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Preface

The term lightwave technology was coined as a natural extension of microwave tech-
nology and refers to the developments based on the use of light in place of microwaves.
The beginnings of lightwave technology can be traced to the decade of 1960s during
which significant advances were made in the fields of lasers, optical fibers, and nonlin-
ear optics. The two important milestones were realized in 1970, the year that saw the
advent of low-loss optical fibers as well as the room-temperature operation of semi-
conductor lasers. By 1980, the era of commercial lightwave transmission systems has
arrived.

The first generation of fiber-optic communication systems debuting in 1980 oper-
ated at a meager bit rate of 45 Mb/s and required signal regeneration every 10 km or
so. However, by 1990 further advances in lightwave technology not only increased
the bit rate to 10 Gb/s (by a factor of 200) but also allowed signal regeneration after
80 km or more. The pace of innovation in all fields of lightwave technology only
quickened during the 1990s, as evident from the development and commercializa-
tion of erbium-doped fiber amplifiers, fiber Bragg gratings, and wavelength-division-
multiplexed lightwave systems. By 2001, the capacity of commercial terrestrial sys-
tems exceeded 1.6 Tb/s. At the same time, the capacity of transoceanic lightwave
systems installed worldwide exploded. A single transpacific system could transmit in-
formation at a bit rate of more than 1 Tb/s over a distance of 10,000 km without any
signal regeneration. Such a tremendous improvement was possible only because of
multiple advances in all areas of lightwave technology. Although commercial develop-
ment slowed down during the economic downturn that began in 2001, it was showing
some signs of recovery by the end of 2004, and lightwave technology itself has contin-
ued to grow.

The primary objective of this two-volume book is to provide a comprehensive and
up-to-date account of all major aspects of lightwave technology. The first volume, sub-
titled Components and Devices, is devoted to a multitude of silica- and semiconductor-
based optical devices. The second volume, subtitled Telecommunication Systems, deals
with the design of modern lightwave systems; the acronym LT1 is used to refer to the
material in the first volume. The first two introductory chapters cover topics such
as modulation formats and multiplexing techniques employed to form an optical bit
stream. Chapters 3 through 5 consider the degradation of such an optical signal through
loss, dispersion, and nonlinear effects during its transmission through optical fibers and
how they affect the system performance. Chapters 6 through 8 focus on the manage-
ment of the degradation caused by noise, dispersion, and fiber nonlinearity. Chapters 9

Xiv



Preface XV

and 10 cover the engineering issues related to the design of WDM systems and optical
networks.

This text is intended to serve both as a textbook and a reference monograph. For
this reason, the emphasis is on physical understanding, but engineering aspects are also
discussed throughout the text. Each chapter also includes selected problems that can be
assigned to students. The book’s primary readership is likely to be graduate students,
research scientists, and professional engineers working in fields related to lightwave
technology. An attempt is made to include as much recent material as possible so that
students are exposed to the recent advances in this exciting field. The reference section
at the end of each chapter is more extensive than what is common for a typical textbook.
The listing of recent research papers should be helpful to researchers using this book as
areference. At the same time, students can benefit from this feature if they are assigned
problems requiring reading of the original research papers. This book may be useful in
an upper-level graduate course devoted to optical communications. It can also be used
in a two-semester course on optoelectronics or lightwave technology.

A large number of persons have contributed to this book either directly or indi-
rectly. It is impossible to mention all of them by name. I thank my graduate students
and the students who took my course on optical communication systems and helped
improve my class notes through their questions and comments. I am grateful to my
colleagues at the Institute of Optics for numerous discussions and for providing a cor-
dial and productive atmosphere. I thank, in particular, René Essiambre and Qiang Lin
for reading several chapters and providing constructive feedback. Last, but not least, I
thank my wife Anne and my daughters, Sipra, Caroline, and Claire, for their patience
and encouragement.

Govind P. Agrawal

Rochester, NY
December 2004



This Page Intentionally Left Blank



Chapter 1

Introduction

Lightwave systems represent a natural extension of microwave communication systems
inasmuch as information is transmitted over an electromagnetic carrier in both types of
systems. The major difference from a conceptual standpoint is that, whereas carrier
frequency is typically ~1 GHz for microwave systems, it increases by five orders of
magnitude and is typically ~100 THz in the case of lightwave systems. This increase
in carrier frequency translates into a corresponding increase in the system capacity.
Indeed, whereas microwave systems rarely operate above 0.2 Gb/s, commercial light-
wave systems can operate at bit rates exceeding 1 Tb/s. Although the optical carrier is
transmitted in free space for some applications related to satellites and space research,
terrestrial lightwave systems often employ optical fibers for information transmission.
Such fiber-optic communication systems have been deployed worldwide since 1980
and constitute the backbone behind the Internet. One can even claim that the lightwave
technology together with advances in microelectronics was responsible for the advent
of the “information age” by the end of the twentieth century. The objective of this book
is to describe the physics and engineering behind various kinds of lightwave systems.
The purpose of this introductory chapter is to present the basic concepts together with
the background material. Section 1.1 provides a historical perspective on the develop-
ment of lightwave communication systems. Section 1.2 focuses on the building blocks
of such a system and describes briefly the three components known as optical transmit-
ters, fibers, and receivers. Section 1.3 covers the concepts such as analog and digital
signals and the technique used to convert between the two. Channel multiplexing in
the time and frequency domains is described in Section 1.4 where we also discuss the
technique of code-division multiplexing.

1.1 Evolution of Lightwave Systems

Microwave communication systems were commercialized during the decade of 1940s,
and carrier frequencies of up to 4 GHz were used by 1947 for a commercial system op-
erating between New York and Boston [1]. During the next 25 years or so, microwave
as well as coaxial systems evolved considerably. Although such systems were able to

1



2 Chapter 1. Introduction

operate at bit rates of up to 200 Mb/s or so, they were approaching the fundamental
limits of the technology behind them. It was realized in the 1950s that an increase of
several orders of magnitude in the system capacity should be possible if optical waves
were used in place of microwaves as the carrier of information. However, neither a
coherent optical source, nor a suitable transmission medium, was available during the
1950s. The invention of the laser solved the first problem [2]. Attention was then fo-
cused on finding ways of transmitting laser light over long distances. In contrast with
the microwaves, optical beams suffer from many problems when they are transmitted
through the atmosphere. Many ideas were advanced during the 1960s to solve these
problems [3], the most noteworthy being the idea of light confinement using a sequence
of gas lenses [4].

In a parallel but unrelated development, optical glass fibers were developed during
the 1950s, mainly from the standpoint of medical applications [5]-[9]. It was suggested
in 1966 that optical fibers might be the best choice for transporting optical signals in
lightwave systems [10] as they are capable of guiding the light in a manner similar to
the guiding of electrons in copper wires. The main problem was their high losses since
fibers available during the 1960s had losses in excess of 1,000 dB/km.

A breakthrough occurred in 1970 when fiber losses were reduced to below 20
dB/km in the wavelength region near 1 gm using a novel fabrication technique {11].
At about the same time, GaAs semiconductor lasers, operating continuously at room
temperature, were demonstrated [12]. The simultaneous availability of compact optical
sources and low-loss optical fibers led to a worldwide effort for developing fiber-optic
communication systems during the 1970s [13]. After a successful Chicago field trial in
1977, terrestrial lightwave systems became available commercially beginning in 1980
[14]-[16]. Figure 1.1 shows the increase in the capacity of lightwave systems realized
after 1980 through several generations of development. As seen there, the commer-

10000

1000
[ Research
100

Commercial

BitRate (Gb/s)

0.1 O

‘I i L n n n
1980 1985

1 1 1 i " i n 1 " L 1 " " "
1990 1995 2000 2005
Year

0.0

Figure 1.1: Increase in the capacity of lightwave systems realized after 1980. Commercial
systems (circles) follow research demonstrations (squares) with a few-year lag. The change in
the slope after 1992 is due to the advent of WDM technology.
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Figure 1.2: Increase in the BL product from 1975 to 2000 through four generations of lightwave
systems. Different symbols are used for successive generations. (After Ref. [17]; ©2000 IEEE.)

cial deployment of lightwave systems followed the research and development phase
closely. The progress has indeed been rapid as evident from an increase in the system
capacity by a factor of 100,000 over a period of less than 25 years. The saturation
of the capacity after 2000 is partly due to the economic slowdown experienced by the
lightwave industry (known popularly as the bursting of the telecom bubble).

The distance over which a lightwave system can transmit data without introducing
errors is also important while judging the system performance. Since signal is degraded
during transmission, most lightwave systems require periodic regeneration of the opti-
cal signal through devices known as “repeaters.” A commonly used figure of merit for
any communication system is the bit rate—distance product, BL, where B is the bit rate
and L is the repeater spacing. The research phase of lightwave systems started around
1975. The first-generation systems operated in the near infrared at a wavelength close
to 800 nm and used GaAs semiconductor lasers as an optical source. They were able to
work at a bit rate of 45 Mb/s and allowed repeater spacings of up to 10 km. The 10-km
value may seem too small from a modern perspective, but it was 10 times larger than
the 1-km spacing prevalent at that time in coaxial systems.

The enormous progress realized over the 25-year period extending from 1975 to
2000 can be grouped into four distinct generations. Figure 1.2 shows the increase in
the BL product over this time period as quantified through various laboratory experi-
ments [17]. The straight line corresponds to a doubling of the BL product every year.
In every generation, BL increases initially but then saturates as the technology matures.
Each new generation brings a fundamental change that helps to improve the system
performance further.

It was clear during the 1970s that the repeater spacing could be increased consid-
erably by operating the lightwave system in the wavelength region near 1.3 gm, where
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fiber losses were below 0.5 dB/km. Furthermore, optical fibers exhibit minimum dis-
persion in this wavelength region. This realization led to a worldwide effort for the
development of semiconductor lasers and detectors operating near 1.3 um. The second
generation of fiber-optic communication systems became available in the early 1980s,
but the bit rate of early systems was limited to below 100 Mb/s because of dispersion in
multimode fibers [18]. This limitation was overcome by the use of single-mode fibers.
A laboratory experiment in 1981 demonstrated transmission at 2 Gb/s over 44 km of
single-mode fiber [19]. The introduction of commercial systems soon followed. By
1987, second-generation lightwave systems, operating at bit rates of up to 1.7 Gb/s
with a repeater spacing of about 50 km, were commercially available.

The repeater spacing of the second-generation lightwave systems was limited by
fiber losses at the operating wavelength of 1.3 pm (typically 0.5 dB/km). Losses of
silica fibers become minimum near 1.55 ym. Indeed, a 0.2-dB/km loss was realized in
1979 in this spectral region [20]. However, the introduction of third-generation light-
wave systems operating at 1.55 gm was considerably delayed by a relatively large
dispersion of standard optical fibers in the wavelength region near 1.55 pm. The dis-
persion problem can be overcome either by using dispersion-shifted fibers designed to
have minimum dispersion near 1.55 pm or by limiting the laser spectrum to a single
longitudinal mode. Both approaches were followed during the 1980s. By 1985, labora-
tory experiments indicated the possibility of transmitting information at bit rates of up
to 4 Gb/s over distances in excess of 100 km [21]. Third-generation lightwave systems
operating at 2.5 Gb/s became available commercially in 1990. Such systems are capa-
ble of operating at a bit rate of up to 10 Gb/s [22]. The best performance is achieved
using dispersion-shifted fibers in combination with distributed-feedback (DFB) semi-
conductor lasers.

A drawback of third-generation 1.55-um systems was that the optical signal had
to be regenerated periodically using electronic repeaters after 60 to 70 km of transmis-
sion because of fiber losses. Repeater spacing could be increased by 10 to 20 km using
homodyne or heterodyne detection schemes because their use requires less power at
the receiver. Such coherent lightwave systems were studied during the 1980s and their
potential benefits were demonstrated in many system experiments [23]. However, com-
mercial introduction of such systems was postponed with the advent of fiber amplifiers
in 1989.

The fourth generation of lightwave systems makes use of optical amplification for
increasing the repeater spacing and of wavelength-division multiplexing (WDM) for
increasing the bit rate. As evident from different slopes in Figure 1.1 before and after
1992, the advent of the WDM technique started a revolution that resulted in doubling
of the system capacity every 6 months or so and led to lightwave systems operating
at a bit rate of 10 Tb/s by 2001. In most WDM systems, fiber losses are compensated
periodically using erbium-doped fiber amplifiers spaced 60 to 80 km apart. Such ampli-
fiers were developed after 1985 and became available commercially by 1990. A 1991
experiment showed the possibility of data transmission over 21,000 km at 2.5 Gb/s,
and over 14,300 km at 5 Gb/s, using a recirculating-loop configuration [24]. This per-
formance indicated that an amplifier-based, all-optical, submarine transmission system
was feasible for intercontinental communication. By 1996, not only transmission over
11,300 km at a bit rate of 5 Gb/s had been demonstrated by using actual submarine
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Figure 1.3: International network of submarine fiber-optic cables in 2004. (Source: TeleGeog-
raphy Research Group, PriMetrica, Inc. (©)2004.)

cables [25], but commercial transatlantic and transpacific cable systems also became
available. Since then, a large number of submarine lightwave systems have been de-
ployed worldwide.

Figure 1.3 shows the international network of submarine fiber-optic cables as it
existed in 2004. The 27,000-km fiber-optic link around the globe (known as FLAG)
became operational in 1998, linking many Asian and European countries [26]. An-
other major lightwave system, known as Africa One, was operational by 2000; it cir-
cles the African continent and covers a total transmission distance of about 35,000
km [27]. Several WDM systems were deployed across the Atlantic and Pacific oceans
from 1998 to 2001 in response to the Internet-induced increase in the data traffic; they
have increased the total capacity by orders of magnitudes [28]. One can indeed say
that the fourth generation of lightwave systems led to an information revolution that
was fuelled by the advent of the Internet.

At the dawn of the twenty-first century, the emphasis of lightwave systems was on
increasing the system capacity by transmitting more and more channels through the
WDM technique. With increasing WDM signal bandwidth, it was often not possible
to amplify all channels using a single amplifier. As a result, new kinds of amplifica-
tion schemes were explored for covering the spectral region extending from 1.45 to
1.62 pm. This approach led in 2000 to a 3.28-Tb/s experiment in which 82 channels,
each operating at 40 Gb/s, were transmitted over 3,000 km, resulting in a BL product
of almost 10,000 (Tb/s)-km. Within a year, the system capacity could be increased to
nearly 11 Tb/s (273 WDM channels, each operating at 40 Gb/s) but the transmission
distance was limited to 117 km [29]. By 2003, in a record experiment 373 channels,
each operating at 10 Gb/s, were transmitted over 11,000 km, resulting in a BL prod-
uct of more than 41,000 (Tb/s)-km [30]. On the commercial side, terrestrial systems
with the capacity of 1.6 Tb/s were available by the end of 2000. Given that the first-
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generation systems had a bit rate of only 45 Mb/s in 1980, it is remarkable that the
capacity of lightwave systems jumped by a factor of more than 30,000 over a period of
only 20 years.

The pace slowed down considerably during the economic turndown in the light-
wave industry that began in 2000 and was not completely over in 2004. Although
commercial deployment of new lightwave systems virtually halted during this period,
the research phase has continued worldwide and is moving toward the fifth generation
of lightwave systems. This new generation is concerned with extending the wavelength
range over which a WDM system can operate simultaneously. The conventional wave-
length window, known as the C band, covers the wavelength range of 1.53 to 1.57 pm.
It is being extended on both the long- and short-wavelength sides, resulting in the L and
S bands, respectively. The traditional erbium-based fiber amplifiers are unable to work
over such a wide spectral region. For this reason, the Raman amplification technique,
well known from the earlier research performed in the 1980s [31], has been readopted
for lightwave systems as it can work in all three wavelength bands using suitable pump
lasers [32]-{35]. A new kind of fiber, known as the dry fiber, has been developed with
the property that fiber losses are small over the entire wavelength region extending
from 1.30 to 1.65 um [36]. Research is also continuing in several other directions to
realize optical fibers with suitable loss and dispersion characteristics. Most notewor-
thy are photonic-crystal fibers whose dispersion can be changed drastically using an
array of holes within the cladding layer [37]-[41]. Moreover, if the central core it-
self is in the form of a hole, light can be transmitted through air while guided by the
photonic-crystal structure of the cladding [42]-[46]. Such fibers have the potential of
transmitting optical signal with virtually no losses and little nonlinear distortion!

The fifth-generation systems also attempt to enhance the spectral efficiency by
adopting new modulation formats, while increasing the bit rate of each WDM chan-
nel. Starting in 1996, many experiments used channels operating at 40 Gb/s [47]-[54],
and by 2003 such 40-Gb/s lightwave systems had reached the commercial stage. At
the same time, the research phase has moved toward WDM systems with 160 Gb/s per
channel [55]-[58]. Such systems require an extremely careful management of fiber dis-
persion. Novel techniques capable of compensating chromatic and polarization-mode
dispersions in a dynamic fashion are being developed to meet such challenges. An
interesting approach is based on the concept of optical solitons—pulses that preserve
their shape during propagation in a lossless fiber by counteracting the effect of disper-
sion through the fiber nonlinearity. Although the basic idea was proposed [59] as early
as 1973, it was only in 1988 that a laboratory experiment demonstrated the feasibility
of data transmission over 4,000 km by compensating fiber losses through Raman am-
plification [31]. Since then, many system experiments have demonstrated the eventual
potential of soliton communication systems [60]. Starting in 1996, the WDM technique
was also used for solitons in combination with dispersion-management and Raman am-
plification schemes [61]-[64]. Many new modulation formats are being proposed for
advancing the state of the art. Even though the lightwave communication technology
is barely 25 years old, it has progressed rapidly and has reached a certain stage of
maturity. Many books were published during the 1990s on topics related to optical
communications and WDM networks, and this trend is continuing in the twenty-first
century [65]-[80].
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Figure 1.4: A generic optical communication system.,

1.2 Components of a Lightwave System

As mentioned earlier, lightwave systems differ from microwave systems only in the fre-
quency range of the carrier wave used to carry the information. Both types of systems
can be divided into three major parts. Figure 1.4 shows a generic optical communica-
tion system consisting of an optical transmitter, a communication channel, and an opti-
cal receiver. Lightwave systems can be classified into two broad categories depending
on the nature of the communication channel. The optical signal propagates unguided
in air or vacuum for some applications {81]. However, in the case of guided light-
wave systems, the optical beam emitted by the transmitter remains spatially confined
inside an optical fiber. This text focuses exclusively on such fiber-optic communication
systems.

1.2.1 Optical Transmitters

The role of optical transmitters is to convert an electrical signal into an optical form and
to launch the resulting optical signal into the optical fiber acting as a communication
channel. Figure 1.5 shows the block diagram of an optical transmitter. It consists of
an optical source, a modulator, and electronic circuits used to power and operate the
two devices. Semiconductor lasers or light-emitting diodes are used as optical sources
because of their compact nature and compatibility with optical fibers. The source emits
Hght in the form of a continuous wave at a fixed wavelength, say, Ag. The carrier
frequency vy is related to this wavelength as vy = ¢/Ag, where c is the speed of light in
vacuum.

In modern lightwave systems, Vg is chosen from a set of frequencies standard-
ized by the International Telecommunication Union (ITU). It is common to divide the
spectral region near 1.55 pum into two bands known as the conventional or C band

Driving Modulator Electrical
Circuit Electronics Input
Optical
Optical Output

Modulator

Figure 1.5: Block diagram of an optical transmitter.
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and the long-wavelength or L band. The C band covers carrier frequencies from 191
to 196 THz (in steps of 50 GHz) and spans roughly the wavelength range of 1.53 to
1.57 um. In contrast, L band occupies the range 1.57 to 1.61 pum and covers carrier
frequencies from 186 to 191 THz, again in steps of 50 GHz. The short-wavelength or
S band covering the wavelength region from 1.48 to 1.53 pm may be used for future
lightwave systems as the demand for capacity grows. It is important to realize that the
source wavelength needs to be set precisely for a given choice of the carrier frequency.
For example, a channel operating at 193 THz requires an optical source emitting light
at a wavelength of 1.5533288 pm if we use the precise value ¢ = 299,792,458 km/s for
the speed of light in vacuum.

Before the source light can be launched into the communication channel, the infor-
mation that needs to be transmitted should be imposed on it. This step is accomplished
by an optical modulator in Figure 1.5. The modulator uses the data in the form of an
electrical signal to modulate the optical carrier. Although an external modulator is of-
ten needed at high bit rates, it can be dispensed with at low bit rates using a technique
known as direct modulation. In this technique, the electrical signal representing infor-
mation is applied directly to the driving circuit of the semiconductor optical source,
resulting in the modulated source output. Such a scheme simplifies the transmitter de-
sign and is generally more cost-effective. In both cases, the modulated light is coupled
into a short piece of fiber (called a pigtail) with a connector attached to its other end.
Chapter 2 provides more details on how the optical signal is generated within an optical
transmitter.

An important design parameter is the average optical power launched into the com-
munication channel. Clearly, it should be as large as possible to enhance the signal-to-
noise ratio (SNR) at the receiver end. However, the onset of various nonlinear effects
limits how much power can be launched at the transmitter end. The launched power is
often expressed in “dBm” units with 1 mW acting as the reference level. The general
definition 1s (see Appendix A)

power (dBm) = 1010g10<11—)9nv:—$). (1.2.1)
Thus, 1 mW is 0 dBm, but 1 uW corresponds to —30 dBm. The launched power is
rather low (less than —10 dBm) for light-emitting diodes but semiconductor lasers can
launch power levels exceeding 5 dBm.

Although light-emitting diodes are useful for some low-end applications related
to local-area networking and computer-data transfer, most lightwave systems employ
semiconductor lasers as optical sources. The bit rate of optical transmitters is often
limited by electronics rather than by the semiconductor laser itself. With proper design,
optical transmitters can be made to operate at a bit rate of up to 40 Gb/s.

1.2.2 Communication Channel

The role of a communication channel is to transport the optical signal from transmitter
to receiver with as little loss in quality as possible. Most terrestrial lightwave systems
employ optical fibers as the communication channel because they can transmit light
with losses as small as 0.2 dB/km when the carrier frequency lies in the spectral region
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Figure 1.6: (a) Regenerators or (b) optical amplifiers used periodically for compensating fiber
losses in a lightwave system; Tx and Rx stand for transmitter and receiver, respectively.

near 1.5 pm. Even then, optical power reduces to only 1% after 100 km. For long-
haul lightwave systems, it is common to employ optical amplifiers or regenerators to
compensate for fiber losses and boost the signal power back to its original level. Figure
1.6 shows how amplifiers or regenerators can be cascaded to transmit optical signal
over distances exceeding hundreds and even thousands of kilometers. Fiber losses play
an important role in such systems because they determine the repeater or amplifier
spacing. The issue of loss management is discussed in Section 3.2.

Ideally, a communication channel should not degrade the quality of the optical sig-
nal launched into it. In practice, optical fibers broaden light pulses transmitted through
them through modal or chromatic dispersion. As discussed later, if optical pulses
spread significantly outside their allocated bit slot, the transmitted signal is degraded
so severely that it becomes impossible to recover the original signal with high accu-
racy. The dispersion problem is most severe for multimode fibers. It is for this reason
that most modern lightwave systems employ single-mode fibers. Chromatic dispersion
still leads to pulse broadening but its impact can be reduced by controlling the spectral
width of the optical source or by employing a dispersion-management technique. We
discuss in Section 3.3 how an optical signal is affected by fiber dispersion.

A third source of signal distortion results from the nonlinear effects related to the
intensity dependence of the refractive index of silica. Although most nonlinear effects
are relatively weak for silica fibers, they can accumulate to significant levels when
many optical amplifiers are cascaded in series to form a long-haul system. Nonlinear
effects are especially important for undersea lightwave systems for which the total
fiber length can approach thousands of kilometers. Chapter 4 focuses on the impact of
several nonlinear effects that affect the performance of modern lightwave systems.

1.2.3 Optical Receivers

An optical receiver converts the optical signal received at the output end of the fiber
link back into the original electrical signal. Figure 1.7 shows the main components
of an optical receiver. Optical signal arriving at the receiver is first directed toward
a photodetector that converts it into an electrical form. Semiconductor photodiodes
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Figure 1.7: Block diagram of an optical receiver.

are used as photodetectors because of their compact size and relatively high quantum
efficiency. In practice, a p—i—n or an avalanche photodiode produces electric current
that varies with time in response to the incident optical signal. It also adds invariably
some noise to the signal, thereby reducing the SNR of the electrical signal.

The role of the demodulator is to reconstruct the original electrical signal from the
time-varying current in spite of the channel-induced degradation and the noise added at
the receiver. The design of a demodulator depends on the nature of the signal (analog
versus digital) and the modulation format used by the lightwave system. Most modern
systems employ a digital binary scheme referred to as intensity modulation with direct
detection. As discussed in Chapter 5, demodulation in the digital case is done by a
decision circuit that identifies bits as 1 or 0, depending on the amplitude of the electrical
signal. The accuracy of the decision circuit depends on the SNR of the electrical signal
generated at the photodetector. It is important to design the receiver such that its noise
level is not too high.

The performance of a digital lightwave system is characterized through the bit-
error rate (BER). Although BER can be defined as the number of errors made per
second, such a definition makes the BER bit-rate dependent. It is customary to define
the BER as the average probability of identifying a bit incorrectly. For example, a BER
of 10~° corresponds to on average one error per billion bits. We discuss in Section 5.3
how BER can be calculated for digital signals. Most lightwave systems specify a BER
of less than 10~° as the operating requirement; some even require a BER as small as
10~15. Depending on the system design, it is sometimes not possible to realize such
low error rates at the receiver. Error-correcting codes are then used to improve the raw
BER of a lightwave system.

An important parameter for any receiver is its sensitivity, defined as the minimum
average optical power required to realize a BER of 10~°. Receiver sensitivity depends
on the SNR, which in turn depends on various noise sources that corrupt the electrical
signal produced at the receiver. Even for a perfect receiver, some noise is introduced
by the process of photodetection itself. This quantum noise is referred to as the shot
noise as it has its origin in the particle nature of electrons. No practical receiver oper-
ates at the quantum-noise limit because of the presence of several other noise sources.
Some of the noise sources, such as thermal noise, are internal to the receiver. Others
originate at the transmitter or during propagation along the fiber link. For instance, any
amplification of the optical signal along the transmission line with the help of optical
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amplifiers introduces the so-called amplifier noise that has its origin in the fundamen-
tal process of spontaneous emission. Several nonlinear effects occurring within optical
fibers can manifest as an additional noise that is added to the optical signal during its
transmission through the fiber link. The receiver sensitivity is determined by a cumu-
lative effect of all possible noise mechanisms that degrade the SNR at the decision
circuit. In general, it also depends on the bit rate as the contribution of some noise
sources (e.g., shot noise) increases in proportion to the signal bandwidth.

1.3 Electrical Signals

In any communication system, information to be transmitted is generally available as
an electrical signal that may take analog or digital form [82]-[84]. Most lightwave
systems employ digital signals because of their relative insensitivity to noise. This
section describes the two types of signals together with the scheme used to convert an
analog signal into a digital one.

1.3.1 Analog and Digital Signals

As shown schematically in Figure 1.8(a), an analog signal (e. g., electric current or
voltage) varies continuously with time. Familiar examples include audio and video
signals formed when a microphone converts voice or a video camera converts an image
into an electrical signal. By contrast, a digital signal takes only a few discrete values.
For example, printed text in this book can be thought of as a digital signal because it is
composed of about 50 or so symbols (letters, numbers, punctuation marks, etc.).

The most important example of a digital signal is a binary signal for which only
two values are possible. The modern “information age” is based entirely on binary
digital signals because such signals can be manipulated electronically using electrical
gates and transistors. In a binary signal, the electric current is either on or off as shown
in Figure 1.8(b). These two possibilities are called bit 1 and bit 0, respectively. The
word bit itself is a contracted form of binary digiz. A binary signal thus takes the form
of an apparently random sequence of 1 and O bits. Each bit lasts for a certain duration
Tp, known as the bit period or bit slot. Since one bit of information is conveyed in
a time interval Tp, the bit rate B, defined as the number of bits per second, is simply
B= TB_]. A well-known example of digital signals is provided by the text stored on a
computer’s hard drive. Each letter of the alphabet together with other common symbols
(decimal numerals, punctuation marks, etc.) is assigned a code number (ASCII code)
in the range 0 to 127 whose binary representation corresponds to a 7-bit digital signal.
The original ASCII code has been extended to represent 256 characters in the form of
8-bit bytes. Each key pressed on the keyboard of a computer generates a sequence of 8
bits that is stored as data in its memory or hard drive.

Both analog and digital signals are characterized by their bandwidth, which is a
measure of the spectral contents of the signal. The signal bandwidth represents the
range of frequencies contained within the signal. It is determined mathematically
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Figure 1.8: Representation of (a) an analog signal and (b) a digital signal.

through the Fourier transform §(c) of a time-dependent signal s(t) defined as

s() = -21; / 5() exp(—iwr) do, (13.1)
where @ = 27V is the angular frequency corresponding to the actual frequency v (mea-
sured in hertz). The choice of sign within the exponential function is arbitrary; this text
adopts the notation shown in Eq. (1.3.1). Even though the integral in this equation ex-
tends from —co to oo, all practical signals have a finite bandwidth, indicating that §{(®)
vanishes outside some frequency range known as the signal bandwidth.

1.3.2 Advantages of Digital Format

A lightwave system can transmit information over optical fibers in both the analog and
digital formats. However, except for a few special cases related to the transmission of
cable television over fibers, all lightwave systems employ a digital format. The reason
behind this choice is related to the relative ease with which a digital signal can be
recovered at the receiver even after it has been distorted and corrupted with noise while
being transmitted.

Figure 1.9 shows schematically why digital signals are relatively immune to noise
and distortion in comparison to analog signals. As seen in part (a), the digital signal
oscillates between two values, say, 0 and S, for 0 and 1 bits, respectively. Each 1 bit
is in the form of a rectangular pulse at the transmitter end. During transmission, the
signal is distorted by the dispersive and nonlinear effects occurring within the fiber.
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Figure 1.9: (a) Transmitted digital signal, (b) distorted and noisy electrical signal at the receiver,
and (c) reconstructed digital signal. The thin solid line in the middle shows the decision level.

The addition of noise at the receiver transforms this electrical signal into that shown in
part (b). In spite of the signal appearance, the decision circuit at the receiver can still
decide between 1 and 0 bits correctly, and reconstruct the original bit sequence as seen
in part (c). The reason is related to the fact that the bit identification does not depend
on the signal shape but only on whether the signal level exceeds a threshold value at the
moment of decision. One can set this threshold value in the middle at §/2 to provide the
maximum leverage. An error will be made in identifying each 1 bit only if the original
value § has dropped to below §/2. Similarly, a 0 bit has to acquire an amplitude > S/2
before an error is made. In contrast, when an analog signal is transmitted through the
fiber link, the signal value s(¢) at any time ¢ should not change even by 0.1% if one
were to ensure fidelity of the transmitted signal because the information is contained in
the actual shape of the signal. Mathematically, the SNR of the electrical signal at the
receiver should exceed 30 dB for analog signals but, as we shall see in later chapters,
it can be lower than 10 dB for digital signals.

The important question one should ask is whether this advantage of digital signals
has a price tag attached to it. In other words, what are the consequences of transmitting
the same information in a digital format? The answer is related to the signal bandwidth.
A digital signal has a much wider bandwidth compared to the analog signal even when
the two have the same information content. This feature can be understood from Figure
1.8 if we note that the digital signal has much more rapid temporal variations compared
with an analog signal. We discuss next how much bandwidth is increased when an
analog signal is converted into a digital format.

1.3.3 Analog to Digital Conversion

An analog signal can be converted into digital form by sampling it at regular intervals
of time and digitizing the sampled values appropriately [82]—[84]. Figure 1.10 shows
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Figure 1.10: Three steps of (a) sampling, (b) quantization, and (c) coding required for converting
an analog signal into a binary digital signal.

schematically the three main steps involved in the conversion process.

The first step requires sampling of the analog signal at a rate fast enough that no
information is lost. The sampling rate depends on the bandwidth Af of the analog sig-
nal. According to the sampling theorem {85}, a bandwidth-limited signal can be fully
represented by discrete samples, without any loss of information, provided sampling
frequency f; satisfies the Nyquist criterion [86] f; > 2Af. The sampled values can be
anywhere in the range 0 < A < Apax, Where Apax is the maximum amplitude of the
given analog signal. We have assumed for simplicity that the minimum value of the
signal is zero; this can always be realized by a simple scaling of the signal.

The second step involves quantization of the sampled values. For this purpose, Apax
is divided into M discrete intervals (not necessarily equally spaced). Each sampled
value is quantized to correspond to one of these discrete values. Clearly, this procedure
adds noise, known as the quantization noise, that adds to the noise already present in
the analog signal. The effect of quantization noise can be minimized by choosing the
number of discrete levels such that M > Amax /AN, Where Ay is the root-mean-square
(RMS) noise level of the analog signal. The ratio Ayax /Ay is called the dynamic range
and is related to the SNR of the analog signal by the relation

SNR = 20 1og,(Amax/AN), (13.2)
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where SNR is expressed in decibel (dB) units. Any ratio R can be converted into
decibels with the general definition R(indB) = 10 log,o R (see Appendix A). Equation
(1.3.2) contains a factor of 20 in place of 10 because the SNR for electrical signals is
defined with respect to the electrical power, whereas A represents either electric current
or voltage.

The last step involves conversion of the quantized sampled values into a digital bit
stream consisting of 0 and 1 bits using a suitable coding technique. In one scheme,
known as pulse-position modulation, pulse position within the bit slot is a measure of
the sampled value. In another, known as pulse-duration modulation, the pulse width is
varied from bit to bit in accordance with the sampled value. These two techniques are
rarely used in practical lightwave systems as it is difficult to maintain the pulse position
or pulse width to high accuracy during propagation inside an optical fiber. The coding
technique used almost universally is known as pulse-code modulation (PCM). A binary
code is used to convert each sampled value into a string of 1 and 0 bits. The number of
bits m needed to code each sample is related to the number of quantized signal levels
M by the relation

M=2" or m=log, M. (1.3.3)
The bit rate associated with the PCM digital signal is thus given by
B =mf; > (2Af)logy M, (1.3.4)

where the Nyquist criterion, f; > 2Af, was used. By noting that M > Ay, /Ay and
using Eq. (1.3.2) together with log, 10 =~ 3.33, we obtain

B> (Af/3)SNR, (1.3.5)

where the SNR is expressed in decibel units.

Equation (1.3.5) provides the minimum bit rate required for digital representation
of an analog signal of bandwidth Af with a specific SNR. Typically, the SNR exceeds
30 dB for analog signals, and the required bit rate is more than 10 Af. Clearly, there is
a considerable increase in the bandwidth when an analog signal is converted into a dig-
ital format. Despite this increase, the digital format is almost always used for lightwave
systems. This choice is made because, as discussed earlier in this section, a digital bit
stream is relatively immune to noise and distortion occurring during its transmission
through the communication channel, resulting in superior system performance. Light-
wave systems offer such an enormous increase in the system capacity compared with
microwave systems that some bandwidth can be traded for an improved performance.

As an illustration of Eq. (1.3.5), consider digital conversion of an audio signal gen-
erated during a telephone conversation. Such analog audio signals contain frequencies
in the range of 0.3 to 3.4 kHz (bandwidth Af = 3.1 kHz) and have a SNR of about
30 dB. Equation (1.3.5) indicates that the bit rate B would exceed 31 kb/s if such an
audio signal is converted into a digital format. In practice, each digital audio channel
operates at 64 kb/s. The analog signal is sampled at intervals of 125 us (sampling rate
s = 8 kHz), and each sample is represented by 8 bits. The required bit rate for a digital
video signal is higher by more than a factor of 1,000. The analog television signal has
a bandwidth ~4 MHz with a SNR of about 50 dB. The minimum bit rate from Eq.
(1.3.5) is 66 Mb/s. In practice, a digital video signal requires a bit rate of 100 Mb/s or
more unless it is compressed by using a standard format (such as the MPEG format).
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1.4 Channel Multiplexing

As seen in the preceding section, a digital voice channel operates at a bit rate of 64 kb/s.
Most lightwave systems are capable of transmitting information at a bit rate of more
than 1 Gb/s, and the capacity of the fiber channel itself exceeds 10 Tb/s. To utilize the
system capacity fully, it is necessary to transmit many channels simultaneously over the
same fiber link. This can be accomplished through several multiplexing techniques; the
two most common ones are known as time-division multiplexing (TDM) and frequency-
division multiplexing (FDM). A third scheme, used often for cellular phones and called
code-division multiplexing (CDM), can also be used for lightwave systems. We discuss
all three schemes in this section.

1.4.1 Time-Division Multiplexing

In the case of TDM, bits associated with different channels are interleaved in the time
domain to form a composite bit stream. For example, the bit slot is about 15 us for
a single voice channel operating at 64 kb/s. Five such channels can be multiplexed
through TDM if bit streams of successive channels are interleaved by delaying them
3 us. Figure 1.11(a) shows the resulting bit stream schematically at a composite bit
rate of 320 kb/s. TDM is readily implemented for digital signals and is commonly
used worldwide for telecommunication networks.

The concept of TDM has been used to form digital hierarchies. In North America
and Japan, the first level corresponds to multiplexing of 24 voice channels with a com-
posite bit rate of 1.544 Mb/s (hierarchy DS-1), whereas in Europe 30 voice channels
are multiplexed, resulting in a composite bit rate of 2.048 Mb/s. The bit rate of the
multiplexed signal is slightly larger than the simple product of 64 kb/s with the number
of channels because of extra control bits that are added for separating (demultiplexing)
the channels at the receiver end. The second-level hierarchy is obtained by multiplex-
ing four DS-1 channels in the time domain. This resulted in a bit rate of 6.312 Mb/s
(hierarchy DS-2) for systems commercialized in North America and Japan. At the next
level (hierarchy DS-3), seven DS-2 channels were multiplexed through TDM, resulting
in a bit rate of close to 45 Mb/s. The first generation of commercial lightwave systems
(known as FT-3, short for fiber transmission at DS-3) operated at this bit rate. The
same procedure was continued to obtain higher-level hierarchies. For example, at the
fifth level of hierarchy, the bit rate was 417 Mb/s for lightwave systems commercialized
in North America but 565 Mb/s for systems sold in Europe.

The lack of an international standard in the telecommunication industry during the
1980s led to the advent of a new standard, first called the synchronous optical network
(SONET) and later termed the synchronous digital hierarchy or SDH [87]-[89]. This
international standard defines a synchronous frame structure for transmitting TDM dig-
ital signals. The basic building block of the SONET has a bit rate of 51.84 Mb/s. The
corresponding optical signal is referred to as OC-1, where OC stands for optical carrier.
The basic building block of the SDH has a bit rate of 155.52 Mb/s and is referred to
as STM-1, where STM stands for a synchronous transport module. A useful feature
of the SONET and SDH is that higher levels have a bit rate that is an exact multiple
of the basic bit rate. Table 1.1 lists the correspondence between SONET and SDH bit
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Figure 1.11: (a) Time-division multiplexing of five digital voice channels operating at 64 kb/s;
(b) frequency-division multiplexing of three analog signals.

rates for several levels. The SDH provides an international standard that has been well
adopted. Indeed, lightwave systems operating at the STM-64 level (B =~ 10 Gb/s) have
been available since 1995 (22]. Commercial STM-256 (OC-768) systems operating
near 40 Gb/s became available around 2002. Table 1.2 lists the operating character-
istics of terrestrial systems developed since 1980. The last column shows the number
of voice channels that can be transmitted simultaneously over the same fiber using the
TDM technique. A single optical carrier carried 672 TDM channels in the first light-
wave system deployed in 1980. By 2002, the same carrier could carry more than half a

Table 1.1: SONET/SDH bit rates

SONET | SDH B (Mb/s) | Channels
0OC-1 51.84 672
0C-3 STM-1 155.52 2,016
0C-12 | STM-4 622.08 8,064

OC-48 | STM-16 2,488.32 32,256
0C-192 | STM-64 9,953.28 | 129,024
OC-768 | STM-256 | 39,813.12 | 516,096
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Table 1.2: Characteristics of commercial lightwave systems

System Year | A B L Voice

(um) | (Mb/s) | (km) | Channels
FT-3 1980 | 0.85 45 | <10 672
FT-3C 1983 | 0.85 90 | «15 1,344
FT-3X 1984 | 1.30 180 | <25 2,688
FT-G 1985 | 1.30 417 | <40 6,048

FI-G-1.7 | 1987 | 1.30 1,668 | <46 24,192
STM-16 | 1991 | 1.55 2,488 | <85 32,256
STM-64 | 1996 | 1.55 9,953 | <90 129,024
STM-256 | 2002 | 1.55 | 39813 [ <90 | 516,096

million telephone conversations simultaneously over a single fiber.

It is important to realize that TDM can be implemented in both the electrical and
optical domains. In the optical domain, it is used to combine multiple 10- or 40-Gb/s
channels to form an optical bit stream at bit rates exceeding 100 Gb/s. For example,
sixteen 10-Gb/s channels, or four 40-Gb/s channels, can be combined through opti-
cal TDM for producing bit streams at 160 Gb/s. Optical signal at such high bit rates
cannot be generated using an external modulator because of limitations imposed by
electronics. We discuss optical TDM in Section 8.6.

1.4.2 Frequency-Division Multiplexing

In the case of FDM, the channels are spaced apart in the frequency domain but can over-
lap in the time domain. Each channel is assigned a unique carrier frequency. Moreover,
carrier frequencies are spaced more than the channel bandwidth so that channel spectra
do not overlap, as seen Figure 1.11(b). FDM is suitable for both analog and digital
signals. It was first developed for radio waves in the beginning of the 20th century and
was later adopted by the television industry for broadcasting multiple video channels
over microwaves.

FDM can be easily implemented in the optical domain and is commonly referred to
as wavelength-division multiplexing (WDM). Each channel is assigned a unique carrier
frequency, and an optical source at the precise wavelength corresponding to that fre-
quency is employed within the optical transmitter. The transmitters and receivers used
for WDM systems become increasingly complex as the number of WDM channels in-
creases. Figure 1.12 shows the basic design of a WDM system schematically. Multiple
channels at distinct wavelengths are combined together using a multiplexer and then
launched within the same fiber link. At the receiver end, channels are separated using a
demultiplexer, typically an optical filter with transmission peaks exactly at the channel
wavelengths. Chapter 9 is devoted to WDM systems.

It is common to make all channels equally spaced so that channel spacing remains
constant. A guard band is left around each channel to minimize interchannel crosstalk.
Typically, channel spacing is close to 50 GHz for channels operating at 10 Gb/s. How-



1.4. Channel Multiplexing 19

A A
Tx ! ; Rx
)»2 ;‘2
Tx Rx
*
Optical *
fiber
e ]
A‘N }"N
Tx Rx
Multiptexer Demultiplexer

Figure 1.12: Schematic of a WDM lightwave system. Multiple channels, each operating at
a fixed assigned wavelength, are first combined using a multiplexer and then separated at the
receiver end using a demultiplexer.

ever, the exact value of channel spacing depends on a number of factors. In fact, WDM
systems are often classified as being coarse or dense depending on the channel spac-
ing used. For some applications, only a few channels need to be multiplexed, and
channel spacing can be made as large as 1 Tb/s to reduce the system cost. In con-
trast, dense WDM systems are designed to serve as the backbone of an optical network
and often multiplex more than a hundred channels to increase the system capacity.
The channel spacing in this case can be as small as 25 GHz for 10-Gb/s channels.
The ultimate capacity of a WDM fiber link depends on how closely channels can be
packed in the wavelength domain. The minimum channel spacing is limited by inter-
channel crosstalk. Typically, channel spacing Av,y, should exceed 2B at the bit rate B.
It is common to introduce a measure of the spectral efficiency of a WDM system as
1s = B/Ave,. Attempts are made to make 1), as large as possible.

As mentioned earlier, channel frequencies (or wavelengths) of WDM systems were
first standardized by the ITU on a 100-GHz grid in the frequency range of 186 to
196 THz (covering the C and L bands in the wavelength range 1,530-1,612 nm). For
this reason, channel spacing for most commercial WDM systems was set at 100 GHz.
This value leads to a spectral efficiency of only 0.1 (b/s)/Hz at a bit rate of 10 Gb/s.
More recently, ITU has specified WDM channels with a frequency spacing of 50 GHz.
The use of this channel spacing in combination with the bit rate of 40 Gb/s has the
potential of increasing the spectral efficiency to 0.8 (b/s)/Hz.

An example of how the WDM technique has impacted society is provided by the
transatlantic lightwave systems connecting North America to the European continent.
Table 1.3 lists the total capacity and other important characteristics of several transat-
lantic submarine cable systems. The first undersea fiber-optic cable (TAT-8) was a
second-generation system. It was installed in 1988 in the Atlantic Ocean for operation
at a bit rate of 280 Mb/s with a repeater spacing of up to 70 km. By 2001, several
WDM systems have been laid across the Atlantic Ocean with a combined capacity of
more than 10 Tb/s. The resulting increase in the number of voice channels lowered the
prices so much by 2003 that a North American could talk to anyone in Europe at a cost
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Table 1.3: Characteristics of transatlantic submarine systems

System Year | Capacity L Comments

(Gb/s) | (km)
TAT-8 1988 0.28 70 1.3 um, multimode lasers
TAT-9 1991 0.56 80 | 1.55 um, DFB lasers
TAT-10/11 1993 0.56 80 1.55 um, DFB lasers
TAT-12/13 1996 5.00 50 | 1.55 um, optical amplifiers
AC-1 1998 80.0 50 | 1.55 ym, WDM with amplifiers
TAT-14 2001 1,280 50 | 1.55 um, dense WDM
AC-2 2001 1,280 50 | 1.55 pm, dense WDM
360Atlantic-1 2001 1,920 50 1.55 um, dense WDM
Tycom 2001 2,560 50 { 1.55 pm, dense WDM
FLAG Atlantic-1 | 2001 4,800 50 1.55 pm, dense WDM

of 5 cents per minute or less! The same call would have cost in 1988 more than 50
times in inflation-adjusted dollars.

1.4.3 Code-Division Multiplexing

Although the TDM and WDM techniques are often employed in practice, both suffer
from some drawbacks. The use of TDM to form a single high-speed channel in the
optical domain shortens the bit slot to below 10 ps and forces one to use shorter and
shorter optical pulses that suffer from dispersive and nonlinear effects. This problem
can be solved using the WDM technique but only at the expense of an inefficient uti-
lization of the channel bandwidth. Some of these drawbacks can be overcome by using
a multiplexing scheme based on the spread-spectrum technique [90] and is well known
in the domain of wireless communications. This scheme is referred to as code-division
multiplexing (CDM) because each channel is coded in such a way that its spectrum
spreads over a much wider region than occupied by the original signal.

Although spectrum spreading may appear counterintuitive from a spectral point of
view, this is not the case because all users share the same spectrum, In fact, CDM
is used extensively in the microwave domain for cell phones as it provides the most
flexibility in a multiuser environment. The term code-division multiple access is often
employed to emphasize the asynchronous and random nature of multiuser connections.
Conceptually, the difference between the WDM, TDM, and CDM can be understood as
follows. The WDM and TDM techniques partition, respectively, the channel bandwidth
or the time slots among users. In contrast, all users share the entire bandwidth and all
time slots in a random fashion in the case of CDM.

The new components needed for CDM systems are the encoders and decoders lo-
cated at the transmitter and receiver ends, respectively [91]-[94]. The encoder spreads
the signal spectrum over a much wider region than the minimum bandwidth necessary
for transmission. Spectral spreading is accomplished by means of a unique code that
is independent of the signal itself. The decoder uses the same code for compressing
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Figure 1.13: Schematic illustration of a coding scheme for CDM systems. In this example, a
signature sequence in the form of a 7-chip code is employed.

the signal spectrum and recovering the data. The spectrum-spreading code is called a
signature sequence. An advantage of the spread-spectrum method is that it is difficult
to jam or intercept the signal because of its coded nature. The CDM technique is thus
especially useful when security of the data is of concern.

Figure 1.13 shows an example of how a bit stream is constructed for optical CDM
systems. Each bit of data is coded using a signature sequence consisting of a large
number, say, M, of shorter bits, called time “chips” borrowing the terminology used
for wireless (M = 7 in the example shown). The effective bit rate (or the chip rate)
increases by the factor of M because of coding. The signal spectrum is spread over
a much wider region related to the bandwidth of individual chips. For example, the
signal spectrum becomes broader by a factor of 64 if M = 64. Of course, the same
spectral bandwidth is used by many users distinguished on the basis of different signa-
ture sequences assigned to them. The recovery of individual signals sharing the same
bandwidth requires that the signature sequences come from a family of the orthogonal
codes. The orthogonal nature of such codes ensures that each signal can be decoded ac-
curately at the receiver end. The receiver recovers messages by decoding the received
signal using the same signature sequence that was employed at the transmitter.

Problems

1.1 Calculate the carrier frequency for optical communication systems operating at
0.88, 1.3, and 1.55 pm. What is the photon energy (in eV) in each case?

1.2 Calculate the transmission distance over which the optical power will attenuate
by a factor of 10 for three fibers with losses of 0.2, 20, and 2,000 dB/km. As-
suming that the optical power decreases as exp(—~aL), calculate ¢ (in cm™!) for
the three fibers.

1.3 Assume that a digital communication system can be operated at a bit rate of up
to 1% of the carrier frequency. How many audio channels at 64 kb/s can be
transmitted over a microwave carrier at 5 GHz and an optical carrier at 1.55 ym?
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A 1-hour lecture script is stored on the computer hard disk in the ASCII format.
Estimate the total number of bits, assuming a delivery rate of 200 words per
minute and on average 5 letters per word. How long will it take to transmit the
script at a bit rate of 1 Gb/s?

A 1.55-um digital communication system operating at 1 Gb/s receives an aver-
age power of —40 dBm at the detector. Assuming that 1 and O bits are equally
likely to occur, calculate the number of photons received within each 1 bit.

An analog voice signal that can vary over the range 0 to 50 mA is digitized by
sampling it at 8 kHz. The first four sample values are 10, 21, 36, and 16 mA.
Write the corresponding digital signal (a string of 1 and O bits) by using a 4-bit
representation for each sample.

Describe the technique of time-division multiplexing. If 16 channels, each oper-
ating at 2.5 Gb/s, need to be multiplexed using this technique, how short should
each optical pulse be?

What is meant by wavelength-division multiplexing? If 20 channels, each oper-
ating at 10 Gb/s, are multiplexed using this technique with a spectral efficiency
of 0.4 (b/s)/Hz, what is the total bandwidth of the signal?

References

(1

(2]
(31
(4]
[5]
[6]
{7
(8]
(91

(10]

[11]
{12}
[13]

(14]
[15]
[16]
(171
[18]

A. A. Huurdeman, The Worldwide History of Telecommunications, Wiley, New York,
2003, Chap. 21.

T. H. Maiman, Nature 187, 493 (1960).

W. K. Pratt, Laser Communication Systems, Wiley, New York, 1969.

S. E. Miller, Sci. Am. 214 (1), 19 (1966).

A. C. S. van Heel, Nature 173, 39 (1954).

H. H. Hopkins and N. S. Kapany, Nature 173, 39 (1954).

B. O’Brian, U.S. Patent 2,825,260 (1958).

B. I. Hirschowitz, U.S. Patent 3,010,357 (1961).

N. S. Kapany, Fiber Optics: Principles and Applications, Academic Press, New York,
1967.

K. C. Kao and G. A. Hockham, Proc. IEE 113, 1151 (1966), A. Werts, Onde Electr. 45,
967 (1966).

FE. P. Kapron, D. B. Keck, and R. D. Maurer, Appl. Phys. Lett. 17, 423 (1970).

{. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, Appl. Phys. Lett. 17, 109 (1970).

A. E. Willner, Ed., IEEE J. Sel. Topics Quantum Electron. 6, 827 (2000). Several historical
articles in this millennium issue cover the development of lasers and optical fibers. See,

for example, the articles by Z. Alferov, W. A. Gambling, T. Izawa, D. Keck, H. Kogelnik,
and R. H. Rediker.

R. J. Sanferrare, AT&T Tech. J 66, 95 (1987).

C. Fan and L. Clark, Opt. Photon. News 6 (2), 26 (1995).

I. Jacobs, Opt. Photon. News 6 (2), 19 (1995).

H. Kogelnik, IEEE J. Sel. Topics Quantum Electron. 6, 1279 (2000).

D. Gloge, A. Albanese, C. A. Burrus, E. L. Chinnock, J. A. Copeland, A. G. Dentai, T. P.
Lee, T. Li, and K. Ogawa, Bell Syst. Tech. J. §9, 1365 (1980).



References 23

{19}
[20]
f21]

(22]
{23}

{24]
[25]

[26]
[27]
(28]
f29]

(30]

31]
132]
(33]

[34]
[35]

{36}
[37]
(38]

[39]
140]
[41]
{42]
(43]
[44]
[45]
[46]

[47]
[48]

J. 1. Yamada, S. Machida, and T. Kimura, Electron. Lett. 17,479 (1981).
T. Miya, Y. Terunuma, T. Hosaka, and T. Miyoshita, Electron. Lett. 15, 106 (1979).
A. H. Gnauck, B. L. Kasper, R. A. Linke, R. W. Dawson, T. L. Koch, T. J. Bridges, E.

G. Burkhardt, R. T. Yen, D. P. Wilt, J. C. Campbell, K. C. Nelson, and L. G. Cohen, J.
Lightwave Technol. 3, 1032 (1985).

K. Nakagawa, Trans. IECE Jpn. Pt. J 18B, 713 (1995).

R. A.Linke and A. H. Gnauck, J. Lightwave Technol. 6, 1750 (1988); P. S. Henry, Coherent
Lightwave Communications, IEEE Press, New York, 1990.

N. S. Bergano, J. Aspell, C. R. Davidson, P. R. Trischitta, B. M. Nyman, and F. W. Kerfoot,
Electron. Lert. 27, 1889 (1991).

T. Otani, K. Goto, H. Abe, M. Tanaka, H. Yamamoto, and H. Wakabayashi, Electron. Lett.
31, 380 (1995).

T. Welsh, R. Smith, H. Azami, and R. Chrisner, JEEE Commun. Mag. 34 (2), 30 (1996).
W. C. Marra and J. Schesser, IEEE Commun. Mag. 34 (2), 50 (1996).

N. S. Bergano and H. Kidorf, Opt. Photon. News 12 (3), 32 (2001).

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, and
T. Ono, Paper PD24, Proc. Optical Fiber Commun. Conf., Optical Society of America,
Washington, DC, 2001.

J.-X. Cai, D. G. Foursa, C. R. Davidson, Y. Cai, G. Domagala, H. Li, L. Liu, W. W.
Patterson, A. N. Pilipetskii, M. Nissov, N. Bergano, Paper PD22, Proc. Optical Fiber
Commun. Conf., Optical Society of America, Washington, DC, 2003.

L. F. Mollenauer and K. Smith, Opt. Lert. 13, 675 (1988).

S. Namiki and Y. Emori, IEEE J. Sel. Topics Quantum Electron. 7, 3 (2001).

K. Rottwitt and A. J. Stentz, in Optical Fiber Telecommunications, Vol. 4A, 1. Kaminow
and T. Li, Eds., Academic Press, San Diego, 2002, Chap. 5.

M. N. Islam, Ed., Raman Amplifiers for Telecommunications, Springer, New York, 2003.
C. Headly III and G. P. Agrawal, Eds., Raman Amplification in Optical Fiber Communica-
tion System, Academic Press, San Diego, 2005.

G. A. Thomas, B. L. Shraiman, P. F. Glodis, and M. J. Stephan, Nature 404, 262 (2000).
J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, Science 282, 1476 (1998).

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305
(1999).

T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, Opt. Lett. 25, 206
(2000).

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, J. D. Joannopoulos, Science 289, 415 (2000).
P. S. J. Russell, Science 299, 358 (2003).

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D.
C. Allan, Science 285, 1537 (1999).

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, Electron. Lert. 37, 1399
(2001).

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. E. Borrelli, D.
C. Allan, and K. W. Koch, Nature 424, 657 (2003).

B. Zsigri, C. Peucheret, M. D., Nielsen, and P. Jeppesen, Electron. Lett. 39, 796 (2003).
K. Saitoh and M. Koshiba, IEEE Photon. Technol. Lett. 15, 1384 (2003).

K. I. Suzuki, S. Kawai, and S. Iwatsuki, Electron. Letr. 32, 2173 (1996).

A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, and E. Bur-
rows, IEEE Photon. Technol. Lett. 15, 467 (2003).



24

{49]

[50]

{511

[52]

{531

[54]

[55]

[56]

157
(58]

[59]
[60]
(61]
[62]

(63]
(64]

{65]
[66]

[67]
[68]
[69]

{701
(71]

(72]

[73]
(741

[75]

Chapter 1. Introduction

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Kung, D. N. Maywar, A. Gurevich, and T. H.
Wood, [EEE Photon. Technol. Lett. 15, 470 (2003).

T. Otani, M. Hayashi, M. Daikoku, K. Ogaki, Y. Nagao, K. Nishijima, and M. Suzuki, J.
Lightwave Technol. 21, 947 (2003).

G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy,
IEEE Photon. Technol. Lett. 15, 996 (2003).

C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E. D. Schmidt,
B. Lankl, and W. Rosenkran, IEEE Photon. Technol. Lett. 15, 1303 (2003).

B. Zhu, C. R. Doerr, P. Gaarde, L. E. Nelson, S. Stulz, L. Stulz, L. Gruner-Nielsen, Elec-
tron. Lert. 39, 1528 (2003).

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Kung, D. N. Maywar, and T. H. Wood, [EEE
Photon. Technol. Lett. 15, 1779 (2003).

S. Kawanishi, H. Takara, K. Uchiyama, 1. Shake, and K. Mori, Electron. Lert. 35, 826
(1999).

R. Ludwig, U. Feiste, S. Diez, C. Schubert, C. Schmidt, H. J. Ehrke, and H. G. Weber,
Electron. Lett. 36, 1405 (2000).

M. Daikoku, T. Otani, and M. Suzuki, IEEE Photon. Technol. Lett. 15, 1165 (2003).

A. H. Gnauck, G. Raybon, P. G. Bernasconi, J. Leuthold, C. R. Doerr, and L. G. Stulz,
IEEE Photon. Technol. Lett. 15, 1618 (2003).

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).

L. F. Mollenauer, Opt. Photon. News 11 (4), 15 (1994).

L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L. Griiner-
Nielsen, and T. Veng, Opt. Lett. 25, 704 (2000).

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, IEEE J. Sel. Topics
Quantum Electron. 6, 363 (2000).

M. Nakazawa, IEEE J. Sel. Topics Quantum Electron. 6, 1332 (2000).

L. FE. Mollenauer, A. Grant, X. Liu, X. Wei, C. J. Xie, and 1. Kang, Opt. Lett. 28, 2043
(2003).

G. E. Keiser, Optical Fiber Communications, 3rd ed., McGraw-Hill, New York, 2000.

B. Ramamurthy, Design of Optical WDM Networks, Kluwer Academic, Norwell, MA,
2000.

G. P. Agrawal, Applications of Nonlinear Fiber Optics, Academic Press, San Diego, CA,
2001.

J. P. Laude, DWDM Fundamentals, Components and Applications Artech House, Nor-
wood, MA, 2002.

R. Ramaswami and K. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed.,
Morgan Kaufmann Publishers, San Francisco, 2002.

G. P. Agrwal, Fiber-Optic Communication Systems, 3rd ed., Wiley, New York, 2002.

1. P. Kaminow and T. Li, Eds., Optical Fiber Telecommunications IV, Academic Press, San
Diego, CA, 2002.

J. Chesnoy, Undersea Fiber Communication Systems, Academic Press, San Diego, CA,
2002.

R. L. Freeman, Fiber-Optic Systems for Telecommunications, Wiley, New York, 2002.

M. Kolimbiris, Fiber Optics Communications, Prentice Hall PTR, Upper Saddle River, NJ,
2002.

S. C. Gupta, Optical Fiber Communication and Its Applications, Prentice Hall India, New
Delhi, 2004.



References 25

{761

(77
(78]

1791
[80]

[81]
(82]
[83]
[84]
{85]
(86]
[87]
[88]
(891
[90]
[91]

[92]
(931

[94]

A. K. Dutta and N. K. Dutta, Eds., WDM TEchnologies: Optical Networks, Academic
Press, San Diego, CA, 2004.
G. P. Agrwal, Lightwave Technology: Components and Devices, Wiley, New York, 2004.

J. Zheng and H. T. Mouftah, Optical WDM Networks: Concepts and Design Principles,
Wiley, New York, 2004.

A. Stavdas, Ultra-Wideabnd WDM Networks, Wiley, New York, 2004.

M. Cvijetic, Optical Transmission Systems Engineering, Artech House, Norwood, MA,
2004.

S. G. Lambert and W. L. Casey, Laser Communications in Space, Artec House, Norwood,
MA, 1995.

M. Schwartz, Information Transmission, Modulation, and Noise, 4th ed., McGraw-Hill,
New York, 1990.

L. W. Couch I, Modern Communication Systems: Principles and Applications, 4th ed.,
Prentice Hall, Upper Saddle River, NJ, 1995.

B. P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed., Oxford Univer-
sity Press, New York, 1998.

C. E. Shannon, Proc. IRE 37, 10 (1949); A. J. Jerri, Proc. IEEE 65, 1565 (1977).

H. Nyquist, Trans. AIEE 47, 617 (1928).

R. Ballart and Y.-C. Ching, IEEE Commun. Mag. 27 (3), 8 (1989).

T. Miki, Jr. and C. A. Siller, Eds., IEEE Commun. Mag. 28 (8), 1 (1990).

S. V. Kartalopoulos, Understanding SONET/SDH and ATM, IEEE Press, Piscataway, NJ,
1999.

A. ]. Viterbi, CDMA: Principles of Spread Spectrum Communication, Reading, MA:
Addison-Wesley, Reading, MA, 1995.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, J. Lightwave Technol. 19, 1352
(2001).

X. Wang and K. T. Chan, IEEE J. Quantum Electron. 39, 83 (2003).

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, S. J. B. Yoo,
IEEE Photon. Technol. Lett. 16, 2186 (2004).

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K.-I. Ki-
tayama, IEEE Photon. Technol. Lett. 16, 2192 (2004).



Chapter 2

Optical Signal Generation

As discussed in the preceding chapter, the first step in any lightwave system is to gen-
erate a digital bit stream at the optical transmitter in the form of a coded train of optical
pulses such that it contains all the information available in the corresponding electrical
signal. It turns out that the conversion of a bit stream from electrical to optical domain
can be carried out in several different formats. The choice of an appropriate modula-
tion format depends on a large number of factors and can be critical for designing and
operating the system successfully. The objective of this chapter is to introduce vartous
modulation formats and discuss how they can be used in practice. Section 2.1 describes
the three major formats employed to modulate the optical carrier; they are based on
whether the information is coded using the amplitude, phase, or frequency of the op-
tical carrier. Section 2.2 deals with the two principal digital data formats known as
return-to-zero and nonreturn-to-zero formats, depending on whether the optical pulse
representing 1 bit occupies a fraction of or the entire bit slot. Section 2.3 then focuses
on the techniques used to generate an optical bit stream within the transmitter. The
discussion includes several new modulation formats, borrowed from the field of mi-
crowaves, whose use helps to improve the performance of modern lightwave systems.
Section 2.4 is devoted to several design issues important for optical transmitters such
as coupling losses, optical feedback, stability and tuning of the carrier wavelength, and
long-term reliability.

2.1 Modulation Formats

Electrical-to-optical conversion of a bit stream requires modulation of an optical carrier.
An important issue is related to the choice of the physical quantity that is modulated to
encode the data on the optical carrier. The optical carrier before modulation is in the
form of a continuous wave (CW) and its electric field can be written as

E(1) = éAgcos( @yt — o) = Re[@Age™® exp(—iawgr)], (2.1.1)

where Re denotes the real part, E is the electric field vector, € is a unit vector represent-
ing the state of the polarization of the optical field, A is its amplitude, @y is its carrier

26



2.1. Modulation Formats 27

prusssn

Electrical
binary data

Optical signal

ASK

JIVVIIUIm Y, -

Figure 2.1: Modulated optical carrier in the case of the ASK, PSK, and FSK formats for a
specific bit pattern shown on the top.

frequency, and ¢y is its phase. The spatial dependence of E is suppressed for simplicity
of notation; it follows the shape of the fundamental mode of the fiber when single-
mode fibers are used as a communication channel. In the “phasor” notation adopted in
this text, an optical carrier is described by its frequency @y and its complex amplitude
A = Age'®. The choice of exp(—iayt) in place of exp(iapt) is arbitrary. In many en-
gineering textbooks, the factor exp(jayr) is employed; the substitution i — — j can be
used for conversion.

Similar to an electrical communication system, one may choose to modulate the
amplitude Ao, the frequency ay, or the phase ¢ of the optical carrier [1]-[4]. In the
case of an analog signal, the three modulation choices are known as amplitude mod-
ulation (AM), frequency modulation (FM), and phase modulation (PM). In the digital
case, they are called amplitude-shift keying (ASK), frequency-shift keying (FSK), and
phase-shift keying (PSK), depending on whether the amplitude, frequency, or phase of
the carrier wave is shifted between the two levels of a binary digital signal. Figure 2.1
shows schematically the time dependence of the modulated optical carrier for the three
modulation formats using a specific bit pattern.
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In principle, binary electrical data can also be encoded by changing the state of
polarization of the optical carrier governed by the unit vector € in Eq. (2.1.1). In such a
polarization-shift keying (PoSK) technique, 0 and 1 bits are represented by two orthog-
onally polarized unit vectors, & and &, such that & - €; = 0. Although this modulation
format can be easily adopted for space and satellite communications, it is not yet practi-
cal for fiber-optic lightwave systems because the state of polarization of an optical field
is not maintained in optical fibers, unless especially designed polarization-maintaining
fibers are employed. We ignore the vector nature of the optical field in this chapter and
employ a scalar notation in the following discussion.

2.1.1 ASK Format

Since only the amplitude A is modulated in Eq. (2.1.1) in the case of ASK, the electric
field associated with the modulated carrier can be written as

E(r) = Re[Ao(r)e™® exp(—iapt)), (2.1.2)

where Ap(t) changes with time in the same fashion as the electrical bit stream. In the
digital case,

Ao(t) = /R Y bufp(t —nTp), (2.1.3)

where P is the peak power, f,(t) represents the optical pulse shape, T, = 1/B is the
bit slot at the bit rate B, and the random variable b, takes values 0 and 1, depending
on whether the sth bit in the optical signal corresponds to a 0 or 1. In most practical
situations, Ag is set to zero during transmission of 0 bits. The ASK format is also
known as the on—off keying. Most digital lightwave systems employ ASK because its
use simplifies the design of optical transmitters and receivers considerably.

The implementation of on—off keying in an optical transmitter requires that the in-
tensity (or the power) of the optical carrier is turned on and off in response to an elec-
trical bit stream. The simplest approach makes use of a direct-modulation technique in
which the electrical signal is applied directly to the driving circuit of a semiconductor
laser or a light-emitting diode. Typically, the laser is biased slightly below threshold so
that it emits no light (except for some spontaneous emission). During each 1 bit, the
laser goes beyond its threshold and emits a pulse whose duration is nearly equal to that
of the electrical pulse. Such an approach works as long as the laser can be turned on
and off as fast as the bit rate of the signal to be transmitted.

In practice, direct modulation suffers from a “chirping” problem (see Section 5.3.3
of LT1). The reason is related to phase changes that invariably occur when laser power
is changed by modulating the current applied to a semiconductor laser. Physically, one
must inject additional electrons and holes into the active region of the laser. This in-
crease in the charge-carrier density changes the refractive index of the active region
slightly and modifies the carrier phase ¢y in Eq. (2.1.2) in a time-dependent fashion.
Although such unintentional phase changes are not seen by a photodetector (as it re-
sponds only to optical power), they chirp the optical pulse and broaden its spectrum by
adding new frequency components. Such spectral broadening is undesirable because it
can lead to temporal broadening of optical pulses as they propagate through an optical
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fiber. For this reason, direct modulation of the laser output becomes impractical as the
bit rate of a lightwave system is increased beyond 2.5 Gb/s. The effects of frequency
chirp on pulse broadening are considered in Section 3.2 where we discuss the impact
of fiber dispersion.

The chirping problem can be solved to a large extent by operating a distributed-
feedback (DFB) semiconductor laser continuously at a constant current and modulat-
ing its CW output through an external modulator. Figure 2.2 shows the basic idea
schematically. As discussed in Chapter 6 of LT1, two types of external modulators
are employed for lightwave systems. Figure 2.3 shows an example of each kind. The
modulator shown in part (a) makes use of the electro-optic effect through which the re-
fractive index of a suitable material (LiNbO3 in practice) can be changed by applying
a voltage across it. Changes in the refractive index modify the phase of an optical field
propagating inside that material. Phase changes are converted into amplitude modula-
tion using a Mach—-Zehnder (MZ) interferometer made of two LiNbO3; waveguides as
shown in Figure 2.3(a).

LiNbO3; modulators are often used for generating optical bit streams. They can
easily provide an on—off contrast of more than 20 between 1 and O bits and can be
modulated at speeds of up to 75 GHz [5]. The driving voltage is typically 5 V but can
be reduced to near 3 V with a suitable design. Materials other than LiNbO; can also
be employed. For example, polymeric electro-optic modulators can be designed such
that they require less than 2 V for shifting the phase of a 1.55-um signal by @ in one
of the arms of the MZ interferometer [6]. Since all external modulators have some
insertion loss, the transmitted power is invariably affected when an external modulator
is employed.

Insertion losses can be reduced significantly (to below 1 dB) by using an electro-
absorption modulator shown schematically in Figure 2.3(b). The reason behind this
reduction is that an electroabsorption modulator is made with the same material used
for semiconductor lasers, and thus it can be integrated monolithically with the optical
source. An added advantage is that electroabsorption modulators do not require an
optical interferometer because they can change optical power directly in response to
an applied voltage (see Section 6.4 of LT1). Optical transmitters with an integrated
electroabsorption modulator, capable of modulating at a bit rate of 10 Gb/s, were avail-
able commercially by 1999 and are used routinely for lightwave systems. By 2001,
such integrated modulators were able to operate at bit rates of 40 Gb/s.
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Figure 2.3: Two kinds of external modulators: (a) a LINbO3 modulator in the Mach-Zehnder
configuration; (b) an electroabsorption modulator with multiquantum-well (MQW) absorbing
layers.

2.1.2 PSK Format

In the case of PSK format, the optical bit stream is generated by modulating the phase
¢o in Eq. (2.1.1), while the amplitude Ao and the frequency @y of the optical carrier are
kept constant. The electric field of the optical bit stream can now be written as

E(t) = Re{Aq explido(r) — iant}, (2.14)

where the phase ¢o(r) changes with time in the same fashion as the electrical bit stream.
For binary PSK, the phase ¢y, takes two values, commonly chosen to be 0 and 7, and
it can be written in the form

¢o(1) =Y bamtfp(t —nTy), 2.1.5)

where f,(t) represents the temporal profile and the random variable b, takes values 0
and 1, depending on whether the nth bit in the optical signal corresponds to a 0 or 1.
Figure 2.1 shows the binary PSK format schematically for a specific bit pattern. An
interesting aspect of the PSK format is that the optical power remains constant during
all bits, and the signal appears to have a CW form.

Direct detection cannot be used for lightwave systems employing the PSK format as
all phase information is lost when such a bit stream is converted into electrical current
using a photodetector. The only solution is to employ a homodyne or a heterodyne
detection technique in which the optical bit stream is combined coherently with the CW
output of a local oscillator (a DFB laser) before the signal is detected. The interference
between the two optical fields creates a time-dependent electric current that contains all
the information transmitted through PSK. This can be seen mathematically by writing
the total field incident on the photodetector as (in the complex notation)

E4(t) = Agexplido(t) — i) + AL exp(i¢y — ioopt), (2.1.6)
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where the subscript L denotes the corresponding quantity for the local oscillator. The
current generated at the photodetector is given by I; = Ry|E,(t)|?, where R, is the
responsivity of the photodetector. It is easy to see that I; varies with time as

Iy(r) = Ry(A] + A2) + 2RzA0AL cos[(a — @)t + @o (1) — 0r]. (2.1.7)

Since I;(t) changes from bit to bit as ¢o(¢) changes, one can reconstruct the original
bit stream from this electrical signal.

The implementation of PSK requires an external modulator capable of changing the
optical phase in response to an applied voltage. A LiNbO3; modulator can be used for
this purpose. In fact, the design of such a phase modulator is much simpler than that of
an amplitude modulator as a MZ interferometer is no longer needed. Semiconductors
can also be used to make phase modulators if they exhibit the electro-optic effect.
However, the PSK format is rarely used in practice for lightwave systems because it
requires the phase of the optical carrier to remain stable so that phase information
can be extracted at the receiver without ambiguity. This requirement puts a stringent
condition on the tolerable line widths of the DFB lasers used as an optical source at the
transmitter and as a local oscillator at the receiver.

A variant of the PSK format, known as differential PSK or DPSK, is much more
practical for lightwave systems. In the case of DPSK, information is coded by using the
phase difference between two neighboring bits. For instance, if ¢ represents the phase
of the kth bit, the phase difference A¢ = ¢y — ¢« is changed by 0 or &, depending on
whether the kth bit is a 0 or 1. The DPSK format does not suffer from the phase-stability
problem because information coded in the phase difference between two neighboring
bits can be recovered successfully as long as the carrier phase remains stable over a
duration of two bits. This condition is easily satisfied in practice at bit rates above
1 Gb/s because the line width of a DFB laser is typically below 10 MHz, indicating
that the carrier phase does not change significantly over a duration of 1 ns or so.

A modulation format that can be useful for enhancing the spectral efficiency of
lightwave systems is known as quaternary PSK (QPSK). In this format, the phase
modulator takes two bits at a time and produces one of the four possible phases of
the carrier, typically chosen to be 0, 71/2, &, and 37 /2 for bit combinations 00, 01, 11,
and 10, respectively. Such a signal has half the bandwidth compared with that of the
binary PSK as its bit rate is lower by a factor of 2. Of course, the QPSK format suffers
from the same phase-stability issue as the binary PSK. This problem can be avoided by
adopting a differential QPSK (DQPSK) format, as has been done in some recent WDM
experiments [7].

2.1.3 FSK Format

In the case of FSK modulation, information is coded on the optical carrier by shifting
the carrier frequency @y itself [see Eq. (2.1.1)]. For a binary digital signal, ay takes
two values, say, @y — A® and @y + A®@, depending on whether a O or 1 bit is being
transmitted. The shift Af = Aw/2x is called the frequency deviation. The quantity
2Af is sometimes called tone spacing, as it represents frequency separation between 0
and 1 bits. Figure 2.1 shows schematically how the electric field varies in the case of
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FSK format. Mathematically, it can be written as
E(t) = Re{Agexpligp — i{mp = Aw)t]}, (2.1.8)

where 4 and — signs correspond to 1 and O bits, respectively. Noting that the argu-
ment of the exponential function can be written as ay? + (¢o = Awt), the FSK format
can also be viewed as a special kind of PSK modulation for which the carrier phase
increases or decreases linearly over the bit duration. Similar to the PSK case, the mod-
ulated carrier has constant power, and the information encoded within the bit stream
cannot be recovered through direct detection: One must employ heterodyne detection
for decoding an FSK-coded optical bit stream.

Implementation of the FSK format requires modulators capable of shifting the fre-
quency of the incident optical signal. Electro-optic materials such as LiNbO3 nor-
mally produce a phase shift proportional to the applied voltage. They can be used for
FSK by applying a triangular voltage pulse (sawtooth-like) since a linear phase change
corresponds to a frequency shift. An alternative technique makes use of Bragg scat-
tering from acoustic waves inside an acousto-optic modulator. Such modulators can
be fabricated in a compact form by exciting surface acoustic waves within a LiNbO3
waveguide. The device structure is similar to that used for acousto-optic filters (see
Section 8.1.4 in LT1). The maximum frequency shift is typically limited to below
1 GHz for such modulators.

The simplest method for producing an FSK signal makes use of the direct modula-
tion capability of semiconductor lasers (see Section 5.4.2 of LT1). As discussed earlier,
a change in the operating current of a semiconductor laser leads to changes in both the
amplitude and frequency of emitted light. In the case of ASK, the frequency shift,
or chirping of the emitted optical pulse, is undesirable. But the same frequency shift
can be used to advantage for the purpose of FSK. Typical values of frequency shifts
are ~1 GHz/mA. Therefore, only a small change in the operating current (~1 mA) is
required for producing the FSK signal. Such current changes are small enough that the
amplitude does not change much from bit to bit. In spite of this simple method, the
FSK format is rarely used for lightwave systems because of the complexities involved
in recovering the frequency-coded information.

2.2 Digital Data Formats

In the case of the ASK format, a digital bit stream uses one optical pulse in each bit slot
representing 1 (also called a mark). There still remains open the following question:
how wide this pulse should be relative to the bit duration. The pulse can occupy the
entire bit slot or only a part of it, leading to two main choices for the format of optical
bit streams [1}-[3]. These two choices are shown in Figure 2.4 and are known as
the return-to-zero (RZ) and nonreturn-to-zero (NRZ) formats. We discuss the relative
merits of the RZ and NRZ formats in this section. Variants of RZ as well as several
other formats such as DPSK are considered in Section 2.3.
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Figure 2.4: Optical bit stream 010110. .. coded using (a) return-to-zero (RZ) and (b) nonreturn-
to-zero (NRZ) formats.

2.2.1 Nonreturn-to-Zero Format

In the NRZ format, the optical pulse representing each 1 bit occupies the entire bit slot.
The natural question is what happens at the bit boundary when two (or more) 1 bits
are next to each other. As seen in Figure 2.4(b), the optical field does not drop to zero
between two or more successive 1 bits. The main consequence of this choice is that
pulses in an NRZ bit stream do not have the same width. Rather, pulse width varies
depending on the bit pattern. Each isolated 1 is represented by a rectangular pulse
of width T, where T = 1/B is the bit duration at the bit rate B, but the pulse width
doubles for a pair of 1 bits surrounded by 0 bits. If ten 1 bits occur in succession, a
single optical pulse of width 107} is used to represent all 10 bits. An optical receiver
can still function if it first extracts an electrical clock (a sinusoidal signal at the bit rate
B) from the bit stream and then uses it to sample the signal during each bit.

The main advantage of the NRZ format is that the bandwidth associated with this
format is smaller than that of the RZ format by about a factor of 2. The reduced band-
width of an NRZ signal can be understood qualitatively from Figure 2.4(b) by noting
that on—off transitions occur much less often for an NRZ signal. This is the reason why
the NRZ format is used extensively in the case of microwave and coaxial-cable systems
for which the bandwidth should be economized as much as possible. However, the use
of NRZ format for lightwave systems is not always the right choice because of the
dispersive and nonlinear effects that can distort optical pulses during transmission and
spread them outside their assigned bit slot. Since the pulse occupies the entire bit slot,
the NRZ format cannot tolerate even a relatively small amount of pulse broadening and
is quite vulnerable to intersymbol crosstalk. Moreover, a long sequence of 1 or O bits
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contains no information about the bit duration and makes it difficult to extract the clock
electronically with a high accuracy. In spite of these difficulties, the NRZ format is still
often used for lightwave systems, especially at low bit rates. The use of NRZ format
becomes questionable at bit rates higher than 10 Gb/s.

2.2.2 Return-to-Zero Format

In the RZ format, each optical pulse representing 1 bit is chosen to be shorter than
the bit slot, and its amplitude returns to zero before the bit duration is over, as seen in
Figure 2.4(a). Thus, all pulses are identical in an RZ bit stream at the transmitter end,
before they are launched into the fiber, but the spacing among them depends on the bit
pattern. For example, pulses are spaced apart by the bit duration 7;, when two or more
1 bits occur in succession, but they become separated further and further apart as the
number of 0 bits between two 1 bits increases.

Although the RZ format is essential for optical TDM and soliton-related applica-
tions, its use for lightwave systems was not pursued seriously until after it was found
that the RZ format may help in improving the performance of high-capacity lightwave
systems [9]-[11]. An important issue from the design standpoint is how wide the op-
tical pulse should be compared to the bit slot. The ratio T,/7,,, where T, is the pulse
width, is referred to as the duty cycle of an RZ bit stream. It is common to use a 50%
duty cycle so that the pulse occupies one half of the bit slot. However, more often than
not, duty cycle is just another design parameter for RZ systems that can be tailored to
help meet the design goals. For example, a duty cycle of 30% or smaller is often used
for dispersion-managed soliton systems (see Section 8.3) in which pulses should not
be too close to each other to avoid any nonlinear interaction.

In an interesting variant of the RZ format, known as the chirped RZ (CRZ) format,
optical pulses in each bit slot are chirped suitably before they are launched into the
fiber link. As discussed in Chapter 3, pulses can be chirped by simply passing them
through an optical fiber of appropriate length. Another RZ-related data format that is
well known in the field of microwave communications and is attracting attention for
lightwave systems is known as the carrier-suppressed RZ (CSRZ) format [12]-[16].
Its main advantage is that it has a smaller signal bandwidth than the conventional RZ
format. Several other variations of the RZ format exist. We discuss such formats in
Section 2.3 after introducing the concept of power spectral density whose knowledge
provides an estimate of the signal bandwidth associated with an optical bit stream.

2.2.3 Power Spectral Density
To find the power spectrum of an optical bit stream, we begin with the electric field,

E(r) = Re[A(t)exp(—iant)], where A(7) is the complex amplitude of the modulated
carrier. In the case of the ASK format, A(z) can be written as

A= L onty1 =) = /b At —')dt 2.2.1)



2.2. Digital Data Formats 35

where b, is a random number taking values O or 1, A,(r) represents the pulse shape,
and we have introduced b(¢) as

b(r) =Y b6 (t —nTp), (22.2)

where &(t) represents the delta function defined to be zero for all values of ¢ # 0 and
normalized such that [*_&(z)dt = 1. Physically, one can interpret b(t) as the impulse
response of a filter.

If we assume that A(r) represents a stationary stochastic process, its power spectral
density S4(®) can be found from the Wiener-Khintchine theorem using [8]

Sa(@) = [ " L (f)explir) dt, (2.2.3)

where T'a(7) = (A*(t)A(¢ + 7)) is the autocorrelation function of A(z) and the angle
brackets denote ensemble averaging. It follows from Eqgs. (2.2.1) through (2.2.3) that

Sa(@) = |A,(0)*Sp(0), (2.24)

where the power spectral density S,(®) is defined similar to Eq. (2.2.3) and 4,(®) is
the Fourier transform of the pulse amplitude A, (¢) defined as

Ay(w) = / _Ay(t)explion)dr. (2.2.5)

To find S, (®), we first calculate the autocorrelation function of b(¢) using I'p(7) =
(b(1)b(t + 1)). If we use b(z) from Eq. (2.2.2), we obtain

Tp(7) =Y Y (bubi)8(r — kTy)8(t + T — nlp). (2.2.6)
n ok

If we replace the ensemble average with a time average over the entire bit stream and
make the substitution n — k = m, Eq. (2.2.6) can be written as [3]

Fb(’l') rma(T~me), 2.7

_Tbm

where the correlation coefficient r, is defined as
.1
P = ]313; ¥ ;bnb,,+m. (2.2.8)

Taking the Fourier transform of Eq. (2.2.7) and substituting that in Eq. (2.2.4), we
obtain the following expression for the power spectral density of an optical bit stream:

Sa(o) = IAP(CO)|2Tibmgmrmexp(z’mwa). (2.2.9)

The correlation coefficients can be easily calculated by noting that 1 and O bits are
equally likely to occur in any realistic bit stream. It is easy to show that when b, takes
values 1 or 0 with equal probabilities,

ro=1/2, rm=1/4 (m#0). (2.2.10)
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Using these values in Eq. (2.2.11), we obtain

Sa(w) = % (1 + i exp(im(nT;,)) . (2.2.11)

If we use the well-known identity {3]

Y explinaTy) = = Z 6< 2”") (22.12)

n=—o0 n=—c0 Tb

the power spectral density can be written as

Sa(@) = lﬁ%»l Tbmi 6( 2”:”)]. (2.2.13)

=—00

The spectrum consists of a continuous part and a discrete part resulting from the sum
over delta functions in Eq. (2.2.13).

We now apply Eq. (2.2.13) to the RZ and NRZ formats. In the case of the NRZ
format, each pulse occupies the entire bit slot. Assuming a rectangular shape, A,(t)
equals /Py within the bit slot of duration T, but becomes zero outside of it. Taking the
Fourier transform of A, (¢), we obtain

|A,(@)]> = PyTsinc? (0T /2), (2.2.14)
where sinc(x) = sin{x)/x is the so-called sinc function. Substituting the preceding
expression in Eq. (2.2.13), we obtain

Fo

T
Sa(@) = 22 sinct(@T,/2) + Zp. (2.2.15)

2
Only the m = 0 term survives in the sum in Eq. (2.2.13) as the sinc function vanishes
at all frequencies such that @ = 2am/T}, except when m = 0. This spectrum is shown
in Figure 2.5(a). The spectrum contains a discrete component at the zero frequency.
However, recall that the zero-frequency component of S4 (@) is actually located at ay
when one considers the spectrum of the electric field. The continuous part of the spec-
trum is spread around the carrier in a symmetric fashion. Most of the spectrum is
confined within the bandwidth 2B for an NRZ bit stream at the bit rate B, and the 3-dB
bandwidth (full width at half maximum or FWHM) is about B.

In the case of an RZ bit stream, spectral density depends on the duty cycle of the
RZ pulse. Assuming that each 1 bit occupies a fraction d, of the bit slot and assuming
a rectangular shape for the optical pulse, the pulse spectrum is found to be

|A,(@)|* = PoT2d, sinc?(@Tyd,/2). (2.2.16)

As expected, this spectrum is wider than that given in Eq. (2.2.14) by a factor of 1/d,.
However, when we substitute Eq. (2.2.16) in Eq. (2.2.13), we notice another important
difference. The discrete spectral components no longer vanish for m # 0 because of
the presence of d. in the argument of the sinc function. Which ones survive depends
on the duty factor. For example, for a duty cycle of 50% every even component (except
m = 0) vanishes but all odd components survive. This case is shown in Figure 2.5(b).
In general, all discrete components can be present in an RZ bit stream depending on
the pulse shape and the duty factor used.
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Figure 2.5: Power spectral density of (a) NRZ bit stream and (b) RZ bit stream with 50% duty
cycle. Frequencies are normalized to the bit rate and the discrete part of the spectrum is shown
by vertical arrows.

2.3 Bit-Stream Generation

As mentioned earlier, the format of choice for most lightwave systems is the ASK for-
mat. It can be implemented using both the RZ and NRZ coding schemes. In an attempt
to improve the spectral efficiency of dense WDM systems, several new formats mix the
basic RZ scheme with phase modulation [12]-[16]. Another format that has attracted
attention since 2000 is a variant of the basic DPSK format, known as the intensity-
modulated DPSK or the RZ-DPSK format [17]-[22]. In this format, an optical pulse
is present in all bit slots, but the information is coded in the phase of the optical bit
stream. This section focuses on the design of transmitters used for implementing vari-
ous modulation formats.

2.3.1 NRZ Transmitters

The design of an NRZ transmitter is relatively simple since the electrical signal that
needs to be transmitted is itself usually in the NRZ format. It is thus sufficient to use the
scheme shown in Figure 2.2, where a single modulator, known as the data modulator,
converts the CW light from a DFB semiconductor laser into an optical bit stream in the
NRZ format. The data modulator can be integrated with the DFB laser if it is based
on the electroabsorption effect (see Section 6.4 of LT1). Alternatively, an external
LiNbO3 modulator provides the same functionality. It employs a MZ interferometer
for converting a voltage-induced relative phase shift into amplitude modulation of the
input CW beam (see Section 6.2 of LT1).

Figure 2.6 shows schematically the design of a LINbO3 modulator. The input CW
beam is split into two parts by a 3-dB coupler that are recombined back by another 3-
dB coupler after different phase shifts have been imposed on them by applying voltages
across two waveguides that form the two arms of the MZ interferometer. To understand
this conversion process, we consider the transmission characteristics of such a modula-
tor. Using the transfer matrix of a 3-dB coupler (see Section 2.3.4 of LT1), the outputs
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Figure 2.6: Schematic of a LiNbO3; modulator. The Mach-Zehnder configuration converts the
input CW beam into an optical bit stream by applying appropriate voltages across the two arms
of the interferometer.

Ay and A exiting from the bar and cross ports of an MZ interferometer, respectively,
can be obtained from the matrix equation

Ab _1 1 i gi¢l 0 1 i A[
<A0>—§(i 1)( 0 e[¢2>(i 1><0>a (2.3.1)

where A; is the incident field and ¢;(r) = nV;(¢)/V is the phase shift in the jth arm
when a voltage V, is applied across it (j = 1,2). Here, Vy is the voltage required to
produce a 7 phase shift; this parameter is generally known for any LiNbO3 modulator
and is typically in the range of 3to 5 V.

The transfer function for the bar or cross port is easily obtained from Eq. (2.3.1).
For the cross port, the modulator response is governed by

tm = Ap/Ai = cos[(¢1 — ¢2) /2] expli(¢h + ¢ + ) /2]. (23.2)

The phase shift ¢, + ¢, can be reduced to a constant if we choose voltages in the two
arms such that V,(¢) = —V;(t) + Vj, where V, is a constant bias voltage. Then, the
power transfer function, or the time-dependent transmissivity of the modulator, takes
the form

Tp(t) = |tm|* = cos? (%{w, (1) — Vb]> : (2.3.3)

It is important to note that the transfer function of a MZ modulator is nonlinear in
applied voltage Vi. To generate the NRZ bit stream, the modulator is typically biased
at the half-power point by choosing V,, = —V /2. The applied voltage V;(¢) is then

changed using a bipolar electrical NRZ signal that changes from —V/4 to +V;/4
between 0 and 1 bits.

2.3.2 RZ Transmitters

The situation is somewhat different when an optical bit stream needs to be generated
in the RZ format from an electrical signal available in the NRZ format. One possibility
is to use an actively mode-locked semiconductor laser (or fiber laser) in place of the
continuously operating DFB laser. Such a laser should produce a periodic train of
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Figure 2.7: Schematic of an RZ transmitter. The data modulator creates an NRZ signal that is
transformed into an RZ bit stream by the second modulator acting as a pulse carver.

pulses of appropriate width at a repetition rate equal to the bit rate B at which the
channel is designed to operate. In essence, the laser produces an “11111---” bit stream
as an optical pulse is present in each bit slot. The modulator is then operated such that
it blocks the pulse in all slots representing 0 bits. Although such an approach is indeed
used in Jaboratory experiments designed to make use of optical solitons [23]-[25], it
is rarely used for commercial lightwave systems because mode-locked lasers may not
prove as reliable as a CW semiconductor laser.

An alternative approach makes use of the scheme shown in Figure 2.7. It first
generates an NRZ signal using a data modulator and then converts it into an RZ bit
stream using a second modulator that is driven by a sinusoidal signal (an electrical
clock) at the bit rate. The second modulator is sometimes called the “pulse carver”
because it splits a long optical pulse representing several 1 bits into multiple pulses,
each being shorter than the bit slot [26]. Three different biasing configurations can
be used to create RZ bit streams with duty cycles ranging from 33 to 67% [27]. In
one configuration, the bias voltage is set to be V, = V;/2 in Eq. (2.3.3), and V| (¢) =
(Vz/4)cos(2mBt) is varied in a periodic fashion at a frequency equal to the bit rate B.
Since the phase shift equals /2 once during each cycle, each long pulse representing
a string of 1’s is split into multiple pulses while 0’s are unaffected. Such a device acts
as an NRZ-to-RZ converter for the optical bit stream by forcing the output to reduce to
zero at the boundaries of each bit. For a sinusoidal clock, the transfer function or the
transmissivity of the second modulator becomes

Tu(t) = cos* [ msin®(nBr)]. (2.3.4)

Figure 2.8 shows the clock signal at 40 Gb/s together with the RZ pulses obtained with
such a clock by plotting T, as a function of time. The duty cycle of RZ pulses is
about 50%. In practice, duty cycle can be adjusted by reducing the voltage swing and
adjusting the bias voltage applied to the modulator, or using a third modulator.

In the second configuration, the bias voltage is set to be V;, = 2V (point of maxi-
mum transmission), and V;(¢) is modulated at a frequency equal to B/2 with the peak
value V /2. The resulting RZ pulses are considerably shorter and have a duty cycle of
33%. In the third configuration, the bias voltage is set at V;, = V; (point of minimum
transmission), and V;(¢) is again modulated in periodic fashion at a frequency equal
to B/2. This configuration provides a duty cycle of 67%. We discuss it in the next
subsection as it also introduces a phase difference between neighboring pulses.
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Figure 2.8: RZ pulses (a) created by a pulse carver driven by a sinusoidal clock (b) at the bit
rate.

The main drawback of the RZ transmitter shown in Figure 2.7 is that it requires syn-
chronization between the two radio-frequency (RF) signals applied to two modulators.
A chirp-based technique has been used with success for realizing such synchronization
when an electroabsorption modulator is used as a data modulator [26]. Another tech-
nique detects the microwave power spectrum of the transmitted signal and uses it to
align the two modulators in a dynamic fashion {28].

2.3.3 Modified RZ Transmitters

The use of RZ format suffers from a drawback in that the bandwidth of an RZ bit
stream is enhanced considerably compared with that of an NRZ bit stream (see Figure
2.5). The enhancement factor depends on the duty cycle, and the bandwidth is nearly
doubled for a 50% duty cycle. This increase in the channel bandwidth forces one to
increase the wavelength separation between two neighboring WDM signals, which in
turn reduces the spectral efficiency of dense WDM systems.

The performance of RZ-format lightwave systems can be improved with suitable
design modifications. In the case of the CRZ format, optical pulses representing 1 bits
are chirped before they are launched into the fiber. Chirping can be realized using either
phase modulation or by passing the RZ bit stream through a fixed length of optical fiber
(see Section 3.3). As seen from Eq. (2.3.1), the former can be implemented by adjusting
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the voltages applied to one of the LiINbO3; modulators in Figure 2.7 so that the optical
phase of the signal becomes time-dependent. The later is also easy to implement as it
requires only the addition of a fiber of controlled length before the signal is launched
into the fiber link used for transmission. Even though chirping of optical pulses does
not reduce the signal bandwidth directly (and, in fact, increases it), the CRZ format
offers several benefits discussed in Chapters 8 and 9 and is used often in practical long-
haul systems.

The idea of phase modulation can be used with success for reducing the signal
bandwidth using a format known as the CSRZ format. More specifically, phase modu-
lation is used to introduce a 7 phase shift between any two neighboring bits. This phase
alternation modifies the signal spectrum such that the central peak located at the carrier
frequency is suppressed (hence the name CSRZ) and produces a narrower spectrum
compared with that of the RZ signal. Figure 2.9 shows the experimentally recorded
optical spectra at 42.7 Gb/s for several different formats [22]. The top row compares
the CSRZ-format spectrum with the spectra obtained when the RZ and NRZ formats
are employed. While both the RZ and NRZ formats contain a dominant peak at the
carrier frequency, this peak is absent in the CSRZ spectrum. In all cases, spectral peaks
are separated by 42.7 GHz, but the signal bandwidth is generally smaller for the CSRZ
bit stream. Notice that the bandwidth depends on the duty cycle of the RZ pulse train
and increases when duty cycle is reduced from 67% to 33% (shorter pulses in each
bit slot). A duobinary format, in which phase is changed only when an odd number
of 0 bits occur between two successive 1 bits, is sometimes employed because its use
reduces intersymbol interference. However, the use of this format requires consider-
able electronic processing of the NRZ data at the transmitter. Optical spectrum of the
RZ-duobinary format is shown in the middle row of Figure 2.9.

To understand how the CSRZ format helps in reducing signal bandwidth, it is im-
portant to realize that a 71 phase shift for alternate bits is equivalent to changing the sign
of the pulse amplitude. Thus, the modulated signal can be written as

A1) = Y (=1)"bpAp(t —nTp) = Y buAp(t —nTy). (2.3.5)
n n

As seen above, one can absorb the factor (—1)" in the definition of a new random

number b that is allowed to take three values (—1, 0, and 1) for each bit. In this sense,

the CSRZ format falls in the category of bipolar or ternary schemes commonly used

for electrical communication systems [3].

It is easy to see from Eq. (2.2.9) that the phase modulation would change the spec-
trum of the bit stream because the correlation coefficients r,, appearing in this equation
become different when b, is allowed to take three values. We can calculate these coef-
ficients by remembering that in a bit stream containing N bits, where N is an infinitely
large number, b, = 0 for N/2 bits but the remaining N/2 bits should be divided into
two categories such that b, = 1 for N/4 bits and —1 for the other N /4 bits. Using these
three categories, we obtain

ro=1/2, rm={(-1)"/4 (m#0). (2.3.6)

It is this sign reversal of r,, that suppresses the carrier in CSRZ bit streams and, at the
same time, reduces the signal bandwidth.
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Figure 2.9: Experimentally recorded optical spectra for nine different modulation formats for a
42.7-Gb/s optical bit stream. (After Ref. [22]; ©2004 IEEE.)

The CSRZ scheme can be implemented in practice using the same two-modulator
configuration shown in Figure 2.7 for the conventional RZ format [12]. The only dif-
ference is that the second modulator (the pulse carver) is operated at half the bit rate
(B/2) with twice the peak voltage (V| = Vg /2). Moreover, the modulator is biased at
the point of minimum transmission (V, = V) and produces pulses with a 67% duty
cycle [27]. From Eq. (2.3.2), the amplitude transmission of the modulator under such
driving conditions is given by

t(1) = cos[msin® (wBt/2)]. (2.3.7)

Figure 2.10 shows the electrical clock together with 1,,,(¢) using B = 40 Gb/s. During
a single clock cycle, two optical pulses with a relative phase shift of 7 are created by
such a modulator. The CSRZ format can be thought of as a phase-modulated carrier on
which information is imposed through the ASK format.

A variant of the CSRZ format, known as the alternate-mark-inversion RZ (RZ-
AM]I) format (also called pseudo-ternary), is used with success in electrical commu-
nication systems [3]. This format can also be adopted for lightwave systems [29]. As
seen in Figure 2.9, the spectrum for the RZ-AMI format is quite different than that of
the CSRZ format. The main difference between the two formats is that a & phase shift
is introduced in the case of the RZ-AMI format only for 1’s so that alternate 1 bits have
their amplitudes inverted. This simple change affects the signal spectrum because the
correlation coefficients in Eq. (2.2.9) are different for the RZ-AMI format than those
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Figure 2.10: (2) Amplitude of CSRZ pulses for a 40-Gb/s bit stream and the (b) sinusoidal clock
at half the bit rate used to generate it. Two pulses created during a single clock cycle are shifted
in phase by 7.

obtained for the CSRZ format. It is easy to see that rg = 1/2 while rj =r_; = —1 /4 be-
cause the product b,b,| is negative when both bits are 1 (and zero in all other cases).
On the other hand, r,, vanishes for all |m| > 1 because both 1 and —1 values are likely
for any two 1 bits. As a result, only three terms survive in the sum appearing in Eq.
(2.2.9), and the power spectral density becomes

| G

Sa(w) = EjA,,(a))lz[(l —cos{®Tp)]. (2.3.8)

Using |A,(®)|? from Eq. (2.2.16) with d, = § (50% duty cycle), we obtain

Sa(@) = —P‘;ﬂsincz(mn /4)sin*(@Ty/2). (2.3.9

It is important to note that the power spectral density completely vanishes at @ = 0
in contrast with the case of CSRZ for which only the discrete component vanishes at
@ = (. This suppression of the spectral density in the vicinity of the carrier frequency
represents a major benefit of the RZ-AMI format.

Another variant of the RZ format is known as alternate-phase RZ (AP-RZ). In this
format, the phase of two neighboring bits is alternated between two values that differ
by a value other than 7. Phase alternation by /2 is often used in practice. As seen in
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Figure 2.9, the spectrum for the AP-RZ format is quite different from that of the CSRZ
format. It contains more spectral peaks because peaks are separated by only B/2,
rather than B, at a bit rate B. A peak appears even at the carrier frequency. Although
this spectrum appears undesirable at first sight, experimental results show that the AP-
RZ format can provide a better system performance under certain conditions compared
with the NRZ, RZ, and CSRZ formats [22].

The signal bandwidth of any modulation format can be reduced by 50% by adopt-
ing a single-sideband scheme in which only one sideband located on either side of the
carrier frequency is transmitted [1]-[4]. This is possible because the signal spectrum is
symmetric around the carrier frequency, and both the upper and lower sidebands con-
tain the entire information content of the signal. However, the generation of an optical
bit stream with a single sideband is not a simple task [16]. Moreover, the nonlinear
effects occurring inside the fiber link tend to regenerate the suppressed sideband.

The double-modulator configuration of Figure 2.7, as mentioned earlier, suffers
from a synchronization problem. It would be much more preferable if an RZ bit stream
can be generated with a single modulator. It turns out that an RZ pulse train can be
generated using a single modulator provided it is driven by a differentially encoded
NRZ signal, and one exploits the nonlinear switching characteristics of MZ modula-
tors [30]. As mentioned earlier, NRZ transmitter operates by biasing the modulator at
the half-power point. To create the RZ pulse train from the same transmitter, the mod-
ulator is biased at the peak of its transmission while the amplitude of the differentially
encoded NRZ signal is doubled. Setting V,, = V in Eq. (2.3.3), the transmissivity of
the modulator is given by

Tou(Vi) = sin® (%[2% (1) — V,,]) = cos? [V} (1) / V. (2.3.10)

Since an optical pulse is produced whenever the electrical signal changes from low to
high or high to low, the transmitter produces an RZ-coded bit stream from a differen-
tially encoded NRZ signal in which information is coded such that the voltage level
changes between its two values whenever the next bit is a “1” bit.

Figure 2.11 shows another scheme in which a single phase modulator produces
an RZ signal from a differentially encoded NRZ bit stream [31]. It makes use of a

ﬂ RZ output
cw laser—] phase modulato 2| S0P

delay-line
interferometer

NRZ data _diﬁerentia1§

.........................

Figure 2.11: Block diagram of an RZ transmitter constructed using a single phase modulator in
combination with a delay-line interferometer. (After Ref. [31]; ©2001 IEEE.)
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Figure 2.12: (a) The NRZ data; (b) its differentially encoded version; (c) original (solid) and
delayed (dashed) phase profiles at the output coupler; (d) final RZ bit stream; and (e¢) phase
variations across it. (After Ref. [31]; ©2001 IEEE.)

passive optical delay-line (MZ) interferometer to produce the RZ output from a phase-
modulated optical signal. Figure 2.12 shows how such a device functions. The differ-
ential encoder takes the NRZ data in part (a) and converts it into another electrical bit
stream shown in part (b). This new bit stream drives the phase modulator and modifies
the phase of an optical carrier such that a 7 phase shift is produced whenever the volt-
age is nonzero. The phase-encoded optical signal is split into two equal parts inside a
MZ interferometer and is delayed in one branch by a fixed amount (a fraction of the bit
stot). Figure 2.12(c) shows the phase profiles for the two fields. When these two op-
tical fields are combined using a 3-dB coupler, constructive or destructive interference
occurs depending on whether the relative phase shift is O or #. The resulting output
shown in part (d) consists of an RZ bit stream corresponding to the original NRZ sig-
nal. The width of the RZ pulse can be controlled by adjusting the optical delay in the
longer branch of the interferometer.

As expected from Eq. (2.3.2) and seen in Figure 2.12(e), the phase of the RZ signal
is not uniform across all bits when a delay-line interferometer is used and appears to
change in an erratic manner from bit to bit. Although not immediately apparent, this
phase nonuniformity is, in fact, beneficial because it corresponds to a phase change
of 7 across every 1 bit. Moreover, the direction of phase change is opposite for any
two neighboring 1 bits. This is exactly what is required for producing the AMI format.
Thus, the transmitter shown in Figure 2.11 produces an RZ-AMI signal. As discussed
earlier, this format produces a smaller channel bandwidth compared with that of the
traditional RZ format. It is also beneficial for lightwave systems whose performance is
limited by the nonlinear effects occurring within the fiber link [29].
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Figure 2.13: Schematic of an RZ-DPSK transmitter together with the receiver design. The insets
(a) and (b) show how the electric field varies across two bits after first and second modulators,
respectively. (After Ref. [14]; ©2002 IEEE.)

2.3.4 DPSK Transmitters and Receivers

In this subsection we focus on the RZ-DPSK format that has been found quite useful
for reducing the impact of cross-phase modulation (see Section 4.2) in WDM lightwave
systems [17]-[22]. Similar to the formats such as CSRZ and RZ-AMI, both the inten-
sity and the phase of an optical carrier are modulated in the RZ-DPSK case but with
one important difference: Whereas information is coded using ASK in all previous
formats, it is coded in the phase of the optical carrier in the RZ-DPSK case.

To create an RZ-DPSK signal, the carrier’s amplitude is first modulated to produce
a regular pulse train in which an optical pulse is present in every bit slot. The informa-
tion is coded by changing the phase of these pulses using the DPSK scheme such that a
phase difference of 7 between any two neighboring pulses corresponds to ! bits. Figure
2.9 compares the spectra of a 42.7-Gb/s bit stream in the RZ-DPSK format with several
other RZ-based formats. The DPSK format has been used in the past in the context of
coherent lightwave systems but only the phase of the carrier was modulated. The use
of intensity modulation makes this format more robust to the dispersive and nonlinear
effects for WDM systems transmitting multiple channels simultaneously. One can also
employ the CSRZ-DPSK format by shifting the phase of alternating pulses by 7, in
addition to the phase and amplitude changes associated with the transmitted data.

Figure 2.13 shows how two modulators in series can be used to create an optical
bit stream in the RZ-DPSK format [14]. The CW output from a DFB laser is first
modulated using a phase modulator driven by the differentially encoded NRZ signal.
The output after this modulator still has constant intensity since information is hidden
in the phase of the optical carrier as shown in the inset (a). The second modulator driven
at the bit rate creates pulses in each bit slot without affecting the phase, resulting in the
form of electric field shown in the inset (b). The phase information is converted into
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current variations at the receiver by first passing the optical signal through a delay-line
interferometer similar to that shown in Figure 2.11. The only difference is that the
length difference between the two arms of the MZ interferometer is chosen such that
it delays the signal by exactly one bit slot. It is this one-bit delay that allows one to
reconstruct the original bit stream using a conventional direct-detection scheme.

One can understand the operation of such a receiver by noting that the output of the
interferometer is formed through a superposition of the transmitted signal with its one-
bit-delay version. We can use the transfer-matrix approach of Eq. (2.3.1) but we have
to remember that the input field is now time-dependent. An MZ interferometer acts
as an optical filter that shifts the phase of each frequency component of the pulse by a
different amount. We should thus work in the spectral domain and write Eq. (2.3.1) as

follows: B | - ~( |
Ab - 1 l e:w b 0 1 i Alw
(Ac>——2_(i 1)( 0 1)(,‘ 1)( 0 >, (2.3.11)

where a tilde represents the Fourier transform. We have written the additional phase
shift in one of the arms as ¢'®Tb to stress its frequency dependence. Noting that this
extra phase shift amounts to a temporal delay of the field by T, when one takes the
inverse Fourier transform of the output field, the power of optical signal falling at the
photodetector can be written as

P(t) = 3|A() £ A(t —Tp) 2, (2.3.12)

where the choice of sign depends on whether the bar or cross port of the MZ interfer-
ometer is used for photodetection. Using A(z) = /P(t)expli¢(¢)] and assuming that
pulse shape is the same for all bits, the current at the receiver can be written as

Ii(t) = RyP(t) 1[1 L cos(A9)], (2.3.13)

where A¢(t) = ¢(t) — ¢(t — T) is the phase difference between the two neighboring
bits. Since A¢ = 0 for 0 bits but changes to 7 for 1 bits, one can reconstruct the original
bit stream from temporal variations in the received electrical signal.

2.4 Transmitter Design

Design of optical transmitters requires attention to many details that differ from ap-
plication to application [32]-[36]. For example, applications related to computer-data
and access networks have low cost as a major design objective and need relatively low-
power optical transmitters, based on LEDs or vertical-cavity surface-emitting lasers
(VCSELSs), that can operate over a wide temperature range without internal cooling.
For metropolitan networks, low cost remains important but bit rates are also higher
(typically 2.5 Gb/s). Such networks require semiconductor lasers that can be directly
modulated at such bit rates. In contrast, submarine and terrestrial long-haul lightwave
systems operate at high speeds and employ multiple WDM channels, each operating
at 10 Gb/s or more. The design requirements are most stringent for such systems. A
DFB laser is invariably used for stabilizing the channel wavelength. CW light from
the DFB laser is coupled to a modulator as efficiently as possible. The modulator is
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often integrated with the laser. If that is not possible, an external LiNbO3 modulator
is employed. In both cases, the optical bit stream generated needs to be launched into
the fiber link without experiencing significant coupling losses and without undesirable
feedback into the transmitter. This section focuses on the major design issues relevant
to optical transmitters.

2.4.1 Coupling Losses and Output Stability

A design objective for any transmitter is to couple as much light as possible into the
optical fiber. In practice, coupling efficiency depends on the type of optical source
(LED versus laser) as well as on the type of fiber (multimode versus single mode). The
coupling can be very inefficient when light from an LED is coupled into a single-mode
fiber. In contrast, coupling efficiency for semiconductor lasers is typically 40 to 50%
and can exceed 80% for VCSELs because of their circular spot size. A small piece
of fiber (known as the pigtail) is included with every transmitter so that the coupling
efficiency can be maximized during packaging; a splice or connector is used to join the
pigtail with the fiber cable.

Two approaches have been used for coupling the optical bit stream into an optical
fiber efficiently; both are shown schematically in Figure 2.14. In one approach, known
as butt coupling, one end of the fiber pigtail is brought almost in contact with the laser
(if direct modulation is used) or with the last modulator, and the two are held in place
by epoxy. In the other scheme, known as lens coupling, a lens is used to maximize
the coupling efficiency. Each approach has its own merits, and the choice generally
depends on other factors such as packaging and cost. An important criterion is that the
coupling efficiency should not change with time; long-term mechanical stability of the
coupling scheme is therefore a necessary requirement.

The butt coupling of a semiconductor laser to a fiber provides only 10 to 20%
efficiency if no attempt is made to match the mode sizes of the laser and the fiber.
Typically, index-guided InGaAsP lasers have an elliptical spot size with dimensions
in the range of 1 to 2 um, whereas the mode diameter of a single-mode fiber exceeds
6 pum. The coupling efficiency can be improved considerably by tapering the fiber end
and forming a lens at the fiber tip. Figure 2.14(a) shows such a butt-coupling scheme
for a commercial transmitter. The fiber is attached to a jewel, and the jewel is attached
to the laser submount through an epoxy [34]. The fiber tip is aligned with the emitting
region of the laser to maximize the coupling efficiency (typically 40%). The use of
a lensed fiber improves the coupling efficiency, and values close to 80% have been
realized with an optimum design [37]-[39].

Figure 2.14(b) shows the lens-coupling scheme for transmitters. The coupling ef-
ficiency can exceed 70% for a confocal design in which a sphere is used to collimate
the laser light and focus it onto the fiber core. The alignment of the fiber core is less
critical for the confocal design because the spot size is magnified to match the fiber’s
mode size. The mechanical stability of the package is ensured by soldering the fiber
into a ferrule that is secured to the body by two sets of laser alignment welds. One
set of welds establishes proper axial alignment, while the other set provides transverse
alignment.
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Figure 2.14: Transmitters employing (a) butt-coupling and (b) lens-coupling designs. (After
Ref. [34]; ©1989 AT&T).

The coupling issue for transmitters is important enough that several new schemes
were developed during the 1990s [40]-[44]. In one approach, a silicon optical bench
is used to align the laser and the fiber [40]. In another, a silicon micromirror fabricated
using a micro-machining technique is used for optical alignment [41]. In a different
approach, a directional coupler is used as the spot-size converter for maximizing the
coupling efficiency [42]. Coupling efficiencies of >80% have been realized by inte-
grating a spot-size converter with semiconductor lasers [44].

An important problem that needs to be addressed in designing an optical transmitter
is related to the extreme sensitivity of semiconductor lasers to optical feedback [45].
Even a relatively small amount of feedback (<0.1%}) can destabilize the laser and af-
fect the system performance through phenomena such as linewidth broadening, mode
hopping, and the enhancement of relative intensity noise [45]-[48]. While designing
an optical transmitter, attempts are made to reduce the feedback into the laser cavity
using antireflection coatings. Feedback can also be reduced by cutting the fiber tip at a
slight angle so that the reflected light does not hit the active region of the laser. Such
precautions are generally enough to reduce the feedback to a tolerable level. However,
it may be necessary to use an optical isolator between the laser and the fiber in trans-
mitters designed for more demanding applications. A very compact isolator can be
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designed if the lens in Figure 2.14(b) is replaced by a YIG sphere so that it serves a
dual purpose [49]. As light from a semiconductor laser is already polarized, a signal
polarizer placed between the YIG sphere and the fiber can reduce the feedback by more
than 30 dB.

Another issue that must be addressed is the stability of the transmitter output.
Each lightwave system is designed to operate with a certain amount of average power
launched into the fiber link, and it is important that this power level is maintained
throughout the system lifetime. In practice, power level can change if coupling losses
change because of mechanical motion of the transmitter components. It can also
change if the threshold current of the semiconductor laser itself increases because of
aging-related degradations when the laser is biased at a constant current. To keep the
output power level constant, most transmitters incorporate a built-in mechanism that
adjusts the driving current in a dynamic fashion. This is realized by incorporating a
photodiode that monitors the laser output and generates an electrical control signal that
can be used to adjust the laser bias level. The rear facet of the laser is generally used
for the monitoring purpose (see Figure 2.14). In some transmitters a front-end tap is
used to divert a small fraction of the output power to the detector.

2.4.2 Wavelength Stability and Tunability

Dense WDM lightwave systems operate with a channel spacing as small as 25 GHz
(or 0.2 nm). [t is thus essential that the wavelength of each optical carrier remains
stable to within 1 GHz or so, or to within 10 pm, throughout the operating lifetime
of the transmitter. The use of DFB lasers helps because the carrier wavelength is set
by a built-in grating internal to the laser structure. However, the Bragg wavelength
Ap of this grating is set by the grating period A through the relation Ag = 27A, where
7 is the effective index of the laser mode. The stability of Az requires 7 to remain
constant. In fact, since Ag is near 1,550 nm, it can remain stable to within 10 pm only
if changes in 1 are below 1073, Since a temperature variation of even 1°C within the
active region of the laser can change 7 by an amount larger than that, one must control
the laser temperature to a fraction of 1°C. This is realized in practice by including a
thermoelectric cooler within the transmitter.

Since wavelength stability of the optical carrier is paramount for WDM systems,
high-performance transmitters employ a wavelength-monitoring scheme and control
the laser wavelength using a servo-loop mechanism. Several different schemes have
been employed for this purpose [50]-[54]. Figure 2.15 shows a DFB laser module
in which both the optical power and the wavelength of the laser are monitored and
maintained to constant values using the feedback loop shown in Figure 2.16. Light
from the back facet of the DFB laser is split into two branches using a prism. A Fabry—
Perot étalon in one branch serves as a wavelength reference; it is designed such that
one of its transmission peaks occurs precisely at the wavelength at which the laser is
designed to operate.

The use of a Fabry—Perot étalon as a wavelength reference suffers from one prob-
lem. Variations in the étalon temperature can affect both its cavity length and the
refractive index and shift the transmission peaks in an uncontrolled manner. One could
employ another thermoelectric cooler to keep the temperature of the étalon constant.
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Figure 2.15: Schematic of a DFB laser-diode (LD) module with a built-in étalon for monitoring
and stabilizing the laser wavelength; PD stands for photodiode. (After Ref. [54]; ©2003 IEEE.)

The feedback loop shown in Figure 2.16 solves this problem by monitoring the tem-
perature of the €taion in addition to monitoring the laser wavelength and power and
adjusting the feedback signal accordingly [S4]. The laser wavelength is kept constant
by adjusting the current applied to the thermoelectric cooler and changing the laser
temperature. With this approach, the wavelength of the laser module drifted by less
than 1 pm even when the module temperature varied from 5 to 70°C. Reliability tests
indicated that wavelength drift for such lasers should be less than 5 pm during a 25-year
operating period.

A large number of DFB lasers, each designed to operate at a fixed wavelength
chosen from the ITU grid, is required for dense WDM systems. The maintenance of
such a WDM transmitter with 100 or more channels is impractical because one must
maintain a large inventory of individual DFB lasers. A solution is provided by the so-
called tunable semiconductor laser whose wavelength can be tuned over a wide range
electronically while maintaining its stability. Indeed, muitisection DFB and distributed
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Figure 2.16: Block diagram of the feedback loop used to monitor and maintain the laser wave-
length and optical power simultaneously. (After Ref. [54]; ©2003 IEEE.)
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Figure 2.17: Schematic of a sampled-grating DBR laser with four sections, each of which can
be biased independently to realize tuning over a wide range. (After Ref. [59]; (©)2000 IEEE.)

Bragg reflector (DBR) lasers have been developed to meet the somewhat conflicting
requirements of stability and tunability [55]-[60].

In its simple form, a tunable DBR laser consists of three sections, referred to as
the active section, the phase-control section, and the Bragg section (see Section 5.2.3
of LT1). Each section can be biased independently by injecting different amounts of
currents. The current injected into the Bragg section is used to change the Bragg wave-
length through carrier-induced changes in the refractive index 7. The current injected
into the phase-control section is used to change the phase of the feedback from the
DBR through carrier-induced index changes in that section. The laser wavelength can
be tuned almost continuously over the range of 10 to 15 nm by controlling the cur-
rents in the phase and Bragg sections. By 1998, such lasers exhibited a tuning range of
17 nm and output powers of up to 100 mW with high reliability [55].

More recently, several new designs have been developed for tunable semiconduc-
tor lasers. Figure 2.17 shows one such structure known as the sampled-grating DBR
(SG-DBR) laser {59]. It consists of four sections, each of which can be controlled elec-
tronically by injecting four different electrical currents. The current /, applied to the
active section controls the output power. The current J, is applied to the phase-control
section for changing the feedback phase. The two outer sections act as DBRs, each
designed with a superstructure or sampled grating, so that they can provide feedback
at multiple wavelengths, or carrier frequencies, that are spaced apart exactly by the re-
quired channel spacing (typically 50 GHz). The currents / and I applied to the front
and rear sections can be tuned in combination with I, and 1, such that the laser can
operate at any of these discrete wavelengths while maintaining almost the same optical
power. Such multisection DBR lasers can be tuned over a wavelength range exceed-
ing 100 nm using the Vernier effect. Each SG-DBR section supports its own comb of
wavelengths but the spacing in each comb is not the same. The wavelength coinciding
in the two combs becomes the output wavelength that can be tuned over a wide range.

Figure 2.18 shows another tunable laser structure in which a grating-assisted direc-
tional coupler is inserted between the active and phase-control sections, and a single
DBR section with a sampled grating is employed. The coupler section has two ver-
tically separated waveguides having different thickness and material composition so
that they form an asymmetric directional coupler. The grating can selectively transfer
a single wavelength from the wavelength comb supported by the DBR section. Such
lasers can also provide a tuning range of more than 110 nm with a suitable design.
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Figure 2.18: Schematic of a tunable DBR laser with an integrated grating-assisted directional
coupler. (After Ref. [59]; (©2000 IEEE.)

2.4.3 Monolithic Integration

The electrical components used in the driving circuit determine the speed at which
transmitter output can be modulated. For lightwave transmitters operating at bit rates
above 1 Gb/s, electrical parasitics associated with various transistors and other compo-
nents often limit the transmitter performance. The performance of high-speed transmit-
ters can be improved considerably by integrating monolithically the laser with driver
electronics. Such monolithic transmitters are referred to as optoelectronic integrated
circuits (OEICs) as optical and electrical devices are fabricated on the same chip.

The OEIC approach was first applied to integration of GaAs lasers simply because
the technology for fabrication of GaAs electrical devices was relatively well established
{61]-{63]. However, since most lightwave systems employ InGaAsP lasers, attention
soon turned toward the fabrication of InP-based OEICs [64]-[69]. By 1995, 10-Gb/s
laser transmitters were fabricated by integrating 1.55-um DFB lasers with field-effect
transistors made with the InGaAs/InAlAs material system [66].

The concept of monolithic integration can be extended to build single-chip trans-
mitters by adding as much functionality as possible on the same chip. Considerable
effort has been directed toward developing such devices, often called photonic inte-
grated circuits; they integrate on the same chip multiple optical components such as
lasers, detectors, modulators, and amplifiers [70]-[80]. Such an approach also pro-
vides an opportunity to fabricate WDM devices in which multiple DFB or DBR lasers
are integrated within a single transmitter. The use of such WDM transmitters reduces
the complexity of lightwave systems as a single component can generate multiple bit
streams at different carrier frequencies.

The integration of an electroabsorption modulator with a DFB or DBR laser was
pursued during the decade of 1990s because such a device generates an optical bit
stream directly [81]-[93]. By 1999, 10-Gb/s optical transmitters with an integrated
modulator were available commercially, and they are used routinely for WDM light-
wave systems [85]. By 2001, modulator-integrated transmitters were able to operate at
a bit rate of 40 Gb/s [87]. In a 2003 experiment, such a device was used for transmitting
a 40-Gb/s signal over 1,200 km [92].

Integration of a tunable DBR laser with an electroabsorption modulator results in
transmitters whose output is tunable over a wide wavelength range. In a 2002 demon-
stration, a four-section SG-DBR laser (see Figure 2.17) was integrated with a mod-
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Figure 2.19: Schematic of an SG-DBR laser integrated with an electroabsorption (EA) modula-
tor and a semiconductor optical amplifier. (After Ref. [90]; ©2002 IEEE.)

ulator and a semiconductor optical amplifier (SOA), resulting in a six-section device
shown schematically in Figure 2.19. Such devices were tunable over 40 nm while
maintaining an extinction ratio better than 10 dB [90]. The use of a built-in optical
amplifier permitted power levels high enough that more than 10 mW of optical power
could be coupled to a single-mode fiber over the entire tuning range. At the same time,
the use of two sampled gratings allowed operation in a single longitudinal mode with
a sidemode suppression ratio of better than 40 dB.

The technique of monolithic integration is being pursued to combine as many dis-
crete elements as possible on the same chip. Even an MZ modulator can be integrated
with a semiconductor laser because the InP material used to make the laser also ex-
hibits the electrorefraction effect that can be used to change the refractive index by
applying a voltage across a passive waveguide. Indeed, a MZ modulator has been inte-
grated with a four-section tunable SG-DBR laser [79]. Figure 2.20 shows the layout of
such a chip schematically. It also incorporates a back-facet power detector and an SOA
between the laser and the modulator. The 1-mm-long modulator section incorporates
two multimode-interference (MMI) couplers (see Section 4.5.2 of LT1 for a discussion
of such couplers) to couple the light into and out of two passive waveguides serving as
two arms of the MZ interferometer. The whole device is only 3.4 mm long. Clearly,
such photonic integrated circuits are likely to be quite useful for further advances in
lightwave technology.

Monolithic integration of multiple DFB lasers on the same chip provides an alterna-
tive solution to tunability and results in transmitters whose wavelength can be changed
over a wide range by simply selecting different lasers. Such a device is sometimes
referred to as the wavelength-selectable laser (WSL). Figure 2.21 shows the design
of such a transmitter schematically [78]. It combines a WSL unit with a wavelength-
locking unit that locks the laser wavelength using a Fabry—Perot étalon. The WSL unit
incorporates an array of eight DFB lasers whose output is sent to a single SOA through
an MMI coupler. Each DFB laser can be tuned over a few nanometers by changing its
temperature; this fine tuning permits setting of the transmitter wavelength precisely on
a carrier frequency on the ITU grid. The wavelength can be changed by a much larger
value by turning on individual DFB lasers selectively within the array. The combination
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Figure 2.20: (a) Schematic of a tunable SG-DBR laser integrated with a detector, an SOA, and a
Mach-Zender modulator; top view of the chip is also shown. (b) Details of the modulator section
showing two waveguides and two MMI couplers at the two end. (After Ref. [79]; (©)2003 IEEE.)

of temperature tuning and multi-wavelength arrays can produce, in principle, transmit-
ters that can be operated anywhere within the S, C, and L bands covering a wavelength
range from 1,460 to 1,620 nm. As shown in Figure 2.21, the entire transmitter can be
fitted inside a standard butterfly package with dimensions of 12.7 mm x 20.8 mm.

2.4.4 Reliability and Packaging

An optical transmitter should operate reliably over a relatively long period of time
(10 years or more) in order to be useful as a major component of lightwave systems.
The reliability requirements are even more stringent for submarine lightwave systems
for which repairs and replacement arc prohibitively expensive, and all components are
designed to last at least 25 years. By far the major reason for failure of optical trans-
mitters is the optical source itself. Considerable testing is performed during assembly
and manufacture of transmitters to ensure a rcasonable lifetime for the optical source.
It is common [32] to quantify the lifetime by a parameter tr known as mean time to
failure (MTTF). Its use is based on the assumption of an exponential failure probability
[Pr = exp(—t/tr)]. Typically, t¢ should exceed 10° hours (about 11 years) for the op-
tical source. Reliability of semiconductor lasers has been studied extensively to ensure
their survival under realistic operating conditions [94}-[99].

Both LEDs and semiconductor lasers can stop operating suddenly (catastrophic
degradation) or may exhibit a gradual mode of degradation in which the device effi-
ciency degrades with aging [95]. Attempts arc made to identify devices that are likely
to degrade catastrophically. A common method is to operate the device at high temper-
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Figure 2.21: Schematic view of a wavelength-selective transmitter designed with a WSL chip
(left inset) in which the output of multiple DFB lasers is coupled into a single SOA through a
MMI coupler. The right inset shows photograph of the butterfly package housing the transmitter.
(After Ref. [78]; (©2002 IEEE.)

atures and high current levels. This technique is referred to as burn-in or accelerated
aging {94] and is based on the assumption that under high-stress conditions weak de-
vices will fail, while others will stabilize after an initial period of rapid degradation.
The change in the operating current at a constant power is used as a measure of device
degradation. The degradation rate can be used to estimate the laser lifetime and the
MTTF at the elevated temperature. The MTTF at the normal operating temperature is
then extrapolated by using an Arrhenius-type relation t7 = toexp(—E,/kgT ), where fy
is a constant and E,, is the activation energy with typical values of around 1 eV [95].
Physically, gradual degradation is due to the onset of dark-line or dark-spot defects
within the active region of the laser [45].

Extensive tests have shown that LEDs are normally more reliable than semicon-
ductor lasers under the same operating conditions. The MTTF for GaAs LEDs easily
exceeds 10° hours and can be >107 hours at 25°C [95]. The MTTF for InGaAsP LEDs
is even larger, approaching a value ~10° hours. By contrast, the MTTF for InGaAsP
lasers is generally limited to 10 hours at 25°C [96]-[98]. Nonetheless, this value is
large enough that semiconductor lasers can be used in undersea optical transmitters
designed to operate reliably for a period of 25 years. Because of the adverse effect of
high temperatures on device reliability, most transmitters use a thermoelectric cooler
to maintain the source temperature near 20°C even when the outside temperature may
be as high as 80°C.
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Even with a reliable optical source, a transmitter may fail in an actual system if the
coupling between the source and the fiber degrades with aging. Coupling stability is
an important issue in the design of reliable optical transmitters. It depends ultimately
on the packaging of transmitters. Although LEDs are often packaged nonhermetically,
a hermetic environment is essential for semiconductor lasers. It is common to package
the laser separately so that it is isolated from other transmitter components. Figure
2.14 shows two examples of laser packages. In the butt-coupling scheme, an epoxy
is used to hold the laser and fiber in place. Coupling stability in this case depends
on how epoxy changes with aging of the transmitter. In the lens-coupling scheme,
laser welding is used to hold various parts of the assembly together. The laser package
becomes a part of the transmitter package, which includes other electrical components
associated with the driving circuit. The choice of transmitter package depends on the
type of application. A dual-in-line package or a butterfly housing with multiple pins is
typically used. Figure 2.21 shows an example of the butterfly package.

Problems

2.1 Sketch how the electric field of a carrier would change with time for the PSK
format during 5 bits with the pattern 01010. Assume that the phase of the carrier
is shifted by 180° during each 1 bit.

2.2 Explain what is meant by the DPSK format. Sketch how the electric field varies
for this format using the same 5-bit pattern 01010 used in the preceding problem.

2.3 A 1.55-um lightwave system is transmitting digital signals over 100 km at 2 Gb/s.
The transmitter launches 2 mW of average power into the fiber cable, having a
net loss of 0.3 dB/km. How many photons are incident on the receiver during a
single 1 bit? Assume that 0 bits carry no power, while 1 bits are in the form of a
rectangular pulse occupying the entire bit slot (NRZ format).

2.4 Sketch the variation of optical power with time for a digital NRZ bit stream
010111101110, assuming a bit rate of 10 Gb/s. What is the duration of the
shortest and widest optical pulse? What is the peak power when an average
power of 2 mW is launched into the fiber?

2.5 A 0.8-um optical receiver needs at least 1,000 photons to detect the 1 bits ac-
curately. What is the maximum possible length of the fiber link for a 100-Mb/s
lightwave system designed to transmit —10 dBm of average power? The fiber
loss is 2 dB/km at 0.8 um. Assume the NRZ format and a rectangular pulse
shape.

2.6 A 1.3-um optical transmitter is used to generate a digital bit stream at a bit rate
of 2 Gb/s. Calculate the number of photons contained in a single 1 bit when the
average power emitted by the transmitter is 4 mW. Assume that the O bits carry
no energy.

2.7 Discuss the conditions under which the Wiener—Khintchine theorem can be used
for a fluctuating optical field. You may consult any book on stochastic processes.
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2.10

2.11

2.12

2.13

2.14

2.15

2.16
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Prove that the relation Sx (@) = Sp(®)|A,(@)|? indeed follows from Egs. (2.2.1)
through (2.2.3).

Prove the identity given in Eq. (2.2.12). What is the physical meaning of this
relation?

Starting from Eq. (2.2.13), find the power spectral density of an RZ bit stream
with 50% duty cycle.

Derive an expression for the bar-port transmissivity of a Mach-Zehnder modula-
tor as a function of applied voltage V when the voltage drop across its two arms
is equal in magnitude but opposite in sign. Assume that both couplers are ideal
3-dB couplers.

Describe how two modulators can be used to create an RZ bit stream from an
electrical bit stream in the NRZ format.

Explain why a phase shift of 7 between any two neighboring bits of an RZ bit
stream results in no power at the carrier frequency. How would you obtain such
a phase shift from a modulator acting as a pulse carver?

Describe what is meant by the RZ-AMI format. Sketch the design of an optical
transmitter that can produce an optical bit stream in this format.

Sketch the design of optical receivers used to recover an optical bit streams trans-
mitted in the RZ-DPSK format. Explain how such a receiver can detect phase
information with direct detection.

Describe a wavelength-monitoring scheme for WDM transmitters. Use diagrams
as necessary to make your point clear.
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Chapter 3

Signal Propagation in Fibers

In any fiber-optic lightwave system, optical bit stream generated at the transmitter prop-
agates through a fiber link that may contain several different types of optical fibers.
The link length may vary from a few kilometers to thousands of kilometers. During its
propagation, the optical signal is invariably degraded in quality. An objective of any
lightwave system is to control transmission-related degradations as much as possible
so that the original information can be retrieved at the receiver without errors. This
chapter focuses on several linear degradation mechanisms that occur in silica fibers
and affect the optical bit stream; the nonlinear degradations mechanisms are discussed
in Chapter 4. In Section 3.1 we derive a basic propagation equation that should be
solved to study how single-mode fibers affect an optical bit stream. Section 3.2 shows
that losses in optical fibers reduce the average signal power that must be restored pe-
riodically through lumped or distributed amplification, even though signal quality is
invariably degraded because of the added noise. Section 3.3 focuses on the role of
fiber dispersion and shows through a simple example of Gaussian pulses that disper-
sion can broaden optical pulses beyond their allocated bit slot. The limitations on the
bit rate and the transmission distance imposed by fiber dispersion are also discussed
in this section. Sections 3.4 and 3.5 are devoted to the polarization effects occurring
inside optical fibers. The phenomenon of polarization-mode dispersion is discussed in
Section 3.4, whereas polarization-dependent loss is the subject of Section 3.5.

3.1 Basic Propagation Equation

Modern lightwave systems employ step-index fibers, designed to support a single op-
tical mode (see Chapter 1 of LT1). When an optical signal from the transmitter is
launched into a single-mode fiber, it excites the fundamental HE;; mode of the fiber,
and its transverse spatial distribution does not change during propagation. Thus, the
electric field associated with the optical bit stream can be written as

E(r,t) = Re[8 F(x,y)A(z,1) exp(ifoz — iwot )], (3.1.1)
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where @ is the polarization unit vector, F(x,y) is the spatial distribution of the funda-
mental fiber mode, A(z,#) is the complex amplitude of the field envelope at a distance
z inside the fiber, and Sy is the mode-propagation constant at the carrier frequency .
Although the polarization unit vector & changes in a random fashion along the fiber
because of a small but fluctuating birefringence, we assume until Section 3.4 that such
birefringence effects can be ignored and treat € as a constant. Since F(x,y) does not
depend on z, the only quantity that changes with propagation is the complex ampli-
tude A(z,¢) associated with the optical signal. In this section we derive an equation
governing the evolution of A(z,¢) within the fiber.

The analysis of fiber modes (see Section 1.3 of LT1) shows that each frequency
component of the optical field propagates in a single-mode fiber with a slightly different
propagation constant. For this reason, it is useful to work in the spectral domain. We
introduce the Fourier transform of A(z,#) as

Ale,t) = % /_ ZA(z,w)exp(—iAmt)d(Aa)), (3.12)

where A@ = @ — @ and A(z, @) represents the Fourier spectrum of the optical bit
stream. As discussed in Section 2.2.3, the signal bandwidth depends on the bit rate B
and the modulation format used for the bit stream.

Consider a specific spectral component A(z,®). It propagates inside the optical
fiber with the propagation constant fB,(®) that is different than fy appearing in Eq.
(3.1.1) and thus acquires an extra phase shift given by

A(z, 0) = A0, ®) exp[iB,(®)z — ifoz], (3.1.3)

where A(0, @) is the Fourier transform of the input signal A(0,7) at z = 0. The propa-
gation constant 3, is, in general, complex and can be written in the form [1]

Bp(@) = [a(@) + Sny(@)](0/c) +ia(w)/2, (3.14)

where 7 is the effective mode index and « is the attenuation constant responsible for
fiber losses. The nonlinear effects are included through ény;. that represents a small
power-dependent change in the effective mode index. Even though Sny; < 10710 at
typical power levels used in lightwave systems, its impact becomes quite important for
long-haul lightwave systems designed with optical amplifiers [1]-[3].

Pulse broadening results from the frequency dependence of the mode index 7. Since
the exact functional form of this dependence is not known in general, it is useful to write
the propagation constant f3, as

Bp(®) = Br(w) + Brr(wp) +ic(awp)/2, (3.1.5)

where B, (@) = i(w)w/c is its linear part, By, is the nonlinear part, and « is the fiber-
loss parameter. In general, all three parts of B, depend on frequency. However, optical
pulses used as bits in lightwave systems are relatively wide (>1 ps) compared with
the duration of a single optical cycle (=3 fs), and their spectrum is much narrower
compared with the carrier frequency ay. This feature allows us to treat @ and Sy, as
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Table 3.1: Dispersion characteristics of several commercial fibers

Fiber Type and Acir Azp D (C band) Slope S
Trade Name (umZ) (nm) [ps/(km-nm)] [ps/(km—nmz)]
Corning SMF-28 80 1,302-1,322 16 to 19 0.090
Lucent AllWave 80 1,300-1,322 17 to 20 0.088
Alcatel ColorLock 80 1,300-1,320 16to 19 0.090
Corning Vascade 101 1,300-1,310 18 to 20 0.060
Lucent TrueWave-RS 50 1,470-1,490 26t06 0.050
Corning LEAF 72 1,490-1,500 2t06 0.060
Lucent TrueWave-XL 72 1,570-1,580 | —1.4to —4.6 0.112
Alcatel TeraLight 65 1,440-1,450 55t010 0.058

frequency-independent over the signal bandwidth and expand fz(®) in a Taylor series
around ay. If we retain terms up to third order, we obtain

Bu(w) ~ o + Bi (80) + 2 (a0 + B (a0’ G.16)
where B, = (d"B/d@™)w—a,. The three dispersion parameters appearing in this equa-
tion are known in practice for any fiber used for signal transmission.

Physically, the parameter f; is related inversely to the group velocity v, of the
pulse as Bi = 1/vg. The parameters 3, and B3 are known as the second- and third-
order dispersion parameters and are responsible for pulse broadening in optical fibers.
More specifically, B; is related to the dispersion parameter D as (see Section 1.5 of
LThH

d (1 27c
D=—|—)=-=58- 3.1.7
a (vg) Rl ©-17)
This parameter is expressed in units of ps/(km-nm). It varies with wavelength for
any fiber and vanishes at a wavelength known as the zero-dispersion wavelength and
denoted as Azp. Near this wavelength, D varies linearly as D = S(A — Azp), where §
represents the dispersion slope at Azp. The parameter B is related to the dispersion
slope S as § = (27t¢/A%)2B;. The parameters Azp, D, and S vary from fiber to fiber.
Table 3.1 lists their values for several commonly used fibers. Fibers with relatively
small values of D in the spectral region near 1.55 um [|D| < 8 ps/(km-nm)] are called
dispersion-shifted fibers and are often used in designing modern lightwave systems
[41-{7}.

We substitute Egs. (3.1.5) and (3.1.6) in Eq. (3.1.3), calculate the derivative dA/dz,
and convert the resulting equation into the time domain by replacing Aw with the dif-
ferential operator i(d/dt). The resulting time-domain equation can be written as [1]

0A A By d°A B3 d%A o

—— — + === — =3 =iy A — A 3.1.8

PR RN R F R G198
This is the basic propagation equation governing pulse evolution inside a single-mode
fiber. Before using it, we need to write the nonlinear term in its explicit form. From Eq.
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(3.1.4), the nonlinear part of the propagation constant is given by Byz, = dnyr (@ /c).
For optical fibers, the nonlinear change in the refractive index has the form Ony =
nyl (similar to a Kerr medium), where n; is a constant parameter with values around
2.6 x 1072% m?/W and I represents the optical intensity [1]. The intensity is related to
optical power at any distance z as I(z,¢) = P(z,1) /A, Wwhere Aegy is the effective core
area of the fiber and is generally different than the physical core area because a part of
the optical mode propagates outside the core.

It is common to normalize the amplitude A in Eq. (3.1.8) such that |A|? represents
optical power. With this identification and using @y = 27c/Ag, where Ay is the carrier
wavelength, we obtain
_ 21n;

r= AOAeff ’

where the parameter y takes into account various nonlinear effects occurring within
the fiber. The value of this parameter can be tailored to some extent by controlling
the effective core area of an optical fiber. Table 3.1 lists the values of A for several
commonly used fibers. As an example, ¥~ 2.1 W~ 1/km for a fiber with Acgr = 50 pm?.
Fibers with a relatively large value of A.g are called large-effective-area fibers (LEAFs)
and are useful for designing lightwave systems because they reduce the impact of fiber
nonlinearities [8]-{10].

We can simplify Eq. (3.1.8) somewhat by noting that the B term simply corre-
sponds to a constant delay experienced by the optical signal as it propagates through
the fiber. Since this delay does not affect the signal quality in any way, it is useful
to work in a reference frame moving with the signal. This can be accomplished by
introducing the new variables ¢’ and 7’ as

By = VIAJ%, (3.1.9)

=t Bz, 7=z (3.1.10)
and rewriting Eq. (3.1.8) in terms of them as

: 2 3
9A+i338_A_E3_3 A :l'ylAlZA_

o4 oAa @
a7 2 dr? 6 o3

2A, (3.1.11)

where we also used Eq. (3.1.9). For simplicity of notation, we drop the primes over 7/
and ¢’ whenever no confusion is likely to arise. Also, the third-order dispersive effects
are negligible in practice as long as ; is not too close to zero, or pulses are not shorter
than 5 ps. Setting 83 = 0, Eq. (3.1.11) reduces to

dA iﬁzﬁ

. o
55 o :zy|A|2A_5A. (3.1.12)

For historical reasons, this equation is known as the nonlinear Schrddinger (NLS) equa-
tion. It is used extensively for modeling lightwave systems and leads to predictions that
can be verified experimentally. The three parameters, o, B2, and ¥, take into account
three distinct kinds of degradations that can occur when an optical signal propagates
through optical fibers. In the following two sections, we focus on the linear degradation
mechanisms related to the nonzero values of o and ;.
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3.2 Impact of Fiber Losses

The loss parameter o appearing in Eq. (3.1.12) reduces not only the signal power but
it also impacts the strength of the nonlinear effects. This can be seen mathematically
by introducing

A(z,t) = B(z,t)exp(—az/2) (3.2.1)
in Eq. (3.1.12) and writing it in terms of B(z,t) as

dB iB> 0°B @21 o2

— === =iYe” B. 2.

3z +3 52 ~ e |B| (3.2.2)

The physical interpretation of the preceding two equations is clear. Equation (3.2.1)
shows that the optical power |A(z,t)|> decreases exponentially as e~ at a distance z
because of fiber losses. As seen from Eq. (3.2.2), this decrease in the signal power also
makes the nonlinear effects weaker, as expected intuitively.

The loss in signal power is quantified in terms of the average power defined as

1 r7/2
Py(z) = lim = ” |A(z,1)|dt = Py (0)e™ %, (3.2.3)

where we used Eq. (3.2.1) and assumed that no other source of energy losses exists
so that the integral [ |B(z,1)|*dt over the entire bit stream remains constant in spite of
changes in the shape of individual pulses. The average power decreases by a factor of
e®L for a fiber of length L. This factor exceeds 20 dB for a 100-km-long fiber cable
even in the spectral region near 1.55 um where o has the smallest value of around
0.2 dB/km. Numerical values of o depend on the operating wavelength and exceed
0.4 dB/km in the spectral region near 1.3 yum.

3.2.1 Loss Compensation

Fiber losses must be compensated for lightwave systems designed to operate over more
than 100 km because their cumulative effects eventually make the signal so weak that
information cannot be recovered at the receiver. Since long-haul and submarine light-
wave systems typically extend over thousands of kilometers, it is evident that fiber
losses must be compensated in such sysiems to boost the signal power periodically
back to its original value.

As discussed in Section 1.1, the only loss-management technique available to the
system designer until 1990 consisted of inserting an optoelectronic regenerator, often
called a repeater, within the fiber link after every 80 km or so. A repeater is nothing but
a receiver—transmitter pair in which the receiver output is directly fed into an optical
transmitter. In such a device, the optical bit stream is first converted into the electric
domain and then regenerated with the help of an optical transmitter. This technique
becomes quite cumbersome and expensive for WDM systems as it requires demulti-
plexing of individual channels at each repeater.

Several kinds of optical amplifiers were developed during the 1980s to solve the
loss-management problem (see Chapter 3 of LT1). These amplifiers can amplify mul-
tiple WDM channels simultaneously in the optical domain itself and are much more
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Amplifiers
Tx Rx
Pumping
Tx oo Rx
Couplers

(&)

Figure 3.1: Schematic of fiber-loss management using (a) lumped or (b) distributed amplifica-
tion schemes. Tx and Rx stand for optical transmitters and receivers, respectively.

cost-effective. For this reason, almost all WDM lightwave systems employ optical
amplifiers for compensating fiber losses. Figure 3.1(a) shows how amplifiers can be
cascaded in a periodic manner to form a chain and thus enable one to transmit an op-
tical bit stream over distances as long as 10,000 km, while retaining the signal in its
original optical form.

Depending on the amplification scheme used, one can divide amplifiers into two
categories known as lumped and distributed amplifiers. Most systems employ lumped
erbium-doped fiber amplifiers (EDFAs) in which losses accumulated over 60 to 80 km
of fiber lengths are compensated using short iengths (~10 m) of erbium-doped fibers
[11]-[13]. In contrast, the distributed amplification scheme shown in Figure 3.1(b) uses
the transmission fiber itself for signal amplification by exploiting the nonlinear phe-
nomenon of stimulated Raman scattering (SRS). Such amplifiers are known as Raman
amplifiers and have been developed for lightwave systems in recent years [14]-[16].
Their use for loss compensation requires that optical power from one or more pump
lasers is injected periodically using fiber couplers, as shown in Figure 3.1(b).

Any loss-management technique based on optical amplification degrades the signal-
to-noise ratio (SNR) of the optical bit stream since all amplifiers add noise to the signal
through spontaneous emission. As discussed in Chapter 6, this noise can be included
by adding a noise term to the NLS equation together with the gain term. With the
addition of such terms, Eq. (3.1.12) takes the form

0A | i, 9*A

. 1
22 a7 iYAPA + 5 [g0(2) — alA + fulz,1), (3.2.4)

2

where go(z) is the gain coefficient whose functional form depends on the amplifica-
tion scheme used. The last term f,(z,) accounts for the amplifier-induced noise. We
discuss the implications of this term in Chapter 6 and ignore it in this section.
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3.2.2 Lumped and Distributed Amplification

When EDFAs are used periodically along a fiber link, the length I, of each ampli-
fier (typically /, < 0.1 km) is much shorter than the spacing Ls between two am-
plifiers. Since go = 0 everywhere except within each amplifier, one can solve the
standard NLS equation (3.1.12) in each fiber section of length Ls. As seen from
Eq. (3.2.3), losses in each section reduce the average power by a factor of exp(aLy)
and they can be fully compensated by operating each lumped amplifier such that its
gain G4 = exp{gols) = exp(aL,). Thus, in a loss-managed long-haul system, ED-
FAs are inserted periodically after a distance L4 and their gain is adjusted such that
G4 = exp(aLy). Itis not necessary that amplifier spacing be uniform throughout the
link. In the case of nonuniform spacing, if the nth amplifier is placed at a distance L,
from the transmitter, its gain G, is chosen to be G, = exp{a(L, — L,—1)] so that each
amplifier fully compensates the losses of each fiber spam preceding it.

In the case of distributed amplification, Eq. (3.2.4) should be solved along the entire
fiber link, after go(z) has been determined for a given pumping scheme. Similar to Eq.
(3.2.1), it is useful to write the general solution of Eq. (3.2.4) in the form

A(z,1) = v/ p(2) B(z,1), (3.2.5)

where p(z) governs variations in the time-averaged power of the optical bit stream
along the link length because of fiber losses and signal amplification. Substituting Eq.
(3.2.5) in Eq. (3.2.4), p(z) is found to satisfy a simple ordinary differential equation

i—lz’ = [g0(2) - a]p, (3.2.6)
whereas B(z,t) satisfies Eq. (3.2.2) with p(z) replacing the factor e~%¢.

If go(z) were constant and equal to o for all z, the average power of the optical
signal would remain constant along the fiber link. This is the ideal situation in which
the fiber is effectively lossless. In practice, distributed gain is realized by injecting
pump power periodically into the fiber link (see Figure 3.1). Since pump power does
not remain constant because of considerable fiber losses at the pump wavelength, g(z)
cannot be kept constant along the fiber. However, even though fiber losses cannot be
compensated everywhere locally, they can be compensated fully over a distance La
provided the following condition is satisfied:

La
/0 go(z)dz = ala. (3.2.7)

Every distributed amplification scheme is designed to satisfy Eq. (3.2.7). The distance
L4 is referred to as the pump-station spacing.

As mentioned earlier, stimulated Raman scattering is often used to provide distrib-
uted amplification. The scheme works by launching CW power at several wavelengths
from a set of high-power semiconductor lasers located at the pump stations [16]. The
wavelengths of pump lasers should be in the vicinity of 1.45 um for amplifying optical
signals in the 1.55-pum spectral region. These wavelengths and pump-power levels are
chosen to provide a uniform gain over the entire C band (or C and L bands in the case of
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Figure 3.2: Variations in average signal power between two neighboring pump stations for
backward (solid line) and bidirectional (dashed line) pumping schemes with Ly = 50 km. The
lumped-amplifier case is shown by the dotted line.

dense WDM systems). Backward pumping is commonly used for distributed Raman
amplification because such a configuration minimizes the transfer of pump-intensity
noise to the amplified signal.

The use of a bidirectional pumping scheme is beneficial in some cases. To provide
physical insight, we consider the case in which one pump laser is used at both ends of
a fiber section for compensating losses induced by that section. In this case, the gain
coefficient g(z) can be approximated as

8(z) = g1exp(—~&yz) + g2 exp[—ap(La — 7)), (3.2.8)

where «, is the fiber loss at the pump wavelength and the constants g, and g, are
related to the pump powers injected at the two ends. Assuming equal pump powers
and integrating Eq. (3.2.6), the average power of the optical signal, normalized to its
fixed value at the pump stations, is found to vary as [3]

sinh{o,(z — La/2)] + sinh(a,La /2)
’ 2sinh(a,La/2) = >—az].

p(z) =exp [aLA ( (3.2.9)

In the case of backward pumping, g; = 0 in Eq. (3.2.8), and the solution of Eq. (3.2.6)

is found to be (@,2)
exp(a,z) — 1
= Ly | ——2Y | 2.
p(2) eXp{a A [exp(apLA)_l] az}, (3.2.10)

where g, was again chosen to ensure that p(Ls) = 1.

The solid line in Figure 3.2 shows how p(z) varies along the fiber in the case of
backward pumping for L4 = 50 km using & = 0.2 dB/km and &, = 0.25 dB/km. The
case of bidirectional pumping is shown with a dashed line. The case of lumped ampli-
fication is also shown for comparison by a dotted line. Whereas average signal power
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varies by a factor of 10 in the lumped case, it varies by less than a factor of 2 in the
case of backward-pumped distributed amplification. Moreover, it varies by less than
15% in the case of a bidirectional pumping scheme, showing that this scheme is close
to the ideal situation in which fiber losses are compensated fully all along the fiber. The
range over which p(z) varies depends on the pump-station spacing L4. For example,
p(z) varies by a factor of 100 or more when L4 = 100 km if lumped amplification is
used but by less than a factor of 2 when a bidirectional pumping scheme is employed.

3.3 Impact of Fiber Dispersion

As seen in Eq. (3.1.4), the effective refractive index of the fiber mode depends on
the frequency of light launched into it. As a result, different spectral components of
the signal travel at slightly different group velocities within the fiber, a phenomenon
referred to as group-velocity dispersion (GVD). The GVD parameter 8, appearing in
Eq. (3.1.12) governs the strength of such dispersive effects. We discuss in this section
how GVD limits the performance of lightwave systems. To simplify the following
discussion, we neglect the nonlinear effects in this section and set y=01in Eq. (3.1.12).
Assuming that fiber losses are compensated periodically, we also set & = 0 in this
equation. Dispersive effects are then governed by a simple linear equation:

. 2
dA [ ifd"A _ (3.3.1)

dz + 2 o

This equation is similar to the paraxial wave equation governing diffraction of optical
beams in free space in one transverse dimension [17]. The only difference is that the
GVD parameter 3, can be positive or negative depending on whether the optical signal
experiences normal or anomalous dispersion. In the diffraction case, the second term
in Eq. (3.3.1) is always positive. Nevertheless, the analogy between dispersion in time
and diffraction in space can often be exploited to advantage.

3.3.1 Chirped Gaussian Pulses

The propagation equation (3.3.1) can easily be solved with the Fourier-transform method
and has the general solution

| R o ]
A(z,t) = 2—71:-/ A0, w)exp <—;—ﬂzzw2 — iwt) do, (3.3.2)
where A(0, @) is the Fourier transform of A(0,¢) and is obtained using
A(0,0) = / A(0, 1) explir) dt. (3.3.3)

In general, A(0,7) represents an entire optical bit stream and has the form of Eq. (2.2.1).
However, it follows from the linear nature of Eq. (3.3.1) that we can study the dispersive
effects for individual pulses without any loss of generality. We thus focus on a single
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pulse and use its amplitude at z = O as the initial condition in Eq. (3.3.3). For simplicity
of notation, we assume that the peak of the pulse is initially located at ¢ = 0.

Even though the shape of optical pulses representing 1 bits in a bit stream is not
necessarily Gaussian, one can gain considerable insight into the effects of fiber disper-
sion by focusing on the case of a chirped Gaussian pulse with the input field

A(0,1) = Agexp|— 1 (1 +iC)(t/Tp)?), (3.3.4)

where Ag is the peak amplitude and Ty represents the half-width of the pulse at 1/e
power point. This width is related to the full width at half-maximum (FWHM) of the
input pulse by the relation

Tewnm = 2(In2)'/%Ty ~ 1.665T;. (3.3.5)

The parameter C in Eq. (3.3.4) governs the frequency chirp imposed on the pulse.
Quadratic changes in the phase in Eq. (3.3.4) correspond to linear frequency variations.
For this reason, such pulses are said to be linearly chirped.

The spectrum of a chirped pulse is always broader than that of an unchirped pulse
of the same width. This can be seen for Gaussian pulses by substituting Eq. (3.3.4) in
Eq. (3.3.3). The integration over ¢ can be performed analytically using the well-known

identity [18]
/ exp(—ax”+bx)dx =/ —exp| —— |. (3.3.6)
e a 4a

The result is found to be

- 2272\ /2 W?T?
A(0,0)=A 0 -0 | 3.
0, 0) °<1+ic) CXP[ 2(1+iC)] (337

The spectral half-width (at 1/e power point) is given by

Awy =V 1+CTy. (3.3.8)

In the absence of frequency chirp (C = 0), the spectral width satisfies the relation
AwyTy = 1. Such a pulse has the narrowest spectrum and is called transform-limited.
The spectral width is enhanced by a factor of (1+C?)!/2 for a linearly chirped Gaussian
pulse.

To find the pulse shape at a distance z inside the fiber, we substitute Eq. (3.3.7) in
Eq. (3.3.2). The integration over @ can also be performed analytically using Eq. (3.3.6)
and leads to the expression

A(S.1)

. 2 .
p _OHC)E <——€—> , (3.3.9)

_ 0
T Vh P g T2 1+CE

where the normalized distance & = z/Lp is introduced using the dispersion length Lp
defined as Lp = T /|B,|. The parameters by and Cy vary with & as

br(E) =[(1+sCEV+EX2, () =C+s(1+CP)E, (3.3.10)
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Figure 3.3: Broadening factor (a) and the chirp parameter (b) as a function of distance for
a chirped Gaussian pulse propagating in the anomalous-dispersion region of a fiber. Dashed
curves correspond to the case of an unchirped Gaussian pulse. The same curves are obtained for
normal dispersion (3, > 0) if the sign of C is reversed.

where s = sgn(f3,) takes values +1 or —1, depending on whether the pulse propagates
in the normal- or the anomalous-dispersion region of the fiber.

Itis evident from Eq. (3.3.9) that a Gaussian pulse remains Gaussian on propagation
but its width and chirp change as dictated by Eq. (3.3.10). At a distance &, the width
of the pulse changes from its initial value Ty to Tj (&) = Toby(&). Clearly, the quantity
by represents the broadening factor. In terms of the pulse and fiber parameters, it can

be expressed as
Cphoz 2 Bz 2
1+ —5 e
( 72 > i ( 77

The chirp parameter of the pulse also changes from C to C) as it is transmitted through
the fiber. It is important to note that the evolution of the pulse is affected by the signs
of both B, and C.

Figure 3.3 shows (a) the broadening factor by and (b) the chirp parameter C; as
a function of the normalized distance & = z/Lp in the case of anomalous dispersion
(B2 < 0). An unchirped pulse (C = 0) broadens monotonically by a factor of (14 &2)!/2
and develops a negative chirp such that C; = —£& (the dotted curves). Chirped pulses, on
the other hand, may broaden or compress depending on whether 3, and C have the same
or opposite signs. When f3,C > 0, a chirped Gaussian pulse broadens monotonically at
a rate faster than that of the unchirped pulse (the dashed curves). The reason is related
to the fact that the dispersion-induced chirp adds to the input chirp because the two
contributions have the same sign.

The situation changes dramatically for 8,C < 0. In this case, the contribution of the
dispersion-induced chirp is of a kind opposite to that of the input chirp. As seen from

1/2

bi(z) = (3.3.11)
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Figure 3.3(b) and Eq. (3.3.10), C| becomes zero at a distance & = |C|/(1+C?), and the
pulse becomes unchirped. This is the reason why the pulse width initially decreases in
Figure 3.3(a) and becomes minimum at that distance. The minimum value of the pulse
width depends on the input chirp parameter as

T/ = Ty /v 14 C2. (3.3.12)

By comparing this equation with Eq. (3.3.8), one can conclude that the pulse becomes
transform-limited at that distance. The pulse rebroadens beyond this point and its width
eventually becomes larger than the input value. One can understand this behavior using
the analogy noted earlier between temporal dispersion and spatial diffraction. Chirping
in time for a pulse is analogous to curving of the wavefront for an optical beam. Just as
a converging beam focuses to a minimum width before it diverges, a suitably chirped
pulse can reduce its width before it broadens monotonically.

3.3.2 Pulses of Arbitrary Shape

The analytic solution in Eq. (3.3.9), although useful, has only a limited validity as
it applies to Gaussian-shape pulses that are affected by second-order dispersion f;.
In practice, pulse shape can be different. Moreover, third-order dispersion effects,
governed by 33, may become important close to the zero-dispersion wavelength of the
fiber. Even a Gaussian pulse does not remains Gaussian in shape and develops a tail
with an oscillatory structure when effects of B3 are included [19]. Such pulses cannot
be properly characterized by their FWHM. A proper measure of pulse width for pulses
of arbitrary shapes is the root-mean square (RMS) width of the pulse defined as
1/2
o, = (A -], (3.3.13)
where the angle brackets denote averaging with respect to the power profile of the
pulse, that is,
C SAG R

It turns out that &, can be calculated analytically for pulses of arbitrary shape,
while including dispersive effects to all orders, as long as the nonlinear effects remain
negligible. The derivation is based on the observation that the pulse spectrum does not
change in a linear dispersive medium irrespective of what happens to the pulse shape.
The first step thus consists of expressing the first and second moments in Eq. (3.3.13)
in terms of the spectral amplitude A(z, ) and its derivatives as

_: oo”'*a_"& 2 _1 =
=5 [ Aggie =5[]

where N = [*_|A(z, 0)|*d@ is a normalization factor related to pulse energy.
From Eq. (3.1.3), when nonlinear effects are negligible, different spectral compo-
nents propagate inside the fiber according to the simple relation

(3.3.14)

2
3—2 dw, (3.3.15)

A(z,0) = A0, w) exp[iBL(@)z — iBoz], (3.3.16)
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where the propagation constant f; (@) includes dispersive effects to all orders. We
substitute this relation in Eq. (3.3.15) and introduce the amplitude S(®) and phase
6(®) of the input spectrum as A(0, ®) = Se’®. The spectral phase 8 plays an important
role as it is related to the frequency chirp of the pulse. Using Eq. (3.3.13), the RMS
width o), at z = L is found from the relation

05 (L) = 05 +[(7%) = (2)?] +2[(760) ~ (71)(60)), (3.3.17

where the angle brackets now denote average over the input pulse spectrum such that

(= ]—i,-/_if(w)Sz(w)dw- (3.3.18)

In Eq. (3.3.17), 09 is the RMS width of input pulses, 8, = d8/d®, and 7 is the group
delay for a fiber of length L defined as

() = (dfL/dw)L. (3.3.19)

Equation (3.3.17) can be used for pulses of arbitrary shape, width, and chirp. It
makes no assumption about the form of B (®) and thus can be used for fiber links
containing multiple fibers with arbitrary dispersion properties. A general conclusion
that follows from this equation and Eq. (3.3.19) is that 0'3 (L) is at most a quadratic
polynomial of the fiber length L. As a result, the broadening factor can be written in its
most general form as

fo = (1+c1L+ L)', (3.3.20)

where ¢ and ¢; depend on the pulse and fiber parameters. This form applies for pulses
of any shape propagating inside a fiber link with arbitrary dispersion characteristics.

As a simple application of Eq. (3.3.17), we consider the case of a rectangular-shape
pulse of width 2Ty for which A(0,7) = Aq for |t] < Ty and O otherwise. Taking the
Fourier transform of A(0,¢), we obtain the spectral amplitude A(0, @) of such a pulse
and find that

S(®) = (2A0Ty) sinc(0Tp),  O(w) =0. (3.3.21)

Expanding f(®) to second-order in @, the group delay is given by 7(®) = (f; +
B,®)L. We can now calculate all averaged quantities in Eq. (3.3.17) and find that

(=BL () =Bl +BL /205, (3.3.22)
whereas (70g) = 0 and (8y) = 0. The final result for the RMS width is found to be
02(L) = 0g + 3 ToE* = o (1 + 387), (3.3.23)

where we used the relation of = 72 /3 together with & = L/Lp. Thus, the broadening
factor for a rectangular pulse has the form of Eq. (3.3.20) with ¢; =0 and ¢ = %
Noting that ¢; =0 and c¢; = 1 for Gaussian pulses, we conclude that a rectangular pulse
broadens more than a Gaussian pulse under the same conditions. This is expected in

view of the sharper edges of such a pulse that produce a wider spectrum.
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As a second application of Eq. (3.3.17), we use it to calculate broadening experi-
enced by an unchirped pulse whose shape is in the form of a hyperbolic secant, that is,
A(0,1) = Agsech(z/Tp). Such pulses are relevant for soliton-based lightwave systems
(see Section 8.2). Taking the Fourier transform of A(0,¢), we find

S(0) = (tAgTy) sech(TwTy/2),  6(w) = 0. (3.3.24)

As before, using 7(®) = (1 + @)L, we can calculate all averages in Eq. (3.3.17).
Utilizing the known integral [*_x?sech(x)dx = 12 /6 [18), we find that

(ty =BiL, (%) =B +m*PFL*/(1275), (3.3.25)

with (T6p) = 0 and (8,) = 0. The RMS width of sech-shape pulses increases with
distance as

or(L) =03 (1 +1&%), (3.3.26)

where we used the relation 67 = 72T /6 together with & = L/Lp. The factor of %
indicates that “sech” pulses broaden less than a Gaussian pulse under the identical
conditions. This is expected as the tails of a sech pulse decay slower than a Gaussian
pulse.

As another application of Eq. (3.3.17), we use it to include the effects of third-order
dispersion on chirped Gaussian pulses. Expanding (@) to third-order in ®, the group
delay is now given by

t(0) = (B + prw+ 1 f30*)L. (3.3.27)

Using Eq. (3.3.7) with A = Se’®, we obtain the following expressions for S and 6:

—tan ' C, (3.3.28)

, 4rAlcl 20’07 Ca’o}
S((l)): 1+C2 ex —1+C2 3 ()=_—_

where we used 0'& = TO2 /2. All averages in Eq. (3.3.17) can be performed analytically
using Eqgs. (3.3.27) and (3.3.28). The final result is found to be

_g%: <1+CﬂzL>2+ (&g)Z (M(ch))f (3.3.29)

207 207 4203

The last term represents the contribution of third-order dispersion.

3.3.3 Effects of Source Spectrum

The discussion so far has assumed that the optical source used to produce the input
pulses is nearly monochromatic or, more precisely, the source spectrum (before modu-
lation) is much narrower than the pulse spectrum. This condition is satisfied in practice
for DFB lasers, but not for light-emitting diodes utilized for some applications. To
account for the source spectral width, we must treat the optical field as a stochastic
process and consider the coherence properties of the source. In this case, the input field
should be written as A(0,1) = Ao()a,(t), where a,(t) represents the pulse shape and
fluctuations in Ag(¢) produce the finite bandwidth of the source spectrum.
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The effect of source fluctuations on pulse broadening can be included if we replace
() and {¢?) in Eq. (3.3.13) with ((#)); and ((t?));, where the outer angle brackets stand
for the ensemble average over source fluctuations. It is easy to see from the definition
of these moments that S(®) in Eq. (3.3.18) becomes a convolution of the pulse and the
source spectra such that

S(@) = /_ iSp(a)—a)l)F(wl)dwl, (3.3.30)

where S, (@) is the pulse spectrum related to Fourier transform of a,(t). The Fourier
transform F (@) of Ao(r) represents a fluctuating spectral component of the field at the
source. Assuming that the underlying stochastic process is stationary, its correlation
function has the form

(F*(@1)F (an))s = G(@1) (01 ~ @), (3.331)
where G(®) represents the source spectrum and the subscript s reminds us that the
angle brackets denote an ensemble average over source fluctuations.

The two moments, ((z))s and {(#?));, can be calculated analytically in the special
case in which the source spectrum is Gaussian and has the form

G(w) = (3.3.32)

L. ( w? >
——exp| ——— ),
CuV 2T P 203
where oy, is the RMS spectral width of the source. All averages in Eq. (3.3.17) can
now be performed analytically as all integrals involve only Gaussian functions. For
example, from Eqs. (3.3.18) and (3.3.30)

{T))s / dot{w / Sp{@—o)Sp(@— )(F* (o) F (an))doy da,.

(3.3.33)
If we use Eq. (3.3.31) together with T(®) = (B; + f@ + 5 B30*)L, we obtain

r)hz% /:O(Bl+,32w+%B3a)2)|S,,(a)—wl)lzG(wl)d(aldw. (3.3.34)

For a chirped Gaussian pulse, the pulse spectrum S,(®) is also Gaussian. As a
result, the integral over w; in Eq. (3.3.34) can be performed first, resulting in another
Gaussian spectrum. The integral over @ is then straightforward and yields

Bs

((t)s=L [ﬁl + 352 5(1 +C2+v2)] (3.3.35)

o
where V,, = 20,,0). Repeating the same procedure for {(t?)), we obtain the following
expression for the RMS width of the pulse at the end of a fiber of length L:

2
o2 CBL\? BL\? BsL
M A 14+ V2 (_) 14+C*+V2)? . (3336
o¢ ( 2og> TI+Ya) 26¢ TUHCHV) 4206} ( )

Equation (3.3.36) provides an expression for dispersion-induced broadening of Gaussian
input pulses under quite general conditions. We use it in the next subsection to find the
limiting bit rate of lightwave systems.
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3.3.4 Limitations on the Bit Rate

The pulse-broadening formula in Eq. (3.3.36) is useful for estimating the limitations
imposed on the bit rate and the system length by fiber dispersion. These limitations
can be quite different depending on whether source spectral width is larger or smaller
than the pulse bandwidth. For this reason, we consider the two cases separately.

Optical Sources with a Large Spectral Width

This case corresponds to Vi > 1 in Eq. (3.3.36). Consider a lightwave system oper-
ating away from the zero-dispersion wavelength so that the B3 term can be neglected.
The effects of frequency chirp are negligible for sources with a large spectral width.
By setting C = 0 and using Vy, = 20,0y in Eq. (3.3.36), we obtain

62 = 6 + (B:L6y)* = o + (DLGy )?, (3.3.37)

where o, is the RMS source spectral width in wavelength units. The output pulse
width is thus given by

o = (¢ +03)/?, (3.3.38)

where op = |D|Loj provides a measure of dispersion-induced broadening.

To relate ¢ to the bit rate, we use the requirement that the broadened pulse should
remain inside its allocated bit slot, T3 = 1/B, where B is the bit rate. A commonly
used criterion is 0 < Tg/4; for Gaussian pulses at least 95% of the pulse energy then
remains within the bit slot. With this criterion, the bit rate is limited by the condition
4Bc < 1. In the limit 6p > 0y, ¢ = 6p = |D|L0y, and the condition becomes

4BL|D|c; < 1. (3.3.39)

This is a remarkably simple result. It can be written as BL|D|AA < 1, where AL =40,
is the full spectral width containing 95% of the source power.

For a lightwave system operating exactly at the zero-dispersion wavelength, f; =0
in Eq. (3.3.36). By setting C = 0 as before and assuming V,, > 1, Eq. (3.3.36) can be
approximated by

0% =g + L(BLol) = of + L (SLo7 ), (3.3.40)

where the dispersion slope S = (27¢/4)2B;. The output pulse width can be written
in the form of Eq. (3.3.38) but op = |S|Lo?/ V2. As before, we can relate o to the
limiting bit rate using the condition 4B6 < 1. When op >> 0y, the limitation on the bit
rate is governed by

V8BL|S|c? < 1. (3.3.41)

As an example, consider the case of a light-emitting diode (LED) for which o) ~
15 nm. If we use D = 17 ps/(km-nm) as a typical value for standard telecommunica-
tion fibers at 1.55 um, Eq. (3.3.39) yields BL < 1 (Gb/s)-km. This condition implies
that LEDs can transmit a 100-Mb/s bit stream over at most 10 km. However, if the
system is designed to operate at the zero-dispersion wavelength, BL can be increased
to 20 (Gb/s)-km for a typical value of § = 0.08 ps/(km-nmz).
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Figure 3.4: Limiting bit rate of single-mode fibers as a function of the fiber length for o3 =0,
1, and 5 nm. The case ¢, = 0 corresponds to the case of an optical source whose spectral width
is much smaller than the bit rate.

Optical Sources with a Small Spectral Width

This situation corresponds to Vy, < 1 in Eq. (3.3.36). Consider first the case in which
the B3 term can be neglected. Also assume that input pulses are unchirped and set
C =01in Eq. (3.3.36). The RMS pulse width at the fiber output is then given by

6% =04 + (ByL/20p)° = 62 + o3, (3.3.42)

Although this equation appears identical to Eq. (3.3.38), there is a major difference
between the two. More specifically, op in Eq. (3.3.42) depends on the initial width
Gp, whereas it is independent of 6y in Eq. (3.3.38). In fact, 6 in Eq. (3.3.42) can be
minimized by choosing an optimum value of ¢y. Setting do/doy = 0, the minimum
value of & is found to occur for 6o = 6p = (|B2|L/2)"/? and has a value & = (|B|L) /2.
The limiting bit rate is obtained using the condition 4B < 1 and leads to

4B\/|BIL < 1. (3.3.43)

The main difference from Eq. (3.3.39) is that B scales as L~!/2 rather than L~ Figure
3.4 compares the decrease in the bit rate with increasing L for 63 =0, 1, and 5 nm for
a fiber link with D = 16 ps/(km-nm). Equation (3.3.43) was used for the trace marked
o, =0.

For a lightwave system operating close to the zero-dispersion wavelength, > ~ 0
in Eq. (3.3.36). Using V,, < 1 and C =0, the pulse width is then given by

02 =0t + (BsL/403)? /2 = o + oB. (3.3.44)
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Similar to the case of Eq. (3.3.42), ¢ can be minimized by optimizing the input pulse
width 6,. The minimum value of & occurs for 6y = (|B3|L/4)!/? and is given by

o =/3/2(Bs|L/4)'". (3.3.45)
The limiting bit rate is obtained from the condition 4Bc < 1 and is found to be
B(|B|L)'/ < 0.324. (3.3.46)

The dispersive effects are most forgiving in this case. For a typical value of the third-
order dispersion parameter, B3 = 0.1 ps’/km, L can exceed 340,000 km at a bit rate
of 10 Gb/s. It decreases rapidly for larger bit rates since L scales with B as B3 but
exceeds 5,300 km even at B = 40 Gb/s. The dashed line in Figure 3.4 shows this case
by using Eq. (3.3.46) with B3 = 0.1 ps*/km. The main point to note from this figure is
that the performance of a lightwave system can be improved considerably by operating
it near the zero-dispersion wavelength of the fiber and using optical sources with a
relatively narrow spectral width.

Effects of Frequency Chirp

The input pulse in all preceding cases has been assumed to be an unchirped Gaussian
pulse. In practice, optical pulses are often non-Gaussian and may exhibit considerable
chirp. A super-Gaussian model has been used to study the bit-rate limitation imposed
by fiber dispersion for a NRZ-format bit stream [20]. In this model, Eq. (3.3.4) is

replaced with
14+iC (1 \*"
2 To

where the parameter m controls the pulse shape. Chirped Gaussian pulses correspond
to m = 1. For large value of m the pulse becomes nearly rectangular with sharp leading
and trailing edges. The output pulse shape can be obtained by solving Eq. (3.3.1)
numertcally. The limiting bit rate—distance product BL is found by requiring that the
RMS pulse width does not increase above a tolerable value.

Figure 3.5 shows the BL product as a function of the chirp parameter C for Gaussian
(m = 1) and super-Gaussian (m = 3) input pulses. In both cases the fiber length L at
which the pulse broadens by 20% was obtained for Ty = 125 ps and B, = —20 ps*/km.
As expected, the BL product is smaller for super-Gaussian pulses because such pulses
have sharper leading and trailing edges and thus broaden more rapidly than Gaussian
pulses. The BL product is reduced dramatically for negative values of the chirp pa-
rameter C. This is due to enhanced broadening occurring when f,C is positive (see
Figure 3.3). Unfortunately, C is generally negative for directly modulated semiconduc-
tor lasers with a typical value of —6 at 1.55 um. Since BL < 100 (Gb/s)-km under
such conditions, fiber dispersion limits the bit rate to about 2 Gb/s even for L = 50 km.
The chirp problem is usually solved for systems operating at 10 Gb/s or more by op-
erating the laser continuously and employing an external modulator for generating the
bit stream (see Section 2.3). The dispersion problem can also be alleviated to a large
extent by using dispersion compensation along the fiber link, a topic we discuss next.

A(0,t) = Apexp

) (3.347)
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Figure 3.5: Dispersion-limited BL product as a function of the chirp parameter for Gaussian
(solid curve) and super-Gaussian (dashed curve) input pulses. (After Ref. [20]; ©1986 OSA.)

3.3.5 Dispersion compensation

It should be evident from the discussion in this section that dispersion is a major limit-
ing factor for any long-haul lightwave system. Fortunately, there is a simple solution to
the dispersion problem, and it is often used in practice. The basic idea consists of com-
pensating dispersion along the fiber link in a periodic fashion using fibers with oppo-
site dispersion characteristics. Figure 3.6 shows such a fiber link made with alternating
fiber sections exhibiting normal and anomalous GVD at the channe] wavelength. Since
B> is negative (anomalous GVD) for standard fibers in the 1.55-pm region, dispersion-
compensating fibers (DCFs) with large positive values of B, have been developed for
the sole purpose of dispersion compensation [21]-[24]. The use of DCFs provides an
all-optical technique that is capable of overcoming the detrimental effects of chromatic
dispersion in optical fibers, provided the average signal power is low enough that the
nonlinear effects remain negligible.

The periodic arrangement of fibers shown in Figure 3.6 is referred to as a dispersion
map. To understand how such a dispersion-compensation technique works, consider
propagation of optical signal through one map period of length L,, consisting of two
fiber segments with different dispersion parameters. Applying Eq. (3.3.2) for each fiber
section consecutively, we obtain

A(Lpy,t) = 2—1ﬂ—/_m/§(0, ) exp [%wz(ﬁzm + Bh) —iot| do, (3.3.48)

where L,, = 1; +1; and B,; is the GVD parameter for the fiber segment of length [; (j =
1 or 2). If the second fiber is chosen such that the phase term containing ®? vanishes,
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Figure 3.6: Schematic of a fiber link employing alternating fiber sections with normal and anom-
alous dispersions between two successive amplifiers. The lengths and dispersion parameters of
two types of fibers are chosen to minimize dispersion-induced degradation of the optical bit
stream.

Eq. (3.3.48) shows that A(L,,,t) = A(0,t), that is, the optical bit stream recovers its
original shape at the end of the second fiber, no matter how much it becomes degraded
in the first fiber. The condition for perfect dispersion compensation is thus given by

Borli + B2l =0 or Dyly+ Dyl =0, (3.3.49)

where the dispersion parameter D is related to B as in Eq. (3.1.7).

Equation (3.3.49) shows that the two fibers must have dispersion parameters with
opposite signs. For most lightwave systems, the transmission fiber exhibits anomalous
dispersion (D1 > 0) near 1.55 um. The DCF section in that case should exhibit normal
GVD (D, < 0). Moreover, its length should be chosen to satisfy

I = —(Dy/Dy)l;. (3.3.50)

For practical reasons, /, should be as small as possible. This is possible only if the
DCF has a large negative value of D;. In practice, L,, is chosen to be the same as the
amplifier spacing L4, where as the length / is a small fraction of L4. The DCF is then
a part of the amplifier module, and the two together compensate both the fiber loss and
fiber dispersion simultaneously. The design of DCFs is discussed in Chapter 7 devoted
to the topic of dispersion management.

3.4 Polarization-Mode Dispersion

In this section we return to the polarization issue, ignored so far in this chapter. As
mentioned in Section 3.1, the polarization unit vector in Eq. (3.1.1), representing the
state of polarization (SOP) of the electric field vector, does not remain constant in prac-
tical optical fibers. Rather, it changes in a random fashion along the fiber because of its
fluctuating birefringence. There are two main sources of this birefringence. Geometric
or form-induced birefringence is related to small departures from perfect cylindrical
symmetry that occur during fiber manufacturing and produce a slightly elliptical core.
Both the ellipticity and axes of the ellipse change randomly along the fiber on a length
scale ~10 m. The second source of birefringence has its origin in anisotropic stress
produced on the fiber core during manufacturing or cabling of the fiber. This type of
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birefringence can change with time because of environmental-induced changes in the
position or temperature of the fiber. Such dynamic changes in fiber birefringence are
relatively slow as they occur on a time scale of minutes or hours but they make the SOP
of light totally unpredictable at any point inside the fiber.

Changes in the SOP of light are normally not of concern for lightwave systems be-
cause (1) information is not coded using polarization and (2) photodetectors detect the
total power incident on them irrespective of the SOP of the optical signal. However, a
phenomenon known as polarization-mode dispersion (PMD) induces pulse broadening
whose magnitude can fluctuate with time because of environmental-induced changes in
fiber birefringence. If the system is not designed with the worst-case scenario in mind,
PMD-induced puise broadening can move bits outside of their allocated time slots, re-
sulting in errors and system failure in an unpredictable manner. The problem becomes
serious as the bit rate increases and is of considerable concern for lightwave systems
in which each channel operates at a bit rate of 10 Gb/s or more. For this reason, the
impact of PMD on system performance has been studied extensively [25]-[30].

3.4.1 Fibers with Constant Birefringence

Before focusing on the effects of random birefringence, it is instructive to consider first
fibers with constant birefringence. The discussion in this section thus applies to the
so-called polarization-maintaining fibers in which a large birefringence is intentionally
induced to mask the effects of small fluctuations resulting from manufacturing and
environmental perturbations.

How does the phenomenon of birefringence affect pulses propagating inside an
optical fiber? To answer this question, one must first note that even a single-mode fiber,
in fact, supports two orthogonally polarized modes that are degenerate in all respects
and propagate with the same propagation constant at a given frequency when the fiber
exhibits perfect cylindrical symmetry. The main consequence of fiber birefringence
is to break the degeneracy associated with these two modes such that they propagate
inside the fiber with slightly different propagation constants. Mathematically, B, is
different for the two modes because the effective mode index 7 is not the same for them.
If we represent the mode indices by 7, and 7, for the field components polarized along
the x and y axes, respectively, the index difference An = 7, — 7, provides a measure
of birefringence. The two axes along which the modes are polarized are known as the
principal axes.

When an input pulse is initialty polarized along a principal axis, its SOP does not
change with propagation because only one of the two polarization modes is excited.
However, the phase velocity v, = ¢/ and the group velocity v, = ¢/fig, where 7 is
the group index, are not the same for the two principal axes. It is common to choose the
x direction along the principal axis with the larger mode index and call it the slow axis.
The other axis is then referred to as the fast axis. When an input pulse is not polarized
along a principal axis, its energy is divided into two parts as it excites both polarization
modes. The fraction of energy carried by each mode depends on the input SOP of
the pulse; for example, both modes are equally excited when input pulse is polarized
linearly at an angle of 45° with respect to the slow axis. The two orthogonally polarized
components of the pulse separate from each other and disperse along the fiber because
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Figure 3.7: Propagation of an optical pulse in a fiber with constant birefringence. Pulse splits
into its orthogonally polarized components that separate from each other because of DGD in-
duced by birefringence.

of their different group velocities. Since the two components arrive at different times
at the output end of the fiber, the pulse splits into two pulses that are orthogonally
polarized. Figure 3.7 shows birefringence-induced pulse splitting schematically.

The extent of pulse splitting can be estimated from the time delay A7 in the arrival
of the two polarization components of the pulse at the fiber end. For a fiber of length
L, At is given by

L L

Vex 2y

At = = L|Bix — iyl = L(AB), (3.4.1)

where AB; = vg_x1 — vg‘yl is related to the difference in group velocities along the two
principal SOPs [25]. The relative delay At between the two polarization modes is
called the differential group delay (DGD). The parameter AB; = At/L plays an im-
portant role as it is a measure of birefringence-induced dispersion. For polarization-
maintaining fibers, Af can be quite large (~1 ns/km) because of their large birefrin-
gence (An ~ 1074). Conventional fibers exhibit much smaller birefringence (An ~
10~7), but its magnitude as well as orientation (directions of the principal axes) change
randomly at a length scale known as the correlation length /. (with typical values in the
range of 10-100 m). For a short fiber section of length much smaller than /.., birefrin-

gence remains constant but its DGD is below 10 fs/m.

3.4.2 Fibers with Random Birefringence

Consider a realistic long-haul lightwave system in which an optical pulse may prop-
agate thousands of kilometers before it is converted into an electrical signal. In this
situation, both the magnitude and the orientation of the birefringence vary along the
fiber in a random fashion on a length scale ~10 m. It is intuitively clear that the SOP
of the light propagating in such fiber links will generally be elliptical and would change
randomly along the fiber during propagation. The SOP will also be different for dif-
ferent spectral components of an optical pulse. The final polarization state is not of
concern for most lightwave systems as photodetectors used inside optical receivers are
insensitive to the SOP unless a coherent detection scheme is employed. What affects
such systems is not the random SOP of light but pulse distortion induced by random
changes in the birefringence.



3.4. Polarization-Mode Dispersion 85

Local birefringence axes /Fi ber sections \

Figure 3.8: Schematic of the technique used for calculating the PMD effects. Optical fiber is
divided into a large number of segments, each acting as a wave plate with different birefringence.

As seen in Figure 3.7, an input pulse splits into two orthogonally polarized com-
ponents soon after it enters the fiber link. The two components begin to separate from
each other at a rate that depends on the local birefringence of the fiber section. How-
ever, within a correlation length or so, the pulse enters a fiber section whose birefrin-
gence is different in both the magnitude and the orientation of the principal axes. Be-
cause of the random nature of such birefringence changes, the two components of the
pulse perform a kind of random walk, each one advancing or retarding with respect to
another in a random fashion. This random walk helps the pulse in the sense that the two
components are not torn apart but, at the same time, the final separation AT between
the two pulses becomes unpredictable, especially if birefringence fluctuates because of
environmentally induced changes. The net result is that pulses appear distorted at the
end of the fiber link and may even be shifted from their original location within the bit
slot. When such PMD-induced distortions move pulses outside their allocated bit slot,
the performance of a lightwave system is seriously compromised.

The analytical treatment of PMD is quite complex in general because of its sta-
tistical nature. A simple model divides the fiber into a large number of segments, as
shown schematically in Figure 3.8. Both the degree of birefringence and the orienta-
tion of the principal axes remain constant in each section but change randomly from
section to section. In effect, each fiber section is treated as a phase plate with different
birefringence characteristics. One can employ the Jones-matrix formalism [31]-[33]
for studying how the SOP of light at any given frequency changes with propagation
inside each fiber section [25]. Propagation of each frequency component associated
with an optical pulse through the entire fiber length is then governed by a composite
Jones matrix obtained by multiplying individual Jones matrices for each fiber section.

It is useful to employ the “ket vector” notation of quantum mechanics for studying
the PMD effects [28] and write the Jones vector associated with the optical field at a
specific frequency w in the form of a “column vector” as

Az, @) = (ﬁigz’);) (34.2)

where z represents distance within the fiber. The effect of random changes in birefrin-
gence for a fiber of length L is then governed by the matrix equation

A(L, )) = TnTn-1---T2T1|A(0, )) = Te(0)|A(0, ®)), (34.3)

where T j(®) is the Jones matrix of the jth section and T¢(®) is the composite Jones
matrix of the whole fiber. It turns out that one can find two principal states of po-
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larization (PSPs) for any fiber with the property that, when a pulse is polarized along
them, the SOP at the output of fiber is independent of frequency to first order, in spite
of random changes in fiber birefringence [25]. The PSPs are analogous to the slow
and fast axes associated with fibers of constant birefringence, but they are in general
elliptically polarized. An optical pulse polarized along a PSP does not split into two
parts and maintains its shape. However, the pulse travels at different speeds for the
two PSPs. The DGD can still be defined as the relative delay A7 in the arrival time of
pulses polarized along the two PSPs. However, it is important to stress that PSPs and
At depend not only on the birefringence properties of fiber but also on its length L and
they change with L in a a random fashion.

In practice, PSPs are not known in advance, and launched pulses are rarely polar-
ized along one of them. Each pulse then splits into two parts that are delayed with
respect to each other by a random amount At. The PMD-induced pulse broadening is
characterized by the RMS value of A7, obtained after averaging over random birefrin-
gence changes. Several approaches have been used to calculate this average [34]-[37].
The second moment of AT turns out to be the same in all cases and is given by

((AT)%) = Athys = 2(AB1)*Elexp(—z/1.) +z/1. — 1], (3.4.4)

where the correlation length I, is defined as the length over which two polarization
components remain correlated.

For short distances such that z < I, we note that Atrms = (ABy )z from Eq. (3.4.4),
as expected for a polarization-maintaining fiber. For distances z >> 1 km, a reasonable
estimate of pulse broadening is obtained by taking the limit z > [, in Eq. (3.4.4). The
result is found to be

Atrms ~ (A1) 20z = Dp /2, (3.4.5)

where D, is known as the PMD parameter. Measured values of D, vary from fiber
to fiber in the range D, = 0.01-10 ps/kml/ 2. Fibers installed during the 1980s had a
relatively large PMD with D, often exceeding ! ps/kml/ 2, In contrast, modern fibers
are designed to have low PMD, and typically D), < 0.1 ps/km'/? for them. Because
of the /L dependence, PMD-induced pulse broadening is relatively small compared
with the GVD effects. For example, Atgms = 1 ps for a fiber length of 100 km, if
we use D, = 0.1 ps/km'/2, and can be ignored for pulse widths >10 ps. However,
PMD becomes a limiting factor for lightwave systems designed to operate over long
distances at high bit rates [25]-[28].

The average in Eq. (3.4.5) denotes an ensemble average over fluctuations in the
birefringence of a fiber. For a given fiber of certain length, AT has a constant value at
a fixed wavelength. However, this value fluctuates from fiber to fiber in an ensemble
of fibers that are identical in all respects except for random variations in their birefrin-
gence. Often, it is not practical to make extensive measurements on a large ensemble
of such fibers. However, DGD also fluctuates with the wavelength of light even for
one member of such an ensemble. An average of DGD over a reasonably large wave-
length range provides a good approximation to the ensemble average indicated in Eq.
(3.4.5), in view of the ergodic theorem valid for any stationary random process. Figure
3.9 shows experimentally measured variations in At over a 20-nm-wide range in the
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Figure 3.9: Measured variations in At over a 20-nm-wide spectral range for a fiber with mean
DGD of 14.7 ps. (After Ref. [28]; (©)2002 Elsevier.)

spectral region near 1.55 um for a fiber with the mean DGD of 14.7 ps [28]. As seen
there, the measured values of DGD vary randomly from as small as 2 ps to more than
30 ps depending on the wavelength of light propagating through the fiber.

3.4.3 Jones-Matrix Formalism

In this subsection we extend the treatment of Section 3.1 to include the polarization
effects and develop a vector theory of pulse propagation based on the Jones-matrix
formalism [31]-[33]. To simplify the following discussion, we ignore the nonlinear
effects and assume that fiber losses are polarization-independent. The polarization
dependence of the signal loss or gain is discussed in Section 3.5.

In the vector case, Eq. (3.1.1) should include both polarization components of the
optical field as

E(r,1) = Re{[&A.(z,7) + §A,(z,1)]F (x,y) exp[ifav ()2 — it ]}. (3.4.6)

The two field components have the same frequency but different propagation constants
Bx and B, because of birefringence, and B,y is their average value. In the frequency
domain, the two polarization components evolve as

%Az;r_ = i[ﬁav(a)) + %Aﬁ(w)]’ %Az_y = i{Bav(w) - %Aﬁ(a))], 34.7)

where Af represents the difference between the two propagation constants. It is im-
portant to stress that both the average and the difference depend on the frequency of
incident light.

To analyze pulse propagation, we consider each frequency component of the pulse
separately. As in Section 3.1, we expand Bay(®) and A (@) in a Taylor series around
the carrier frequency @y and write them in the form

Bav (@) = Bo+ Bi{Aw) + %(Aw)z, AB(®) ~ Ay + AP (A®), (3.4.8)
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where Aw = ® — @y. We have ignored even the quadratic term in the expansion of Af;
this approximation amounts to assuming that the GVD is not affected by birefringence.
As before, a subscript in the expansion parameters represents the order of the derivative
with respect to frequency. Following the method outlined in Section 3.1, we convert
Eq. (3.4.7) to the time domain and obtain the following set of two equations for the two
polarization components of the pulse:

A, AP A, i I%A, a i

= %4y iapea, 4.
R R P N R T (3:4.9)
0Ay ABiJA, ifrd*A, a, i
I T T (3410

where time is measured in a frame moving at the average group velocity vy = 1/8).
The birefringence effects appear in these equations through the parameters Afy and
AP, . The former produces a differential phase shift, while the latter leads to a temporal
delay (DGD) between the two components.

Equations (3.4.9) and (3.4.10) assume that birefringence remains constant along
the fiber. In the case of randomly varying birefringence, we need to consider random
rotations of the birefringence axes within the fiber (see Figure 3.8). These rotations can
be included in a compact form if we write Egs. (3.4.9) and (3.4.10) in the Jones-matrix
notation. Introducing the Jones vector as in Eq. (3.4.2), we obtain

IA)  ABi—dlA) ifd*A)  a [
0z T2 Mg v — T M TR ARMIA), G4

where M is a 2 x 2 matrix defined as M = R~ 6, R. The rotation matrix R and the Pauli
spin matrices are defined as [31]

= cosy  siny 1 0 01 0 —i
R= <—sin!// cosl[/)’ o= <0 —1)’ 0= (1 0)’ 03 = (i 0)’
(34.12)
where y(z) is the angle by which the birefringence axes rotate as light passes a small
section of fiber between z and z+dz. It is easy to show that the matrix M can be written
in terms of the spin matrices as M = 0 cos 2y + 0, sin2y. Since W changes along the
fiber in a random fashion, M is a random matrix.

For discussing the PMD effects as simply as possible, we neglect the effects of
GVD and set B, = 0 in Eq. (3.4.11). The loss term can be removed by a simple trans-
formation as long as losses are polarization-independent. We assume this to be the case
in this section and set @ = 0. Since Eq. (3.4.11) is linear, it is easier to solve it in the
Fourier domain. Each frequency component |A(z, ®)) of the Jones vector is then found
to satisfy

8119_1:) = é(ABo +ABLw)M|A). (3.4.13)

PMD is a consequence of the frequency-dependent term in this equation.
It is useful to write the solution of Eq. (3.4.13) in the form [27]

|A(z,®)) = coW (2)|S(z, ®)), (3.4.14)
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where ¢, is a constant introduced to normalize |S) such that (S|S) = 1. The random
unitary matrix W (z) governs changes in the SOP of the field and is found by solving

oW i
S = 2 (AB)HW. (34.15)

It is easy to show from Egs. (3.4.13) through (3.4.15) that |S(z, ®)) evolves as

a|s [
;2 : 5 (AB) W' HW|S) = —iwBlS), (3.4.16)
where B = —(AB1/2)W 'MW is a random matrix governing birefringence fluctua-

tions. This stochastic differential equation governs the PMD effects in the simplest
form.

The origin of PMD lies in the frequency dependence of the Jones vector |S(z, ®))
associated with the field component at frequency @. This dependence can be made
more explicit by studying how |S(z, ®)) changes with o at a fixed distance z. We can
integrate Eq. (3.4.16) formally and write its solution as |S) = U|Sy), where |Sp) is the
initial Jones vector at z = 0 and the transfer matrix U depends on both z and w. If we
take the frequency derivative of this equation, we obtain

als) aU U ;

—1 ey
S = 518 =5-T7'I8) = ~ls), (3.4.17)

where Q = (U /dw)U ! is a matrix that shows how the SOP at a distance z evolves
with frequency. We can call it the PMD matrix as it describes the PMD effects in fibers.

To connect Q with the concepts of PSPs and DGD introduced earlier, we first note
that U is a unitary matrix that is, U1 = U", where U represents the adjoint matrix
with the property that U ]k = U,:j. The unitary matrix U can always be diagonalized as

Uluy) = exp(£i6/2)|uy), (3.4.18)

where the form of the two eigenvalues results from the property that the determinant of
a unitary matrix must be 1. It is easy to show that Q is a Hermitian matrix (Q" = Q),
and the eigenvalues of Q are real. If we denote the two eigenvectors of this matrix as
|p4) and |p_), the eigenvalue equation can be written as

Qlp+) = £1At|py), (3.4.19)

where A7 is the DGD of the fiber and |p. ) are the two PSPs associated with a fiber of
length z. In the first-order description of PMD, one assumes that the direction of two
PSPs does not change over the pulse bandwidth.

3.4.4 Stokes-Space Description

The PMD phenomenon is usually discussed in the Stokes space after introducing a
Stokes vector that represents the SOP of a specific frequency component of the optical
field on a sphere known as the Poincare sphere [31]-{33]. Although different notational
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conventions exist in the literature, we follow the notation of [31]. The north pole of the
Poincaré sphere corresponds to left-handed circular polarization in this convention.

The three-dimensional Stokes vector S is related to the two-dimensional Jones vec-
tor |S) through the Pauli spin matrices [26] as

S = (S|ol$), (3.4.20)

where 6 = ):3:1 oje; is the spin vector in the Stokes space spanned by three unit
vectors e, e, and e3. The spin vector plays an important role as it connects the Jones
and Stokes formalisms. To make this connection, one makes use of the fact that an
arbitrary 2 x 2 matrix can be written in the form

B=1(bol+b-0), (34.21)

where I is the identity matrix and b is a vector in the Stokes space. The four coefficients
in this expansion can be obtained from the relations

bo=Ti(B),  b;=Ti(0B), (3.4.22)

where Tr stands for the trace of a matrix (the sum of diagonal components).
The first step is to convert Eq. (3.4.16) into the Stokes space using the definition in
Eq. (3.4.21). If we use the well-known relations for the spin matrices [26]

6(a-0)=al+iax o0, (6-a)6 =al —iax o, (3.4.23)
where a is an arbitrary vector, the Stokes vector S is found to satisfy

a—S =wbxS, (3.4.24)

dz
where b is the birefringence vector whose components are related to the matrix B as
indicated in Eq. (3.4.22). Equation (3.4.24) shows that, as the light of any frequency @
propagates inside the fiber, its Stokes vector rotates on the Poincaré sphere around the
vector b at a rate that depends on @ as well as on the magnitude of local birefringence.
For a fiber of constant birefringence, S traces a circle on the Poincaré sphere, as shown
schematically in Figure 3.10(a). However, when b changes randomly along the fiber,
§ moves randomly over the surface of this sphere, as indicated in Figure 3.10(b). For
a long fiber of length L >> /., its motion can cover the entire surface of the Poincaré
sphere. Figure 3.10 also shows changes in the SOP of light within the fiber. For fibers
much longer than the correlation length, all memory of the input SOP is lost as, on
average, half of the input power appears in the orthogonally polarized component.

Transformations of the Stokes vector are normally described by 4 x 4 Miiller matri-

ces [311-[33]. In our case, light maintains its degree of polarization at its initial value
of 1, and the length of Stokes vector does not change as it rotates on the Poincaré sphere
because of birefringence fluctuations. Such rotations are governed by a transformation
of the form 8’ = RS, where R is a 3 x 3 rotation matrix. If the Jones vector changes as
|S"y = U|S), the rotation matrix R is related to the Jones matrix U as

Ro =U'el. (3.4.25)
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Figure 3.10: Evolution of the SOP within a fiber and the corresponding motion of the Stokes
vector on the surface of the Poincaré sphere for (a) L < /. and (b) L > I. . (After Ref. [25];
©1997 Elsevier.)

The unitray matrix U can be written in terms of the Pauli matrices as
U =1cos(0/2) —iu-osin(6/2) = exp[—i(8/2)u- o], (3.4.26)

where u is the Stokes vector corresponding to the Jones vector |u_) introduced in Eq.
(3.4.18). It follows from Eq. (3.4.26) that R corresponds to a rotation of the Stokes
vector on the Poincaré sphere by an angle 8 around the the vector u.

To describe the PMD effects, we convert Eq. (3.4.17) to the Stokes space. Noticing
that this equation has the same form as Eq. (3.4.16), we can write it in the Stokes space
in the form of Eq. (3.4.24). Expanding Q in terms of the spin matrices, noting that
Tr(Q) = 0, and using Q = %Q -6, we obtain

as _
Jo

The vector Q is known as the PMD vector as it governs the dispersion of the output
SOP of the field on the Poincaré sphere. Physically speaking, as optical frequency
changes, S rotates on this sphere around the vector Q. As defined, the PMD vector
points toward the fast PSP and its magnitude |Q| is directly related to the DGD At
between the field components polarized along the two PSPs [25]. Figure 3.11(a) shows
measured variations in the SOP at the output of a 147-km-long submarine fiber cable
at a fixed input SOP as the wavelength of transmitted light is varied over a 1.5-nm
range [38]. Figure 3.11(b) shows the output SOP for the same fiber over a narrow
spectral range of 18 GHz for three different input SOPs (frequency changes by 2 GHz
for successive dots). Even though SOP varies in a random fashion on the Poincaré
sphere over a wide wavelength range, it rotates on a circle when the frequency spread
is relatively small. The important point is that the axis of rotation is the same for all
input SOPs. The two directions of this axis point toward the two PSPs, and the direction
of the PMD vector coincides with the fast axis.

QxS. (3.4.27)
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Figure 3.11: (a) Changes in the SOP of light at the output of a 147-km-long fiber at a fixed input
SOP as the wavelength is varied over 1.5 nm. (b) SOP changes for the same fiber over a 18-GHz
bandwidth for three different input SOPs. The frequency of input light is changed by 2 GHz for
successive data points. (After Ref. [38]; ©1988 IEEE.)

To study the PMD effects, we need to know how the PMD vector changes along
the fiber as its birefringence fluctuates, that is, we need an equation for the derivative
of Q with respect to z. Such an equation can be obtained by differentiating Eq. (3.4.24)
with respect to @ and Eq. (3.4.27) with respect to z and eliminating the mixed second
derivative of S. Using the vector identity @ X (b x ¢) = b(a-c) — c(a - b), we obtain

%—QXS:be-i—a)(be)xS. (3.4.28)
z

Since the preceding equation is valid for any S, the PMD vector satisfies

8_9 =b+0bxQ. (3.4.29)

dz
This equation contains information about birefringence fluctuations through the vector
b, whose three elements are random variables as they are related to the matrix elements
of the random matrix B through Eq. (3.4.21). Notice that b enters Eq. (3.4.29) not only
as an additive term but also as a multiplicative term, both of which induce fluctuations
in the three components of the vector Q = Z?Zl Qje;. The DGD is related to these
components as

At = Q| = (Q} +QF+0Q3)'/?, (3.4.30)
and is itself a random variable. Its statistical properties are related to those of the
birefringence vector b and are the subject of the following subsection.

3.4.5 Statistics of PMD

To understand how Eq. (3.4.29) affects pulse propagation in optical fibers, we first need
to find the statistical properties of the PMD vector after adopting a suitable model for
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birefringence fluctuations along a fiber link. In general, we should include the effects of
a finite correlation length /. associated with such fluctuations as I. can vary over a wide
range from 1 m to 1 km depending on whether the fiber is spooled or cabled [25]. In
a simple but reasonably accurate model, b is treated as a three-dimensional, stationary,
stochastic process whose first two moments are

(bj(x)) =0,  (bj(D)bi(2)) = 1(AB1)*Sjrexp(—|z—7|/L), (3.4.31)

where j and k take on values 1, 2, or 3 and the angle brackets denote averaging over
birefringence fluctuations.

The general solution of the stochastic differential equation (3.4.29) is complicated
because of the last term. However, since this term represents a rotation of Q in the
Stokes space that does not affect the magnitude of the PMD vector, it does not influence
the statistics of DGD [see Eq. (3.4.30)]. For this reason, we ignore the last term in Eq.
(3.4.29) while considering the DGD statistics. The integration of Eq. (3.4.29) is then
straightforward and leads to

. N
Q,~(z):/0 i) de! = Ybi(an)dz (1=1,2,3) (34.32)

where the integral is approximated by a sum by dividing the fiber into N sections of
length Az.

Assuming that birefringence fluctuations in each section are independent, Q; rep-
resents the sum of a large number of independent random variables with the same sta-
tistical distribution. It follows from the central limit theorem that all three components
of the PMD vector Q satisfy a Gaussian distribution of the form

p(@)) = [27(03)] P exp [-Q2/(2(3))] . (3.4.33)

The variance (Qf) can be found from Eqs. (3.4.32) as

Z Z
(Q;(2)u(2)) = /0 d7z /0 (bj(Z )b (")) dZ". (3.4.34)
If we use Eq. (3.4.31) and carry out the indicated integrals, we obtain
(Q(2)u(2)) = 85 (AB1 )2 [exp(—z/lc) + 2/l —1]. (3.4.35)

The probability density function p(A7) of the DGD can now be found using the
relation in Eq. (3.4.30). In fact, the problem is identical to that solved by Maxwell
in the nineteenth century for finding the distribution of atomic velocities in a gas at
thermal equilibrium and leads to a form of p(A7) known as the Maxwellian distribu-
tion. It can be obtained by converting the joint probability density, p(Q,Q,,Q3) =
p(Q1)p(Q2)p(Q3), from Cartesian to spherical coordinates denoted by A7, 8, and ¢.
Integrating over the two angles, we obtain

p(At) = /0 " /0 " p(221)p(Q2)p(Q3)(AT)?sin8d0d9. (3.4.36)
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Figure 3.12: Measured histograms for individual components of the PMD vector (a) and for its
magnitude A7 (b) obtained using 10 km of spooled fiber. In both cases, the dashed curves show
the theoretical distribution and dots show the results of numerical simulations. (After Ref. [39];
©1991 OSA.)

Substituting p(Q;) from Eq. (3.4.33) and noting that the integrand does not depend on
the angles, integration over the two angles produces a factor of 47, and we obtain the
Maxwellian distribution

p(AT) = 3\/§M exp [ M] , (3.4.37)

3 B 2
T ATums 20T

where Atrvs is found from Egs. (3.4.30) and (3.4.35) and is identical to that given in
Eq. (3.4.4). At distances such that z > [, it can be approximated as indicated in Eq.
(3.4.5) and increases with distance z as /z.

The mean and variance of DGD can be calculated from Eq. (3.4.37) in a closed
form and are found to be

8 8
(AT) =13 ATrms,  Oar=1/1— 37 AR (3.4.38)

As a numerical example, consider a 1,000-km long fiber link with D, = 0.1 ps/ vkm,
resulting in ATrms = 3.16 ps. The average value and standard deviation of DGD for
such a fiber link are found to be 2.91 and 1.23 ps, respectively.

The statistical distributions found in Eqs. (3.4.33) and (3.4.37) have been observed
in several experiments performed using a variety of fibers. Figure 3.12 shows (a) the
histograms for the individual components of the PMD vector and (b) the histogram of
the DGD, obtained using a spooled fiber of 11.6-km length [39]. In this experiment,
the Stokes parameters were measured at the output end of the fiber over a 45-nm wave-
length range, and they were used to deduce the wavelength dependence of the PMD
vector. The solid dots show the results of numerical simulations, and dashed curves
are the distributions expected from theory. Clearly, individual components of the PMD
vector follow a Gaussian distribution, while the DGD At follows the Maxwellian distri-
bution. The agreement among theory, experiment, and simulations seen in Figure 3.12
verifies that the ensemble average at the fixed wavelength indicated in Eq. (3.4.38) can
be carried out experimentally by averaging the same variable over a wide wavelength
range for a single fiber.
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3.4.6 PMD-Induced Pulse Broadening

Although statistical properties of DGD play an important role in understanding the
PMD phenomenon, what matters from a practical perspective is the PMD-induced
pulse broadening [40]-[45]. We thus need to extend the theory of Section 3.3.2 such
that it include the PMD effects. This can be accomplished by replacing the scalar field
amplitude A(z,7) in Eq. (3.3.14) with the Jones vector |A(z,1)). As aresult, Eq. (3.3.15)
is replaced with

—i

0=

N j’ (A(z,w)|Ap(z, 0)) do, (3.4.39)

() = %[:<Aw(z,w)lﬁm(z,w)>dw, (3.4.40)

where N = [*_(A|A)dw is a normalization factor and the subscript @ stands for the
frequency derivative.

Following the method outlined in Section 3.3.2, we can obtain the RMS value of
pulse width, as defined in Eq. (3.3.13). The final result can be written in the form of
Eq. (3.3.8), provided we add a new term 67y, to it. This term represents the additional
broadening induced by PMD and is given by [45]

Opup = 5 1(Q0- Qo)s — (Q0-50)3] — [{(T+ 60) (R0 - S0))s — ((T+ )5 (R0 - So)s],
(3.4.41)
where S is the Stokes vector of the input field and Qg = R~'Q is related to the PMD
vector through the rotation matrix R introduced in Eq. (3.4.25); it is sometimes referred
to as the input PMD vector [26]. We have also used the subscript s to emphasize that
the average in Eq. (3.4.41) is over the input pulse spectrum, that is,

= [ F@)E0,0)A0,0)do (3.4.42)

The broadening induced by PMD is not constant but fluctuates in response to bire-
fringence fluctuations. We can average Eq. (3.4.41) over such fluctuations to obtain
an average value for PMD-induced broadening. Since (Qg) = 0, the average value is
found to be [41]

(opMmp)b = 5{{R0-R0)s)p — ((Ro - So0)2)s, (3.4.43)

where the subscript b denotes averaging over birefringence fluctuations. The double av-
erage in the first term is relatively simple to perform. The second term requires knowl-
edge of the correlation between the PMD and Stokes vectors [45]. For an unchirped
Gaussian pulse, the final result is found to be [41]

(Opmp)s = [ATRMS TH1(1 +2ATRMS/3T02)I/2 —1]. (3.4.44)

It is easy to see from this equation that additional broadening induced by PMD is quite
small on average if pulse width Ty is much larger than the RMS value of DGD. Even
when Atrms = Tp, the predicted broadening is only about 9%.
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One may ask why PMD should be of concern if it produces an additional broad-
ening that, on average, is below 10% in most cases of practical interest. The answer
is provided by the fact that even if broadening is small on average, it may occasion-
ally become quite large depending on the nature of PMD fluctuations. A lightwave
system should operate reliably over long periods of time. Since the system would fail
to perform reliably for short periods of time during which PMD fluctuations are large
enough to broaden optical pulses beyond their allocated time slot, one must design the
system to ensure that the probability of such an event is relatively small. This proba-
bility is referred to as the outage probability and it should be below 107> if one wants
to ensure that system is inoperable for at most 5 min/year. It should be below 1077 if
the design criterion is more stringent and requires that PMD should not cause outage
for more than 3 s/year. In general, one must ensure that the average DGD (A7) of the
fiber link is a small fraction of the bit slot 7, = 1/B, or B{AT) < fpmp, Where fpmp
depends not only on the tolerable outage probability but also on the modulation format
of the optical bit stream. Typically, B{At) should be below 8% for NRZ signals to
maintain an outage probability below 107>, but this value increases to nearly 12% for
RZ signals [28].

Similar to the case of GVD compensation discussed in Section 3.3.5, the perfor-
mance of long-haul lightwave systems operating at high bit rates can be improved by
employing a PMD-compensation scheme [28]. Most such schemes split the signal
into two orthogonally polarized parts and adjust the delay in the two branches before
combing them back. The topic of PMD compensation is discussed in Section 7.7.3 of
Chapter 7 devoted to dispersion management.

3.4.7 Higher-Order PMD Effects

Equation (3.4.29) is based on the assumption that the direction of the PMD vector Q
does not change significantly over the pulse bandwidth. Although such a first-order
PMD description may hold well for relatively wide pulses with a narrow bandwidth,
there are situations in which one must consider the higher-order PMD effects. For
example, at high bit rates of 40 Gb/s or more, pulses used as bits become so short that
the PSPs cannot be assumed to remain constant over the entire bandwidth of the pulse.
Similarly, if first-order PMD is compensated in a lightwave system by employing PMD
compensators (see Section 7.7.3), the performance of such a system would be limited
by the second-order PMD effects. For this reason, the second-order PMD has been
studied extensively [46]-[55].

The higher-order PMD effects can be included by expanding the PMD vector in a
Taylor series around the carrier frequency ay of the pulse as

Q(w) ~ Q(wy) + Qg (0) (0 — o)+, (3.4.45)

where £, is the frequency derivative dQ/dw evaluated at @ = @p. This derivative
governs the second-order PMD effects. Using Q = Atp, where p represents a unit
vector in the direction of the fast PSP, it can be written as a sum of two terms

Qu =At,p+ATP,, (3.4.46)
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Figure 3.13: Polarization-dependent chromatic dispersion as a function of wavelength for a fiber
with 14.7-ps mean DGD. (After Ref. [28]; (©2002 Elsevier.)

where the subscript @ denotes a frequency derivative. The first term is in the direction
of the PMD vector, while the second term is orthogonal to it [28]. Physically, the first
term describes polarization-dependent chromatic dispersion (PCD), while the second
term leads to depolarization of the signal during its transmission through the fiber.
Consider first frequency dependence of the derivative A7, = d(AT)/d®. Recalling
that the input signal is delayed by +(A)/2 when it is polarized along the two PSPs,
the effective dispersion accumulated along these two directions in a fiber of length L
becomes
BfL=PBL+ A1, or DiL=DL+t}lAr, (3.4.47)

where Aty = d(At)/dA = —(27c/A?)AT,. The random nature of the second term in
the preceding equation indicates that the GVD experienced by different spectral com-
ponents of a pulse fluctuates around an average value. The random part %Ar,l is known
as PCD. Figure 3.13 shows the magnitude of the PCD as a function of wavelength
obtained by differentiating numerically the DGD data in Figure 3.9.

Physically, the presence of PCD implies that dispersion-induced broadening ex-
perienced by a pulse in a fiber depends on the SOP of the input pulse. In particular,
the GVD takes its maximum and minimum values along the two PSPs, as indicated
in Eq. (3.4.47). If the average value DL is relatively large compared with the magni-
tude of PCD, this is a relatively minor effect. However, as seen in Figure 3.13, PCD
can be quite large when the mean DGD of the fiber exceeds 10 ps. As a result, the
net fiber dispersion may take quite different values along the two PSPs, especially in
dispersion-managed fiber links for which the average dispersion is kept close to zero.
The resulting values D and D_ of the dispersion parameter in Eq. (3.4.47) can even
have opposite signs in that case. As discussed in Section 3.3.1, such a sign change for
chirped input pulses indicates that pulses may compress along one of the PSPs while
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experiencing broadening along the other. Such a compression of input pulses, induced
by the second-order PMD effects, was first observed in a 1988 experiment [56].

Now consider the second term Atp,, in Eq. (3.4.46). It corresponds a frequency-
dependent rotation of the PSPs on the Poicaré sphere by an angle ¢ (®). The rotation
rate d¢/dv = 27| p,,|, where we used @ = 27V, is a measure of PSP depolarization
induced by second-order PMD. This quantity is plotted in Figure 3.14 for the same fiber
whose PCD is shown in Figure 3.13. Depolarization of PSPs produces considerable
pulse distortion for short pulses.

Mathematically, both PCD and PSP depolarization are governed by a single random
vector Qg = dQ/d in the Stokes space. We can use Eq. (3.4.29) to find how Q,
evolves with z along the fiber length. Differentiating this equation with respect to ®,
we obtain [48]

dz

This equation governs all effects produced by second-order PMD. Its statistical prop-
erties have been studied in the limit in which fiber length is much longer than the
correlation length [48]. In this limit, the correlation function of b in Eq. (3.4.31) can
be approximated by a delta function, and each component of b can be treated as a
Markovian process with the Gaussian statistics. It turns out that the magnitude of PCD
in Eq. (3.4.46), ATy, = Q4 - P, then has the following probability density function [50]:

=bxQ+wbxQ,. (3.4.48)

p(ATy) = ﬁ—zseclﬁ ( “;ﬁ" ) : (3.4.49)

where g is related to the RMS and average values of DGD of the fiber as
2_1 z
3 8

Equation (3.4.49) can be used to find any moment of the random variable ATy, It is
easy to deduce that all odd-order moments vanish. The lowest even moment related to
the variance is found to be

u Atiys = = (AT)2 (3.4.50)

((AT)*) = 1p* = LAt (3.4.51)

It follows from Eq. (3.4.38) that the RMS value of A7, scales linearly with the fiber
length L and quadratically with the PMD parameter D,.

3.5 Polarization-Dependent Losses

The discussion of PMD in the preceding section is based on the assumption that losses
of the fiber link do not depend on the SOP of the signal propagating through it. In prac-
tice, this is rarely the case, and all fiber links exhibit some polarization-dependent loss
(PDL). Even though silica fibers themselves have relatively little PDL, the signal passes
through a variety of optical components such as isolators, modulators, amplifiers, fil-
ters, and couplers, most of which exhibit loss (or gain in the case of optical amplifiers)
whose magnitude depends on the SOP of the signal. Even though the amount of PDL
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Figure 3.14: PSP depolarization as a function of wavelength for the same fiber that was used for
Figure 3.13. (After Ref. [28]; (©)2002 Elsevier.)

is relatively small for each component (typically ~0.1 dB), the cumulative effect of all
components can produce an output signal whose power may fluctuate by a factor of
10 or more depending on its input SOP. Moreover, the combination of PDL and PMD
leads not only to large random variations in the signal power but also to signal distor-
tion that invariably affects the performance of all long-haul lightwave systems. For this
reason, considerable attention has been paid to studying the PDL effects [57]-[71].

3.5.1 PDL Vector and Its Statistics

Since losses of a long, periodically amplified, fiber link depend on the SOP of the input
signal, the PDL of the link is defined in terms of the maximum and minimum output
powers, Pyax and Py, obtained for two specific input SOPs. Mathematically, the PDL
is defined as a dimensionless quantity

- Pmax_Pmin’ (3.5'1)
Pmax + Pmin
where 0 <" < 1. Itis also common to express PDL in decibels units as
Pmax 1+T
= =101 — . 352
o= 01 (22) < g (12T 52

Both I" and p are random variables for a fiber link for two reasons, First, the axes
along which the loss of an optical component changes from maximum to minimum
are randomly oriented for different components. Second, the SOP of the signal inside
the fiber link changes in a random fashion before its arrival at each optical component
because of birefringence fluctuations.
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One can extend the vectorial analysis of Section 3.4.3 to include the PDL effects by
allowing the quantity Af in Eq. (3.4.7) to become complex and replace it with Af +
iAa, where A (z) is the differential loss (or gain in the case of an optical amplifier)
at a distance z at the carrier frequency @y. It does not change much over the pulse
bandwidth and can be treated as a constant when AB (@) is expanded in a Taylor series
appearing in Eq. (3.4.8). Following the analysis of Section 3.4.3 with this change, the
Jones vector |S) satisfies Eq. (3.4.16) with an additional term on the right side, that is,

@ = —i(wB +i®)|S), (35.3)
Jdz
where @ = —(Aa/2)W 'MW is a random Jones matrix accounting for the PDL ef-
fects.
Equation (3.5.3) shows that the output Jones vector is related as the input Jones
vector |So) as |S) = U|Sp), but the matrix U does not remain unitary because of PDL.
We can use this relation to calculate the output power as

Pouc = (SIS) = (So|U'T|S0). (3.5.4)

The most and least attenuated input SOPs correspond to the eigenstates of the matrix
U'U. The corresponding output SOPs are the eigenstates of the matrix U U [57)].

Similar to the PMD vector of Section 3.4.4, one can introduce a PDL vector by
writing this matrix in the form of Eq. (3.4.21) as

UU' =ayl +a- o, (3.5.5)

where the vector a points in the Stokes space in the direction of output SOP with the
least attenuation. The PDL vector is then defined as I' = a/ag and has the magnitude
as indicated in Eq. (3.5.1). This PDL vector is found to satisfy the following dynamic
equation [60}:

ar

Fr obxT)+a—(a- DT, (3.5.6)
where the vector @ governs differential losses and is related to the matrix @ through
o= %(0(07+ o - 6). As seen in Eq. (3.4.22), the three components of this vector can
be obtained using o; = Tr(0;@).

Equation (3.5.6) shows that, in general, the PMD vector is affected by both random
vectors @ and b, where b takes into account birefringence fluctuations along the fiber
link. Thus, PMD and PDL are interconnected and an optical pulse is affected by the
combination of the two. However, the magnitude of the PDL vector is not affected
by birefringence fluctuations. This can be seen physically by noting that the term
containing b in Eq. (3.5.6) represents a rotation and does not affect the magnitude of
the vector I'. Mathematically, we note that I'> = I"- T satisfies

o
0z

and is thus affected only by the random vector a.

=2(a-T)(1-TI?), (3.5.7)
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Equation (3.5.7) has been used to obtain an analytic expression for the probability
density function P(p) of p [68], a scalar random variable related to I as indicated in
Eq. (3.5.2), after assuming that each component of ¢ is a Markovian random variable
with Gaussian statistics such that

(@;(2) =0,  (o(z)ou(2)) = 3D588(z—~2), (3.5.8)

where j and k take on values of 1, 2, or 3 and the parameter D measures the strength
of PDL fluctuations along the fiber link. The general expression for P(p) can be
approximated by a Maxwellian distribution [65] when the total PDL is not too large
(p < 34 dB). Under such conditions, P(p) can be written in the form of Eq. (3.4.37)
after replacing At3y.s with (p?), where

(p?) = (20/1n10)D%z(1 + D% z/9). (3.5.9)

The parameter Dy is defined in a way similar to the PMD parameter D, and is ex-

pressed in units of km~'/2, The average and the variance of p are related to the RMS
value p as indicated in Eq. (3.4.38).

3.5.2 PDL-Induced Pulse Distortion

As mentioned earlier, PDL also affects the pulse shape and its effects should be incor-
porated in the discussion of PMD-induced signal distortion. One can still introduce
the PMD vector, but the presence of @ in Eq. (3.5.3) makes it a complex quantity. We
denote the modified vector by ., where the subscript ¢ indicates that its components
are complex variables. Following the analysis of Section 3.4.5, Eq. (3.4.29) is replaced
with [57]

Q.

dz

where the presence of PDL vector & governs how the PMD effects are affected by PDL.
The new feature is that the matrix Q. - & does not remain Hermitian. As a result, its
eigenvalues become complex and take the form =+ % (AT +in;), where the imaginary part
7n; results from the PDL effects. Moreover, its eigenvectors are no longer orthogonal,
that is, the two PSPs do not remain antiparallel in the Stokes space.

The Stokes vector S(z) representing the SOP of the field on the Poincaré sphere
can still be defined as in Eq. (3.4.20), assuming that the Jones vector |S) has been nor-
malized such that (S|S) = 1. However, instead of Eq. (3.4.27) it satisfies the following
equation [61]:

=b+ (wb+ia) x Q,, (3.5.10)

iS—=£'2><S—(A><S)><S, (3.5.11)
om

where we have separated Q. into its real and imaginary parts using Q. = Q +iA. The
new vector A governs the impact of PDL on the PMD effects. From Eq. (3.5.10), the
vectors £ and A are found to evolve as

%‘;:berbe—axA, (35.12)
IA _ obxA+axQ, (35.13)

0z
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Figure 3.15: Measured DGD as a function of wavelength for a link containing a single fiber with
large PDL sandwiched between two fibers with 5.65-ps DGD. The principal axes of the PDL
fiber are either aligned with the other two fibers (solid curve) or rotated by 45° (dashed curve).
The dotted lines show the theoretical prediction. (After Ref. [60]; (©2000 IEEE.)

These two equations can be solved analytically to find various moments of Q and A
if one assumes that the vectors & and b are parallel to each other [61]. An interesting
result turns out to be (- A) = 0, that is, the two vectors are orthogonal to each other,
on average. A consequence of this property is that (Q?) = (Q% —I'?) is a real quantity.
Moreover, it is given by Eq. (3.4.4), that is, the RMS value of Q. remains the same
even in the presence of PDL.

From the standpoint of pulse distortion, one is interested in the RMS value of the
DGD (A1 = Q). It turns out that even though the RMS value of Q. increases only as /z
with distance, the RMS value of Q itself can grow quadratically, or even exponentially,
for sufficiently long fiber links [61]. Anomalously large values of DGD were observed
in a 1997 experiment in which a single PDL fiber with 18 dB of differential loss and a
DGD of 1 ps was sandwiched between two fibers exhibiting little PDL and a DGD of
5.65 ps [58]. A polarization controller was used to change the input SOP of light from
a tunable laser. The DGD of the entire fiber link was measured using a polarimeter
as input wavelength was varied in the wavelength range of 1,300 to 1,310 nm. Figure
3.15 shows the experimental resuits. The solid curve is obtained when the principal
axes of all three fibers are perfectly aligned. Measured values are close to the DGD
value of 12.3 ps that is expected by simply adding the individual DGDs of all three
fibers. The dashed curve is obtained when the PDL fiber axis is rotated by 45°. 1t is
evident that DGD in this case varies with wavelength widely and becomes as small as
I ps or as large as 24 ps. Such large changes in DGD translate into compression or
broadening of optical pulses. The important point from a system point of view is that
the presence of PDL in a long fiber link can broaden optical pulses much more than the
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value expected from the PMD alone, resulting in degradation of system performance.

In practice, attempts are made to employ optical components with negligible values of
PDL.

Problems

3.1 A single-mode fiber is measured to have A?(d?n/dA?) = 0.02 at 0.8 um. Cal-
culate the dispersion parameters 3, and D.

3.2 Show that a chirped Gaussian pulse is compressed initially inside a single-mode
fiber when B,C < 0. Derive expressions for the minimum width and the fiber
length at which the minimum occurs.

3.3 Anoptical communication system is operating with chirped Gaussian input pulses.
Assume that 83 = 0 and V,; < 1 in Eq. (3.3.36) and obtain a condition on the bit
rate in terms of the parameters C, 32, and L.

3.4 Starting from the definition 6, = [(r?) — (¢)?]'/2, where the angle brackets denote
average over the pulse shape, derive an expression for the RMS width o, for a
pulse of arbitrary shape. (Hint: Calculate averages in the frequency domain.)

3.5 Prove that Eq. (3.3.17) leads to Eq. (3.3.11) for the broadening factor when it is
applied to the case of a chirped Gaussian pulse.

3.6 Estimate the limiting bit rate for a 60-km single-mode fiber link at 1.3- and 1.55-
pm wavelengths, assuming transform-limited, 50-ps (FWHM) input pulses. As-
sume that B, = 0 and —20 ps?/km and 83 = 0.1 ps*/km and 0 at 1.3- and 1.55-um
wavelengths, respectively. Also assume that V,, < 1.

3.7 A 0.88-um communication system transmits data over a 10-km single-mode
fiber by using 10-ns (FWHM) pulses. Determine the maximum bit rate if the
LED has a spectral FWHM of 30 nm. Use D = —80 ps/(km-nm).

3.8 Use Eq. (3.3.36) to prove that the bit rate of an optical communication system op-
erating at the zero-dispersion wavelength is limited by BL|S|67 < 1/+/8, where
S =dD/dA and o3 is the RMS spectral width of the Gaussian source spectrum.
Assume that C = 0 and Vj, > 1 in the general expression of the output pulse
width.

3.9 Repeat the preceding problem for the case of a single-mode semiconductor laser
for which V,, < 1 and show that the bit rate is limited by B(|B3|L)'/? < 0.324.
What is the limiting bit rate for L = 100 km if 83 = 0.1 ps>/km?

3.10 A 1.55-um optical communication system operating at 5 Gb/s is using Gaussian
pulses of width 100 ps (FWHM) chirped such that C = —6. What is the dispersion-
limited maximum fiber length? How much will it change if the pulses were
unchirped? Neglect laser linewidth and assume that 8, = —20 ps?/km.

3.11 Explain what is meant by PMD? What is the origin of PMD in telecommunica-
tion links and how does its presence affect a lightwave system? Utilize diagrams
to support your arguments.
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3.12

313

3.14

3.15

Chapter 3. Signal Propagation in Fibers

A 1-km-long polarization-maintaining single-mode fiber exhibits a birefringence
of An =6 x 1074, Calculate the differential group delay for this fiber at 1.55 pm,
assuming that the average mode index 7 = 1.45 and dii/dA = —0.01 um~! at
this wavelength.

What is meant by the principal states of polarization for a fiber in which birefrin-
gence fluctuates along its length? Discuss the basic idea and its implications for
a lightwave system.

Using the model of birefringence fluctuations given in Eq. (3.4.31), prove that
Eq. (3.4.29) leads to the Maxwellian distribution (3.4.37) for the differential
group delay.

Use the Maxwellian distribution (3.4.37) to show that the mean and variance of
differential group delay are given by the relations in Eq. (3.4.38).
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Chapter 4

Nonlinear Impairments

The discussion in Chapter 3 intentionally ignored the nonlinear effects and applies to
lightwave systems in which the signal power is kept small enough that the nonlinear
effects, governed by the parameter ¥ in the NLS equation, remain negligible through-
out the fiber link. This approximation can be justified for many short-haul systems
(transmission distance <100 km), especially those employing light-emitting diodes as
optical sources. However, the inclusion of nonlinear effects becomes essential for long-
haul systems making use of a chain of cascaded optical amplifiers [1]-[6]. The reason
is two-fold. First, noise added by the amplifier chain degrades the signal-to-noise ratio
(SNR) to the extent that the signal cannot be recovered unless launched power levels
are relatively high (typically >1 mW). Second, the nonlinear effects themselves accu-
mulate from amplifier to amplifier and distort the optical bit stream more and more as
link length increases. This chapter focuses on the impact of fiber nonlinearities in such
long-haul systems. We begin with the discussion of the simplest nonlinearity—seif-
phase modulation—in Section 4.1 and then consider in Section 4.2 the closely related
nonlinear phenomenon of cross-phase modulation. Section 4.3 deals with four-wave
mixing, a nonlinear effect that becomes quite important for WDM systems. Stimulated
Raman scattering is the focus of Section 4.4, whereas the phenomenon of stimulated
Brillouin scattering is considered in Section 4.5. In Sectton 4.6 the variational and mo-
ment methods are employed for solving the NLS equation approximately. Section 4.7
focuses on the polarization effects related to residual fiber birefringence.

4.1 Self-Phase Modulation

Long-haul lightwave systems employ a chain of optical amplifiers along the fiber link
for compensating fiber losses. As discussed in Section 3.2, in general one needs to
solve Eq. (3.2.4) numerically to study how the nonlinear term in this equation affects
the optical bit stream. To gain some physical insight and to simplify the following
analysis, we neglect the noise term in this equation and eliminate the gain and loss
terms with the transformation

A(z,t) = VPRop(2)U(z,1), (4.1.1)
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where Py is the peak power of input pulses and U(z,) governs the normalized (com-
plex) amplitude of the optical bit stream. The function p(z) takes into account changes
in the average power of the signal along the fiber link and is defined such that p(nL4) =
1, where Ly is the amplifier spacing and » is an integer representing the location of a
specific amplifier (or a pump station in the case of distributed amplification).
With these simplifications, the use of Eq. (4.1.1) in Eq. (3.2.4) provides the follow-
ing NLS equation for propagation of an optical signal along the fiber link:
oU  if, d*U

wts e iyPop(2)|U|*U, (4.1.2)
where p(z) satisfies Eq. (3.2.6) and varies in a periodic manner. In the case of lumped
amplification, p(z) decreases exponentially as e~ ** between two amplifiers but in-
creases to 1 at the location of each lumped amplifier. It is not easy to solve Eq. (4.1.2)
analytically except in some simple cases. To gain some physical insight, we first con-
sider the case in which dispersive effects are negligible and set §;, = 0 in Eq. (4.1.2).

4.1.1 Nonlinear Phase Shift

In terms of the normalized amplitude U (z,T), Eq. (4.1.2) in the limit 8; = O reduces to

oU _ip(z), 2

32 " I \U\°vu, 4.1.3)
where the nonlinear length is defined as Ly = (yYR)~'. Similar to the concept of
the dispersion length introduced in Section 3.3, the nonlinear length provides a length
scale over which the nonlinear effects become relevant for optical fibers. If we use
y=2 W~ 1/km as a typical value, the nonlinear length Ly equals 100 km for an optical
signal with 5-mW peak power and scales inversely with F.

Equation (4.1.3) can be solved by substituting U = V exp(i¢nL) and separating its

real and imaginary parts. This procedure yields

Ion.  p(2) 2
0, =—=V-. 4.1.
aZ LNL ( ! 4)

v _
oz

As the amplitude V does not change along the fiber length L, the phase equation can be
integrated analytically to obtain the general solution

U(L,1) = U(0,0)explignr.(L,1)), (4.15)
where U (0,1) is the field amplitude at z = 0 and
ONL(L,t) = |U(0,2)|*(Lett/Ln1.).- (4.1.6)

The effective length L is defined as

L L
Leff=/0 p(z)dz:NA/O Ap(z)dz, 4.1.7)
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where we assumed that the fiber link consists of N4 sections, each of length L.
Equation (4.1.5) shows that the nonlinear term in the NLS equation gives rise to an
intensity-dependent phase shift. This phenomenon is referred to as self-phase modu-
lation (SPM) because the signal propagating inside a nonlinear medium modulates its
own phase; it was first observed inside an optical fiber in a 1978 experiment [7}. The
nonlinear phase shift ¢n in Eq. (4.1.6) increases with the link length L. The quantity
Letr plays the role of an effective length that is smaller than L because of fiber losses. In
the case of lumped amplification, p(z) = exp(—az) in each fiber section. The integral
in Eq. (4.1.6) can be performed analytically in this case, and the effective link length is
given by
Less = L[1 —exp(—aLy)|/(aLa) =~ Na/ 0, (4.1.8)

if we assume that amplifier spacing is large enough that exp(—aL4) can be neglected
in comparison to 1. In the absence of fiber losses, @ = 0, and Legs = L.

The time-dependent nature of the optical signal implies that the SPM-induced phase
shift changes with time. Consider a single 1 bit within an RZ bit stream. The maximum
phase shift §ax occurs at the pulse center assumed to be located at t = 0. Since U is
normalized such that |U(0,0)| =1,

¢max = Leff/LNL = YPOLeff- 4.1.9)

As seen in Section 3.3, a temporally varying phase for an optical field implies that the
instantaneous carrier frequency differs across the pulse from its central value ay. The
frequency shift 8 @ is itself time-dependent and is given by

IOnL Leg\ 0 2
o) = a = (LNL> atlU(O’t)| , (4.1.10)
where the minus sign is due to the choice of the factor exp(—iwnt) in Eq. (3.1.1). The
time dependence of @ is referred to as frequency chirping. The chirp induced by SPM
increases in magnitude with the transmitted distance. In other words, new frequency
components are generated continuously as the optical signal propagates down the fiber.
These SPM-generated frequency components broaden the spectrum of the bit stream
from its initial width at z = 0. Such a spectral broadening is undesirable because it not
only increases the signal bandwidth but can also distort the pulse shape when dispersive
effects are included.

As discussed in Section 2.2.3, for any realistic lightwave system the input field
U(0,t) in Eq. (4.1.10) is composed of a random sequence of 0 and 1 bits and can be
written as U(0,¢) = Y. b,U,(t —nT}), where U, (t) represents pulse shape, 7}, is the bit
duration, and the random variable b, takes on values of 0 or 1. Using this form in Eq.
(4.1.6), the SPM-induced phase shift can be written as

ONL(L, ) = (Ler/Lnv) Y b7 [Up(t — kT3) |2, (4.1.11)
k

where we assumed that optical pulses in the neighboring bit slots do not overlap appre-
ciably. Since b; = 0 for O bits, the nonlinear phase shift occurs for only 1 bits and has
the same magnitude for each of them. In fact, the form of ¢y mimics the bit pattern
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Figure 4.1: Temporal variation of (a) SPM-induced phase shift ¢y and (b) frequency chirp @
for Gaussian (solid curves) and super-Gaussian (dashed curves) pulses.

of the launched signal. In what follows, we consider a single 1 bit and retain only the
k =0 term in Eq. (4.1.11). We should stress that one cannot use this simple form of the
nonlinear phase shift when optical pulses in neighboring bit slots overlap considerably.
This is the case for pseudo-linear systems designed such that the dispersion spreads
each optical pulse over several bit slots. The XPM interaction between two overlap-
ping pulses then leads to new effects referred to as the intrachannel nonlinear effects
(see Chapter 8).

The magnitude of SPM-induced chirp depends on the pulse shape. Consider, for
example, the case of a super-Gaussian pulse for which the incident field is given in Eq.
(3.3.47). The SPM-induced chirp d@(r) for such a pulse is obtained from Eq. (4.1.10)

and has the form
'm L " ¢ 2m—1 t 2m
So(t) == (——) exp |- — , 4.1.12
(1) Ty Lne \To P Ty )

where T is the pulse width. The integer m = 1 for a Gaussian pulse. For larger values
of m, pulses representing 1 bits become nearly rectangular and develop steeper leading
and trailing edges. This change in pulse shape affects the SPM-induced phase shift
considerably. Figure 4.1 shows variations of (a) nonlinear phase shift ¢y and (b)
SPM-induced frequency chirp 8@ across the pulse at a distance Legr = Ly, for Gaussian
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(m = 1) and super-Gaussian (m = 3) pulses. As ¢y is directly proportional to [U(0,1)[?
in Eq. (4.1.6), its temporal profile is identical to that of the pulse intensity. The chirp
profile ®(t) exhibits several interesting features. First, ® is negative near the leading
edge (red shift) but becomes positive near the trailing edge (blue shift) of the pulse.
Second, frequency chirp is linear and positive (up-chirp) over a large central region of
the Gaussian pulse. Third, it is considerably larger for pulses with steeper leading and
trailing edges. Fourth, super-Gaussian pulses behave differently than Gaussian pulses
because the chirp occurs only near pulse edges and does not vary in a linear fashion.

4.1.2 Spectral Broadening and Narrowing

The main consequence of SPM-induced chirp is that the spectrum of an optical bit
stream becomes broader as the signal travels down the fiber link. Such spectral broad-
ening is undesirable for any lightwave system as it can enhance dispersion-induced
degradation of the signal, and may force one to increase the channel spacing.

The magnitude of SPM-induced spectral broadening can be estimated from the
peak value of d® in Figure 4.1. Mathematically, we can calculate the peak value by
maximizing d@(¢) in Eq. (4.1.12). By setting its time derivative to zero, the maximum
value of dw is found to be

O Dmax = mf(m)Pmax/To, (4.1.13)

where @may is given in Eq. (4.1.9) and f{(m) is defined as

1 1—-1/2m 1
f(m)=2<l—%) exp [— (1—%)} (4.1.14)

The numerical value of f depends on m only slightly; f = 0.86 for m = 1 and tends
toward 0.74 for large values of m relevant for super-Gaussian pulses.

To obtain a spectral broadening factor, the width parameter Ty should be related to
the initial spectral width Aay of the pulse. For an unchirped Gaussian pulse, Awy =
TO_1 from Eq. (3.3.8). Equation (4.1.13) then becomes (with m = 1)

S Wpax = 0.86AW Prmax, 4.1.15)

showing that the spectral broadening factor is approximately given by the numerical
value of the maximum phase shift §max. Since @max > 10 possible for long fiber links,
it is evident that SPM can broaden the signal spectrum considerably.

The shape of the pulse spectrum S(@) at a distance L is obtained by taking the
Fourier transform of Eq. (4.1.5). Using S(w) = |U(L, w)[2, we obtain

2

S(@) = /_iU(O,t)exp[i(pNL(L,t) +i(o— ao)]dt| (4.1.16)

where ¢ni(L,t) is given in Eq. (4.1.6). It is evident from this equation that S(w) de-
pends not only on the pulse shape but also on whether input pulses are chirped. Figure
4.2 shows the influence of input chirp on the spectrum of Gaussian pulses after they
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Figure 4.2: Comparison of output spectra for Gaussian pulses for four values of chirp parameter
C when fiber length and peak powers are chosen such that §max = 4.57. Spectrum broadens for
C < 0 but becomes narrower for C < 0 when compared with that of the input pulse.

have propagated inside a fiber such that ¢max = 4.57; fiber losses as well as dispersive
effects are ignored for this illustration. The most notable feature of Figure 4.2(a) is
that SPM-induced spectral broadening is accompanied by an oscillatory structure. For
unchirped pulses, the spectrum consists of multiple peaks such that the two outermost
peaks are the most intense. The number of peaks depends on ¢pax and increases lin-
early with it. For C > 0, spectral broadening increases and the oscillatory structure
becomes less pronounced, as seen in Figure 4.2(b).

It is clear from Figure 4.2 that the sign of the chirp parameter C plays a critical
role. In fact, a negatively chirped pulse undergoes spectral narrowing through SPM,
as seen clearly in parts (c) and (d) of Figure 4.2. The spectrum contains a central
dominant peak for C = —20 and narrow further as C decreases. This behavior can be
understood from Eq. (4.1.16) by noting that the SPM-induced phase shift is partially
cancelled by the input chirp when C is negative. If we employ the approximation
that @i (1) & Pmax(1 — t2/T}) near the pulse center for Gaussian pulses, the SPM-
induced chirp is nearly cancelled for C = —2¢n,«. This approximation provides a
rough estimate of the value of C for which narrowest spectrum occurs for a given value
of Prmax.

From a practical perspective, SPM-induced spectral broadening should be con-
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trolled for any long-haul lightwave system. The maximum phase shift in Eq. (4.1.9)
determines the spectral broadening factor. As a rough design guideline, the SPM ef-
fects become important only when ¢nax > 1. For short-haul systems, this condition
is rarely satisfied at typical peak power levels used (~1 mW). The situation changes
when fiber losses are compensated using optical amplifiers because the SPM effects
then accumulate over the entire link. Typically, amplifier spacing is large enough that
oLy exceeds 3, and we can use Leg = Ny /o from Eq. (4.1.8) for a system designed
with N4 amplifiers. The condition ¢max < 1 is satisfied if

Po < a/(YNy). 4.1.17)

If we use typical values of & and ¥ for 1.55-ptm lightwave systems, the peak power is
limited to below 1 mW for a fiber links containing 30 amplifiers. Clearly, SPM can be
a major limiting factor for long-haul lightwave systems.

4.1.3 Effects of Fiber Dispersion

The preceding discussion is oversimplified as it ignores the dispersive effects com-
pletely. In a real lightwave system, dispersive and nonlinear effects act on the optical
bit stream simultaneously. Unfortunately, it is not easy to solve Eq. (4.1.2) analytically
except in some simple cases. For example, in the specific case of p = 1 and J3; constant
but negative, this equation reduces to a standard NLS equation and has solutions in
the form of solitons—pulses that maintain their shape and width in spite of dispersion.
This case is discussed in Section 4.6. Physically speaking, by choosing the input pulse
shape and peak power appropriately, SPM-induced chirp can be made just large enough
to cancel the chirp induced by dispersion.

Another special case is that of rectangular-shape pulses propagating in a fiber with
positive B, (normal GVD). Using the transformation

U(z,1) = \/p(z,1) exp [i/otv(z,t)dt} (4.1.18)

in Eq. (4.1.2), the pulse-propagation problem reduces to a fluid-dynamics problem in
which the variables p and v play, respectively, the role of local density and velocity of
a fluid [10]. In the optical case, these variables represent the local intensity and chirp
of the pulse. As this problem is identical to the hydrodynamic problem of “breaking
a dam,” it can be solved analytically in the limit of small dispersion. The resulting
solution is useful for lightwave systems employing the NRZ format and provides con-
siderable physical insight [11]-[13].

An important question is how the SPM-induced chirp affects broadening of optical
pulses in the presence of dispersion. The broadening factor can be estimated, without
requiring a complete solution of Eq. (4.1.2), using various approximations [14]-[20].
A variational approach was used as early as 1983 [14]. A split-step approach, in which
the effects of SPM and GVD are considered separately, also provides a reasonable
estimate of pulse broadening [15]. In an extension of this technique, the SPM-induced
chirp is treated as an effective chirp parameter at the input end [18]. A perturbative
approach in which the nonlinear term in Eq. (4.1.2) is treated as being relatively small
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can also be employed to calculate sz defined in Eq. (3.3.13). For a symmetric pulse,
(r) =0, and 0'3 is approximately given by [20]

07(z) = 67 (2) + YPo s /OZBz(zl) [/Oz' p(22)d22] dz, (4.1.19)

where c)'L2 is the RMS width expected in the linear case (Y = 0). The shape of the input
pulse enters through the parameter f;, defined as
[ 00,0 dr
= 4.1.20
A AT OnLr D

For a Gaussian pulse with U(0,7) = exp{—1(t/Tp)?], fs = 1/v2 ~ 0.7. For a square
pulse, f; = 1.

As an example, consider the case of a uniform-GVD fiber with distributed amplifi-
cation such that the pulse energy remains nearly constant. Using p(z) = 1 with constant
B> in Eq. (4.1.19), we obtain the simple expression

0;(z) = o (2) + 3 fsYPoBaz’. (4.121)

This equation shows that the SPM enhances pulse broadening in the normal-GVD
regime but leads to pulse compression in the anomalous-GVD regime. This behavior
can be understood by noting that the SPM-induced chirp is positive in nature (C > 0).
As a result, the pulse goes through a contraction phase when 8, < 0. Figure 4.3 shows
the pulse-broadening factor 6,/0p over one dispersion length for three input power
levels by solving Eq. (4.1.2) for a super-Gaussian input U(0,1) = exp[—3(¢/To)*"]
with m = 2 and p = 1. As the input peak power increases, the pulse initially contracts
because of the SPM effects, attains a minimum value at a certain value of the peak
power, and then begins to increase rapidly. In practical terms, the input power should
be optimized properly if we want to take advantage of the soliton-like effects for NRZ
systems [21].

4.1.4 Modulation Instability

Modulation instability is a well-known phenomenon [4]. It refers to an inherent insta-
bility of the CW solution of the NLS equation (4.1.2) in the anomalous-GVD regime
of a fiber link. It is easy to deduce that this equation has a CW solution in the form
U(z) = exp(i¢nL), where ¢ni is the nonlinear phase shift induced by SPM. Thus, a
CW signal should propagate through the fiber unchanged except for acquiring a power-
dependent phase shift (and reduced power because of fiber losses).

Before reaching this conclusion, however, one must ask whether the CW solution is
stable against small perturbations. To answer this question, we perturb the CW solution
slightly such that

U= (14+a)exp(ionL) (4.1.22)

and examine evolution of the perturbation a(z,¢) using a linear stability analysis. Sub-
stituting Eq. (4.1.22) in Eq. (4.1.2) and linearizing in a, we obtain
da [ d%a

lc.)—z——z*at2 —}/Po(a+a*), (4.1.23)
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Figure 4.3: Width ratio 6, /0y as a function of propagation distance for a super-Gaussian pulse
(m = 2) at three input peak powers labeled using pg = YPyLp.

where for simplicity we set p = 1, assuming that losses are perfectly compensated
through distributed amplification.

The linear equation (4.1.23) can be solved easily in the frequency domain. How-
ever, because of the a* term, the Fourier components at frequencies Q and —Q are
coupled. Thus, we should consider its solution in the form

a(z,t) = ay expli(Kz — Q)] + az exp[—i(Kz — Q)] (4.1.24)

where K and Q are the wave number and the frequency of perturbation, respectively.
Equations (4.1.23) and (4.1.24) provide a set of two homogeneous equations for the
two constants a; and a. This set has a nontrivial solution only when K and Q satisfy
the following dispersion relation:

K = 5|BQI[Q% +sgn(B)Q2)', (4.1.25)
where sgn(f3;) = +1 depending on the sign of f3,, and

o i
“TIRl T Rl

Because of the factor exp[i(fyz — wor)] that has been factored out in Eq. (3.1.1), the
actual wave number and the frequency of perturbation are By + K and wy = €, respec-
tively. With this in mind, the two terms in Eq. (4.1.24) represent two different frequency
components. These frequency components correspond to two spectral sidebands that
are generated when modulation instability occurs.

The dispersion relation (4.1.25) shows that steady-state stability depends on whether
light experiences normal or anomalous GVD inside the fiber. In the case of normal
GVD (B, > 0), K is real for all Q, and the steady state is stable against small pertur-
bations. By contrast, in the case of anomalous GVD (f; < 0), K becomes imaginary

(4.1.26)
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Figure 4.4: Gain spectra of modulation instability for Ly;, = 20 km (dashed curve) and 50 km
(solid curve) for an optical fiber with By = —5 ps?/km.

for |Q| < Q,, and the perturbation a(z,7) grows exponentially with z. As a result, the
CW solution is unstable for 8, < 0. This instability leads to a spontaneous temporal
modulation of the CW beam, and it can transform the beam into a pulse train [22]-[24].

The gain spectrum of modulation instability is obtained from Eq. (4.1.25) by setting
sgn(f) = —1 and g(Q) = 2Im(K ), where the factor of 2 converts g to power gain. The
gain exists only if |Q| < Q. and is given by

g(Q) = Q|02 — Q)2 (4.1.27)

Figure 4.4 shows the gain spectra for two values of nonlinear lengths (20 and 50 km)
for an optical fiber with B, = —5 ps®/km. As an example, Lyy. = 50 km at a power
level of 10 mW if we use a realistic value of ¥y =2 W~!/km. The gain spectrum is
symmetric with respect to Q = 0 such that g(Q) vanishes at Q = 0. The gain becomes
maximum at two frequencies given by

Q. 27P0> 172
Quax = £—— =4 222 , 4.1.28
max NG ( Bl ( )
with a peak value
8max = g(Qmax) = %|B2|Q(2 = 2YPy, 4.1.29)

where Eq. (4.1.26) was used to relate Q. to Py. The peak gain is independent of the
GVD parameter 3; and increases linearly with the incident power.

At first sight, it may appear that modulation instability is not likely to occur in a
lightwave system in which the optical signal is in the form of a pulse train. In fact,



4.2. Cross-Phase Modulation 117

it affects the performance of periodically amplified lightwave systems in two different
ways. First, for systems utilizing the NRZ-format, optical pulses occupy the entire
time slot and can be several bits long depending on the bit pattern. As a result, the
situation is quasi-CW-like. As early as 1990, numerical simulations indicated that
performance of a 6,000-km-long system, operating at bit rates >1 Gb/s with 100-km
amplifier spacing, would be severely affected by modulation instability if the signal
propagates in the anomalous-GVD regime and is launched with peak power levels in
excess of a few milliwatts [25].

Second, modulation instability can be seeded by the broadband noise added by
optical amplifiers (over the entire gain bandwidth or over the bandwidth of optical
filters when they are used to reduce noise). The growth of this noise can degrade the
SNR considerably at the receiver end [26]-[36]. Such degradation can occur in both
the normal- and anomalous-dispersion regimes of the fiber link [31]. In the case of
anomalous GVD, spectral components of noise falling within the gain spectrum of
modulation instability are amplified by it, resulting in considerable degradation of the
SNR [33]-{36]. Such SPM-induced SNR reduction has been observed experimentally.
In a 10-Gb/s system, considerable degradation in system performance was noticed after
a transmission distance of only 455 km [34]. We discuss the SNR-degradation issue in
Chapter 6 devoted to amplifier noise.

4.2 Cross-Phase Modulation

The preceding discussion assumed implicitly that only a single channel was being
transmitted through the fiber link. In the case of WDM systems, pulse trains of differ-
ent wavelengths propagate simultaneously inside optical fibers. Since pulses belonging
to different channels travel at different speeds, they overlap from time to time. When-
ever that happens, a nonlinear phenomenon known as cross-phase modulation (XPM)
induces an additional phase shift, that is, the phase of the pulse is affected not only by
SPM but also by XPM. The XPM effects are quite important for WDM lightwave sys-
tems since the phase of each optical channel is affected by both the average power and
the bit pattern of all other channels. Fiber dispersion converts phase variations into am-
plitude fluctuations that affect the SNR and introduce timing jitter. For this reason, an
understanding of the interplay between XPM and GVD is of considerable importance
for WDM systems [37]-[51].

4.2.1 XPM-Induced Phase Shift

To see the origin of XPM as clearly as possible, it is instructive to consider the case of
a two-channel lightwave system. The total optical field in Eq. (3.1.12) in this case can
be written as

A(z,1) = Ay (z,t) exp(—iQt) + A (z,t) exp(—iht), (4.2.1)

where Q,, = 0, — @y, @, is the carrier frequency of the mth channel, and ay is the
reference carrier frequency that was used in deriving Eq. (4.1.2). If we choose ay to
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coincide with one of the channel frequencies, say, @, then ; =0 and Q; corresponds
to channel spacing.

Substituting Eq. (4.2.1) in Eq. (3.1.12) and equating the terms oscillating at fre-
quencies ) and £; on both sides, we obtain two coupled NLS equations:

BA lﬂz 9?4, . 2 2 i 2

]ﬂz at 2 9r = iy(|A;|* +2]Az] )A|+§B291A1, 4.2.2)
aAz 3A2 lﬁz 8 A2 . 2 2 i 2
a— +Qafr—— 31‘ ENFT = iY(|A2|" + 2|A1|*)A2 + -2—3292142. 4.2.3)

The second term in these equations represents the group-velocity mismatch and results
from the fact that the time in the original NLS equation is measured in a frame moving
with the group velocity at the reference frequency ay. The nonlinear parameter 7 is
assumed to be nearly the same for both channels (it is slightly different as it scales
linearly with the channel frequency). In deriving the coupled NLS equations, we ne-
glected the terms oscillating at frequencies 2Q — Q, and 2Q, — Q. These terms result
from another nonlinear phenomenon known as four-wave mixing (FWM). The contri-
bution of FWM cannot be ignored when more than two channels are involved and is
considered in Section 4.3.

As seen from Egs. (4.2.2) and (4.2.3), the single nonlinear term of the form |A[?A
gives rise to two nonlinear terms when two channels are considered separately. The
first term is responsible for SPM because it depends on the power of the channe! under
consideration. The second term is due to XPM because it induces a nonlinear phase
shift proportional to the power of the second copropagating channel. When more than
two channels are involved, this nonlinear term involves all other copropagating chan-
nels. In fact, it is easy to show that for an M-channel WDM system Eqgs. (4.2.2) and
(4.2.3) are replaced with a set of M nonlinearly coupled equations of the form

3 JBZ at §2 8:2 - (|Aj|2 +2 Z |Am|2)Aj + 5/3293141-, 4.2.4)
mZj

where j = 1 to M and we have ignored all FWM terms.

In general, this set of M nonlinear equations should be solved numerically. Tt can be
solved analytically in the CW case or when the dispersive effects are ignored. Setting
B2 = 0in Eq. (4.2.4) and integrating over z, we obtain the result A ;( f exp(i9;),
where P; is the input power and the nonlinear phase shift resultmg from the combma—
tion of SPM and XPM is given by

0y =YLert(Pi+2 ¥ Pn), 4.2.5)
m j

where Leg is given in Eq. (4.1.8).

The CW solution applies approximately for NRZ-format systems operating at rel-
atively low bit rates. The phase ¢; of a specific channel would vary from bit to bit
depending on the bit patterns of neighboring channels. In the worst case in which all
channels have 1 bits in their time slots simultaneously, the XPM-induced phase shift is
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largest. If the input power is assumed to be the same for each channel, this maximum
value is given by

Omax = Na(y/0)(2M — 1) Py, (4.2.6)

where Leg was replaced by N,/a from Eq. (4.1.8) assuming aLy > 1. The XPM-
induced phase shift increases linearly both with M and N4 and can become quite large
for long-haul WDM systems.

The XPM-induced phase shift was first measured in 1984 in a two-channel config-
uration [37]. Light from two semiconductor lasers operating near 1.3 and 1.5 um was
injected into a 15-km-long fiber. The phase shift at 1.5 pm, induced by the copropa-
gating 1.3-um wave, was measured using an interferometer. A value of @ax = 0.024
was found for Py, = 1 mW. This value is in good agreement with the predicted value of
0.022 from Eq. (4.2.6). As a rough estimate of the importance of the XPM effects for
WDM systems, if we use the condition ¢pax < 1 in Eq. (4.2.6) together with Ny = 1,
the channel power is restricted to

P < af[y(2M —1)]. 4.2.7)

For typical values of ¢ and ¥, P, should be below 10 mW even for five channels and
it reduces to below 1 mW for more than 50 channels.

4.2.2 Effects of Group-Velocity Mismatch

The preceding analysis overestimates the XPM-induced phase shift because it neglects
the time-dependent nature of the optical signal. In practice, each channel carries an op-
tical bit stream in which the location of pulses representing 1 bits is data-dependent (or
pseudo-random). Moreover, pulses belonging to different channels travel at different
speeds and walk through each other at a rate that depends on their wavelength differ-
ence. Since XPM can occur only when pulses overlap in the time domain, the phase
shift induced by it is reduced considerably by the walk-off effects.

A simple way to understand the critical role played by the group-velocity mismatch
is to consider a pump-probe configuration in which one of the channels is in the form
of a weak CW field. This channel acts as probe whose phase is modulated by the
“pump” channel containing an optical bit stream. Equations (4.2.2) and (4.2.3) can be
readily adopted for this case. Let A| play the role of the pump and A; that of the CW
probe. Also assume that the reference frequency is chosen such that Qy = 0 so that Q,
equals the channel spacing. If we assume that dispersion-induced pulse broadening is
negligible and neglect the second-derivative terms, Egs. (4.2.2) and (4.2.3) reduce to

8A| 8A1 R 2 i 9 (04

— — =1iY|A;|"A —B QA — =AY, 4.2.8

%2 +68t i71A| 1+2[32 iA1= Al (4.2.8)
JdA
P2 2iyAs A — A, 42.9)
dz 2

where the parameter § = Q| B, represents a group-velocity mismatch between the
pump and probe and the probe power is assumed to be much smaller than the pump.
We have added a loss term in these equations to account for fiber losses, assumed to be
the same at the pump and probe wavelengths.
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Equations (4.2.8) and (4.2.9) can be solved analytically to find the XPM-induced
phase shift on the probe. The solution of the pump equation (4.2.8) is straightfor-
ward once we note that the pump phase does not play any role. Introducing A; =
V/Prexp(i¢), we find that the pump power P;(z,t) satisfies

P 9P
—— —_— = 4- -
5, 8, +aAr =0, (4.2.10)

and has the solution
Py(z,t) = Py(t — 6z) exp(—oz), 4.2.11)

where Py (¢) represents the temporal power profile of the input bit stream launched
into the pump channel. It is relatively simple to incorporate the effects of periodic
amplification in Eq. (4.2.11). In fact, we only need to replace the factor exp(—az) in
this equation with the power-variation factor p(z) introduced in Section 4.1.

The probe equation can also be easily solved. For a fiber of length L, the solution
takes the simple form

A(z) = A2(0) exp(—aL/2+igxpm), (4.2.12)

where the XPM-induced phase shift is given by

L
dxom () = 27 /O Pu(t — 82)e" % dz. (4.2.13)

In the case of a CW pump, we recover the maximum phase shift obtained earlier. How-
ever, for a time-dependent pump the phase shift is affected considerably by the group-
velocity mismatch governed by the parameter J.

A simple way to understand the role of group-velocity mismatch is to consider a
pump modulated sinusoidally at a frequency @y, as Py (t) = Po + pmcos{@,t) and ask
how the XPM-induced phase shift of the probe changes with the modulation frequency
@y,. Writing this phase shift in the form ¢xpm = o + O cOs(@t + W), it is easy to
show that ¢ = 2yPyLcsr and ¢, is given by [41]

O () = 2YPmLeter/TxPM, (4.2.14)
where 7nxpm is a measure of the XPM efficiency and is given by

2 s 02 —oalL
o 4sin*(w,0L/2)e
Wyy) = 1
Mcem(@n) o? + w3 6? * (1—e—0L)2

(4.2.15)

The quantity y represents a phase lag that also depends on 8, among other parameters.

The important feature of Eq. (4.2.14) is that ¢,,(®,,) depends not only on the mod-
ulation frequency @, but also on the channel spacing Q; through the parameter 8.
Figure 4.5 shows the XPM index, defined as the ratio ¢,/ pn, as a function of o, for
two different channel spacings, assuming that the 25-km-long single-mode fiber has a
dispersion of 16.4 ps/(km-nm) and losses of 0.21 dB/km. Experimental results agree
reasonably well with the theoretical predictions based on Eq. (4.2.14). This equation
can be easily generalized to include the effects of periodic signal amplification.
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Figure 4.5: Measured (symbols) and calculated (solid line) values of the XPM index for a stan-
dard 25-km-long fiber as a function of modulation frequency for two values of channel spacing.
(After Ref. [41]; ©1996 IEEE.)

4.2.3 Effects of Group-Velocity Dispersion

Strictly speaking, the XPM-induced phase shift should not affect system performance
if the GVD effects were negligible because optical receivers respond to only channel
powers and ignore all phase changes. However, chromatic dispersion of optical fibers
converts pattern-dependent phase shifts to power fluctuations, resulting in a lower SNR
at the receiver. For this reason, XPM is a major source of nonlinear impairment for
most WDM lightwave systems. This subsection focuses on the XPM-induced SNR
degradation.

The conversion from time-dependent phase changes to power fluctuations can be
understood qualitatively by noting that time-dependent phase changes are equivalent
to frequency chirping. As was seen in Section 3.2, chirping of optical pulses within
an optical bit stream affects dispersion-induced broadening of the optical signal. The
new feature is that the temporal dependence of the phase shift (or the frequency chirp)
of any channel depends on the bit patterns of all other copropagating channels since
XPM can occur only when 1 bits are present simultaneously in at least two channels.
Moreover, since pulses in different channels travel at different speeds because of the
group-velocity mismatch, the XPM-induced interaction between two channels depends
on the channel spacing.

Focusing again on the pump-probe configuration used earlier, we include the GVD
effects in the probe equation (4.2.9) by adding a second-derivative term as

dAr i 82A2 o
=+ —=—5 =2iyP|(z,t)Ay — —A 4.2.16
Jz + 2 o2 1y l(zv ) 2 7 25 ( )
where P)(z,t) is the pump power given in Eq. (4.2.11). For simplicity of discussion,
dispersion-induced broadening of pump pulses is still neglected.
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The probe equation (4.2.16) can be solved in the Fourier domain because of its
linear nature. However, since both P; and A change with time, the solution is com-
plicated and involves a convolution in the frequency domain. It is useful to treat the
XPM-induced phase shift as a small perturbation and write the solution of Eq. (4.2.16)
as Ay(z,1) = A,(2) +a(z,t), where A,(z) is the unperturbed solution in the absence of
XPM and a(z,t) represents XPM-induced perturbation of the probe. Substituting this
relation in Eq. (4.2.16), a(z,r) is found to satisfy

da ifpdla a .
3% + R + Fa= 2iyP (z,0)Au(2), (4.2.17)

where we neglected a small term on the right side and kept only the unperturbed part
of the probe field. This equation can be easily solved in the Fourier domain. For a
fiber-link of length L, it has the solution

L, o) = 2iy/0L Py (z,w)A,(z)exp [%(iﬁza)z —a)(L-z)] dz, (4.2.18)

where Pj(z,®) is the Fourier transform of the pump power P|(z,1) in Eq. (4.2.11) and
is related to the input spectrum P, (0, @) as

P (z,w) = P (0, w)exp(—az+iwdz). (4.2.19)

The XPM-induced change 8P in the probe power at a specific frequency @ can

now be calculated by noting that §P = A%d + A,a*. It is common to introduce a power
transfer function Hxpys (@) for XPM-induced power fluctuations through the relation

8P(0)/|AL(L)? = Hxpu(®)P; (0, 0) /Ry, (4.2.20)

where Fy is the average power of the pump channel. Using Egs. (4.2.18) and (4.2.19),
this transfer function can be calculated analytically in a closed form and is found to be
[43]-[46]

Hypyu () = 2YR[F (8,5,) — F(8,-B2)], (4.2.21)

where the function F depends on the two dispersion parameters § and 3; as

—expli 2 i
F(8,B;) = exp(—ifyw*L/2) (1 pli(d@+Brw’/2+ OC)L]> '

S+ w?/2+in (4.2.22)

The measurements of power transfer function Hypy (@) provide a convenient way
to quantify the XPM effects in a fiber link. As an example, Figure 4.6(a) shows how
it varies with the modulation frequency @ for a 114-km-long fiber (single span) with
o = 2.5 dB/km, the zero-dispersion wavelength at 1,520.2 nm, and a dispersion slope
at this wavelength of 0.075 ps/(km-nm?). The pump channel had an average power
level of 11.5 dBm at a wavelength of 1,560.6 nm, while the probe was shifted from
this wavelength by 0.8 or 1.6 nm. Figure 4.6(b) is obtained under the same condi-
tions except that a second fiber of 116-km length has been added. In both cases, solid
lines show the predictions based on Eqs. (4.2.21). Clearly, the preceding simple theory
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Figure 4.6: Power transfer function as a function of modulation frequency for (a) 114-km and
(b) 230-km fiber links and two different channel spacings. In each case, solid curves show a
theoretical fit to the experimental data. (After Ref. [46]; ©)1999 IEEE.)

provides a reasonable description of XPM-induced power fluctuations in spite of the
approximations made. In general, fluctuations are smaller for a wider channel sepa-
ration. This is easily understood by noting that a wider channel spacing introduces a
larger mismatch between the pump and probe group velocities. As a result, the length
of the fiber over which pulses in two channels overlap is reduced.

As seen in Figure 4.6, XPM-induced power variations can become quite large even
for a link length of 200 km or so. The important question is how much the power of a
CW probe fluctuates when the probe is copropagated with the pump channel containing
a realistic optical bit stream. Figure 4.7 shows XPM-induced fluctuations on a CW
probe launched with a pump channel modulated at 10 Gb/s using the NRZ format
(bottom trace). Although the fluctuation level is close to 0.1% for a single 130-km-
long span (middle trace), probe power fluctuates by as much as 6% for the 320-km
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Figure 4.7: XPM-induced power fluctuations on a CW probe for 130-km (middle) and 320-
km (top) fiber links with dispersion management. The NRZ bit stream in the pump channel
responsible for fluctuations is shown in the bottom trace. (After Ref. [46]; (©/1999 IEEE.)

fiber link (top trace). Clearly, such XPM-induced fluctuations will become intolerable
for long-haul lightwave systems whose length may exceed 1,000 km.

The combination of GVD and XPM can also lead to timing jitter in WDM sys-
tems. We can use the results of Section 4.1 to understand the origin of timing jitter.
As a faster-moving pulse belonging to one channel collides with and passes through
a specific pulse in another channel, its leading edge arrives first and is followed by
the trailing edge after the two have completely overlapped. Since the frequency chirp
induced by XPM depends on the derivative of the power profile [see Eq. (4.1.10)], it
shifts the pulse spectrum first toward red and then toward blue. In a lossless fiber, col-
lisions of two pulses are perfectly symmetric, resulting in no net spectral shift at the
end of the collision. In a loss-managed system, with lumped amplifiers placed peri-
odically along the link, power variations make collisions between pulses of different
channels asymmetric, resulting in a net frequency shift that depends on the channel
spacing. Such frequency shifts lead to timing jitter (the speed of a channel depends on
its frequency because of GVD) since their magnitude depends on the bit pattern as well
as on channel wavelengths (see Section 8.4).

4.2.4 Control of XPM Interaction

Since XPM affects the performance of all WDM systems, a lightwave system must be
designed to control its impact so that it can operate reliably. In practice, the dominant
contribution to XPM affecting the performance of a specific channel comes from the
two channels that are its nearest neighbors in the spectral domain. The XPM interac-
tion between neighboring channels can always be reduced by increasing the channel
spacing. A larger channel spacing increases the mismatch between the group velocities
at which pulses in each channel propagate through the fiber link. As a result, pulses
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cross each other so fast that they overlap for a relatively short duration, resulting in a
much reduced XPM interaction. This scheme is effective but it reduces the spectral
efficiency as channels must be spaced farther apart. XPM effects can also be reduced
by lowering channel powers. However, a reduction in the channel power also lowers
the SNR at the receiver. In practice, channel powers cannot be reduced below a critical
value set by the SNR requirements.

A simple scheme, often employed in practice, controls the state of polarization
(SOP) with which each channel is launched into the fiber link [52]. More specifically,
individual channels are launched such that any two neighboring channels are ortho-
gonally polarized. In practice, even- and odd-numbered channels are grouped together
and their SOPs are made orthogonal before launching them into the fiber link. This
scheme is sometimes referred to as the polarization channel interleaving technique. The
XPM interaction between two orthogonally polarized does not vanish but its strength
is reduced significantly. Mathematically, the analysis is complicated because one must
take into account the vector nature of the electromagnetic field within the fiber [4]. It
turns out that the coupled NLS equations, Eqgs. (4.2.2) and (4.2.3), can still be used,
provided the factor of 2 appearing in the XPM term is replaced with 2/3. It is this
reduction in the XPM strength that reduces the magnitude of the XPM-induced phase
shift and improves the system performance when neighboring channels of a WDM
system are orthogonally polarized.

It may appear surprising that such a scheme works in spite of birefringence fluctu-
ations that change the SOP of each channel and produce polarization-mode dispersion
(PMD). Indeed, the SOP of all channels changes in a random fashion along the fiber
in any realistic lightwave system. The vector theory of XPM capable of including the
PMD effects (see Section 4.7) shows that the XPM-induced crosstalk is reduced con-
siderably even for two copolarized channels simply because the channels do not remain
copolarized as they propagate within the fiber link [53]. For the same reason, the effec-
tiveness of polarization-interleaving technique is reduced. However, this technique is
still useful in practice for dense WDM systems in which any two neighboring channels
differ in their wavelengths by a relative small amount (typically <1 nm). Because of a
small difference in the carrier frequencies, the SOPs of the two neighboring channels
can remain nearly orthogonal over relatively long distances, and XPM effects can be
reduced by launching alternate channels with orthogonal SOPs [52].

4.3 Four-Wave Mixing

Four-wave mixing (FWM) becomes a major source of interchannel crosstalk whenever
more than two channels are transmitted simultaneously over the same fiber, and it has
been studied extensively in the context of WDM lightwave systems [54]-[67]. On a
fundamental level, FWM can be viewed as a scattering process in which two photons
of energies /i, and hay, are destroyed, and their energy appears in the form of two new
photons of energies fias and 2@y such that the total energy is conserved. Such a process
becomes efficient when a phase-matching condition stemming from the requirement of
momentum conservation is satisfied.
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It is easy to see why FWM would degrade the performance of a WDM system if
it remains uncontrolled. The FWM process can generate a new wave at the frequency
WrwM = O; + ©; — @, whenever three waves of frequencies ®;, ®;, and @ copropa-
gate inside the fiber. For an M-channel system, i, j, and k vary from 1 to M, resulting
in a large combination of new frequencies generated through FWM. In the case of
equally spaced channels, most new frequencies coincide with the existing channel fre-
quencies and interfere coherently with the signals in those channels. This interference
depends on the bit pattern and leads to considerable fluctuations in the detected signal
at the receiver. When channels are not equally spaced, most FWM components fall in
between the channels and their power acts as background noise. System performance
is affected in both cases but the degradation is much more severe for equally spaced
channels because of the coherent nature of resulting interchannel crosstalk.

4.3.1 FWM Efficiency

To see the origin of FWM, we extend the discussion of Section 4.2 to the case of
a multichannel lightwave system and write the total optical field A(z,#) in the NLS
equation (3.1.12) as

M
Az,t) = Y An(z,t) exp(~iQmt), (4.3.1)
m=1
where Q,, = @,, — ay, ©,, is the carrier frequency of the mth channel, and @y is the
reference carrier frequency that was used in deriving the NLS equation. As before,
we substitute Eq. (4.3.1) in Eq. (3.1.12) and collect all terms oscillating at a specific
frequency. The resulting equation for the mth channel takes the form

aA RPA, i
Jﬁz 11232 o2 = iBZQanAm
zy(lAm]Z 12 ): 1A )A +zyZZZAA AT (432)

j#m

In the last term that takes into account FWM among various channels, the triple sum is
restricted to only those frequency combinations that satisfy the FWM condition ®,, =
; + ®; — . Fiber losses have been added to this equation for completeness.

An exact analysis of the FWM process in optical fibers requires a numerical ap-
proach. However, considerable physical insight can be gained by considering a single
FWM term in the triple sum in Eq. (4.3.2) and focusing on the quasi-CW case so
that time-derivative terms can be set to zero. If we neglect the phase shifts induced
by SPM and XPM, assume that the three channels participating in the FWM process
remain nearly undepleted, and eliminate the remaining 3, term through the transfor-
mation A,, = By, exp(iyQ2,z/2 — az/2), the amplitude B,, of the FWM component is
governed by

dBy

= iYB;B B exp(— oz — iAkz), 4.3.3)
where the linear phase mismatch depends on the dispersion parameter as

Ak = Br(Q% +QF - QF - Q7). (4.3.4)
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Figure 4.8: FWM efficiency plotted as a function of channel spacing for 25-km-long fibers with
different dispersion characteristics. Fiber loss is assumed to be 0.2 dB/km in all cases.

Equation (4.3.3) can be easily integrated to obtain B,,(z). The power transferred to
the FWM component in a fiber of length L is given by [54]
Am(L)* = ntewm (YL)* PiPiPre™ ", 43.5)

where P; = |A;(0)|? is the power launched initially into the jth channel and Ngwy is
the FWM efficiency defined as

1 —exp[—(0t+iAk)L] |
(o +IiAk)L

NEWM = (4.3.6)

The FWM efficiency npwwm depends on the channel spacing through the phase mis-
match Ak given in Eq. (4.3.4). Using the FWM condition, Q,, = £; +Q; — Q, this
mismatch can also be written as

Ak = Bo(Q; — Q) (Q) — ) = ol ~ an) (0 — ax). (4.3.7)

In the case of degenerate FWM for which both pump photons come from the same
channel (Q; = Q;), the phase mismatch is given by Ak = B, (2AV,)?, where Avg, is
the channel spacing. Figure 4.8 shows how npwM varies with Avy, for several values of
dispersion parameter D, related to §, as D = (—27c/A2) B, using & = 0.2 dB/km and
Ao = 1.55 pm for a 25-km-long fiber. The FWM efficiency is relatively large for low-
dispersion fibers even when channel spacing exceeds 100 GHz. In contrast, it nearly
vanishes even for Avy, = 50 GHz when D > 2 ps/(km-nm).
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Figure 4.9: Input (a) and output (c) optical spectra for eight equally spaced channels launched
with 3-dBm powers. Input (b) and output (d) optical spectra in the case of unequal channel
spacings when launched power per channel is 5 dBm. (After Ref. [59]; ©1995 IEEE.)

If the dispersion parameter of the transmission fiber is relatively large (|B,| >
5 ps?/km), rwwm nearly vanishes for typical channel spacings of 50 GHz or more used
for WDM systems. In contrast, Nrwm ~ (L) 2 close to the zero-dispersion wave-
length of the fiber as seen from Eq. (4.3.6) in the limit Ak = 0 and oL >> 1. Under
such conditions, considerable power is transferred from each channel to several FWM
components, especially when channel powers are relatively high. Figure 4.9(c) shows,
as an example, the optical spectrum measured at the output of a 137-km-long fiber
link (composed of dispersion-shifted fibers with the zero-dispersion wavelength near
1,540 nm) when eight channels, each with 2-mW average power, are launched into
it [59]. This spectrum should be compared with the input spectrum shown in Figure
4.9(a). Multiple spectral components generated through FWM can be seen clearly in
the output spectrum. Since the number of FWM components for an M-channel WDM
system increases as M?(M — 1)/2 for an M-channel WDM system, the total power
transferred from each channel to all FWM components can be quite large. In the case
of equal channel powers, P, increases as Pcz’h. This cubic dependence of the FWM
component limits the channel powers to below 1 mW when low-dispersion fibers are
used for which the FWM is nearly phase-matched.

4.3.2 Control of FWM

The main issue from a system standpoint is how FWM affects the performance of
a WDM system. When all channels are spaced equally in the frequency domain, it
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follows from the FWM condition (@, = @; + ®; — @) that the frequencies of most
FWM components will coincide with the channel frequencies. Under such conditions,
FWM effects are not apparent in the spectral domain, as seen in Figure 4.9(c), except
for uneven channel powers. However, their presence leads to an enhanced noise level
in the time domain.

The origin of noise enhancement can be understood physically by noting that one
or more FWM components interfere with the signal in a specific channel in a coherent
fashion if they have the same carrier frequency. If channel powers were constant with
time, this interference will not be a major problem since each channel that loses power
through FWM also receives some power from neighboring channels, thereby roughly
balancing the power transfer. However, the situation is much more complicated for
channels containing optical bit streams that are neither synchronized in time nor have
identical bit patterns. Moreover, these bit streams travel though the fiber at slightly
different speeds because of the group-velocity mismatch. FWM can only occur when
optical pulses are present simultaneously in the same time slot in at least two channels.
Since near coincidence of bits in different channels occurs in a random fashion, FWM
manifests as fluctuations in the power level of each channel, and the level of such
fluctuations increases for low-dispersion fibers because FWM efficiency is enhanced
for them.

A simple scheme for reducing the FWM-induced degradation consists of designing
WDM systems with unequal channel spacings [59]. Figures 4.9(b) and 4.9(d) show
the input and output optical spectra for an eight-channel WDM system when channel
wavelengths are adjusted to ensure that none of the FWM components falls within the
channel bandwidths. Similar to the case of equal channel spacings, new FWM compo-
nents are generated but they do not interfere with the signal in a coherent fashion and
thus do not degrade the SNR significantly. The average power of each channel is re-
duced because of FWM, but the reduction is nearly the same for all channels. In a 1999
experiment, this technique was used to transmit 22 channels, each operating at 10 Gb/s,
over 320 km of dispersion-shifted fiber with 80-km amplifier spacing [66]. Channel
spacings ranged from 125 to 275 GHz in the wavelength range of 1,532 to 1,562 nm
and were determined using a periodic allocation scheme [68]. The zero-dispersion
wavelength of the fiber was close to 1,548 nm, resulting in near phase matching of
many FWM components. Nonetheless, the system performed quite well, because of
unequal channel spacings, resulting in less than 1.5-dB power penalty for all channels.

The use of a nonuniform channel spacing is not always practical since many WDM
components, such as Fabry—Perot filters and arrayed waveguide gratings (see Chapter 8
of LT1), operate on the assumption that channels are spaced apart equally. Also, such
a scheme is spectrally inefficient, as the bandwidth of the resulting WDM signal is
considerably larger compared with the case of equally spaced channels [59].

A practical solution is offered by the dispersion-management technique discussed
in Section 3.3.4. In this scheme, fibers with normal and anomalous GVD are combined
to form a periodic dispersion map such that GVD is locally high all along the fiber link,
even though its average value is relatively low and can even be zero. As a result, the
FWM efficiency 1 is negligible in each fiber section. As early as 1993, eight channels
at 10 Gb/s could be transmitted over 280 km through dispersion management [69]. By
1996, the use of dispersion management had become quite common for FWM suppres-
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sion in WDM systems because of its practical simplicity. FWM can also be suppressed
by using fibers whose GVD varies along the fiber length [70].

Modulation instability can enhance the effects of FWM for certain specific values
of channel spacing even when dispersion management is used and local GVD is rela-
tively high [63]. The reason can be understood by noting that SPM and XPM, ignored
in deriving Eq. (4.3.5), can produce phase matching even when B, # 0. Tt is possi-
ble to extend the preceding analysis and include the phase shifts induced by SPM and
XPM [4]. It turns out that Eq. (4.3.5) can still be used but the phase-mismatch factor
Ak in Eq. (4.3.7) is replaced with [65]

Ak = Bo(o0; — ax ) (0; — @x) + V(P + P; — Pe)[1 —exp(—otLegs)]/(OtLest).  (4.3.8)

Clearly, Ak may become close to zero for some FWM terms, depending on the channel
powers and spacings, when [3; is in the anomalous-GVD regime of the fiber. The
corresponding FWM process will then become phase-matched, resulting in significant
FWM efficiency.

One can understand such a FWM enhancement as follows. If the frequency at
which the gain of modulation instability peaks nearly coincides with the channel spac-
ing in a WDM system, modulation-instability sidebands will overlap with the neigh-
boring channels. As a result, the FWM process will become enhanced resonantly in
spite of the large value of the GVD parameter. We can estimate the channel spacing
OV, for which such resonant FWM is expected to occur using Eq. (4.1.28). Settimg
the channel spacing equal to the gain-peak frequency, we obtain

Qs =278Ven = (27Pun/|B2))' /2. (4.3.9)

As a rough estimate, 8V, & 10 GHz when Py, = 5 mW, B, = —5 ps?/km, and y =
2 W~ !/km. Since channel spacing in modern WDM systems is typically 50 GHz or
more, resonance enhancement of FWM can easily be avoided. However, it may become
of concern for dense WDM systems designed with a channel spacing close to 10 GHz.

As discussed in Chapters 9 and 10 of LT1, FWM can be quite beneficial for certain
applications related to lightwave systems. It is often used for demultiplexing individual
channels when time-division multiplexing is used in the optical domain. It can also be
employed for applications such as wavelength conversion and fast optical switching.
FWM is sometimes used for generating a spectrally inverted signal through the process
of optical phase conjugation. As discussed in Chapter 7, the phase-conjugation tech-
nique can be used for dispersion compensation. Fiber-optic parametric amplifiers (see
Section 3.3 of LT1) constitute another application of FWM. In all such applications
of FWM, the fiber-based device is pumped using one or two lasers whose wavelengths

are chosen judiciously in the vicinity of the zero-dispersion wavelength of the fiber to
enhance FWM efficiency.

4.4 Stimulated Raman Scattering

Rayleigh scattering, a major source of fiber losses, is an example of elastic scattering in
which the frequency of scattered light remains unchanged. In contrast, the frequency is
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Figure 4.10: Raman gain coefficient (peak value normalized to 1) for silica fibers as a function
of difference in the carrier frequency of the pump and signal when the two are copolarized (solid
curve) or orthogonally polarized (dotted curve). The peak value is about 6 x 10~ m/W for a
pump near 1.5 pm. (After Ref. [95]; ©2004 IEEE.)

shifted downward during inelastic scattering. Raman and Brillouin processes provide
two examples of inelastic scattering. Both of them can be understood as the conver-
sion of a photon to a lower-energy photon such that the energy difference appears in the
form of a phonon. The main difference between the two is that optical phonons (related
to vibrations of silica molecules) participate in Raman scattering, whereas acoustic
phonons participate in Brillouin scattering. The two processes are not of much con-
cern for lightwave systems at low channel powers because the amount of power loss
through spontaneous scattering is relatively small. However, they become stimulated at
high power levels and affect the performance of lightwave systems considerably. This
section focuses on stimulated Raman scattering (SRS).

44.1 Raman-Gain Spectrum

As discussed in Section 1.6.5 of LT1, the SRS process generates a Stokes wave from
noise when the launched power exceeds a certain value. It can also amplify a signal
when it is launched into the fiber together with a pump that supplies energy for the
amplification process. SRS was first observed in optical fibers in 1972 using optical
pulses with high peak powers [71]. Since then, the impact of SRS on the performance
of lightwave systems has been studied extensively [72]-[92]. As discussed in Section
3.2, the SRS process is also beneficial for lightwave systems as it can be used to amplify
WDM channels through distributed Raman amplification [93]-[95].

How much power is transferred from the pump to signal depends on the frequency
spacing between them as well as on the fiber material. The Raman-gain spectrum of
silica fibers shown in Figure 4.10 is extremely broad and spans a frequency range wider
than 20 THz. The Raman gain also depends on the relative state of polarization of the
pump and signal fields. It is largest when the two are copolarized (solid curve) and
nearly vanishes if they are orthogonally polarized (dotted curve). The Raman shift,
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corresponding to the location of the main peak in Figure 4.10, is close to 13 THz for
silica fibers. The peak value of the Raman gain gg at this frequency depends on the
pump wavelength and is about 6 x 10~4 m/W in the wavelength region near 1.5 um.
When only the pump is launched into the fiber, a Stokes wave is generated from noise
and its power grows exponentially when the pump power exceeds a certain value known
as the Raman threshold. The frequency of the Stokes wave is downshifted from that of
the pump by the Raman shift vg.

4.4.2 Raman Threshold

The SRS process in optical fibers is governed by the following set of two coupled
nonlinear equations [4]:

di

Eﬁ = gr(Q)I,L; — oy, (4.4.1)

dl o

d_é’ = —EpgR(Q)I,,Ix —aply, (4.4.2)
0y

where I; and I, are the intensities and ¢ and o, are fiber losses for the Stokes and
pump waves at the carrier frequencies @, and ®,, respectively. Noting that the quantity
I;/(hwj) represents photon flux for a beam at frequency @, these equations are like the
rate equations that include the rates at which photons appear in or disappear from each
beam. The term containing gr(Q), where Q = @, — o, is the Raman shift, describes
the conversion of pump photons to Stokes photons. As seen from Figure 4.10, the
magnitude of gz depends not only on Q but also on whether the Stokes and pump are
copolarized or orthogonally polarized.

Equations (4.4.1) and (4.4.2) are difficult to solve in general because of their non-
linear nature. However, they can be solved easily if we assume that the pump is so
intense compared with the Stokes that its depletion can be ignored. If we neglect the
gr term in Eq. (4.4.2) and substitute its solution in Eq. (4.4.1), we obtain

dl;/dz = grlyexp(—op2)ls — ol (4.4.3)

where Iy is the pump intensity at z = 0. The preceding equation can be easily solved
for a fiber of length L to obtain

Is(L) = [S(O) exp(gRI()Leff — ozsL), (444)

where Legs = (1 — e~ %)/t is the effective fiber length introduced earlier.

In the case of a lightwave system, the impact of SRS depends on whether a sin-
gle or multiple channels are being transmitted. In a single-channel system, a Stokes
wave is not present initially, and it must be generated from noise. Even though SRS
builds up from spontaneous Raman scattering occurring throughout the fiber length,
this process is equivalent to injecting one fictitious photon per mode at the input end of
the fiber [72]. Thus, we can calculate the Stokes power by considering amplification of
each frequency component of energy % as in Eq. (4.4.4) and then integrating over the
entire bandwidth of the Raman-gain spectrum. This process results in the integral

P(L) = / 1o explgr(@p — ©)loLett — asL] d, (4.4.5)
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where the frequency dependence of gg results from the gain spectrum in Figure 4.10.
Even though the functional form of gr(Q) is not known, the integral in Eq. (4.4.5)
can be evaluated approximately using the method of steepest descent because the main
contribution to the integral comes from a narrow region around the gain peak. The
result is found to be [4]

Py(L) = P§)" explgr(Qp)loLett — oL, (4.4.6)

where the effective input power at z = 0 is given by

~1/2
Py = hay ( ToLer S . “4.4.7

W=es

The Raman threshold is defined as the input pump power at which the Stokes power
becomes equal to the pump power at the fiber output [72], or

Py(L) = P,(L) = Pyexp(—a,L), 4.4.8)

where Po = IpAfr is the input pump power and Ay is the effective core area. Using Eq.
(4.4.6) in Eq. (4.4.8) and assuming ¢ ~ (t,, the threshold condition becomes

P exp(grPoLefi/Actt) = Po- (4.4.9)

The solution of this equation provides the pump power required to reach the Raman
threshold. Assuming a Lorentzian shape for the Raman-gain spectrum, the threshold
power can be estimated from the simple relation [72]

selinlett 16, (4.4.10)

Actr
As before, we can replace L.g with 1/ for long fiber lengths used in lightwave sys-
tems. Using gg ~ 6 x 1071 m/W, Py, is about 500 mW in the spectral region near
1.55 um. Since channel powers are limited to below 10 mW because of other nonlin-
ear processes, SRS is not of much concern for single-channel systems.

The situation is quite different for WDM systems transmitting multiple channels
spaced apart by 100 GHz or so. The same fiber in which channels propagate then acts as
a distributed Raman amplifier such that each channel is amplified by all channels with
a shorter wavelength as long as the wavelength difference is within the Raman-gain
bandwidth. The shortest-wavelength channel is depleted most as it can pump all other
channels simultaneously. Such an energy transfer among channels can be detrimental
for system performance since it depends on the bit pattern—it occurs only when 1 bits
are present in both channels simultaneously. The signal-dependent amplification leads
to power fluctuations, resulting in a reduced SNR. Raman crosstalk can be avoided
if channel powers are made so small that Raman amplification is negligible over the
fiber-link length. This issue is discussed in Chapter 9 devoted to WDM systems.
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4.5 Stimulated Brillouin Scattering

As discussed in Section 1.6.4 of LT1, SBS differs from SRS in several ways. First,
it generates a Stokes wave only in the backward direction. Second, the Brillouin-gain
spectrum of silica fibers is extremely narrow and typically spans a frequency range of
less than 50 MHz. Third, the Brillouin shift v, corresponding to the location of the
gain peak, is only about 11 GHz for silica fibers in the wavelength region near 1.55 pm.
The Brillouin shift depends on the acoustic velocity and scales inversely with the pump
wavelength. Fourth, the peak value of the Brillouin gain gg is larger by more than a
factor of 100 compared with that of the Raman gain, a feature that makes SBS to occur
at relatively low power levels. SBS in optical fibers was first observed in 1972 and has

been studied extensively since then because of its implications for lightwave systems
[96]-[101].

4.5.1 Brillouin Threshold

At low pump powers (<1 mW or so), not much power is reflected by spontaneous
Brillouin scattering in the form of a Stokes wave. However, the situation changes
when the power level exceeds a threshold value. The power of the Stokes wave grows
exponentially beyond the SBS threshold. In fact, the fiber appears to act as a mirror far
above this threshold because most of the pump power is reflected backward.

The SBS process in optical fibers is governed by a set of two coupled nonlinear
equations that resembles Egs. (4.4.1) and (4.4.2) with some minor differences and can
be written as [4]:

dl
-d_f = gp(Q),I; — a1, “4.5.1)

<

dl
2 = &k~ o, (4.5.2)

where the Stokes is assumed to travel backward. Two simplifications are made in
writing theses equations in view of the relatively small frequency difference between
the pump and Stokes. First, we assume o; = @, = &. Second, we set the factor @, /@
appearing in Eq. (4.4.2) equal to 1. We also assume that the Stokes and pump are
copolarized.

Similar to the SRS case, Eqgs. (4.5.1) and (4.5.2) can be solved easily if we assume
that the pump is so intense compared with the Stokes that its depletion can be ignored.
If we neglect the gg term in Eq. (4.5.2) and substitute the solution in Eq. (4.4.1), we
obtain

dl/dz = —grlyexp(—otp2) I + oy, (4.5.3)
where /p is the pump intensity at z = 0. This equation can be easily solved for a fiber
of length L to obtain

1,(0) = I;(L) exp(gaPoLetr/Aett — L), (45.4)

where Lesr is the effective fiber length and we used Py = IpAcg, where Py is the input
pump power. Note that the Stokes wave grows exponentially in the backward direction
from an initial seed injected at the fiber output end at z = L.
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Figure 4.11: Transmitted (solid circles) and reflected (empty circles) powers as a function of
input power injected into a 13-km-long fiber. (After Ref. [99], ©1992 IEEE.)

One can now follow a method similar to that used in the SRS case to find a fictitious
input field at z = L. For a CW pump with a relatively narrow spectrum, the threshold
power Py, is found from the condition [72]

8B(VB)PnLett /Acts ~ 21, (4.5.5)

where gp(vg) is the peak value of the Brillouin gain with a Lorentzian spectral pro-
file [4] ve)
&B\VB
ga(v) = TF 407 — vg) 2/ (Bvp)E (4.5.6)
and the Brillouin-gain bandwidth Avp is related inversely to the decay time of acoustic
phonons (~100 ns). Both the Brillouin shift vg and the gain bandwidth Avg can vary
from fiber to fiber because of the presence of dopants in the fiber core. For long fibers
such that &L >> 1, one can use Legr ~ 1/a ~= 21.74 km when a = 0.2 dB/km. Using
gs ~5x 107! m/W and A = 50 um? as typical values, the threshold power Py, for
the SBS onset can be as low as 1 mW for CW signals in the wavelength region near
1.55 pm [97].

Figure 4.11 shows how the transmitted and reflected powers change for a 13-km-
long dispersion-shifted fiber as the injected CW power is increased from 0.5 to 50 mW.
At low power levels, the reflected signal consists of only 4% of input power and has
its origin in the Fresnel reflection at the fiber-air interface occurring when light is
coupled to the fiber. The Brillouin threshold is reached at a power level of about 5 mW.
The reflected power increases rapidly after this threshold and consists of mostly SBS-
generated Stokes radiation. No more than 3 mW could be transmitted through the fiber
in this experiment after the onset of SBS.

The SBS threshold increases for CW beams whose spectral width is larger than the
Brillouin-gain bandwidth that varies from fiber to fiber to some extent but falls typi-
cally in the range of Avg = 20 to 50 MHz. It also increases when short optical pulses
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propagate through the fiber because of their relatively wide bandwidth. In lightwave
systems, the optical signal is in the form of a bit stream that consists of pulses whose
widths depend on the bit rate as well as on the modulation format employed. Consid-
erable attention has been paid to estimating the Brillouin threshold and quantifying the
SBS limitations for practical lightwave systems [102]-[107]. The Brillouin threshold
of an optical bit stream is higher than that of a CW signal, but the amount by which the
threshold power increases depends on the modulation format used for data transmis-
sion.

Calculation of the Brillouin threshold for an optical bit stream is quite involved as
it requires a time-dependent analysis [102]. Considerable simplification occurs if the
bit rate B is assumed to be much larger than the Brillouin-gain line width Avg. Even
with this assumption, the analysis is complicated by the fact that the 1 and O bits do
not follow a fixed pattern. A simple approach assumes that the situation is equivalent
to that of a CW pump whose spectrum corresponds to that caused by a random bit
pattern. This is justified by noting that the backward nature of the SBS-generated
Stokes wave tends to average out time-dependent fluctuations. A surprising result of
such an approximate analysis is that the Brillouin threshold increases by about a factor
of 2 irrespective of the actual bit rate of the system. As a result, input powers of
up to about 10 mW can be injected into a fiber link without the onset of SBS. Since
channel powers rarely exceed 5 mW in most WDM lightwave systems for various other
reasons, SBS is not of much practical concern for such systems. In particular, it does
not produce interchannel crosstalk unless the same fiber link is used to transmit WDM
signals in both directions. Even then, the two counterpropagating channels have to
be separated in frequency by precisely the Brillouin shift (about 11 GHz) before any
crosstalk can occur.

In modern WDM systems, fiber losses are compensated periodically using optical
amplifiers. An important question is how amplifiers affect the SBS process. If the
Stokes wave were amplified by amplifiers, it would accumulate over the entire link and
grow enormously. Fortunately, periodically amplified lightwave systems commonly
employ an optical isolator within each amplifier unit that blocks the passage of the
Stokes wave. However, the SBS growth between two amplifiers is still undesirable for
two reasons. First, it removes power from the signal once the signal power exceeds the
threshold level. Second, it induces large fluctuations in the remaining signal, resulting
in degradation of the SNR [100]. For these reasons, channel powers are invariably kept
below the SBS threshold and are limited in practice to below 10 mW.

4.5.2 Control of SBS

Some applications require launch powers in excess of 10 mW. An example is provided
by the shore-to-island fiber links designed to transmit information over several hundred
kilometers without employing in-line amplifiers or repeaters {108]-[110]. Input power
levels in excess of 50 mW are needed for distances >300 km. One must raise the Bril-
louin threshold before such power levels can be transmitted through the fiber link, and
several schemes have been proposed for this purpose [111]-[118]. These schemes rely
on increasing either the Brillouin-gain bandwidth Avg or the spectral width of optical
carrier. The former has a value in the range of 20 to 50 MHz for silica fibers, while
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the latter is typically <10 MHz for DFB lasers used commonly for systems operating
at bit rates above 2 Gb/s. The bandwidth of an optical carrier can be increased by
modulating its phase at a frequency much lower than the bit rate. Typically, the mod-
ulation frequency Av,, is chosen in the range of 200 to 400 MHz. Since the effective
Brillouin gain is reduced by a factor of (1 + Av,,/Avg) (see Section 1.6.4 of LT1), the
SBS threshold increases by the same factor. The launched power can be increased by
more than a factor of 10 by the phase-modulation technique.

If the Brillouin-gain bandwidth Avp of the fiber itself can be increased from its
nominal value of 20 to 50 MHz to more than 200 MHz, the SBS threshold can be
increased without requiring a phase modulator. One technique applies sinusoidal strain
along the fiber length for this purpose. The applied strain changes the Brillouin shift vg
by a few percent in a periodic manner. The resulting Brillouin-gain spectrum is much
broader than that occurring for a fixed value of vg. The strain can be applied during
cabling of the fiber. In one fiber cable, Avg was found to increase from 50 MHz to
400 MHz [114]. The Brillouin shift vz can also be changed by making the core radius
nonuniform along the fiber length since the longitudinal acoustic frequency depends
on the core radius [115]. The same effect can be realized by changing the dopant
concentration along the fiber length. In a 1996 experiment, this technique increased
the SBS threshold of one fiber by 7 dB [116]. A side effect of varying the core radius
or the dopant concentration is that the GVD parameter f3; also changes along the fiber
length. It is possible to vary the two simultaneously in such a way that 8, remains
relatively uniform [118].

4.6 Nonlinear Pulse Propagation

Among the five nonlinear effects discussed so far, SRS and SBS are avoided in practice
by lowering channel powers to below 5 mW or so. FWM can also be nearly eliminated
by managing fiber dispersion or channel spacings. The remaining two, SPM and XPM,
are harder to control unless channel powers are made so small that the entire fiber link
acts as a linear medium. This is not feasible for long-haul systems because the noise
added by amplifiers degrades the SNR as the link length increases.

The effects of SPM, XPM, as well as FWM can be included by solving the NLS
equation (4.1.2) numerically. However, considerable physical insight is gained if this
equation can be solved approximately in an analytic or semianalytic fashion. In this
section we consider the simplest single-channel case and employ two analytic tech-
niques for solving the NLS equation.

4.6.1 Moment Method

The moment method was used as early as 1971 for nonlinear optical systems {119]. It
can be used to solve the NLS equation (4.1.2) approximately, provided one can assume
that the pulse maintains a specific shape as it propagates down a fiber link even though
its amplitude, width, and chirp change continuously [120]1-[122]. This assumption
holds reasonably well in many cases of practical interest. For example, it was seen
in Section 3.3 that a Gaussian pulse maintains its shape in a linear dispersive medium
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even though its amplitude, width, and chirp change during propagation. Let us assume
that the Gaussian shape remains approximately valid when the nonlinear effects are
relatively weak.

The basic idea behind the moment method is to treat the optical pulse like a particle
whose energy E, RMS width o, and chirp C are defined as

o0 1 o0
E:/ U ?dt, GZZE/ U dr, 4.6.1)

i e (U U
- E/_wz<U = -us )dt. (4.62)

As the pulse propagates inside the fiber, these parameters change. To find how they
evolve with z, we differentiate Eqs. (4.6.1) and (4.6.2) with respect to z and use Eq.
(4.1.2). After some algebra, we find that dE /dz = 0 but 62 and C satisfy

d“ _B / Im (U*a U)dt, (4.63)
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In the case of a chirped Gaussian pulse, the field U(z,#) at any distance z has the
form

Ul(z,t) = aexp[—1 (1 +iC)(t/T)* +i¢], (4.6.5)

where all four pulse parameters, a, C, T, and ¢, are functions of z. The phase ¢ does
not appear in Eqs. (4.6.3) and (4.6.4). Even though it changes with z, it does not affect
other pulse parameters and can be ignored. The peak amplitude a is related to the
energy as E = \/wa’T. Since E does not change with z, we can replace it with its
initial value Ey = /7Ty. The width parameter T is related to the RMS width ¢ of
the pulse as T = v/26. Using Eq. (4.6.5) and performing integrals in Eqgs. (4.6.3) and
(4.6.4), the width T and chirp C are found to change with z as

dr _ B,C
= (4.6.6)
5’£:(1+Cz)ﬁ2+ypo P2 Ty 4.6.7)

dz V2T

This set of two first-order differential equations can be used to find how the nonlinear
effects modify the width and chirp of the pulse.

Considerable physical insight can be gained from Eqgs. (4.6.6) and (4.6.7). The
SPM phenomenon does not affect the pulse width directly as the nonlinear parameter
¥ appears only in the chirp equation (4.6.7). The two terms on the right side of this
equation originate from dispersive and nonlinear effects, respectively. They have the
same sign for normal GVD (f3; > 0). Since SPM-induced chirp in this case adds to
the GVD-induced chirp, we expect SPM to increase the rate of pulse broadening. In
contrast, when GVD is anomalous (8, < 0), the two terms on the right side of Eq.
(4.6.7) have opposite signs, and the pulse broadening should be reduced in the presence
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of SPM because of smaller values of C in Eq. (4.6.6). In fact, this equation can be
integrated to obtain the following general relation between pulse width and chirp:

T2(z) = T¢ +2 / i Bx(2)C(z) dz. (4.6.8)
0

The equation shows explicitly that the pulse compresses whenever the quantity f,C <
0, a result obtained earlier in Section 3.3.

4.6.2 Variational Method

The variational method is well known from classical mechanics and is used in many
different contexts [123]-[125]. It was applied as early as 1983 to the problem of pulse
propagation inside optical fibers [14]. Mathematically, it makes use of the Lagrangian
Z defined as

7= / " Zia.q)dr, (4.6.9)

where the Lagrangian density .% is a function of the generalized coordinate g(z) and
g*(z), both of which evolve with z. Minimization of the “action” functional, . =
[ £ dz, requires that .%; satisfy the Euler-Lagrange equation

9 (0L . 3 (I 0%

where ¢, and g; denote the derivative of g with respect to 7 and z, respectively.
The variational method makes use of the fact that the NLS equation (4.1.2) can be
derived from the Lagrangian density

i, U QU*\ | By|oU
fd‘i@a?‘”‘é?)*ﬂa

2
+3YPop(2)|U*, (4.6.11)

with U* acting as the generalized coordinate ¢ in Eq. (4.6.10). If we assume that the
pulse shape is known in advance in terms of a few parameters, the time integration in
Eq. (4.6.9) can be performed analytically to obtain the Lagrangian .# in terms of these
pulse parameters. In the case of a chirped Gaussian pulse of the form given in Eq.
(4.6.5), we obtain

BE

yp(z)E*> E (dC 2CdT d¢
= (1+C )+ | | _EL 4.6.12
4T2( +C)+ V8T 4 \dz T dz dz’ ( )

where E = /7a’T is the pulse energy.
The final step is to minimize the action . = [ .%(z)dz with respect to the four
pulse parameters. This step results in the reduced Euler-Lagrange equation

d (a,?)_aﬁ:

4 (9Z 0, 46.13
dz \ 9q; dq ( )

where g, = dg/dz and g represents one of the pulse parameters. If we use g = ¢ in
Eq. (4.6.13), we obtain dE /dz = 0. This equation indicates that the energy E remains
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constant, as expected. Using ¢ = E in Eq. (4.6.13), we obtain the following equation

for pulse phase ¢:
¢ _ B, Svp(x)E

dz  2T?  4/2xT’

We can follow the same procedure to obtain equations for T and C. In fact, using

g =C and T in Eq. (4.6.13), we find that pulse width and chirp satisfy the same two

equations, namely Eqs. (4.6.6) and (4.6.7) obtained earlier with the moment method.

Thus, the two approximate methods lead to identical results in the case of the NLS
equation.

(4.6.14)

4.6.3 Specific Analytic Solutions

As a simple application of the moment or variational method, consider first the case of
a low-energy pulse propagating in a constant-dispersion fiber with negligible nonlinear
effects. Recalling that (1 + C?)/T? is related to the spectral width of the pulse that
does not change in a linear medium, we can replace this quantity with its initial value
(1+C3)/T¢, where Ty and Cp are input values at z = 0. Since the second term is
negligible in Eq. (4.6.7), it can be integrated easily and provides the solution

C(z) = Co+s(1+C3)z/Lp, (4.6.15)

where s = sgn(B,;) and Lp = T?/|B,| is the dispersion length. Using this solution in
Eq. (4.6.8), we find that the pulse width changes as

T?(z) = T¢[1 + 25Co(z/Lp) + (1 +C3)(z/Lp)¥. (4.6.16)

It is easy to verify that these expressions agree with those obtained in Section 3.3.1 by
solving the pulse propagation equation directly.

To solve Eqs. (4.6.6) and (4.6.7) in the nonlinear case, we make two approxima-
tions. First, we assume that fiber losses are compensated such that p(z} = 1 (ideal dis-
tributed amplification). Second, the nonlinear effects are weak enough that the chirp at
any distance z can be written as C = Cr, + C’, where the nonlinear part C' < Cy. Itis
easy to see that the linear part is given by Eq. (4.6.15), while the nonlinear part satisfies

dC’ YRy T
— === 4.6.17
dz 2T ( )
Dividing Eqs. (4.6.6) and (4.6.17), we obtain
dac’ P Tt Py Tt
. Molo  Yolo (4.6.18)

dT — \V2BC V2BCL

where we replaced C with C; as C' < Cp.. This equation is now easy to solve, and the
result can be written as P
CI(Z) . Yrolo

a V2B.CL
Once C = Cp 4+ C' is known, the pulse width can be found from Eq. (4.6.8).

(T —Ty). (4.6.19)
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Figure 4.12: Width ratio T /T and chirp C as a function of propagation distance z for an input
Gaussian pulse with parameters such that yPyLp = 0.1. The solid and dashed curves show the
exact and approximate solutions, respectively.

The preceding analytic solution can only be used when the parameter u, defined as
U =7YPLp=Lp/LNL, is less than 0.3 or so. However, one can easily solve Eqgs. (4.6.6)
and (4.6.7) numerically for any value of u. Figure 4.12 shows changes in T /Ty and C
as a function of z/Lp for several values of i assuming that input pulses are unchirped
(Cy = 0) and propagate in the region of anomalous regime (s = —1). In the linear case
(¢ = 0), pulse broadens rapidly and develops considerable chirp, and the results reduce
to those obtained in Section 3.3.1. However, as the nonlinear effects increase and pt
becomes larger, pulse broadens less and less. Eventually, it even begins to compress,
as seen in Figure 4.12 for 4 = 1.5.

The behavior seen in Figure 4.12 can be understood in terms of the SPM-induced
chirp as follows. As seen from Eq. (4.6.7), the two terms on its right side have opposite
signs when B, < 0. As a result, SPM tends to cancel the dispersion-induced chirp, and
reduces pulse broadening. For a certain value of the nonlinear parameter p, the two
terms nearly cancel, and pulse width does not change much with propagation. For even
larger values of u, pulse may even compress, at least initially. In the case of normal
dispersion (s = 1), the two terms on the right side have the same sign. Since SPM en-
hances the dispersion-induced chirp, pulse broadens even faster than that expected in
the absence of SPM. Clearly, the anomalous-dispersion regime is useful for lightwave
systems as the nonlinear effects in this case help to control pulse broadening. As dis-
cussed in Section 8.2, the results seen in Figure 4.12 point to the possibility of soliton
formation. It should be stressed that Eqs. (4.6.6) and (4.6.7) are only approximately
valid in this regime because of a “sech” shape associated with solitons,

To show how the combination of SPM and GVD can lead to the formation of soli-
tons, we replace Eq. (4.6.7) with

U(z,t) = asech(t/T) exp[—iC(r/T)? + i¢]. (4.6.20)
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We can now use the moment method, or the variational method, to study how pulse
parameters evolve with z. For example, when we employ the variational method, we
obtain the following expression for the Lagrangian:

BE 5 yp(z)E2 dc 2CdT d¢
=== - 4.6.21
L= 1+4C Ter +24 & T a) Fap o2

Using g = C and T in Eq. (4.6.13) with this form of ., we find that the pulse width
still satisfies Eq. (4.6.6), but the chirp equation (4.6.7) is modified slightly to become

dc 2, 4\ B 4 Ty
- (C )F—H/Pop() 5T (4.6.22)

It is useful to introduce a normalized time variable as T = T /Ty and write the chirp
equation in the form

dc 4\ s 4
Lp— <C2 ﬁ> = 1Rl (4.6.23)

where Lp is the dispersion length and we have set p(z) = 1, assuming ideal distributed
amplification. If the pulse is unchirped initially, C =0 and 7 =1 at z = 0. Equation
{4.6.23) shows that dC/dz = 0 in the case of anomalous dispersion (s = —1) if the peak
power of the pulse satisfies the condition YPyLp = Lp/Lni. = 1. Thus, C(z) remains
zero during propagation, and T(z) = Ty from Eq. (4.6.6). Under such conditions, a
sech-shape pulse maintains its width in spite of the SPM and GVD because the chirps
induced by them cancel precisely. This pulse is known as a soliton and its formation
requires that dispersive and nonlinear lengths be equal (Lp = Lyp). In terms of the
fiber and pulse parameters, the peak power of the pulse should be chosen such that

Py = |Bal /(Y1)

4.7 Polarization Effects

In this section we return to the polarization issue. So far in this chapter, we have
assumed that the state of polarization (SOP) of the electric field vector remains un-
changed inside the nonlinear dispersive medium in which optical pulses are propagat-
ing. As discussed in Section 3.4, this is not really the case in optical fibers. Because of
a fluctuating residual birefringence of fibers, the SOP of any optical field changes in-
side the fiber in a random fashion. Since most nonlinear effects depend on the SOPs of
the interacting fields, their impact on the optical signal is also affected by the residual
birefringence of fibers.

4.7.1 Vector NLS equation

To find a vectorial form of the NLS equation, we follow the Jones-matrix formalism of
Section 3.4.3 and write the optical field in the form of Eq. (3.4.6). In the linear case
(y = 0), the Jones vector |A) satisfies Eq. (3.4.11). We need to add the nonlinear terms
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to this equation to obtain the vector NLS equation. Such a equation has been studied
in the context of solitons {126]-[138].

Both SPM and XPM have their origin in the third-order nonlinear response of the
medium in which light is propagating. If we neglect the nuclear contribution, and
consider only the fast electronic response, the third-order nonlinear polarization has
the general form [4]

PO (r,1) = egx P E(r,))E(r,0)E(r,1), (4.7.1)

where & is the vacuum permittivity, E is the electric field vector, and the tensor y
represents the third-order susceptibility. Writing E in terms of the Jones vector as

E(r,t) =Re[F(x,y)|A(z,1)) exp(iBavz — itpt)], 4.7.2)
and making use of the symmetry properties of the ¥ ) tensor [139], we obtain
& ¥\ /A%
PO(r,1) = 22 IF ()P [2(414) + 147 4" ] 4). 4.1.3)

We can now use Maxwell’s equations and follow the treatment of Section 3.4 to
obtain the following vectorial form of the NLS equation:

W) A DN iB 3

oz " 2 %o T2 o
_ iy<<A|A>|A>

+214) — 5 ABocil4)
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- §<A‘G3IA>0'3 |A>) ; (4.7.4)
where APy and AB; are defined as in Eq. (3.4.8), 0 is the Pauli matrix given in Eq.
(3.4.12), and we make use of the identity {53]

[AT)AT] = |A)(A] — (Alos|A) o3 (4.7.5)

The nonlinear parameter y = ny y/(cAcg) is defined, as before, with ny =3 xﬁ% 1/ (8n¢),
n. being the refractive index of the fiber core. The two terms on the right side of Eq.
(4.7.4) account for the nonlinear effects. They include the XPM-induced nonlinear
coupling between the two polarization components of the optical field. This coupling
represents the new feature when polarization effects are included. Whereas only SPM
effects occur in the scalar case, XPM coupling between the orthogonally polarized
components of the same field must be considered in the vector case.

Fiber birefringence is assumed to be constant in deriving Eq. (4.7.4). To include
its random variations, we need to work in a rotating frame and introduce the transfor-
mation |A) = R|A), where R is a random rotation matrix given in Eq. (3.4.12). In the
rotating frame, as seen in Eq. (3.4.11), each Pauli matrix o; in Eq. (4.7.4) is replaced
with a random matrix M; = R~!o;R. The term containing Ay only changes the phase
in a random fashion and can be eliminated by another transformation |A’) = W]A"),
where W represents a unitary matrix obtained by solving Eq. (3.4.15). With these two
transformations, Eq. (4.7.4) reduces to

i 2
DL B T B ) Sy =iy (A~ SR ) 476
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where 7; = w'M jW is a random unitary matrix, and for simplicity of notation, we
have dropped the primes over |A).

4.7.2 Manakov Equation

Equation (4.7.6) is the vector NLS equation governing pulse propagation in a realistic
fiber in which residual birefringence varies randomly along the fiber length. It includes
not only the dispersive and nonlinear effects but also the PMD effects. It must be
solved numerically in general. Even a numerical solution is not easy to obtain because
of different length scales associated with the PMD, GVD, and SPM phenomena. Bire-
fringence in a typical optical fiber varies on a length scale of 10 to 100 m, while the
dispersive and nonlinear effects vary on length scales ranging from 10 to 100 km. Thus,
one must use a step size of <1 m even when the fiber link length exceeds 1,000 km,
requiring a long computation time. Moreover, as Eq. (4.7.6) is a stochastic equations, it
must be solved hundreds of times before any averages can be computed. The net result
is that a direct integration of Eq. (4.7.6) is rarely practical.

The vast disparity among various length scales permits one to employ an approxi-
mate approach for solving Eq. (4.7.6). The underlying idea makes use of the observa-
tion that birefringence fluctuations change the SOP of the optical field on such a short
length scale that the tip of the Stokes vector associated with the field covers nearly the
entire Poincaré sphere after a few kilometers. As a result, if the nonlinear length Ly
exceeds 10 km or so, one can average the nonlinear terms in Eq. (4.7.6) over birefrin-
gence fluctuations [127]. The averaging procedure involves writing the random unitary
matrix 73 in terms of the two angles 6 and ¢ that specify the position of the Stokes
vector on the Poincaré sphere and average over them. The result is found to be [129]

—_— 1
ATASIA) = 5 (414)14), @17

where an overbar indicates averaging over both 0 and ¢. Using Eq. (4.7.7) in Eq.
(4.7.6), we obtain

9lA) , AP 9lA)  iBy 9%lA) e giy(A|A>|A). 47.8)
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It is clear from Eq. (4.7.8) that the main effect of rapid random variations in the
SOP of the optical field is to reduce the nonlinear parameter ¥ by a factor of 8/9. Note
that the nonlinear term still couples the orthogonally polarized components A, and A,
of the field through XPM. This can be seen by noting that (A|A) = |A,|> + |A,|*. An
interesting feature is that the strength of the SPM and XPM effects is the same in Eq.
(4.7.8), even though it differs by a factor of 2/3 in the case of fibers with constant
birefringence.

Equation (4.7.8) still includes the PMD effects through the AB; term that leads to
different group velocities for the two orthogonally polarized components of a pulse.
Because 7| is a random matrix, the speed difference between them varies in a ran-
dom fashion. It is found, both theoretically and experimentally, that the XPM-induced
coupling between the two polarization components reduces the impact of PMD [134]-
[138]. This is especially so for modern fibers with relatively low values of the PMD
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parameter. Under such conditions, one can ignore the PMD term, at least to the first
order. If we also introduce the normalization indicated in Eq. (4.1.1), we obtain

olUy B oYUy 8,
2B S mp ). (479)

This deterministic equation is known as the Manakov equation [140] who first found
its soliton-like solutions in the case of p(z) = 1. It turns out that, when SPM and XPM
have equal strengths, this set of two coupled NLS equations is integrable through the
inverse scattering method.

Problems
4.1 Solve the NLS equation

0A B, d’A ,,
4+ 55 =IYAI"A- A

5z T2 ap T A=A

in the limit of zero dispersion (3, = 0) and derive an expression for the SPM-
induced nonlinear phase shift for pulses of arbitrary shape. How is this shift
affected by fiber losses?

4.2 Apply the result of Problem 4.1 to input pulses with A(0,7) = \/Pysech(t/Tp)
and plot the frequency chirp as a function of time at the output of a 25-km-long
fiber. Assume a = 0.2 dB/km, y=2 W~ l/km, and 5-ps pulses (FWHM) with
20-mW peak power.

4.3 A 1.55-um continuous-wave signal with 6-dBm power is launched into a fiber
with 50-um? effective mode area. After what fiber length would the nonlinear
phase shift induced by SPM become 27? Assume 7i; = 2.6 x 1072% m?/W and
neglect fiber losses.

4.4 Calculate the power launched into a 40-km-long single-mode fiber for which
the SPM-induced nonlinear phase shift becomes 180°. Assume A = 1.55 um,
Acfr = 40 um?, o = 0.2 dB/km, and 7, = 2.6 x 1072° m%/W.

4.5 Find the maximum frequency shift occurring because of the SPM-induced chirp
imposed on a Gaussian pulse of 20-ps width (FWHM) and 5-mW peak power af-
ter it has propagated 100 km. Use the fiber parameters of the preceding problem
but assume o = 0.

4.6 Calculate numerically the spectrum of a Gaussian pulse of 10-ps width (FWHM)
with 10-mW peak power after it has propagated 200, 400, 600, 800, and 1,000 km
inside a fiber link with @ = 0.2 dB/km and y = 2 W~!/km. Assume that fiber
losses are fully compensated after every 50 km.

4.7 Starting from the NLS equations, derive the coupled set of two equations, Egs.
(4.2.2) and (4.2.3), when two channels are launched into the same fiber.

4.8 Solve Egs. (4.2.8) and (4.2.9) analytically and show that the solution for the
probe is indeed given by Eq. (4.2.12).
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4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18
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Plot the XPM-induced phase shift given in Eq. (4.2.13) at the output of a 30-km-
long fiber when the pump pulse is Gaussian in shape with 10-ps width (FWHM)
and 50-mW peak power. Assume @ = 0.2 dB/km, y=2 W !/km, B, = —4
ps?/km, and a channel spacing of 1 nm. Comment on the shape of the phase
profile.

Explain what is meant by FWM in the context of a WDM lightwave system. How
many new frequencies will be generated by FWM in the case of a four-channel
system?

Why does FWM require phase matching? Consider two channels with spacing
Av, producing an idler wave at the frequency @4 = 2@, — @,. Prove that phase
mismatch in this case is given by Ak = B,(2wAV)?, where B; is the dispersion at
the pump frequency ;.

Explain how FWM affects the performance of a WDM system. Describe two
techniques that can be used in practice to reduce the impact of FWM.

A silica fiber is used as a Raman amplifier by launching the pump and signal
beams simultaneously into it. Solve Eqgs. (4.4.1) and (4.4.2), assuming that the
pump is so intense that it remains undepleted, and derive an expression for the
signal gain at the fiber output.

Calculate the threshold power for stimulated Brillouin scattering for a 50-km
fiber link operating at 1.3 um and having a loss of 0.5 dB/km. How much does
the threshold power change if the operating wavelength is changed to 1.55 um,
where the fiber loss is only 0.2 dB/km? Assume that Acg = 50 um? and g =
5x 107! m/W at both wavelengths.

Use the three moments defined in Eqs. (4.6.1) and (4.6.2) for a chirped Gaussian
pulse and derive Eqs. (4.6.6) and (4.6.7).

Apply the moment method with U given in Egs. (4.6.20) and show that the width
and chirp satisfy Eqgs. (4.6.6) and (4.6.22).

Use the Lagrangian density given in in Eq. (4.6.11) and prove by performing
all integrals that the Lagrangian is given by Eq. (4.6.12) for a chirped Gaussian
pulse.

Repeat the same procedure with U given in Eqs. (4.6.20) and show that the La-
grangian is given by Eq. (4.6.21) for a chirped sech pulse.
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Chapter 5

Signal Recovery and Noise

An optical bit stream that has been degraded by the linear and nonlinear mechanisms
during its transmission through the fiber link eventually reaches an optical receiver,
which converts it into an electrical form and attempts to recover the original coded
information. However, the distorted nature of the optical signal, and the noise added
by optical amplifiers and the receiver, make it nearly impossible to recover the original
bit stream with 100% accuracy. For this reason, the performance of a lightwave system
is characterized in terms of the bit-error rate (BER). This chapter focuses on noise
sources and their impact on BER and receiver sensitivity. Section 5.1 deals with shot
and thermal noises that must be taken into account for any receiver. The signal-to-noise
ratio (SNR) of the electrical signal generated at the receiver is considered in Section
5.2. The concept of receiver sensitivity is introduced in Section 5.3, where we obtain
a simple expression for the BER and relate it to an important parameter known as
the Q factor. Degradation of receiver sensitivity caused by a number of unavoidable
processes is discussed in Section 5.4. The topic of forward error correction is addressed
in Section 5.5.

5.1 Noise Sources

Optical receivers convert incident optical power P, into an electric current using a
photodetector [I]-[5]. The conversion process is linear in nature and would lead to
a current that is directly proportional to the incident optical power, I = Rz Py, in the
absence of noise, where Ry is the responsivity of the photodetector. However, this is
not the case in practice. Two fundamental noise mechanisms, known as shot noise
and thermal noise [6]-[8], produce fluctuations in the current even when the incident
optical signal has a constant power. Of course, additional noise is generated if P is
itself fluctuating because of noise produced by optical amplifiers. This section focuses
on shot and thermal noises; optical amplifier noise, a dominant source of noise for
long-haul systems, is considered in Chapter 6. To simplify the following discussion,
we assume that Py, is constant and consider its time dependence in Section 5.3.
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152 Chapter 5. Signal Recovery and Noise

5.1.1 Shot Noise

Shot noise is a consequence of the fact that an electric current consists of a stream
of electrons that are generated at random times. It was first studied by Schottky [9]
in 1918 and has been thoroughly investigated since then [6]-[8]. Even when power
incident on a photodetector is constant, photons are absorbed, and electron-hole pairs
are generated, at random time intervals. We can write the current in the form [10]

Ne
1(r) =Y ghe(t —ta) = T +is(1), (5.1.1)

n=1

where ¢ is the magnitude of electron charge, ¢, is the arrival time of the nth photon, and
the sum is over the total number of electrons, N,, generated over a fixed time interval
T;. The response function A.(t) governs the shape of the current pulse produced by
each absorbed photon and is normalized such that fOTd he(t)dr = 1. The duration of
each current pulse is much shorter than Ty, and h.(r) behaves like a delta function for
most photodetectors.

In Eq. (5.1.1), { is the average photocurrent. We can calculate its value as

T,
I=Y q(he(t—t1)) = ):%/O *helt —to)dt = g = qRe, (5.1.2)

where we performed the average by noting that the probability of a photon being ab-
sorbed in the time interval dt is dt/T; and R, = N, /T, represents the average rate of
electron generation. Noting that R, = 1Ry, where 1) is the quantum efficiency of the
photodetector and Rpy, is the average rate of photon arrival related to the incident power
as Rph = Pp/hvy, we obtain the well-known result [ = RyP,, with Ry = ng/hvy is the
responsivity of the photodetector and /vy is the photon energy.

The fluctvating part of current, i((t) = I(t) — I, is responsible for the shot noise.
Its average vanishes by definition but has a finite variance. Mathematically, i;(¢) is
a stationary random process whose statistical properties reflect the Poisson statistics
associated with photon streams [11]. In practice, is(¢) can be assumed to follow the
Gaussian statistics whenever the number of photons involved is not too small. It should
be stressed that shot noise is not generated at the receiver. On a fundamental level, shot
noise has its origin in the quantum nature of light and is related to vacuum fluctuations
[12]. In this sense, shot noise is a manifestation of the intrinsic quantum nature of light
and it sets the minimum noise level for any photodetector.

The autocorrelation function of i;(¢) can also be calculated from Eq. (5.1.1) as

(is(2)is(t + 1)) 222[ Bt — ty)he(t =ty + 7)) = (Be(t — ty) ) (et — 1, +T))] .
(5.1.3)

Since arrival times of photons are uncorrelated, only the m = n terms contribute in the
double sum, assuming that the incident optical signal is coherent [12]. If we approxi-
mate A.(r) with a delta function, the autocorrelation function can be written as

Go(0)ist + 1)) = [ ZSS( Fexp(2rmift)df, (5.14)
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where Sy(f) = gl is the spectral density of shot noise. Equation (5.1.4) represents
an example of the Wiener—Khintchine theorem, applicable to any stationary stochastic
process [8]. The spectral density of shot noise is frequency-independent (an example of
white noise). Note that S;(f) is the fwo-sided spectral density, as negative frequencies
are included in Eq. (5.1.4). If only positive frequencies are considered by changing the
lower limit of integration to zero, the single-sided spectral density becomes 241,

The noise variance is obtained by setting 7 = 0 in Eq. (5.1.4), that is,

o7 = (i{(1)) =2 /O Asz(f) df =241 Af, (5.1.5)

where the integration range is restricted over the effective noise bandwidth Af of the re-
ceiver. The contribution of the dark current can be included in Eq. (5.1.5) by replacing
I with T+ I so that

02 = 2q(I +1)Af. (5.1.6)

The quantity oy represents the root-mean-square (RMS) value of the noise current in-
duced by shot noise. As a numerical example, ; = 1.4 yA, when I = 1 mA, I; < I,
and Af = 6 GHz.

5.1.2 Thermal Noise

At a finite temperature, electrons move randomly inside any conductor. Such thermal
motion of electrons inside a resistor manifests as a fluctuating current even in the ab-
sence of an applied voltage. The load resistor in the front end of an optical receiver adds
such fluctuations to the current generated by the photodiode. This noise is referred to as
thermal noise [10]. It is also called Johnson noise [13] or Nyquist noise [14], after the
two scientists who first studied it in 1928, and represents an example of the fluctuation—
dissipation theorem [12}, according to which loss (or gain) is always accompanied with
fluctuations. As electrical energy is dissipated by a resistor, the current flowing through
the circuit exhibits additional fluctuations.
Thermal noise can be included by writing the current in the form

I1(t) =T +i5(t) +ir(t), (5.1.7)

where iz () is a current fluctuation induced by thermal noise. Mathematically, iy (¢)
is modeled as a stationary Gaussian random process. It vanishes on average but its
variance is finite. Similar to the case of shot noise, one can relate the autocorrelation
function of ir(¢) to the spectral energy Sr(f) through the Fourier-transform relation
given in Eq. (5.1.4). The one-sided spectral density of thermal noise is well known [6].
Using this result, the two-sided spectral density of thermal noise is given by

2hf _ 2kT

Sr(f) = Rylexp(hf/kgT)—1] TR,

(5.1.8)

where kg is the Boltzmann constant, T is the absolute temperature (in Kelvin), and Ry is
the load resistor. The frequency-independent form of S holds as long as hf / (kgT) < 1
and is valid for all receivers with bandwidths below 100 GHz. As one would have
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expected, Sy depends on the thermal energy kg7 associated with electrons at a finite
temperature. This energy is about 4 x 1072! J (or 25 meV) at room temperature, if we
use kg = 1.38 x 1072* J/K.

The autocorrelation function of ir(¢) is given by Eq. (5.1.4) if we replace the sub-
script s by T. The noise variance is obtained by setting T = 0 and becomes

Af
o7 = (ir(t)) =2 /0 Sr(f)df = (4kpT /RL)AS, (5.1.9)

where Af is the effective noise bandwidth. Note that 2 does not depend on the average
current I, whereas 672 does.

Equation (5.1.9) includes thermal noise generated in the load resistor. A receiver
contains many other electrical components, some of which add additional thermal
noise. For example, noise is invariably added by electrical amplifiers. The amount
of noise added depends on the receiver design (see Chapter 7 of LT1) and the type of
amplifiers used (4]. A simple approach accounts for the thermal noise of amplifiers in
terms of a noise figure F, introduced by modifying Eq. (5.1.9) as

o} = (4kpT /RL)F,Af. (5.1.10)

Physically, F, represents the factor by which thermal noise is enhanced by electrical
amplifiers used within the receiver.

For a perfect optical signal, total current noise can be obtained by adding the contri-
butions of shot and thermal noises. Since i;(r) and ir(z) in Eq. (5.1.7) are independent
random processes with approximately Gaussian statistics, the total variance of current
fluctuations, Al = I — I = iy + iy, can be obtained by simply adding individual vari-
ances. The result is

6% = ((A)*) = 67 + 07 = 2q(I + I;)Af + (4ksT /RL)F.AS. (5.1.11)

We use this equation in the next section for calculating the electrical SNR at the re-
ceiver.

5.2 Signal-to-Noise Ratio

The performance of an optical receiver depends on the signal-to-noise ratio (SNR). The
SNR of an electrical signal is defined as

average signal power  I?

SNR 5.2.1)

noise power - o2

The SNR depends on whether a p—i—n photodiode or an avalanche photodiode (APD) is
used within the receiver (see Chapter 7 of LT1). We consider the two types of receivers
separately.
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Figure 5.1: Increase in SNR with received power P, for three values of or for a receiver with a
bandwidth of 30 GHz.

5.2.1 Receivers with a p—i-n Photodiode

In the case of a p—i—n photodiode, we use Eq. (5.1.11) in Eq. (5.2.1) together with
I = RyP,. The SNR is related to the incident optical power as

2 p2
RdPin

SNR = )
2q(RqPo+ 10)AS + 4(ksT /R Fubf

(5.2.2)

where R; = 1nq/hvy is the responsivity of the p—i~n photodiode for photons of energy
hvy and 7 is its guantum efficiency. Figure 5.1 shows the dependence of SNR on
received power P, for three values of or for a receiver with Ry = 1 A/W, I; ~ 0, and
a bandwidth of 30 GHz. Thermal noise dominates for 6r = 5 gA but it is almost
negligible, and shot noise dominates when or = 0.1 gA. In the intermediate case of
or = 1 uA, the magnitudes of shot and thermal noises are comparable. In the following
discussion, we consider the two limits separately.

In most cases of practical interest, thermal noise dominates over shot noise (O’% >
62). Neglecting the shot-noise term in Eq. (5.2.2), the SNR becomes

2
SNR — RLRGF,

= L%dlin 2.
4kgTFAf (5.2.3)

The SNR varies as Pl% in the thermal-noise limit and can be improved considerably
by increasing the optical power reaching the receiver. It can also be improved by in-
creasing the load resistance. The effect of thermal noise is often quantified through a
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quantity called the noise-equivalent power (NEP). The NEP is defined as the minimum
optical power per unit bandwidth required to produce SNR = 1 and is given by

4 1/2
NEp = i — (e TFn (5.2.4)
VAT~ \ R.RS

Typical values of NEP are in the range of 1 to 10 pW/Hz!/2. The advantage of speci-
fying NEP for a p—i—n receiver is that one does not need to know details of the receiver
design. The optical power needed to realize a specific value of SNR can be obtained
from the relation P, = (NEP\/Af)SNR.

Consider the opposite limit in which the receiver performance is dominated by shot
noise (O'S2 > 0'%). Since 0'32 increases linearly with P, the shot-noise limit can be
realized by making incident optical power large. The dark current I, can be neglected
in that situation. Equation (5.2.2) then provides the following expression for SNR:

RPn _ 1MPa
2gAf  2hvoAf

SNR = (5.2.5)
The SNR increases linearly with P, in the shot-noise limit and depends only on the
quantum efficiency 7, the bandwidth Af, and the photon energy Avy.

The SNR given in Eq. (5.2.5) can be written in terms of the number of photons N,
contained in a single “1” bit. If we use for the energy contained in a bit of duration
T, = 1/B the relation

E, =Nyhvy =P, /B, (5.2.6)

where B is the bit rate, we obtain Py, = N,hvgB. If we choose Af = B/2 (a typical value
for the receiver bandwidth), the SNR is simply given by N,,. In the shot-noise limit, a
SNR of 20 dB can be realized when N, 22 100 and 1 = 1. By contrast, several thousand
photons are required to obtain an SNR of 20 dB when thermal noise dominates the
receiver. As a reference, for a 1.55-pum receiver operating at 10 Gb/s, N, = 100 when
P = 130 nW.

5.2.2 APD Receivers

Optical receivers that employ an APD generally provide a higher SNR for the same
incident optical power. The improvement is due to the internal gain (see Section 7.3 of
LT1) that increases the photocurrent by a multiplication factor M so that

I = MR Py = RappPh, (5.2.7)

where Rapp = MR; is the APD responsivity, enhanced by a factor of M compared with
that of p—i—n photodiodes. The SNR would improve by a factor of M? if the receiver
noise were unaffected by the internal gain mechanism of APDs. Unfortunately, this is
not the case, and the SNR improvement is considerably less than M?2.

Enhancement of Shot Noise

Thermal noise remains the same for APD receivers, as it originates in the electrical
components that are not part of the APD. This is not the case for shot noise. As
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discussed in Section 7.3 of LT1, APD gain results from the generation of secondary
electron-hole pairs through the process of impact ionization. Since such pairs are gen-
erated at random times, an additional contribution is added to the shot noise associated
with the generation of primary electron-hole pairs. In effect, the multiplication factor
itself is a random variable, and M appearing in Eq. (5.2.7) represents the average APD
gain. The shot noise for APDs can be written in the form [15]

0; = 2gM>Fa(RyPu + 1) Af, (5.2.8)
where Fy is called the excess noise factor and is given by
FA(M) = kaM + (1 —k4){(2— 1/M). (5.2.9)

The dimensionless parameter k4 = 04,/ ¢t if 0, < o, but is defined as k4 = ot /0y,
when o, > @, where &, and o, represent the impact ionization coefficients for elec-
trons and holes, respectively. By definition, 0 < k4 < 1. In general, F4 increases with
M monotonically. However, although Fj is at most 2 for k4 = 0 and increases with
M sublinearly for small values of k4, it continues increasing linearly (F4 = M) when
ka = 1. Clearly, the ratio k4 should be as small as possible for a low-noise APD [16].

If the avalanche-gain process were noise-free (F4 = 1), both I and o, would in-
crease by the same factor M, and the SNR would be unaffected, as far as the shot-noise
contribution is concerned. It is the dominance of thermal noise in practical receivers
that makes APDs attractive. By adding the contributions of both the shot and thermal
noises, the SNR of an APD receiver can be written as

(MRdHn)z
2gM2F; (RyPun + 19)Af +4(kgT /R ) FLAS '

where Eqgs. (5.1.10), (5.2.7), and (5.2.8) were used. Figure 5.2 shows the dependence
of SNR on received power P, for three values of APD gain M with 67 = I A using
the same receiver parameters used in Figure 5.1 and assuming that k4 = 0.7 for the
APD. This value of k4 is realistic for InGaAs APDs designed to operate in the spectral
region near 1.55 pum.

Several points are noteworthy from Figure 5.2. Noting that M = 1 case corresponds
to the use of a p—i—n photodiode, it is evident that the SNR is in fact degraded for an
APD receiver when input powers are relatively large. Some improvement in SNR oc-
curs only for low input power levels below —20 dBm. The reason behind this behavior
is related to the enhancement of shot noise in APD receivers. At low power levels,
thermal noise dominates over shot noise, and the APD gain helps. However, as the
APD gain increases, shot noise begins to dominate over thermal noise, and APD per-
forms worse than a p—i-n photodiode under the same operating conditions. To make
this point clear, we consider the two limits separately.

In the thermal-noise limit (6; < o7), the SNR becomes

SNR = (R_R3 /4kgT F,Af)M*P2 (5.2.11)

SNR = (5.2.10)

and is improved, as expected, by a factor of M? compared with that of p—i—n receivers

[see Eq. (5.2.3)]. By contrast, in the shot-noise limit (0; >>> o7), the SNR is given by

_ RyPn _ an
2gFAAf  2hvoFaAf

SNR (5.2.12)
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Figure 5.2: Increase in SNR with received power P, for three values of APD gain M for a
receiver with a bandwidth of 30 GHz. The M = 1 case corresponds to a p—i—n photodiode.

and is reduced by the excess noise factor F4 compared with that of p—i-n receivers.

Optimum APD Gain

Equation (5.2.10) and Figure 5.2 indicate that for a given P, the SNR of APD receivers
is maximum for an optimum value Moy of the APD gain M. It is easy to show that the
SNR is maximum when M, satisfies the following cubic polynomial:

4kgTF,

kM 1 —ka)Mopy = ——————.
A 0Pt+( A) opt qRL(RdI)ln+Id)

(5.2.13)

The optimum value M,; depends on a large number of the receiver parameters such as
the dark current, the responsivity Ry, and the ionization-coefficient ratio k4. However,
it is independent of receiver bandwidth. The most notable feature of Eq. (5.2.13) is that
Mop decreases with an increase in By,. Figure 5.3 shows the variation of My, with Py,
for several values of k4 using typical parameter values for a 1.55-um InGaAs receiver:
RL:1kQ,Fn:2,Rd= 1 A/W,andld:2nA.

The optimum APD gain is quite sensitive to the ionization-coefficient ratio k4. For
ka = 0, Mo decreases inversely with Py, as inferred readily from Eq. (5.2.13) after
noting that the contribution of /; is negligible in practice. By contrast, My varies as

—1/3

P, '~ for ks = 1, and this form of dependence appears to hold even for k4 as small as

0.01 as long as Mop > 10. In fact, by neglecting the second term in Eq. (5.2.13), Moy,
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Figure 5.3: Optimum APD gain My as a function of the incident optical power Py, for several
values of k4. Parameter values correspond to a typical 1.55-ptm InGaAs APD receiver.

is well approximated by

4kgTF, 1/3

5.2.14)
kagR1(RgPn+14) (

Mo =

for k4 in the range of 0.01 to 1. This expression shows the critical role played by the
ionization-coefficient ratio k4. In the case of silicon APDs, for which k4 < 1, My can
be as large as 100. By contrast, Moy is in the neighborhood of 10 for InGaAs receivers,
with k4 =~ 0.7.

5.3 Receiver Sensitivity

Receiver sensitivity is an important parameter for any lightwave system. Among a
group of optical receivers, a receiver is said to be more sensitive if it achieves the
same performance with less optical power incident on it. The performance criterion
for digital receivers is governed by the BER, defined as the probability of incorrect
identification of a bit by the decision circuit of the receiver. For example, a BER of 2 x
10~ corresponds to 2 errors per billion bits, on average. Modern high-speed lightwave
system transmit data at a bit rate of 10 Gb/s or more per channel. Such systems often
require the BER to be below 107!, or even 10~'>. The receiver sensitivity is defined
as the minimum average power Py required by the receiver to operate reliably below
a specific BER.



160 Chapter 5. Signal Recovery and Noise

5.3.1 Bit-Error Rate

To calculate the BER, we consider the electrical bit stream generated at the receiver
in the form of a time-varying current I(z) that has been corrupted by noise. Figure
5.4(a) shows schematically the fluctuating signal received by the decision circuit of the
receiver. A clock-recovery circuit provides information about the duration of each bit
slot. Depending on the design, the receiver may integrate the signal over the bit slot, or
sample it periodically at the decision instant ¢p set at the center of the bit slot.

As seen in Figure 5.4(a), the sampled value 7 fluctuates from bit to bit around an
average value of I, or Iy depending on whether the bit corresponds to 1 or 0 in the bit
stream. The decision circuit compares the sampled value with a threshold value /5 and
calls it bit 1 if 7 > Ip or bit 0 if I < Ip. An error occurs if I < Ip for bit 1 because of
noise. An error also occurs if I > Ip for bit 0. Both sources of errors can be included
by defining the error probability as

BER = p(1)P(0/1) + p(0)P(1/0), (5.3.1)

where p(1) and p(0) are the probabilities of receiving bits 1 and 0, respectively, P(0/1)
is the probability of deciding O when 1 is transmitted, and P(1/0) is the probability of
deciding 1 when 0 is transmitted. Since 1 and 0 bits are equally likely to occur in any
realistic bit stream, p(1) = p(0) = 1/2, and the BER becomes

BER = 1[P(0/1) + P(1/0)]. (53.2)

Figure 5.4(b) shows how P(0/1) and P(1/0) depend on the probability density
function p(I) of the sampled value /. The functional form of p(I) depends on the sta-
tistics of noise sources responsible for current fluctuations. Thermal noise iy in Eq.
(5.1.7) is well described by Gaussian statistics with zero mean and variance 0'%. The
statistics of shot-noise contribution is in Eq. (5.1.7) is also approximately Gaussian for
p—i—n receivers, although that is not the case for APDs [15]-[17]. A common approx-
imation treats i; as a Gaussian random variable for both p—i—n and APD receivers but
with different variances given by Eqgs. (5.1.6) and (5.2.8), respectively. Since the sum
of two Gaussian random variables is also a Gaussian random variable, the sampled
value 7 follows a Gaussian distribution with variance 62 = 0'52 + O'%.

It is important to note that both the average and the variance are different for 1 and
0 bits since 7 in Eq. (5.1.7) equals /; or Iy, depending on the bit received. If 67 and 67
are the corresponding variances, the conditional error probabilities are given by

—11)2) 1 (11—1,))
P(0/1) dl = ~ erf 3.
o/ w_ e (-2 (A2, 53

2°¢
—10)2) 1 (10—]0)
1/0) = dl = — erfi 3.
FQ/0) 0'0\/2_71-' ID < 268 257 cov2 )’ 634

where erfc(x) stands for the complementary error function defined as 18]

erfe(x \/_/ exp(—y?)dy. (5.3.5)
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Figure 5.4: (a) Fluctuating signal generated at the receiver. (b) Gaussian probability densities of
1 and 0 bits. The dashed region shows the probability of incorrect identification.

By substituting Eqgs. (5.3.3) and (5.3.4) in Eq. (5.3.2), the BER is given by

1 11—-10) (ID—I())]
BER = - |erfc +erfc . (5.3.6)
4 [ (61\/5 ooV2
Equation (5.3.6) shows that the BER depends on the decision threshold Ip. Figure
5.5 shows how BER varies with I /I; for three values of the ratio /| /6y, assuming that
Ip =0 and 6y = 6y. In practice, I is optimized to minimize the BER. We can find

the optimum value of Ip by taking the derivative of Eq. (5.3.6) with respect to I and
setting it to zero. The BER becomes minimum when /p is chosen such that

(Ip—1I)* (I ~Ip)? +ln(ﬂ) ‘

203 20¢ 0o

(5.3.7)

The last term in this equation is negligible in most cases of practical interest, and Ip is
approximately obtained from

(ID —Iy)/op = ([1 —Ip)/or = Q. (5.3.8)
An explicit expression for Ip is
I
_ oo tol (5.3.9)
Oy + 01

When o1 = oy, Ip = (I} + Ip)/2, which corresponds to setting the decision threshold
in the middle. This is the situation for most p—i—n receivers whose noise is dominated
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Figure 5.5: Variation of BER with I /1| for three values of I /o).

by thermal noise (Gr > o) and is independent of the average current. In contrast,
shot noise is larger for 1 bits as 62 varies linearly with the average current. In the case
of APD receivers, the BER should be minimized by setting the decision threshold in
accordance with Eq. (5.3.9).

The BER with the optimum setting of the decision threshold is obtained by using
Eqgs. (5.3.6) and (5.3.8) and depends only on the Q factor as

_1 0 _exp(=0*/2)
BER—2erfc(ﬁ)~ ovon (5.3.10)

The Q factor is obtained from Eqs. (5.3.8) and (5.3.9) and is given by

LI

= . 5.3.11
O} + Op ( )

The approximate form of BER in Eq. (5.3.10) is obtained by using the asymptotic
expansion [18] of erfc(Q/+/2) and is reasonably accurate for Q > 3. Figure 5.6 shows
how BER varies with the Q factor. The BER improves as Q increases and becomes
lower than 10~? for Q > 6. The Q factor plays an important role as it is a kind of SNR
that determines the BER uniquely.

It is possible to relate Q to the electrical SNR. The relation is particularly simple
when the receiver noise is dominated by thermal noise (as is the case for p—i—n photo-
diodes) and is thus the same for all bits. Using 6| &~ 6y = o7 with I = 0, we obtain
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Figure 5.6: Bit-error rate versus the Q factor.

SNR = 4Q?. The requirement Q = 6 translates into an SNR of 144 or 21.6 dB. Since
SNR scales as (%, it is common to define the Q? factor on the decibel scale as

Q%(in dB) = 20 log,, Q. (5.3.12)

In this notation, a BER of 107° requires Q? = 15.56 dB, and this value increases to
16.9 dB at a BER of 107'2,

5.3.2 Minimum Average Power

Equation (5.3.10) can be used to calculate the minimum average power that a receiver
needs to operate reliably with a BER below a specified value. For this purpose the Q
factor should be related to the incident optical power. For simplicity, consider the case
in which 0 bits carry no optical power so that Py = 0, and hence Iy = 0. The power P
required for 1 bits is related to 7, as

Iy = MR4P, = 2MR ;1 Prec, (5.3.13)

where P is the average received power defined as Pe. = (P, + Fy)/2. The APD
gain M is included in Eq. (5.3.13) for generality. The case of p—i—n receivers can be
recovered by setting M = 1.

The RMS noise currents 07 and oy should include the contributions of both shot
and thermal noises and can be written as

o1 = (62 +0%)"? and oy =or, (5.3.14)
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where 672 and 67 are given by Eqgs. (5.2.8) and (5.1.10), respectively. Neglecting the
contribution of dark current, the noise variances become

02 = 2qM?FyR;(2P.ec)Af, (5.3.15)
0% = (4kpT /RL)F,Af. (5.3.16)

Using Egs. (5.3.11) through (5.3.14), the Q factor is given by

L 2MRPe
~o1+00 (624032 tor

(5.3.17)

For a specified value of BER, Q is determined from Eq. (5.3.10) and the receiver sensi-
tivity P, is found from Eq. (5.3.17). A simple analytic expression for P, is obtained
by solving Eq. (5.3.17) for a given value of @ and is given by {3]

5 Q or
P = o (aFa0ar+27). (5.3.18)
Equation (5.3.18) shows how P, depends on various receiver parameters and how
it can be optimized. Consider first the case of a p—i—n receiver by setting M = 1. Since
thermal noise o7 generally dominates for such a receiver, P is given by the simple
expression

(Prec)pin ~ Q07 /Ry. (5.3.19)

From Eq. (5.3.16), 0'% depends not only on receiver parameters such as R; and F, but
also on the bit rate through the receiver bandwidth Af (typically Af = B/2). Thus,
Pec increases as v/B in the thermal-noise limit. As an example, consider a 1.55-um
p—i-n receiver with Ry = 1 A/W. If we use or = 100 nA as a typical value and Q = 6
corresponding to a BER of 107°, the receiver sensitivity is given by Pre. = 0.6 uW or
—32.2 dBm.

Equation (5.3.18) shows how receiver sensitivity improves with the use of APD
receivers. If thermal noise remains dominant, P is reduced by a factor of M, and
the received sensitivity is improved by the same factor. However, shot noise increases
considerably for APD, and Eq. (5.3.18) should be used in the general case in which
shot-noise and thermal-noise contributions are comparable. Similar to the case of SNR
discussed in Section 4.4.3, the receiver sensitivity can be optimized by adjusting the
APD gain M. By using F4 from Eq. (5.2.9) in Eq. (5.3.18), it is easy to verify that Py
is minimum for an optimum value of M given by [3]

1/2 1/2
_ (o7 Lo}
Moy =k, 1/2 (quf +ky— 1) ~ (kAQ;Af) , (5.3.20)

and the minimum value is given by

(Prec)aPD = (2qAf /R4)Q? (kaMopy + 1 —ka). (5.3.21)

The improvement in receiver sensitivity obtained by the use of an APD can be esti-
mated by comparing Eqgs. (5.3.19) and (5.3.21). It depends on the ionization-coefficient
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ratio k4 and is larger for APDs with a smaller value of k4. For InGaAs APD receivers,
the sensitivity is typically improved by 6 to 8 dB; such an improvement is sometimes
called the APD advantage. Note that Py.c for APD receivers increases linearly with the
bit rate B (Af =~ B/2), in contrast with its v/B dependence for p—i—n receivers. The
linear dependence of P on B is a general feature of shot-noise-limited receivers. For
an ideal receiver with no thermal noise (o7 = 0), the receiver sensitivity is obtained by
setting M = 1 in Eq. (5.3.18) and is given by

(Prec)ideal = (qAf/R4)Q*. (5.3.22)

5.3.3 Quantum Limit of Photodetection

A question one may ask is related to the quantum limit of the photodetection process.
Assuming that a perfect optical signal is incident on an ideal receiver only limited by
shot noise, how many photons per bit are needed for recovering the signal reliably? In
this subsection we address this question.

We assume that zero bits carry no power, and thus Iy = 0. In the absence of thermal
noise, 6y ~ 0 since shot noise also vanishes for the “0” bit if the dark-current contri-
bution is neglected for an ideal receiver. From the definition of the Q factor in Eq.
(5.2.11), we find that

Q=1/o; = (SNR)!/2. (5.3.23)

As shown earlier, SNR ~ 1N, in the shot-noise limit, where N, is the number of
photons contained in each 1 bit [see Eq. (5.2.5) and the followmg discussion]. By
using Q = (N,)"/? in Eq. (5.3.10), the BER is given by

BER = lerfc (, / %mv,,) : (5.3.24)

For a receiver with 100% quantum efficiency ( = 1), BER = 1 x 10~ when N, = 36.
As 0 bits contain no photons and 1 and 0 bits occur half of the time on average, the
average number of photons per bit is 18 from Eq. (5.3.24).

It turns out that this conclusion is incorrect. The BER expression, Eq. (5.3.24),
is not totally accurate since its derivation is based on the Gaussian approximation for
the noise statistics. When the number of photons is relatively small, one should use
the Poisson statistics. The probability of generating m electron-hole pairs when N,
photons are incident on an ideal receiver is given by the Poisson distribution [11]

Py = exp(—Np)N' /m!. (5.3.25)

Let us use this result to find the BER for an ideal receiver.

The BER can be calculated by using Egs. (5.3.2) and (5.3.25). For an ideal detector
(no thermal noise, no dark current, and 100% quantum efficiency), oy = 0, as shot
noise vanishes in the absence of incident power. As a result, the decision threshold
can be set quite close to the 0-level signal. Indeed, for an ideal receiver, 1 bits can be
identified without error as long as even one photon is detected. An error is made only if
a 1 bit fails to produce even a single electron-hole pair. The probability P(1/0) that a
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1 is identified when O is received is zero since no electron-hole pair is generated when
N, = 0. The probability P(0/1) is obtained by setting m = 0 in Eq. (5.3.25), since a 0
is decided in that case even though 1 is received. Since P(0/1) = exp(—N,), the BER
is given by the simple expression

BER = 1 exp(—N,). (5.3.26)

For BER < 10%, N, must exceed 20, that is, each 1 bit must contain at least 20 photons
to be detected with a BER < 10~%. Thus, the average number of photons/bit (including
0 bits) is only 10, and not 18, as found before from Eq. (5.3.24). This discrepancy
illustrates that one must examine all approximations carefully when a small number of
photons is involved. It also shows that the noise statistics play an important role, and
Eq. (5.3.10) should be used with care if the total noise cannot be treated as a Gaussian
stochastic process.

It is important to stress that the quantum limit is rarely reached in practical receivers
employing direct detection because their noise is dominated by thermal noise (unless
the receiver is cooled to temperature levels near absolute zero). Most receivers operate
away from the quantum limit by 20 dB or more. This is equivalent to saying that the
average number of photons/bit typically exceeds 1,000 in practical receivers.

5.4 Sensitivity Degradation

The discussion of receiver sensitivity in Section 5.3 includes thermal noise but is still
overly simplified in many respects. In particular, the analysis assumes that the optical
signal incident on the receiver consists of an ideal bit stream such that 1 bits consist of
an optical pulse of constant energy, while no energy is contained in 0 bits. In practice,
an optical signal deviates tfrom this ideal situation even at the transmitter end. More-
over, it can be degraded during its transmission through the fiber link. An example of
such degradation is provided by dispersion-induced pulse broadening. The minimum
average optical power required by the receiver increases because of such nonideal con-
ditions. This increase in the required power is referred to as the power penalty. In
this section, we focus on several sources of power penalties that can lead to sensitivity
degradation. The impact of noise added by optical amplifiers is discussed in Chapter 6.

5.4.1 Finite Extinction Ratio

A simple source of a power penalty is related to the energy contained in O bits. Some
power is emitted by most transmitters even in the off state. In the case of a directly
modulated semiconductor laser, the off-state power Py depends on the bias level. In the
case of a external modulators. Py depends on the on—off contrast of the modulator. In
both cases, the extinction ratio is defined as

rex =Po/P. $.4.1)

The power penalty can be obtained from Eq. (5.3.11). For a p—i—n receiver I} =
RyPy and Iy = R;Py (APD gain can be included by replacing R; with MR,). Using
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Figure 5.7: Power penalty as a function of the extinction ratio rex.

Prec = (P + Py) /2 for the receiver sensitivity, the Q factor is given by

1 —rex 2derec
= —_— 5.4.2
0 <1+rex>0'1+0'0 ( )

In general, 6; and 6y depend on P because of the dependence of the shot-noise
contribution on the received optical signal. However, both of them can be approximated
by or when receiver performance is dominated by thermal noise. By using 0] ~ op &
or in Eq. (5.4.2), Py is given by

Prec(rex) = (1+rex> O-LQ‘ (54.3)

1- Fex Rd

This equation shows that P increases when rex 7 0.
The power penalty is defined as the ratio Sex = Prec (Fex )/ Prec(0). It can be expressed
in decibel (dB) units as

P 1
Sox = 101og,0< ;.f“c((r(‘*)*))> = 101og10(—ﬂ). (5.4.4)
Ie

Figure 5.7 shows how the power penalty increases with rex. A 1-dB penalty occurs for
rex = 0.12 and increases to 4.8 dB for rex = 0.5. In practice, most lightwave systems
are designed with rex below 0.05, and the corresponding power penalty is negligible
(<0.4 dB). However, it may become significant for a directly modulated semiconductor
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laser biased above threshold. An expression for Pec(rex) can be obtained for APD
receivers by including the APD gain and the shot-noise contribution to ¢p and ¢} in
Eq. (5.4.2). The optimum APD gain is lower than that in Eq. (5.3.20) when rex # 0. The
sensitivity is also reduced because of this lower optimum gain. Typically, the power
penalty for an APD receiver is larger by about a factor of 2 for the same value of re.

5.4.2 Intensity Noise of Lasers

In practice, light emitted by any laser exhibits power fluctuations. Such fluctuations,
called intensity noise, have been discussed in Section 5.3.4 of LT1 in the context of
semiconductor lasers. An optical receiver converts power fluctuations into current fluc-
tuations, which add to those resulting from shot and thermal noises. As a result, the
receiver SNR is degraded and is lower than that given in Eq. (5.2.10). An exact analysis
is complicated as it involves the calculation of photocurrent statistics [12]. A simple
approach consists of adding a third term to the current variance given in Eq. (5.1.11)
and writing it as

0? =62 +0%+ 0}, (5.4.5)

where o7 is related to the variance of power fluctuations as
01 = Ra((APL))!/? = RaPory. (5.4.6)

The parameter ry, defined as r; = ((AP2))!/2/P,,, is a measure of the noise level of
the optical signal. It is related to the relative intensity noise (RIN) of the laser as

2= [ ': RIN(f)df, (5.4.7)

where RIN(f) represents the intensity-noise spectrum. As discussed in Section 5.3.4 of
LT1, r; is simply the inverse of the SNR of light emitted by the transmitter. Typically,
the transmitter SNR is better than 20 dB, and r; < 0.01.

As a result of the dependence of oy and 6; on the parameter ry, the parameter Q in
Eq. (5.3.11) is reduced in the presence of intensity noise. Since Q should have the same
value to maintain a specific BER, it is necessary to increase the received power. This
is the origin of the power penalty induced by intensity noise. To simplify the following
analysis, the extinction ratio is assumed to be zero, so that Iy = 0 and 6y = or. Using
Iy = RP, = 2RP, and Eq. (5.4.5) for oy, Q is given by

2RP..
= : 54.8
¢ (6} +02+0})/2+or 648
where
s = (4qRPrecAf)'?, 0] = 2Py, (5.4.9)

and o7 is given by Eq. (5.1.10). Equation (5.4.8) is easily solved to obtain the following
expression for the receiver sensitivity:

_Qor + Q*qAf

f"rec(rl) = m (5.4.10)
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The power penalty, defined as the increase in B when r; # 0, is given by

81 = 10108 o[ Prec(r1) / Prec(0)] = — 10 log;o(1 — r2Q?). (5.4.11)

Figure 5.8 shows power penalty as a function of r; for @ = 5, 6, and 7. The penalty
is negligible for r; < 0.01 as &y is below 0.02 dB. Since this is the case for most optical
transmitters, the effect of transmitter noise is negligible in practice. The power penalty
is almost 2 dB for r; = 0.1 and becomes infinite when r; = Q! = 0.167. An infinite
power penalty implies that the receiver cannot operate at the specific BER even if the
received optical power is increased indefinitely. In Figure 5.6, an infinite power penalty
corresponds to a saturation of the BER curve above a specific error level, a feature
referred to as the BER floor. In this respect, the effect of intensity noise is qualitatively
different than the extinction ratio, for which the power penalty remains finite for all
values of rey such that rex < 1.

The preceding analysis assumes that the intensity noise at the receiver end is the
same as at the transmitter end. This is not the case when optical signal propagates
through a long fiber link. The noise added by in-line optical amplifiers often becomes
a limiting factor for long-haul lightwave systems. This issue is discussed in Chapter 6.
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5.4.3 Dispersive Pulse Broadening

Dispersion-induced pulse broadening affects the receiver performance in two ways.
First, a part of the pulse energy spreads beyond the allocated bit slot and leads to inter-
symbol interference. Second, the pulse energy within the bit slot is reduced when the
optical pulse broadens. Such a decrease in pulse energy reduces the SNR at the decision
circuit. As the SNR should remain constant to maintain the system performance, the
receiver requires more average power. This is the origin of dispersion-induced power
penalty §,.

An exact calculation of &y is difficult, as it depends on many details such as the
extent of pulse shaping at the receiver. A rough estimate is obtained by following the
analysis of Section 3.3.1, where broadening of Gaussian pulses is discussed. Equation
(3.3.9) shows that the optical pulse remains Gaussian, but its peak power is reduced by
a pulse-broadening factor given in Eq. (3.3.10). If we define the power penalty &, as
the increase (in decibels) in the received power that would compensate the peak-power
reduction, &, is given by

67 =101log by, (5.4.12)

where by is the pulse broadening factor. As in Section 3.3.4, we consider the case of
broadband and narrowband optical sources separately.

Consider first a lightwave system designed with a relatively broadband optical
source. The broadening factor f; in this case is given in Eq. (3.3.38) and has the form

b; = 0/0p = [1+ (DLoy/00)?]'/?, (5.4.13)

where o3 is the RMS width of the source spectrum. The RMS width oy of the optical
pulse at the transmitter end is a design parameter. It can be related to the duty cycle d,.
of RZ pulses as 40p = d. T}, where T, = 1/B is the duration of the bit slot at a given bit
rate B. Using 6p = d./(4B) in Eq. (5.4.13) and using Eq. (5.4.12), the power penalty
becomes

&y =5 log 1+ (4BLD0',1/dc)2}. (5.4.14)

This result should be compared with the condition (3.3.40) found in Section 3.3.4. If
we assume that input pulses are wide enough to occupy the entire bit slot (d. = 1), the
power penalty is negligible for 4BLDo; < 1, becomes 1.5 dB when 4BLDo) = 1, and
increases rapidly beyond that.

In the case of a long-haul system designed with a narrowband source and chirp-
free pulses, the broadening factor f;, is obtained from Eq. (3.3.43). If we use again
0o = d./(4B), the power penalty is given by

84 = 5log o[l + (8BB*L/d?)?). (5.4.15)

Figure 5.9 shows power penalty as a function of the dimensionless parameter combi-
nation u = |B|B2L for three values of d.. Although the power penalty is negligible for
values of 4 < 0.05 and d,. > 0.5, it increases rapidly as u increases and exceeds 5 dB
for 4 = 0.1 and d. = 0.5. It is thus important to keep pt below 0.1. As an example, the
operating distance of a 10-Gb/s lightwave system is limited to below 50 km because of
dispersion when standard fibers are used with |B;| = 20 ps?/km, but this value can be
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Figure 5.9: Dispersion-induced power penalty function as a function of pt = | BziBzL for three
values of duty cycle associated with an RZ bit stream.

increased considerably through dispersion management. It should be stressed that Eq.
(5.4.15) provides only a rough estimate as its derivation is based on the assumptions of
a Gaussian pulse shape.

5.4.4 Frequency Chirping

The preceding discussion of dispersion-induced power penalty assumed that the in-
put pulses were unchirped. An initial chirp on optical pulses is known to limit the
performance of 1.55-pum lightwave systems when directly modulated semiconductor
lasers are used to generate the digital bit stream [19]-[32]. As discussed in Section 3.3,
frequency chirping can enhance the dispersion-induced broadening of optical pulses
and thus may degrade the performance of a long-haul lightwave system more than that
expected when unchirped pulses are employed.

An exact calculation of the chirp-induced power penalty &, is difficult because fre-
quency chirp depends on both the shape and the width of the optical pulse [21]-[24].
However, if we assume a Gaussian pulse shape and a linear chirp, the analysis of Sec-
tion 3.3.3 can be used to estimate the chirp-induced power penalty. If we use Eq.
(3.3.11) for the pulse broadening factor in Eq. (5.4.12) together with Ty = v/2d../(4B),
the power penalty is given by

8. = 5logyo[(1+ 8CBB2L/d*)* + (8B, B*L/d?)?). (5.4.16)

Figure 5.10 shows the chirp-induced power penalty as a function of |B;|B2L for
several values of the chirp parameter C with d. = 1. The parameter 3, is taken to be
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Figure 5.10: Chirp-induced power penalty as a function of | ﬁg\BzL for several values of the
chirp parameter C. Gaussian pulses are assumed to be linearly chirped.

negative, as is the case for 1.55-um lightwave systems. The C = 0 curve corresponds
to the case of a chirp-free pulse. Power penalty is negligible (<0.1 dB) in this ideal
case as long as | B, |BzL < 0.05. However, the penalty can exceed 5 dB if the transmitted
pulses are chirped such that C = —6 (a typical value for semiconductor lasers). To keep
the penalty below 0.1 dB, the system should be designed with |8;|B>L < 0.002. For
standard optical fibers with B; ~ —20 ps?/km, BL is limited to 100 (Gb/s)?-km, indi-
cating that even at B = 2.5 Gb/s, the transmission distance is limited to below 16 km
because of frequency chirping. Interestingly, system performance can be improved by
ensuring that B,C < 0. As discussed in Section 3.3, each optical pulse then undergoes
an initial compression phase. As C is negative for semiconductor lasers, fibers with
“normal” dispersion (f3; > 0) can provide better performance whenever directly mod-
ulated semiconductor lasers are employed. For this reason, fibers with normal GVD
are often employed in metropolitan area networks. Alternatively, one can make use of
dispersion compensation and ensure that the average value of f; is close to zero.

5.4.5 Timing Jitter

The decision circuit of a receiver is designed to sample the signal at the peak of the
voltage pulse. As discussed in Section 7.5.3 of LT1, the decision instant is determined
by a clock-recovery circuit. Because of the noisy nature of the input to this circuit,
sampling time may fluctuate from bit to bit. Such fluctuations represent an example
of electrical timing jitter [331-{36]. As discussed in Section 6.5, noise produced by
optical amplifiers can produce optical timing jitter. In both cases, the SNR is degraded
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because timing jitter leads to additional fluctuations in the sampled value of the signal.
This can be understood by noting that if the bit is not sampled at the bit center, or it has
moved from the bit center, the sampled value is reduced by an amount that depends on
the timing jitter Af. The SNR is reduced as a result of jitter-induced fluctuations. It can
be maintained at its original value only by increasing the optical power. This increase
corresponds to the power penalty induced by timing jitter.

An exact calculation of the jitter-induced power penalty §; is complicated because
it depends on details of the receiver design. A rough estimate of the tolerable value
of timing jitter is obtained by assuming Gaussian statistics for Ar with the probability
density

1

Ar?
A= ——exp( -2 ), 5.4.17
e = ——exp (- 555 6.41)

where o; is the RMS value (standard deviation) of Az. The BER can be calculated by
following the analysis of Section 5.3.1. If we assume that an error occurs whenever the
pulse has moved out of the bit slot, we need to find the accumulated probability for |At|
to exceed T;/2, where T;, = 1/B is the bit slot. This probability is found to be

BER =2 p(Ar)d(Ar) = erfc ~ expl —=2 |, (5.4.18)
Tp/2 2V20, 27T, 86;

where erfc stands for the complimentary error function defined in Eq. (5.3.5). To reduce
the BER below 1072, o; should be less than 8% of the bit slot 7;,. Thus, a tolerable
value of the jitter is 8 ps for 10-Gb/s systems and reduces to only 2 ps for 40-Gb/s
systems.

The preceding estimate is relatively crude as it focuses on errors induced by jitter
alone. We can improve on it by considering how the Q factor is affected by timing
jitter. For simplicity, consider a p—i—n receiver dominated by thermal noise and assume
a zero extinction ratio. Using Ip = 0 in Eq. (5.3.11), the Q factor is given by

I — (Aij)

Q= (062+ 0D 21 0p’

(5.4.19)

where (Ai}) is the average value and 6; is the RMS value of the current fluctuation Ai;
induced by timing jitter Az. If S,(t) governs the shape of the current pulse,

Ai; =11[Sp(0) = Sp(Ar)], (5.4.20)

where the ideal sampling instant is taken to be t = 0. Clearly, o; depends on the shape
of the electrical pulse at the decision circuit, which in turn depends on the filters used
within the receiver. One choice corresponds to S, (t) = cos?(7Bt/2), where B is the bit
rate [24], as receivers are often designed to mimic this shape. Rather then considering a
specific pulse shape, we approximate S, by a parabola as S,(t) =1 — %(cht)2, where
cp governs the pulse curvature near t = 0. Since At is likely to be much smaller than
T,, this approximation holds for any pulse shape and leads to a current fluctuation of
the form

Aij = (c,BAt)?I. (54.21)
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Figure 5.11: Power penalty versus timing-jitter parameter Bo;.

To calculate (Aij) and &;, we first need to find the probability density function
p(Ai;) using Eq. (5.4.17). Noting that Ai; is proportional to (Ar)? and using the relation
p(Aij)dAi; = p(At)dAr, we obtain

(5.4.22)

(Aij) ! ex ( Aij)
ij) = —— —— 1,
P \/ﬂ'bAijI] P bl

where b = (chO',)z. Using this equation, we find the first two moments of Ai; and
obtain

(Aijy=bli /2,  ©;=bI1/V2. (5.4.23)
Using Eqgs. (5.4.19) and (5.4.23) and noting that I} = 2R Py, the receiver sensitivity is
given by
_ orQ 1-b/2
Frec(b) = : 5.4.24
rec( ) ( Rd ) (1—b/2)2—b2Q2/2 ( )

The power penalty, defined as the increase in P, when b # 0, is given by

Prec(b 1—b/2
5= 101og,0(f)mg—0§> =101og;q ((1 ~b/2)2_/b2Q2/2>. (5.4.25)

Figure 5.11 shows how the power penalty varies with the parameter Bg, for three
values of the parameter ¢, to maintain a BER below 10~° (Q = 6). As seen there,
pulse curvature near the center of the bit slot plays an important role. In all cases, the
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power penalty increases with an increase in timing jitter and becomes infinitely large
at a certain value of Bo;. The tolerable value Bo; depends on ¢p and decreases as ¢,
increases. In most receivers, the filter bandwidth is smaller than the bit rate, and the
electrical pulse is wider than the bit slot. As a result, ¢, < 1 in practice. The power
penalty in this case can be kept negligible (below 0.5 dB) if the jitter is such that Bo, <
8%, although it increases rapidly beyond Bo; > 12%. It is interesting to note that this
conclusion is in agreement with the prediction based on Eq. (5.4.18). We should stress
that even Eq. (5.4.25) is based on the use of Gaussian statistics for the receiver current.
As evident from Eq. (5.4.22), jitter-induced current fluctuations are not Gaussian in
nature. A more accurate calculation shows that Eq. (5.4.25) underestimates the power
penalty [35].

5.4.6 Eye-Closure Penalty

An alternative measure of system performance is provided by the extent the “eye open-
ing” in the eye diagram is affected by the dispersive and nonlinear effects accumulated
inside the fiber link. As discussed in Section 7.5.2 of LT1, an electrical filter with a
bandwidth smaller than the bit rate is used inside the receiver to reshape pulses before
they reach the decision circuit. When successive combinations of two or three bits are
overlapped within the same temporal window, the resulting pattern observed on an os-
cilloscope looks like an open eye for an NRZ-format bit stream diagram. When the RZ
format or one of its variants is employed, the pattern still has the appearance of an eye
even though the top horizontal rail is missing. Even in the case of the DPSK format,
the eye diagram retains its shape. The top row in Figure 5.12 shows the measured eye
diagrams at 40 Gb/s in the case of NRZ, CSRZ, NRZ-DPSK, and RZ-DPSK formats
under back-to-back conditions in which the transmitter is connected to the receiver with
virtually no fiber in between. In each case, the thickness of curves is due to receiver
noise.

As the optical bit stream is transmitted through a fiber link, the accumulation of
dispersive and nonlinear effects distorts optical pulses. These distortions manifest in
the eye diagram through a reduced opening of the eye. The bottom row in Figure
5.12 shows the measured eye diagrams at 40 Gb/s after a 263-km-long fiber link for
the same four modulation formats [37]. As seen there, eye opening is reduced for all
formats. Since the decision threshold is set in the center of the open portion of the eye,
any reduction in eye opening indicates an increase in the BER. This observation relates
eye closure to the BER and suggests that its magnitude can provide a measure of the
system performance. More precisely, the eye-closure penalty is quantified (in dB) as

(5.4.26)

eye opening after transmission
aeye=—1010g10< yc opening )

eye opening before transmission

Before Eq. (5.4.26) can be used, we need to clarify what one means by eye opening.
Ideally, the eye amplitude peaks in the center of the bit slot and it provides an appro-
priate measure of eye opening. However, in practice, timing jitter makes it difficuit to
sample each pulse precisely at the location where pulse amplitude is maximum. If we
allow an uncertainty of up to 10% on each side of the decision threshold, we should
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Figure 5.12: Measured eye diagrams at 40 Gb/s under back-to-back conditions (top row) and
after a 263-km-long fiber link (bottom row). In both cases successive traces corresponds to NRZ,
CSRZ, NRZ-DPSK, and RZ-DPSK formats, respectively. (After Ref. {37]; ©2004 IEEE.)

consider a rectangle of the largest area with a base of 0.27;,, where 7j, is the duration of
the bit slot, that can be fitted within the open portion of the eye. The height of this rec-
tangle then measures eye opening. This approach is commonly adopted for numerical
simulations.

5.5 Forward Error Correction

As seen in the preceding section, receiver sensitivity and the BER of a lightwave system
are degraded by many factors that are not always controllable in practice. Depending
on details of the system design and objectives, it is entirely possible that a specified
BER cannot be achieved. Under such conditions, the use of an error-correction scheme
remains the only viable alternative.

Error control is not a new concept and is employed widely in electrical systems
dealing with the transfer of digital data from one device to another [38]-[41]. The
techniques used for controlling errors can be divided into two groups. In one group,
errors are detected but not corrected. Rather, each packet of bits received with errors is
retransmitted. This approach is suitable when data bits are transmitted in the form of
packets (as is the case for the protocol used by the Internet) and they do not arrive at
the destination in a synchronous fashion. In the other group, errors are detected as well
as corrected at the receiver end without any retransmission of bits. This approach is
referred to as forward error correction (FEC) and is best suited for lightwave systems
operating with a synchronous protocol such as SONET or SDH.

Historically, lightwave systems did not employ FEC until the use of in-line optical
amplifiers became common [42]-[44]. The use of FEC accelerated with the advent of
WDM technology. As early as 1996, FEC was employed for a WDM system designed
to operate over more than 425 km without any in-line amplifier or regenerator [45].
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Since then, the FEC technique has been used in many WDM systems and is now con-
sidered almost routine [46]-[52]. This section provides only basic information about
FEC; we refer to recent literature for further details [53]-[56].

5.5.1 Error-Correcting Codes

The basic idea behind any error-control technique is to add extra bits to the signal at
the transmitter end in a judicial manner using a suitable coding algorithm [38]-[41]. A
simple example is provided by the so-called parity bit that is added to the 7-bit ASCII
code. In this example, the parity bit is chosen to be 0 or 1 depending on whether the
number of 1 bits in the 7-bit sequence is even or odd. If a single bit is in error at the
receiving end, an examination of the parity bit reveals the error.

The sitvation is somewhat different in the case of an optical bit stream, but the
basic idea remains the same. An encoder within the transmitter adds additional control
bits using a suitable code. At the receiver end, a decoder uses these control bits to
detect errors, while correcting them simultaneously. How many errors can be corrected
depends on the coding scheme employed. In general, more errors can be corrected by
adding more control bits to the signal. Clearly, there is a limit to this process since
the bit rate of the signal increases after the decoder. If B, is the effective bit rate after
coding a signal at the bit rate B, the FEC overhead associated with the error-correcting
code is B,/B — 1. The concept of redundancy is also used for FEC codes as the bits
added by the coding scheme do not carry any information. Redundancy of a code is
defined as p = 1 — B/B,.

Many different types of error-correcting codes have been developed, often clas-
sified under names such as linear, cyclic, Hamming, Reed—Solomon, convolutional,
product, and turbo codes [53]. Among these, Reed-Solomon (RS) codes have attracted
most attention in the context of lightwave systems [54]. An RS code is denoted as
RS(n, k), where k is the size of a packet of bits that is converted through coding into a
larger packet with n bits. The value of n is chosen such that n = 2" — 1, where m is
an integer. The RS code recommended by ITU for submarine applications uses m = 8
and is written as RS(255, 239). The FEC overhead for this code is only 6.7%. Many
other RS codes can be used if a higher overhead is permitted. For example, the code
RS(255, 207) has an overhead of 23.2% but it allows for more robust error control.
The choice of the code depends on the level of improvement in the BER required for
the system to operate reliably. It is common to quantify this improvement through the
coding gain, a concept we discuss next.

5.5.2 Coding Gain

Coding gain is a measure of the improvement in BER realized through FEC. Since
BER is related to the Q factor as indicated in Eq. (5.3.10), it is often expressed in
terms of the equivalent value of Q that corresponds to the BER realized after the FEC
decoder. The coding gain in decibel units is defined as [54]

G =2010go(Q:/Q), (5.5.1)
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Figure 5.13: Coding gain as a function of code redundancy (overhead) for single, concatenated,
and product-type RS codes. (After Ref. [54]; ©2002 IEEE.)

where Q. and Q are related to the BERs obtained with and without FEC as
BER, = lerfc(Q:/v2),  BER = lerfc(Q/V2). (5.5.2)

The reason that the factor of 20 is used in place of 10 is related to the definition of Qgp
in Eq. (5.3.12). As an example, if the FEC decoder improves the BER from its original
value of 1073 to 1077, the value of Q increases from about 3 to 6, resulting in a coding
gain of 6 dB. The coding gain is sometimes defined in terms of the SNR [53]. The two
definitions differ by a small amount of 10 log,(B./B).

As one would expect, the magnitude of coding gain increases with the FEC over-
head (or redundancy). The dashed line in Figure 5.13 shows this behavior. The coding
gain is about 5.5 dB for 10% overhead and increases sublinearly, reaching only 8 dB
even for a 50% overhead. It can be improved by concatenating two or more RS codes
or by employing the RS product codes, but in all cases the coding gain begins to satu-
rate as overhead increases. In the case of a RS product code, more than 6 dB of coding
gain can be realized with only 5% overhead. The basic idea behind an RS product code
is shown in Figure 5.14. As seen there, a block of data with k? bits is converted into n?
bits by applying the same RS(#, k) code both along the rows and columns. As a result,
the overhead of n? /k? — 1 for a RS product code is larger, but it also allows more error
control.

5.5.3 Optimum Coding Overhead

While implementing FEC for a lightwave system, one faces a dilemma. As the over-
head is increased to realize more coding gain, the bit rate of the optical signal increases.
Since the Q factor realized at the receiver depends on the bit rate, its value before the
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Figure 5.14: Schematic illustration of a RS product code. The same code is applied along the
rows and columns of a block of bits. (After Ref. [54]; ©2002 IEEE.)

FEC decoder is reduced, and the BER is actually worse than that expected in the ab-
sence of FEC. The decoder improves it but not as much as one would like because it
first has to overcome the degradation caused by the increased bit rate. In fact, if an
aggressive FEC scheme with a large overhead is employed, it is possible that the BER
is degraded so much that the system is not operable even with the FEC scheme. In
other words, there exists an optimum range of the coding overhead for every system
designed to operate at a specific bit rate over a certain distance.

Numerical simulations have been used to show that such an optimum range for the
coding overhead indeed exists [54]. Figure 5.15(a) shows the value of the Q factor
before the decoder as a function of the redundancy (or overhead) for a 25-channel
WDM system designed to operate over more than 5,000 km with B = 40 Gb/s per
channel. The effective values of Q. after the decoder are shown in part (b). In the
absence of FEC, the system cannot operate beyond 3,000 km. With FEC, the Q factor
becomes worse as the overhead increases because of the enhanced bit rate. However,
the system can operate over a distance of 5,000 km over a wide range of overhead
between 7 and 40%. The transmission distance can be increased to 6,000 km, but the
overhead range over which the system can operate shrinks to below 25%. However,
distance cannot be increased any further no matter what coding overhead is employed.
The reason for this behavior is apparent from Figure 5.15(a). As seen there, Q? is
about 9 dB in the absence of FEC at a distance of 6,400 km. With FEC, this value
drops to below 8 dB for a 20% overhead and drops sharply afterward as the overhead is
increased further. Since a coding gain of more than 8 dB is not possible for the simple
RS code used in the example of Figure 5.15, one cannot increase Q? above 15.6 dB,
the value needed to realize a BER of less than 107,

Most lightwave systems currently employ the RS(255, 239) code that has been rec-
ommended by ITU for submarine applications. It allows for a coding gain of up to
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Figure 5.15: Numerically simulated Q factors (a) before and (b) after the FEC decoder as a
function of code redundancy for a WDM system with 25 channels, each at 40 Gb/s. (After
Ref. [54]; ©?2002 IEEE.)

6 dB with an overhead of 6.7%. The coding gain can be increased by about 1.2 dB if
the FEC coder employs the RS(255, 223) scheme with an overhead of 14.3%. Con-
catenation of two RS(255, 239) codes also improves the coding gain by 1.2 dB at a
somewhat reduced overhead of 13.8%. An enhanced version of the FEC chip also be-
came available commercially in 2002. It can improve the coding gain by 2 dB while
keeping the overhead close to 7%. In a 2003 experiment, the required optical SNR for
a 10-7-Gb/s duobinary signal transmitted over 200 km was reduced from >23 dB to
15 dB with the standard RS(255, 223) code [57]. This value was further reduced to
only 13 dB when the enhanced FEC was employed. In another experiment, a similar
increase in the coding gain was observed even when a 40-Gb/s signal was transmitted
with the RZ-DPSK format [58].
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5.5

5.6

5.7
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5.10
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Consider a 0.8-um receiver with a silicon p~i—n photodiode. Assume 20 MHz
bandwidth, 65% quantum efficiency, 1 nA dark current, 8 pF junction capaci-
tance, and 3 dB amplifier noise figure. The receiver is illuminated with 5 yW
of optical power. Determine the noise currents due to shot noise, thermal noise,
and amplifier noise. Also calculate the signal-to-noise ratio.

The receiver of Problem 5.1 is used in a digital communication system that re-
quires a signal-to-noise ratio of at least 20 dB. What is the minimum required
power when receiver performance is limited by (a) shot noise and (b) thermal
noise? Also calculate the noise-equivalent power in the two cases.

The excess noise factor of avalanche photodiodes is often approximated by M*
instead of Eq. (5.2.9). Find the range of M for which Eq. (5.2.9) can be approx-
imated within 10% by Fj(M) = M* by choosing x = 0.3 for Si, 0.7 for InGaAs,
and 1.0 for Ge. Use k4 = 0.02 for Si, 0.35 for InGaAs, and 1.0 for Ge.

Derive Eq. (5.2.13). Plot M,y versus k4 by solving the cubic polynomial on a
computer by using Ry = 1kQ, F, =2, R=1A/W, Py, =1 uW, and I; = 2 nA.
Compare the results with the approximate analytic solution given by Eq. (5.2.14)
and comment on its validity.

Derive an expression for the optimum value of M for which the signal-to-noise
ratio becomes maximum by using F4 (M) = M* in Eq. (5.2.10).

Prove that the bit-error rate given in Eq. (5.3.6) is minimum when the decision
threshold is set close to a value given by Eq. (5.3.9).

A 1.3-um digital receiver is operating at 100 Mb/s and has an effective noise
bandwidth of 60 MHz. The p—i—n photodiode has negligible dark current and
90% quantum efficiency. The load resistance is 100 Q and the amplifier noise
figure is 3 dB. Calculate the receiver sensitivity corresponding to a BER of 1077,
How much does it change if the receiver is designed to operate reliably up to a
BER of 10122

Calculate the receiver sensitivity (at a BER of 10~°) for the receiver in Problem
5.7 in the shot-noise and thermal-noise limits. How many photons are incident
during bit 1 in the two limits if the optical pulse can be approximated by a square
pulse?

Derive an expression for the optimum gain M of an APD receiver that would
maximize the receiver sensitivity by taking the excess-noise factor as M*. Plot
Mop as a function of x for o7 = 0.2 uA and Af = 1 GHz and estimate its value
for InGaAs APDs.

Derive an expression for the sensitivity of an APD receiver when the signal has
a finite extinction ratio and both shot noise and thermal noise contribute to the
receiver sensitivity. You can neglect the dark current.

Derive an expression for the intensity-noise-induced power penaity of a p—i—n
receiver by taking into account a finite extinction ratio. Shot-noise and intensity-
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noise contributions can both be neglected compared with the thermal noise in the
off state but not in the on state.

Use the result of the preceding problem to plot the power penalty as a function
of the intensity-noise parameter r; [see Eq. (5.4.6) for its definition] for several
values of the extinction ratio. When does the power penalty become infinite?
Explain the meaning of an infinite power penalty.

Derive an expression for the timing-jitter-induced power penalty by assuming a
parabolic pulse shape I(t) = I(