter(chan, dpskSi % Effect of channel
rxSig = awgn(fadedSig,20); % Gaussian noise.
rx = demodulate(hDemod,rxSig) Demodulate.

9);
Add
HE]
% Compute number of symbol errors.
% Ignore first sample because of DPSK initial condition.
nErrors(n) = symerr(tx(2:end),rx(2:end))
end
per = mean(nErrors > 0) % Proportion of packets that had errors

While the example runs, the Command Window displays the growing list of
symbol error counts in the vector nErrors. It also displays the packet error
rate at the end. The sample output below shows a final value of nErrors and
omits intermediate values. Your results might vary because of randomness
in the example.

nErrors =
Columns 1 through 9
0 0 0 0 0 0 0 0 0
Columns 10 through 18
0 0 0 0 7 0 0 0 0
Columns 19 through 20

0 216

Fading Channels

per =
0.1000

More About the Quasi-Static Technique. As an example to show how the
quasi-static channel modeling approach can save computation, consider a
wireless local area network (LAN) in which the carrier frequency is 2.4 GHz,
mobile speed is 1 m/s, and bit rate is 10 Mb/s. The following expression shows
that the channel changes insignificantly over 12,500 bits:

[1 s](me/s):(¢ sj(lOMb/s)
1007, 1000f

_ 3x10%m/s
~100(1 m/s)(2.4 GHz)
=12,500 b

(10 Mb/s)

A traditional Monte Carlo approach for computing the error rate of this system
would entail simulating thousands of times the number of bits shown above,
perhaps tens of millions of bits. By contrast, a quasi-static channel modeling
approach would simulate a few packets at each of about 100 locations to
arrive at a spatial distribution of error rates. From this distribution one could
determine, for example, how reliable the communication link is for a random
location within the indoor space. If each simulation contains 5,000 bits, 100
simulations would process half a million bits in total. This is substantially
fewer bits compared to the traditional Monte Carlo approach.

Filtering Using a Loop

The section “Configuring Channel Objects Based on Simulation Needs” on
page 10-23 indicates how to invoke the filter function multiple times while
maintaining continuity from one invocation to the next. The example below
invokes filter within a loop and uses the small data sets from successive
iterations to create an animated effect. The particular channel in this example
is a Rayleigh fading channel with two discrete major paths.

% Set up parameters.
= 4; % QPSK modulation order

=

10-31

1 0 Channels

bitRate = 50000; % Data rate is 50 kb/s.
numTrials = 125; % Number of iterations of loop

% Create Rayleigh fading channel object.

ch = rayleighchan(1/bitRate,4,[0 2e-5]1,[0 -9]1);

% Indicate that FILTER should not reset the channel
% in each iteration below.

ch.ResetBeforeFiltering = 0;

o°

Initialize scatter plot.
= scatterplot(0);

=

% Apply channel in a loop, maintaining continuity.
% Plot only the current data in each iteration.
for n = 1:numTrials
tx = randint(500,1,M); % Random bit stream
pskSig = pskmod(tx,M); % PSK signal
fadedSig = filter(ch, pskSig); % Effect of channel

% Plot the new data from this iteration.
h = scatterplot(fadedSig,1,0,'b."',h);
axis([-1.8 1.8 -1.8 1.8]) % Adjust axis limits.
drawnow; % Refresh the image.

end

The scatter plot changes with each iteration of the loop, and the exact content
varies because the fading process involves random numbers. Following are
some snapshots of typical images that the example can produce.

10-32

Fading Channels

Il
Fle Edit View Insert Tools Desktop Window Help
Scatter plot
18 4
-
1
® 0.5
g g™ \ LN
g s S
< 05
A
”
=il& 77
18 -1 058 0 05 15

In-Phase

Sample Scatter Plot (a)

~) Figure 1: Scatter Plok

—lo|]

Fle Edit View Insert Tools Desktop Window Help

Scatter plot

1.5

1 s, -
o U5 -~
£ (I
£ a
s [
(=} 05 \ lﬁ -

- -

RE

45 1 D5 0 D05 15

In-Phase

Sample Scatter Plot (b)

Storing Channel State History

By default, the PathGains property of a channel object stores the current
complex path gain vector.

Setting the StoreHistory property of a channel to true makes it store the
last N path gain vectors, where N is the length of the vector processed through

the channel. The following code illustrates this property:

h = rayleighchan(1/100000, 130);
tx = randint (10,
dpskSig = dpskmod(tx, 2);
h.StoreHistory

1, 2);

true;

o°

Rayleigh channel

Random bit stream

DPSK signal

Allow states to be stored

o° o

o°

10-33

1 0 Channels

y = filter(h, dpskSig); % Run signal through channel
h.PathGains % Display the stored path gains data

h.PathGains =

-0.0460 - 1.18731
-0.0439 - 1.18811
-0.0418 - 1.1889i
-0.0397 - 1.1898i
-0.0376 - 1.19041i
-0.0355 - 1.1912i
-0.0334 - 1.19201
-0.0313 - 1.1928i
-0.0296 - 1.1933i
-0.0278 - 1.1938i

The last element is the current path gain of the channel.

Setting StoreHistory to true significantly slows down the execution speed of
the channel’s filter function.

Using the Channel Visualization Tool

Communications Toolbox software provides a plotting function that helps you
visualize the characteristics of a fading channel using a GUI. See “Fading
Channels” on page 10-7 for a description of fading channels and objects.

To open the channel visualization tool, type plot(h) at the command line,
where h is a channel object that contains plot information. To populate a

channel object with plot information, run a signal through it after setting
its StoreHistory property to true.

For example, the following code opens the channel visualization tool showing
a three-path Rayleigh channel through which a random signal is passed:

% Three-Path Rayleigh channel

h rayleighchan(1/100000, 130, [0 1.5e-5 3.2e-5], [0, -3, -31);
tx = randint (500, 1, 2); % Random bit stream

dpskSig = dpskmod(tx, 2); % DPSK signal

h.StoreHistory = true; % Allow states to be stored

10-34

Fading Channels

y = filter(h, dpskSig); % Run signal through channel
plot(h); % Call Channel Visualization Tool

) Multipath Channel 10| =l
Yizualization: IImpuIse Response (IR j A mirnation: Ilnterframe only vI

Fratne count: 1 Sarnple index: {l |>| Pause I

500

Bandlimited impulse response

Magnitude

See “Examples of Using the Channel Visualization Tool” on page 10-46 for the
basic usage cases of the channel visualization tool.

This tool can also be accessed from Communications Blockset software.

Parts of the GUI

The Visualization pull-down menu allows you to choose the visualization
method. See “Visualization Options” on page 10-36 for details.

The Frame count counter shows the index of the current frame. It shows the

number of frames processed by the filter method since the channel object was
constructed or reset. A frame is a vector of M elements, interpreted to be M

10-35

1 0 Channels

10-36

successive samples that are uniformly spaced in time, with a sample period
equal to that specified for the channel.

The Sample index slider control indicates which channel snapshot is
currently being displayed, while the Pause button pauses a running
animation until you click it again. The slider control and Pause button apply
to all visualizations except the Doppler Spectrum.

The Animation pull-down menu allows you to select how you want to display
the channel snapshots within each frame. Setting this to Slow makes the
tool show channel snapshots in succession, starting at the sample set by the
Sample index slider control. Selecting Medium or Fast makes the tool show
fewer uniformly spaced snapshots, allowing you to go through the channel
snapshots more rapidly. Selecting Interframe only (the default selection)
prevents automatic animation of snapshots within the same frame. The
Animation menu applies to all visualizations except the Doppler Spectrum.

Visualization Options

The channel visualization tool plots the characteristics of a filter in various
ways. Simply choose the visualization method from the Visualization menu,
and the plot updates itself automatically.

The following visualization methods are currently available:
Impulse Response (IR). This plot shows the magnitudes of two impulse

responses: the multipath response (infinite bandwidth) and the bandlimited
channel response.

Fading Channels

Bandlimited impulse response

7] SRR S T S]

hagnitude
T

The multipath response is represented by stems, each corresponding to one
multipath component. The component with the smallest delay value is shown
in red, and the component with the largest delay value is shown in blue.
Components with intermediate delay values are shades between red and blue,
becoming more blue for larger delays.

The bandlimited channel response is represented by the green curve. This
response is the result of convolving the multipath impulse response, described
above, with a sinc pulse of period, T, equal to the input signal’s sample period.

The solid green circles represent the channel filter response sampled at rate
1/T. The output of the channel filter is the convolution of the input signal
(sampled at rate 1/T) with this discrete-time FIR channel filter response. For
computational speed, the response is truncated.

The hollow green circles represent sample values not captured in the channel
filter response that is used for processing the input signal.

Note that these impulse responses vary over time. You can use the slider to

visualize how the impulse response changes over time for the current frame
(i.e., input signal vector over time).

10-37

1 0 Channels

Frequency Response (FR). This plot shows the magnitude (in dB) of the
frequency response of the multipath channel over the signal bandwidth.

Fregquency response
1|:| .. R R :

Magnitude [dB)

A E

=40 | I
-5000 0 5000
Frequency (Hz)

As with the impulse response visualization, you can visualize how this
frequency response changes over time.

10-38

Fading Channels

IR Waterfall. This plot shows the evolution of the magnitude impulse
response over time.

Bandlimited impulse response

Magnitude

5 1d 15
Delay (=)

Time offzet (3] 0

It shows 10 snapshots of the bandlimited channel impulse response within
the last frame, with the darkest green curve showing the current response.

The time offset is the time of the channel snapshot relative to the current
response time.

10-39

1 0 Channels

Phasor Trajectory. This plot shows phasors (vectors representing magnitude
and phase) for each multipath component, using the same color code that was
used for the impulse response plot.

Marrowband phasar trajectary

The phasors are connected end to end in order of path delay, and the
trajectory of the resultant phasor is plotted as a green line. This resultant
phasor is referred to as the narrowband phasor.

This plot can be used to determine the impact of the multipath channel

on a narrowband signal. A narrowband signal is defined here as having

a sample period much greater than the span of delays of the multipath
channel (alternatively, a signal bandwidth much smaller than the coherence
bandwidth of the channel). Thus, the multipath channel can be represented
by a single complex gain, which is the sum of all the multipath component
gains. When the narrowband phasor trajectory passes through or near the
origin, it corresponds to a deep narrowband fade.

10-40

Fading Channels

Multipath Components. This plot shows the magnitudes of the multipath
gains over time, using the same color code as that used for the multipath
impulse response.

Multipath fading components

-20

Companents (dB)

Ak S S DA e, S SR

400 d
24.430 24.440 5

The triangle marker and vertical dashed line represent the start of the
current frame. If a frame has been processed previously, its multipath gains
may also be displayed.

10-41

1 0 Channels

Multipath Gain. This plot shows the collective gains for the multipath
channel for three signal bandwidths.

hfultipath gain

1|:| IRERRRE S
E _1|:|
= .
= :
5 _2|:|
20 w BV L SORORE IO
— — — Signal BW :
+ Marrowband : : :
'-"-U:I T T T 1 1 1 1 1 1 1
4 -3 -7 5] -5 -4 -3 -2 -1 0
Time offzet () Tk

A collective gain is the sum of component magnitudes, as explained in the
following:

e Narrowband (magenta dots): This is the magnitude of the narrowband
phasor in the above trajectory plot. This curve is sometimes referred to
as the narrowband fading envelope.

¢ Current signal bandwidth (dashed blue line): This is the sum of the
magnitudes of the channel filter impulse response samples (the solid green
dots in the impulse response plot). This curve represents the maximum
signal energy that can be captured using a RAKE receiver. Its value (or
metrics, such as theoretical BER, derived from it) is sometimes referred to
as the matched filter bound.

¢ Infinite bandwidth (solid red line): This is the sum of the magnitudes of the
multipath component gains.

In general, the variability of this multipath gain, or of the signal fading,
decreases as signal bandwidth is increased, because multipath components

10-42

Fading Channels

become more resolvable. If the signal bandwidth curve roughly follows the
narrowband curve, you might describe the signal as narrowband. If the signal
bandwidth curve roughly follows the infinite bandwidth curve, you might
describe the signal as wideband. With the right receiver, a wideband signal
exploits the path diversity inherent in a multipath channel.

Doppler Spectrum. This plot shows up to two Doppler spectra.

Dappler Spectrum for path 1 (Measured data updated)

0014 b oo R ST Treoretical |
TNiL1] T g S L + Measurement |:
A : : . . i
Do : : :

001 koo ﬁ* e R o ; Iﬁ'i
: : : : b i
googg-o-oeee 1?‘ % Ilf|I
4 b | A |

OO0G b ;]ﬁ"\’\f&f e SR ‘/;.-'Lo% f
4 : 2 25 : . i

ooo4 b | %* PP+ B, - S I
R~ A S

0002 ke f e L 1 5
0 i ; i i A]
-150 -100 -o0] ad 100 150

Frequency (Hz)

The first Doppler spectrum, represented by the dashed red line, is a theoretical
spectrum based on the Doppler filter response used in the multipath channel
model. In the preceding plot, the theoretical Doppler spectrum used for the
multipath channel model is known as the Jakes spectrum. Note that the
plotted Doppler spectrum is normalized to have a total power of 1. This
Doppler spectrum is used to determine a Doppler filter response. For practical
purposes, the Doppler filter response is truncated, which has the effect of
modifying the Doppler spectrum, as shown in the plot.

The second Doppler spectrum, represented by the blue dots, is determined
by measuring the power spectrum of the multipath fading channel as the
model generates path gains. This measurement is meaningful only after
enough path gains have been generated. The title above the plot reports how

10-43

1 0 Channels

10-44

many samples need to be processed through the channel before either the first
Doppler spectrum or an updated spectrum can be plotted.

The Path Number edit box allows you to visualize the Doppler spectrum of
the specified path. The value entered in this box must be a valid path number,
1.e., between 1 and the length of the PathDelays vector property. Once you
change the value of this field, the new Doppler spectrum will appear as soon
as the processing of the current frame has ended.

If the measured Doppler spectrum is a good approximation of the theoretical
Doppler spectrum, the multipath channel model has generated enough fading
gains to yield a reasonable representation of the channel statistics. For
instance, if you want to determine the average BER of a communications link
with a multipath channel and you want a statistically accurate measure of
this average, you may want to ensure that the channel has processed enough
samples to yield at least one Doppler spectrum measurement.

It is possible that a multipath channel (e.g., a Rician channel) can have both
specular (line-of-sight) and diffuse components. In such a case, the Doppler
spectrum would have both a line component and a wideband component.
The channel visualization tool only shows the wideband component for the
Doppler spectrum.

Unlike other visualizations, the Doppler spectrum visualization does

not support animation. Because there is no intraframe data to plot, the
visualization tool only updates the channel statistics at the end of each frame
and therefore cannot pause in the middle of a frame. If you switch to the
Doppler spectrum visualization from a different visualization that is in pause
mode, the Pause button is subsequently disabled. Disabling pause avoids
interaction problems between the Doppler spectrum visualization and other
animation-style visualizations.

Scattering Function. This plot shows the Doppler spectra of each path
versus the path delays, using the same color code as that used for the
multipath impulse response.

Fading Channels

Scattering Function (Measured data updated)

2 : . - :
o : : : — — — Theoretical
0.002 ln + Measurement

50 1l a0

- -100
150 Freguency (Hz)

The principle of operation of the Scattering Function plot is similar to that of
the Doppler Spectrum plot. The main difference is that the Doppler spectra
on this plot are not normalized as they are on the Doppler Spectrum plot, in
order to better visualize the power delay profile.

Composite Plots. Several composite plots are also available. These are
chosen by selecting the following from the Visualization pull-down menu:

e IR and FR for impulse response and frequency response plots.

e Components and Gain for multipath components and multipath gain plots.
® Components and IR for multipath components and impulse response plots.

e Components, IR, and Phasor for multipath components, impulse
response, and phasor trajectory plots.

10-45

1 0 Channels

Examples of Using the Channel Visualization Tool
Here are two examples that show how you might interact with the GUI.

® “Visualizing Samples Within a Frame” on page 10-46
® “Animating Snapshots Across Frames” on page 10-46
Visualizing Samples Within a Frame. This example shows how to

visualize samples within a frame through animation. The following lines of
code create a Rayleigh channel and open the channel visualization tool:

% Create a fast fading channel
h = rayleighchan(1e-4, 100, [0 1.1e-4], [0 0]);

o°

h.StoreHistory = 1;
y = filter(h, ones(100,1));
plot(h);

Allow states to be stored
Process samples through channel
Open channel visualization tool

o°

o°

After selecting a visualization option and a speed in the Animation menu,
move the Sample index slider control all the way to the left and click
Resume. The slider control moves by itself during animation. The sample
index increments automatically to show which snapshot you are visualizing.

You can also move the slider control and glance through the samples of the
frame as you like.

Animating Snapshots Across Frames. This example shows how to
animate snapshots across frames. The following lines of code call the filter
and plot methods within a loop to accomplish this:

Ts = 1e-4; % Sample period (s)
fd Maximum Doppler shift

1]
—
o
o

. [
N “©

% Path delay and gains
tau = [0.1 1.2 2.3 6.2 11.3]*Ts;
PdB = linspace(0, -10, length(tau)) - length(tau)/20;

nTrials = 10000; % Number of trials
N = 100; % Number of samples per frame

h = rayleighchan(Ts, fd, tau, PdB); % Create channel object

10-46

Fading Channels

.NormalizePathGains = false;
.ResetBeforeFiltering = false;
.StoreHistory = 1;

% Show channel object

> 5 5 S

% Channel fading simulation
for trial = 1:nTrials
X = randint (10000, 1, 4);
dpskSig = dpskmod(x, 4);
y = filter(h, dpskSig);
plot(h);
% The line below returns control to the command line in case
% the GUI is closed while this program is still running
if isempty(findobj ('name', 'Multipath Channel')), break; end;
end

While the animation is running, you can move the slider control and change
the sample index (which also makes the animation pause). After clicking

Resume, the plot continues to animate.

The property ResetBeforeFiltering needs to be set to false so that the state
information in the channel is not reset after the processing of each frame.

10-47

1 0 Channels

Binary Symmetric Channel

In this section...

“Section Overview” on page 10-48

“Example: Introducing Noise in a Convolutional Code” on page 10-48

Section Overview

A binary symmetric channel corrupts a binary signal by reversing each bit
with a fixed probability. Such a channel can be useful for testing error-control
coding.

To model a binary symmetric channel, use the bsc function. The two input
arguments are the binary signal and the probability, p.

To model a binary channel whose statistical description involves the number
of errors per codeword, see the description of randerr in “Random Bit Error
Patterns” on page 2-5.

Example: Introducing Noise in a Convolutional Code

The example below introduces bit errors in a convolutional code with
probability 0.01.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Trellis

msg = ones(10000,1); % Data to encode

code = convenc(ones(10000,1),t); % Encode using convolutional code.
[ncode,err] = bsc(code,.01); % Introduce errors in code.
numchanerrs = sum(sum(err)) % Number of channel errors

dcode = vitdec(ncode,t,2,'trunc','hard'); % Decode.
[numsyserrs,ber] = biterr(dcode,msg) % Errors after decoding

The output below shows that the decoder corrects some, but not all, of the
errors that bsc introduced into the code. Your results might vary because the
channel errors are random.

numchanerrs =

158

10-48

Binary Symmetric Channel

numsyserrs =

53

ber =

0.0053

10-49

1 0 Channels

Selected Bibliography for Channels

10-50

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan,
Simulation of Communication Systems, Second Edition, New York, Kluwer
Academic/Plenum, 2000.

[2] Jakes, William C., ed. Microwave Mobile Communications, New York,
IEEE Press, 1974.

[3] Lee, William C. Y., Mobile Communications Design Fundamentals, Second
Edition, New York, John Wiley & Sons, 1993.

Equalizers

Time-dispersive channels can cause intersymbol interference (ISI). For
example, in a multipath scattering environment, the receiver sees delayed
versions of a symbol transmission, which can interfere with other symbol
transmissions. An equalizer attempts to mitigate ISI and thus improve the
receiver’s performance. This chapter describes the equalizer features of
Communications Toolbox software in the sections listed below.

¢ “Equalizer Features of Communications Toolbox Software” on page 11-2
e “Overview of Adaptive Equalizer Classes” on page 11-3

¢ “Using Adaptive Equalizer Functions and Objects” on page 11-8

® “Specifying an Adaptive Algorithm” on page 11-10

® “Specifying an Adaptive Equalizer” on page 11-13

¢ “Using Adaptive Equalizers” on page 11-17

¢ “Using MLSE Equalizers” on page 11-28

e “Selected Bibliography for Equalizers” on page 11-36

11 Equalizers

Equalizer Features of Communications Toolbox Software

This toolbox supports these distinct classes of equalizers, each with a different
overall structure:
® Linear equalizers, a class that is further divided into these categories:
= Symbol-spaced equalizers
= Fractionally spaced equalizers (FSEs)
® Decision-feedback equalizers (DFEs)

e MLSE (Maximum-Likelihood Sequence Estimation) equalizer that uses the
Viterbi algorithm. To learn how to use the MLSE equalizer capabilities, see
“Using MLSE Equalizers” on page 11-28.

Linear and decision-feedback equalizers are adaptive equalizers that use an
adaptive algorithm when operating. For each of the adaptive equalizer classes
listed above, this toolbox supports these adaptive algorithms:

® Least mean square (LMS)

e Signed LMS, including these types: sign LMS, signed regressor LMS, and
sign-sign LMS

e Normalized LMS

e Variable-step-size LMS

® Recursive least squares (RLS)

¢ Constant modulus algorithm (CMA)

To learn how to use the adaptive equalizer capabilities, start with “Using
Adaptive Equalizer Functions and Objects” on page 11-8. For brief background
material on the supported adaptive equalizer types, see “Overview of Adaptive

Equalizer Classes” on page 11-3. For more detailed background material, see
the works listed in “Selected Bibliography for Equalizers” on page 11-36.

11-2

Overview of Adaptive Equalizer Classes

Overview of Adaptive Equalizer Classes

In this section...

“Section Overview” on page 11-3
“Symbol-Spaced Equalizers” on page 11-3
“Fractionally Spaced Equalizers” on page 11-5

“Decision-Feedback Equalizers” on page 11-6

Section Overview

This section gives some background information about the supported classes
of adaptive equalizers:

For more detailed background material, see the works listed in “Selected
Bibliography for Equalizers” on page 11-36. For more information about
particular adaptive algorithms, see the reference pages for the corresponding
functions: 1ms, signlms, normlms, varlms, rls, cma.

Symbol-Spaced Equalizers

A symbol-spaced linear equalizer consists of a tapped delay line that stores
samples from the input signal. Once per symbol period, the equalizer outputs
a weighted sum of the values in the delay line and updates the weights

to prepare for the next symbol period. This class of equalizer is called
symbol-spaced because the sample rates of the input and output are equal.

Below is a schematic of a symbol-spaced linear equalizer with N weights,
where the symbol period is T.

11-3

11 Equalizers

114

Input

Weight
Setting

A

Decision
Device

_>
Ya

Lo

e Error o<« Training
Calculation |«

Updating the Set of Weights

The algorithms for the Weight Setting and Error Calculation blocks in the
schematic are determined by the adaptive algorithm chosen from the list in
“Equalizer Features of Communications Toolbox Software” on page 11-2. The
new set of weights depends on these quantities:

¢ The current set of weights
¢ The input signal
® The output signal

® For adaptive algorithms other than CMA, a reference signal, d, whose
characteristics depend on the operation mode of the equalizer

Reference Signal and Operation Modes

The table below briefly describes the nature of the reference signal for each
of the two operation modes.

Overview of Adaptive Equalizer Classes

Operation Mode of Reference Signal

Equalizer

Training mode Preset known transmitted sequence

Decision-directed mode Detected version of the output signal,
denoted by y, in the schematic

In typical applications, the equalizer begins in training mode to gather
information about the channel, and later switches to decision-directed mode.

Error Calculation

The error calculation operation produces a signal given by the expression
below, where R is a constant related to the signal constellation.

d-y Algorithms other than CMA
vy oMmA

Fractionally Spaced Equalizers

A fractionally spaced equalizer is a linear equalizer that is similar to a
symbol-spaced linear equalizer, as described in “Symbol-Spaced Equalizers”
on page 11-3. By contrast, however, a fractionally spaced equalizer receives K
input samples before it produces one output sample and updates the weights,
where K is an integer. In many applications, K is 2. The output sample rate is
1/T, while the input sample rate is K/T. The weight-updating occurs at the
output rate, which is the slower rate.

Below is a schematic of a fractionally spaced equalizer.

11-5

11 Equalizers

11-6

Input
Rate K/T
Weight
Setting
/Y
»Output
v | Rate 1/T
Decision
Device
—>
Yd

d D E—
e Error 4_OW:<—Training
Calculation |«

Decision-Feedback Equalizers

A decision-feedback equalizer is a nonlinear equalizer that contains a forward
filter and a feedback filter. The forward filter is similar to the linear equalizer
described in “Symbol-Spaced Equalizers” on page 11-3, while the feedback
filter contains a tapped delay line whose inputs are the decisions made on the
equalized signal. The purpose of a DFE is to cancel intersymbol interference
while minimizing noise enhancement. By contrast, noise enhancement is a
typical problem with the linear equalizers described earlier.

Below 1s a schematic of a fractionally spaced DFE with L forward weights
and N-L feedback weights. The forward filter is at the top and the feedback
filter is at the bottom. If K is 1, the result is a symbol-spaced DFE instead of
a fractionally spaced DFE.

Overview of Adaptive Equalizer Classes

Input
Rate K/T

Output
l,| Weight y Rate 1T
Setting |,
3 ’ \
" | Decision
| Device
Y4
o<«-Training

e Error
Calculation

A A

In each symbol period, the equalizer receives K input samples at the forward
filter, as well as one decision or training sample at the feedback filter. The
equalizer then outputs a weighted sum of the values in the forward and
feedback delay lines, and updates the weights to prepare for the next symbol
period.

Note The algorithm for the Weight Setting block in the schematic jointly
optimizes the forward and feedback weights. Joint optimization is especially
important for the RLS algorithm.

11-7

11 Equalizers

Using Adaptive Equalizer Functions and Obijects

11-8

In this section...

“Section Overview” on page 11-8
“Basic Procedure for Equalizing a Signal” on page 11-8

“Example Illustrating the Basic Procedure” on page 11-8

“Learning More About Adaptive Equalizer Functions” on page 11-9

Section Overview

This section gives an overview of the process you typically use in the MATLAB
environment to take advantage of the adaptive equalizer capabilities.

The MLSE equalizer has a different interface, described in “Using MLSE
Equalizers” on page 11-28.

Basic Procedure for Equalizing a Signal

Equalizing a signal using Communications Toolbox software involves these
steps:

1 Create an equalizer object that describes the equalizer class and the
adaptive algorithm that you want to use. An equalizer object is a type of
MATLAB variable that contains information about the equalizer, such as
the name of the equalizer class, the name of the adaptive algorithm, and
the values of the weights.

2 Adjust properties of the equalizer object, if necessary, to tailor it to your
needs. For example, you can change the number of weights or the values
of the weights.

3 Apply the equalizer object to the signal you want to equalize, using the
equalize method of the equalizer object.

Example lllustrating the Basic Procedure
This code briefly illustrates the steps in the basic procedure above.

% Build a set of test data.

Using Adaptive Equalizer Functions and Obijects

x = pskmod(randint(1000,1),2); % BPSK symbols
rxsig = conv(x,[1 0.8 0.3]); % Received signal

% Create an equalizer object.

eqlms = lineareq(8,1ms(0.03));

% Change the reference tap index in the equalizer.
eqlms.RefTap = 4;

% Apply the equalizer object to a signal.

y = equalize(eqlms,rxsig,x(1:200));

In this example, eqlms is an equalizer object that describes a linear LMS
equalizer having eight weights and a step size of 0.03. At first, the reference
tap index in the equalizer has a default value, but assigning a new value

to the property eqlms.RefTap changes this index. Finally, the equalize
command uses the eqlms object to equalize the signal rxsig using the
training sequence x(1:200).

Learning More About Adaptive Equalizer Functions

Keeping the basic procedure in mind, read other portions of this chapter to
learn more details about

e How to create objects that represent different classes of adaptive equalizers
and different adaptive algorithms

e How to adjust properties of an adaptive equalizer or properties of an
adaptive algorithm

* How to equalize signals using an adaptive equalizer object

11-9

11 Equalizers

Specifying an Adaptive Algorithm

11-10

In this section...

“Choosing an Adaptive Algorithm” on page 11-10
“Indicating a Choice of Adaptive Algorithm” on page 11-11
“Accessing Properties of an Adaptive Algorithm” on page 11-12

Choosing an Adaptive Algorithm

Configuring an equalizer involves choosing an adaptive algorithm and
indicating your choice when creating an equalizer object in the MATLAB
environment.

Although the best choice of adaptive algorithm might depend on your
individual situation, here are some generalizations that might influence

y

our choice:

The LMS algorithm executes quickly but converges slowly, and its
complexity grows linearly with the number of weights.

The RLS algorithm converges quickly, but its complexity grows with the
square of the number of weights, roughly speaking. This algorithm can also
be unstable when the number of weights is large.

The various types of signed LMS algorithms simplify hardware
implementation.

The normalized LMS and variable-step-size LMS algorithms are more
robust to variability of the input signal’s statistics (such as power).

The constant modulus algorithm is useful when no training signal is
available, and works best for constant modulus modulations such as PSK.

However, if CMA has no additional side information, it can introduce phase
ambiguity. For example, CMA might find weights that produce a perfect
QPSK constellation but might introduce a phase rotation of 90, 180, or
270 degrees. Alternatively, differential modulation can be used to avoid
phase ambiguity.

Specifying an Adaptive Algorithm

Details about the adaptive algorithms are in the references listed in “Selected
Bibliography for Equalizers” on page 11-36.

Indicating a Choice of Adaptive Algorithm

After you have chosen the adaptive algorithm you want to use, indicate your
choice when creating the equalizer object mentioned in “Basic Procedure for
Equalizing a Signal” on page 11-8. The functions listed in the table below
provide a way to indicate your choice of adaptive algorithm.

Adaptive Algorithm Function Type of Adaptive Algorithm

1Ims Least mean square (LMS)

signlms Signed LMS, signed regressor LMS,
sign-sign LMS

normlms Normalized LMS

varlms Variable-step-size LMS

rls Recursive least squares (RLS)

cma Constant modulus algorithm (CMA)

Two typical ways to use a function from the table are as follows:

¢ Use the function in an inline expression when creating the equalizer object.

For example, the code below uses the 1ms function inline when creating
an equalizer object.

eqlms = lineareq(10,1ms(0.003));

¢ Use the function to create a variable in the MATLAB workspace and then
use that variable when creating the equalizer object. The variable is called
an adaptive algorithm object.

For example, the code below creates an adaptive algorithm object named
alg that represents the adaptive algorithm, and then uses alg when
creating an equalizer object.

alg = 1lms(0.003);
eqlms = lineareq(10,alg);

11-11

11 Equalizers

11-12

Note To create an adaptive algorithm object by duplicating an existing one
and then changing its properties, see the important note in “Duplicating
and Copying Objects” on page 11-14 about the use of copy versus the

= operator.

In practice, the two ways are equivalent when your goal is to create an
equalizer object or to equalize a signal.

Accessing Properties of an Adaptive Algorithm

The adaptive algorithm functions not only provide a way to indicate your
choice of adaptive algorithm, but they also let you specify certain properties
of the algorithm. For information about what each property of an adaptive
algorithm object means, see the reference pages for the 1ms, signlms,
normlms, varlms, rls, or cma functions.

To view or change any properties of an adaptive algorithm, use the syntax
described for channel objects in “Viewing Object Properties” on page 10-12
and “Changing Object Properties” on page 10-14.

Specifying an Adaptive Equalizer

Specifying an Adaptive Equalizer

In this section...

“Defining an Equalizer Object” on page 11-13

“Accessing Properties of an Equalizer” on page 11-14

Defining an Equalizer Object

As mentioned in “Basic Procedure for Equalizing a Signal” on page 11-8, you
must create an equalizer object before you can equalize a signal.

To create an equalizer object, use one of the functions listed in the table below.

Function Type of Equalizer

lineareq Linear equalizer (symbol-spaced or
fractionally spaced)

dfe Decision-feedback equalizer

For example, the code below creates three equalizer objects: one representing
a symbol-spaced linear RLS equalizer having 10 weights, one representing a
fractionally spaced linear RLS equalizer having 10 weights and two samples
per symbol, and one representing a decision-feedback RLS equalizer having
three weights in the feedforward filter and two weights in the feedback filter.

% Create equalizer objects of different types.

eqlin = lineareq(10,rls(0.3)); % Symbol-spaced linear

eqfrac = lineareq(10,rls(0.3),[-1 1],2); % Fractionally spaced linear
eqdfe = dfe(3,2,rls(0.3)); % DFE

Although the lineareq and dfe functions have different syntaxes, they both
require an input argument that represents an adaptive algorithm. To learn
how to represent an adaptive algorithm or how to vary properties of the
adaptive algorithm, see “Specifying an Adaptive Algorithm” on page 11-10.

Each of the equalizer objects created above is a valid input argument for the

equalize function. To learn how to use the equalize function to equalize a
signal, see “Using Adaptive Equalizers” on page 11-17.

11-13

11 Equalizers

11-14

Duplicating and Copying Objects

Another way to create an object is to duplicate an existing object and then
adjust the properties of the new object, if necessary. If you do this, it is
important that you use a copy command such as

c2 = copy(cl); % Copy c1 to create an independent c2.

instead of c2 = ¢1. The copy command creates a copy of c1 that is
independent of c1. By contrast, the command c2 = c1 creates c2 as merely a
reference to c1, so that ¢c1 and c2 always have indistinguishable content.

Accessing Properties of an Equalizer

An equalizer object has numerous properties that record information about
the equalizer. Properties can be related to

® The structure of the equalizer (for example, the number of weights).

® The adaptive algorithm that the equalizer uses (for example, the step
size in the LMS algorithm). When you create the equalizer object using
lineareq or dfe, the function copies certain properties from the algorithm
object to the equalizer object. However, the equalizer object does not retain
a connection to the algorithm object.

® Information about the equalizer’s current state (for example, the values
of the weights). The equalize function automatically updates these
properties when it operates on a signal.

¢ Instructions for operating on a signal (for example, whether the equalizer
should reset itself before starting the equalization process).

For information about what each equalizer property means, see the reference
page for the 1lineareq or dfe function.

To view or change any properties of an equalizer object, use the syntax
described for channel objects in “Viewing Object Properties” on page 10-12
and “Changing Object Properties” on page 10-14.

Linked Properties of an Equalizer Object

Some properties of an equalizer object are related to each other such that
when one property’s value changes, another property’s value must adjust, or

Specifying an Adaptive Equalizer

else the equalizer object fails to describe a valid equalizer. For example, in
a linear equalizer, the nWeights property is the number of weights, while
the Weights property is the value of the weights. If you change the value of
nWeights, the value of Weights must adjust so that its vector length is the
new value of nWeights.

To find out which properties are related and how MATLAB compensates
automatically when you make certain changes in property values, see the
reference page for 1lineareq or dfe.

The example below illustrates that when you change the value of nWeights,
MATLAB automatically changes the values of Weights and WeightInputs to
make their vector lengths consistent with the new value of nWeights. Because
the example uses the variable-step-size LMS algorithm, StepSize is a vector
(not a scalar) and MATLAB changes its vector length to maintain consistency
with the new value of nWeights.

eqlvar = lineareq(10,varlms(0.01,0.01,0,1)) % Create equalizer object.
eqlvar.nWeights = 8 % Change the number of weights from 10 to 8.

% MATLAB automatically changes the sizes of eqlvar.Weights and

% eqlvar.WeightInputs.

The output below displays all the properties of the equalizer object before and
after the change in the value of the nWeights property. In the second listing of
properties, the nWeights, Weights, WeightInputs, and StepSize properties
all have different values compared to the first listing of properties.

eqlvar =

EqType: 'Linear Equalizer'
AlgType: 'Variable Step Size LMS'
nWeights: 10
nSampPerSym: 1
RefTap: 1
SigConst: [-1 1]
InitStep: 0.0100
IncStep: 0.0100

MinStep: O

MaxStep: 1
LeakageFactor: 1

StepSize: [1x10 double]

11-15

11

Equalizers

11-16

Weights:
WeightInputs:
ResetBeforeFiltering:
NumSamplesProcessed:

eqlvar =

EqType:

AlgType:

nWeights:
nSampPerSym:

RefTap:

SigConst:

InitStep:

IncStep:

MinStep:

MaxStep:
LeakageFactor:
StepSize:

Weights:
WeightInputs:
ResetBeforeFiltering:
NumSamplesProcessed:

‘Linear Equalizer'
'Variable Step Size LMS'
8

1

1

[-11]

0.0100

0.0100

0

1

1

[1x8 double]
[00O0O0OO0O0O0O0 0]
[000O0O0O0O0O0 0]
1

0

Using Adaptive Equalizers

Using Adaptive Equalizers

In this section...

“Section Overview” on page 11-17

“Equalizing Using a Training Sequence” on page 11-17
“Equalizing in Decision-Directed Mode” on page 11-19
“Delays from Equalization” on page 11-21

“Equalizing Using a Loop” on page 11-22

Section Overview

This section describes how to equalize a signal by using the equalize function
to apply an adaptive equalizer object to the signal. The equalize function
also updates the equalizer. This section assumes that you have already
created an adaptive equalizer object, as described in “Specifying an Adaptive
Equalizer” on page 11-13.

For examples that complement those in this section, see the Adaptive
Equalization Simulation demo (part I and part II).

Equalizing Using a Training Sequence

In typical applications, an equalizer begins by using a known sequence of
transmitted symbols when adapting the equalizer weights. The known
sequence, called a training sequence, enables the equalizer to gather
information about the channel characteristics. After the equalizer finishes
processing the training sequence, it adapts the equalizer weights in
decision-directed mode using a detected version of the output signal. To use a
training sequence when invoking the equalize function, include the symbols
of the training sequence as an input vector.

Note As an exception, CMA equalizers do not use a training sequence. If an
equalizer object is based on CMA, you should not include a training sequence
as an input vector.

11-17

11 Equalizers

The following code illustrates how to use equalize with a training sequence.
The training sequence in this case is just the beginning of the transmitted
message.

% Set up parameters and signals.

M = 4; % Alphabet size for modulation

msg = randint(1500,1,M); % Random message

modmsg = pskmod(msg,M); % Modulate using QPSK.

trainlen = 500; % Length of training sequence

chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

% Equalize the received signal.

eql = lineareq(8, 1lms(0.01)); % Create an equalizer object.
eq1.SigConst = pskmod([0:M-1],M); % Set signal constellation.
[symbolest,yd] = equalize(eql,filtmsg,modmsg(1:trainlen)); % Equalize.

% Plot signals.

h = scatterplot(filtmsg,1,trainlen, 'bx'); hold on;

scatterplot(symbolest,1,trainlen, 'g."',h);

scatterplot(eq1.SigConst,1,0, 'k*',h);

legend('Filtered signal', 'Equalized signal',...
'Ideal signal constellation');

hold off;

% Compute error rates with and without equalization.
demodmsg_noeq = pskdemod(filtmsg,M); % Demodulate unequalized signal.
demodmsg = pskdemod(yd,M); % Demodulate detected signal from equalizer.
[nnoeq,rnoeq] = symerr(demodmsg_noeq(trainlen+i:end),...
msg(trainlen+i:end));
[neq,req] = symerr(demodmsg(trainlen+i:end),...
msg(trainlen+i:end));
disp('Symbol error rates with and without equalizer:')
disp([req rnoeq])

The example goes on to determine how many errors occur in trying to recover
the modulated message with and without the equalizer. The symbol error
rates, below, show that the equalizer improves the performance significantly.

Symbol error rates with and without equalizer:
0 0.3410

11-18

Using Adaptive Equalizers

The example also creates a scatter plot that shows the signal before and after
equalization, as well as the signal constellation for QPSK modulation. Notice
on the plot that the points of the equalized signal are clustered more closely
around the points of the signal constellation.

J\ Figure 1: Scatter Plot []
File Edit Wiew Insert Tools Desktop ‘Window Help N
Scatter plot

258F

* Filtered signal
2L Equalized signal]
4 |deal signal constellation

CQuadrature

In-Phase

Equalizing in Decision-Directed Mode

Decision-directed mode means the equalizer uses a detected version of its
output signal when adapting the weights. Adaptive equalizers typically
start with a training sequence (as mentioned in “Equalizing Using a
Training Sequence” on page 11-17) and switch to decision-directed mode
after exhausting all symbols in the training sequence. CMA equalizers are
an exception, using neither training mode nor decision-directed mode. For
non-CMA equalizers, the equalize function operates in decision-directed
mode when one of these conditions is true:

® The syntax does not include a training sequence.

11-19

11 Equalizers

11-20

® The equalizer has exhausted all symbols in the training sequence and still
has more input symbols to process.

The example in “Equalizing Using a Training Sequence” on page 11-17 uses
training mode when processing the first trainlen symbols of the input signal,
and decision-directed mode thereafter. The example below discusses another
scenario.

Example: Equalizing Multiple Times, Varying the Mode

If you invoke equalize multiple times with the same equalizer object to
equalize a series of signal vectors, you might use a training sequence the first
time you call the function and omit the training sequence in subsequent calls.
Each iteration of the equalize function after the first one operates completely
in decision-directed mode. However, because the ResetBeforeFiltering
property of the equalizer object is set to 0, the equalize function uses

the existing state information in the equalizer object when starting each
iteration’s equalization operation. As a result, the training affects all
equalization operations, not just the first.

The code below illustrates this approach. Notice that the first call to equalize
uses a training sequence as an input argument, and the second call to
equalize omits a training sequence.

M = 4; % Alphabet size for modulation

msg = randint(1500,1,M); % Random message

modmsg = pskmod(msg,M); % Modulate using QPSK.

trainlen = 500; % Length of training sequence

chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

% Set up equalizer.

eqlms = lineareq(8, 1lms(0.01)); % Create an equalizer object.
eqlms.SigConst = pskmod([0:M-1],M); % Set signal constellation.
% Maintain continuity between calls to equalize.
eqlms.ResetBeforeFiltering = 0;

% Equalize the received signal, in pieces.
% 1. Process the training sequence.
s1 = equalize(eqlms,filtmsg(1:trainlen),modmsg(1:trainlen));

Using Adaptive Equalizers

% 2. Process some of the data in decision-directed mode.

s2 = equalize(eqlms,filtmsg(trainlen+1:800));

% 3. Process the rest of the data in decision-directed mode.
s3 = equalize(eqlms,filtmsg(801:end));

s = [s1; s2; s3]; % Full output of equalizer

Delays from Equalization

For proper equalization using adaptive algorithms other than CMA, you
should set the reference tap so that it exceeds the delay, in symbols, between
the transmitter’s modulator output and the equalizer input. When this
condition is satisfied, the total delay between the modulator output and the
equalizer output is equal to

(RefTap-1)/nSampPerSym

symbols. Because the channel delay is typically unknown, a common practice
1s to set the reference tap to the center tap in a linear equalizer, or the center
tap of the forward filter in a decision-feedback equalizer.

For CMA equalizers, the expression above does not apply because a CMA
equalizer has no reference tap. If you need to know the delay, you can find
it empirically after the equalizer weights have converged. Use the xcorr
function to examine cross-correlations of the modulator output and the
equalizer output.

Techniques for Working with Delays

Here are some typical ways to take a delay of D into account by padding or
truncating data:

® Pad your original data with D extra symbols at the end. Before comparing
the original data with the received data, omit the first D symbols of the
received data. In this approach, all the original data (not including the
padding) is accounted for in the received data.

® Before comparing the original data with the received data, omit the last
D symbols of the original data and the first D symbols of the received
data. In this approach, some of the original symbols are not accounted for
in the received data.

11-21

11 Equalizers

The example below illustrates the latter approach. For an example that
illustrates both approaches in the context of interleavers, see “Delays of
Convolutional Interleavers” on page 7-9.

M = 2; % Use BPSK modulation for this example.

msg = randint(1000,1,M); % Random data

modmsg = pskmod(msg,M); % Modulate.

trainlen = 100; % Length of training sequence
trainsig = modmsg(1:trainlen); % Training sequence

% Define an equalizer and equalize the received signal.

egqlin = lineareq(3,normlms(.0005,.0001),pskmod(0:M-1,M));
eqlin.RefTap = 2; % Set reference tap of equalizer.
[eqsig,detsym] = equalize(eqlin,modmsg,trainsig); % Equalize.

detmsg = pskdemod(detsym,M); % Demodulate the detected signal.

% Compensate for delay introduced by RefTap.

D = (eqlin.RefTap -1)/eqlin.nSampPerSym;

trunc_detmsg = detmsg(D+1:end); % Omit first D symbols of equalized data.
trunc_msg = msg(1:end-D); % Omit last D symbols.

% Compute bit error rate, ignoring training sequence.

[numerrs,ber] = biterr(trunc_msg(trainlen+i:end),...
trunc_detmsg(trainlen+1:end))

The output is below.

numerrs =
0
ber =
0

Equalizing Using a Loop
If your data is partitioned into a series of vectors (that you process within a
loop, for example), you can invoke the equalize function multiple times,

11-22

Using Adaptive Equalizers

saving the equalizer’s internal state information for use in a subsequent
invocation. In particular, the final values of the WeightInputs and Weights
properties in one equalization operation should be the initial values in the
next equalization operation. This section gives an example, followed by more
general procedures for equalizing within a loop.

Example: Adaptive Equalization Within a Loop
The example below illustrates how to use equalize within a loop, varying the

equalizer between iterations. Because the example is long, this discussion
presents it in these steps:

¢ “Initializing Variables” on page 11-23

® “Simulating the System Using a Loop” on page 11-24

If you want to equalize iteratively while potentially changing equalizers
between iterations, see “Changing the Equalizer Between Iterations” on page
11-26 for help generalizing from this example to other cases.

Initializing Variables. The beginning of the example defines parameters
and creates three equalizer objects:

¢ An RLS equalizer object.
e An LMS equalizer object.

® A variable, eq_current, that points to the equalizer object to use in the
current iteration of the loop. Initially, this points to the RLS equalizer
object. After the second iteration of the loop, eq_current is redefined to
point to the LMS equalizer object.

% Set up parameters.

M = 16; % Alphabet size for modulation

sigconst = gammod(0:M-1,M); % Signal constellation for 16-QAM
chan = [1 0.45 0.3+0.2i]; % Channel coefficients

% Set up equalizers.

eqrls = lineareq(6, rls(0.99,0.1)); % Create an RLS equalizer object.
egqrls.SigConst = sigconst; % Set signal constellation.
eqrls.ResetBeforeFiltering = 0; % Maintain continuity between iterations.
eglms = lineareq(6, 1lms(0.003)); % Create an LMS equalizer object.

11-23

11 Equalizers

eglms.SigConst = sigconst; % Set signal constellation.
eglms.ResetBeforeFiltering = 0; % Maintain continuity between iterations.
eg_current = eqrls; % Point to RLS for first iteration.

Simulating the System Using a Loop. The next portion of the example
is a loop that

® Generates a signal to transmit and selects a portion to use as a training
sequence in the first iteration of the loop

e Introduces channel distortion

¢ Equalizes the distorted signal using the chosen equalizer for this iteration,
retaining the final state and weights for later use

¢ Plots the distorted and equalized signals, for comparison

e Switches to an LMS equalizer between the second and third iterations

% Main loop

for jj = 1:4
msg = randint(500,1,M); % Random message
modmsg = gammod(msg,M); % Modulate using 8-QAM.

% Set up training sequence for first iteration.
if jj == 1
1tr = 200; trainsig = modmsg(1:1tr);
else
% Use decision-directed mode after first iteration.
1tr = 0; trainsig = [];
end
% Introduce channel distortion.
filtmsg = filter(chan,1,modmsg);

e

s Equalize the received signal.

w

= equalize(eq_current,filtmsg,trainsig);

e

s Plot signals.

h = scatterplot(filtmsg(ltr+i:end),1,0,'bx'); hold on;
scatterplot(s(ltr+i:end),1,0,'g."',h);
scatterplot(sigconst,1,0, 'k*',h);

11-24

Using Adaptive Equalizers

end

legend('Received signal', 'Equalized signal', 'Signal constellation');

title(['Iteration #' num2str(jj) ' ('
hold off;

% Switch from RLS to LMS after second iteration.

if §jj == 2

eq_current.AlgType

s

eqlms.WeightInputs = eq_current.WeightInputs; % Copy final inputs.

eqlms.Weights = eq_current.Weights; % Copy final weights.
eq_current = eqlms; % Make eq_current point to eqlms.

end

The example produces one scatter plot for each iteration, indicating the
iteration number and the adaptive algorithm in the title. A sample plot is
below. Your plot might look different because this example uses random
numbers.

. Figure 4: Scatter Plot

Edit View Insert Tools Desktop Window Help

File:

=10l x|

CQuadrature

lteration #4 (LMS)

By I I * Heceived signal
Ed Ed
®oow = Equalized signal
4 xx >g<x><>‘xx X>g<x # Signal constellation
LI 4 S
i ®
Ed ® e
e e +
xxx ,<>< {Kx§'§x&§ Bi<>$<><>g<5§<x><x>§< w
H, Y
2 b3 xgxxx e >S;>§<>%< w]
4 xxggsx PRt oo T
® ;*'&xxxx C Il A #
®oTR 3 LIPS
* E ® ®
or . X%%xxxxx RO R |
. Ed Ed
® xxiixixx *&w@f‘,”{m Eﬁ ;
oo # A%x&ﬁoow HEw ’S?‘X R, é‘
KRk, K x § o ooy %,]
i o # woow R Ry %f .
H W R
® H HE Ed
4 * ® B f:& Fo Bf}k % o
w B w X Xx>§< Xy &&x 3
* ®
B, o ® i
B 4 vl] 2 4 E
In-Phase

11-25

11 Equalizers

11-26

Procedures for Equalizing Within a Loop

This section describes two procedures for equalizing within a loop. The first
procedure uses the same equalizer in each iteration, and the second is useful
if you want to change the equalizer between iterations.

Using the Same Equalizer in Each Iteration. The typical procedure for
using equalize within a loop is as follows:

1 Before the loop starts, create the equalizer object that you want to use in
the first iteration of the loop.

2 Set the equalizer object’s ResetBeforeFiltering property to 0 to maintain
continuity between successive invocations of equalize.

3 Inside the loop, invoke equalize using a syntax like one of these:

y = equalize(eqz,x,trainsig);
y equalize(eqz,Xx);

The equalize function updates the state and weights of the equalizer
at the end of the current iteration. In the next iteration, the function
continues from where it finished in the previous iteration because
ResetBeforeFiltering is set to O.

This procedure is similar to the one used in “Example: Equalizing Multiple
Times, Varying the Mode” on page 11-20. That example uses equalize
multiple times but not within a loop.

Changing the Equalizer Between lterations. In some applications,

you might want to modify the adaptive algorithm between iterations. For
example, you might use a CMA equalizer for the first iteration and an LMS or
RLS equalizer in subsequent iterations. The procedure below gives one way
to accomplish this, roughly following the example in “Example: Adaptive
Equalization Within a Loop” on page 11-23:

1 Before the loop starts, create the different kinds of equalizer objects that
you want to use during various iterations of the loop.

For example, create one CMA equalizer object, eqcma, and one LMS
equalizer object, eqlms.

Using Adaptive Equalizers

2 For each equalizer object, set the ResetBeforeFiltering property to 0 to
maintain continuity between successive invocations of equalize.

3 Create a variable eq_current that points to the equalizer object you want
to use for the first iteration. Use = to establish the connection so that the
two objects get updated together:

eg_current = eqcma; % Point to eqcma.

The purpose of eq_current is to represent the equalizer used in each
iteration, where you can switch equalizers from one iteration to the next by
using a command like eq_current = eqlms. The example illustrates this
approach near the end of its loop.

4 Inside the loop, perform these steps:

a Invoke equalize using a syntax like one of these:

equalize(eq_current,x,trainsig);
equalize(eq_current,Xx);

y
y

b Copy the values of the WeightInputs and Weights properties from
eq_current to the equalizer object that you want to use for the next
iteration. Use dot notation. For example,

eqlms.WeightInputs = eq_current.WeightInputs;
eqlms.Weights = eq_current.Weights;

¢ Redefine eq_current to point to the equalizer object that you want to
use for the next iteration, using =. Now eq_current is set up for the next
iteration, because it represents the new kind of equalizer but retains the
old values for the state and weights.

The reason for creating multiple equalizer objects and then copying the state
and weights, instead of simply changing the equalizer class or adaptive
algorithm in a single equalizer object, is that the class and adaptive algorithm
properties of an equalizer object are fixed.

11-27

11 Equalizers

Using MLSE Equalizers

11-28

In this section...

“Section Overview” on page 11-28
“Equalizing a Vector Signal” on page 11-29

“Equalizing in Continuous Operation Mode” on page 11-30

“Using a Preamble or Postamble” on page 11-33

Section Overview

The mlseeq function uses the Viterbi algorithm to equalize a signal through
a dispersive channel. The function receives a baseband linearly modulated
input signal and outputs the maximum likelihood sequence estimate of the
signal, using an estimate of the channel modeled as a finite input response
(FIR) filter.

The function decodes the received signal using these steps:

1 Applies the FIR filter, corresponding to the channel estimate, to the
symbols in the input signal.

2 Uses the Viterbi algorithm to compute the traceback paths and the state
metric, which are the numbers assigned to the symbols at each step of the
Viterbi algorithm. The metrics are based on Euclidean distance.

3 Outputs the maximum likelihood sequence estimate of the signal, as a
sequence of complex numbers corresponding to the constellation points of
the modulated signal.

An MLSE equalizer yields the best possible performance, in theory, but is
computationally intensive.

For background material about MLSE equalizers, see the works listed in
“Selected Bibliography for Equalizers” on page 11-36.

Using MLSE Equalizers

Equalizing a Vector Signal

In its simplest form, the mlseeq function equalizes a vector of modulated
data when you specify the estimated coefficients of the channel (modeled

as an FIR filter), the signal constellation for the modulation type, and the
traceback depth that you want the Viterbi algorithm to use. Larger values for
the traceback depth can improve the results from the equalizer but increase
the computation time.

An example of the basic syntax for mlseeq is below.

M = 4; const = pskmod([0:M-1],M); % 4-PSK constellation

msg = pskmod([1 2203133210230 1]',M); % Modulated message
chcoeffs = [.986; .845; .237; .12345+.311i]; % Channel coefficients
filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.
tblen = 10; % Traceback depth for equalizer

chanest = chcoeffs; % Assume the channel is known exactly.

msgEq = mlseeq(filtmsg,chanest,const,tblen,'rst'); % Equalize.

The mlseeq function has two operation modes:

¢ Continuous operation mode enables you to process a series of vectors
using repeated calls to mlseeq, where the function saves its internal state
information from one call to the next. To learn more, see “Equalizing in
Continuous Operation Mode” on page 11-30.

® Reset operation mode enables you to specify a preamble and postamble
that accompany your data. To learn more, see “Using a Preamble or
Postamble” on page 11-33.

If you are not processing a series of vectors and do not need to specify a

preamble or postamble, the operation modes are nearly identical. However,
they differ in that continuous operation mode incurs a delay, while reset

operation mode does not. The example above could have used either mode,
except that substituting continuous operation mode would have produced a
delay in the equalized output. To learn more about the delay in continuous
operation mode, see “Delays in Continuous Operation Mode” on page 11-30.

11-29

11 Equalizers

Equalizing in Continuous Operation Mode

If your data is partitioned into a series of vectors (that you process within a
loop, for example), continuous operation mode is an appropriate way to use the
mlseeq function. In continuous operation mode, mlseeq can save its internal
state information for use in a subsequent invocation and can initialize using
previously stored state information. To choose continuous operation mode,
use 'cont' as an input argument when invoking mlseeq.

Note Continuous operation mode incurs a delay, as described in “Delays in
Continuous Operation Mode” on page 11-30. Also, continuous operation mode
cannot accommodate a preamble or postamble.

Procedure for Continuous Operation Mode
The typical procedure for using continuous mode within a loop is as follows:

1 Before the loop starts, create three empty matrix variables (for example,
sm, ts, ti) that eventually store the state metrics, traceback states, and
traceback inputs for the equalizer.

2 Inside the loop, invoke mlseeq using a syntax like

[y,sm,ts,ti] = mlseeq(x,chcoeffs,const,tblen, ‘'cont',nsamp,sm,ts,ti);

Using sm, ts, and ti as input arguments causes mlseeq to continue from
where it finished in the previous iteration. Using sm, ts, and ti as output
arguments causes mlseeq to update the state information at the end of
the current iteration. In the first iteration, sm, ts, and ti start as empty
matrices, so the first invocation of the mlseeq function initializes the
metrics of all states to 0.

Delays in Continuous Operation Mode

Continuous operation mode with a traceback depth of tblen incurs an output
delay of tblen symbols. This means that the first tblen output symbols

are unrelated to the input signal, while the last tblen input symbols are
unrelated to the output signal. For example, the command below uses a

11-30

Using MLSE Equalizers

traceback depth of 3, and the first 3 output symbols are unrelated to the
input signal of ones(1,10).

y = mlseeq(ones(1,10),1,[-7:2:7],3,'cont')
y:

Keeping track of delays from different portions of a communication system
is important, especially if you compare signals to compute error rates. The
example in “Example: Continuous Operation Mode” on page 11-31 illustrates
how to take the delay into account when computing an error rate.

Example: Continuous Operation Mode

The example below illustrates the procedure for using continuous operation
mode within a loop. Because the example is long, this discussion presents it
in multiple steps:

e “Initializing Variables” on page 11-31
® “Simulating the System Using a Loop” on page 11-32
¢ “Computing an Error Rate and Plotting Results” on page 11-32

Initializing Variables. The beginning of the example defines parameters,
initializes the state variables sm, ts, and ti, and initializes variables that
accumulate results from each iteration of the loop.

n = 200; % Number of symbols in each iteration
numiter = 25; % Number of iterations

M = 4; % Use 4-PSK modulation.

const = pskmod(0:M-1,M); % PSK constellation
chcoeffs = [1 ; 0.25]; % Channel coefficients
chanest = chcoeffs; % Channel estimate

tblen = 10; % Traceback depth for equalizer
nsamp = 1; % Number of input samples per symbol
sm = []; ts = []; ti = []; % Initialize equalizer data.
% Initialize cumulative results.

fullmodmsg = []; fullfiltmsg = []; fullrx = [];

11-31

11 Equalizers

Simulating the System Using a Loop. The middle portion of the example
is a loop that generates random data, modulates it using baseband PSK
modulation, and filters it. Finally, mlseeq equalizes the filtered data. The
loop also updates the variables that accumulate results from each iteration of
the loop.

for jj = 1:numiter
msg randint(n,1,M); % Random signal vector
modmsg = pskmod(msg,M); % PSK-modulated signal
filtmsg = filter(chcoeffs,1,modmsg); % Filtered signal

% Equalize, initializing from where the last iteration

% finished, and remembering final data for the next iteration.

[Prx sm ts ti] = mlseeq(filtmsg,chanest,const,tblen,...
‘cont',nsamp,sm,ts,ti);

% Update vectors with cumulative results.
fullmodmsg = [fullmodmsg; modmsg];
fullfiltmsg = [fullfiltmsg; filtmsg];
fullrx = [fullrx; rx];

end

Computing an Error Rate and Plotting Results. The last portion of the
example computes the symbol error rate from all iterations of the loop. The
symerr function compares selected portions of the received and transmitted
signals, not the entire signals. Because continuous operation mode incurs a
delay whose length in samples is the traceback depth (tblen) of the equalizer,
it is necessary to exclude the first tblen samples from the received signal
and the last tblen samples from the transmitted signal. Excluding samples
that represent the delay of the equalizer ensures that the symbol error rate
calculation compares samples from the received and transmitted signals that
are meaningful and that truly correspond to each other.

The example also plots the signal before and after equalization in a scatter
plot. The points in the equalized signal coincide with the points of the ideal
signal constellation for 4-PSK.

% Compute total number of symbol errors. Take the delay into account.
numsymerrs = symerr(fullrx(tblen+1:end),fullmodmsg(1:end-tblen))

% Plot signal before and after equalization.

11-32

Using MLSE Equalizers

h = scatterplot(fullfiltmsg); hold on;

scatterplot(fullrx,1,0,'r*',h);

legend('Filtered signal before equalization', 'Equalized signal',...
'Location', 'NorthOQutside');

hold off;

The output and plot follow.

numsymerrs =
0
<} Figure 1: Scatter Plot i 10l =|
File Edit Wiew Insert Tools ‘Web Desktop Window Help
+ Filtered signal before equalization
* Equalized signal
i i +
1F + + +
*
0sr
i) * *
Ei
g O+ 4+ - L +
o
=
i + +
051
*
b + * +
. . T . .
-1 -0.5 0 0.5 1
In-Phase

Using a Preamble or Postamble

Some systems include a sequence of known symbols at the beginning or end
of a set of data. The known sequence at the beginning or end is called a
preamble or postamble, respectively. The mlseeq function can accommodate a
preamble and postamble that are already incorporated into its input signal.
When you invoke the function, you specify the preamble and postamble as
integer vectors that represent the sequence of known symbols by indexing into

11-33

11 Equalizers

11-34

the signal constellation vector. For example, a preamble vector of [1 4 4]
and a 4-PSK signal constellation of [1 j -1 -j] indicate that the modulated
signal begins with [1 -j -j].

If your system uses a preamble without a postamble, use a postamble vector
of [] when invoking mlseeq. Similarly, if your system uses a postamble
without a preamble, use a preamble vector of [].

Example: Using a Preamble

The example below illustrates how to accommodate a preamble when using
mlseeq. The same preamble symbols appear at the beginning of the message
vector and in the syntax for mlseeq. If you want to use a postamble, you can
append it to the message vector and also include it as the last input argument
for mlseeq. In this example, however, the postamble input in the mlseeq
syntax is an empty vector because the system uses no postamble.

M = 4; % Use 4-PSK modulation.
const = pskmod(0:3,4); % PSK constellation
tblen = 16; % Traceback depth for equalizer

preamble = [3; 1]; % Expected preamble, as integers

msgIldx = randint(98,1,M); % Random symbols

msgIdx [preamble; msgIdx]; % Include preamble at the beginning.
msg = pskmod(msgIdx,M); % Modulated message

chcoeffs = [.623; .489+.2341i; .398i; .21]; % Channel coefficients
chanest = chcoeffs; % Channel estimate

filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.
d = mlseeq(filtmsg,chanest,const,tblen, 'rst',1,preamble,[]);

[nsymerrs ser] = symerr(msg,d) % Symbol error rate

Using MLSE Equalizers

The output is below.

nsymerrs =
0

ser =
0

11-35

11 Equalizers

Selected Bibliography for Equalizers

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, John Wiley & Sons, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River,
NJ, Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York,
John Wiley & Sons, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.

[6] Steele, Raymond, Ed., Mobile Radio Communications, Chichester,
England, John Wiley & Sons, 1996.

11-36

Galois Field Computations

A Galois field is an algebraic field that has a finite number of members.
Galois fields having 2™ members are used in error-control coding and are
denoted GF(2™). This chapter describes how to work with fields that have
2™ members, where m is an integer between 1 and 16. The sections in this
chapter are as follows.

® “Galois Field Terminology” on page 12-3

e “Representing Elements of Galois Fields” on page 12-4

e “Arithmetic in Galois Fields” on page 12-14

® “Logical Operations in Galois Fields” on page 12-20

® “Matrix Manipulation in Galois Fields” on page 12-23

® “Linear Algebra in Galois Fields” on page 12-25

e “Signal Processing Operations in Galois Fields” on page 12-29

¢ “Polynomials over Galois Fields” on page 12-33

® “Manipulating Galois Variables” on page 12-38

® “Speed and Nondefault Primitive Polynomials” on page 12-41

e “Selected Bibliography for Galois Fields” on page 12-43

If you need to use Galois fields having an odd number of elements, see

Galois Fields of Odd Characteristic in the Communications Toolbox online
documentation.

For more details about specific functions that process arrays of Galois
field elements, see the online reference pages in the documentation for
MATLAB or for Communications Toolbox software. MATLAB functions
whose generalization to Galois fields is straightforward to describe do not

12 Galois Field Computations

have reference pages in this manual because the entries would be identical to
those in the MATLAB documentation.

12-2

Galois Field Terminology

Galois Field Terminology

The discussion of Galois fields in this document uses a few terms that are
not used consistently in the literature. The definitions adopted here appear
in van Lint [4]:

® A primitive element of GF(2™) is a cyclic generator of the group of nonzero
elements of GF(2™). This means that every nonzero element of the field can
be expressed as the primitive element raised to some integer power.

® A primitive polynomial for GF(2™) is the minimal polynomial of some
primitive element of GF(2™). It is the binary-coefficient polynomial of
smallest nonzero degree having a certain primitive element as a root in
GF(2™). As a consequence, a primitive polynomial has degree m and is
irreducible.

The definitions imply that a primitive element is a root of a corresponding
primitive polynomial.

12-3

12 Galois Field Computations

12-4

Representing Elements of Galois Fields

In this section...

“Section Overview” on page 12-4

“Creating a Galois Array” on page 12-4

“Example: Creating Galois Field Variables” on page 12-5
“Example: Representing Elements of GF(8)” on page 12-7

“How Integers Correspond to Galois Field Elements” on page 12-8
“Example: Representing a Primitive Element” on page 12-9

“Primitive Polynomials and Element Representations” on page 12-9

Section Overview

This section describes how to create a Galois array, which is a MATLAB
expression that represents the elements of a Galois field. This section also
describes how MATLAB technical computing software interprets the numbers
that you use in the representation, and includes several examples.

Creating a Galois Array

To begin working with data from a Galois field GF(2"m), you must set the
context by associating the data with crucial information about the field. The
gf function performs this association and creates a Galois array in MATLAB.
This function accepts as inputs

® The Galois field data, x, which is a MATLAB array whose elements are
integers between 0 and 2"m-1.

® (Optional) An integer, m, that indicates x is in the field GF(2~m). Valid
values of m are between 1 and 16. The default is 1, which means that the
field is GF(2).

® (Optional) A positive integer that indicates which primitive polynomial
for GF(2"m) you are using in the representations in x. If you omit this
input argument, gf uses a default primitive polynomial for GF(2"m). For
information about this argument, see “Specifying the Primitive Polynomial”
on page 12-10.

Representing Elements of Galois Fields

The output of the gf function is a variable that MATLAB recognizes as a
Galois field array, rather than an array of integers. As a result, when you
manipulate the variable, MATLAB works within the Galois field you have
specified. For example, if you apply the log function to a Galois array,
MATLAB computes the logarithm in the Galois field and not in the field of
real or complex numbers.

When MATLAB Implicitly Creates a Galois Array

Some operations on Galois arrays require multiple arguments. If you
specify one argument that is a Galois array and another that is an ordinary
MATLAB array, MATLAB interprets both as Galois arrays in the same
field. It implicitly invokes the gf function on the ordinary MATLAB array.
This implicit invocation simplifies your syntax because you can omit some
references to the gf function. For an example of the simplification, see
“Example: Addition and Subtraction” on page 12-15.

Example: Creating Galois Field Variables

The code below creates a row vector whose entries are in the field GF(4), and
then adds the row to itself.

X 0:3; % A row vector containing integers
m = 2; % Work in the field GF(2"2), or, GF(4).
a = gf(x,m) % Create a Galois array in GF(2"m).

b

a + a % Add a to itself, creating b.

The output is
a = GF(272) array. Primitive polynomial = D"~2+D+1 (7 decimal)
Array elements =

0 1 2 3

b = GF(2*2) array. Primitive polynomial D~2+D+1 (7 decimal)

Array elements =

12-5

12 Galois Field Computations

12-6

Representing Elements of Galois Fields

The output shows the values of the Galois arrays named a and b. Each output

section indicates

® The field containing the variable, namely, GF(2/2) = GF(4).

¢ The primitive polynomial for the field. In this case, it is the toolbox’s

default primitive polynomial for GF(4).

® The array of Galois field values that the variable contains. In particular,
the array elements in a are exactly the elements of the vector x, and the

array elements in b are four instances of the zero element in GF(4).

The command that creates b shows how, having defined the variable a as
a Galois array, you can add a to itself by using the ordinary + operator.
MATLAB performs the vectorized addition operation in the field GF(4). The

output shows that

e Compared to a, b is in the same field and uses the same primitive

polynomial. It is not necessary to indicate the field when defining the sum,
b, because MATLAB remembers that information from the definition of

the addends, a.

® The array elements of b are zeros because the sum of any value with itself,
in a Galois field of characteristic two, is zero. This result differs from the
sum x + X, which represents an addition operation in the infinite field

of integers.

Example: Representing Elements of GF(8)

To illustrate what the array elements in a Galois array mean, the table
below lists the elements of the field GF(8) as integers and as polynomials in a
primitive element, A. The table should help you interpret a Galois array like

gf8 = gf([0:7]1,3); % Galois vector in GF(2"3)

Integer Binary Element of GF(8)
Representation Representation

0 000 0

1 001

12-7

12 Galois Field Computations

12-8

Integer Binary Element of GF(8)
Representation Representation

2 010 A

3 011 A+1

4 100 A2

5 101 AZ+1

6 110 A+ A

7 111 A2+ A+1

How Integers Correspond to Galois Field Elements

Building on the GF(8) example above, this section explains the interpretation
of array elements in a Galois array in greater generality. The field GF(2"m)
has 2”m distinct elements, which this toolbox labels as 0, 1, 2,..., 2°m-1. These
integer labels correspond to elements of the Galois field via a polynomial
expression involving a primitive element of the field. More specifically, each
integer between 0 and 2”m-1 has a binary representation in m bits. Using the
bits in the binary representation as coefficients in a polynomial, where the
least significant bit is the constant term, leads to a binary polynomial whose
order is at most m-1. Evaluating the binary polynomial at a primitive element
of GF(2"m) leads to an element of the field.

Conversely, any element of GF(2°m) can be expressed as a binary polynomial
of order at most m-1, evaluated at a primitive element of the field. The m-tuple
of coefficients of the polynomial corresponds to the binary representation of an
integer between 0 and 2"m.

Below is a symbolic illustration of the correspondence of an integer X,
representable in binary form, with a Galois field element. Each b, is either
zero or one, while A is a primitive element.

X=by, 12" 4 tby-4+b-2+b
ob, A" 41 by A% 4 b - A+ by

Representing Elements of Galois Fields

Example: Representing a Primitive Element

The code below defines a variable alph that represents a primitive element of
the field GF(2%).

m = 4; % Or choose any positive integer value of m.
alph = gf(2,m) % Primitive element in GF(2"m)

The output 1s
alph = GF(2"4) array. Primitive polynomial = D"4+D+1 (19 decimal)
Array elements =

2

The Galois array alph represents a primitive element because of the
correspondence among

¢ The integer 2, specified in the gf syntax

¢ The binary representation of 2, which is 10 (or 0010 using four bits)

¢ The polynomial A + 0, where A is a primitive element in this field (or 0A3 +
0A? + A + 0 using the four lowest powers of A)

Primitive Polynomials and Element Representations
This section builds on the discussion in “Creating a Galois Array” on page
12-4 by describing how to specify your own primitive polynomial when you
create a Galois array. The topics are

® “Specifying the Primitive Polynomial” on page 12-10

¢ “Finding Primitive Polynomials” on page 12-11

e “Effect of Nondefault Primitive Polynomials on Numerical Results” on

page 12-12

If you perform many computations using a nondefault primitive polynomial,
see “Speed and Nondefault Primitive Polynomials” on page 12-41.

12-9

12 Galois Field Computations

12-10

Specifying the Primitive Polynomial

The discussion in “How Integers Correspond to Galois Field Elements”

on page 12-8 refers to a primitive element, which is a root of a primitive
polynomial of the field. When you use the gf function to create a Galois array,
the function interprets the integers in the array with respect to a specific
default primitive polynomial for that field, unless you explicitly provide a
different primitive polynomial. A list of the default primitive polynomials is
on the reference page for the gf function.

To specify your own primitive polynomial when creating a Galois array, use
a syntax like

c = gf(5,4,25) % 25 indicates the primitive polynomial for GF(16).

instead of

cl= gf(5,4); % Use default primitive polynomial for GF(16).

The extra input argument, 25 in this case, specifies the primitive polynomial
for the field GF(2"m) in a way similar to the representation described in “How
Integers Correspond to Galois Field Elements” on page 12-8. In this case, the
integer 25 corresponds to a binary representation of 11001, which in turn
corresponds to the polynomial D* + D3 + 1.

Note When you specify the primitive polynomial, the input argument

must have a binary representation using exactly m+1 bits, not including
unnecessary leading zeros. In other words, a primitive polynomial for GF(2~m)
always has order m.

When you use an input argument to specify the primitive polynomial, the
output reflects your choice by showing the integer value as well as the
polynomial representation.

d =gf([1 2 3],4,25)

Representing Elements of Galois Fields

d = GF(274) array. Primitive polynomial = D"4+D"3+1 (25 decimal)
Array elements =

1 2 3

Note After you have defined a Galois array, you cannot change the primitive
polynomial with respect to which MATLAB interprets the array elements.

Finding Primitive Polynomials
You can use the primpoly function to find primitive polynomials for GF(2~m)

and the isprimitive function to determine whether a polynomial is primitive
for GF(2~m). The code below illustrates.

m = 4;

defaultprimpoly = primpoly(m) % Default primitive poly for GF(16)
allprimpolys = primpoly(m,‘'all') % All primitive polys for GF(16)
i1 = isprimitive(25) % Can 25 be the prim_poly input in gf(...)?
i2 = isprimitive(21) % Can 21 be the prim_poly input in gf(...)?

The output is below.

Primitive polynomial(s)
D"4+D"1+1
defaultprimpoly =

19

Primitive polynomial(s)

D~4+D"1+1
D4+D"3+1

12-11

12 Galois Field Computations

12-12

allprimpolys =
19
25
i1 =
1
i2 =
0

Effect of Nondefault Primitive Polynomials on Numerical
Results

Most fields offer multiple choices for the primitive polynomial that helps
define the representation of members of the field. When you use the gf
function, changing the primitive polynomial changes the interpretation of
the array elements and, in turn, changes the results of some subsequent
operations on the Galois array. For example, exponentiation of a primitive
element makes it easy to see how the primitive polynomial affects the
representations of field elements.

al1 = gf(2,3); % Use default primitive polynomial of 11.

al3 = gf(2,3,13); % Use D"3+D"2+1 as the primitive polynomial.

z = a13.73 + a13.72 + 1 % 0 because al13 satisfies the equation

nz = a11.7”3 + a11.72 + 1 % Nonzero. al1 does not satisfy equation.

The output below shows that when the primitive polynomial has integer
representation 13, the Galois array satisfies a certain equation. By contrast,
when the primitive polynomial has integer representation 11, the Galois
array fails to satisfy the equation.

z = GF(2"8) array. Primitive polynomial = D~3+D"2+1 (13 decimal)
Array elements =

0

Representing Elements of Galois Fields

nz = GF(273) array. Primitive polynomial = D~3+D+1 (11 decimal)
Array elements =
6
The output when you try this example might also include a warning about

lookup tables. This is normal if you did not use the gftable function to
optimize computations involving a nondefault primitive polynomial of 13.

12-13

12 Galois Field Computations

Arithmetic in Galois Fields

In this section...

“Section Overview” on page 12-14

“Example: Addition and Subtraction” on page 12-15
“Example: Multiplication” on page 12-16

“Example: Division” on page 12-17

“Example: Exponentiation” on page 12-18

“Example: Elementwise Logarithm” on page 12-19

Section Overview

You can perform arithmetic operations on Galois arrays by using familiar
MATLAB operators, listed in the table below. Whenever you operate on a pair
of Galois arrays, both arrays must be in the same Galois field.

Operation Operator
Addition +
Subtraction >
Elementwise multiplication i~
Matrix multiplication t
Elementwise left division ol
Elementwise right division A\
Matrix left division /
Matrix right division \
Elementwise exponentiation »
Elementwise logarithm log()
Exponentiation of a square Galois »
matrix by a scalar integer

12-14

Arithmetic in Galois Fields

For multiplication and division of polynomials over a Galois field, see
“Addition and Subtraction of Polynomials” on page 12-33.

Example: Addition and Subtraction

The code below adds two Galois arrays to create an addition table for GF(8).
Addition uses the ordinary + operator. The code below also shows how to index
into the array addtb to find the result of adding 1 to the elements of GF(8).

m = 3;

e = repmat([0:2"m-1],2"m,1);

f = gf(e,m); % Create a Galois array.

addtb = f + f' % Add f to its own matrix transpose.

addone = addtb(2,:); % Assign 2nd row to the Galois vector addone.

The output is below.
addtb = GF(2"3) array. Primitive polynomial = D*3+D+1 (11 decimal)

Array elements =

NoO o~ WONM-—=O
ONPDOIDNWO =
a N0 0ODN
A OTONO =2 DN
WN—=-0NO O BH
NWO—=-0NP~OG
- OoOwWwMNDOLANO
O =~ MNMNWwH>u o N

As an example of reading this addition table, the (7,4) entry in the addtb
array shows that gf (6,3) plus gf(3,3) equals gf(5,3). Equivalently, the
element A%+A plus the element A+1 equals the element A>+1. The equivalence
arises from the binary representation of 6 as 110, 3 as 011, and 5 as 101.

The subtraction table, which you can obtain by replacing + by -, is the same
as addtb. This is because subtraction and addition are identical operations
in a field of characteristic two. In fact, the zeros along the main diagonal of
addtb illustrate this fact for GF(8).

12-15

12 Galois Field Computations

12-16

Simplifying the Syntax

The code below illustrates scalar expansion and the implicit creation of a
Galois array from an ordinary MATLAB array. The Galois arrays h and h1
are identical, but the creation of h uses a simpler syntax.

g = gf(ones(2,3),4); % Create a Galois array explicitly.
h =9+ 5; % Add gf(5,4) to each element of g.
hi = g + gf(5*ones(2,3),4) % Same as h.

The output is below.
h1 = GF(274) array. Primitive polynomial = D"4+D+1 (19 decimal)
Array elements =

4 4 4
4 4 4

Notice that 1+5 is reported as 4 in the Galois field. This is true because the
5 represents the polynomial expression A%+1, and 1+(A%+1) in GF(16) is A2.
Furthermore, the integer that represents the polynomial expression A? is 4.

Example: Multiplication

The example below multiplies individual elements in a Galois array using the
. * operator. It then performs matrix multiplication using the * operator. The
elementwise multiplication produces an array whose size matches that of
the inputs. By contrast, the matrix multiplication produces a Galois scalar
because it is the matrix product of a row vector with a column vector.

m=5;

rowl = gf([1:2:9],m); row2 = gf([2:2:10],m);

col = row2'; % Transpose to create a column array.
ep = rowl .* row2; % Elementwise product.

mp = rowl * col; % Matrix product.

Multiplication Table for GF(8)

As another example, the code below multiplies two Galois vectors using
matrix multiplication. The result is a multiplication table for GF(8).

Arithmetic in Galois Fields

m = 3;
els = gf([0:2"m-1]"',m);
multb = els * els' % Multiply els by its own matrix transpose.

The output is below.

multb = GF(2°3) array. Primitive polynomial = D"3+D+1 (11 decimal)

Array elements =

O O O0OO0OO0OO0oOOoOOo
NOoO o WNM-=2O
O N—= WO H~DNO
N = hNOTO WO
- OO NWPM~O
D W~NN S~ =010
A NDWOGH=NOO
W hoO—=DNOG NO

Example: Division
The examples below illustrate the four division operators in a Galois field by

computing multiplicative inverses of individual elements and of an array. You
can also compute inverses using inv or using exponentiation by -1.

Elementwise Division

This example divides 1 by each of the individual elements in a Galois array
using the ./ and .\ operators. These two operators differ only in their
sequence of input arguments. Each quotient vector lists the multiplicative
inverses of the nonzero elements of the field. In this example, MATLAB
expands the scalar 1 to the size of nz before computing; alternatively, you can
use as arguments two arrays of the same size.

m=5;
nz = gf([1:2"m-1],m); % Nonzero elements of the field
invli = 1 ./ nz; % Divide 1 by each element.

inv2 nz .\ 1; % Obtain same result using .\ operator.

12-17

12 Galois Field Computations

12-18

Matrix Division

This example divides the identity array by the square Galois array mat using
the / and \ operators. Each quotient matrix is the multiplicative inverse

of mat. Notice how the transpose operator (') appears in the equivalent
operation using \. For square matrices, the sequence of transpose operations
1s unnecessary, but for nonsquare matrices, it is necessary.

m=5;

mat = gf([1 2 3; 4 56; 7 8 9],m);

minv1 eye(3) / mat; % Compute matrix inverse.

minv2 = (mat' \ eye(3)')'; % Obtain same result using \ operator.

Example: Exponentiation

The examples below illustrate how to compute integer powers of a Galois
array. To perform matrix exponentiation on a Galois array, you must use a
square Galois array as the base and an ordinary (not Galois) integer scalar
as the exponent.

Elementwise Exponentiation

This example computes powers of a primitive element, A, of a Galois field. It
then uses these separately computed powers to evaluate the default primitive
polynomial at A. The answer of zero shows that A is a root of the primitive
polynomial. The .~ operator exponentiates each array element independently.

m = 3;
av = gf(2*ones(1,m+1),m); % Row containing primitive element

)
expa = av .” [0:m]; % Raise element to different powers.
evp = expa(4)+expa(2)+expa(1) % Evaluate D"3 + D + 1.

The output is below.
evp = GF(273) array. Primitive polynomial = D~3+D+1 (11 decimal)
Array elements =

0

Arithmetic in Galois Fields

Matrix Exponentiation

This example computes the inverse of a square matrix by raising the matrix
to the power -1. It also raises the square matrix to the powers 2 and -2.

m=5;

mat = gf([1 2 3; 4 56; 7 8 9],m);
minvs = mat ~ (-1); % Matrix inverse
matsq = mat~2; % Same as mat * mat

matinvssq = mat~(-2); % Same as minvs * minvs

Example: Elementwise Logarithm

The code below computes the logarithm of the elements of a Galois array.
The output indicates how to express each nonzero element of GF(8) as a
power of the primitive element. The logarithm of the zero element of the
field is undefined.

gf8_nonzero = gf([1:7],3); % Vector of nonzero elements of GF(8)
expformat = log(gf8_nonzero) % Logarithm of each element

The output is
expformat =
0 1 3 2 6 4 5
As an example of how to interpret the output, consider the last entry in each
vector in this example. You can infer that the element gf (7,3) in GF(8)

can be expressed as either

e A% using the last element of expformat

e AZ+A+1, using the binary representation of 7 as 111. See “Example:
Representing Elements of GF(8)” on page 12-7 for more details.

12-19

12 Galois Field Computations

Logical Operations in Galois Fields

12-20

In this section...

“Section Overview” on page 12-20
“Testing for Equality” on page 12-20

“Testing for Nonzero Values” on page 12-21

Section Overview

You can apply logical tests to Galois arrays and obtain a logical array. Some
important types of tests are testing for the equality of two Galois arrays and
testing for nonzero values in a Galois array.

Testing for Equality

To compare corresponding elements of two Galois arrays that have the same
size, use the operators == and ~=. The result is a logical array, each element
of which indicates the truth or falsity of the corresponding elementwise
comparison. If you use the same operators to compare a scalar with a Galois
array, MATLAB technical computing software compares the scalar with each
element of the array, producing a logical array of the same size.

m=5; r1 =gf([1:3],m); r2 =1 ./ ri;

1g1 = (r1 .* r2 == [1 1 1]) % Does each element equal one?
1g2 = (r1 .* r
1g3 = (r1 ~=r

N
I

= 1) % Same as above, using scalar expansion
) % Does each element differ from its inverse?

N

The output is below.

1g1 =

Logical Operations in Galois Fields

Comparison of isequal and ==

To compare entire arrays and obtain a logical scalar result rather than a
logical array, use the built-in isequal function. However, isequal uses strict
rules for its comparison, and returns a value of 0 (false) if you compare

® A Galois array with an ordinary MATLAB array, even if the values of the
underlying array elements match

e A scalar with a nonscalar array, even if all elements in the array match
the scalar

The example below illustrates this difference between == and isequal.

m=5; r1 =gf([1:3],m); r2 =1 ./ ri;

1g4 isequal(r1t .* r2, [1 1 1]); % False

1g5 = isequal(r1 .* r2, gf(1,m)); % False

1g6 = isequal(r1 .* r2, gf([1 1 1],m)); % True

Testing for Nonzero Values

To test for nonzero values in a Galois vector, or in the columns of a Galois
array that has more than one row, use the any or all function. These two
functions behave just like the ordinary MATLAB functions any and all,
except that they consider only the underlying array elements while ignoring
information about which Galois field the elements are in. Examples are below.

m = 3; randels = gf(randint(6,1,2"m),m);
if all(randels) % If all elements are invertible
invels = randels .\ 1; % Compute inverses of elements.
else
disp('At least one element was not invertible.');
end
alph = gf(2,4);
poly = 1 + alph + alph~3;
if any(poly) % If poly contains a nonzero value

12-21

12 Galois Field Computations

disp('alph is not a root of 1 + D + D*3."');
end
code = rsenc(gf([0:4;3:7]1,3),7,5); % Each row is a codeword.
if all(code,2) % Is each row entirely nonzero?
disp('Both codewords are entirely nonzero.');
else
disp('At least one codeword contains a zero.');
end

12-22

Matrix Manipulation in Galois Fields

Matrix Manipulation in Galois Fields

In this section...

“Basic Manipulations of Galois Arrays” on page 12-23
“Basic Information About Galois Arrays” on page 12-24

Basic Manipulations of Galois Arrays

Basic array operations on Galois arrays are in the table below. The
functionality of these operations is analogous to the MATLAB operations
having the same syntax.

Operation Syntax

Index into array, possibly using a(vector) or a(vector,vectori),
colon operator instead of a vector of | where vector and/or vector1 can be
explicit indices ":" instead of a vector

Transpose array a'

Concatenate matrices [a,b] or [a;b]

Create array having specified diag(vector) or diag(vector,k)
diagonal elements

Extract diagonal elements diag(a) or diag(a,k)

Extract lower triangular part tril(a) or tril(a,k)

Extract upper triangular part triu(a) or triu(a,k)

Change shape of array reshape(a,ki1,k2)

The code below uses some of these syntaxes.

= 4; a = gf([0:15],m);
(1:2) = [13 13]; % Replace some elements of the vector a.
= reshape(a,2,8); % Create 2-by-8 matrix.
[b([1 1 2],1:3); a(4:6)]; % Create 4-by-3 matrix.
[c, a(1:4)']; % Create 4-by-4 matrix.
vec = diag(d); % Extract main diagonal of d.

m
a
b
c
d
d

12-23

12 Galois Field Computations

12-24

dmat = diag(a(5:9)
dtril = tril(d); %
dtriu = triu(d)

)

; % Create 5-by-5 diagonal matrix
Extract upper and lower triangular
parts of d.

)
y ©

Basic Information About Galois Arrays

You can determine the length of a Galois vector or the size of any Galois array
using the length and size functions. The functionality for Galois arrays is
analogous to that of the MATLAB operations on ordinary arrays, except that
the output arguments from size and length are always integers, not Galois
arrays. The code below illustrates the use of these functions.

m=4; e = gf([0:5],m); f = reshape(e,2,3);
lne = length(e); % Vector length of e

szf = size(f); % Size of f, returned as a two-element row
[nr,nc] = size(f); % Size of f, returned as two scalars

nc2 = size(f,2); % Another way to compute number of columns

Positions of Nonzero Elements

Another type of information you might want to determine from a Galois array
are the positions of nonzero elements. For an ordinary MATLAB array, you
might use the find function. However, for a Galois array, you should use
find in conjunction with the ~= operator, as illustrated.

x=[012102]; m=2; g =gf(x,m);
nzx find(x); % Find nonzero values in the ordinary array x.
nzg find(g~=0); % Find nonzero values in the Galois array g.

Linear Algebra in Galois Fields

Linear Algebra in Galois Fields

In this section...

“Inverting Matrices and Computing Determinants” on page 12-25
“Computing Ranks” on page 12-26
“Factoring Square Matrices” on page 12-26

“Solving Linear Equations” on page 12-27

Inverting Matrices and Computing Determinants

To invert a square Galois array, use the inv function. Related is the det
function, which computes the determinant of a Galois array. Both inv and det
behave like their ordinary MATLAB counterparts, except that they perform
computations in the Galois field instead of in the field of complex numbers.

Note A Galois array is singular if and only if its determinant is exactly
zero. It is not necessary to consider roundoff errors, as in the case of real
and complex arrays.

The code below illustrates matrix inversion and determinant computation.

m = 4;
randommatrix = gf(randint(4,4,2"m),m);
gfid = gf(eye(4),m);
if det(randommatrix) ~= 0
invmatrix = inv(randommatrix);
check1l = invmatrix * randommatrix;
check2 = randommatrix * invmatrix;
if (isequal(checki1,gfid) & isequal(check2,gfid))
disp('inv found the correct matrix inverse.');
end
else
disp('The matrix is not invertible.');
end

12-25

12 Galois Field Computations

12-26

The output from this example is either of these two messages, depending on
whether the randomly generated matrix is nonsingular or singular.

inv found the correct matrix inverse.
The matrix is not invertible.

Computing Ranks

To compute the rank of a Galois array, use the rank function. It behaves like
the ordinary MATLAB rank function when given exactly one input argument.
The example below illustrates how to find the rank of square and nonsquare
Galois arrays.

m = 3;

asquare = gf([4 7 6; 4 6 5; 0 6 1],m);

r1 = rank(asquare);

anonsquare = gf([4 7 6 3; 46 51; 06 1 1],m);
r2 = rank(anonsquare);

[r1 r2]

The output is

ans =
2 3

The values of r1 and r2 indicate that asquare has less than full rank but
that anonsquare has full rank.

Factoring Square Matrices

To express a square Galois array (or a permutation of it) as the product of a
lower triangular Galois array and an upper triangular Galois array, use the
lu function. This function accepts one input argument and produces exactly
two or three output arguments. It behaves like the ordinary MATLAB 1u
function when given the same syntax. The example below illustrates how to
factor using 1lu.

tofactor = gf([6 57 6; 5625; 0177;1051],3);
[L,U]=1lu(tofactor); % lu with two output arguments

c1 = isequal(L*U, tofactor) % True

tofactor2 = gf([1 2 3 4;1 23 0;2521; 050 0],3);

Linear Algebra in Galois Fields

[L2,U2,P] = lu(tofactor2); % lu with three output arguments
c2 = isequal(L2*U2, P*tofactor2) % True

Solving Linear Equations

To find a particular solution of a linear equation in a Galois field, use the \
or / operator on Galois arrays. The table below indicates the equation that
each operator addresses, assuming that A and B are previously defined Galois
arrays.

Operator Linear Syntax Equivalent Syntax
Equation Using \

Backslash (\) |A * x = B x=A\B Not applicable

Slash (/) X *A =B X =B /A X = (A"\B')"

The results of the syntax in the table depend on characteristics of the Galois
array A:

e [f Ais square and nonsingular, the output x is the unique solution to the
linear equation.

e If Ais square and singular, the syntax in the table produces an error.

e If Ais not square, MATLAB attempts to find a particular solution. If A' *A
or A*A' is a singular array, or if A is a tall matrix that represents an
overdetermined system, the attempt might fail.

Note An error message does not necessarily indicate that the linear equation
has no solution. You might be able to find a solution by rephrasing the
problem. For example, gf([1 2; 0 0]1,3) \ gf([1; 0],3) produces an
error but the mathematically equivalent gf ([1 2],3) \ gf([1],3) does not.
The first syntax fails because gf ([1 2; 0 0],3) is a singular square matrix.

Example: Solving Linear Equations

The examples below illustrate how to find particular solutions of linear
equations over a Galois field.

m = 4;

12-27

12 Galois Field Computations

12-28

A = gf(magic(3),m); % Square nonsingular matrix

Awide=[A, 2*A(:,3)]; % 3-by-4 matrix with redundancy on the right
Atall = Awide'; % 4-by-3 matrix with redundancy at the bottom

B = gf([0:2]",m);

C = [B; 2*B(3)];

D [B; B(3)+1];

thesolution = A \ B; % Solution of A * x = B

thesolution2 = B' / A; % Solution of x * A = B'

ck1 all(A * thesolution == B) % Check validity of solutions.
ck2 all(thesolution2 * A == B')

% Awide * x = B has infinitely many solutions. Find one.
onesolution Awide \ B;

ck3 = all(Awide * onesolution == B) % Check validity of solution.
% Atall * x = C has a solution.

asolution = Atall \ C;

ck4 = all(Atall * asolution == C) % Check validity of solution.

% Atall * x = D has no solution.

notasolution = Atall \ D;

ck5 = all(Atall * notasolution == D) % It is not a valid solution.

The output from this example indicates that the validity checks are all true
(1), except for ck5, which is false (0).

Signal Processing Operations in Galois Fields

Signal Processing Operations in Galois Fields

In this section...

“Section Overview” on page 12-29
“Filtering” on page 12-29

“Convolution” on page 12-30

“Discrete Fourier Transform” on page 12-31

Section Overview

You can perform some signal-processing operations on Galois arrays, such as
filtering, convolution, and the discrete Fourier transform.

This section describes how to perform these operations.

Other information about the corresponding operations for ordinary real
vectors is in the Signal Processing Toolbox documentation.

Filtering
To filter a Galois vector, use the filter function. It behaves like the ordinary
MATLAB filter function when given exactly three input arguments.

The code and diagram below give the impulse response of a particular filter

over GF(2).
m=1; % Work in GF(2).
b =g9gf([1 001010 1],m); % Numerator
a=g9f([1 01 1],m); % Denominator
x = gf([1,zeros(1,19)]1,m);

y filter(b,a,x); % Filter x.
figure; stem(y.x); % Create stem plot.
axis([0 20 -.1 1.1])

12-29

http://www.mathworks.com/access/helpdesk/help/toolbox/signal/

12 Galois Field Computations

12-30

Drgwer -0l
File Edit Wiew Insert Tools Desktop Window Help N
1+ @ o] o] o] Qoo o] Qo9
08r
06
0.4r
02r
0)
0 & 10 15 20
L3
Convolution

Communications Toolbox software offers two equivalent ways to convolve a
pair of Galois vectors:

e Use the conv function, as described in “Multiplication and Division of
Polynomials” on page 12-34. This works because convolving two vectors
is equivalent to multiplying the two polynomials whose coefficients are
the entries of the vectors.

e Use the convmtx function to compute the convolution matrix of one of the
vectors, and then multiply that matrix by the other vector. This works
because convolving two vectors is equivalent to filtering one of the vectors
by the other. The equivalence permits the representation of a digital filter
as a convolution matrix, which you can then multiply by any Galois vector
of appropriate length.

Tip If you need to convolve large Galois vectors, multiplying by the convolution
matrix might be faster than using conv.

Signal Processing Operations in Galois Fields

Example

The example below computes the convolution matrix for a vector b in GF(4),
representing the numerator coefficients for a digital filter. It then illustrates
the two equivalent ways to convolve b with x over the Galois field.

m=2; b=gf([123]",m);
n =3; x = gf(randint(n,1,2"m),m);

C = convmtx(b,n); % Compute convolution matrix.
vl = conv(b,x); % Use conv to convolve b with x
v2 = C*x; % Use C to convolve b with x.

Discrete Fourier Transform

The discrete Fourier transform is an important tool in digital signal
processing. This toolbox offers these tools to help you process discrete Fourier
transforms:

e fft, which transforms a Galois vector
® ifft, which inverts the discrete Fourier transform on a Galois vector

e dftmtx, which returns a Galois array that you can use to perform or invert
the discrete Fourier transform on a Galois vector

In all cases, the vector being transformed must be a Galois vector of length
2m.1 in the field GF(2™). The examples below illustrate the use of these
functions. You can check, using the isequal function, that y equals y1,

z equals z1, and z equals x.

m = 4;

x = gf(randint(2*m-1,1,2"m),m); % A vector to transform
alph = gf(2,m);

dm = dftmtx(alph);

idm = dftmtx(1/alph);

y = dm*x; % Transform x using the result of dftmtx.

y1 = fft(x); % Transform x using fft.

z = idm*y; % Recover x using the result of dftmtx(1/alph).
z1 = ifft(y1); % Recover x using ifft.

12-31

12 Galois Field Computations

Tip If you have many vectors that you want to transform (in the same field), it
might be faster to use dftmtx once and matrix multiplication many times,
instead of using fft many times.

12-32

Polynomials over Galois Fields

Polynomials

over Galois Fields

In this section...

“Section Overview” on page 12-33

“Addition and Subtraction of Polynomials” on page 12-33
“Multiplication and Division of Polynomials” on page 12-34
“Evaluating Polynomials” on page 12-34

“Roots of Polynomials” on page 12-35

“Roots of Binary Polynomials” on page 12-36

“Minimal Polynomials” on page 12-37

Section Overview

You can use Galois vectors to represent polynomials in an indeterminate

quantity x, with coefficients in a Galois field. Form the representation by
listing the coefficients of the polynomial in a vector in order of descending
powers of x. For example, the vector

gf ([2 1 0 3],4)
represents the polynomial Ax? + 1x2 + 0x + (A+1), where

e A is a primitive element in the field GF(2%).

® x is the indeterminate quantity in the polynomial.

You can then use such a Galois vector to perform arithmetic with, evaluate,
and find roots of polynomials. You can also find minimal polynomials of
elements of a Galois field.

Addition and Subtraction of Polynomials

To add and subtract polynomials, use + and - on equal-length Galois vectors
that represent the polynomials. If one polynomial has lower degree than the
other, you must pad the shorter vector with zeros at the beginning so the
two vectors have the same length. The example below shows how to add a
degree-one and a degree-two polynomial.

12-33

12 Galois Field Computations

12-34

lin = gf([4 2],3); % A"2 x + A, which is linear in Xx

linpadded = gf([0 4 2],3); % The same polynomial, zero-padded
quadr = gf([1 4 2],3); % x*2 + A2 x + A, which is quadratic in x
% Can't do lin + quadr because they have different vector lengths.
sumpoly = [0, 1lin] + quadr; % Sum of the two polynomials

sumpoly2 = linpadded + quadr; % The same sum

Multiplication and Division of Polynomials

To multiply and divide polynomials, use conv and deconv on Galois vectors
that represent the polynomials. Multiplication and division of polynomials

is equivalent to convolution and deconvolution of vectors. The deconv
function returns the quotient of the two polynomials as well as the remainder
polynomial. Examples are below.

m = 4;

apoly of ([4 5 3],m); % A2 x*2 + (A*2 + 1) x + (A + 1)
bpoly = gf([1 1],m); % x + 1

xpoly = gf([1 0],m); % X

% Product is A2 x"3 + x*2 + (A*2 + A) x + (A + 1).

cpoly = conv(apoly,bpoly);

[a2,remd] = deconv(cpoly,bpoly); % a2==apoly. remd is zero.
[otherpol,remd2] = deconv(cpoly,xpoly); % remd is nonzero.

The multiplication and division operators in “Arithmetic in Galois Fields” on
page 12-14 multiply elements or matrices, not polynomials.

Evaluating Polynomials

To evaluate a polynomial at an element of a Galois field, use polyval. It
behaves like the ordinary MATLAB polyval function when given exactly
two input arguments. The example below evaluates a polynomial at several
elements in a field and checks the results using .~ and . * in the field.

m = 4;

apoly = gf([4 5 3],m); % A*2 x"2 + (A"2 + 1) x + (A + 1)

x0 = gf([0 1 2],m); % Points at which to evaluate the polynomial
y = polyval(apoly,x0)

a = gf(2,m); % Primitive element of the field, corresponding to A.
y2 = a.”2.*x0.72 + (a.”2+1).*x0 + (a+1) % Check the result.

Polynomials over Galois Fields

The output is below.
y = GF(274) array. Primitive polynomial = D"4+D+1 (19 decimal)
Array elements =

3 2 10

y2 = GF(2"4) array. Primitive polynomial = D"4+D+1 (19 decimal)
Array elements =
3 2 10

The first element of y evaluates the polynomial at 0 and, therefore, returns
the polynomial’s constant term of 3.

Roots of Polynomials

To find the roots of a polynomial in a Galois field, use the roots function
on a Galois vector that represents the polynomial. This function finds roots
that are in the same field that the Galois vector is in. The number of times
an entry appears in the output vector from roots is exactly its multiplicity
as a root of the polynomial.

Note If the Galois vector is in GF(2™), the polynomial it represents might
have additional roots in some extension field GF((2™)%). However, roots does
not find those additional roots or indicate their existence.

The examples below find roots of cubic polynomials in GF(8).

m = 3;

cubicpolyl = gf([2 7 3 0],m); % A polynomial divisible by x
cubicpoly2 = gf([2 7 3 1],m);

cubicpoly3 = gf([2 7 3 2],m);

zeroandothers = roots(cubicpolyl1); % Zero is among the roots.
multipleroots = roots(cubicpoly2); % One root has multiplicity 2.

12-35

12 Galois Field Computations

12-36

oneroot = roots(cubicpoly3); % Only one root is in GF(2"m).

Roots of Binary Polynomials

In the special case of a polynomial having binary coefficients, it is also easy to
find roots that exist in an extension field. This is because the elements 0 and
1 have the same unambiguous representation in all fields of characteristic
two. To find roots of a binary polynomial in an extension field, apply the
roots function to a Galois vector in the extension field whose array elements
are the binary coefficients of the polynomial.

The example below seeks the roots of a binary polynomial in various fields.

gf2poly of ([1 1 1],1); % x*2 + x + 1 in GF(2)

noroots = roots(gf2poly); % No roots in the ground field, GF(2)
gf4poly of ([1 1 1],2); % x*2 + x + 1 in GF(4)

roots4 = roots(gf4poly); % The roots are A and A+1, in GF(4).
gf16poly = gf([1 1 1],4); % x*2 + x + 1 in GF(16)

roots16 = roots(gfi6poly); % Roots in GF(16)

checkanswer4 = polyval(gf4poly,roots4); % Zero vector
checkanswer16 = polyval(gfi6poly,rootsi6); % Zero vector

The roots of the polynomial do not exist in GF(2), so noroots is an empty
array. However, the roots of the polynomial exist in GF(4) as well as in
GF(16), so roots4 and roots16 are nonempty.

Notice that roots4 and roots16 are not equal to each other. They differ in
these ways:

® roots4is a GF(4) array, while roots16 is a GF(16) array. MATLAB keeps
track of the underlying field of a Galois array.

® The array elements in roots4 and roots16 differ because they use
representations with respect to different primitive polynomials. For
example, 2 (which represents a primitive element) is an element of the
vector roots4 because the default primitive polynomial for GF(4) is the
same polynomial that gf4poly represents. On the other hand, 2 is not an
element of roots16 because the primitive element of GF(16) is not a root of
the polynomial that gf16poly represents.

Polynomials over Galois Fields

Minimal Polynomials

The minimal polynomial of an element of GF(2™) is the smallest degree
nonzero binary-coefficient polynomial having that element as a root in GF(2™).
To find the minimal polynomial of an element or a column vector of elements,
use the minpol function.

The code below finds that the minimal polynomial of gf (6,4) is D2+ D + 1
and then checks that gf (6,4) is indeed among the roots of that polynomial in
the field GF(16).

m = 4;

e = gf(6,4);

em = minpol(e) % Find minimal polynomial of e. em is in GF(2).

emr = roots(gf([0 011 1],m)) % Roots of D*2+D+1 in GF(2"m)
The output 1s

em = GF(2) array.

Array elements =

0 0 1 1 1

emr = GF(2"4) array. Primitive polynomial = D"4+D+1 (19 decimal)
Array elements =

6
7

To find out which elements of a Galois field share the same minimal
polynomial, use the cosets function.

12-37

12 Galois Field Computations

Manipulating Galois Variables

12-38

In this section...

“Section Overview” on page 12-38

“Determining Whether a Variable Is a Galois Array” on page 12-38

“Extracting Information from a Galois Array” on page 12-38

Section Overview

This section describes techniques for manipulating Galois variables or for
transferring information between Galois arrays and ordinary MATLAB
arrays.

Note These techniques are particularly relevant if you write M-file functions
that process Galois arrays. For an example of this type of usage, enter edit
gf/conv in the Command Window and examine the first several lines of code
in the editor window.

Determining Whether a Variable Is a Galois Array

To find out whether a variable is a Galois array rather than an ordinary
MATLAB array, use the isa function. An illustration is below.

mlvar = eye(3);

gfvar = gf(mlvar,3);

no = isa(mlvar,'gf'); % False because mlvar is not a Galois array
yes = isa(gfvar,'gf'); % True because gfvar is a Galois array

Extracting Information from a Galois Array

To extract the array elements, field order, or primitive polynomial from a
variable that is a Galois array, append a suffix to the name of the variable.
The table below lists the exact suffixes, which are independent of the name of
the variable.

Manipulating Galois Variables

Information

Suffix

Output Value

Array elements

MATLAB array of type
uint16 that contains
the data values from
the Galois array.

Field order

Integer of type double
that indicates that
the Galois array is in
GF(2"m).

Primitive polynomial

.prim_poly

Integer of type uint32
that represents the
primitive polynomial.
The representation

is similar to the
description in “How
Integers Correspond to
Galois Field Elements”
on page 12-8.

Note If the output value is an integer data type and you want to convert it to
double for later manipulation, use the double function.

The code below illustrates the use of these suffixes. The definition of empr
uses a vector of binary coefficients of a polynomial to create a Galois array
in an extension field. Another part of the example retrieves the primitive
polynomial for the field and converts it to a binary vector representation
having the appropriate number of bits.

% Check that e solves its own minimal polynomial.

e = gf(6,4); % An element of GF(16)
% The minimal polynomial, emp, is in GF(2).

emp = minpol(e

)
empp = POOtS(gf(emp-Xye'm)); %

Find roots of emp in GF(16).

% Check that the primitive element gf(2,m) is
% really a root of the primitive polynomial for the field.

primpoly _int = double(e.prim_poly);

12-39

12 Galois Field Computations

mval = e.m;
primpoly vect = gf(de2bi(primpoly_int,mval+1, 'left-msb'),mval);
containstwo = roots(primpoly vect); % Output vector includes 2.

Converting Galois Array to Doubles

a
b

gf([1,0])
double(a.x) %a.x is in uint16

MATLAB returns the following:
a = GF(2) array.
Array elements =

1 0

12-40

Speed and Nondefault Primitive Polynomials

Speed and Nondefault Primitive Polynomials

The section “Specifying the Primitive Polynomial” on page 12-10 described
how to represent elements of a Galois field with respect to a primitive
polynomial of your choice. This section describes how you can increase
the speed of computations involving a Galois array that uses a primitive
polynomial other than the default primitive polynomial. The technique is
recommended if you perform many such computations.

The mechanism for increasing the speed is a data file, userGftable.mat, that
some computational functions use to avoid performing certain computations
repeatedly. To take advantage of this mechanism for your combination of field
order (m) and primitive polynomial (prim_poly):

1 Navigate in the MATLAB application to a directory to which you have write
permission. You can use either the cd function or the Current Directory
feature to navigate.

2 Define m and prim_poly as workspace variables. For example:
m = 3; prim_poly = 13; % Examples of valid values
3 Invoke the gftable function:

gftable(m,prim_poly); % If you previously defined m and prim_poly

The function revises or creates userGftable.mat in your current working
directory to include data relating to your combination of field order and
primitive polynomial. After you initially invest the time to invoke gftable,
subsequent computations using those values of m and prim_poly should be
faster.

12-41

12 Galois Field Computations

12-42

Note If you change your current working directory after invoking
gftable, you must place userGftable.mat on your MATLAB path to
ensure that MATLAB can see it. Do this by using the addpath command
to prefix the directory containing userGftable.mat to your MATLAB
path. If you have multiple copies of userGftable.mat on your path, use
which('userGftable.mat','-all') to find out where they are and which
one MATLAB is using.

To see how much gftable improves the speed of your computations, you can
surround your computations with the tic and toc functions. See the gftable
reference page for an example.

Selected Bibliography for Galois Fields

Selected Bibliography for Galois Fields

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading,
MA, Addison-Wesley, 1983, p. 105.

[2] Lang, Serge, Algebra, Third Edition, Reading, MA, Addison-Wesley, 1993.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals
and Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag,
1982.

[6] Wicker, Stephen B., Error Control Systems for Digital Communication
and Storage, Upper Saddle River, NdJ, Prentice Hall, 1995.

12-43

12 Galois Field Computations

12-44

EyeScope: An Eye Diagram
Analysis Tool

This section describes the EyeScope Tool and provides a tutorial on how to
perform essential end-user tasks.

® “Introduction” on page 13-2

e “EyeScope Tutorial” on page 13-3

1 3 EyeScope: An Eye Diagram Analysis Tool

13-2

Introduction

Use EyeScope to examine the data in the eye diagram object. EyeScope
shows both the eye diagram plot and measurement results in a unified,
graphical environment. You can import, and compare measurement results
for, multiple eye diagram objects.

For a description of eye diagrams, refer to 'Eye Diagrams’ in the
Communications Toolbox User’s Guide.

For an explanation about constructing an eye diagram object, running a
simulation, and analyzing the simulated data, refer to the ’Eye Diagram
Measurements’ demo.

For a complete list of EyeScope measurements definitions, refer to
'Measurements’ in the Communications Toolbox User’s Guide.

For instructions on how to perform basic EyeScope tasks, see the 'EyeScope'
reference page.

EyeScope Tutorial

EyeScope Tutorial

This section provides a step-by-step introduction for using EyeScope to import

eye diagram objects, select and change which eye diagram measurements
EyeScope displays, compare measurement results, and print a plot object.

MATLAB software includes a set of data containing nine eye diagram objects,
which you can import into EyeScope. While EyeScope can import eye diagram

objects from either the workspace or a MAT-file, this introduction covers
importing from the workspace. EyeScope reconstructs the variable names it

imports to reflect the origin of the eye diagram object.

1 Type load commeye EyeMeasureDemoData at the MATLAB command line
to load nine eye diagram objects into the MATLAB workspace.

2 Type eyescope at the MATLAB command line to start the EyeScope tool.

3 In the EyeScope window, select File > Import Eye Diagram Object.

The Import eye diagram object dialog box opens.

) Import eye diagram object

— Source

{* From waorkspace

" From filz

& T=fileinates

|
Browse... |

— Warkspace contents

eyelhkj2
eyeObj3
eyeChid
eyelhid
eyelbjs
eyeDkiT
eyelhjs
eyeChid

=101 x|

e - |

=l

Impart |

Cancel |

13-3

1 3 EyeScope: An Eye Diagram Analysis Tool

13-4

In this window, the Workspace contents panel displays all eye diagram

objects available in the source location.

Select eyeObj1 and click Import. EyeScope imports the object, displaying
an image in the object plot and listing the file name in the Eye diagram

objects list.

Note Object names associated with eye diagram objects that you import
from the work space begin with the prefix ws.

<) FyeScope - [untitled.eds *]

Fil= ©Options View Help

I 3

Amplitude (ALY

Single Eye Diagram View

— Evye diagram object setting

Setting

Sampling Freguency (GHz)

Symbol Rate (MSps):

Evye= Level Boundaries (%)
BER Threshald:

Amplitude Threshold (36):

Value
S|

100

[4060]

18-12

{090

— Meazurement:

Type

Horizontal Opening (Ne):
Randam Jitter (ns):
Dreterministic Jitter (ns):
Total Jitter (nz):

RMS Jitter (n=):

Peak to Peak Jiter (ns):
“ertical Opening (ALY
Rize Time (ns):

Fall Titme (ns):

Evy= ShR:

Value
Tl |
43
1.93
629
1.04
47
1.493
227
227
296

Review the image and note the default Eye diagram object settings and
Measurements selections. For more information, refer to the EyeScope

reference page.

EyeScope Tutorial

+

5 In the EyeScope window, click the Import button.

6 From the Import eye diagram object window, click to select eyeObj5 then

click the Import button.

® The EyeScope window changes, displaying a new plot and adding
ws_eyeObjb5 to the Eye diagram objects list. EyeScope displays the
same settings and measurements for both eye diagram objects.

® You can switch between the eyediagram plots EyeScope displays by

clicking on an object name in the Eye diagram object list.

® Next, click ws_eyeODbjl and note the EyeScope plot and measurement

values changes.

7 To change or remove measurements from the EyeScope display:

® Select Options > Measurements View. The Configure
measurement view shuttle control opens.

) Configure measurements view o] oA |
Available ftems: Selected tems:
Crossing Time d Horizontal Opening d

Random Jitter
Deterministic Jiter

Crossing Amplituds
Crossing Amplitude (%)

[
— Quick helg
The mean value of time at swhich the Mave Up | Move Down |
eye diagram crosses the amplitude
level defined by reference amplitude
values.
QK | Cancel |

Eye Delay

Eye Level

Eye Amplitude Add -= |

Eye Height

CQuality Factor | 153
Eye Width <- Remove

¢ Hold down the <Ctrl> key and click to select Vertical Opening, Rise

Time, Fall Time, Eye SNR. Then click Remove.

13-5

1 3 EyeScope: An Eye Diagram Analysis Tool

13-6

8

10

12

13

14

From the left side of the shuttle control, select Crossing Time and
Crossing Amplitude and then click Add. To display EyeScope with these
new settings, click OK. EyeScope’s Measurement region displays Crossing
Time and Crossing Amplitude at the bottom of the Measurements section.

Change the list order so that Crossing Time and Crossing Amplitude
appear at the top of the list.
¢ Select Options > Measurements View.

® When the Configure measurement view shuttle control opens, hold
down the <Ctrl> key and click to select Crossing Time and Crossing
Amplitude.

¢ (Click the Move Up button until these selections appear at the top of the
list. Then, click OK

Select File > Save session as and then type a file name in the pop-up
window.

Import ws_eyeODbj2, ws_eyeObj3, and ws_eyeObj4. EyeScope now
contains eye diagram objects 1, 5, 2, 3, and 4 in the list.

Select ws_eyeObj5, and click the delete X button.
Click File > Import Eye Diagram Object, and select ws_eyeObj5.

To compare measurement results for multiple eye diagram objects, click
View > Compare Measurement Results View.

EyeScope Tutorial

) EyeScope - [tutorl.eds *] =10]

File Options View Help £

Compare Measurement Results View)) :
T T T Eve diagram ohject setting:

T T T T T
Setting Value
Sampling Frequency (GHZX 10 J
g i Symbol Rate (MSpe) 100
Evye Level Boundaries (%) [4060]
EER Threshold: 1e-12
5 4 Amplitucle Threshold (%) [1oso v
> —+— Random Jitter (ns)
.g. L —#— Deterministic Jiter (ns) R ENET S S
= 4 B [~ Crossing Time
E [~ Crossing Amplitucke
[¥ Random Jtter
3 i [Deterministic Jitter
[~ Total Jitter
[~ RMS Jiter
[~ Peakto Pealk Jitter
2 * # ¥
1 L L L L L L L
1 1.5 2 25 3 3.5 4 45 5
Eye Diagram Index I~ Show guadrature (imaginary) data
il Eye Object | Random Jitter (ns) | Deterministic Jitter {ns) |
1 |ws_syeOhil 4.3000 1.9900
il | 2 |ws_eyeOhiz 48500 1.3300
3 |ws_syelhi3 5.7000 1.8700
ll | 4 |ws_eyeOhj4 6.3200 1.9800
| 5 |ws_eyeOhis 6.9600 1.8500
3

In the data set, random jitter increases from experiment 1 to experiment 5,
as you can see in both the table and plot figure.

15 To include any data from the Measurements selection you chose earlier
in this procedure, go to the Measurement selector and select, the
Total Jitter check box. The object plot updates to display the additional
measurements.

13-7

1 3 EyeScope: An Eye Diagram Analysis Tool

— Measurements selector
[Crossing Time

[Crossing Amplitude
¥ Random Jittar

¥ Deterministic Jittar

[Tatal Jitter

[~ RMS Jitter

[~ Peak to Peak Jitar

[~ Show guadraturs (imaginary) data

You can also remove measurements from the plot display. In the
Measurements selector, select the check boxes for Random Jitter
and Deterministic Jitter. The object plot updates, removing these two
measurements.

16 To print the plot display, select File > Print to Figure. From Figure
window, click the print button.

=lal=
File Edit View Insert Tools Desktop Window Help £
Dode | k(RO EL- 20880

Compare Measurement Results View
El T T T T T T

—#— Horizontal Opening (ns)
—4— Total Jitter (ns)

Time (ns) (*)
1

1 15 2 25 3 35 4 45 5
Eye Diagram Index

13-8

(Galois Fields of Odd

Characteristic

A Galois field is an algebraic field having p™ elements, where p is prime and m
1s a positive integer. This chapter describes how to work with Galois fields in
which p is odd. To work with Galois fields having an even number of elements,
see Galois Field Computations. The sections in this chapter are as follows.

® “Galois Field Terminology” on page A-2

* “Representing Elements of Galois Fields” on page A-3

e “Default Primitive Polynomials” on page A-7

e “Converting and Simplifying Element Formats” on page A-8

® “Arithmetic in Galois Fields” on page A-12

¢ “Polynomials over Prime Fields” on page A-15

¢ “Other Galois Field Functions” on page A-20

e “Selected Bibliography for Galois Fields” on page A-21

A Galois Fields of Odd Characteristic

Galois Field Terminology

Throughout this section, p is an odd prime number and m is a positive integer.

Also, this document uses a few terms that are not used consistently in the
literature. The definitions adopted here appear in van Lint [5].

® A primitive element of GF(p™) is a cyclic generator of the group of nonzero
elements of GF(p™). This means that every nonzero element of the field
can be expressed as the primitive element raised to some integer power.
Primitive elements are called A throughout this section.

® A primitive polynomial for GF(p™) is the minimal polynomial of some
primitive element of GF(p™). As a consequence, it has degree m and is
irreducible.

Representing Elements of Galois Fields

Representing Elements of Galois Fields

In this section...

“Section Overview” on page A-3
“Exponential Format” on page A-3
“Polynomial Format” on page A-4

“List of All Elements of a Galois Field” on page A-5

“Nonuniqueness of Representations” on page A-6

Section Overview

This section discusses how to represent Galois field elements using this
toolbox’s exponential format and polynomial format. It also describes a way to
list all elements of the Galois field, because some functions use such a list as
an input argument. Finally, it discusses the nonuniqueness of representations
of Galois field elements.

The elements of GF(p) can be represented using the integers from 0 to p-1.

When m is at least 2, GF(p™) is called an extension field. Integers alone
cannot represent the elements of GF(p™) in a straightforward way. MATLAB
technical computing software uses two main conventions for representing
elements of GF(p™): the exponential format and the polynomial format.

Note Both the exponential format and the polynomial format are relative to
your choice of a particular primitive element A of GF(p™).

Exponential Format

This format uses the property that every nonzero element of GF(p™) can be
expressed as A° for some integer ¢ between 0 and p™-2. Higher exponents are
not needed, because the theory of Galois fields implies that every nonzero
element of GF(p™) satisfies the equation x%! = 1 where q = p™.

The use of the exponential format is shown in the table below.

A Galois Fields of Odd Characteristic

Element of GF(p™) MATLAB Representation of the
Element

0 -Inf

Ad=1 0

Al 1

A%2 where g = p™ g-2

Although - Inf is the standard exponential representation of the zero element,
all negative integers are equivalent to -Inf when used as input arguments
in exponential format. This equivalence can be useful; for example, see the
concise line of code at the end of the section “Default Primitive Polynomials”
on page A-7.

Note The equivalence of all negative integers and -Inf as exponential
formats means that, for example, -1 does not represent A'l, the multiplicative
inverse of A. Instead, -1 represents the zero element of the field.

Polynomial Format

The polynomial format uses the property that every element of GF(p™) can
be expressed as a polynomial in A with exponents between 0 and m-1, and
coefficients in GF(p). In the polynomial format, the element

A(1) +A(2) A+A(3) A2+ .. +A(m) A™!
is represented in MATLAB by the vector

[A(1) A(2) A(3) ... A(m)]

Note The Galois field functions in this toolbox represent a polynomial as a
vector that lists the coefficients in order of ascending powers of the variable.
This is the opposite of the order that other MATLAB functions use.

Representing Elements of Galois Fields

List of All Elements of a Galois Field

Some Galois field functions in this toolbox require an argument that lists all
elements of an extension field GF(p™). This is again relative to a particular
primitive element A of GF(p™). The proper format for the list of elements is
that of a matrix having p™ rows, one for each element of the field. The matrix
has m columns, one for each coefficient of a power of A in the polynomial
format shown in “Polynomial Format” on page A-4 above. The first row
contains only zeros because it corresponds to the zero element in GF(p™). If
k is between 2 and p™, then the kth row specifies the polynomial format of
the element AX2,

The minimal polynomial of A aids in the computation of this matrix, because
it tells how to express A™ in terms of lower powers of A. For example, the
table below lists the elements of GF(32), where A is a root of the primitive
polynomial 2 + 2x + x2. This polynomial allows repeated use of the substitution

A2=2.2A=1+A
when performing the computations in the middle column of the table.

Elements of GF(9)

Exponential Polynomial Format Row of MATLAB
Format Matrix of Elements
Aot 0 00

A0 1 10

Al A 01

A? 1+A 11

A3 A+A2=A+1+A=1+2A |12

At A+2A2=A+2+2A=2 20

Ab 2A 02

AS 2A% =2 + 2A 22

A7 2A+2A2=2A+2+2A=2+A | 2 1

A-5

A Galois Fields of Odd Characteristic

Example
An automatic way to generate the matrix whose rows are in the third column
of the table above is to use the code below.

The gftuple function is discussed in more detail in “Converting and
Simplifying Element Formats” on page A-8.

Nonuniqueness of Representations

A given field has more than one primitive element. If two primitive elements
have different minimal polynomials, then the corresponding matrices of
elements will have their rows in a different order. If the two primitive
elements share the same minimal polynomial, then the matrix of elements of
the field is the same.

Note You can use whatever primitive element you want, as long as you
understand how the inputs and outputs of Galois field functions depend on
the choice of some primitive polynomial. It is usually best to use the same
primitive polynomial throughout a given script or function.

Other ways in which representations of elements are not unique arise from
the equations that Galois field elements satisfy. For example, an exponential
format of 8 in GF(9) is really the same as an exponential format of 0, because
A8=1=A%in GF(9). As another example, the substitution mentioned just
before the table Elements of GF(9) on page A-5 shows that the polynomial
format [0 O 1] is really the same as the polynomial format [1 1].

Default Primitive Polynomials

Default Primitive Polynomials

This toolbox provides a default primitive polynomial for each extension field.
You can retrieve this polynomial using the gfprimdf function. The command

prim_poly = gfprimdf(m,p); % If m and p are already defined

produces the standard row-vector representation of the default minimal
polynomial for GF(p™).

For example, the command below shows that the default primitive polynomial

for GF(9) is 2 + x + x?, not the polynomial used in “List of All Elements of
a Galois Field” on page A-5.

2 1 1

To generate a list of elements of GF(p™) using the default primitive
polynomial, use the command

field = gftuple([-1:p™m-2]',m,p);

A-7

A Galois Fields of Odd Characteristic

A-8

Converting and Simplifying Element Formats

In this section...

“Converting to Simplest Polynomial Format” on page A-8

“Example: Generating a List of Galois Field Elements” on page A-10

“Converting to Simplest Exponential Format” on page A-10

Converting to Simplest Polynomial Format

The gftuple function produces the simplest polynomial representation of an
element of GF(p™), given either an exponential representation or a polynomial
representation of that element. This can be useful for generating the list of
elements of GF(p™) that other functions require.

Using gftuple requires three arguments: one representing an element of
GF(p™), one indicating the primitive polynomial that MATLAB technical
computing software should use when computing the output, and the prime
p. The table below indicates how gftuple behaves when given the first two
arguments in various formats.

Behavior of gftuple Depending on Format of First Two Inputs

How to Specify How to Indicate What gftuple
Element Primitive Polynomial | Produces

Exponential format; Integer m > 1 Polynomial format of
¢ = any integer Ac, where A is a root of

the default primitive
polynomial for GF(p™)

Example: tp = gftuple(6,2,3); % ¢ =6 here

Exponential format; Vector of coefficients of | Polynomial format of

¢ = any integer primitive polynomial A¢, where A is a root
of the given primitive
polynomial

Example: polynomial = gfprimdf(2,3); tp =
gftuple(6,polynomial,3); % ¢ =6 here

Converting and Simplifying Element Formats

Behavior of gftuple Depending on Format of First Two Inputs
(Continued)

How to Specify How to Indicate What gftuple
Element Primitive Polynomial | Produces
Polynomial format of Integer m > 1 Polynomial format
any degree of degree < m, using

default primitive
polynomial for GF(p™)
to simplify

Example: tp = gftuple([0 0 0 0 0 0 1],2,3);

Polynomial format of Vector of coefficients of | Polynomial format
any degree primitive polynomial of degree < m, using
the given primitive
polynomial for GF(p™)
to simplify

Example: polynomial = gfprimdf(2,3); tp = gftuple([0 0 0 0 0 O
1],polynomial,3);

The four examples that appear in the table above all produce the same vector
tp = [2, 1], but their different inputs to gftuple correspond to the lines of
the table. Each example expresses the fact that A® = 24+A, where A is a root of
the (default) primitive polynomial 2 + x+ x2 for GF(3?).

Example

This example shows how gfconv and gftuple combine to multiply two
polynomial-format elements of GF(3%). Initially, gfconv multiplies the

two polynomials, treating the primitive element as if it were a variable.
This produces a high-order polynomial, which gftuple simplifies using the
polynomial equation that the primitive element satisfies. The final result is
the simplest polynomial format of the product.

The output is below.

A-9

A Galois Fields of Odd Characteristic

notsimple =

2 0 2 0 0 1 2
simple =

2 1 0 1

Example: Generating a List of Galois Field Elements

This example applies the conversion functionality to the task of generating
a matrix that lists all elements of a Galois field. A matrix that lists all field
elements is an input argument in functions such as gfadd and gfmul. The
variables field1 and field2 below have the format that such functions
expect.

Converting to Simplest Exponential Format

The same function gftuple also produces the simplest exponential
representation of an element of GF(p™), given either an exponential
representation or a polynomial representation of that element. To retrieve
this output, use the syntax

[polyformat, expformat] = gftuple(...)

The input format and the output polyformat are as in the table Behavior of
gftuple Depending on Format of First Two Inputs on page A-8. In addition,
the variable expformat contains the simplest exponential format of the
element represented in polyformat. It is simplest in the sense that the
exponent is either -Inf or a number between 0 and p™-2.

Example

To recover the exponential format of the element 2 + A that the previous
section considered, use the commands below. In this case, polyformat
contains redundant information, while expformat contains the desired result.

A-10

Converting and Simplifying Element Formats

polyformat =
2 1

expformat =
6

This output appears at first to contradict the information in the table
Elements of GF(9) on page A-5, but in fact it does not. The table uses
a different primitive element; two plus that primitive element has the
polynomial and exponential formats shown below.

The output below reflects the information in the bottom line of the table.

polyformat2 =

2 1

expformat2 =

7

A-11

A Galois Fields of Odd Characteristic

A-12

Arithmetic in Galois Fields

In this section...

“Section Overview” on page A-12

“Arithmetic in Prime Fields” on page A-12

“Arithmetic in Extension Fields” on page A-13

Section Overview

You can add, subtract, multiply, and divide elements of Galois fields using
the functions gfadd, gfsub, gfmul, and gfdiv, respectively. Each of these
functions has a mode for prime fields and a mode for extension fields.

Arithmetic in Prime Fields

Arithmetic in GF(p) is the same as arithmetic modulo p. The functions gfadd,
gfmul, gfsub, and gfdiv accept two arguments that represent elements of
GF(p) as integers between 0 and p-1. The third argument specifies p.

Example: Addition Table for GF(5)

The code below constructs an addition table for GF(5). If a and b are between
0 and 4, then the element gfp_add(a+1,b+1) represents the sum a+b in
GF(5). For example, gfp_add(3,5) = 1 because 2+4 is 1 modulo 5.

The output for this example follows.

gfp_add =
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

Arithmetic in Galois Fields

Other values of p produce tables for different prime fields GF(p). Replacing
gfadd by gfmul, gfsub, or gfdiv produces a table for the corresponding
arithmetic operation in GF(p).

Arithmetic in Extension Fields

The same arithmetic functions can add elements of GF(p™) when m > 1, but
the format of the arguments is more complicated than in the case above. In
general, arithmetic in extension fields is more complicated than arithmetic in
prime fields; see the works listed in “Selected Bibliography for Galois Fields”
on page A-21 for details about how the arithmetic operations work.

When working in extension fields, the functions gfadd, gfmul, gfsub, and
gfdiv use the first two arguments to represent elements of GF(p™) in
exponential format. The third argument, which is required, lists all elements
of GF(p™) as described in “List of All Elements of a Galois Field” on page A-5.
The result is in exponential format.

Example: Addition Table for GF(9)

The code below constructs an addition table for GF(3?), using exponential
formats relative to a root of the default primitive polynomial for GF(9). If a
and b are between -1 and 7, then the element gfpm_add(a+2,b+2) represents
the sum of A* and APin GF(9). For example, gfpm_add(4,6) = 5 because

AZ + At = A5

Using the fourth and sixth rows of the matrix field, you can verify that

A2+ A*=(1+2A)+ 2+ 0A)=3+2A =0+ 2A = A® modulo 3.

The output is below.

A-13

A Galois Fields of Odd Characteristic

gfpm_add =
-Inf 0 1 2 3 4 5 6 7
0 4 7 3 5 -Inf 2 1 6
1 7 5 0 4 6 -Inf 3 2
2 3 0 6 1 5 7 -Inf 4
3 5 4 1 7 2 6 0 -Inf
4 -Inf 6 5 2 0 3 7 1
5 2 -Inf 7 6 3 1 4 0
6 1 3 -Inf 0 7 4 2 5
7 6 2 4 -Inf 1 0 5 3

Note If you used a different primitive polynomial, then the tables would look
different. This makes sense because the ordering of the rows and columns of
the tables was based on that particular choice of primitive polynomial and not
on any natural ordering of the elements of GF(9).

Other values of p and m produce tables for different extension fields GF(p~m).
Replacing gfadd by gfmul, gfsub, or gfdiv produces a table for the
corresponding arithmetic operation in GF(p~m).

A-14

Polynomials over Prime Fields

Polynomials over Prime Fields

In this section...

“Section Overview” on page A-15
“Cosmetic Changes of Polynomials” on page A-15
“Polynomial Arithmetic” on page A-16

“Characterization of Polynomials” on page A-17

“Roots of Polynomials” on page A-17

Section Overview

A polynomial over GF(p) is a polynomial whose coefficients are elements of
GF(p). Communications Toolbox software provides functions for

¢ Changing polynomials in cosmetic ways

® Performing polynomial arithmetic

¢ Characterizing polynomials as primitive or irreducible

* Finding roots of polynomials in a Galois field

Note The Galois field functions in this toolbox represent a polynomial over
GF(p) for odd values of p as a vector that lists the coefficients in order of
ascending powers of the variable. This is the opposite of the order that
other MATLAB functions use.

Cosmetic Changes of Polynomials

To display the traditionally formatted polynomial that corresponds to a row
vector containing coefficients, use gfpretty. To truncate a polynomial by
removing all zero-coefficient terms that have exponents higher than the
degree of the polynomial, use gftrunc. For example,

The output is below.

A-15

A Galois Fields of Odd Characteristic

polynom =

1 20 394 10 0 0 29 3

2 3 6 7
1+20 X +394 X +10X +29 X + 3 X

Note If you do not use a fixed-width font, then the spacing in the display
might not look correct.

Polynomial Arithmetic

The functions gfadd and gfsub add and subtract, respectively, polynomials
over GF(p). The gfconv function multiplies polynomials over GF(p). The
gfdeconv function divides polynomials in GF(p), producing a quotient
polynomial and a remainder polynomial. For example, the commands below
show that 2 + x + x? times 1 + x over the field GF(3) is 2 + 2x2 + x5.

The output is below.

a =
2 0 2 1
quot =
1 1
remd =
0

The previously discussed functions gfadd and gfsub add and subtract,
respectively, polynomials. Because it uses a vector of coefficients to represent

A-16

Polynomials over Prime Fields

a polynomial, MATLAB does not distinguish between adding two polynomials
and adding two row vectors elementwise.

Characterization of Polynomials

Given a polynomial over GF(p), the gfprimck function determines whether
it is irreducible and/or primitive. By definition, if it is primitive then it is
irreducible; however, the reverse is not necessarily true. The gfprimdf and
gfprimfd functions return primitive polynomials.

Given an element of GF(p™), the gfminpol function computes its minimal
polynomial over GF(p).

Example

For example, the code below reflects the irreducibility of all minimal
polynomials. However, the minimal polynomial of a nonprimitive element is
not a primitive polynomial.

Roots of Polynomials

Given a polynomial over GF(p), the gfroots function finds the roots of the
polynomial in a suitable extension field GF(p™). There are two ways to
tell MATLAB the degree m of the extension field GF(p™), as shown in the
following table.

Formats for Second Argument of gfroots

Second Argument Represents

A positive integer m as in GF(p™). MATLAB uses the
default primitive polynomial in its
computations.

A row vector A primitive polynomial for GF(p™).
Here m is the degree of this primitive
polynomial.

A-17

A Galois Fields of Odd Characteristic

Example: Roots of a Polynomial in GF(9)

The code below finds roots of the polynomial 1 + x? + x3 in GF(9) and then
checks that they are indeed roots. The exponential format of elements of
GF(9) is used throughout.

A-18

Polynomials over Prime Fields

The output shows that A° (which equals 1), A%, and A7 are roots.

roots =

o o

answer =
-Inf -Inf -Inf

See the reference page for gfroots to see how gfroots can also provide you
with the polynomial formats of the roots and the list of all elements of the field.

A-19

A Galois Fields of Odd Characteristic

Other Galois Field Functions

See the online reference pages for information about these other Galois field
functions in Communications Toolbox software:

e gfcosets, which produces cyclotomic cosets

e gffilter, which filters data using GF(p) polynomials

gfprimfd, which finds primitive polynomials

gfrank, which computes the rank of a matrix over GF(p)

e gfrepcov, which converts one binary polynomial representation to another

A-20

Selected Bibliography for Galois Fields

Selected Bibliography for Galois Fields

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading,
Mass., Addison-Wesley, 1983.

[2] Lang, Serge, Algebra, Third Edition, Reading, Mass., Addison-Wesley,
1993.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals
and Applications, Englewood Cliffs, N.J., Prentice-Hall, 1983.

[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag,
1982.

A-21

A Galois Fields of Odd Characteristic

A-22

Analytical Expressions

Used in berawgn, bercoding,
berfading, and BERTool

This appendix summarizes the main theoretical expressions used in the
functions berawgn, berfading, bercoding, and in the Theoretical pane of
BERTool. For each modulation scheme, expressions are given for the bit error
rate (BER) for both the coded and uncoded cases, and for the symbol error rate
(SER) in the uncoded case. Gray coding is assumed in all cases. The BER and
SER are the same for binary modulation schemes. Simplifying expressions
are also given for certain special cases.

“Common Notation” on page B-2

“Analytical Expressions Used in berawgn” on page B-5

“Analytical Expressions Used in berfading” on page B-14

“Analytical Expressions Used in bercoding and BERTool” on page B-23
“Selected Bibliography” on page B-28

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

Common Notation

The following notation is used throughout this Appendix:

Quantity or Operation Notation
Size of modulation constellation

M
Number of bits per symbol

k= 10g2 M
Energy per bit-to-noise
power-spectral-density ratio E,

No
Energy per symbol-to-noise
power-spectral-density ratio ﬂ _ ﬂ

Ny Ny
Bit error rate (BER)

By
Symbol error rate (SER)

Py
Real part

Re[]
Largest integer smaller than

B-2

Common Notation

The following mathematical functions are used:

Function Mathematical Expression
Q function
17 2
(x) = — | exp(—t~ / 2)dt
? mj P

Marcum Q function

t2 +a2

Qa,b) = j texp[— }Io(at)dt
b

Modified Bessel function of the first

kind of order v o (z /2)u+2k

IV(Z)z,Z(‘)k!F(v+k+l)

where

oo

() = [e¢*dt
0
1s the gamma function.

Confluent hypergeometric function

oo

1F1(a,c,x)—]§)(c)k o

where the Pochhammer symbol,
Mk | is defined as (Vg =1,
Mg =AMA+DA+2)---(A+Ek-1).

B-3

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

The following acronyms are used:

Acronym

Definition

M-PSK

M-ary phase-shift keying

DE-M-PSK

Differentially encoded M-ary
phase-shift keying

BPSK

Binary phase-shift keying

DE-BPSK

Differentially encoded binary
phase-shift keying

QPSK

Quaternary phase-shift keying

DE-QPSK

Differentially encoded quaternary
phase-shift keying

OQPSK

Offset quaternary phase-shift keying

DE-OQPSK

Differentially encoded offset
quaternary phase-shift keying

M-DPSK

M-ary differential phase-shift keying

M-PAM

M-ary pulse amplitude modulation

M-QAM

M-ary quadrature amplitude
modulation

M-FSK

M-ary frequency-shift keying

MSK

Minimum shift keying

M-CPFSK

M-ary continuous-phase
frequency-shift keying

B-4

Analytical Expressions Used in berawgn

Analytical Expressions Used in berawgn

In this section...

“M-PSK” on page B-5

“DE-M-PSK” on page B-6

“OQPSK” on page B-7

“DE-OQPSK” on page B-7

“M-DPSK” on page B-7

“M-PAM” on page B-8

“M-QAM” on page B-8

“Orthogonal M-FSK with Coherent Detection” on page B-10
“Nonorthogonal 2-FSK with Coherent Detection” on page B-10
“Orthogonal M-FSK with Noncoherent Detection” on page B-11

“Nonorthogonal 2-FSK with Noncoherent Detection” on page B-11
“Precoded MSK with Coherent Detection” on page B-12

“Differentially Encoded MSK with Coherent Detection” on page B-12

“MSK with Noncoherent Detection (Optimum Block-by-Block)” on page B-12
“CPFSK Coherent Detection (Optimum Block-by-Block)” on page B-12

M-PSK

From equation 8.22 in [6]:

(M-Dn/M -2

kE n/ M

PS:l j exp| - b 310 [2 | do
T 0 No sin“ 0

The following expression is very close, but not strictly equal, to the exact BER
(from [2] and equation 8.29 from[6]):

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

B-6

1(M2
Py=o| Y P,
i=1

where wl =w; +wy_;, w,M/z =wyr/9, w;1is the Hamming weight of bits
assigned to symbol i, and

n(1-(2i-1)/ M) in? [(2i
kE, sin“ [(2i -Dn/M
B :i exp| - b 1 [(l -] do
om 0 Ny sin“ 0
| m1-(2i4D)/M) kE, sin® [(2i + D/ M]
N j exp| — 2 d
21t 0 NO sin“ 0

Special case of M =2, e.g., BPSK (equation 5.2-57 from [4]):

P =P = Q[\/%J

Special case of M =4, e.g., QPSK (equations 5.2-59 and 5.2-62 from [4]):
oo 147E]
o)

DE-M-PSK
M =2, e.g., DE-BPSK (equation 8.36 from [6]):

onsl e)

M =4, e.g., DE-QPSK (equation 8.38 from [6]):

Analytical Expressions Used in berawgn

sl o e 5 el 5
From equation 5 in [7]:

oo B |1_of B

oeo{ [)

OQPSK
Same BER/SER as QPSK [6].

DE-OQPSK
Same BER/SER as DE-QPSK [7].

M-DPSK

From equation 8.84 in [6]:

_ sin(n/ M) nj~2 exp (—(kEp / No)(1 — cos(n/ M) cos 6)) 26
=
2n

P
1—cos(n/M)cos®
-/ 2

The following expression is very close, but not strictly equal, to the exact
BER [2]:

1(Mrz
By=o Y, w4,
i1

where w; =w; +wy_;, w}um =wys/92, w; is the Hamming weight of bits
assigned to symbol i, and

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

B-8

. T . v

Ai = F((2l+1)M)—F((2l—1)MJ

F()__sin\y nf exp(—kEb/NO(l—cosqfcost))dt
4n /2 1-cosycost

M-PAM

From equations 8.3 and 8.7 in [6], and equation 5.2-46 in [4]:

P =2 M-1), 6 kE,
M M?% -1 Ny

From [1]:
2
b = —X

M10g2M

log, M (1-2H)M-1 V%\J}HJ o1 1 6logy M E,

Y 1| ol lQ| i+ 252 Sb

Pt & M 2 M* -1 Ny
M-QAM

For square M-QAM, % =logy M is even (equation 8.10 from [6], and equations
5.2-78 and 5.2-79 from [4]):

M -1 3 kE, JM-1Y 3 EkE
e e [e

Analytical Expressions Used in berawgn

From [1]:

2

mlogzm
log, VM (1-27%)M -1 [isz o1
7 | op1 |27 1 . [6log, M Ey
-1 20 | —+— 2i+1) |—=22—— 0
X ;Zi ;} -1 [{m+2|JQ[(Z+)/Z(M—I)No]

For rectangular (non-square) M-QAM, % =logy M is odd, M =1xd,
Bl kel
I=22 jand J=2 2 :

4] -21-2J
M

6logy(IJ) E, | 4 of [6logy(IJ) Ey
xQ| [—=222 b | = 1+1J-1-J) o2’ b
Q[\/(I2+J2—2)No] M ? (\/(12+J2—2)N0)

PS

From [1]:

1 log, I log, J
P=— Pr(k)+ P;(0)
b 1og2(1J)[Zi I ; J J

where
2 (1-2 071 HJ a2 1 6logy(IJ) E,
Pik)== (-1) | 2o lQ| @i+, |2
I i=0 I 2 I“+dJ —2NO
and

B-9

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

i9l-1
1-271J-1 {J J i1
(ol 7 e 2 ol vy | G082t) B
J 2 I“+J° -2 NO

Orthogonal M-FSK with Coherent Detection
From equation 8.40 in [6] and equation 5.2-21 in [4]:

[2kE M
b
Q[—q— No]

= P
—exp|-L |a

oo

Nonorthogonal 2-FSK with Coherent Detection
For M =2 (from equation 5.2-21 in [4] and equation 8.44 in [6]):
Ny

o [

pis the complex correlation coefficient:

1 T,
= [505 @®dt
P 2Eb ! 1()82()

where §;(¢) and §9(f) are complex lowpass signals, and

T,

T,
1°¢. 1°¢
By = [510 dt == [|50 dt
2 2]

SLe—

For example:

B-10

Analytical Expressions Used in berawgn

$1@) = /%ejznflt, 5y(8) = ’ZEZ) o) 2ot
Tb Tb

T, T,
oL f 2By jorfit |2Bp - jorfig, _ 1 f o2 E~FE gy
2B, |\ T \ T, T)

_ SinmfTy) e
AT,

where Af =f1—f5 .
Re[p] = Re [Memﬁ] _sin@AfTy) o ooary) = SRETATH)
nAfTb TCAfTb 2TCAfTb

B, - Q[\/Eb(l—sin(Zn]ifTb)/(ZnAfTb))J
0

(from equation 8.44 in [6], where h = AfT})

Orthogonal M-FSK with Noncoherent Detection
From equation 5.4-46 in [4] and equation 8.66 in [6]:

M-1 M-1
Ps — z (_1)m+1 \ 1 exp|:— m kEb:|
o m Jm+1 m+1 Ny

1 M

b= em 1t

Nonorthogonal 2-FSK with Noncoherent Detection
For M =2 (from equation 5.4-53 in [4] and equation 8.69 in [6]):

P,=P, = Q(&@—%exp(—“;b]IO(JE)

B-11

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

B-12

where

By

2)
2N,

Eb 2
= b (A 1-|p/?), b=t (1441
a=y 0(Ip|™), a+ Ip|

Precoded MSK with Coherent Detection
Same BER/SER as BPSK.

Differentially Encoded MSK with Coherent Detection
Same BER/SER as DE-BPSK.

MSK with Noncoherent Detection (Optimum
Block-by-Block)

Upper bound (from equations 10.166 and 10.164 in [5]):

P, =P,
E,

g%[1_Q(@,@)+Q(ﬁ,@]+i[l_Q(@,@)w(@,@He N,

where

2 2
;3_[//] 51;3_[s-4rn]
0 0

a4 =%(1—\/1—4/n2), by =£—’(’)(1+ 1—4/n2)

CPFSK Coherent Detection (Optimum Block-by-Block)
Lower bound (from equation 5.3-17 in [4]):

E,
P > KsminQ(N_Z;SIznin)

Analytical Expressions Used in berawgn

Upper bound:

Sin > min _{2i(1-sinc(2ih))}

where A is the modulation index, and K5 is the number of paths having
the minimum distance.

P

S

P S
=%

n

B-13

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

B-14

Analytical Expressions Used in berfading

In this section...

“Notation” on page B-14

“M-PSK with MRC” on page B-16

“DE-M-PSK with MRC” on page B-17

“M-PAM with MRC” on page B-17

“M-QAM with MRC” on page B-17

“M-DPSK with Postdetection EGC” on page B-19

“Orthogonal 2-FSK, Coherent Detection with MRC” on page B-20
“Nonorthogonal 2-FSK, Coherent Detection with MRC” on page B-20
“Orthogonal M-FSK, Noncoherent Detection with EGC” on page B-20

“Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity” on page
B-21

Notation

The following notation is used for the expressions found in berfading.

Value Notation

Power of the fading amplitude r

Q=E|r? |, where E[] denotes
statistical expectation

Number of diversity branches
L

Analytical Expressions Used in berfading

Value

Notation

SNR per symbol per branch

E LE
v=|Q =5 /L=|Q =t |/L
5 (N] (N]

For identically-distributed diversity
branches:

7:{9@]@
Ny

Moment generating functions for
each diversity branch

Rayleigh fading:

1
1—871

M T (s)
Rician fading:

|: Ksy,]
(6 =K @B
1+K—S’Yl

where K is the ratio of energy in the
specular component to the energy
in the diffuse component (linear
scale).For identically-distributed
diversity branches:

M, (s)=M,(s) forall .

The following acronyms are used:

Acronym Definition
MRC maximal-ratio combining
EGC equal-gain combining

B-15

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

B-16

M-PSK with MRC

From equation 9.15 in [6]:

(M-)n/M |, . 2

1 sin“(n/ M)

P=LT T S g
0 1=1 sin“ 0

From [2] and [6]:
(M2 |
B, =—[> <wi>Pi]
k =1

>

where wl =w; +wy_;, Wyr/o =Wyr/9, W; is the Hamming weight of bits
assigned to symbol i, and

m(1-(2i-1)/ M) T, .
5 1 . 92(2i-Dn
B=o j ”MYZ(— ——sin” == 10
0 -1 sin” 0
(1-(2i+1)/ M) L .
17" 1 . 2@Qi+Dn
“on J HM“{; (— —5—sin i 0
-1 sin” 0

0

For the special case of Rayleigh fading with M =2 (from equations C-18,
C-21, and Table C-1 in [5]):

where
_ |y
h= ¥+1
If L=1

Analytical Expressions Used in berfading

pbzz[l_ /_L}
2 v+1

DE-M-PSK with MRC
For M =2 (from equations 8.37 and 9.8-9.11 in [6]):

211/2[, 1 TC/4L
P, =P =— M, |- e__ M -
R e e e

oll

M-PAM with MRC

From equation 9.19 in [6]:

/12 [, 9
aM-1" 3/M2-1)
Fe= M JHMYI[_7}9
n 0 =1 sin“ 0
From [1] and [6]:
-z
TEMIngM
log, M (1-27)M-1 [MHJ hl . o .
x 2 2 16D M 2k_1—‘L2 +1J j M, _@i+D '3/2(M D g
k=1 =0 M2 0 I=1 sin“ 0

M-QAM with MRC
For square M-QAM, % =logy M is even (equation 9.21 in [6]):

B-17

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

sinZ @

L
nes (_ 3/(2(M - 1)) },9

sinZ 0

n/2 [
4, 1 3/2M -1)
rel WMHM“(}’e

From [1] and [6]:

2

/M logy VM

logo VM (1-2" YM -1 FHJ o1 n/2 L " B
<3 ‘(—1) i [w{ﬂ 1J] MYI[_WWW}G

[+ —
=1 i=0 VM 2)5 g sin?0

k-1
For rectangular (nonsquare) M-QAM, &k =1logg M isodd, M =IxdJ, =2 2 |

kel

E
J=22 3 =0Q;loge(IJ)=L, and
Ny

P_4IJ—2I—2Jnj~2ﬁM 34 g2-2))
’ Mn o sin @

n/4 L 2, 12
_i(1+]J_1_J) J HMY _?’/(I+—;]2) 0
Mr 0 -1 ! sin“ 0

From [1] and [6]:

B-18

Analytical Expressions Used in berfading

=1

1 log, I log, J
P=— P P
b = Soga () 2 r(k)+ > Pr(D)

2k
(1-2M1-1 [7J k-1 n/2 I
P=2 % Jul ! [2k-1 {12 JJ
In

f u, (21+1)23/(12+J2 2)
i=0 0 I=1 sin?0
! j2t
Py = g - zﬁJ 1 . JTJ o1 _ le 1 ”fﬁ i, (@]+1)23/(12+J2 2)
Jn 20 0 -1 sin?0

M-DPSK with Postdetection EGC
From equation 8.165 in [6]:

p _sin(/M) "
5 2n -[

all- cos(n/M)cose]HM —[1- cos(n/ M)cos6])d6

From [2] and [6]:
M/2
z W) A
where w; =w; +wyr_;, Wyr/9 =Wyr/9, W; is the Hamming weight of bits
assigned to symbol i, and

F((2L+1)M) (2z—

= siny w2
F(y) =~
v 4n _nJ. (1- coswcost

s

A;

§|=l

H:lh

—(1-cosycost))dt

For the special case of Rayleigh fading with M =2, and L =1 (equation
8.173 from [6]):

B-19

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

B-20

!
S 21+7)

P,

Orthogonal 2-FSK, Coherent Detection with MRC

From equation 9.11 in [6]:

/12 L

1" 1/2

P=p =l LTI (05 e
0

1=1 sin2 0

For the special case of Rayleigh fading (equations 14.4-15 and 14.4-21 in [4]):

—\L L1 —V
L-1+k
B=h=1- ;| S e
2 247) % k 2 2+75

Nonorthogonal 2-FSK, Coherent Detection with MRC
Equations 9.11 and 8.44 in [6]:

n/2 L,
1 (1-Re|p)/2
pS:pb:E j HMV;(_¢}'9
0

=1 sin? @

For the special case of Rayleigh fading with L =1 (equation 20 in [3] and
equation 8.130 in [6]):

P, =P, _14 7(}—Re[p])
2 2+ 7(1-Relp])

Orthogonal M-FSK, Noncoherent Detection with EGC
Rayleigh fading (equation 14.4-47 in [4]):

Analytical Expressions Used in berfading

o u L1, YM1
U o
P=1- j UL—le M- Uy 2| QU
1 M
-2 p
bTom-1"

Rician fading (equation 41 in [3]):

M1yl LEY (A7) (A 1Y ED ppan)| 1+y, [LKY, /(1+7,)
Ps = 2 nr — 1F1 L+n,Li—"———=
=1 (rd+73)+1) r)5 (L) |r+1+ry, rd+73.)+1
1
P ==
b o1
where
_ 1 _
Ly
Brr = i Pty Iio,r—1L-11 @)
nr — . ,(r— —
i=n 1) =D
Boo =Bor =1
Bnl = l/n‘
Blr =r

and I, 1) =1 if a <i<b and 0 otherwise.

Nonorthogonal 2-FSK, Noncoherent Detection with
No Diversity
From equation 8.163 in [6]:

T

_ 2
P -p =1 J 1—QMY(—i(1+w/1—p2)(1+2gsin6+g2))d9

- 2
4n 7 1+2¢sin6+¢

B-21

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

where

B-22

Analytical Expressions Used in bercoding and BERTool

Analytical Expressions Used in bercoding and BERTool

In this section...

“Common Notation for This Section” on page B-23
“Block Coding” on page B-23
“Convolutional Coding” on page B-26

Common Notation for This Section

Description Notation
Energy-per-information bit-to-noise
power-spectral-density ratio E,
Vb = N_O
Message length K
Code length N
Code rate
K
R, =—
N

Block Coding

Specific notation for block coding expressions: dp;, is the minimum distance
of the code.

Soft Decision

BPSK, QPSK, OQPSK, PAM-2, QAM-4, and precoded MSK (equation 8.1-52
in [4]):

P, < %(21{ - DQ(275 Reliin)

B-23

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

B-24

DE-BPSK, DE-QPSK, DE-OQPSK, and DE-MSK:
1
Py 5@ -] 2Q(y21s Boin)[1- @(V275 Rein)|
BFSK, coherent detection (equations 8.1-50 and 8.1-58 in [4]):

P, < %(21{ ~DQ(/76Remin)

BFSK, noncoherent square-law detection (equations 8.1-65 and 8.1-64 in [4]):

1 K

d -1 i d. —1-i
2K 1 1 (1 L7 ((2dmin —1
P, < 522dmﬁexp(—g?/I)Rcdmin) LZE(;) (Ebecdmin) il Z(‘) (r

d -1 Ay 711

1 9K _1 o i 195" (2din — 1

Pb < Ewexp(—bec%in) (VbRcdmin)L ; 2 (m;‘n J
‘min =0 . r=0

Hard Decision
General linear block code (equations 4.3, 4.4 in [9], and 12.136 in [5]):

1 &, N m N-m
B<y X (m+t)(m]p (1-p)

m=t+1

Hamming code (equations 4.11, 4.12 in [9], and 6.72, 6.73 in [10]):
N
1 N N-m N-1
P =~— m m™(1- =p-pd-p)
s Nn;z [m)p (1-p) p-pl-p

(24, 12) extended Golay code (equation 4.17 in [9], and 12.139 in [5]):

Analytical Expressions Used in bercoding and BERTool

24
B, <— 2 ﬁm(me (1-p)** ™

where f,, is the average number of channel symbol errors that remain in
corrected N-tuple when the channel caused m symbol errors (table 4.2 in [9]).

Reed-Solomon code with N =Q-1=27 -1:

P, =
29-1 N m=t+1 m

g-1 N
27 1 m(NJ(Ps)™ (1PN

for FSK (equations 4.25, 4.27 in [9], 8.1-115, 8.1-116 in [4], 8.7, 8.8 in [10],
and 12.142, 12.143 in [5]), and

N N
p~1l m(](ps)’" 1-pyN-"™
qN m=t+1 m
otherwise.

If logg @/logg M = q/k =h where h is an integer (equation 1 in [8]):
P, =1-(1-95"

where s is the symbol error rate (SER) in an uncoded AWGN channel.

For example, for BPSK, M =2 and P, =1-(1-s)?

Otherwise, P, is given by table 1 and equation 2 in [8].

B-25

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

Convolutional Coding

Specific notation for convolutional coding expressions: df.,, is the free

distance of the code, and a4 is the number of paths of distance d from the
all-zero path that merge with the all-zero path for the first time.

Soft Decision

From equations 8.2-26, 8.2-24, and 8.2-25 in [4], and equations 13.28 and
13.27 in [5]:

By < Y. agf(dPyd)
d=d

free

with transfer function

T(D,N)= Y ayzD*NT@

d=dg,
dIDN) - _ gy f@D?
dN N=1 d:dfree

where f(d) is the exponent of N as a function of d.

Results for BPSK, QPSK, OQPSK, PAM-2, QAM-4, precoded MSK, DE-BPSK,
DE-QPSK, DE-OQPSK, DE-MSK, DPSK, and BFSK are obtained as:

Pg(d)ZPb|ﬂ=de
NO bt

where P, is the BER in the corresponding uncoded AWGN channel. For
example, for BPSK (equation 8.2-20 in [4]):

Py(d) = Q(\2pR.d)

B-26

Analytical Expressions Used in bercoding and BERTool

Hard Decision
From equations 8.2-33, 8.2-28, and 8.2-29 in [4], and equations 13.28, 13.24,
and 13.25 in [5]:

By < Y, agf(dPyd)
d:dfree

where

. (d
Pd)= Y (k]pk(l—md—k
k=(d+1)/2

when d is odd, and

By(d) = i (d]pk(l_p)d—k+l[d]pd/2(1_p)d/2
r=dr2s1\ R 2(d/2

when d is even (p is the bit error rate (BER) in an uncoded AWGN channel).

B-27

B Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

B-28

Selected Bibliography

[1] Cho, K., and Yoon, D., “On the general BER expression of one- and
two-dimensional amplitude modulations”, IEEE Trans. Commun., Vol. 50,
Number 7, pp. 1074-1080, 2002.

[2] Lee, P. J., “Computation of the bit error rate of coherent M-ary PSK with
Gray code bit mapping”, IEEE Trans. Commun., Vol. COM-34, Number 5,
pp. 488-491, 1986.

[3] Lindsey, W. C., “Error probabilities for Rician fading multichannel
reception of binary and N-ary signals”, IEEE Trans. Inform. Theory, Vol.
IT-10, pp. 339-350, 1964.

[4] Proakis, J. G., Digital Communications, 4th ed., McGraw-Hill, 2001.

[6] Simon, M. K, Hinedi, S. M., and Lindsey, W. C., Digital Communication
Techniques — Signal Design and Detection, Prentice-Hall, 1995.

[6] Simon, M. K., and Alouini, M. S., Digital Communication over Fading
Channels — A Unified Approach to Performance Analysis, 1st ed., Wiley, 2000.

[7] Simon, M. K, “On the bit-error probability of differentially encoded QPSK
and offset QPSK in the presence of carrier synchronization”, IEEE Trans.
Commun., Vol. 54, pp. 806-812, 2006.

[8] Gulliver, T. A., “Matching Q-ary Reed-Solomon codes with M-ary
modulation,” IEEE Trans. Commun., vol. 45, no. 11, Nov. 1997, pp.
1349-1353.

[9] Odenwalder, J. P., Error Control Coding Handbook (Final report),
Linkabit Corp., 15 July 1976.

[10] Sklar, B., Digital Communications, 2nd Ed., Prentice-Hall, 2001.

Algorithms

o “Algorithms Used to Decode BCH and Reed-Solomon Codes” on page C-2

¢ “Compute Optimum Quantizer Boundaries for use with Soft-Decision Type
of Viterbi Decoder” on page C-6

e “References” on page C-11

C Algorithms

Algorithms Used to Decode BCH and Reed-Solomon Codes

Errors-only Decoding

Overview

The errors-only decoding algorithm used for BCH and RS codes can be
described by the following steps (sections 5.3.2, 5.4, and 5.6 in [1]).

1 Calculate the first 2¢ terms of the infinite degree syndrome polynomial,

S(2).

2 If those 2¢ terms of S(z) are all equal to 0, then the code has no errors , no
correction needs to be performed, and the decoding algorithm ends.

3 If one or more terms of S(z) are nonzero, calculate the error locator
polynomial, A(z), via the Berlekamp algorithm.
4 Calculate the error evaluator polynomial, Q(z), via
A(2)S(z)=Q(z)mod z*
5 Correct an error in the codeword according to

L Q™)
A (o)

where e, 1s the error magnitude in the i, th position in the codeword, m 1s

a value less than the error-correcting capability of the code, Q(z) is the

error magnitude polynomial, A’(z) is the formal derivative [2] of the error

locator polynomial, A(z), and o is the primitive element of the Galois
field of the code.

Further description of several of the steps is given in the following sections.

C-2

Algorithms Used to Decode BCH and Reed-Solomon Codes

Syndrome Calculation

For narrow-sense codes, the 2t terms of S(z) are calculated by evaluating the
received codeword at successive powers of o (the field’s primitive element)
from O to 2¢-1. In other words, if we assume one-based indexing of codewords

C(z) and the syndrome polynomial S(z), and that codewords are of the form

[c1 1 ... cy], then each term S; of S(2) is given as

Error Locator Polynomial Calculation

The error locator polynomial, A(z), is found using the Berlekamp algorithm.
A complete description of this algorithm is found in [1], but we summarize the
algorithm as follows.

We define the following variables.

Variable Description

n Tterator variable

k Iterator variable

L Length of the feedback register used to generate
the first 2t terms of S(z)

D(2) Correction polynomial

d Discrepancy

The following diagram shows the iterative procedure (i.e., the Berlekamp

algorithm) used to find A(z).

C Algorithms

C+4

n=0,L=0,k=-1,

A2)=1, D(z)==z

A4

D(2) =zD(2)

v

n=n+1

Algorithms Used to Decode BCH and Reed-Solomon Codes

Error Evaluator Polynomial Calculation

The error evaluator polynomial, Q(z), is simply the convolution of A(z)
and S(z).

C Algorithms

C-6

Compute Optimum Quantizer Boundaries for use with
Soft-Decision Type of Viterbi Decoder

This section describes how to compute the optimum quantizer boundaries to
quantize log-likelihood ratios (LLRs) from a Rectangular QAM Demodulator
Baseband block for use with the ‘Soft decision’ decision type of Viterbi
Decoder. LLRs from a Rectangular QAM Demodulator Baseband block
assume an AWGN Channel.

As an example, use a binary mapped (as opposed to Gray mapped) 16-QAM
constellation with a binary mapping for each constellation point, as shown in
the following figure. The minimum distance between symbols is two.

4 T T T T T T

Ak 0000 L0100, 1000 ... |
s e R L e B e e e e e s e s e s -
WL v Lo L1001 ERTL -
ok |
P 001D Lo STl (. MO EREL
D e s s s e i s s 1 g 2 e 1 4
il L L0, 1 S
4 i i i i i i i

-4 3 2 1 0 1 2 3 4

Binary mapped 16-QAM Constellation

The two most significant bits (MSB) in this constellation mapping remain
constant along the quadrature axis. The analysis of these two bits can be
simplified by looking along the in-phase axis only. The following figure shows
the mapping of these two bits along the in-phase axis.

Compute Optimum Quantizer Boundaries for use with Soft-Decision Type of Viterbi Decoder

Mapping of the two most significant bits along in-phase axis

Similar simplification applies to the two least significant bits (LSB) that
remain constant along the in-phase axis.

The LLR L(b) is given as:

5 gl o)
e
seS,

iz((x—sx)2+(y—sy)2)

P

seS;

L(b) =1log,

where r = received signal with coordinates x,y.

b = transmitted bit (one of the K bits in an M-ary constellation, assuming all
M points are equally probable, where K = log,(M))

S, = ideal symbols/constellation points with bit O (at the given bit position)
S, = ideal symbols/constellation points with bit 1(at the given bit position)

sx = Inphase (or X) coordinate of ideal symbols/constellation points.

C Algorithms

C-8

sy = Quadrature (or Y) coordinate of ideal symbols/constellation points.
o 2 = Noise Variance. This cmoposite noise variance is the sum of noise
components along thelnphase axis and Quadrature axis which are assumed to

be independent and of equal power.

For these two bits, as we are looking along the in-phase axis, it can be
simplified as:

L)

L(b) =loge -

In the summation terms in the numerator and denominator, the effect of
the nearest point would outweigh the rest of the points. Hence, this can be
further simplified to:

1 2 2
Lb) = ——{(x—s,0)" —(x—5,7)
62(.96 SO xsl)

where S, equals the nearest ideal constellation point with 0 mapping
where S ; equals the nearest ideal constellation point with 1mapping

Consider the case when there is no noise in received signal and the
constellation point with 00 mapping is received. From the previous figure, it
is clear that the MSB has the best noise resistance against error. The LLR for
the MSB can be approximated using above equation as:

16
L) =~ —
62

as (x-s,)) = 0 and (x-s;) = 4

Using the same equation, LLR for the second MSB can be approximated to:

Compute Optimum Quantizer Boundaries for use with Soft-Decision Type of Viterbi Decoder

4
L(b) = —
62

as (x-s,)) = 0 and (x-s;) = 2

Now consider the case when there is no noise in received signal and the
constellation point with 11 mapping is received. Similar analysis for the
MSB would yield:

16
L) = -—;
62

For the second MSB:

4
L) =-—;
o2

Hence, under no noise condition, the range of LLR values for the MSB is:
16 16
62 ’ 02

As noise increases, the distribution of LLR values will increase within this
range indicating higher probability of error. Some values would fall outside
this range as well and they inherently have more resistance to noise. Along
the same lines, the range of LLR values for the second MSB is:

4 4
62 ’ 62
When considering the design of quantization boundaries for L-level uniform
quantizer, quantizing this range in L levels would provide optimum

performance. Lets say, we have a 3-bit uniform quantizer (L = 8).

The quantization boundaries for the MSB would be:

C Algorithms

C-10

By =—(-3:3)

4
62
For the second MSB:

1
B]_ = —2(—3 . 3)
(o2

Following similar analysis for second LSB and LSB along quadrature axis
provides same results, respectively.

Now, B, optimizes the MSB while B, optimizes the second MSB. To find
overall optimum quantizer boundaries, try out some values between these two
sets of values. Our simulation results indicate that the optimum system BER
performance is obtained with this set of boundary values:

2
By, =—5(-3:3)
o

The system used in this simulation is shown in the product demo titled
“LLR vs. Hard Decision Demodulation” in Communications Blockset and
Communications Toolbox. In the blockset, note that the LLR values computed
by the demodulator need to be multiplied by -1 before feeding them to uniform
quantizer. The sign of LLR values indicate which bit is received — positive
for binary 0 and negative for binary 1. By multiplying these values with -1,
we flip this notation — now, positive sign indicates binary 1 and negative
sign indicates binary 0. The quantizer maps positive values to indices 4:7,

7 being the most confident 1 and negative values to 0:3, 0 being the most
confident 0. This matches the Viterbi Decoder block’s interpretation of its
input, namely, 0 indicates most confident 0 while 7 indicates most confident 1.
Thus, multiplying LLR values with -1 before feeding them to quantizer maps
them to the right quantizer index for use with Viterbi Decoder.

References

References

[1] Clark, G. C., and Cain, J. B., Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Wicker, S. B., Error Control Systems for Digital Communication and
Storage, Upper Saddle River, N.J., Prentice Hall, 1995.

C-11

C Algorithms

C-12

Examples

Use this list to find examples in the documentation.

D

Examples

D-2

Modulation

Special Filters

“Modulating a Random Signal” on page 1-4

“Analog Modulation Example” on page 8-6

“Examples of Digital Modulation and Demodulation” on page 8-12
“Plotting Signal Constellations” on page 8-14

“Pulse Shaping Using a Raised Cosine Filter” on page 1-15

“Example: Compensating for Group Delays in Data Analysis” on page 9-3
“Example: Raised Cosine Filter Delays” on page 9-10

“Using rcosine and rcosflt to Implement Square-Root Raised Cosine
Filters” on page 9-12

Convolutional Coding

“Using a Convolutional Code” on page 1-19

“Example: A MATLAB Trellis Structure” on page 6-37
“Hard-Decision Decoding” on page 6-39

“Example: Soft-Decision Decoding” on page 6-40
“Example: A Rate-2/3 Feedforward Encoder” on page 6-41
“Example: A Punctured Convolutional Code” on page 6-43

Simulating Communication Systems

“Using BERTool to Run Simulations” on page 1-23

“Varying Parameters and Managing a Set of Simulations” on page 1-31
“Example: Using a MATLAB Simulation with BERTool” on page 4-22
“Template for a Simulation Function” on page 4-30

“Example: Preparing a Simulation Function for Use with BERTo0l” on
page 4-33

“Example: Using a Simulink Model with BERTool” on page 4-38

Performance Evaluation

“Example

: Preparing a Model for Use with BERTo00l” on page 4-46

Performance Evaluation

“Example
“Example

: Computing Error Rates” on page 3-3
: Using the Semianalytic Technique” on page 3-7

“Comparing Theoretical and Empirical Error Rates” on page 3-11

“Example
“Example
“Example
“Example

Source Coding

“Scalar Quantization Example 1” on page 5-3
“Scalar Quantization Example 2” on page 5-4

Block Coding

“Example
“Example
“Example
on page 5
“Example
“Example
“Example

“Example:
“Example:

page 6-9

“Example:
“Example:
“Example:
“Example:

: Curve Fitting for an Error Rate Plot” on page 3-15

: Scatter Plots” on page 3-21

: Using the Theoretical Tab in BERTo0l” on page 4-9

: Using the Semianalytic Tab in BERTool” on page 4-17

: Optimizing Quantization Parameters” on page 5-6

: DPCM Encoding and Decoding” on page 5-9

: Comparing Optimized and Nonoptimized DPCM Parameters”
-11

: A p-Law Compander” on page 5-13

: Creating and Decoding a Huffman Code” on page 5-16

: Creating and Decoding an Arithmetic Code” on page 5-18

Reed-Solomon Coding Syntaxes” on page 6-8
Detecting and Correcting Errors in a Reed-Solomon Code” on

BCH Coding Syntaxes” on page 6-13

Detecting and Correcting Errors in a BCH Code” on page 6-14
Using a Decoding Table” on page 6-23

Generic Linear Block Coding” on page 6-25

D

Examples

Interleaving

“Example: Block Interleavers” on page 7-3
“Example: Convolutional Interleavers” on page 7-7

“Effect of Delays on Recovery of Convolutionally Interleaved Data” on page
7-10

Equalizers

“Example of Basic Modulation and Demodulation” on page 8-25
“Example Illustrating the Basic Procedure” on page 11-8

“Equalizing Using a Training Sequence” on page 11-17

“Example: Equalizing Multiple Times, Varying the Mode” on page 11-20
“Example: Adaptive Equalization Within a Loop” on page 11-23
“Example: Continuous Operation Mode” on page 11-31

“Example: Using a Preamble” on page 11-34

Channels

“Power of a Faded Signal” on page 10-25

“Comparing Empirical Results to Theoretical Results” on page 10-26
“Working with Delays” on page 10-28

“Quasi-Static Channel Modeling” on page 10-29

“Filtering Using a Loop” on page 10-31

“Example: Introducing Noise in a Convolutional Code” on page 10-48

Galois Field Computations

“Example: Creating Galois Field Variables” on page 12-5
“Example: Addition and Subtraction” on page 12-15
“Example: Multiplication” on page 12-16

“Example: Exponentiation” on page 12-18

“Basic Manipulations of Galois Arrays” on page 12-23

Galois Field Computations

“Example: Solving Linear Equations” on page 12-27
“Multiplication and Division of Polynomials” on page 12-34
“Roots of Polynomials” on page 12-35

D Examples

D-6

A

A-law companders 5-13
addition in Galois fields
even number of field elements 12-15
odd number of field elements A-12
algebraic interleavers 7-2
algorithm objects
properties 11-12
specifying algorithm 11-11
analog modulation 8-5
sample code 8-6
analog signals
representing 8-5
analog-to-digital conversion 5-1
arithmetic codes 5-17
parameters 5-17
sample code 5-18
arithmetic in Galois fields
even number of field elements 12-14
odd number of field elements A-12
AWGN channel 10-3

baseband modulation 8-3
signals 8-9
BCH coding 6-12
functions 6-5
generator polynomial 6-22
BERTool GUI 4-1
data 4-52
exporting 4-52
importing 4-55
in data viewer 4-57
features 4-2
MATLAB simulation BER 4-22
confidence intervals 4-26
curve fitting 4-28
example 4-22
stopping the simulation 4-25

MATLAB simulation functions 4-29
DPSK example 4-33
QAM example 1-23
requirements 4-29
template 4-30
parts of the GUI 4-4
semianalytic BER 4-16
example 4-17
procedure 4-19
Simulink BER 4-37
example 4-38
stopping the simulation 4-41
Simulink models 4-43
example 4-46
requirements 4-43
tips 4-43
theoretical BER 4-8
example 4-9
types of systems 4-11
binary matrix format 6-18
binary numbers
order of digits 6-19
binary symmetric channel 10-48
binary vector format 6-16
bipolar random numbers 2-3
bit error rates
analyzing 4-1
MATLAB simulation 4-22
plots 3-14
multiple curves 1-31
semianalytic 3-5
BERTool GUI 4-16
simulation 3-2
Simulink simulation 4-37
theoretical 3-10
BERTool GUI 4-8
bits
random 2-4
block coding 6-2
functions 6-5

Index-1

Index

techniques 6-4 realistic modeling parameters 10-21
block interleavers 7-2 sample code 10-24
sample code 7-3 supported types 10-2
supported methods 7-2 code generator matrices
Bose-Chaudhuri-Hocquenghem (BCH) converting to parity-check matrices 6-30
coding 6-12 sample code 6-22
functions 6-5 finding 6-29
generator polynomial 6-22 representing 6-20
code generator polynomials
C finding 6-27
representing 6-22
carrier frequency 8-4 codebooks
relative to sampling rate 8-4 optimizing 5-6
carrier signal 8-4 for DPCM 5-11
channel objects 10-11 sample code 5-6
copyipg 10-12 sample code for DPCM 5-11
creating 10-12 representing 5-3
in loop 10-23 codewords
sample code 10-31 definition 6-5

properties 10-12
linked 10-15
realistic values 10-21
repeatability 10-23 complex envelope 8-9
resetting 10-23 compression
using 10-23 data 5-1
channel visualization tool 10-34
opening 10-34
parts of the GUI 10-35
StoreHistory 10-34
using the GUI 10-46

representing 6-16
companders 5-13
sample code 5-13

compressors 5-13
sample code 5-13
constellations
binary annotations 1-11
decimal annotations 8-15

visualization options 10-36 Gray-coded
channels 10-1 general QAM 8-16
AWGN 10-3 . square QAM 1-13
binary symmetric 10-48 plotting procedure 8-14
combination of fading and AWGN 10-2 PSK 8-15
compensation for 10-24 constraint length
fading 10-7 convolutional code 6-32
compensation for 10-24 conversion
Fielays 10-28 analog to digital 5-1
in loop 10-23 binary to octal 6-33

Index-2

Index

exponential to polynomial format
even number of field elements 12-18
odd number of field elements A-8
generator matrices to parity-check
matrices 6-30
sample code 6-22
polynomial to exponential format
even number of field elements 12-19
odd number of field elements A-10
convolution
over Galois fields 12-30
convolutional coding 6-31
adding to system 1-19
binary symmetric channel 10-48
examples 6-41
features 6-31
sample code 6-39
using polynomial description 6-31
sample code 6-34
using trellis description 6-35
convolutional interleavers 7-5
delays 7-9
sample code 7-7
supported types 7-6
correction vector 6-23
cyclic coding 6-25
functions 6-5
generator polynomial 6-22
sample code
compared to generic linear coding 6-26
cyclic redundancy check coding
crc coding 6-45

D

decimal format 6-19
decision timing

eye diagrams 3-20
decision-feedback equalizers 11-6
decoding tables 6-23

delays
adaptive equalizers 11-21
convolutional interleavers 7-9
fading channels 10-28
MLSE equalizers 11-30
delta modulation 5-8
sample code 5-9
See also differential pulse code modulation
demodulation 8-1
determinants in Galois fields
even number of field elements 12-25
differential pulse code modulation (DPCM) 5-8
optimizing parameters 5-11
sample code 5-11
sample code 5-9
digital modulation 8-8
sample code 8-12
step-by-step example 1-4
digital signals
representing 8-8
discrete Fourier transforms
over Galois fields 12-31
distortion
from DPCM 5-11
from quantization 5-6
division in Galois fields
even number of field elements 12-17
odd number of field elements A-12
Doppler objects
creating 10-16
duplicating 10-16
using within channel objects 10-17
viewing and changing parameters 10-16
Doppler shifts 10-7
DPCM 5-8
optimizing parameters 5-11
sample code 5-11
sample code 5-9

Index-3

Index

Eb/No 10-3
equalizer objects 11-8
copying 11-14
creating 11-13
properties 11-14
linked 11-14
specifying algorithm 11-10
using 11-17
equalizers 11-1
adaptive algorithms 11-10
decision-directed mode 11-19
decision-feedback 11-6
delays 11-21
fractionally spaced 11-5
in loop 11-22
procedure 11-8
reference tap 11-21
sample code
basic procedure 11-8
in loop 11-23
training mode 11-18
supported types 11-2
symbol-spaced 11-3
training mode 11-17

equalizers, MLSE. See MLSE equalizers

error integers 2-4
error patterns 2-5
error rate plots 3-14
curve fitting 3-15
sample code
multiple curves 1-31
one curve 3-15
error rates
analyzing 4-1
bit versus symbol 3-4
MATLAB simulation 4-22
sample code 3-3
semianalytic 3-5
BERTool GUI 4-16

Index-4

simulation 3-2
Simulink simulation 4-37
theoretical
BERTool GUI 4-8
theoretical results 3-10
error-control coding
adding to system 1-19
base 2 only 6-4
features of the toolbox 6-4
methods supported in toolbox 6-4
terminology and notation 6-5
error-correction capability
Hamming codes 6-23
Es/No 10-3
expanders 5-13
sample code 5-13
exponential format in Galois fields
odd number of field elements A-3
exponentiation in Galois fields
even number of field elements 12-18
eye diagram
analyzing 13-1
eye diagrams 3-20
EyeScope
eyescope 3-20
EyeScope GUI 13-1

F

factorization
over Galois fields 12-26
faded signals 10-25
fading channels 10-7
compensation for 10-24
delays 10-28
in loop 10-23
realistic modeling parameters 10-21
sample code 10-24
specifying the Doppler spectrum
linked 10-15

Index

feedback connection polynomials 6-33
fields, finite
even number of elements 12-1
odd number of elements A-1
filters
fading channels 10-11
Galois fields
even number of field elements 12-29
Hilbert transform 9-5
raised cosine 9-7
designing 9-14
designing and applying 9-8
square-root raised cosine 9-12
finite fields
even number of elements 12-1
odd number of elements A-1
flat fading 10-8
format of Galois field elements
converting to exponential format
even number of field elements 12-19
odd number of field elements A-10
converting to polynomial format
even number of field elements 12-18
odd number of field elements A-8
even number of field elements 12-4
odd number of field elements A-3
Fourier transforms
over Galois fields 12-31
fractionally spaced equalizers 11-5
frequency-flat fading 10-8
frequency-selective fading 10-8

G

Galois arrays 12-4
creating 12-4
manipulating variables 12-38
meaning of integers in 12-8
Galois fields
even number of elements 12-1

odd number of elements A-1
Gaussian channel 10-3
Gaussian noise
generating 2-2
general multiplexed interleaver 7-6
generator matrices
converting to parity-check matrices 6-30
sample code 6-22
finding 6-29
representing 6-20
generator polynomials
finding 6-27
for convolutional code 6-32
representing 6-22

H

Hamming coding 6-27
functions 6-5
sample code 6-23
single-error-correction 6-23
hard-decision decoding 6-39
helical interleaver 7-6
helical scan interleavers 7-2
Hilbert filters
designing 9-5
Huffman codes 5-15
dictionary 5-15
sample code 5-16

integrate-and-dump operation 8-13
interleavers 7-1
block 7-2
sample code 7-3
supported methods 7-2
convolutional 7-5
delays 7-9
sample code 7-7

Index-5

Index

supported types 7-6
inverses in Galois fields
even number of field elements 12-25
irreducible polynomials A-17

J
Jakes Doppler spectrum 10-8

K
K-factor for Rician channels 10-22

L

line-of-sight paths 10-7
linear algebra in Galois fields
even number of field elements 12-25
linear block coding 6-24
sample code 6-25
linear predictors 5-8
optimizing 5-11
sample code 5-11
representing 5-8
list of elements of Galois fields
even number of field elements 12-7
odd number of field elements A-5
generating A-10
Lloyd algorithm 5-6
logarithms in Galois fields
even number of field elements 12-19
logical operations in Galois fields
even number of field elements 12-20
lowpass equivalent method 8-3

M

matrix interleavers 7-2

matrix manipulation in Galois fields
even number of field elements 12-23

messages

Index-6

definition 6-5
representing
for coding functions 6-16
minimal polynomials in Galois fields
even number of field elements 12-37
odd number of field elements A-17
MLSE equalizers 11-28
continuous operation 11-30
delays 11-30
preambles and postambles 11-33
sample code
continuous operation 11-31
preamble 11-34
modem objects 8-19
modulation 8-1
analog 8-5
sample code 8-6
delta 5-8
sample code 5-9
See also differential pulse code
modulation
digital 8-8
sample code 8-12
step-by-step example 1-4
supported methods 8-2
terminology 8-4

Monte Carlo method for error-rate analysis 3-2

mu-law companders 5-13
sample code 5-13
multipath channels 10-7
compensation for 10-24
delays 10-28
in loop 10-23
realistic modeling parameters 10-21
sample code 10-24
multipath fading channels
simulation 10-9
multiple roots over Galois fields
even number of field elements 12-35
multiplication in Galois fields

Index

even number of field elements 12-16
odd number of field elements A-12

noncausality 9-2
Nyquist sampling theorem 8-4

o

octal
conversion from binary 6-33
optimizing
DPCM parameters 5-11
sample code 5-11
quantization parameters 5-6
sample code 5-6
order of digits in binary numbers 6-19

P

parity-check matrices
finding 6-29
representing 6-20
partitions
optimizing 5-6
for DPCM 5-11
sample code 5-6
sample code for DPCM 5-11
representing 5-2
passband modulation 8-3
polynomial description of encoders 6-31
sample code 6-34
polynomial format in Galois fields
even number of field elements 12-8
odd number of field elements A-4
polynomials
displaying formatted A-15
generator 6-27
polynomials over Galois fields
arithmetic

even number of field elements 12-33

odd number of field elements A-16
binary coefficients 12-36
evaluating

even number of field elements 12-34
even number of field elements 12-33
irreducible A-17
minimal

even number of field elements 12-37

odd number of field elements A-17
odd number of field elements A-15
primitive. See primitive polynomials
roots

even number of field elements 12-35

odd number of field elements A-17

postambles 11-33
preambles 11-33

sample code 11-34

predictive error 5-8
predictive order 5-8
predictive quantization 5-8

optimizing parameters 5-11
sample code 5-11
sample code 5-9

predictors 5-8

linear 5-8

optimizing 5-11
sample code 5-11

representing 5-8

primitive elements 12-3

representing 12-9

primitive polynomials

consistent use A-6
default
even number of field elements 12-11
odd number of field elements A-7
definition 12-3
even number of field elements 12-9
odd number of field elements A-17

pulse shaping

Index-7

Index

rectangular 8-13
sample code 1-15
punctured convolutional code 6-43

Q

quantization 5-1
coding 5-4
DPCM parameters, optimizing 5-11
sample code 5-11
optimizing parameters 5-6
sample code 5-6
predictive 5-8
sample code 5-9
sample code 5-3
vector 5-1
quasi-static channel modeling 10-29

raised cosine filters
designing and applying 9-8
designing but not applying 9-14
filtering with 9-7
sample code 1-15
square-root 9-12
random
bipolar symbols 2-3
bits 2-4
in error patterns 2-5
integers 2-4
signals 2-1
symbols 2-3
random interleavers 7-2
rank
in Galois fields
even number of field elements 12-26
Rayleigh fading channels 10-7
compensation for 10-24
delays 10-28

Index-8

in loop 10-23
realistic modeling parameters 10-21
sample code 10-24
rectangular pulse shaping 8-13
Reed-Solomon coding
functions 6-5
generator polynomial 6-22
references
convolutional coding 6-44
error-control coding 6-30
Galois fields 12-43
modulation/demodulation 8-27
repeatability
fading channels 10-23
representing
analog signals 8-5
codewords 6-16
decoding tables 6-23
digital signals 8-8
Galois field elements
even number of field elements 12-4
odd number of field elements A-3
Galois fields
even number of field elements 12-7
odd number of field elements A-5
generator matrices 6-20
generator polynomials 6-22
messages
for coding functions 6-16
parity-check matrices 6-20
polynomials over Galois fields
even number of field elements 12-33
odd number of field elements A-15
predictors 5-8
Rician fading channels 10-7
compensation for 10-24
delays 10-28
in loop 10-23
realistic modeling parameters 10-21
sample code 10-29

Index

roots
over Galois fields
binary polynomials 12-36
even number of field elements 12-35
odd number of field elements A-17

S

sampling rate 8-4
relative to carrier frequency 8-4
scalar quantization 5-1
coding 5-4
sample code 5-3
scatter plots 3-21
sample code 3-21
semianalytic technique 3-5
procedure 3-6
sample code 3-7
when to use 3-5
signal constellations
binary annotations 1-11
decimal annotations 8-15
Gray-coded 8-16
square QAM 1-13
plotting procedure 8-14
PSK 8-15
signal formatting 5-1
signal sources 2-1
simplifying formats of Galois field elements
exponential
odd number of field elements A-10
polynomial
odd number of field elements A-8
simulation functions for BERTool 4-29
sample code 1-23
simulation of communication systems
sample code 1-23
Simulink models for BERTool 4-43
SNR 10-3
soft-decision decoding 6-39

sample code 6-40
solving linear equations over Galois fields 12-27
source coding 5-1
subtraction in Galois fields
even number of field elements 12-15
odd number of field elements A-12
symbol error rates
simulation 3-2
symbol-spaced equalizers 11-3
syndrome 6-23

T

theoretical error rates 3-10
compared to empirical 3-11
plots 3-10
timing, decision
eye diagrams 3-20
training data
for optimizing DPCM quantization
parameters 5-11
for optimizing quantization parameters 5-6
trellis
description of encoder 6-35
structure 6-36
sample code 6-37
truncating polynomials over Galois fields
odd number of field elements A-15

v

vector quantization 5-1

w

waterfall curves 3-14
curve fitting 3-15
sample code
multiple curves 1-31
one curve 3-15
white Gaussian noise

Index-9

Index

generating 2-2

Index-10

	toc
	Getting Started
	Product Overview
	Section Overview
	Expected Background
	For New Users
	For Experienced Users

	Studying Components of a Communication System
	Section Overview
	Modulating a Random Signal
	Solution of Problem

	Plotting Signal Constellations
	Solution of Problem
	Examining the Plot

	Pulse Shaping Using a Raised Cosine Filter
	Solution of Problem

	Using a Convolutional Code
	Solution of Problem
	More About Delays

	Simulating a Communication System
	Section Overview
	Using BERTool to Run Simulations
	Solution of Problem
	Comparing with Theoretical Results
	More About the Simulation Structure

	Varying Parameters and Managing a Set of Simulations
	Solution of Problem

	Learning More
	Online Help
	Demos
	The MathWorks Online

	Signal Sources
	White Gaussian Noise
	Random Symbols
	Random Integers
	Random Bit Error Patterns

	Performance Evaluation
	Performance Results via Simulation
	Section Overview
	Using Simulated Data to Compute Bit and Symbol Error Rates
	Example: Computing Error Rates
	Comparing Symbol Error Rate and Bit Error Rate

	Performance Results via the Semianalytic Technique
	Section Overview
	When to Use the Semianalytic Technique
	Procedure for the Semianalytic Technique
	Example: Using the Semianalytic Technique

	Theoretical Performance Results
	Computing Theoretical Error Statistics
	Plotting Theoretical Error Rates
	Comparing Theoretical and Empirical Error Rates

	Error Rate Plots
	Section Overview
	Creating Error Rate Plots Using semilogy
	Curve Fitting for Error Rate Plots
	Example: Curve Fitting for an Error Rate Plot
	Setting Up Parameters for the Simulation
	Simulating the System Using a Loop
	Plotting the Empirical Results and the Fitted Curve

	Eye Diagrams
	Section Overview
	EyeScope

	Scatter Plots
	Section Overview
	Example: Scatter Plots

	EVM Measurements
	Section Overview

	MER Measurements
	Section Overview

	Selected Bibliography for Performance Evaluation

	BERTool: A Bit Error Rate Analysis GUI
	Summary of Features
	Opening BERTool
	The BERTool Environment
	Components of BERTool
	Interaction Among BERTool Components

	Computing Theoretical BERs
	Section Overview
	Example: Using the Theoretical Tab in BERTool
	Running the Theoretical Example

	Available Sets of Theoretical BER Data
	Combinations of Parameters for AWGN Channel Systems
	Combinations of Parameters for Rayleigh and Rician Channel Syste

	Using the Semianalytic Technique to Compute BERs
	Section Overview
	Example: Using the Semianalytic Tab in BERTool
	Running the Semianalytic Example
	Visible Results of the Semianalytic Example

	Procedure for Using the Semianalytic Tab in BERTool
	Semianalytic Computations and Results

	Running MATLAB Simulations
	Section Overview
	Example: Using a MATLAB Simulation with BERTool
	Varying the Stopping Criteria
	Plotting Confidence Intervals
	Fitting BER Points to a Curve

	Preparing Simulation Functions for Use with BERTool
	Requirements for Functions
	Input Arguments
	Output Arguments
	Simulation Operation

	Template for a Simulation Function
	Understanding the Template
	Using the Template

	Example: Preparing a Simulation Function for Use with BERTool
	Preparing the Function
	Using the Prepared Function

	Running Simulink Simulations
	Section Overview
	Example: Using a Simulink Model with BERTool
	Varying the Stopping Criteria

	Preparing Simulink Models for Use with BERTool
	Requirements for Models
	Tips for Preparing Models
	Example: Preparing a Model for Use with BERTool

	Managing BER Data
	Exporting Data Sets or BERTool Sessions
	Exporting Data Sets
	Examining an Exported Structure
	Saving a BERTool Session

	Importing Data Sets or BERTool Sessions
	Importing Data Sets
	Opening a Previous BERTool Session

	Managing Data in the Data Viewer

	Source Coding
	Quantizing a Signal
	Section Overview
	Representing Partitions
	Representing Codebooks
	Scalar Quantization Example 1
	Scalar Quantization Example 2
	Determining Which Interval Each Input Is In

	Optimizing Quantization Parameters
	Section Overview
	Example: Optimizing Quantization Parameters

	Differential Pulse Code Modulation
	Section Overview
	DPCM Terminology
	Representing Predictors
	Example: DPCM Encoding and Decoding

	Optimizing DPCM Parameters
	Section Overview
	Example: Comparing Optimized and Nonoptimized DPCM Parameters

	Companding a Signal
	Section Overview
	Example: A µ-Law Compander

	Huffman Coding
	Section Overview
	Creating a Huffman Code Dictionary
	Example: Creating and Decoding a Huffman Code

	Arithmetic Coding
	Section Overview
	Representing Arithmetic Coding Parameters
	Example: Creating and Decoding an Arithmetic Code

	Selected Bibliography for Source Coding

	Error Detection and Correction
	Block Coding
	Section Overview
	Block Coding Features of the Toolbox
	Block Coding Terminology
	Representing Words for Reed-Solomon Codes
	Parameters for Reed-Solomon Codes
	Allowable Values of Integer Parameters
	Generator Polynomial

	Creating and Decoding Reed-Solomon Codes
	Example: Reed-Solomon Coding Syntaxes
	Example: Detecting and Correcting Errors in a Reed-Solomon Code
	Excessive Noise in Reed-Solomon Codewords
	Creating Shortened Reed-Solomon Codes

	Representing Words for BCH Codes
	Parameters for BCH Codes
	Creating and Decoding BCH Codes
	Example: BCH Coding Syntaxes
	Example: Detecting and Correcting Errors in a BCH Code

	LDPC Codes
	Representing Words for Linear Block Codes
	Binary Vector Format
	Binary Matrix Format
	Decimal Vector Format

	Parameters for Linear Block Codes
	Generator Matrix
	Parity-Check Matrix
	Generator Polynomial
	Decoding Table

	Creating and Decoding Linear Block Codes
	Generic Linear Block Codes
	Cyclic Codes
	Hamming Codes

	Performing Other Block Code Tasks
	Finding a Generator Polynomial
	Error Correction Versus Error Detection for Linear Block Codes
	Finding the Error-Correction Capability
	Finding Generator and Parity-Check Matrices
	Converting Between Parity-Check and Generator Matrices

	Selected Bibliography for Block Coding

	Convolutional Coding
	Section Overview
	Convolutional Coding Features of the Toolbox
	Polynomial Description of a Convolutional Encoder
	Constraint Lengths
	Generator Polynomials
	Feedback Connection Polynomials
	Using the Polynomial Description in MATLAB

	Trellis Description of a Convolutional Encoder
	Specifying a Trellis in MATLAB
	How to Create a MATLAB Trellis Structure
	Example: A MATLAB Trellis Structure

	Creating and Decoding Convolutional Codes
	Encoding
	Hard-Decision Decoding
	Soft-Decision Decoding

	Examples of Convolutional Coding
	Example: A Rate-2/3 Feedforward Encoder
	Example: A Punctured Convolutional Code

	Selected Bibliography for Convolutional Coding

	Cyclic Redundancy Check Coding
	Overview
	CRC Algorithm
	Selected Bibliography for CRC Coding

	Interleaving
	Block Interleavers
	Section Overview
	Block Interleaving Features of the Toolbox
	Example: Block Interleavers

	Convolutional Interleavers
	Section Overview
	Convolutional Interleaving Features of the Toolbox
	Example: Convolutional Interleavers
	Delays of Convolutional Interleavers
	Effect of Delays on Recovery of Convolutionally Interleaved Data
	Combining Interleaving Delays and Other Delays

	Selected Bibliography for Interleaving

	Modulation
	Modulation Features of the Toolbox
	Modulation Techniques
	Baseband vs. Passband Simulation

	Modulation Terminology
	Analog Modulation
	Representing Analog Signals
	Analog Modulation Example

	Digital Modulation
	Section Overview
	Representing Digital Signals
	Baseband Modulated Signals Defined
	Gray Encoding a Modulated Signal
	Examples of Digital Modulation and Demodulation
	Computing the Symbol Error Rate
	Combining Pulse Shaping and Filtering with Modulation

	Plotting Signal Constellations
	Examples of Signal Constellation Plots

	Using Modem Objects
	Section Overview
	Constructing a Modem Object
	Managing Object Properties
	Copying a Modem Object
	Displaying a Modem Object
	Resetting a Modem Object
	Modulating a Signal
	Modem Modulation Method

	Demodulating a Signal
	Modem Demodulation Method

	Example of Basic Modulation and Demodulation
	Exact LLR Algorithm
	Approximate LLR Algorithm

	Selected Bibliography for Modulation

	Special Filters
	Noncausality and the Group Delay Parameter
	Section Overview
	Example: Compensating for Group Delays in Data Analysis

	Designing Hilbert Transform Filters
	Section Overview
	Example with Default Parameters

	Filtering with Raised Cosine Filters
	Section Overview
	Sampling Rates
	Maintaining the Input Sampling Rate

	Designing Filters Automatically
	Types of Raised Cosine Filters

	Specifying Filters Using Input Arguments
	Controlling the Rolloff Factor
	Controlling the Group Delay
	Example: Raised Cosine Filter Delays

	Combining Two Square-Root Raised Cosine Filters
	Using rcosine and rcosflt to Implement Square-Root Raised Cosine
	Using rcosflt Alone

	Designing Raised Cosine Filters
	Section Overview
	Sampling Rates
	Example Designing a Square-Root Raised Cosine Filter
	Other Options in Filter Design

	Selected Bibliography for Special Filters

	Channels
	Channel Features of the Toolbox
	AWGN Channel
	Section Overview
	Describing the Noise Level of an AWGN Channel
	Relationship Between E s /N 0 and E b /N 0
	Relationship Between E s /N 0 and SNR

	MIMO Channels
	Fading Channels
	Section Overview
	Overview of Fading Channels
	Fading Channel Features of the Toolbox

	Simulation of Multipath Fading Channels: Methodology
	References

	Specifying Fading Channels
	Creating Channel Objects
	Viewing Object Properties
	Changing Object Properties
	Linked Properties of Channel Objects

	Specifying the Doppler Spectrum of a Fading Channel
	Creating Doppler Objects
	Duplicating Doppler Objects
	Viewing and Changing Doppler Object Properties
	Using Doppler Objects Within Channel Objects

	Configuring Channel Objects
	Choosing Realistic Channel Property Values
	Path Delays
	Average Path Gains
	Maximum Doppler Shifts
	K-Factor for Rician Fading Channels
	Doppler Spectrum Parameters
	Configuring Channel Objects Based on Simulation Needs

	Using Fading Channels
	Compensating for Fading

	Examples Using Fading Channels
	Power of a Faded Signal
	Comparing Empirical Results to Theoretical Results
	Working with Delays
	Quasi-Static Channel Modeling
	Filtering Using a Loop
	Storing Channel State History

	Using the Channel Visualization Tool
	Parts of the GUI
	Visualization Options
	Examples of Using the Channel Visualization Tool

	Binary Symmetric Channel
	Section Overview
	Example: Introducing Noise in a Convolutional Code

	Selected Bibliography for Channels

	Equalizers
	Equalizer Features of Communications Toolbox Software
	Overview of Adaptive Equalizer Classes
	Section Overview
	Symbol-Spaced Equalizers
	Updating the Set of Weights
	Reference Signal and Operation Modes
	Error Calculation

	Fractionally Spaced Equalizers
	Decision-Feedback Equalizers

	Using Adaptive Equalizer Functions and Objects
	Section Overview
	Basic Procedure for Equalizing a Signal
	Example Illustrating the Basic Procedure
	Learning More About Adaptive Equalizer Functions

	Specifying an Adaptive Algorithm
	Choosing an Adaptive Algorithm
	Indicating a Choice of Adaptive Algorithm
	Accessing Properties of an Adaptive Algorithm

	Specifying an Adaptive Equalizer
	Defining an Equalizer Object
	Duplicating and Copying Objects

	Accessing Properties of an Equalizer
	Linked Properties of an Equalizer Object

	Using Adaptive Equalizers
	Section Overview
	Equalizing Using a Training Sequence
	Equalizing in Decision-Directed Mode
	Example: Equalizing Multiple Times, Varying the Mode

	Delays from Equalization
	Techniques for Working with Delays

	Equalizing Using a Loop
	Example: Adaptive Equalization Within a Loop
	Procedures for Equalizing Within a Loop

	Using MLSE Equalizers
	Section Overview
	Equalizing a Vector Signal
	Equalizing in Continuous Operation Mode
	Procedure for Continuous Operation Mode
	Delays in Continuous Operation Mode
	Example: Continuous Operation Mode

	Using a Preamble or Postamble
	Example: Using a Preamble

	Selected Bibliography for Equalizers

	Galois Field Computations
	Galois Field Terminology
	Representing Elements of Galois Fields
	Section Overview
	Creating a Galois Array
	When MATLAB Implicitly Creates a Galois Array

	Example: Creating Galois Field Variables
	Example: Representing Elements of GF(8)
	How Integers Correspond to Galois Field Elements
	Example: Representing a Primitive Element
	Primitive Polynomials and Element Representations
	Specifying the Primitive Polynomial
	Finding Primitive Polynomials
	Effect of Nondefault Primitive Polynomials on Numerical Results

	Arithmetic in Galois Fields
	Section Overview
	Example: Addition and Subtraction
	Simplifying the Syntax

	Example: Multiplication
	Multiplication Table for GF(8)

	Example: Division
	Elementwise Division
	Matrix Division

	Example: Exponentiation
	Elementwise Exponentiation
	Matrix Exponentiation

	Example: Elementwise Logarithm

	Logical Operations in Galois Fields
	Section Overview
	Testing for Equality
	Comparison of isequal and ==

	Testing for Nonzero Values

	Matrix Manipulation in Galois Fields
	Basic Manipulations of Galois Arrays
	Basic Information About Galois Arrays
	Positions of Nonzero Elements

	Linear Algebra in Galois Fields
	Inverting Matrices and Computing Determinants
	Computing Ranks
	Factoring Square Matrices
	Solving Linear Equations
	Example: Solving Linear Equations

	Signal Processing Operations in Galois Fields
	Section Overview
	Filtering
	Convolution
	Example

	Discrete Fourier Transform

	Polynomials over Galois Fields
	Section Overview
	Addition and Subtraction of Polynomials
	Multiplication and Division of Polynomials
	Evaluating Polynomials
	Roots of Polynomials
	Roots of Binary Polynomials
	Minimal Polynomials

	Manipulating Galois Variables
	Section Overview
	Determining Whether a Variable Is a Galois Array
	Extracting Information from a Galois Array
	Converting Galois Array to Doubles

	Speed and Nondefault Primitive Polynomials
	Selected Bibliography for Galois Fields

	EyeScope: An Eye Diagram Analysis Tool
	Introduction
	EyeScope Tutorial

	Galois Fields of Odd Characteristic
	Galois Field Terminology
	Representing Elements of Galois Fields
	Section Overview
	Exponential Format
	Polynomial Format
	List of All Elements of a Galois Field
	Example

	Nonuniqueness of Representations

	Default Primitive Polynomials
	Converting and Simplifying Element Formats
	Converting to Simplest Polynomial Format
	Example

	Example: Generating a List of Galois Field Elements
	Converting to Simplest Exponential Format
	Example

	Arithmetic in Galois Fields
	Section Overview
	Arithmetic in Prime Fields
	Example: Addition Table for GF(5)

	Arithmetic in Extension Fields
	Example: Addition Table for GF(9)

	Polynomials over Prime Fields
	Section Overview
	Cosmetic Changes of Polynomials
	Polynomial Arithmetic
	Characterization of Polynomials
	Example

	Roots of Polynomials
	Example: Roots of a Polynomial in GF(9)

	Other Galois Field Functions
	Selected Bibliography for Galois Fields

	Analytical Expressions Used in berawgn, bercoding, berfading, an
	Common Notation
	Analytical Expressions Used in berawgn
	M-PSK
	DE-M-PSK
	OQPSK
	DE-OQPSK
	M-DPSK
	M-PAM
	M-QAM
	Orthogonal M-FSK with Coherent Detection
	Nonorthogonal 2-FSK with Coherent Detection
	Orthogonal M-FSK with Noncoherent Detection
	Nonorthogonal 2-FSK with Noncoherent Detection
	Precoded MSK with Coherent Detection
	Differentially Encoded MSK with Coherent Detection
	MSK with Noncoherent Detection (Optimum Block-by-Block)
	CPFSK Coherent Detection (Optimum Block-by-Block)

	Analytical Expressions Used in berfading
	Notation
	M-PSK with MRC
	DE-M-PSK with MRC
	M-PAM with MRC
	M-QAM with MRC
	M-DPSK with Postdetection EGC
	Orthogonal 2-FSK, Coherent Detection with MRC
	Nonorthogonal 2-FSK, Coherent Detection with MRC
	Orthogonal M-FSK, Noncoherent Detection with EGC
	Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity

	Analytical Expressions Used in bercoding and BERTool
	Common Notation for This Section
	Block Coding
	Soft Decision
	Hard Decision

	Convolutional Coding
	Soft Decision
	Hard Decision

	Selected Bibliography

	Algorithms
	Algorithms Used to Decode BCH and Reed-Solomon Codes
	Errors-only Decoding
	Overview
	Syndrome Calculation
	Error Locator Polynomial Calculation
	Error Evaluator Polynomial Calculation

	Compute Optimum Quantizer Boundaries for use with Soft-Decision
	References

	Examples
	Modulation
	Special Filters
	Convolutional Coding
	Simulating Communication Systems
	Performance Evaluation
	Source Coding
	Block Coding
	Interleaving
	Equalizers
	Channels
	Galois Field Computations

	Index

	tables
	Parameters Used in Block Coding Techniques
	Fields of a Trellis Structure for a Rate k/n Code
	Input Values for 3-bit Soft Decisions
	Delays of Interleaver/Deinterleaver Pairs
	Elements of GF(9)
	Behavior of gftuple Depending on Format of First Two Inputs
	Formats for Second Argument of gfroots

