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SOLUTIONS TO CHAPTER 2

Background
2.1 The DFT of a sequence z(n) of length N may be expressed in matrix form as follows
X =Wx
where x = [z(0), z(1), ..., (N — 1)]T is a vector containing the signal values and X is a

vector containing the DFT coefficients X (k),

(a) Find the matrix W.
(b) What properties does the matrix W have?
(¢) What is the inverse of W?

Solution

(a) The DFT of a sequence z(n) of length N is

N-1 . N-1
X(k)= Z z(n)e IV = Z z(n)Wx
n=0 n=0

where Wy = e~# % . If we define
E(N—1
wil = [1, Wk, W, .. wkY]
then X (k) is the inner product

X(k)=wi -x
Arranging the DFT coefficients in a vector we have,
X(0) wilx
X(1) wilx
= : = 1 = Wx
[ X(N-1) wi_ix J
where
wil 1 1 1 e 1
wh 1 Wy Wi Wit
W = = .
Wi_1 1 Wy wEND Ly (D

(b) The matrix W is symmetric and nonsingular. In addition, due to the orthogonality of the
complex exponentials,

N-1
—j2m(k— N ;o k=1
Wf-wlr_Ze iF l):{ 0 k£l
n=0

it follows that W is orthogonal.
(c) Due to the orthogonality of W, the inverse is

- H
W= LW
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2.2 Prove or disprove each of the following statements

(a) The product of two upper triangular matrices is upper triangular.

(b) The product of two Toeplitz matrices is Toeplitz.

(c) The product of two centrosymmetric matrices is centrosymmetric.

Solution
(a) With
aip a2 Ain
az1  G22 QA2n
A= .
Ani ap2 Apn

it follows that if A is upper triangular then a;; = 0 for all 7 < j. If B is also upper triangular,
then the (7, j)th element of the product C = AB is

n
cij = g @i - brj
k=1
For i < j we have

j—1 n
Cyj = E Qg - by + E ik bij
k=1 k=j

The first summation is equal to zero since by; = 0 for k = 1,...,j — 1, and the second term
is equal to zero since ay, = 0 for & = j,...,n. Therefore, ¢;; = 0 for ¢ < j and C is upper
triangular.

The product of two Toeplitz matrices is not necessarily Toeplitz. This may be easily demonstrated
by example. Let A be the following 3 x 3 Toeplitz matrix,

apg -1 Q-2
A = ay ap a_q
as ay ag

and let B be the Toeplitz matrix

0 0 1
B=|0 00
1 00
The product, AB, is
a.g 0 ag
AB=|a_, 0 a
agp 0 az

which is not Toeplitz.

If A and B are centrosymmetric matrices, then
A=JAJ ; B=JBJ

and
AB = (J7AJ)(I7BJ)
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Since JJ¥ =1, then
AB = J¥ABJ

which means that AB is centrosymmetric.
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2.3 Find the minimum norm solution to the following set of underdetermined linear equations,

x1

10 2 -1 z2 | |1
-1 1 0 1 z3 | |1

Solution
With

102 -1
A“[—llo 1}

since the rows of A are linearly independent, then the minimum norm solution is unique and given by
xo = AT(AAH) b
With

and
_ 3 2
(AAT) 1211“4[2 6}

it follows that the minimum norm solution is

-1
1 32717 8
0 2 6 1171 10
1

L

X =13

N O
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2.4 Consider the set of inconsistent linear equations Ax = b given by

10 1
01 [ 1 } =1
11| L™

(a) Find the least squares solution to these equations.
(b) Find the projection matrix Py.

(c) Find the best approximation b = Pyb to b.

(d) Consider the matrix
Pr=1-Py

Find the vector b+ = P4b and show that it is orthogonal to b. What does the matrix

Pj represent?

Solution

(a) Since the columns of A are linearly independent, the least squares solution is unique and given

by
xo = (ATA)"1AFDb
With

it follows that

and, therefore,

X =

o=
|

Wi
-
— N

(b) The projection matrix is

Py =

Il il
(1T Wi
1
] |

Wi

|

—
N
| P
[ —
o =
_= o
=
——
—
O
| I
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(c) The best approximation to b is

~ 2 -1 1][1 1
b=Psb=3%| -1 2 1 1] =11
1 1 2 2
(d) The matrix Py is
1 1 -1
PY=I-P,=1] 1 1 -1
-1 -1 1
and
2
bt =Pxb=1| 2
—2
The inner product between b and bt is
R 2
<b, bt>=1[11 2] g =0

Therefore, b is orthogonal to bt. The matrix Pj; is a projection matrix that projects a vector
onto the space that is orthogonal to the space spanned by the columns of A.
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2.5 Consider the problem of trying to model a sequence z(n) as the sum of a constant plus a
complex exponential of frequency wy,

Z(n)=c+ae/™ ; n=0,1,... N-1
where ¢ and a are unknown. We may express the problem of finding the values for ¢ and a

as one of solving a set of overdetermined linear equations

1 1 z(0)
1 eiwo

o
[ I
8
it
~—

1 ef(N-Dwo z(N -1)

(a) Find the least squares solution for ¢ and a.
(b) If N is even and wy = 27k/N for some integer k, find the least squares solution for ¢

and a.
Solution
(a) Assuming that wq # 0,27, ..., the columns of the matrix
1 1
1 elwo

A =
i ej(N;l)WD
are linearly independent, and the least squares solution for ¢ and a is given by

{ s } = (AHA) 1A x

Since
N-1 Ve
N Z Ejnwr) N 1 — el¥wo
APA = =0 - Lo e
T N-1 T 1 emitvwo
YN Loe™e oy
1 — e Iwo
n=0
Therefore, the inverse of (A7 A) is
N 1 — gfNwo
1 T —ew
(AHA) ! = } 1= et
1 —cos Nwy 1 — g 3Nwo
N2 - € N
1 — coswy 1~ e—jwo
and we have
) N-1
1 — giNwo
_ z(n
{ . J ) . N e ; (n)
a | 1~ cos Nuwy 1 — e=dNwo N-1
N2 2 TV e e
1 — coswy R N Z z(n)e Imwo

n=0
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which becomes

— e/Nwo = —jnwg
NZ z(n) — T Z z(n)e
e
] N2 - 1 —cos Nujo N-1 1 6__ij0 N-1
1- —jnwo _ Z " 7 ’
COS Wy NZO x(n)e 7o Tpp—— z(n)
n== n=0

(b) If wo = 27k/N and k # 0, then

1—eiNwo ] g=iNwo

1—efwo 1 — g dwo

and
1 — cos Nwy

1 —coswy
n=0

{ ¢ J ) % le(n)mnwo

n=0

Therefore, we have

1o |
;
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2.6 It is known that the sum of the squares of n from n = 1 to N — 1 has a closed form expression

of the following form
N-1

Z n?=ay+a N+ asN? + agN*®

n=0
Given that a third-order polynomial is uniquely determined in terms of the values of the
polynomial at four distinct points, derive a closed form expression for this sum by setting up
a set of linear equations and solving these equations for ag, ay, as, a3. Compare your solution
to that given in Table 2.3.

Solution
Assuming that
N-1
Z n? = ag +a1N+a2N2+a3N3
n=0
we may evaluate this sum for N = 1,2, 3,4 and write down the following set of four equations in four
unknowns
{ 11 1 1 { ag ] 0
1 2 4 8 ap || 1
1 3 9 27 ag | | 5
1 4 16 64 as 14
Solving these equations for ag, a1, and ag, we find
agp 0
ay i 1/6
a2 - - 1/2
as 1/3

11

which gives the following closed-form expression for the sum,
N-1
1 1 1 1
2 2 3
E =-N N*+ = N 2N -1
n 6 3 3 N G N( 1)( )

n=0
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2.7 Show that a projection matrix P 4 has the following two properties,

1. It is idempotent, P4 = P 4.

2. It is Hermitian.

Solution
Given a matrix A, the projection matrix P, is

Ps=A(AYA)TAH

Therefore,

g
o
Il

A(AHA)‘IAHA(AHA)flAH
AAFA)TIAH =P,

and it follows that P4 is idempotent. Also,
H =140 HAN-11H A H
P :{A(A A)lA ] = A[(ATA)1)"A
Since AA¥ is Hermitian, then so is its inverse,

[(A7A)7]" = (a7 A)~
and
PH = A(ATA)1AH

Thus, P4 is Hermitian.
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2.8 Let A > 0 and B > 0 be positive definite matrices. Prove or disprove the following statements.
(a) A%>0.
(b) A=t >o0.
(c) A+B>0.

Solution

(a) Let v, be an eigenvector and )4 the corresponding eigenvalue of A. Since
A?vy = A(Avy) = MAvy = Ay,

then vy is an eigenvector of A% and A2 is the corresponding eigenvalue. If A > 0, then A\, > 0.
Therefore, A2 > 0, and it follows that A2 > 0.

(b) If A > 0, then the eigenvalues of A are positive, A > 0. In addition, A~! exists and the
eigenvalues of A~! are )\,:1. Since A\, > 0, it follows that /\;;] > 0 and, therefore, A= > 0.

{c) Let v # 0 be an arbitrary vector. Then
vII(A+B)v =v7Av +v7Bv
If A >0and B > 0, then
vBAv>0 ; vPBv>0

Therefore,
vB(A+B)v>0

and it follows that (A + B) > 0.
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2.9 (a)

(b)

Solution

(a)

(b)

Problem Solutions

Prove that each eigenvector of a symmetric Toeplitz matrix is either symmetric or anti-
symmetric, i.e., vy = £Jvy.

What property can you state about the eigenvalues of a Hermitian Toeplitz matrix?

If A is a symmetric Toeplitz matrix, then
JTAT=A
where J is the exchange matrix. If vy is an eigenvector of A with eigenvalue Ay, then
Avy = AV
and, using the identity above, we have
JTAIv, = Apvy

Since J is unitary, JTJ = I, if we multiply both sides of this equation on the left by J, it follows
that
AJVk, = )\kJVk

Therefore, if vy is an eigenvector with eigenvalue A, then Jvy is also an eigenvector with the
same eigenvalue. Consequently, if the eigenvalue )y, is distinct, then v, and Jv, must be equal
to within a constant,

vi = cJvg

However, since the exchange matrix reverses the order of the elements of the vector vy, the only
possible values for this constant are ¢ = 1. Therefore,

VE = +Jvg

and the eigenvector vy, is either symmetric or anti-symmetric.

Now let us consider the case in which the eigenvalue )\ is not distinct. We will assume that the
multiplicity is two. The following discussion may be easily generalized to higher multiplicities.
In this case, v and Jvj, span a two-dimensional space, and any two linearly independent vectors
in this space may be selected as the eigenvectors. Therefore, we may choose

Vi, = Vi +Jvg
and
ng =Vi — J Vi
as the two eigenvectors. Note that Vi, is symmetric and Vi, is anti-symmetric. This completes

the proof.

In the casc of Hermitian Toeplitz matrices, the eigenvectors are either Hermitian or anti-Hermitian,
ie.,
Vi = :tv,’;
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2.10

(a) Find the eigenvalues and eigenvectors of the real 2 x 2 symmetric Toeplitz matrix

=il

(b) Find the eigenvalues and eigenvectors of the 2 x 2 Hermitian matrix
a b*

Solution

(a) The eigenvalues are the roots of the characteristic equation
det(A M) = (a—- X2 -b2 =0
Expanding the quadratic in A we have
N =2ah+(@® =) =[A~(a+b)][A-(a—b)] =0

Therefore, the eigenvalues are A\; = a + b and Ay = a — b. The eigenvectors, on the other hand,
are solutions to the equation
AVk = )\kvk

For the first eigenvector, v, we have

b el ]=er ]

o[}

Similarly, the eigenvector v, is found to be

o[ 4]

a b*
=[5 7]

the eigenvalues are the roots of the characteristic equation

which gives v1; = w19, or

(b) With

det(A —AI) = (a— A2 —1[p|>=0

or,

M —2ax+a®+ b= [A-(a+ BH][A=(a=1p])] =0
Thus, A\; =a+|b| and Ay =a — |b].
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The eigenvector that has eigenvalue \; is the solution to
a b vin | V11
w0

which gives v1o = !—b—lvu, or

e b/libl }

T [ o }

Similarly, for va we have
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2.11 Establish Property 5 on p. 45.

Solution

15

Let B be an n x n matrix with eigenvalues Ay and eigenvectors vi. With
A=B+adl
note that

Av, = Bvip+avg
Aeve + avy = (A + a)vg

Therefore, A and B have the same eigenvectors, and the eigenvalues of A are A\; + a.
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2.12 A necessary and sufficient condition for a Hermitian matrix A to be positive definite is that
there exists a non-singular matrix W such that

A =WHIw

(a) Prove this result.
(b) Find a factorization of the form A = WH#W for the matrix

N

Solution

(a) If A >0, then A may be factored as follows

A =VAVH
where A = diag{X1,..., Ay} with \; > 0. Therefore, A may be factored as follows
A = A1/2A1/2

1/2

where A2 = diag{/\;/zj ...,Ax"} > 0. Thus, we may write

A = (VA1/2) (Al/sz) _ <A1/2VH)H (A1/2VH> — WHEW

where W = A2V > 0 is nonsingular.
Conversely, suppose that A may be factored as

A=WIw
where W is a nonsingular matrix. Then W may be factored as follows
W =VAVH
where A is a diagonal matrix and V is a unitary matrix. Thus,
A =WHW = (VAVT (VAVH) = VA2V

Since the diagonal terms of A2 are positive, then A > 0.

(b) The eigenvalues of A are A\; = 3 and A2 = 1, and the normalized cigenvectors are

w-[4] 5 Bl

Therefore,
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=[]

(a) Find the eigenvalues and eigenvectors of A.

2.13 Consider the 2 x 2 matrix

(b) Are the eigenvectors unique? Are they linearly independent? Are they orthogonal?
(c) Diagonalize A, i.e., find V and D such that

VAAV =D
where D is a diagonal matrix.

Solution

(a) The cigenvalues are the roots of the characteristic equation
det(A - M) =AM +1=0
which are A = £j. The eigenvector corresponding to the eigenvalue \; = j satisfies the equation
0 1 vy v
EElEIEN

which implies that vy = jv;. Therefore, the normalized eigenvector is

2]
vi=—| .
1 \/5 j
Similarly for the eigenvector corresponding to the eigenvalue Ay = —j we have
w7l
2 — \/é _]

(b) The eigenvectors are unique, linearly independent, and orthogonal,
(vi, vo) =vivy, =0

(c) With V the matrix of normalized eigenvectors,
1 1 1
V=—|" )
V2 [ Joi ]
we have

where
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2.14 Find the eigenvalues and eigenvectors of the matrix
1 -1

Solution

The eigenvalues of a matrix A are the roots of the characteristic equation
det(A—AI) =0
For the given matrix, we have
det(A — A) = det( I )
= 1-MNE-2+2=X-51+6=(A-3)(A-2)
Therefore, the eigenvalues are A\; = 3 and A = 2. The eigenvectors are found by solving the equations

vi:)\ivi ) 2‘:112

5 i ][] ]

V11 — V12 = Juyy

For A\; = 3 we have
The first equation is

or
v12 = —2vyg

o[
.

Therefore, the eigenvector is

Repeating for Ao = 2 we find
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2.15 Consider the following 3 x 3 symmetric matrix

1 -1 0
A= —1 2 -1
0 -1 1

(a) Find the eigenvalues and eigenvectors of A.

(b) Find the determinant of A.

(¢) Find the spectral decomposition of A.

(d) What are the eigenvalues of A + I and how are the eigenvectors related to those of A?

Solution

(a) The eigenvalues are found from the roots of the characteristic equation,
det(A —AI) =0

The roots are A = 3,1,0. Given the eigenvalues, the eigenvectors are found by solving the
equations Av; = \;v; for i = 1,2,3. The eigenvectors (unnormalized) are

1 1 1
V= [vl;v2;v3] =] -2 0 1
1 -1 1

(b) The determinant is equal to the product of the eigenvalues,

3
det A =] =0

=1

(c) The spectral decomposition for A is

3
A= E /\iVinH
i=1

where v; are the normalized eigenvectors of A. Since A3 = 0, this decomposition becomes

1 1
A = 3.(H _2][14 1]+4 0of[1 0 —1]
1 -1

i

1 -2 1 10 -1
51 -2 4 =2 |+ 00 0
1 -2 1 -1 0

(d) If the eigenvalues of A are );, then the eigenvalues of A + I are A; + 1, and the eigenvectors are
the same. Therefore, the eigenvalues of A +1 are A = 4,2, 1.
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2.16 Suppose that an n x n matrix A has eigenvalues A1,..., A\, and eigenvectors vi, ..., v,.

(a) What are the eigenvalues and eigenvectors of A2?

(b) What are the eigenvalues and eigenvectors of A~17

Solution

(a) With v; an eigenvector of A with eigenvalue ),, note that
A?v; = A(Av;) = N(Av;) = Ay,

Therefore, the eigenvectors of A? are the same as those for A, and the eigenvalues are A2,

(b) Since
AVZ‘ = )\va
then, assuming that A~! exists,
Vo= AiA_‘lVi
or )
A7 v, = Zv;
A

Therefore, A~1 has the same eigenvectors as A, and the eigenvalues are 1/A;.
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2.17 Find a matrix whose eigenvalues are A\; = 1 and Xy = 4 with eigenvectors vi = [3,1]7 and
Vg = [2, 1]T.

Solution
From the given information, we have

Let

Then we have

and

Subtracting these two equations gives

Also, we have

Therefore,
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2.18 Gerschgorin’s circle theorem states that every eigenvalue of a matrix A lies in at least one
of the circles Ci,...,Cy in the complex plane where C; has center at the diagonal entry ag;
and its radius is r; = 3, ; ;).

1. Prove this theorem by using the eigenvalue equation Ax = Ax to write

()\ - aii)xi = Z A35L 5
JFi

and then use the triangle inequality,

E aijxj

J#i

<> aijzj)

J#

2. Use this theorem to establish the bound on Ay, given in Property 7.
3. The matrix

(VR NN
N W
SO

is said to be diagonally dominant since |a;;| > r;. Use Gerschgorin’s circle theorem to
show that this matrix is nonsingular.

Solution

1. Let x = [xl, Ce xN]T be an cigenvector, and A the corresponding eigenvalue for the matrix A.
Assume that z; is the largest component of x, i.e, |z;| > |x;| for all j # i. With Ax = Xx, it

follows that
N
Z ;5 T5 = )\LIZZ'
j=1

or,

(A — a”)m, = Zaijzj

J#i
Therefore,

IA = ai| = Zaw% < layl

3 g

Zi
X

Since |z;| > |z;| for all j # 4, then the ratios |z;/z;| are less than or equal to one, and A lies in
the 7th circle defined by
[Ai — @il <7

ri = lag]

J#i

where
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2. From Gerschgorin’s circle theorem, for each eigenvalue, ), there is an ¢ such that

A= ail <D lay]
v

Since
(Al = lai] <X — aql
then
n
A<Dy
j=1
Therefore,

!Amax! < mlaxz laij!
=1

3. Let A be a matrix that is diagonally dominant,
lai| > 7

Assume that one of the eigenvalues is zero (A is singular). From Gerschgorin’s circle theorem,
we know that, for each eigenvalue,
A —au| <7y
However, if A\ = 0, then
[Ae = @il = |ag] <

for some i. Therefore, A is not diagonally dominant, which contradicts the hypothesis. Thus,
if A is diagonally dominant, then it cannot have any zero eigenvalues and must, therefore, be
nonsingular.




24

Problem Solutions

2.19 Consider the following quadratic function of two variables z; and zs,

f(z1,22) = 322 4+ 323 + 42120 + 8

Find the values of z; and z that minimize f(21, z3) subject to the constraint that z; +2z9 = 1
and determine the minimum value of f(z1, 22).

Solution
To minimize the function

fz1,22) =327 + 325 + 42120+ 8

subject to the constraint
Z1+20=1

we may use Lagrange multipliers as follows. If we define the objective function Q(z1, z2) as follows
Q(z1,20) = 325 + 325 + 42120 + 84+ A1 — 2, — )

then the values for z; and z; that minimize f(z1, z2) may be found by solving the equations

5;;@(21,22) = 6z1+420—A=0
a

%Q(Zl;zz) = 6z +4z—A=0
5}\*@(21;2’2) = l-zn-2=0

Writing the first two equations in matrix form we have

6 4 z21 - 1
Sella]=l]
Solving for 2z; and z, we find

sleala el -sl

Plugging these values into the third equation above, we may solve for the Lagrange multiplier, ), as

follows,

l—z—z=1-%-%=1-

10 =0

S

or
A=5

Given A we may explicitly evaluate z; and 2z,
z1=1/2 ; 2=1/2
Substituting these values into f(z1, 2z2) we find that the minimum value of the function is

min|f(z1,2)] = 10.5
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SOLUTIONS TO CHAPTER 3
Discrete Time Random Processes

3.1 Let x be a random variable with mean m, and variance 0323. Let z; fori=1,2,...,N be N
independent measurements of the random variable z.

(a) With m, the sample mean defined by

1 N

i=1
determine whether or not the sample variance
2 1 N Y
0 =% ;(M — Mg

is unbiased, i.e., is E{52} = 02?7
(b) If z is a Gaussian random variable, find the variance of the sample variance, E{(52 —
E{02})%}.

Solution

(a) The expected value of the sample variance is
L LN LN ) 1 X L& )
R EO U S S B P (R 5 ot

i=1 j=1 i=1 j=1

Expanding the square we have

X 9 XN LA
E{52} = ]—V;ZE {(xz —mg)? — TV_Z(:C’ = mg)(Tj = me) + 5 ZZ(:):z —mg)(zj — mgg)}

Since the measurements are assumed to be independent, then

2 . . g
Ux ? =7

E{(x: = ma) (25 — my) } = { 0

and the expression for 52 becomes

N
~ 1 Z 2 1
E{Uﬁ}:*]v {ai——]\?aiﬁ-mNoi}:og(l——ﬁ):o
i=1

Therefore, although the sample variance is biased, it is asymptotically unbiased.
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(b) Finding the variance of the sample variance directly is very tedious. A simpler way is as follows.

With
1 Y 2

it is well-known that

~ N ~ 2
NO'% “‘Z Ty — My
o2 o

&z i==1

is a Chi-square random variable with n — 1 degrees of freedom, which has a variance of 2(n — 1).

Therefore,

Var <N82> =2(N-1)

2
0%

and, consequently, we have
— 4
Var (02) =22z

N2(N_ 1)
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3.2 Let z(n) be a stationary random process with zero mean and autocorrelation r, (k). We form

the process, y(n), as follows

y(n) = z(n) + f(n)
where f(n) is a known deterministic sequence. Find the mean m,(n) and the autocorrelation
ry(k,1) of the process y(n).

Solution
The mean of the process is

my(n) = B{y(n)} = E{z(n)} + f(n) = f(n)

and the autocorrelation is

ry(k,1)

I

Bly(k)y)} = B{ [s(k) + £(&)] [2() + F O] }
= Efa(t)e)} + f) (1) = ok, 1) + f(k}f
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3.3 A discrete-time random process z(n) is generated as follows,
P
z(n) = Z a(k)z(n — k) + w(n)
k=1

where w(n) is a white noise process with variance o2, Another process, z(n), is formed by
adding noise to z(n),
z(n) = z(n) + v(n)

where v(n) is white noise with a variance of o2 that is uncorrelated with w(n).
(a) Find the power spectrum of z(n).

(b) Find the power spectrum of z(n).

Solution

(a) Since @(n) is the output of an all-pole filter driven by white noise, x(n) is an AR(p) process with
a power spectrum

, o2
Pz(ejw) = [A(E;Uw)[Q

where

Ay =1- Z a(k)e= Ik

k=1
(b) The process z(n) is a sum of two random processes
z(n) = z(n) + v(n)

Since z(n) is a linear combination of values of w(n)

z(n) = Z h{k)w(n — k)
k=~o00

where h(n) is the unit sample response of the filter generating z(n), and since v(n) is uncorrelated
with w(n), then v(n) is uncorrelated with x(n), and we have

7y (k) = rp(k) + ry (k)

Therefore, ‘ 4 '
P.(7) = P,(e?) + P, (&™)
and 2 2 2 jwy (2
) J
Pz(egw) — Ty + 02 — Tw + U’ulA(e )i

[A(er)z fA(e7)?
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3.4 Suppose we are given a linear shift-invariant system having a system function
1—1z1
H(z) = —2"—
1—-32z71
3

that is excited by zero mean exponentially correlated noise z(n) with an autocorrelation

sequence
!kl

Tx(k) = (%)t

Let y(n) be the output process, y(n) = z(n) * h(n).

(a) Find the power spectrum, Py(z), of y(n).
(b) Find the autocorrelation sequence, ry(k), of y(n).
(c) Find the cross-correlation, rqy(k), between x(n) and y(n).

(d) Find the cross-power spectral density, Py,(z), which is the z transform of the cross-
correlation ry, (k).

Solution

(a) The power spectrum of z(n) is

3/4

Fale) = = D)1= 12

and the power spectrum of y(n) is

3/4
(1-3z"H(1~-32)

Py(z) = H(z)H (27" Py (2) =

(b) The autocorrelation sequence for y(n) may be easily found using the z-transform pair
1—a?

1—-az1)(1 - az)

alf

Since
8/9

(1-3271(1 - 32)

(B —
then
k) = B(HM
(¢) The cross-correlation ry, (k) between z(n) and y(n) is
Tay(k) = 14(k) x h(—k)
This may be easily computed using z-transforms as follows,

3/4 1-1z

Pwy(z) = Pw(Z)H(Z—l) = (1 — lz‘l)(l — lz) ‘ 1-1iz
2 2 3

3/4
(1~ %z‘l)(l — %z)
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Writing this in terms of 2~} and performing a partial fraction expansion gives

-1 9/10 3/10
: _ oy

(I—S2 Nz t=4) 1-1Lz1 11

ny(f’*’) = 2

Inverse z-transforming gives
ray(k) = 15(3) ulk) + 5(3) Fu(~k — 1)
(d) The cross-power spectral density, Py, (z), as computed in part (a), is

3/4
(1- %z‘l)(l - %z)

Ppy(z) =

(e) The cross-correlation, 74, (k), between z(n) and y(n) may found by computing the inverse 2-
transform of the cross-power spectral density,

3 27! 190 130
Poy(2) = 5 = +
w(2) =3 (1— %z‘l)(z‘l — %) — %z"l z71 — %

Inverse transforming gives
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3.5 Find the power spectrum for each of the following wide-sense stationary random processes
that have the given autocorrelation sequences.

(a) ro(k) =26(k) + jé(k — 1) — jo(k + 1).
(b) r4(k) = 6(k) + 2(0.5)I*.
(c) ryp(k) = 26(k) + cos(mk /4).

) re(k

[0k 5 Ik <10
(d) ra >_{ 0 ;  otherwise

Solution

(a) This autocorrelation sequence is finite in length, and the power spectrum is simply
Po(e?¥) =24 je™ — jeI% =2 4 2sinw

Note that, as required, P,(e/*) is real and non-negative.
(b) With « real, using the DTFT pair

alk’—-—-; 1—0{2
1 — ae=iw|?
we have . N
. 1-3 = 11 —4cosw
Pp(e*) =1+2 L g e
=(e") [1—Ledvp? +%—cosw 5 — 4 cosw

(c) Since the DTFT of a complex exponential is an impulse,
eI s 2§ (w — wp)
it follows that the power spectrum of (k) = 26(k) + cos(wk/4) is
Pp(e?) =2+ 76(w — Z) + 76 (w + Z)

(d) Observe that r,(k) is a triangle that is symmetric about & = 0 and extends from k& = —9 to
k = 9. Therefore, (k) may be written as the convolution of two pulses,

rz(k) = p(k) « p(—k)

where 3
1 ;o 0<k<9
pk) = { 0 ; else
Since the DTFT of p(k) is
9 ; .
. . 1 — e 710w ‘9. sin 5w
P’y = eI = L = emigw
kz_—.o 1—e 9w sinw/2
then the power spectrum is
sin? 5w

Po(e) = |P(e) = —— 7
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3.6 Find the autocorrelation sequence corresponding to each of the following power spectral den-
sities.

(a) Py(e’) =3+ 2cosw.

. 1
b) Py(ed¥) = ——o.
( ) z(e ) 54 3cosw
—222 + 52 -2
(0) Polz) = 322 +102+3°
Solution

(a) Expanding P, (e’) in terms of complex exponentials,
Po(e?) = 3+ 2cosw = 3+ eI + ¥
it follows that 7,(0) = 3 and r,(1) = r,(~1) = 1.
(b) Recall the DTFT pair
k| - 1- 042 _ 1- a2
(1 -ae )(1 - ae’) (1+a?) - 2acosw

a

Since
1 1/5

5+ 3cosw - 1+~§cosw

Py(e7%) =

it follows that
(k) = (=¥

(c) With
—224+5—2z71

~2:2+52-2  -224+5-22"1
T+ dz)(1+ 421

T 325 102+3  (3+2)(B+20)

P, (z)

using the pair

it follows that
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3.7 Let z(n) be a zero mean WSS process with an N x N autocorrelation matrix R,. Determine
whether each of the following statements are True or False.

(a) If the eigenvalues of R, are equal, Ay = Ay = -+ = Ay, then ry (k) = 0 for k =
1,2,...,N.
(b) If Ay >0 and A\, =0 for k =2,3,... N, then r,(k) = Ae?o,

Solution

(a) This statement is True. To show this, the first step is to recall the Bordering Theorem which,
for Toeplitz matrices, states that if R,_; is a p x p Toeplitz matrix with ordered eigenvalues
AL € Ag <o <A, and if Ry is the (p+1) x (p+1) Toeplitz matrix that is formed by adding one
row and column to R,,_;, then the ordered eigenvalues of R,,, denoted by Xl <A< < Xp-z"l
are interlaced with those of R,_; as follows

XIS)\lSXQS)\QS"‘SXpS)\pSXIH.l

What this implies is that if the eigenvalues of R, are equal, M =A== lei then the
eigenvalues of each of the lower-order Toeplitz matrices must also be equal.
The next step is to note that for any 2 x 2 Toeplitz matrix

- [18) 1)

if the eigenvalues are equal then r,(1) = 0. This follows easily from the fact that the eigenvalues
of Ry are Ay = 15(0) +7(1) and Ay = 7,(0) — r;(1). Therefore, A; will be equal to ) if and
only if r5(1) = 0. This property may also be established for a 3 x 3 Toeplitz matrix by equating
the coefficients of the powers of X in the equation

det|Ry — AL} = (A — Xp)®

where the three eigenvalues of Ry are equal to Aq.
We may now establish the result by induction. Assume that Ry_; is a k x k Toeplitz matrix
with equal eigenvalues, and that

Rj—1 = Toep{r,(0),0,0,...,0}
We will now show that if Ry is a (k + 1) x (k + 1) Toeplitz matrix

Ry, = Toep{r(0),0,...,0,7,(k)}
with equal eigenvalues, then r,(k) = 0. The cigenvalues of Ry are the roots of the polynomial

det(Ry — AI) =0
If the eigenvalues are to be equal, then
det(Ry — A1) = (A= Ao)"*

However, note that

det(Ry — AL) = [ — . (0)]* £ r2(p) [\ = 7, (0)] 7
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where the sign depends on whether £ is even or odd. Therefore,
k k-2 k
A =@ £ A= r2(0)]7 = (A=)

if and only if Ag = r(0) and r,(k) = 0 as was to be shown.

(b) This statement is True. To show this, note that if \; > 0 and Ay = 0 for k = 2,3,..., N, then
the autocorrelation matrix has the form

H
Rz - )\1V1V1

where vy is the eigenvector associated with the nonzero eigenvalue X;. Let v; (k) be the coeffi-
cients of the eigenvector vy,

vi= o), u(2), ..., n(V)]"
Then
) ali) e L Gy
Re=X | . [[of(1) (2 vi(N) | = : : ‘
w1(N) V(1) w(M@) - (V)P

Since R, is Toeplitz, then the terms along the main diagonal must be equal,
(D = @)1 = - = [or (V)]
Therefore, the coefficients vy (k) must have the form,
”Ul(k‘j = VA el

In addition, the Toeplitz structure of R, implies that the terms along the diagonal below the
main diagonal must be equal,

v1(2)v1(1) =01 (3)vi(2) = -+ = v (N)o](N — 1)
Therefore, (¢, — ¢r—1) must be a constant,
Br = Pr—1 = wo
and, with vy (1) = v/Ae?%1 | it follows that
v (k) = VA ¢ [#1+(B—L)wo)

Finally, note that since the first column of R, contains the autocorrelations r,(k) for k =
0,1,...,N =1, then

ro(k) = vi(k+ Dvi(1) = VA & [¢1+k“’°] VA gm0 = 4 eikwo

as was to be shown.
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3.8 Consider the random process

z(n) = Acos(nw + ¢) + w(n)

where w(n) is zero mean white Gaussian noise with a variance o2, For each of the following
cases, find the autocorrelation sequence and if the process is WSS, find the power spectrum.

(a)

(b)
(©)

Solution

(a)

A is a Gaussian random variable with zero mean and variance o and both w and ¢ are
constants.

¢ is uniformly distributed over the interval [—7, 7] and both A and w are constants.

w is a random variable that is uniformly distributed over the interval [wy — A, wp + A]
and both A and ¢ are constants.

When w and ¢ are constants, then
ra(k,1) = E{z(k)z()} = E{Acos(kw + ¢) A cos(lw + ¢)} + 026(k — 1)
Thus,
ry(k, 1)

Il

E{A?} cos(kw + ¢) cos(kw -+ ¢) + 02 8(k — 1)
04 cos(kw + @) cos(lw + @) + a2 6(k — 1)

i

Note that since r,(k,I) does not depend on the difference k — I, then z(n) is not wide-sense
stationary, and the power spectrum is not defined for this process.

When A and w are constants and ¢ is a random variable that is uniformly distributed over the
interval [—m, ], then the autocorrelation is

ra(k,l) = E{A®cos(kw+ ¢)cos(lw + ¢)} + o2 d(k — 1)
= $A2E{cos|(k+ w +2¢]} + A2 E{cos(k — Dw} + 02 8(k — 1)

However, since E{cos[(k + l)w + 2¢]} = 0, then the autocorrelation is
1
ro(k, 1) = §A2 cos(k — Dw + o2 6(k — 1)

Therefore, r(k,1) depends on the difference (k—1), and the process is WSS. The power spectrum
is
. A? A?
P, (e7) = —7r2—(5(w —w)+ —-—WQ S(w+w)+ o2
As in parts (a) and (b), the autocorrelation of the process z(n) is
r2(k, 1) = E{z(k)z(l)} = E{Acos(kw + ¢)Acos(lw + ¢)} + a2 5(k — 1)

In this case, however, w is a random variable, and the expectation of the product of the cosines

) E{Acos(kw + ¢)Acos(lw + ¢) } = AQE{% cos[(k — Dw] + & cos[(k + Dw + 2¢r]}
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Since w is uniformly distributed over the interval [wg — A, wy + A], the expectation of the first
term is

wH+A
E{cos[(k —w]} ! / " cos[(k — l)w]dw

24 wo—A

- m [sin[(k = D(wo + A)] = sin[(k — 1) (wy — A)]}

With ¢ a constant, the expectation of the second term is

E{cos[(k + )w+2¢]} = {sin[(k +1)(wo + A +2¢)] — sin[(k + )(wo — A + 2¢)]]

1
PINCES)!

Therefore, z(n) is not WSS. However, if ¢ is a random variable that is uniformly distributed over
the interval [~ 7], then this second expectation is zero, and the autocorrelation becomes

ralkyl) = E(%_:ﬁ{sm[(k ~ (o + A)] ~sin[(k ~ D(wn — A)]}
= —2-5—(%1—5 sin[(k — 1)A] cos[(k — 1)wo]

and the process is WSS. With an autocorrelation sequence given by

(k) = wAzsinkACO &
o\ TGN Tap G
using the DTFT pair
sin kA ; 1 ;o jwl <A
— Jwy — l =
re (k) —— = P (e’*) { 0 olse

it follows that the power spectrum of z(n) is

4N '

TA?
Pw(ej“’):{ pow Al Sw A
0 . else
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3.9 Determine whether or not each of the following are valid autocorrelation matrices. If they
are not, explain why not.

-

4 11
(a) R1: —1 4 1
| -1 -1 4
(2 2
(b) Ro=| 2}
T
(c) Rg = 1—j 1 }
(3 2 1
(dRe=|2 4 2
|12 3
2 51
() Rs=| —j 4 ~j
152
Solution

(a) Since Ry is not symmetric, it is not a valid autocorrelation matrix.
(b) Since R is symmetric and non-negative definite, this is a valid autocorrelation matrix.

(¢) Although Ry is Hermitian, note that its determinant is negative,
detRg=1- (1+4)(1—7) =1

Therefore, Rg is not non-negative definite and, therefore, it is not a valid autocorrelation matrix.
(d) Ry is a valid autocorrelation matrix since it is symmetric and non-negative definite.

(e) The entries along the diagonal of an autocorrelation matrix must be real-valued (this follows from
the Hermitian property, and the fact that the ith entry along the diagonal is equal to E{[x(z)|2}
which is real). Since the middle element is imaginary, this is not a valid autocorrelation matrix.
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3.10 The input to a linear shift-invariant filter with unit sample response
h(n) =d(n) + 16(n — 1) + Ls(n ~2)
is a zero mean wide-sense stationary process with autocorrelation
|kl
ro(k) = (})

(a) What is the variance of the output process?

(b) Find the autocorrelation of the output process, ry(k), for all k.

Solution

39

Before we find the variance, let’s find the autocorrelation. With
ry(k) = ro(k) = h(k) * h(=k) = ro (k) « [F50(k) + 26(k — 1) + 20(k + 1) + 23(k — 2) + 16(k — 2))
it follows that
ry () = B + TR 4 B3R+ 2 A f(ghe
Finally, since z(n) has zero mean, the variance is

2, — (21 5 5 1 1 . 33
oy =ry0)=(HF+m+i+16+15) = 1o
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3.11 Consider a first-order AR process that is generated by the difference equation

y(n) = ay(n —1) + w(n)

where |a] < 1 and w(n) is a zero mean white noise random process with variance o2,

(a) Find the unit sample response of the filter that generates y(n) from w(n).
(b) Find the autocorrelation of y(n).
(c) Find the power spectrum of y{(n).

Solution

(a) The process y(n) is generated by filtering white noise with a first-order filter that has a system
function given by
1

H(z) = 17

Thus,
h(n) = a™u(n)

(b) Since the autocorrelation sequence for w(n) is r,, (k) = 02 5(k), then

ry (k) = 02 5(k) * h(k) * h(—k) = 02 h(k) * h(~k) = - % salt!

—-a
(c) The power spectrum of y(n) is

2
w

1+a? —2acosw

Py(e?) = ol [H(e)P = s
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3.12 Consider an MA(q) process that is generated by the difference equation

q
yln) = Z b(k)w(n — k)
k=0

where w(n) is zero mean white noise with variance o2,.

(a) Find the unit sample response of the filter that generates y(n) from w(n).

(b) Find the autocorrelation of y(n).
(c) Find the power spectrum of y(n).

Solution

(a) The process y(n) is generated by filtering white noise with an FIR filter that has a system

function given by
q

H(z) = b(k)z*

Thus, the unit sample response is
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3.13 Suppose we are given a zero-mean process z(n) with autocorrelation

T.E(k) =10 (%)Ik‘ +3 (%)Ik—ll L3 (%>§k+1}

(a) Find a filter which, when driven by unit variance white noise, will yield a random process
with this autocorrelation.

(b) Find a stable and causal filter which, when excited by z(n), will produce zero mean,
unit variance, white noise.

Solution

(a) The power spectrum of x(n) is

3/4

P = o ha= 5

[10+3271+32] =2

Therefore, if

- V3143271

X2 : 1
HE =Gy ¢ k>

then the response of this filter to unit variance white noise will be a random process with the
given autocorrelations.

(b) Consider the filter having a system function

1,.-1
2 1”"2'2

G2) = — 22, L
=5 iri ¢ A

Clearly this filter is stable and causal. Furthermore, if we filter z(n) with g(n) then the power
spectrum of the filtered signal will be
Py(z) = G(2)G(z7 ") Pu(2) = 1

Therefore, g(n) is the whitening filter that will produce unit variance white noise from z(n).
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3.14 For each of the following, determine whether or not the random process is

1. Wide-sense stationary.

2. Mean ergodic.

(a) z(n) = A where A is a random variable with probability density function f4(a).

(b) z(n) = Acos(nwg) where A is a Gaussian random variable with mean m 4 and variance
ad.

(¢) z(n) = Acos(nwg+¢) where ¢ is a random variable that is uniformly distributed between
—7 and 7.

(d) z(n) = Acos(nwy) + Bsin(nwy) where A and B are uncorrelated zero mean random

variables with variance 2.

(e) A Bernoulli process with Pr{z(n) = 1} = p and Pr{z(n) = -1} =1 —p.
(f) y(n) = =x(n) — z(n — 1) where x(n) is the Bernoulli process defined in part (e).

Solution

(a) We are given a process x(n) = A, where A is a random variable with probability density function
fale). To check for wide-sense stationarity we need to compute the mean and autocorrelation
of z(n). The mean of this process is

me(n) = E{z(n)} = E{A}
which is a constant. The autocorrelation is
ro(k, 1) = E{z(k)z(l)} = E{A%}

which is also a constant. Therefore, z(n) is WSS.
To check for ergodicity in the mean, note that

ce(k) = r2(k) — mZ = E{A?} — E*{A}

which is a constant. Therefore, z(n) is ergodic in the mean only if the variance of A is zero,
e (k) =0.

(b) With z(n) = A cos(nwyp), note that the mean of the process is
my(n) = E{z(n)} = E{Acos(nwy) } = E{A} cos(nwy) = ma cos(nwp)

which depends on n. Thus, z(n) is not WSS and, therefore, not ergodic in the mean.

(c) For z(n) = Acos(nwg + ¢) with ¢ a random variable that is uniformly distributed between —n
and 7, the mean of z(n) is

me(n) = E{z(n)} = E{Acos(nwy + ¢)} = -;:—r /ﬂ cos(nwp + ¢)dé = 0

T
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which is a constant. For the autocorrelation we have
ro(k,1) = E{Acos(kwo + ¢)Acos(lwy + ¢)}
= %AQE{COS([]C — lwg) + cos([k + ljwo + 2(/))}
= 1A%cos(k — lwo

which is a function of (k — ). Therefore, z(n) is WSS.
To check for ergodicity in the mean, note that

N-1 N-1
1 1 A?
v (k) = 5N Z cos kwq
k=0 k=0

1 422 .
— 5 T\f— Z {%eﬂkwo + %6~ﬂﬂw0}
k=0

1 A2 (1 —elNwo ] emiNwo

ZW{ 1 — elwo 1— e dwo }
A? sin(Nwy/2) N1

- 2N sin(wo/2) cos 2

)

which goes to zero as N — oo, provided that wy = 0. If wy = 0, then z(n) = Acos¢ and
cz(k) = A?/2. In this case, z(n) is not ergodic in the mean. Therefore, z(n) is ergodic in the
mean only if wy # 0.

The mean of this process is
E{z(n)} = E{A} cos(nwo) + E{B} sin(nwo)
Since E{A} = E{B} =0, then E{z(n)} = 0. For the autocorrelation we have

ro(k,l) = E{z(k)z(l)} = E{[Acos(wok) + B sin(wok)][A cos(wol) + Bsin(wol)] }
E{A?} cos(kwp) cos(lwo) + E{B?} sin(kwy) sin(lwp)
+E{AB}cos(kwo) sin(lwy) + sin(kwg) cos(lwg)]

Since A and B are uncorrelated and have zero mean, then E{AB} =0 and E{A?} = E{B?} =
o2. Therefore, we have

74 (k,1) = 0®[cos(kwp) cos(lwy) + sin(kwp) sin(lwg)] = o2 cos(k — 1wy
Since the mean is a constant and the correlation function r,(k,!) depends only the difference,
k — 1, then z(n) is a wide-sense stationary process.
As in part (c), z(n) is ergodic in the mean only if wg = 0.
With z(n) a Bernoulli process with Pr{z(n) = 1} = p and Pr{z(n) = —1} = 1 — p, the mean of
z(n) is

mg(n) = E{z(n)} =p—(1-p)=2p-1

and the autocorrelation is

z2 . =
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Therefore,
_fptd=-p=1 ; k=l
e ={ T
or
ro(k,1) = 4p(1 - p)(k — 1) + (1 - 2p)?

which is a function of k& — I. Therefore, z(n) is WSS. With

co(k) = ro(k) —m3 = 4p(1 — p)a(k)

&
it follows that

1 1
N};cx(k)z—ﬁllp(l—p)—-“»OasN-»oo

Thus, z(n) is ergodic in the mean.

(f) With y(n) = z(n) — z(n — 1) where z(n) is a Bernoulli process, wide-sense stationarity may be
casily checked using the direct approach taken in parts (a)-(e) of this problem. However, it is
easier to note that since y(n) is the response of a linear shift-invariant system to an input that
is a WSS process, then y(n) will be WSS.

For ergodicity in the mean, note that since
co(k) = 4p(1 — p)8(k)

then
ey (k) = cp(k) * h(k) * h(—k) = 4p{1 — p) [25(1@) ~8(k—=1)—68(k+ 1)}

and, clearly,

z

Z—if— Ocz(k)—%OasN—H)o

ES
i




46

Problem Solutions

3.15 Determine which of the following correspond to a valid autocorrelation sequence for a WSS

random process. For those that are not valid, state why not. For those that are valid, describe
a way for generating a process with the given autocorrelation.

(a) ry(k) =36k —1)+6(k+1)
(b) 72(k) =30(k) +26(k — 1)+ 25(k+ 1)
(c) ro(k) = exp(jkm/4)

q i) 1 i Jkl< N
()rd)—{o e
Nk
(&) ralk) = ~ ;o k< N
0 ; else

(6) rak) = 27"

Solution

(a) This autocorrelation sequence is not valid since we must have 7,(0) > |r.(1)].
(b) This autocorrelation sequence is not valid since the power spectrum is not non-negative

Po(e?) =3+ 2e77% + 26/ = 3+ 4cosw

(c) This autocorrelation sequence is valid, and corresponds to a harmonic process. Given a random
variable ¢ that is uniformly distributed between —m and m, this process may be generated as
follows,

x(n) = dF+9)
(d) This autocorrelation sequence is not valid since the power spectrum
oy sin(N = 1w
Py(e) = ——2—
sinw/2

is not non-negative.

(e) This autocorrelation sequence is valid since (k) is symmetric, and its discrete-time Fourier
transform is non-negative for all w. This process may be generated by filtering unit variance
white noise with the FIR filter that has a unit sample response given by

1 ; 0<n<N
h(n)w{O . else

(f) The sequence
ro(k) = 9—k* _ o~(n2)k?

is a sampled Gaussian pulse. The DTFT of r,(k) is an aliased Gaussian, which is positive for all
w. Since r4(k) is symmetric and P,(e?*) > 0, this represents a valid autocorrelation sequence.
This process may be generated by filtering white noise with a linear shift-invariant system that
has a Gaussian shaped unit sample response.
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3.16 Show that the cross-correlation, r4y(k), between two jointly wide-sense stationary processes
x(n) and y(n) satisfies the following inequalities,

1/2
(a) Iray(K)] < [ro(0)ry (0)]
(0) [ray (k)] < § [ro(0) + 7y (0)]

Solution

(a) Note that for any constant a,
E{ l[az(n + k) — y(n)}g} >0
Expanding the square we have
?E{z*(n+k)} - 20E{z(n + k)y(n)} + B{y*(n)} > 0

This is a quadratic equation in a, and is non-negative. Therefore, its discriminant must be

non-positive,
AE*{z(n + k)y(n)} < 4E{a®(n + k) } E{y*(n)}

or,

r2y (k) < 74(0)r, (0)
Taking the square root, the result follows.

(b) To establish this inequality, note that

E{|z(n+k) +y(n)[*} >0

Expanding the square it follows that
r2(0) £ 2rgy (k) +1,(0) > 0

Therefore,
Eray (k) < § [r2(0) +74(0)]

and .
Iray(K)| < § [r2(0) +7,(0)]
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3.17 Given a wide-sense stationary random process z(n), we would like to design a “linear predic-

tor”

that will predict the value of x(n + 1) using a linear combination of z(n) and x(n — 1).

Thus, our predictor for z(n + 1) is of the form

Z(n+1) = az(n) + bz(n — 1)

where a and b are constants. Assume that the process has zero mean

E{z(n)} =0

and that we want to minimize the mean-square error

Solution

(a)

¢=E{fe(n+1) - 3n+ 1)}

With r,(k) the autocorrelation of x(n), determine the optimum predictor of z(n) by
finding the values of a and b that minimize the mean-square error.

What is the minimum mean-square error of the predictor? Express your answer in terms
of the autocorrelation r, (k).

If x(n + 1) is uncorrelated with x(n), what form does your predictor take?

If z(n +1) is uncorrelated with both z(n) and z(n — 1), what form does your predictor
take?

The mean-square error that we want to minimize is
¢=E{len+1) =3+ )P} = B {z2(n+1) - 2u(n+ DE(n + 1) + #(n + 1)}
Since the estimate of z(n + 1) is
Z(n+1) = ax(n) + bx(n - 1)

then setting the derivative of { with respect to a and b equal to zero we have

g_fl = 2B {a(n+ Dz(n)} + E{28(n + Da(n)} =0
_g.% = 2B {a(n+a(n - 1)} + E{2(n+ Da(n - 1)} = 0

Dividing by 2 and substituting for Z(n + 1) gives
ak {2*(n)} + bE {z(n)z(n — 1)} = E{z(n+ D)z(n)}
aB {z(n)z(n— 1)} + bE {z*(n — 1)} = E{z(n+ )z(n - 1)}

Putting these equations in matrix form we have
ra(0) () 1T a] _ [ n(D)
ro(1)  72(0) b 72(2)
Solving for a and b we find

= memm L e e |
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(b) For the minimum mean-square error we have

£ = E{[m(n+l)~5§(n+l)}2}:E{[x(n+1)~&?(n+1)][a:(n—|—1)—§(n+1)]}
= BE{lz(n+1)-Zn+D]e(n+1)} - BE{lz(n+1) —2(n+1)]Z(n+ 1)}

Note that for values of a and b that minimize the mean-square error, the derivatives of ¢ with
respect to a and b are equal to zero, which implies that the second term in the equation above
is equal to zero. Therefore, the minimum mean-square error is

E=E{[z(n+1)-Z(n+D]z(n+ 1)} = B{[z(n+1) - az(n) — ba(n — 1)]z(n + 1)}

& = rz(0) —ary(1) — bry(2)

2 Te(0)ra(1) = ra(1ra(2)
)

s e (O)r.(2) ~ 2(1)
I O Y

r(0) = r2(1)

(¢) I x(n + 1) and z(n) are uncorrelated, then r, (1) = 0, and the values for a and b become

—rg(2)

a=0 ; b=ry(2)/r.(0)
In this case, the linear predictor is

r2(2)
=(0)

(d) If (n + 1) is uncorrelated with both (n) and xz(n — 1), then the values for a and b are

Z(n+1)=

z(n—1)

~

a=b=20

and the linear predictor is
Zn+1)=0

which is equal to the expected value of z(n + 1),

Z{n+1)=E{z(n+1)}
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3.18 True or False: If z(n) is a WSS process and y(n) is the process that is formed by filtering

x(n) with a stable, linear shift-invariant filter h(n), then
o
2_ 2 2
Oy = 0Oy Z |h(”)l
N=—00
where o7 and o7 are the variances of the processes 2(n) and y(n), respectively.
Solution

If a WSS process x(n) is filtered with a filter that has a unit sample response h(n), then the autocor-
relation of the output process is

ry(k) = 1, (k) * h(k) = h* (k)
Assuming that z(n) has zero-mean, then
o2 =1,(0) and 02 = r,(0)
Therefore, the question is whether or not the following relationship is true:
o
ry(0) = 72(0) Y [h(n)]®
n=-—00

If this is true, then af, depends only on r,(0), and not on r;(k) for k # 0. Clearly, this is not true
unless (k) = 0 for [k| > 0, i.e., if z(n) is white noise. Therefore, the statement is False.
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3.19 Show that a sufficient condition for a wide-sense stationary process to be ergodic in the mean
is that the autocovariance be absolutely summable,

oo

Z lex(k)] < o0

k=—00

Solution
Beginning with the variance of the sample mean,

1 Nl k| 1 Nl
Var{mw(N)}:N Z (—W)Cx(k)ﬁ—]\—, Z ez (k)]
k=—N+1 k=-N+1
note that if -
S Jealk)f < o0
k=—0c
then
;o Nen
NhinooVar{mz(N)}:A}EnooN > ealk) =0
k=-N+1

and the process is ergodic in the mean.
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3.20 For each of the following, determine whether the statements are True or False.

(a) All wide-sense stationary moving average processes are ergodic in the mean.

(b) All wide-sense stationary autoregressive processes are ergodic in the mean.

Solution

(a) This statement is true. Recall that a WSS moving average process has an autocovariance that
is finite in length, ¢, (k) = 0 for all |k| > ko for some kg. Therefore, if we let

ko
C=> culk)
k=0

MmN

and ergodicity is established.

(b) This statement is true and may be shown as follows. An autoregressive process is formed by
filtering finite variance white noise w(n) with a stable, causal all-pole filter h(n),

z(n) = h(n) * w(n)
Assuming, without any loss in generality, that w(n) has zero mean, the covariance of z(n) is
cx(k) = 02, h(k) * h(—Fk)

where o2, < oo is the variance of w(n). The condition that h(n) is stable guarantees that e (k)
is absolutely summable and, therefore, z(n) is ergodic in the mean.
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3.21 Let z(n) be a real WSS Gaussian random process with autocovariance function ¢, (k). Show
that z(n) will be correlation ergodic if and only if

1 V-1
. L 2 _
N > k) =0
k=0
Hint: Use the moment factoring theorem for real Gaussian random variables which states
that
E{zizsx3z4} = E{z120} E{x3zs} + E{z123}E{zox4} + E{z124} E{T273}

Solution
We are given a WSS Gaussian random process, z(n), that is ergodic in the mean. For convenience,
let us assume that the process has zero mean. In this problem we will be using the moment theorem
for Gaussian random variables. This theorem states that if z(m), z(n), z(k), and z(l), are zero mean
jointly distributed Gaussian random variables then the fourth-order moment E{z(m)z(n)z(k)z(l)} is

Ela(m)z(n)z(k)z()} = E{az(m)z(n)}E{z(k)z()} + E{z(m)z(k)} E{z(n)z (1)}
+E{z(m)x(l)} E{x(n)z(k)}
Now, for a fixed value of k, let
y(n) = z(n + k)z(n)
Since
E{y(n)} = rq(k)

it follows that z(n) will be correlation ergodic

N—1

. 1 N

A}Enoc i Z z(n + k)x(n) = ry (k)
n=0
if and only if!
L N-1
Jim s > ) =0 (P3.21-1)
l=—N+1

where

ey (1) E{y(m + Dy(m)} = E{y(m + )} E{y(m)}

E{z(m+ 1+ E)x(m + Dz(m + k)z(m)} — r2(k)

il

Using the moment theorem, we have

ey() = E{z(m+I1+E)x(m+D}E{z(m+ k)z(m)} +
E{z(m+ 1+ k)z(m + k) }E{z(m + Dz(m)} +
E{z(m +1+ k)z(m)}E{z(m + k)z(m + 1)} — r2(k)
= r2() +ro(k+Dre(k —1)

'Note that we are assuming that y(n) is wide-sense stationary. However, it may be shown that since z(n) is a
WSS Gaussian process then it is also strict sense stationary and, therefore, y(n) is WSS.
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Therefore, z(n) will be correlation ergodic if and only if

N-1

.1
Jim 2 [r2() +re(k+Dry(k—1)] =0 (P3.21-1)

What we would like to establish is the equivalence of Eq. (P3.21-1) and Eq. (P3.21-1). It is clear that
if Eq. (P3.21-1) is true, then Eq. (P3.21-1) holds. We may sce this by setting k& = 0 in Eq. (P3.21-1).
To establish the converse, we use the inequality

2re(k+Dra(k =) < r2(k+ 1)+ r2(k - 1)

Therefore,

N-1

Tk + Dra(k ~ 1) §-—] rg(k+z)+r§(k—l)]

2|

. —1+k N-1-k
= w2 R+ Y i)

l=k l=—k

where, in the last inequality, we used the fact that
(k)| < 72(0)

for all k, Thus, as N — oo, the right-side goes to zero and we have established the equivalence of
Eq. (P3.21-1) and Eq. (P3.21-1).
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3.22 Ergodicity in the mean depends on the asymptotic behavior of the autocovariance of a process,
cz(k). The asymptotic behavior of ¢;(k), however, is related to the behavior of the power
spectrum P, (e?) at w = 0. Show that z(n) is ergodic in the mean if and only if P,(e/*)
is continuous at the origin, w = 0. Hint: Express Eq. (3.65) as a limit, as N — oo, of the
convolution of ¢;(k) with a pulse

(n) = 1/N ;i 0<n<N
PN =1 ;  otherwise

with the convolution being evaluated at & = N.

Solution
A necessary and sufficient condition for a process WSS process #(n) with autocovariance ¢, (k) to be
ergodic in the mean is

N-1

1
i, 2 B =0

To show that x(n) is ergodic in the mean if and only if P,(e/*) is continuous at the origin, let
sn(k) = co(k) * pn (k)
where
(n)= 1/N 3 0<n<N
PNAT= 0 ;  otherwise
Note that
N-1

sn(N) = % S k)
k=

Since sy (k) is the convolution of ¢, (k) with px(k), then

Sn(e7) = Po(e™) P (e?)

where in Nuw/2
Pr(ei®) = g—i(N=1)/2 SIMNW/2
w(eT) = Nsinw/2
Therefore,
1 /7 o 1 [" . . sin Nw/2
N) = — Jw ]Nwd _ P, Jw\ ,—j(N—=1)/2 2LV /& iNw
sn(N) 27 _,,SN(e e Yo /_,r (7)e Nsinw/2 e dw

Note that the term multiplying the power spectrum P, (e’*) inside the integral is bounded by one in
magnitude and, as N — oo, this term goes to zero for all w # 0, and for w = 0 this term is equal to
one. Therefore,

. 1 o e
A (V) = 5= [P mor = Pa(e)umo- |

and it follows that sy (N) goes to zero as N — oo if and only if Pp(e)|,—0+ = Pu(e?)|y_0o-, i.€.,
P,(e?*) is continuous at the origin.
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3.23 In Section 3.2.4 it was shown that for real-valued zero mean random variables the autocorre-
lation is bounded by one in magnitude

}ny[ <1

Show that this bound also applies when z and y are complex random variables with nonzero
mean. Determine what relationship must hold between z and vy if

lpay =1

Solution
Without any loss of generality, we may assume zero mean for both z and y. For non-zero mean random
variables, the following derivation is modified by replacing = with = ~ m, and y with y — m,. What
we want to show is that

o{a}

Efjz ~ayl’} 2 0

Y < B{jal?} B{yl?)

Note that for any constant a,

with equality if and only if = ay with probability one. Expanding the square we have
E{lz —ayl’} = E{|z’} — aE{2"y} — «” E{zy"} + [a]?E{jy*} > 0

Now let

_ E{ay}
E{lyl?}
Then
B{jaf?} - B{ary) A} _ B{ay} 2 | gy oy Bletyt Blay}
e BRI ERey T T =gy 2

Cancelling terms and simplifying this becomes

Try* 2
E{jz*} - ______iE;{{!zP}}l >0

and the inequality follows.
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3.24 Let Py(e’*) be the power spectrum of a wide-sense stationary process z(n) and let A, be the
eigenvalues of the M x M autocorrelation matrix R,. Szegi’s theorem states that if g(-) is a
continuous function then

Ml,iinoo g(M) +g()\2)]‘;‘ e+ g(Am) - _Q%T_/Tr Q{Px(ejw)]du)

hatid

Using this theorem, show that

]\}im [det Rz] i = exp {;— /ﬂ In {Pi(ejwﬂdw}

—>00 TS

Solution
The determinant of a matrix is equal to the product of its eigenvalues,

M
det Ry = [ ] A
k=1
Therefore M
1/M
(det Ro)" = (T \v)
k=1

Taking logarithms, we have

1

M
k

WE

In (det R,)"/™ = In Ay

I
-

Using Szegd’s theorem yields

M m
- ym _ o1 _ 1 jw] ,
N}gl’éo In (detR,) = A}Enoo i kgﬂln Ay = 5 /Wln[Pz(e )| dw

and the result follows.
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3.25 Insome applications, the data collection process may be flawed so that there are either missing
data values or outliers that should be discarded. Suppose that we are given N samples of a
WSS process z(n) with one value, z(ng), missing. Let x be the vector containing the given
sample values,

x = [2(0), z(1), ...,2(no — 1), z(no+1), ..., z(N)]T

(a) Let R, be the autocorrelation matrix for the vector x,
R, = E{xxf}
Which of the following statements are true:
1. Ry is Toeplitz.
2. R, is Hermitian.
3. R, is positive semidefinite.
(b) Given the autocorrelation matrix for x, is it possible to find the autocorrelation matrix

for the vector

x = [x(m, (1), ... ,x<N)}T

that does not have x(ng) missing? If so, how would you find it? If not, explain why not.

Solution

(a) The matrix is not Toeplitz. This may be shown easily by example. If x = [2(0), z(2), x(3)], then

[Z(O)  z(0)z*(2) x(0)2*(3) r2(0) 72(2) ro(3)
R, = E{xx"} = B | 2(2)2*(0) |2(2)? 2(2)2*3) | = | r(2) 7:(0) r4(1)
z(3)a*(0) =(3)z"(2)  |z(3)]? r2(3) To(1) 7.(0)

which is clearly not Toeplitz. However, by definition, R, is Hermitian,
R = B} = B} = R,

Finally, R, is non-negative definite, which may be shown as follows. Let v be any non-zero

vector. Then,
viR,v = VHE{xxH}V = E{vHxva}

Therefore,
viR,v = E{vaXIQ} >0

and R, > 0.
(b) There are several ways to find the autocorrelation matrix for the vector

T
x = [x(O), (1), . ..,m(N)}
that does not have x(ng) missing. One way is as follows. Note that the first column of R, that
is formed from the vector that has z(ng) missing is as follows,
[rm(O),rz(l), N Tﬂ?(no - 1)77‘1(710 + l); T )TJD(N)]

Therefore, all that we need is the missing correlation r,(no). Note, however, that this term is
found in the second column of row (ng + 2) (see example in part (a) above). Thus, given r,(ng)
the Toeplitz matrix may then be formed.
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3.26 The power spectrum of a wide-sense stationary process z(n) is

. 25 — 24 cos w
Py(elv) = 222002
() = S T0cos e

Find the whitening filter H(2) that produces unit variance white noise when the input is

Solution
Expanding the cosines in the expression for the power spectrum we have

< 25 — 12¢79 — 12¢~9w
JWY
Fole) = 5 5 e

or, in terms of z, the power spectrum becomes

0 25-122-12270 (4-32)(4-3271)

Px - - = Ax G -1
) 26 — 5z — Hz~! (5 — z)(5 — 2z 1) G(2)G(z™)
where s i
— 3z 4
Ce) =5 =15
Therefore, if
_E.-1
H(z) 1 1-52

- G(z)  3—4z71

then
y(n) = h(n) x z(n)

will be unit variance white noise.
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3.27 We have seen that the autocorrelation matrix of a WSS process is positive semidefinite,
R,>0

The spectral factorization theorem states that if P, (e’*) is continuous then the power spec-
trum may be factored as

Po(e) = af |Q(e™)]?
where Q(e“) corresponds to a causal and stable filter.

(a) Assuming that of # 0 and Q(e/) is nonzero for all w, show that the autocorrelation
matrix is positive definite.

(b) Given an example of a nontrivial process for which R, is not positive definite.

Solution

(a) The positive definite property of R, may be easily established with the help of the Eigenvalue Extremal
Property which states that the eigenvalues of the autocorrelation matrix of a zero mean WSS random
process are upper and lower bounded by the maximum and minimum values, respectively, of the power
spectrum,

rrEnPZ(ejw) <M< m‘?xPz(ej“’)

If o2 # 0 and Q(e’*) is nonzero for all w, then
Po(e) = 0 |Q(e™)* > 0

and, therefore, _
O<minP (/)< N, 5 i=1,2,....n
w

Thus, it follows that R, is positive definite.

(b) A non-trivial process for which R, is not positive definite is the harmonic process
z(n) = ei(nwotd)
where ¢ is a random variable that is uniformly distributed over the interval [, 7). For this process,
the autocorrelation matrix R, has a rank of one.
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SOLUTIONS TO CHAPTER 4
Signal Modeling

4.1 Find the Padé approximation of second order to a signal z(n) that is given by
x=1[2,1,0, 1,0, 1,0, =1, 0, 1, .. ]¥

e, z(0) =2, 2(1) =1, 2(2) = 0, and so on. In other words, using an approximation of the

form
_b(0) + b(1)z"1 + b(2)z 72

(2) = 1+a(l)z7t +a(2)z~2
find the coefficients b(0), b(1), b(2), a(1), and a(2).

Solution
The Padé equations that must be solved are

2 0 o] [b(O)
1 2 0] 1] B(1)
0 1 2| a@) J = | b(2)
-1 0 1 a(2) 0
0 -1 0 0

The last two equations in this set are
01 a(l) |
-1 0 a(2) |

a(l)=0 and a(2) =1

Solving for a(1) and a(2) we have

Using the first three equations, we may solve for 5(0),b(1), and b5(2) as follows:

EIRBHIREH
b)) |=]1 2 0]]0|=]1
b(2) 01 2|1 2

Therefore, the model is
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4.2 A third-order all-pole Padé approximation to a signal z(n) has been determined to be

1

H =
(2) 1422714 2724323

What information about z(n) can be determined from this model?

Solution
The Padé approximation using p poles and ¢ zeros matches the first p + ¢ 4+ 1 values of z(n) exactly
(assuming that the Padé equations are nonsingular). Therefore, all that can be determined from the
Padé model

1
T 14214224373
which has p = 3 poles and g = 0 zeros, are the first 4 values of x(n). These may be determined by
finding the inverse z-transform of H(z) or, alternatively, from the Padé equations,

H(z)

50 0 0 0 . b(0)
1) 20) 0 0 ! 0
z(2) z(1) z(0) 0 “(2) =| 0
2(3) 2(2) 2(1) =(0) ngg 0
l_a:(4) #(3) 2(2) (1) [ 0

20) 0 0 0 1 1
z(1) z(0) 0 0 2| |o
z(2) z(l) =z(0) 0 11710
z(3) z(2) =z(1) =z(0) 3 0

which may be solved by back substitution as follows. From the first equation, it follows that z(0) = 1.
Next, given 2(0), we see from the second equation that

z(1) +22(0) =0
or, #(1) = —2. Then, from the third equation we find
2(2) + 2z(1) +z(0) =0
or z(2) = 3. Finally, from the last equation we have
2(3) + 22(2) + z(1) + 3z(0) = 0

or

Therefore,
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4.3 Suppose that a signal z(n) is known to be of the form

L
z(n) = cr(Me) u(n)
k=1

where the \g’s are distinct complex numbers.
(a) Show that the Padé approximation method can be used to determine the parameters ¢y,
and A\ for £k =1,2,..., L. Is the answer unique?

(b) The first eight values of a signal z(n), which is known to be of the form given above
with L = 3, are
x = [32, 16, 8, 12, 18, 33, 64.5, 128.25}T

Determine ¢ and A for £ =1,2, 3.

Solution
(a) With
L
z(n) = > cx(Ak)"u(n)
k=1
the z-transform is
Xu>-§f G _ MO +bM)zt -+ H(E - Dm0 B(z)
B ol SV B T+a(l)z7t +---+a(L)z"L T A2)

which is a rational function of z of order (L —1) in the numerator and order L in the denominator.
Therefore, the Padé approximation may be used to find the polynomials A(z) and B(z) provided
p > L and ¢ > (L —1). The coefficients Aj; are the roots of the polynomial A(z) and the
coefficients ¢ may be found with a partial fraction expansion of X (z).

(b) The Padé equations for the denominator coefficients are

z(q) z(g-1) - z(g—p+1) a(1) x(q+1)
z(g+1) z(q) < z(g—-p+2) a(2) _ z(q +2)
sg+p-1) xlg+p-2) - (g a(p) | 2g+p) |

If L = 3, then we set p = 3 and ¢ = 2. With

x = (32, 16, 8, 12, 18, 33, 64.5, 128.25]"

8 16 327 [ a(1) 12
12 8 16 || a®@ | =-| 18
kIR

the Padé equations become
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The solution for a = [1, a(1), a(2), a(3)]7 is

1 1
el | | ~15
A=l a) | T | -075
a(3) 0.375

For the numerator coefficients, the Padé equations are

20) 0 0 .. 0 |
z(1)  =z(0) S 0 a(l)
z(2) z(1) z(0) 0 a(2)
2(q) wla-1) 2(9-2) - a(a-p) | | o)
Thus,

b(0) 32 0 0 0 a(ll)

b(1) | = [16 32 0 o} o :[

b(2) s 16 5 0 || o

Thus, the model is
32— 32271 — 40272
H(z) =

T 1-152"1-0.752"240.37523

Problem Solutions
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4.4 A consumer electronics device includes a DSP chip that contains a linear shift-invariant
digital filter that is implemented in ROM. In order to perform some reverse engineering on
the product, it is necessary to determine the system [unction of the filter. Therefore, the unit
sample response is measured and it is determined that the first eight values are as listed in
the following table.

I Unit sample response I

n | 01 2 3 45 6 7
An) | -1 2 3 2 1 2 0 1

Having no knowlege of the order of the filter, it is assumed that H(z) contains two poles and
two zeros.

(
0
(b) Based on the solution found in (a) and the given values for h(n), is it possible to deter-

mine whether or not the hypothesis about the order of the system is correct? Explain.

Solution

(a) The Padé approximation may be used to find the system function of the filter. With p = g = 2
the Padé equations are

-1 0 0 b(0)
2 -1 0 1 b(1)
3 2 1| a) | =] 802
2 3 2] al 0
| 1 2 3 0|

Using the last two equations we have
sl ][

Solving for a(1) and a(2) we find
e l=sl S 20

Next, solving for b(0), b(1), and b(2) using the first three equations we have

HIRERIEIRF
b1) | =] 2 -1 0] -4/5 | = 14/5
b(2) 3 2 -1 1/5 6/5

Therefore, the system function is

H(z) = —14+ 8yt 4 E2
To1- faml+ 422
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(b) We may check to sce if the inverse z-transform of H(z) matches all of the given values of h(n).
Alternatively, if the system function is correct, then e(n) should be equal to zero for n > 5,

e(n)=ua(n)«h(ny=0 ; n>5

Since
e(8) = h(5) + a(1)h(4) + a(2)h(3) =8/5 # 0

then the hypothesis about the model order is not correct. There must be more poles and/or
ZEros.
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4.5 The Padé approximation models a signal as the response of a filter to a unit sample input,
5(n). Suppose, however, that we would like to model a signal z(n) as the step response of a
filter as shown in the following figure

)
2

u(n) B(2)

In the following, assume that H(z) is a second-order filter having a system function of the
form . )

b(1)z~ -
H(z) = b(0) + b( )f + b(2),i

1+a(l)z7t 4 a(2)22

(a) Using the Padé approximation method with a unit step input, derive the set of equations
that must be solved so that

Z(n) =z(n) for n=0,1,...,4
(b) If the first eight values of the signal, z(n), are
x=[1,0, 2 -1, 2 0,1, 2"

find b(0), b(1), b(2), a(1), and a(2).

Solution

(a) What we would like to find are polynomials A(z) and B(z) so that

or

1—271
Multiplying both sides of the equation by 1 — 27!, we have
(1-2"YA(2)X(2) = B(z)

Expressing this equation in the time domain by combining (1 — z7!) with X(z) leads to the
following set of linear equations that may be easily solved for the filter coefficients a(k) and b(k),
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where the sequence 2/(n) is defined as follows
Z'(n) = z(n) — z(n — 1)

with @(n) = 0 for n < 0. Alternatively, combining the term (1 — z7!) with A(z) leads to the
following set of equations

20) 0 0 o0 , b(0)
z(1) z(0) O 0 " b(1)
22 o) 20) o || 450 =] 0w
2(3) 2(2) o) =(0) | | 482 0
) 2(3) 2(2) (1) | L¥O) 0

where the coeflicients a’(k) are defined by
a'(k) = a(k) — a(k — 1)

with a(0) = 1 and a(k) = 0 for ¥ < 0 and k > 2. Yet another possibility is to express the
following equation in the time domain

AD)X(2) = == B(:)

Since the term on the right is the convolution of a step with the coefficients b(k) we have

2(0) 0 0 b(0)
z(1) z(0) 0 b(0) + b(1)

2(2) (1) 2(0) | | a@) | = | b(0)+b(1) +b(2)
2(3) 2(2) z(1) | | a2 b(0) + b(1) + b(2)
z(4) z(3) z(2) B(0) + b(1) + b(2)

Any one of these sets of equations may be used to solve for the coefficients a(k) and b(k).

Using the first approach derived in part (a), we first form the sequence z’(n),
X =[1, -1, 2, -3, 3, =2, 1, 1]”

The Padé equations are then

1 0 o0 b(0)

-1 1 0 1 b(1)
2 -1 1 a(l) | = | b2)

-3 2 -1 || a( 0
3 -3 2 0

From the last two equations we have
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Finally, solving for b(0), b(1), and b(2) we have

{ b(0) } { 1 0 0} [ 1
bl) | = -1 1 0 a(1)
b(2) 2 -1 1 a(2)

1+ 2zt 42272

Therefore, the model is

H(z)

T 143214322
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4.6 With a real-valued signal z(n) known only for n = 0,1,..., N, the backwards covariance
method finds the coeflicients of an all-pole model that minimize the backward prediction error

where

e, (n) = z(n - p)+zap z(n+k—p)

(a) Show that the coefficients ap(k) that minimize &, satisfy a set of normal equations of
the form

R.a, = —r;

where
_ T
a:D = [ap(l)’ ap(z)a A 7a’p(p)]
and find explicit expressions for the entries in R, and r.

(b) Is the solution to the backwards covariance method the same as the solution to the
covariance method? Why or why not?

(c) Consider a new error that is the sum of the forward and backward prediction errors
N
£ =Y {leg (n)]* + [e; (M)}

n=p

where e, (n) is the error defined above and e} (n) is the forward prediction error used in
the covariance method,

S (n) =az(n

nMw

Derive the normal equations for the coefficients that minimize this error. (This approach
is known as the Modified Covariance Method.)

(d) Consider the signal
z(n)y=p0" ; n=0,1,...,N

With p = 1 find the first-order all-pole model that minimizes Ef and determine the
minimum value of 5;3 . For what values of g is the model stable? What happens to the
model and the modeling error as N — oo?

Solution
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(a) With & = ij:p[e; (n)]?, setting the partial derivative of &, with respect to ap(l) equal to zero
we have
D&,

aap(z Z 2p

Dividing by two, and substltumng for e, (n) yields

w2Ze z(n+1—-p)=0

N » N
Zz(n—p)a:(n—{—l——p)-{—z%(k) Zx(n+k~p)ac(n+l—~p) =0
n=p k=1 n=p

If we define
N N-p
ro(k, D) =Y a(n+k—pan+l-p) = a(ln+k)z(n+1)
n=p n=0

then the normal equations become
P
D ap(k)ra(k,l) = —r,(0,1) 5 I1=1,2,...,p
k=1

(b) No, the backwards covariance method does not give the same solution as the covariance method
since the definitions for r,(k,!) are different in the two methods. Specifically, for the covariance

method
N

re(k,l) = Z z(n—Dz(n—k)

n=p
(¢) As before, we differentiate é’f with respect to a,(l), and set the result equal to zero,
o
o) = Z 2[ef (n)x(n—1) + e, (n)z(n+1-p)] =0

n=n

Dividing by two, and substituting for e, (n) and e (n) we have

N

0 = ) [(mz(n—1)+z(n—pan+!-p)

n=p

-i—Zap k)Z[ (n—kz(n-1)+z(n+k—p= (n—l—lAp)]

n=p

Defining
N

rp(k, 1) = Zz(n —Dz(n - k)

n=p
we have
r(1,0) +ra(p —1 p)+Zap B [rk) + 1l - Lp— k)] =0
k=1
Therefore, the normal equations are

Zap rllk )+ ra(p ——l,p——k)]:-[rz(l,0)+rz(p—l,p)] o l=1,...,p
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(d) With p=1 we have

r2(1,0) +7,(0,1) 2r,(1,0)

a(1) = (L) 720,00 T (1,1) +74(0,0)

Since z(n) = g™ for n =0,1,..., N, then

r(0,0) = zx zlﬁﬁﬂj’
7‘1(1,1) = sz(n 1 _6ﬁ;v
1 — 32N
r.(1,0) = g z(n)z(n—1) = 51___[%5—
Therefore, ,
2
(1,(1) = — T ﬂg

Note that for any value of 3,
A+0)2=1+5+28>0

Thus,
1+5% > -2p

and the model is stable for all values of 5.
For the modeling error, we have

&7 =72(0,0) +r2(p,p) + > ap(k) [ro(0,k) + 7 (p,p — k)]

k=1
Therefore,
P = 12(0,0) + o (1,1) + a(1)[r,(0,1) + 7,(1,0)]
_ 1— ﬁZN 4,62 1— /6
- 1_[82 [/32+ ml_m] 1+ﬁ2(1°—/5’2N)

and the modelling error does not go to zero as N — oc.
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4.7 Suppose that we would like to derive a rational model for an unknown system S using the
approach shown in the following figure

z(n) y(n) e(n)
% S » A(z) - +<D, -

A\
S+
—~
N
~—
A 4

For a given input z(n) the output of the system, y(n), is observed. The coefficients of the
two FIR filters A(z) and B(z) that minimize the sum of the squares of the error signal e(n)
are then to be determined. Assume that the sum is for all n > 0 as in Eq. (4.73).

(a) Derive the normal equations that define the optimal solution for the coefficients of A(z)
and B{(z).

(b) The philosophy of this method is that if the error is small then B(z)/A(z) is a reasonable
model for S. Suppose that S is a linear shift-invariant system with a rational system
function. Show that this method will identify the parameters of S exactly assuming that
the orders of the filters A(z) and B(z) are chosen appropriately.

Solution

(a) Note that E(z) = Y (2)A(z) — X(2)B(z), so

q

e(n) = a(k)y(n— k) = >_ b(k)a(n ~ k)
k=0

k=0
With -
&= Z e2(n)
n=0

the Normal Equations are found by setting the derivatives of £ with respect to a(k) and b(k)
equal to zero,

43 oE
da®) " a0
Thus,
ai—é; = Z 2e(n)y(n — k) =2 Z {Za([)y(n -1)- Zb(z)x(n _ l)} y(n— k) =0
' n=0 n=0 \i=0 P
and

5;% == 2e(ma(n—k)=-2 {Z a(y(n —1) = > b(l)z(n - z)} z(n— k) =
n=0 n

=0 \ [=0 =0
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(b)

Problem Solutions
Dividing by two, and rearranging the sums, we have

a(l {Zyn—l n—k } Zb {Z

n—l)y(n—k)}:o o k=1,...,p

=0 n=0
and
P oG [ee]
Za(l}{Zy(n~l)x(n—k}} Z {Z n-l:c(n—k)} i k=0,...,q
= n=0 =0 =0
If we define
o0
ra(b) = 3 aln - Dy(n k)
n=0
[o9)
ry(k) = Y yln—y(n—k)
n=0
ro{k,l) = Z z(n—Dz(n —k)
n=0
then these equations become
P q
D oalry(k, D) = > brey(k,) = 0 3 k=1,2,...,p
1=0 1=0
P
= al)rya(k,1) +Zb yra(k,l) = 0 ; k=0,1,....q
1=0 1=0
Assuming that the coefficients have been normalized so that a(0) = 1, we have
P q
D oalry (k) = > by (k1) = —ry(k,0) 5 k=1,2,...,p
=1 1=0
P q
= arya(k, 1) + > bW)ra(k,) = 74a(k,0) 5 k=0,1,...,q
=1 1=0
Writing these in matrix form we obtain
w wl )l
_'Ry:v x b rmy
wherea® = [a(1),a(2),...,a(p)], b* = [6(0),b(1),...,b(@)], x] = [rz(1,0),72(2,0),....72(p,0)],
and rzy = [ray(1,0),744(2,0), ..., 74y (a, 0)]. Also, R, is a p x p matrix with entries r,(k, 1), R,

is a (¢ + 1) x (¢ 4 1) matrix with entries r4(k,!), and Ry, is a p x (g + 1) matrix with entries
72 (k, 1),

Suppose S(z) = C(z)/D(z). Then

E(z) = B(z)X(2) — gEZ;A(z)X(Z)
and the error can be made equal to zero if
_ 0 B(z) _ C(»)
PO=D04 " 15 T D)
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4.8 Consider a signal, z(n), which is the unit sample response of a causal all-pole filter with

system function
1

H faned
&)= T 0 F0.752 0)(1+ 221
We observe z(n) over the interval 0 < n < N where N >> 1.

(a) Using the covariance method, we determine a third-order all-pole model for x(n). What,
if anything, can you say about the location of the poles in the model? Do the pole
locations depend on N? If so, where do the poles go in the limit as N — co?

(b) Repeat part (a) for the case in which you use the autocorrelation method.

Solution
Note that the sequence that we are trying to model is the unit sample response of a causal filter that
has poles at z = —0.5, —0.75, —2.

(a) Since z(n) is the unit sample response of an all-pole filter, the covariance method will produce
an exact model for the signal, independent of the value of N (assuming that N > 6).

(b) For the autocorrelation method, the roots will always lie inside the unit circle and will vary with
N. However, as N gets large, the roots will move towards the minimum phase solution, with
poles at z = —0.5, -0.75, —0.5.
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4.9 Equation (4.129) may be used to reduce the amount of computation required to set-up the
covariance normal equations.

(a) Show that the elements along the main diagonal may be computed recursively beginning
with 7,(1,1).

(b) Show how the elements along the lower diagonals may be computed recursively beginning
with 7,(k,1). How may the terms along the upper diagonals be obtained?

(¢) Determine how many multiplies and adds are necessary to set-up the covariance normal
equations (do not forget the evaluation of the vector on the right-hand side).

Solution
Using the relationship between r,(k + 1,1+ 1) and r,(k, 1),
re(k+1,041) =ro(k,1) = a(N = )a"(N — k) +a(p— 1= Dz*(p - 1 - k)

we may evaluate the terms in the covariance normal equations recursively.

(a) Beginning with r,(1, 1), the elements along the main diagonal of the covariance normal equations
may be found recursively as follows

ro(k+ 1k +1) = 7ok, k) = [2(N = B)P + |o(p — 1 - k)2

This requires two multiplications and two additions for each term.
(b) Beginning with r,(k, 1), the elements along the lower diagonals may be computed recursively as

follows

ro(k+1,2) = ro(k,1) — 2(N = 1)z* (N — k) + z(p — 2)z™*(p ~ k)
and
re(k+2,3) =ry(k+1,2) —a(N -~ 2)a* (N -k -1 +a(p-3)z*(p-k—-1)
or, in general,
relk+l+11+2)=ry(k+L,1+1) —z(N -1 -Dz*(N—-k-D)+az(p-1-2z*p-k—-1-1)

As with the terms along the main diagonal, each term on the lower diagonals requires two mul-
tiplications and two additions. Note that the upper diagonals may be found using the conjugate
symmetry of the covariance normal equations.

(¢) The covariance normal equations require finding the elements of a p x p Hermitian matrix. As
shown in parts (a) and (b), given the first column of the matrix, the remaining entries may
be computed recursively. Given the elements in the first column, 7,(k,1), each of the (p — k)
terms along the diagonals, i.e, ry(k+1,1) for {=1,...,p — k — 1, require 2 multiplications and
2 additions. This requires

p—1
2p—k)=2p(p-1)—plp—1) =p(p—1)
k=1

multiplications, and the same number of additions. In addition, it is necessary to evaluate the p
terms in the first column,

N
ro(k, 1) = a(n-Na"(n—k) ; k=1,2,...p
n=p

This requires p(N — p+ 1) multiplications and p(N — p) additions. Therefore, the total number
of multiplications is .
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# mults. =p(N —p+1)+p(p—-1)= Np
and the total number of additions is

# adds. =p(N -p)+plp—-1)=Np—p

79
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4.10 We want to model a signal z(n) using an all-pole model of the form

H(z) = b(0)
142N [Z ap(k)z_k}
k=1
For example, with p = 2 the model is
b(0)

H(z) = 14 a(l)z=N-14q(2)z~N-2

Derive the normal equations that define the coefficients ap(k) that minimize the Prony error

&= le(n)
n=0

where
P
e(n) = z(n) + Zap(l)x(n ~1-N)
=1
and derive an expression for the minimum error.

Solution
The equations for the coefficients a,(k), k = 1,...p, that minimize the error &, are found by setting
the derivatives of &, with respect to a,(k) equal to zero. Thus, assuming that z(n) is real, we have

dE, =
Py (F) = Z2e(n)x(n —k—-N)=0

n=0

Dividing by two, and substituting for e(n), we have

S lam) + > ap(Da(n —1 - N)} z(n—k-N)=0
n=0 I=1

or
Zap(l) {Zx(n—- l-= Nyz(n -k~ N)} =- Zx(n)x(n —k—N)
I=1 n=0 n=0

If we define

x>

ro(k,1) =Y a(n—)z(n— k)

n=0
then it is easily shown that r,(k,!) depends only on the difference, k — I, and we may write

ry(k) = z(n)z(n — k)

n=0

Thus, the normal equations become

i apy(Drg(k —1) = —ry(k+ N)
=1
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Finally, using the orthogonality condition

o0

Ze(n)m(n——k—N):O

n=0
we have, for the minimum error,

o>

{Epbmin = Z e(n) {fm(n) + Z ap(Dx(n —1 - N)} =
=1

81

oo

> eln)a(n)

n=0

n=0
Therefore,
{Elmin = D> |a)+ ) ap(D)a(n—1- N)} z(n)
n=0 =1
= 7(0)+ > ap(l)re(1+ N)

1=1
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4.11 Suppose that we would like to model a signal z(n) as shown in the following figure.

where h(n) is an all-pole filter that has a system function of the form

e UG —

b(0)

H(z) = >
1+ Z ap(k)z=%k
k=1

Modify the Prony normal equations so that one can determine the coefficients ap(k) in H(z)
from a sequence of signal values, x(n).

Solution

To minimize the Prony error

where

o0

&= Z }e(n)]z

n=0

e(n) = z(n) + Y _ ap(l)z(n — 21)
I=1

we set the derivative of £, with respect to a,(k) equal to zero,

which gives

Therefore,

where

98 e _
By k) 2 ngo e(n)z(n—2k) =0

n=0 l=1

i ap()ry(2k — 21) = —1r,(2k)
=1

ra(2k —21) = i z(n — 2D)z(n — 2k)

n=0

For example, with p = 2 the equations have the form

< =

EEJERE)

Z z(n) + Zap(l)a:(n =20l z(n—-2k)=0
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4.12 Suppose that we would like to model a signal z(n) that we believe to be quasiperiodic. Based
on our observations of z(n) we estimate the autocorrelations through lag & = 10 to be

ro(k) = [1.0, 0.4, 0.4, 0.3, 0.2, 0.9, 0.4, 0.4, 0.2, 0.1, 0.7)7

(a) In formulating an all-pole model to take into account the suspected periodicity let us
consider a two-coefficient model of the form

b(0)
H =
() 1+a(5)z7% + a(10)z~10
Find the values for the coeflicients a(5) and @(10) that minimize the all-pole modeling
error.

(b) Compare the error obtained with the model found in (a) to the error that is obtained
with a model of the form

b(0)

H(z) = 1+a(l)z7l +a(2)z2

(c) Now consider an all-pole model of the form

_ b(0)
(z) = 1+a(N)z=N

where both a(N) and N are considered to be model parameters. Find the value for a(N)
and N that minimize the all-pole modeling error and evaluate the modeling error.

Solution

(a) With an all-pole model of the form

_ b(0)
T 1+a(5)z=? + a(10)2~10

H(z)

we begin by defining the error that we want to minimize. Let

with
e(n) = z(n) + a(5)z(n — k) + a(10)z(n — 10)

To find the coefficients a(5) and a(10) that minimize &, we set the partial derivatives of £ with
respect to a(5) and a(10) equal to zero,

53% =2 Z e(n)z(n —5) =2 Z[:c(n) +a(5)z(n - 5) + a(10)z(n — 10)]z(n - 5) =0
n=0 n=0
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and
8a8(c1€0) =2 Z e(n)z(n—10) =2 z [z(n) + a(5)z(n — 5) 4+ a(10)z(n — 10)|z(n — 10) = 0
n=0 n=0
Dividing by two and rearranging we have
a(5) Z z%(n ~ 5) + a(10) Z z(n —10)z(n - 5) = — Z z(n)z(n — 5)
n=0 =0 n=0
and - - -
a(b) Z z(n — 5)a(n — 10) + a(10) Z z?(n - 10) = — Z z(n)z(n — 10)
n=0 n=0 n=0

These equations may be written as

r2(0)  74(5) a(5) _ 75 (5)
[ r2(5)  72(0) } { a(10) } - { r2(10) J

where
o

ro(k) = > a(n)z(n - k)

n=0

Using the given autocorrelations, thse become

Lo v [eim == 7]

Solving for a(5) and a(10) we find

Finally, for the modeling error, we have
E =1,(0) + a(d)rz(5) + a(10)r,(10) = 0.1263

With a model of the form
b(0)
1+ a{l)z=1 +a(2)z2

0 e -1 ]

and the filter coefficients are solutions to the equations
1 04][a()]_ [o04
04 1 a(2) | 0.4
a(ly | 1 2/7
a(2) | 7| 2/7
Finally, the modeling error is

E=7r,(0) +a(l)ry(1) + a(2)r.(2) = 1.2286

H(z) =

the normal equations are

Thus,



Chapter 4 85

(c) Using a model of the form
b(0)

HE) = rramyew

the value for the coefficient a(N) that minimizes the mean-square error is

and the minimum mean-square error is given by

20 —r)
{gl}mm - e (0)

Therefore, the mean-square error is the smallest when N = 5, which is the value of k for which
|72 (k)| is the largest. In other words, to minimize the error we want to find the value of N for
which z(n) and z(n + N) have the highest correlation.
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4.13 We would like to build a predictor of digital waveforms. Such a system would form an estimate
of a later sample (say no samples later) by observing p consecutive data samples. Thus we
would set

Z(n+mng) = Zap — k)

The predictor coefficients a,(k) are to be chosen to minimize

oo

& = Z [z(n+np) — Z(n + no)}2
n=0

(a) Derive the equations that define the optimum set of coefficients ap(k).

(b) If ng = 0, how is your formulation of this problem different from Prony’s method?

Solution

(a) We want to find the predictor coefficients a,(k) that minimize the linear prediction error

=3 le(m))?

where
e(n) = z(n+ng) — T(n + ng)

To find these coefficients, differentiate £, with respect to a,(k), and set the derivatives equal to
zero as follows

o0&y > 0Z(n + no)
— e — 2 ) ———————L =0
el 22 0
Since ,
n -+ ’I’Lo) = Z
k=1
then o7 )
z(n + ng
—_— —k
day(k) =(n )
and we have
(95
Fay( -2 T;) e(n)z(n—k) =0

Dividing by two, and substituting for e(n), we have

/4

Z{x(n+no Zapl)a: ——l)}:v(n—-k)'—*() i k=1,2,....p

n=0 l=1

Therefore, the normal equations are

> ap(D)ro(k, 1) = 7o (k, —n0)

I=1
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where
o0

ralk,) =3 aln — Daln — k)

n=0

(b) With ng = 0, these equations are the same as the all-pole normal equations using Prony’s method,
except that the right-hand side does not have a minus sign. Therefore, the solution differs in
sign.
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4.14 You are told that it is always possible to determine whether or not a causal all-pole filter is

stable from a finite number of values of its unit sample response. For example, if H(z) is
a pth-order all-pole filter, given h(n) for n = 0,1...., N, then the stability of H(z) may be
determined. If this is true, explain the procedure and list any conditions that must be placed
on p or N. If false, explain why it cannot be done.

Solution
It is true that the stability of a causal all-pole filter can be determined from a finite number of values
of its unit sample response. Given a pth-order all-pole filter,

b(0)
1+ z”: ap(k)z~F

k=1

H(z)=

the coefficients a(k) may be found using the Padé approximation for an all-pole model,

h(0) 0 0 ap(1) (1)
O 0) 0 w® | | b
Mp-1) h(p-2) - h0) | | app) h(p)

Thus, given h(n) for n = 0,1,...,p, the coefficients may be found, and the roots of the polymomial

A(z) =1+ i a(k)z™k

k=1

checked to see if they lie inside the unit circle.
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4.15 Let H(z) be a first-order model for a real-valued signal z(n) = §(n) + d(n — 1),

b(0
HE) = o
and let -
Ers = Y _[x(n) — h(n))?
n=0

be the error that is to be minimized. By setting the derivatives of £rg with respect to b(0)
and a(1) equal to zero, try to find an analytic solution for the values of b(0) and a(1) that
minimize rs. (This problem illustrates how difficult the direct method of signal modeling
may be, even for a first-order model.)

Solution
We are given a signal 2(n) = §(n) + 6(n — 1) that we would like to model as the unit sample response
of the all-pole filter

b(0)
H(z) = —— b
() 1—-a(l)z"t
The goal is to minimize the error
oo
Ers = Z [h(n) — z(n))?
n=0

Thus, the model for z(n) will be
&(n) = b(0)[a(1)]"u(n)

To find the values for a(1) and b(0) that minimize €15, we begin by setting the derivative of £1¢ with
respect to a(l) and b(0) equal to zero. Thus, we have

25&3) ==Y 2[a(n) - #(n)] nb(0)a" (1) =0

n=0

Dividing by two, and substituting for z(n) and £(n) we have

D [z(n) = #(m)] nb(0)a" (1) = bO)(1 - a(1)b(0)) ~ S (b(0)a™(1) nb(0)a"" (1)
= b(0)(1 ~a(L)p(0)) - b(0)*a™}(1) I na®" (1)

n=2

= b(0)(1 — a(1)b(0)) - b(0)*a™" (1) Y na®"(1) + b(0)?a(1)

n=0

= b(0) = b(0)%a7}(1) Y na®(1)]
n=0
a(1)b(0)2

- a2z "

= b(O) —

Simplifying we have
a(1)b(0) = [1 - a*(1)]? (P4.15-1)
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Differentiating €1 with respect to 5(0) we have

dELb . & n N
350 Zz (1) =0

Again, dividing by two, and substituting for z(n) and Z(n) we have

[e.¢]

> la(n) — &(n)a"(1)

n=0

Il

[1-5(0) +a(1)(1 — a(1)b(0)] Z b(0)a*"(1)

It

[1=5(0) + a(1)(1 = a(1)b(0)] — b(0)a*(1) > a®"(1)
n=0

b(0)a*(1) j
1-a2(l) 0

I

[1 - B(0)) + a(1)(1 - a(b(0)] -
which may be simplified to
b(0) = 1+a(1) - a*(1) - a*(1)
Multiplying both sides of this equation by a(1), and using Eq. (P4.15-1), we have
[1-a?(1)]* = a(1)[1+a(l) - (1) — 3(1)]

> 2a*(1) +a®(1) — 3a*(1) —a(1) +1 =0

which may be factored as follows
(a(1) + 1)%(a(1) - 1)(a(1) = 0.5) = 0
Of these roots, clearly we want a(1) = 0.5. The value for b(0) is, therefore,
b(0) =1+a(l) —a?(1) —a®(1) =2
Thus, our model for z(n) becomes
&(n) = 5(0.5)"u(n)
with a squared error of

Es=(1-27%+ (1——)2+Zo5)2"=

=2
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4.16 We have a signal z(n) for which we would like to obtain an all-pole model of the form

b(0)
14+a(l)z7t +a(2)z2

H(z) =

Using the autocorrelation method, find explicit formulas for b(0), a(1), and a(2) in terms of
rz(0), 7,(1), and 7,(2).

Solution
The autocorrelation normal equations are

o [ ][

Solving for the coefficients we have

a(1) 1 r2(0)  —ra(1) || ru(1)
o | I

= —re(1) re(0) || re(2) } T TR2(0) - 2(1)

- 1 { 72 (0)72 ( re(D)re(2)
r2(0) —r2(1)

1) —
“""%(1) +75(0)r2(2)

b2(0) = r,(0) + a(1)r. (1) + a(2)72(2)
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4.17 If one is modeling a signal z(n) whose transform, X (z), contains zeros, then an all-pole model

Solution

may be used to effectively model a zero with an infinite number of poles. In this problem, we
look at how a zero is modeled with the autocorrelation method. Let z(n) = §(n) — ad(n — 1)
where |a] < 1 and « is real.

(a) Determine the pth-order all-pole model A,(z) for z(n) where p is an arbitrary positive

integer, and find the value for the squared error &,.

(b) For the all-pole model determined in part (a), what is the limit of 4,(z) as p — co?

What does &, converge to as p — oco? Justify your answers.

(c) Repeat parts (a) and (b) for |a| > 1.

(a) With 2(n) = 6(n) — ad(n ~ 1), note that the autocorrelation sequence is

re(k) = (1+ a?)5(k) — a[a(k 1)+ 5k + 1)}

Therefore, the autocorrelation normal equations for a pth-order all-pole model are

14+0? —a 0 e 0 1 1
-a 14+a® -a - 0 ap(1) 0
0 —a  l14+a? .- 0 ap(2) | = & 0

0 0 0 - 1+4a? ap(p) 0

or, in matrix notation,

Rya, = ¢uy
Thus, the pth-order model is

a, =R, Ly

where R, 'y is the first column of the inverse of the (p + 1) x (p -+ 1) autocorrelation matrix,
R, With A; = det R, note that a, may be written as

Apa
1 OtApAQ
2
a = gRy M = g | @ B3
AP
oP

Furthermore, since the first coefficient of a, is equal to one, then we must have

& = Dp/Ap1
Thus,
Ap_g
1 OJAPAQ
2
Ay = —— @ AP—3
P Ap~1

oP
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and, for the kth coefficient,

Ap ko1
ap(k) = o Z22ETL
olk) = o g

93

Due to the tri-diagonal Toeplitz structure of R, we may find a closed form expression for A; as

follows. First, note that for j = 0 and 7 = 1 we have

AQ = 1+Q{2
A = (1+a2)2—a2:1—0—a2+a4

We may show, by induction, that

i+l 1 26+2)

Aj:1+a2+a4+...+a2(j+1):Zazk:

1— a2
k=0 o

Specifically, assume that this relation holds for A;_q, and let us verify that it must also hold for

Aj. Note that the determinant of R; is

Aj = (1 + QQ)A]'Al + adet A]‘_l

where
- -« 0 0
0 1402 — 0
A= 0 ~a  14a? 0
0 0 0 e 1402

is the (j — 1) x (j — 1) submatrix formed by deleting the second column and the first row of R,;.

Since
det A]'_l = —aAj_g

then we have the following expression for A;,
Aj = (1 -+ CY2)AJ',1 — 062Aj_2
Therefore,

J+1

J j—1
A= (1—!—&2)2(1% — QQZazk = Za%
k=0 k=0 k=0

as was to be shown. Thus, for the coefficient a,(k) we have

Ao 1 — 2(p—k+1)
ap(k) = o pkol k¢

Ap—l 1 — a2(p+1)

(P4.17-1)

If we assume that || < 1, then as p — 0o, the term multiplying o in a,(k) goes to zero, and

oo (k) = a
Therefore, in the limit as p — oo, the all-pole model is
1 1
= =1-az !
e = az

§ al\tz—k:
k=0
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(c) Now, let us consider what happens when |a| > 1. The expression for a,(k) given in Eq. (P4.17-1)
still holds. However, as p — oo we have
1— a,2(p7k+1) a2(p—k+1)
- — T oF — 2 — ok
lim a,(k) = p&n;oa TG pler;oa pEIeEzy o

p—roo

and, in the limit as p — oo, the all-pole model is
1 1
=1-a"1z7!

)~ & ko —k
Za— 2"
k=0

For the squared error, we have
Ap
E =
P Ap—l
Thus, for |a] < 1 we have
A
oo = lim —2— =1
p—oo Ap g
and, for |a] > 1
A
€oo = lim P =q?
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4.18 Find a closed-form expression for the FIR least squares inverse of length N for each of the
following systems.

() G()= - 5 lal <1,
(b) G(z) =121,

© G =220 o<1
Solution

(a) Since

(b)

G(z) =

is an all-pole filter, the FIR least squares inverse is simply the denominator of G(z),

1
T 1—az!

Hy(z)=1—az"!

or

hy(n) =6(n) — ad(n—1)

To find the least squares inverse of

G(z)=1-2z""

we must solve the linear equations

Rghy = g(0)w

Since

2
rg(k) = { -1

and ¢g(0) = 1, then these equations become

o

2 -1 0
-1 2 -1
0 -1 2

The solution to these equations (see Example 4.4.5) is of the form

?
3

3

k=20
k| =1
k] > 1

h(0)
hn(1)
hy(2)

hN(n) = €1 + ncy

where ¢; and ¢y are constants that are determined by the boundary conditions at n = 0 and

n=N -1,

QI'LN(O)—hN(l):l ; —hN(N—2)+2hN(N-‘1)=O

Using the given form for hy(n), these boundary conditions become

2c) = (aa+e)=1 ; —[er+(N=2c]+2[c1+(N~-1)cz] =0
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Solving for ¢y and ¢y we find

p— N . j— 1
CTNFL O T TNt
Therefore, for n =0,1,..., N — 1, we have
N y N —
hin(n) n n

TN+l N+1 N¥1

and hy(n) = 0 for all other values of n.

Again, to find the least squares inverse, we must solve the linear equations
R,hy = g(0)uy
Note, however, that G(e?“) is an all-pass filter,
G(e™) =1

Therefore,
ro(k) = g(k) x g(=k) = d(k)

and the least-squares inverse is
hn(n) = é(n)

Problem Solutions

Note that the least squares inverse is the same for all systems that are related by an all-pass

filter.
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4.19 Animportant application of least squares inverse filtering is deconvolution, which is concerned
with the recovery of a signal d(n) that has been convolved with a filter g(n)

z(n) = d(n) * g(n)

The problem is to design a filter hy(n) that may be used to produce an estimate of d(n) from

5(n), i
d(n) = x(n) * hy(n)

One of the difficulties, however, is that noise in the observed signal may be amplified by the
filter. For example, if we observe

y(n) = d(n) x g(n) +v(n)

then the filtered observations become

o~ ~

y(n) * hv(n) = d(n) + v(n) * hay(n) = d(n) + u(n)

where
u(n) = v(n) * hy(n)

is the filtered noise. One way to reduce this noise is to design a least squares inverse filter
that minimizes

€= le(m)[* + AE{Ju(n)*}
n=0

where
e(n) = 6(n —no) — hn(n) * g(n)

and A > 0 is a parameter that is to be selected. Note that for large values of A, minimizing
& will force a large reduction in the filtered noise at the expense of a decrease in resolution,
i.e., larger e(n), whereas smaller values of A lead to higher resolution and larger noise.

(a) Assume that v(n) is zero-mean white noise with a variance 2. Show that
E{lu(n)’} = o} hijhy

where hy is a vector containing the coefficients of the filter hy(n).

(b) Derive the normal equations that result from minimizing the error
E=eet+ )\ o? nilny
where e = [e(0), e(1), ...]”, and show that they may be written in the form
Ry +al)hy =gi

where o > 0 is a prewhitening parameter that depends upon the values of A, and gfbo is
the vector on the right-side of Eq. (4.101).



98

Problem Solutions

Solution

(a) From Eq. (3.90) on p. 101, we have
E{lu(n)]*} = h¥R, hy

Since
R, =021

then
E{]u n)j }~cr hN

as was to be shown.

(b) The error that we want to minimize is

£ =3 le(m)|* + AB{|u(n)*}

where
e(n) = o(n—no) — hn(n) * g(n)
and
N-1
E{lu(n)]*} = o hyhy =03 > [hn ()
=0

To minimize the error, we set the derivative with respect to Ay (k) equal to zero for k =
0,1,...,N,

0 S () (- F) + A o2 hy(k) = 0
Bhy (k) — = T

Substituting for e(n) we have

N1
—Z[ n—ng) ZhN(l)g(n—l)]g*(n——k)-f-)\ o2 hy(k)=0
n=0 1=0
or,
co N-1
*(ng - +Z[Z B l)g(n——l)} “(n—k)+ X o2 hy(k) =0
n=01=0
Interchanging the order of summation yields
N~1 oo
—g* (o~ k) + > ha(l) [Z ~1)g*(n— k)] + X o2 hy(k) =0
=0 n=0
With -
rg(k=1) =Y g(n—1)g*(n - k)
n=0

it follows that
N-

,..‘

hn(l)rg(k = 1)+ X 02 hy(k) = g"(no — k)
=0
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- Written in matrix form, this becomes

where o = AoZ > 0.

(Rg + aI) hN = gzo

99
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4.20 We are given a signal, z(n), that we want to model as the unit sample response of an all-pole
filter. We have reason to believe that the signal is periodic and, consequently, the poles of
the model should lie on the unit circle. Thus, assuming a second-order model for the signal,
the system function is constrained to have the form

_ b(0)
H(z) = 14+ a(l)z=1 + 22

With |a(1)] < 2 this model produces a pair of poles on the unit circle at an angle of 8 defined
by

2cos6 = —a(l)

(a) Using the autocorrelation method, derive the normal equations that define the value of
a(1) that minimizes the error
oo
&= _e*(n)
n=0

(b) Find an expression for the minimum error, {&£p }min.

Solution

(a) The error that we want to minimize is

£ =3 )
n=0

where
e(n)z(n) + a(L)z(n - 1) + z(n — 2)

To find the value of a(1) that minimizes £,, we set the derivative of £ with respect to a(1) equal
to zero,

08 de(n)
da(l) ;26(”)55(’17 -

Since the partial of e(n) with respect to a(1) is z(n — 1), the normal equations are

oC

Z e(n)x(n—1)=0
n=0
S [:c(n) +a)a(n - 1) +z(n - 2)]x(n ~1)=0
n=0
With -
re{k) = Z:c(n):c(n — k)
n=0

these become
Therefore,

(Note that |a(1)| < 2).
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(b) To find the minimum error, we have

o <

Ebuin = 2 [2(0) + a(Datn - 1) + 20— )] e(n) = > [2(n) +2(n — 2)] ()

3 [x(n) +a(n— 2)} [m(n) +a()a(n — 1) + z(n - 2)}

n=0

2[7~x(0) +a(D)ra(1) + rm(g)}

I

1l
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4.21 Voiced speech may be modeled as the output of an all-pole filter driven by an impulse train

Png(n) = Z n — kng)

k=1

where the time between pulses, ng, is known as the pitch period. Suppose that we have a
segment of voiced speech, and that we know the pitch period, ng. We extract a subsequence,
z(n), of length N = 2ny and model this signal as shown in the following figure

Pno(n) b(0) z(n)
1+ 35y ap(k)zF

where the input, py,(n), consists of two pulses,
Pno (1) = 8(n) + 8(n — ng)
Find the normal equations that define coefficients ap(k) that minimize the error
N-1
&= €é(n)
n=0

where
e(n) = ap(n) = x(n) — b(n) * ppe (n)
and b(n) = b(0)d(n).

Solution
If we define a,(0) = 1, then the error e(n) is

e(n) = ap(n) x z(n) — b(n) = pp,(n) = Zap(l)x(n —1) - b(O){é(n) +6(n — no)]
1=0

and the mean-square error that we want to minimize is

2np—-1 2n0—1T p 2
& = Z;] 2(n Z ‘:Z a,, z(n — 1) b(O)(S(n) = 5(0)6(n — no)}

Setting the derivative with respect to a,(k) equal to zero, we have

afg( k) EO: {Z ap(D)z(n —1) = b(0)3(n) ~ b(0)3(n ~ n())} z(n—k) =
P n=0

If we define
2ng—1

ry(k,l) = Z z(n —Dzx(n - k)

n=0
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then the normal equations become (recall that a,(0) = 1)
v

2 ap(ra(k,0) = b(O)a(~k) = b(0)a(no — k) = —ro(k,0) 5 k=12..,p

=1
Assuming that z(n) = 0 for n < 0, with x = [z(ng—1),z(ng—2), ..., z(ng—p)]¥, the normal equations
may be written in matrix form as follows

R,a—-b(0)x = —r,

Finally, differentiating with respect to b(0) we have

0 »

'a‘f(%)‘ = =321 ap(tn— 1) — b(O)5(n) — b(0)3(n — o) | [(n) + 6(n - no)]
. =0 1==0

Thus,

(0) = b(0) + > ap(D)x(no — 1) — b(0) = —z(no)
l=1

or, in vector form, we have
xTa — 2b(0) = —x(0) — x(no)

Putting all of these together in matrix form yields

[ 3 } { “an(0) } = [ £(0) + 2(n) }
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4.22 You would like to design a linear predictor of a signal z(n) but, due to hardware constraints,
are limited to a two-tap predictor. However, since delays can be tolerated in the predictor,
you decide to design a predictor of the form

Z(n) = a(l)z(n — N1) + a(2)z(n — Na)

where N7 and Ny are positive integers. The goal is to find the values of a(1), a(2), N1, and
Ny that minimize the mean-square error E{e?(n)} where

e(n) = z(n) — Z(n)

Assuming that z(n) is a zero mean wide-sense stationary process, you estimate the autocorre-
lation of z(n) and find that the values of ro(k) for k = 0,1,...,7 are as given in the following
table. For k > 7, it is determined that the autocorrelation is approximately zero.

L Autocorrelation values ’

k 0 1 2 3 4 5 6 7
ro(k) | 1.0 —01 0.0 -05 -0.2 06 02 02

(a) If you were to design an optimum predictor of the form Z(n) = a(1)z(n —1), what would
be the mean-square error in your prediction of x(n)? What about for the predictor
Z(n) = a(l)z(n - 3)?

(b) Derive a general expression for the minimum mean-square error for a predictor of the
form Z(n) = a(1)z(n — Ny) with your expression given only in terms of autocorrelations
T¢(k). What value of N; minimizes the mean-square error?

(c) Find the values of a(1), a(2), Ny, and Ny in the two-coefficient linear predictor defined
above that minimize the mean-square error E{e?(n)}.

(d) Find the value for the mean-square prediction error for your predictor designed in part

(c)-

Solution

(a) With a predictor of the form #(n) = a(1)z(n — 1), the value of a(1) that minimizes the mean-
square error is

~—

a(1) = __ri(l

(0

=

and the minimum error is

r2(1) _r2(0) - 2(1)

xr

r2(0) rz(0)

Eus = 712(0) + a(D)rs(1) = r2(0) —

For the given autocorrelations, this becomes

Ems =099
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On the other hand, with a predictor of the form Z(n) = a(1)z(n — 3), the value of a(3) that
minimizes the mean-square error is

and the minimum mean-square error is

Enrs = 12(0) + a(1)ry(3) = r,(0) — :zgi _ T (02;(031 (3)

For the given autocorrelations, this becomes
Ems = 0.75
For a predictor of the form &(n) = a(1)z(n — Ni), the optimum value for a(1) is

_’I”z(Nl)
r2(0)

a(l) =

and the minimum mean-square error is
ra(N1) _ r2(0) = r2(Ny)
rz(0) r2(0)

Therefore, we want to pick the value of N; that maximizes the absolute value of r5(N1). For the
given set of autocorrelations, the value we want to select is Ny = 5.

Ems = 12(0) + a(1)rz(N1) = r(0) —

With a linear predictor of the form
Z(n) = a(l)z(n — N1) + a(2)z(n — Ny)

the normal equations that define the optimum set of predictor coefficients are found by differen-
tiating the mean-square error with respect to a{1) and a(2) and setting the result equal to zero.
Thus, with

af(él) — 2E{e(n)a(n - N1)} =0
83(52) — 2B {e(m)a(n— N3)} =0
we have
E{ [z(n) — a(D)a(n — Ny) - a(2)z(n — Ny)]z(n — Nl)} =0
B{[a(n) - a(z(n - Ny) - a(@)z(n - Np)]z(n — Na)} = 0
Therefore,
a(D)re(0) + a(2)ra(N1 = N2) = 7,(N1)
a(D)re(Na = N1) +a(2)ro(0) = 72(Np)

or, in matrix form,

vy e e 1= [ ]
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Based on the given set of autocorrelations, the values for N7 and N5 that minimize
Ems = 12(0) + a(1)ry(Ny) — a(2)ry(Na)

are
Ny =3 Ny =35

and the coefficient values are
a(l) = —05 a(2) = 0.6
(d) The minimum mean-square error is
Eus = E{e(n)z(n)} = r,(0) — a(1)ry(N1) — a(2)r.(N2)
which, for the given values of Ny, Na, a(1), and a(2), is

£=10.39
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4.23 If r5(0) = 1, r4(1) = 0.5, and r,(2) = 0.75, find the values of a(1), a(2), and b(0) in the
following AR(2) model for z(n),

z(n) +a(l)z(n - 1) + a(2)xz(n — 2) = b(0)w(n)

where w(n) is unit variance white noise.

Solution
The equations we want to solve, Rya = —r,, are as follows
ISt
11| a@) 2
Therefore,
[a(l)}:_ 1 { 11—5} 3| 4l
o | TTT=T L ][] T
and
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4.24 Use the method of spectral factorization to find a moving average model of order 2 for a

process whose autocorrelation sequence is

r, =[3, 1.5, 17

Solution -
Given r, = [3, 1.5, 1} , the power spectrum of z(n) is

Po(z) =3+ 15[z +2] + [72 + 2%

which is a fourth-order polynomial. Using the method of spectral factorization, we must factor P,(z)
in the form

Pe(z) = 02 [14b(1)z" +b(2)27 2] [1+ b(1)z + b(2)2?]
Either by trial and error, or using a polynomial factoring program or MATLAB, we find that the
factorization is

Po(z)==[l+z" + 2272 [L+ 2+ 227]

1
2
Therefore, a moving average model for z(n) is

B() = — (1427142277

V2

What should be learned from this problem is that spectral factorization is a computationally difficult
solution to the MA modeling problem.
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4.25 Suppose that the first five values in the autocorrelation sequence for the process z(n) are
r, = [3, 9/4, 9/8, 9/16, 9/32 .. |"

(a) Use the modified Yule-Walker equation method to find an ARMA(1,1) model for z(n).

(b) Are the given values in the autocorrelation sequence consistent with the model that you
found in part (a)?

Solution

(a) As we did in Example 4.7.1, we would like to find an ARMA(1,1) model for z(n) that has the
given autocorrelation values. Since the Yule-Walker equations are

r2(0)  72(1) N c1(0)
4 2] Lo -0
then the modified Yule-Walker equations for a(1) are

rz(1)a(l) = —r,(2)

which gives a;(1) = —r,(2)/r.(1) = —1/2.
For the moving average coefficients, we begin by computing c; (0) and ¢; (1) using the Yule-Walker

equations as follows
0 70 i =[50

With the given values for r,(k), using a1(1) = —1/2, we find
a0 ] |3 1 [ 15/8
a() |7 ~1/2 | 7| 3/4
[Cl(z)h- = lsé + %Z—l
Multiplying by Af(1/2*) =1 — 1z we have
[Cl(z)]+A’1k(1/z*) = (% + %z*l) (1-12) = —%z—}— % + %z“l

Therefore, the causal part of P,(z) is

(SN [Ve)

and

[P, = |[C1(2)] AT(1/z")| =8+ 327"
Using the symmetry of P,(z), we have
Ci(2)AT(1/2") = Bi(2)B{ (1/2%) = §z + § + 327
Performing a spectral factorization gives

Py(z) = B(2)B*(1/2") = 2(1+271)(1 +2)

1w

so the ARMA(1,1) model is
- \/§ 14271

i) 2 1~ %z—l
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(b) Yes. The model matches r,,(k) for k = 0,1,2, and for k > 2 note that
ro(k) = ry(k —1)

which they do.




112 Problem Solutions

SOLUTIONS TO CHAPTER 5
The Levinson Recursion

[1] Given the sequence of autocorrelation values,
rz(0) =1, ry(1) =08, 7r.(2)=05, 7r,(3)=0.1

Find the reflection coefficients, I'j, the model parameters, a;(k), and the modeling errors, ¢;,
for 7 =1,2,3.

Solution
This problem is a straightforward application of the Levinson-Durbin recursion. For the sequence of
autocorrelations

r2(0) =1, 7,(1)=08, 7,(2)=05 r,(3)=01

the reflection coefficient sequence is
L=[-08 03889, 04727)"

The model parameters a;(k), therefore, are

w= )=o)

1 0 1
ag=| -08 | +Iy| 08 | = | —1.1111

0 | ! 0.3889
and _
1 o 1
ag = —1.1111 o 03889 | _ | —0.9273
0.3889 3111111 —0.1364
0 1 0.4727

Finally, for the model errors, we have

e = 715,(0)=1

e = ¢ (1-I%) =036
e2 = ¢ (1-TI3)=0.3056
s = € (1-T%)=02373
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2] Let Ap_1(2) be a polynomial of order (p — 1) of the form
P

p—1
Api(z) =1+ Z ap-1(k)z7* (P5.2-1)

k=1
and let I'1,T'2,..., ;-1 be the reflection coefficients that are generated by the Levinson-
Durbin recursion. A pth-order polynomial is formed via the Levinson update equation as

follows
Ap(2) = Ap-1(2) + Tpz P A;_1(1/2%)

(a) If Tyl < 1forj=1,...,p—1andif I, = 1, what can be said about the location of
the zeros of Ap(z)?

(b) Suppose Ap(z) may be factored as

P
Ap(z) = [T - apz™h)
k=1
ie., the zeros of Ap(z) are at oy, an,...,ap. If ﬁp(z) is a polynomial with reflection
coefficients I'; where
; = T; for j=1,2,...,p—1
r, = 1r;

How are the zeros of /Kp(z) related to those of A,(z)?

(¢) If we consider Ap(z) in (P5.2-1) to be a continuous function of the reflection coefficient
I'p, using your results derived in parts (a) and (b), describe how the zeros move in the
z-plane as Iy, is varied in a continuous fashion from some number, say ¢, to its reciprocal,

1/e.

Solution

a) If ;] < 1for j =1,2,...,p— 1, then the zeros of A,_1(z) are inside the unit circle. With
J _ P
[Tp| =1, let T', = €7 We then have

Ap(2) = Apes(2) + €277 An_ (1/2)
Conjugating and replacing z with 1/2*,
An(1)2*) = Ay (1/2*) + e 2P Ap_i(2)
Multiplying both sides of this equation by e/?27P gives
2P AN (1)) = Apor(2) + 2P Ar L (1/27)
which is equal to A,(z). Thus, with

Ap(z) = ejoz'pA;(l/z*)
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(b)

Problem Solutions

it follows that if A,(z) has a zero at z = zg, then A,(z) must also have a zero at z = 1/z5. Now,
recall that if |T'j| < 1for j =1,2,...,p then the zeros of A,(z) must lie inside the unit circle, no
matter how close |I'y| may be to one. Since the zeros of A,(z) move continuously as I', is varied,
the zeros of A,(z), which lie in reciprocal pairs when '), = 1, must all be on the unit circle.

By definition, we have
Aplz) = Ap-1(2)+ sz_pA;_l(l/z*)
Ap(2) Ap-1(2) + (1/T5) 2P A 1 (1/27)

Multiplying both sides of the expression for Zp(z) by ' yields

D3 Ap(2) = ThAp_1(2) + 2 PAL_(1/2)
Conjugating and replacing z with 1/2z* this becomes

T A5(1/27) = Ty 4 (1/2) + 2P Apa ()
Multiplying both sides by 277 gives

2T, AN(1/2") = 27 PTp A%y (1/27) + Ap-i(2)
and we see that the right-hand side is equal to A,(z). Therefore,
Ap(2) = Tpz PA%(1/2")

and it follows that Z;(l /2*) is equal to zero when Ap(2) is equal to zero. In other words, the
zeros of Ap(z) are reflected about the unit circle, so that a zero at z = 2 in A,(2) becomes a
zero at z = 1/z in gp(z).

As T'p increases from I', = € to T, = 1, the zeros of Ap(z) move towards the unit circle. When
I’y = 1 all of the zeros lie on the unit circle. As I', increases beyond 1, the zeros move outside
the unit circle and approach their mirror image:location as I', — 1/ec.
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[3] Let ay(k) be the set of filter coefficients corresponding to the reflection coefficients I'y, for
k=1,2,...,p.

(a) Prove that if the reflection coefficients are modulated by (—1)*
T = (—1)FT%
then the new set of filter coefficients a,(k) are
ap(k) = (—1)*ap(k)
(b) Can you generalize the result in part (a) to the case in which
r = akfk
where o is a complex number with |a| = 1?7 What about if |a] < 17

Solution

(a) We want to show that, if T, = (—1)*T, then
Gp(k) = (=1 ay (k)

or, if we let A\p(z) and Ap(z) be the z-transforms of @,(k) and a,(k), respectively, we want to
show that
Ap(z) = Ap(-2)

We begin by noting that, for p = 1, we have
Al(Z) =1+ Flz_-l

and
Al(z) =1- Flz'l = Al(—Z)

Therefore, let us assume that A\p_l(z) = Ap_1(—2), and show that Ep(z) = Ap(—z). From the
Levinson order update equation we have

Ap(z) = Ap-a(2) +Tpz P AL _y(1/27)
and

Ap(z) = Apa(2)+ Tz A5, (1/27)
Ap1(2) + (- 1)PL2PAY_ (1/2%)

i

Thus, ~
Ap(z) = Ap_1(—2) + Dp(=2) P A;_1(=1/27) = Ap(~2)

and we have the desired result.
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(b) If Ty = o*T with |a| = 1, then we may write
Ty = /%1,
for some real number 8. As in part (a), for p = 1 we have
Ay(z) =1+Ty27!

and R _ _
A(2) = 1+6T127! = Ay (e77%2)

Therefore, let us assume that A\p_l (2) = Ap_1(e77%2). From the Levinson order update equation

we have
A(2) = Ay (2) + Ty P A3, (1/27)
and
Ap(z) = Apea(2) +Tpz P A5 (1/27)
= A\pﬁl(z) + e”al‘pz“p/qz*l(l/z*)
Thus,

Ap(z) = Ap_1(e7%2) + ejperpz_pA;,l(e’jg/z*) = A,(e77%2)

and we have the desired result, N ‘
Ap(z) = Ap(eﬁjgz)

If |a| < 1, then the coefficients change in no predictable manner. Consider, for example, the case
of a second-order model,
1
ap = Iy (1 -+ Fz)
Iy

If fk = oI, and « is real, then

1
Ay = OzFl(l -+ O(QF‘Z)
C¥2F2




Chapter 5 117

(4] For the reflection coefficient sequence
Iy=c* ; k=12 ..

with |a] < 1, prove that the zeros of the polynomials A,(k) lie on a circle of radius a for
every p > 1. Solution

We will show this by induction. For a first-order model, we have
A(z)=1+az!

which has a root at z = —a. Now, assume that T';, = o and that Ap—1(2) has all of its roots on a
circle of radius a. If we multiply the sequence a,_1(k) by a™*, then the z-transform of the sequence
is

Ap_l(z) = Ap_l(acz)

and it has all of its zeros on the unit circle. Therefore, A,_1(2) is symmetric,

Apr(z) =2 P VA, (z7Y)

or
Apr(ez) = 27® DA, (az7h)

Now, for Ap(z), we have
Ap(2) = Ap1(2) + Tpz P Apy(27h) = Ap_1(2) + a2 PA, 1 (271)
If we multiply the coefficients a,(k) by a~*, then the z-transform of this sequence becomes
Ap(2) = Ap(az) = Apoi(0z) + 0P (a2) P Ay 1 (af2) = Ap-1(a2) + 2P Ay 1(af2)

Since A_1p(z) is symmetric, then so is Ap(z), and the roots of A,(az) either lie on the unit circle or
in reciprocal pairs, i.e., if 2 = a is a root, then so is 2 = 1/a. However, since Ap(2) has all of its roots
inside the unit circle (|I'x| < 1), then the roots of Zp(z) must lie on the unit circle. Thus, it follows
that the roots of A,(z) must lie on a circle of radius a.
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[5] Without factoring any polynomials, determine whether or not a linear shift-invariant filter

with system function
1408271 -092240327°

1 -092"14+0.822-05z3

is minimum phase, i.e., all the poles and zeros are inside the unit circle.

H(z)

Solution
The reflection coefficients corresponding to the numerator coefficients, b = [1, 0.8, —0.9,0.3}

T .
1S

I = [-4.6522, —1.2527, 0.3]"

Since [I';| > 1 and |’y > 1, then the numerator polynomial is not minimum phase (there is at least one
root outside the unit circle). However, since the reflection coefficients of the denominator polynomial

are T = [~0.4545, 0.4667, ~0.5]". then the flter is stable.
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[6] Consider the signal
x(n) = 6(n) + bd(n — 1)

Suppose that we observe z(n) for n =0,1,..., N.

(a) Using the autocorrelation method, find the 2nd-order all-pole model for a:(n).

(b) Suppose we want to find a p-pole model for z(n). Let I'; denote the jth reflection
coefficient of the lattice filter implementation of the all-pole model. Find a recursion for
the reflection coefficients that expresses I'; in terms of I'j_1 and I'j_o.

Solution

(a) For the signal z(n) = 6(n) + b6(n — 1), the autocorrelation sequence is
ro(k) = (1 +b?)6(k) + bS(k — 1) + b6(k + 1)

Therefore, using the autocorrelation method, the second-order all-pole model for z(n) is found
by solving the normal equations

Thus, .
e eS8
{ 3283 } - 1+bi+b4 [ ‘b(lb’ij) J

{(b) The reflection coefficients are given by

and we have

i
Pjyr = ~==
€

where )
J
=+ 1)+ Y ai(Dra(j—i+ 1)

i=1

However, since r;(k) = 0 for k| > 1 then

v =a;(j)rz(1) =b T

Therefore,
B =1 L5 g
i v Tiag
and, since
o112
€51
then

Fj+1 — P] 1
Y ry_;1- I‘?
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Thus, a recursion for I'; is given by

2
¥

Djpg =
LT
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[7] Suppose we have a data sequence whose z-transform is of the form:

G

X(z)= —5——
1+ Z ap(k)z"k
k=1

although the value of p is unknown. The coefficients of the model are computed using Levin-
son’s recursion. How can the value of p be determined by looking at the sequence of reflection
coefficients I'; for j =1,2,...7

Solution
Since 2(n) may be modeled exactly with an all-pole model of order p, if the autocorrelation sequence
for x(n) is known exactly, then Prony’s method should yield an exact model. Looking at the reflection
coefficients, we would discover that I'; = 0 for all j > p.
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[8] Let r(k) be a complex autocorrelation sequence given by
r, =[2, 0.5(1+3), 0.55]7

Use the Levinson-Durbin recursion to solve the autocorrelation normal equations for a second-
order all-pole model.

Solution

1. First-order model:

(1) 1+ 2 1} 7
=_ =l = 1—1T =91 -1l =12
Fl Tz<0) 1 y ] I‘Z(O)[ I 1'] [1 3 1
and
1
e8]
4
2. Second-order model:
i 14+53 145 3
= N=2L L 277
71 =75(2) + a3 (1)re (1) 2 1 3 1
Fe_ A4 _ g
SN 47 7
and
1 oo L]
do= | 14d | d| _1-j || 30+5)
4 7 4 14
0 1 -
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[9] Determine whether the following statements are True or False.
(a) If r-(k) is an autocorrelation sequence with r,(k) = 0 for |k| > p, then T} = 0 for
k| > p.
(b) Given an autocorrelation sequence, r(k) for k = 0,...,p, if the (p+1) x (p+1) Toeplitz

matrix
R, = Toep{r;(0),75(1),...,7p(p)}

is positive definite, then
ry = [rz(0),...,72(p),0,0,.. .]T

will always be a valid autocorrelation sequence, i.e., extending r, (k) with zeros is a valid
autocorrelation extension.

(¢) If ro(k) is periodic, then I'; will be periodic with the same period.

Solution

(a) False: If T, = 0 for k > p, then this corresponds to an all-pole model which does not have a
finite length autocorrelation sequence.

(b) False: The condition required for 7,(p + 1) to be a valid extension is given by Eq. (5.98) and
is illustrated in Fig. 5.15. Clearly, unless the point r,(p + 1) = 0 lies within the shaded circle,
then this is not a valid extension of the partial autocorrelation sequence. For example, suppose
7¢(0) = r,(1) = 1. In this case, there is only one valid extension (r,(k) = 1 for all & > 1),
and the discrete-time Fourier transform of the sequence that is formed by extending this partial
autocorrelation sequence with zeros is not a valid power spectrum.

(c) False: If r.(k) is periodic, then z(n) is periodic (perfectly predictable) and the model will have
all of its poles on the unit circle (T, = %1 for some value of p). For example, if 7, (k) = 1 for all

k, then T = [1, 0, 0, .. ]".
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[10] In our discussions of the Levinson-Durbin recursion, we demonstrated the equivalence between
the following three sets of parameters:

o 7,(0),rz(1),...,72(p)
e a,(1),ap(2),...,ap(p),b(0)
e rl,FQ,...,FP,ﬁp

For each of the following signal transformations, determine which of these parameters change
and, if possible, describe how.

(a) The signal z:(n) is scaled by a constant C,
z'(n) = Cx(n)
(b) The signal z(n) is modulated by (—1),

2'(n) = (~1)"a(n)

Solution

(a) With 2'(n) = Cz(n) the autocorrelation sequence is scaled by C?, i.e., 1% (k) = C?r, (k). For the
all-pole model, the numerator 5(0) will change by a factor of C, but the location of the poles
will not change and, therefore, the reflection coefficients will not change. This may be shown in
a number of ways. For example, note that the solution to the normal equations

R,a= -r;

will not be affected if all of the correlations are scaled by C2.

(b) If z(n) is modulated by (—1)™, then 7, (k) is modulated by (—1)*. This results in a modulation
of the all-pole parameters by (—1)* (this may also be seen by looking at the normal equations)
and, since I'; = a;(j), then the reflection coefficients will be modulated by (—1)7. Since ¢; =
€j-1(1— I‘jz.), then ¢, will be unchanged and, therefore, b(0) will not be affected.
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[11] The autocorrelation of a signal consisting of a random phase sinusoid in noise is
r2(k) = P cos(kwp) + o2 8(k)

where wy is the frequency of the sinusoid, P is the power, and ¢2, is the variance of the noise.
Suppose that we fit an AR(2) model to the data.

(a) Find the coefficients ay = [1, az(1), a2(2)]7 of the AR(2) model as a function of wp, o2,
and P.

(b) Find the reflection coefficients, I'; and I's, corresponding to the AR(2) model.

(c) What are the limiting values of the AR(2) parameters and the reflection coefficients as

o2, — 07

Solution

(a) The coefficients of a second-order model for z(n) are found by solving the normal equations

[ e e =[]

Given that the autocorrelation sequence of a random phase sinusoid is
r2(k) = P cos(kwy) + a2 6(k)
then these equations become

P+02  Pcoswy az(1) | | Pcoswy
Pcoswy P+ 02 ~ | Pcos2uwy

Solving these equations for ag(1) and az(2) we find

Pcoswo(P + 02) — P? coswy cos 2wy }

0.2(1) } — 1
{ az(2) (P +02)% — P2 cos? wy —P?cos? wp + P cos 2wp(P + 02)

(b) For the reflection coefficients, we have

I = r¢(1)  Pcoswy
YT 0 T Prog

and
P?cos® wp — P cos 2wo(P +a2)

(P + 02)2 — PZcos? wp
a7

I'y » —coswy and I'n—1

F2 = a2(2) =

(c) If welet 02 — 0 then

and, for the reflection coefficients,
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[12] Given that r,(0) = 1 and that the first three reflection coefficients are I'y = 0.5, T’y = 0.5,
and I's = 0.25,

(a) Find the associated autocorrelation sequence r;(1),7,(2),7,(3).

(b) Find the autocorrelation sequence r5(1),75(2),7,(3) for the case in which the reflection
coefficient I's is a free variable, i.e., solve for the autocorrelation values as a function of
I's.

(¢) Repeat part (b) when both I'y and '3 are free parameters.

Solution

(a) From the given reflection coefficient sequence we first find the vectors a;, ag, and as. For a; we

have
o = 1] 1
LR N I V)
and for ag
1 0 1
ag=| ay(1) | +T2| ar(1) | = | 3/4
0 1 1/2
and for ag,
1 0 1
| ae(1) as(2) | 7/8
3= 00 | T w@) | T 11716
0 1 1/4
Using the inverse Levinson-Durbin recursion, we may find the autocorrelation sequence. First,
we have
re(l) = -7, (0) = -1/2
and
a1 =71,(0)(1 —T?) =3/4
Now, with
Y1 = -—r2€1 = _3/8
and

m =712(2) + a1 (1)ry(1)

solving for r,(2) we have
r2(2) = —a1(V)re(1) = ~-1/8

and ¢ is
e2=c(1-T%)=9/16

Finally, with
vp = —I'3e0 = —9/64

and
2 = 15(3) + as(1)r:(2) + aa(2) (1)

solving for r,(3) we have

72(3) = 72 — az(1)r2(2) — a2(2)74 (1) = 13/64



Chapter 5

Thus, the autocorrelation sequence is
r=[1, -1/2, —1/8, 13/64]7

(b) From part (a) we have
T1<3) = *—EQrg — a2(1>Tz(2) - a2(2)m(1)

Since ez = 9/16 then
Tw(3) == —%rg' — 0,2(1)7‘1;(2) — a2(2)rz(1) = —%Fg, -+ %
(¢) With I's a free parameter, the vector as becomes
1
ag = il;(l -+ FQ)
Iy
Also, e3 = €;(1 —T3) = (1 — I'}). Therefore,
Tm(3) = _%Ffi(l - Fg) - %(l + P2)7'93(2> - 1—\27'33(1>

However, note that
r2(2) = —aly — a1 (1)re (1) = =3T3 + 1

Thus, with 7, (1) = —1/2, we have

r2(3) = —303(1 —=T3) = 3(1 + To)(—3T2 + 1) + 3T

127
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[13] Using the autocorrelation method, an all-pole model of the form

_ b(0)
T l4a(l)z 4 a(2)272 4 a(3)273

has been found for a signal z(n). The constant in the numerator has been chosen so that the
autocorrelation of the signal matches the autocorrelation of the model, i.e.,

T2 (k) = T'h<k)

where 7, (k) is the autocorrelation of h(n). In addition, you know the following about the
signal and the model:

1 7.(0) =4

2. '3 =0.5

3.T1>0and I's >0

4. z(0)=1

5. €3 = 11/16, where €3 is the third-order modeling error.
6. det(R2) = 11, where Ry = Toep{r;(0),r,(1),72(2)}.

Find the values for the model parameters

a(1), a(2), a(3), and b(0)

Solution
We are given

€3 = 62(1 - Fg) = 11/16
Since I's = 1/2, we may solve for e3 as follows,

. 11/16
2T 112

=11/12
Now, with

det(Rg) = €p€1eg = 11
and ¢y = 7,(0) = 4 we may solve for ¢,

11 11

o Ty

€] =

We may now solve for the reflection coefficients. With
€ = 60(1 - F?)

we have

2 2 3 _1
Fl“l”;—l“Z“Z
and, since I'1 > 0, then
FII%
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For the second reflection coefficient, we have

€9 = 61(1 —'Fg)

Thus,
2 €2 11/12 925
Fz"l“a—l“ 3 T 36
and, since I'y > 0, then
Ty = 5

Finally, we may generate the coefficients a3(k) using the step-up recursion,

1 0 1 0 1
azzl:I‘l +F2{r1}:{1/2}+5/6 1/2 | =| 11/12

0 1 0 1 5/6

and

1 0 1

| 1112 5/6 | | 4/3
=1 5 | TU2 12 | T a1y

0 1 1/2

Therefore,
As(z) =1+ %z"l + %z‘z -+ %z"s

and

b(0) = /&5 = /11/12

129
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[14] The first seven values of the unit sample response, h(n), of a 3rd-order linear shift-invariant

filter
_ gLt b(1)z 1 +b(2)272 + b(3)z3

H(z) = 1+a(l)z7! +a(2)272 + a(3)273

are given by
h=[1, 1/4, 1/2, 1, 0, 0, 7/8)"

Determine whether or not the filter is stable. If more information is needed, state what is
required and make the necessary assumptions.

Solution
Since h(n) is the unit sample response of a linear shift-invariant filter having 3 poles and 3 zeros, given
the first 7 values of h(n) the system function may be found using the Padé approximation. For the
denominator polynomial coefficients we have

h(g) Mg-1) - hg—p+1) [ ap(1) h(g +1)
h(g+1) h(g) cohla=pE2) | a(®) | | Ma+2)
Wa+p-1) hlg+p—-2) - hq) ap(p) h(g+p)

With p = ¢ = 3 and using the given values for h(n) we have
1 172 1/4 7 [ as(1) 0
0 1 12| ] a2 |==] 0
0 0 1 a3(3) 7/8

a3(1) =0 ; as(2)=7/16 ; a3(3)=-7/8

Solving for az(k) we find

and, therefore,
_ 7 -2 -3

To test for stability, we use the Schur-Cohn stability test. With

I3 =—

BoiREE e PO R I IS i

Ty = ag(2) = 28/15 > 1

o~y

we have, for ag

Therefore,

and the filter is unstable.
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[15] The extendibility problem in power spectrum estimation concerns the issue of whether or not
a finite length sequence,

r2(1),72(2),72(3), .., 72(p)
may be extended (extrapolated) into a legitimate autocorrelation sequence in such a way
that

(e}
Po(e) = > ro(k)e ik (P5.15-1)
k=—00

is a valid power spectrum. In other words, is it possible to find values of r,(k) for |k| > p

such that P,(e’*) in (P5.15-1) is a non-negative real function of w?
(a) Develop a procedure that uses Levinson’s recursion to test the extendibility of a sequence.
(b) Use your procedure developed in (a) to determine the constraints on a and b that are

necessary and sufficient in order for the sequence
rz(0) =1, ry(1)=aqa, 7r(2)=0

to be an extendible sequence.

(c) Assuming that the sequence in (b) is extendible, find two different legitimate extensions.

Solution

(a) In order for a sequence r,(0),7,(1),...,7,(p) to be extendible, it is necessary and sufficient for the
corresponding reflection coefficient sequence to be bounded by one in magnitude. This may be
justified as follows. Suppose that r;(0),r;(1),...,rz(p) is extendible. Then the autocorelation
matrix R, must be positive definite and, as we know, this implies that [T;| < 1. Conversely,
suppose that |I';| < 1 for j =1,...,p. Then the sequence

pe_[Ti i i=Lep
! 0 5 j>p

which corresponds to an all-pole power spectrum, represents a valid extension of the reflection
coefficient sequence and a valid autocorrelation sequence extension.

(b) With r;(0) = 1, r,(1) = a, and r,(2) = b, we require that

lI’1|=a<1
and
@)+ ar(Vra (1) | |re(2) +Dire(1) | [b— a?
ITal = €1 I_ r2(0)(1 - T%) M'l”"? <!
or

20 -1<b<1

(¢) Two different extensions may be constructed by defining two different extensions of the reflection
coefficient sequence. For example, either of the following would be appropriate

I = [[,T5,0,0,0,...]"
and
T = [['1,T5,05,0,0,...]"
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[16] Which of the following autocorrelation sequences are extendible? For those that are ex-
tendible, find an extension and determine whether or not the extension is unique.

(a) r, = [1.0, 0.6, 0.6]7
(b) r, = [1.0, 0.6, —0.6]"
(c) rp =[1.0, 0.0, 1.0]7

Solution

(a) To check for extendibility, we need to find the reflection coefficients that correspond to the
autocorrelations r, = [1‘0, 0.6, 0‘6]T. With I'y = —0.6, and

r,— 2 06+(-06)(06) 024
S () E R Y7

we see that since |I'y| < 1, then this sequence is extendible. Furthermore, the extension is not

unique. One possible extension is the all-pole autocorrelation that corresponds to the reflection
coefficient sequence I's =T’y = --- = 0.

(b) For this sequence, since

1 =06+ (-06)(06) 024

- =22 y5s
P - (0.6)2 06a = 0>

F]I

this sequence is not extendible.

(¢) The sequence r, = [1.0, 0.0, 1.O]T

18 extendible, and the extension is unique and given by

r, =[1,0,1,0,1,.. ]"
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[17] Let Ry be the symmetric Toeplitz matrix formed from the autocorrelation sequence r,(0),

r2(1), 72(2), and r5;(3). If the reflection coefficients that result from applying the Levinson-
Durbin recursion to R3 are

M=% Ty=1 Ty3=1
and if r,(0) = 1, find the determinant of Rg.
Solution
The determinant is equal to the product of the errors ¢z,
p
det(Ry) = [[ &
k=0
Since
e =71,-(0)=1
and
€ = 60(1~F%):%
& = a(1-T3) =2
6 = -3}
then

detRs = (%) (3) (

cojur

~—
i

Sler
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[18] Let r4(k) = 025(k) + 1. Find the reflection coefficients Ty for all k > 0 and find the all-pole
models Ay,(k) for all p > 1.

Solution
With an autocorrelation sequence

ro(k) = o25(k) + 1

for the first reflection coefficient we have,

Note that since r,(k) = 1 for k > 1 then

1
_ 4 a;(1) J
=[G+ Dyl ] | 7 | =14 0 h)
: k=1
a;(J9)
From the Levinson-Durbin coefficient update equation we have
1 1 0
a;(1) aj-1(1) aj-1(j = 1)
: = : +1 :
a;(j — 1) aj-1(j — 1) aj-1(1)
a;(J) 0 1

Since v; is the sum of the coefficients a;(k), and ;1 is the sum of the coefficients a;_; (k), then
v =711+ T5)
With
Vi = el

it follows that
=€l = —¢;al(1+T5)

Therefore,
€5-1 1+ Fj FJ
=2 (1 4+ T =T — T — P5.18-1
Ljp1 6 J( + a) Jl_F? 1-T, (5 8 )
which is a recursion for the reflection coefficients. With I'y = —1/(1 + ¢2) it follows that
1
Ty= -
2 2402

and, in general, we have by induction,

For the model, note that
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and
1 0 1
as = I + Iy Iy = F1(1+T2)
0 1 Iy
However, from Eq. (P5.18-1) we see that, in general,
r.
Fjpr = 7 —JFj
or
Ljsr =Tyl541 =15
and
Therefore, ) )
1
az= | I'y
Iy
Our claim, then, is that
- -
1
L
aj B .
LTy
for all j. To show this, assume that this holds for a;_, i.e.,
T T
aj_; = ll,l—‘j_l,rj_.l, L ,Fj_lJ
Then
1 0 1
Pj-—l Fj*l [‘j-l(1+1‘j)
a=| 1|40 | = :
L T Fja(1+15)
0 1

and, using Eq. (P5.18-1), the result follows.
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[19] A pth-order all-pole model for a signal x(n) is parameterized by the p + 1 parameters €p and
ap(k). Since the reflection coefficients I'; for a stable model are bounded by one in magnitude,
they are automatically scaled. In speech processing, therefore, there has been an interest in
coding a speech waveform in terms of its reflection coefficient sequence. The relationship
between a reflection coefficient sequence and the spectrum, however, is not easily discernable.
Consider, for example, the following three reflection coefficient sequences

1
1. Ty = ——
PRt
1
2. T = ——no
T TR
(=1)k
3,
A |

Although the only difference between these reflection coefficient sequences is in terms of
the sign of I'y, the power spectra are quite different. For each of these sequences, find the
corresponding autocorrelation sequence, r;(k), and power spectrum, P.(e/*), in closed form.

Solution

(a) Since the reflection coefficients only determine the autocorrelation sequence to within a scale
factor, let us normalize r4(k) so that r,(0) = 1. Then

Tz<1) = vl“l = —'05

Note that since

1
Ip=—— = Ty
PR ke
then 1 Eok+2
= ep_1(1-T2) = -[ﬁ—___—]: AN ek
ek = €x—1( k) = €k-1 i R T v
Since ¢y = r,(0) = 1, solving this recursion for ¢, we have
k2
T3kt

Now, let us find 7,(2),
m2(2) =7 —a(Vre(1) = —ala+ 5 = ~(3)(3) +1 =0

We will now show by induction that r,(k) = 0 for all k > 2. Assume that 7,(2) =r,(3) =--- =
rz(k) = 0. Then

1k+2 1 11

Akt ihFe T 2khs1 0

re(k+1) =7 — ap(k)ra(1) = —c;Lhsr + 4T% =
as was to be shown. Thus, we have
re(k) = 0(k) — 0.56(k — 1) — 0.56(k + 1)

which has a power spectrum ‘
P(e’) =1~ cosw
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(b) Note that this reflection coefficient sequence corresponds to the one given in Problem 5.18 with
02 = 1. Therefore,
ro(k) = 6(k)+1
which corresponds to a power spectrum

Pp(e7%) = 1 + 276 (w)

(c) Since these reflection coefficients are obtained from those in part (a) by multiplying by (—1)*,
then the autocorrelation sequence is (—1)* times the autocorrelation sequence found in part (a),
ie.,

ro(k) = 8(k) +0.56(k — 1) + 0.56(k + 1)

which has a power spectrum .
Pp(e?%) =1+cosw
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[20] Let z(n) be a random process with autocorrelation sequence
ro(k) = (0.2)

(a) Find the reflection coefficients I'; and T's for a second-order predictor and draw the
lattice filter network.

(b) Suppose that uncorrelated white noise with a variance of 02 = 0.1 is added to z(n),

y(n) = z(n) + w(n)

How do the reflection coefficients change?

(¢) Can you make any general statements about the effect on the reflection coefficients when
white noise is added to a process?

Solution

(a) Since the autocorrelation sequence corresponds to an AR(1) process, the second-order prediction
error filter is A(z) = 1 —0.2z7!, and the reflection coefficients are I'y = —0.2 and I's = 0. The
corresponding lattice filter is shown below,

>

y{n)

Y

(b) If white noise added to z(n), then the autocorrelation sequence is
ry(k) = ry(k) + 0.16(k)
and the equations for the second-order predictor are
[ 1.01 0.2 } { a(1) } _ [ 0.2 ]
02 101 || a@) |~ | 004
The predictor, therefore, is

a=[1, a(1), a(2)]" = [1, —0.1979, —0.0004]"

Thus, the first reflection coefficient is smaller than in the no-noise case, and the second reflection
coefficient is non-zero.

(¢) Generally, the addition of white tends to moves the poles closer to the origin.
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[21] The reflection coefficients corresponding to a third-order all-pole model of a signal z(n) are
I''=025 T2=050 T3=025

and the modeling error is given by
ez = (15/16)2
(a) Find the direct form filter coefficients, az(k), for this third-order model.
(b) Find the autocorrelation values 7,(1), 7(2), and r,(3) that led to this model.

(c) If a fourth-order model were found for x(n), what value or values for r,(4) result in the
minimum model error, €47

(d) Repeat part (c) and find the value or values for r,(4) that produce the maximum error,
€4.

Solution

(a) Using the step-up recursion, we find that the transversal filter coefficients are

e8]

1 0 1
a2:[1/4J+1/2[1/4}=[3/8:l
0 1 1/2

1 0 1
| 38 12 | | 172
= | U g | = 1032
0 1 1/4

(b) Using the inverse Levinson-Durbin recursion, we have
2
3= (15) =7=(0)(1 - ) (1 - DA~ ) = r=(0)(3)*(})°
Therefore, 7,(0) = 4/3 and
1) = = O)11 = - (§) (1) = -4

2
ro(2) == Y aa(i)ra(2 — i) = ~az(L)ra(1) — az(2)ro(0) = — 12

i=1

3
r:(3) = — Zas(i)rz(?» — 1) = —a3(1)r4(2) — a3(2)r=(1) — as(3)r.(0) = %

i=1
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(c) From the Levinson-Durbin recursion we have

i
~eljer = re(f+ 1)+ Y a;(i)ra(j —i+1)

d=1

s0,
J
e(j+1) = =T = Y a;(i)re(j —i+1)
=1

With j = 3, we have for r,(4)

3

r5(4) = —esTy — Zag(i)v'w(zl —i) = —(%)2& + (3833) = —(0.8789)I'y + 0.3372

i=1

Now, recall that if |T'4| = 1 then ¢4 = 0. Therefore, the error is minimum if
re(4) = +0.8789 + 0.3372
(d) Using the results of part (c), we see that if I'y = 0 then €4 takes on the maximum value. Therefore,

we have
75(4) = 0.3372
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[22] The reflection coefficients for a two-pole model are I'; = 0.25 and I's = 0.25 and the “modeling

Solution

error” is ey = 9.

(a) If r,(3) =1 find the modeling error, e3, for a three-pole model.

(b) If the signal values, z(n), are multiplied by 1/2, i.e., y(n) = 0.5z(n),
coefficients and the modeling error for a two-pole model of y(n).

find the reflection

(a) To find the error, €3, we use
3

€3 = Tx(o) H(l - F?)

i=1

We begin by finding 7, (0) as follows
2
e =72(0)(1 ~TH)(1 - T3) =r.(0) ()" =9

Therefore,
ra(0) = ()’

We now need to find the value for the third reflection coefficient, I's = v /e2, where

72 = 12(3) + az(1)rz(2) + a2 (2)r,(1)

First, we must find 3 as follows. The first and second order models are

w=[r =L

1 0 1
ag= | 1/4 | +T9 | 1/4 | = | 5/16
0 1 1/4
Computing the autocorrelation values, we find

re(1) = =T1r,(0) = - &

r2(2) = —az(1)ry (1) — a2(2)r(0) = —%

Finally, evaluating v2 we have

Y2 = 10(3) + a2(1)r4(2) + a2(2)rp(1) =1 - 55 — 38 = —4
Therefore,
3= —7a/ea = 0791—9 = 0.021
and

€3 = ea(1 — I'2) = 8.996

19

0

9

(=
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(b) If the signal values x(n) are scaled by any number, then the all-pole model will not change.
Specifically, if y(n) = 0.5z(n) then r,(k) = 0.25r,(k). Therefore, since the normal equations are
Rja=-r,
then they are the same as the normal equations for z(n)
R,a=-r,

Thus the model coeflicients for z(n) and y(n) must be the same and, therefore, I'j = I's = 0.25
in both cases. However, since

e =r,(0) [T -T%)

=1

then the error will be reduced by 1/4, i.e.,

€ =9/4 =225
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[23] You are given the following sequence of autocorrelation values
ry =[10, -1, 0.1, —1]

(a) Use the Schur recursion to find the reflection coefficient sequence I'y, T'y, T's.
(b) What is the final generator matrix, Gz, equal to?

(¢) Find the modeling error, €3.

Solution
With the autocorrelation sequence r, = [10, -1,0.1,~1

]T, the Schur recursion proceeds as follows:

1. Step 1: Define the generator matrix Gy

[0 ) m@ @] _[0 -1 01 -1
=1 ) ) @) :x(S)}‘{lo -1 01 -1}

2. Step 2: From the shifted matrix

. 0 -1 01 -1
GO”[O 10 -1 0.1J

it follows that I'; = 0.1 and

3. Step 3: Forming the product @lél we find

= 1 01]f0 -1 01 =17 _J0o 0 0 —099
GI_GIGO“[OJ 1 Ho 10 -1 0.1}‘[0 99 -099 0

4. Step 4: From the shifted matrix

= 6 0 0 =099
0 0 99 -099

we see that ' = 0 and

10
[0 7]

5. Step 5: Forming the product 0,G1 we obtain

ngezélz{o 0 0 —0.99}

0 0 99 -099

6. Step 6: Finally, forming the shifted matrix Go,

. 000 -099
Gz’{o 00 99 }

we find that I's = 0.1 and
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Therefore, with
- 1 0170 0 0 099 000 0
G3=@3G2”[0.1 1“000 9.9 }“[000 9.801

we find, that the error is
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[24] Let r4(0),72(1),...,72(p) be a set of autocorrelation values and let R,, be the corresponding
(p+1) x (p+ 1) autocorrelation matrix. Show that
2 _ det Rydet R,

1-T
b [det R,—1)?
where I}, is the pth reflection coefficient.

Solution
Recall that

Therefore,
€
1-I2=-2
P
In addition, since
14
detR, = [ ex
k=0
then
o = detR, . _detR,_;
P T detR,; P71 detR,,
Thus,

det R, det R, _s

1-T2 = "
[det Rp__l]

p
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[25] If |T;] < 1, derive a bound for the coefficients §; in the split Levinson recursion.

Solution
The definition of d;, given in terms of the reflection coefficients in Eq. (5.149), is

0 =01 -T;)(1+Tj)
Therefore, if |I';| < 1 for each 7, then
O<1*‘Fj<2 s 0<1~Fj_1<2

and
0<5j<4
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[26] Let hn,(n) be the FIR least squares inverse filter of length N with delay ng for a sequence
g(n), Le.,

hng(n) % g(n) = 6(n — ng)

The coefficients Ay, (n) are the solution to the Toeplitz equations (see p. 174 in Chapter 4)

Ryhn, = gy, (P5.26-1)

which may be solved efficiently using the Levinson recursion. Since the value for the delay
no that produces the smallest least squares error is typically unknown, to find the optimum
value for ng these equations must be solved for each value of ng, beginning with ny = 0.
Instead of using the Levinson recursion to solve these equations repeatedly, it is possible to
take advantage of the relationship between gy, and g,,+1,

g% (no) g*(no+1)
g% (no - 1) g*(no)
*. *.
_ g7(0) _ g (1)
&ng = 0 Bno+1 = g*(O)
0 0
b 0 d b 0 -

to derive a recursion for hp,(n). In this problem we derive this recursion which is known as
the Simpson Sideways Recursion.

(a)

(b)

()

(d)
()

Solution

(a)

The solution to the normal equations Rghy,, = gy, for ng = 0 may be found using
the Levinson-Durbin recursion. Show how to generate the solution for ng = 1 from the
solution for ng = 0 in less than 4N multiplications and divisions where N is the length
of the inverse filter h,,. Note that any information generated in the Levinson-Durbin
recursion (for ng = 0) can be used to construct the new solution.

Generalize the result of part (a) to obtain a recursion that will successively construct
the solution for all ng > 0. Again your method should have less than 4N multiplications
and divisions at each step.

Write an expression for the error &,, at the ngth step of the recursion in terms of the
coefficients g(n) and the coefficients of the least squares inverse filter hy,(n).

Write a MATLAB program that implements the Simpson sideways recursion.

How can this recursion may be used to find the inverse of a Toeplitz matrix?

If we let aq (k) be the filter coefficients using a lag o then

Zn+1)=> a(k)z(n—a~k)

k=0
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and the optimum filter coefficients are found as follows. With
E%WE ((n)} = 2B{e(n)z(n - a - k)} =0
then
P
E { [I(TL‘{' 1) ~ Zaa(l):c(n e l)} z(n—oa— k)} =0
=0
or
P
> aalra(k = 1) = ro(k +a+1)
1=0
In matrix form, these cquations are
r2(0)  re(1) 72(p) aq(0) re(a+1)
r2(1) 75:(0) < re(p-1) aq (1) e+ 2)
. : : . = . (P5.26-1)
Tiv(p) Tm(p - 1) e Tz (0> aa(p) Tz(a +p+ 1)
or,
Rya, = r;()
Finally, since the mean square error is ¢, = E {e(n)z(n + 1)} then
P
€ = E{ z(n+1)— Zaa(k)x(n —a—k)| z(n+ 1)}
k=0
= 1r(0) =Y ag(k)rala+k+1)
k=0
Let £ = [£(0), f(1),..., F(®)]* be the solution to
[ 72(0)  ra(1) rz(p) ][ (0 r2(1)
Tz(l) "'x(o) ’ To:(p - 1) f(l) _ Tz(2)
L) -0 - o ] e+
ie., f = —ag. Note that this equation may be equivalently written as
72(0) rz(1) - re(p+1) [ Pp
rz(1)  72(0) o re(p) J(0) 0
re(2)  ra(l) - orme(p=1) || F() [ 2| O (P5.26-2)
| 72 (p'+ 1) r?(p) - 7‘x.(O) L f(tp) | 0
where
P

pp=72(0) + ) f)ra(l+1)

=0
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is a constant that is related to the modeling error €,. Due to the Toeplitz structure of R,41 we

may rewrite (P5.26-2) as follows

72(0) r2(1) - ra(p+1) f(p) 0]
7z(1) 7(0) r2(p) flp-1) 0
I : : : =1 : (P5.26-3)
72(p) ro(p—1) rz(1) f(0) 0
| rz(p+1) 72(p) 72(0) 1 Pp ]
Now, we begin the derivation of the recursion. Assume that we have the solution to
i 7”3;(0) T (1) Tz (p) i ap (O) i I Ta:(é)
Tmfl) T (O) . Tz(p:~ 1) aoh(l) _ Tmf ) (P5.26-4)
L) rep-1) n© La® | | e+ ]
(o = 0) and that we want to derive the solution to
[ Tm((lj) Tx((l)) Tz(p)l i al(g) 1 Taf(g) |
Tm:( ) TIF ) Tz(p:— ) 0«1:( ) _ Tx:( ) (P5.26-5)
| ra®) ralp-1) nO JLlam | ne+2) ]

(a = 1). If we augment the vector ag with a zero and multiply by the Toeplitz matrix R,41 then

75 (0) re(1) 72 (p) ro(p+1) ao(0) 7z (1)
rz(1) r=(0) o re(p—1)  ra(p) ao(1) 72(2)
: : : : : = : (P5.26-6)
r2(p)  Te(p—1) 72(0) r2(1) ao(p) T2(p+1)
r2(p+1)  7a(p) 75 (1) 7:(0) 0 &
where ,
&= ro(p+1—k)ao(k)
k=0
Combining (P5.26-3) and (P5.26-6) we have
ao(0) f(p) rz(1)
ao(1) Jlp-1) T2(2)
Rpt1 : +m : = :
ao(p) f(0) ra(p+1)
0 1 &+ 1Pp
Therefore, if we set
N =[re(p+2) = &]/pp
then
ao(0) f(p) rz(1)
ao(1) flp-1) r2(2)
Rpt1 : +m : = :
ao(p) f(0) Ta(p+1

0

)
1 ro(p+2)
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Finally, using (P5.26-2) we have
[ ao(0) f(p) 1 re(1) +c
ao(1) flp-1) f(0) 72(2)
Ry : +m : + : = : (P5.26-7)
ao(p) 1(0) flp=1) re(p+1)

0 1 f(p) re(p+2)

where ¢ is some constant. Therefore, let

w1 = —ao(0) — 1 f(p)

then the first coefficient in the sum of the three vectors above is zero and we may write

72(0) 72(1) T 72(p) re(p+1) 0 re(1) +¢
r5(1) rz(0) - re(p=1)  ru(p) a1(0) 72(2)
e -1 o om0 n) || a@-1) ra(p+1)
ro(p+1) 2(p) Tt (1) 72(0) a1(p) T2 (p +2)
where we have defined
a1(0) ao(1) flp—-1) 7(0)
Tlae-n | e | T @ |7 sy
a1(p) 0 1 f(»)

If we eliminate the first equation from (P5.26-7) and use the fact that the leading coefficient in
the vector multiplied by R,1 is zero we see that a; is the solution to (P5.26-5).
The extension of this approach to solve for a,41 given a, is straight-forward. In particular, for

1=0,1,...,p—1set
ta+1(1) = aa(i + 1)+ Yar1 [P — i = 1) + pas1F(3)
and
Gatr1(P) = Yat1 + frat1f(p)
where
Va1 = {M(}D"” o+ 2) - §a+l]//)p
Pat+1 = =aa(0) — 11 f(p)
are coefficients that need to be evaluated for each value of o and where

pp = 12(0) + Zf(l)rcc(l +1)

1=0

P
&= Zm(p—i— 1—k)ao(k)
k=0
are fixed constants that are independent of a.
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SOLUTIONS TO CHAPTER 6
Lattice Filters

6.1 Design a two-pole lattice filter that has poles at re/? and re™7% and draw a carefully labeled

flowgraph of your filter.

Solution
A second-order filter with roots at z = re™? has a system function given by

A(z) =1~ 2rcosfz" + 72272

A first-order lattice filter, on the other hand, has a system function given by 4;(z) = 1+ Tz, and
a second-order filter has a system function

1 1 0 ] [ 1 ]
ag(l) == I‘l +F2 Fl = Tl(l +T2)
GQ(Q) O 1 Tg
Therefore, Az(z) = 1+ T1(1 +T2)2z7 ! + Tyz72. It follows that we want to pick
Fg = 7“2
and

©2rcos

I =-0-
! 1472

A flowgraph for this filter is shown below

-

A
A
3
A

2rcos @
1+7r

_2rcosf
1—)—1’5
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6.2 Counsider the all-pole filter

1
1-0.2271 4042724+ 0.6273
Draw the flowgraph for a lattice filter implementation of H(z) using

H(z) =

(a) A Kelly-Lochbaum lattice filter.
(b) A normalized lattice filter.
(¢) A one-muliplier lattice filter.
For each structure, determine the number of multiplies, adds, and delays required to im-

plement the filter and compare them to a direct-form realization of H(z). Based solely on
computational considerations, which structure is the most efficient?

Solution
The first step in the implementation of this all-pole filter as a lattice filter is to compute the reflection
coefficients. Using the Levinson-Durbin recursion, we find

I = [-0.3793, 0.8125, 0.6000

JT

The structures may now be drawn as follows. For the Kelly-Lochbaum lattice filter we have

1.6 1.8125 0.6207 y(n)
x(n) b > - > b »- =
~0.6 0.8125 —0.8125 —0.3793 0.3793 ¥
2=t 0.1875 2t 1.3793 21

Note that this filter requires 10 multiplications and 5 adds per output peint, and it has 3 delays. For
the normalized lattice lattice filter we have

0.8 0.5830 0.9253 y(n)
z(n) > P O > b O 3 o
~0.6 0.8125 ~0.8125 —0.3793 0.3793 Y
27t 0.5830 271t 0.9253 P

which has the same number of multiplies, adds, and delays as the Kelly-Lochbaum filter. Finally, for
the one-multiplier lattice filter we have
l N y(n)

=(n) 0.6 l

O . ;
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Unlike the previous two filters, the one-multiplier lattice filter only requires 3 multiplications, but &
adds per output point. As with the other filters, it has 3 delays.
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6.3 Find the system function H(z) for the lattice filter given in the figure below.

A\

y(n)

Solution -
The first step is to use the step-up recursion on the reflection coefficient sequence I' = [0.2, 0.6, 40.1]
to find the all-pole models A,(z), A2(z), and As(z). Beginning with the first-order model, we have

w-[L]-[4)

1 0 1
ag = 0.2 +Ty 1 0.2 = 0.32
0 1 0.6

Next, for a; we have

Finally, for as we have

1 0 1

0.32 0.6 0.26

A=\ 06 | TF | 032 | = | 0568
0 1 —0.1

Therefore, the denominator polynomial is
A3(z) =1+0.2627" +0.568272 — 0.1273
To find the numerator B3(z), we use Eq. (6.50),

q

by(k) = eg(§)af(j — k)

j=k

Thus, we have

b3(3) = c3(3)as(0) =0.1

b3(2) = ¢3(2)a2(0) + c3(3)az(1) = 0.5260

b3(1) = e3(1)a1(0) + c3(2)az(l) + c3(3)az(2) = 0.5168

b3(0) = ¢3(0)ag(0) + e3(1)ai(l) + c3(2)az(2) + c3(3)az(2) = 0.15

Therefore, the system function is

H(z) = 0.15+0.51682z"" +0.5260z % + 0.1z
~ 1.0000 + 0.262~" + 0.5682~2 — 0.12~3
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6.4 Sketch a lattice filter structure for each of the following system functions.

(a) H(z) = ——2= %
T 1 ¥ 0721104952

1+1.3125271 +0.7522
(b) (z) = 1 3
1+ 0.8752=1 4+ 0.75z

0.75 + 0.875z"1 + 772

H =
() H(2) = 55 T T o552

Solution

(a) To implement the filter
2—2z71

H =
(2) = 07Ty 01052

using a lattice filter structure, we must first find the reflection coefficients corresponding to the
denominator polynomial. Using the step-down recursion, we have

I = [0.4698, 0.49]"

Next, we must find the coefficients ¢; (k) that will produce the numerator polynomial

B(z)=2-z"1
Using the recursion
q
cqlk) =by(k) = > cal)ay (G — k)
j=k+1
we have
Cl(l) = bl(l) =—0.1
and

61(0) = b1 (O) — cl(l)al(l) = 2.4698

(note that aq (1) = I';). Therefore, the lattice filter structure for this system is as shown in the
figure below

z(n)

—0.4698

~0.49
0.4698

-1 2.4698

y(n)

O L

A 2
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(b) To find the lattice filter structure for

H(z) = 1+1.3125271 +0.752~2
T 1+0.8752-1 +0.752-2

we first use the step-down recursion to find the reflection coefficients, which are

r=[05, 0.75]"
Next, we use the recursion
q
cq(k) = be(k) — Z Cq(]')a;((j ~ k)
j=k+1

to find the coefficients ¢s(k). This recursion requires the first and second-order all-pole models,

which are

ag

az

Il

[, a()]F =1, 0.5]"
1, a2(1), a2(2)]" = [1, 0.875, 0.75)"

Thus, for the coefficients ca(k), we have

02(2) = b2(2) =0.75
62(1) = 62(1) - 62(2)(12(1) = 0.65625
CQ(O) = b2(0) - Cz(l)al(l) - 62(2)02(2) = 0.109375
The lattice filter structure for this system is shown in the figure below
x(n)
—-0.75 —0.5
¥
0.75 0.5
=1 21
0.75 0.65625 0.100375 Y
y(n)

(c

~

A\

%

Note that the system function

~ 0.75+0.875271 4 272
T 1+0.875z71 +0.7522

H(z)

is an allpass filter. Since the denominator is the same as the system function in part (b), then

the reflection coefficients are T’ = [0.5, 0.75

below

]T, and the lattice filter is

as shown in the figure

A\

z(n}

A

-0.75 —0.5

0.75 0.5

y(n)

A
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6.5 Determine the system function of the lattice filter shown in the figure below.

z(n) 1.4 0.7 1.2
0.4Y 0.4 ~03Y 0.3 0.2 —-0.2 {
21 L1 -1
0.6 - 1.3 - 0.8 )
0.2 Y 05 Y 0.3 -0.1Y
y(n)
Solution

This is a third-order lattice filter with 3 poles and 3 zeros. Note that since the coefficients in the upper
branch are equal to one plus the coefficient in the adjacent down-going branch, and the coefficients in
the lower branch are one minus the coefficient in the adjacent down-going branch, then the all-pole
part of the lattice filter uses the Kelly-Lochbaum lattice. Thus, the reflection coefficients are

r'=[-02, -03, 04"

Using the step-up recursion, we find

and,
1 ) 1
ag=1] —02 | +Ty | -02 | = | —0.14
0 1 -0.3
and, finally,
1 0 1
—0.14 -0.3 —0.26
=1 o3 | T _o14 | =| —0356
0 1 0.4

Therefore, the denominator polynomial is
As(z) =1~0.262"" ~0.356272 4+ 0.427°
To find the numerator, Bs(z), we use Eq. (6.50),
4
by (k) = chq(j)a;%j —k)
i=

Note that this requires that we have 4;(z) for j = 1,2,3. Thus, we have

ba(3) = ca(Bas(0) = 0.2

b3(2) = ¢3(2)az(0) + c3(3)as(1) = 0.448

b3(1) = c3(1)a1(0) + c3(2)az(1) + cs(3)as(2) = 0.1588

03(0) = c3(0)ao(0) + c3(1)ar(1) + e3(2)a2(2) + c3(3)as(3) = 0.23
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Therefore, the system function is

H(z) = 0.23 4+ 0.158827! +0.448272 4+ 0.2:7°
o T 026271~ 035622 1 0.4z




Chapter 6 161
6.6 Shown in the figure below is a split lattice filter.

z(n) y(n)

(a) What is the order of the filter (number of poles and zeros)?

(b) Does this filter have minimum phase?

(¢) Find the system function H(z) = Y (2)/X(2).

(d) What is the transfer function V(z)/X (z) between z(n) and v(n)?
)

(e) How would you modify this structure to add a zero in H(z) at z = —17?

Solution

(a) This filter is a secon-order FIR filter. Therefore, it has two zeros and no poles.

(b) The filter parameters for this structure are as follows. First of all, since 2§; = 1.6, then
(51 = 08 =1- Fl

which gives
' =02

Secondly, since
G2 = (1 =T)(1+Ty) =0.72

then
Fg =04

Therefore, since [T'1]| < 1 and I'| < 1, then the poles of the filter are inside the unit circle, i.e.,
it has minimum phase.

(c) With Ty =0.2 and I'y = 0.4, we have
1 0 1
ag= 1|02 | +04] 02 | =| 028
0 1 0.4
Therefore, system function H(z) = Y(2)/X(2) is
H(z)=1+0.282"1 + 04272
(d) The sequence v(n) is equal to

v(n) = £5(n) = ¢f (n) + &5 (n — 1)
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(e) Since
y(n) = y(n — 1) + ez(n — 1) — 1.5e3(n)
if we were to add a zero to H(z), then the output would be

z(n) =y(n) —y(n — 1) =e2(n — 1) — 1.5¢3(n)

Therefore, all that we need to do is remove the feedback path at the end of the structure.
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6.7 Trueor False: Let H(z) be the system function of a linear shift-invariant filter with coefficients
ap(k) and by(k), and let I'y, and ¢, (k) be the coeflicients in the lattice filter realization of H(z).
If a,(k) and by(k) are modified as follows

ap(k) = (=D ap(k) ; by(k) = (=1)*by(k)
then the coefficients in the lattice filter are modified in the same way, i.e.,
Tr= (=1 k) = (=1)*cy(k)

Solution
This statement is true. As shown in Problem 5.3, given a,(k) and T, the reflection coefficients

corresponding to the coefficients a,(k) = (—1)%a,(k) are Iy = (~1)*I';. Now, for the coefficients
cq(k), note that they are defined recursively in terms of the coefficients b,(k) and a,(k) as follows,

q

cq(k) = by(k) — Z Cq(j)a;k(j ~ k)

J=k+1
with
cqq = be(q)
Therefore, if gq(q) = (=1)7,(q), then

(@) = be(@) = (~1)7b,(q) = (~1)%¢,(q)

Furthermore, for each k, from k =¢— 1,9~ 2,...,0 we have

q

gq(k?) = Eq(k)” Z Eq“(j)a;((j—k)

j=k-+1
= (D) = 3 (~De()(=1) el (- k)
J=k+1
= (CDFek) = D (CUP(=Dre()a) (G - k)
J=k+1
= Do) = D2 ealidal - k)]
j=k+1

(=1)%eq (k)

i




164 Problem Solutions

6.8 As shown in Fig. 6.2b, a lattice filter may be used to generate the forward and backward

prediction errors, e (n) and e, (n), respectively.

(a) What is the relationship between the magnitudes of the discrete-time Fourier transforms
of e (n) and e (n)?

(b) Isit possible to design a realizable filter (causal and stable) that will produce the response
e, (n) to the input eg(n)? If so, describe how and, if not, state why not.

(c) Is it possible to design a realizable filter that will produce the response e (n) to the
input e, (n)? If so, describe how and, if not, state why not.

Solution

(a) Recall that the backward prediction error, e (n) is related to the forward prediction error et (n)
by an allpass filter,

Dz .
E7 (2) = A )E+(z) =11 [———w} E}(2) = Hap(2) ES (2)

P Ap(2) TP L0 — et P

i=1
Therefore, the DTFT magnitudes of e} (n) and e, (n) are equal,
By ()] = | B ()7

(b) If the roots of Ay (2) are inside the unit circle, |ax| < 1, then e, (n) may be generated from e, (n)
using the stable and causal allpass filter shown in the figure below,

e (n) >

g () >

A
/
4
A

-1

(c) It is not possible, in general, to find a causal and stable filter to produce a response, e; (n), to
the input e, (n). The reason is that, if the roots of A,(z) are inside the unit circle, then ey (1)
will be related to eg(n) by an allpass filter that has p poles inside the unit circle and p zeros
outside the unit circle. Therefore, the inverse of this allpass has p poles outside the unit circle

and p zeros inside, and therefore cannot be causal and stable.
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6.9 The all-pole lattice filter in Fig. 6.7b may be used to generate the all-pole approximation %(n)
to a signal z(n). In this problem, we investigate another use for this filter. Suppose that
ed (n) is initialized to one at time n = 0, and all of the remaining states are set equal to zero.

Determine the output of the all-pole filter for n = 1,2,..., N. Hint: Consider the expression

for v; given in Eq. (5.10) of Chapter 5.

Solution
Before we begin, let is see if we can gain some insight into this problem by computing a few output
values. The system that we are considering, for a third-order lattice, is shown in the figure below.

a(n) Y

u(n)

-3 -Tg -

s T2 I

ey (n) <

A
4
[e
y!
4
4

Beginning with time n = 0, we can easily generate the following sequence of outputs,

y(0) = 1
y(l) -Ty = 7’:0(1)/7'30 (O)
y(2) [y —Ta(1-T9)

Il

I

Now note that

T2, 1 2
v = Ti-na-r)--ZE - oo
_rﬁ(l) _ n 2 :_T?n(l) n
20 noe-tH" T TE TR
_ _re()  re(2) +Tura(1) _12(2)
72(0) 7z(0) 72(0)
Therefore, let us hypothesize that -
y(n) = 7 (0)

We will show this by induction. First, let us make a few observations.

1. The input acts as an initial condition in the delay line that propagates to the left.

2. The last non-zero value in the delay line (at time n = j) is

This is clear from the lattice filter structure.
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3. Looking into the all-pole lattice filter, at time j, there is effectively an input, at time j + 1, equal
to —I'j+1€;/r5(0) as illustrated in the figure below.

y(G+1)

O . 2

A\
¥

~Ti41

Tt

Now let us assume that y(j) = r,(j)/r(0). Since y(j) is equal to a linear combination of outputs,
rz(j — 1) multiplied by the filter coefficients, a;(7), then

Therefore, it follows from the third observation above that

Wi+ = ;*;);f +>: mﬂr‘(g)’ 2
.1: =0
_ re(j—i—1)

- on(0)

'rx(O)
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6.10 Consider the following modification to the Burg error

g = lez:wj(n) {}e;'(n)IQ + le}(n)‘z}

where w;(n) is a window that is applied to the forward and backward prediction errors.

(a) Derive an expression that defines the value for the reflection coefficient T 7 that minimizes
the modified Burg error &

(b) What conditions, if any, are necessary in order to guarantee that the reflection coefficients
are bounded by one in magnitude?

Solution

(a) Reproducing the derivation of the Burg recursion, we begin by setting the derivative of the error

ziwwﬂqwfﬂéwﬂ

n=j

with respect to I'; equal to zero as follows
oEY

ars = Z“’J ar*{ej(”)‘Q“L'e?(”)’Q}

ij {e (n)e e; y(n— 1)]*-4—8;(71)[6;_1(71)]*}:0

i

Substituting for e *(n) and e; (n) and solving for T'; gives

N
2 Z w; (n)e;ll(n) [ej‘_l(n - 1)]*

n=j
[j=- —

S wy(m) { | ()] + ey o - 1)

n=j

(b) For the Burg recursion, the property that |T';| < 1 is based on the inequality
2[(a,b)| < lal®+[b]?

We may use this inequality to place constraints on the window, w;(n), so that the reflection
coefficients are bounded by one in magnitude. We do this as follows. If a = € * 1(n) and
b= eJ 1(n—1), then

2lef () [efy (= 1)

2 2
<o)+ e (n - 1)
If wj(n) > 0, then we may multiply both sides of this inequality by w;(n),

20;(n)|ef 1 (W [y (0 = V]| < ws){ ety ) + [efy (0 - DI
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Summing both sides from n = j to n -+~ N we have
N N ) ,
23w ()i ) [efatn = D]"| < Y witn{ ey ) + ety (n - 1)}
n=j n=j

Since

N N
S wime s n =) < 3w sy (- 1)

n=j

(recall that w;(n) > 0), then
N N 2 2
2| wime () [y (0= )| < S wim{lefa ] + ef 1t - 1))
n=j n=j
and it follows that |[I';| < 1. Therefore, the constraint on the window is that it be non-negative,

wj(n) >0
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6.11 Consider the sequence of reflection coefficients Ff ) I’]I- , and F;“i“ where Tf is the reflection

coefficient as proposed by Itakura and T’ ;“i“ is the reflection coeflicient that is formed using
the minimum method (see Section 6.5.3).

(a) Establish the following relationship between these reflection coefficients:
i B I
D7 < 07 < 151

(b) Are there any conditions under which all three reflection coefficients will be the same
for all 37

(c) Let I’é\/f be the set of reflection coefficients corresponding to the all-pole model that is
derived from the modified covariance method. Is it possible to upper or lower bound
these coefficients in terms of Ff , I’; , OT I‘}?“"‘?

Solution

(a) To establish this inequality, we begin by showing that the sign of I’; and I';" is the same. With

N

>t ey (=1
F; == N
> leia(n-1f*
and
N *
Z e;il(") [ej_»l (n— 1)]
M= "=

2

St ()

n=j

note that the numerators are the same, and the denominators are positive. Therefore, F;' and
I';" have the same sign. Now note that since I‘f is the harmonic mean of I“;«L and I';, then it is

always true that '
rye < e

Therefore, all that we need to establish is that
r7 <0y
We may do this from the definitions of I? and T'. Since
o7 —
B _ 20T
J F =
Iy +T;

and
1 +1 -
L=/ I07 1T
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(b)

Problem Solutions

then we want to show that

ortrs

or

2|

+ — g
I +T;

Squaring both sides we have
I R g

Let us assume that T7 > 0 and ['; > 0 (the proof is similar if both are negative). Then the
inequality that we want to establish becomes

+ )2 +
0< (T} +T;)* -4} T;
However, the right-hand side is equal to (I'7 —

T —T;)? which is clearly non-negative, and the
desired result follows.

Since I“f is the harmonic mean of Fj and I';, then I‘f will be equal to I‘;-“i“ (and also equal
to T'P*) if and only if I’j = TI';. In this case, it will also be true that I’f = F§ . In general,
however, I‘j’ is not equal to I';. A special case in which they are equal is when modeling a
random process. With

Blef e (n- 1))
E{]ej__l(n -}

't = -

<

and .
R E{ejtl(n) [ej:l(n - 1)] }
I E{le_ ()2}

these reflection coefficients will be equal if the process is wide-sense stationary.

As we saw in Example 6.5.4, the all-pole model that is derived from the modified covariance
method is not guaranteed to be stable. Therefore, the reflection coefficients I‘;-VI may be greater
than one in magnitude, and the only possible bound that may be valid is

I < I037€)
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6.12 In Sect. 6.6 it was shown that the backward prediction errors are orthogonal, i.e.,
€; ;o 1=]
Ele (n)e; (n)]*) = !
{er m)ey ()} {O i
Establish the following orthogonality conditions:

(a) E{ef(n)z*(n—k)} =0 ; 1<k<i
(b) E{e] (n)z*(n—k)} =0 ; 0<k<i-—1
(c) Blef (m)z*(n)} = E{ej (n)a*(n — i)} = ¢

Solution

(a) The fact that the forward prediction error ef (n) is orthogonal to the input z*(n — k) is a
restatement of the orthogonality principle. In particular, the forward prediction error e} (n) is,

by definition, equal to the difference between z(n) and the prediction of z(n) that is based on
the inputs z(n — 1),z(n — 2),...,z(n — ). By the principle of orthogonality, this error must be
orthogonal to z(n — k), for k = 1,...,4, and the property is established.

(b) Asin part (a), this property also follows from the orthogonality principle. The backward predic-
tion error e;” (n) is equal to the difference between z(n — i) and the prediction of z(n — i) given
the inputs z(n),z(n — 1),...,z(n — i+ 1). By the orthogonality principle, this error must be
orthogonal to z(n — k) for k=0,1,...,4~ 1.

(¢) First, we show that
E{ef(n)z*(n)} = ¢

Note that x(n) is equal to the forward prediction error plus the prediction of x(n),
z(n) = ef (n) + Z(n)

Since the prediction is orthogonal to the error ej (n), it follows that

B{ef (n)e* (n)} = B{eF et (m)]*} = &
To prove the second part of the property,

E{e; (n)z*(n—1i)} = ¢
note that x(n —1) is equal to the backward prediction error, e; (n) plus the prediction of z(n—1),
z{n~i)=-¢e; (n)+Z(n—1)

Since this prediction is orthogonal to the error e; (n), it follows that

E{e; (n)a™(n~ i)} = E{e; (n)[e; (n)]*} = &
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6.13 In this problem it will be shown that the prediction error filters, A,(z), are orthogonal on the

unit circle. Specifically, let P;(e/*) be the power spectrum of a zero mean random process
z(n) and let A, (z) be the system function of the nth-order prediction error filter. Define the

polynomials
Pn(2) = 2" + an(1)2" 4+ an(n — 1)z + an(n)

Show that these polynomials satisfy the orthogonality property
@ . . .
| P15 ) = Anb
-

and find an expression for the constant A,. Polynomials that satisfy this orthogonality con-
dition are called Szegd polynomials.

Solution
Without any loss in generality, assume that m < n, and let

1
edw
ej?w

ej;lw
be a vector of complex exponentials. With
1 g . .
ry (k) = E/ Py (&) e ™ duw

-
and
R, = Toep{r.(0), ro(1), ... ,re(n)}
it follows that the autocorrelation matrix may be expressed in terms of P,(e’*) and e,, as follows

1 4 .
R, = j?—7;‘/#]3:,6(67“’) eeldw

Let a,, = [l,an(l), e, an(n)}T be the nth-order prediction error filter, which is the solution to the
normal equations

1
0
R;a, =¢, | .
0
Since ' ' ' )
efa, =1+a,(1)ed + .- + an(n)e’™ = e "¢, (/)
then
emime 1
e-j(n—1)w
1 [7 . r 1 (7 . .
R,a, = — P(e?)pn(e7)e™ 1™ epdw = — P.(e7)n (e79) : dw=1¢, | :
2 J_, 2 J . o 0

1 0
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Therefore, with

G (€79) = eI 4 an (e MY 4 a2 (m) = e

i
-

it follows that L
5 | P ={

2 J_ .
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SOLUTIONS TO CHAPTER 7
Optimum Filters

7.1 A random process z(n) is generated as follows

z(n) = azx(n — 1)+ v(n) + fv(n — 1)
where v(n) is white noise with mean m, and variance o2.
(a) Design a first-order linear predictor

Z(n+1) = w(0)z(n) + w(l)z(n — 1)

that minimizes the mean-square error in the prediction of z(n+1), and find the minimum
mean-square error.

(b) Now consider a predictor of the form
Z(n+1) = ¢+ w(0)a(n) +w(L)a(n — 1)

Find the values for ¢, w(0), and w(1) that minimize the mean-square error, and compare
the mean-square error of this predictor with that found in part (a).

Solution

(a) As we have seen in Section 7.2.2, the solution to this problem is found by solving the Wiener-Hopf

equations

[ r=(0) (1) } { w(0) } - [ ro(1) ]

(1) 72(0) w(l) 72(2) J

and the minimum mean-square error is

Emin = rx(o) - w(O)Tx(l) - w(l)’rl(Q)
All that is required is to find the autocorrelation sequence

(k) = BE{z(n+ k)z(n)}

Since x(n) is formed by filtering v(n) with a filter that has a system function given by

146271

H(z) = 1—-aqz?

then the power spectrum of z(n), which is the DTFT of the autocovariance, c,(k), is

2[1+,@e‘j“’[2

Pz(ejw> =0y )
’1 — ae“JW]
Therefore,
2

s oy . [(1 + 8t 4 galk-1l +ﬁa|/c+uJ
-

e (k) =
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Since the mean of v(n) is nonzero, then the mean of z(n) is nonzero, and the autocorrelation
rz(k) is related to the autocovariance ¢, (k) as follows,

(k) = co(k) +m2

With i
Mg = mvH@jw)‘w:O = m”m
we have ) ( 5)2
_ % 2\ [K| k-1 k1] 2 1+
ra(k) = 75 [(1+ B2)al + pal* 1 + ga }+mv—~—-~(1_a)2

Given values of 8, a, 02, and m,,, we could then solve the Wiener-Hopf equations.
(b) With a predictor of the form,

Z(n+1) = c+w(0)z(n) + w(l)z(n - 1)
in order to minimize the mean-square error, we must have

13
5= —2E{e(n)} =0

This, however, implies that
E{z(n+1)} - [c +w(0)E{z(n)} +w() E{z(n - 1)}] =0
Therefore, with m, = E{z(n)}, we have
¢ =mg[1 —w(0) — w(1)]
Now note that since
£ = E{x(n +1) = [e+ w(0)2(n) + w(l)z(n — 1)] }
= E{fa(n+1) = mq] — w(0)[a(n) = ma] + w(Dfa(n - 1) - m.]}
then minimizing ¢ is equivalent to finding the optimum linear predictor
F(n+1) = w(0)a(n) + w(l)z(n - 1)

for a zero mean process. The Wiener-Hopf equations are

r2(0) 75(1) w(0) | _ | ru(1)
i o ][ =[]
with )
ro (k) = ljvoﬂ [(1 + B)alk — galk-1l ,60(“‘:“1]

and, again, given values for 3, a, and o2, the Wiener filter may be found explicitly.
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7.2 In this problem we consider the design of a three-step predictor using a first-order filter
W(z) = w(0) + w(1)z™*
In other words, with z(n) the input to the predictor W (z), the output
Z(n +3) = w(0)z(n) + w(l)z(n — 1)
is the minimum mean-square estimate of z(n + 3).

(a) What are the Wiener-Hopf equations for the Wiener three-step predictor?
(b) If the values of r,(k) for lags k = 0 to k = 4 are

r, = [1.0, 0, 0.1, —0.2, —0.9)7
solve the Wiener-Hopf equations and find the optimum three-step predictor.
(¢) Does the prediction error filter
F(z) =1+ w(0)273 + w(1)z™*
have minimum phase, i.e., are the zeros of F(z) inside the unit circle? How does this

compare to what you know about the prediction error filter for a one-step predictor?

Solution

(a) The Wiener-Hopf equations are
R,w =ry,

where
re, = E{d(n)x(n)}
With d(n) = z(n + 3) this becomes

Thus,
0 e e =[]

(b) Withr, = [1.0, 0, 0.1, —0.2, ~0.9]T, it follows that R, = I, and the solution to the Wiener-
Hopf equations is
w“[w(o) } _{—0.2}
Tlw(l) || ~09

(¢) The reflection coefficient sequence corresponding to the prediction error filter,
F(z)=1-022z"2~09:"1
is r
T = [0.8571, 9.2308, —1.0526, —0.9000]

Since the reflection coeflicients are not bounded by one in magnitude, F(z) is not minimim phase.
This is not the case for a one-step predictor, which is guaranteed to have minimum phase.
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7.3 Repeat Example 7.2.1 using a second-order Wiener filter, and compare the mean-square error
for the second-order filter with the mean-square error of the first-order filter.

Solution
For a second-order Wiener filter, the Wiener-Hopf equations are

rz(0) ry(1) rz(2) w(0) 742 (0)
re(1) 7r:(0) 7u(1) w(l) | = | ra (1)
re(2) 75(1) r4(0) w(2) Taz(2)

Since d(n) and v(n) are assumed to be uncorrelated, then
’l‘dw(k) = Td(k) = Oélkl

and
o (k) = ra(k) + ry(k) = /¥ + 025(k)

Thus, the Wiener-Hopf equations become
1+ 02 o a? w(0) ] !- 1
a 1+02 « w(l) | = a
a? a 1402 ] i_
With o = 0.8 and ¢2 = 1, these become

2 08 064 w(0) 1
08 2 08 || wl) | =] 08
{ 064 08 2 } { } }

Solving for w(0) and w(1) we have

Therefore, the Wiener filter is
W(z) =0.3824+0.2271 4 0.11762~2
For the mean-square error, we have
Emin = 14(0) = w(0)rgz(0) — w(1)rge(1) — w(2)7g.(2) = 0.3824

Note that this is smaller than the mean-square error for a first-order Wiener, which is £nin = 0.4048.
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7.4 Consider the system shown in the figure below for estimating a process d(n) from z(n).

A

= a(l)z7t

A 4
[«
oy

If 02 = 4 and

r; = [1.0, 0.5, 0.25]" ; rg4 =[-1.0, 1.0]7
find the value of a(1) that minimizes the mean-square error ¢ = E{|e(n)[?}, and find the
minimum mean-square error.

Solution
The error is given by

e(n) = d(n) — d(n) = d(n) — z(n) — a(1)z(n — 1)
The value for the coefficient (1) that minimizes the mean-square error
€= E{le(n)]’}
is found by setting the derivative of £ with respect to a*(1) equal to zero and solving for a(1). With

o6 . -
B (1) = —E{e(n)z*(n-1)} =0

substituting for e(n) we have
E{d(n)z*(n—1) —z(n)z*(n - 1) — a(D)|z(n - 1)*} =0
or
raz(l) — rx(1) —a(l)r.(0) = 0
Solving for a(1) we have
raz{1) — r.(1)
a(l) = gl Teh)
(1) " 0)
The minimum mean-square error is

¢ = E{e(n)[d(n) — z(n) — a()z(n - 1)]"}
Using the orthogonality condition

=1/2

E{e(n)z*(n-1)} =0
this becomes
E{e(n)[d(n) - x(n)]*}
74(0) — 745(0) — a(1)ras (1) — 74:(0) + 7(0) + a(1)7,(1)
6.75

s
|
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7.5 In this problem we consider linear prediction in a noisy environment. Suppose that a signal
d(n) is corrupted by noise,
z(n) = d(n) + w(n)
where (k) = 0.56(k) and r4,(k) = 0. The signal d(n) is an AR(1) process that satisfies the
difference equation
d(n) = 0.5d(n — 1) + v(n)
where v(n) is white noise with variance o2 = 1. Assume that w(n) and v(n) are uncorrelated.

(a) Design a first-order FIR linear predictor W(z) = w(0) + w(1)z™! for d(n), and find the
mean-square prediction error £ = E{[d(n + 1) — d(n + 1)]%}.
(b) Design a causal Wiener predictor and compare the mean-square error with that found

in part (a).

Solution

(a) The Wiener-Hopf equations for the FIR Wiener filter are
R,w =rg,
Since the noise, w(n), is uncorrelated with the signal, d(n), the cross-correlation 74, (k) is
ras(k) = E{d(n+ D[d(n — k) +w(n ~ k)]} = ra(k+1)
and Pyz(2) = 2P4(z). Furthermore, the autocorrelation of z(n) is
ro(k) = E{z(n)z(n — k)} = ra(k) + ry (k)
Since the power spectrum of d(n) is

1

Fal2) = = (1= 12)

then the autocorrelation sequence is
k
ra(k) = §(3)"

With
ru(k) = 16(k)

the Wiener-Hopf equations for the second-order predictor are

4 ][]

Solving for w(0) and w(1), we find

]3]

with a minimum mean-square error of

€min = 7a(0) = w(0)ra(1) —w(l)re(2) = 3 — 22 - 21 = 38 = 1086
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Problem Solutions

(b) For the causal Wiener filter, the system function is

H) = o [5?2521)>L

Since
1 13

(1~ %z‘l)(l - é—z) + % -

then we have, after factoring the numerator polynomial,

(1 -0.1577271(1 — 0.1577z)
(1-3271)(1-32)

Py(z) = Py(2) + Pu(2) =

Py(z) = 1.5856

Therefore,
101577271
O =T
and, with Py, (2) = zP4(z), it follows that
1-1,-1 1-1
H(z) = 1 (1-5z )— : z . (1-32)
15856 (1 - 0.1577271) [(1 - 3z~ 1)(1 — 42) (1 -0.15772) ],

1 (1-3271) z
1.5856 (1 - 0.1577271) | (1 - 3271)(1 - 0.15772) ],

or
(1- %z“l)

1
H(2) = 06307 753577y [(1 — 3z (- 01577)} +

ith
Wi 1 05428 1.0856

(1—1z(z1-01577) 1- 3271 * z=1 —0.1577

it follows that

1 ] _0.5428
(1-32"0("1-01577) ], 1- 3271
Therefore,
(1-1z7h 05428  0.3423
(1-01577271) (1-1z-1) " 1-0.1577271

Thus, the unit sample response is

H(z) = 0.6307

h(n) = 0.3423(0.1577)"u(n)

For the minimum mean-square error, we have

bmin = ra(0) = Y h(ras(l) = § = > 0.3423(0.1577)" - 4(4)"*?
=0 1=0

oo
3 -0.2282 (0.07885)" = 1.0856

=0
What we observe is that the minimum mean-square error is approximately the same as that
for the second-order FIR Wiener filter. This is because h(n) for the causal Wiener filter is
approximately zero for n > 1 and, for n = 0, 1, the filter coefficients are approximately the same
as those found in part (a).
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7.6 Suppose that a process z(n) has been recorded but there is a missing gap over the interval
[N1, Ny, i.e., z(n) is unknown over this interval.

(a) Derive the optimum estimate of z(V;) using the data in the semi-infinite interval (—oo, Ny —
1].

(b) Derive the optimum estimate of z(/V) using the data in the semi-infinite interval [Ny -+
1, 00).

(c) Derive the optimum estimate of x(Np) that is formed by combining together the two
estimates found in parts (a) and (b).

(d) Generalize your result in part (c) to find the optimum estimate of x(n) at an arbitrary
point n in the interval [Ny, Na].

Solution

(a) This is the one-step causal linear prediction problem. The optimum estimate of z(N;) is
Z1(N1) =Y ha(k)a(Ny — 1 - k)
k=0
where )
Hi(z) = a0 [ZQ(Z)LF
and Q(z) is the minimum phase factor of P,(2),
Pi(z) = 03Q(2)Q(z7")

(b) Here we want to design the optimum flter for predicting backwards Ny — Ny + 1 samples. The
system function for the optimum causal (No ~ Ny + 1)-step forward predictor is

[ZNQ—N1+1 Q(z)] .

1
=50

Therefore, the optimum estimate of z(N;) is
Bo(N1) =D ha(B)x(Ny + 1+ k)
k=0

(c) We are given two estimates of z(Ny), which we have called Z;(N;) and Z2(N). Let the variance
of these estimates be denoted by o} and o2, respectively. We would now like to find the optimum
estimate of z(IN1) using an estimate of the form

F(Ny) = K2, (Ny) + (1 — K)Zo(Ny)

where K is a constant that is to be determined. Note that this form for the estimate guarantees
that Z(N1) will be unbiased if Z;(N;) and Zo(N;) are unbiased. To find the value of K that
minimizes the mean-square error,

€= B{[a(v) - 3(3)]°)
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we set the derivative of £ with respect to K equal to zero and solve. With
e(N1) = z(N1) = Z(N1) = K [2(N1) = Z1(N1)] + (1 = K) [2(Ny) — 52(N)]

we have
gl.f{. - 2E{e(N1) ([=(V1) = 31 (V1)) = [a(Vy) = 52““”)} =0

Substituting for e(/N;) and taking the expected value we have, assuming that the estimation
errors e1(N1) = x(Ny) — Z1(Ny) and ea(Ny) = z(N1) — Z2(N1) are uncorrelated,
Ko? —(1-K)o2=0
Solving for K we have
2
= 7%
T3
which leads to the following estimate for z(/Ny),
4t
o} + 03

2
Z(Ny) = % gfl(Nl)'l' z3(N1)

o +o
(d) For an arbitrary point Ny in the interval [Ny, N], the result derived in part (c) produces the

optimum estimate of 2(Ny) provided Hy(z) is replaced with

1
Q(2)

H(2) = g [T Q)] |

and Haz(z) is replaced with

m(2) = 5= [ Q)]

+
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7.7 In this problem we consider the design of a causal IIR Wiener filter for p-step prediction,

Z(n+p) = i h(k)z(n — k)

k=0
(a) If z(n) is a real-valued random process with power spectral density
Py(z) = 05Q(2)Q(z"")
find the system function of the causal Wiener filter that minimizes the mean-square error
€ = E{|z(n+p) - 2(n +p)*}
(b) If z(n) is an AR(1) process with power spectrum

1—a2

(1-az"1)(1 - az)

P.(z) =
find the causal p-step linear predictor and evaluate the mean-square error.
(¢) If z(n) is an MA(2) process that is generated by the difference equation
z(n) = 4v(n) — 2v(n — 1) + v(n — 2)

where v(n) is zero mean unit variance white noise, find the system function of the two-
step (p = 2) predictor and evaluate the mean-square error.

(d) Repeat part (c¢) for a three-step predictor.

Solution

(a) The optimum causal Wiener filter is

1= a0 [ote 3

With d(n) = z(n + p),
rag(k) =r.(k + p)

and
Py (z) = 2P Py(2) = 2P02Q(2)Q(z71)
Therefore,
H(z) = 5 [#Q(2)]
Q(z) +
(b) With the power spectrum of z(n) given by
1-a?

Polz) = (1-az"1)(1~az)
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we see that 0f = 1 — 4%, and

@) = 1- tlzz_l
Therefore,
e, = [l

[zp(l +az"t +a?zt 4 )]

+
= af +aPTlz7l faPt2 72
aP

1 —az1

and the optimum causal Wiener filter for estimating z(n + p) is

H(z) = Q;Z) [#ae)], = a-a). -1—:-‘1;—:? =

Thus, the estimate of z(n + p) is given by
Z(n +p) = aPz(n)

Note that the predictor only uses the most recent value of the sequence, z(n), to predict z(n+p).
Since z(n) is an autoregressive process, this value carries all of the information about the past
history of z(n).

The minimum error is equal to

00
Emin = 74(0) = > A(U)r5, (1)
1=0
With rq(k) = r5(k) = a*!, 74, (k) = r,(k + p), and h(n) = aPé(n), this becomes
fmin = 1 — a??
(¢) If z(n) is a moving average process that is generated by the difference equation
z(n) =4v(n) — 2v(n — 1) +v(n - 2)
then the power spectrum of z(n) is
Poz)=(4=2z""+272) (4224 2) =16(1 - 271 + 12791 - 12+ 1z2)

With
[7Q@)], = [0~ 11 + 17
if p = 2, then this becomes
], -

Therefore, the optimum predictor is

Md:&ﬂkmﬂ+=—~¥?m~
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Z(n+1) = 12(n) — 1Z(n — 1) + Lz(n)

For the minimum error, we have

1 [~ ) )
6nin = 1al0) = 5 [ H(E)PL ()
-1

With r4(0) = r(0) = 21 and

P} (e7) = €77 Py(e7) = e P16|1 — Le™Iv 4 Lemi20 )

we have, with p = 2,

1 [ 1/4
gmin =21 - — T - / il ~
27 -7 1- §€h‘7“" -+ Ze"ﬂ“’

16e7I2 1~ Lo 4 %e”jz"’[z)dw
Therefore,
¥is
Emin = 21 ~ il;r-/ 4e_j2““[1 - %ej“’ + %eﬁ‘*’]dw =20

-

(d) With p = 3, note that
3
=0
BCOIR

Therefore, the optimum predictor is
Z(n+3)=0
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7.8 Suppose that we would like to estimate a signal d(n) from the noisy observations
z(n) = d(n) +v(n)

where the noise, v(n), is uncorrelated with d(n). The power spectral densities of d(n) and
v(n) are shown in the following figure.

4 Fa(e)
A
w
— —7/2 wf2 ks
Py(ed¥)
| = e
w
-7 —~7/4 /4 ™

(a) Design a noncausal Wiener smoothing filter for estimating d(n) from z(n),

din) = Y h(k)z(n - k)

k=—00

(b) Compute the mean-square error E{[d(n) — d(n)|?} and compare it to the mean-square
error that results when h(n) = d(n), i.e., with no filtering of z(n).

Solution

(a) The frequency response of the optimum noncausal Wiener filter is

Py (e99) Py(edv)

Jw sl =
H™) = Ba9) = Faloe) + Pulo)

Using the given power spectral densities for d(n) and w(n), it follows that the frequency response
of the Wiener filter is as shown in the figure below.

(b) The minimum mean-square error is

g'm'in = Td(o)_ Z h’(l)rdw(l)

I=—00
= % ﬁ[Pd(ej“)—H(ej”)Pd(e"jw)]dw

i3
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H(eIw)
1
U 1A
A+Ny
—7/2 —/4 /4 /2 w
Evaluating the integral we find
64 Ny

bmin = T N+ A
The mean-square error using h(n) = §(n) is
1 [7 . N
€= B[R] = - [ Pue)io = 20
-

m ™
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7.9 We would like to estimate a process d(n) from noisy observations,
z(n) = d(n) +v(n)

where v(n) is white noise with variance 02 = 1 and d(n) is a wide-sense stationary random
process with the first four values of the autocorrelation sequence given by

rg=[15, 0, 1.0, 07

Assume that d(n) and v(n) are uncorrelated. Our goal is to design an FIR. filter to reduce the
noise in d(n). Hardware constraints, however, limit the filter to only three nonzero coefficients
in W(z).

(a) Derive the optimal three-multiplier causal filter
W(z) = w(0) +w(l)z™! +w(2)z72

for estimating d(n) and evaluate the mean-square error E{[d(n) — d(n)?}.
(b) Repeat (a) for the noncausal FIR filter

W(2) = w(-1)z + w(0) + w(1)z""

(c) Can you suggest a way to reduce the mean-square error below that obtained for the filters
designed in parts (a) and (b) without using any more than three filter coefficients?

Solution

(a) The Wiener-Hopf equations for the optimal three-multiplier filter

W(z) = w(0) + w(l)z 7! + w(2)z"2

rz(0) 7(1) 7,(2) w(0) 74z(0)
rz(1) 75(0) ry(1) w(l) | = | ra.(1)
r2(2) 7:(1) 7.(0) w(2) Taz(2)

for estimating d(n) are

With
T:v(k) = Td(k) + 7y (k)

and
Tdax (k) =Tq (k‘)

using the given values for the autocorrelation rq(k), these equations become

25 0 107 [ w(0) 1.5
[ 6 25 b H”H ; }
10 0 25 || w®) 1.0
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(b)

Problem Solutions

The solution for the coefficients w(k) is

The mean-square error is

E{ld(n) - d(n)]?} = r4(0) = > w(k)ras(k) = 1.5 — 0.5238 - (1.5) — 0.1905 = 0.5238
k=0

For the noncausal FIR filter
W(z) = w(—1)z +w(0) + w(1)z™!
the Wiener-Hopf equations for the optimum coefficients may be derived as follows. With ¢ the
mean-square error
¢ =E{(n)}

we set the derivative of £ with respect to w(k) equal to zero as follows
9¢
Bl E{*Qe(n)x(n - k)} =0 ; k=0,+1
Substituting for e(n) and simplifying we have

i w(l)re(k — 1) =rau(k) ; k=0%1

l=~1
Since r4,(k) = r4(k), then these equations are
2(0) 72(1) 7T4(2) w(-1) ra(—1)
rx(1) ry(0) 7. (1) w(0) | =] r(0)
rz(2) ry(1) 7,(0) w(l) rqa(1)

Using the given autocorrelations, these become

[ 25 0 1.0 } { w(~1) } [ 0 }
0 25 0 w(0) | =| 15
1.0 0 25 w(l) 0

][]
w©0) | =106
w(1) 0

1

E{jd(n) = d(n)*} = ra(0) ~ > w(k)ras(k) = 0.6

k=-1

Therefore, we have

with a mean-square error

Since 74(1) = 0 and the additive noise, v(n), is white, then z(n = 1) is of no use in estimating
d(n). Therefore, a better estimator to use that has only three coefficients is the following

W(z) = w(0) + w(2)z % + w(~2)22
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7.10 Suppose that a signal 2(n) is recorded and that, due to measurement errors, there are outliers
in the data, i.e., for some values of n there is a large error in the measured value of x(n).
Instead of eliminating these data values, suppose that we perform a minimum mean-square
interpolation as follows. Given a “bad” data value at time n = ng, consider an estimate for
z(ng) of the form

Z(ng) = ax(ng — 1) + bx(ng + 1)

(a) Assuming that z(n) is a wide-sense stationary random process with autocorrelation
sequence rz(k), find the values for a and b that minimize the mean-square error

£ = E{|z(no) — £(no)|*}

(b) If ro(k) = (0.5)*], evaluate the mean-square error for the interpolator found in part (a).

(c) Discuss when it may be better to use an estimator of the form
Z(ng) = az(ng — 1) + bx(ng — 2)

or explain why such an estimator should not be used.

(d) Given an autocorrelation sequence ry(k), derive the Wiener-Hopf equations that define
the optimum filter for interpolating z(n) to produce the best estimate of z(ng) in terms
of the 2p data values

z(ng — 1), x(ng — 2),...,x(ng —p) and z(ng+1),z(no +2),...,x(no + p)
(e) Find an expression for the mean-square error for your estimate in part (d).

Solution

(a) With an interpolator of the form
Z(ng) = az(ng — 1) + bx(ng + 1)
the values for @ and b that minimize the mean-square error
¢ = E{lz(no) — Z(ng)*}

are found by setting the derivative of £ with respect to a and b equal to zero. Assuming that
z(n) is a real-valued process, we have

g.g = E{—Q[z(no) — Z(no)]z(no - 1)} =0
and a
a—g = E{—Q[z(no) ~ Z(no)] x(no + 1)} =0

Dividing by 2 and substituting for Z(n) gives

E{ [z(no) — az(no — 1) — bx(ng + 1)]z(no — 1)} =0
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E{ [(no) — am(ng — 1) — bx(no + 1)]x(no + 1)} =0

Writing these equations in matrix form in terms of the autocorrelation sequence r,(k), we have

6 o ][]

Solving for a and b we find

[a] _ oL T (0 -2 } [rz(l)]
b r2(0)=r2(2) | —r2(2) r(0) || ra(1)
_ 1 [ 7o (1) [ra(0) — 74(2)] }
T 20) = r22) | (1) [ra(0) = ma(2)]
_ 1 1
o ore(0)+7e(2) [ 1 ]

(b) The mean-square error for the interpolator found in part (a) is
Emin = B{e(np)z(no)} = E{ [2(no) — az(ng — 1) ~ ba(ng + 1)}x(no)} = 15(0) = arg(1) — bro(1)
With r,(k) = (0.5)/,
a=b=05
and
Emin = 0.5
(c) Whether we use the interpolator
Z(no) = az(ng — 1) + bx(ng — 2)
or
Z(ng) = ax(ng — 1) + ba(ne + 1)

depends on the autocorrelation sequence for z(n). If |r;(2)| > |r,(1)], then the first estimate
would be better. Otherwise, the second one will produce a smaller mean-square error.

(d) With an estimate of z(ng) of the form
P
F(no) = Y a(l)a(no — 1)

l=~p
1540

the filter coefficients that minimize the mean-square error are found by setting the derivatives of
E{e?(ng)} with respect to a(k) equal to zero as follows,

5;(1?)1;{52(%)} = —2B{e(no)z(no —k)} ; k==£1,%2,...,+p

Dividing by two, and substituting for the error e(n), this becomes

E{ [a:(no) - z”: a(l)xz(ng — l)]a:(ng - k)} =0

~p
1#0
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or
P

ra(k) = > alrg(k—1)=0 ; k==%1,%2,...,£p

l=—p
1#0

where (k) is the autocorrelation of x(n).

(e) The minimum mean-square error is

Emin = E{e(no)a(ng)} = E{ [m(no) - Z a(l)z(no — l)}m(no)}
o
&min = 15(0) — Z a(l)rz(1)
l=-p
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7.11 In this problem we consider the design of an optimum smoothing filter for estimating a process

d(n) from the measurements
z(n) = d(n) + v(n)

Our goal is to use a noncausal FIR filter that has a system function of the form:

P

W(z) = Z w(k)z™k

k=-p
In other words, we want to produce an estimate of d(n) as follows

P

d(n) = 5" w(k)z(n k)

k=—p

(a) Derive the Wiener-Hopf equations that define the set of coefficients that minimize the
mean-square error

¢ = E{|d(n) - d(n)]*}

(b) How would the Wiener-Hopf equations derived in part (a) change if we used a causal
filter with the same number of coefficients? In other words, if the system function was

of the form
2p

W(z) = Z w(k)z"F

k=0
how would you modify your equations in (a)?

(c) State qualitatively when you might prefer the noncausal filter over the causal filter and
vice versa. For example, for what types of signals and for what types of noise would you
expect a causal filter to be superior to the noncausal filter?

(d) FIR digital filters with linear phase (or zero phase) are important in many signal pro-
cessing applications where frequency dispersion due to nonlinear phase is harmful. An
FIR filter with zero phase is characterized by the property that

w(n) = w(—n)
Thus, the system function may be written as
P
W(z) = w(0) + Z w(k)[zF + 2]
k=1

Derive the Wiener-Hopf equations that define the optimum zero phase smoothing filter.

(e) With r4(k) = 4(0.5)¥ and r, (k) = §(k), find the optimum values for the filter coefficients
w(0) and w(1) in the zero phase filter

W (z) = w(0) +w(l)[z + 27}
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Solution

(a) Using a noncausal filter of the form

P
W(z) = Z w(k)z™F
k=-p
the estimate of d(n) is given by
R P
d(n) = Z w(k)z(n — k)
k=-p

With ~
¢ = B{le(m)|*} = E{ld(n) - d(n)*}

the coefficients that minimize the mean-square error are solutions to the following equations

o€ ~E{e( e

}=0 i k=-p,...,p

w (k) " aa (k)
Since
e(n) = d(n) — lgp: wl)z(n - 1)
then ) P
32*({3 = (n=k)
e ﬁ«:—E{e(n)x*(n—k)}zo ;o k=-p,....p
w* (k) ’ o

Using the definition of e(n) this becomes

E{d(n)z"(n-k)} - > wl)E{z(n—Da*(n—k)} =0
l=—p

and, with ro(k) = E{z(n)z*(n — k)} and rq,(k) = E{d(n)z*(n — k)} we have

P
S wlyra(k—1) =rae(k) ; k=-p,...,p
l=-p

which is a set of (2p + 1) linear equations in the (2p + 1) unknowns w(k), k = —p,...,p. These
equations may be written in matrix form as follows

74(0) (1) - r2(2p) w(-p) Tae(—D)
4(1) 2(0) e o1e(2p-1) w(l —p) Tae(l —p)

Tm(ép) Tx(gl; =1) - Tz (O) w(p) sz'(P)
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We may now evaluate the mean-square error,

¢ = E{len)P) = E{em) [am) - 3 w@x(n—l)}*}
l=-p
= E{e(n)d*(n)} - Z w(l)E{e(n)z*(n-1)}

l=—p

However, from the orthogonality condition, E{e(n)z*(n — k)} = 0, it follows that the second
term is zero, and we have

Emin = E{e(n)d"(n)} = E { [atr) = 3" w(tyain - z)]d*(n)}
l=-p

Finally, taking expected values we find

Emin = Td(o) - Z w(l)"';x(l)

l=—p

{b) If we change the filter in (a) to a causal smoothing filter of the form

then the only thing that changes in the derivations above is the limits on the summations. In
particular, the Wiener-Hopf equations would take the form

2p

Y owlra(k =) =r3,(k) ; k=0,...,2p

1=0
and the minimum error would be

2p

fmin = Td(o) - Z ’UJ(l)T‘Zz (Z)
1=0
(c) If the autocorrelation sequence for d(n) is generally larger over the interval [—p, ..., p] than it is

over the interval [0,...,2p], then the zero phase smoothing filter would be better to use. Other-
wise, the causal filter would be better. For example, with a signal that has an autocorrelation
sequence rq = [1,0,0,0,.9,...], you may wish to compare the performance of the optimum causal
and noncausal filters when p = 2.

(d) Using a zero phase smoothing filter
P
W(z) = w(0) + Z w(k) [27F + 2F]
k=1
the estimate of d(n) is now given by

d(n) = w(0)z(n) + Zw(l) [z(n— 1)+ 2(n+1)]
1=1



Chapter 7 197

Again, with ~
¢ =Efle(m)*} = B{|d(n) - d(n)*}

we differentiate £ with respect to w*(k) as follows

Bw* {() (k)} i k=0,...,p
However, since
de*(n)
gy - T
and de*
getn) ((k)) —atn- k) —at (k) k=1,...p

then we have

E{e(n)z*(n)} =0

and
E{e(n)z(n—k)+z(n+k)]"} =0 ; k=1,...,p

If we now substitute for e(n) we find

ras(0) = {w(O)ra(0) + Y w® [ra D) + 72 (-1)] } =0
=1

and
2rgu (k) — {Zw(O)rx(k) + 5 20 [ra(k — 1)+ ra(k + z)]} =0 ; k=1,...,p
=1
Thus,
w(0)r,(0) + Z 2w(k)ry (k) = 14.(0)
k=1
and

wO)re(k) + Y wl)[ra(k — 1) + 1ok +1)] =raa(k) ;5 k=1,...,p
I=1

(e) The coefficients for the third-order zero phase filter are the solution to the equations,
{ 7:(0) 2r,(1) w(0) } _ { 74(0) }
rz(1) 75(0) +7r(2) w(l) Taz(1)

Incorporating the given values for the autocorrelations, we have
5 4 w(0) ] [4
2 6 w(l) | 7|2

and the solution is g 1
W) =g+l +2
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7.12 We observe a signal, z(n), in a noisy and reverberant environment,
y(n) = z(n) + 0.8z(n — 1) + v(n)

where v(n) is white noise with variance o2, = 1 that is uncorrelated with z(n). We know that
z(n) is a wide-sense stationary AR(1) random process with autocorrelations

r,=[4,2 1, 057

(a) Find the non-causal IIR Wiener filter, H(z), that produces the minimum mean-square
estimate of x(n).

(b) Design a causal IIR Wiener filter, H(z), that produces the minimum mean-square esti-
mate of z(n).

Solution
Before we begin this problem, we need to determine the power spectrum for x(n). Since z(n) is an
AR(1) process, we can determine r, (k) and Py(z) from r,(0) and r,(1), which are given. Specifically,

we have »(0)
P8 = e T e
where ) M ) )
0 o L ] =a o]
and
bz(O) = €1
Solving for a(1) and b(0) we find
a(l) = —::g(l); =1/2

and

2 r2(0) = r3(1)

rO="""m 7P
Thus,

3

(a) For the noncausal filter, we know that

_ Pay(2)
Hz) = Py(z)
Since
y(n) = z(n) + 0.8z(n — 1) + v(n)
then

Py(z) = (1+0.8271)(1 4+ 0.82) P, (z) + Py(2)

In addition,

ray(k) = E{z(n +k)[z(n) + 0.8z(n — 1) + v(n)] } = r,(k) + 0.87, (k + 1)
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and
Pry(2) = (1 +0.82) Py(z)

Therefore, the noncausal Wiener filter is

(14 0.82)Py(2)

1) = om0 + 082 P 71

or
3(1 +0.82)

H(z) = 3(1+0.8271)(1 +0.82) + (1 — 0.5z2=1)(1 — 0.52)

which may be simplified to
3(1+0.82)

6.17+1.9271+1.9z2

H(z)=

(b) For the causal Wiener filter,
1 Ppy(z)

H(z) = —— | 2202

9= 30 |50,

where o2 and Q(z) are found from the spectral factorization of y(n),
Py(z) = 03Q(2)Q(z™)

With

3(1+0.8271)(1+0.8z)

P,
v(2) (1 -05z"1)(1 - 0.52)
o 6174+19274+1.92 - (1+0.3445271)(1 + 0.3445z)
T (1-052"1)(1-052) (1—05271)(1 - 0.52)
it follows that
v 1403445270

QR = (5

and
1-0.5z"1 3(1+0.82) 1-05z
H(z) = 0.181
(2) 1 03451 [(1 — 05z 1)(1—05z)  1+03445z],
1-0.5z"1 [3(1+0.82) 1
= 0.181
S SV {1—0.5,2-1 * 1503445z,
Since
3(1+08z2) 1 35829
1-05271 7 14034452z ], 1-0.5z71
then

.649

H(z) = — o
() = T 3aas
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7.13 A wide-sense stationary random process has an autocorrelation sequence of the form
re(k) = Ugoﬁ’{SS

where |a| < 1. Over a given time interval, [n4,np], the process z(n) is only known at the
end points, i.e., the only given data is z(n4) and z(ng). Based on these two observations,
determine the optimum estimate

Z(n) = a(n)z(na) + b(n)z(ns)
of z(n) over each of the following intervals
(a) n>ngp.
(b) n < ngy.
(¢) na <n<ng.

Solution
The error in the estimate of z(n) is

e(n) = z(n) — [a(n)z(na) + b(n)z(ns)]
and our goal is to minimize
¢=E{e*(n)}

The coeflicients a(n) and b(n) are found by setting the derivative of £ with respect to a(n) and b(n)
equal to zero as follows:

o€ _
Ba(n) — —2E{e(n)z(na)} =0
and o
() = —2E{e(n)z(ng)} =0

Dividing by two, and substituting for e(n) we find
rz(n —na) = a(n)ry(0) + b(n)ry(np — na)
and
rz(n —ng) = a(n)ry(ng — na) + b(n)r;(0)
or, in matrix form,
7. (0) ry(ng —na) a(n) | | re(n—mna)
{ rz(ng —na) 72(0) ] { } - { rz(n —npg) }
Solving for a(n) and b(n) we find
{ a(n) } _ 1 [ r.(0) —rz(np —n4) } { rz(n—mna) }
12(0) = r2(np — na) | —rz(np —na) 72(0) 74(n~np)
B 1 r3(0)rz(na) — re(np —na)ra(n — np)
 r2(0) — r2(ng — ng) ~rz(n—na)rz(ng —na)+rz(0)ry(n — ng)
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With 7, (k) = 02al*, this becomes

[ a(n) J 1 { aln=nal _ glnp-nal+in-na }

T 1 = g2ins—nal alr—ral+ine—nal _ 4ln—ns|

Note that this is the general solution which is valid for all n4 and ng.

(a) For the special case in which n > np we have (recall that ng > n4)

) | = [ano

(b) For the special case in which n < n4 we have

(¢) For ng <n < ng,

b(n) = m a(n—i-ns —2n4) __ Ot(nB —n)

[ a(n) } 1 [ a(n=na) _ o(2np—na-n) }
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7.14 As shown in Figure 7.12, the Wiener filter may be viewed as a cascade of a whitening filter
with a causal filter that produces the minimum mean-square estimate of d(n) from ¢(n). For
real processes, the system function of the cascade is

Ho = POI0E) = b [2e)]

a3Q(2)

and the mean-square error is
o
&min = 74(0) — Z h(D)rax (1)
1=0

(a) If rg.(k) = §(k) and
4

(1-05z-1)(1—052)

find the unit sample response, h(n), of the causal Wiener filter.

Py(z) =

(b) Derive an expression for the mean-square error that expresses &min in terms of the cross
correlation, rg.(k), and evaluate the mean-square error when

rac(k) = (3)Fu(k) + (3)Fu(—k - 1)

and

E{d*(n)} =4

Solution

(a) If rac(k) = 6(k), then Py(z) = 1 and the causal Wiener filter for estimating d(n) from e(n) is
G(z) = | Py =1
(2) = [Pul2)]

Therefore, the causal Wiener filter is the whitening filter for z(n),

1

H{z) =

so the unit sample response is

(b) The mean-square error is

Emin = 74(0) ~ Zh(k)Tdm(k) = rq(0) — 5}{—3— %c H(z)P} (1/2%)27 dz

k=0

Note that

a3Q(2) | Q*(1/2*)
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where
de ( Z)

Fe) = S

Therefore,
Py (2) = 00Q™(1/2™) Py (2)

and we may write the term inside the integral as follows

1 |:O'QQ*(1/Z*)PL15(Z)

H()PL(/2) = | eeri) = [Puta)] Patyz)

a3Q(2) Q*(1/2%)
Thus, the minimum mean-square error is
1 * *\ . —1 = X 2
min = 10(0) = 5§ [Pac(2y Pic(1/2)z7 = ra(0) = 3 |rac(k)|
k=0

For the given cross-correlation sequence, rq.(k), the minimum error is

(e

Emin =4~ Z(%)zk = %
k=0
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7.15 Let z(n) be an AR(1) process of the following form
z(n) = a(l)z(n — 1) + b(0)w(n)
where w(n) is unit variance white noise, and let y(n) be noisy measurements
y(n) = 2(n) + v(n)

where v(n) is unit variance white noise that is uncorrelated with w(n). We have seen that
the causal Wiener filter for estimating 2(n) from y(n) has the form

Z(n) = a(1)Z(n — 1) + K[y(n) —a(1)Z(n ~ 1)]
Find the value of K in terms of a(1) and b(0) that minimizes the mean-square error

E{fz(n) - 2(n)]*}

Solution
With an estimate of the form

#(n) = a(1)3(n - 1) + K[y(n) — a(D)E(n — 1)}

we want to find the value of K that minimizes the mean-square error
~/ \12

This problem may be solved by differentiating ¢ with respect to K, and sct the result equal to zero.
After a fair amount of work, we find that

_ b2 (0) + az(l)fmin
1+ 82(0) + a2 (Démin

Unfortunately, however, &y, depends upon K. Using the expression

émin =Tz (0) - Z h(l)r:y(l)
1=0

with n
h(n) = K([l - K]a(1)) u(n)
and 2(0)
0 k
Tay(k) = 1o (k) = T__012_(1)(41)1 |
we may easily derive the following expression for £y,
1-K

Emin = bg(o)m

Solving these two equations for K leads to the following quadratic equation,
a?(1)K? + [1+b*(0) — a®(1)]K — b%(0) =0

and the desired solution is the positive real root of this quadratic. Note that if we substitute a(1) = 0.8
and b(0) = 0.6 we arrive at the values for K and &y, derived in Example 7.3.2.
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7.16 The derivation of the Kalman filtering equations for real-valued signals make use of the
following matrix differentiation formulas

d
T tr(KA) = AT

and

d T
2 ~ 9K
R tr(KAK") A

where A is a symmetric matrix.

(a) Show that these matrix differentiation formulas are valid.
(b) Derive the equivalent expression for complex data.

(c) Use these matrix differentiation formulas to derive the expression for the Kalman gain
given in Eq. (7.113).

Solution

(a) With K a p x ¢ matrix and A a q x p matrix, the (4,4)th element of the matrix product KA is

{KA}(l H= Z k(i,m)a(m, 1)

Therefore, the trace is
p g
= Z Z k(i,m)a(m,i)
i=1m=1
and the derivative, with respect to k(4, j), is

53] ..
MTT(KA) = a(j,1)
Thus,

d

For the matrix KAKT, the (7,i)th clement is

q

{KAKT}(M) = Z Zk(i,n)a(n, m)k(i, m)

m=1n=1

Therefore, the trace is

Te(KAK") =3 "> > " k(i,n)a(n, m)k(i,m)

and the derivative with respect to k(i, ) is

q q

Tr(KAKT) = Y a(j,m)k(i,m) + > k(i,n)a(n, j)

m=1 n=1

ok(i,j)
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or, since A is symmetric,

q

0
Tr(KAKT) = =2KA
o) 22, ki natn. )
(b) For complex data, we treat K and K* as independent variables. Differentiating with respect to
K* we have p
Tt (AK") =
2 (KA) =
dK*
and
d

HY
= T(KAK") = KA

{c) Given these matrix differential formulas, the derivation of the expression for the Kalman gain is

straightforward. First, with the error covariance matrix given by
P(n|n) = [I-K(n)C(n)|P(nln — 1)[I - K(n)C(n)]H +K(n)Q,(n)K (n)
we expand it as follows

P(njn) = P(njn—1)-K(n)C(n)P(n|n — 1)+ P(njn — 1)CH (n)KH (n)
+ K(n)C(n)P(nln ~ 1)C* ()K" (n) + K(n)Q{'K" (n)

Since the trace of a sum of matrices is the sum of the traces, using the matrix differentiation
formulas above we have

d
St {P(njn)} = - [1 . K(n)C(n)] P(nln — 1)C (n) + K(n)Qu(n) =0
Finally, solving for K(n) gives the desired expression for the Kalman gain,

K(n) = P(njn — 1)C (n) [C(n)P(nln ~ 1)C7 (n) + Qu(n)|
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7.17 Consider a system consisting of two sensors, each making a single measurement of an unknown
constant z. Each measurement is noisy and may be modeled as follows

Y1) = @+v(l)
y(2) = a+0(2)

where v(1) and v(2) are zero mean uncorrelated random variables with variance % and o3,
respectively.

(a) In the absence of any other information, we seek the best linear estimate of 2 of the form
Z = kiy(1) + kay(2)

Find the values for k; and k2 that yield an unbiased estimate of 2 that minimizes the
mean-square error, E{[x — 7]?}.

(b) Repeat part (a) for the case where the measurement errors are correlated,
E{v(1)v(2)} = poioe

(c) Repeat part (a) within the framework of Kalman filtering, treating the measurements
y(1) and y(2) sequentially.

Solution

(a) For an unbiased estimate, we want
E{z -2} = E{z} -k E{y(1)} - kE{y(2)} =0
Since v(1) and v(2) are zero mean, and E{z} = z (z is an unknown constant), then
E{z-2}=2— (ki +k)z=0

Therefore, we want
ki+ke=1

or
ko =1~k

The mean-square error that we want to minimize is

B{le-2"} = EB{[z- k) - (1~ k)y(2)]’ “}
= E{[—klv( ) — 1‘1@1)1} @]
= k101 (1-k)%o
where the last equality follows from the fact that v(1) and v(2) are uncorrelated. To find the

value for k; that minimizes the mean-square error, we set the derivative with respect to ky equal
to zero,

—8——E{[x ~ 3%} = 2ki0% ~ 2(1 — k1)od =0
Ik,
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Solving for k; we find

fa= 0% + o2
and, therefore,
b= 1= kg = —
’ BT
Thus, the estimate for z is
2 2
Z= a_%o_;fo_g ‘y(l) O%Z}Ug y(2)

If v(1) and v(2) are correlated, the only change required in part (a) comes when we evaluate the
mean-square error, which is

E{[r - 5*\]2}

E{ [—kyo(1) — (1 — kl)v(z)]Q}
= kio} +2ki(1 — k1)poros + (1 — ki)?02
Setting the derivative of the mean-square error with respect to k; equal to zero we have
a
Oky
Solving for k; we find

E{lz - 2]*} = 2ki01 +2(1 - 2k1)poraa — 2(1 — ky)ok =0

by = J% — PU102
! cr% -Qpalag—i—cr%
Finally, for ko we have
2 _ poo
ky =1 ky = b L7172

0% — 2poiog + crg
In the context of a Kalman filter, this problem is the same as the problem worked in Exam-
ple 7.4.1, except that the variance of v(n) is not a constant, since it changes from ¢? to o3. For
the state equation we have

z(n) =z(n—-1)
and the measurement equation is

y(n) = z(n) + v(n)
Therefore, A(n) =1, C(n) =1, Qu(n) =0, and Q,(n) = ¢2. Since A(n) = 1 and Q,(n) = 0,
it follows that P(njn — 1) and P(n — 1jn — 1) are equal,
P(njn—1)= P(n — 1jn — 1)

and, as in Example 7.4.1, we will simplify the notation and write P(n) instead of P(n|n). For
the Kalman gain we have

K(n) = P(n—~1)[P(n - 1) + 0] o

and the update for P(n|n) is

P(n) = [1 - K(n)] P(n-1)
= [1 N P(:("n;) Jlr)ag] JECEE
P(n - 1)o2

Pln—1)+a2
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Let us now find the first two values for the Kalman gain. With P(0) = co we have

and with P(0)o?
PO = B0 =
we have P() »2
K@) = P(1) + 02 - 0% + o2

Now we may recursively estimate x as follows. With Z(0) = 0, after the first observation we have
2(1) = 2(0) + K(1)[y(1) - 2(0)] = y(1)

Then, with the second measurement we have

2(1) + K (2)[y(2) - 2(1)]

y(1) + [y(2) — 2(1)]

z(2)

of
2 2
oy + 03

i

o2 f
= 1)+ - 2
0%+a§y( ) Uf—l—agy( )

which, of course, is the same as we derived in part (a).
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7.18 An autoregressive process of order 1 is described by the difference equation
z(n) = 0.5z(n — 1) + w(n)

where w(n) is zero-mean white noise with a variance o2 = 0.64. The observed process y(n)
is described by

y(n) = x(n) +v(n)
where v(n) is zero-mean white noise with a variance o2 = 1.
(a) Write the Kalman filtering equations to find the minimum mean-square estimate, Z(n|n),
of z(n) given the observations y(i), i = 1,...,n. The initial conditions are Z(0|0) = 0
and E{e?(0/0)} = 1 where ¢(0]0) = z(0) — Z(0/0).
(b) Assuming that the filter reaches a steady state solution, find the steady state Kalman
gain and the limiting form of the estimation equation for Z(n|n).

Solution

(a) With the state and observation equation given by

z(n+1) = 05z(n)+w(n)
y(n) = =z(n)+v(n)

we see that A = 0.5 and C = 1. Therefore, the Kalman filtering algorithm is

1. Z(0) =0, P(0[0) = 1.

2. Forn=1,2,...
(a) P(njn~1) = (0.5)2P(n—1jn—1)+0.64
(b) K(n) = P(njn~1)[P(njn—1)+1]""
(¢) Plnin) =[1 = K(n)|P(njn ~ 1)
(d) Z(n) = 0.52(n — 1) + K(n) [y(n) — 0.5Z(n — 1)]

(b) From the Kalman filtering equations we have for P(n|n) we have

P(njn) = [1 - K(n)]P(n[n -1)= [l — ]TZ%%} P(njn—-1)
B P(nin -1)
Plnjn—1)+1

Thus, 2
o (05)2P(n—1jn—1)+0.64
P(nln) = 1= (05)2P(n — 1|n — 1)+ 0.64

In the steady state, P(n + 1|n + 1) = P(n|n), and we have

_ 0.25P(n|n) +0.64
" 1.64+ 0.25P(n|n)

P(nln)

Simplifying we have
0.25P?(n|n) + 1.39P(n|n) — 0.64P(n|n) = 0
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Solving for P(n|n) we find that there is only one positive root, which is
P(n|n) = 0.4559
Since K (n) = P(n|n), then the steady state estimation equation is

Z(n) = 0.5%(n — 1) + 0.4559[y(n) — 0.5Z(n — 1)]



212 Problem Solutions

7.19 In many cases, the error covariance matrix P (n|n — 1) will converge to a steady-state value P
as n — 0o. Assume that C, Qy, and Q, are the limiting values of C(n), Qu(n), and Q,(n),
respectively.

(a) For A(n) = I, show that if P(n|n — 1) converges to a steady state value P, then the
limiting value satisfies the algebraic Ricatti equation

pci(cpct +Q,)'CP-Q, =0

(b) Derive the Ricatti equation for a general state transition matrix A(n) that has a limiting
value of A.

Solution

(a) From the Kalman filtering equations, we have
P(njn—1)=An-1)P(n—-1n- DA% (n - 1)+ Qu(n)

With A(n) = I, this becomes

P(n[n —1) = P(n —1jn - 1) + Qu(n)
For the error covariance matrix, P(n|n), we have

P(nin) = [I - K(n)C(n)|P(nln - 1)
Substituting this into the expression above for P(n|n — 1) gives

P(njn—1) = [I- K(n - 1)C(n ~ 1)]P(n — 1jn — 2) + Q. (n)

In the steady state, P(njn — 1) = P, C(n) = C, and K(n) = K. Incorporating the steady state
conditions into the equation above for P(n|n — 1) we have

P =[I-KC|P +Qu
Cancelling P on both sides of the equation and rearranging yields,
KCP-Q, =0 (P7.19-1)
Now, for the Kalman gain, we have
K(n) = P(njn — 1)C¥ (n) [C(n)P(nm ~1)C (n) + Qu(n)J -

which, in steady state, becomes

K = PC" [CPC + Q. -
Substituting this into Eq. (P7.19-1) gives the desired equation

PC¥[cPC” +Q,] TP -Qy =0
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(b) For the more general case in which there is a general state transition matrix A, the only equation
that contains the matrix A is the update equation for P(n|n — 1) which becomes, in steady state,

P= A{I - KC}PAH +Qu
Substituting in the steady state value for K we have
-1
P = A[I —pcH (CPCH + Qv) C}PAH + Q.

which is the desired result.
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7.20 In Example 7.4.1 we derived the Kalman filter for estimating an unknown constant from noisy
measurements. The estimate at time n was shown to be
P(0)

i(n) :f('ﬂ,— 1) + m

[y(n) = 3(n - 1)]

(a) Solve this difference equation and find a closed-form expression for Z(n) in terms of #(0)
and the measurements y(0), y(1),...,y(n).

(b) What does Z(n) converge to as n — 0o?

Solution

(a) Writing the estimate Z(n) in the form

o2
3(n) = 3(n— 1) + —2 O 5 [v() ~ 2~ 1)]

1+ no2P(

we may derive a closed-form expression for Z(n) as follows, First, note that for F(1) we have

o 022P(0) o1 3(0) + 0 2PO)y(D)
3) =20 + 1+0,2P(0) [y(l) N x(O)} T 1+0,2P(0)
Then, for Z(2) we have
72) = 30+ —2 0 1) 5

1+ 20, 2P(0)

(1 +0,2P(0)]2(1) + 0572 P(0)y(2)
1420, 2P(0)

3(0) + 0, *P(0)y(1) + 0,2 P(0)y(2)

1+ 20, 2P(0)y(2)

and it follows by induction, that

kG

[3(0) +0, 2 P0)) y(k)]

k=0

1

&) = 1+ noy 2P(0)

(b) Asn — x ,
7n) — = S ylk)
k=0
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7.21 In this problem we will derive the following expression for the Kalman gain,
K(n) = P(njn)C"(n)Q, ' (n) (P7.21-1)

(a) By substituting Eq. (7.113) for the Kalman gain into Eq. (7.114), show that the error
covariance matrix P(n|n) may be written as

P(n|n) = P(njn—1) —P(n!n*1)CH(n){C(n)P(n]n—1)CH(n)—i—Qv(n)] *lC(n)P(nIn—l)

(b) Using the matrix inversion lemma given in Eq. (2.28) on p. 29, show that the inverse
covariance matrix may be written as

P~ }(nln) = P~ (n|n — 1) + C¥ (n)Q; " (n)C(n)
(c) By multiplying the expression for the Kalman gain given in Eq. (7.113) on the left by
P(n|n)P~(n|n), use your results in part (b) to derive the expression for K(n) given in

Eq. (P7.21-1).

Solution

(a) This part follows by inspection. With
P(nln) = [I - K(n)C(n)]P(nm ~1)
and a Kalman gain given by
K(n) = P(aln ~ 1)C¥ (m) [Cn)P(nln ~ 1) (n) + Qu(m)]
we have
Pil) = [T P(aln ~ 1)C¥ (n)[O@)P(nin — )07 (n) + Qu(m)]  C(w)|Plnin — 1)
= P(n|n~1) - P(njn - 1)C7(n)[C(n)P(nin — 1)CH (n) + Qu(n)] " Cn)P(njn - 1)
(b) The matrix that we want to invert is
P(n[n) = P(n|n — 1) — P(n|n — 1)C7 (n) [C(n)P(n|n — 1)C¥(n) + Q,(n)] " Cn)P(n|n — 1)
The matrix inversion lemma states that
(A+BCD)'=A"1-A"'B(C!'+DA'B)"'DA™!

Therefore, we define
= P(nn-1)
= —P(njn—-1)C"(n)
[C(n)P(n|n ~1)CH () + Qv(n)] B
C(n)P(njn - 1)

O a w»
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Note that

!

(C'+DAT'B) = [C(n)P(n|n —~1)CH(n) + Qu(n) — C(R)P(njn — )P (n|n - 1)P(nin — 1)CH (n)
= Q7'(n)
Therefore, P~1(nfn) is

Pl (nn-1)+P Y (nln—-1)P(njn — DNCH(n)Q (n)C(n)P(njn — P (njn — 1)
P~} (njn — 1) + C¥(n)Q7 ! (n)C(n)

P~!(nn)

[/

which is what we wanted to show.

(¢) The Kalman gain is
K(n) = Plaln ~ 1)C" (n) [CmIP(nln —~ 1)C7 (n) + Qu(m)]
Multiplying on the left by P(n|n)P~1(n|n) gives
K(n) = P(afn)P~ (nln) P(nfn ~ 1)CY () [CP(nln — )G () + Quim)]
Substituting the expression for P~ (n|n) derived in part (b) yields
K(n) = P(njn) [P~ (nln — 1) + C" ()Q; (m)C(m)| P(nin — 1)C¥ (m) [Cm)P(nin ~ 1)C” () + Qu(m)]
= P(nln) [C7 (n) + CT(W)Q (W) C(m)P(aln - 1)CF ()] [CrP(nln = T (n) + Qu(m)]

-1

= P(uln)C (m)Q;* ()| Qu(n) + CmP(nin = YT ()| [C(m)P(nln ~ G (1) + Qu (n)]
= P(nin)C” Q7" (n)

which is the desired relationship.
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7.22 Consider the ARMA(1,1) process y(n) given by

y(n) +ay(n — 1) = w(n) + bw(n — 1)

where w(n) is a zero-mean white-noise process with a variance o2,

(a) Show that the state-space representation for this process may be written as

1
b } w{n)

—-a 1

x(n):{ 0 O}X(n—l)—i—

mm:[lo}mm
where x(n) is a two-dimensional state vector.

(b) Assuming that the error covariance P(n|n) converges to a steady state value of P and
is a solution of the Ricatti equation given in Prob. 7.19, show that

14+¢c b

2

P - O'v [ b bz J

where ¢ is a scalar that satisfies the second-order equation

(b—a—ac)?
1+c¢

and find the two values of ¢ that satisfy this equation. For each of these values, find the
corresponding values for P.

c=b-a)?+ac—

(c) Find the steady-state Kalman gain and determine the values for K that correspond to
the solutions for ¢ found in part (b).

Solution

(a) Let

Then we have

EAE AR
Thus,
z1(n) = —azi(n—1)+xza(n—1)+ w(n)
zo(n) = bw(n)
and 21(n) = —azy(n - 1) + bw(n — 1) + w(n)
which, with

y(n) = [1 0]x(n)
is the equation we have for the ARMA(1,1) process.
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(b) For the state variable representation of the ARMA process, we have

and

The algebraic Ricatti equation is
P = Af1-PC7(CPC” +q,) ClPA” 1 Q.
or
P - APAY + APC" (CPC +Q,) “aPAY —Q, =0
From the Kalman filtering equations, we know that
P=APAY + Q,
Therefore, let us denote P by

(13 1]

Incorporating this into the equation above, we have

s o =[5 o 1108 1[5 s)enl 2]

Multiplying this out we find

Kool R S I P

Therefore, P has the form
2 1 +c b
P=oa, { boov

Now, note that

1+c¢c b 1
CPCH-i-QD:a?U[lO][ ' bQHO]Jrozo—ﬁ,(uc)
Therefore, 1
H -1
(CPCY +Q,) = Z050

and the algebraic Ricatti equation becomes

2 14+¢c b o | —a 1 14+c¢ b —a 0

o -0

w b b? i 0o 0 b b? 0

14+c¢ b 1 1+ b —-a 0
IR L A I B

T_Ug[a%-}-(a—b)? 0]+ o2 {(b—a—ac)g H

+
Q
BN

—
| e |
|
)
O b




Chapter 7 219

However, in order for this to be equal to zero, as dictated by the algebraic Ricatti equation, the
constant ¢ must satisfy the equation

(b—a-—ac)?

— 42 _ P2
c=a"c+(a—1b) T2

Multiplying this out and simplifying this may be written as
(1-b+c)=0

Therefore, there are two possible values for c,

For ¢ = 0, the matrix P is
1 b
P= U,%U [ b b2 ]
which is non-negative definite for all values of b. For ¢ = b — 1, we have
b2 b
P=o, { by }
which is non-negative definite provided b > 1.
(c) Using the following expression for the Kalman gain (see Problem 7.21)
K = PC”(CPCY +Q,)”"

Kzlic{i beJ[(l)}:{b/(ll-kc)}

we have

Thus, for ¢ =0

or for ¢ = b — 1,
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SOLUTIONS TO CHAPTER 8
Power Spectrum Estimation

8.1 Given N = 10,000 samples of a process z(n), you are asked to compute the periodogram.

However, with only a finite amount of memory resources, you are unable to compute a DFT
any longer than 1024. Using these 10,000 samples, describe how you would be able to compute
a periodogram that has a resolution of

Aw —08910000

Hint: Consider how the decimation-in-time FFT algorithm works.

Solution

To get the maximum resolution from N = 10000 data values, we want to compute the periodogram of
x(n) (segmenting z(n) into subsequences reduces the resolution). The question, therefore, is how to
compute the periodogram of z(n) using 1024-point DFT’s. Recalling how the FFT works, note that

) 9999 9999 9 ] 9999
X(e) = 3 alme i = 33 a(10n 4 [)e=00HDe Zwlwz (100 + D)e=im
n=0 n=0 =0 n=0

Therefore, the procedure is to pad z(n) to form a sequence of length N = 10240, and then decimate
z(n) into 10 sequences z;(n) of length M = 1024,

zi(n) =2(10n+1) ; n=0,1,...,1023

Next, the 1024-point DFT’s of these sequences, X;(k), are computed, and combined using the “twiddle

factors” exp(— lléggo) as follows

9
X(k)y =Y e '#mX,(k) ; k=0,1,...,10239
=0

Finally, squaring the magnitude of X (k) and dividing by N = 10240, we have the periodogram with
a resolution Aw = 0.89(27r/10000).
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8.2 A continuous-time signal x4(t) is bandlimited to 5 kHz, i.e., z4(t) has a spectrum X,(f) that
is zero for |f| > 5 kHz. Only 10 seconds of the signal has been recorded and is available for
processing. We would like to estimate the power spectrum of z4(t) using the available data
in a radix-2 FFT algorithm, and it is required that the estimate have a resolution of at least
10 Hz. Suppose that we use Bartlett’s method of periodogram averaging.

(a) If the data is sampled at the Nyquist rate, what is the minimum section length that you
may use to get the desired resolution?

(b) Using the minimum section length determined in part (a), with 10 seconds of data, how
many sections are available for averaging?

c) How does your choice of the sampling rate affect the resolution and variance of your
g
estimate? Are there any benefits to sampling above the Nyquist rate?

Solution

(a) If we sample at the Nyquist rate, f; = 10kHz, then a resolution of Af = 10Hz (in analog
frequency) implies that we want a resolution (in radians) of

Aw = 27r% =27 x 1073

s

Since the resolution of the periodogram using an L-point data record is
=~ 2
Res[PpER(w)] = Aw = 089—L—
then for Bartlett’s method we want to use a section length of

2
>0.89— = 1
L> 089Aw 890 samples

(b) Sampling at 10 kHz, 10 seconds of data corresponds to N = (10)(10 x 10%) = x10° samples.
Therefore, with a 1024-point DFT the number of sections we may have in Bartlett’s method is

K =[N/1024] = 98

(c) If the sampling rate is increased then Aw decreases which, in turn, requires a longer section
length for a given resolution. However, an increase in the sampling rate produces a corresponding
increase in the total number of samples within a T' second interval. Therefore, since the variance
(normalized) is

V=L/N

increasing the sampling rate has no effect. Thus, provided that the sampling rate is not less than
the Nyquist frequency, the resolution and the variance do not depend on the sampling rate.
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8.3 Bartlett’s method is used to estimate the power spectrum of a process from a sequence of
N = 2000 samples.

(a) What is the minimum length L that may be used for each sequence if we are to have a
resolution of A f = 0.0057
(b) Explain why it would not be advantageous to increase L beyond the value found in (a).

(c) The quality factor of a spectrum estimate is defined to be the inverse of the variability,
Q=1/V

Using Bartlett’s method, what is the minimum number of data samples, N, that are
necessary to achieve a resolution of Af = 0.005, and a quality factor that is five times
larger than that of the periodogram?

Solution

(a) Since Af =0.9/L then
_ 989 09 g
Af  0.005
(b) Increasing L will increase the resolution, but it will also result in a decrease in the number
of segments that may be averaged. This, in turn, will increase the variance of the spectrum

estimate.

(c) For the periodogram, the quality factor is Qper = 1/Vper = 1. The quality factor for Bartlett’s
method is Qp = 1/Vp = K. Therefore, if we want Qper/Qp > 5, then we must have K > 5.
With M = 180 (for Af = 0.005), then we must have

N =KM > 5 x 180 =900
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8.4 A random process z(n) is generated by filtering unit variance white noise as shown in the
figure below

w(n) 1 1 z(n)
A(2) As(z)

where

(a)

(b)

Solution

(a)

A(z) =1+az7 1 +09927% ; As(z) =1—az ! +0.98272

Prepare a carefully labeled sketch of the power spectrum of z(n) assuming that a is
small, e.g., 0 < a < 0.1. Pay careful attention to the location and amplitude of the two
spectral peaks and the value of P,(e/*) at w = 7/2.

If a = 0.1, determine the section length L required to resolve the spectral peaks of
P,(e’*) using Bartlett’s method. For this value of L, find an approximate value for the
bias of the estimate at the peaks of the spectrum. How is the bias related to the area of
the spectral peaks?

Consider the method of periodogram smoothing. How many lags of the autocorrelation
must be used to obtain a resolution that is comparable to that of Bartlett’s estimate
considered in part (b)? How much data must be available if the variance of the estimate
is to be comparable to that of a four-section Bartlett estimate?

The system function of the cascade is

1 1
H = .
() = T 09957 T ar T 700852

and, since the input to this filter is white noise, then the power spectrum of the output process,
z(n), is

1 1 1 1
1+az"14099272 1-az ' +09822 1+az+09922 1—az+ 09822

P(z) =

Thus, P,(z) has a total of 8 poles, 4 inside the unit circle and 4 outside. Since each pole is
close to the unit circle, then the peaks of the power spectrum P,(e’*) are at frequencies that
correspond, approximately, to the angles of the poles, which are

w = cos™} a y Wy = cos™t 4
2v/0.98 2v/0.99

For example, if a = —0.1, then
w1 = 0.51600  ;  wy = 0.483927

Therefore,
Aw = wy — wy = 0.032087
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or
Af = Aw/2m = 0.01604

Note that the midpoint between the two spectral peaks falls at approximately wy = 7/2. Since

1 1
T 1+a2+(0.98)2 — 3.96acosw + 1.96 cos 2w 1+ a2 + (0.99)2 — 3.98a cos w + 1.98 cos 2w

Py(e™)

The power spectrum at wy, wy, and wy is

. 1 25108
Py(e*1) = =
(4.0-1074 —1.0- 10~ %a2)(1.0 - 104 + 4.0204a?) ~ 1.0 104 + 4.0204a2
5 1 4
Pa(e?) = L ~ 0
(40-10 %+ 3.97987a2)(1.0- 10~* —3.0-10%)  4.0-10~4 + 3.97987a2
Py(el) = 1

(4.0-107%4 + a?)(1.0 - 10~ + a?)

If @ = 0.1 then these values become

P (ed“) 6.203 - 101
Py (efw2) 2.4876 - 10°
P,(e7°) =~ 9.5202.10°

Q

Q

Thus, the peak in P,(e/*) at w; is down 6dB from the peak at ws, and the "valley” at wy is
about 14dB down from the peak at wy.

(b) For resolving two peaks that are separated by Af, we require a section length

0.89
> e
L> AT
With Af = 0.01604, we must have
L > 56
Now,
. 1 K. , N A
E{Pp(e’)} = E {? > PE(e)| =E [P}E’g,?(ef“’)]
k=1
Thus,
~ 1 " . ‘
E{Pp(e)} = o= [ Po(¢)Wa(J)do
21 J_,
where )
; 1 [sin(wL/2)
Jwy — o |
Wa(e™) L |i sin(w/2)

Since L has been selected so that the two peaks can be resolved, let us assume that Wi(e/*) is
non-zero only over the interval —Aw/2 < w < Aw/2. Furthermore, since the width of the main
lobe of the window Wg(e?*) is much wider than the width of the spectral peaks, if we assume
that Wp(e?”) ~ L over the interval —Aw/2 < w < Aw/2, then we can form the following

approximation
Aw/2

~ . L ,
E{Pg(e’)} = w/ Py (e7“=)dp
{ ( )} 2n —Aw/2 iE(
Therefore, E{ﬁB(ej“)} at w = w; and w = wsy is proportional to the area under the spectral
peaks.
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(c) For periodogram smoothing, with a Bartlett window, the resolution is

2
Aw = 0.64—
n M

The resolution of Bartlett’s method with a section length L = 56 is

27
Aw = 08922
v 56

For periodogram smoothing to have the same resolution, we require

M =064 2 —064. 28

Ao “oge W0

The normalized variance of the Bartlett estimate is

1
Vo = —
VE= %
and for periodogram smoothing it is
Vi = 2M
BT = 575

In order for periodogram smoothing to have the same variability as Bartlett’s method with K = 4
sections, we require

oM 1
3N 4
With M = 40, so that the resolutions are the same, this requires a data record length of
8

N=-M =107
3
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8.5 Many commercial Fourier analyzers continuously update the estimate of the power spectrum
of a process z(n) by exponential averaging periodograms as follows,

D. [ pJw ) Jw l-a = —jnw 2
P,(e™) = aP;_4(e )+——-N—ln§::Oxi(n)e ‘

where z;(n) = z(n + Ni) is the ith sequence of N data values. This update equation is
initialized with P_1(e’) = 0.
(a) Qualitatively describe the philosophy behind this method, and discuss how the value for
the weighting factor « should be selected.

(b) Assuming that successive periodograms are uncorrelated and that 0 < « < 1, find the
mean and variance of P;(e’*) for a Gaussian random process.

(c) Repeat the analysis in part (b) if the periodograms are replaced with modified peri-
odograms.

Solution

(a) As data is being read by a spectrum analyzer, the goal is to continuously update the estimate.
As cach data record of length N is collected, the periodogram is computed, and averaged with
the previous spectrum estimate. Although a running average could be formed, this would assume
that the process is stationary. Selecting a value of 0 < a < 1 allows the estimate to forget Pi(e%)
as more data is collected. In the extreme case in which o = 0, P;(e/*) is the periodogram of
the most recent N data values. As we will see in part (b), P;(e?“) is an exponentially weighted
average of the previous periodograms.

(b) If we define

_ L . 12
U) =7 | 2 mlme™™
n=0

then the expression for the ith spectrum estimate, P;(e/*) is

~ . ~ , 1-— .
Pi(e’) = aPi1(e?) + NaQ,-(eJ‘“)

which is a difference equation for l/ii(ej‘“). Since the initial conditions are zero, ﬁ_l(ej“‘) =0,
then the solution for P;(e/*) is

Py(el*) = Z(l — @)akQ(e)
k=0
Taking the expected value we have
E{P(e/)} = (1 - ))a*E{Qi(c’)}
k=0

Since Qx(e7) is the periodogram of xy(n), then

E{Qu(e)) = %—;Pz(ej‘”) « Wi (eh)
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and

E{B(e) = 51; (1~ 0)a* [Py () » Wi ()]
k=0
= o [P) s W) (1 o) Y o
k=0
1 1—ait!
% 11—«
- (- a“‘l)% [Py « Wi ()]

[Po ()« Wa(e7)] (1 — a)

For the variance, we proceed in the same way, using the fact that the variance of the periodogram
is
var{ Py (67%) } & P2(e7*)
Therefore, we have
E{R(e)} = 3 (1-a)a™P(e*) = (1 - a)’Pu(e™) Y o
k=0 k=0

L 2(i41) ) )
21_‘3‘__..__ (1- 042(1+1))Pz(63w)

(1-0) 1-a2

I

. 1-«a
P, (%) = T

(¢) For modified periodograms, the only change that is necessary is to use

E{Qi(ejw)} = —]Vlﬁipz(ej“’) * WB(ej“’)]2

where
1 Nl
U= Z [w(n)[?

n=0

Substituting this into the expression in part (b), we have for the expected value,

E{ﬁi(ejw)} =(1- ai+1)%%v—ﬁpz(ejw) % |WB(ej“")12

and the variance is the same.
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8.6 The minimum variance method of spectrum estimation constrains the FIR bandpass filter

G;(e’) to have a gain of one at frequency w = wj,
Gi(ejwi) =1

Another approach is to constrain the filter to have unit energy over a frequency band that is
centered at w = w; and has a bandwidth of A,

1 wi+A/2

le‘(ejw)

K wi—=A/2

With this constraint, the filter coefficients g; = [g;(0), g:(1), ..., gi(p)}T that minimize the
power in the filtered process,

E{lyi(n)]*} = gl Rug:

may be shown to be the solution to a generalized eigenvalue problem,
Ragi = Mwi, A)Tig;

where T is a matrix whose elements depend upon w; and A. The spectrum estimate, referred
to as the DASE estimate, is ‘
Ppase(€’) = Anin(wi, &)

where Apin(w;, A) is the minimum eigenvalue of the generalized eigenvalue problem.

(a) Perform the minimization of E{|y;(n)|?} and determine the form of the matrix T;.

(b) What happens to the matrix T; in the limit as A — 0? What does the power spectrum
estimate correspond to in this case?

(c¢) Repeat part (b) for A = 27
(d) Find the DASE estimate for white noise.

Solution

(a) In this problem, we want to minimize
E{lui(n)]*} = gl Rogy

subject to the constraint
1 wit+A/2

— Gi(e9)Pdw = 1
A/wm 1Gi(e)|

where )
Gi(ejw) = Zgi(n)e“jm"
n=0
This constraint may be written as follows
1 ™

— G (&)Y H (7)) G* (7)) dw =
57 | G ()G () dw = 1
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where
Hy() = 2 /A ;o w—wi <A/2
’ 0 ; else
With
1 s ) ) 1 wi+A/2
hi - = H (7)™ du = — Jnw g
(n) o) i(e?)e W=~ /M’"A/2 e w
- L [ejn(wwam - ejn(er/Z)]
jnA
= 1Aej”“”‘ - 2j sin%é = ej”‘”isinc(%é)
jn
where .
. _ sinz
sinc(z) = —
we have

_2_1; /_ﬁ Gi(e7) Hi ()G (7 )dw = Z [Z gi(k)hi(n — k)} g7 (n) =g Tg;

n=0 Lk=0

where T; is a Toeplitz matrix with

{1:}, , = Dsine[(k - 1)

ol >

]

Thus, our problem is

Héi,n g’R,g; subject to glTig =1
Introducing a Lagrange multiplier, A, this is equivalent to minimizing the function
Qr(gi, ) = &' Rogi + A1 — g’ Tugi)
Differentiating with respect to g, and settting the result equal to zero, we have

9Qr(8i, )

=R i — AT, =0
og? z & g

or
R,g: = A\T.g;
which is a generalized eigenvalue problem. Differentiating with respect to X gives

l—giHTigi:O

or
gfTigi=1

Recall that we want to minimize giHngi. Since

g Rogi = A gf Tigi = A

229
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then minimizing g R, g; is equivalent to minimizing A. Since R, is nonsingular, the generalized
eigenvalue problem may be written as follows
_ 1
R;'Tig; = 5 8

Therefore, g; corresponds to the eigenvector of R !T; that has the mazimuwm eigenvalue, and

AnLy is the estimate of the power.

As A — 0, the matrix T; approaches the limit
, A .
. 1 k—l)w; et I 1( T P
lel—rPO{Tl}kJ = Alino el F=Dwisine[(k — 1) 2] = gllkb=bw
Therefore,
Ti = eieiH
where ' . r
e; = [1, ej“’i, AN ,e]"“”}

and the generalized eigenvalue problem becomes
Rogi = ATigi = eie]'g;

or,
_ 1
R;'eief’g; = 1 8i

Multiplying both sides on the left by e gives

_ 1
(e{{Rz lei)engi = Xefgi

Since ef’g; is a scalar, we may divide both sides by e g;, which gives
. 1

N eiH R; 1e¢

which is equivalent to the minimum variance power estimate.

When A = 27,

A

T, =1
and the generalized eigenvalue problem becomes
R.g: = Ag;

In this case, A is the minimum eigenvalue of R, as in the Pisarenko harmonic decomposition,
and the power estimate corresponds to the white noise power under the assumption that the
process consists of a sum of complex exponentials in white noise.

In the case of white noise, R, = 021, and the generalized eigenvalue equation becomes
olgi = \Tig;

or 1

0, Tigi = 18
Therefore, the power estimate at frequency w; is equal to the maximum eigenvalue of the matrix
o72T;. This value, however, depends on w; and A.
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8.7 Let x(n) be a random process consisting of a single complex exponential in white noise,
r4(k) = Pe?*0 4 o2 5(k)
and let g; be the minimum variance bandpass filter
_ Rjle
S
that has a center frequency w; with G(e/¢) = 1. Assuming that w; # wp, prove that G;(z)
has a zero that approaches z = /0 as g2 /P — 0.

Solution
For the given process, the N x N autocorrelation matrix is

P
R, = Pegell + 021 =02, [I + Feoeﬂ
| 5

w

Using Woodbury’s identity, the matrix inverse is

L eoel!
R“l—l I~O.1%’OO 1 I Pegell
) 1 NP | ™ g2 02 + NP
Ny

The minimum variance filter is

A Pegell
;oo “lo. — 2 P
g =R, e =g {e’ = +NPel}

and the frequency response is

i A r
(e) =" = 7y [e”eu oy peeelel
where
_ 1
~ efR;le;
is simply a scalar. Evaluating G;(e/“) at w = wy, we set e = ey as follows
. A P A NP
w H H
Gl oo =080 = o7 [‘*5' & ST NP 0% } T2 [1 ) _JTNFJ =
Thus,
y bl N "
Gi(eJ )'w:wo = —(;Z [1 - %2”_ +N eO e;

and it follows that

lim  Gi(67)|wmw, =0
i Gile™ sy

i.e., as 02 /P — 0, a zcro in G(z) approaches the unit circle at the point z = ei®o,
w PP P
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8.8 A random process is known to consist of a single sinusoid in white noise,

z(n) = Acos(nwy + ¢) + w(n)

Thus, the autocorrelation sequence for z(n) is

rz(k) = %A2 cos(kwo) + o26(k)

Problem Solutions

(a) If wo=7/4, A= /2, and 62 = 1, find the second-order MEM spectrum, f’mem(ej‘”).

(b)

Determine the location of the poles of Ismem(z).

(c) Does the peak of }A’,‘nem(ej“’) provide an accurate estimate of wg? How does this estimate
of wp compare to that obtained using the Pisarenko Harmonic decomposition?

Solution

(a) The second-order MEM spectrum is found by solving the normal equations

(b)

{ r2(0)  ry(1) ] [ a(1) ] — { r2(1) }
rz(1) 12(0) | | a(2) 72(2)
The first three values of the autocorrelation sequence are

7':1:(0) = %AQ-}—J?‘I =2

(1) = 1A? cos(%) = %\/—2—

T

ro(2) = 1A% cos(g) =0
Thus, the normal equations are

2 3V20Ja)]_ [Lv2

V2 2 a(2) | 0

Therefore, the MEM spectrum is

~ . €2
P.(e?¥) =
(™) 1- %\/Zz‘l + %2‘2

where
€2 = 15(0) + a(1)ry (1) + a(2)r,(2) =

The roots of the denominator polynomial are at

V2
7

~Is

z= +7

/5
7

which, in polar form, are
2=0 3786d:j0.32057r
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(c) The angles of the poles correspond, approximately, to the locations of the peaks in the maximum
entropy spectrum. Since the poles are at an angle of £0.32057, and the sinusoid has a frequency
of wy = 0.257, then the MEM spectrum does not produce a very accurate estimate of the
sinusocid frequency. If we were to use the Pisarenko harmonic decomposition, on the other hand,
the frequency would have been determined exactly.
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8.9 Suppose that we have determined the following values for the autocorrelation sequence of a
real-valued random process z(n):

rz(0)=1 5 rz(l)=a ; r(2)=0
(a) Using the Blackman-Tukey method with a rectangular window, find and make a carefully
labeled sketch of the estimated power spectrum, Pgp(e?).
(b) Repeat part (a) for a second-order MEM spectrum estimate, Ppem (7).
(c) Repeat part (a) for a MV spectrum estimate, Pyry (/).

(d) What can you say about the autocorrelation sequences that correspond to the spectrum
estimates Ppr(e’”), Puem(e’*), and Py (e’*) found in parts (a)-(c)?

Solution

(a) For the Blackman-Tukey estimate with a rectangular window, the spectrum estimate is
ﬁBT(ej“’) =1+ 2acosw

(b) For the second-order MEM spectrum, the coefficients a(1) and a(2) are solutions to the normal

equations 1
o] = [5]
Thus,
) )
With 2
€2 = 72(0) + a(1)r (1) + a(2)r.(2) = _11_:;_20_72__
then

o~ . 62
P e?¥) =
e (€77) 1+ a(1)e~3 + a(2)e~23|*

(1 -2a2)(1 ~ a?)
1—-a?+2a* - 20(1 — a?)? cosw + 2a2(1 — a?) cos 2w

(¢) The second-order minimum variance estimate is

~ . p+1
p VZA
v (¢7) efRI1e
Therefore, with p = 3,
1 o O
R.=|a 1 «
0 o 1
and
1 1-a? —-a o
R;'= -
v T 952 e 1 “
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it follows that the minimum variance estimate is

3(1 - 2a2)

~ jwy
Ppv (e?) (3 - 2a?) — dacosw + 2a2 cos 2w

(d) For the Blackman-Tukey estimate,
o~ . 1 ) = O
FH Por(e)] =7tk = a5 k=41
0

and for the MEM estimate,

F ﬁMEM jw) =Ty(k) =
[ ¢ } =S aWFe(k-1) 5 k>2

=1
For the minimum variance estimate,
F [ﬁBT(efw)] = 7(k)

which, as with the MEM spectrum estimate, is infinite in length. However, unlike either the
Blackman-Tukey or the MEM estimates, the autocorrelation matching property does not hold,
i.e., 7y (k) # rp(k) for [k| < 2.
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8.10 Given that the sixth-order minimum variance spectrum estimate of a process z(n) is

1
1+ acosdw + 4a cos 6w

Ing(ejw) =

and the seventh-order estimate is

1
1 —2acos2w — acosTw

Py (e7) =

find the seventh-order maximum entropy spectrum, ﬁmem(ej“’)‘

Solution
This problem may be easily solved using the following relationship between the MEM and MV spectrum

estimates,
1
Mo S

Specifically, note that
7

8 1
B () fg Plm(e)
and .
7 1
%WM_ZﬂMW)
Taking the difference yields
1 _ 8 7

Piln(ei) — P (er)  Bip(er)
Thus,
1
P (e3%)

mem

8[1 — 2acos 2w — acos7w} - 7[1 + acosdw — 4acos6w]
or,
1

-I,S(T)—(-f-; =1 - 16a cos 2w — 7a cos 4w — 8a cos Tw — 28a cos 6w
mem (€79
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8.11 The first-order (p = 1) minimum variance spectrum estimate of a random process is

8

ﬁMV(ejw) - 3 — cosw

(a) Find the autocorrelations, r,(0) and r,(1), that produced this spectrum estimate.

(b) In general, given the pth-order minimum variance estimate ]SMV(ej“’), is it possible to
recover the values of the autocorrelation sequence that produce this estimate?

Solution

(a) The first-order MV spectrum estimate is

~ : 2 2
v (") efiR;le  ¢(0) +2¢(1) cosw

where

r2(1) 72(0)
and g(k) is the sum along the kth diagonal of R!. Since

_1:_____3_*__[ 72 (0) ~r$(1)]
O r2(0) = r2(1) [ —re(l)  1e(0)

r= [0 0]

then 2r,(0) ~ra(1)
0= am ¢ W ag s em

R o 2[r2(0) = r2(1)]
e

and

If we express Py (/%) as follows

1 [2(0) = r2(1)]

P JO) =
v (€)= T 0
—t — COSW
r2(1)
then, comparing this to the given minimum variance estimate, we have
7z(0) r2(0) —r2(1)
—t =3 ; =38

Solving these equations for 7,.(0) and r,(1) we find
r:(0) =3 ; r(1)=1

(b) In general, the pth-order minimum variance estimate the autocorrelation sequence 7, (k) may be
recovered from the minimum variance spectrum estimate, ﬁMV(ej‘”). However, the procedure
is not easy. Since R, is Toeplitz, if R, is a p x p matrix, then only p entries in R, need to
be determined — either the first row or the first column. The inverse of R, is centrosymmetric
and, given Py (e?), we know the sums along the p diagonals of R;!. Expressing the inverse
of R7! in terms of r,(k), and summing along the diagonals, we obtain p nonlinear equations in
p unknowns which, in theory, can be solved for r, (k).
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8.12 The second-order maximum entropy spectrum of a process z(n) is

- . 2
Jwy
Fnem(e) 11— 0.5¢=3% + 0.25¢~2|

(a) What is the first-order maximum entropy spectrum?

(b) Find the second-order minimum variance spectrum estimate.

Solution

(a) Given the second-order MEM spectrum of z(n), it follows that the second-order all-pole model
is
A(z) =1~0.52"1 +0.25272

The inverse Levinson-Durbin recursion yields the following autocorrelation sequence

r, = [2.5397, 1.0159, —0.1270]"

Therefore, the first-order MEM spectrum is

~ . € €
Prem(e?Y) = = -
(") ) . 21— 0.4e—iw)?
72(0)
where 21
e = 14(0) + a(1)ra(1) = r,(0) - :EO; =2.1333

(b) Having found the autocorrelations r,(0), r,(1), and r,(2), we may now find the second-order
MV estimate as follows. With

r:(0) 7ra(1) 72(2)
R, = | rs(1) 72(0) ro(1) | =
rz(2) 75(1) rz(0)

for the inverse we have

1.0159 25397  1.0159

25397 1.0159 -0.1270
-0.1270 1.0159  2.5397

0.50 025 0.125
R;'=| -0.25 05937 —025
0.125 ~0.25  0.50

Therefore,
q(0) 1.5937
q(ly = =05
q(2) = 0.125
and the MV spectrum becomes,
3 3

ﬁ jw = e
v (¢) q(0) + 2¢(1) cosw + 2q(2) cos 2w 1.5937 — cosw + 0.25 cos 2w
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8.13 From measurements of a process z(n), we estimate the following values for the autocorrelation
sequence: ‘
ra(k) = a5k <M

where |a| < 1. Estimate the power spectrum using

(a) The Blackman-Tukey method with a rectangular window.
(b) The minimum variance method.

(¢) The maximum entropy method.

Solution

(a) Using the Blackman-Tukey method with a rectangular window we have

M
Ppr(e?) = Z alflemike
k=—M

M M
= E afe=dkw 4 E aFelk 1
k=0 k=0

QM1 1—a?+cos Mw — cos(M + 1)w
1+ 02— 2acosw

2

(Note: the last step above requires a bit of algebra).

(b) For the minimum variance method,

M+1 M+1

P &) = =
mv (€7) efRyle  q(0)+ 230, (k) cos kw

where
Ry = Toep {TI(O),TZ(I), S ,Tm(M)}

and the coefficients g(k) are the sums along the diagonals of R;/. As we saw in Example 5.2.11
(p. 258), the inverse of this autocorrelation matrix is

1 - 0 0 0
-a 1+a? —-a - 0 0
R-1 1 0 —a 14a® ==+ 0 0
My g2 : :
0 0 0 1+a? -—a
0 0 0 —a 1
Therefore,
Buy () = (M +1)(1 - a?)

(M +1)+ (M ~1)a? -~ 2Macosw

(c) The maximum entropy spectrum is given by

Pmem(ejw) = L
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Solving the autocorrelation normal equations for the coefficients a,(k), we find

a, = [1,-—@,0,...,0]T

and

_ 2
&p=1—-«

Therefore, the MEM spectrum is

2 2

11—« 1 -«

ﬁmem (ejw) =

11——0/,@’” 2 140 -2acosw
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8.14 In Eq. (8.97), the entropy of a Gaussian random process was given as

H(z) L In Py (e/)dw

:27r —

In this problem, we derive another expression for the entropy. Let x(%) be a real-valued zero
)]

mean Gaussian random process, and let x = [z(0),z(1),...,z(N -1

be an N-dimensional

Gaussian random vector that is formed from samples of this process. The probability density
function for this random vector is

1

1,Tp-1
(2m)N/2(det Ry, )1/2 exp{—3x" R x}

Jo(x) =

where R, is the N x N autocorrelation matrix of the vector x.

(a)

The average entropy of a random vector x is defined as
1
Hy(x) = = [ £0)1n fo(x)ix

Show that the average entropy of a zero mean Gaussian random vector is
1 1
Hy(x) = 5 In(27e) + N In(det Ry,)

Show that the average entropy of a Gaussian random vector may be written as

L ] V-1
Hy(x) = 3 In(27e) + i > " Ineg
k=0

where ¢, is the prediction error sequence that is generated with the Levinson-Durbin
recursion from the autocorrelation sequence r, (k).

The entropy rate of a process z(n) is the limit, as N — oo, of the average entropy,
H(x) = lim Hy(z)
N—oco
Given a partial autocorrelation sequence, ro(k), for k = 0,1, ..., N—1, find the spectrum

P (e’) that maximizes H(z) subject to the constraint that the spectrum is consistent
with the given autocorrelations.

Let P,(e’*) be the power spectrum of a wide-sense stationary process with an N x N
autocorrelation matrix Ry, and let Ay > Ag > ... > Ay > 0 be the eigenvalues. Szegé’s
theorem states that if g(-) is a continuous real-valued function then

1 X 1 o
1\}13100]—\;;9@16) = 5;/49[&( ))dw
Use Szeg6’s theorem to show that

H(z) = 2H(z) + In(2me)

i.e., that the two entropy expressions are proportional to each other.
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Solution

(a) The logarithm of the probability density function is
In f,(x) = =% In(27) - § In(det R,) — 2x"R;'x

Therefore,
HN(X) = “"“/fa: 1nf:c
N

_ _N[__l (21 )~~1n(detR) 5]
1

- —2~] (27r)+~2~N—ln(det Rz)+§
1

= 3h (2we)+ﬁln(d0t R.)

which is the desired result.
(b) Recall that the determinant of an N x N autocorrelation matrix R, is

N-1
det Ry = ] e
k=0

Therefore,
1 1 =
ﬂ ln(det Rm) = ﬁ k_zo In €k

and the desired result follows.

(c) As was seen in Chapter 5, there is an equivalence between a set of autocorrelations, r, (k) for
k=0,1,...,p, and a sequence of reflection coefficients, I';. Therefore, finding a power spectrum
that maximizes the entropy rate, subject to the constraint that the first N autocorrelations are
equal to r,(k), is equivalent to ﬁndmg a set of reflection coefficients I'; that maximize the entropy
rate. Since the entropy rate is

Hy(x) = %m(?we) + % Z Ineg

then maximizing H(x) = limy_., Hy(x) is equivalent to maximizing the prediction errors e,
for k > N. However, the prediction errors are related to the reflection coefficients as follows,
e = c-1(1— |Tk[?)

Therefore, maximizing the entropy rate is accomplished by setting I'; = 0 for j > N. Thus,
P,(e7%) is the all-pole spectrum that corresponds to the given partial autocorrelatlon sequence

(d) If we let the function g(-) be the logarithm, using Szégo’s theorem we have

N
1 /7 ' 1
- - e = i —_—
H(z) = 5 /ﬁﬂlnPw(e Ydw ngréongzlln()xk)

I

. 1 -
J\jh_{nc<> i In(detR;) = 2H (x) + In(27e)
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8.15 In this problem, we examine how the entropy of a process changes with the addition of a
harmonic process. Let y(n) be a random process with power spectrum
Py(e7*) = Pafe?) + Pu(e)
where

; 1/e i Jw—wo| <e
Jwy >
P(e") = { 0 ;  otherwise

(a) Find the entropy of y(n).
(b) What is the entropy of this process in the limit as ¢ — 07

Solution

(a) For a Gaussian process, the entropy is

With . . A
PY() = Pale?) + P.(e)

it follows that the entropy of y(n) is
1 [ . )
H(y) = %/ In[P, (/) + P.(e)]dw
which may be rewritten as follows

i = o [ n{mefe Ziglhe
) &

. WlnP(j‘”)dw—l-i/ﬂln 1+
T2 AN 2n f .

H(x)_-: % [ 7; In {1 + gig:” du

Using the definition of P.(e'*) it follows that H(y) is

H(y) = H(z) + 517—( /ww In [1 + PZ(ij)} dw

If € is small, then

and we have
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(b) Using the result from part (a), it follows that in the limit, as e — 0, the entropy of y(n) approaches
the entropy of z(n),
lim H{y) = H(x)
Pt

i.e., the addition of a harmonic process does not increase the entropy of a process.
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8.16 Given an autocorrelation sequence r,(k) for k = 0,1,...,p, the maximum entropy spectrum

is

~ . €
Pmem(ejw> = D v

14 ap(ye
k=1

where the coefficients ap,(k) are the solution to the normal equations Rea, = ¢pu;. If [y are
the reflection coefficients produced by the Levinson-Durbin recursion, show that the MEM
spectrum may be upper and lower bounded in terms of I as follows,

1+ [Ty

O T 2 < B(e) < () T
Tz P 1+ [rki = memi€ =Ty P 1— ‘Fkl

Hint: Begin with the frequency domain version of the Levinson order-update equation and
use the inequality,
lla] — [b]| < la+b] < |a|+|b]

Solution
From the Levinson-Durbin recursion we have

Ap(¥) = Ay () + Tpe 9™ A% (1)

Therefore, A _ )
[Ap(e™)] < [Ap-1(e™)| + [Tp| | A5_1 ()] = (1 + ITp|) [ Ap—1(e7*)]

By induction, it follows that
P
[4p(e7)] < 1Ao(e™)] [T (1 + [Tw])
k=1

and, since Ag(e/*) = 1, then
P
P < T+ %)
k=1
In a similar fashion,
4] 2 [ A r(e5)] = [Tl [ A5 ()| = (1= ) [ Aya()

Again, by induction, we find

P
[ Ap(e’)] = T] (1 = ITw])
k=1
Since )
ﬁmem ejw :_—p__
= e
with

p=72(0) [T (1~ [T%/?) H (1= T%)) (1 + [T
k=1 k=1
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we have
H 1~ [Te]) (1 +[Tw])

P

ITa+ra)?

k=1

< B,.,

or, performing the division, we have

as was to be shown.

m(e?¥) <

P
ro(0) JT (1 = Iw]) (1 + [T%])
k=1

P
H (1—1%)*

247
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8.17 Let z(n) be a first-order Gaussian autoregressive process with power spectrum

(1-az"1)(1-az)

P.(z) =

where a and ¢ are real numbers.

(a) With the constraint that the total power in the signal is equal to one, find the value or
values of a and ¢ that maximize the entropy of z(n).

(b) Repeat part (a) and find the value or values of @ and ¢ that minimize the entropy.

Solution

(a) The autocorrelation sequence corresponding to the power spectrum

(1—-az"1)(1 ~az)

P(z) =

c
Ty (k) = Tr'—a-[ia‘kl

Therefore, the unit power constraint, r,(0) = 1, requires that
c=1-|a
Thus, the power spectrum is

P = Ty — 0EQE

where
o =1—laf?

Now recall from the spectral factorization theorem (p. 105) that

™
02 = exp {——1-/ Ian(ej“’)dw} = H@)

27 J_ 4

Therefore, since maximizing the entropy is equivalent to maximizing of = 1 — |a|?, then the
maximum entropy spectrum is formed when a = 0, i.e., z(n) is white noise.

(b) The minimum entropy spectrum is formed in the limit as |a| — 1, which corresponds to a
harmonic process.
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8.18 The estimated autocorrelation sequence of a random process z(n) for lags k = 0,1, 2, 3,4 are
r2(0) =2 5 r(1)=1 ; r(2)=1 ; 7,(3)=05 ; ry(4)=0
Estimate the power spectrum of z(n) for each of the following cases.

(a) z(n) is an AR(2) process.
(b) z(n

(c) =(
(d) z(n

is an MA(2) process.
is an ARMA(1,1) process.

contains a single sinusoid in white noise.

=

n

N N N e

Solution

(a) For an AR(2) process, we want to find a second-order AR model. This is done by solving the

normal equations
[ 0[]~ 2]

For the given autocorrelation sequence, these become

el =[]

Thus, the coeflicients are

with a modeling error
Therefore,

and the power spectrum is

(b) For an MA(2) process,

Pra(e?®) = Z 72 (k)e ™ 9F = 2 4 2 cosw + 2 cos 2w
kE=-2

(c) For an ARMA(1,1) process, we must solve the Yule-Walker equations

B[]
@ e | LW 0

The coeflicient a(1) is found from the last equation as follows,

al) = =r2(2)/r2(1) = ~1
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Solving for ¢(0) and ¢(1) we have

8- (2 S - 210202
From Eq. (4.140) we have

B()B(z"Y) = A(z"Y)C(z) = {1+a(1)zH i c(k)z_k’]

k=—oc

= o+ e(=1) = c(0)z + [c(0) — e(1)] + [e(1) — e(2)]z7 + - -

Since B(z)B(z™!) is symmetric and of order one in z and 27!, with ¢(0) = 1 and ¢(1) = —1, it
follows that
B(z)B(z™Y) = —z+2- 271
Therefore, the power spectrum estimate is
[B(e™)? 2—2cosw _
[A(ed“)]2 T 2 —-2cosw

ﬁz(ej“’) =

(d) Tf the signal consists of a single sinusoid, assuming that the autocorrelations are exact, we may
use the Pisarenko harmonic decomposition. With one sinusoid, we use p = 3, and find the
minimum eigenvalue and eigenvector for the 3 x 3 autocorrelation matrix

2 1 1
R=|1 21
11 2
To find the eigenvalues, we have
2-x 1 1
det(R—AI) = det 1 2-x 1 = (2=-0)[2-A)?-1] = [2=-N)-1]+[1-(2-N)] = (1-1)2(4-N)
1 12—

Therefore, the minimum eigenvalue is repeated and has a value
2
Amin =0 w =1

Thus, we must reduce the order of the Pisarenko estimate to p = 2, and find the eigenvector
corresponding to the minimum eigenvalue of the matrix

2 1
R[]
For this matrix, Ani, = 1 and the corresponding eigenvector is
T
Vmin = [17 "1}

Therefore, the eigenfilter is
Viain(2) =1 = 27

so the sinusoid frequency is wg = w. Finally, from the autocorrelation sequence we see, by
inspection, that the sinusoid power is P = A% = 2.
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8.19 The first three values of the autocorrelation sequence for a process z(n) are:
rz(0) =1 5 rz(1)=0 ; 7r(2)=—«

where 0 < o < 1. The eigenvalues of the 3 x 3 autocorrelation matrix that is formed from
these autocorrelations are Ay = 14+ @, A2 = 1, and A3 = 1 — o, and the corresponding
eigenvectors are

1 1
— 0 7 frouncd : =
\/5—1 0 \/51

V] =

(a) Use the Blackman-Tukey method with a rectangular window to estimate the power
spectrum of x(n), and make a carefully labeled sketch of your estimate.

(b) Suppose that z(n) is known to consist of two complex exponentials in white noise. Esti-
mate the power spectrum of z(n) and make a carefully labeled sketch of your estimate.

Solution

(a) The Blackman-Tukey estimate with a rectangular window that extends over the interval [k| < 2

18
2

ﬁBT(ejw) = Z 7z (k)e 9% = 1 (0) 4 2r, (1) cosw + 2ry(2) cos 2w
k=—2

Therefore,
Ppr(e?¥) =1 - 2acos 2w

(b) If z(n) is known to consist of two complex exponentials, then there are several different options.
Using principal components with the Blackman-Tukey method we have

~ ) 1 &
Pro-pr(e¥) = - ; Nilefvif?
With M = 2 and p = 2 this becomes

~ . 1
PPC‘BT(G‘W’U) = - )\ﬂeHV112 + )\QIGHV‘g‘z
2

From the given eigenvectors and eigenvalues we have

o= ot e | 0| = e
and
, 0
e'vy = [17 e Jw’ e—2]w:l 1 = e~ Iw
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Therefore,

]SPO—BT(ejw) — %[(1 + a)%!l _ e”j2“"[2 + Ie~jw!2} _

24a 14+«
2

2
5 €08 2w

Other methods we could use include the principal components minimum variance and autore-
gressive frequency estimation methods.
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8.20 Suppose that we would like to estimate the power spectrum of an AR(2) process
z(n) = a(l)z(n — 1) + a(2)z(n — 2) + w(n)

where w(n) is unit variance white noise. However, our measurements of z(n) are noisy, and
what we observe is the process

y(n) = z(n) +v(n)

where the measurement noise, v(n), is uncorrelated with z(n). It is known that v(n) is a
first-order moving average process,

u(n) = b(0)g(n) + b(1)g(n — 1)

where ¢(n) is white noise. Based on measurements of v(n), the power spectrum of v(n) is
estimated to be
Py(e?¥) =3 +2cosw

From y(n) we estimate the following values of the autocorrelation sequence 7, (k),
T(0)=5 ; F(l)=2 ; 7(2)=0 ; 70B)=-1 ; 7,(4) =05

Using all of the given information, estimate the power spectrum of z(n) using the maximum
entropy method.

Solution
Since z(n) and v(n) are uncorrelated,

ry(k) = 12 (k) + 70 (k)
Therefore, given the autocorrelation 7, (k) and r,(k), we may find r,(k),
ra(k) = ry(k) = o (k)
We are given an estimate of the power spectrum of v(n),
P,(e") =3+ 2cosw
which implies that the estimated autocorrelation sequence is
ry(k) =30(k) +6(k—1)+6(k+1)

(note that since v(n) is an MA(1) process, then r,(k) = 0 for |k| > 1). From the given estimated
autocorrelations for y(n), we have for 7, (k)

¥

Now, we may estimate the power spectrum of z(n) using the maximum entropy method. The normal
equations that we must solve are,

0 o L |- [ 6]
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Using the given autocorrelations, these become
]l -]
1 20(a2 |7 |0
and the solution is a(1) = —2/3 and a(2) = 1/3, or
A&y =1 - %e’j“ -+ %e’j“’
Finally, for the modeling error,
e =rx{0) + a(l)ry (1) + a(2)r,(2) = 4/3

and the MEM spectrum estimate is

Ol

ﬁmem (ejw) =

2
2 1,42
2 p—jw 1,—j2w
1 38 +3€




Chapter 8 255

8.21 Show that for N > 1, estimating the order of an autoregressive process by minimizing FPE(p)
is equivalent to minimizing AIC(p). Hint: Show that for large N,

N InFPE(p) ~ AIC(p)

and use the fact that, if = is small, then In(1 + z) =~ z.

Solution
The Akaiki FPE is ot
N+p+1 1+ 5%
FPE(p) =Gy, 1o BiT
Therefore,
B p+1 p+1
IFPE(p) =In&, +In(1+ e )- In(l - )

If z is small, then
In(l+z)=~z

Using this approximation we have, for large N,

1
InFPE(p) ~ In€, + 2211
N
and
NInFPE(p) = NIn&, +2(p+1)
Since
AIC(p) = NIn&, + 2p
then

NInFPE(p) ~ AIC(p)

Therefore, since the logarithm is a monotonically increasing function, then, for large N, minimizing
FPE(p) is equivalent to minimizing AIC(p).

AIC(p) =NIné&, +2p
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8.22 You are given the following values for the autocorrelation sequence of a wide-sense stationary
process x(n),
r:(0) =2 ; r(1)=V3/2 ; r.(2)=05

The eigenvalues of the 3 x 3 Toeplitz autocorrelation matrix are A\; = 3.5, Ay = 1.5, and
Az = 1.0 and the corresponding normalized eigenvectors are

V3/2 e
vy =4/2/5 1 ;o Vg = = 0 ;o V=

1
-3
V3/2 V2 1

H
Sl
(@3]

It is known that 2(n) consists of a single sinusoid in white noise.

(a) Estimate the frequency of the sinusoid using the Blackman-Tukey method of frequency
estimation.
(b) Use the MUSIC algorithm to estimate the frequency of the sinusoid.

(c) Repeat part (b) using the minimum norm algorithm.

Solution

(a) The Blackman-Tukey frequency estimate is given by
~ . 1 &
Ppo_pr(e*) = i ; Ailevi?
where M is the number of autocorrelations, and p is the number of complex exponentials. There-

fore, with M = 3 and p = 2, using the given eigenvalues and eigenvectors, we have

1
3

~ 5. U 6
= 3+ FV3cosw —~ gcosw

~ . . o 12 . 12
Prcpr(e™) = [3.5(%)[—“2—§ eIy —{35"9‘”' + 1.5(%)‘4 + e"ﬂWI ]
(b) The MUSIC estimate is given by

1

i leHVi!2

i=p+1

Py (e7*) =

With M = 3 and p = 2 this becomes

1 1 5

}3 (BjuJ = = - - =
mo(e™) lefvs)? 21— VBe v + e 22 5 4\/3cosw + 2cos 2w

The peak of the MUSIC estimate occurs at the frequency where the denominator is a minimum,
which is the frequency where the derivative is equal to zero,

—;—[5 ——4\/§cosw+2cos2w] =4v/3sinw — 4sin2w = 0
W
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or
V3sinw = sin 2w

which, using a trigonometric identity, becomes
V3sinw = 2sinw cosw

Thus, the peak occurs at the point where

COSW = ——
2

or
wo =7n/6

For the minimum norm algorithm, we first form the projection matrix

1 1 1 1 -3
Po=VoVi=z| =V3 | [1 ~v3 1]=z]-v3 3
1 1 -3
With .
A= =135
uTPnul
and
1
a= ) P,u;=| /3
1
we see that the minimum norm estimate
-~ . 1
Pary (&%) = leFa?

is the same as the MUSIC algorithm.

V3
1

257
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8.23 The Pisarenko harmonic decomposition provides a way to estimate the frequencies of a sum
of complex exponentials in white noise. As described in Sect. 8.6.2, the powers of the complex
exponentials may be found by solving the set of linear equations given in Eq. (8.160). Another
method that may be used is based on the orthogonality of the trigonometric sine and cosine
functions. This orthogonality condition implies that

sinwy  sinwp -+ sinw,
sin2w; sin2ws --- sin2w,

det . . . #0
sinpw; sinpws -+ sinpw,

provided 0 < w; < 7 and w; # wj, and

1 1 e 1
COS w1 oS w2 e oS Wy

det : . . #0
cos(p - Lwi cos(p - Dwy -+ cos(p - Lwy
provided 0 < w; < 7 and w; # wj.
(a) Given the autocorrelation sequence of a pth-order harmonic process,
p
ro(k) = PBe™i + o2 6(k)
i=1

evaluate the imaginary part of r;(k) and use the orthogonality of the sine functions to
derive a set of linear equations that may be solved to find the signal powers P;.

b) How would you modlfy this algorithm if some of the frequencies were equal to zero or
g
7?7

(¢) How would you modify this approach for a sum of sinusoids in white noise?

Solution

(a) Given the autocorrelation sequence

P
ra(k) = Z Pie™ + 52 5(k)
=1
we see that the imaginary part of (k) is

Im{r,(k)} = i P; sin kw;

=1
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Therefore, given r,(k) for k = 1,2,...,p, we may form the following set of p linear equations in
the p unknowns, P;

sinw;  sinws  --- sinw, P, Im{r,(1)}
sin2w; sin2wy - sin2w, P, Im{r,(2)}
sinpw;  sinpw, -+ sinpw, P, Im{r,(p)}

Due to the orthogonality of the sine functions, if the frequencies w; are not equal to either zero
or 7, and if w; # wy, then the matrix is invertible, and we may solve uniquely for the powers P;.

(b) If one of the frequencies is equal to zero or 7, then we may solve for the signal powers as follows.
Taking the real part of the autocorrelation sequence we have

p
Re{ra(k)} = Z P; cos kw; + 02 6(k)
=1

Therefore, given r,(k) for k = 1,2,...,p, we may form the following set of p linear equations in
the p unknowns, P;,

1 1 1 P Re{r,(0)} + o2
o8 w1 cos wa e COS Py Re{r,(1)}
cos(p— 1wy cos(p—L)we -+ cos(p— Lw, P, Re{rs(p—1)}

Due to the orthogonality of the cosines, this the matrix is invertible, and we may solve uniquely
for the powers P;.

(¢) If z(n) is a sum of sinusoids in white noise, then the autocorrelation sequence is a sum of cosines,
P
rz(k) = Z P cos kw; + a2 5(k)
d=1
In this case, the powers may be found as in part (b) by solving the set of linear equations
1 1 . 1 Py r4(0) + o2

COS Wy CoS Wy e COoS Wy Py rz(1)

cos(p — Nwr  cos(p— Dwy -+ cos(p — 1w, P, re(p—1)
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8.24 The Pisarenko harmonic decomposition was derived for a process that consists of a sum of
complex exponentials in white noise. In this problem we generalize the decomposition to
nonwhite noise. To accomplish this, we begin with an alternate derivation of the Pisarenko
decomposition for white noise. Let

p .
z(n) =Y Ape’™* +w(n)
k=1

where w(n) is noise that is uncorrelated with the complex exponentials.

(a)

If w(n) is white noise then, as we saw in Eq. (8.149), the autocorrelation matrix for z(n)
may be written as

R, = EPEY {521
where E is a matrix of complex exponentials and P is a diagonal matrix of signal powers.
If z(n) is filtered with a pth-order FIR filter a = [a(0), a(1), ..., a(p)]T, then the power

in the output process is
¢ =E{ly(n)]’} = a"Rqa

If a is constrained to have unit norm, a’a = 1, show that the filter that minimizes £ has
p zeros on the unit circle at the frequencies wy of the complex exponentials, and show
that the minimum value of ¢ is equal to 2.

Now assume that w(n) has an arbitrary power spectrum, P, (/). If the autocorrelation
matrix of w(n) is 02Q, then the autocorrelation matrix for z(n) becomes

R, = EPE? 1 52Q

Suppose that z(n) is filtered with a pth-order FIR filter a = [a(0), a(1), ..., a(p)]*
that is normalized so that
a’lQa=1

Show that the filter that minimizes the power in the filtered process has p zeros on the
unit circle at the frequencies wy, of the complex exponentials, and that the minimum
value is equal to o2,

Show that minimizing ¢ = af R a subject to the constraint a? Qa = 1 is equivalent to
solving the generalized eigenvalue problem

R;a=2XQa

for the minimum eigenvalue and eigenvector. Thus, the frequencies of the complex
exponentials correspond to the roots of the polynomial that is formed from the minimum
eigenvector

p
Vmin(z) = Z ’Umin(k})z_k
k=0

and o2 corresponds to the minimum eigenvalue.
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(d) A random process consists of single sinusoid in nonwhite noise,
z(n) = Asin(nwo + ¢) + w(n)
The first three values of the autocorrelation sequence for z(n) are
r, = [9.515,7.758,6.472]7

It is known that the additive noise w(n) is a moving average process that is generated
by filtering white noise v(n)

w(n) =v(n)+ 0.1v(n — 1)

However, the variance of v(n) is unknown. Find the frequency wgy and the power, P =
%Az, of the sinusoid.

Solution

(a) We want to minimize the power in y(n),
¢ =E{y’(n)} =a"R,a

subject to the constraint that

a“a=1

With

R, = EPE" + 021
where

1 1 . 1
eJw1 eiwz ... piwp
E =

ejl;wl ejl;wz F- 6jf;wp

we have

¢ =a"EPE"a + aiaHa
With the constraint aa = 1, this becomes
P o
E=02 + Z P,-}A(ew")l
i=1
where »
A7) = efla = Z a(k)eIkwi
k=0
Therefore, ¢ will be minimized when

Ay =0 ; i=1,2,...,p

i.e., when A(z) has p zeros on the unit circle at the frequencies w; corresponding to the complex
exponentials in z(n), and the minimum value of ¢ is equal to o2,
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(b)
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If the autocorrelation matrix of the noise is 02 Q, then
R, = EPE” +52Q

If z(n) is filtered with a pth-order FIR filter a = [a(0), a(1), ..., a(p)] T, then the output power
is
¢ =aR,a = a"EPE”a + ¢2a’Qa

If a is normalized so that
afQa=1
then the power becomes
¢ = a’/EPEa + o2
As in part (a), this is minimized when

Ay =0 ; i=1,2,...,p

i.e., A(z) has p zeros on the unit circle at the frequencies of the complex exponentials.

Note that
R,a = EPE"a+02Qa

For the vector a that minimizes €,
Efa=0
Therefore, for this vector,
R,a=02Qa

Thus, a is an eigenvector of R, and o2

eigenvalue of R,. To show this, note that

is the cigenvalue. Furthermore, o2 is the minimum

¢ =a"R,a=a”EPE"a + afuaHQa = g2

w

Therefore, to minimize £, we want to minimize 02, and it follows that o2 will be the minimum
eigenvalue of R,.

We are given
z(n) = Asin(nwy + ¢) + w(n)

where
w(n) = v(n) + 0.1v(n — 1)

with v(n) white noise that has a variance ¢2. Therefore,

Py(e?) = 02[1 +0.1e 77 |* = 62 (1.01 + 0.2 cos w)

and
Tw(k) = 1.01625(k) + 0.1626(k — 1) + 0.1026(k + 1)
Thus,
R, =02Q
where
101 02 0

Q=1 02 101 02
0 02 1.01
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The frequency of the sinusoid may then be found by solving the generalized eigenvalue problem

R,a=2Qa

1.01 01 0 77T a(0)

=] 01 101 01 a(1)
( 0 01 101 | a®)
Multiplying both sides of the equation by the inverse of Q we have

[ 8.8633 6.8774 5.7911 } { a(0) { a(0) ]

or

9575 7.758 6472 1 [ af
7758 9575 7.758

6.472 7.758 9.575

6.8774 8.8633 6.8774 | | a(l) a(1)
57911 6.8774 8.8633 | | a(2) a(2) |

The minimum eigenvalue of the matrix Q 'R, is
Amin = 1.5692

and the corresonding eigenvector is

Vinin = [1, —1.9026, 1]7

The roots of the eigenfilter
Amin(2) =1 = 19026271 4 272

are

7 = eijO.lw

Therefore, wp = 0.17 and P = 2 A% = 1.5692.
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8.25 A random process is known to consist of a single sinusoid in white noise

z(n) = Asin(nwy + @) + w(n)

where the variance of w(n) is o2,

(a) Suppose that the first three values of the autocorrelation sequence are estimated and
found to be
r2(0)=1 ; rz(1)=0 ; r(2)=0

Find and prepare a carefully labeled sketch of the spectrum estimate that is formed
using the Blackman-Tukey method with a rectangular window.

(b) With the autocorrelation given in part (a), use the Pisarenko harmonic decomposition
to estimate the variance of the white noise, o2, the frequency of the sinusoid, wg, and
the sinusoid power, P = -%A?. How does your estimate of the white noise power and the
sinusoid frequency depend upon 7 Does the sinusoid power depend upon 57

(c¢) Suppose that we compute the periodogram }Spe,(ef“’) using N samples of z(n). Find and
prepare a carefully labeled sketch of the expected value of this spectral estimate. Is this
estimate biased? Is it consistent?

(d) Using the autocorrelation estimates given in part (a), find the second-order MEM power
spectrum. :

Solution

(a) Using the Blakman-Tukey method with a rectangular window, the spectrum estimate is

M
P, (e7%) = Z ro(k)e™ =1+ 2B cosw
k=—M

(b) With a single sinusoid, the white noise power estimate using the Pisarenko harmonic decompo-
sition is equal to the minimum eigenvalue of the 3 x 3 Toeplitz autocorrelation matrix

R, = Toep{1,4,0}
The eigenvalues are the roots of the polyomial

1-x 8 0
det(R,) = det| B 1-x g =1 =-N[1-N?-p]-8[B(1-N)]
0 g 1-2A

= (1-N[N-22+1-2p4%
Therefore, the eigenvalues are
M=15 A=1+6V2 5 dp=1-05V2

and the minimum eigenvalues is

Amin =1- ]ﬂ‘\/ﬁ
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The frequency of the sinusoid is found from the eigenvector corresponding to the minimum
eigenvalue which, for 5 > 0, is
Vmin = %]:17 —\/57 l}T

Thus,
Viin(2) = 2(1 = V2271 + 272)

which has roots at
=L (145)

which corrsponds to a frequency of
wo =7/4

If, on the other hand, 8 < 0, then the eigenfilter is
Vmin(2) = 3 (1+ V22t 4 277

which has roots at
2= L2 (-14j)

and the frequency of the sinusoid is
wo = 3w /4

To determine the sinusoid power, note that the autocorrelation sequence is
ro(k) = Pcoskwy + 02,
With 8 > 0 this becomes
k
re(k) = Pcos 7171 +(1-p8v2)

Since 7,(0) = 1, it follows that
P=3v2

If, on the other hand, 8 < 0, then we have
P=-82

Therefore, we may write

P=pv2

(¢) If we compute the periodogram Isper(ej‘”) using N samples of z(n), then the expected value of
this estimate is

~ 4 1 " "
E{Pper(e"")} = ~2—7-F-Pz(ej )« Wg(e?)
where Wg(e7*) is the Fourier transform of the Bartlett window, wg(k),

1 {sin(Nw/Q)} 2

Wa(e™) = N | sin(w/2)

and P, (e*) is the power spectrum of x(n). Since z(n) is a random phase sinusoid in white noise,
then

; 1
P, (%) = —2-71'/42 [uo(w ~wp) + uo{w + wg)] +02
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Therefore, the expected value of the periodogram is
E{Fr(e)} = 5o Pe(e) « Wi(e)
= o+ A7 () £ W)
where 02 = 1 —|8]v/?2, and, depending upon the sign of 8, the frequency wy is either equal to 7 /4
or 3w /4. As we have seen in Chapter 8, the periodogram is a biased estimate of the periodogram,

and, since the variance does not go to zero as N goes to infinity, it is not a consistent estimate
of the power spectrum.

For a second-order MEM power spectrum, we first must solve the normal equations

(5 10 ]--14]

Thus, for the second-order all-pole model we have
o) | _ 1 1
a2y | T 1=-p2| -8B

€2 =74(0) + a(D)r5 (1) + a(2)r.(2) =

and
1

-7

Therefore, the MEM spectrum is

~ ) €
Prem(€7¥) = - : 3
[1+a(l)e=iv + a(2)e~2v]

Incorporating the values for a(1), a(2), and €3 and simplifying this becomes

152

Prem(e?) = (I -p82+2p%) + B2(1 — 2) cosw — 23 cos 2w
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8.26 A random process may be classified in terms of the properties of the prediction error sequence
€x, that is produced when fitting an all-pole model to the process. Listed below are five different
classifications for the error sequence:

e =c>0forall k>0.
. €, =c >0 for all k> kg for some ko > 0.

1.
2
3. € — cas k — oo where ¢ > 0.
4. ¢ —> 0 as k — oc.

5

. ¢, = 0 for all k£ > kg for some kg > 0.

For each of these classifications, describe as completely as possible the characteristics that
may be attributed to the process and its power spectrum.

Solution

1. Ifex = ¢ > Ofor all k > 0, then the reflection coefficients are zero, I'y = 0 for all k. Therefore, the
process is not predictable, which is consistent with a white noise process with a power spectrum
that is constant, P, (e/*) = c.

2. If eg = ¢ > 0 for all k > kg for some ko > 0, then the reflection coefficients I'y, are equal to zero
for all k > ko. This is consistent with a finite-order autoregressive process of order kg. Only a
finite past history is used to model the process.

3. If g — cas k — oo where ¢ > 0, then the entirc past history of the process is useful in predicting
(modeling) the process. Since ¢, approaches a limit that is not zero, this behavior is consistent
with a moving average or autoregressive moving average process.

4. If ¢4 — 0 as k — oo, the process is perfectly predictable given the infinite past history of the

process. Recall that the prediction error, expressed in terms of the power spectrum, is (see
Eq. (7.72), the Kolmogorov-Szegs formula)

1/ ;
lerI;O € = eXp {5; /“7T In Pz(ej“’)dw}
This will be zero only if P,(e?*) = 0 over some finite interval. This behavior is consistent with
a lowpass, bandpass, or highpass process in which P, (e/*) = 0 for w € [w,wy).
5. If ¢ = 0 for all k£ > ko for some ko > 0, then the process is perfectly predictable from the past
history of z(n) that is finite in length. This corresponds to the case in which Ty, = =1 and,
therefore, represents a harmonic process (line spectrum).
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8.27 In the MUSIC algorithm, finding the peaks of the frequency estimation function

ISMU(ejw) =T 1" ~
> [ouf

t=p+1

is equivalent to finding the minima of the denominator. Show that finding the minima of the
denominator is equivalent to finding the mazima of

p
> lefvi?
i=1
Hint: Use the fact that

M
I= Zvivf
i=1

Solution
Finding the peaks of the MUSIC frequency estimation function is equivalent to finding the minima of

M
Z ‘euvi|2

i=p-+1

Since the eigenvectors v, are orthogonal, if we assume that they have been normalized, then the
identity matrix may be expanded in terms of these eigenvectors as follows,

M

H

I= E Vivi
i=1

Mutliplying on the left by e” and on the right by e, we have

M M
efle = Z(eHvi)(vf{e) = Z leflv, |2
i=1

i=1
Since efe = M, then
P M
M=Y"lefviP+ > feflvi?
=1 i=p+1
or
M p
Z leflv;|? = M — Z[e”vf
i=p+1 i=1

Thus, minimizing the left-hand side is equivalent to maximizing the sum on the right as was to be
shown.
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8.28 The 3 x 3 autocorrelation matrix of a harmonic process is

3 —j -1
Re=| j 3 —j
-1 4 3

(a) Using the Pisarenko harmonic decomposition, find the complex exponential frequencies
and the variance of the white noise.

(b) Repeat part (a) using the MUSIC algorithm, the eigenvector method, and the minimum
norm method.

Solution

(a) To find the complex exponential frequencies and white noise variance using the Pisarenko de-
composition, we first must find the eigenvalues of the autocorrelation matrix R, which are the
roots of the characteristic equation

det(R, — AI) =0

Note that if we subtract two from the terms along the diagonal, then the matrix is singular.
Therefore, A = 0 is an eigenvalue of the matrix

Q:=R, -2I
The remaining two eigenvalues of Q, are the roots of the the characteristic equation for Q,,
1-)x —j -1
det(Q, — AI) = det j 1-X -3 =0
-1 J 1-X

or,
A=N[A=X2=1]+4i1-N)—j] - [-1+(1-XN] =0

Multiplying out the terms and simplifying, we have
MB-XN=0

Therefore, the eigenvalues of Q, are

M=3 ; d=0 ; X3=0

and the eigenvalues of R, are \; = ); + 2, or

It
)

/\1:5 N /\2:2 5 /\3

The eigenvectors of R, are

vy = V2 =

Sl
Sl
Sl
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Note that since the dimension of the noise subspace is equal to two, then there is only one complex
exponential, and the frequency of the complex exponential may be found from the eigenvector
corresponding to the zero eigenvalue of the 2 x 2 matrix

I
noae [} ]

This eigenvector is

| 2]
min —j
Thus, the eigenfilter is
Alz) =1—j271
and the complex exponential frequency is wo = —7/2.
For the MUSIC algorithm,
~ ) 1
Py (™) = —
Z le” vi|2
1=p41

So, with M = 3 and p = 1 this becomes
}3)\7,%,(69'“’) = |eHvz[2 + ]eHV3|2
Using the eigenvectors found in part (a) we have
Pab(e?) = gl2—jeri* 4 e ¢ Sliem 4 et
= %[6 — 2sinw + 4cos2w] + %{2 — 2sinw]
= 2- %sinw+ -;—cosQw

and, therefore,

~ . 1
P ) =
wru (€7) 2—%sinw+%cos2w

For the eigenvector method, the frequency estimate is

= ; 1
Py () = —

> 5 lef

i=p+1
So, with p =1, M = 3, and Ay = A3 = 2, this becomes
~ . 1 2 1 2
-1 _ H H
Poi(e?%) = 3 e vzt + 3 [e vs|
which is the same as the MUSIC estimate to within a scale factor of two.

Finally, for the minimum norm method, we have

1

ﬁMN(@jw) = \eHa'g
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where
a=AP,u

Forming the projection matrix P, we have

IR % R B S R YN TN VN
= (]| g 8 9
2/3  —j/3 1/3
= —-3/3 =2/3 j/3 }
1/3 Ji/3  2/3
With )
A= ————u{an =3/2
and
3 2/3
a=AP,u = 3 [ ~3/3 }
1/3
we see that the minimum norm estimate is
1

ﬁMv(ejw) =

g - %sinw—i—cosQw
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8.29 In this problem we prove that the spurious roots in minimum norm method lie inside the unit

circle. Let z(n) be a random process that is a sum of p complex exponentials in white noise,
and let a be an M-dimensional vector that lies in the noise subspace. The z-transform of a
may be factored as follows

A(z) = Ao(2)A1(2)

where
P

Ap(z) = H(l — @l

k=1
is a monic polynomial that has p roots on the unit circle at the frequencies of the complex
exponentials in z(n), and A;(z) is a polynomial that contains the M — p — 1 spurious roots.

(a) Show that minimizing |a|? is equivalent to minimizing

1 ™ . 1 T ) .
—_ Jwyi2 [ Jw\ (21 Jw 2’
5= [ 1A P = o [ 1Ao(e) P Ay () P

where Ag(e/) is fixed and A;(e) is monic.

(b) From the results of part (a), show that minimizing |a|? is thus equivalent to using the
autocorrelation method to find the prediction error filter Aj(z) for the signal whose
z-transform is Ag(z).

(c) From (b), argue that A;(z) must therefore have all of its roots inside the unit circle.

Solution

(a) If a is a vector that lies in the noise subspace, and
M-1
Az) =1+ ) a(k)z™!
k=1

then A(z) has p zeros on the unit circle at the frequencies of the complex exponentials in z(n).
Therefore, A(z) may be factored as

A(z) = Ap(2) A1 (2)

where Ap(z) is a fixed polynomial of the form
p .
Ao(z) = T = &=z
k=1
By Parseval’s theorem,
M-1 1T
2 2 jwy 2
al* =1+ a(k)|* = —/ A(e dw
ol =1+ 3 lat =5 [ 14

Thus, it follows that minimizing |a|? is equivalent to minimizing
1 ™

o ) |A(e) P dw = 517;/_:le(eﬂ'“)P]Al(e“)s?dw (P8.20-1)
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(b) Recall from Chapter 4 that the autocorrelation method minimizes the error

&= Z ez(n)

n=0
where

e(n) = z(n +Zap z(n— k) = z(n) x ay(n)

From Parseval’s theorem, £ may be written as

1 [ 1 (7 ; ;
— Jw — Jw Jwy 2
37 1B = o [ 1X(E) A7)

Therefore, the autocorrelation method involves the minimization of

1 " jw jw
€= B |X (e7%) Ap (7)) dw
where X (e7“) is fixed. If we replace X (e/*) and A, with Ag(e?*) and A, (e7*), respectively, we
see that this is equivalent to the problem of minimizing the integral in Eq. (P8.29-1).

(c) Since the autocorrelation method produces a filter, A,(z) with all of its zeros inside the unit
circle, then minimizing Eq. (P8.29-1) will produce a polynomial A(z) with all of its roots inside
the unit circle.
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8.30 In the minimum norm method, the spurious zeros in the polynomial A(z) are separated from

those that lie on the unit circle by forcing the spurious roots to lie inside the unit circle. In
some applications of eigenvector methods, such as system identification, some of the desired
zeros may lie inside the unit circle. In this case, the desired roots cannot be distinguished
from the spurious roots. The minimum norm method may be modified, however, to force the
spurious zeros to lie outside the unit circle. This is done by constraining the last element of
the vector a to have a value of one, l.e.,

aHuM =1

where ups = [0,0,...,0,1]7 is a unit vector with the last element equal to one.

(a) Derive the modified minimum norm algorithm that uses the constraint that afuy = 1
instead of afu; = 1 as in the minimum norm algorithm.
(b) The 3 x 3 autocorrelation matrix for a single complex exponential in white noise is
2 1-j —jV2
Re=] 145 2 1—j
V2 145 2
Find the frequency of the complex exponential and the locations of the spurious roots
in the minimum norm frequency estimation function.

(c) Repeat part (b) for the modified minimum norm method.

Solution

(a) The derivation of the modified minimum norm algorithm is straightforward. With the constraint
that afuys = 1 in place of afu; = 1, all that we need to do is replace u; in the minimum norm
algorithm with ups. Thus, the modified minimum norm algorithm is

a = AP, uy

where
1
A= —g———
uMPnuM

(b) The eigenvalues of the autocorrelation matrix
2 1-j —jv2
R,=|1+j;7 2 1—3j
V2 o145 2
are
M=X=2-V2 ; M=2+2/2
The normalized noise eigenvectors corresponding to the eigenvalues A, and A, are
1 1
| ap
vi=5| -v2 ;o ove=o | V2
2| 1 2|
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Therefore, the projection matrix is

1 1o 1 Ve 1 1 2 V2(-1-3) o
P”:Z[ﬁi/i J_\‘/f}[l _;\/5 }::1 V2(~1+7) 4 V2(-1 )

)\z————-———:

and

2 1
o =2 | Vit |- e |
0 0

Finally, we have
1 1

Pun(e®) = =
MN( ) IeHaIQ 2_*_\/58]"110)-'\/5(208&)

(c) For the modified minimum norm method, the vector a is reversed. Thus,

0
a=AP,uy =2(3) [ V2(~1-j)
2

Clearly, with A(z) in part (b) having its roots inside the unit circle, by reversing the vector, with
the modified minimum norm algorithm the roots will be outside the unit circle.
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SOLUTIONS TO CHAPTER. 9
Adaptive Filtering

9.1 In order for the steepest descent algorithm to converge, the step size must be in the range
0 < p <2/Amax

However, in some cases it may be of interest to find the value of p that gives the fastest rate
of convergence. For a given step size u, the rate of convergence for the weight vector w, is
dominated by the slowest converging mode in the expansion

P
W, =W+ Z(l — pi) " uo(k) vy
k=0

(a) Interms of the eigenvalues i, find the value for ;1 that maximizes the rate of convergence.
In other words, find the value for p that maximizes the rate of convergence of the slowest
decaying mode.

(b) At what rate does the slowest mode decrease for the step size found in part (a)?

Solution

(a) We have seen that the dynamic behavior of the weight vector, w,, in the steepest descent
algorithm behaves as

P
W, =W+ Z(l — pAi)"uo(k)vy
k=1
To maximize the rate of convergence, we want to choose u so that we minimize the slowest
decaying mode, i.e.,
]

e 1 — »,A
min [m]?x| LAk J
Shown in the figure below is a plot of |1 — puXk| as a function of p for Ayin and Apax.

PRV

Amin Curve

Amax curve

A\ 4

1/Amax 1/Amin 2/ Amax
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Clearly, for a given value of u, the points |1 — pAg| will lie between the two curves, |1 — pAmax]
and |1 — pAmia|. Therefore, to minimize the largest value of |1 ~ pAg| we choose pt = pigps as
shown, which is the solution to

1- M/\max = _(1 - IJ)\min)

or,
2

max + )\min

Hopt = by

b) The slowest decaying mode with ppt is the rate at which both the minimum and maximum
P
eigenvalues converge, i.e.,

|:1 _ 2)\max }n - </\min — Amax>n
>\max + )\min )‘max + /\min
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9.2 Suppose that the input to an adaptive linear predictor is white noise with an autocorrelation
sequence r;(k) = 025(k).
(a) Solve the normal equations and find the optimum pth-order one-step linear predictor,
w.

(b) Minimize the mean-square prediction error using the method of steepest descent with a
step size = 1/(502) and an initial weight vector wo = [1,1,...,1]T. Does the method
of steepest descent converge to the solution found in part (a)?

Solution

(a) With R, = 621, and ry, = 0, the solution to the Wiener-Hopf equations is
w =0
(b) The steepest descent algorithm is
Whal = Wy, — ,U'[szn - rdw]
Since R, = ¢21 and rg, = 0, then
Wpp1 = (1 — ,uai)wn
With p = 1/(502) the time-evolution of w,, becomes
W= (1 4wy

which goes to zero as n — oo.
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9.3 Newton’s method is an iterative algorithm that may be used to find the minimum of a
nonlinear function. Applied to the minimization of the mean-square error

£(n) = E{e*(n)}
where e(n) = d(n) — wl'x(n), Newton’s method is
Wnt1 = Wp — %R;1V§(n)

where R is the autocorrelation matrix of z(n). Introducing a step-size parameter u, Newton’s
method becomes

Wptl = Wy — %MR;'lV{(n)
Comparing this to the steepest descent algorithm, we see that the step size p is replaced with
a matrix, uR; ', which alters the descent direction.

(a) For what values of p is Newton’s method stable, i.e., for what values of p will w,
converge?

(b) What is the optimum value of p, i.e., for what value of x is the convergence the fastest?
(c) Suppose that we form an LMS version of Newton’s method by replacing the gradient
with a gradient estimate
Vé(n) = Ve (n)
Derive the coefficient update equation that results from using this gradient estimate and
describe how it differs from the LMS algorithm.

(d) Derive an expression that describes the time evolution of E{w,} using the LMS Newton
algorithm derived in part (c).

Solution

(a) Evaluating the gradient vector we have
VE(n) =2E{e(n)Ve(n)} = —2E{e(n)x(n)} = ~2ry; + 2R, w,
Thus,
Wptl = Wy, — %NR;I [2szn o 2rdx]
and we have
Wnt1 = Wy, — pWy, + puw = (1 — pyw,, + uw
Thus, the Newton algorithm is stable for 0 < p < 2.

(b) The convergence is the fastest when p = 1. Note, in fact, that when g = 1, the Newton iteration
converges in one step to w.

(¢) The gradient approximation is
Ve?(n) = —2e(n)x(n)

Therefore the LMS-type algorithm is
Wyt = Wy, + pe(n)R; ' x(n)

Comparing this to the LMS algorithm we see that the step direction is changed from x(n) to
Rx(n).
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(d) From (c) we see that

Wot1 = Wy + pRG'x(n)d(n) — pRZ % (n)x" (n)w,

Assuming that x(n) is uncorrelated with the filter tap weight vector, w,,, then
E{wpi1} = E{w,} + ,uR;lrdw - NRgleE{Wn}

which becomes
E{wnia} = (1 - p)E{w,} + uw
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9.4 One way to derive the steepest descent algorithm for solving the normal equations R,w =rg,
is to use a power series expansion for the inverse of R,. This expansion is

Ry'=p) (- uR,)*
k=0

where I is the identity matrix and p is a positive constant. In order for this expansion to
converge, R, must be positive definite and the constant g must lie in the range

0 < gt < 2/Amax
where A\pax is the largest eigenvalue of R.

(a) Let

n

R.'(n) = p Y (I uRy)*
k=0

be the nth-order approximation to R, and let
wy, =R, (n)rg,

be the nth-order approximation to the desired solution w = R !ry,. Express R;!(n+1)
in terms of R;1(n), and show how this may be used to derive the steepest descent
algorithm

Wntl = Wp — ,U[Ran - rdz]
(b) If the statistics of z(n) are unknown, then R, is unknown and the expansion for
R;! in part (a) cannot be evaluated. However, suppose that we approximate R, =
E{x(n)xT(n)} at time n as follows

R.(n) = x(n)xT(n)

and use, as the nth-order approximation to R !,
T
R;'(n Z (1= px(k T(k)]

Express R;1(n+1) in terms of R;!(n) and use this expression to derive a recursion for
Wi,

(c) Compare your recursion derived in part (b) to the LMS algorithm.

Solution
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(a) Using the nth-order approximation to R *,

k=0
we have
n+1 A n &
Ry'n+1)=p) (I-pRe)" =pu(l-pRy) Y (I pR,)" + I
k=0 k=0
Therefore,

R;'(n+1)= (I-uR,)R; (n)+ pl
Multiplying both sides of the equation by ry, on the right we have
Wnir = (I - ﬂRx)Wn + Hrdg

which is the steepest descent algorithm.

(b) Using the approximation R, = x(n)xT(n) for R, we have
Ry (n+1) = [T - pux(n)xT (n)| R (n) + pI
Multiplying both sides of the equation by rg, on the right, we have
Wit = [T = px(n)xT (n)|wy + pras

(¢) The recursion in (b) is the same as the p-vector algorithm (see Problem 14). However, if we use
the approximation
Taz = d(n)x(n)

then the recursion becomes equivalent to the LMS algorithm.
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9.5 The convergence of a pth-order LMS adaptive filter depends on the eigenvalues of the autocor-
relation matrix, R, of the input process x(n). These eigenvalues, in turn, depend upon the
size, p, of R;. For example, it follows from the Bordering Theorem (see p. 48) that the maxi-
mum eigenvalue is & monotonically nondecreasing function of p, and the minimum eigenvalue
is a monotonically nonincreasing function of p. In addition, it follows from the eigenvalue
extremal property (see p. 97) that the maximum and minimum eigenvalues approach the
maximum and minimum values of the power spectrum, Py(e’*), as p — oo,

Amax — mgxpsv(ejw) 5 Amin — I’IEH Pzz(ejw)
Suppose that the input to an adaptive filter has an autocorrelation
ra(k) =l ol <1

(a) Find the eigenvectors and eigenvalues of the 2x 2 autocorrelation matrix R, = Toep{l, a}.
(Your answer will be given in terms of ).

(b) Find the asymptotic values for the maximum and minimum eigenvalues of the p x p
autocorrelation matrix R, as p — oo.

(c) Find, as a function of «, the largest step size p for convergence in the mean of the LMS
algorithm, and find the slowest converging mode (assume that p is large).

Solution

(a) The eigenvalues of the 2 X 2 autocorrelation matrix are A\; = 1 + a and A\ = 1 — a, and the
eigenvectors are vy = [1,1]7 and v, = [1,-1]7.
(b) Asymptotically, the maximum and minimum eigenvalues are equal to max [Pw (ej“’)] and min [PgC (e “’)] .
w w

Since
2

: > . l-a
JOY [kl —jkw _
Fao(e) = z ae T 1+a? - 2acos(w)
k==—o0

then, assuming that 0 < « < 1, we have

. 1+a
Amax = Pz(ej“‘)}w:(): 11—«
™ 1-a
>\min = Pz(e )'w:‘/r = 1+a

(c) Asymptotically, the largest step size for convergence in the mean is

-~ 1 _ 11—«
P Tt a

If the step size is greater than (Amax + Amin)/2, then the slowest decaying mode is the one
corresponding to the minimum eigenvalue, which decays as

1-a\"
1- /\minn: 1-
(1 = pAmin) ( “1+a>
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9.6 The condition number, x, of an autocorrelation matrix R, may be bounded in terms of the
power spectrum of the process P,(e/*) as follows,
/\max mBX PI(GJLU)

X N n}uian(ej“’)

(a) Use this inequality to bound the condition number of the autocorrelation matrix for the
moving average process
z(n) = w(n) + aw(n — 1)
where w(n) is unit variance white noise.

(b) Repeat part (a) for the autoregressive process
z(n) = az(n — 1) + w(n)

where | < 1 and w(n) is unit variance white noise.

(c) What does this bound imply about the performance of an adaptive filter when the input
to the filter is a lowpass process with a power spectrum of the form

1 ;o wl <wo

0 ; w|w<r

Py(e™) = {

Solution

(a) With
z(n) = w(n) + aw(n — 1)

the power spectrum is
P.(e%) = |1+ ae‘j“’t2 =(1+a% +2acosw

If we assume that a > 0, then )
max P, (¢¥) = (1 + a)?
W

and )
min P, (%) = (1 — o)

This implies that the condition number of the autocorrelation matrix is bounded by
2
‘< (1 + a)
1-«

1
(1+a?)+2acosw

(b) With a power spectrum of

Pz(ej"’) =

assuming that o > 0, the condition number of the autocorrelation matrix for an AR(1) process

is bounded by
2
X< (——————1 )
1—-«a



Chapter 9 285

(¢c) From the Bordering Theorem, we see that for a lowpass process, as the order of the adaptive
filter increases, the condition number increases and, in the limit, approaches infinity. Therefore,
the time constant for convergence becomes very large as the order increases.
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9.7 Suppose that the input to an FIR LMS adaptive filter is a first-order autoregressive process

with an autocorrelation
ro(k) = cal®l

where ¢ > 0 and 0 < a < 1. Suppose that the step size p is
1

~ BAmax

m

(a) How does the rate of convergence of the LMS algorithm depend upon the value of a?

(b) What effect does the value of ¢ have on the rate of convergence?

(c) How does the rate of convergence of the LMS algorithm depend upon the desired signal
d(n)?

Solution

(a) Recall that Amax and Amin are bounded by the power spectrum as follows,

14+«
11—«

Amax < mfx[Pw(ejw)] =c

1—-a
14+«
Since the time constant for convergence is proportional to the condition number and, for large

Y2
)\max 1+a g
X = R
/\min 11—«

Amin > min[P,(e’)] = ¢

then, as a increases, T increases, and the convergence is slower.

(b) As the constant ¢ changes, the eigenvalues are scaled by ¢. However, the condition number X is
unaffected. Therefore, ¢ does not affect the time constant for convergence.

(c) The desired signal d(n) has no effect on the rate of convergence.
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9.9 The first three autocorrelations of a process z(n) are

re(0)y =1, rz(1)=05, 7rx(2)=05
Design a two-coefficient LMS adaptive linear predictor for z(n) that has a misadjustment
M =0.05

and find the steady-state mean-square error.

Solution
The misadjustment is
_atr(Ry)
M= 2 - atr(Ry)
Therefore,
2M — aMtr(R,) = a tr(R,;)
and
oo 2M
1+ M)tr(Ry)
With M = 0.05 and tr(R;) = 2r,(0) = 2 we have
o =1/21

and the LMS update equation becomes
Wil = Wy + gre(n)x(n)

The steady state mean-square error is

{(OO) = §min + Eex(oo) = émin [1 -+ %]
= (1 + M)Emin = 1-05€min
Since
€min = 72(0) ~ w(1)ra(1) — w(2)rs(2)
where

[0%5 015}{325”2{82]
then, with w(1) = w(2) = 1/3, and
Goin = 1= (5) (3) - (5) (3) = 2/3

we have
() = (3)1.05=0.7
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9.10 Consider the single-weight adaptive filter shown in the figure below

d(n) 3

w
z(n) > /@f( > '+\+/ > e(n)

(a) Write down the LMS algorithm to update the weight w.
(b) Suppose that x(n) is a constant:

(n) = K ; n=>0
=3 o ;  otherwise

4

Find the system function relating d(n) to e(n) using the LMS algorithm, i.e., find H(z)
in the figure below.

d(n) e(n)
B H(=z) —

(¢) Determine the range of values for p for which H(z) is stable.

Solution

(a) The LMS weight update equation is
Wpt1 = Wy + pe(n)z(n)

(b) With z(n) equal to a constant, the error e(n) is

~

e(n) =d(n) — d(n) = d(n) - Kw,

where
Wy = Wy + pKe(n —1)
Therefore,
e(n)—e(n—-1) = d(n)-dn—1)— Klw, — wn—1]
= dn) —d{n—-1) - uK2%(n-1)

For the system function we thus have
D(z) 1—z71
E(z)  1—=(1—pK?2)z-1

(c) The filter is stable if
N-pK? <1 — 0<p<2/K?
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9.11 The LMS adaptive filter minimizes the instantaneous squared error
£(n) = le(n)[®
Consider the modified functional
€(n) = le(n)l* + pwy'wn
where 8 > 0.

(a) Derive the LMS coefficient update equation for wy, that minimizes &'(n).

(b) Determine the condition on the step size u that will ensure that w,, converges in the
mean.

(c) If p is small enough so that w,, converges in the mean, what does w,, converge to?

Solution

(a) First we evaluate the gradient of ¢/(n),
VE (n) = Vie(n)” + 8V [w;w,]
The first term is the same as we have for the LMS algorithm,
Vie(n)[* = —e(n)z*(n)
whereas the second term is equal to
V[w’? Wn] =W,
Therefore, the LMS update equation is
Wii1 = Wn + pe(n)x"(n) = pBwn = (1 — pB)wn + pe(n)x"(n)
(b) Repeating the analysis that was done for the LMS adaptive filter we have
E{wni1} = [(1 ~ B~ qu}E{Wn} + g
Therefore, for stability (convergence in the mean) we require
[(1=8p) —p\e| <1 3 k=0,1,2,...,p
which implies that 5
O<p< m
(¢) If w,, converges in the mean to, say w,, then
Woo = (1 = Bp)Woo — tReWoo + piraz

This implies that
Bruweo + Ry Woo = urg,
or
(Rx + ,(3I)W00 =Ty
Therefore,
Woo = (Rm + ﬁI)”lrdaj
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9.12 Show that the normalized LMS algorithm is equivalent to using the update equation
Wit = Wa + e/ ()" (n)
where ¢/(n) is the error at time n that is based on the new filter coefficients w11,
¢/(n) = d(n) = wZ,x(n)
Discuss the relationship between y and the parameter € in the normalized LMS algorithm.

Solution
Substituting the expression for ¢’(n) into the update equation gives

War1 = Wy + pfd(n) - wix(n)]x"(n)
Wi+ pd(n)x (n) = " () ()] w1

Il

Bringing the term with w, ¢ on the right to the left-side we have

[ o () (W) W = Wi + pad ()" ()
W + u[d(n) — wIx(n)]x" (n) + pw?x(n)x" (n)
I+ px*(n)xT (n)] w,, + pe(n)x”(n)

1l

I

Multiplying both sides by the inverse of [I+ ux*(n)x” (n)] gives
* -1 *
W1 = Wn + pe(n) [T+ px*(n)x" (n)] x*(n)
Using Woodbury’s identity to evaluate the inverse (see Eq. (2.30) on p. 29),

x* (n)x" (n) —1, x*(n)xT (n)
+ uxT(n)x*(n) L+ pfx(n)f?

I+ px*(n)x" (n)] R g e

and incorporating this into the update for w,,, we have

x*(n)x7T (n)

5 a2 ™

Wni1 = Wn + pe(n)x’(n) — pe(n)
Since
[ ()T ()] " (m) = x* (n) [ (m)c* ()] = ()" ()
then the update may be written as
Ix(n)?
1+ plx(n)|?

P 7.
T ) ()

x"(n)

Wnil = Wi+ pe(n)x"(n) — pe(n)

= w, + pe(n) [1 -
1
Wy + -——ZE(H)X* (n)
a7 [x(n)]

1
which is the same as the normalized LMS algorithm with 3 =1 and ¢ = —.
1




Chapter 9 293

9.13 A process z(n) is formed by passing white noise w(n) through a filter that has a system

function
1

T 1-00821-09:-2

The variance of the white noise is 02, = (0.19)(0.18). The LMS algorithm with two coefficients
is used to estimate a process d(n) from z(n).

H(z)

(a) What is the maximum value for the step size, p, in order for the LMS algorithm to
converge in the mean? Hint: Use the inverse Levinson-Durbin recursion to find the
autocorrelation sequence of z(n).

(b) What is the time constant for convergence?

(c) What value for the step size would you use to maximize the rate of convergence of the
weights?

(d) If the cross-correlation between z(n) and d(n) is zero,
E{d(n)x*(n)} =0
what are the optimum filter coefficients w = [w(0),w(1)]%?

Solution

(a) The first step is to find the autocorrelation sequence for 2(n). This may be done by finding the
inverse discrete-time Fourier transform of the power spectrum

(0.19)(0.18)
2
(1 ~ 0.08¢~w — (.9e~i%v

P(e%) =

or by using the inverse Levinson-Durbin recursion. Here, we will use the inverse Levinson-Durbin
recursion.

To begin, we need to find the reflection coefficients, which are
I'=[-08, —09]"
and the modeling error, e;, which is equal to the white noise variance,
€2 = (0.19)(0.18)

To begin the recursion, we set

€2

—_— =05

r5(0) =

We then compute the first-order model,

w=ln =0
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(b)

(c)
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and then evaluate r,(1) as follows
rp(l) = —ry(0)I'1 = 0.4
Then, using the second-order coefficients,
as = [1, —0.08, —0.9]"
we find r,(2) as follows
72(2) = —aa()rs(1) ~ az(2)r4(0) = 0.482
Thus, the autocorrelation sequence is

r, = [0.5, 0.4, 0.4820]"

Finally, to determine the maximum value for the step size for convergence in the mean, we need
the eigenvalues of the autocorrelation matrix. With two coefficients, we must find the eigenvalues

of the matrix ‘
re= [0 )]

which are
A =r2(0) +72(1) =09 5 A =r.(0) —7,(1) =0.1

Thus, for convergence in the mean, we must have

0<p< =2.223

Amax
If 11 is small in the sense that pA; < 1, then the time constant for convergence is equal to
1 10
T e— w

For example, if we assume that g+ Amax = 0.1, or p = 1/9, then

10

T=I7§=90

The expected value of the weights evolves in the same way as the weights in the steepest descent
algorithm,

P
E{w,} =w+Y (1-phe) uo(k)vi
k=1
For two weights, we have

E{w,} =w+ (1 - pA) "uo(1)vy + (1 = pha) uo(2)v2

In order to maximize the rate at which these terms decay to zero, we want to choose p so that
we maximize the rate at which the slowest decaying mode goes to zero,

min [max |1 - ,u)\k@
m k

This occurs when we set 5

= =2
# A1+ Ag
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(d) If the cross-correlation between x(n) and d(n) is zero,
E{d(n)x*(n)} =0

then d(n) cannot be estimated from z(n) using a linear estimator. Therefore, the optimum
coeflicients are zero,
w=20

This may also be seen from the Wiener-Hopf equations, which are
RZW =Tz

Thus, since R, is nonsingular, if rg, = 0, then w = 0.
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9.14 Griffiths developed an algorithm for adaptive beamforming referred to as the p-vector algo-

rithm that eliminates the need for a reference signal d(n). This algorithm may be derived as
follows. Recall that the filter coefficient update equation for the LMS algorithm is

Wang1 = Wi + pe(n)x(n) = W + pd(n)x*(n) — plwIx(n)}x"(n)

Note that d(n) is not explicitly needed in this update equation. Instead, what is required
is the product d(n)x*(n). Therefore, if d(n)x*(n) is replaced with its expected value, rq; =
E{d(n)x*(n)}, or by an estimate of this ensemble average, then we have an update equation
that does not require knowledge of d(n),

Wt = Wa 4 iy — plwTx(n)]x" (n)
This is the p-vector algorithm proposed by Griffiths.

(a) What constraints must be placed on the step size u in order for w,, to converge in the
mean?

(b) Develop a “leaky” p-vector algorithm and determine the range of values for p for con-
vergence in the mean. Assuming that p is selected so that w,, converges in the mean,
find limy, 00 E{wp,}.

Solution

(a) Taking the expectation of the filter coefficient update equation, using the independence assump-
tion, we have

E{Wns1} = E{w,} + prg, — pReE{wy} = (I - pRe)E{w,} + pra,

This equation is exactly the same as the one for the LMS algorithm. Therefore, the p-vector
algorithm will converge in the mean if

O<u<

)\max

(b) For the leaky LMS algorithm, the update equation is

Wntr = (1= py)w, + pe(n)x(n)
= (1= 7wy + pld(n) - wix(n)]x"(n)
= (1 py)wWa + pd(n)x*(n) — px* (n)x" (n)wy,

Replacing d(n)x*(n) with rg, we have the update equation for a leaky p-vector algorithm,
Wit = (1 — py)wp, + pras — /LX*(”)XT(")WVL
Taking the expectation of this equation we have

E{WTH-I} =(1~ ﬂ’Y)E{w”} t Ty ~ ‘uRzE{Wn} = [(1 —w)I- #RQ}E{W‘”} T Hlde
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Therefore, w,, converges in the mean if

0<p< o
a Amax Y

If E{wn} converges in the mean,

nlingo E{w,} =ws

then
Woo = [(1 - /J"Y)I - “Rw] Woo + Hdy
and we have
Woo = (VI + Ry) " trgy

297
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9.15 An FIR filter with system function H(z) may be implemented using a frequency sampling

structure as follows

e ()

— j2nkM 1
M prd 1-e z

s Hl(Z)HQ(Z)

H(z) =

where Hi(z) is a comb filter that has M zeroes equally spaced around the unit circle and
Hy(z) is a filterbank of resonators where the coefficients H(k) are the DFT coefficients of
h(n), i.e.,

M-1
H(k) — Z h(n)e«ﬂwknﬂw
n=0
Suppose that this structure is implemented as an adaptive filter using the LMS algorithm

to adjust the filter (DFT) coefficients, H(k). Derive the time-update equation for these
coefficients and sketch the adaptive filter structure.

Solution
The frequency sampling structure is shown in the figure below, with the DFT coefficients, H (k), made

to be adaptive.
vo(n) r/ H(0)
> X
| /\J

va1(n) H(1)

] A=)

v ei2mn/M l

yM»l(w/\/ H(M - 1)
;/\)5) I

I2m(M=1yn/M

With Mo
e(n) = d(n) = y(n) = d(n) = > H(k)yk(n)
k=0

where 1
yk(n) = 22 My, (n 1) 4 i [:v(n) —z(n - M)}
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the LMS update of the coefficients H (k) is
Hpp1(k) = Ho(k) — pVle(n))?
Since the coefficients H (k) are complex, the gradient is
Vie(n)* = —e(n)y;(n)
Therefore, the update equation becomes

Hoia (k) = Ho(k) + pe(n)yi (n)

299
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9.16 In many signal processing applications, it is important for a filter to have linear phase.

This is particularly true in speech and image processing applications, where phase distortion
produced by a filter may severely degrade the signal. Therefore, suppose that we would like to
design an adaptive linear phase filter whose weights at time n satisfy the following symmetry

constraint
wn(k) =wn(p-k) ; k=0,1,....p

For example, consider the two-coefficient linear phase adaptive filter shown in the figure below.

z(n) B = b

wa(l) wn(0)

- O > d(n)

Note that this filter may be viewed as an FIR adaptive filter that is constrained to have the
first coefficient equal to the third. As before, define the weight vector, w,, by

wy, = [wn(0), wn(l)}T

and the error sequence, e(n), by

~

e(n) = d(n) — d(n)
and assume that

r2(0) =1, 7,(1)=05 7ry(2)=0.1

(a) Derive the normal equations for the filter that minimizes the mean-square error

¢ = E{[d(n) — d(n)*}
(b) Derive the LMS filter coefficient update equations for this constrained transversal filter.

(¢) What values for the step size u may be used if the weights are to converge in the mean-
square sense?

(d) If we drop the linear phase constraint and use a three-coefficient LMS adaptive filter
with w = [w(0), w(1),w(2)]”, what values of the step size 1 may be used if the adaptive
filter is to converge in the mean-square sense?

Solution

(a) If we define

zo{n) = z(n—1)+z(n—3)
z(n — 2)

2
= .
3

|
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then the estimate of z(n) may be written as
Z(n) = w(0)zo(n) +w(1)z(n) = wlz(n)

and the normal equations are

R.w = Tdz
where :
R. = Blalns () = | 7 2 |
and

Ty = E{d(n)zT(n)} = [rae(1) +742(3), rae(2)]”

(b) The LMS algorithm is
Wnt1 = Wy + Me(n)z(n)

(c¢) For mean-square convergence

2 2 2
SESRRY T 302 32 - 062

(d) For the unconstrained filter we require

O<p< ==
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9.17 Insome applications it is known that a given complex-valued process has a constant envelope,
e.g. phase modulated signals. The Constant Modulus Algorithm (CMA) is an adaptive filter-
ing technique that adjusts the filter coefficients in order to minimize the envelop variation.
Given a complex signal z(n) and a set of complex weights w, (k) at time n, the output of the
adaptive filter is

y(n) = wilx(n)

With the constant modulus algorithm, the weights are to be found that minimize the error

£(n) = 1E{(ly(m)* - 1)}

which is a non-negative measure of the average amount that the envelope of the filter output
y(n) deviates from a nominal level (unity in this case). Using Widrow’s approach of estimating
ensemble averages with one point sample averages, derive the CMA algorithm, which is an
LMS version of a steepest descent algorithm to minimize the error £(n) defined above.

Solution
The constant modulus algorithm for updating the coefficients w,, has the form

W1 = W, — uVei(n)

where
e(n) = +(Jy(m)2 - 1)
Computing the gradient of e?(n) we have
Ve?(n) = 2e(n)V]y(n)|?
Since
ly(m)? = wilx(n)x" (n)w,

then
Viy(m)* = [x(n)x" (n)]w,

and we have
Ve (n) = 2e(n)x(n)x (n)w, = (ly(n)* - 1)x(n)x" (n)w,

Thus, the CMA algorithm is

Wit =Wy + p(1 = [y(n)[*)y" (n)x(n)
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9.18 The output d(n) of an unknown system is given by
P
d(n) = Z w(k)z(n — k) +v(n) = wix(n) + v(n)
k=0
where w(k) are the unknown system parameters, z(n) is the system input, and v(n) is zero
mean white noise with a variance of 2. The block diagram below shows an adaptive filter
that is used to model the unknown system.

z(n) ———p—— /4

Wi I d(”)

\ 4

Assume that z(n) is real-valued and suppose that we would like to find the weight vector w,
that minimizes the error

£(k) = E{e* (n)}

for some positive integer k where e(n) = d(n) — d(n).
(a) As in the LMS algorithm, use the instantaneous gradient vector and derive an LMS
update equation for w,,.
(b) Assuming that v(n) is independent of x(n), and that the weight-error vector

Cp =W, —W
is close to zero, and that ¢, is independent of x(n), show that
Elcnii} = {1 — pk(2k — l)E{v%‘Z(n)}Rx] E{ca}

where R, is the autocorrelation matrix of z(n).
(¢) Show that the modified LMS algorithm derived in part (a) will converge in the mean if
the step size p satisfies the condition
1
k’(Zk — 1)E{’U2(k’l)(n>})\max

0<p<

where Apax is the largest eigenvalue of the matrix R.,.

(d) For k = 1, show that the results derived in parts (a), (b}, and (c) reduce to those in the
conventional LMS algorithm.
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Solution

(a)

()

Problem Solutions

The instantaneous gradient vector at time n is
de?k(n)
ow
Therefore, the LMS update equation for w,, is

VE(k,n) = = 2k52k"1(n)a§—$) = —2ke* "1 (n)x(n)

Wit = Wy — uVE(k,n) = Wy + 2ke™ ) (n)x(n)

With ¢, = w,, — w, if we subtract w from both sides of the expression for w,,41 in part (a) we

have
Cnt1 = Cp + 2pke® 1 (n)x(n)

Evaluating the term ¢?*~1(n) we have
7N = [Wx(m) + o) = wix(m] T = [~elxm) + o]
2k—1
s

If ¢, is small, then
cpx(n)
v(n)

Substituting this into the expression for ¢,y gives

e (n) = v?*1(n) [1 -(2k-1) J = v (n) — (2k — 1) x(n)o?F=D (n)

Cnt1 = Cp-+2uk [v%_l(n) - (2k - l)ch(n)v%k“l)(n)] x(n)

i

[I — 2uk(2k — 1)p2—D (n)x(n)xT(n)] cn + 2ukv?* 1 (n)x(n)

Taking the expectation of both sides of this equation, using the assumption that c,, is independent
of x(n), and that x(n) is independent of v(n), we have

B{ens1} = [L- 2uk(2k = DE{o2E D (m)}Re] B{en} + 2uB{o® D (n) ) E{x(n)}

where R, is the autocorrelation matrix for z(n).

This follows immediately as with the LMS algorithm by introducing the factorization R, =
QAQY and defining a new weight error vector in a rotated coordinate system.

For k = 1, the results in parts (a), (b), and (c) become, respectively,
Wpt1 = Wy, + 2pe(n)x(n)

E{cny1} = [I - 2,uRz]E{cn} + E{v(n)x(n)}

and

O<p<

)\max

which are the same as for the LMS algorithm.
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9.19 Adaptive filters are commonly used for linear prediction. Although harmonic signals such as
sinusoids are perfectly predictable, measurement noise will degrade the performance of the
predictor and add a bias to the coefficients, w. For example, suppose that we want to design
an adaptive linear predictor for a real-valued process z(n) using the noisy measurements

y(n) = z(n) +v(n)

where v(n) is zero mean white noise that is uncorrelated with z(n). Assume that the variance

of v(n) is o2.

(a) Using the LMS algorithm
Wnt1 = Wp + pe(n)y(n)

find the range of values for p for which the LMS algorithm converges in the mean and
find
nlgxgo E{w,}

(b) The 4-LMS algorithm has been proposed as an adaptive filtering algorithm to combat
the effect of measurement noise. Using the noisy observations, y(n), this algorithm is

Wpt1 = YWy, + pe(n)y(n)

where 7 is a constant. Explain how the v-LMS algorithm can be used to remove the bias
in the steady-state solution of the LMS algorithm. Specifically, how would you select
values for u and ~7

Solution

(a) The LMS algorithm is
Wni1 = Wy + pe(n)y(n)

Taking expected values we find
E{wni1} = [I— pR, E{w,} + prqy

where
R, =R, + 0’1

is the autocorrelation matrix of y(n). Since the eigenvalues of R, are
S\k =A;+o0 3

where A are the eigenvalues of R, then the LMS algorithm converges in the mean if

O<py< 7
b Amax + 02
where Apayx is the maximum eigenvalue of R,. Furthermore, if the LMS algorithm converges in

the mean, then
lim E{w,} = (R, +o2I) 'ry,

N~ OO
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(b) The v-LMS algorithm is

I

YWy + pe(n)y(n)
YWy + pld(n) = wly(n)]y(n)
VI~ py(n)y™ (n)]w,, + pd(n)y(n)

Wntl

I

i

Taking expected values, and using the independence assumption, we find

E{w,1} (VI = u(Rq + 020)| E{w,} + pray

[(v = po2)I = uR,) E{wy} + prq,

i

I

The conditions that we would like to impose on p and v are
v=1+po}

0 < < 2/Amax

where Agax is the maximum eigenvalue of the autocorrelation matrix for z(n).
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9.20 In some applications, it may be necessary to delay the update of the filter coefficients for
a short period of time. For example, in decision-directed fecdback equalization, if a sophis-
ticated algorithm such a Viterbi decoder is used to improve the decisions, then the desired
signal and thus the error is not available until a number of samples later. Therefore, assume
that z(n) is real-valued, and consider the delayed LMS algorithm that has a filter coefficient
update equation given by

Wil = Wp + pe(n — ng)x(n — ng)
where
e(n —ng) = d(n —ng) — y(n - no)
Note that if the delay, ng, is equal to zero then we have the conventional LMS algorithm.

(a) For ng = 1, determine the values of y for which the delayed LMS algorithm converges
in the mean.

(b) If Ay = 1, for k = 1,...,p and if the step size x4 = 0.1, find the time constant, 7y for
the LMS adaptive filter (ng = 0) and the time constant 7 for the delayed LMS adaptive
filter with ng = 1.

Solution

(a) With np = 1 the delayed LMS adaptive filter update equation is

Wpi1 = Wy +pe(n—1)x(n—1)
Wn +p[dn—1) = wl_ x(n—1)]x(n~1)

I

Taking the expected value, assuming that the weight vector w,, is uncorrelated with the data
vector x(n), we have

E {Wn-}—l} = E{Wn} - .U/RzE{WnAl} + Urdg

Thus, the expected value of the weight vector satisfies a second-order difference equation. Diago-
nalizing the autocorrelation matrix and expressing this equation in terms of the rotated coefficient
vector, v(n), we have, for the kth coefficient,

E{Un+1(k)} = E{Un (k)} - l‘)\kE{'Un—l(k‘)} + /erz(k)

where Ay for k = 1,..., N are the cigenvalues of R,. Since the characteristic equation for
E {vn(k)} is
-2z 4z 2=0

in order for E {v,(k)} to converge in the mean, the roots of the characteristic equation must lie
inside the unit circle. Since the roots are at

2k = % {1:9: 1—4uz\k}
then the delayed LMS algorithm converges in the mean provided

O<ﬂ<1//\max
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(b) With Az = 1 and p = 0.1, the modes of the LMS algorithm behave as
(1 —pX)" = (0.9)"
and the time constant is 1
T = e =
For the delayed LMS, the roots of the characteristic equation are

z =5 {1++1- .4} =0.887, 0.1127

10

Therefore, the slowest decaying mode behaves as (0.887)% which is approximately the same as
the LMS algorithm. Thus, the time constants for delayed LMS with ng = 1 is about the same
as LMS.
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9.21 In recent years, there has been an increasing interest in nonlinear digital filters. This interest
has included the design of adaptive nonlinear filters. Volterra systems are an important class
of nonlinear filters. Assuming that z(n) is real-valued, a second-order Volterra digital filter
has the form

K Ky K
y(n) = Z alk)z(n — k) + Z Z bki, ko)z(n — k1)z(n — ko)
k=0 k1=0 ko=k;

Note that the output, y(n), is formed from a linear combination of first-order (linear) terms
z(n —k), and a linear combination of second-order (nonlinear) terms z(n —k;)z(n—ko). As a
specific example, consider the following second-order digital Volterra filter with time-varying
coefficients,

y(n) = an(0)z(n) + an(1)z(n — 1) + b (0)2*(n) + bp(L)z(n)z(n — 1)
Let &, be the coefficient vector
©n = [an(0), an(1), ba(0), bn(1)]"
and let x(n) be the data vector
x(n) = [z(n), z(n—1), 22(n), z(n)z(n — 1"

(a) Using the LMS update equation
L ve
®’n+1 = @n — 5# € (n)

where e(n) = d(n) — y(n), derive the coefficient update equations for a,(0), an(1), b,(0),
and by, (1).

(b) What condition must be placed on p in order for the coefficient vector ®,, to converge
in the mean?

(c) Describe what happens if the third-order statistics of z(n) are zero, i.e.,
E{z3(n)} = 0

E{z*(n)z(n — 1)} 0
E{z(n)z’(n-1)} = 0

Discuss how you might improve the performance of the adaptive Volterra filter by having
two step size parameters, p and po, one for the linear terms and one for the nonlinear
terms, and discuss how these parameters must be restricted in order for the filter to
converge in the mean.

Solution




310 Problem Solutions

(a) The update equations are

an+1(0) a(0) + pe(n)z(n)
ant1(1) = an(l) + pe(n)z(n—1)
bni1(0) = ba(0) + pe(n)z®(n)
bor() = (1) + pe(m)a()z(n — 1)

e(n) = d(n) - y(n)

where

(b) The step size must satisfy the bound

0<pu<

max

where Apax i8 the maximum eigenvalue of the autocorrelation matrix

z(n—1)
z*(n)
z(n)z(n - 1)

R,=FE [ z(n) z(n-1) z*(n) =z(n)z(n-1) ]

(¢) In this case, the autocorrelation matrix R, defined above has the form

E{z*(n)} E{z(n)z(n—-1)} 0 0
R - E{z(n)z(n - 1)}E{z*(n - 1)} 0 0
v 0 0 E{z*(n)} E{z*(n)z(n-1)}
0 0 E{z*(n)z(n—-1)} E{z*(n)z®(n—-1)}

Since there is a decoupling of the adaptive filter coeflicients, we may use two step sizes. One for
the first two coefficients, and the second for the last two coefficients.
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9.22 Consider the system identification problem shown in the figure below.

Plant
Hj(z)

L d(n)

v

A\ 4

Ha(z) | y(n)

/

The plant has a rational system function of the form

0.05 — 0.4z

H s
1) = TR om0

and the adaptive filter that is used to model H(z) has two free parameters, a and b, as
follows

b

Hal2) = 71

The input, z(n), to both systems is unit variance white noise, and the goal is to find the values
of a and b that minimize the mean-square error, £ = E{|e(n)|*}, where e(n) = d(n) — y(n).
This mean-square error is a bimodal function of @ and b, having a global minimum at (b, a) =
(—0.311,0.906) and a local minimum at (b,a) = (0.114, ~0.519).

(a)
(b)
()

Write down the equations for the simplified IIR LMS adaptive filter.
Repeat part (a) using the filtered signal approach.

A simplification to the filtered signal approach that has been proposed by Feintuch is to
ignore the feedback terms in the equation for the gradient estimates 1{(n) and 4% (n).
For real-valued signals, this simplification is

M=

Yie(n) y(n— k) + ) _an(Di(n = 1) = y(n — k)

T
L

I

an(DYp(n — 1) = z(n — k)

M=

AQ) z(n — k) +

N
Il
—

Although more efficient than the filtered signal approach, this algorithm may converge
to a false minimum, even when the simplified IIR LMS algorithm and the filtered signal
approach converge to a minimum. Write down the adaptive filtering equations for H,(z)
using Feintuch’s algorithm.

In order for the filter coefficients an and b, in Hy(z) to converge in the mean using
Feintuch’s algorithm, it is necessary that

711_1_{1&0 E{e(n)z(n)} =0
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and
Jim B{e(n)y(n 1)} =0

Find the values of E{e(n)z(n)} and F{e(n)y(n—1)} at the global minimum of £&. What
does this imply about Feintuch’s algorithm?

(e) Find the stationary point of the Feintuch adaptive filter, i.e., the value or values of a
and b for which E{e(n)z(n)} = 0 and E{e(n)y(n — 1)} = 0.

Solution

(a) The equations for the IIR, LMS algorithm are as follows
1. Coefficient Update Equations

Uns1 = ap + pe(n)f(n)
by + pe(n)g(n)

bn+1

2. Gradient Update Equations

f(n) = yn—-1)+a,f(n-1)
g(n) = =z(n)+ang(n—1)

3. Output Equation
y(n) = any(n — 1) + bnz(n)

(b) For the Feintuch algorithm we have the same equations as above except that
fn)=yn-1) and  g(n)=2(n)
Thus,
ant1 = an+pe(n)y(n—1)
bpt1 = by + pe(n)z(n)
(¢) In order for E{6(n)} — 6° we require

E{e(n)y(n—1)} =0 and  E{e(n)z(n)} =0

(d) With H,(z) and H;(z) denoting the adaptive and fixed filter, respectively, the expected value of
the correction term is
e(n)z(n) J

B iy
Since e(n) = d(n) — y(n), with

dn) =) hs(k)e(n—-k), yn) =1 ha(k)z(n - k)
k=0 k=0

then, using the assumption that #(n) is unit variance white noise

E{e(n)z(n)} = E{d(n)z(n)} - E {y(n)z(n)} = hs(0) ~ he(0) = 0.05 ~ b
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and
E{e(n)y(n—1)} = E{d(n)y(n - 1)} - E{y(n)y(n - 1)}

Evaluating the second term we find

E{y(n)y(n=1)} =Y ha(k)ha(k = 1) = > a*a*' = 1?_612

k=0 k=0
For the first term,
E{d(n)y(n -1} = ha(k)hs(k - 1)
k=0

To evaluate this sum, note that may be rewritten as

B(A()y(n = D} = ha(on)  hy(mlacs = 5= f Hole~)p(2)d:

Since

b 0.05z% — 0.4z
1—azz2 113142+ 0.25
b 1 2(0.05z — 0.4)

az-L(z-083036)(z - 0.301094)

Ho(z"Y)Hy(2) =

using residues we find

b 0.5624 0.21899
g d - 1 - - -
EAdm)y(n =D} = 2 | 553036 —a—T ~ 0301004 — a1

Finally, at the global minimum we have

E{d(n)y(n—1)} = 0.6124
E{y(n)y(n - 1)} 0.4891

Therefore, the average value of the correction terms at the global minimum are

E{e(n)z(n)} = 0.05-b=-0261
E{e(n)y(n—1)} = 0.123

Thus, if the coefficients converge, then they will converge to some other point.

The stationary point is the solution to the equations

=gy ] =0

Solving for a and b from part (d) we find that the stationary point is

0.05
—0.852

313
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9.23 The Hyperstable Adaptive Recursive Filter (HARF) is an [IR adaptive filtering algorithm

with known convergence properties. Due to its computational complexity, a simplified version
of the HARF algorithm, known as SHARF, is often used. Although the convergence properties
of HARF are not preserved in the SHARF algorithm, both algorithms are similar when the
filters are adapting slowly (small ). For real-valued signals, the coefficient update equations
for the SHARF algorithm are

an+1(k) = an(k) + pay(n — k)v(n)
bn+1(k) = bp(k) + wpx(n — k)v(n)

where

K
v(n) =e(n) + Y _ c(k)e(n — k)
k=1

is the error signal that has been filtered with an FIR filter C(z). Suppose that the coefficients
of a second-order adaptive filter

_b(0) +b(1)z1
A2 = S

are updated using the SHARF algorithm with
C(z) =1+ c(1)z7! 4 ¢(2)272

(a) Write down the SHARF adaptive filter equations for H(z).

(b) If the SHARF algorithm converges in the mean, then E{v(n)x(n)} = 0 converges to

zero where
x(n) = [z(n), z(n—1), y(n—1)]7

What does this imply about the relationship between the filter coefficients ¢(1) and ¢(2)
and E{e(n)x(n)}?
(c) What does the SHARF algorithm correspond to when C(z) = 1?

Solution

(a) The SHARF adaptive filter is
bn+1(0) b (0) z(n)
bor1(1) | = | b,(1) | +pv(n) | a(n—1)
an+1(1) an(l) y(n - 1)

where
v(n) = e(n) + c(De(n — 1) + c¢(2)e(n — 2)

(b) We require that E{v(n)x(n)} = 0. Thus,

{ e(n)z(n) e(n — 1)x(n) e(n — 2)z(n) :Hi 1 }
E

e(n)z(n—1) e(n—Dz(n-1) e(n—2)z(n-1) 1) { =0

e(n)y(n—1) e(n-Nyn-1) en-2)y(n-1) c(2)
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(c) Same as the Feintuch algorithm.
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9.24 Modify the RLS algorithm so that the coeflicients w(k) satisfy the linear phase constraint,
w(k) = w(p— k). For example, with a five-coefficient filter, the coefficient vector wy, is of the

form
Wi = [wn(0), wn (1), wn(2), wn(1), wn(0)]”

Solution
In order to ensure that the RLS adaptive filter has linear phase, all that one needs to do is to define

a new set of input signals. For a five-coefficient filter, one would use

z(n) + z(n+4)
z(n)= | z(n—1)+z(n—3)

z(n —2)

The RLS equations are unchanged except for the replacement of z(n) for x(n).
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9.25 There are many different ways that one may compare the performance of adaptive filtering
algorithms. Suppose that we are interested in adaptive linear prediction and our measure of
performance is the number of arithmetic operations required for the adaptive filter to converge.
Let the time constant 7 be used as the convergence time of the LMS algorithm. For the RLS
algorithm, it is often stated that the rate of convergence is an order of magnitude faster than
the LMS algorithm. Therefore, assume that the time constant for the RLS algorithm is one
tenth that of the LMS algorithm.

(a) If the eigenvalues of the p x p autocorrelation matrix for z(n) are
A1 =1.0 and Ag ==, =0.01

and if we use a step size = 0.1 for the LMS algorithm, for what order filter, p, are
the RLS and LMS adaptive filters equal in terms of their computational requirements
to reach convergence?

(b) For high order filters, p >> 1, the computational requirements of the RLS filter become
large, and the LMS algorithm becomes an attractive alternative. For what reasons might
you prefer to use the RLS algorithm in spite of its increased computational cost?

Solution

(a) For the LMS algorithm to converge in the mean, we require
2

)\max

=2

O<u<

With g = pimax/10 = 1/5, the convergence time is

1 5
Tims = e T =500

For an adaptive filter with p tap weights, the number of multiplications required per update is
2p + 1 so, for convergence, we require 1000p + 500 multiplications.

If we accept. the premise that the RLS algorithm converges an order of magnitude faster than
the LMS algorithm, then the time constant will be 735 = 50. Since the number of multiplications
required per iteration for the RLS algorithm (using A = 1) is 2p? + 4p, if

1000p + 500 = 50(2p* + 4p)

then the RLS and LMS adaptive filters are approximately equal in terms of the computational
requirements necessary to reach convergence. Ignoring the constant term and solving for p we
find that the two are approximately equivalent when p = 8.
(b) Reasons why one may want to consider using RLS instead of LMS are
1. Convergence of RLS is not dependent on the eigenvalues of the autocorrelation matrix of
2. The misadjustment is zero if the growing window RLS algorithm is used.
3. RLS minimizes a lcast squares error as compared to a mean-square error.
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9.26 Let a(n) be the a priori error and e(n) the a posteriori error in the RLS algorithm, and let

N 1
M) = T R T Dx*(n)

be the scalar that is used in the calculation of the gain vector g(n).

(a) Show that e(n) may be written in terms of a(n) and u(n) by finding an explicit relation
between e(n), a(n), and p(n). Hint: Begin with the RLS update equation for w,, and
form the product x%'(n)w,,.

(b) Let g(n) = p(n)R; (n — 1)x*(n) be the gain vector in the RLS algorithm. Consider
the time-varying filter that has coefficients g(n) and an input, x(n), that is the same as
that used in the RLS algorithm to compute the gain g(n), i.e.,

p—-1
y(n) = Z gn(k)z(n — k)
k=0

For what signal, d(n), will the difference between d(n) and y(n) be equal to u(n) as
illustrated in the figure below?
d(n)
wo L

a(n) —>— g ——— un)

Solution

(a) Beginning with the RLS coefficient update equation

Wy = Wp1 + a(n)g(n)

we have
xT(n)w, = xT(n)w,—_1 + a(n)xT (n)g(n)
Therefore,
e(n) = d(n)-x"(n)w,

= d(n) - x" (n)Wn-1 — a(n)x" (n)g(n)

= a(n) — a(n)xT (n)g(n)

= an)|1- p(r)x" (MR (n - Dx"(n)

= a(n)u(n)

(b) Since
p(n) d(n) — x"(n)g(n)
= d(n) - p(m)x" (MR (n — 1)x"(n)

i
=3
3
S
|
re—
—
|

=
—
3
[
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then
din)=1
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Problem Solutions

9.27 Suppose that the least-squares error used in the RLS algorithm is modified as follows

n
Ean) = Z A" e(4))? + )\"wan
—

where wy, is the vector of filter coefficients at time n for a pth-order FIR adaptive filter and
e() = d(i) - wax(i)

Derive the equations for the optimal least squares filter w;, that minimizes &£,(n) for each n.

Solution
This error differs from the least squares error used in the RLS algorithm in the additive term A\"ww,,.
To derive the equations for the optimal least squares filter as we did in Eq. (9.91), we differentiate

with respect to wi; (k) for k = 0,1,...,p, and set the result equal to zero,
850 (n) _ & =i (s c‘?e*(z) n
G (k) ;)\ e(l)awz(k) + XNw, (k)
= = NTe(D)a*(i— k) + N'w(k) =0 ; k=0,1,...,p
=0

Substituting for the error we have

=N Hd) = D waali - ) fa* (= k) + Mwa(k) = 0
1=0

i=0
Interchanging the order of summation and rearranging terms yields

n T

> wa(l) [Z A (i - D (i - k)} + A\ w (k) =D N2 (i - k) 5 k=0,1,...,p
=0

=0 =0
Expressing these in matrix form as in Eq. {9.93) we have
R, (n)w, + A"w,, = rg(n)
where R (n) is a (p+1) x (p+1) exponentially-weighted deterministic autocorrelation matrix for z(n)
R, (n) = > X"7'x*(i)x" (i)
1=()
and rg;(n) is the deterministic cross-correlation between d(n) and z(n),
n .
rae(n) = A"td(i)x* (i)
i=0

Alternatively, this matrix equation may be written as

[Rw (n) + A”I] Wy, = Tgz(n)




