
Praise for Essential Windows Communication Foundation

“Resnick, Crane, and Bowen have surveyed the essence of Microsoft’s Web services
platform. Whether this is the first time or the fifty-first time you’re using WCF, you’ll
learn something new by reading this book.”

—Nicholas Allen, Program Manager, Web Services, Microsoft

“As developers, we are constantly called upon to be ‘instant experts’ in many areas.
When the time comes for you to begin working with distributed systems develop-
ment and messaging in the new Microsoft .NET 3.x world, you find yourself con-
fronted by the new 800-pound gorilla called Windows Communication Foundation
(WCF). This is the book you want sitting on your desk when that day comes.”

—Ron Landers, Senior Technical Consultant, IT Professionals, Inc.

“Designing and writing distributed applications was one of the most complex and
frustrating challenges facing .NET developers and architects. What technologies do
you pick? There were so many choices and so little coding time. Windows Com-
munication Foundation (WCF) solves this problem as the single unified platform
to build distributed applications for .NET. Like any distributed system, WCF has a
lot of choices and possibilities. This book provides an easy-to-digest approach that
answers the spectrum of choices with real-world explanations and examples. Start-
ing with the basics of WCF and building from there, this book answers the how you
can use WCF today. It’s a must-read for application developers and architects build-
ing any type of distributed application.”

—Thom Robbins, Director of .NET Platform Product Management, Microsoft

“Essential Windows Communication Foundation (WCF) is a truly comprehensive
work that presents the technology in a clear, easy to read, yet comprehensive man-
ner. The book will be an invaluable asset for both the advanced reader and new-
comer to WCF.”

—Willy-Peter Schaub, Technology Specialist,
Barone, Budge, and Dominick Ltd., Microsoft MVP

“It’s clear the authors drew on years of distributed applications development to dis-
till and present the essence of WCF. The result is a book full of practical informa-
tion designed to save you time and guide you on your WCF project. The chapter on
diagnostics alone will save you hours of troubleshooting and frustration. Highly
recommended.”

—Yasser Shohoud, Technical Director, Microsoft Technology Center, Dallas

This page intentionally left blank

Essential
Windows

Communication
Foundation

Microsoft .NET Development Series

John Montgomery, Series Advisor
Don Box, Series Advisor
Brad Abrams, Series Advisor

The Microsoft .NET Development Series is supported and developed by the leaders and experts of
Microsoft development technologies including Microsoft architects. The books in this series provide a core
resource of information and understanding every developer needs in order to write effective applications
and managed code. Learn from the leaders how to maximize your use of the .NET Framework and its
programming languages.

Titles in the Series
Brad Abrams, .NET Framework Standard Library
Annotated Reference Volume 1: Base Class Library and
Extended Numerics Library, 0-321-15489-4

Brad Abrams and Tamara Abrams, .NET Framework
Standard Library Annotated Reference, Volume 2: Networking
Library, Reflection Library, and XML Library, 0-321-19445-4

Chris Anderson, Essential Windows Presentation Foundation
(WPF), 0-321-37447-9

Keith Ballinger, .NET Web Services: Architecture and
Implementation, 0-321-11359-4

Bob Beauchemin and Dan Sullivan, A Developer’s Guide to
SQL Server 2005, 0-321-38218-8

Don Box with Chris Sells, Essential .NET, Volume 1:
The Common Language Runtime, 0-201-73411-7

Keith Brown, The .NET Developer’s Guide to Windows
Security, 0-321-22835-9

Eric Carter and Eric Lippert, Visual Studio Tools for Office:
Using C# with Excel, Word, Outlook, and InfoPath,
0-321-33488-4

Eric Carter and Eric Lippert, Visual Studio Tools for
Office: Using Visual Basic 2005 with Excel, Word, Outlook,
and InfoPath, 0-321-41175-7

Mahesh Chand, Graphics Programming with GDI+,
0-321-16077-0
Steve Cook, Gareth Jones, Stuart Kent, Alan Cameron
Wills, Domain-Specific Development with Visual Studio
DSL Tools, 0-321-39820-3

Krzysztof Cwalina and Brad Abrams, Framework Design
Guidelines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries, 0-321-24675-6

Len Fenster, Effective Use of Microsoft Enterprise Library:
Building Blocks for Creating Enterprise Applications and
Services, 0-321-33421-3

Sam Guckenheimer and Juan J. Perez, Software
Engineering with Microsoft Visual Studio Team System,
0-321-27872-0

Anders Hejlsberg, Scott Wiltamuth, Peter Golde, The C#
Programming Language, Second Edition, 0-321-33443-4

Alex Homer and Dave Sussman, ASP.NET 2.0 Illustrated,
0-321-41834-4

Joe Kaplan and Ryan Dunn, The .NET Developer’s Guide to
Directory Services Programming, 0-321-35017-0

Mark Michaelis, Essential C# 2.0, 0-321-15077-5

James S. Miller and Susann Ragsdale, The Common
Language Infrastructure Annotated Standard, 0-321-15493-2

Christian Nagel, Enterprise Services with the .NET
Framework: Developing Distributed Business Solutions
with .NET Enterprise Services, 0-321-24673-X

Brian Noyes, Data Binding with Windows Forms 2.0:
Programming Smart Client Data Applications with .NET,
0-321-26892-X

Brian Noyes, Smart Client Deployment with ClickOnce:
Deploying Windows Forms Applications with ClickOnce,
0-321-19769-0

Fritz Onion with Keith Brown, Essential ASP.NET 2.0,
0-321-23770-6

Fritz Onion, Essential ASP.NET with Examples in C#,
0-201-76040-1

Fritz Onion, Essential ASP.NET with Examples in Visual
Basic .NET, 0-201-76039-8

Scott Roberts and Hagen Green, Designing Forms
for Microsoft Office InfoPath and Forms Services 2007,
0-321-41059-9

Dr. Neil Roodyn, eXtreme .NET: Introducing eXtreme
Programming Techniques to .NET Developers, 0-321-30363-6

Chris Sells and Michael Weinhardt, Windows Forms 2.0
Programming, 0-321-26796-6

Dharma Shukla and Bob Schmidt, Essential Windows
Workflow Foundation, 0-321-39983-8

Guy Smith-Ferrier, .NET Internationalization:
The Developer’s Guide to Building Global Windows
and Web Applications, 0-321-34138-4
Will Stott and James Newkirk, Visual Studio Team System:
Better Software Development for Agile Teams, 0-321-41850-6

Paul Vick, The Visual Basic .NET Programming Language,
0-321-16951-4

Damien Watkins, Mark Hammond, Brad Abrams,
Programming in the .NET Environment, 0-201-77018-0

Shawn Wildermuth, Pragmatic ADO.NET: Data Access
for the Internet World, 0-201-74568-2

Paul Yao and David Durant, .NET Compact Framework
Programming with C#, 0-321-17403-8

Paul Yao and David Durant, .NET Compact Framework
Programming with Visual Basic .NET, 0-321-17404-6

For more information go to www.informit.com/msdotnetseries/

www.informit.com/msdotnetseries/

For .NET Framework 3.5

Steve Resnick
Richard Crane
Chris Bowen

Essential
Windows
Communication
Foundation

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris

Madrid • Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark
claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the
preparation of this book, but make no expressed or
implied warranty of any kind and assume no respon-
sibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection
with or arising out of the use of the information or pro-
grams contained herein.

The publisher offers excellent discounts on this book
when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or
custom covers and content particular to your business,
training goals, marketing focus, and branding inter-
ests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Resnick, Steve.
Essential Windows Communication Foundation

(WCF) / Steve Resnick, Richard Crane, Chris Bowen.
p. cm.

Includes index.
ISBN 0-321-44006-4 (pbk. : alk. paper) 1. Applica-

tion software—Development. 2. Microsoft Windows
(Computer file) 3. Web services. 4. Microsoft .NET.
I. Crane, Richard. II. Bowen, Chris. III. Title.
QA76.76.A65R46 2008
005.2’768—dc22

2007049118

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of
America. This publication is protected by copyright,
and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, record-
ing, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-44006-8
ISBN-10: 0-321-44006-4
Text printed in the United States on recycled paper at
Courier in Stoughton, Massachusetts.
First printing, February 2008

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Joan Murray

Development Editors
Sheri Cain
Chris Zahn

Managing Editor
Gina Kanouse

Project Editor
Betsy Harris

Copy Editor
Barbara Hacha

Indexer
Tim Wright

Proofreader
Paula Lowell

Technical Reviewers
Nicholas Allen
Jeff Barnes
Keith Brown
Tom Fuller
John Justice
Ron Landers
Steve Maine
Willy-Peter Schaub
Sowmy Srinivasan

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
Nonie Ratcliff

http://www.informit.com/onlineedition

To my parents for pointing me in the right direction, to Zamaneh for making

the journey so sweet, and to Noah and Hannah for showing me the future.

—Steve

Dedicated to my loving wife, Nicki, my son, Matthew, and my daughter,

Charlotte. Thank you for your support and understanding. I love you all

very much and look forward to spending more time together.

—Rich

Thank you to my wife, Jessica, and my daughters, Deborah and Rachel, for

their love and understanding as I again devoted long nights and weekends

to research and writing. We have a book we can be proud of, but now I’m

going to enjoy catching up on that missed family time.

—Chris

This page intentionally left blank

Contents

Foreword xxv
Preface xxvii
Acknowledgments xxxiii

1 Basics 1
Why WCF Matters 1
Introduction 3
Implementing a WCF Service 6

Just the ABCs 7

Writing a WCF Service Entirely in Code 7

Writing a Service with Code and Configuration Files 10

More on Configuration Files 12

More on Service Hosting 13

Exposing the Metadata Exchange (MEX) Endpoint 14

Implementing a Client for a WCF Service 18
Writing a WCF Client Entirely in Code 18

Writing a Client with Code and Configuration 19

Hosting a Service in IIS 23
Discussion 23

Hosting a Service in IIS in Three Steps 24

Implementing a WCF Client for an ASMX Service 27
Tools Support 27

Generating Client Proxy Class and Configuration Files 28

ix

2 Contracts 33
Service Contracts 37

Synchronous Request-Response Operations 38

Asynchronous Request-Response Operations 41

One-Way Operations 44

Duplex Operations 46

Multiple Contracts and Endpoints in a Service 54

Names of Operations, Types, Actions, and Namespaces in WSDL 57

Data Contracts 60
Defining XML Schema for a .NET Class 62

Defining Class Hierarchies 65

Exposing Additional Types in WSDL with KnownTypes 67

Versioning Data Contracts 72

Data Contract Equivalence 75

Working with Collections 76

Message Contracts 78
Typed Messages 79

Untyped Messages 82

Using SOAP Headers with Untyped Messages 85

3 Channels 91
Channel Shapes 94

One-Way Communication Pattern 94

Duplex Communication 95

Request-Reply Communication 97

Shape Changing 98

Operation Contract and Channel Shapes 99
Channel Listeners 101
Channel Factories 102

ChannelFactory<> 104

ICommunicationObject 105

4 Bindings 111
Choosing an Appropriate Binding 116

Sample Application 119

Contentsx

Cross-Machine Communication Between .NET Applications 123
netTcpBinding 123

Local Machine Communication Between .NET Applications 127
netNamedPipeBinding 128

Communication Using Basic Web Services 131
basicHttpBinding 132

Communication Using Advanced Web Services 135
wsHttpBinding 137

ws2007HttpBinding 140

wsDualHttpBinding 143

Comparing Binding Performance and Scalability 152
Communication Using Queued Services 154

netMsmqBinding 155

msmqIntegrationBinding 165

Creating a Custom Binding 168
User-Defined Bindings 171

Binding Elements 171
Transports 172

Encoders 173

Security 174

Transport Upgrades/Helpers 175

Shape Change 176

Other Protocols 177

Exposing a Service Contract over Multiple Bindings 177

5 Behaviors 181
Concurrency and Instancing (Service Behavior) 184

Default Concurrency and Instancing with Sessionless Binding 187

Multithreading a Single Instance 189

Implementing a Singleton 190

Session-Level Instances 193

Controlling the Number of Concurrent Instances 195

Controlling the Number of Concurrent Calls 199

Controlling the Number of Concurrent Sessions 201

Exporting and Publishing Metadata (Service Behavior) 204

Contents xi

Implementing Transactions (Operation Behavior) 207
Transactional Operations Within a Service 208

Flowing Transactions Across Operations 215

Choosing a Transaction Protocol—OleTx or WS-AT 221

Transaction Service Behaviors 223

Implementing Custom Behaviors 224
Implementing a Message Inspector for Service Endpoint Behavior 227

Exposing a Parameter Inspector for Service Operation Behavior

as an Attribute 230

Exposing a Service Behavior Through Configuration 233

Security Behaviors 237

6 Serialization and Encoding 241
Serialization Versus Encoding 241

Comparing WCF Serialization Options 243
DataContractSerializer 243

NetDataContractSerializer 247

XmlSerializer 249

DataContractJsonSerializer 252

Choosing a Serializer 254

Preserving References and Cyclical References 254
Sharing Type with the NetDataContractSerializer 260
Roundtrip Serialization Using IExtensibleDataObject 264
Serializing Types Using Surrogates 270
Streaming Large Data 276
Using the XmlSerializer for Custom Serialization 277

Custom XmlSerialization Using Attributes 278

Custom XmlSerialization Using IXmlSerializable 279

Choosing an Encoder 281
Text Versus Binary Encoding 282

Sending Binary Data Using MTOM Encoding 283

Getting to Know the WebMessageEncoder 284

7 Hosting 287
Hosting a Service in Windows Process Activation Services 288
Hosting a Service in IIS 7 292

Contentsxii

Enabling ASMX Features in an IIS-Hosted Service 294
Self-Hosting 301
Self-Hosting in a Managed Windows Service 302
Hosting Multiple Services in One Process 305
Defining Service and Endpoint Addresses 308

8 Security 315
WCF Security Concepts 316

Authentication 316

Authorization 316

Confidentiality 317

Integrity 317

Transport and Message Security 317

Certificate-Based Encryption 319
Concepts 319

Setup 320

Transport-Level Security 322
Encryption Using SSL 323

Client Authentication 327

Service Identity 332

Message-Level Security 334
Authenticating with wsHttpBinding 335

Securing Services with Windows Integrated Security 340
Section Examples Introduction 341

Authenticating Users with Windows Credentials 343

Authorizing Users with Windows Credentials 346

Authorization Using AzMan 348

Impersonating Users 353

Securing Services over the Internet 358
ASP.NET Integration 360

Authentication Using Membership Providers 361

Role-Based Authorization Using Role Providers 364

Using Forms Authentication 366

Logging and Auditing 371

Contents xiii

9 Diagnostics 375
Sample WCF Application 376
Tracing 376

End-to-End Tracing 377

Activities and Correlation 378

Enabling Tracing 379

Verbosity Recommendations 381

Message Logging 381
Enabling Message Logging 381

Additional Configuration Options 383
Shared Listeners 384

Message Filters 384

Trace Source Auto Flushing 385

Performance Counters 386

Windows Management Instrumentation (WMI) 387

Using the Service Configuration Editor 387
Tracing Options 389

Logging Options 389

Configuring Sources 390

Configuring Listeners 391

Service Trace Viewer 393
Activity View 393

Project View 395

Message View 395

Graph View 395

Analyzing Logs from Multiple Sources 397

Filtering Results 400

10 Exception Handling 403
Introduction to WCF Exception Handling 404

WCF Exception Communication via SOAP 404

Unhandled Exception Example 405

Detecting and Recovering a Faulted Channel 408

Communicating Exception Details 409
Managing Service Exceptions with FaultException 411

Using FaultCode and FaultReason to Extend FaultException 412

Contentsxiv

Limitations of Basic FaultExceptions 414
Creating and Consuming Strongly Typed Faults 415

Declaring Fault Definitions with FaultContract 415

Defining a FaultContract 417

Throwing a FaultException<> with a Defined FaultContract 418

Fault Contract Strategies 419

Implementing Client Fault Handlers 419
Error-Handling Application Block 420

Exception Shielding 421

11 Workflow Services 423
Integration Points 424
Calling a WCF Service from WF 426

Using a Send Activity 427

Writing a Custom Activity 430

Exposing a Service from WF 433
Define the Interface 434

Receive Activity 435

Configuration in app.config 439

Hosting a Service-Enabled Workflow 441

Self-Hosting a Service-Enabled Workflow 442

Hosting a Service-Enabled Workflow in IIS 443

Correlation and Durable Services 444
Long-Running Workflow 445

Handling the Context 450

Persisting Workflow State on the Server 452

Controlling Access to Service-Enabled Workflows 454
Declarative Access Control 455

Programmatic Access Control 455

12 Peer Networking 459
Approaches to Building Distributed Applications 459

Client/Server Applications 460

N-Tier Applications 460

Peer-to-Peer Applications 461

Comparison of Distributed Approaches 462

Contents xv

Peer-to-Peer Applications 462
Mesh Networks 462

Resolving Peer Meshes 464

Message Flooding Versus Directional Messaging 464

Creating Peer-to-Peer Applications 465
netPeerTcpBinding 465

Resolving Peers Using PNRP 468
PNRP Bootstrap Process 469

Windows Internet Computer Names 469

PnrpPeerResolver 470

Mesh Authentication 471

Registering Names Using PNRP 471
System.Net.Peer 472

Implementing a Custom Peer Resolver 474
Limiting the Number of Hops for a Message 478
Collaboration Using Windows Vista 480

People Near Me 481

Windows Contacts 482

Invitations 483

System.Net.PeerToPeer.Collaboration 485

Directional Messaging Using Custom Binding 492

13 Programmable Web 503
All About the URI 504

The Ubiquitous GET 506

Format Matters 507

Web Programming with WCF 507

URI and UriTemplates 508
Building URIs 509

Parsing URIs 510

Creating Operations for the Web 511
Hosting Using WebHttpBinding 512

Using WebGet and WebInvoke 514
WebGet 514

WebInvoke 514

Contentsxvi

Programming the Web with AJAX and JSON 516
ASP.NET AJAX Integration 516

Using the WebOperationContext 523
Hosting for the Web 530

WebScriptServiceHost 530

WebScriptServiceHostFactory 530

Content Syndication with RSS and ATOM 531

Appendix Advanced Topics 537
Publishing Metadata Endpoints 537

mexHttpBinding 538

mexNamedPipeBinding 538

mexTcpBinding 538

mexHttpsBinding 539

Creating Clients from Metadata 539
Creating Silverlight Clients from Metadata 541
Sharing Ports Between Services 542
Configuring Service Quota Settings 543
Configuring HTTP Connections 545

Recycling Idle Connections 546

Adjusting Connection Lifetime 546

Disabling HTTP Keep-Alives 547

Increasing Number of Connections 549

Configuring TCP Connections 549
Recycling Idle Connections 549

Adjusting Connection Lifetime 550

Increasing Number of Connections 550

Using LINQ with WCF 550
Exposing LINQ-to-SQL Entities 550

Index 553

Contents xvii

This page intentionally left blank

Figures

Figure 1.1: Communication between client and service 4

Figure 1.2: Communication between client and service endpoints 5

Figure 1.3: Hosting a service 6

Figure 1.4: Obtaining metadata through MEX endpoint 15

Figure 1.5: Visual Studio generating client proxy class and configuration file 21

Figure 2.1: High-level translation of code artifacts to WSDL 37

Figure 2.2: High-level translation of code syntax to WSDL 38

Figure 2.3: Synchronous request-response communication 38

Figure 2.4: Specifying asynchronous methods in Add Service Reference 42

Figure 2.5: Asynchronous request-response communication 43

Figure 2.6: Duplex communication 47

Figure 2.7: High-level translation of code artifacts to XSD 61

Figure 2.8: High-level translation of code syntax to XSD 62

Figure 2.9: Specifying message contracts in Add Service Reference 80

Figure 3.1: Channel stack 93

Figure 3.2: One-way communication 95

Figure 3.3: Duplex communication 96

Figure 3.4: Request-reply communication 97

Figure 3.5: ICommunicationObject state diagram 107

xix

Figure 4.1: Binding Explorer 115

Figure 4.2: Selecting a binding 118

Figure 4.3: Average response time 153

Figure 4.4: Operations per second 153

Figure 4.5: Cost per operation 154

Figure 5.1: Behavior elements 183

Figure 5.2: Output from default InstanceContextMode and ConcurrencyMode with

sessionless binding 189

Figure 5.3: Output from InstanceContextMode.Single and ConcurrencyMode.

Multiple 191

Figure 5.4: Output from singleton: InstanceContextMode.Single and

ConcurrencyMode.Single 192

Figure 5.5: Output from session-aware service 196

Figure 5.6: Output controlling the number of concurrent instances 199

Figure 5.7: Output controlling the number of concurrent calls 202

Figure 5.8: Output controlling the number of concurrent sessions 204

Figure 5.9: ACID transaction within an operation 209

Figure 5.10: Output from transactional service showing local and distributed

transaction IDs 214

Figure 5.11: Output from optimized transactional service 215

Figure 5.12: Transaction that spans service boundaries 216

Figure 5.13: Output from two transactional services coordinated in a single

transaction 221

Figure 5.14: Interfaces for building custom behaviors on the client 225

Figure 5.15: Interfaces for building custom behaviors on the server 225

Figure 6.1: XML Information Set 242

Figure 6.2: XSD types 244

Figure 7.1: WAS architecture 289

Figure 7.2: Enabling Windows Process Activation Services 290

Figure 7.3: Enabling WCF non-HTTP activation 290

Figure 7.4: IIS implemented on WAS 293

Figure 7.5: Service control manager 305

Figure 7.6: Viewing address and binding from a running service 311

Figuresxx

Figure 8.1: Configuring IIS 7 for SSL 324

Figure 8.2: Services over corporate LAN with Windows application 341

Figure 8.3: Configuring an XML Authorization store 349

Figure 8.4: Creating a role definition with Authorization Manager 350

Figure 8.5: Authorization Manager showing example configuration 351

Figure 8.6: Services over Internet with Windows application 359

Figure 8.7: Sample Internet application 359

Figure 8.8: Services over Internet with Web application 367

Figure 9.1: Tracing and MessageLogging enabled 388

Figure 9.2: Advanced Message Logging settings 389

Figure 9.3: Message Logging XPath Filter 390

Figure 9.4: Trace Source settings 391

Figure 9.5: Listener settings 392

Figure 9.6: Detailed listener configuration 392

Figure 9.7: Service Trace Viewer with client trace and message logs 394

Figure 9.8: Service Trace Viewer Message view 396

Figure 9.9: Service Trace Viewer Graph view 396

Figure 9.10: Service Trace Viewer with service and client logs loaded 398

Figure 9.11: Service Trace Viewer graph of activity transfer 399

Figure 9.12: Service Trace Viewer with expanded subtract call activity 400

Figure 9.13: Creating a custom filter in the Service Trace Viewer 401

Figure 10.1: FaultException returned by calling service with zero denominator 407

Figure 10.2: CommunicationObjectFaultedException for faulted channel 407

Figure 10.3: Exception detail included with ServiceDebugBehavior 410

Figure 11.1: WF behaviors 426

Figure 11.2: Adding a Send activity to a workflow design surface 428

Figure 11.3: Proxy type was imported so an operation can be chosen 429

Figure 11.4: Binding WF variable to service operation parameters 430

Figure 11.5: Using a custom activity in a workflow 433

Figure 11.6: Adding a Receive activity to the workflow design surface 436

Figure 11.7: Entering or importing an interface for a Receive activity 437

Figure 11.8: Binding operation contract parameters to workflow variables 438

Figures xxi

Figure 11.9: Workflow exposing one Receive activity 439

Figure 11.10: Composite Receive activity in a long-running workflow 446

Figure 11.11: Completing a long-running workflow 448

Figure 11.12: One client maintaining context with multiple calls to a

workflow instance 451

Figure 11.13: Multiple clients maintaining context with multiple calls to a

workflow instance 452

Figure 11.14: Declarative authorization within a Receive activity 456

Figure 12.1: Client/server model 460

Figure 12.2: Three-tier model 461

Figure 12.3: Peer model with three nodes 461

Figure 12.4: Fully connected mesh 463

Figure 12.5: Partially connected mesh 464

Figure 12.6: Windows Internet Computer Name (WICN) 470

Figure 12.7: Number of hops across connected nodes 479

Figure 12.8: People Near Me Control Panel 481

Figure 12.9: Allow invitations 482

Figure 12.10: Windows Contacts 482

Figure 12.11: Windows Contact Properties 483

Figure 12.12: Windows Meeting Space invitation 484

Figure 12.13: Windows Meeting Space invitation details 484

Figure 12.14: Peer Chat sample application 485

Figure 12.15: Enabling Teredo using NetSh 500

Figure 13.1: Response in browser using WebHttpBinding binding 514

Figure 13.2: XBOX 360 Game Review AJAX-enabled application 517

Figure 13.3: Wallpaper Web application 524

Figure A.1: Starting Net.Tcp Port Sharing Service from command line 543

Figure A.2: IIS 7.0 settings for HTTP Keep-Alives 548

Figure A.3: LINQ-to-SQL Object Relational Designer 551

Figuresxxii

Tables

Table 1.1: Options for Generating Proxy Class and Configuration File 28

Table 2.1: WSDL Elements 35

Table 2.2: Paired One-Way Versus Duplex Contracts for Bidirectional

Communication 48

Table 2.3: WCF Attributes That Override Default WSDL Names 58

Table 3.1: Channel Shapes Based on OperationContract Attributes 100

Table 4.1: WCF Communication Bindings in .NET Framework 3.5 112

Table 4.2: Supported Features of Each Binding 117

Table 4.3: netTcpBinding Binding Properties 124

Table 4.4: netNamedPipeBinding Binding Properties 129

Table 4.5: basicHttpBinding Binding Properties 133

Table 4.6: WS-* Specifications Supported by the wsHttpBinding Binding 136

Table 4.7: wsHttpBinding Binding Properties 137

Table 4.8: WS-* Specifications Supported by the ws2007HttpBinding

Binding 140

Table 4.9: ws2007HttpBinding Binding Properties 141

Table 4.10: wsDualHttpBinding Binding Properties 144

Table 4.11: netMsmqBinding Binding Properties 156

Table 4.12: msmqIntegrationBinding Binding Properties 166

Table 5.1: Combining InstanceContextMode and ConcurrencyMode 186

Table 5.2: Interaction of TransactionFlow elements 217

xxiii

Table 7.1: Settings for Enabling ASMX Features in a WCF Service 296

Table 7.2: Hosting Choices 312

Table 8.1: Client Authentication with Transport Security 328

Table 9.1: Tracing Source switchValue Options 380

Table 9.2: messageLogging Options 383

Table 12.1: netPeerTcpBinding Binding Properties 466

Table 13.1: URI Examples 505

Table 13.2: Common HTTP Verbs 506

Table 13.3: Web Programming Features in .NET Framework 3.5 508

Table A.1: ServiceThrottlingBehavior Properties 544

Tablesxxiv

Foreword

I ’M W R I T I N G T H I S foreword in December of 2007, a little more than a year
after the first release of Windows Communication Foundation hit the
streets as part of .NET Framework 3.0 and less than a month after we
shipped significant additions to the platform as part of .NET Framework
3.5. Saying there’s a lot to absorb in those two releases is something of an
understatement.

One of the goals of WCF was to unify the programming experience for
building all types of distributed applications on the Microsoft platform. We
wanted a core set of concepts that were simple and approachable, yet
expressive enough to model the underlying semantics of all the technologies
we intended to replace. The Microsoft stacks that came before us (ASMX,
Remoting, COM+, MSMQ, and WSE) had strong benefits as well as signifi-
cant limitations; our mission was to leverage ideas that had worked well in
the past and learn from those that didn’t. If we succeeded, developers would
be able to write many different types of distributed applications without
having to learn many different (and often wildly discontinuous) program-
ming models.

To make the vision of a unified developer experience successful in the
real world, we needed a highly flexible runtime architecture that matched
the richness of the programming model. Key areas of variability had to be
identified and isolated into generalized extensibility mechanisms to avoid
unnecessarily restricting the capabilities of our new platform. Our goal
with the runtime was to make sure that, if our default behavior didn’t meet
the needs of a particular application or we lacked a feature required by a

xxv

specific scenario, there would be a natural point in the runtime into which
an external developer could plug some customization to address the issue.

The most exciting part about WCF for me is the amazing breadth of sce-
narios to which this technology can be applied. Nothing demonstrates that
more concretely than the feature set we delivered in .NET 3.5. This release
had two parallel thrusts covering very different types of distributed appli-
cation scenarios. One thrust was about integrating WCF with the power of
Windows Workflow Foundation to provide a substrate for long-running,
declarative, connected business processes. The other thrust was about
extending the reach of WCF to address the needs of today’s evolving Web.
Both of these scenarios impose unique requirements on the runtime and
programming model, and the fact that we were able to address these
requirements via extensions to WCF without requiring significant changes to
the existing implementation is a strong indicator that the WCF architecture
will be able to address the evolving needs of distributed applications for a
long time to come.

Now that we’re a year out from shipping our first bits, it’s exciting to see
real customers make big bets on our platform. It’s more exciting to hear
about the gains they see in the areas of developer productivity, perform-
ance, and interoperability as a result of betting on WCF. We judge the suc-
cess of our platform first and foremost by the success of our customers, and
by that metric WCF will be a very successful platform indeed.

Really, this is all just a long-winded way of saying that the time you
invest in learning WCF is well spent. To that end, you’re very lucky to be
holding this book in your hands right now. Rich, Chris, and Steve have
done a fantastic job distilling the broad story of WCF down to the essential
elements required to be productive on our platform. The authors’ unique
combination of technical acumen, field experience, and close relationship
with the product team has yielded a book that will undoubtedly hold a dis-
tinguished place on every WCF developer’s bookshelf. I’m incredibly
happy to have these guys telling the technical story of our product. By the
end of this book, I’m sure you’ll feel the same way.
Steve Maine
Seattle, Washington
December 2007

Forewordxxvi

Preface

WI N D O W S CO M M U N I C AT I O N FO U N D AT I O N (WCF) is the unified pro-
gramming model for writing distributed applications on the Microsoft plat-
form. It subsumes the prior technologies of ASMX, .NET Remoting,
DCOM, and MSMQ and provides an extensible API to meet a wide variety
of distributed computing requirements. Prior to WCF, you needed to mas-
ter each of those technologies to select the right approach for a particular
distributed application requirement. WCF simplifies this considerably by
providing a unified approach.

XML Web Services is the most common technique for distributed com-
puting in modern applications. They’re used to expose technical and busi-
ness functions on private or public networks. Sometimes they use the
SOAP specification, sometimes they don’t. They typically transmit infor-
mation as text documents containing angle brackets, but not always. They
generally use HTTP for the transport, but again, not always. WCF is a
framework for working with XML Web Services and is compatible with
most technology stacks.

Rich, Chris, and I have each developed code with .NET from the begin-
ning (circa 1999). We work at Microsoft in the field, helping customers use
WCF to solve real-world problems. Our customers range from large multi-
national corporations to ISVs to Web startups. Each has different chal-
lenges, needs, and priorities that we individually address. We show them
what’s possible, recommend what works well, and steer clear of what
doesn’t. We have experience building distributed applications and leverage
that experience in teaching others about WCF.

xxvii

Our goal for this book is to present WCF in a way that can immediately
be put to use by software developers. We cover the material in enough
detail that you know how and why to use different features. We go a bit fur-
ther in most cases, describing some of the subtleties in the framework, but
not so far as to document the API.

The Blogosphere is rich with WCF details. Much of it comes from the
.NET product team and much of it comes from other developers learning it
along the way. We made extensive use of blogs as source material. This book
brings order to that repository by organizing it in a way that can be easily
consumed from your desk, sofa, or wherever you do your best reading.

Who Should Read This Book?

We wrote this book for software developers who want to build distributed
applications on the .NET platform. As fellow developers, we know the
importance of solid advice and clear examples on how to use new technol-
ogy. We’ve trolled the Blogosphere, scoured internal Microsoft e-mail
aliases, and wrote plenty of code to provide you with the best examples for
doing the things you need to do.

Architects who need to understand WCF will also benefit from this
book. The chapters covering basics, bindings, channels, behaviors, hosting,
workflow, and security describe important aspects of designing and imple-
menting services with WCF. Reading the two- to three-page introductions
in each of these chapters may be the best way to get the 50,000-foot view of
the technology.

Our goal in writing this book is to shorten your learning curve for WCF.
We describe and demonstrate how to do the common tasks, addressing the
basics as well as advanced topics. Throughout the book, we approach top-
ics as a series of problems to be solved. Rather than documenting the API,
we describe how to use WCF to accomplish your goals.

Prerequisites for this book are modest. If you’re interested in WCF, you
probably already have grounding in .NET. You’re probably competent in
C# or Visual Basic, or at least you were at one point. And, of course, you
probably know your way around Visual Studio. So we’re assuming that

Prefacexxviii

you can write decent .NET code and are motivated to make the best use of
your time in becoming proficient in WCF.

Installation Requirements

WCF is a key component of the Microsoft .NET Framework 3.x. WCF was
first released with .NET 3.0 and has been enhanced in .NET 3.5. The delta
between the two releases is modest: enhancements for non-SOAP Web
services, integration between WCF and WF, and a healthy service pack.
This book covers .NET 3.5. Unless there’s a reason to use an older release,
this is the clear recommendation.

.NET is packaged in two forms: the redistributable runtime libraries and
the software development kit (SDK). The runtime libraries are meant for
target machines—those machines that are not for development. This
includes testing, staging, and production environments. The SDK is meant
for your development machines. The SDK contains code samples, docu-
mentation, and tools that are useful for development. Each of these .NET
packages, the runtime and SDK versions, can be downloaded from
Microsoft’s MSDN site at http://msdn2.microsoft.com/en-us/netframe-
work/default.aspx. The .NET 3.5 SDK also ships with Visual Studio 2008.

The Microsoft .NET Framework 3.5 can be installed on Windows XP
SP2, Windows Vista, Windows Server 2003, and Windows Server 2008.

Organization

We don’t expect you to read the book cover to cover. If you’re new to WCF,
you may want to read and try the samples in Chapter 1, “Basics,” first. Fol-
lowing that, each subsequent chapter covers a major feature set of WCF. We
include a few introductory pages in each chapter to describe the motivation
and some design goals, and then we cover subtopics within the chapter.

Chapter 1, “Basics,” is where we cover the basics of building and con-
suming WCF services. We discuss and demonstrate how to implement dif-
ferent types of interfaces and why you may choose each. By the end of this
chapter, you’ll be able to produce and consume services using WCF.

Preface xxix

http://msdn2.microsoft.com/en-us/netframework/default.aspx
http://msdn2.microsoft.com/en-us/netframework/default.aspx

Chapter 2, “Contracts,” covers the three primary types of contacts in
WCF: service contracts, data contracts, and message contracts. Each of these
enables you to define complex structures and interfaces in code. Data con-
tracts map .NET types to XML, service contracts expose service interface
endpoints in WSDL that can be consumed in a cross-platform manner, and
message contracts enable developers to work directly on the XML in a mes-
sage, rather than working with .NET types. For each of these contracts,
WCF tools generate and export standards-based WSDL to the outside
world.

Chapter 3, “Channels,” covers channels and channel stacks. The channel
model architecture is the foundation on which the WCF communication
framework is built. The channel architecture allows for the sending and
receiving of messages between clients and services. Channel stacks can be
built to exactly match your needs.

Chapter 4, “Bindings,” describes how to configure the communication
stack to use exactly the protocols you need. For instance, if you’re commu-
nicating within an enterprise and won’t be crossing firewalls, and you need
the fastest performance, a binding named �������	�
	�� will give you best
results. If you’re looking to communicate with every last Web client out
there, then HTTP and text encoded XML is necessary, so ��	������	�
	��
is the way to go. A binding is synonymous with a preconfigured channel
stack.

Chapter 5, “Behaviors,” covers service behaviors. In WCF, behaviors are
the mechanism for affecting service operation outside of the actual message
processing. Everything that is done after a message is received but before
it is sent to the service operation code is the domain of behaviors. In WCF,
this is where concurrency and instance management is handled, as well as
transactional support. This chapter also demonstrates how to build custom
behaviors for additional service control.

Chapter 6, “Serialization and Encoding,” describes the process by which
data is serialized from a .NET Type (class) to an XML Infoset and the way that
XML Infoset is represented on the wire. We typically think of XML as a text
document with angle brackets around field names and values, but the XML
Infoset is a more basic data structure. This chapter discusses ways of con-
verting that structure into a format that can be exchanged over a network.

Prefacexxx

Chapter 7, “Hosting,” describes the various options in hosting a WCF
service. The most common environment, IIS, is described, but it is by far not

the only option. WCF services can be hosted in Managed .NET applica-
tions, Windows Activation Services, or any other .NET program. This chap-
ter discusses the options and techniques for hosting.

Chapter 8, “Security,” is a large chapter and covers the multitude of
security options. Different authentication schemes are discussed and
demonstrated. Transport- and message-level security are compared, with
examples of each. Intranet and Internet scenarios are also described.

Chapter 9, “Diagnostics,” describes how to use the built-in trace facilities
in .NET to capture WCF events. Trace Listeners are described, along with
examples that show how to configure the settings for different events. The
Trace Viewer, a powerful tool that is shipped with WCF, is also described,
which enables you to trace activities across service call boundaries.

Chapter 10, “Exception Handling,” offers practical guidance on han-
dling exceptions within WCF. SOAP faults are described using fault con-
tracts, and examples demonstrate how to throw and catch them to
minimize errors.

Chapter 11, “Workflow Services,” covers the integration points between
WCF and Windows Workflow Foundation (WF) introduced in Visual Stu-
dio 2008 and .NET 3.5. We describe how to call WCF services from WF and
how to expose WF workflows in WCF.

Chapter 12, “Peer Networking,” shows how to build client-to-client
applications that leverage a network mesh to enable clients to find each
other. We cover mesh addressing and techniques for establishing point-to-
point connections after the client addressing is resolved.

Chapter 13, “Programmable Web,” covers how to use WCF for non-
SOAP Web Services. Examples are shown with Asynchronous JavaScript
and XML (AJAX) and JSON for simpler, JavaScript-friendly data formats.
The hosting classes specific to non-SOAP protocols are described. Like
WCF-WF integration, this is new with .NET 3.5.

Finally, the appendix, “Advanced Topics,” covers advanced topics that
we didn’t fit into other chapters. Rather than burying them somewhere
they don’t belong, we include them separately.

Preface xxxi

Because of the broad nature of the WCF subject, not all topics are
covered in equal depth. This book’s goal is to help developers be super
productive when working with WCF. If we do our job, readers will use this
book as they learn the technology. This book does not attempt to document
WCF—that’s what the good tech writers at Microsoft have done with the
help files and MSDN. But a combination of that documentation and the
good guidance found in these pages should enable developers to quickly
and productively build robust applications with WCF.

Prefacexxxii

NOTE Code Continuation Arrows

When a line of code is too long to fit on one line of text, we have
wrapped it to the next line. When this happens, the continuation is pre-
ceded with a code-continuation arrow (➥).

Acknowledgments

IT TO O K T H E efforts of many people to deliver this book. We started this
more than two years ago as “Indigo” entered its first public beta. Between
then and now, we built our samples, tested and revised them with each
update, and did it one last time with .NET 3.5 and Visual Studio 2008. In
addition to coding, we wrote the book that you’re now holding in your
hands. But that’s the fun part in working with such rapidly changing
technology.

This book could not have been possible without great support from the
WCF product team and from other really smart people at Microsoft. Each
contributed by reviewing our words and code and setting us straight when
we veered off course. We’d like to thank the following people for their time,
thoughts, and patience: Wenlong Dong, Bill Evjen, Steve Maine, Doug
Purdy, Ravi Rao, Yasser Shohoud, and David Stampfli.

We’d also like to thank the technical reviewers, who read, commented,
argued, and ultimately made this a much better book. We’ve been fortunate
to have some of the top WCF experts on our side. So to our reviewers,
please accept this note of gratitude for your help: Nicholas Allen, Jeff
Barnes, Ron Landers, Sowmy Srinivasan, Tom Fuller, and Willy-Peter
Schaub. We’d like to offer a special thanks to John Justice, who helped nav-
igate the product team to find our reviewers. Also special thanks to Thom
Robbins, who taught us how to write in plain English.

xxxiii

We also must thank Liam Spaeth and the whole Microsoft Technology
Center team for supporting our effort. Ideas came from the worldwide
MTC team as a whole and from colleagues and customers at the Boston
MTC.

In addition to the Microsoft crowd, we also owe gratitude to Keith
Brown and Matt Milner at PluralSight for their thorough review of the secu-
rity and workflow material. These two topics are deep enough and new
enough that we greatly needed and benefited from their expertise.

And finally, the good folks at Addison-Wesley really pulled this
together. We might know how to code and how to write, but they know
how to make a book. So, thank you to Joan Murray, Betsy Harris, and team.

Acknowledgmentsxxxiv

About the Authors

Steve Resnick has worked at Microsoft since the mid-1990s, spanning
architect, developer, and evangelist roles in the field. He specializes in Inter-
net technologies, architecting and designing high-volume, high-value Web
applications. Steve is the National Technology Director for the Microsoft
Technology Centers in the United States, where he sets strategy and direc-
tion so that his team can solve the toughest customer challenges. He has
worked with .NET since the beginning and is an expert in Web services,
BizTalk, transaction processing, and related technologies. He holds a M.S.
and B.S. in Computer Science from Boston University and University of
Delaware, respectively.

Rich Crane is a Technical Architect at the Microsoft Technology Center in
Waltham, Massachusetts. A software architect and engineer with more than
18 years of experience, Rich has spent the last six years helping customers
architect and build solutions on the Microsoft platform. He has worked
with numerous Microsoft products and technologies and is an expert in
BizTalk, SQL Server, SharePoint, Compute Cluster Server, and of course
Visual Studio and the .NET Framework. He has spoken at conferences and
community events such as TechEd and Code Camp. He graduated Summa
Cum Laude from Drexel University with a B.S. degree in Electrical and
Computer Engineering.

xxxv

Chris Bowen is Microsoft’s Developer Evangelist for the northeastern
United States, specializing in development tools, platforms, and architec-
tural best practices. A software architect and engineer with 15 years of expe-
rience, Chris joined Microsoft after holding senior positions at companies
such as Monster.com, VistaPrint, Staples, and IDX Systems, and consulting
on Web presence and e-commerce projects with others. He is coauthor of
Professional Visual Studio 2005 Team System (2006, WROX) and holds an M.S.
in Computer Science and a B.S. in Management Information Systems, both
from Worcester Polytechnic Institute.

About the Authorsxxxvi

1
Basics

W I N D O W S CO M M U N I C AT I O N FO U N D AT I O N (WCF) is all about ser-
vices. It’s about creating, hosting, consuming and securing them. It’s

about standards and interoperability. It’s about developer productivity. In
short, it’s all about putting distributed computing within reach of profes-
sional software developers.

In this chapter, we will cover the basic concepts you’ll need to under-
stand to work with WCF services. We’ll focus on the most commonly used
features. By following the text and examples, you will be able to create and
consume services locally and across the network.

Why WCF Matters

Before going too far with the how of services, it’s important to understand
the why. So, why is WCF important? Simple—because services are the core
of the global distributed network, and WCF is the easiest way to produce
and consume services on the Microsoft platform. By leveraging WCF,
developers can focus on their applications rather than on communication
protocols. It’s a classic case of technology encapsulation and tooling. Devel-
opers are more productive if their tools encapsulate (but not hide) technical
chores wherever possible. WCF, combined with Visual Studio 2008, does
just this.

1

Modern application architecture takes devices, client software, and ser-
vices into account. There is no doubt that the model of the circa 1995 Web
site (host an application on a Web server and deliver the UI via HTML to
any browser) will endure, but new models that combine local software with
Web services will also become common. Examples are the iPod, XBOX 360,
RSS, AJAX, Microsoft Office, and SharePoint and 3D immersive environ-
ments, where they each combine locally installed software and Web
services.

For consumer applications, the prevalent Web service interface circa
2008 is Representational Entity State Transfer (REST). This combines HTTP
and a good URI scheme for addressing XML-based data. Data manipula-
tion using REST typically mirrors the Create Read Update Delete (CRUD)
pattern, and simplicity is the hallmark of the REST protocol.

For business applications, the prevalent Web service interface circa 2008
is Simple Object Access Protocol (SOAP). This provides a more robust
model for exchanging complex data. SOAP messages contain an envelope
and body so they can be encrypted and securely routed around the Inter-
net. If the message is part of a logical session or transaction, semantics are
placed in the envelope and propagate along with the message. If the infor-
mation must be secured, the body of the message can be encrypted, with
security information placed in the envelope. SOAP messages are strongly
typed, which makes them developer friendly. Like REST, SOAP messages
circa 2008 are primarily transmitted over HTTP and encoded as text.

WCF is agnostic to protocol and message format. Chapter 2 of this book,
“Contracts,” describes services using SOAP message formats. Chapter 13,
“Programmable Web,” describes the same using REST protocols. Although
some subtle but important distinctions exist between the two, you’ll see far
more similarities than differences in the programming model covered in the
remainder of the book.

Regardless of the wire protocol used, writing solid code requires solid
software engineering practices. Developers writing the code for business
transactions in a service, or compelling user experiences in a client, typi-
cally prefer not to work directly with XML. Why not? Because decades of

Chapter 1: Basics2

language research and compiler design have produced much better tools.
Working with objects, classes, and components produces more robust code
than laborious string manipulation in XML.

Developers building .NET applications use Visual Studio. WCF and
Visual Studio provide the tooling for implementing services. WCF has a
built-in model for hosting, so services can reside within IIS or in Managed
Services on Windows. It provides a rich threading and throttling model
where instancing is controlled with minimal effort. Whether defining a
singleton or a multithreaded service to handle simultaneous requests, the
programming model remains constant, and the developer is insulated (but
not obfuscated) from the details.

WCF supports various message exchange patterns, such as request-
response, one-way, and duplex. Peer networking is also supported by
leveraging mesh networks and addressing so that clients can find and com-
municate with each other without a central control mechanism.

In summary, WCF matters because the modern applications are all
about services, and that’s what WCF is all about.

Introduction

As a comprehensive system for working with services, WCF comes with a
set of terms that you need to be familiar with to be productive. In most
cases, these terms don’t necessarily represent new concepts, but they pro-
vide a consistent taxonomy that we can use to discuss the new technology.

At its core, a service is a set of endpoints that provide useful capabilities
to clients. An endpoint is simply a resource on the network to which mes-
sages can be sent. Clients access these capabilities by sending messages to
the endpoints, formatted according to the contract agreed on by both the
client and the service. Services listen for messages on the address specified
by the endpoint and expect the message to arrive in a particular format. Fig-
ure 1.1 shows the basic relationship between client and service.

Introduction 3

Figure 1.1 Communication between client and service

For the client to communicate meaningful information to the service, it
needs to know the ABCs: the address, the binding, and the contract.

• “A” is for address, the where. It defines where on the network mes-
sages should be sent so that the endpoint receives them. This is the
location to which messages must be sent by the client. For HTTP, the
address would look like http://myserver/myservice/; for TCP, it
would look like net.tcp://myserver:8080/myservice.

• “B” is for binding, the how. The binding defines the channel used to
communicate with an endpoint. Channels are the conduit through
which all messages pass within a WCF application. A channel is
composed of a series of binding elements. The lowest level binding
element is the transport, which delivers messages over the network.
The built-in transports include HTTP, TCP, Named Pipes,
PerChannel, and MSMQ. Above this are binding elements that
specify security and transactions. Fortunately, WCF ships with
system-provided bindings that have the channels stacked and con-
figured correctly to save you the time of figuring it out yourself.
The ��	������	�
	�� facilitates communication with most Web
services built prior to 2007. It corresponds to WS-I BP 1.1 and is
included for its widespread interoperability. The �������	�
	��
implements the common WS-* protocols to enable secure, reliable,
and transacted messaging.

• “C” is for contract, the what. It defines the capability, or feature set,
offered by the endpoint. The contract defines the operations that an
endpoint exposes and the message formats that the operations
require. Contract operations map to class methods that implement
the endpoint, including the signature of parameters passed in and
out of the methods.

Chapter 1: Basics4

WCF Client WCF Service

Endpoint Endpoint

As shown in Figure 1.2, multiple endpoints compose a WCF service,
where each endpoint is defined by an address, binding, and contract.
Because message flow is typically bidirectional, clients also implicitly host
endpoints.

Introduction 5

Endpoint Endpoint

Endpoint

Endpoint

WCF Client WCF Service

Message(s)

C B A
A B C

A B C

A B C

Figure 1.2 Communication between client and service endpoints

A service endpoint cannot respond to messages until the service is
hosted in a running operating system process. The host can be any process,
such as an unattended server process, a Web server or even a client appli-
cation running full screen on a desktop or minimized in the Windows tray.
Services have behaviors that control their concurrency, throttling, transac-
tions, security, and other system semantics. Behaviors may be implemented
using .NET attributes, by manipulating the WCF runtime, or through con-
figuration. Behaviors, in conjunction with a flexible hosting model, greatly
reduce the complexity of writing multithreaded code.

As shown in Figure 1.3, a main program can instantiate a ����	������
class to create the endpoints of the service.

For discoverability, a service may include an infrastructure endpoint
called the Metadata Exchange (MEX) endpoint. This endpoint is accessible
by clients to obtain the ABCs of the service and returns Web Service
Description Language (WSDL). The MEX endpoint is called when you click
Add Service Reference in Visual Studio 2008 or when you use the
�����	����� utility at design time. After the WSDL is obtained, two artifacts
are generated: a proxy class in the language of the project and an ���
����	� file. The proxy class mirrors the signature of the endpoint operations

so that client code can simply “call” an endpoint. The proxy interface doesn’t
have to be identical to the service signature, but the proxy needs to ensure
that the message transmitted to the service is precisely what is described by
the service contract. The �������	� file contains the binding specifics.

Chapter 1: Basics6

Endpoint Endpoint

Endpoint

Endpoint

WCF Client WCF Service

WCF Service

Message(s)

C B A
A B C

A B C

A B C

public static void Main ()
{
 new ServiceHost(...);
 serviceHost.Open();
 .
 .
 .
 .

[Behavior...Instancing=Single]

 serviceHost.Close();
}

Figure 1.3 Hosting a service

Implementing a WCF Service

This section describes how to implement a simple service with WCF. By
simple, we’ll assume HTTP as the wire protocol, and we’ll assume a text-
based representation of an XML document on the wire. For security, we’ll
assume it’s handled somehow in the application. We’ll assume a synchro-
nous request-reply conversation and that our service supports just one
operation, which takes a string as input and returns a double as output. In
later chapters, we’ll vary all these assumptions, but for now, we’ll exclude
unnecessary complexity.

Just the ABCs
To define a service endpoint, remember the ABCs: address, binding, and
contract. In Listings 1.1 to 1.3, the following are described:

• “A” is for address, the where. This service listens for incoming
requests at http://localhost:8000/EssentialWCF.

• “B” is for binding, the how. This example uses ��	������	�
	��,
which directs WCF to implement WS-I Basic Profile 1.1, the common
protocols of Web service communication.

• “C” is for contract, the what. This is the syntactic description of
what operations the service responds to and what message formats
it expects in and out. In this example, the contract is defined by the
���������	�� class.

In this section we will implement the service twice. First we’ll demon-
strate the solution completely in code, where the ABCs are defined directly
in the source code. This will remove external dependencies. Then we’ll
demonstrate the solution again using configuration files. This will result in
less code but will increase the service complexity because of dependencies
between code and configuration. In reality, you’ll probably take the latter
approach because the increased complexity is richly rewarded with flexi-
bility. The flexibility derives from exposing some features in configuration,
where system administrators can modify them, while exposing other fea-
tures in code, where only developers can make changes.

Writing a WCF Service Entirely in Code
At a super-high level, writing a WCF service is similar to writing any other
service, regardless of internals. You first write some code that implements
a capability or feature; then you host that code in an operating system
process, and that process listens for requests and responds. WCF formalizes
these steps a bit and makes it easy for the developer to do the right thing
at each juncture. For instance, using the system-supplied bindings and
encoders, WCF services will communicate though standards-based SOAP
messages. By default, threading, concurrency, and instancing are well
implemented and have predicable behavior.

Implementing a WCF Ser vice 7

To implement a WCF service, you implement a .NET class and then
decorate the class with �����������	����
�� attributes. The �������
����	����
�� namespace is installed with .NET 3.0 and contains most of
the WCF implementation. When the code compiles, the CLR interprets
those attributes, replacing them with runtime code. Attributes are nothing
new to .NET; they’ve been around since .NET 1.0. WCF, like ASMX in .NET
1.0 and 1.1 and 2.0, uses attributes to make you more productive when writ-
ing services.

Listing 1.1 shows the complete code for a WCF service that is hosted in
a console application. In this example, we do the following.

• Define the contract. Write a .NET class that does something useful
and decorate it with WCF attributes. The �����	��������� attribute
marks a class as a contract. Expressed in standards-based WSDL, the
�����	��������� defines a !�������. The �"����	���������
attribute defines methods that can be invoked on the class through the
service interface. It also defines the messages that are passed to and
from those class methods. Expressed in WSDL, the �"����	��
������� #defines Operations and Messages. Listings 1.1 to 1.3 use
a class named ���������	�� that has a single method, $��!�	��.

Chapter 1: Basics8

NOTE

The samples in this book use very simplistic interfaces, often accepting
and returning a single string or number. In practice, your service oper-
ations will likely accept and return complex types. Communicating
over a wire should be more “chunky” than “chatty,” minimizing net-
work traffic and response latency. This requires passing more infor-
mation with each call, requiring complex types for input and return
values.

• Define an endpoint. Within the endpoint definition, we’ll specify an
address, binding, and contract by using the %

����	��&�
��	��
method on the ����	������ class. The address is blank, which indi-
cates that the address of the endpoint is the same as the base address

or the service. The binding is ��	������	�
	��, which is WS-I BP
1.1 compliant and interoperable with most systems that implement
XML Web Services. WS-I, or Web Services Interop, is a collaborative
effort among major system vendors including Microsoft, IBM, BEA,
Oracle, and others to determine and publicize compliance levels.
WS-I doesn’t define standards; it provides guidance and tools for
determining whether software complies with existing standards,
such as HTTP and XML.

• Host the service in a process so it is listening for incoming
requests. Listings 1.1 to 1.3 host the service in a console application
by using the ����	������ class. The service listens at http://
localhost:8000/EssentialWCF.

Listing 1.1 Service Implemented Entirely in Code

��	��#������'
��	��#�����������	����
��'

�������#&�����	�(�)
*

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

����	�#
�����#$��!�	��,���	��#�	����-
*

������#01�23'
.

.

����	�#����#����	��
*

����	�#���	�#��	
#�	�,-
*

����	������#����	������#4#���#
����	������,������,���������	��-5#

Implementing a WCF Ser vice 9

Listing 1.1 continued

���#6�	,78���/99����8���/2:::9&�����	�(�)7--'

����	�������%

����	��&�
��	��,
������,+���������	��-5
���#��	������	�
	��,-5
77-'

����	�������"���,-'

��������(�	��;	��,7!����#<&=�&>?#��#����	����@�@�7-'
��������>�
;	��,-'

����	������������,-'
.

.
.

Writing a Service with Code and Configuration Files
WCF provides rich support for defining service attributes in configuration
files. You still need to code the feature or algorithm you’re exposing in the
service, but endpoint addressing, bindings, and behaviors can be moved
from the code into configuration files.

Defining endpoints and behaviors in configuration files makes for a
much more flexible solution when compared with defining this in code. For
example, suppose that an endpoint was implemented to communicate with
clients via HTTP. In Listing 1.1, this is implemented by specifying
��	������	�
	�� in the call to %

����	��&�
��	��. But suppose that
you’d like to change the binding to (������	�
	��, which delivers better
security by implementing message-level in addition to transport-level secu-
rity. In that case, you’d need to change and recompile the code. By moving
the binding selection from code to configuration, this change can be made
without a recompile. Or, if you’d like to expose the contract over both
protocols, you can define two endpoints: one for basic HTTP and the other
that uses WS-Security without changing code. This makes the code more
manageable.

Listing 1.2 shows the complete code for a WCF service that is hosted in
a console application. This code requires a configuration file that defines
behavior and endpoint information. In this example, we do the following.

Chapter 1: Basics10

• Define the contract. Write a .NET class that does something useful
and decorate it with WCF attributes. There is no difference in a ser-
vice definition, whether it is exposed in code or configuration. Listing
1.2 uses a class named ���������	��#that is identical to Listing 1.1.

• Host the service in an operating system process so it can be
accessed by a client on the network. This is done by creating a
����	������ object defined in �����������	����
�� namespace
and calling its "��� method, as it was in Listing 1.1.

• Define a configuration file that specifies the base address for a ser-
vice and the ABCs of the service endpoint. Note that the code
in Listing 1.2 does not reference the configuration file. When the
����	�������"��� method is called, WCF looks in the appli-
cation’s configuration file (�������	� or ��������	�) for the
<����	����
��? to apply the configuration data.

Listing 1.2 Service Implemented in Code and Configuration Files

��	��#������'
��	��#�����������	����
��'
�������#&�����	�(�)
*

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

����	�#
�����#$��!�	��,���	��#�	����-
*

������#01�23'
.

.

����	�#����#����	��
*

����	�#���	�#��	
#�	�,-
*

����	������#����	������#4#���#
����	������,������,���������	��--'

Implementing a WCF Ser vice 11

Listing 1.2 continued

����	�������"���,-'

��������(�	��;	��,7!����#<&=�&>?#��#����	����@�@�7-'
��������>�
;	��,-'

����	������������,-'
.

.
.

Listing 1.3 shows the complete configuration file that works with the code
in Listing 1.1. In the ����	����
�� section, define the endpoint. For each end-
point, define the address, binding, and contract. The address is blank, which
indicates that the endpoint address is the same as the base address for the ser-
vice. If there is more than one endpoint, each endpoint must have a unique
address. The binding in this case is ��	������	�
	�� and the contract name
is the class name defined in the source code, &�����	�(�)����������	���

Listing 1.3 Configuration for a Service Implemented in Code and Configuration Files

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?

<����	���?
<����	��#���47&�����	�(�)����������	��7?
<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	�(�)79?

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47��	������	�
	��7
�������47&�����	�(�)�+���������	��7#9?

<9����	��?
<9����	���?

<9�����������	����
��?
<9����	����	��?

More on Configuration Files
The service configuration file, ��������	� or �������	� depending on
how the service is hosted, must contain a <�����������	����
��? node.
Under this node, services, bindings, behaviors, clients, diagnostics, exten-

Chapter 1: Basics12

sions, hosting environment, and COM+ interop settings can be specified. At
a minimum, there must be a <����	���? node that contains endpoints and
at least one non-infrastructure <��
��	��? node under that. Within that, the
ABCs are defined for each endpoint.

The

���� attribute defines the URI to which clients will send messages
to the endpoint. For instance, if a service is using the ��	������	�
	��, a
binding based on the HTTP protocol, the URI will look like http://www.
myserver.com:8080/MyService/. If an address specified is an absolute address
(that is, not blank and not just a path), this address overrides the base address
specified by the host when creating the service. When the service is started by
a host, WCF starts the listener, which listens on this address for incoming
requests. In the case of IIS hosting, the listener is likely already started, so
WCF registers with it so that requests for that URI are directed to the WCF
service.

The �	�
	�� attribute defines the communications details needed to
connect to the service. It defines the entire channel stack, which at a mini-
mum includes the network adapter channel. It could also include encryp-
tion, compression, and other channels. Many system-provided bindings
ship with WCF, such as ��	������	�
	��, which is compatible with
ASMX, (������	�
	��, which implements more advanced Web services
that require message-level security, transactions, and other advanced
features, and =������	�
	��, which implements a secure fast wire format
similar to .NET Remoting and DCOM.

The ������� attribute references the type defined by the service end-
point. WCF inspects the type and exposes that as metadata at the MEX
endpoint, if a MEX endpoint is present in the service. WCF finds the type
information by looking first in the \bin folder and then in the Global
Assembly Cache (GAC) for the machine. If it can’t find the type informa-
tion, the service will return error information to Add Service Reference or
�����	����� when those tools request the WSDL. If the MEX endpoint does
not exist, the service will function fine, but clients will not be able to inspect
its ABCs.

More on Service Hosting
WCF enables you to host services in any operating system process. In the
majority of situations, IIS is the right hosting environment to achieve great

Implementing a WCF Ser vice 13

performance, manageability, and security. If you already have IIS running
in your environment, you already have security practices in place. Sophis-
ticated IT shops often define explicit policies and procedures for security
and have automated tools for verifying compliance. Smaller shops often
use the implicit security built in to IIS and Windows 2003. In either case,
existing security practices would be applied to IIS-hosted WCF services.

But there are also reasons to not use IIS for hosting. You may not want to
use HTTP as the protocol. You may want explicit control of the startup and
shutdown events. Or you may want to provide a custom administration
interface rather than using the IIS tools. If you don’t want to use IIS for host-
ing, this is no problem. WCF makes self-hosting very easy and flexible. Self-
hosting is the term used to describe a hosting method where the developer
instantiates the service host, rather than relying on IIS or Windows Process
Activation Services (WAS).

The simplest way of hosting a service is to write a console application,
as shown in Listing 1.1. This isn’t too useful in production because having
command windows on a server isn’t a great practice, but for getting started,
it eliminates all dependencies on IIS infrastructure. The main program cre-
ates a new instance of ����	������, which, as the name implies, will host
the service. The program calls the "��� method on the ����	������ and
then continues about its business. In this case, there’s nothing to do except
wait for someone to press Enter, at which point the application calls the
����� method on the ServiceHost.

After "��� is called, the ����	������ listens on the addresses specified
by the endpoints. When messages arrive, the ����	������ does a few
things. First, based on the channel stack defined by the binding, it applies
any decryption, decompression, and security rules. Second, based on the
contract, it deserializes the incoming message into .NET types, creates a
new object, and then invokes the proper operation on the object.

Exposing the Metadata Exchange (MEX) Endpoint
Metadata in WCF refers to the information that describes precisely how to
communicate with a service. Clients can request metadata from a running
service to learn about their endpoints and the message formats that they

Chapter 1: Basics14

require. At design time, clients send a request message defined by the
WS-MetadataExchange standard and receive WSDL in return. The WSDL
can be used by the client to define a proxy class and configuration file that
will later be used at runtime to communicate with the service. Figure 1.4
shows this interaction.

Implementing a WCF Ser vice 15

Endpoint MEX Endpoint

Endpoint

Endpoint

WCF Client WCF Service

GetMetaData

Proxy Class
(c# or VB)

C B A
A B C

A B C

A B C

app.config WSDL

Figure 1.4 Obtaining metadata through MEX endpoint

By default, WCF services do not expose a MEX endpoint. This means
that nobody can query the service to find out how to communicate with it.
Without knowing the address, binding, and contract, it’s very difficult to
communicate with the service, unless the service is listed in a registry. For-
tunately, WCF makes it easy to expose a MEX endpoint so that clients can
communicate properly with services. The MEX endpoint can be exposed
in code or in configuration.

Listing 1.4 shows the code necessary to expose a MEX endpoint in a ser-
vice. This expands on the example in Listing 1.1 in a few ways. First, a
behavior is added to the service that directs WCF to include the MEX con-
tract, +���
�&��8��� in the service. Second, an endpoint is added to
the service, where the contract is +���
�&��8���, the transport is
HTTP, and the address is 7���7. Because the address is specified as a rela-
tive address, the base address of the service is used as the prefix, so the full
address is http://localhost:8000/EssentialWCF/mex. Note that the behav-
ior is also modified to enable HTTP GET. This is not required but allows
users to access the MEX endpoint via a browser.

Listing 1.4 Service Exposing MEX Endpoint in Code

��	��#������'
��	��#�����������	����
��'
�������	�
���������������������
����

�������#&�����	�(�)
*

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

����	�#
�����#$��!�	��,���	��#�	����-
*

������#01�23'
.

.

����	�#����#����	��
*

����	�#���	�#��	
#�	�,-
*

����	������#����	������#4#���#
����	������,������,���������	��-5#
���#6�	,78���/99����8���/2:::9&�����	�(�)7--'

����	�������%

����	��&�
��	��,
������,+���������	��-5
���#��	������	�
	��,-5
77-'

���������
���
�������������������������
���������
���
������������

��������

�!�
"���������
����
������� ��
�������
������������#�������������

������� ��
#���������"������
�

	���$�%��
���
�"&�������'
��
���
�"&��������������(���
���&

����������'
)��&)��

����	�������"���,-'

��������(�	��;	��,7!����#<&=�&>?#��#����	����@�@�7-'
��������>�
;	��,-'

Chapter 1: Basics16

����	������������,-'
.

.
.

.

If you choose to specify endpoints in configuration files rather than
code, you need to expose the MEX endpoint in the configuration file. List-
ing 1.5 shows how the configuration file in Listing 1.3 is modified to expose
the MEX endpoint. A MEX endpoint is added to the service and a Service-
Behavior is added so that the MEX endpoint can be accessed via HTTP.

Listing 1.5 Service Exposing MEX Endpoint in Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?

<����	���?
<����	��#���47&�����	�(�)����������	��7#

��������(��$�����
����)�	���������������)?
<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	�(�)79?

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47��	������	�
	��7
�������47&�����	�(�)�+���������	��7#9?

*�������
���������)��&)
��������)��&

��������)
���
���
�)%��
���
�"&������)�+,

<9����	��?
<9����	���?

*���������,
*����������������,
*��������������)�	���������������),
*���������
���
���

�!�
"�������)-���)+,

*+��������,
*+����������������,

*+���������,

<9�����������	����
��?
<9����	����	��?#

Implementing a WCF Ser vice 17

Implementing a Client for a WCF Service

WCF provides a rich API for clients to use when communicating with a ser-
vice. The API, implemented by �����������	����
��, takes care of serial-
izing types to XML and sending a message from the client to the service.
You can either program directly to that API, or you can use tools to gener-
ate a proxy class and configuration file. In this section, we will first demon-
strate how to call a service directly in code, and then we’ll do the same
using tools. The former approach involves less code and externalizes the
configuration data. The latter approach has fewer dependencies and gives
more fine-grained control over invocation. There are situations when each
solution is the best alternative.

Writing a WCF Client Entirely in Code
Just as a service endpoint must define the ABCs of WCF to expose its capa-
bilities on the network, a client must know the ABCs to access those
capabilities. Therefore, when writing the code to access services endpoints,
the ABCs are coded into the client application.

The endpoint address is simple—it’s a network address to which mes-
sages are sent. Its format is defined by the transport protocol being used in
the binding. The endpoint binding defines the exact communication mech-
anism though which the endpoint is exposed. WCF ships with a set of
preconfigured bindings, such as �������	�
	��, �������	�
	��, and
��	������	�
	��. The contract defines the precise XML format that the
service understands. It’s typically expressed using �����	��������� and
�D�������� notation in class and/or interface definition in code, and
WCF serializes the class structure to XML for transmission over the wire.

Listing 1.6 shows code to invoke a service operation. This code embod-
ies the ABCs of the service endpoint so that it can access its capabilities.

First, the client defines the interface it wants to call. This interface defi-
nition is shared between the client and service. Syntactically, the C# defini-
tion is very different from XML or WSDL, but semantically it’s the same.
That is, it precisely describes how to access the service capabilities, includ-
ing the name of the operation and its parameters. Then the client creates a
�8����)����� class to create a channel, passing in the ABCs. In this

Chapter 1: Basics18

case, the address is an address hosted by an IIS server, the binding is
��	������	�
	��, and the contract is the +���������	�� interface. Finally,
the client creates the channel to establish communication with the service
and “calls a method” on the service.

Listing 1.6 WCF Client Entirely in Code

��	��#������'
��	��#�����������	����
��'

�������#��	���
*

.�������(��
���
/
���������
��$����%�
��0�������
1

.2����
���(��
���
/
�������!�
3������
�����
��0����

4
����#��	���
*

���	�#��	
#�	�,���	��� #���-
*

(������5��
��	*%�
��0�������,��	(������5��
��	��
����(������5��
��	*%�
��0�������,�

���������

����������'�
����"������
#������
�)�

�6++��������
67888+"����
���9(5)���

%�
��0����������$(����
����	(������5��
��	(���
�(���������

�����#�#4#�����	����$��!�	��,7����7-'
��������(�	��;	��,7!�	��/*:.75�-'

.
.

.

Writing a Client with Code and Configuration
Back in 2001, Visual Studio introduced Add Web Reference, which in just
three words reduced a major undertaking in distributed computing to a
right-click. This was a good thing, because it delivered an entry point to
scalable, standards-based distributed computing to most professional
developers. But in making distributed computing so accessible, it hid many

Implementing a Client for a WCF Ser vice 19

of the important complexities. Visual Studio 2008 continues to support Add
Web Reference for compatibility with ASMX and other Web services, but
also introduces Add Service Reference (ASR) to support WCF. Because
WCF is protocol independent and supports a variety of serialization,
encoding, and security mechanisms, ASR offers great flexibility in provid-
ing support for manageability, performance, and security.

The ASR feature of Visual Studio is used to obtain metadata from a WCF
service and generate a proxy class and configuration file, as shown in Fig-
ure 1.4. Behind the scenes, ASR calls �����	�����, which invokes a ser-
vice’s MEX endpoint to query for its interfaces and to generate a proxy class
and configuration file. The proxy class enables the client to access the
service operations as if they were methods of a local class. The proxy class
uses WCF classes to build and interpret SOAP messages according to the
contract defined by the service endpoint. The configuration file stores the
ABCs of the service.

There are two steps to writing a client that invokes a service: first, gen-
erate a configuration file and the proxy class, and second, write code that
uses the proxy class to invoke the service. To use ASR within Visual Studio
2008, right-click the Service References node within the Solution Explorer
and then select Add Service Reference from the context menu. This will
launch a dialog box shown in Figure 1.5.

This dialog calls the svcutil utility to create a source code file that imple-
ments the proxy class in the language of the project. It also creates an
�������	� file with a <�����������	����
��? node that stores the
address, binding, and contract information necessary to call the endpoints.

As an alternative to using ASR, you can also use the �����	����� util-
ity directly. This utility, found in the C:\Program Files\Microsoft SDKs\
Windows\v6.0\Bin folder, takes many switches, and help is available by
using the E8 switch from the command line. The utility accepts metadata
as input and can produce various forms of output. The metadata can come
from the DLL that implements the class, from a WSDL file, or from the
WSDL returned by a WS-Metadata call to a running service. Listing 1.7
shows how to use �����	����� to generate metadata from the service
defined in Listings 1.4 and 1.5.

Chapter 1: Basics20

Figure 1.5 Visual Studio generating client proxy class and configuration file

Listing 1.7 ����
���&� Generating Client Proxy Class and Configuration File

�����	�#8���/99����8���/2:::9&�����	�(�)9���9
C����	�/�������	�#
C���/�������
!�������

Regardless of which technique is used to generate the proxy and con-
figuration file, �����	����� produces the same result. Listing 1.8 shows the
configuration file. Note that the client-side configuration file is quite a bit
more verbose than the services from which it was generated (refer to List-
ing 1.3). This gives the client the flexibility to override specific attributes,
such as timeouts, buffers, and client-supplied security credentials.

Listing 1.8 ������$�� Generated from ����
���&�

<A���#����	��47B�:7#����
	��47���C27A?
<����	����	��?

<�����������	����
��?
<�	�
	���?

<��	������	�
	��?
<�	�
	��#���47��	������	�
	��F���������	��7#

Implementing a Client for a WCF Ser vice 21

Listing 1.8 continued

������	�����47::/:B/::7#�����	�����47::/:B/::7#
����	���	�����47::/B:/::7#���
�	�����47::/:B/::7
��������	��47����7#�����!����"�;���47����7#
8���=�������	�����
�47������(�
��
7
���������	G�47H33IH7#��������!����	G�473J1J227#
��>���	��
�������	G�47H33IH7
������&���
	��47����7#����&���
	��47���C27#
���������
�47�������
7#���D�����(��!����47����7?
<��
��K����#��D���847IJ7#

�����	���������;����8472B0J7#
��%���;����847BHI217
�������!��>�
471:0H7#
��=�������8������47BHI217#9?

<�����	��#��
�47=���7?
<��������#��	������
���	�����47=���7#

��������
���	�����47=���7
����477#9?

<������#��	������
���	�����476���=��7#
����	�8���	��47D�����7#9?

<9�����	��?
<9�	�
	��?

<9��	������	�
	��?
<9�	�
	���?
<��	���?

<��
��	��#

����478���/99����8���/2:::9&�����	�(�)7#
�	�
	��47��	������	�
	��7
�	�
	������	����	��47��	������	�
	��F���������	��7#
�������47���������	��7
���47��	������	�
	��F���������	��7#9?

<9��	���?
<9�����������	����
��?

<9����	����	��?

After the configuration file and proxy class are generated, invoking a
request-response service operation is quite simple. The name of the
proxy class is the name of the ServiceContract appended with “Client.”
The name of proxy class for the service defined in Listings 1.4 and 1.5 is
���������	����	���. The client code creates an instance of the proxy class
and then calls a method on that class. Listing 1.9 shows the code.

Listing 1.9 Client Code for Invoking a Service Operation

��	��#������'
��	��#�����������	����
��'

�������#&�����	�(�)

Chapter 1: Basics22

*
����#��	���
*

���	�#��	
#�	�,���	��� #���-
*

���������	����	���#�����#4#���#���������	����	���,-'

�����#�#4#������$��!�	��,7����7-'
��������(�	��;	��,7!�	��/*:.75#�-'
�����������,-'

.
.

.#

Hosting a Service in IIS

A WCF service can be hosted by any managed process running in the oper-
ating system. The service itself typically doesn’t know or care about how
it is hosted, although there are plenty of APIs through which it can find out.
It can be hosted in an unattended Windows Service that starts when the
machine is booted and shuts down only when the machine does so, or even
in a client-side application minimized in the Windows system tray. The
most common usage, however, is to host a WCF service in IIS.

Discussion
IIS is well suited for hosting services. It’s built in to Windows and there is
a significant knowledge base published about managing, securing, and
developing applications. IIS is scalable, reliable, and can be made quite
secure so it provides an excellent base for hosting services. ASMX, based on
IIS, was the most widely adopted mechanism for publishing Web services
before WCF, and WCF builds on that legacy. ASMX is replaced by WCF in
.NET 3.5 as the recommended way to publish Web services in IIS.

Again, remember the ABCs of WCF: address, binding, and contract.
When hosting in IIS, the address of a service is defined by the virtual direc-
tory that contains the service files. The binding will always use the HTTP/S
protocol because that’s what IIS understands, so ��	������	�
	�� and
�������	�
	�� are available. These are just two of the system-defined bind-
ings that can be used; any binding that leverages the HTTP protocol is valid
for IIS hosting. The contract, the SOAP definition of the service endpoints,

Hosting a Ser vice in IIS 23

is not constrained by the fact that IIS is hosting the service, so no special
contract rules apply for IIS hosting.

Like ASMX, metadata, in the form of WSDL, can be obtained from an
IIS-hosted service by addressing the service with WSDL as a parameter
(http://localhost/myservice.svc?wsdl). When IIS receives this request, it
calls the MEX endpoint of the service and returns the result as WSDL.
Unlike ASMX, however, the MEX endpoint is not exposed by default, so it
will not respond to metadata requests from Visual Studio 2008 Add Service
Reference or �����	�����. You must explicitly enable the MEX endpoint in
code (shown in code Listing 1.4) or configuration (shown in Listing 1.5).

Hosting a Service in IIS in Three Steps
There are three steps in hosting a service in IIS:

• Create a virtual application in IIS to store the service.

• Create a SVC file to define the service implementation.

• Augment the ��������	� file to include a <�����������	����
��?
section.

Define an IIS Virtual Application

A virtual application in IIS associates an application pool and a virtual
directory. For WCF, the application pool creates the ServiceHost and the
virtual directory stores of the service files (SVC, config, .dll).

Create an SVC File

The SVC file references the service implementation. The SVC file can be cre-
ated using any text editor or Visual Studio. In most cases, the implementa-
tion class will reside in a DLL and will be referenced by the SVC file. The
DLL must reside in the /bin folder in the virtual directory or stored in the
GAC. Listing 1.10 shows an SVC file that references a compiled .NET class.

Listing 1.10 SVC File Referencing a Compiled Service

<LM����	������#����	��47&�����	�(�)����������	��7#L?

Chapter 1: Basics24

Alternatively, the SVC file can contain the actual implementation. In that
case, the SVC file will be longer, but there will be fewer external depend-
encies. Because the source code is resident on the IIS server that is hosting
the service, the source code can be modified by an operations or support
team without access to a development environment for compiling a DLL.
This has obvious risks and benefits. Risks include loss of control over intel-
lectual property and change management, because the code is visible and
updatable on every Web server. Also, performance will suffer with this
method. Benefits include code transparency and break-fixes, because cus-
tomers know exactly what the code does and how to change it if necessary.
Listing 1.11 shows an SVC file that contains a service implementation. This
code will be compiled on its first invocation.

Listing 1.11 SVC File Containing Inline Implementation

<LM����	������#;�����4�N#����	��47&�����	�(�)����������	��7#L?

��	��#������'
��	��#�����������	����
��'

�������#&�����	�(�)
*

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

����	�#
�����#$��!�	��,���	��#�	����-
*

������#01�23'
.

.
.#

Implement *�	�
��������������, in �������	
�

Because IIS is hosting the service, the service endpoint definitions must be
specified in configuration rather than code. The configuration information is
stored in ��������	�, under the <�����������	����
��? node. As with

Hosting a Ser vice in IIS 25

other hosting models, the endpoint must define the ABCs: address, binding,
and contract. Listing 1.12 shows a ��������	� file that hosts a service within
IIS. Note that the <�����������	����
��? node is identical to Listing 1.5.

The address of the service is defined by the address of the virtual directory
in which the SVC file resides. If there’s just one endpoint defined in the ser-
vice, then the endpoint address can be blank, which implies that the endpoint
address is the same as the service address. If there are multiple endpoints
defined in a service, then each endpoint can have a relative address.

The binding must use a channel stack that uses HTTP as the trans-
port. Two transports that are built in to WCF are ��	������	�
	�� and
�������	�
	��. Custom bindings, those that compose a channel stack dif-
ferently than the built-in implementations are also supported, so long as
they use http as their transport. Custom bindings are covered in detail in
Chapters 3 and 4.

The endpoint contract defines the class implemented by the service. The
runtime code must be accessible to the service, either in the /bin directory,
in the GAC, or inline in the SVC file.

Listing 1.12 ������$�� Defining a Service

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)����������	��7

��8�	������	����	��47�&O����	��������8�	��7#?
<��
��	��#

����477

�	�
	��47��	������	�
	��7
�������47&�����	�(�)�+���������	��#7#9?

<��
��	��#

����47���7
�	�
	��47��������	�
	��7##
�������47+���
�&��8���7#9?

<9����	��?
<9����	���?

<��8�	���?
<����	����8�	���?
<��8�	��#���47�&O����	��������8�	��7#?
<����	�����
�#8���$��&����
47����7#9?

Chapter 1: Basics26

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<9�����������	����
��?

<9����	����	��?

Implementing a WCF Client for an ASMX Service

WCF clients can call any standards-based service regardless of the target
hosting environment. Web services built on the .NET 1.1 Framework
(ASMX) are fully compatible. The standard defined by WS-I Basic Profile
1.1 ensures they are callable from WCF clients.

Tools Support
Just like calling a WCF service, you can use Add Service Reference (ASR) or
�����	����� to create the proxy class and configuration file to invoke
ASMX service operations. After these artifacts are created, the client can
communicate with ASMX Web services by instantiating the proxy and call-
ing its methods. Alternatively, you can use the Add Web Reference (AWR)
or ��
����� to generate the proxy class and configuration file. Again, after
the artifacts are created, the client calls methods on the proxy to communi-
cate with the service.

For new client applications calling existing ASMX Web services, it’s best
to use ASR or �����	�����. For existing applications that already have
proxies generated by AWR/��
�����, it’s best to continue to use AWR/
��
�����. This way, the client doesn’t have two types of proxies and con-
figuration files in use to communicate with the ASMX services. If the client
is enhanced to call new WCF services that use the basicHttpBinding, you
can still use AWR/��
����� to generate new proxies for the WCF services.

Implementing a WCF Client for an ASMX Ser vice 27

Table 1.1 Options for Generating Proxy Class and Configuration File

ASMX Service WCF Service

Modifying existing client Add Web Reference Add Web Reference or
that already references or ��
����� ��
�����
ASMX services

Developing new clients Add Service Add Service Reference
for ASMX services Reference or or �����	�����

�����	�����

Regardless of whether you use �����	����� or ��
����� to generate the
proxy class, the client code uses that proxy to access the remote service. In
addition, entries are made in the �������	� for the client program to sup-
port the proxy class.

Generating Client Proxy Class and Configuration Files
If you are modifying an existing client that already had ASMX proxies, you
should use Add Web Reference. Listing 1.13 shows the client code that uses
a proxy generated by Add Web Reference to call a service operation.

Listing 1.13 Client Code Using Add Web Reference Proxy to Access an ASMX Service

��	��#������'
�������#��	���
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

%��O>������������������	��#�����#4#
���#%��O>���������#���������	��#,--

�����#�#4#������$��!�	��,7����7-'
��������(�	��;	��,7!�	��/*:.75#�-'
�����������,-'

.
.

.

Listing 1.14 shows a configuration file that was generated by Visual
Studio from Add Web Reference. Notice that the only attribute stored in the
�������	� is the address of the service. This is in stark contrast to the

Chapter 1: Basics28

detail described in the �������	� generated by Add Service Reference
shown in Listing 1.16. The additional configuration specified by Add Ser-
vice Reference enables developers or administrators to change parameters,
such as timeouts, without changing code.

Listing 1.14 ������$�� Generated by Add Web Reference for an ASMX Service

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<����	�����	���?
<����	��$����#���47���	��	������	���7
����47�����������	����	���%���	��	������	���$����5#
������5#P���	��4B�:�:�:5#�������4������5#
!���	�Q�������4�RR3�3HB0I1�:207#?
<����	��#���47��	����!������	�������	���7#

����47�����������	����	�����	�������	�������	��5#
������5#P���	��4B�:�:�:5#�������4������5#
!���	�Q�������4�RR3�3HB0I1�:207#
��S�	��!���	��	��47����7#9?

<9����	��$����?
<9����	�����	���?
<���	��	������	���?

<��	����!������	�������	���?
*��

���������)(����
:#��;<�$������:�
��0�������)�

�������=�#��)�
����),
*�����,�

�6++��������
+���&+����������&*+�����,

*+��

���,
<9��	����!������	�������	���?

<9���	��	������	���?
<9����	����	��?

If you are creating a new client that doesn’t already have ASMX proxies,
you should use Add Service Reference so that you start the new project
with new proxies. Listing 1.15 shows the client code that uses a proxy gen-
erated by Add Service Reference with an ASMX service. Note that the end-
point name, ���������	�����, must be specified when the proxy is
created. This is because Add Service Reference adds two endpoints into the
�������	� file: one that uses ��	������	�
	�� and one that uses a cus-
tom binding compliant with SOAP 1.1.

Listing 1.15 Client Code Using Add Service Reference Proxy to Access ASMX

��	��#������'
�������#��	���
*

Implementing a WCF Client for an ASMX Ser vice 29

Listing 1.15 continued

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

�������9(5<�$�������
��0�����������(����
����&	���
���������
9(5<�$�������
��0�����������(����

�)�
��0�����������)��������������
*

�����#�#4#������$��!�	��,7����7-'
��������(�	��;	��,7!�	��/*:.75#�-'

.
.

.
.

Listing 1.16 shows a configuration file that was generated by Visual
Studio from Add Service Reference to an ASMX service. Notice the full detail
of binding and endpoint information that was derived from the ASMX ser-
vice and stored in the �������	�. Also notice that two endpoints are
defined. The first endpoint, ���������	�����, uses the ��	������	�
	��,
which complies with the WS-I Basic Profile 1.1 standard. The second end-
point, ���������	�����BJ, uses a custom binding that communicates using
a later SOAP protocol. Because ASMX is WS-I Basic Profile 1.1 compliant, the
1.1 endpoint is used.

Listing 1.16 ������$�� Generated by Add Service Reference for an ASMX Service

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?
<�	�
	���?

<�����

��������?
<�	�
	��#���47���������	�����7#������	�����47::/:B/::7
�����	�����47::/:B/::7#����	���	�����47::/B:/::7#
���
�	�����47::/:B/::7#��������	��47����7
�����!����"�;���47����7#
8���=�������	�����
�47������(�
��
7
���������	G�47H33IH7#��������!����	G�473J1J227#
��>���	��
�������	G�47H33IH7
������&���
	��47����7#����&���
	��47���C27#
���������
�47�������
7
���D�����(��!����47����7?
<��
��K����#��D���847IJ7#
�����	���������;����8472B0J7#��%���;����847BHI217
�������!��>�
471:0H7#

Chapter 1: Basics30

��=�������8������47BHI217#9?
<�����	��#��
�47=���7?

<��������#��	������
���	�����47=���7#
��������
���	�����47=���7
����477#9?

<������#��	������
���	�����476���=��7#
����	�8���	��47D�����7#9?

<9�����	��?
<9�	�
	��?

<9��	������	�
	��?
<���
���������?

<�������������)�
��0�����������>?7?
<����������&���
	��#��>�
!����	G�47H17#

��(�	��!����	G�47BH7
������P���	��47���BJ7#��	��&���
	��47���C27?
<��
��K����#��D���847IJ7#

�����	���������;����8472B0J7#
��%���;����847BHI217
�������!��>�
471:0H7
��=�������8������47BHI217#9?

<9����������&���
	��?
<8�����������#����%

����	��47����7#

��������!����	G�473J1J227
��>���	��
�������	G�47H33IH7#
��������	��47����7#
��8���	��	����8���47%��������7
�����!����"�;���47����7#
8���=�������	�����
�47������(�
��
7
����%�	��&����
47����7#���������	G�47H33IH7#
�����%��8���	��	����8���47%��������7
����477#���������
�47�������
7#
������������	��=���%��8���	��	��47����7
���D�����(��!����47����7#9?

<9�	�
	��?
<9�������	�
	��?

<9�	�
	���?
<��	���?

*�������
���������)�

�6++��������
+���&+����������&)�
��������)�����

��������)
�������(��$�����
����)�
��0�����������)�
���
���
�)(����
9(5<�$�������
��0�����������)
�����)�
��0�����������)�+,

*�������
���������)�

�6++��������
+���&+����������&)�
��������)���
���������)
�������(��$�����
����)�
��0�����������>?)��
���
���
�)(����
9(5<�$�������
��0�����������)
�����)�
��0�����������>?)�+,

<9��	���?
<9�����������	����
��?

<9����	����	��?

Implementing a WCF Client for an ASMX Ser vice 31

SUMMARY

In this chapter, we covered the basics of WCF, neatly described as the ABCs.
A service is composed of endpoints, and each endpoint has the ABCs:
address, binding, and contract. Services also have behaviors that describe
their operating semantics, such as threading and concurrency, but that will
be covered in later chapters.

Services can be hosted in any operating system process, from a console
application running on a Windows desktop to an IIS server in a server farm.
We showed an example of hosting in each. IIS is the most common mech-
anism for hosting WCF services. When .NET 3.5 is installed on an IIS server,
requests for SVC resources are dispatched to WCF. The SVC file contains a
reference to the service implementation. The implementation is either in a
DLL in the /bin of the IIS virtual directory hosting the SVC file, in a DLL
loaded into the global assembly cache (GAC) of the server, or it can be
inline in source code in the SVC file.

Clients communicate with services exclusively through messages. For
developer productivity, Visual Studio provides tools for building client-
side proxy classes to represent server operations. Client applications use
the proxy classes to communicate with the service. Inside the proxy class,
WCF serializes the parameters as XML and sends the XML message to the
proper service endpoint address. Configuration needed by the client proxy
is stored in an �������	� file on the client. The proxy and configuration
files are generated by �����	����� or by using Add Service Reference from
within the Visual Studio environment. Although the tools can greatly
improve productivity, there are cases when you’d rather code directly to the
WCF API. This is entirely possible.

ASMX services are compatible with the WS-I Basic Profile 1.1 specifica-
tion. The ��	������	�
	�� WCF binding is also compatible with that
specification, so using this binding, WCF clients can access ASMX services.

Using the information in this chapter, you should be able to define,
expose, and consume WCF services.

Chapter 1: Basics32

2
Contracts

I N T H E W O R L D O F atoms and money, a contract is a binding agreement
between two or more parties that specifies the supply of goods or ser-

vices for a known price. In the world of bits and services, a contract has a
similar function: It’s an agreement between two or more parties that spec-
ifies the messages that can be exchanged and the terms and conditions of
those messages.

A contract is a description of the messages that are passed to and from
service endpoints. Each endpoint is defined by the ABCs: an addressable
location on the network where messages are sent, a binding that describes
how messages are sent, and a contract that describes the message formats.

Remember that a service is really a collection of endpoints, and the end-
points implement the specific algorithms in code. They can implement
high-level business functions, such as entering orders into a fulfillment sys-
tem, or they can be more fine-grained, such as looking up a customer’s
address. High-level functions typically require complex data structures,
whereas targeted functions often work in more basic data types. In either
case, an endpoint must specify the operations it implements and the data
formats it expects. Together, these specifications make up the contract.

33

There are three types of contracts in WCF:

• Service contracts. Service contracts describe the functional opera-
tions implemented by the service. A service contract maps the class
methods of a .NET type to WSDL services, port types, and opera-
tions. Operation contracts within service contracts describe the ser-
vice operations, which are the methods that implement functions of
the service.

• Data contracts. Data contracts describe data structures that are used
by the service to communicate with clients. A data contract maps
CLR types to XML Schema Definitions (XSD) and defines how they
are serialized and deserialized. Data contracts describe all the data
that is sent to or from service operations.

• Message contracts. Message contracts map CLR types to SOAP mes-
sages and describe the format of the SOAP messages and affect the
WSDL and XSD definitions of those messages. Message contracts
provide precise control over the SOAP headers and bodies.

To make contracts interoperable with the widest range of systems, they
are expressed in Web Service Description Language (WSDL). So, before
going too much further in discussing contracts, a short review of WSDL is
helpful. According to the W3C, the standards body through which indus-
try vendors (Microsoft, IBM, and so on) defined the WSDL specification

WSDL is an XML format for describing network services as a set of end-
points operating on messages containing either document-oriented or
procedure-oriented information. The operations and messages are
described abstractly, and then bound to a concrete network protocol and
message format to define an endpoint. Related concrete endpoints are
combined into abstract endpoints (services). WSDL is extensible to allow
description of endpoints and their messages regardless of what message
formats or network protocols are used to communicate[;] however, the
only bindings described in this document describe how to use WSDL in
conjunction with SOAP 1.1, HTTP GET/POST, and MIME.

Chapter 2: Contracts34

The full specification, available at www.w3.org/TR/wsdl, describes the
key concepts and supporting details so that vendors such as Microsoft can
build tools to produce and consume WSDL. The major elements of WSDL
are described in Table 2.1, paraphrased and expanded from the public spec-
ification.

Table 2.1 WSDL Elements

WSDL Element Description

Type Data type definitions used to describe the messages
exchanged. These are typically expressed in XML Schema
Definition.

Message Represents an abstract definition of the data being transmit-
ted. A message consists of logical parts, each of which is
associated with a definition within some type system. A
message is similar to a formal parameter in a function call or
a method parameter in an interface and is used to define the
signature of operations.

Operation A name and description of an action supported by the ser-
vice. The operations expose the capability or functionality of
a service endpoint.

PortType A named set of abstract operations and the abstract mes-
sages involved. A service endpoint implements a PortType,
which groups related operations.

Binding Defines the message format and protocol details for opera-
tions and messages defined by a particular PortType.

Port Defines an individual endpoint by specifying a single
address for a binding.

Service Defines a set of related ports.

Because contracts are described in WSDL and XSD but code typically
works with CLR types, there needs to be a mapping between the two
systems. WCF facilitates that mapping in a three-stage process. First,
when writing service code, you decorate the class with the WCF-defined
attributes �����	��������� , �"����	��������� , �)���������� ,

Contracts 35

www.w3.org/TR/wsdl

�������������� , and �D�������� . Then, when writing the client
code, you query the service to learn the contract details and to generate a
proxy class that exposes a service interface, which can be called from the
code. This is done using Visual Studio or �����	�����, which invokes a
metadata infrastructure endpoint on the service to generate WSDL from the
attributed code. Finally, at runtime when a client calls a method on a service
interface, WCF serializes the CLR types and method calls into XML and
sends the message over the wire according to the binding and encoding
scheme agreed upon in the WSDL.

Four constructs are in play here; two on the .NET side and two on the
XML side. On the .NET side, a CLR type defines the structure of data or
capabilities, but not until an object of that type is instantiated can it do any-
thing. On the XML side, an XSD defines the structure of data, but not until
an XML Instance is created does an actual message exist.

So to properly understand how WCF works, you need to understand
both the code and WSDL artifacts. Fortunately, WCF ships with two essen-
tial tools for mapping between the two. The first tool, ���6�	�����, can be
explicitly called from the command line or implicitly called when you use
Add Service Reference from Visual Studio. This tool, with its many
switches, produces WSDL and generates proxy classes that facilitate map-
ping between .NET types and XSD, and .NET class methods and WSDL
operations. The second tool, Service Trace Viewer, or �������P	��������,
is a graphical tool that reads and interprets diagnostics log files written by
WCF. Using this tool, we can see the message formats received and sent by
endpoints and trace the message flow. This tool is described in detail in
Chapter 9, “Diagnostics.”

In this chapter we will describe how to use four of the five contract
types. We’ll start by looking at service contracts that expose the endpoints
and operation contracts that define the methods. Then we’ll examine data
contracts that describe the data passed in and out of the endpoints. Finally,
we’ll cover message contracts that provide more control over SOAP mes-
sages. We’ll discuss fault contracts later in the book, in Chapter 10, “Excep-
tion Handling.”

Chapter 2: Contracts36

Service Contracts

A service contract describes the interface to operations implemented by a
service endpoint. Service contracts reference message formats and describe
how they are exchanged. Message formats are further described by data
contracts and message contracts. This section covers the message exchange
patterns that service contracts implement.

Service contracts are used by WCF at design time and runtime. At
design time, they identify classes in code that should be exposed as end-
points in WSDL. A class marked with �����	��������� and its methods
marked with �"����	��������� are exposed in WSDL so that they can
be accessed by clients. The class is identified as ��
�/����	�� and the oper-
ations are identified as ��
�/�����	��. At runtime, when the WCF dis-
patcher receives a message, it looks at the ��
�/�����	�� name to
determine which class method marked with �"����	��������� should
receive the deserialized message. Figure 2.1 depicts the high-level transla-
tion of code to WSDL.

Ser vice Contracts 37

[ServiceContract]

[OperationContract]

[OperationContract]

[OperationContract]

Class A

Code WSDL

Method 1

Method 2

Method 3

service
definitions
porttype
operation

action
operation

input
output
binding

Figure 2.1 High-level translation of code artifacts to WSDL

Figure 2.2 shows the same translation depicted in Figure 2.1, but shows
also the syntax of the C# and WSDL elements for clarity.

Figure 2.2 High-level translation of code syntax to WSDL

Synchronous Request-Response Operations
The synchronous request-response message exchange is the most common
pattern for service operations. This pattern is familiar to anyone who has
programmed in a procedural or object-oriented language. The request-
response pattern is the prototypical local procedure call and is also quite
common for remote procedure calls. Figure 2.3 shows a request-response
interaction, where a proxy running within a client sends a request to a ser-
vice and the service responds synchronously back to the client.

Chapter 2: Contracts38

[ServiceContract]
public class StockService
{
 [OperationContract]
 double GetPrice(string ticker)
 {
 return 94.85;
 }
}

<wsdl:definitions ... >
 <wsdl:types> ... </wsdl:types>
 <wsdl:message
 name="StockService_GetPrice_InputMessage">
 <wsdl:part .. element="tns:GetPrice" />
 </wsdl:message>
 <wsdl:message
 name="StockService_GetPrice_OutputMessage">
 <wsdl:part .. element="tns:GetPriceResponse" />
 </wsdl:message>
 <wsdl:portType name="StockService">
 <wsdl:operation name="GetPrice"> ..
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:service name="StockService">
 <wsdl:port name="BasicHttpBinding_StockService"
 <soap:address
 location="http://localhost/RequestResponse/

StockService.svc" />
 </wsdl:port>
 </wsdl:service>
<wsdl:definitions>

Compiled Code WSDL

P
ro

xy

Endpoint

WCF Client WCF Service

A B C

Figure 2.3 Synchronous request-response communication

WCF makes request-response communication between client and
service very easy. At design time, you use Add Service Reference or
�����	����� to call the service’s Metadata Exchange (MEX) endpoint and
generate a client-side proxy that mimics the signature of the service oper-
ations. This allows the client code to call methods on the proxy as local

function calls. The proxy serializes the method name and parameters into
a SOAP message, sends the SOAP message to the service, listens for a mes-
sage to be sent back from the service, and then creates a .NET type repre-
senting the message response from the service.

Listing 2.1 shows a service contract definition. One service contract and
one operation contract are defined in the code. The operation contract rep-
resents a method that can be called by a client or, more accurately, a mes-
sage that can be sent by the client and understood by the service. Note that
the contract is defined on the interface, not the class definition.

Listing 2.1 Request-Response Service

��	��#������'
��	��#�����������	����
��'

�������#&�����	�(�)
*

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

����	�#
�����#$��!�	��,���	��#�	����-
*

������#01�23'
.

.
.#

Listing 2.2 shows the client code, using a proxy generated by Add Ser-
vice Reference that calls the service in Listing 2.1. This is similar to the code
shown in Listing 1.2.

Listing 2.2 Request-Response Client

��	��#������'
��	��#�����������	����
��'

�������#��	���
*

����#��	���

Ser vice Contracts 39

Listing 2.2 continued

*
���	�#��	
#�	�,���	��� #���-
*

����8�������������	����	���#�����#4#
���#����8�������������	����	���,-'

�����#��	��#4#������$��!�	��,7����7-'
��������(�	��;	��,7����/*:.75#��	��-'
�����������,-'

.
.

.

Listing 2.3 shows the SOAP message that is sent from the client to the
service endpoint. There are a few points worth noting:

• The namespace of the SOAP message is http://tempuri.org/, which
is the default unless overridden in the �����	��������� attribute.
If the service is going to be exposed outside an application or out-
side a relatively small organization, you should override the default
because the namespace construct is designed to uniquely identify
your service and eliminate ambiguity as multiple services are
combined.

• The method name in the class definition in Listing 1.1, $��!�	��#is
used to form the wsa:Action in the SOAP header. The full action
value is a combination of the contract namespace, the contract name
(interface name or the class name, if no explicit service interface is
used), the operation name, and an additional string (Response) if the
message is a correlated response.

• The SOAP body is controlled by the signature of the method and
the qualifiers specified with the �"����	��������� and
�D�������� attributes.

• The SOAP header includes the address to which the message is sent.
In this case, it’s the SVC file hosted on the IIS machine.

Chapter 2: Contracts40

http://tempuri.org/

Listing 2.3 SOAP Message Sent in Request-Response Pattern

<�/&�������#�����/�478���/99��8��������������9���9��������97?
<�/��
��?
<��#�/����6�
�����
47B7#

�����478���/99��8�����	�����������9��9J::39:39

����	��9����7?
�

�6++��������
+<�@���
<��������������+�
��0����������

<9��?
<%��	��#�/����6�
�����
47B7#

�����478���/99��8�����	�����������9��9J::39:39

����	��9����7?
�

�6++
���������+�
��0�������+!�
3����

<9%��	��?
<9�/��
��?
<�/��
�?
<$��!�	��#�����478���/99������	����97?
<�	����?����<9�	����?

<9$��!�	��?
<9�/��
�?

<9�/&�������?#

Asynchronous Request-Response Operations
Good design minimizes situations in which the user must wait for one task
to complete before initiating the next task. For instance, when an e-mail
client is downloading new messages, you can still read or delete messages
already downloaded. Or while a Web browser is downloading images ref-
erenced on a Web page, you can still scroll the page or navigate elsewhere.
This form of multitasking within the client program is accomplished
through an asynchronous design pattern.

In WCF, request-response service operations cause the client to block
while the service operation is executing. One level deeper, the proxy code
generated by �����	����� uses a blocking call to the WCF channel stack
responsible for communicating with the service. This forces the client appli-
cation to block for the duration of the service call. If a service takes ten sec-
onds to complete, the client application will freeze for the duration of the
call waiting for the response.

Fortunately, you can use the asynchronous programming pattern in the
.NET Framework to introduce asynchronous behavior on the client. This
pattern, introduced in .NET 1.0, enables a caller of any synchronous

Ser vice Contracts 41

method to call it asynchronously. It accomplishes this by introducing the
+%����>����� class and by creating two methods, ���	��������	
���� and
&�
�������	
����. The client first calls ���	��������	
���� and then can
continue executing code on its current thread while the asynchronous oper-
ation executes a different thread. For each call to ���	��������	
����, the
client later calls &�
�������	
���� to get the results of the operation. The
client passes a delegate to the ���	��������	
����5 which is called when
the asynchronous operation is called and can store state information from
the ���	��������	
���� call.

You can direct Add Service Reference to generate asynchronous
methods. This is done by clicking the Advanced button in the Add Service
Reference dialog box and selecting the Generate Asynchronous Operations
check box. The Service Reference Settings dialog is shown in Figure 2.4.
Alternatively, the ���6�	� utility with the 9���� switch uses this pattern to
create a ���	�<�����	��? and &�
<�����	��? method for each service
operation, in addition to the synchronous method.

Chapter 2: Contracts42

Figure 2.4 Specifying asynchronous methods in Add Service Reference

Figure 2.5 shows the .NET Framework asynchronous pattern in use with
a proxy generated by ���6�	�. Note that the service doesn’t know that the
client is using asynchronous programming; the contract for the service just
specifies request-response communication while the client implements the
asynchronous pattern without participation from the service.

Ser vice Contracts 43

P
ro

xy

Endpoint

WCF Client WCF Service

Begin<operation>
 (Callback, state, params)

Callback (state, params)
 call End<operation>...

End<operation>
 (params)

A B C

Figure 2.5 Asynchronous request-response communication

Listing 2.4 demonstrates using the ���	�$��!�	�� and &�
$��!�	��

along with the +%����>����� to maintain status of the service operation.
���	�$��!�	�� takes two parameters in addition to the string that is defined
as input for the service operation. The first argument, the %����������
routine, is a local method that accepts one parameter, %����>�����. The
second argument can be any object and is used to communicate state
from the initiating routine to the %���������� routine. It is passed as the
%����>������%��������property to %����������when the service oper-
ation completes. It’s helpful to pass the proxy that initiated the service com-
munication so &�
$��!�	�� can be called from within the %���������� to
get the service operation response. The static variable, �, is used to prevent
the client from exiting before the service completes, and the +���������

class is used to ensure proper thread safety on multiprocessor machines.

Listing 2.4 Request-Response Client Using .NET Async Pattern

��	��#������'
��	��#��������8��
	��'

�������#%(�&�����	�(�)�������
*
����#!�����
*
���	�#	��#�#4#:'

Listing 2.4 continued

���	�#��	
#�	�,���	��� #���-
*
���������	����	���#�����#4#���#���������	����	���,-'
+%����>�����#�$��!�	��'
���#,	��#	#4#:'#	#<#B:'#	TT-
*
�$��!�	��#4#���������	�$��!�	��,7����75#

$��!�	��������5#�����-'
+���������
�+��������,���#�-'

.

�8	��#,�#?#:-
*
�8��
������,B:::-'
��������(�	��;	��,7(�	�����#����#������
	��/*:.75#�-'

.
�����������,-'
��������(�	��;	��,7D���U7-'

.

99#%����8������#�������#���#
	����	��#��������
���	�#��	
#$��!�	��������,+%����>�����#�-
*

�����#
#4#,,���������	����	���-��%��������-�&�
$��!�	��,�-'
+���������
�D��������,���#�-'

.
.
.

One-Way Operations
The one-way message exchange pattern is useful when a client needs to
send information to a service but doesn’t receive a response. With this pat-
tern, the client just needs acknowledgement of successful delivery; it does
not need an actual response from the service. Sometimes the one-way pat-
tern is erroneously called “fire-and-forget.” In reality, it’s “fire and
acknowledge” because the caller receives an acknowledgement that the
message was successfully committed to the communication channel.

WCF supports the one-way message exchange pattern at the service
operation level. That is, service operations can be marked as one-way and
the infrastructure will optimize for that case. When a client calls a one-way

Chapter 2: Contracts44

method on the service, or more accurately, when a client sends a message to
a service endpoint whose operation is marked as one-way, control is
returned to the caller before the service operation completes. One-way oper-
ations are specified on the �"����	��������� attribute by using the
+�"��(�4���� modifier. Listing 2.5 exposes a service contract with two ser-
vice operations. The implementation of both is the same, but one is marked
as a one-way operation. When a client application calls D��	�%����	�)��,
the client-side proxy call returns immediately and doesn’t wait the ten sec-
onds while the service is in the �8��
������ statement. When the client
calls D��	�%����	�����, the client-side proxy call blocks for ten seconds
while the service executes the �8��
������ statement.

Note that as with other message patterns, the code does not know about
the binding or communication protocol being used to deliver the message.
Just because �������	�
	�� supports bidirectional communication and
��	������	�
	�� supports request response, either could be used to sup-
port the one-way pattern.

Listing 2.5 One-Way Operation Contract

�����	���������
����	�#	�������#+���������	��
*

�"����	���������,+�"��(�#4#����-
��	
#D��	�%����	�)��,���	��#�	����-'

�"����	���������
��	
#D��	�%����	�����,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

����	�#��	
#D��	�%����	�)��,���	��#�	����-
*

�8��
������,B::::-'
.
����	�#��	
#D��	�%����	�����,���	��#�	����-
*

�8��
������,B::::-'
.

.

Ser vice Contracts 45

Duplex Operations
Request-response communication is the most prevalent message-exchange
pattern between a client and the service. Communication is initiated on the
client, the client sends a request message to the service, and then the service
sends a response message back to the client. If the response is expected
quickly, this can be implemented synchronously, so the client application
blocks waiting for the response. If a delay is expected between the request
and the response, a request-response pattern can be implemented asyn-
chronously on the client using standard .NET techniques. In that case, WCF
returns control to the client application immediately after sending the
request to the service. When the response is received from the service, a
.NET callback routine is called to complete the WCF reply.

However, what if the service needs to initiate a message, such as a noti-
fication or an alert? What if the client and service need to correlate infor-
mation at a level higher than the individual message, where numerous
requests sent from the client are correlated to one response sent by the ser-
vice? What if a request is expected to take ten minutes to complete?

WCF enables bidirectional communication through duplex service con-
tracts. A duplex service contract implements the duplex message pattern, in
which unsolicited messages can be sent in either direction after the com-
munication channel is established. Operations over a duplex channel can be
request-reply or one-way.

Because messages can flow in either direction, from client to service or
service to client, both parties need an address, binding, and contract defin-
ing where, how, and what messages can be sent. To facilitate messages flow-
ing back from the service to the client, WCF may create an additional
channel. If the initial channel cannot support bidirectional communication,
then WCF creates a second channel, using the same protocol as was speci-
fied by the service’s endpoint, making the protocols symmetrical in both
directions. This is illustrated in Figure 2.6.

Depending on the binding used when establishing the session from the
client to the service, WCF will create one or two channels to implement the
duplex message pattern. For protocols that support bidirectional commu-
nication, such as named pipes and TCP, only one channel is required. For
those that don’t support bidirectional communication, such as http, WCF
creates an additional channel for communication from the service back to the

Chapter 2: Contracts46

client. Of the preconfigured WCF bindings, those with dual in the name (for
example, �����������
��
�) implement two channels. Custom bindings,
which are combinations of channel elements that meet a specific need, can
also implement this dual channel pattern by specifying �	��	����������
in the channel stack. Custom bindings are covered in detail in Chapter 4,
“Bindings.”

Ser vice Contracts 47

P
ro

xy

C
al

lb
ac

k
Callback

Endpoint

Endpoint

WCF Client WCF Service

A B C

C B A

Figure 2.6 Duplex communication

When sending messages from the client to the service, the client uses the
address specified in the service’s endpoint. Conversely, when sending mes-
sages from the service back to the client over a composite duplex channel,
the service must also know the client’s endpoint address. The address of the
client-hosted, WCF-generated endpoint is generated by the WCF channel.
This address, which is the network location to which messages are sent
from the service back to the client, can be overridden by setting the client-
BaseAddress attribute of the compositeDuplex element of the binding.

Paired One-Way Versus Duplex Contracts

You can solve the problem of two-way messaging with two distinct mes-
sage exchange patterns. You could either use a pair of one-way contracts
or you could use a single duplex contract. With a pair of one-way contracts,
both the client and service are independent WCF hosts. They each expose
endpoints to which the other sends messages. Because they are full-fledged
services, they can expose multiple endpoints, use multiple bindings, and
version their contracts independently. With a duplex contract, the client

does not explicitly become a WCF service and does have the complexity
(and freedom) to choose bindings or expose other endpoints. Rather, the
address, binding, and contract that defines the client-side endpoint are
implemented by the channel factory when the duplex communication is
initiated by the client.

A comparison of two one-way contracts versus a single duplex contract
is shown in Table 2.2.

Table 2.2 Paired One-Way Versus Duplex Contracts for Bidirectional Communication

Paired One-Way Contracts Duplex Contract

Contracts can be versioned inde- Client-side callback contract is deter-
pendently. Because the client is a mined by the service. If the service
full-fledged service, it can expose versions its contract, this might require
and version contracts independent a change on the client. This suggests
of the service that the only consumer of the client’s

callback capability is the service that
defines it.

Each one-way contract defines its The communication protocol will be
binding, so you can use a different the same in both directions because it
protocol, encoding, or encryption is defined by the service’s binding.
in each direction.

Implementing the Server Portion of a Duplex Service Contract

A duplex contract contains the interface specifications for both the service
and the client endpoints. In this type of contract, portions of the service-side
contract are implemented on the client.

Listing 2.6 defines a service contract for a service that provides stock
price updates. It uses duplex communication so that a client can register for
updates, and the service will periodically send updates to the client. The
client initiates communication by calling the service’s >��	����)��6�
���
operation. The service then creates a thread that will periodically send
updates to that client by calling the client’s !�	��6�
�� operation.

Chapter 2: Contracts48

Listing 2.6 Duplex Service Contract: Server-Side Implementation

�����	���������,�������������#4#������,+��	���������--
����	�#	�������#+�����������
*

�"����	���������#,+�"��(�4����-
��	
#>��	����)��6�
���,���	��#�	����-'

.

����	�#	�������#+��	���������
*

�"����	���������,+�"��(�#4#����-
��	
#!�	��6�
��,���	��#�	����5#
�����#��	��-'

.

����	�#����#�����������#/#+�����������
*

99#�8	�#	�#="�##���
#���	�	��	��#����	�8�#�#	�V�#����	��#
99#���#�8��
#���#��	����##+�#�8���
#��#	������
#��#	�V�#����	��#
99#���#�8��
#���#�	����#	����
�
����	�#��	
#>��	����)��6�
���,���	��#�	����-
*

6�
��#��(�����#4#���#6�
��,-'
��(������������#4

"����	������������������
$���������8����<+��	���������?,-'

�8��
#�#4#���#
�8��
,���#�8��
����,��(���������
6�
������	���--'

��+���������
#4#����'
������,-'

.
.

����	�#����#6�
��
*

����	�#+��	���������#������#4#����'
����	�#��	
#���
6�
������	���,-
*

>�
��#�#4#���#>�
��,-'
���#,	��#	4:'	<B:'	TT-
*

�8��
������,3:::-'#99#��
���#������#�����8���
���
*

�������!�	��6�
��,7����75#B::�::T��=���D�����,--'
.

Ser vice Contracts 49

Listing 2.6 continued

���8#,&�����	��#��-
*

��������(�	��;	��,7&����#���
	��#��8�#��#��	���/#*:.75
���������-'

.
.

.
.

And for completeness, the associated configuration file is shown in List-
ing 2.7. Note the dual binding that is used.

Listing 2.7 Duplex Service Contract: Server-Side Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#��8�	������	����	��47�&O����	��������8�	��7#

���47&�����	�(�)����������	��7?
<��
��	��#

����477#��������)������

��������7#

�������47&�����	�(�)�+���������	��7#9?
<��
��	��#

����47���7#�	�
	��47��������	�
	��7#

�������47+���
�&��8���7#9?
<9����	��?

<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47�&O����	��������8�	��7#?
<����	�����
�#8���$��&����
47����7#9?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<9�����������	����
��?

<9����	����	��?

One problem with the code in Listing 2.6 is that it creates one thread per
client. For this scenario, there’s an unpredictable number of clients (could
be millions), but there’s a finite number of stock tickers (thousands). There-
fore, it would be better to create a thread per stock ticker rather than per
client.

Listing 2.8 shows an alternative algorithm. In this example, a 8�8����
is maintained to track the stock tickers for which clients requested updates.
6�
�� class is stored in the 8�8���� and each 6�
�� class runs on its own

Chapter 2: Contracts50

thread. The list of client callbacks is stored in thread local storage in the
6�
�� class, so the 6�
�� class can notify all clients about a particular stock
ticker. Notice that a ���� is placed when accessing the client list collection,
both from the >��	����)��6���� method of the main ���������	�� class
and in the 6�
�� class itself. This is necessary so the collection isn’t updated
by the ���������	�� class as it’s being iterated by the 6�
�� class.

Listing 2.8 Duplex Service Contract: Server-Side Implementation

(Better Thread Utilization)

����	�#����#���������	��#/#+���������	��
*

����	�#����#(�����
*

����	�#���	��#�	����'
����	�#6�
��#������!������'

.
����	�#���	�#��8����#�������#4#���#��8����,-'

����	�#��	
#>��	����)��6�
���,���	��#�	����-
*

(�����#�#4#����'

99#	�#���
�
5#�����##���#������5#

#	�#��#�8�#8�8����#
99#�
#����#	�#��##���#�8��

	�#,U������������	��Q��,�	����--
*
�#4#���#(�����,-'
���	����#4#�	����'
��������!������#4#���#6�
��,-'
��������!��������	����#4#�	����'
���������	���� #4#�'

�8��
#�#4#���#�8��
,���#
�8��
����,��������!����������
6�
������	���--'

��+���������
#4#����'
������,-'

.

99#���#�8�#������#���#�8	�#�	����#�
#
99#

#�8�#��	���#�����#��#	��#�	��#��#�������
�#4#,(�����-���������	���� '
+��	���������#�#4#

"����	������������������
$���������8����<+��	���������?,-'

����#,��������!��������������-

Ser vice Contracts 51

Listing 2.8 continued

��������!���������������%

,�-'
.

.

����	�#����#6�
��
*

����	�#���	��#�	����'
����	�#;	��<+��	���������?#�������#4#

���#;	��<+��	���������?,-'
����	�#��	
#���
6�
������	���,-
*

>�
��#�#4#���#>�
��,-'
>�
��#�#4#���#>�
��,-'
�8	��,����-
*
�8��
������,��=���,3:::--'#99#�����#��
���#����#�����8���
����#,�������-

�����8#,+��	���������#�#	�#�������-
���
*
��!�	��6�
��,�	����5#B::�::T��=���D�����,-WB:-'

.
���8#,&�����	��#��-
*
��������(�	��;	��,7&����#���
	��#��8�#��#��	���/#*:.75#

���������-'
.

.
.

.

With either the thread-per-client implementation shown in Listing 2.7 or
the thread-per-ticker implementation shown in Listing 2.8, there are still
reliability questions. For instance, if service cannot call the client callback
operation, it logs a message to the console, but it never retries. Should the
service retry, and if so, how often, and when should it stop? Or, if there is
a scheduled window during which the client knows it won’t be available to
receive updates, where can the updates be queued so that they are deliv-
ered at a later time? These are important issues that are resolved by using
a message broker such as Microsoft BizTalk Server or similar product.
Message brokers typically have durable storage (database, file system, or
message queue) at the heart of the system and include robust configuration

Chapter 2: Contracts52

tools for specifying transports and retry protocols. But they also bear over-
head in terms of performance, complexity, and cost, so the solution will
vary depending on requirements.

Implementing the Client Portion of a Duplex Contract

To participate in a duplex message exchange pattern, the client must imple-
ment the ABCs of WCF—it must define an address on the client where the
service sends messages, a binding that directs how the service sends mes-
sages to the client, and a contract that defines exactly what the messages
look like. Fortunately, this is largely taken care of when you generate a
client-side proxy and by the channel infrastructure at runtime.

To generate the client-side proxy, use can use �����	����� or Add
Service Reference. The proxy defines an interface with the same name as the
service, with ������ appended to the end. If the service contract interface
is +���������	��, the client interface is +���������	��������. The client
must implement a class derived from this interface.

At runtime, just like the service, the client is accessed strictly through the
endpoint definition and by sending messages to it. The major difference
between the service-side endpoint and the client-side endpoint is that the
client-side endpoint is created dynamically by WCF. There is no configu-
ration file or explicit ����	������ call in the client code. Again, WCF takes
care of this, so the client just needs to implement a class derived from the
generated interface.

Listing 2.9 shows a client that calls the >��	����)��6�
��� method of
the StockService service to request periodic updates. It also implements a
callback interface, !�	��6�
��, as required by the service, with stock price
updates. Notice that an +������������� object is instantiated and used to
create the proxy. The +������������� object stores context information for
a service, such as references to incoming and outgoing channels created on
the client’s behalf.

Listing 2.9 Duplex Service Contract Implemented in a Client

��	��#������'
��	��#�����������	����
��'

�������#��	���
*

Ser vice Contracts 53

Listing 2.9 continued

����	�#����#��������
���#/#+�����������������
*

���	�#+�������������#�	��#4#
���#+�������������,���#��������
���,--'

���	�#�������������	���#�����#4#���#�������������	���#,�	��-'

����	�#��	
#3����A���
�,���	��#�	����5#
�����#��	��-#
*

��������(�	��;	��,7>���	��
#����#�#/#*:.�#*B./*J.75#
�������D���	���=��5#�	����5#��	��-'

.

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

������<����
��5��A���
��,7��)�7-'

��������(�	��;	��,7!����#&����#��#��#���#��#��	�7-'
��������>�
;	��,-'

.
.

.
.

Multiple Contracts and Endpoints in a Service
A service is defined as a collection of endpoints. Each endpoint has an
address, binding, and contract. The contract is what exposes the endpoint
capabilities. The address is simply where those application (or service)
capabilities live on the network, and the binding is how to access them.

There is a one:many relationship between endpoints and contracts. An
endpoint can have only one contract, but a contract can be referenced by
many endpoints. And although an endpoint can specify only one contract,
interface aggregation enables a single contract to expose multiple inter-
faces. In addition, multiple endpoints with the same binding but different
contracts can be located at the same address, giving the illusion that a sin-
gle endpoint implements both contracts.

By exposing a contract through multiple endpoints in a service, you can
make it available through multiple bindings. You can define one endpoint
that exposes a contract using the WS-I Basic Profile binding for maximum

Chapter 2: Contracts54

reach while exposing it through another endpoint that uses TCP protocol
and binary encoding for much faster performance. By aggregating multiple
interfaces into one, you can provide consolidated access to capabilities ini-
tially codified into separate interfaces in a single service.

Listing 2.10 shows two service contracts, +$��
���������	�� and
+$������������	��, that are aggregated into a third service contract,
+���������	���. The methods defined in those interfaces are implemented
in the aggregate. Although the service interfaces can be inherited, the
�����	��������� attribute must be defined to expose each interface.

Listing 2.10 Exposing Multiple Contracts in an Endpoint

�������#&�����	�(�)
*

�����	���������
����	�#	�������#+$��
���������	��
*

�"����	���������

�����#$�������!�	��,���	��#�	����-'

.
�����	���������
����	�#	�������#+$������������	��
*

�"����	���������

�����#$�������!�	��)��,���	��#�	����-'

.

�����	���������
����	�#	�������#+%�����������	���#/#

+$��
���������	��5#+$������������	��#*#.'

����	�#����#%�����������	���#/#+%�����������	���
*

����	�#
�����#$�������!�	��,���	��#�	����-
*

�8��
������,3:::-'
������#01�23'

.
����	�#
�����#$�������!�	��)��,���	��#�	����-
*

������#01�23'
.

.
.

Ser vice Contracts 55

Listing 2.11 shows a configuration file that exposes multiple endpoints
for the three contracts. There is one endpoint for the +$��
���������	��
contract, two endpoints for the +$������������	�� contract, and one end-
point for the +%�����������	��� contract.

Because there are multiple endpoints using the binding that shares an
addressing scheme, a different address must be specified for each endpoint.
Relative addresses are used, so the full address of each endpoint is the
services-based address plus the relative qualifier.

Listing 2.11 Exposing Multiple Endpoints in a Service

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?

<����	���?
<����	��#���47&�����	�(�)����������	���7

��8�	������	����	��47�������	����8�	��7?
<8���?

<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	�(�)979?

<9���%

������?
<98���?
<��
��	��#���47$��
���������	��7#

�	�
	��47��	������	�
	��7
�������47&�����	�(�)�+$��
���������	��7#9?

<��
��	��#���47���������������	��7#

����47������7
�	�
	��47��	������	�
	��7
�������47&�����	�(�)�+$������������	��7#9?

<��
��	��#���47�������������	��7#

����47����7
�	�
	��47�������	�
	��7
�������47&�����	�(�)�+$������������	��7#9?

<��
��	��#���47%�����������	���7#

����47��7
�	�
	��47�������	�
	��7
�������47&�����	�(�)�+%�����������	���7#9?

<��
��	��#

����47���7
�	�
	��47��������	�
	��7
�������47+���
�&��8���7#9?

<9����	��?
<9����	���?

Chapter 2: Contracts56

<��8�	���?
<����	����8�	���?
<��8�	��#���47�������	����8�	��7?
<����	�����
�#8���$��&����
47����79?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?

<9�����������	����
��?
<9����	����	��?

Because the +$������������	�� contract is exposed at multiple end-
points, client applications must reference the endpoint by name when cre-
ating a proxy instance to that contract. If the endpoint name wasn’t specified,
WCF would throw an error because it couldn’t know which endpoint to use.
Listing 2.12 shows the use of the $������������	����	���proxy two times:
first to access the ���������������	�� using ��	������	�
	�� and second
to access �������������	�� using �������	�
	��.

Listing 2.12 Specifying Endpoints by Name When Multiples Are Defined

��	��#,����8����$������������	����	���#�����#4#���#####
��	��������8����$������������	����	���

,7���������������	��7--
*

��������(�	��;	��,������$�������!�	��)��,7��)�7--'
.
��	��#,����8����$������������	����	���#�����#4#���#

��	��������8����$������������	����	���
,7�������������	��7--

*
��������(�	��;	��,������$�������!�	��)��,7��)�7--'

.

Names of Operations, Types, Actions, and Namespaces in WSDL
WCF generates the externally exposed service artifacts based on the inter-
nally named classes and attributes defined in the source code of the service.
These artifacts are exposed through the MEX endpoint of the service and
typically consumed as WSDL by a client at design time. On the client side,
the WSDL is then used to write code that builds the proper message for-
mat through which it communicates with the service. So the names you

Ser vice Contracts 57

choose for classes, methods, and parameters can potentially have a life far
beyond the service boundary.

However, it’s generally bad form to expose internal names and details
externally at the service interface. For instance, you may have an allocation
algorithm called BurgerMaster that you’d like to expose externally as an
operation called Resources. Or there may be coding standards in place that
dictate how you should name interfaces. Fortunately, you can control all
names exposed from the service by modifying the �����	��������� ,
�"����	��������� , and �����	����8�	�� attributes. Table 2.3 lists
how to control the WSDL terms with WCF attributes in code.

Table 2.3 WCF Attributes That Override Default WSDL Names

WSDL Term WCF Attribute

�����=������ Defaults to http://tempuri.org. Can be changed by
using �����	����8�	�� attribute in code.

��
�/����	�� and �����	����8�	��,=��47������	��=��7-
��
�/
��	�	�	���

��
�/�������� �����	���������,=��47���������=��7-

��
�/�����	�� and �"����	���������,=��47��"����	��=��7-
���/�����	��

��/������� �������!������,=��#4#7��!��=��7-

��
�/	����#�
# �"����	���������,%��	��47
��
�/������ ��"����	��%��	��75

>����%��	��47��"����	��>����%��	��7-

��
�/�	�
	�� Use and Style attributes of �D�������� and
�����	���������

The service defined in Listing 2.13 uses WCF attributes to override the
default names generated by WCF.

Chapter 2: Contracts58

http://tempuri.org

Listing 2.13 Service Definition Controlling WSDL Names

�����	����8�	��#�B���������)�

�6++�	�������+)�
�����	���������#

�B����)�	�������B���)'
B���������)�

�6++�������B��������)�

����	�#����#�����������
*

�������/#������!������,=��#4#7��"�����7-
�"����	���������#

�B����)2����
���B���)'�
#�
����)2����
���#�
���)'
<���	#�
����)<���	#�
���B���)�

����	�#
�����#$�������!�	��,���	��#�	����-
*

������#B::�::'
.

.

The �����	����� utility with the E�/���
� switch can be used to
generate WSDL from a service. Alternatively, if the service exposes a MEX
endpoint over an http binding, the WSDL can be viewed by accessing the
base address from Internet Explorer. The format of the WSDL will vary
slightly whether you use �����	����� or Internet Explorer to view it, but
the differences are insignificant and just relating to packaging. In either
case, Listing 2.14 shows the WSDL associated with the code listed in Listing
2.13. The ��
�/��������, ��
�/�����	�� and ��
�/��	�� names are con-
trolled by the code. Note that the ��
�/�������� name is ������	��=��
and not �����������, as the class is named in Listing 2.13.

Listing 2.14 WSDL Listing by Controlling Names

<A���#����	��47B�:7#����
	��47���C27A?
<��
�/
��	�	�	���#
�����/���478���/99��8��������������9��
�9���97#
�����/��
478���/99�����I����9J::B9O�;��8��7#
�����/���478���/99����	��=������7#
�����=������478���/99����	��=������7#
�
�
�

Ser vice Contracts 59

Listing 2.14 continued

�����/��
�478���/99��8��������������9��
�97?
<��
�/�����?
<��
/��8��#�����=������478���/99����	��=������9+������7?
<��
/	�����#

��8��;���	��4
78���/99����8���/2:::9&�����	�(�)9A��
4��
:7#

�������478���/99����	��=������7#9?
<��
/	�����#

��8��;���	��4
78���/99����8���/2:::9&�����	�(�)9A��
4��
B7#

�������478���/99��8�����	�����������9
J::I9B:9���	�	G�	��979?

<9��
/��8��?
<9��
�/�����?

<��
�/������#���47������	��=��F"����	��=��F+����������7?
<��
�/���#���47��������7#�������47���/"����	��=��7#9?

<9��
�/������?
<��
�/������#���47������	��=��F"����	��=��F"�����������7?
<��
�/���#���47��������7#�������47���/"����	��=��>�������7#9?

<9��
�/������?
*����6���
-	��������)�	�������B���),
*����6�����
���������)2����
���B���),
*����6����
�����6#�
����)2����
���#�
���)�

��������)
��6�	�������B���:2����
���B���:%���
�������)�+,
*����6��
��
�����6#�
����)<���	#�
���B���)

��������)
��6�	�������B���:2����
���B���:2�
��
�������)�+,
*+����6�����
���,

<9��
�/��������?
<9��
�/
��	�	�	���?#

Data Contracts

Inside a service, functional application capabilities are implemented in
code. Outside a service, functional capabilities are defined in WSDL. Inside
a WCF service, application data is represented in simple and complex types
while outside the service data is represented by XML Schema Definitions
(XSD). WCF data contracts provide a mapping function between .NET CLR
types that are defined in code and XML Schemas Definitions defined by the
W3C organization (www.w3c.org/) that are used for communication out-
side the service.

Chapter 2: Contracts60

www.w3c.org/

Using WCF, developers spend more time with code and interface
semantics and less time with XSD and WSDL syntax. That’s not to say that
XSD and WSDL syntax aren’t important; they are crucial elements in build-
ing interoperable systems across heterogeneous platforms. But it turns out
that compilers are good at translating data structures written in a .NET lan-
guage into their XSD and WSDL representation required for cross-platform
interoperability.

At design time, the �D�������� attribute is used to indicate which
classes should be represented as an XSD and included in the WSDL
exposed by the service. The �D������� attribute further defines the XSD
by indicating which class members should be included in the external rep-
resentation. At runtime, the D�����������	�	G�� class serializes
objects to XML using the rules described by the �D�������� and
�D������� attributes. Figure 2.7 shows the classes, which are native to
a .NET implementation represented as XML Schema, which is interopera-
ble with other systems.

Data Contracts 61

[DataContract]

[DataMember]

[DataMember]

[DataMember]

Class A

Code

XSD

_member1

_member2

_member3

xs:schema
xs:complexType

xs:sequence
xs:element

Figure 2.7 High-level translation of code artifacts to XSD

Figure 2.8 shows the same translation depicted in Figure 2.7, but shows
also syntax of the C# and XSD elements for clarity.

Figure 2.8 High-level translation of code syntax to XSD

The D�����������	�	G�� will serialize types and expose them in
WSDL contracts if they meet any of the following conditions:

• Types marked with the �D�������� and �D������� attributes

• Types attributed with ��������	��D��������

• Types derived from +O�����	�	G���

• Types marked with ����	�	G��� attribute whose members are
not marked with �=�����	�	G�

• Types marked with ����	�	G��� attribute and implements
+���	�	G���

• CLR built-in primitive types, such as int32 and string

• Bytes array, DateTime, TimeSpan, Guid, Uri, XmlQualifiedName,
XmlElement, and XmlNode

• Arrays and collections such as ;	��<�?, D	��	����<Q5P? and
��8����

• Enumerations

Defining XML Schema for a .NET Class
The �D�������� attribute, defined in �������>���	������	�	G�	��,
indicates that a class should be exposed as an XSD in the WSDL that rep-
resents the service. If a class doesn’t have the �D�������� attribute, it
will not be present in the WSDL. By default, the name of the XML Schema

Chapter 2: Contracts62

Compiled Code XSD

[DataContract]
public class StockPrice
{
[DataMember]
double CurrentPrice;

[DataMember]
DateTime CurrentTime;

[DataMember]
string Ticker;

[DataMember]
public long Volume;
}

<xs:schema>
 <xs:complexType name="StockPrice">
 <xs:sequence>
 <xs:element name="CurrentPrice"
 type="xs:double" />
 <xs:element name="CurrentTime"
 type="xs:dateTime" />
 <xs:element name="Ticker" nillable="true"
 type="xs:string" />
 <xs:element minOccurs="0" name="Volume"
 type="xs:long" />
 </xs:sequence>
 </xs:complexType>
 <xs:element name="StockPrice" nillable="true"
 type="tns:StockPrice" />
</xs:schema>

is the same as the name of the class and the target namespace of the schema
is 8���/99��8����
������������9J::19:R9 concatenated with the
.NET namespace of the class. Both of these can be overridden. You may
want to override them to control the names exposed outside the service. For
instance, an internal class name of ��S"�
��+� can be exposed as "�
�� in
the XSD. Listing 2.16 shows how to override the name and namespace of
an XSD.

The �D������� attribute, also defined in �������>���	���

���	�	G�	��, identifies members of the .NET class marked with the
�D�������� attribute to include in the XML Schema. If a class member
is not attributed with �D������� , it is not included in the XML Schema,
even though it’s a member of the class. By default, class members are not
contained in the XML Schema Definition, which makes this strictly an opt-
in model. The scoping of .NET class members, whether it’s public or pri-
vate, does not impact its inclusion in the XML Schema; that decision is
strictly made based on the presence of the �D������� attribute.

Listing 2.15 demonstrates a class definition, �����!�	��, with five public
data members. Three of them, �	����, �8��������!�	��, and �8��������C
�	��, are required because they are marked with 	�>�S�	��
4����. A few
additional features of �D������� are also shown:

• The names of class members are all prefixed with �F in the code. The
class member names are overridden so that �F notation is not carried
into the XSD defined in the service interface.

• The order of class members is specified in the �D������� attrib-
ute. If the order isn’t specified, the elements would appear in alpha-
betical order in the XSD. Order is typically not important, but
controlling it is necessary for interoperability. If you’re sending mes-
sages to a service that expects elements ordered in a particular way,
this attribute can control the order of the elements encoded in the
text XML.

• The class members �F�������!�	��, �F���������� and �F�	����

are marked as required, but �F
	��P����� and �F
	���8��� are
not. Nonrequired class members can be absent from XML instances
and still are considered valid according to the XSD.

Data Contracts 63

Listing 2.15 Defining a Data Contract

��	��#������'
��	��#�����������	����
��'
��	��#�������>���	������	�	G�	��'

�������#&�����	�(�)
*

�D��������#,=������478���/99&�����	�(�)75=��47�����!�	��7-
����	�#����#��������!�	��
*

�D�������#,=��47�������!�	��75"�
��4:5+�>�S�	��
4����-
����	�#
�����#�8��������!�	��=��'

�D�������,=��#4#7��������	��75#"�
��4B5#+�>�S�	��
#4#����-
����	�#D���	��#�8���������	��=��'

�D�������,=��#4#7�	����75#"�
��4J5#+�>�S�	��
#4#����-
����	�#���	��#�8��	����������'

�D�������,=��#4#7D	��P�����75#"�
��4I5#+�>�S�	��
#4#����-
����	�#����#�8�D	��P�������)�'

�D�������,=��#4#7D	���8���75#"�
��415#+�>�S�	��
#4#����-
����	�#
�����#�8�D	���8�����)�'

.

�����	���������
����	�#����#���������	��
*

�"����	���������
��	���#��������!�	��#$��!�	��,���	��#�	����-
*

��������!�	��#�#4#���#��������!�	��,-'
���8��	����������#4#�	����'
���8��������!�	��=��#4#B::�::'
���8���������	��=��#4#�������D���	���=��'
���8�D	��P�������)�#4#13::::'
���8�D	���8�����)�#4#�:BJI13'
������#�'

.
.

.

The �����	�����#E�/���
� command generates the XSD using the
�D������� elements defined by a class. Listing 2.16 shows the XSD gen-
erated by the code shown in Listing 2.15. Notice that the element names and
order are defined according to the attributes in code. Also note that the non-
required class members are indicated as �	�"�����4: in the XML Schema.

Chapter 2: Contracts64

Listing 2.16 Generated XSD Representing a Data Contract

<A���#����	��47B�:7#����
	��47���C27A?
<��/��8��#�����/���478���/99&�����	�(�)7#�������)���D�����47S��	�	�
7
�����=������478���/99&�����	�(�)7
�����/��478���/99�����I����9J::B9O�;��8��7?
<��/�����������#���47�����!�	��7?
<��/��S�����?
<��/�������#���47�������!�	��7#����47��/
�����7#9?
<��/�������#���47��������	��7#����47��/
���	��7#9?
<��/�������#���47�	����7#�	�����47����7#����47��/���	��7#9?
<��/�������#�	�"�����47:7#���47D	��P�����7#����47��/����7#9?
<��/�������#�	�"�����47:7#���47D	���8���7#����47��/
�����7#9?

<9��/��S�����?
<9��/�����������?
<��/�������#���47�����!�	��7#�	�����47����7#����47���/�����!�	��79?

<9��/��8��?

Defining Class Hierarchies
Complex types are typically implemented as classes in code. Complex
classes are further defined through inheritance as a way of representing
increasingly specific constructs. This way, a general type like ‘price’ can be
subclassed to a more specific type like ‘stock price’ or ‘house price’. WCF
supports class hierarchies by representing them properly in WSDL, serial-
izing and deserializing them between class structure and XML and by car-
rying the attributes of each class forward into the aggregate.

In Listing 2.17, the class !�	�� is defined with three elements and a sub-
class, �����!�	��, which inherits from !�	��. The namespace is provided
with both classes so they can be resolved through fully qualified names in
XML. Each element retains its namespace.

Listing 2.17 Class Hierarchy Defined with Data Contract

�D��������,=������#4#78���/99&�����	�(�)9!�	��97-
����	�#����#!�	��
*

�D������� #����	�#
�����#�������!�	��'
�D������� #����	�#D���	��#��������	��'
�D������� #����	�#���	��#��������'

.

�D��������,=������#4#78���/99&�����	�(�)9�����!�	��7-
����	�#����#�����!�	��#/#!�	��
*

Data Contracts 65

Listing 2.17 continued

�D������� #����	�#���	��#�	����'
�D������� #����	�#����#D	��P�����'
�D������� #����	�#
�����#D	���8���'

.

The two XML Schemas generated to support this hierarchy are shown in
Listing 2.18. First, the !�	�� XML Schema is shown. Then the �����!�	��
XML Schema is shown. Note that �����!�	�� imports the !�	�� schema.
Note that in the XSD, all elements are attributed with �	�"�����4: because
in the code, none were attributed with �	�>�S�	��
4���� .

Listing 2.18 Class Hierarchy Defined in XML Schemas

<A���#����	��47B�:7#����
	��47���C27A?
<��/��8��#�����/���478���/99&�����	�(�)9!�	��97#

�������)���D�����47S��	�	�
7#
�����=������478���/99&�����	�(�)9!�	��97#
�����/��478���/99�����I����9J::B9O�;��8��7?

<��/�����������#���47!�	��7?
<��/��S�����?
<��/�������#�	�"�����47:7#���47��������7#

�	�����47����7#����47��/���	��7#9?
<��/�������#�	�"�����47:7#���47�������!�	��7#����47��/
�����7#9?
<��/�������#�	�"�����47:7#���47��������	��7#����47��/
���	��79?

<9��/��S�����?
<9��/�����������?
*&�6������
������)3����)����������)
���)�
	���)
��63����)�+,

<9��/��8��?

<A���#����	��47B�:7#����
	��47���C27A?
<��/��8��#�����/���478���/99&�����	�(�)9�����!�	��7###

�������)���D�����47S��	�	�
7#
�����=������478���/99&�����	�(�)9�����!�	��7#
�����/��478���/99�����I����9J::B9O�;��8��7?

*&�6�����
�����������)�

�6++"����
���9(5+3����+)�+,
<��/�����������#���47�����!�	��7?
<��/��������������#�	��
47����7?
<��/������	��#�����/SB478���/99&�����	�(�)9!�	��97#

���47SB/!�	��7?
<��/��S�����?
<��/�������#�	�"�����47:7#���47D	���8���7#

����47��/
�����7#9?
<��/�������#�	�"�����47:7#���47D	��P�����7#

����47��/����7#9?
<��/�������#�	�"�����47:7#���47�	����7#

�	�����47����7#����47��/���	��7#9?

Chapter 2: Contracts66

<9��/��S�����?
<9��/������	��?

<9��/��������������?
<9��/�����������?
*&�6������
������)�
��03����)����������)
���)�
	���)
��6�
��03����)+,

<9��/��8��?

The SOAP body of a serialized �����!�	�� type is shown in Listing 2.19.
Notice that the namespaces of !�	�� and �����!�	�� are carried from the
code in Listing 2.17 to the XML Schema in Listing 2.18 all the way through
to the SOAP body.

Listing 2.19 Class Hierarchy Serialized in SOAP body

<�/��
�?
<$��!�	��>�������#�����478���/99&�����	�(�)9)	��������	��97?
<$��!�	��>�����#

�����/478���/99&�����	�(�)9�����!�	��7#
�����/	478���/99�����I����9J::B9O�;��8��C	������7?

<��������#�����478���/99&�����	�(�)9!�	��97?D�����<9��������?
<�������!�	��#�����478���/99&�����	�(�)9!�	��97?

B::<9�������!�	��?
<��������	��#�����478���/99&�����	�(�)9!�	��97?

J::HCBJCBI�JB/B2/3B�IBIC:3/::<9��������	��?
</D	���8���?:�:BJI13<9/D	���8���?
</D	��P�����?13::::<9/D	��P�����?
</�	����?����<9/�	����?

<9$��!�	��>�����?
<9$��!�	��>�������?

<9�/��
�?

Exposing Additional Types in WSDL with KnownTypes
Data types are exposed in WSDL if they meet any of the conditions
described earlier. There are additional cases, however, when you would
also like to force a type to be included in the WSDL contract.

One example is class hierarchies. If a serialized derived class arrives at
an endpoint that is expecting the serialized base class, WCF will not know
how to deserialize the class because the derived class was not part of the
contract. Another example is a 8�8���� class, which stores other classes
as its element. The WSDL will define the 8�8���� class, but not the
classes contained in the 8�8����.

Data Contracts 67

In these cases, you must tell WCF about the classes that should explicitly
be included in the WSDL contract. This is done with Q���������. It can be
done in four ways: by adding the Q�������� attribute to a �D�������� ,
by the attribute in the �����	��������� or �"����	��������� , by
adding a reference to it and its assembly into the configuration, or by deter-
mining it when generating the WSDL.

Listing 2.20 shows a data contract that defines a base class, !�	��, and
two classes derived from the base class, �����!�	�� and ����!�	��. Note
the �Q�������� attribute on the data contract. This tells WCF to include
the XSD representation of �����!�	�� and ����!�	�� in the WSDL when
exposing the contract. The listing also contains an implementation of
the service. The $��!�	�� operation is polymorphic and returns either a
�����!�	�� or ����!�	�� type, depending on what was requested. The
client code that calls $��!�	�� through the proxy must cast the result to the
expected type to access the return value class.

Listing 2.20 C����-	�� Defined in a Data Contract

��	��#������'
��	��#�����������	����
��'
��	��#�������>���	������	�	G�	��'

�������#&�����	�(�)
*

�D��������,=������#4#78���/99&�����	�(�)97-
.C����-	���
	���$��
��03������/
.C����-	���
	���$���
��3������/
����	�#����#!�	��
*

�D������� #����	�#
�����#�������!�	��'
�D������� #����	�#D���	��#��������	��'
�D������� #����	�#���	��#��������'

.

�D��������,=������#4#78���/99&�����	�(�)97-
����	�#����#�����!�	��#/#!�	��
*

�D������� #����	�#���	��#�	����'
�D������� #����	�#����#D	��P�����'

.
�D��������,=������#4#78���/99&�����	�(�)97-
����	�#����#����!�	��#/#!�	��
*

�D������� #����	�#���	��#����'

Chapter 2: Contracts68

�D������� #����	�#���	��#K��	��'
.

�����	����8�	��#,=������478���/99&�����	�(�)9)	��������	��97-
�����	���������#,=������478���/99&�����	�(�)9)	��������	��97-
����	�#����#���������	��
*

�"����	���������
��	���#!�	��#$��!�	��,���	��#	
5#���	��#����-
*

	�#,���������	��,7�����7--
*

�����!�	��#�#4#���#�����!�	��,-'
���	����#4#	
'
��D	��P�����#4#13::::::'
���������!�	��#4#01�B3'
����������	��#4#�������D���	���=��'
����������#4#76�D7'
������#�'

.
	�#,���������	��,7����7--
*

����!�	��#�#4#���#����!�	��,-'
������#4#	
'
��K��	��#4#7:�0007'
���������!�	��#4#R23�::'
����������	��#4#�������D���	���=��'
����������#4#76�D7'
������#�'

.
������#���#!�	��,-'

.
.

.#

Alternatively, you can define the Q�������� at the OperationContract
level with the �����	��Q�������� attribute. When Q��������� are defined
at the Operation level, the derived types can be used only in the operation
that defines the known types. In other words, not all operations in a ser-
vice can use the derived types. Listing 2.21 shows a snippet of code that
uses a �����	��Q�������� attribute. In this example, a client can call
$��!�	�� and when the message is returned from the service, the deserial-
izer will create a �����!�	�� or ����!�	�� object. But the client can pass
only a Price object, not a �����!�	�� or ����!�	��, when calling ���!�	��,

Data Contracts 69

because the serializer will not know how to represent those derived types
in XML.

Listing 2.21 C����-	�� Defined in an Operation Contract

�
�
�

�����	����8�	��#,=������478���/99&�����	�(�)9)	��������	��97-
�����	���������#,=������478���/99&�����	�(�)9)	��������	��97-
����	�#����#���������	��
*

.�������C����-	���
	���$��
��03������/

.�������C����-	���
	���$���
��3������/
�"����	���������
��	���#!�	��#$��!�	��,���	��#	
5#���	��#����-
*
�
�
�
.
�"����	���������
P�	
#���!�	��,!�	��#�-
*
�
�
�
.

The disadvantage of defining known types in code, whether at the data
contract or service contract level, is that you need to know the universe of
derived types at compile time. If a new type is added, you need to recom-
pile the code. This can be resolved with two methods.

First, you can move the known type reference from code to configuration
and include known type information in the �����������	������	�	G�	��
section of the service configuration file. Respecting the class hierarchy, you
need to add a reference to the base class and then add ��������� references to
the derived classes. This is shown in Listing 2.22, where &�����	�(�)�!�	��
is the base class and &�����	�(�)������!�	�� and &�����	�(�)�

����!�	�� are the derived classes. StockService is the DLL hosting these
types.

Chapter 2: Contracts70

Listing 2.22 C����-	�� Defined in Configuration

<�����������	������	�	G�	��?
<
�����������	�	G��?
<
�����
�����?
<

#����47&�����	�(�)�!�	��5#���������	��5#

P���	��4B�:�:�:5#�������4������5#
!���	�Q�������4����7?

<���������#����47&�����	�(�)������!�	��5#���������	��5#
P���	��4B�:�:�:5#�������4������5#
!���	�Q�������4����79?

<���������#����47&�����	�(�)�����!�	��5#���������	��5#
P���	��4B�:�:�:5#�������4������5#
!���	�Q�������4����79?

<9

?
<9
�����
�����?

<9
�����������	�	G��?
<9�����������	������	�	G�	��?

The most general solution for specifying the derived types in the con-
tract is to generate it at runtime. This can be done thanks to some hooks
exposed in WCF. The constructor of both the �Q�������� attribute and
�����	��Q�������� attribute accepts a string parameter. This string is a
method name that is called at serialization or deserialization time to return
a list of known types. If you use a metadata repository, you could look up
type information from the repository or database and expose the types at
runtime. Listing 2.23 shows a simpler implementation, where the type
names are hardcoded in the $��Q��������� method rather than being
pulled from an external repository.

Listing 2.23 C����-	�� Defined in Code at Runtime

�D��������,=������#4#78���/99&�����	�(�)97-
.C����-	���D!�
C����-	���)�/
����	�#����#!�	��
*

�D������� #����	�#
�����#�������!�	��'
�D������� #����	�#D���	��#��������	��'
�D������� #����	�#���	��#��������'
�
�
���-	��./�!�
C����-	�����
1

��
��������-	��./�1�
	���$��
��03�����'�

	���$���
��3������4�

4
.

Data Contracts 71

Listing 2.23 continued

�D��������,=������#4#78���/99&�����	�(�)97-
����	�#����#�����!�	��#/#!�	��
*

�D������� #����	�#���	��#�	����'
�D������� #����	�#����#D	��P�����'

.
�D��������,=������#4#78���/99&�����	�(�)97-
����	�#����#����!�	��#/#!�	��
*

�D������� #����	�#���	��#����'
�D������� #����	�#���	��#K��	��'

.

Versioning Data Contracts
Change is inevitable. Businesses change, technologies change, laws change,
and so do software contracts. In the face of software changes, a solid ver-
sioning strategy is essential. Care must be taken up front to plan for
inevitable changes and to preserve backward compatibility with existing
clients.

The most common need for data contract versioning is when members
are added to an existing data contract. By following the nonbreaking
changes described in this section, you can freely do this without breaking
existing clients. But if you need to break backward compatibility with exist-
ing clients, you must version the entire data contract by changing its name
or namespace.

A little caution is in order with respect to nonbreaking changes. Non-
breaking, from WCF’s standpoint, could quite possibly break compatibility
with other systems. For instance, if communicating with a system that
requires strict schema validation, that system may reject messages if it
receives XML instances with unexpected elements. The term “nonbreak-
ing” change in this chapter refers to changes that can be made without
impacting WCF to WCF communication.

Chapter 2: Contracts72

Nonbreaking Changes

Two types of changes will not break compatibility with existing clients:

• Adding new nonrequired data members

• Removing existing nonrequired data members

In both of these cases, it’s possible to create an old type from a new mes-
sage by simply ignoring the new or missing nonrequired data members.
Conversely, it’s also possible to create a new message from the old type. The
DataContractSerializer will do this automatically at runtime.

Breaking Changes

Although you can change certain attributes in a data contract that preserve
backward compatibility, many item changes will break existing clients. If
you make any of these changes to a data contract defined, existing clients
will no longer function properly:

• Change the name or namespace of a data contract.

• Rename an existing data member that was previously required.

• Add a new data member with a name that has been used previously.

• Change the data type of an existing data member.

• Add new members with +�>�S�	��
4���� on D�������%���	����.

• Remove existing members with +�>�S�	��
4���� on
D�������%���	����.

Listing 2.24 shows two data contract definitions: The first is defined in a
V1 service, the second in the V2 version of that service. Notice that between
V1 and V2, the data member �������� is removed and D	��P����� is
added. This change is nonbreaking.

Data Contracts 73

Listing 2.24 Nonbreaking Change to a Data Contract—Adding and Removing Data

Members

�D��������#,=������478���/99&�����	�(�)7-
����	�#����#�����!�	��#99PB
*

�D������� #����	�#
�����#�������!�	��'
�D������� #����	�#D���	��#��������	��'
�D������� #����	�#���	��#�	����'
.��
�������/���������
�����(������	�

.

�D��������#,=������478���/99&�����	�(�)7-
����	�#����#�����!�	��#99PJ
*

�D������� #����	�#
�����#�������!�	��'
�D������� #����	�#D���	��#��������	��'
�D������� #����	�#���	��#�	����'
.��
�������/����������
�����	E������

.

For existing clients to properly pass around data after new members are
added, the original data contract must support extensibility. That is, the orig-
inal contract must support serialization of unknown future data. This enables
round tripping, where a client can pass V2 data to a V1 service and have the V1
service return V1 data back to the client with the V2 elements still intact. WCF
implements extensibility by default in the proxy code generated by
�����	�����. If you do not want to support this capability, it can be disabled
by specifying <
�����������	�	G��# 	�����&�����	��D�"�X���4

7����79? in the ServiceBehavior section of the service configuration file.
Listing 2.25 shows client code that calls $��!�	�� to obtain a �����!�	��

object and then passes that object to ����������!�	��. Assume that the
proxy for the StockService was generated using �����	����� pointing to
the V1 service, and then the service was upgraded to V2 from Listing 2.24.
When the client runs against the V2 service, $��!�	�� will return XML with
the D	��P����� member added and the �������� member missing. The
data contract deserializer, who knows about V1 �����!�	�� object, will
place that D	��P�����#member in the &�����	��D� field of the object
and will not complain about the missing �������� member. The client code
will receive the expected �����!�	�� object, only to find it with ��������
initialized to its default value and the overall object being a bit “heavier.”

Chapter 2: Contracts74

This is because extra extension data (D	��P�����) is available in the class.
This way, the service is passing valid V2 data and the client is consuming
a valid V1 representation of that data.

Listing 2.25 Calling a V2 Service with a V1 Contract

����8�������������	����	���#�����4���#����8�������������	����	���,--
����8���������!�	��#�#4#������$��!�	��,7����7-'
����������������!�	��,�-'

Data Contract Equivalence
If you’re using WCF to expose a service and using �����	����� to build a
proxy for accessing the service, you typically don’t need to be concerned
about the wire representation of the messages passed between client and
service. Data contracts direct WCF to serialize a .NET type into an XML
Infoset and to deserialize an XML Infoset back into a .NET type. The XML
Infoset might be encoded as text or binary on the wire according to the bind-
ing used for communication, but again, the .NET code is unaware of the
encoding. This way, you work with .NET types in code but an encoded rep-
resentation of the standards-based XML Infoset is transmitted on the wire.

There are cases, however, where you may work with different types in
the client versus in the service. This could occur if the client and service are
developed by different organizations, or if only one side of the communi-
cation is using WCF. In fact, if you’re not using �����	����� or Add Service
Reference to generate the proxy on the client, there’s a good chance that
member names on the client will be different from member names on the
service. But by controlling those names with the �D������� attribute,
you can make them appear the same in the XML representation. As long as
both the client and service work with an equivalent XML representation,
it’s okay for WCF to deserialize the XML Infoset into different .NET types.
If two classes serialize into the same XML schema, the data contracts rep-
resenting those classes are said to be equivalent. For data contracts to be
equivalent, they must have the same namespace and name and members.
The data members must be of the same type and appear in the same order
within the XML. In summary, they must be indistinguishable on the wire.

Data Contracts 75

Listing 2.26 shows two equivalent data contracts. The first contract is
exposed by the service; the second class is described by the client. The two
are equivalent and generate identical XML Schema Definitions. In the
service, by default, WCF will order the XML elements alphabetically so
the second schema forces the order to be alphabetical. Because of the
=��47�����!�	�����7 and =��47��������7# attributes placed on the
DataContract and DataMember respectively, the XSD generated in the sec-
ond contract is identical to the first.

Listing 2.26 Equivalent Data Contracts

�D��������,=������#4#8���/99&�����	�(�)-
����	�#���	�#����#�����!�	�����
*

�D������� #����	�#
�����#�������!�	��'
�D������� #����	�#D���	��#��������	��'
�D������� #����	�#���	��#�	����'
�D������� #����	�#���	��#��������'

.

�D��������,=������#4#8���/99&�����	�(�)5#B����)�
��03�������)�
����	�#���	�#����#�����!�	��
*

�D��������2�����F�/ ����	�#���	��#�	����'
�D��������2�����?�/ ����	�#
�����#�������!�	��'
�D��������2�����G� #����	�#D���	��#��������	��'
.��
��������2�����>'�B����)(������)�/���������
���������	�

.

Working with Collections
Collections are very convenient data constructs in .NET that combine the
benefits of dynamic memory allocation, enumeration, and list navigation.
Although useful, there is no XSD or WDSL standard equivalent of a collec-
tion. Therefore, to serialize a collection into XML, WCF treats them as arrays.
In fact, the wire-level serialization of a collection is identical to that of an
array. In addition to collections (types that implement +�������	��<�?), this
is also true for types that implement the +&��������<�? or +;	��<�?�

Listing 2.27 shows a service contract and operation that uses a collection.
The collection is decorated with the ��������	��D�������� attribute,
which is a special WCF attribute specifically provided for this purpose. This

Chapter 2: Contracts76

attribute directs WCF to serialize any type that supports +&�������� and
implements an %

 method into an array. The �����!�	���������	�� class
inherits from the ;	�� generic, which implements the base +�������	��
interface to enable serialization.

Listing 2.27 Exposing a Collection from a Service

��	��#������'
��	��#�����������	����
��'
��	��#�������>���	������	�	G�	��'
��	��#��������������	����$����	�'

�������#&�����	�(�)
*

�D��������,=������#4#78���/99&�����	�(�)7-
����	�#����#�����!�	��
*

�D������� #����	�#
�����#�������!�	��'
�D������� #����	�#D���	��#��������	��'
�D������� #����	�#���	��#�	����'

.

.(�����
�����
�(��
���
/
��������������
��03����(�����
����6�H��
*�
��03����,
1
4

�����	���������
����	�#����#���������	��
*

�"����	���������
��	���#�����!�	���������	��#

$��!�	���%��������	��,���	��� #�	�����-
*

�����!�	���������	��#�	��#4#���#�����!�	���������	��,-'
���#,	��#	#4#:'#	#<#�	������$��6��������
,:-#T#B'#	TT-
*

�����!�	��#�#4#���#�����!�	��,-'
���	����#4#�	������	 '
���������!�	��#4#01�23'
����������	��#4#�������D���	���=��'
�	���%

,�-'

.
������#�	��'

.
.

.

Data Contracts 77

Message Contracts

Message contracts describe the structure of SOAP messages sent to and
from a service and enable you to inspect and control most of the details in
the SOAP header and body. Whereas data contracts enable interoperabil-
ity through the XML Schema Definition (XSD) standard, message contracts
enable you to interoperate with any system that communicates through
SOAP.

Using message contracts gives you complete control over the SOAP
message sent to and from a service by providing access to the SOAP head-
ers and bodies directly. This allows use of simple or complex types to
define the exact content of the SOAP parts. Just as you can switch from the
D�����������	�	G�� to O�����	�	G�� when you need complete
control over the data serialization, you can switch from D��������� to
�������������� when you need complete control over the SOAP
message.

Passing information in SOAP headers is useful if you want to commu-
nicate information “out of band” from the operation signature. For
instance, session or correlation information can be passed in headers, rather
than adding additional parameters to operations or adding this informa-
tion as fields in the data itself. Another example is security, where you may
want to implement a custom security protocol (bypassing WS-Security)
and pass credentials or tokens in custom SOAP headers. A third example,
again with security, is signing and encrypting SOAP headers, where you
may want to sign and/or encrypt some or all header information. All these
cases can be handled with message contracts. The downside with this tech-
nique is that the client and service must manually add and retrieve the
information from the SOAP header, rather than having the serialization
classes associated with data and operation contracts do it for you.

The �������������� attribute defines the structure of SOAP mes-
sages. There aren’t many modifiers to this attribute because its purpose is
to define the boundary of the message, not the content itself. The only mod-
ifiers relate to how multiple bodies are wrapped into a single SOAP mes-
sage, specifying whether to wrap at all and, if so, specifying the name and
namespace of the wrapper.

Chapter 2: Contracts78

Typed messages use ���������
�� and ���������
������� attrib-
utes to describe the structure of the SOAP header and body. The client and
the service can then reference this data using serialized types. Additional
information can be associated with headers, such as name and namespace,
whether the message can be relayed, and who is the final actor or recipient
of the message. Additional information can also be associated with the
body, such as name and namespace. If multiple bodies are used, the
MessageContract can define the order of those parts. Both the header and
body can have simple or complex type definitions.

Untyped messages do not use any attributes to describe their contents.
It’s left entirely up to the runtime code to make sense of the contents. This
is very useful for working directly with the InfoSet of the XML message, in
which case you’d want WCF to stay out of the way as you code directly to
the Document Object Model. Service operations that work with untyped
messages accept and return ������ types, which implement the XML
Infoset.

Typed Messages
Listing 2.28 shows a typed message contract, �����!�	��. The header con-
tains a simple type, D���	��, and the body contains a complex type,
!�	��D��	��. The !�	��D��	�� class must be serializable, either by using
a �D�������� attribute or, as shown here, with the ����	�	G���
attribute. This example has just one header and one body, but there can be
numerous headers and bodies specified.

You may want to specify numerous headers or bodies if they are to be
consumed by different layers of software on the client. For instance, one
layer may want correlation information in the SOAP header to associate a
response with a request, whereas another layer may want to identity infor-
mation so it can route the message appropriately. In this case, two headers
have two purposes, so there’s no reason to combine them into one structure.

Note that the service operation receives and sends message types. When
using message contract, both input and output parameters must be mes-
sages and marked with the �������������� attribute. More specifically,
operations must contain exactly one input parameter and must return
exactly one result, both of which are messages, because the request and

Message Contracts 79

response messages sent to and from the operation will map directly their
SOAP representation. In addition, message-based programming and
parameter-based programming cannot be mixed, so you cannot specify a
DataContract as an input argument to an operation and have it return a
MessageContract, or specify a MessageContract as the input argument to
an operation and have it return a DataContract. You can mix typed and
untyped messages, but not MessageContracts and DataContracts. Mixing
message and data contracts will cause a runtime error when you generate
WSDL from the service.

To generate client-side proxy code that represents the typed message in
the �������������� , you need to check the Always Generate Message
Contracts option in the Advanced dialog box of Add Service Reference, as
shown in Figure 2.9.

Chapter 2: Contracts80

Figure 2.9 Specifying message contracts in Add Service Reference

Alternatively, you can use the 9������������� , or 9��, switch on
�����	�����. This causes �����	����� to generate the proxy with public
methods accepting the typed message so clients can call method-oriented
methods. If you use �����	����� without the 9�� switch, or if you use Add
Service Reference without checking the Always Generate Message
Contracts, the proxy will be generated with public methods accepting
parameters and will internally call the message-based operation. In either
case, the same XML messages are sent on the wire.

Listing 2.28 Defining a Typed Message Contract

�������#&�����	�(�)
*

����	�	G���
����	�#����#!�	��D��	��
*

����	�#���	��#�	����'
����	�#
�����#%�����'

.

.�������(��
���
/
��������������
��03����
1

.������� �����/
���������
�-����(�����
-����
.����������	������/
�������3������
�����3�����

4

.�������(��
���
/
��������������
��03����<�@
1

.����������	������/���������
�����-��0���
4

�����	���������
����	�#	�������#+���������	��
*

�"����	���������
�����!�	��#$��!�	��,�����!�	��>�S#��S-'

.

����	�#����#���������	��#/#+���������	��
*

Message Contracts 81

Listing 2.28 continued

����	�#�����!�	��#$��!�	��,�����!�	��>�S#��S-
*

�����!�	��#����#4#���#�����!�	��,-'
�����!�	��#4#���#!�	��D��	��,-'
�����!�	����	����#4#��S��	����'
�����!�	���%�����#4#01�23'
������#����'

.
.

.

Listing 2.29 shows the XML that’s passed on the wire when the SOAP
message is returned from the service back to the client. Note that the
���������
�� element, ��������	��, is in the SOAP header and the
���������
������� element, !�	��, is in the SOAP body.

Listing 2.29 SOAP Response Generated Using a Typed Message Contract

<�/&�������#�����/�478���/99��8��������������9���9��������97?
<�/��
��?
*�6(�����
-����&����6��)�

�6++
���������+),

?88IJ>?J>7->86G>6KK8K7FJ8K688
*+�6(�����
-���,

<9�/��
��?
<�/��
�?
*�
��03�����&�����)�

�6++
���������+),
*3����
&����6��)�

�6++���������
����
���
���+?88F+8L+"����
���9(5)�
&����6��)�

�6++����G���+?88>+;�H������J���
����),
*�6#����
,MF7K*+�6#����
,
�6-��0��,��5-+�6-��0��,

*+3����,
*+�
��03����,

<9�/��
�?
<9�/&�������?

Untyped Messages
In some scenarios, you may not know the structure of messages passed
between a client and service at design time. For instance, intelligence might
be built in to the messages themselves, such as routing and service opera-
tions that are determined at runtime. Or a layer of software (or hardware)
might be between the client and service that manipulates SOAP messages

Chapter 2: Contracts82

and requires special data formats. For these cases, untyped operation con-
tracts can be very useful.

Untyped operation contracts enable the client and service to pass virtu-
ally any content in the SOAP body, as long as the content can be encoded by
the binding stack being used for communication. The contents of the mes-
sage are effectively opaque to the WSDL because there is no XSD to define
the data. The client and service work with the ������ class, which is
defined in �����������	����
����8�����, to create, read, and write
messages.

Listing 2.30 shows an operation contract that uses the ������ type as
input and output. Notice that the $����
� method of the message is a
generic method that deserializes the message body into a type. This method
uses an XMLReader to read the <��
�? element of the SOAP message.
Because it uses an XML Reader, the <��
�? can be read only once; if you
want to read it more than once, you should use the ������������
����
method of the message. The SOAP action on the reply is the request action
with “Response” concatenated to the end. This can be overridden by a
,>����%��	��4- in the �"����	��������� attribute.

The ������ class has numerous methods for creating, reading, and
writing the message contents. The client is responsible for creating a mes-
sage before sending it to the service and the service is responsible for cre-
ating a message to send back. Before sending the message, the contents
must be placed in the body. This can be done with �����������,
(�	��������, or (�	����
� methods.

Listing 2.30 Defining and Implementing Untyped Message Contract

�����	���������#,=������478���/99&�����	�(�)7-
����	�#����#���������	��
*

�"����	���������
��	���#������#$��!�	��,������#��S-
*

�
�����
��0�������@!�
���	*�
����,���
������#����#4#������������������,

��S�P���	��5
��@ ������#�
����N�D<�������)'
�	����#T#7Y7#T#701�237-'

������#����'
.

.

Message Contracts 83

The client code is similar to the service code, using ����������� to
create the message with the proper version to match the binding and then
using $����
� to read the result that comes back from the service. Note that
the ����������� method used takes three parameters: the version, the
action, and the string message. When creating the message, the version of
the message must be compatible with the binding used to communicate
with the service, as defined by the MessageVersion property in the channel.
The action, in this case 8���/99&�����	�(�)9���������	��9$��!�	��, is
used by SOAP and the WCF infrastructure to route the message to the
proper operation in the service. Listing 2.31 shows client code that initiates
communications with the service listed in Listing 2.30.

Listing 2.31 Client Initiating Communication Using an Untyped Message Contract

��	��#,����8�������������	����	���#�����#4#
���#����8�������������	����	���,--

*
���#"����	��������������,������+�����8����-'
������#���>�S#4#������������������,

"����	������������������"����	����������
����
������P���	��5

78���/99 &�����	�(�) 9���������	��9$��!�	��75
7����7-'

������#���>���#4#������$��!�	��,���>�S-'
��������(�	��;	��,7>������
#*:.#75#���>����$����
�<���	��?,--'

.

Listing 2.32 shows the SOAP message transmitted back from the service
to the client in response to the request in Listing 2.31. Notice that the action
in the SOAP header has “Response” concatenated to the end, and that the
body of the SOAP message is a string with no XML formatting.

Listing 2.32 SOAP Response Generated Using an Untyped Message Contract

<�/&�������#�����/�478���/99��8��������������9���9��������97?
<�/��
��?
<%��	��#�/����6�
�����
47B7
�����478���/99��8�����	�����������9��9J::39:39

����	��9����7?
8���/99&�����	�(�)9���������	��9$��!�	��>�������

<9%��	��?
<9�/��
��?
<�/��
�?
<���	��#�����4

Chapter 2: Contracts84

78���/99��8�����	�����������9J::I9B:9���	�	G�	��97?
��$
OMF7K

<9���	��?
<9�/��
�?

<9�/&�������?

Using SOAP Headers with Untyped Messages
Whether you’re working with typed or untyped messages, you may want
to pass information in the SOAP header in addition to the SOAP body. A
common need is to pass session or context information along with a mes-
sage. So, rather than creating additional wrapper messages, the SOAP
header is a convenient and well-understood mechanism of passing that
information.

If you’re using typed messages, WCF explicitly supports this through
the ���������
�� attribute as demonstrated in Listing 2.28. If using an
untyped message, however, you need to explicitly add an untyped message
header.

Listing 2.33 shows a service contract that implements an untyped mes-
sage operation and reads data from the message header. Note how the
message header data, �	��Z���, is accessible with one line of code.

Listing 2.33 Service Accessing Message Headers with an Untyped Message Contract

�����	���������
����	�#����#���������	��
*

�"����	���������
��	���#������#$��!�	��,������#��S-
*

�
�����
���P�����
2����
���(��
�&
(�����
%�������������� ������

!�
 �����*�
����,
�D-���P���)'�D�

�6++"����
���9(5+)��

���	��#�	����#4#��S�$����
�<���	��?,-'
������#����#4#������������������,

��S�P���	��5
��S���
����%��	��#T#7>�������75
�	��Z���#T#7Y7#T#�	����#T#7Y7#T#701�237-'

������#����'
.

.

Message Contracts 85

Listing 2.34 demonstrates how a client can add a SOAP header to an
untyped message being sent to a service. First a ������ is created with
����������� and data is placed in that message with the constructor. Then
a typed ��������
�� is created; in this case it’s a string, and the data is
placed in the header with the constructor. Next, an untyped ��������
��
is created from the typed one, and then finally, that untyped ��������
��
is added to the message being sent to the service.

Listing 2.34 Client Inserting Message Headers into an Untyped Message

���	�#��	
#�	�,���	��� #���-
*

��	��#,����8�������������	����	���#�����#
4#���#����8�������������	����	���,--

*
���#"����	��������������,������+�����8����-'
������#���>�S#4

������������������
,"����	������������������
"����	����������
����������P���	��5
78���/99������	����9���������	��9$��!�	��75
7����7-'

������� �����*�
����,���� ������������
������� �����*�
����,�D!�-J8K688)��

������� ��������
	��� ��������
��� �����!�
A�
	��� ������D-���P���)'�

D�

�6++"����
���9(5+)��
���<�@ ������#�����
	��� �������
������#���>���#4#������$��!�	��,���>�S-'

.
.

Listing 2.35 shows the SOAP message generated from the client-side
code. Notice the TimeZone element that is inserted into the message header
in the proper namespace.

Listing 2.35 Client Inserting Message Headers into an Untyped Message

<�/&�������#�����/�478���/99��8��������������9���9��������97?
<�/��
��?
*-���P����&�����)�

�6++"����
���9(5+),!�-J8K688*+-���P���,
<��#�/����6�
�����
47B7

�����478���/99��8�����	�����������9��9J::39:39

����	��9����7?
8���/99����8���96�����
��������
��9���������	������

Chapter 2: Contracts86

<9��?
<%��	��#�/����6�
�����
47B7#

�����478���/99��8�����	�����������9��9J::39:39

����	��9����7?
8���/99������	����9���������	��9$��!�	��

<9%��	��?
<9�/��
��?
<�/��
�?
<���	��

�����478���/99��8�����	�����������9J::I9B:9���	�	G�	��97?
����

<9���	��?
<9�/��
�?

<9�/&�������?

SUMMARY

This chapter covers quite a bit of ground with contracts, which are the basis
for interoperability. Contracts precisely describe the messages that a service
understands.

WCF heavily leverages SOAP for contract definitions. Specifically, it
uses WDSL for describing service endpoints and XSD for describing data.
The service operations defined in WSDL are used to route incoming mes-
sages to the correct .NET class at runtime. Similarly, the XML documents
defined by XSD contracts are deserialized into .NET types and passed to the
service operations at runtime. Together, the WSDL and XSD definitions pro-
vide a standards-based representation of the .NET types used within a ser-
vice implementation.

Three types of contracts were defined in detail:

• Service contracts. Service contracts describe the functional opera-
tions implemented by the service.

• Data contracts. Data contracts describe the data structures through
which the service communicates. A data contract serializes CLR
types to XML and is strictly opt-in with their data members.

• Message contracts. Message contracts work with typed and
untyped data and provide precise control over the SOAP headers
and bodies.

Summary 87

Service Contracts

Service contracts define service operations—the methods that the service
class interface exposes. They provide the formal WSDL interface to a
service. Service contracts are defined with the �����	��������� and
�"����	��������� attributes. Operation names are derived from the
class and method names but can be overridden when defining these attrib-
utes. Service contracts support three message exchange patterns: request-
response, one-way, and duplex.

Request-response operation contracts are blocking calls on the client,
where the client waits for the service operation to complete before regain-
ing execution control. Therefore, they should be used only for relatively fast
service calls where the user is willing to wait for the response. In the client,
the .NET asynchronous pattern can be applied to the request-response mes-
sage exchange pattern to prevent the client from blocking while a long-
running service request is executing.

One-way operation contracts are, as the name implies, one way; they do
not return a result to the client. Service operations must have a return type
of ��	
 and are marked by �+�"��(�4���� on the �"����	���������
attribute. One-way contracts can be implemented over any transport,
including MSMQ.

Duplex operation contracts provide the greatest flexibility and per-
formance because they decouple the request and response execution from
the client and service. After the duplex channel is established between the
client and service, either the client or service can initiate a message. This
pattern is well suited for client notification.

Data Contracts

Data contracts define the application data interface to services. Classes
marked with �D�������� and �D������� attributes are included in
the XML Schema Definitions in the part of WSDL representing the service
contract. Other data types can also be exposed in WSDL, such as base types
and those marked with ����	�	G��� . Because �D�������� has seri-
alization rules designed for interoperability, it is the preferred serialization
mechanism for WCF.

Chapter 2: Contracts88

Class members are included in a data contract with the �D�������
attribute. This is strictly an opt-in model so only members with this attrib-
ute are included in the contract. This also makes �D�������� #a more
suitable serialization mechanism than ����	�	G��� because the latter
can cause internal structures to be exposed outside of the service.

Class hierarchies are supported and their namespaces are carried
through the hierarchy. To support polymorphism and collections that con-
tain objects, WCF enables a service to publish the list of known types. Data
contracts are also designed for versioning. When new members are added
to a contract, existing clients will continue to work, providing certain rules
are followed.

Message Contracts

Message contracts are operation contracts that enable access to SOAP head-
ers and bodies. Messages can be typed with �D�������� or ����	�	GC
��� , or they can simply be of the type ������. Typed messages are
defined with [��������
�� and ���������
� attributes. Message data
can be undefined at design time, enabling the greatest flexibility. Untyped
messages also have access to the SOAP headers and body.

Summary 89

This page intentionally left blank

3
Channels

A C H A N N E L I S T H E C O N D U I T through which all messages pass to and
from WCF applications. It is responsible for preparing and delivering

messages in a consistent way. Channels are defined for transports, proto-
cols, and message interception. Channels are layered together to create a
channel stack. A channel stack is a layered communication stack that
processes messages. For example, a channel stack could be constructed
using a TCP transport channel and a transaction protocol channel. Such a
channel stack would allow sending and receiving messages across a net-
work using the TCP protocol and transactions to flow from client to server.

The goal of a channel stack is to transform a message into a wire format
compatible with the sender and receiver and to transport the message.
There are two types of channels that are used to do this: transport channels
and protocol channels. Transport channels always sit at the bottom of the
channel stack and are responsible for transporting messages using a trans-
port protocol. WCF provides a number of transport protocols, including
HTTP, TCP, MSMQ, peer-to-peer, and named pipes. Protocol channels
reside on top of transports or other protocol channels. Because protocol
channels reside on top of other channels, they are often referred to as layered
channels. Protocol channels are responsible for implementing wire-level
protocols by transforming and modifying messages. WCF provides many
types of protocol channels. Examples include protocol channels that imple-
ment support for security, transactions, and reliable messaging.

91

For communication to occur, clients and servers each need to instanti-
ate a channel stack that is compatible with others. Between .NET applica-
tions, this is typically done by using the same channel stack on the client
and the server. In general, this means that their capabilities must match. We
use bindings to simplify the creation of channel stacks. A binding captures
the configuration of the channel stack and knows how to create that chan-
nel stack at runtime. Bindings are built from a collection of binding elements,
which typically represent channels in the channel stack. Bindings and bind-
ing elements will be discussed in detail in Chapter 4, “Bindings.”

The WCF channel architecture provides enormous flexibility by allow-
ing the communication to be abstracted away from the application. This
enables developers to build services that can be exposed over multiple
communication mechanisms, which allows application services to change
over time as the requirements change. For example, a WCF service exposed
between two .NET applications can easily be exposed to a Java application
without modifying the application. Support for additional features such as
interoperability, durable messaging, and transactions can easily be added
to WCF services as the requirements change. Prior Microsoft technologies
(such as ASP.NET Web Services, .NET Remoting, Enterprise Services, or
MSMQ) required you to rewrite portions of the application for each new
form of communication. With WCF, you can now pick and choose the fea-
tures you want without requiring a significant rewrite of the application.

The capability for WCF to offer such flexibility can be found in how
WCF composes a channel stack using layering. Figure 3.1 shows how a

Chapter 3: Channels92

TIP Transport Channels

WCF provides several transport channels, including HTTP, TCP,
MSMQ, peer-to-peer, and named pipes. Other transports are available
in sample code or through third parties for a wide range of transports,
including SMTP, FTP, UDP, WebSphere MQ, and SQL Service Broker.
Many of these transports can be found on the http://wcf.netfx3.com
Web site. The UDP transport channel can be found in the Windows
SDK. The transport channel for WebSphere MQ can be found on IBM’s
alphaWorks Web site.

http://wcf.netfx3.com

message flows from a WCF client application through a client-side chan-
nel stack over a given transport to a server. The server’s channel stack
listens for messages and then dispatches them to the server application.

Channels 93

WCF Client WCF Service

Client Application

ProtocolsProtocols

Protocols Protocols

TransportTransport

Server Application

Figure 3.1 Channel stack

A channel stack is a series of channels that are configured using bind-
ing elements. A preconfigured channel stack is also called a binding. A
binding is made up from a series of binding elements, just as a channel
stack is made from a series of channels. At the top of the stack are the pro-
tocol channels. Protocol channels interact with a message and facilitate
security, reliable messaging, transactions, and logging features. There can
be any number of protocol channels in a channel stack, depending on the
required features.

Transport channels are responsible for sending bytes over a transmis-
sion protocol such as TCP or HTTP. They are also responsible for using an
encoder to convert messages into an array of bytes for transport. It is the job
of an encoder to convert a message from its XML representation to an array
of bytes. Encoders are exposed to the transport channel using binding ele-
ments. Transport channels look in the binding context for an implementa-
tion of a ������&���
�� class. If none are available, the transport channel
can specify a default message encoder.

Channel Shapes

WCF supports three distinct message-exchange patterns: one-way,
duplex, and request-reply. To facilitate each of these patterns, WCF pro-
vides ten different interfaces called channel shapes. The five shapes are
+"������8����, ++�����8����, +D������8����, +>�S�����8����, and
+>�����8����. Each of these shapes has an equivalent shape to support
sessions. These include +"���������	���8����, ++��������	���8����,
+D���������	���8����, +>�S��������	���8����, and +>��������	��C
�8����. These interfaces implement the different message-exchange pat-
terns within a channel stack. In this section, we will look at each of the
communication patterns and the various interfaces associated with them.

One-Way Communication Pattern
In the one-way communication pattern, messages are sent in only one
direction, from the client to the server. One-way communication is common
when the sender does not need an informational response back right away;
the sender just needs an acknowledgement that the message was sent. After
the message is sent, that is the end of the communication exchange. The
two interfaces used to facilitate one-way communication are the
+"������8���� and the ++�����8���� interface. Figure 3.2 shows how
messages flow between a client and server for one-way communication.

In this pattern, the +"������8���� interface is responsible for sending
messages, and the ++�����8���� is responsible for receiving messages.
Listing 3.1 shows a client application that uses the +"������8���� channel
shape to send a message.

Chapter 3: Channels94

TIP Channel Stacks Have a Transport and an Encoder

Channel stacks have at least one transport and one encoder. Usually
the transport will specify a default encoding to use. An example is the
����������� transport channel, which specifies the use of the
�	���������&���
	��. This is all that is needed to implement a
channel stack in WCF. Protocol channels are optional when you are
composing a channel stack.

Figure 3.2 One-way communication

Listing 3.1 %2�
��
(������ Example

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'
��	��#�����������'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

��	������	�
	��#�	�
	��#4#���#��	������	�
	��,-'
�	�
	��!�������������	��#��������#4

���#�	�
	��!�������������	��,-'

������#�#4
������������������,������P���	������BB5#7���/���
������7-'

+�8����)�����<+"������8����?#������#4
�	�
	�����	�
�8����)�����<+"������8����?,��������-'

+"������8����#�8����#4#�������������8����,
���#&�
��	��%

����,78���/99����8���9���
������97--'

�8��������
,�-'
�8����������,-'
������������,-'

.
.

.

Duplex Communication
Duplex communication uses two one-way channel shapes combined
into a third interface called +D������8����5 as shown in Figure 3.3. The

Channel Shapes 95

WCF Client WCF Service

Client Application

IO
ut

pu
tC

ha
nn

el

IIn
pu

tC
ha

nn
el

Server Application
Messages

advantage of duplex communication over one-way or request-reply is that
messages can be sent from either the client or the server.

Chapter 3: Channels96

WCF Client WCF Server

Client Application
IO

ut
pu

tC
ha

nn
el

IO
utputC

hannel
IInputC

hannel
IIn

pu
tC

ha
nn

el
Server Application

Messages

Messages

ID
up

le
xC

ha
nn

el
ID

uplexC
hannel

Figure 3.3 Duplex communication

An example of duplex communication is an event notification system. A
server will send events to a client that receives events. The client provides
an endpoint on which the server can send messages to the client. The server
will then use this endpoint to send messages to the client. Listing 3.2 shows
an example of a client that uses the +D������8���� channel shape.

Listing 3.2 %�����&(������ Example

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'
��	��#�����������'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

=������	�
	��#�	�
	��#4#���#=������	�
	��,-'
�	�
	��!�������������	��#��������#4

���#�	�
	��!�������������	��,-'

������#�#4
������������������,������P���	������BJ(�%

����	��B:5

7���/���
������7-'
+�8����)�����<+D������8����?#������#4

�	�
	�����	�
�8����)�����<+D������8����?,��������-'
+D������8����#�8����#4#�������������8����,

���#&�
��	��%

����,7�������/99����8���9���
������97--'
�8��������
,�-'
�8����������,-'
������������,-'

.
.

.#

Request-Reply Communication
Request-reply communication is a special form of two-way communication
where there is exactly one reply for each request, and it is always initiated
by the client. After the client sends a request, it must wait for a response
before it can send another request.

A common use of request-reply communication is an HTTP request from
a browser. The browser makes an HTTP request to the server, such as GET
or POST, the server processes that request, and then a reply is sent back.
WCF handles request-reply communication using the +>�S�����8���� and
+>�����8���� interfaces as shown in Figure 3.4.

Channel Shapes 97

WCF Client WCF Server

Client Application

IO
ut

pu
tC

ha
nn

el
IO

utputC
hannel

IInputC
hannel

IIn
pu

tC
ha

nn
el

Server Application

Messages

MessagesIR
eq

ue
st

C
ha

nn
el IR

eplyC
hannel

Figure 3.4 Request-reply communication

Listing 3.3 shows a client application that uses the +>�S�����8���� to
send a message. Notice that the >�S���� method returns the reply message
as the return parameter.

Listing 3.3 %<�@���
(������ Example

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'
��	��#�����������'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

��	������	�
	��#�	�
	��#4#���#��	������	�
	��,-'
�	�
	��!�������������	��#��������#4

���#�	�
	��!�������������	��,-'

������#��S����#4
������������������,������P���	������BB5#7���/���
������7-'

+�8����)�����<+>�S�����8����?#������#4#
�	�
	�����	�
�8����)�����<+>�S�����8����?,��������-'

+>�S�����8����#�8����#4#�������������8����,
���#&�
��	��%

����,78���/99����8���9���
������97--'

������#��������#4#�8�����>�S����,��S����-'
�8����������,-'
������������,-'

.
.

.#

Shape Changing
There is an inherent request-reply nature built in to the HTTP protocol, and
therefore the HTTP transport channel uses the request-reply channel shape.
Other forms of communication, such as one-way and duplex over HTTP,
are done through shape changing. This is done by layering a protocol chan-
nel on top of the transport channel to support one-way or duplex commu-
nication. Listing 3.4 shows a custom binding that layers a one-way
shape-changing binding element, "��(��	�
	��&������, on top of an
HTTP transport. We will see more advanced examples of shape changing
using the ������	��D������	�
	��&������ binding element in Chapter 12,
“Peer Networking.”

Chapter 3: Channels98

Listing 3.4 2��9�	�������"�����
 Example

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'
��	��#�����������'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

�������	�
	��#�	�
	��#4#���#�������	�
	��,
���#"��(��	�
	��&������,-5
���#����������&���
	���	�
	��&������,-5
���#�������������	�
	��&������,--'

.
.

.

Operation Contract and Channel Shapes

Channels use channel shapes to implement the various types of message
exchange patterns that they support. For example, a transport channel
based on TCP would implement the ++�����8���� and +"������8����

because these transports are inherently one-way. Other transports based on
other protocols such as TCP may implement multiple channel shapes.
Developers do not work with channel shapes directly. Instead, WCF chooses
the channel shape based on the "����	��������� of a service. Table 3.1
lists the various attributes that you can set on an "����	��������� and the
resulting channel shape. Notice that most channel shapes have a sessionless
(default) and session-aware variant. Session-aware channels pass an iden-
tifier from the client to the server. This can be used to maintain state between
client and server. This is similar to how ASP.NET does state management.
There is no state-management feature built in to WCF, but you can use ses-
sions with instancing to be able to manage state. Instance management is
described in Chapter 5, “Behaviors.”

Operation Contract and Channel Shapes 99

Table 3.1 Channel Shapes Based on 2����
���(��
���
 Attributes

Request/
OneWay Reply Session Callback Channel Shape

Any Any No Yes +D������8����

Any Any No Yes +D���������	���8����

Any Any Yes Yes +D���������	���8����

Yes Yes No No +D������8���l

Yes Yes No No +>�S�����8����

Yes Yes No No +D���������	���8����

Yes Yes Yes No +D���������	���8����

Yes Yes Yes No +>�S��������	���8����

Yes No No No +"������8����

Yes No No No +D������8����

Yes No No No +D���������	���8����

Yes No No No +>�S�����8����

Yes No Yes No +"���������	���8����

Yes No Yes No +D���������	���8����

Yes No Yes No +>�S��������	���8����

No Yes No No +>�S�����8����

No Yes No No +D������8����

No Yes No No +D���������	���8����

No Yes Yes No +>�S��������	���8����

No Yes Yes No +D���������	���8����

Not all channels implement each of these interfaces. If the underlying
channel does not support a particular channel shape, WCF will try to adapt

Chapter 3: Channels100

an existing channel shape to suit its needs. For example, if a channel does
not implement the ++�����8���� and +"������8���� interfaces for one-
way communication, WCF will try to use either the +D������8���� or the
+>�S�����8����9+>�����8����#instead.

Channel Listeners

Channel listeners form the basis for server-side communication within WCF.
They are responsible for listening for incoming messages, creating channel
stacks, and providing a reference to the top of the stack to applications. They
receive messages from either the transport channel or the channel below in
the channel stack. Most developers will not work with channel listeners
directly. They will use the ����	������ class to host services, which uses a
channel listener to listen for messages. See Chapter 7, “Hosting,” for more
details about the ����	������ class. Listing 3.5 shows a channel listener
being created to receive a message. The ��	�
�8����;	������ method of
the binding builds a channel listener based on the channel shape specified.
In this case we are using the ��	������	�
	�� and the +>�����8����
shapes.

Listing 3.5 Using a Channel Listener

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

��	������	�
	��#�	�
	��#4#���
��	������	�
	��,��	����������	����
��=���-'

6�	#

����#4#���#6�	,78���/99����8���9��S����7-'
�	�
	��!�������������	��#���#4#���

�	�
	��!�������������	��,-'

��������(�	��;	��,7����	��#����	�����7-'

Channel Listeners 101

Listing 3.5 continued

+�8����;	������<+>�����8����?#�	������#4
�	�
	�����	�
�8����;	������<+>�����8����?,

����5#���-'

�	�������"���,-'
+>�����8����#�8����#4#�	�������%������8����,-'
�8�����"���,-'
��������(�	��;	��,7����	��#�����
U7-'

��������(�	��;	��,7(�	��#���#��S�������7-'
>�S�����������#��S����#4#�8�����>���	��>�S����,-'
������#������#4#��S�����>�S����������'
���	��#
�#4#�������$����
�<���	��?,-'
������#�����������#4

������������������,�������P���	��5
78���/99����8���9�����75

�-'

��S�����>����,�����������-'
��������(�	��;	��,7����	��#������
U7-'

������������,-'
��S����������,-'
�8����������,-'
�	������������,-'

��������>�
;	��,-'
.

.
.

Channel Factories

A channel factory creates a channel for sending messages and maintains
ownership of the channels it creates. Most developers will never use a chan-
nel factory directly. Instead, they will use a class derived from ��	������<?5
which is typically generated from �����	����� or Add Service Reference in
Visual Studio. However, it is important to understand channel factories
because they form the basis for client-side communication within WCF.

Chapter 3: Channels102

Listing 3.6 shows the use of a channel factory to call a service. This is the
client to the server in Listing 3. The code uses the ������8���� method of
the binding to create a new channel.

Listing 3.6 Using Channel Factories

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

��	������	�
	��#�	�
	��#4#���
��	������	�
	��,��	����������	����
��=���-'

+�8����)�����<+>�S�����8����?#������#4
�	�
	�����	�
�8����)�����<+>�S�����8����?,

���#�	�
	��!�������������	��,--'
�������"���,-'
+>�S�����8����#�8����#4#�������������8����,

���#&�
��	��%

����,78���/99����8���9��S����7--'
�8�����"���,-'

������#��S����������#4#������������������,
������P���	������BB5
78���/99�����������9�����75
7�8	�#	�#�8�#��
�#
�7-'

Channel Factories 103

TIP Channel Factories Own Their Channels

One important distinction between channel listeners and factories is
that channel factories are responsible for closing down all associated
channels; channel listeners are not. This distinction was made so that
channel listeners could be shut down independent of their channels.

Listing 3.6 continued

��������(�	��;	��,7���
	��#���������7-'
������#�����������#4#�8�����>�S����,��S����������-'
���	��#
�#4#������������$����
�<���	��?,-'
��������(�	��;	��,7>����#����	��
U7-'
��S����������������,-'
�����������������,-'
�8����������,-'
������������,-'

��������>�
;	��,-'
.

.
.

(������5��
��	*,
Two classes refer to channel factories within WCF: �8����)����� and
�8����)�����<?. They might seem similar, but they are actually separate
classes that do different things. The �8����)�����<? class is used in
advanced situations where multiple clients need to be created. Essentially
it works with a given �8����)�����, but it does not have any responsi-
bilities for creating a channel stack. The �8����)�����<? class is used by
defining the class with a specific ����	��������� type. Listing 3.7 shows
an example of using the �8����)�����<? class to call a service that imple-
ments the +�����K��������	�� interface.

Chapter 3: Channels104

TIP A���� Statement and (������5��
��	*,

Be careful when implementing the ��	�� statement to close the
�8����)�����. Listing 3.7 shows a best practice of having a
��������8 around the service call so that any errors from the service
are known. If we didn’t have this ��������8, any exceptions would
bubble up through the using. At that point the channel factory would
throw an exception because it is closed. This would mask the previous
error raised from the service call. We use two ��������8 blocks so that
we can catch any errors from the service calls.

Listing 3.7 Using (������5��
��	*,

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

���
*

��	��#,�8����)�����<+�����K��������	��?#��#4
���#�8����)�����<+�����K��������	��?,--

*
+�����K��������	��#����	��#4#���������8����,-'

���
*

�����#����#4#����	���$��K����,7��)�7-'
.
���8#,&�����	��#��-
*

99#�8���#������	��#����#���#��#$��K����
��������(�	��;	��,��������	��,--'

.
.

.
���8#,&�����	��#��-
*

99#�8���#������	��#���#����	��#�8����
��������(�	��;	��,��������	��,--'

.
��������>�
;	��,-'

.
.

.

%(��������
���2�Q��

The +������	��	��"�X��� interface (see Listing 3.8) is the basis of all com-
munication objects (channels, channel factories, channel listeners, and so

%(��������
���2�Q��
 105

on) within WCF. Developers who are planning to build custom channels
or work with channels directly need to know this interface. Communica-
tion objects within WCF need to implement a specific state machine. The
state machine represents the state that all communication objects go
through. This approach is similar to what other communication objects (for
example, sockets) go through. The purpose of the +������	��	��"�X���
interface (and its associated methods, states, and events) is to implement
that state machine. This allows WCF to treat all communication objects the
same and abstracts away their underlying implementations.

Listing 3.8 %(��������
���2�Q��
 Interface

����	�#	�������#+������	��	��"�X���
*

99#&�����
�����#&������
���#�����
'
�����#&������
���#����	��'
�����#&������
���#)����
'
�����#&������
���#"����
'
�����#&������
���#"���	��'

99#���8�
�
��	
#%����,-'
+%����>�����#���	������,%����������#������5#��X���#����-'
+%����>�����#���	������,�	�����#�	�����5

%����������#������5#��X���#����-'
+%����>�����#���	�"���,%����������#������5#��X���#����-'
+%����>�����#���	�"���,�	�����#�	�����5

%����������#������5#��X���#����-'
��	
#�����,-'
��	
#�����,�	�����#�	�����-'
��	
#&�
�����,+%����>�����#������-'
��	
#&�
"���,+%����>�����#������-'
��	
#"���,-'
��	
#"���,�	�����#�	�����-'

99#!������	��
������	��	������#����#*#���'#.

.

Listing 3.9 shows the states provided by the ������	��	������ enu-
meration.

Chapter 3: Channels106

Listing 3.9 (��������
����
�
� Enumeration

����	�#����#������	��	������
*

�����
5
"���	��5
"����
5
����	��5
�����
5
)����

.

The ������	��	������ enumeration lists six states that communica-
tion objects go through. The initial state for all communication objects is
�����
. This is the state that communication objects are in when they are
instantiated. The final state for all communication objects is �����
. Along
the way, methods are called on the +������	��	��"�X��� interface that
transitions the communication object from one state to the next. For exam-
ple, the "���,- method is called to transition a communication object from
the �����
 state to the "����
 state. Figure 3.5 shows a state diagram
showing the states and state transitions that a communication object goes
through.

%(��������
���2�Q��
 107

Created Opening Opened ClosedClosing

Faulted

Abort()

Abort()

Abort()

Abort()

Close() or Abort()Open()

Figure 3.5 %(��������
���2�Q��
 state diagram

One example of a communication object is the ��	������<? class, which is
the base implementation for clients generated from Add Service Reference
from Visual Studio or �����	�����.

Five events ("���	��5#"����
5#����	��5#�����
5#�
#)����
) are sup-
ported by the +������	��	��"�X��� interface. These events are used to
notify code of state transitions.

Chapter 3: Channels108

NOTE Cannot Reuse Clients

There is no going back after a communication object has transitioned
from the "����
 state to either the ����	�� or)����
 state. This
means that the communication state cannot go back to the "����
 state
without first re-creating the communication object. Therefore, clients
need to be re-created after they are closed (that is, when they are in the
�����
 state).

TIP Client Notifications

It is common for applications to maintain a reference to a client proxy.
In these situations it is important to use the state transitions events to
be notified when the client proxy enters the)����
 state (and even-
tually the �����
 state) so that communication between client and
server can be maintained.

The +������	��	��"�X��� interface is typically used by casting an
existing communication object to the interface to gain access to the methods
and events that the +������	��	��"�X��� exposes. However, at other
times you want to create a new communication object that extends the
capabilities of WCF. In this situation, WCF has provided an abstract base
class called ������	��	��"�X���5 which provides an implementation of
the +������	��	��"�X��� interface and the associated state machine. List-
ing 3.10 shows a �����K��������	����	��� that was generated from
�����	�����. This client inherits from the ��	������<? class. The code
shows the client being cast to an +������	��	��"�X��� interface so that
we can receive communication events.

Listing 3.10 %(��������
���2�Q��
 Example

��	��#������'
��	��#��������������	����$����	�'
��	��#�������=��'

��	��#�����������'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

���	��#������#4#7��)�7'

�����#����'

�����K��������	����	���#��	���#4
���#�����K��������	����	���,--'

+������	��	��"�X���#����"�X#4
,+������	��	��"�X���-��	���'

����"�X������
#T4
���#&������
���,�����
-'

����"�X�)����
#T4
���#&������
���,)����
-'

����#4#��	����$��K����,������-'

��������(�	��;	��,7*:.#M#[*B.75#������5#����-'
��������>�
;	��,-'

.

���	�#��	
#�����
,��X���#���
��5#&����%���#�-
*

99#��
��#�����
#&����
.

���	�#��	
#)����
,��X���#���
��5#&����%���#�-
*

99#��
��#)����
#&����
.

.
.

SUMMARY

A channel stack is a layered communication stack that is made up of one or
more channels that process messages. Channels are either protocol or trans-
port channels. Transport channels sit at the bottom of the channel stack and
are responsible for transmitting messages over a transport mechanism (for

Summary 109

example, HTTP, TCP, MSMQ). Protocol channels (a.k.a. layered channels)
implement protocols (security, reliable messaging, transactions, and so on)
by transforming and modifying messages.

Channel factories and listeners form the basis for sending and receiving
messages. They are responsible for creating channel stacks and exposing
the channel stack to applications.

WCF does a good job of abstracting away the details of the channel
model from developers. Most developers will use a class derived from the
��	������<? to send messages and the ����	������ class to host services.
These classes are built on top of the channel model architecture.

The channel model architecture forms the basis for all communication
within WCF. After developers know about concepts within the channel
model architecture, such as channel stacks, channels, channel factories, and
channel listeners, they can use this knowledge to extend or customize com-
munication within WCF.

Chapter 3: Channels110

4
Bindings

A S C O V E R E D I N CH A P T E R 3, “CH A N N E L S,” a channel stack is a lay-
ered communication stack that is made up of one or more channels

that process messages. Bindings are preconfigured channel stacks. They rep-
resent wire-level agreements between a client and a server. Each binding
specifies the transport, encoding, and protocols involved in the communi-
cation. WCF encapsulates the configuration for the various communication
scenarios using bindings. The most common communication scenarios,
such as Web services, REST/POX services, and queue-based applications,
are provided out of the box. For example, the ��	������	�
	�� binding
is meant to work with services based on ASP.NET Web Services or WS-I
Basic Profile 1.1 compliant services. The ��J::R�����	�
	�� and
�������	�
	�� bindings are similar to the ��	������	�
	�� binding, but
they support more features, such as reliable messaging and transactions,
and use newer standards such as WS-Addressing. The ��J::R�����	�
	��
binding ships with .NET 3.5 and is based on newer standards than the
�������	�
	�� binding. Table 4.1 lists the 12 bindings used for communi-
cation and a description of the use of each binding.

111

Table 4.1 WCF Communication Bindings in .NET Framework 3.5

Binding Name Description .NET Framework

��	������	�
	�� Binding for WS-I Basic 3.0/3.5
Profile 1.1 Web Services
including ASMX Web Services.

�������	�
	�� Binding for advanced WS-* 3.0/3.5
based Web Services such as
WS-Security, WS-Transactions,
and the like.

��D�������	�
	�� Binding to support bidirectional 3.0/3.5
communication using duplex
contracts.

��������	�
	�� Binding that supports REST/ 3.0/3.5
POX-based services using XML
and JSON serialization.

�������	�
	�� Binding for communication 3.0/3.5
between two .NET-based
systems.

���=��
!	���	�
	�� Binding for on-machine 3.0/3.5
communication between one or
more .NET-based systems.

������S�	�
	�� Binding for asynchronous 3.0/3.5
communication using Microsoft
Message Queue (MSMQ).

���!�������	�
	�� Binding for building peer-to- 3.0/3.5
peer networking applications.

���S+������	���	�
	�� Binding for sending and 3.0/3.5
receiving messages to applica-
tions through the use of queues
using MSMQ.

��)�
���	�������	�
	�� Binding for advanced WS-* 3.0/3.5
based Web services using
federated identity.

��J::R�����	�
	�� Binding derived from the 3.5
�������	�
	�� with additional
support for the latest WS-*
specifications based on
standards available in 2007.

Chapter 4: Bindings112

Binding Name Description .NET Framework

��J::R)�
���	�������	�
	�� Binding derived from the 3.5
��)�
���	�������	�
	��
with additional support for
the latest WS-* specifications
based on standards available
in 2007.

The bindings listed in Table 4.1 can be specified in either code or configu-
ration. Listing 4.1 shows the ��	������	�
	�� binding specified in con-
figuration. Using configuration allows developers the flexibility to change
or modify the binding later on without recompiling the application.

Listing 4.1 Using a Binding in Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��#

����478���/99����8���98��������
7

�	�
	��47��	������	�
	��7
�������47&�����	�(�)������(���
7?

<9��
��	��?
<9��	���?

<9�����������	����
��?
<9����	����	��?

The ��	������	�
	�� binding class is shown in Listing 4.2. Using code
allows a developer to use a specific binding without the possibility of its
changing later on.

Listing 4.2 Using a Binding in Code

��	��#������'
��	��#��������������	����$����	�'
��	��#�������=��'
��	��#�����������'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'

�������#&�����	�(�)
*

����#!�����
*

Bindings 113

Listing 4.2 continued

���	�#��	
#�	�,���	��� #���-
*

��	������	�
	��#�	�
	��#4#���#��	������	�
	��,-'

��	��#,�����(���
��	���#��	���#4
���#�����(���
��	���,�	�
	��5
78���/99����8���98��������
7--

��	�����������,7>	�87-'

��������>�
;	��,-'
.

.
.

Bindings compose a channel stack through a collection of binding
elements. Binding elements represent a channel object in the channel stack.
Each binding, such as the ��	������	�
	�� binding, is composed of sev-
eral binding elements. You can examine this through code by instantiating
the binding and enumerating over the binding element collection. This is
shown in Listing 4.3.

Listing 4.3 Examining �������"�����
(�����
���

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

"������	�
	��&�������,���#(������	�
	��,--'
"������	�
	��&�������,���#=������	�
	��,--'
"������	�
	��&�������,���#=��=��
!	���	�
	��,--'
"������	�
	��&�������,���#��	������	�
	��,--'

��������>�
;	��,-'
.

���	�#��	
#"������	�
	��&�������,�	�
	��#�	�
	��-
*

Chapter 4: Bindings114

��������(�	��;	��,7#�	�
	��#/#*:.75#�	�
	���$������,-�=��-'

�	�
	��&�������������	��#��������#4
�	�
	���������	�
	��&�������,-'

�����8#,�	�
	��&������#�������#	�#��������-
��������(�	��;	��,7#*:.75#��������$������,-�)���=��-'

��������(�	��;	��,-'
.

.
.

Figure 4.1 shows the output for the code in Listing 4.3 using four of the
out-of-the-box bindings: (������	�
	��, =������	�
	��, =��=��
C

!	���	�
	��, and the ��	������	�
	�� binding. We will look at the
(������	�
	�� binding so we can understand the binding elements used to
construct the binding.

The default configuration for the (������	�
	�� is made up of four
binding elements: �������������	�
	��&������, ����������&���
	��C
�	�
	��&������, �������	������	���	�
	��&������, and ������	��C
)����	�
	��&������. These binding elements allow for communication
over the HTTP protocol, text-based message encoding, security, and trans-
action support, respectively. Note that the list of binding elements is based
on the default configuration. The binding may add or remove binding ele-
ments depending on how you configure the binding.

Bindings 115

Figure 4.1 Binding Explorer

Note how each binding is composed of one or more binding elements and
that some of those binding elements are common across bindings. For
example, both the (������	�
	�� and the ��	������	�
	�� use the
�������������	�
	��&������. These two bindings use the same transport
mechanism but differ in the functionality and capabilities they support. We
will discuss the difference between these bindings in this chapter.

The remainder of this chapter focuses on Web services, cross-machine,
local-machine, and queue-based communication. These are the forms of
communication that developers should know to get started with WCF.
There are other forms of communication based on REST/POX, peer net-
working, and federated security that are discussed in more detail in Chap-
ter 13, “Programmable Web,” Chapter 12, “Peer Networking,” and Chapter
8, “Security,” respectively.

Choosing an Appropriate Binding

There are nine preconfigured bindings in WCF. Each of these provides the
means for a particular distributed computing need. There are several fac-
tors that determine which binding to choose for a specific application,
including security, interoperability, reliability, performance, and transaction
requirements. Table 4.2 compares the nine preconfigured bindings by
showing the common features they support. This table can be used to select
a best binding for a particular need.

The approach used to choose a binding is to examine the features your
application needs and determine a binding that matches those require-
ments. Table 4.2 compares features of each preconfigured binding so you
can select the binding based on your requirements. There are many fea-
tures, including interoperability, durability, reliability, and transactions. For
example, if your application needs to communicate over an unreliable net-
work, such as a wireless network connection, you might want a binding
that supports reliable sessions (RS). Figure 4.2 shows a process you might
use to select a binding.

Chapter 4: Bindings116

Table 4.2 Supported Features of Each Binding

Binding Name Communication

��	������	�
	�� X X X Good X X

�������	�
	�� X X X X RS* Good X X

��D�������	�
	�� X X X X RS* Good X X X

�������	�
	�� X X X RS* Better X X X

���=��
!	���	�
	�� X X Best X X X

������S�	�
	�� X X X Better X

���!�������	�
	�� X Good X X

���S+������	���	�
	�� X X Better X

��)�
���	�������	�
	�� X X X RS* Good X X

��J::R�����	�
	�� X X X X RS* Good X X

��J::R)�
���	�������	�
	�� X X X RS* Good X X

* RS = WCF Reliable Sessions is an implementation of SOAP reliable messaging defined by the WS-Reliable Messaging (WS-RM)
standard.

C
h

o
o

sin
g

 a
n

 A
p

p
ro

p
ria

te
 B

in
d

in
g

117

D
uplex

O
ne-w

ay

Request/Reply

Perform
ance

Reliable S
essions

D
urable Reliable

M
essaging

W
S

-*Transactions

W
S

-*
Interoperability

M
essage-Level

S
ecurity

Transport-Level
S

ecurity

Figure 4.2 Selecting a binding

C
h

a
p

te
r 4

:
B

in
d

in
g

s
118

Start

Local?
Need

Interoperability
?

Need
Federated
Security

Need
Duplexing?

Need
Queuing?

Need Peer
Networking?

Need Legacy
MSMQ?

Level of
Interoperability

?

wsHttpBinding or
ws2007HttpBinding

wsFederationHttpBinding or
ws2007FederationHttpBinding

basicHttpBinding

wsDualHttpBinding

netNamedPipeBinding

msmqIntegrationBinding

netMsmqBinding

netPeerTcpBinding

netTcpBinding

YESYES

YESYESYESYES

YESYES

YESYES

NONO

BASICBASIC

YESYES

YES

YESYES

YES

YES

NO

BASIC

YES

YESYES NONO

NONO

NONO NONO

NONO

WS-*WS-*

YES NO

NO

NO NO

NONONO

NO

WS-*

You need to consider many features when selecting a binding. Table 4.2
cannot list them all; therefore, you may need to do further investigation to
select an appropriate binding.

Each of the bindings supports a particular communication scenario,
such as cross-machine, on-machine, and interoperable communication
using Web services. We will examine these scenarios along with the bind-
ings associated with each. There are other scenarios, such as federated secu-
rity and peer communication. These topics deserve deeper discussion and
will be discussed in detail in Chapter 8, “Security,” and Chapter 12, “Peer
Networking,” respectively.

Sample Application
We will now examine each of the preconfigured bindings available in WCF.
To demonstrate each binding we will use a sample application based on
stock quotes. The sample asks for quotes based on a ticker symbol and
returns the stock price. The intent is to expose and consume the same ser-
vice over different bindings and take note of any changes in code or con-
figuration. Listing 4.4 shows the stock quote service.

Listing 4.4 �
��0R��
�������� Service

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������'
��	��#�����������	����
��'
��	��#�������>���	������	�	G�	��'

�������#&�����	�(�)
*

�����	���������
����	�#	�������#+�����K��������	��
*

�"����	���������

�����#$��K����,���	��#������-'

.

����	�#����#�����K��������	��#/#+�����K��������	��
*

����	�#
�����#$��K����,���	��#������-
*

�����#����'

	�#,������#44#7��)�7-

Choosing an Appropriate Binding 119

Listing 4.4 continued

����#4#IB�B3'
����#	�#,������#44#7\�""7-

����#4#J2�B:'
����#	�#,������#44#7$""$7-

����#4#13:�R3'
����

����#4#
������=='

������#����'
.

.
.

Listing 4.5 shows the client proxy that was generated using Add Service
Reference from Visual Studio. We hand-edited the proxy to remove any
comments and added ��	�� statements for commonly used namespaces for
formatting purposes. Other than these minor edits, this is the same client
code you should expect if you generate your proxies through Add Service
Reference or �����	�����. Our intent is to use the same client code with the
different bindings and take note of any changes in code or configuration.

Listing 4.5 �
��0R��
�������� Client Proxy

��	��#���������
�D�������	���'
��	��#�������D	�����	��'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'

�������#&�����	�(�)
*

�$������
��
�%���	����,7�����������	����
��75#7I�:�:�:7-
�����	���������%���	����,
����	����	��=��47+�����K����D���������	��75
�������������4������,+�����K����D���������	��������-5
����	����
�4����	����
��>�S�	��
-

����	�#	�������#+�����K����D���������	��
*

�"����	���������%���	����,+�"��(�4����5
%��	��478���/99������	����9+�����K����D���������	��9
➥���
K����>�S����7-

��	
#���
K����>�S����,���	��#������-'
.

Chapter 4: Bindings120

�$������
��
�%���	����,7�����������	����
��75#7I�:�:�:7-
����	�#	�������#+�����K����D���������	��������
*

�"����	���������%���	����,+�"��(�4����5
%��	��478���/99������	����9+�����K����D���������	��9
➥���
K����>�������7-

��	
#���
K����>�������,���	��#������5#
�����#��	��-'
.

�$������
��
�%���	����,7�����������	����
��75#7I�:�:�:7-
����	�#	�������#+�����K����D���������	���8����#/
+�����K����D���������	��5#+��	����8����

*
.

�D������������8����8%���	����,-
�$������
��
�%���	����,7�����������	����
��75#7I�:�:�:7-
����	�#���	�#����#�����K����D���������	����	���#/
D�������	������<+�����K����D���������	��?5
+�����K����D���������	��

*

����	�#�����K����D���������	����	���,
+�������������#������+������-
/#���,������+������-

*
.

����	�#�����K����D���������	����	���,
+�������������#������+������5
���	��#��
��	������	����	��=��-
/#���,������+������5

��
��	������	����	��=��-
*
.

����	�#�����K����D���������	����	���,
+�������������#������+������5
���	��#��
��	������	����	��=��5
���	��#������%

����-
/#���,������+������5
��
��	������	����	��=��5

������%

����-
*
.

����	�#�����K����D���������	����	���,
+�������������#������+������5
���	��#��
��	������	����	��=��5

Choosing an Appropriate Binding 121

Listing 4.5 continued

&�
��	��%

����#������%

����-
/#���,������+������5

��
��	������	����	��=��5
������%

����-

*
.

����	�#�����K����D���������	����	���,+�������������
������+������5#�	�
	��#�	�
	��5#&�
��	��%

����#������%

����-

/
���,������+������5#�	�
	��5#������%

����-

*
.

����	�#��	
#���
K����>�S����,���	��#������-
*

�����8��������
K����>�S����,������-'
.

.
.

This sample application is hosting the service using self-hosting. Listing
4.6 shows the code to self-host the �����K��������	��. See Chapter 7,
“Hosting,” for more information on self-hosting.

Listing 4.6 �
��0R��
�������� ServiceHost

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����	��'
��	��#�����������'
��	��#�����������	����
��'

�������#&�����	�(�)
*

	������#����#������	������
*

	������#���	�#����	������#������	������#4#����'

	������#���	�#��	
#��������	��,-
*

������	������#4
���#����	������,������,&�����	�(�)������K��������	��--'

������	�������"���,-'
.

	������#���	�#��	
#��������	��,-

Chapter 4: Bindings122

*
	�#,������	�����������#U4#������	��	������������
-

������	������������,-'
.

.
.

Cross-Machine Communication Between .NET
Applications

This section describes the bindings used for cross-machine communication
between .NET applications. We will demonstrate how to customize each
binding through configuration and code. Each binding will be reviewed in
the context of a typical scenario.

Cross-Machine Communication Between .NET Applications 123

TIP Bindings That Start with “net” Should Be Used with
.NET Applications

WCF prefixes all bindings that are meant to be used between .NET
applications with the “net” prefix. The binding name prefix is one indi-
cator that you should use when selecting a particular binding to use.
This means that these bindings have specific features that are available
only to .NET applications. Conversely, all bindings that begin with the
“ws” prefix are meant for interoperability with non-.NET applications
using Web services.

��
-���������
The �������	�
	�� binding is designed to support communication
between .NET applications that are deployed on separate machines across
a network, including communication across intranets and the Internet. We
refer to this type of communication as cross-machine communication. In this
situation there is no need for interoperability because both applications are
built on .NET. This gives us a great deal of flexibility when communicating
across the network. Because no interoperability requirement exists, com-
munication can be optimized for the best performance.

The �������	�
	�� binding uses binary encoding and the TCP protocol
to achieve the best performance across the network. The general guideline

is to use the �������	�
	�� binding for cross-machine communication
between .NET applications. This is not a hard-and-fast rule, but it covers
most situations. An example of when the �������	�
	�� binding is not
appropriate is when a firewall separates the two .NET applications. Often
the only way you can communicate across a firewall is to use HTTP. In this
situation, you will need to use a binding that supports the HTTP protocol
used by ��	������	�
	�� binding rather than �������	�
	�� binding.

The following code shows the addressing format on the �������	�
	��
binding:

�������/99*8������.�/���� 9*����	��#����	��.

The default port for the TCP transport is 808. This is the case for any
binding based on the ������������	�
	��&������ binding element,
including the �������	�
	�� binding.

Table 4.3 lists the binding properties that are configurable on the
�������	�
	�� binding. All of them are important to know, depending on
the situation. For example, the default for the �������	�
	�� binding is to
turn off port sharing. This has an impact on your application if you plan to
host multiple services over the same port. See the “Sharing Ports Between
Services” section in the appendix, “Advanced Topics,” for more informa-
tion on port sharing. Another important property of the �������	�
	�� is
the ���������	��� property. The ���������	��� property limits the
number of connections to an endpoint. The default value is 10. This needs
to be increased in order to maximize throughput.

Table 4.3 ��
-����������������� Properties

Attribute Name Description Default

������	����� The maximum time to wait 00:01:00
for the connection to be
closed.

8���=�������	�����
� Specifies the method for StrongWildCard
hostname comparison when
parsing URIs.

Chapter 4: Bindings124

Attribute Name Description Default

�	���������� The maximum number of channels 10
waiting to service a request. Any
connections greater than this
amount are queued.

��������!����	G� Maximum size of any buffer pools 524,888
used by the transport.

���������	G� Maximum number of bytes used to 65,536
buffer incoming messages in memory.

���������	��� The maximum number of outbound 10
or inbound connections. Outbound
and inbound connections are counted
separately.

��>���	��
�������	G� The maximum size of an incoming 65,536
message.

��� The name of the binding. n/a

�����	����� The maximum time to wait for an open 00:01:00
connection operation to complete.

�����8�	��&����
 Enable port sharing for the service false
listener.

��
��K���� Specify the complexity of messages n/a
that can be processed (for example, size).

����	���	����� The maximum time to wait for a 00:01:00
receive operation to complete.

���	�������	�� Specify whether the binding supports n/a
exactly once delivery assurances
using WS-Reliable Messaging.

�����	�� Specifies the security settings of n/a
the binding.

���
�	����� The maximum time to wait for a 00:01:00
send operation to complete.

������	��)��� Enable transactions to flow from the false
client to the server.

������	��!������� The type of transactions supported— Ole
either OleTransactions or WSAtomic- Trans-
Transactions. actions

n/a—means that the setting is a child element that requires multiple properties to be set or
does not apply unless another property is set.

Cross-Machine Communication Between .NET Applications 125

The following configuration information is meant to be used with the
sample application shown in Listings 4.2 through 4.4. The configuration
information shown in Listing 4.7 exposes the �����K��������	�� service
using the �������	�
	�� binding.

Listing 4.7 ��
-���������� ��
 Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������K��������	��7?
<8���?
<���%

������?
<

#���%

����47�������/99����8���9�����S��������	��7#9?

<9���%

������?
<98���?
<��
��	��#

����477

�������47&�����	�(�)�+�����K��������	��7
�	�
	��47�������	�
	��7#9?

<9����	��?
<9����	���?

<9�����������	����
��?
<9����	����	��?

Listing 4.8 shows the client configuration to consume the service using
the �������	�
	�� binding shown in Listing 4.7.

Listing 4.8 ��
-��������� Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��#

����47�������/99����8���9�����S��������	��7

�	�
	��47�������	�
	��7
�������47&�����	�(�)�+�����K��������	��7?

<9��
��	��?
<9��	���?

<9�����������	����
��?
<9����	����	��?

Chapter 4: Bindings126

Local Machine Communication Between .NET
Applications

Interprocess, or cross-process, communication refers to communication
between two separate processes running on the same machine. Intra-
process, or in-process, communication refers to communication between
two software components running within one process. Together these types
of communication make up what we refer to as local-machine communica-
tion (a.k.a. on-machine communication)

Application domains (a.k.a. app-domains) are a mechanism in .NET for
further partitioning a Windows process to support multiple .NET applica-
tions by isolating them along security and activation boundaries. This
means that app-domains are another communication boundary that can be
crossed by .NET applications. Because of this we define two additional
terms: inter-appdomain and intra-appdomain.

• inter-appdomain or cross-appdomain. Communication that occurs
between two .NET applications that run in separate app-domains
within the same Windows process. This could also be communica-
tion within a single .NET application that is designed to run within
multiple app-domains.

• intra-appdomain or in-appdomain. Communication that occurs
within a single .NET application that runs in a single application
domain. For our discussion, think of an app-domain as being one or
more .NET processes that run within a Windows process.

WCF does not make a distinction between interprocess, intraprocess,
inter-appdomain and intra-appdomain communication. Instead, WCF offers
a single on-machine transport channel based on named pipes. Named pipes
are a standard means of interprocess communications (IPC) on Windows as
well as UNIX environments. The WCF team considered an in-process bind-
ing but decided that it was not necessary for most situations. Do not concern
yourself over this decision. There is no loss in functionality. The only differ-
ence between a named pipe and a true in-process binding is performance.

Local Machine Communication Between .NET Applications 127

The performance of the named pipes binding is good enough for most in-
process communication situations. If you find that a single on-machine
transport is not sufficient, you have the capability of creating a custom bind-
ing that uses a custom transport channel. See the “Creating a Custom Bind-
ing” section later in this chapter for more information on creating a custom
binding.

��
B����3����������
WCF supports interprocess and intraprocess communication scenarios
with the ���=��
!	���	�
	�� binding. The ���=��
!	���	�
	�� binding
leverages a named pipes transport. This is a great binding to use for doing
interprocess communication (IPC) because it provides a significant per-
formance increase over the other standard bindings available in WCF. See
the “Comparing Binding Performance and Scalability” section later in this
chapter for a quick comparison of the performance.

Chapter 4: Bindings128

TIP WCF Restricts the ��
B����3���������� Binding to
Local Machine Communication!

Although it is possible to use named pipes to communicate across a
network, WCF restricts the use to local machine communication. This
means that the ���=��
!	���	�
	�� binding (and any other binding
based on the ���
!	���������� binding element) can be used to
ensure that your service is not available across a network. This is
accomplished using two mechanisms. First, the Network Security
Identifier (SID: S-1-5-2) is denied access to the named pipe. Second, the
name of the named pipe is randomly generated and stored in shared
memory so only clients running on the same machine can access it.

An address using the ���=��
!	���	�
	�� binding is formatted as
follows:

�����	��/99����8���9*����	��#����	��.

Table 4.4 shows the binding properties that are configurable on the
���=��
!	���	�
	�� binding. An important property of the ���=��
C
!	���	�
	�� is the ���������	��� property. The ���������	��� property

limits the number of connections to an endpoint. The default value is 10. This
needs to be increased in order to maximize throughput.

Table 4.4 ��
B����3���������� Binding Properties

Attribute Name Description Default

������	����� The maximum time to wait 00:01:00
for the connection to be
closed.

8���=�������	�����
� Specifies the method for StrongWildCard
hostname comparison when
parsing URIs.

��������!����	G� Maximum size of any 524,888
buffer pools used by the
transport.

���������	G� Maximum number of bytes 65,536
used to buffer incoming
messages in memory.

���������	��� The maximum number of 10
outbound or inbound
connections. Outbound and
inbound connections are
counted separately.

��>���	��
�������	G� The maximum size of an 65,536
incoming message.

��� The name of the binding.

�����	����� The maximum time to wait 00:01:00
for an open connection
operation to complete.

��
��K���� Specify the complexity of n/a
messages that can be
processed (for example, size).

����	���	����� The maximum time to wait 00:01:00
for a receive operation to
complete.

Local Machine Communication Between .NET Applications 129

continues

Table 4.4 continued

Attribute Name Description Default

�����	�� Specifies the security settings n/a
of the binding.

���
�	����� The maximum time to wait for a 00:01:00
send operation to complete.

������	��)��� Enable transactions to flow from false
the client to the server.

������	��!������� The type of transactions supported OleTransactions
either OleTransactions or
WSAtomicTransactions.

n/a—means that the setting is a child element that requires multiple properties to be set
or does not apply unless another property is set.

The following configuration information is meant to be used with the
sample application shown in Listings 4.2 through 4.4. The configuration
information shown in Listing 4.9 exposes the �����K��������	�� service
using the ���=��
!	���	�
	�� binding.

Listing 4.9 ��
B����3���������� Host Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������K��������	��7?
<8���?
<���%

������?
<

#���%

����47�����	��/99����8���9�����S��������	��7#9?

<9���%

������?
<98���?
<��
��	��#

����477

�������47&�����	�(�)�+�����K��������	��7
�	�
	��47���=��
!	���	�
	��7#9?

<9����	��?
<9����	���?

<9�����������	����
��?
<9����	����	��?#

Chapter 4: Bindings130

Listing 4.10 shows the client configuration to consume the service using
the ���=��
!	���	�
	�� binding shown in Listing 4.9.

Listing 4.10 ��
B����3���������� Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��#

����47�����	��/99����8���9�����S��������	��7

�	�
	��47���=��
!	���	�
	��7
�������47&�����	�(�)�+�����K��������	��7?

<9��
��	��?
<9��	���?

<9�����������	����
��?
<9����	����	��?

Communication Using Basic Web Services

Web services are the foundation for interoperable communication among
heterogeneous systems. For example, services built on Java-based plat-
forms such as IBM Websphere or BEA WebLogic must communicate seam-
lessly with clients and services built on .NET. And services built on .NET
must communicate seamlessly with clients or services built on Java-based
platforms. Prior to WCF, ASP.NET Web Services (ASMX) and Web Service
Enhancements (WSE) provided this capability on the .NET platform. With
.NET 3.0, WCF is a direct replacement for these technologies and provides
a single unified framework for building Web services. WCF includes
several bindings for exposing interoperable Web services, including
��	������	�
	��, �������	�
	��, ��D�������	�
	��, and ��)�
��C
�	�������	�
	�� bindings.

In this section, we examine the ��	������	�
	�� binding, which offers
support for Web services based on the WS-I Basic Profile 1.1. As of 2007, the
WS-I Basic Profile 1.1 covers the most widely deployed set of Web service
protocols and is the Web service technology that most developers are famil-
iar with. Other bindings based on Web services are discussed in the “Com-
munication Using Advanced Web Services” section later in this chapter and
are also discussed in Chapter 8 of this book.

Communication Using Basic Web Ser vices 131

�����

��������
The ��	������	�
	�� binding offers support for Web service communi-
cation based on the WS-I Basic Profile 1.1 (WS-BP 1.1) specification. This
includes standards such as SOAP 1.1, WSDL 1.1, and Message Security 1.0
(including X.509 and UserName Tokens Profile v1.0). The WS-BP 1.1 spec-
ification has been around since 2004. Although the ��	������	�
	�� bind-
ing offers interoperability across heterogeneous systems, it does not offer
support for the latest Web service standards such as transactions and reli-
able messaging. The ��	������	�
	�� binding is meant to be used with
applications that use Web services based on the WS-BP 1.1 specification,
such as ASP.NET ASMX Web Services.

Chapter 4: Bindings132

NOTE Create Services Based on the Latest Standards

The ��	������	�
	�� binding is meant to work with legacy Web ser-
vices based on prior technologies such as ASP.NET. This means that
the ��	������	�
	�� binding is configured by default to use older
standards such as SOAP 1.1. The ��	������	�
	�� binding is also the
only binding that is not secure by default. If you need to create new
Web services, we recommend using the ��J::R�����	�
	�� binding
because it is configured to use newer standards and is secure by
default.

The following code shows the addressing formats for the ��	������	�
C
	�� binding:

8���/99*8������.�/���� 9*����	��#����	��.
8����/99*8������.�/���� 9*����	��#����	��.

The default port is port 80 for http and port 443 for https. This is the case
for any binding based on the �������������	�
	��&������ binding ele-
ment, including the ��	������	�
	�� binding. The most common way to
secure the ��	������	�
	�� binding is to use https, which uses SSL/TLS
encryption.

Table 4.5 lists the binding properties that are configurable on the
��	������	�
	�� binding.

Table 4.5 �����

�������� Binding Properties

Attribute Name Description Default

�����!����"�;��� Bypass the proxy settings for false
local endpoints.

������	����� The maximum time to wait 00:01:00
for the connection to be closed.

8���=�������	�����
� Specifies the method for StrongWildCard
hostname comparison when
parsing URIs.

��������!����	G� Maximum size of any buffer 524,888
pools used by the transport.

���������	G� Maximum number of bytes 65,536
used to buffer incoming
messages in memory.

��>���	��
�������	G� The maximum size of an 65,536
incoming message.

������&���
	�� The type of encoding used to Text
encode messages.

��� The name of the binding.

�����	����� The maximum time to wait for 00:01:00
an open connection operation
to complete.

�����%

���� Specify a specific Web proxy n/a
to use. ���D�����(��!����
must be false for this setting
to apply.

��
��K���� Specify the complexity of n/a
messages that can be
processed (for example, size).

����	���	����� The maximum time to wait 00:01:00
for a receive operation to
complete.

Communication Using Basic Web Ser vices 133

continues

Table 4.5 continued

Attribute Name Description Default

�����	�� Specifies the security settings n/a
of the binding.

���
�	����� The maximum time to wait for 00:01:00
a send operation to complete.

����&���
	�� The method of character utf-8
encoding used to encode
messages. ������&���
	��
must be set to Text for this
setting to apply.

���������
� Determines how messages are Buffered
sent across the network. Messages
can either be buffered or streamed.

���D�����(��!���� Use the default Web proxy true
specified by the operating system.

The following configuration information is meant to be used with the
sample application shown in Listings 4.2 through 4.4. The configuration
information shown in Listing 4.11 exposes the �����K��������	�� service
using the ��	������	�
	�� binding.

Listing 4.11 �����

�������� Host Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������K��������	��7?
<8���?
<���%

������?
<

#���%

����478���/99����8���9�����S��������	��7#9?

<9���%

������?
<98���?
<��
��	��#

����477

�������47&�����	�(�)�+�����K��������	��7
�	�
	��47��	������	�
	��7#9?

<9����	��?
<9����	���?

<9�����������	����
��?
<9����	����	��?#

Chapter 4: Bindings134

Listing 4.12 shows the client configuration to consume the service using
the ��	������	�
	�� binding shown in Listing 4.11.

Listing 4.12 �����

�������� Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��#

����478���/99����8���9�����S��������	��7

�	�
	��47��	������	�
	��7
�������47&�����	�(�)�+�����K��������	��7?

<9��
��	��?
<9��	���?

<9�����������	����
��?

<9����	����	��?

Communication Using Advanced Web Services

As mentioned previously, Web services are the foundation for interoperable
communication among heterogeneous systems. Advanced Web services are
those Web services exposed using the WS-* specifications (pronounced ws-
star). WCF has support for the WS-* specifications including security, reliable
messaging, and transactions. The list of supported specifications is shown in
Table 4.6. Support for these features is available in the �������	�
	��,
��D�������	�
	��, and ��)�
���	�������	�
	�� bindings.

Communication Using Advanced Web Ser vices 135

NOTE Bindings That Start with “ws” Should Be Used for
Interoperability Using Web Services.

Windows Communication Foundation prefixes all bindings that are
meant for interoperability using Web services begin with the “ws” pre-
fix. Conversely, all bindings that begin with the “net” prefix should be
used only between .NET applications.

Table 4.6 WS-* Specifications Supported by the ��

�������� Binding

Standard Description

SOAP 1.2 Lightweight protocol for exchange of informa-
tion in a decentralized, distributed environment

WS-Addressing 2005/08 Transport-neutral mechanisms to address Web
services and messages

WSS Message Security 1.0 Specification for securing Web services using a
variety of mechanisms such as PKI, Kerberos,
and SSL

WSS Message Security Support for security tokens based on a username
UsernameToken Profile 1.1 and optionally a password (or password equiva-

lent such as a shared secret)

WSS SOAP Message Support for tokens based on X.509 certificates
Security X509 Token
Profile 1.1

WS-SecureConversation Extensions to WS-Security to provide a secure
context for multiple message exchanges

WS-Trust Extensions to WS-Security to request and issue
tokens and to manage trust relationships

WS-SecurityPolicy Policy assertions for WS-Security, WS-Secure-
Conversation, and WS-Trust, which are
expressed using WS-Policy

WS-ReliableMessaging A protocol for guaranteeing messages are deliv-
ered, properly ordered, and received without
duplication

WS-Coordination A framework for providing protocols that coordi-
nate the actions of distributed applications

WS-Atomic Transactions A protocol that coordinates the actions of
distributed applications based on the atomic
transactions

WS-Addressing A transport-neutral mechanism for addressing
Web services

Chapter 4: Bindings136

��

��������
Support for WS-* is included throughout the WCF framework. The ������C
�	�
	�� binding is an example of this support. This binding provides inter-
operable communication across heterogeneous platforms as well as
advanced infrastructure level protocols, such as security, reliable messag-
ing, and transactions. The �������	�
	�� binding is the default binding in
.NET Framework 3.0 whenever you need interoperable communication
based on Web services.

The following code shows the addressing formats for the �������	�
C
	�� binding:

8���/99*8������./*����.9*����	��#����	��.
8����/99*8������./*����.9*����	��#����	��.

The default port is port 80 for http and port 443 for https. This is the case
for any binding based on the �������������	�
	��&������ binding ele-
ment, including the �������	�
	�� binding.

Table 4.7 shows the binding properties that are configurable on the
�������	�
	�� binding.

Table 4.7 ��

�������� Binding Properties

Attribute Name Description Default

�����!����"�;��� Bypass the proxy settings false
for local endpoints.

������	����� The maximum time to wait
for the connection to be closed. 00:01:00

8���=�������	�����
� Specifies the method for StrongWildCard
hostname comparison when
parsing URIs.

��������!����	G� Maximum size of any buffer 524,888
pools used by the transport.

��>���	��
�������	G� The maximum size of an 65,536
incoming message.

Communication Using Advanced Web Ser vices 137

continues

Table 4.7 continued

Attribute Name Description Default

������&���
	�� The type of encoding used to Text
encode messages.

��� The name of the binding.

�����	����� The maximum time to wait for 00:01:00
an open connection operation
to complete.

�����%

���� Specify a specific Web proxy to n/a
use. ���D�����(��!���� must
be false for this setting to apply.

��
��K���� Specify the complexity of messages n/a
that can be processed (for example,
size).

����	���	����� The maximum time to wait for a 00:01:00
receive operation to complete.

���	�������	�� Specify whether the binding n/a
supports exactly once delivery
assurances using WS-Reliable
Messaging.

�����	�� Specifies the security settings of n/a
the binding.

���
�	����� The maximum time to wait for a 00:01:00
send operation to complete.

����&���
	�� Determines how messages are sent utf-8
across the network. Messages can
either be buffered or streamed.

������	��)��� Enable transactions to flow from false
the client to the server.

���D�����(��!���� Use the default Web proxy specified true
by the operating system.

Chapter 4: Bindings138

The following configuration information is meant to be used with the
sample application shown in Listings 4.2 through 4.4. The configuration
information shown in Listing 4.13 exposes the �����K��������	�� service
using the �������	�
	�� binding.

Listing 4.13 ��

�������� Host Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������K��������	��7?
<8���?
<���%

������?
<

#���%

����478���/99����8���9�����S��������	��7#9?

<9���%

������?
<98���?
<��
��	��#

����477

�������47&�����	�(�)�+�����K��������	��7
�	�
	��47�������	�
	��7#9?

<9����	��?
<9����	���?

<9�����������	����
��?
<9����	����	��?#

Listing 4.14 shows the client configuration to consume the service using
the �������	�
	�� binding shown in Listing 4.13.

Listing 4.14 ��

�������� Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��#

����478���/99����8���9�����S��������	��7

�	�
	��47�������	�
	��7
�������47&�����	�(�)�+�����K��������	��7?

<9��
��	��?
<9��	���?

<9�����������	����
��?
<9����	����	��?

Communication Using Advanced Web Ser vices 139

��?88L

��������
.NET Framework 3.5 introduces a new binding for Web service interoper-
ability called the ��J::R�����	�
	�� binding. This binding is similar to the
�������	�
	�� binding except that it supports the latest WS-* standards
available for messaging, security, reliable messaging, and transactions.
Table 4.8 lists the new WS-* standards that are supported by the
��J::R�����	�
	�� binding.

Table 4.8 WS-* Specifications Supported by the ��?88L

�������� Binding

Standard Description

WS-SecureConversation v1.3 Extensions to WS-Security to provide a secure
context for multiple message exchanges

WS-Trust v1.3 Extensions to WS-Security to request and
issue tokens and to manage trust relation-
ships

WS-SecurityPolicy v1.2 Policy assertions for WS-Security, WS-Secure-
Conversation, and WS-Trust, which are
expressed using WS-Policy

Web Services Reliable A protocol for guaranteeing messages are
Messaging v1.1 delivered, properly ordered, and received

without duplication

Web Services Atomic A protocol that coordinates the actions of
Transaction v1.1 distributed applications based on the atomic

transactions

Web Services Coordination v1.1 A framework for providing protocols
that coordinate the actions of distributed
applications

The following code shows the addressing formats for the ��J::R����C
�	�
	�� binding:

8���/99*8������./*����.9*����	��#����	��.
8����/99*8������./*����.9*����	��#����	��.

Chapter 4: Bindings140

The default port is port 80 for http and port 443 for https. This is the case
for any binding based on the �������������	�
	��&������ binding ele-
ment, including the �������	�
	�� binding.

Table 4.9 shows the binding properties that are configurable on the
�������	�
	�� binding.

Table 4.9 ��?88L

�������� Binding Properties

Attribute Name Description Default

�����!����"�;��� Bypass the proxy settings for
local endpoints. false

������	����� The maximum time to wait 00:01:00
for the connection to be closed.

8���=�������	�����
� Specifies the method for StrongWildCard
hostname comparison when
parsing URIs.

��������!����	G� Maximum size of any buffer 524,888
pools used by the transport.

��>���	��
�������	G� The maximum size of an 65,536
incoming message.

������&���
	�� The type of encoding used to Text
encode messages.

��� The name of the binding.

�����	����� The maximum time to wait for 00:01:00
an open connection operation
to complete.

�����%

���� Specify a specific Web proxy n/a
to use. ���D�����(��!����#
must be false for this setting
to apply.

��
��K���� Specify the complexity of n/a
messages that can be
processed (for example, size).

Communication Using Advanced Web Ser vices 141

continues

Table 4.9 continued

Attribute Name Description Default

����	���	����� The maximum time to wait for 00:01:00
a receive operation to complete.

���	�������	�� Specify whether the binding n/a
supports exactly once delivery
assurances using WS-Reliable
Messaging.

�����	�� Specifies the security settings n/a
of the binding.

���
�	����� The maximum time to wait for 00:01:00
a send operation to complete.

����&���
	�� Determines how messages are utf-8
sent across the network. Messages
can either be buffered or streamed.

������	��)��� Enable transactions to flow from false
the client to the server.

���D�����(��!���� Use the default Web proxy true
specified by the operating system.

n/a—means that the setting is a child element that requires multiple properties to be set
or does not apply unless another property is set.

The following configuration information is meant to be used with the
sample application shown in Listings 4.2 through 4.4. The configuration
information shown in Listing 4.15 exposes the �����K��������	�� service
using the ��J::R�����	�
	�� binding.

Listing 4.15 ��?88L

�������� Host Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������K��������	��7?
<8���?
<���%

������?
<

#���%

����478���/99����8���9�����S��������	��7#9?

Chapter 4: Bindings142

<9���%

������?
<98���?
<��
��	��#

����477

�������47&�����	�(�)�+�����K��������	��7
�	�
	��47��J::R�����	�
	��7#9?

<9����	��?
<9����	���?

<9�����������	����
��?
<9����	����	��?#

Listing 4.16 shows the client configuration to consume the service using
the ��J::R�����	�
	�� binding shown in Listing 4.15.

Listing 4.16 ��?88L

�������� Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��#

����478���/99����8���9�����S��������	��7

�	�
	��47��J::R�����	�
	��7
�������47&�����	�(�)�+�����K��������	��7?

<9��
��	��?
<9��	���?

<9�����������	����
��?
<9����	����	��?

������

��������
The ��D�������	�
	�� binding is similar to the �������	�
	�� binding,
with additional support for duplex communication and lack of support for
transport-level security. Duplex communication is accomplished through
two shape-changing binding elements: the "��(��	�
	��&������ and
������	��D������	�
	��&������ binding elements. The ������	��D�C
�����	�
	��&������ binding element layers a duplex communication
channel on top of two one-way channels. The ��D�������	�
	�� binding
uses the �������������	�
	��&������ binding element. This transport
supports only the request-reply message exchange pattern. The "��(�C
�	�
	��&������ binding element allows the �������������	�
	��&��C
���� binding element to be used with the ������	��D������	�
	��&������
binding element.

Communication Using Advanced Web Ser vices 143

The ��D�������	�
	�� binding does not support transport-level
security. This means that SSL/TLS encryption is not possible using the
��D�������	�
	�� binding.

The following code shows the addressing formats for the ��D������C
�	�
	�� binding.

8���/99*8������./*����.9*����	��#����	��.

The default port is port 80 for http. This is the case for any binding based
on the �������������	�
	��&������ binding element, including the
��D�������	�
	�� binding.

Table 4.10 lists the binding properties that are configurable on the
��D�������	�
	�� binding.

Table 4.10 ������

�������� Binding Properties

Attribute Name Description Default

�����!����"�;��� Bypass the proxy settings false
for local endpoints.

������	����� The maximum time to wait for 00:01:00
the connection to be closed.

8���=�������	�����
� Specifies the method for StrongWildCard
hostname comparison when
parsing URIs.

��������!����	G� Maximum size of any buffer 524,888
pools used by the transport.

��>���	��
�������	G� The maximum size of an 65,536
incoming message.

������&���
	�� The type of encoding used Text
to encode messages.

��� The name of the binding.

�����	����� The maximum time to wait 00:01:00
for an open connection
operation to complete.

Chapter 4: Bindings144

Attribute Name Description Default

�����%

���� Specify a specific Web proxy to use. n/a
���D�����(��!����#must be false
for this setting to apply.

��
��K���� Specify the complexity of messages n/a
that can be processed (for example,
size).

����	���	����� The maximum time to wait for 00:01:00
a receive operation to complete.

���	�������	�� Specify whether the binding n/a
supports exactly once delivery
assurances using WS-Reliable
Messaging.

�����	�� Specifies the security settings of n/a
the binding.

���
�	����� The maximum time to wait for a 00:01:00
send operation to complete.

����&���
	�� Determines how messages are sent utf-8
across the network. Messages can
either be buffered or streamed.

������	��)��� Enable transactions to flow from false
the client to the server.

���D�����(��!���� Use the default Web proxy specified true
by the operating system.

We have modified the �����K��������	�� application for the ��D������C
�	�
	�� binding to support duplex communication. Listing 4.17 shows the
�����K����D���������	�� implementation. The service supports the duplex
message exchange pattern using the +�����K���������� contract, which is
the callback contract specified for the +�����K����D���������	�� contract.

Communication Using Advanced Web Ser vices 145

Listing 4.17 %�
��0R��
������&�������, %�
��0R��
�(������0, and

�
��0R��
������&�������

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����
��'
��	��#�����������'

�������#&�����	�(�)
*

�����	���������,�������������#4#������,+�����K����������-5
����	����
�#4#����	����
��>�S�	��
-

����	�#	�������#+�����K����D���������	��
*

�"����	���������,+�"��(�#4#����-
��	
#���
K����>�S����,���	��#������-'

.

����	�#	�������#+�����K����������
*

�"����	���������,+�"��(�#4#����-
��	
#���
K����>�������,���	��#������5#
�����#��	��-'

.

�����	����8�	��,+���������������
�#4
+���������������
��!������	��-

����	�#����#�����K����D���������	��#/#+�����K����D���������	��
*

����	�#��	
#���
K����>�S����,���	��#������-
*

�����#����'

	�#,������#44#7��)�7-
����#4#IB�B3'

����#	�#,������#44#7\�""7-
����#4#J2�B:'

����#	�#,������#44#7$""$7-
����#4#13:�R3'

����
����#4#
������=='

"����	���������#���#4#"����	�����������������'
+�����K����������#������#4

����$���������8����<+�����K����������?,-'
����������
K����>�������,������5#����-'

.
.

.

Chapter 4: Bindings146

We must change the self-hosting code for our example because we
changed the implementation that we are using to one that supports duplex
messaging. Listing 4.18 shows the hosting code for the �����K����D�C
��������	�� service.

Listing 4.18 �
��0R��
������&��������������� ��
 Service

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����	��'
��	��#�����������'
��	��#�����������	����
��'

�������#&�����	�(�)
*

	������#����#������	������
*

	������#���	�#����	������#������	������#4#����'

	������#���	�#��	
#��������	��,-
*

������	������#4
���#����	������,������,&�����	�(�)������K����D���������	��--'

������	�������"���,-'
.

	������#���	�#��	
#��������	��,-
*

	�#,������	�����������#U4#������	��	������������
-
������	������������,-'

.
.

.

The configuration information shown in Listing 4.19 exposes the
�����K����D���������	�� service using the ��D�������	�
	�� binding.

Listing 4.19 ������

�������� Host Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������K����D���������	��7?
<8���?
<���%

������?
<

#���%

����478���/99����8���9�����S��������	��7#9?

Communication Using Advanced Web Ser vices 147

Listing 4.19 continued

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47��D�������	�
	��7
�������47&�����	�(�)�+�����K����D���������	��7?

<9��
��	��?
<9����	��?

<9����	���?
<9�����������	����
��?

<9����	����	��?

The configuration information shown in Listing 4.20 is for the client to
consume a service based on the +�����K����D���������	�� contract using
the ��D�������	�
	�� binding. The ��	������%

���� specifies the end-
point on which the client will listen for callback messages.

Listing 4.20 ������

�������� Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��#

����478���/99����8���9�����S��������	��7

�	�
	��47��D�������	�
	��7
�	�
	������	����	��47����	����	������%

����7#
�������47+�����K����D���������	��7?

<9��
��	��?
<9��	���?
<�	�
	���?
<��D�������	�
	��?
<�	�
	��#���47����	����	������%

����7

��	������%

����478���/99����8���/2::B9��	���97#9?
<9��D�������	�
	��?

<9�	�
	���?
<9�����������	����
��?

<9����	����	��?

The client application is shown in Listing 4.21. The client implements
the +�����K����D���������	�������� interface to receive callback mes-
sages from the service. The client application passes a reference to the
+�����K����D���������	�������� interface using the +�������������
class. The +������������� class is passed to the constructor of the client
proxy.

Chapter 4: Bindings148

Listing 4.21 ������

�������� Client Application

��	��#������'
��	��#��������������	����$����	�'
��	��#�������=��'
��	��#�����������'
��	��#��������8��
	��'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'

�������#&�����	�(�)
*

����	�#����#!�����#/#+�����K����D���������	��������
*

��	���#���	�#%���>����&����#�	�)��>�������'

���	�#��	
#�	�,���	��� #���-
*

���	��#������#4#7��)�7'

�	�)��>�������#4#���#%���>����&����,����-'

+�������������#������+������#4
���#+�������������,���#!�����,--'

��	��#,�����K����D���������	����	���#��	���#4
���#�����K����D���������	����	���,������+������--

*
��	�������
K����>�S����,������-'
�	�)��>��������(�"��,-'

.

��������>�
;	��,-'
.

N���	��#+�����K����D���������	��������#�������

����	�#��	
#���
K����>�������,���	��#������5#
�����#��	��-
*

��������(�	��;	��,7*:.#M#[*B.75#������5#��	��-'
�	�)��>�����������,-'

.

N��
���	��
.

.

Listing 4.22 shows the client proxy generated by �����	�����. The big
difference between this client proxy and the previous implementation is

Communication Using Advanced Web Ser vices 149

that the client derives from the D�������	������ class rather than the
��	������ class. The D�������	������ class adds support for duplex
messaging.

Listing 4.22 ������

�������� Client Proxy

��	��#���������
�D�������	���'
��	��#�������D	�����	��'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'

�������#&�����	�(�)
*

�$������
��
�%���	����,7�����������	����
��75#7I�:�:�:7-
�����	���������%���	����,

����	����	��=��#4#7+�����K����D���������	��75
�������������#4#������,+�����K����D���������	��������-5
����	����
�#4#����	����
��>�S�	��
-

����	�#	�������#+�����K����D���������	��
*

�"����	���������%���	����,+�"��(�#4#����5
%��	��478���/99������	����9+�����K����D���������	��9

➥���
K����>�S����7-
��	
#���
K����>�S����,���	��#������-'

.

�$������
��
�%���	����,7�����������	����
��75#7I�:�:�:7-
����	�#	�������#+�����K����D���������	��������
*

�"����	���������%���	����,+�"��(�#4#����5
%��	��478���/99������	����9+�����K����D���������	��9

➥���
K����>�������7-
��	
#���
K����>�������,���	��#������5#
�����#��	��-'

.

�$������
��
�%���	����,7�����������	����
��75#7I�:�:�:7-
����	�#	�������#+�����K����D���������	���8����#/

+�����K����D���������	��5#+��	����8����
*
.

�D������������8����8%���	����,-
�$������
��
�%���	����,7�����������	����
��75#7I�:�:�:7-
����	�#���	�#����#�����K����D���������	����	���#/

D�������	������<+�����K����D���������	��?5

Chapter 4: Bindings150

+�����K����D���������	��
*

����	�#�����K����D���������	����	���,
+�������������#������+������-

/#���,������+������-
*
.

����	�#�����K����D���������	����	���,
+�������������#������+������5
���	��#��
��	������	����	��=��-

/#���,������+������5#��
��	������	����	��=��-
*
.

����	�#�����K����D���������	����	���,
+�������������#������+������5
���	��#��
��	������	����	��=��5
���	��#������%

����-

/#���,������+������5
��
��	������	����	��=��5
������%

����-

*
.

����	�#�����K����D���������	����	���,
+�������������#������+������5
���	��#��
��	������	����	��=��5
&�
��	��%

����#������%

����-

/#���,������+������5
��
��	������	����	��=��5
������%

����-

*
.

����	�#�����K����D���������	����	���,
+�������������#������+������5
�	�
	��#�	�
	��5
&�
��	��%

����#������%

����-

/#���,������+������5#�	�
	��5#������%

����-
*
.

����	�#��	
#���
K����>�S����,���	��#������-
*

�����8��������
K����>�S����,������-'
.

.
.

Communication Using Advanced Web Ser vices 151

Comparing Binding Performance and Scalability

Developers need to know about the performance and scalability character-
istics of bindings. Performance and scalability are important when you are
working with real-world applications where service-level agreements and
user experience matters. Users will complain about an application that per-
forms poorly. Applications that do not scale usually mean that business
objectives are not being met.

We have provided a simple performance comparison of four bindings
available in WCF. The operation under test is a simple operation that
returns a 256-character string. Listing 4.23 shows the service being used to
compare performance between each binding.

Listing 4.23 Performance Test Service

����	�#����#!�����������������	��#/#+!�����������������	��
*

��	���#���	�#���	��#���	��J3H'

���	�#!�����������������	��,-
*

���	��J3H#4#77�!
>	�8�,J3H5#]OV-'
.

����	�#���	��#$��J3H�����,-
*

������#���	��J3H'
.

.

The service was exposed over four different bindings: ���=��
!	��
�	�
	��, �������	�
	��, �������	�
	��, and ��	������	�
	��. A test
client called the Get256Bytes operation 50,000 times sequentially to com-
pare the differences between the bindings. We then measured the average
elapsed time, operations per second, and CPU time. All tests were per-
formed on a single workstation running both server and client. This was
done so that we could compare the performance of all the bindings. Figure
4.3 shows the average response time for each binding. You can use the
response-time measurement to help examine user experience.

Chapter 4: Bindings152

Figure 4.3 Average response time

Figure 4.4 shows the average number of operations per second for each
binding. This measurement has an impact on the throughput. Only a single
instance of the test client was used for these tests. Additional throughput
could be achieved if multiple clients were used. Operations per second is
one measurement we use to determine scalability.

Comparing Binding Performance and Scalability 153

ws2007HttpBinding wsHttpBinding basicHttpBinding netTcpBinding netNamedPipeBinding

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Average Response Time (ms)
(Smaller Bars Are Better)

ws2007HttpBinding wsHttpBinding basicHttpBinding netTcpBinding netNamedPipeBinding

8000

7000

6000

5000

4000

3000

2000

1000

0

Operations Per Second
(Bigger Bars Are Better)

Figure 4.4 Operations per second

Scalability should also take into account hardware resources consumed
for each operation. Figure 4.5 attempts to measure scalability by showing
the cost of an operation in MCycles. MCycles is a measurement based on
CPU processing power an operation uses. For the purposes of this test, we
used a Dell 4700 with a 3.4GHz Pentium 4 processor, which equates to 3400
MCycles. Notice that the measurements for the ��J::R�����	�
	��5
�������	�
	��5 and the ��	������	�
	�� bindings have significantly
higher cost than the �������	�
	�� or the ���=��
!	���	�
	�� bindings.
This is because of the overhead needed for interoperability.

Chapter 4: Bindings154

ws2007HttpBinding wsHttpBinding basicHttpBinding netTcpBinding netNamedPipeBinding

2.5

2

1.5

1

0.5

0

Cost Per Operation (Mcycles)
(Smaller Bars Are Better)

Figure 4.5 Cost per operation

The WCF team has released a whitepaper on the performance of WCF
(available at http://msdn2.microsoft.com/en-us/library/bb310550.aspx).
The paper goes into much more detail and considers security settings such
as transport, message, and mixed mode, and compares previous technolo-
gies such as NET Remoting, Web Service Enhancements, ASP.NET Web
Services, and Enterprise Services.

Communication Using Queued Services

Connected applications are applications that require both the client and the
server to be running at the same time and reachable over a network.

http://msdn2.microsoft.com/en-us/library/bb310550.aspx

Disconnected applications are ones in which the client can function without
connectivity to the server, but not all features are available in that mode.
Disconnected applications must cache data locally, must communicate in
some asynchronous manner, and must persist any messages so they can be
delivered when connectivity is reestablished.

Persisted queues are a common technique for building disconnected
applications. Queues can be implemented in a file system as a series of
folders and files, in a relational database as rows in a table, or using special
purpose software. Regardless of the technique, queues offer many advan-
tages, such as inherent asynchronous messaging and automatic load level-
ing. WCF offers the capability for communication through queues using
Microsoft Message Queue (MSMQ). There are two bindings available to
use with MSMQ: ������S�	�
	�� and ���S+������	���	�
	��. The
������S�	�
	�� binding is used when you are developing a new applica-
tion that wants to use WCF and MSMQ as a transport. The ���S+�����C
�	���	�
	�� binding is used for interoperability with an existing MSMQ
application.

��
���@�������
MSMQ offers support for building distributed applications using queues.
WCF supports communication through MSMQ queues as the underlying
transport for the ������S�	�
	�� binding. The ������S�	�
	�� binding
allows clients to post messages directly to a queue and services to read mes-
sages from a queue. There is no direct communication between the client
and server; therefore, the communication is inherently disconnected. It also
means that all communication must be one-way. Therefore, all operations
must have the +�"��(�4���� property set on the operation contract.

Communication Using Queued Ser vices 155

TIP Creating Queues Dynamically

It is common to automatically create MSMQ queues dynamically for
use with the ������S�	�
	�� binding. This is especially true when
building disconnected client applications where the queue resides on
a user’s desktop. This can be done using the ����� static method of
the ������������	���������K���� class.

The following code shows the addressing format for the ������S
�	�
	��:

�������S/99*8������.9���	���9Y�����	�9 *S����#���.

The default port for MSMQ is 1801 and is not configurable using the
addressing scheme. Take note of the use of the words ����	� and ��	���

in the address format. You can explicitly specify whether the queue name
refers to either a private or public queue. If omitted, the queue name is
assumed to refer to a public queue.

Table 4.11 shows the binding properties that are configurable on the
������S�	�
	�� binding.

Table 4.11 ��
���@������� Binding Properties

Attribute Name Description Default

������	����� The maximum time to wait for 00:01:00
the connection to be closed.

������D�
;�����K���� The location of the per-application n/a
dead letter queue. Dead letter refers
to a message that has expired or
failed delivery.

�
;�����K���� The type of dead letter queue to None
use. The types are None, System,
or Custom.

D����� Specifies whether the queue is true
durable or volatile.

������"��� Specifies whether delivery supports true
exactly once delivery assurances.

��������!����	G� Maximum size of any buffer pools 524,888
used by the transport.

��>���	��
�������	G� The maximum size of an incoming 65,536
message.

��>���������� The number of retries before a 2
message is considered a poison
message.

Chapter 4: Bindings156

Attribute Name Description Default

S�����������!������� Specifies the queued transport Native
protocol. The types of queued
transport protocols include
Native, Srmp, and SrmpSecure.
Native refers to the native MSMQ
protocol, and Srmp refers to the
Soap Reliable Messaging Protocol.

��� The name of the binding. n/a

�����	����� The maximum time to wait for an 00:01:00
open connection operation to
complete.

��
��K���� Specify the complexity of messages n/a
that can be processed (for example,
size).

����	��&������
�	�� Specifies how poison messages Fault
are handled. Valid types include
Drop, Fault, Move, and Reject.

����	��>��������� Maximum number of attempts to 5
send a message before it enters
the retry queue.

����	���	����� The maximum time to wait for a 00:10:00
receive operation to complete.

����������D��� The type to wait between retry cycles. 00:10:00

�����	�� Specifies the security settings of the n/a
binding.

���
�	����� The maximum time to wait for a 00:01:00
send operation to complete.

�	����;	�� The length of time that messages 1.00:00:00
are valid before they are expired
and put into the dead-letter queue.

���%��	��D	������� Specify whether the queued false
transport should resolve the
computer name using Active
Directory rather than DNS,
NetBIOS, or IP.

Communication Using Queued Ser vices 157

continues

Table 4.11 continued

Attribute Name Description Default

������S���	�� Specifies whether MSMQ tracing false
is enabled. Trace messages are
sent to the report queue each
time a message leaves or arrives
in a queue.

���������^����� Specifies whether a copy of each false
message should be sent to the
journal queue.

The �����K��������	�� sample application that we have been using
in Listings 4.2 through 4.4 needs to be modified to work with the
������S�	�
	�� binding. The ������S�	�
	�� supports only one-way
operations (see Table 4.2). Our original operation contract uses a request-
reply message exchange pattern (see Listing 4.4). Rather than show a dif-
ferent example, we will modify the �����K��������	�� example to show
two-way communication over the ������S�	�
	�� binding.

We need to use two one-way operation contracts to maintain two-way
communication between the server and the client. This means that we need
to redefine our contracts to use the ������S�	�
	�� binding. Listing 4.24
shows the stock quote contracts written for use with the ������S�	�
	��
binding. First, notice that we separated out the request and response
contracts into two separate service contracts: +�����K����>�S���� and
+�����K����>�������. The operations on each contract are one-way. The
+�����K����>�S���� contract will be used by the client to send a message
to the server. The +�����K����>������� contract will be used by the server
to send a message to the client. This means that both the client and the
server will be hosting services to receive messages.

Listing 4.24 %�
��0R��
�<�@���
' %�
��0R��
�<�������' and

�
��0R��
�<�@���
�������

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'
��	��#�����������'

Chapter 4: Bindings158

��	��#�������������	���'

�������#&�����	�(�)
*

�����	���������
����	�#	�������#+�����K����>�S����
*

�"����	���������,+�"��(�#4#����-
��	
#���
K����>�S����,���	��#������-'

.

�����	���������
����	�#	�������#+�����K����>�������
*

�"����	���������,+�"��(�#4#����-
��	
#���
K����>�������,���	��#������5#
�����#��	��-'

.

����	�#����#�����K����>�S��������	��#/#+�����K����>�S����
*

����	�#��	
#���
K����>�S����,���	��#������-
*

�����#����'

	�#,������#44#7��)�7-
����#4#IB�B3'

����#	�#,������#44#7\�""7-
����#4#J2�B:'

����#	�#,������#44#7$""$7-
����#4#13:�R3'

����
����#4#
������=='

99#���
#��������#���#��#��	���#����#������#S����
=�����S�	�
	��#���S>��������	�
	��#4#���#=�����S�	�
	��,-'
��	��#,�8����)�����<+�����K����>�������?#��#4

➥���#�8����)�����<+�����K����>�������?,7=�����S>���������	���7--
*

+�����K����>�������#��	���#4#���������8����,-'

��	��#,������	�������#�����#4
➥���#������	�������,������	�������"��	���>�S�	��
--

*
��	�������
K����>�������,������5#����-'
��������������,-'

.

��������,-'
.

.
.

.

Communication Using Queued Ser vices 159

The next consideration for ������S�	�
	�� is the use of ����	������
class. The previous examples were able to reuse the same ����	������ code
across different bindings. This was because the service contract could
remain the same. This is not the case with the ������S�	�
	��. The
updated ����	������ code to host the ���������	��>�S��������	�� ser-
vice is showing in Listing 4.25. We have updated the code to dynamically
create a MSMQ queue based on the S����=�� specified in configuration.
This helps simplify configuration by allowing the application to be
deployed without any additional configuration in MSMQ.

Listing 4.25 �
��0R��
�<�@���
��������������� ��
 Service

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����	��'
��	��#������������	��'
��	��#�����������'
��	��#�����������	����
��'

�������#&�����	�(�)
*

	������#����#������	������
*

	������#���	�#���	��#S����=��#4#����'
	������#���	�#����	������#������	������#4#����'

	������#���	�#��	
#��������	��,-
*

S����=��#4#����	����	��������%������	����7S����=��7 '

	�#,U������K�����&�	���,S����=��--
������K����������,S����=��5#����-'

������	������#4
➥���#����	������,������,&�����	�(�)������K����>�S��������	��--'

������	�������"���,-'
.

	������#���	�#��	
#��������	��,-
*

	�#,������	�����������#U4#������	��	������������
-
������	������������,-'

.
.

.

Chapter 4: Bindings160

The configuration information shown in Listing 4.26 exposes the
�����K����>�S��������	�� service using the ������S�	�
	�� binding. It
also configures a client endpoint for the +�����K����>������� contract so
that responses can be sent to the client.

Listing 4.26 ��
���@������� Host Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��

����47�������S/99����8���9��	���9�����S������������7
�������47&�����	�(�)�+�����K����>�������7
�	�
	��47������S�	�
	��7
�	�
	������	����	��47=����S�����	��7################
���47=�����S>���������	���7
9?

<9��	���?
<����	���?
<����	��#���47&�����	�(�)������K����>�S��������	��7?
<��
��	��

����47�������S/99����8���9��	���9�����S������S����7
�������47&�����	�(�)�+�����K����>�S����7
�	�
	������	����	��47=����S�����	��7#
�	�
	��47������S�	�
	��7
9?

<9����	��?
<9����	���?
<�	�
	���?
<������S�	�
	��?
<�	�
	��#���47=����S�����	��7?
<�����	��#��
�47=���7#9?

<9�	�
	��?
<9������S�	�
	��?

<9�	�
	���?
<9�����������	����
��?
<������	���?
<

#���47S����=��7#����47�@��	���[@�����S������S����7#9?

<9������	���?
<9����	����	��?

The client application must host a service using the ������S�	�
	�� to
receive responses and configure an endpoint to send requests to the server.
Listing 4.27 shows the ����	������ class that the client uses to host a ser-
vice that implements the +�����K����>������� contract. We added code to

Communication Using Queued Ser vices 161

dynamically create the queue on which the client is listening. Again, this
helps simplify configuration by allowing the application to be deployed
without any additional configuration in MSMQ.

Listing 4.27 �
��0R��
�<�������������� ServiceHost Client

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����	��'
��	��#������������	��'
��	��#�����������'
��	��#�����������	����
��'

�������#&�����	�(�)
*

	������#����#������	������
*

	������#���	�#����	������#������	������#4#����'

	������#���	�#��	
#��������	��,-
*

���	��#S����=��#4
����	����	��������%������	����7S����=��7 '

	�#,U������K�����&�	���,S����=��--
������K����������,S����=��5#����-'

������	������#4
���#����	������,������,&�����	�(�)�!�����--'

������	�������"���,-'
.

	������#���	�#��	
#��������	��,-
*

	�#,������	�����������#U4#������	��	������������
-
������	������������,-'

.
.

.

Listing 4.28 shows the client implementation for the +�����K����>�C
������ interface. The client implements this interface, which is then used
by the server as a callback to send a response on. This is not using the
duplex capabilities available within WCF. Instead, the callback is imple-
mented using a separate one-way binding.

Chapter 4: Bindings162

Listing 4.28 %�
��0R��
�<������� Client

��	��#������'
��	��#��������������	����$����	�'
��	��#������������	��'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'
��	��#�����������'
��	��#��������8��
	��'
��	��#�������������	���'

�������#&�����	�(�)
*

����	�#����#!�����#/#+�����K����>�������
*

��	���#���	�#%���>����&����#�	�)��>�������'

���	�#��	
#�	�,���	��� #���-
*

99#����#��������#����	��#8���
������	���������������	��,-'
���
*

�	�)��>�������#4#���#%���>����&����,����-'

99#���
#��S����#��#�8�#������
��	��#,�8����)�����<+�����K����>�S����?#��#4

➥���#�8����)�����<+�����K����>�S����?,7=�����S>�S������	���7--
*

+�����K����>�S����#��	���#4#���������8����,-'

��	��#,������	�������#�����#4
➥���#������	�������,������	�������"��	���>�S�	��
--

*
��	�������
K����>�S����,7��)�7-'
��������������,-'

.

��������,-'
.

�	�)��>��������(�"��,-'
.
�	����
*

������	���������������	��,-'
.

��������>�
;	��,-'

Communication Using Queued Ser vices 163

Listing 4.28 continued

.

N���	��#+�����K����>�����������	��#�������

����	�#��	
#���
K����>�������,���	��#������5#
�����#��	��-
*

��������(�	��;	��,7*:.#M#[*B.75#������5#��	��-'
�	�)��>�����������,-'

.

N��
���	��
.

.

The final piece to make the ������S�	�
	�� stock quote sample appli-
cation work is the client configuration. Listing 4.29 shows the client
configuration, which contains the information to host the +�����K����>�C
������ service implementation, and the endpoint configuration to call the
+�����K����>�S���� service.

Listing 4.29 ��
���@������� Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��#

����47�������S/99����8���9��	���9�����S������S����7

�������47&�����	�(�)�+�����K����>�S����7
�	�
	��47������S�	�
	��7
�	�
	������	����	��47=����S�����	��7#
���47=�����S>�S������	���7
9?

<9��	���?
<����	���?
<����	��#���47&�����	�(�)�!�����7?
<��
��	��

����47�������S/99����8���9��	���9�����S������������7
�������47&�����	�(�)�+�����K����>�������7
�	�
	��47������S�	�
	��7
�	�
	������	����	��47=����S�����	��7#
9?

<9����	��?

Chapter 4: Bindings164

<9����	���?
<�	�
	���?
<������S�	�
	��?
<�	�
	��#���47=����S�����	��7?
<�����	��#��
�47=���7#9?

<9�	�
	��?
<9������S�	�
	��?

<9�	�
	���?
<9�����������	����
��?
<������	���?
<

#���47S����=��7#����47�@��	���[@�����S������������7#9?

<9������	���?
<9����	����	��?

���@%�
����
����������
The ���S+������	���	�
	�� binding is used to communicate between a
WCF application and an application that leverages MSMQ directly—for
example, using ������������	��. This allows developers to leverage
WCF but still leverage their existing MSMQ applications. The ���S+���C
���	���	�
	�� binding allows for MSMQ messages to be mapped to WCF
messages. This is facilitated by wrapping MSMQ messages in the ���S���C
��� generic class. This class is located in the �����������	����
���
���S+������	�� namespace. Instances can be sent or received using one-
way contracts.

The following code shows the addressing format for the ���S+�����C
�	���	�
	�� binding:

���S���������/*���K#�����#���.

The MSMQ address format does not require a port to be specified. How-
ever, MSMQ does require certain ports to be open, such as 1801. Table 4.12
shows the binding properties that are configurable on the ���S+�����C
�	���	�
	�� binding.

Communication Using Queued Ser vices 165

Table 4.12 ���@%�
����
���������� Binding Properties

Attribute Name Description Default

������	����� The maximum time to wait for 00:01:00
the connection to be closed.

������D�
;�����K���� The location of the per-application n/a
dead letter queue. Dead letter
refers to a message that has
expired or failed delivery.

�
;�����K���� The type of dead letter queue to None
use. The types are None, System,
or Custom.

D����� Specifies whether the queue is true
durable or volatile.

������"��� Specifies whether delivery true
supports exactly once delivery
assurances.

��>���	��
�������	G� The maximum size of an 65,536
incoming message.

��>���������� The number of retries before a 2
message is considered a poison
message.

���=�� The name of the binding. n/a

�����	����� The maximum time to wait for 00:01:00
an open connection operation
to complete.

��
��K���� Specify the complexity of n/a
messages that can be processed
(for example, size).

����	��&������
�	�� Specifies how poison messages Fault
are handled. Valid types include
Drop, Fault, Move, and Reject.

����	��>��������� Maximum number of attempts to 5
send a message before it enters the
retry queue.

Chapter 4: Bindings166

Attribute Name Description Default

����	���	����� The maximum time to wait for a 00:10:00
receive operation to complete.

����������D��� The type to wait between retry 00:10:00
cycles.

�����	�� Specifies the security settings n/a
of the binding.

���
�	����� The maximum time to wait for a 00:01:00
send operation to complete.

���	�	G�	��)���� Specifies the serialization for Xml
the message body. The available
options include XML, Binary,
ActiveX, ByteArray, and Stream.

�	����;	�� The length of time that messages 1.00:00:00
are valid before they are expired
and put into the dead-letter queue.

������S���	�� Specifies whether MSMQ tracing false
is enabled. Trace messages are sent
to the report queue each time a
message leaves or arrives in a queue.

���������^����� Specifies whether a copy of each false
message should be sent to the
journal queue.

Listing 4.30 shows the minimal configuration to expose a service using the
���S+������	���	�
	�� binding.

Listing 4.30 ���@%�
����
���������� Host Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������K����>�S��������	��7?
<��
��	��#�	�
	��47���S+������	���	�
	��7

�������47&�����	�(�)�+�����K����>�S����7

����47���S���������/D+>&��4"�/�@��	���[@�������S����7#9?

<9����	��?

Communication Using Queued Ser vices 167

Listing 4.30 continued

<9����	���?
<9�����������	����
��?

<9����	����	��?

The minimal configuration to consume a service using the ���S+���C
���	���	�
	�� binding is shown in Listing 4.31.

Listing 4.31 ���@%�
����
���������� Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������(���
7?
<��
��	��#�	�
	��47���S+������	���	�
	��7

�������47&�����	�(�)�+�����K����>�S��������	��7

����47���S���������/D+>&��4"�/�@��	���[@�����S������S����7#9?

<9����	��?
<9����	���?

<9�����������	����
��?
<9����	����	��?

Creating a Custom Binding

There will be times when the preconfigured bindings do not meet the
requirements of your service. Common scenarios include custom security
and additional transports, which are not supported by WCF. One example
is the lack of support for the UDP protocol within WCF. Support for the
UDP protocol exists as a sample in the Windows SDK. For these situations
WCF provides the capability to create custom bindings. Custom bindings
can be created using either code or configuration. A custom binding is
created in code using the �������	�
	�� class found in the �������
����	����
����8�����# namespace. This class exposes a collection of
binding elements that you can add binding elements to. This allows you to
compose a new binding based on a set of existing binding elements. Listing
4.32 shows a custom binding being created in code.

Chapter 4: Bindings168

Listing 4.32 Creating a Custom Binding in Code

�������	�
	��#�������	�
	��#4#���#�������	�
	��,-'
�������	�
	���&��������%

,���#�	���������&���
	���	�
	��&������,--'
�������	�
	���&��������%

,���#6
��	�
	��&������,--'

A custom binding can be created in configuration using the
�������	�
	�� element in configuration. Listing 4.33 shows a custom bind-
ing expressed in configuration. When using configuration, a custom
binding must always use a named binding.

Listing 4.33 Creating a Custom Binding in Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<�	�
	���?
<�������	�
	��?
<�	�
	��#���47�������	�
	��7?
<�	���������&���
	��#9?
<�
���������#9?

<9�	�
	��?
<9�������	�
	��?

<9�	�
	���?
<9�����������	����
��?

<9����	����	��?

Notice that the binding specifies a transport and an encoder. This is all that
is needed to create a custom binding. The encoder can be optional if the
transport specifies a default encoder. To change how a custom binding
works is only a matter of a few lines of code or configuration. Be careful
when using configuration, because it can be changed. Create your custom
bindings in code if you do not plan to change the binding later on.

The following configuration information can be used with the sample
application shown in Listings 4.2 through 4.4. The configuration informa-
tion shown in Listing 4.34 exposes the �����K��������	�� service using the
�������	�
	�� binding. The binding exposes the service over the TCP
transport with binary encoding. This custom binding is similar to the
�������	�
	�� binding but lacks any of the support for reliable messaging,
transactions, and security.

Creating a Custom Binding 169

Listing 4.34 ���
��������� Host Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������K��������	��7?
<8���?
<���%

������?
<

#���%

����47�������/99����8���9�����S��������	��7#9?

<9���%

������?
<98���?
<��
��	��#

����477

�������47&�����	�(�)�+�����K��������	��7
�	�
	��47�������	�
	��7
�	�
	������	����	��47�������	�
	��79?

<9����	��?
<9����	���?
<�	�
	���?
<�������	�
	��?
<�	�
	��#���47�������	�
	��7?
<�	���������&���
	��#9?
<�����������#9?

<9�	�
	��?
<9�������	�
	��?

<9�	�
	���?
<9�����������	����
��?

<9����	����	��?#

Listing 4.35 shows the client configuration to consume the service using
the �������	�
	�� binding shown in Listing 4.34.

Listing 4.35 ���
��������� Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��#

����47�������/99����8���9�����S��������	��7

�	�
	��47�������	�
	��7
�	�
	������	����	��47�������	�
	��7#
�������47&�����	�(�)�+�����K��������	��7?

<9��
��	��?
<9��	���?
<�	�
	���?
<�������	�
	��?
<�	�
	��#���47�������	�
	��7?
<�	���������&���
	��#9?
<�����������#9?

Chapter 4: Bindings170

<9�	�
	��?
<9�������	�
	��?

<9�	�
	���?
<9�����������	����
��?

9����	����	��?

User-Defined Bindings
Bindings can be defined fully in code or configuration or they can be cre-
ated by inheriting from the �	�
	�� class. This type of binding is called a
user-defined binding. You still need to specify the binding elements that
your binding supports.

The primary difference between a custom binding and a user-defined
binding is that a user-defined binding is a specific instance of a class that
performs all the steps needed to create your binding. This approach is pre-
ferred if you plan to reuse the binding in a number of applications. If you
choose this approach, the authors recommend that user-defined bindings
support the capability to be created from configuration using a binding
extension. A binding extension exposes a binding class through configura-
tion. This is done by creating a new class that inherits from �	�
	��&��C
����&�����	��&������ found in the �����������	����
�������	����	��
namespace�

Binding Elements 171

TIP Provide a Binding Extension with Your Custom Binding

Seriously consider exposing your custom bindings using a binding
extension rather than using the <�������	�
	��? configuration ele-
ment. This will help avoid mistakes in configuration and avoid the
associated problems.

Binding Elements

WCF provides numerous channels and encoders that are used in the pre-
configured bindings. These channels provide bindings elements that can be
used in custom bindings. This section provides a listing of the binding ele-
ments found within WCF and their uses.

Transports
The following is a list of transport channels and their associated binding
classes, binding extensions, and their XML configuration element. Each of
these represents a different transport channel that can be used in a custom
binding. The transports available are TCP, HTTP, named pipes, HTTP with
SSL/TLS encryption, MSMQ, and Peer Networking.

TCP Transport Channel Transport channel based on the TCP protocol

Binding Class ������������	�
	��&������

Binding Extension �����������&������

Configuration Element <�����������?

Named Pipe Transport channel based on the Named
Transport Channel Pipe protocol

Binding Class =��
!	���	�
	��&������

Binding Extension =��
!	����������&������

Configuration Element <���
!	����������?

HTTP Transport Channel Transport channel based on the HTTP protocol

Binding Class �����	�
	��&������

Binding Extension ������������&������

Configuration Element <8�����������?

HTTPS Transport Channel Transport channel based on the HTTP protocol

Binding Class �����	�
	��&������

Binding Extension ������������&������

Configuration Element <8�����������?

Chapter 4: Bindings172

Transport channel based on the MSMQ
MSMQ Transport Channel protocol

Binding Class ���K���������	�
	��&������

Binding Extension ���K��������&������

Configuration Element <���S��������?

MSMQ Integration Transport channel based on the MSMQ
Transport Channel protocol

Binding Class ���K+������	���	�
	��&������

Binding Extension ���K+������	���	�
	��&������

Configuration Element <���S+������	��?

Peer Transport Channel Transport channel based on a Peer-to-Peer transport

Binding Class !����	�
	��&������

Binding Extension !�����������&������

Configuration Element <������������?

The UDP transport channel is not included with .NET 3.5. It is provided as
a sample in the Windows SDK. It is included here because it is a commonly
requested transport for WCF.

UDP Transport Channel Transport channel based on a UDP transport

Binding Class 6
��	�
	��&������

Binding Extension 6
���������&������

Configuration Element <�
���������?

Encoders
The following are a list of encoders that are included with WCF. They rep-
resent the manner in which a ������ class is transformed into a byte

Binding Elements 173

stream by the transport channel. There are several types of message
encoders, including Text, MTOM, Binary, and JSON encoders. Go to Chap-
ter 6, “Serialization and Encoding,” for more information about encoders.

Text Message Encoding Supports text encoding of SOAP messages

Binding Class ����������&���
	���	�
	��&������

Binding Extension ����������&���
	��&������

Configuration Element <����������&���
	��?

Binary Message Encoding Supports binary encoding of SOAP messages

Binding Class �	���������&���
	���	�
	��&������

Binding Extension �	���������&���
	��&������

Configuration Element <�	���������&���
	��?

MTOM Message Encoding Supports MTOM encoding of SOAP messages

Binding Class ��"�������&���
	���	�
	��&������

Binding Extension ��"�������&���
	��&������

Configuration Element <����������&���
	��?

The ^���������&���
�� and the (��������&���
�� encoders are
included with .NET 3.5, which is available with Visual Studio 2008. These
encoders are implemented as behaviors; therefore, they are not included in
this discussion. Refer to either Chapter 6 or Chapter 13 for more informa-
tion on these encoders.

Security
The following is a list of security protocols that are used in WCF. Most of
these are intended to be created using either the <�����	��?#configuration
element or the �����	���	�
	��&������ static methods. It is recommended

Chapter 4: Bindings174

that you create these binding elements using one of these methods because
the �����	���	�
	��&������ takes some of the guesswork out of config-
uring the binding elements by providing static methods that can be used
to create the other security bindings.

Asymmetric Security Channel security using asymmetric security

Binding Class %�������	������	���	�
	��&������

Binding Extension �����	��&������

Configuration Element <�����	��?

Symmetric Security Channel security using symmetric security

Binding Class �������	������	���	�
	��&������

Binding Extension �����	��&������

Configuration Element <�����	��?

Transport Security Support for mixed mode security

Binding Class �������������	���	�
	��&������

Binding Extension �����	��&������

Configuration Element <�����	��?

Transport Upgrades/Helpers
The following list of binding elements includes upgrades or helpers to
transports. WCF allows bindings that use stream-oriented protocols such as
TCP and named pipes to support stream-based transport upgrades. For
example, the �������������	���	�
	��&������ provides support for
channel security using an SSL stream.

Binding Elements 175

PNRP Peer Resolver Peer name resolution using the PNRP protocol

Binding Class !���!���>��������	�
	��&������

Binding Extension !���!���>�������&������

Configuration Element <����!���>�������?

SSL Stream Security Channel security using an SSL stream

Binding Class �������������	���	�
	��&������

Binding Extension �������������	��&������

Configuration Element <�������������	��?

Windows Stream Security Used to specify Windows stream security settings

Binding Class (�
�������������	���	�
	��&������

Binding Extension (�
�������������	��&������

Configuration Element <�	�
�������������	��?

Shape Change
The following lists shape-changing binding elements that change the shape
of the channel stack. Shape-changing channels change the message
exchange pattern of the channel. See “Channel Shapes” in Chapter 3,
“Channels,” for more information on channel shapes and shape changing.

Composite Duplex Support for duplex communication over transports
Shape Change that don’t support duplex communication

Binding Class ������	��D������	�
	��&������

Binding Extension ������	��D�����&������

Configuration Element <������	��D�����?

Chapter 4: Bindings176

One Way Shape Change Support for one-way communication over a
transport that does not support one-way com-
munication

Binding Class "��(��	�
	��&������

Binding Extension "��(�&������

Configuration Element <���(�?

Other Protocols
The following is a list of binding elements that add support for various pro-
tocols such as transactions and reliability.

Reliable Sessions Support for exactly once and ordered delivery of
SOAP messages

Binding Class >��	�������	���	�
	��&������

Binding Extension >��	�������	��&������

Configuration Element <���	�������	��?

Transaction Flow Support for flowing transactions from client to
server

Binding Class ������	��)����	�
	��&������

Binding Extension ������	��)���&������

Configuration Element <������	��)���?

Exposing a Service Contract over Multiple Bindings

Earlier sections in this chapter demonstrated exposing services with the
�������	�
	�� and �������	�
	�� bindings. Each of these bindings is
used to support specific communication scenarios. For example, the
�������	�
	�� binding is optimized for communication between .NET

Exposing a Ser vice Contract over Multiple Bindings 177

applications, the �������	�
	�� binding supports communication between
different platforms using Web services, and the ��	������	�
	�� binding
supports communication with Web services that don’t support advanced
protocols.

By using multiple endpoints within a service, you can configure a ser-
vice to expose its capabilities through multiple bindings, as shown in the
“Multiple Contracts and Endpoints in a Service” section of Chapter 2. This
means that clients can connect to services using the most optimal binding
supported. A common scenario is to expose a service to a .NET application
using the �������	�
	�� binding, expose the same service to a Java appli-
cation using the �������	�
	�� binding, and expose the same service again
using the ��	������	�
	�� binding for older clients.

WCF accomplishes this by abstracting away the underlying communi-
cation and lets the developer focus on building services. How they are
exposed doesn’t matter as long as the bindings support the features needed
by the application. This means that a service can be exposed using different
bindings.

Chapter 4: Bindings178

NOTE Use Multiple Bindings When Building Interoperable
Services

The capability to expose a service using multiple bindings brings great
flexibility. You can expose services using different bindings simulta-
neously. This allows a service to be exposed to both a WCF client and
to a non-WCF client without losing performance because of interop-
erability. For example, you can use both the �������	�
	�� and
�������	�
	�� to expose a service. The �������	�
	�� would be used
for WCF clients and the �������	�
	�� would be used for non-WCF
clients (such as Java). Just keep in mind that all the bindings used
should support those features that your application requires. For
example, you would not expose a service that requires transactions
over a binding that does not support transactions.

Exposing a service to both a .NET and a Java application is just one
example of using multiple bindings. Another example is to expose a service

to a Web browser client and to a .NET Windows application. An example of
exposing a service using multiple bindings is shown in Listing 4.36.

Listing 4.36 Host Configuration Using Multiple Bindings

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������K��������	��7?
<��
��	��#�	�
	��47�������	�
	��7

�������47&�����	�(�)�+�����K��������	��7

����478���/99����8���9��8�����
��	��7#9?

<��
��	��#�	�
	��47�������	�
	��7
�������47&�����	�(�)�#+�����K��������	��7

����47�������/99����8���9��������
��	��7#9?

<9����	��?
<9����	���?

<9�����������	����
��?
<9����	����	��?

SUMMARY

The channel architecture unifies a variety of distributed programming tech-
niques into a single programming model. The architecture allows for ser-
vices to be created independent of transports and encodings and therefore
support numerous forms of communications. Bindings are preconfigured
channel stacks that support particular types of communications. There are
nine preconfigured bindings offered by WCF.

Here are some guiding principles for working channels and bindings
within WCF:

• The �������	�
	�� binding is used for cross-machine communica-
tion between .NET applications.

• The ���=��
!	���	�
	�� binding is used for all on-machine com-
munication between .NET applications. This includes both inter-
process and intraprocess (that is, inter-appdomain and
intra-appdomain) communication.

Summary 179

• The ��	������	�
	�� binding supports legacy Web services based
on the WS-I Basic Profile 1.1 standard. This binding is typically used
to consume ASP.NET ASMX Web services. It can also be used to
expose services to .NET 2.0 clients that do not need WS-* support.

• The ��J::R�����	�
	�� and �������	�
	�� bindings are used to
create Web services that support the WS-* specifications. The
��J::R�����	�
	�� binding should be the default binding used to
create Web services within WCF. It supports the latest WS-* stan-
dards for messaging, security, reliable messaging, and transactions.

• There are three additional bindings based on Web services:
��D�������	�
	��, ��)�
���	�������	�
	��, and ��J::R)�
��C
�	�������	�
	��. Use these if you need to support duplex messag-
ing over HTTP or federated security, respectively. The
��J::R)�
���	�������	�
	�� binding shipped with .NET 3.5 and
has additional support for WSS SAML Token Profile 1.1.

• The ������S�	�
	�� binding is used to develop disconnected appli-
cations using Microsoft Message Queue (MSMQ).

• The ���S+������	���	�
	�� binding is used to integrate with
existing applications built using MSMQ.

• The channel stack within WCF is composable and allows for the cre-
ation of custom bindings. Custom bindings can be used to support
communication needs not supported by the preconfigured bindings.

• WCF supports exposing services over multiple bindings. This allows
for optimal communication between a variety of different clients
and the server.

• Use one of the preconfigured bindings if it meets your needs; other-
wise, you can create a custom binding using the �������	�
	��
class.

Chapter 4: Bindings180

5
Behaviors

B E H AV I O R S A R E WCF C L A S S E S that affect runtime operation. Behav-
iors are invoked as the WCF runtime starts on the client and server

and as messages flow between the two. Because behaviors run at these
critical times, they are used to implement many built-in features in the
WCF. They are also an important extensibility point for customizations.

For example, ����	������ is responsible for defining the instancing and
concurrency aspects of a server, in addition to dispatching messages to the
proper operation. When a message is received by a service and dispatched
to a certain method of a class, should ����	������ create a new instance
of that class for each request or should it reuse instances? And when
����	������ calls the method on that class, should it enlist in a transaction?
Both of these are specified in behaviors and used during initialization.

There are three primary types of behaviors. Service behaviors run at the
service level and have access to all of the endpoints. They control items
such as instancing and transactions. Service behaviors are also available for
authorization and auditing. Endpoint behaviors are scoped to the service
endpoint. These are well-suited for inspecting and taking actions on mes-
sages as they come in and out of service. Operation behaviors are scoped at
the operation level and are well-positioned for manipulating serialization,
transaction flow, and parameter handling for a service operation. In addi-
tion to these three, WCF also defines callback behaviors, which function

181

similarly to service behaviors, but control the endpoints created on the
client in duplex communication.

To understand how behaviors are used, it’s helpful to consider how the
runtime is initialized. This is done by the �8����)����� on the client and
by ����	������ on the server. Both classes perform similar functions:

1. Accept a .NET type as input and read its attributed information.

2. Load configuration from �������	� or ��������	� files. On the
client, �8����)����� is primarily looking at binding information;
on the server, ����	������ is primarily looking at contract and bind-
ing information.

3. Build the runtime environment structure, ����	��D����	��	��.

4. Start communication. On the client, �8����)����� uses the
channel to connect to the service; on the server, ����	������ opens
the channel and listens for messages.

In step 1, behavior information is defined as attributes in code, as in
�����	����8�	��#,������	���	�����47::/::/I:7- . In step 2, behavior
information is defined in configuration, as in <������	���	�����4
7::/::/I:7? in an �������	� file. During step 3, the �8����)����� and
����	������ classes build the WCF runtime and are responsible for insert-
ing the behaviors found in steps 1 and 2 into the runtime. Also in step 3,
behaviors can be manually added to the service model, as in &�
��	���
��8�	����%

,���#����8�	��,--.

In addition to initialization, behaviors can also operate on data before it
is transmitted or after it is received. On the client, behaviors can be used to
perform three functions:

• Parameter Inspection. Inspect and/or change data in its .NET repre-
sentation, before it has been converted to XML.

• Message Formatting. Inspect and/or change data during its conver-
sion between .NET types to XML.

• Message Inspection. Inspect and/or change data in its XML repre-
sentation, before it has been converted to .NET types.

Chapter 5: Behaviors182

On the server, behaviors can be used for two additional scenarios:

• Operation Selection. At the service level, inspect the incoming mes-
sage and determine which operation should be called.

• Operation Invocation. At the operation level, invoke the class method.

Figure 5.1 depicts the flow of control among behavior elements that are
invoked when messages are sent between the client and server. When appli-
cation code on the client calls $��!�	���,_-, the Parameter Inspector and
Message Formatter are called and passed the parameters in their .NET for-
mat. Then, also on the client, the Message Inspector is called and passed the
XML message. On the service, when the message arrives in the channel, the
Message Inspector and Operation Selector are called and passed the incom-
ing message to inspect and determine which operation should receive it.
The Message Formatter is then called to format the message as a .NET type,
and the Parameter Inspector is called and passed the message in its .NET
representation. Finally, the Operation Invoker is called to invoke the
method on the target class, doing any setup and teardown along the way.

Behaviors 183

Client

Channel

Operation Behaviors Operation Behaviors

Contract Behaviors Contract Behaviors
Endpoint Behaviors Service/Endpoint Behaviors

Server

GetPrices(...); GetPrices(...);

Client
Operation

Parameter
Inspection Parameter

Inspection

Message
Inspection Message

Inspector

Message
Formatting

Message
Formatting

Client Runtime Dispatch Runtime

Dispatch
Operation

Operation
Invoker

Operation
Selector

Figure 5.1 Behavior elements

As you can see in Figure 5.1, many interception points exist where
behaviors can monitor and alter the flow of messages. They are also in the
right position to affect overall performance of a service.

Concurrency and Instancing (Service Behavior)

Concurrency is a measure of how many tasks can be performed simultane-
ously and is measured in tasks (requests, jobs, transactions, and the like).
Execution time is a measure of how long it takes a task to complete and is
measured in time (milliseconds, seconds, and so on). Throughput is the
measure of how many tasks are completed within a fixed time and is
reported as tasks/time (requests/second, transactions/minute, and so on).
Throughput is a function of concurrency and execution time.

There are two ways to increase throughput: either decrease execution
time or increase concurrency. Decreasing the execution time for an indi-
vidual task can be accomplished by either changing the task’s internal algo-
rithm or by adding additional hardware resources, so there’s not much
WCF can do about this. Concurrency can be increased by executing tasks in
parallel. WCF has two behaviors available for controlling concurrency:
+���������������
� and �������������
�.
The +���������������
� service behavior is used to control instancing

and can be set to one of three values:

• Single. One instance of the service class handles all incoming
requests. This implements a singleton.

• PerCall. One instance of the service class is created per incoming
request.

Chapter 5: Behaviors184

• PerSession. One instance of the service class is created per client ses-
sion. When using sessionless channels, all service calls behave as
!�����, even if the +���������������
� is set to !������	��.

The default setting, +���������������
��!������	��, instructs WCF
to create a new instance of the service class for each user (proxy, actually)
while degrading to !����� if a sessionless binding is used.

The �������������
� service behavior is used to control thread concur-
rency within a service instance. The default setting, �������������
��
�	����, instructs WCF to execute only one thread at a time per instance of the
service class. This behavior can be set to one of three values:

• Single. Only one thread at a time can access the service class. This is
the safest setting because service operations do not need to worry
about thread safety.

• Reentrant. Only one thread at a time can access the service class, but
the thread can leave the class and come back later to continue.

• Multiple. Multiple threads may access the service class simultane-
ously. This setting requires the class to be built in a thread-safe
manner.

Using these two settings, +���������������
� and �������������
�,
together enables you to tailor the instancing and concurrency of a service to
address specific performance needs.

Concurrency and Instancing (Ser vice Behavior) 185

Table 5.1 Combining %��
����(��
�&
���� and (���������	����

%��
����(��
�&
���� %��
����(��
�&
���� %��
����(��
�&
����
Single per Call per Session (default)

�������������
���	���� Singleton—one instance is created One instance is created per One instance is created per
(default) and only one thread is created to call. Concurrency mode client session and only one

process requests. While a request doesn’t matter because each thread is created to process
is being processed, all subsequent instance will have its own requests for that session.
requests are queued and thread of execution. If the client makes multiple
processed in FIFO (first in first asynchronous calls on a
out) order. session, they are queued

and processed in FIFO order.

�������������
��>������� Singleton—one instance is created One instance is created per One instance is created per
and only one thread is created call. Concurrency mode client session and only one
to process requests. While a doesn’t matter because each thread is created to process
request is being processed, all instance will have its own requests for that session. If
subsequent requests are queued thread of execution. the client makes multiple
and processed in FIFO order. asynchronous calls on a

session, they are queued and
processed in FIFO order.

The single thread can leave The single thread can leave
the method, do work on another the method, do other work,
thread, such as asynchronous and come back later, as may
coding or callbacks from another be the case with server-side
service, and come back later. asynchronous coding.

�������������
������	��� One instance is created but One instance is created per One instance is created per
multiple threads can run in call. Concurrency mode client session but multiple
parallel through the instance. doesn’t matter because each threads can run in parallel
Class members must be pro- instance will have its own through the instance. If the
tected with synchronization thread of execution. client makes multiple
code because the same members asynchronous calls on a
can be modified by multiple session, they are processed
threads. in parallel. Class members

must be protected with syn-
chronization code because the
same members can be modi-
fied by multiple threads.

C
h

a
p

te
r 5:

B
e

h
a

vio
rs

186

Default Concurrency and Instancing with Sessionless Binding
Listing 5.1 shows a service that does not define any concurrency or instanc-
ing behavior, which directs WCF to use the default values, �������������
��
�	���� and +���������������
��!������	��. When using these settings
and a sessionless binding, such as ��	������	�
	��, WCF creates a new
instance of the service for each request it receives and executes the code on its
own thread. It waits five seconds before returning.

Listing 5.1 Service Using Default Concurrency and Instancing Behavior

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

���������	��,-
*

��������(�	��;	��,7*:./#
�����
#���#	������#��#���������	��#��#�8��
75
�������D���	���=��-'

.
����	�#
�����#$��!�	��,���	��#�	����-
*

��������(�	��;	��,7*:./#$��!�	��#����
#��#�8��
#*B.75
�������D���	���=��5#
�8��
���������8��
�����
�8��
+
-'

�8��
������,3:::-'
������#01�23'

.
.

Listing 5.2 shows client code that is calling the $��!�	�� method three
times. It calls it three times asynchronously and then waits until all results
have been returned before exiting.

Concurrency and Instancing (Ser vice Behavior) 187

Listing 5.2 Asynchronous Client Calling a Service

����#!�����
*

���	�#	��#�#4#:'
���	�#��	
#�	�,���	��� #���-
*

���������	����	���#�����#4#���#���������	����	���,-'
���#,	��#	4:'#	<I'#	TT-
*
��������(�	��;	��,7*:./#���	��#$��!�	��75#

�������D���	���=��-'
���������	�$��!�	��,7��)�75#$��!�	��������5#�����-'
�8��
������,B::-'#99#���#���	��#	�#������#�������
+���������
�+��������,���#�-'

.
�8	��#,�#?#:-#99#�	�#���	�#��#���������#����#���########
*
�8��
������,B::-'

.
.

���	�#��	
#$��!�	��������,+%����>�����#�-
*

�����#��	��#4#
,,���������	����	���-��%��������-�&�
$��!�	��,�-'

��������(�	��;	��,7*:./#!�	��/*B.75#�������D���	���=��5
��	��-'

+���������
�D��������,���#�-'
.

.

Figure 5.2 shows the output from the client (left) and service (right). The
client output shows that three requests are sent simultaneously and the
results were returned five seconds later. The service output shows that a
new instance of the service class was created for each client request and
each request was processed on its own thread. Because ��	������	�
	��
doesn’t support sessions, the !������	�� default behaves as to !����� in
this example. The +���������������
��!������	�� behavior directed
WCF to spin up a new instance per request, and the �������������
��
�	���� setting directed WCF to only allow one thread per instance.

Chapter 5: Behaviors188

Figure 5.2 Output from default %��
����(��
�&
���� and (���������	���� with

sessionless binding

Multithreading a Single Instance
The default +���������������
� behavior setting directs WCF to create a
new service instance for each request. In many cases, however, this is not the
best approach. For instance, if a service has an expensive initialization routine
(for example, a constructor that loads data from a database or builds a large
in-memory structure), it may not be very efficient to create a new instance for
each service request. To create a single service instance that is shared by con-
current threads, +���������������
���	���� should be used in conjunc-
tion with �������������
������	���. The +���������������
���	����
setting indicates that only one instance should be created, whereas the ���C
����������
������	��� setting directs WCF to execute that instance on mul-
tiple threads simultaneously. This can provide a significant scalability
improvement, but the service code must handle synchronization to protect
thread local storage.

Listing 5.3 shows the service code using +���������������
���	����
and �������������
������	��� behaviors. Note that the ����	����8�	��
attribute is on the class, not the interface. This is because the ����	����C
8�	�� attribute modifies the behavior of the service, not its contract.

Concurrency and Instancing (Ser vice Behavior) 189

Listing 5.3 Service Using %��
����(��
�&
���������� and

(���������	�������
����

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

.����������������%��
����(��
�&
�������%��
����(��
�&
����������'
(���������	�������(���������	�������
�����/

���������	��,-
*

��������(�	��;	��,7*:./#
�����
#���#	������#��#���������	��#��#�8��
75
�������D���	���=��-'

.
����	�#
�����#$��!�	��,���	��#�	����-
*

��������(�	��;	��,7*:./#$��!�	��#����
#��#�8��
#*B.75
�������D���	���=��5#
�8��
���������8��
�����
�8��
+
-'

�8��
������,3:::-'
������#01�23'

.
.

Figure 5.3 shows the output from the client (left) and service (right). As
with the previous example, the client output shows that three requests are
sent simultaneously and the results were returned five seconds later. The
service output shows that only one instance of the service class was created,
but that client request was still processed on its own thread. The +������C
���������
���	���� setting directed WCF to spin up only one instance of
the service class, whereas the �������������
������	��� setting directed
WCF to allow multiple threads to execute that instance simultaneously.

Implementing a Singleton
There are cases in which there should be only one instance of a service, and
that instance should be single threaded. Tasks should be executed strictly in
a FIFO (first in first out) order with no parallelism. Although this greatly

Chapter 5: Behaviors190

reduces throughput, it facilitates scenarios in which state is shared across
all callers where no adequate locking mechanism exists.

Concurrency and Instancing (Ser vice Behavior) 191

Figure 5.3 Output from %��
����(��
�&
���������� and (���������	�������
����

To create a single service instance that is single threaded,
+���������������
���	���� should be used in conjunction with
�������������
���	����. The +���������������
���	���� setting
indicates that only one instance should be created, whereas the
�������������
���	���� setting directs WCF to execute that instance on
only one thread at a time. These settings direct WCF to dispatch all requests
in (FIFO) order.

Listing 5.4 shows the service code using +���������������
���	����
and �������������
���	���� behaviors.

Listing 5.4 Implementing a Singleton

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

.����������������%��
����(��
�&
�������%��
����(��
�&
����������'
(���������	�������(���������	�����������/

���������	��,-
*

��������(�	��;	��,7*:./#

Listing 5.4 continued

�����
#���#	������#��#���������	��#��#�8��
75
�������D���	���=��-'

.
����	�#
�����#$��!�	��,���	��#�	����-
*

��������(�	��;	��,7*:./#$��!�	��#����
#��#�8��
#*B.75
�������D���	���=��5#
�8��
���������8��
�����
�8��
+
-'

�8��
������,3:::-'
������#01�23'

.
.

Figure 5.4 shows the output from the client (left) and service (right). The
client sends three asynchronous requests, but note that the service
processes only one request every five seconds. The service output shows
that only one instance of the service class was created. It also shows that
some requests reused a thread. The +���������������
���	���� setting
directed WCF to spin up only one instance of the service class, whereas the
�������������
���	���� setting directed WCF to allow only one thread at
a time to execute that instance. Note that �������������
���	���� doesn’t
control how many threads are created in the service; it just specifies that
only one should run through each instance.

Chapter 5: Behaviors192

Figure 5.4 Output from singleton: %��
����(��
�&
���������� and
(���������	����������

Session-Level Instances
Sessions are widely used for maintaining per-user state in distributed
applications. On Web sites or in Web-based applications, it’s common to
store per-user state in sessions. In these cases, there’s a 1:1 correspondence
between users and sessions. WCF supports a similar concept with services.
Using the +���������������
��!������	�� setting, WCF can be directed
to create an instance of a service for each session.

Concurrency and Instancing (Ser vice Behavior) 193

TIP Instance Sessions Are Not the Same as Reliable Sessions

Per-session service instances should not be confused with another
WCF feature, Reliable Sessions. That feature, which implements the
WS-RM specification, is useful for ensuring reliable, in-order delivery
of messages between endpoints over intermediaries. It has nothing to
do with concurrency or object-creation behaviors.

To implement per-session service instances, two things must be done:
enable sessions at the contract level and enable sessions at the service level.

At the contract level, sessions are enabled using the ����	����
� behav-
ior on the service contract. The value of the behavior can be %�����
,
=��%�����
, or >�S�	��
. Although sessions are specified at the contract
level, they are actually implemented in the channel specified by the bind-
ing elements. Therefore, this contract behavior verifies that the contract and
channel are compatible when the service first starts. For instance, if the
channel requires sessions, but a binding is used that doesn’t support ses-
sions (such as ��	������	�
	��), then session requirements of the contract
cannot be met, so the contract behavior throws an exception when the ser-
vice is started.

At the service level, sessions are enabled by setting the +���������C
������
� behavior property to +���������������
��!������	��. This
directs WCF to create an instance of the service class for each unique ses-
sion that connects to the service. Other options for +���������������
�
are !����� or �	����� !����� creates a new service instance for each call
and �	���� maintains just one instance for all callers.

Listing 5.5 shows the service code using +���������������
��
!������	�� behavior. The +���������������
� behavior directs WCF to
create a service instance per unique session. In addition to returning a stock
price, the code also tracks how many times it was called. Because the
+���������������
� is set to !������	��, the client sees the number of
times that it called the service in the session, not the total number of times
the service was called. If the +���������������
� is set to �	����, the
client would see the total number of calls in the service lifetime. If
+���������������
� is set to !�����, the client would always see one as
the number of calls.

Note also that a lock is used to synchronize access to the �F����
variable in the class. This is necessary because �������������
� is set to
����	��� and multiple threads will be executing within the session-scoped
instance.

Listing 5.5 3��������� Instancing

�D��������
����#�����!�	��
*

�D�������
����	�#
�����#��	��'
�D�������
����	�#	��#����'

.

.�������(��
���
��������������������������<�@������/
	�������#+���������	��
*

�"����	���������
�����!�	��#$��!�	��,���	��#�	����-'

.

.����������������%��
����(��
�&
�������%��
����(��
�&
����3���������'
(���������	�������(���������	�������
�����/

����#���������	��#/#+���������	��
*

�	�
��2�Q��
����0-�����������	�
��2�Q��
���
��	���#	��#�F����#4#:'
���������	��,-
*

��������(�	��;	��,7*:./#�����
#���#	������#��#

Chapter 5: Behaviors194

���������	��#��#�8��
75
�������D���	���=��-'

.
����	�#�����!�	��#$��!�	��,���	��#�	����-
*

�����!�	��#�#4#���#�����!�	��,-'
��������(�	��;	��,7*:./#$��!�	��#����
#��#�8��
#*B.75
�������D���	���=��5
�8��
���������8��
�����
�8��
+
-'

����	��#4#01�23'
���0�����0-����
*

������#4#TT�F����'
.
�8��
������,3:::-'
������#,�-'

.
.

Figure 5.5 shows the output from two clients (left) and the service (right).
There are two windows on the left because two clients were run concur-
rently. Each client calls $��!�	�� synchronously three times. The service
output shows that two instances of the service class were created—one per
client session. Note that each sees the number of requests that they sent, not
the total number processed by the service. This is because the counter,
�F����, is stored in the service session instance so each has a counter ini-
tialized to 0. If the +���������������
� is changed to !�����, each client
output would see the call count remaining at one for successive calls. If the
+���������������
� is changed to �	����, the each client would see the
call count increase from one to six for successive calls, accounting for both
client calls.

Controlling the Number of Concurrent Instances
By default, WCF hosts will spin up as many instances as possible to process
incoming requests. If the instancing and concurrency behavior of a service
contract is not specified, WCF will create a service instance for each incom-
ing request and will allocate threads as needed to respond to requests.
Overall this is a good approach to performance and scalability because the
server will scale with the capacity of the hardware.

Concurrency and Instancing (Ser vice Behavior) 195

Figure 5.5 Output from session-aware service

But there are cases when you may want to throttle this behavior. For this
purpose, there are three settings to throttle the concurrency and instancing
for a service. These are defined in the ����	���8�����	�� element of the
behavior section of the configuration file.

The ������������+������� behavior controls how many service
instances can be created by a service. This setting is useful if �����������C
��
� is !����� or !������	��, because both of those settings direct WCF to
create an instance on demand. By defining the maximum number of
instances that WCF can create, you place an upper bound on the number
of instances that will reside in memory. When the limit has been reached, no
further instances will be created until other instances can be destroyed or
reused.

Listing 5.6 shows a service that doesn’t specify �������������
� and
+�����	����
�, which means the default values of �	���� and !������	��

will be used, respectively. The service operation takes 20 seconds to
complete.

Chapter 5: Behaviors196

Listing 5.6 Service Using Default Concurrency and Instancing Behavior

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

���������	��,-
*

��������(�	��;	��,7*:./#�����
#���#	������#��#
���������	��75

�������D���	���=��-'
.
����	�#
�����#$��!�	��,���	��#�	����-
*

��������(�	��;	��,7*:./#$��!�	��#����
#��#�8��
#*B.75
�������D���	���=��5
�8��
���������8��
�����
�8��
+
-'

�8��
������,J::::-'
������#01�23'

.
.

Listing 5.7 shows a client that calls the service ten times asynchronously.

Listing 5.7 Client Calling a Service Ten Times Asynchronously

����#!�����
*

���	�#	��#�#4#:'
���	�#��	
#�	�,���	��� #���-
*

��������(�	��;	��,-'
����	��>������������������	����	���#�#4#���##

����	��>������������������	����	���,-'
���#,	��#	#4#:'#	#<#B:'#	TT-
*

��������(�	��;	��,`*:./#���	��#$��!�	��a5#
�������D���	���=��-'

�����	�$��!�	��,`��)�a5#
$��!�	��������5#�-'

+���������
�+��������,���#�-'
.
�8	��#,�#?#:-#99#�	�#���	�#��#���������#����#���
*

�8��
������,B::-'

Concurrency and Instancing (Ser vice Behavior) 197

Listing 5.7 continued

.
.

���	�#��	
#$��!�	��������,+%����>�����#�-
*

���
*

�����#��	��#4#,,����	��>������������������	����	���-
��%��������-�&�
$��!�	��,�-'

��������(�	��;	��,7*:./#!�	��/*B.75#
�������D���	���=��5#��	��-'

,,����	��>������������������	����	���-��%��������-
������,-'

+���������
�D��������,���#�-'
.
���8#,&�����	��#��-
*

��������(�	��;	��,���+����&�����	���������-'
.

.
.

Listing 5.8 shows the �������	� file for the service. The
������������+������� behavior is set to five, indicating that no more
than five instances will be created in the service.

Listing 5.8 Throttling Concurrency with ��&(��������
%��
�����

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?

<����	���?
<����	��#���47&�����	�(�)����������	��7#

��������(��$�����
����)
���

����),
<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	�(�)79?

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47��	������	�
	��7
�������47&�����	�(�)����������	��7#9?

<9����	��?
<9����	���?

Chapter 5: Behaviors198

<��8�	���?
<����	����8�	���?
*��������������)
���

����),
*�������-���

�������&(��������
%��
������)K)+,

*+��������,
<9����	����8�	���?

<9��8�	���?

<9�����������	����
��?
<9����	����	��?

Figure 5.6 shows the output from the client (left) and service (right). In
the client, note how ten calls are made immediately when the program
starts, and then five results come back after 20 seconds while the remain-
ing five results come back after another 20 seconds. In the service output,
note how the first five instances are created immediately when requested
by the client, but the next five instances are not created until after the first
five are shut down.

Concurrency and Instancing (Ser vice Behavior) 199

Figure 5.6 Output controlling the number of concurrent instances

Controlling the Number of Concurrent Calls
When +�����	����
� is specified as �	����, WCF creates a single instance
within the host, regardless of how many client requests are made. When
�������������
� is specified as ����	���, WCF creates a thread per
request (up to system limits) for parallel execution of the service methods.
To throttle this, the ���������������� behavior controls how many con-
current calls can be active.

Listing 5.9 shows a service with the behaviors for
+���������������
���	���� and �������������
������	���. The ser-
vice operation takes 20 seconds to complete.

Listing 5.9 Service Using %��
����(��
�&
���������� and

(���������	�������
���� Behavior

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

.����������������%��
����(��
�&
�������%��
����(��
�&
����������'
(���������	�������(���������	�������
�����/

����	�#����#���������	��#/#+���������	��
*

���������	��,-
*

��������(�	��;	��,7*:./#�����
#���#	������#��#
���������	��75

�������D���	���=��-'
.
����	�#
�����#$��!�	��,���	��#�	����-
*

��������(�	��;	��,7*:./#$��!�	��#����
#��#�8��
#*B.75
�������D���	���=��5
�8��
���������8��
�����
�8��
+
-'

�8��
������,J::::-'
������#01�23'

.
.

Listing 5.10 shows the �������	� file for the service. The
���������������� behavior is set to five, indicating that no more than
five calls can be currently active at the same time.

Listing 5.10 Throttling Concurrency with ��&(��������
(����

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?

<����	���?
<����	��#���47&�����	�(�)����������	��7#

Chapter 5: Behaviors200

��������(��$�����
����)
���

����),
<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	�(�)79?

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47��	������	�
	��7
�������47&�����	�(�)����������	��7#9?

<9����	��?
<9����	���?

<��8�	���?
<����	����8�	���?
*��������������)
���

����),
*�������-���

�������&(��������
(�����)K)+,

*+��������,
<9����	����8�	���?

<9��8�	���?

<9�����������	����
��?
<9����	����	��?

Figure 5.7 shows the output from the client in Listing 5.7 (left) and service
(right). In the client, note that ten calls are made immediately when the pro-
gram starts. Of those ten requests, five results come back after 20 seconds
and the remaining five results come back after another 20 seconds. In the
service output, note that only one instance is ever created. Also note that
five calls to $��!�	�� start immediately after, each on its own thread. When
those five calls complete, the threads are reused and subsequent calls from
the client are handled.

Controlling the Number of Concurrent Sessions
When +�����	����
� is specified as !������	��, WCF creates an instance
for each session that connects to the service. To control the number of ses-
sions connected to a service, the ����������������	��� behavior can be
used. When the maximum is reached, the next client that attempts to cre-
ate a session will wait until another session is closed. This setting is useful
for limiting the number of users (or clients or servers) that can connect to
a service.

Concurrency and Instancing (Ser vice Behavior) 201

Figure 5.7 Output controlling the number of concurrent calls

Listing 5.11 shows a service with +���������������
��!������	��
and �������������
������	��� behaviors. The service operation takes 20
seconds to complete.

Listing 5.11 Service Using %��
����(��
�&
����3��������� and

(���������	�������
���� Behavior

.�������(��
���
��������������������������<�@������/
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

.����������������%��
����(��
�&
�������%��
����(��
�&
����3���������'
(���������	�������(���������	�������
�����/

����	�#����#���������	��#/#+���������	��
*

���������	��,-
*

��������(�	��;	��,7*:./#�����
#���#	������/*B.75
�������D���	���=��5
"����	����������������������	��+
-'

.
����	�#
�����#$��!�	��,���	��#�	����-
*

��������(�	��;	��,7*:./#$��!�	��#����
#��#�8��
#*B.75
�������D���	���=��5
�8��
���������8��
�����
�8��
+
-'

�8��
������,J::::-'
������#01�23'

.
.

Chapter 5: Behaviors202

Listing 5.12 shows the �������	� file for the service. The
����������������	��� behavior is set to 5, indicating that no more than
five sessions can be created from clients to the service at the same time.
Notice that �������	�
	�� is used rather than ��	������	�
	�� because
the latter doesn’t support sessions.

Listing 5.12 Throttling Concurrency with ��&(��������
��������

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?

<����	���?
<����	��#���47&�����	�(�)����������	��7#

��������(��$�����
����)
���

����),
<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	�(�)79?

<9���%

������?
<98���?
<��
��	��#

����477

��������)��

��������)
�������47&�����	�(�)����������	��7#9?

<9����	��?
<9����	���?

<��8�	���?
<����	����8�	���?
*��������������)
���

����),
*�������-���

�������&(��������
���������)K)+,

*+��������,
<9����	����8�	���?

<9��8�	���?

<9�����������	����
��?
<9����	����	��?

Figure 5.8 shows the output from the client in Listing 5.7 (left) and ser-
vice (right). In the client, ten calls are made immediately when the program
starts. Of those ten requests, five results come back after 20 seconds and the
remaining five results come back after another 20 seconds. In the service
output, note that five sessions are created and five calls to $��!�	�� are
started immediately after the client calls the service. After those five calls

Concurrency and Instancing (Ser vice Behavior) 203

complete and the client closes the connection, subsequent sessions can be
created.

Chapter 5: Behaviors204

Figure 5.8 Output controlling the number of concurrent sessions

Exporting and Publishing Metadata (Service Behavior)

The ABCs of a service—its addresses, bindings, and contracts—are repre-
sented in metadata so that potential clients know where, how, and what to
communicate. This information is collectively referred to as service metadata.
The metadata service behavior is the first behavior that most developers
encounter, because it’s referenced in the configuration files generated by
Visual Studio 2008 when you create WCF project. This behavior works in
concert with a metadata endpoint to make metadata available to clients.

Two steps are necessary to make metadata useful for clients: export it in
a format that they can read and publish it somewhere that they can find it.
The default export format is WSDL, so as long as clients can read standards-
based metadata format, they can understand how to communicate with the
service. WCF publishes the metadata using the WS-MetadataExchange pro-
tocol over any supported transport, or it can publish the metadata in
response to an HTTP GET. Both of these steps, the export and publishing the
metadata, are implemented by the ����	�����
���8�	�� in a service.

Metadata is exposed from a service through a Metadata Exchange
(MEX) endpoint. A MEX endpoint is like any other WCF endpoint: It has an

address, a binding, and a contract. Like any other endpoint, a MEX end-
point can be added to a service either through configuration or through
code.

A MEX endpoint should expose the +���
�&��8��� interface as its
contract. Defined in �����������	����
���D����	��	��, this interface pro-
vides methods that inspect a service and expose its metadata as WSDL. A
number of system-supplied bindings are available for MEX endpoints, such
as ��������	�
	��, ���������	�
	��, ���=��
!	���	�
	�� or ������C

�	�
	��. The address of a MEX endpoint can be either relative or absolute,
following the normal addressing rules for endpoints.

Listing 5.13 shows a configuration file that defines and exposes meta-
data using the ����	�����
� behavior. The behavior is qualified with
8���$��&����
47����7, directing WCF to respond to HTTP GET requests
on the endpoint in addition to WS-MEX requests.

The service contract includes an endpoint that exposes an +���C

�&��8��� interface. The endpoint uses relative addressing, using the
HTTP transport, so the absolute address of the endpoint is http://local-
host:8000/EssentialWCF/mex. The endpoint uses ��������	�
	��, which
creates a �������	�
	�� without security.

Listing 5.13 Configuration for Enabling Metadata Publishing with ���������
���
�

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?

<����	���?
<����	��#���47&�����	�(�)����������	��7

��������(��$�����
����)�	��������),
<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	�(�)79?

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47��	������	�
	��7
�������47&�����	�(�)����������	��7#9?

*�������
���������)��&)

Exporting and Publishing Metadata (Ser vice Behavior) 205

Listing 5.13 continued

��������)��&

��������)
���
���
�)%��
���
�"&������)�+,

<9����	��?
<9����	���?

*���������,
*����������������,
*��������������)��	���������),
*���������
���
���

�!�
"�������)-���)+,

*+��������,
*+����������������,

*+���������,

<9�����������	����
��?
<9����	����	��?

Listing 5.14 shows a self-hosted service that exposes metadata. It is func-
tionally equivalent to the configuration in Listing 5.13.

Listing 5.14 Self-Hosted Code for Enabling Metadata Publishing with

���������
���
���������

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

����	�#
�����#$��!�	��,���	��#�	����-
*

������#01�23'
.

.

����	�#����#����	��
*
����	�#���	�#��	
#�	�,-
*
����	������#����	������#4#���#����	������,������,���������	��-5

���#6�	,78���/99����8���/2:::9&�����	�(�)7--'
����	�������%

����	��&�
��	��,

������,+���������	��-5

Chapter 5: Behaviors206

���#��	������	�
	��,-5
77-'

���������
���
����������������������������������
���
������������
��������

�!�
"���������
����
������� ��
�������
������������#�������������
������� ��
#���������"������
�

	���$�%��
���
�"&�������'�
��
���
�"&��������������(���
���&

����������'�
)��&)��

����	�������"���,-'

99#�8�#����	��#��#���#��#������
�
��������(�	��;	��,7����	��#	�#��
��#<&=�&>?#��#����	����@�7-'
��������>�
;	��,-'

����	������������,-'
.

.

Implementing Transactions (Operation Behavior)

There are two scenarios commonly referred to as transactions. Multistep busi-
ness processes are long-running processes that typically span minutes, days,
or months. They could involve multiple organizations and human-based
workflow. Short-running transactions are business operations that typically
complete in seconds and have few external dependencies. Although they
both have well-defined interfaces and a deterministic workflow, they are
fundamentally different animals. WCF supports short-running transac-
tions. It does this by leveraging .NET and Windows infrastructure for trans-
actions running in a Microsoft-only environment and by leveraging WS-*
standards transactions that span platforms.

Multistep business processes typically combine both automated and
manual workflow. They may take a few moments (for example, place an
order) or a few months (for example, get a rebate). If a multistep process
(for example, plan a business trip) fails part way through, earlier steps (for
example, make a plane reservation) are undone by taking compensating
steps (cancel the plane reservation). These transactions are best supported
with a message broker or enterprise service bus such as BizTalk Server.

Implementing Transactions (Operation Behavior) 207

Short-running transactions encapsulate discrete business functions.
They typically take seconds to complete. The business functions can be
exposed at a high-level (for example, Open New Account) to aggregate or
update information from multiple sources. The business functions can also
be exposed at a lower level (Update Customer Address) to update just one
data source. In either case, all data updates within the transaction must suc-
ceed or fail as an atomic unit to maintain integrity of the business function.
If one component update fails within the transaction, the service must undo
the updates that succeeded prior to the failure so that it leaves the data
exactly as it was found before the operation began.

This behavior is commonly known as an ACID transaction. Much has
been written on this topic, but in short ACID transactions are

• Atomic. All updates within the transaction are successful, or they’re
all rolled back. No partial updates are allowed. For instance, in a
bank transfer, if the debit succeeds but the credit fails, the debit is
rolled back so money isn’t created or lost.

• Consistent. After the operation, all data is valid according to the
business rules. For instance, in a bank transfer, the To and From
accounts must be valid accounts or the transaction will abort.

• Isolated. While the operation is executing, no partial results are visi-
ble outside the transactions. For instance, as a bank transfer is being
executed, other users will not see the balances part way through the
transfer.

• Durable. After the transaction is committed, the data must be per-
sisted in a way that can survive system failures.

Transactional Operations Within a Service
Transactional service operations succeed or fail as a unit. They are initiated
by one party, which assumes that the result will be consistent, whether the
operation succeeds or fails. Figure 5.9 depicts pseudo code of this behav-
ior. The client opens a connection to the service and calls its �������
method. ������� executes a debit, a credit, and then marks the transaction
complete. The client is uninvolved in the transactional semantics.

Chapter 5: Behaviors208

Implementing Transactions (Operation Behavior) 209

Client Service

B = new BankService();
B.Transfer(”savings”,
 “checking”, 100);

Transfer (From, To, Amt)
{
 withdraw(From, Amt);
 deposit (To, Amt);
 commit;
}
Private withdraw(From,Amt)
{...}

Private deposit(To, Amt)
{...}

Figure 5.9 ACID transaction within an operation

To implement this behavior in WCF, the service operation must be
marked as transactional using the �"����	����8�	��,������	��
�����>�S�	��
4����- attribute. This directs WCF to create a new trans-
action and enlist the execution thread on that transaction before dispatch-
ing control to the method. If the operation fails before it is complete, all
partial updates to transactional resources within that transaction are rolled
back.

If ������	�������>�S�	��
4���� is specified, which is the default,
the operation executes without a transaction. In that case, the operation will
not support ACID properties. If the operation updates one table and then
fails updating a second table, updates in the first table will be persisted and
the ACID property is violated.

You can indicate that an operation is complete either implicitly or explic-
itly. By using the �"����	����8�	��,������	��%����������� 4����-
behavior, the operation is implicitly considered complete if it doesn’t throw
an error. If it throws an error, it is considered incomplete and partial
updates to transactional resources will be rolled back. Alternatively, you
can use the �"����	����8�	��,������	��%����������� 4����-

behavior and then explicitly call "����	��������������������������C
�	����������,- before returning from the method. If you use the explicit
method, you also need to use a session-based binding element in the com-
munication channel, and you need to support sessions in the service
contract with �����	���������,����	����
�4����	����
��%�����
- .

Listing 5.15 shows a service, �������	��, which exposes two service
operations. The first service operation, $�������, is not transactional. It
reads from the database and returns the result. The "����	����8�	��
������	�������>�S�	��
4���� is used to indicate that it does not require
a transaction. The second operation, �������, is transactional and is marked
as such with the operational behavior ������	�������>�S�	��
4����. It
calls two internal methods, (�8
�� and D����	�, and each updates the
database through D�%�����. The ������� operation implicitly marks the
transaction as complete with the ������	��%�����������4���� attribute.
If neither (�8
�� nor D����	� throws an error, the change from both are
marked as complete.

The �������	�� service uses the internal class D�%����� for all database
access. Note that its constructor opens a connection to the database. When
D�%����� goes out of scope and there are no outstanding requests or trans-
actions active, the garbage collector will close the connection. Aggressively
attempting to close the connection in a destructor will cause an error
because a transaction may still be active when the class goes out of scope.

Listing 5.15 Transactional Operation

�����	���������
����	�#	�������#+�������	��
*

�"����	���������

�����#$�������,���	��#%������=��-'

�"����	���������
��	
#�������,���	��#)���5#���	��#��5#
�����#�����-'

.

����	�#����#�������	��#/#+�������	��
*

.2����
�������������-������
��������<�@������$�����/
����	�#
�����#$�������#,���	��#%������=��-

*
D�%�����#
�%�����#4#���#D�%�����,-'

�����#�����#4#
�%������$�������,%������=��-'

�%������%�
	�,%������=��5#7K����75#�����-'
������#�����'

.

Chapter 5: Behaviors210

.2����
������������-������
��������<�@��������
���'�
-������
���#�
�(�����
����
����/

����	�#��	
#�������,���	��#)���5#���	��#��5#
�����#�����-
*

���
*

(�8
��,)���5#�����-'
D����	�,��5#�����-'

.
���8#,&�����	��#��-
*

�8���#��'
.

.

��	���#��	
#(�8
��,���	��#%������=��5#
�����#�����-
*

D�%�����#
�%�����#4#���#D�%�����,-'

�%������(�8
��,%������=��5#�����-'

�%������%�
	�,%������=��5#7(�8
��75#�����-'

.
��	���#��	
#D����	�,���	��#%������=��5#
�����#�����-

*
D�%�����#
�%�����#4#���#D�%�����,-'

�%������D����	�,%������=��5#�����-'

�%������%�
	�,%������=��5#7D����	�75#�����-'

.
.

����#D�%�����
*

!�	���#�S��������	��#����'
���������#�������
1

�
����������(��$�����
����������
(�����
����
�����.)��������)/(�����
����
�����

������������@�(�����
��������
����2������

4

������������������
��
�����#�����
B���'�������������
�
*

���	��#�S�#4#���	���)����,7D����	�#*:.5#*B.5#]*J.V75#
%������=��5#�����������	��,-5#
�������D���	���=��������	��,--'

Implementing Transactions (Operation Behavior) 211

Listing 5.15 continued

�S������
#��
#4#���#�S������
,�S�5#����-'
��
�&������=��K����,-'

.
������������9�
�������
�����#�����
B���'�������������
�
*

���	��#�S�#4#���	���)����,7(�8
��#*:.5#*B.5#]*J.V75#
%������=��5#�����������	��,-5
�������D���	���=��������	��,--'

�S������
#��
#4#���#�S������
,�S�5#����-'
��
�&������=��K����,-'

.
��������������!�
���������
�����#�����
B����
*

�S������
#��
#4#���#�S������
,7$�������#7#T
%������=��5#����-'

�S�D�>�
��#��
��#4#��
�&������>�
��,-'
��
���>�
,-'

�����#�����#4#�����������������D�����

,��
���7�����7 ������	��,--'
��
��������,-'
������#�����'

.
������������#���
��
�����#�����
B���'��
�����#�
���'�

������������
�
*

������	��#���#4#������	����������'
	�#,���#U4#����-

��������(�	��;	��,7*:.#Y#*B.#%�
	�/*J.75#
����������	��+������	���D	���	����
+
���	�	��5#
����������	��+������	���;���+
���	�	��5%��	��-'

����
��������(�	��;	��,7<��#������	��?#%�
	�/*:.75

%��	��-'
���	��#�S�#4#���	���)����,7%�
	�#*:.5#*B.5#*J.5#]*I.V7#5#

%������=��5#%��	��5#�����������	��,-5#
�������D���	���=��������	��,--'

�S������
#��
#4#���#�S������
,�S�5#����-'
��
�&������=��K����,-'

.

.

The client code for this example is shown in Listing 5.16. The client is
unaware of the transaction on the service.

Chapter 5: Behaviors212

Listing 5.16 Client Calling a Transactional Service

����	��>����������������	����	���#�����#4#���#
����	��>����������������	����	���,-'

��������(�	��;	��,7*:./#������#C#��	���/*B.5#�8���	��#*J.75#
�������D���	���=��5#
������$�������,7��	���7-5
������$�������,7�8���	��7--'

�������������,7��	���75#7�8���	��75#B::-'

��������(�	��;	��,7*:./#%����#C#��	���/*B.5#�8���	��#*J.75#
�������D���	���=��5#
������$�������,7��	���7-5
������$�������,7�8���	��7--'

�����������,-'

Because the two internal methods, (�8
�� and D����	�, each create a
new D�%����� class, they each open separate connections to the database.
When (�8
�� opens the first connection in the transaction, the transaction
is part of a local transaction but not a distributed one. When it opens the sec-
ond connection, the transaction is escalated to a distributed transaction so
the work can be coordinated across both connections. The D�%������%�
	�
method prints out the ;���+
���	�	�� and the D	���	����
+
���	�� of
the transaction, as shown in Figure 5.10. Notice that (�8
�� executes with-
out a distributed transaction, because it is the only connection open in the
transaction at that time. But when the D����	� executes, it creates a distrib-
uted transaction since it is the second connection open with the transaction
scope. Escalation happens automatically and has a dramatic negative effect
on performance.

Listing 5.17 shows the optimized code, where the transfer operation
opens a connection through D�%����� and passes that connection to both
(�8
�� and D����	� so that only one connection is used.

Implementing Transactions (Operation Behavior) 213

Figure 5.10 Output from transactional service showing local and distributed

transaction IDs

Listing 5.17 Transactional Operation Optimized to Avoid Distributed Transactions

�"����	����8�	��,������	�������>�S�	��
#4#����5#
������	��%�����������#4#����-

��	���#��	
#�������,���	��#)���5#���	��#��5#
�����#�����-
*

��#��������#��������������#��������
(�8
��,)���5#�����5#��#�����-'
D����	�,��5#�����5#��#�����-'

.

��	���#��	
#(�8
��,���	��#%������=��5#
�����#�����5#
��#��������#�����-

*

�%������(�8
��,%������=��5#�����-'

�%������%�
	�,%������=��5#7(�8
��75#�����-'

.
��	���#��	
#D����	�,���	��#%������=��5#
�����#�����5

��#��������#�����-
*

�%������D����	�,%������=��5#�����-'

�%������%�
	�,%������=��5#7D����	�75#�����-'

.

Figure 5.11 shows the output from the optimized service. Notice that the
distributed transaction ID stays as all 0s, indicating that no distributed
transaction is present.

Chapter 5: Behaviors214

Figure 5.11 Output from optimized transactional service

Flowing Transactions Across Operations
When working with distributed systems, transactions sometimes must
span service boundaries. For instance, if one service managed customer
information and another service managed orders, and a user wanted to
place an order and ship the product to a new address, the system would
need to invoke operations on each service. If the transaction completed, the
user would expect that both systems were properly updated.

If infrastructure supports an atomic transactional protocol, the services
can be composed into an aggregate transaction as just described. WS-AT
(Web Service Atomic Transactions) provides the infrastructure for sharing
information among participating services to implement the two-phase com-
mit semantics necessary for ACID transactions. In WCF, flowing transac-
tional information across service boundaries is referred to as transaction flow.

To flow transactional semantics across service boundaries, the following
five steps must be taken:

• ���������(��
���
�������������<�@�����. Service contracts must
require sessions because this is how information will be shared
between the coordinator (typically the client) and the participating
services.

Implementing Transactions (Operation Behavior) 215

• �2����
��������������-������
��������<�@������
���. Opera-
tion behavior must require a transaction scope. This will create a
new transaction if one is not already present.

• �2����
����(��
���
��-������
���5���2�
���#������. Opera-
tion contracts must allow transaction information to flow in the
header of messages.

• �����������$���
�����-������
���5����
���. The binding must
enable transaction flow so that the channel can put transaction infor-
mation into the SOAP header. Also note that the binding must sup-
port sessions because �������	�
	�� does but ��	������	�
	��
does not.

• �(����
��-������
��������. The party that initiates the transaction,
typically the client, must use a transaction scope when calling the
service operations. It must also call ������	�������������,- to
commit the changes.

Chapter 5: Behaviors216

Client

YourBankService

MyBankService

Proxy1 = new YourBank();
Proxy1.Withdraw(”savings”,
 100);

Proxy2 - new MyBank();
Proxy2.Deposit(”savings”,
 100)

commit;

[OperationContract]
Withdraw(Account, Amt)
{
 ...
 commit;
}

[OperationContract]
Deposit(Account, Amt)
{
 ...
 commit;
}

Figure 5.12 Transaction that spans service boundaries

The .NET 3.5 documentation on the ������	�������>�S�	��
 attrib-
ute includes the following table to describe the relationship between these
elements. It is repeated here for convenience.

Table 5.2 Interaction of -������
���5��� elements

Binding Permits Caller Flows
-������
��������<�@����� Transaction Flow Transaction Result

False False No Method executes
without a
transaction.

True False No Method creates
and executes
within a new
transaction.

True or False False Yes A SOAP fault is
returned for the
transaction
header.

False True Yes Method executes
without a
transaction.

True True Yes Method executes
under the flowed
transaction.

Listing 5.18 demonstrates use of these elements. The code is similar to
that shown in Listing 5.15, but while that code ensures transactional
integrity of one service operation (�������), this code shows transactional
integrity across services with the ������	��)���"��	�� attribute. Note
a few points. First, the ����	��������� is marked as requiring sessions. To
meet this requirement, a sessionful protocol, such as �������	�
	�� or
�������	�
	��, must be used. Second, for illustrative purposes, the
������	��%����������� is set to false and the last line of the method is
���������	����������. If execution doesn’t reach ���������	��
��������, the transaction will be automatically rolled back. Third, the
������	��)���"��	���%�����
 is specified on each "����	���������
to allow the transaction to span service calls.

Implementing Transactions (Operation Behavior) 217

Listing 5.18 Flowing Transactional Context Across Boundaries

.�������(��
���
������������������������<�@������/
����	�#	�������#+�������	��
*

�"����	���������

�����#$�������,���	��#%������=��-'

�"����	���������
��	
#�������,���	��#)���5#���	��#��5#
�����#�����-'

.

����	�#����#�������	��#/#+�������	��
*

.2����
������������-������
��������<�@��������$�����/
����	�#
�����#$�������,���	��#%������=��-
*

D�%�����#
�%�����#4#���#D�%�����,-'

�����#�����#4#
�%������$�������,%������=��-'

�%������%�
	�,%������=��5#7K����75#�����-'
������#�����'

.

.2����
������������-������
��������<�@��������
���'�
-������
���#�
�(�����
����
����/

����	�#��	
#�������,���	��#)���5#���	��#��5#
�����#�����-
*
���
*
(�8
��,)���5#�����-'
D����	�,��5#�����-'

.
���8#,&�����	��#��-
*

�8���#��'
.

.

.2����
������������-������
��������<�@��������
���'�
-������
���#�
�(�����
����$�����/

.-������
���5����-������
���5���2�
���#�������/
��	���#��	
#D����	�,���	��#%������=��5#
�����#�����-

*
D�%�����#
�%�����#4#���#D�%�����,-'

�%������D����	�,%������=��5#�����-'

�%������%�
	�,%������=��5#7D����	�75#�����-'
2����
���(��
�&
(�����
��
-������
���(�����
����

.

Chapter 5: Behaviors218

.2����
������������-������
��������<�@��������
���'�
-������
���#�
�(�����
����$�����/

.-������
���5����-������
���5���2�
���#�������/
��	���#��	
#(�8
��,���	��#%������=��5#
�����#�����-

*
D�%�����#
�%�����#4#���#D�%�����,-'

�%������(�8
��,%������=��5#�����-'

�%������%�
	�,%������=��5#7(�8
��75#�����-'
2����
���(��
�&
(�����
��
-������
���(�����
����

.
.

Listing 5.19 shows the configuration file. Notice that the binding is
�������	�
	��, which supports sessions. This is required because the code
declares ����	����
��>�S�	��
 in the service contract. Also notice
������	��)���47����7 is defined in the binding configuration section.

Listing 5.19 Enabling Transactional Flow in Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)��������	��7?
<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	�(�)79?

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47��

��������7#
�	�
	������	����	��47������	���7
�������47&�����	�(�)�+�������	��7#9?

<9����	��?
<9����	���?

<�	�
	���?
<�������	�
	��?
<�	�
	��#���47������	���7

������
���5����)
���)�,
<9�	�
	��?

<9�������	�
	��?
<9�	�
	���?

<9�����������	����
��?
<9����	����	��?

Implementing Transactions (Operation Behavior) 219

Listing 5.20 shows client code that aggregates the work of the two services
into a single transaction. Three proxies are created, two pointing to one ser-
vice, the third pointing to another service. The two K���� operations and the
one (�8
�� operation are called on �����B5 and then the D����	� opera-
tion is called on �����J. If everything goes well within those service opera-
tions, they will each execute their ���������	����������,-. After both
operations return, the client calls ��������������,- to finish the transaction.
Only if all parties in the transaction execute their ���������	����������,-
method will the transaction be committed; if they do not, the entire transac-
tion is rolled back. Finally, two more K���� operations are called with �����I
to verify that the changes persist past the transaction.

Listing 5.20 Coordinating a Distributed Transaction from a Client

��	��#,������	�������#�����#4#���#
������	�������,������	�������"��	���>�S�	���=��--

*
����8���B��������	����	���#���&	> 4#���#

����8���B��������	����	���,-'
����8���J��������	����	���#���&	? 4#���#

����8���J��������	����	���,-'
��������(�	��;	��,7*:./#������#C#��	���/*B.5#�8���	��#*J.75#

�������D���	���=��5#
�����B�$�������,7��	���7-5
�����J�$�������,7�8���	��7--'

���&	>9�
�����,7��	���75#B::-'
���&	?������
,7�8���	��75#B::-'
�����(�����
����

�����B������,-'
�����J������,-'

.
����8���B��������	����	���#�����I#4#���########

����8���B��������	����	���,-'
��������(�	��;	��,7*:./#%����#C#��	���/*B.5#�8���	��#*J.75#

�������D���	���=��5#
!����I�$�������,7��	���7-5
!����I�$�������,7�8���	��7--'

Figure 5.13 shows output from a client and two services. The client is on
the left and prints the balance from savings and checking before and after
the transfer. The two services are on the right. The top service is accessed by
Proxy1 and Proxy3; the bottom one is accessed by Proxy2. The top service

Chapter 5: Behaviors220

executes two K���� operations, a (�8
�� operation and two more K����
operations. The bottom service executes a D����	� operation. Note that the
distributed transaction identifier is the same in both services, indicating
that they are both part of the same transaction.

Implementing Transactions (Operation Behavior) 221

Figure 5.13 Output from two transactional services coordinated in a single transaction

Choosing a Transaction Protocol—OleTx or WS-AT
Transaction managers are responsible for coordinating work among multiple
parties and committing work through resource managers. Resource man-
agers are responsible for reliable, persistent storage. Depending on the
resources used and the service or application boundaries crossed, WCF will
use one of three transaction managers to implement transactions. The
Lightweight Transaction Manager (LTM) is used for managing resources
within one application domain. The Kernel Transaction Manager (KTM),
available only on Vista and Windows Server 2008, is used for managing the

transacted file system and transacted registry resources. The Distributed
Transaction Coordinator (DTC) is used for managing transactions that cross
application, process, or machine boundaries. The application does not con-
trol which transaction manager is used; WCF will choose the most appro-
priate one and escalate as needed without application intervention.

One of two transaction protocols may be used when communicating
transition semantics across application, process, or machine boundaries.
The OleTx protocol is a Windows-specific binary protocol. It is native to the
DTC and is ideal for communication within an internal network. The Web
Services Atomic Transactions protocol , or WS-AT, is a standards-based pro-
tocol that also spans application process or machine boundaries. But unlike
OleTx, WS-AT is transport independent and can flow over TCP, HTTP, or
other network protocols. Although applications don’t have a choice in
which resource manager to use, they do determine which transaction pro-
tocol to use.

It turns out that you can specify the transaction protocol only for cer-
tain bindings: those that support sessions (required by transactions), those
that are two way (required by transaction flow), and those that are not tied
to the WS-* stack (WS-* bindings always use WS-AT). This leaves only
�������	�
	�� and ���=��
!	���	�
	��. The transaction protocol for
these bindings can be specified in code or configuration. Listing 5.21 shows
a configuration file that uses the TCP binding in conjunction with WS-AT
that would enable transactions to flow between standards-based (WS-AT),
fast (binary), secure (TCP) services over the Internet.

Listing 5.21 Specifying WS-AT in a Binding

<�	�
	���?
<�������	�
	��?

<�	�
	��#���#4#7���7
������	��)���#4#7����7
������	��!�������#4#7(�%���	�������	��"������J::17

9?
<9�������	�
	��?

<9�	�
	���?

Chapter 5: Behaviors222

Transaction Service Behaviors
The two behaviors defined at the operation level, ������	�������
>�S�	��
 and ������	��%�����������, are described earlier in this sec-
tion. At the service level, there are two additional behaviors to consider:
������	��+����	��;���� and ������	���	�����.

The ������	��+����	��;���� attribute, as its name implies, affects
the isolation level of the transaction. Isolation refers to the I in ACID and
governs how isolated the transaction is from the environment around it.
There are many isolation levels. ������������, the default, provides the
highest degree of isolation and prevents others from updating data until
the transaction completes. For instance, if the transaction contains a ������
�����,W- ����#��
��� statement, no other process can insert or delete any
��
��� data until the transaction completes. �����
�	������� provides the
lowest level of isolation, enabling other processes to read and write data
that a transaction updated before that transaction competes. In practice, it’s
best to leave the isolation level at its default, ���	�	G���, and instead,
avoid transactions that lock more data than necessary, as in the case of
������#,W- ����#��
��.

The transaction isolation level must be consistent between the ����C
��	������� defined by the client and the ������	��+����	��;����
defined by the service behavior. If neither is specified, the default, +���C
�	��;��������	�	G���, is used. Listing 5.22 shows the client and service
setting, each to >�
6�����	���
.

The length of time that a transaction may run for can also be controlled.
This can be set on the client or the service, each for different purpose. On
the client, this may be done to limit the amount of time that a user-initiated
transactional operation runs. On the server, it may be set by a system
administrator to ensure that no one transaction can consume too many
resources.

In Listing 5.22, ������	�������"��	����	����� is set to 30 seconds
on the client, indicating that the user-initiated transaction should be
aborted if it runs for more than 30 seconds. Also in Listing 5.22, the Ser-
viceBehavior, ������	���	�����, is set to 1 minute on the server, indi-
cating that if any transaction runs for more than 1 minute, it will be
automatically aborted.

Implementing Transactions (Operation Behavior) 223

Listing 5.22 Setting the Transaction Isolation Level and Timeout

99
99#��	���#��
�
99
-������
���2�
�������
�������-������
���2�
�������
��
%����
���H�������%����
���H����<���A������

���
��
-�����
��������	�
��-��������8'�8'�G8��
�������-������
��������������������

-������
����������-������
��������2�
���<�@�����B���'���
��
*

����8�����������	����	���#�����#4#���
����8�����������	����	���,-'

�������������,7��	���75#7�8���	��75#B::-'
��������������,-'
�����������,-'

}

99
99#����	��#��
�
99
.�������(��
���
������������������������<�@������/
.�����������������-������
���%����
���H�������

%����
���H����<���A������

��'
-������
���-�����
�)8868>688)��/�

����	�#����#�������	��
*
�"����	���������
�"����	����8�	��,������	�������>�S�	��
#4#����5#

������	��%�����������#4#����-
�������	��)���,������	��)���"��	���%�����
-
��	���#��	
#�������,���	��#)���5#���	��#��5#
�����#�����-
*
_
.

.

Implementing Custom Behaviors

Custom behaviors enable you to insert code at crucial points as WCF builds
the runtime and the message processing pipeline. Behaviors can be added
in code, by manipulating the service description manually, with attributes
or with configuration. In all cases, the code can take ancillary actions, such
as looking up information in a directory or logging data for auditing
purposes.

Chapter 5: Behaviors224

Figure 5.14 shows the interfaces available for building custom behaviors
on the client.

Implementing Custom Behaviors 225

Client

Operation Behaviors

Contract Behaviors
Endpoint Behaviors

GetPrices(...);

Client
Operation

Parameter
Inspection

Message
Inspection

Message
Formatting

Client Runtime

IEndpointBehavior{
 AddBindingParameters(...);
 ApplyClientBehavior(...);
 ApplyDispatchBehavior(...);
 Validate(...);
}

Note: IOperationBehavior
and IContractBehavior have
similar interface
signatures.

IParameterInspector {
AfterCall(...);

 BeforeCall(...);
}
IClientMessageFormatter {
SerializeRequest(...);

 DeserializeReply(...);
}

IClientMessageInspector{
 BeforeSendRequest(...);
 AfterReceiveReply(...);
}

Figure 5.14 Interfaces for building custom behaviors on the client

Figure 5.15 shows the interfaces available for building and inserting cus-
tom behaviors on the server.

Operation Behaviors

Contract Behaviors
Service/Endpoint Behaviors

Server

GetPrices(...);

Parameter
Inspection

Message
Inspector

Message
Formatting

Dispatch Runtime

Dispatch
Operation

Operation
Invoker

Operation
Selector

IOperationInvoker {
AllocateInputs(...);

 Invoke(...);
 InvokeBegin(...);
 InvokeEnd(...);
 IsSynchronous(...)
}
IParameterInspector {

AfterCall(...);
 BeforeCall(...);
}
IDispatchMessageFormatter {

DeserializeRequest(...);
 SerializeReply(...);
}

IDispatchMessageInspector{
 AfterReceiveRequest(...);
 BeforeSendReply(...);
}

IDispatchOperationSelector{
 SelectOperation(...);
}

IEndpointBehavior{
 AddBindingParameters(...);
 ApplyClientBehavior(...);
 ApplyDispatchBehavior(...);
 Validate(...);
}

Note: IOperationBehavior
and IContractBehavior have
similar interface
signatures. The exception
is IServiceBehavior, which
doesn’t have an
ApplyClientBehavior method.

Figure 5.15 Interfaces for building custom behaviors on the server

Implementing custom behaviors requires three steps:

Step 1 Create a class that implements an +��������, ��������,
)�������, or +������ interface. This is typically where you’ll do
the business of the behavior. For instance, to log all incoming mes-
sages to a service (as is done for you when using �������
	����C
�	�� described in Chapter 9, “Diagnostics”), you can implement
+D	����8������+�������� and put code in the %����C
>���	��>�S���� method. As another example, if you want code
to run immediately before and after an operation call, you can
implement +"����	��+������ and put code in the +�����
method. However, if your goal is to operate on the runtime (vali-
date or manipulate the bindings of the channel stack), rather than
operate on the message pipeline (inspect messages/parameters, or
select/invoke operations), you can skip this step.

Step 2 Create a class that implements one of the behavior interfaces:
+����	����8�	��, +&�
��	����8�	��, +"����	����8�	��, or
+���������8�	��. Using either the %������	�����8�	�� or
%����D	����8��8�	�� method, add the class you created in the
previous step to the list of behaviors. Again, if your goal is to
operate on the runtime (validate or manipulate the bindings of
the channel stack), rather than operate on the message pipeline
(inspect messages/parameters, or select/invoke operations), you
can just insert the logic into the P�	
�� or %

�	�
	��!���C
��� methods of this class rather than applying a client or dispatch
behavior to execute later.

Step 3 Configure the client or service to use the behavior. This can be
accomplished with code, configuration, or attributes by using one
of the following methods:

• Manipulate the ����	��D����	��	�� to add the behavior. If
you’re self-hosting a service, you can add the behavior class
to the list of service behaviors (if you’re adding an +����	��
��8�	��) or to the list of endpoint or contract behaviors on
each endpoint (if you’re adding an +&�
��	����8�	��,
+���������8�	��, or +"����	����8�	��). This is the most

Chapter 5: Behaviors226

self-contained but least maintainable mechanism, because any
behavior changes in the service will require a recompile.

• Use attributes to add the behavior into the client or server run-
time. For this, you should implement the Attribute interface.
This enables developers to use the attribute when defining the
service, endpoint, or operations in their code.

• Use configuration to add a behavior into the client or server
runtime. For this, you must do two additional steps. First, cre-
ate a class that implements the ��8�	��&�����	��&������
interface and defines the configuration data elements with the
�����	����	��!������� attribute in that class. In that inter-
face, you must also implement the �������8�	�� and
��8�	������ methods to create and return your new
��8�	��&�����	�� class. Then, in the configuration file for the
client or service that will use the behavior, you need to add a
<��8�	��&�����	���? section where you reference the fully
qualified type, and then use the behavior at the service or end-
point level.

After you complete these three steps, the behavior is ready to be used.
It will automatically be called when the client or service is building its run-
time and as each message is sent and received from the client or service. The
rest of this section demonstrates specific behaviors.

Implementing a Message Inspector for Service Endpoint Behavior
Listing 5.23 implements a logging behavior by printing out every message
sent and received by an endpoint. The code shows a message inspector
called from an endpoint behavior. This also shows how the endpoint
behavior is manually added to the service description in a custom hosted
service.

Implementing Custom Behaviors 227

TIP Implementing Custom Behavior for Tracing

In practice, if you’re implementing a message inspector for diagnostic
purposes, see Chapter 10, “Exception Handling,” for tracing tech-
niques.

The class ��������+�������� implements the +D	����8������+�C
������� interface. In its ���������
>�S���� and %����>���	��>���� it
prints out the message to the console. The class ��&�
!�	����8�	�� imple-
ments the +&�
��	����8�	�� interface. In its %

D	����8��8�	��
method it adds the ��������+�������� class to the list of message inspec-
tors to be called with each message. Finally, the main program adds the
��&�
��	����8�	�� class to the list of behaviors on all endpoints. Note
that because the service also has a MEX endpoint, the request and response
to that endpoint is also printed by ��&�
��	����8�	��.

Listing 5.23 Message Inspector in a Service Endpoint Behavior

��	��#������'
��	��#�����������'
��	��#�����������	����
��'
��	��#�����������	����
���D����	��	��'
��	��#�����������	����
���D	����8��'
��	��#�������+"'

�������#&�����	�(�)
*

��������������	"������
���������6�%"������
��������
*

����	�#��	
#%

�	�
	��!�������
,����	��&�
��	��#��
��	��5#
�����������	����
����8������

�	�
	��!�������������	��#
�	�
	��!�������-

*
.

����	�#��	
#%������	�����8�	��
,����	��&�
��	��#��
��	��5#
��	���>���	��#��	���>���	��-

*
.
������������#���	�����
����������

��������"������
��������
'�
"������
�����
������������
�����
�����

1
�������
�����
���������
��<��
����������%�����
���#���

�����	�������%�����
������
4

Chapter 5: Behaviors228

����	�#��	
#P�	
��,����	��&�
��	��#��
��	��-
*
.

.
��������������	�������%�����
���6�%�����
���������%�����
��
*

����	�#��X���##$
��<������<�@���

,���#�����������	����
����8������������#��S����5#
+��	����8����#�8����5#
+�������������#	�������������-

*
(������9��
�H������@���
-��
��������
������#��S����'

.

����	�#��	
#��$�������<���	
,���#�����������	����
����8������������#�����5#
��X���#�������	������-

*
(������9��
�H��������	-��
��������

.
.

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/+���������	��
*

����	�#
�����#$��!�	��,���	��#�	����-
*

������#01�23'
.

.
����	�#����#����	��
*

����	�#���	�#��	
#�	�,-
*

����	������#����	������#4#���#
����	������,������,���������	��--'

$���������������"������
��������
����
������� ��
�������
���"������
��

�������
���������#��������	"������
������������

Implementing Custom Behaviors 229

Listing 5.23 continued

����	�������"���,-'

99#�8�#����	��#��#���#��#������
�
��������(�	��;	��,7�8�#����	���#	�#��
�@�@�7-'
��������>�
;	��,-'

99#�����#�8�#����	���������#��#�8��#
���#�8�#����	���
����	������������,-'

.
.

.

Exposing a Parameter Inspector for Service Operation Behavior
as an Attribute
Listing 5.24 implements a behavior for validating parameters against reg-
ular expressions. It can be applied to any operation and enables the devel-
oper to define a regular expression and an error message to return if the
parameter is invalid.

The code shows a parameter inspector called from an operation behav-
ior and shows the operation behavior implementing an attribute. It also
shows how the operation behavior is added to the service description by
referencing the attribute in the service definition.

The class ��!������+�������� implements the +!������+��������
interface. The class stores two local properties, F������ and F������, that
are used to validate parameters in the ��������� method. In that method,
the parameter value is compared to the parameter pattern using regular
expression matching. If the value does not fit the pattern, an error is
thrown.

The class ��"����	����8�	�� implements the +&�
��	����8�	��
and %���	���� interfaces. In its %

D	����8��8�	�� method it adds the
��!������+�������� class to the list of parameter inspectors to be called
for each operation. Finally, when the service operation, $��!�	��, is
defined, the ��"����	����8�	�� attribute is used to validate its parame-
ters at runtime.

Chapter 5: Behaviors230

Listing 5.24 Custom Parameter Inspector in an Operation Behavior Exposed as an Attribute

��	��#������'
��	��#�����������'
��	��#������������>�����&������	���'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'
��	��#�����������	����
���D����	��	��'
��	��#�����������	����
���D	����8��'
��	��#�������+"'

�������#&�����	�(�)
*

.#

����
�A�����#

����
�-����
���
����/
��������������	2����
������������6�#

����
�'�%2����
�����������
*

����	�#���	��#������'
����	�#���	��#������'

����	�#��	
#%

�	�
	��!�������
,"����	��D����	��	��#�����	��D����	��	��5#
�	�
	��!�������������	��#�	�
	��!�������-

*
.

����	�#��	
#%������	�����8�	��
,"����	��D����	��	��#�����	��D����	��	��5#
��	���"����	��#��	���"����	��-

*
.

������������#���	�����
����������
�2����
����������
���������
����������
���'�
�����
��2����
���������
��2����
����

1
�����
��2����
���3�����
��%�����
���#���

�����	3�����
��%�����
���

�����

���'�
�������������

4

����	�#��	
#P�	
��,"����	��D����	��	��#�����	��D����	��	��-
*
.

.

��������������	3�����
��%�����
���6�%3�����
��%�����
��
*

�
�����:��

����

Implementing Custom Behaviors 231

Listing 5.24 continued

�
�����:��������
����	�#��!������+��������,���	��#������5#���	��#������-
*

F������#4#������'
F������#4#������'

.

����	�#��	
#%�������,���	��#�����	��=��5#
��X���� #�������5#
��X���#������P���5#��X���#
�������	������-

*
.

���������Q��
���$���(�����
����������
���B���'���Q��
./�����
��
1

$����������Q��
�����
��������
��
1

�$�������
�S��������TT�
�����
!�
-	��������
	���$��
�������

1
<���&�����&�������<���&�:��

�����
�$������&%���
�����
���������
��

���������5���
"&���
�����
����
5����
�)3�����
�����
��$������6184'�1>4)'�

��
����������
'�:����������
4

4
��
���������

4
.

�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

.�	2����
��������������

����).U�J=#JP/)'
��������)2��	�������������
�����������)�/

����	�#
�����#$��!�	��,���	��#�	����-
*

Chapter 5: Behaviors232

	�#,�	����#44#7��)�7-#������#01�23'
����#������#:�:'

.
.

.

Exposing a Service Behavior Through Configuration
Listing 5.25 implements a behavior for validating that a software license
key is installed in the service configuration. If it is not present or if it is
invalid, the service will not start. It shows an endpoint behavior that vali-
dates configuration information as the service runtime is built. It also
shows a behavior extension that is called as the service runtime is being
built and how that extension adds the behavior to the service runtime.
The result is that a custom behavior is used in the configuration file
(�������	� or ��������	�) and added to the service runtime so that con-
figuration information can be validated as the service starts.

The class ������	����8�	�� implements the +����	����8�	��

interface. The class has two local properties, F&����	��Q�� and
F&����	������. The P�	
�� method of ��&�
��	����8�	�� compares
those properties against predetermined values.

The class ����8�	��&�����	��&������ implements the +��8�	��&�C
����	��&������ interface. It defines two �����	����	��!������	�� that
can be represented in the configuration file. It overrides the ��8�	������
and �������8�	�� methods so that it returns and creates the custom
behavior, ������	����8�	��, during runtime startup. The constructor of
������	����8�	�� takes two arguments, one for each property, so it can
do the validation.

Listing 5.25 Endpoint Behavior Exposed in Configuration

��	��#������'
��	��#�����������'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'
��	��#�����������	����
���D����	��	��'
��	��#�����������	����
���D	����8��'
��	��#�����������	����
�������	����	��'
��	��#�����������	����	��'

Implementing Custom Behaviors 233

Listing 5.25 continued

�������#&�����	�(�)
*

��������������	����������������6�%���������������
1

�
�����:"�����
���C�	�
�
�����:"�����
���-	���
��������	"������
�����������
�����"�����
���C�	'�

�
�����"�����
���-	���
1

:"�����
���C�	���"�����
���C�	�
:"�����
���-	�����"�����
���-	���

4

����	�#��	
#%

�	�
	��!�������
,����	��D����	��	��#����	��D����	��	��5#
����	���������#����	���������5#
��������������	����"�X�����
���

�������	��<����	��&�
��	��?#��
��	���5#
�	�
	��!�������������	��#�	�
	��!�������-

*
.

����	�#��	
#%������	�����8�	��,����	��&�
��	��#��
��	��5#
��	���>���	��#��	���>���	��-

*
.

����	�#��	
#%����D	����8��8�	��,����	��&�
��	��#��
��	��5#
&�
��	��D	����8��#��
��	��D	����8��-

*
.

������������E�����
�����������������
������������������
���'�
������� ��
������������ ��
�����

1
�$���:"�����
���-	������)"�
�������)��T�

�:"�����
���C�	�S��)����������
"�����
���C�)��

���������"&���
���

��
����5����
�)%�������������
����0�	�
-	��6184)':"�����
���-	�����

4
.

��������������	��������"&
������"�����
�6���������"&
������"�����

1

.(��$�����
���3�����
	�)"�����
���C�)'���$���
E�������))'�

Chapter 5: Behaviors234

%�<�@��������
����/
��������
�����"�����
���C�	
1

��
�1���
������
���������.)"�����
���C�)/��4
��
�1�����.)"�����
���C�)/����������4

4
.(��$�����
���3�����
	�)"�����
���-	��)'�

��$���
E�������)"�
�������)'
%�<�@��������$�����/

��������
�����"�����
���-	��
1

��
�1���
������
���������.)"�����
���-	��)/��4
��
�1�����.)"�����
���-	��)/����������4

4

����������������-	�����������-	���
1�

��
�1���
����
	���$��	������������������4�
4

���
��
��������������Q��
�(���
������������
1�

��
���������	�����������������"�����
���C�	'�
"�����
���-	�����

4

.
�����	���������
����	�#	�������#+���������	��
*

�"����	���������

�����#$��!�	��,���	��#�	����-'

.

����	�#����#���������	��#/#+���������	��
*

����	�#
�����#$��!�	��,���	��#�	����-
*

	�#,�	����#44#7��)�7-#������#01�23'
����#������#:�:'

.
.

.

Listing 5.26 shows the configuration file for the service. In the configu-
ration file a <��8�	��&�����	��? is added, pointing to the extension

Implementing Custom Behaviors 235

implementation. Notice that the implementation is fully qualified, includ-
ing its type name and assembly information (title, version, culture, and
public key). In this example, the assembly name and DLL that houses the
extensions is Server.

Listing 5.26 Configuration File for Exposing an Endpoint Behavior

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?

*�&
�������,
*��������"&
�������,
*����������)5���-����)�

-	�����)"����
���9(5�	��������"&
������"�����
'�������'�
E�������>888'�(��
�������
���'�
3�����C�	-�0�������)+,

*+��������"&
�������,
*+�&
�������,

<����	���?
<����	��#���47&�����	�(�)����������	��7#

��������(��$�����
����)���
����������),
<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	�(�)79?

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47��	������	�
	��7
�������47&�����	�(�)����������	��7#9?

<9����	��?
<9����	���?

*���������,
*����������������,
*��������������)���
����������),
*5���-�����"�����
���C�	�)����������
"�����
���C�)�

"�����
���-	���)"�
�������)+,
*+��������,

*+����������������,
*+���������,

<9�����������	����
��?
<9����	����	��?

Chapter 5: Behaviors236

Security Behaviors

There are some important behaviors that handle security. These are covered
in detail in Chapter 8, “Security,” but it’s worth understanding their role as
behaviors.

The ����	�����
���	�� behavior is a service behavior used to specify
the credentials of a service. This class is useful for accessing client security
information, such as the user’s Windows authentication settings, and client
certificates. It’s implemented as a behavior so that it can inspect incoming
messages for their security information.

The +��������	�� attribute of an operation behavior enables imper-
sonation from the client to the service. When impersonation is allowed
(or required), client credentials that are passed in the channel are used by
the WCF runtime to impersonate the client for the duration of the service
operation.

The ����	��%��8��	G�	�� behavior, scoped at either the service or
operation level, is used to authorize the caller to access the service or oper-
ation. Using this behavior, you can set an %��8��	G�	������� that is
responsible for inspecting claims that the user presents and determining
whether to grant access to the service.

The ����	�������	��%�
	� behavior is accessible in the <����	����C
8�	���? section of a configuration file and determines what, if any, infor-
mation is automatically logged with each service request. If not defined, no
audit information is logged.

SUMMARY

Behaviors are a fundamental extensibility point in the WCF architecture.
They are used when the client or service runtime is being constructed
and with each service call. When the runtime starts, it looks for behaviors
by inspecting the type structures passed into the ��	����8���� or
����	������, and then looks in configuration files. Behaviors can also be
defined in code and added to the ����	��D����	��	�� object before open-
ing the ����	������, or in code by using attributes, or in configuration files.

Behaviors implement inspectors—code that inspects objects presented
to them. There are message inspectors that work at the message level and

Summary 237

parameter inspectors that work on operation parameters. At the operation
level, behaviors are involved with selecting which method to invoke to run
for a given SOAP input message and again to invoke that method.

Behaviors control the instancing and concurrency of service classes and
their operations. Instancing is controlled by the +���������������
� set-
ting and can be �	����, !�����, or !������	��. Concurrency is controlled
by the �������������
� setting and can be �	���� ����	��� or >�������
(single, but thread-safe code). Together, these two settings control the level
of concurrency of a service, from a singleton on one end of the spectrum to
creating a new instance per call on the other end. Service behaviors also
enable you to throttle the number of concurrent calls, instances, or sessions.

One important service behavior is the ����	�����D� behavior. This
behavior exposes the WCF type system and ����	��D����	��	�� model in
WSDL so that clients know the where, how, and what to communicate with
a service. More generally, the ����	�����D� endpoint uses the WS-MEX
protocol so that it can communicate with clients on different platforms and
return metadata information in a variety of formats. Only if a service
includes this behavior will it expose WSDL. This is a different experience
from what many developers are used to with ASMX, which exposes WSDL
by default.

WCF implements short-lived, ACID-style transactions in behaviors.
Transactions can exist within a service or can flow across service bound-
aries. Transactions are implemented at the operation behavior level,
although certain conditions must be met at the endpoint and service level.
For instance, to flow transactional context from the client to the service, the
service endpoints must use a protocol that supports sessions, such as
�������	�
	��. Sessions must be allowed at the service level to flow trans-
actions across service boundaries. Operation behaviors enable developers
to specify the isolation level of transactions, and administrators can control
the timeout properties.

WCF supports three transaction managers, one for local transactions
within a process, one for Vista-only resources, and the Distributed Trans-
action Coordinator. In addition, communication across service boundaries
can use either a Windows-only transaction protocol that leverages RPC, or
it can use the standards-based WS-AT protocol.

Chapter 5: Behaviors238

Custom behaviors enable developers to create new behaviors at the ser-
vice, endpoint, contract, or operation level. These behaviors enable the
inspection and modification of messages as they flow in and out of clients
or services. They also enable developers or system administrators to vali-
date or modify the WCF runtime as services are started.

Summary 239

This page intentionally left blank

6
Serialization and Encoding

I N CH A P T E R 2, “CO N T R A C T S ,” W E discussed serialization by using
D�������� serialization to convert CLR types to standards-based

XML for transmission between client and service. However, many scenar-
ios exist where D�������� serialization is not sufficient. This includes
serialization of existing CLR types that do not support D�������� seri-
alization, legacy Web services, interoperability, code migration (such as
.NET Remoting), and data shaping. Data shaping is the process of control-
ling the serialized XML of a .NET type used for performance optimization
and contract-first development. In these situations, it is important to know
how to work with the serialization facilities that WCF and the .NET Frame-
work provide.

Encoding is another important topic related to serialization. WCF makes
a distinction between the serialization of objects and the conversion of mes-
sages into an array of bytes that can be sent using a transport protocol.

Serialization Versus Encoding
There are important differences between serialization and encoding in
WCF. The terms serialization and encoding have slightly different mean-
ings in the WCF world when compared with other distributed computing
technologies (such as ASP.NET Web services and COM).

241

Serialization is the term often used to describe the process of converting
an object graph into an array of bytes. This is a very useful feature for rep-
resenting the state of an object. Serialization can be used to persist an
object’s state to a file or a database, copy an object to the clipboard, or trans-
fer objects across a network to another application. WCF does not follow
the standard definition of serialization, though. WCF defines serialization
as the process of converting an object graph into an XML Information Set
(XML Infoset). This definition is not new, because ASP.NET Web services
followed this same approach. The XML Infoset is the data model WCF uses
internally to represent a message. The �����������	����
����8������
������ class is a representation of an XML Infoset. The XML Infoset is the
data model for representing an XML document. It is also the base abstrac-
tion from which the XML specification is derived. Figure 6.1 shows the rela-
tionship of Extensible Markup Language (XML) to the XML Infoset.

Chapter 6: Serialization and Encoding242

XML Information Set (Second Edition)

Namespaces in XML 1.1

Extensible Markup Language 1.1

Figure 6.1 XML Information Set

A key distinction between XML and XML Infosets is that XML Infosets
do not specify a specific format. So although the XML standard uses a text
format, the XML Infoset has no such restriction. There are significant
advantages to working with XML Infosets instead of XML directly. For
example, WCF can represent messages in different formats as long as they
are based on an XML Infoset. This includes the text format specified by the
XML 1.1 specification as well as other formats such as a binary XML format.

This allows WCF to work with XML, but always using the most appropri-
ate format based on interoperability and performance requirements.

Encoding is the term used to describe the process of converting a WCF
message into an array of bytes. This is done so that the message can be sent
across a transport protocol. WCF provides five types of encoding formats:
binary, text, Message Transmission Optimization Mechanism (MTOM),
JavaScript Object Notation, and Plain-Old-XML (POX). Which one you use
will depend on your application’s requirements. For example, you may
want to use the �	���������&���
�� encoder for optimal performance
between .NET applications, use the ����������&���
�� or �������C

���&���
�� encoder for interoperability based on WS-* Web services, or
use the ^���������&���
�� encoder for AJAX-based Web applications.
Encoders are one of the extensibility mechanisms provided by WCF; there-
fore, WCF can be extended to support new encoders if the encoders pro-
vided do not satisfy your requirements.

The rest of this chapter looks at how WCF uses serialization and encod-
ing to transmit messages across a transport. We will examine the different
forms of serialization and encoding and present scenarios where each
option should be used.

Comparing WCF Serialization Options

There are many ways to use serialization objects using WCF. Determining
which mechanism to use for serialization depends on a number of factors.
These include whether you want to share types or contracts, support exist-
ing .NET types, preserve references, and more.

��
�(��
���
�������=��
The default serialization mechanism for WCF is the D�����������	�C
	G��. This class can be found in the �������>���	������	�	G�	�� name-
space. The D�����������	�	G�� is built to support the sharing of
contracts based on XSD schema. It maps Common Language Runtime
(CLR) types to types defined in XSD. This means that XSD is the common
schema that is used to exchange data between two applications. For exam-
ple, you could exchange data between a .NET and Java application using
XSD. An example of this is using a string.

Comparing WCF Serialization Options 243

Figure 6.2 XSD types

Notice that type information, other than XSD types, is not exchanged
between a server and a client. So in Figure 6.2, the notion of either
����������	�� or X���������	�� is not exchanged as a part of the com-
munication. This allows either side to map XSD types to specific types in
their respective environments. This works well for primitive types. Com-
plex types then become an extension of primitive types. So how does one
describe mapping a .NET CLR type to an XSD schema using the D����C
�������	�	G��?

As described in Chapter 2, the �D�������� attribute can be used to
mark a type as serializable. Members and properties can then be marked
with the �D������� attribute as being part of the data contract. This is
very much an opt-in scenario where the developer defines how the type is
serialized. This means that the contract is explicit, unlike the O�����	�C
	G��, which is very much an opt-out mode. Listing 6.1 shows an example
of a complex type, &�������, using the D�����������	�	G��. We will
use the &������� type to examine the schema and the serialized output
using the D�����������	�	G��. This will form the basis for compari-
son with the other serialization mechanisms available with WCF.

Listing 6.1 Employee Class Using ��
�(��
���
�������=�
���

��	��#�������>���	������	�	G�	��'

�D��������
����	�#����#&�������
*

��	���#	��#��������+D'
��	���#���	��#�	���=��'
��	���#���	��#���=��'

����	�#&�������,	��#��������+D5#���	��#�	���=��5#���	��#���=��-
*

Chapter 6: Serialization and Encoding244

System.String xs:String java.lang.String

CLR XSD Java

�8	����������+D#4#��������+D'
�8	���	���=��#4#�	���=��'
�8	�����=��#4#���=��'

.

�D�������
����	�#	��#&�������+D
*

���#*#������#��������+D'#.
���#*#��������+D#4#����'#.

.

�D�������
����	�#���	��#)	���=��
*

���#*#������#�	���=��'#.
���#*#�	���=��#4#����'#.

.

�D�������
����	�#���	��#;��=��
*

���#*#������#���=��'#.
���#*#���=��#4#����'#.

.
.

The &������� complex type shown in Listing 6.1 is represented in an
XSD schema in Listing 6.2.

Listing 6.2 Employee XSD Schema

<��/��8��#�����/���48���/99��8����
������������9J::19:R9
➥�������)���D�����47S��	�	�
7#�����=������4
➥78���/99��8����
������������9J::19:R97
➥�����/��478���/99�����I����9J::B9O�;��8��7?
<��/�����������#���47&�������7?
<��/��S�����?
<��/�������#�	�"�����47:7#���47&�������+D7#����47��/	��7#9?
<��/�������#�	�"�����47:7#���47)	���=��7#�	�����47����7
����47��/���	��7#9

<��/�������#�	�"�����47:7#���47;��=��7#�	�����47����7
����47��/���	��7#9?

<9��/��S�����?
<9��/�����������?
<��/�������#���47&�������7#�	�����47����7#����47���/&�������7#9?

<9��/��8��?

Comparing WCF Serialization Options 245

Listing 6.3 shows how the schema of the &������� class was exported.

Listing 6.3 Export XSD Schema

��	��#�������+"'
��	��#�������>���	������	�	G�	��'
��	��#�������O�����8��'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

O�
D��������&�������#��
���#4
���#O�
D��������&�������,-'

��
����"��	���#4#���#&�����"��	���,-'
��
����&�����,������,&�������--'

99#(�	��#���#�������
#��8��#��##�	��
��	��#,)	�������#��#4#���#)	�������,7��������
75

)	����
�������--
�����8#,O����8��#��8#	�#��
������8������8���,--

��8�(�	��,��-'
.

.
.

The final task that forms the basis for our comparison with other serial-
ization mechanisms is to serialize an &������� instance using the D����C
�������	�	G��. Listing 6.4 shows how this is done.

Listing 6.4 Serialization Using ��
�(��
���
�������=��

��	��#�������+"'
��	��#�������>���	������	�	G�	��'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

&�������#�#4#���#&�������,B:B57^�8�757D��7-'
)	�������#��	���#4#���#)	�������,7���������75

)	����
�������-'
D�����������	�	G��#���#4

���#D�����������	�	G��,������,&�������--'

Chapter 6: Serialization and Encoding246

����(�	��"�X���,��	���5#�-'
��	���������,-'

.
.

.

The serialized output from the D�����������	�	G�� of the
&������� class is shown in Listing 6.5.

Listing 6.5 Serialized Employee Class Using ��
�(��
���
�������=��

<&�������#�����478���/99��8����
������������9J::19:R97
�����/	478���/99�����I����9J::B9O�;��8��C	������7?
<&�������+D?B:B<9&�������+D?
<)	���=��?^�8�<9)	���=��?
<;��=��?D��<9;��=��?

<9&�������?

B�
��
�(��
���
�������=��
The =��D�����������	�	G�� is an alternative serialization mechanism
available in WCF that allows for the sharing of types. This class can be
found in the �������>���	������	�	G�	�� namespace. This serialization
can be used when type fidelity is required between client and server. The
=��D�����������	�	G�� supports type fidelity by adding additional
information for CLR type information and reference preservation. Besides
this, there is no difference between the =��D�����������	�	G�� and
the D�����������	�	G��.

The sharing of type information goes against the principles of sharing
just contracts. Because of this the =��D�����������	�	G�� is not meant
for designing services between different applications and should be used
within the confines of a single application. This is also why the capability to
use the =��D�����������	�	G�� was left out of WCF. This means that
this feature is available only if you write additional code. How to enable
this feature will be discussed in the “Sharing Type with the =��D����C
�������	�	G��” section.

Let’s look at a particular instance of an &������� class serialized using
the D�����������	�	G�� and the =��D�����������	�	G��. We
already saw how to serialize the &������� contract using the D����C
�������	�	G�� in Listing 6.4. Listing 6.6 shows how to serialize the same

Comparing WCF Serialization Options 247

class using the =��D�����������	�	G��. Notice that the =��D����C
�������	�	G�� does not require a type passed into the constructor. This
is because the =��D�����������	�	G��#will determine the CLR type of
the &������� class at runtime.

Listing 6.6 Serialization Using B�
��
�(��
���
�������=��

��	��#�������+"'
��	��#�������>���	������	�	G�	��'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

&�������#�#4#���#&�������,B:B57^�8�757D��7-'
)	�������#��	���#4

���#)	�������,7���������75#)	����
�������-'
=��D�����������	�	G��#���#4

���#=��D�����������	�	G��,-'
����(�	��"�X���,��	���5#�-'
��	���������,-'

.
.

.

Listing 6.7 shows the serialized output of the &������� class. Notice that
the =��D�����������	�	G�� includes the name of the %������� and
���� of the type that was serialized. This additional information can be
used to deserialize the XML into the specified type. This allows the same
type to be used by both the client and the server. The other information that
is different is the G/+
 attribute on various elements. This has to do with
reference types and whether references are preserved when the XML is
deserialized. We will discuss how to preserve references in the “Preserv-
ing References and Cyclical References” section. The final observation
is that the output contains more information than the output from the
D�����������	�	G��.

Listing 6.7 Serialized Employee Class Using B�
��
�(��
���
�������=��

<&�������#G/+
47B7#G/����47&�������7#G/%�������47D��������5#
➥P���	��4B�:�:�:5#�������4������5#!���	�Q�������4����7#
➥�����478���/99��8����
������������9J::19:R97#

Chapter 6: Serialization and Encoding248

➥�����/	478���/99�����I����9J::B9O�;��8��C	������7
➥�����/G478���/99��8�����	�����������9J::I9B:9���	�	G�	��97?
<&�������+D?B:B<9&�������+D?
<)	���=��#G/+
47J7?^�8�<9)	���=��?
<;��=��#G/+
47I7?D��<9;��=��?

<9&�������?

;���������=��
The O�����	�	G�� is the third option available for serialization in WCF.
The O�����	�	G�� is a serialization mechanism already built in to .NET
2.0. There are several advantages to using the O�����	�	G��, including
support for existing .NET types, compatibility with ASP.NET Web Services,
and the capability to shape the XML output.

WCF supports the O�����	�	G�� so that it can work with existing types,
whereas the D�����������	�	G�� is specifically meant for use with new
types. Support for existing types is often the case with existing applications
or third-party components where you do not have the source code or you
cannot recompile your application to support D�������� serialization.
The O�����	�	G�� is also the serialization used by ASP.NET Web Services.
This means that the O�����	�	G�� can be used to help convert ASP.NET
Web Services to WCF. Finally, the O�����	�	G�� offers the most control
over the serialized XML output and can be used in scenarios where the
D�����������	�	G��#is not sufficient to shape the serialized XML.

There are three approaches to using the O�����	�	G���#The first is to
rely on the default serialization. The O�����	�	G�� requires a public con-
structor and serializes any public fields and/or public read/write proper-
ties. The assumption is that your class can be reconstituted by creating an
instance of the class with a default constructor and then set the appropri-
ate fields and properties. Although simple, this approach almost never
works unless you design your classes to support this method of serializa-
tion. It also means that you cannot serialize any of the internals of a class
without exposing it to the rest of the world. The second approach is to use
the �O��&������ and �O��%���	���� attributes to mark up public fields
and public read/write properties. These attributes, and more attributes to
control the resulting XML, can be found in the �������O������	�	G�	��
namespace. The attribute approach allows for control over how public
fields and public read/write properties are expressed in XML. Although

Comparing WCF Serialization Options 249

simple, this approach still limits how you can serialize your objects and
may force you to expose internal data structures that you would otherwise
not expose to a consumer of your class. The third approach is to use the
+O�����	�	G��� interface to completely customize the serialization using
the O�����	�	G��. This approach allows for complete customization of the
serialization process.

We will take a look at custom serialization using the O�����	�	G��
later in this chapter. For now we will concentrate on the simplest example
using the O�����	�	G��. Listing 6.8 uses the O�����	�	G�� using the
same &������� class without support for D�����������	�	G�� by
removing the �D�������� or �D������� attributes present in Listing
6.1. A default constructor is also needed.

Listing 6.8 Employee Class Using ;���������=��

����	�#����#&�������
*

��	���#	��#��������+D'
��	���#���	��#�	���=��'
��	���#���	��#���=��'

����	�#&�������,-
*
.

����	�#&�������,	��#��������+D5#���	��#�	���=��5#���	��#���=��-
*

�8	����������+D#4#��������+D'
�8	���	���=��#4#�	���=��'
�8	�����=��#4#���=��'

.

����	�#	��#&�������+D
*

���#*#������#��������+D'#.
���#*#��������+D#4#����'#.

.

����	�#���	��#)	���=��
*

���#*#������#�	���=��'#.
���#*#�	���=��#4#����'#.

.

����	�#���	��#;��=��

Chapter 6: Serialization and Encoding250

*
���#*#������#���=��'#.
���#*#���=��#4#����'#.

.
.

Listing 6.9 shows how to serialize the Employee instance using the
O�����	�	G��.

Listing 6.9 Serialization Using ;���������=��

��	��#�������+"'
��	��#�������O������	�	G�	��'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

&�������#�#4#���#&�������,B:B57^�8�757D��7-'
)	�������#��	���#4

���#)	�������,7���������75#)	����
�������-'
O�����	�	G��#���#4#���#O�����	�	G��,,������,&�������---'
�������	�	G�,��	���5#�-'
��	���������,-'

.
.

.

The output from the O�����	�	G�� is shown in Listing 6.10. Notice that
the output is similar to the output from the D�����������	�	G��. Both
serialization mechanisms output XML that looks similar. The big difference
is in what is not shown. The O�����	�	G�� does not support as many
types as the D�����������	�	G�� but allows for greater control over
the resulting XML.

Listing 6.10 Serialized Employee Class Using ;���������=��

<A���#����	��47B�:7A?
<&�������#�����/��	478���/99�����I����9J::B9O�;��8��C	������7

�����/��
478���/99�����I����9J::B9O�;��8��7?
<&�������+D?B:B<9&�������+D?
<)	���=��?^�8�<9)	���=��?
<;��=��?D��<9;��=��?

<9&�������?

Comparing WCF Serialization Options 251

The &������� class in Listing 6.8 is not serializable without the
O�����	�	G��. The �O�����	�	G��)���� attribute can be used to
attribute a service contract, operation contract, or service to instruct WCF to
use the O�����	�	G��. Listing 6.11 uses the �O�����	�	G��)���� attrib-
ute on a service contract to instruct WCF to use the O�����	�	G��. You will
typically want to apply the �O�����	�	G��)���� attribute if you are
exposing any contract that uses the O�;���	�	G��. Doing so instructs
Visual Studio and the �����	����� tool to generate proxies that rely on the
O�;���	�	G��. Without this attribute you need to generate proxies using
the �����	����� tool with the 9���	�	G��/O�����	�	G�� flag.

Chapter 6: Serialization and Encoding252

TIP The ��
�(��
���
5����
 Attribute

Conversely, there is an equivalent attribute to the [O�����	�	G��)��C
�� attribute for the D�����������	�	G�� called the �D����C
����)���� attribute. WCF uses the D�����������	�	G�� by
default, so there should be no reason to use this attribute.

Listing 6.11 Using ;���������=��5����
 Attribute

��	��#��������������	����$����	�'
��	��#�����������	����
��'

�������#&�����	�(�)
*

�����	���������
�O�����	�	G��)����
����	�#	�������#+&�������+������	��
*

�"����	���������
;	��<&�������?#$��&��������,-'

.
.

��
�(��
���
V����������=��
The D��������^������	�	G�� supports the use of JavaScript Object
Notation as a serialization format and is available with .NET Framework
3.5. This serialization works well if you are calling services from a Web

application using JavaScript, especially ASP.NET AJAX and Silverlight
Web applications. The D��������^������	�	G�� is used when the
(�����	��&���	����8�	�� behavior is used. Alternatively, it can be used
if the (��������8�	�� behavior is configured to use JSON encoding. These
endpoint behaviors instruct WCF to support REST/POX style services. See
Chapter 13, “Programmable Web,” for more information about these attrib-
utes. For now, we will examine how to use the D��������^������	�C
	G�� directly and compare it to the other serialization mechanisms
mentioned previously. Listing 6.12 shows how to serialize an Employee
instance using the D��������^������	�	G��.

Listing 6.12 Serialization Using ��
�(��
���
V����������=��

��	��#�������+"'
��	��#�������>���	������	�	G�	���^���'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

&�������#�#4#���#&�������,B:B57^�8�757D��7-'
)	�������#��	���#4#���#)	�������,7���������75

)	����
�������-'
D��������^������	�	G��#���#4

���#D��������^������	�	G��,������,&�������--'
����(�	��"�X���,��	���5#�-'
��	���������,-'

.
.

.

The D��������^������	�	G�� follows the same rules of serializa-
tion as the D�����������	�	G�� except that the output is JSON and not
XML. The serialized output from the D��������^������	�	G�� of the
&������� class is shown in Listing 6.13. The output in this case is much
smaller and more compact than using the D����������	�	G��,
=��D�����������	�	G��, or the O�����	�	G��, and the output is more
readable compared to the previous XML examples.

Comparing WCF Serialization Options 253

Listing 6.13 Serialized Employee Class Using ��
�(��
���
V����������=��

*7&�������+D7/B:B5
7)	���=��7/7^�8�75
7;��=��7/7D��7.

Choosing a Serializer
Deciding whether to use the D�����������	�	G��, =��D��������C

���	�	G��, O�����	�	G��, or the D��������^������	�	G�� is often an
easy decision. The D�����������	�	G�� should be the default serializa-
tion mechanism used because it is the native serialization mechanism for
WCF. However, if you have the need to support existing types or custom seri-
alization not supported by the D�����������	�	G��, you will most likely
want to use the O�����	�	G��. Although the =��D�����������	�	G��
is interesting, no direct support exists for using it without having to write
code. Although some benefits exist to using the =��D�����������	�C
	G��, its use is discouraged because it requires the sharing of types between
the client and server. Finally, the D��������^������	�	G�� is used
mostly in Web scenarios where services are being called from AJAX applica-
tions. If you plan to develop ASP.NET AJAX or Rich Internet Applications
(RIAs) using Silverlight, you will most likely want to support JSON seriali-
zation using the D��������^������	�	G��. Although JSON serialization
is predominantly used within Web applications from JavaScript, its use is
extended beyond Web applications because of its popularity. In these situa-
tions, the choice to use JSON becomes mostly a matter of personal preference.
Finally, WCF provides a number of extensibility points that allow serializa-
tion to be completely replaced.

Preserving References and Cyclical References

Two important issues exist regarding references and serialization: preserv-
ing references and cyclical references. Both of these issues are addressed
through reference preservation. Reference preservation may help significantly
when you are trying to optimize the amount of data that gets serialized or
when sharing type information between client and server.

Chapter 6: Serialization and Encoding254

Reference preservation allows for the same data to be referred to more
than once in a data contract without duplicating the data. This is a common
scenario when working with data structures such as lists, arrays, and hash
tables where data may appear more than once. With reference preservation,
data is serialized the first time it appears in a data contract and a reference
to the data is used for all subsequent appearances. This can have the
desired effect of significantly reducing the amount of data that gets serial-
ized if it is referred to multiple times.

Cyclical references are when an object maintains a reference to descen-
dant objects that then refer back to it. An example of a cyclical reference is
a parent-child relationship where a child object maintains a reference to the
parent object. These types of situations are common when doing object-
oriented programming. The issue of objects that maintain cyclical refer-
ences is that serialization is not possible without support for reference
preservation. Any serialization mechanism would end up in an endless
loop trying to serialize the object. Reference preservation allows for a ref-
erence to data to be used instead of continuing to serialize the data over and
over again.

The D�����������	�	G�� does not enable reference preservation by
default. Reference preservation is enabled with both the =��D��������C
���	�	G�� and the O�����	�	G��. Use one of these serialization mecha-
nisms if you plan to share type information between client and server.
Otherwise, you can use a custom attribute to support reference preserva-
tion with the D�����������	�	G��.

Preser ving References and Cyclical References 255

TIP Reference Preservation with %;���������=����

Support for reference preservation needs to be implemented in code if
you plan to use custom serialization using the +O�����	�	G���
interface.

Let’s look at an example in Listing 6.14. First, a list is created from
;	��<&��������?. Then several &������� objects are added to the list.

Listing 6.14 The Need for Reference Preservation

��	��#��������������	����$����	�'
��	��#�����������	����
��'

�����	���������
����	�#	�������#+&�������+������	��
*

�"����	���������
&�������� #$��&��������"��8�����8,-'

.

�����	���������
����	�#����#&�������+������	��
*

����	�#&�������+������	��,-
*
.

����	�#&�������� #$��&��������"��8�����8)��;���	�����8�,-
*

;	��<&�������?#�	��#4#���#;	��<&�������?,H-'
&�������#&�������B#4#���#&�������,B57^�8�757D��7-'
&�������#&�������J#4#���#&�������,J57^��757D��7-'
&�������#&�������I#4#���#&�������,I57^�8�757��	�87-'

�	���%

,&�������B-'
�	���%

,&�������J-'
�	���%

,&�������I-'
�	���%

,&�������B-'
�	���%

,&�������J-'
�	���%

,&�������I-'

������#�	�����%���,-'
.

.

By default, the D�����������	�	G�� will serialize each reference as
a separate copy of the data. The output in Listing 6.15 shows that
&�������B, &�������J, and &�������I appear multiple times.

Listing 6.15 Serialized List Without Reference Preservation

<�/&�������#�����/�478���/99�����I����9J::I9:39���C��������7#
➥�����/478���/99�����I����9J::39:29

����	��7?
<�/��
��?####</%��	���/����6�
�����
47B7?

➥8���/99������	����9+&�������+������	��9
➥$��&��������"��8�����8)��;���	�����8�>�������<9/%��	��?

</>�������?���/��	
/:I3�H
CB

C1R�HC��03C���
�I��23H�<9/>�������?

Chapter 6: Serialization and Encoding256

<9�/��
��?
<�/��
�?
<$��&��������"��8�����8)��;���	�����8�>�������#�����4

➥78���/99������	����97?
<$��&��������"��8�����8)��;���	�����8�>�����#

➥�����/	478���/99�����I����9J::B9O�;��8��C	������7?
<&�������#�����478���/99��8����
������������9J::19:R97?
<&�������+D?B<9&�������+D?
<)	���=��?^�8�<9)	���=��?
<;��=��?D��<9;��=��?

<9&�������?
<&�������#�����478���/99��8����
������������9J::19:R97?
<&�������+D?J<9&�������+D?
<)	���=��?^��<9)	���=��?
<;��=��?D��<9;��=��?

<9&�������?
<&�������#�����478���/99��8����
������������9J::19:R97?
<&�������+D?I<9&�������+D?
<)	���=��?^�8�<9)	���=��?
<;��=��?��	�8<9;��=��?

<9&�������?
<&�������#�����478���/99��8����
������������9J::19:R97?
<&�������+D?B<9&�������+D?
<)	���=��?^�8�<9)	���=��?
<;��=��?D��<9;��=��?

<9&�������?
<&�������#�����478���/99��8����
������������9J::19:R97?
<&�������+D?J<9&�������+D?
<)	���=��?^��<9)	���=��?
<;��=��?D��<9;��=��?

<9&�������?
<&�������#�����478���/99��8����
������������9J::19:R97?
<&�������+D?I<9&�������+D?
<)	���=��?^�8�<9)	���=��?
<;��=��?��	�8<9;��=��?

<9&�������?
<9$��&��������"��8�����8)��;���	�����8�>�����?

<9$��&��������"��8�����8)��;���	�����8�>�������?
<9�/��
�?

<9�/&�������?

To preserve references, apply a custom behavior to create an instance
of the D�����������	�	G�� by passing a value of ���� for the
��������"�X���>��������� parameters to its constructor. A behavior is an
extensibility mechanism within WCF that allows you to modify the default
behavior of the runtime; it will be covered in detail in Chapter 5, “Behav-
iors.” In this situation it is allowing us to modify the default behavior of the

Preser ving References and Cyclical References 257

D�����������	�	G�� to support reference preservation. Listing 6.16
implements a custom behavior to demonstrate this.

Listing 6.16 Implementing Reference Preservation Using a Custom Behavior

��	��#������'
��	��#��������������	����$����	�'
��	��#�������>���	������	�	G�	��'
��	��#�����������	����
����8�����'
��	��#�����������	����
���D����	��	��'
��	��#�����������	����
���D	����8��'
��	��#�������O��'

�������#&�����	�(�)
*

����	�#����#>��������!������	��D��������)����%���	����#/
%���	����5#+"����	����8�	��

*
����	�#��	
#%

�	�
	��!�������,

"����	��D����	��	��#
����	��	��5
�	�
	��!�������������	��#��������-

*
.

����	�#��	
#%������	�����8�	��,
"����	��D����	��	��#
����	��	��5
��	���"����	��#�����-

*
+"����	����8�	��#	������8�	��#4#���#

➥>��������!������	��D�����������	�	G��"����	����8�	��,
����	��	��-'
	������8�	���%������	�����8�	��,
����	��	��5#�����-'

.

����	�#��	
#%����D	����8��8�	��,
"����	��D����	��	��#
����	��	��5
D	����8"����	��#
	����8-

*
+"����	����8�	��#	������8�	��#4#���

➥>��������!������	��D�����������	�	G��"����	����8�	��,
����	��	��-'
	������8�	���%����D	����8��8�	��,
����	��	��5#
	����8-'

.

����	�#��	
#P�	
��,"����	��D����	��	��#
����	��	��-
*
.

.

����	�#����
➥>��������!������	��D�����������	�	G��"����	����8�	��#/

Chapter 6: Serialization and Encoding258

D�����������	�	G��"����	����8�	��
*

����	�#>��������!������	��D�����������	�	G��"����	����8�	��,
"����	��D����	��	��#�����	��D����	��	��-
/#���,�����	��D����	��	��-

*
.

����	�#�����	
�#O��"�X������	�	G��#��������	�	G��,����#����5
���	��#���5#���	��#��5#+;	��<����?#����������-

*
������#�����D�����������	�	G��,����5#���5#��5

����������-'
.

��	���#���	�#O��"�X������	�	G��
�����D�����������	�	G��,����#����5#���	��#���5

���	��#��5#+;	��<����?#����������-
*

������#�����D�����������	�	G��,����5#���5#��5
����������-'

.

����	�#�����	
�#O��"�X������	�	G��#��������	�	G��,����#����5
O��D	��	�������	��#���5#O��D	��	�������	��#��5
+;	��<����?#����������-

*
������#���#D�����������	�	G��,����5#���5#��5

����������5#:�R)))5#����5#����5#����-'
.

.
.

The result of applying the attribute to our operation contract is shown
in Listing 6.17. The output shows that the &�������B, &�������J, and
&�������I appear only once, but they are now marked with an attribute,
G/+
, which is used as a reference identifier. Additional references to these
objects refer back to the reference identifier using the G/>�� attribute.

Listing 6.17 Serialized List with Reference Preservation

<�/&�������#�����/�478���/99�����I����9J::I9:39���C��������7#
➥�����/478���/99�����I����9J::39:29

����	��7?
<�/��
��?
</%��	��#�/����6�
�����
47B7?8���/99������	����9+&�������+������	��9

➥$��&��������"��8�����8)��;���	�����8�>�������<9/%��	��?
</>�������?���/��	
/0IIB�0�1C000BC11R�C2BJ
C
�B�BJ0���J3<9/>�������?

<9�/��
��?

Preser ving References and Cyclical References 259

Listing 6.17 continued

<�/��
�?
<$��&��������"��8�����8)��;���	�����8�>�������#

➥�����478���/99������	����97?
<$��&��������"��8�����8)��;���	�����8�>�����#G/+
47B7#G/�	G�47H7#

➥�����/	478���/99�����I����9J::B9O�;��8��C	������7#
➥�����/G478���/99��8�����	�����������9J::I9B:9���	�	G�	��97?

<&�������#G/+
47J7#�����478���/99��8����
������������9J::19:R97?
<&�������+D?B<9&�������+D?
<)	���=��#G/+
47I7?^�8�<9)	���=��?
<;��=��#G/+
4717?D��<9;��=��?

<9&�������?
<&�������#G/+
4737#

�����478���/99��8����
������������9J::19:R97?
<&�������+D?J<9&�������+D?
<)	���=��#G/+
47H7?^��<9)	���=��?
<;��=��#G/+
47R7?D��<9;��=��?

<9&�������?
<&�������#G/+
4727#

�����478���/99��8����
������������9J::19:R97?
<&�������+D?I<9&�������+D?
<)	���=��#G/+
4707?^�8�<9)	���=��?
<;��=��#G/+
47B:7?��	�8<9;��=��?

<9&�������?
<&�������#G/>��47J7#	/�	�47����7#

�����478���/99��8����
������������9J::19:R979?
<&�������#G/>��4737#	/�	�47����7#

�����478���/99��8����
������������9J::19:R979?
<&�������#G/>��4727#	/�	�47����7#

�����478���/99��8����
������������9J::19:R979?
<9$��&��������"��8�����8)��;���	�����8�>�����?

<9$��&��������"��8�����8)��;���	�����8�>�������?
<9�/��
�?

<9�/&�������?

Sharing Type with the B�
��
�(��
���
�������=��

The default serialization mechanism for WCF is the D�����������	�C
	G��. This is the serialization mechanism that the WCF team intends for
most developers to use because it enforces the sharing of contracts and not
types. This is one of the principles for building service-oriented architec-
tures. However, if your intent is to support type fidelity and share type
information between client and service and this does not pose a problem

Chapter 6: Serialization and Encoding260

to your design, you can use the =��D�����������	�	G�� for serializa-
tion. As mentioned previously in the “Comparing WCF Serialization
Options” section, the =��D�����������	�	G�� is essentially the same
as the D�����������	�	G��, but with additional support for sharing
of type information and reference preservation.

Although support exists for the =��D�����������	�	G�� in WCF,
there is no support for attributing your data contracts to use this serializa-
tion. This was done on purpose so that the sharing of types would not be
proliferated easily. To use the =��D�����������	�	G��, you must use
a custom behavior (see Listing 6.18) and annotate your operation contracts
(see Listing 6.19).

Listing 6.18 Using B�
��
�(��
���
5����
#

����
�

��	��#������'
��	��#��������������	����$����	�'
��	��#�������>���	������	�	G�	��'
��	��#�����������	����
����8�����'
��	��#�����������	����
���D����	��	��'
��	��#�����������	����
���D	����8��'
��	��#�������O��'

�������#&�����	�(�)
*

����	�#����#=��D��������)����%���	����#/#
➥%���	����5#+"����	����8�	��

*
����	�#��	
#%

�	�
	��!�������,"����	��D����	��	��#

➥
����	��	��5#�	�
	��!�������������	��#��������-
*
.

����	�#��	
#%������	�����8�	��,"����	��D����	��	��#
➥
����	��	��5#��	���"����	��#�����-

*
>�����D�����������	�	G��"����	����8�	��,
����	��	��-'

.

����	�#��	
#%����D	����8��8�	��,"����	��D����	��	��#
➥
����	��	��5#D	����8"����	��#
	����8-

*
>�����D�����������	�	G��"����	����8�	��,
����	��	��-'

.

Sharing Type with the B�
��
�(��
���
�������=�� 261

Listing 6.18 continued

����	�#��	
#P�	
��,"����	��D����	��	��#
����	��	��-
*
.

��	���#���	�#��	
#>�����D�����������	�	G��"����	����8�	��
➥,"����	��D����	��	��#
����	��	��-

*
D�����������	�	G��"����	����8�	��#
��#4#

➥
����	��	�����8�	����)	�
<D�����������	�	G��"����	����8�	��?,-'

	�#,
��#U4#����-

����	��	�����8�	����>�����,
��-'

����	��	�����8�	����%

,���#
➥=��D�����������	�	G��"����	����8�	��,
����	��	��--'

.

����	�#����#=��D�����������	�	G��"����	����8�	��#/#
➥D�����������	�	G��"����	����8�	��

*
��	���#���	�#=��D�����������	�	G��#���	�	G��#4#���#

➥=��D�����������	�	G��,-'

����	�#=��D�����������	�	G��"����	����8�	��,
➥"����	��D����	��	��#�����	��D����	��	��-#/
➥���,�����	��D����	��	��-#*#.

����	�#�����	
�#O��"�X������	�	G��#��������	�	G��,����#
➥����5#���	��#���5#���	��#��5#+;	��<����?#����������-

*
������#=��D�����������	�	G��"����	����8�	���

➥���	�	G��'
.

����	�#�����	
�#O��"�X������	�	G��#��������	�	G��,����#����5#
➥O��D	��	�������	��#���5#O��D	��	�������	��#��5#+;	��<����?#����������-

*
������#=��D�����������	�	G��"����	����8�	���

➥���	�	G��'
.

.
.

.

To use the =��D�����������	�	G��, specify the �=��D��������C
)���� attribute on an operation, as shown in Listing 6.19.

Chapter 6: Serialization and Encoding262

Listing 6.19 Using B�
��
�(��
���
 Serialization

��	��#��������������	����$����	�'
��	��#�����������	����
��'

�������#&�����	�(�)
*

�����	���������
����	�#	�������#+&�������+������	��
*

�"����	���������
�=��D��������)����
;	��<&�������?#$��&��������,-'

.
.

Applying this attribute to an operation contract will instruct WCF to use
the =��D�����������	�	G��. If we look at the output on the network,
we can see that the XML sent includes type information and additional
information for reference preservation, as shown in Listing 6.20.

Listing 6.20 Serialized Output Using B�
��
�(��
���
 Serialization

<�/&�������#�����/�478���/99�����I����9J::I9:39���C��������7#
➥�����/478���/99�����I����9J::39:29

����	��7?
<�/��
��?
</%��	��#�/����6�
�����
47B7?8���/99������	����9+&�������+������	��9

➥$��&��������>�������<9/%��	��?
</>�������?���/��	
/BJ�I3�BHC3J�
C1�2BC1
1CJ��
0�J�R�J<9/>�������?

<9�/��
��?
<�/��
�?
<$��&��������>�������#�����478���/99������	����97?
<%���"�&�������#G/+
47B7#G/����47��������������	����$����	��;	��bB

➥��&�������5#%��F��
��3��G18��5#P���	��4:�:�:�:5#�������4������5#
➥!���	�Q�������4���� 7#G/%�������47:7#
➥�����478���/99��8����
������������9J::19:R97#
➥�����/	478���/99�����I����9J::B9O�;��8��C	������7
➥�����/G478���/99��8�����	�����������9J::I9B:9���	�	G�	��97?#

<F	����#G/+
47J7#G/�	G�4717?
<&�������#G/+
47I7?
<&�������+D?B<9&�������+D?
<)	���=��#G/+
4717?^�8�<9)	���=��?
<;��=��#G/+
4737?D��<9;��=��?

<9&�������?
<&�������#G/+
47H7?
<&�������+D?J<9&�������+D?
<)	���=��#G/+
47R7?^��<9)	���=��?
<;��=��#G/+
4727?D��<9;��=��?

Sharing Type with the B�
��
�(��
���
�������=�� 263

Listing 6.20 continued

<9&�������?
<&�������#G/+
4707?
<&�������+D?I<9&�������+D?
<)	���=��#G/+
47B:7?^�8�<9)	���=��?
<;��=��#G/+
47BB7?��	�8<9;��=��?

<9&�������?
<&�������#	/�	�47����79?

<9F	����?
<F�	G�?I<9F�	G�?
<F����	��?I<9F����	��?

<9%���"�&�������?
<9$��&��������>�������?

<9�/��
�?
<9�/&�������?

Roundtrip Serialization Using %"&
���������
�2�Q��

Data contract versioning is an important aspect of service orientation of
support service-oriented architectures over time. Over time, it is likely that
new versions of new services are created that have new versions of the
same data contracts, just with additional information. Rather than recom-
piling all previous clients and services that were built using the older data
contracts versions, you would hope that they would gracefully degrade to
sharing the data they have in common. This is exactly the case with the
D�����������	�	G��. If there is additional data, the D����������C
�	�	G�� will discard the extra information. This does not work in all sit-
uations. Ignoring any additional data could mean a loss of information if
the data is received and then sent back to a client. An example might be a
new client that sends data to an old service that stores information into a
database for retrieval at some future point in time. In this situation, if there
is any additional information that the client sends to the server, it will be
lost when the data is sent back to the client. This is exactly the issue the
+&�����	���D�"�X��� interface is meant to solve. It provides an interface
for working with external data not known to the data contract. It does this
by storing any data not known during deserializing in an instance of an
&�����	���D�"�X��� class.

Chapter 6: Serialization and Encoding264

The default behavior for the D�����������	�	G�� is to ignore any
unexpected data unless the +&�����	���D�"�X��� interface is imple-
mented on the contract. Here is an example of two data contracts for an
Employee class. The first data contract shown in Listing 6.21 has three
fields:)	���=��, ;��=��, and &�������+D. The second data contract
shown in Listing 6.22 is a newer version of the same data contract with an
additional field, ��=.

Roundtrip Serialization Using %"&
���������
�2�Q��
 265

TIP Make Sure to Implement %"&
���������
�2�Q��

It is possible to share your data contracts without generating proxy
classes using svcutil.exe or Add Service Reference. This is done by
adding a reference to the assembly that contains your data contracts.
In this situation, make sure that the data contracts implement +&����C
�	���D�"�X��� or else they will not support roundtrip serialization.

Listing 6.21 Original Employee Contract

��	��#�������>���	������	�	G�	��'

�D��������
����	�#����#&�������
*

��	���#	��#��������+D'
��	���#���	��#�	���=��'
��	���#���	��#���=��'

����	�#&�������,	��#��������+D5#���	��#�	���=��5#���	��#���=��-
*

�8	����������+D#4#��������+D'
�8	���	���=��#4#�	���=��'
�8	�����=��#4#���=��'

.

�D�������
����	�#	��#&�������+D
*

���#*#������#��������+D'#.
���#*#��������+D#4#����'#.

.

�D�������
����	�#���	��#)	���=��
*

Listing 6.21 continued

���#*#������#�	���=��'#.
���#*#�	���=��#4#����'#.

.

�D�������
����	�#���	��#;��=��
*

���#*#������#���=��'#.
���#*#���=��#4#����'#.

.
.

Listing 6.22 shows a newer version of the &������� contract that con-
tains an additional field, ��=, which represents the employee’s social secu-
rity number.

Listing 6.22 New Employee Contract

��	��#�������>���	������	�	G�	��'

�D��������
����	�#����#&�������
*

��	���#	��#��������+D'
��	���#���	��#�	���=��'
��	���#���	��#���=��'
��	���#���	��#���'

����	�#&�������,-
*
.

����	�#&�������,	��#��������+D5#���	��#�	���=��5#���	��#���=��5
���	��#���-
*

�8	����������+D#4#��������+D'
�8	���	���=��#4#�	���=��'
�8	�����=��#4#���=��'
�8	�����#4#���'

.

�D�������
����	�#	��#&�������+D
*

���#*#������#��������+D'#.
���#*#��������+D#4#����'#.

.

Chapter 6: Serialization and Encoding266

�D�������
����	�#���	��#)	���=��
*

���#*#������#�	���=��'#.
���#*#�	���=��#4#����'#.

.

�D�������
����	�#���	��#;��=��
*

���#*#������#���=��'#.
���#*#���=��#4#����'#.

.

�D�������
����	�#���	��#��=
*

���#*#������#���'#.
���#*#���#4#����'#.

.
.

The data contracts in Listing 6.21 and Listing 6.22 are different. You might
expect that a server using the original data contract would not accept com-
munication from a client using the newer data contract. In fact, everything
still works. The reason is that all the fields in the newer data contract are
present in the original data contract. This means that all the information
that the server needs is present. What happens at this point is the server
will ignore the additional data. This can be seen using the following
6�
��&������� service shown in Listing 6.23. This service takes an
&������� instance, does something with it, and then returns that same
Employee instance back to the client.

Listing 6.23 Employee Update Service

��	��#�����������	����
��'

�������#&�����	�(�)
*

�����	���������
����	�#	�������#+&�������+������	��
*

�"����	���������
&�������#6�
��&�������,&�������#��������-'

.

����	�#����#&�������+������	��#/#+&�������+������	��

Roundtrip Serialization Using %"&
���������
�2�Q��
 267

Listing 6.23 continued

*
����	�#&�������#6�
��&�������,&�������#���-
*

99#!�����
#��#
�#�����8	��#8������
99#=��#�����#	�������#���#�8	�#
����

99#(�#������#�8�#��������#	������#���#��#�8�#��	����
������#���'

.
.

.

The corresponding client code is shown in Listing 6.24.

Listing 6.24 Employee Update Client

��	��#������'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

&�������#�#4#���#&�������,-#*#&�������+D#4#BJI13H5
)	���=��#47^�8�75#;��=��#47D��75
��=#47:::C::C::::7#.'

��������(�	��;	��,7*:.#*B.5#*J.5#*I.75#���#��X���� #*
��)	���=��5
��;��=��5
��&�������+D5
����=#.-'

��	��#,&�������+������	����	���#��	���#4
���#&�������+������	����	���,--

�#4#��	����6�
��&�������,�-'

��������(�	��;	��,7*:.#*B.5#*J.5#*I.75#���#��X���� #*
��)	���=��5
��;��=��5
��&�������+D5
����=#.-'

��������(�	��;	��,7!����#�&=�&> #��#��	��7-'
��������>�
;	��,-'

.
.

.

Chapter 6: Serialization and Encoding268

The result returned from the server does not return the ��= field. This
means that we could not roundtrip our data contract to the server and back
because of the version incompatibility. So how do we modify our service to
accept unknown data and return it appropriately? Fortunately, WCF pro-
vides a facility for accepting unknown data and storing it. We can change our
data contract on the server to allow for additional data that it does not know
about. To do this you must implement the +&�����	���D�"�X��� interface
on the data contract, which is done by default when generating the client-side
proxy through svcutil.exe or Add Service Reference. Listing 6.25 shows the
original &������� contract with support for the +&�����	���D�"�X���
interface.

Listing 6.25 Original Employee Contract with %"&
���������
�2�Q��

��	��#�������>���	������	�	G�	��'

�D��������
����	�#����#&�������#/#+&�����	���D�"�X���
*

��	���#&�����	��D�"�X���#������	��D�'

��	���#	��#��������+D'
��	���#���	��#�	���=��'
��	���#���	��#���=��'

����	�#&�������,-
*
.

����	�#&�������,	��#��������+D5#���	��#�	���=��5#���	��#���=��-
*

�8	����������+D#4#��������+D'
�8	���	���=��#4#�	���=��'
�8	�����=��#4#���=��'

.

����	�#&�����	��D�"�X���#&�����	��D�
*

���#*#������#������	��D�'#.
���#*#������	��D�#4#����'#.

.

�D�������
����	�#	��#&�������+D
*

Roundtrip Serialization Using %"&
���������
�2�Q��
 269

Listing 6.25 continued

���#*#������#��������+D'#.
���#*#��������+D#4#����'#.

.

�D�������
����	�#���	��#)	���=��
*

���#*#������#�	���=��'#.
���#*#�	���=��#4#����'#.

.

�D�������
����	�#���	��#;��=��
*

���#*#������#���=��'#.
���#*#���=��#4#����'#.

.
.

With this change the client now receives the ��= member back from the
server. Given that this behavior would be an expected result in a service-
oriented architecture, you probably should implement +&�����	���C
D�"�X��� interface on all data contracts as a best practice.

Serializing Types Using Surrogates

At times you might need to implement serialization on behalf of a type that
is either not serializable or that requires a change in how it is serialized. An
example is a type that is provided by a third-party component vendor or a
component that you no longer have the source code to. The following exam-
ple (see Listing 6.26) shows a nonserializable class, &�������. This class
intentionally does not have a default constructor and it does not have any
writable fields or properties. This means that it is not serializable using any
of the serialization techniques we have mentioned so far. To serialize this
class we need to provide a surrogate that serializes this class on its behalf.

Listing 6.26 Nonserializable Employee Class

�������#&�����	�(�)����	�	G�	�����������
*

����	�#����#&�������
*

Chapter 6: Serialization and Encoding270

��	���#	��#��������+D'
��	���#���	��#�	���=��'
��	���#���	��#���=��'

����	�#&�������,	��#��������+D5#���	��#�	���=��5
���	��#���=��-

*
�8	����������+D#4#��������+D'
�8	���	���=��#4#�	���=��'
�8	�����=��#4#���=��'

.

����	�#	��#&�������+D
*

���#*#������#��������+D'#.
.

����	�#���	��#)	���=��
*

���#*#������#�	���=��'#.
.

����	�#���	��#;��=��
*

���#*#������#���=��'#.
.

.
.

You need to take two steps to develop a surrogate. The first is to define the
data contract that will represent the serialized type. The second is to imple-
ment a data contract surrogate based on the +D����������������
interface. The three main methods that we will examine are the $��D����C
��������, $��D����	�	G�
"�X���, and $��"�X��������	�	G� methods.
The $��D������������ returns the serialized type to the D��������C
���	�	G��, and the $��D����	�	G�
"�X��� and $��"�X��������	�	G�

perform the deserialization and serialization, respectively. The &����������C
����� class is shown in Listing 6.27.

Listing 6.27 Employee Surrogate Class

��	��#������'
��	��#���������
�D��'
��	��#��������������	����"�X�����
��'
��	��#�������>���	������	�	G�	��'

Serializing Types Using Surrogates 271

Listing 6.27 continued

�������#&�����	�(�)����	�	G�	�����������
*

�D��������
	������#����#&���������������

*

�D�������
��	���#	��#��������+D'
�D�������
��	���#���	��#�	���=��'
�D�������
��	���#���	��#���=��'

����	�#&���������������
,	��#��������+D5#���	��#�	���=��5
���	��#���=��-

*
�8	����������+D#4#��������+D'
�8	���	���=��#4#�	���=��'
�8	�����=��#4#���=��'

.

����	�#	��#&�������+D
*

���#*#������#��������+D'#.
.

����	�#���	��#)	���=��
*

���#*#������#�	���=��'#.
.

����	�#���	��#;��=��
*

���#*#������#���=��'#.
.

.

����	�#����#&���������������#/#+D����������������
*

����	�#��X���#$��������D���&�����,����#�������5
����#
������������-

*
������#����'#99#=��+���������

.

����	�#��X���#$��������D���&�����,
�������>������	���������+���#������+���5
����#
������������-

*

Chapter 6: Serialization and Encoding272

������#����'#99#=��+���������

.

����	�#����#$��D������������,����#����-
*

	�#,������,&�������-�+�%��	�����)���,����--
*

������#������,&���������������
-'
.
������#����'

.

����	�#��X���#$��D����	�	G�
"�X���,��X���#��X5#����#���������-
*

	�#,��X#	�#&���������������
-
*

&���������������
#��
&�������#4
,&���������������
-��X'

&�������#���&�������#4
���#&�������,��
&��������&�������+D5

��
&��������)	���=��5
��
&��������;��=��-'

������#���&�������'
.
������#��X'

.

����	�#��	
#$��Q����������D������,
�������	��<����?#������D������-

*
�8���#���#=��+���������
&�����	��,-'

.

����	�#��X���#$��"�X��������	�	G�,��X���#��X5#����#���������-
*

	�#,��X#	�#&�������-
*

&�������#��
&�������#4#,&�������-��X'
&���������������
#���&�������#4
���#&���������������
,��
&��������&�������+D5

��
&��������)	���=��5
��
&��������;��=��-'

������#���&�������'
.
������#��X'

.

����	�#����#$��>��������
����"�+�����,���	��#����=��5
���	��#����=������5#��X���#������D�-

*

Serializing Types Using Surrogates 273

Listing 6.27 continued

	�
,����=�������&S���,78���/99��8����
������������9J::19:R9
➥&���������������
7--

*
	�#,����=���&S���,7&���������������
7--

������#������,&�������-'
.
������#����'

.

����	�#��
�����D�����	��#!������+������
����,��
�����D�����	��#
➥����D�����	��5

��
�����	��6�	�#����	��6�	�-
*

������#����D�����	��'
.

.
.

We put this all together by letting the D�����������	�	G�� know
about the surrogate class. You need to instantiate the D�����������	�C
	G�� and pass in the &���������������
 class to the constructor, as shown
in Listing 6.28.

Listing 6.28 Using the Employee Surrogate Class with the ��
�(��
���
�������=��

��	��#������'
��	��#�������+"'
��	��#�������>���	������	�	G�	��'
��	��#�������O��'

�������#&�����	�(�)����	�	G�	�����������
*

����#!�����
*

���	�#��	
#��������	�	G�,&�������#�-
*

D�����������	�	G��#
��#4
���#D�����������	�	G��,������,&�������--'

��	��#,���	��(�	���#��#4#���#���	��(�	���,--
*

��	��#,O��(�	���#��#4#O��(�	���������,��--
*

���
*

���(�	��"�X���,��5#�-'

Chapter 6: Serialization and Encoding274

.
���8#,+���	
D��������&�����	��-
*

��������(�	��;	��,7�����#���	�	G�#�	�8���
#��������U7-'

.
.

.
.

���	�#���	��#���	�	G�6�	����������,
D�����������	�	G��#
��5#&�������#�-

*
��	��#,���	��(�	���#��#4#���#���	��(�	���,--
*

��	��#,O��(�	���#��#4#O��(�	���������,��--
*

���(�	��"�X���,��5#�-'
���)���8,-'
������#��������	��,-'

.
.

.

���	�#&�������#D����	�	G�6�	����������,
D�����������	�	G��#
��5#���	��#��������%����	��-

*
��	��#,���	��>�
��#��#4#���#���	��>�
��,��������%����	��--

��	��#,O��>�
��#��#4#O��>�
��������,��--
������#
���>�
"�X���,��-#�#&�������'

.

���	�#��	
#�	�,���	��� #���-
*

&�������#�#4#���#&�������,BJI1357^�8�757D��7-'

��������	�	G�,�-'

D�����������	�	G��#
��#4
���#D�����������	�	G��,������,&�������-5
����5#	�����P���5#����5#����5
���#&���������������,--'

���	��#��������%����	��#4#���	�	G�6�	����������,
��5#�-'

�#4#D����	�	G�6�	����������,
��5#��������%����	��-'

��������>�
;	��,-'
.

.
.

Serializing Types Using Surrogates 275

Streaming Large Data

WCF supports two modes for processing messages: buffered and streamed.
Buffered mode is the default way in which WCF processes messages. In this
mode, the entire message is in memory before it is sent or after it is received.
In most scenarios, buffering of messages is sufficient and is sometimes
required to support features such as reliable messaging and digital signa-
tures. However, buffering large messages can easily exhaust system
resources and limit scalability. WCF supports another mode for processing
messages using streaming. In this mode, data is sent between client and
server using a �������+"������. Streaming is typically enabled on either
a binding or a transport channel. Listing 6.29 shows how to enable stream-
ing on the �������	�
	�� binding by setting the ���������
� attribute on
the binding configuration. The acceptable values for the ���������
�
attribute are ������, ������
, ������
>�������, and ������
>�S����.
This allows for granular control of streaming between the client and the
server.

Listing 6.29 Enabling Streaming on ��
-���������

<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)�)	��D�����
7?
<��
��	��#

����477

�	�
	��47�������	�
	��7
�	�
	������	����	��47&���������	��"�=�����7
�������47&�����	�(�)�+)	��D�����
7#9?

<9����	��?
<9����	���?
<�	�
	���?
<�������	�
	��?
<�	�
	��#���47&���������	��"�=�����7#���������
�47������
7#9?

<9�������	�
	��?
<9�	�
	���?

<9�����������	����
��?

To take advantage of streaming, the operation contract needs to use an
instance of a �������+"������#or return a message contract that uses a
stream. Listing 6.30 shows an example of a file download service contract
that returns a �������+"������.

Chapter 6: Serialization and Encoding276

Listing 6.30 5����������� Service Contract

��	��#�������+"'
��	��#�����������	����
��'

�������#&�����	�(�)
*

�����	���������
����	�#	�������#+)	��D�����

*

�"����	���������
�����#$��)	��,���	��#�	��=��-'

.
.

Streaming does not work in all scenarios where large amounts of data
are being used. For example, if reliable messaging, digital signatures, or
resuming after failure are needed, streaming is not acceptable. In these sce-
narios, manually chunking the data into small messages and sending many
small messages that eventually get reconstituted by the recipient is pre-
ferred. This can easily be layered on top of WCF.

Using the ;���������=�� for Custom Serialization

The D�����������	�	G�� is the preferred serialization mechanism
in WCF. However, at times you might want to go beyond the default
serialization. One option to change the serialization is to work with the
O�����	�	G��. There are many reasons to use the O�����	�	G��, includ-
ing the capability to implement custom serialization, sharing of types, and
support for legacy Web services. As with the D�����������	�	G��,
the O�����	�	G�� is an integral part of WCF. This section looks at the
O�����	�	G�� and discusses how it can be used to shape the resulting
XML output.

The D�����������	�	G�� always serializes data using XML ele-
ments rather than XML attributes. Listing 6.31 shows an instance of an
Employee class using the D�����������	�	G��.

Using the ;���������=�� for Custom Serialization 277

Listing 6.31 Serialized Employee Instance Using ��
�(��
���
 Serialization

<&�������#�����478���/99��8����
������������9J::19:R9�������	�	G�	��7
�����/	478���/99�����I����9J::B9O�;��8��C	������7?
<&�������+D?B:B<9&�������+D?
<)	���=��?^�8�<9)	���=��?
<;��=��?D��<9;��=��?

<9&�������?

Examining the serialized XML, you can see that the data contract could
be rewritten using XML attributes. An example using XML attributes rather
than XML elements is shown here:

<&�������#&�������+D47B:B7#)	���=��47^�8�7#;��=��47D��7#9?

XML attributes are not possible using the D�����������	�	G��. The
D�����������	�	G�� does offer limited control of the XML by allowing
the names of XML elements to be specified using the �D������� attrib-
ute. The =��D�����������	�	G�� is essentially the same as the D�C
����������	�	G�� but with support for sharing type information. This
means that the O�����	�	G�� is the only serializer where you can com-
pletely control output of serialization. Listing 6.32 shows a schema for the
&������� class using XML attributes.

Listing 6.32 Employee XSD Schema

<A���#����	��47B�:7#����
	��47���C27A?
<��/��8��#�����=������478���/99������	����9O�;��8�����
7
�������)���D�����47S��	�	�
7#�����478���/99������	����9O�;��8�����
7
�����/�����478���/99������	����9O�;��8�����
7
�����/��478���/99�����I����9J::B9O�;��8��7?
<��/�������#���47&�������7?
<��/�����������?
<��/���	����#���47&�������+D7#����47��/	��7#9?
<��/���	����#���47)	���=��7#����47��/���	��7#9?
<��/���	����#���47;��=��7#����47��/���	��7#9?

<9��/�����������?
<9��/�������?

<9��/��8��?

Custom XmlSerialization Using Attributes
You can shape the XML output using the O�����	�	G��#in two ways. The
first and most direct approach is to use the attributes provided in the .NET

Chapter 6: Serialization and Encoding278

Framework under the �������O������	�	G�	�� namespace to instruct
the O�����	�	G�� how to shape the XML output. By default, the
O�����	�	G�� will output public fields and public read/write properties
as XML elements. These can be changed to XML attributes by attributing
them with the �O��%���	���� attribute. Also, the O�����	�	G�� is an opt-
out serialization model. By default the O�����	�	G�� will serialize public
fields and public read/write properties unless instructed not to do so with
the �O��+����� attribute. Additional attributes, such as the �O��&������ ,
�O��>��� , �O��%��� , and �O��%���+��� attributes, help instruct the
O�����	�	G�� how to serialize types.

Custom ;���������=�
��� Using %;���������=����
The second approach to using the O�����	�	G�� is to use the +O�����	C
�	G��� interface, which is generally used in advanced scenarios where
complete control over serialization is needed. The +O�����	�	G��� inter-
face supports three methods: $����8��, >�
O��, and (�	��O��. With
.NET 2.0, the $����8�� method was deprecated and replaced with the
�O����8��!���	
�� attribute. The other two methods are >�
O�� and
(�	��O��. These methods correspond to methods used to deserialize and
serialize from and to XML. Listing 6.33 demonstrates this.

Listing 6.33 Employee Class Using XML Serialization

��	��#�������+"'
��	��#�������O��'
��	��#�������O�����8��'
��	��#�������O������	�	G�	��'

�O����8��!���	
��,7����8��7-
����	�#����#&�������#/#+O�����	�	G���
*

��	���#�����#���	��#��#478���/99������	����9������	�	G�	��97'

��	���#	��#��������+D'
��	���#���	��#�	���=��'
��	���#���	��#���=��'

����	�#&�������,-
*
.

����	�#&�������,	��#��������+D5#���	��#�	���=��5#���	��#���=��-

Using the ;���������=�� for Custom Serialization 279

Listing 6.33 continued

*
�8	����������+D#4#��������+D'
�8	���	���=��#4#�	���=��'
�8	�����=��#4#���=��'

.

����	�#	��#&�������+D
*

���#*#������#��������+D'#.
���#*#��������+D#4#����'#.

.

����	�#���	��#)	���=��
*

���#*#������#�	���=��'#.
���#*#�	���=��#4#����'#.

.

����	�#���	��#;��=��
*

���#*#������#���=��'#.
���#*#���=��#4#����'#.

.

����	�#���	�#O��K��	�	�
=��#����8��,O����8�����#��8�����-
*

O����8��#�8��#4#O����8���>�
,���#���	��>�
��,
M7<��/��8��#�������)���D�����477S��	�	�
777#T
M7#�����/���477#T#�������#T777#T
M7#�����=������477#T#�������#T777#T
M7#�����4778���/99�����I����9J::B9O�;��8��777#T
M7#�����/��4778���/99�����I����9J::B9O�;��8��77?7#T
M7#<��/�������#���477&�������77?7#T#M7<��/�����������?7#T
M7<��/���	����#���477&�������+D77#����477��/	��77#9?7#T
M7<��/���	����#���477)	���=��77#����477��/���	��77#9?7#T
M7<��/���	����#���477;��=��77#����477��/���	��77#9?7#T
M7<9��/�����������?7#T
M7#<9��/�������?7#T
M7<9��/��8��?7-5#����-'

��8������O��>�������#4#���#O��6��>�������,-'
��8������%

,�8��-'

������#���#O��K��	�	�
=��,7&�������75#��-'
.

����	�#O����8��#$����8��,-
*

������#����'

Chapter 6: Serialization and Encoding280

.

����	�#��	
#>�
O��,O��>�
��#��
��-
*

��
���>�
����&������,7&�������7-'
��
���������%���	����,7+D7-'
�8	����������+D#4#��
���>�
�������%�+��,-'
��
���������%���	����,7)	���=��7-'
�8	���	���=��#4#��
���>�
�������%����	��,-'
��
���������%���	����,7;��=��7-'
�8	��;��=��#4#��
���>�
�������%����	��,-'
��
���>�
&�
&������,-'

.

����	�#��	
#(�	��O��,O��(�	���#��	���-
*

��	����(�	������&������,7&�������7-'

��	����(�	������%���	����,7+D7-'
��	����(�	�����	��,�8	����������+D������	��,--'
��	����(�	��&�
%���	����,-'

��	����(�	������%���	����,7)	���=��7-'
��	����(�	�����	��,�8	���	���=��-'
��	����(�	��&�
%���	����,-'

��	����(�	������%���	����,7;��=��7-'
��	����(�	�����	��,�8	�����=��-'
��	����(�	��&�
%���	����,-'

��	����(�	��&�
&������,-'
.

.

The result of using the O�����	�	G�� is that we can work with XSD
schemas as the starting point for our contracts. The drawback to this
approach is that there could potentially be much more code to write.

Choosing an Encoder

At the beginning of this chapter we mentioned that there are two steps in
WCF to prepare an object for transmission over a network. The first step is
serialization, which takes an object graph and transforms it into an XML
Infoset. The second step is encoding, which takes an XML Infoset and trans-
forms it into a set of bytes that can be sent across a network. WCF provides

Choosing an Encoder 281

three types of encoding: text, binary, and MTOM. This section focuses on
when to use each of these encoders.

Text Versus Binary Encoding
Prior to WCF, you had a number of choices for building distributed appli-
cations. Two of those options were .NET Remoting and ASP.NET Web Ser-
vices. .NET Remoting was great for communicating between .NET
applications because it optimized the transmission of data using binary
encoding. This offered better performance than ASP.NET Web Services,
which leveraged text encoding for interoperability. Text encoding was
acceptable for ASP.NET Web Services because it allowed for interoperabil-
ity across platforms. WCF abstracts out the encoding mechanism and
allows for bindings that allow for both styles of encoding. This allows WCF
to provide functionality that replaces both .NET Remoting and ASP.NET
Web Services.

Encoding is not something that you work with directly. Instead, it is
specified by the binding used to expose a service. Chapter 4, “Bindings,”
highlighted bindings for use between .NET applications and those used
for interoperability. The �������	�
	�� binding, which is used between
.NET applications, leverages the �	���������&���
	�� encoder. The
�	���������&���
	�� encoder offers the best performance, but it does
not support interoperability. Conversely, bindings such as the �������	�
C
	�� binding use the ����������&���
	�� encoder, which offers interop-
erability using the WS-* specifications. Listing 6.34 shows an example of a
custom binding using the ����������&���
	�� encoder.

Listing 6.34 Custom Binding Using
�&
�������"�������

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?
<�	�
	���?

<�������	�
	��?
<�	�
	��#���47������7?

<����������&���
	��#9?
<8�����������#9?

<9�	�
	��?
<9�������	�
	��?

<9�	�
	���?
<��	���?

Chapter 6: Serialization and Encoding282

<��
��	��

����478���/99����8���9���	�	G�	��&�����9����	������7
�	�
	��47�������	�
	��7
�	�
	������	����	��47������7
�������47���	�	G�	�������8����+&�������+������	��7
���47+&�������+������	��7#9?

<9��	���?
<9�����������	����
��?

<9����	����	��?

Listing 6.35 shows the configuration of a custom binding using the
�	���������&���
	�� encoder.

Listing 6.35 Custom Binding Using �����	�������"�������

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?
<�	�
	���?

<�������	�
	��?
<�	�
	��#���47������7?

<�	���������&���
	��#9?
<8�����������#9?

<9�	�
	��?
<9�������	�
	��?

<9�	�
	���?
<��	���?

<��
��	��

����478���/99����8���9���	�	G�	��&�����9����	������7
�	�
	��47�������	�
	��7
�	�
	������	����	��47������7
�������47���	�	G�	�������8����+&�������+������	��7
���47+&�������+������	��7#9?

<9��	���?
<9�����������	����
��?

<9����	����	��?

Sending Binary Data Using MTOM Encoding
The ����������&���
	�� encoder converts messages into text-based
XML. This is great for interoperability, but it is not efficient at transmitting
large chunks of binary data. MTOM is used to send large amounts of
binary data as raw bytes in interoperable scenarios. As mentioned previ-
ously, MTOM refers to Message Transmission Optimization Mechanism.
This is standard for optimizing the binary data by sending the binary data

Choosing an Encoder 283

as attachments to the SOAP message. This means that binary data can be
transmitted using a SOAP message without the overhead of Base64 text
encoding. To benefit from the use of MTOM, a service must contain a byte
array or a ����� object in the operation contract.

WCF provides support for MTOM through the ����������&���
	��
encoder. The use of the ����������&���
	�� encoder is typically specified
by the binding. Listing 6.36 shows how to specify the MTOM encoder using
the �������	�
	��#binding.

Listing 6.36 ��

�������� Using �
���������"�������

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?
<�	�
	���?
<�������	�
	��?
<�	�
	��#���47��"��	�
	��7#������&���
	��47����7#9?

<9�������	�
	��?
<9�	�
	���?
<��	���?

<��
��	��

����478���/99����8���9���	�	G�	��&�����9����	������7
�	�
	��47�������	�
	��7
�	�
	������	����	��47��"��	�
	��7
�������47&�����	�(�)�+&�������!	�����7
���47+&�������!	�����7#9?

<9��	���?
<9�����������	����
��?

<9����	����	��?

Getting to Know the 9���������"������
The (��������&���
�� encoder is available with WCF in .NET Frame-
work 3.5 and provides support for JSON and POX encoding. This encoder
does not provide a specific type of encoding, but aggregates a set of encod-
ing styles that are used on the Web today. The (��������&���
�� encoder
is enabled by using either the (��������8�	�� or the (�����	��&�C
��	����8�	�� endpoint behaviors.

The (��������8�	�� endpoint behavior instructs the (��������&�C
��
�� encoder to use the ����������&���
�� encoder. This is done inter-
nally by using the ����������&���
�� encoder and setting the message
version to ������P���	���=���. This instructs the ����������&���
��

Chapter 6: Serialization and Encoding284

encoder to not include any SOAP or WS-Addressing information in the
XML output. The (��������&���
�� encoder supports request and
responses messages in either XML or JSON. The default for the (������C
��8�	�� endpoint behavior is to have the request and response message
formats set to (��������)�����O��. This can be controlled in code by set-
ting the request and/or response message formats on the �(��$�� attrib-
ute to (��������)�����O�� or (��������)�����^���.

Although both the request and response formats can be specified inde-
pendently, they are typically set to the same value. The (�����	��&�C
��	����8�	�� endpoint behavior does exactly this by setting the default
for the request and response formats to (��������)�����^���. This in
turn instructs the (��������&���
�� encoder to use the ^���������&�C
��
�� encoder to encode messages. The (�����	��&���	����8�	�� is
used for AJAX-enabled Web applications that call services from JavaScript.
It also enables support for ASP.NET AJAX client proxies.

Refer to Chapter 13 for more information on the (��������8�	��
behavior, (�����	��&���	����8�	�� behavior, and the �(��$��

attribute.

SUMMARY

This chapter describes the serialization and encoding capabilities of WCF.
As with the rest of WCF, many features allow you to customize and extend
serialization. Some guiding principles for working serialization and WCF
are the following:

• Try to use D�������� serialization whenever and wherever possi-
ble. This is the default serialization in WCF and is meant to be used
for service-oriented development by forcing contracts to be explicit.

• In many situations, you will need to rely on the O�;���	�	G��, such
as support for existing .NET types, compatibility with ASP.NET Web
Services, and control over the shape of the serialized XML. Place the
�O�����	�	G��)���� on your contracts where appropriate if you
rely on the O�;���	�	G��. Be sure to place this attribute on your
service contract if all your operations require the use of XML
Serialization.

Summary 285

• All of the out-of-the-box bindings specify their default encoder.
If you are looking to change the default encoder for a binding, look
instead to a more appropriate binding that suits your needs.

• When creating custom bindings, be aware of the default encoder
that the underlying transport uses. If you don’t specify one, the
default encoder for that transport will be used.

• Use streaming support built in to WCF when working with large
amounts of data that cannot be worked with in memory. If stream-
ing is not acceptable, use a chunking technique to break up the data
into multiple messages that can be sent.

Chapter 6: Serialization and Encoding286

7
Hosting

A S E RV I C E H O S T I S A N O P E R AT I N G S Y S T E M process responsible for the
lifetime and context of a WCF service. The service host, or just “host,”

is responsible for starting and stopping the WCF service and providing
some basic management functions for controlling it. Other than that, the
host knows very little about the WCF service that runs in its memory space.

Any operating system process can be a service host. Both IIS and Win-
dows Process Activation Services (WAS) have the built-in infrastructure
that makes this easy. Together with ASP.NET, they provide a common ser-
vice hosting environment. In addition to IIS and WAS, you can host a WCF
service in a Managed Windows Service (NT Service) that starts and stops
with the operating system. You can host a service in a Windows application
running full screen or minimized as a tray icon, or you can even host a ser-
vice in a custom console application that runs on the system console.
Regardless of how you host a service, the method of configuring a service
address, binding, contract, and behaviors will be almost the same.

Choosing the right hosting environment for a service should be based
on operational requirements, such as availability, reliability, and manage-
ability. For example, hosting in a Managed Windows Service provides an
interface for starting and stopping the service that is familiar to most Win-
dows system administrators. Hosting in a Windows application running on
the desktop, on the other hand, is something very familiar to most end

287

users. Regardless of the hosting environment, the WCF programming
model doesn’t change. In fact, just as developers can design and implement
a service without explicit concern about its binding or address, they can
also be agnostic to the hosting environment.

All hosts are required to do three things: instantiate a ����	������ class
from �����������	����
��, add endpoints to the host, and start listening
for messages. The logic in Listing 7.1 is the core logic for hosting a service
in your own programs. It’s also automatically provided when hosting in IIS
or WAS.

Listing 7.1 Basic Logic for Hosting a Service

����	������#������#4#���#����	������,#������,#������	��#-#-'
�������%

����	��&�
��	��#,������,#+������	��#-5#

�����	�
	��5#
����6�	-'

�������"���,-'#

In this chapter, we cover the common techniques for hosting services. For
IIS, the technique is pretty simple and is demonstrated in Chapter 1, “Basics.”
Specifically, we’ll cover the details of how the new Windows Process Activa-
tion Service (WAS) process relates to the IIS infrastructure. We’ll also cover
self-hosting services in NT Services and client-side applications.

Hosting a Service in Windows Process Activation
Services

Windows Process Activation Services (WAS) is the hosting infrastructure
built into Vista and Windows Server 2008. Features previously available
only in IIS, such as process activation, recycling, and identity management,
have been moved into WAS and made available to protocols other than
HTTP.

WAS enables you to host services in a robust environment that doesn’t
rely on the HTTP protocol. The HTTP protocol is widely deployed and
understood, but there are cases when it’s not the best option.

For example, imagine a service that receives one-way messages for the
purpose of tracking and analysis, and the messages are sent by clients that

Chapter 7: Hosting288

are occasionally disconnected from the network. To provide the capability
to send messages while disconnected, a queuing mechanism is needed. The
MSMQ protocol will accomplish this, whereas the HTTP protocol will not.
Or, imagine a very “chatty” service, one that quickly sends numerous small
messages as part of a larger conversation. For this, the TCP protocol is more
efficient than HTTP because it will keep a connection open when sending
the multiple messages. In both of these examples, WAS can host the service
where IIS cannot.

WAS supports multiple protocols through a listener adapter architecture
where listeners are abstracted from the process management function. By
defining an interface between WAS and the listeners, WAS can support
multiple listeners without introducing extra complexity into the system.
This way, WAS can communicate over HTTP, TCP, MSMQ, and named
pipes using a consistent mechanism, thereby improving system reliability.
Figure 7.1 depicts the WAS architecture.

Hosting a Ser vice in Windows Process Activation Ser vices 289

Windows Process
Activation Services

(WAS)

http net.tcp net.pipe net.msmq

P
ro

ce
ss

 H
os

t

AppPools (w3wp.exe)

w3svc
NetTcp

Activator
NetMsmq
Activator

NetPipe
Activator

Worker
(AppDomain)

Figure 7.1 WAS architecture

WAS is automatically installed in Vista and Windows 2008 when IIS is
installed, because IIS is dependent on it. When IIS is installed, it registers
w3svc as an HTTP listener adapter with WAS. When .NET 3.5 is installed,
it registers listener adapters for TCP, MSMQ, and named pipes with WAS.
It’s also possible to use WAS without installing IIS. To do this, you must
enable two Windows features. First, you must enable the Windows Process
Activation Services as shown in Figure 7.2. You get to this screen in

Windows by clicking Start, Control Panel, Programs, Turn Windows Fea-
tures On or Off.

Chapter 7: Hosting290

Figure 7.2 Enabling Windows Process Activation Services

Second, after WAS is enabled, you must check WCF Non-HTTP Activa-
tion as shown in Figure 7.3. If you want to enable HTTP activation for WCF
services, you should enable the WCF HTTP Activation component, which
will automatically enable required IIS7 features.

Figure 7.3 Enabling WCF non-HTTP activation

Hosting a service in WAS is similar to hosting in IIS, as shown in Chap-
ter 1. You need a virtual application, an SVC file, and/or entries in the
<�����������	����
��? section of the ��������	� file. To enable protocols
other than HTTP, you need to complete two additional steps.

First, add the protocol binding information to the corresponding Web site
in the WAS configuration. For example, with TCP you need to configure a
specific port. The default binding information for ������� is 808:*, which
means that the port number is 808 and the listener uses a wildcard mecha-
nism for listening. Then you need to update the virtual application to enable
that alternative protocol. Both of these settings are in the %���	��	������
config file in %windir\System32\inetsrv\config and can be set using the
����
���� utility, found in %windir\System32\inetsrv\. Listing 7.2 shows
the commands to make both of these changes. The name of the virtual appli-
cation is WASHosted and is defined under Default Web Site.

Listing 7.2 Enabling ��

�� for a Virtual Application

����
����#���#�	��#7D�����#(��#�	��7#E
T�	�
	�������������4b�������b5�	�
	��+������	��4b2:2/Wb

����
����#���#��#7D�����#(��#�	��9(%������
7#
9�����
!��������/8���5�������

In the same way that you can add a protocol, you can also remove one.
For example, if you want to disable HTTP for that application, you can
remove HTTP from the list of enabled protocols, as shown in Listing 7.3.

Listing 7.3 Disabling HTTP from a Virtual Application

����
����#���#��#7D�����#(��#�	��9(%������
7#
9�����
!��������/�������

Second, enable the binding in the ��������	� any of the WCF-
supported transports, including TCP, MSMQ, and named pipes. Listing 7.4
shows a ��������	� file configured for TCP binding.

Listing 7.4 Configuration for WAS-Hosted Service

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?

Hosting a Ser vice in Windows Process Activation Ser vices 291

Listing 7.4 continued

<����	��#���47&�����	�(�)����������	��7#?
<��
��	��#

����477#

�	�
	��47�������	�
	��7#
�������47&�����	�(�)�+���������	��79?

<9����	��?
<9����	���?

<9�����������	����
��?

<9����	����	��?

Hosting a Service in IIS 7

In IIS 6, available on Windows 2003 and Windows XP SP2, application
pools were introduced as a runtime container for hosted applications. This
enabled control over startup and shutdown, and identity and recycling ser-
vices on a per-process basis. It naturally provided process isolation across
applications, which led to greater reliability. Overall process management
was handled by the application pool architecture.

In IIS7, available on Windows Vista and Windows Server 2008, process
management has been generalized to support multiple protocols and was
moved into WAS. ASP.NET is also extended to support process activation
and service hosting in WAS.

Figure 7.4 depicts IIS7 on the WAS architecture.
The three minimum steps necessary to host a service in IIS7 are

described in Chapter 1. For review, you must create an IIS Virtual Applica-
tion, create an SVC file to define the service implementation, and include
a <�����������	����
��? section in ��������	�.

To host a WCF service in IIS, you first need to define a virtual applica-
tion. A virtual application is an IIS construct that combines a Web site, a
protocol listener, and process activation. The Web site is a virtual directory
that stores files. The listener process is w3svc for IIS and leverages 8�������
for network I/O. Process activation maintains the runtime environment for
code and is defined as an AppPool within IIS.

Chapter 7: Hosting292

Hosting a Ser vice in IIS 7 293

Windows
Activation Services

http net.tcp net.pipe net.msmq

P
ro

ce
ss

 H
os

t

AppPools (w3wp.exe)

w3svc
NetTcp

Activator
NetMsmq
Activator

NetPipe
Activator

Worker
(AppDomain)

= IIS 7

Figure 7.4 IIS implemented on WAS

After the virtual application is defined, you must place an SVC file and
a ��������	� in the virtual directory. The SVC file includes a reference to
the service implementation and the ��������	� defines the address, bind-
ing, and contract for the endpoints and the behaviors for the service.

The SVC file will look in three places for the implementation of the ser-
vice: first in the SVC file itself, then in the /bin folder of the virtual direc-
tory, and finally in the GAC of the machine. The SVC file is similar in
function to the ASMX file in IIS 6.

The ��������	� defines the service and endpoints, the ABCs of WCF,
which are an address, a binding, and a contract. Because the service is
hosted by IIS, and IIS only knows about the HTTP transport (in contrast to
TCP or MSMQ), the endpoints in the ��������	� file must use a binding
that specifies HTTP as the transport. Three of the built-in standard bind-
ings, ��	������	�
	��, �������	�
	��, and ��D�������	�
	��, use this
transport, so these can be used by endpoints defined by services hosted by
IIS. If you define an endpoint that uses a binding based on a different trans-
port, such as TCP or MSMQ (that is, �������	�
	��), a runtime error will
be thrown when the service is first activated. The address should be a rel-
ative address because the base address of the service is determined by the
protocol binding and the virtual path of the SVC file.

Let’s consider what happens when a virtual application is created, when
the first HTTP request arrives at that application, and how subsequent
requests are handled.

When you create a virtual application using the IIS Manager, the URL
associated with the virtual application is registered with IIS (w3svc). At that
point, all requests received by the HTTP protocol listener adapter are sent
for processing. The HTTP protocol listener adapter is HTTP.SYS, which is a
system driver. The listener adapter architecture is described in the “Hosting
a Service in Windows Process Activation Services” section of this chapter.

When the first request for a particular SVC file arrives from the protocol
listener, IIS invokes WAS to start the worker process �I������, if it is not
already started. The worker process is designated by the AppPool for that
virtual application. The ASP.NET application manager sitting in the worker
process receives the request from IIS/WAS and loads WCF hosting mod-
ules and handlers. The WCF hosting layer looks in the <����	����
��?
section of the ��������	� and uses a ����	������)����� to create a
����	������ for the class indicated in the <����	��? element. It then adds
the endpoints to the ����	������ defined in the <����	��? section of
��������	�. Finally, it calls the ����	�������"��� so that the service can
start listening for incoming requests. When service starts, it registers the
endpoint addresses with the protocol listener so that subsequent requests
are sent directly from the protocol listener to the service itself.

Enabling ASMX Features in an IIS-Hosted Service

Prior to WCF, ASMX was a common approach to Web services in ASP.NET.
It provided excellent support for the common Web service requirements
and offered robust extensibility via the ASP.NET HTTP pipeline. With WCF,
services are designed to be transport independent and agnostic to their
hosting model. So WCF services cannot rely on an implementation within
the HTTP pipeline, such as HTTP.SYS.

Like ASMX, WCF also provides a robust extensibility model. But rather
than using the HTTP pipeline, it leverages the channel stack. Channels in

Chapter 7: Hosting294

WCF are very flexible. They know about transports, like HTTP, but also
about other protocol elements such as security and transactions. Channel
stacks are described in Chapter 3, “Channels,” and Chapter 4, “Bindings.”

WCF supports a special hosting model within IIS: ASP.NET Compati-
bility mode. When running in this mode, ASP.NET provides the hosting
environment for WCF services. Therefore, settings under <����������9
8���	��&��	�������? and <����������9����	��	��? are valid. However,
not all ASP.NET HTTP features are enabled in this mode:

•

�(��
�&
(�����
. Set to ���� in the ASP.NET HTTP pipeline. In
a WCF service, you can use the "����	����������������� object to
achieve similar purposes.

• File/Url Authorization

• Impersonation

• Session state

• *�	�
�����+!������=�
���,

• (��$�����
����������#����

����. You can only get the settings
in ��������	� at the root or above the virtual application, because
8���������� is ����.

To enable ASP.NET features by running in ASP.NET Compatibility
mode, two settings must be adjusted. At the application level, you must set
the attribute <��=�������	�	�	��&����
? in <����	������	��&��	C

�������? of <�����������	����
��?# to ���� in the ��������	�. And
because ASMX is an opt-in model at the service level, you must set the
property %��=�������	�	�	��>�S�	������� to %�����
 at the service
level. With these two settings, almost all of the ASP.NET features are avail-
able to the WCF service. Table 7.1 describes the relationship between these
two settings.

Enabling ASMX Features in an IIS-Hosted Ser vice 295

Table 7.1 Settings for Enabling ASMX Features in a WCF Service

ASMX
���B�
(����
�����
	"������ #��B�
(����
�����
	<�@�������
����� Features
in *������$��, in .���������������/ Enabled

���� =��%�����
 No—
Activation
error

���� %�����
 Yes

���� >�S�	��
 Yes

)��� (default) =��%�����
 No

)��� (default) %�����
 No

)��� (default) >�S�	��
 No—
Activation
error

However, there are few areas that need further explanation.

•

�(��
�&
(�����
. ����	����	��������%������	��� and
����	����	��������$������	�� both work. Also,
������������������� will flow among WCF threads.

• Globalization. You can set thread culture and access the Globaliza-
tion section in <����������?.

• Impersonation. WCF supports impersonation at the service and
operation level using behaviors. This is in addition to what is imple-
mented by ASP.NET. If the service enables impersonation through
WCF, this overrides settings in ASP.NET. If the service does not
implement impersonation, ASP.NET rules will be used.

• Session state. This is fully implemented and derived from ASP.NET
configuration. You can save state with the process, server, or SQL
persistence mechanism.

After ASP.NET Compatibility mode is enabled, services can take advan-
tage of the features in ASP.NET. In Listing 7.5, we leverage two ASP.NET fea-
tures. First, we use the SessionState feature of ASMX to store session-level

Chapter 7: Hosting296

state. Instancing can be scoped as !�����, !������	��, or �	����. These
are further defined in Chapter 5, “Behaviors.” In this example, we use
!������	��, so that if a client uses the same proxy multiple times to invoke
the service, session state will be preserved across calls. There are many
other ways to store session-level data in WCF, but for those familiar with
ASMX, this is a convenient mechanism. Second, we use the familiar
AppSettings section in ��������	� to store application-specific configu-
ration data. In the service code, the %������	��� collection of the
����	����	������� object is used to retrieve these values.

Listing 7.5 Accessing ASMX Session State and Configuration Settings

��	��#������'
��	��#�������(��'
��	��#�������(�������	����	��'
��	��#�����������	����	��'
��	��#�����������	����
��'
��	��#�������>���	������	�	G�	��'
��	��#�����������	����
���%��	��	��'

�������#&�����	�(�)
*

�D��������
����	�#����#�����!�	��
*

�D������� #����	�#���	��#������'
�D������� #����	�#	��#����'
�D������� #����	�#
�����#��	��'

.

�����	���������
����	�#	�������#+���������	��
*

�"����	���������
�����!�	��#$��!�	��,���	��#�	����-'

.

.����������������%��
����(��
�&
�������
%��
����(��
�&
����3����������/

.#��B�
(����
�����
	<�@�������
�
�<�@�������
������

#��B�
(����
�����
	<�@�������
�����<�@������/
����	�#����#���������	��#/#+���������	��
*

����	�#�����!�	��#$��!�	��,���	��#�	����-
*

Enabling ASMX Features in an IIS-Hosted Ser vice 297

Listing 7.5 continued

�����!�	��#�#4#���#�����!�	��,-'
	��#�����#4#:'
�$��

�(��
�&
(�����
�������.)��
)/�S�������

�(����������
�

�(��
�&
(�����
�������.)��
)/�

�(��
�&
(�����
�������.)��
)/���NN�(�����

������#4#�����'
����	��#4#01�23'
��������#4#(��$�����
����������#����

����.)�
��0������)/�
������#�'

.
.

.

For !������	�� instancing to work, a session identifier must be pre-
served on the client so that subsequent calls from the client to the service
can pass the session ID back to the service. With ASP.NET, this is done with
a client-side cookie that is passed in the HTTP headers. For !������	��
instancing via ASMX to work, the client must enable cookies. Because
the standard HTTP bindings, ��	������	�
	�� and �������	�
	��, dis-
allow cookies by default, you must define a binding configuration with
%���������	��4���� in the client’s �������	�. Listing 7.6 shows enabling
��=�������	�	�	�� on the service.

Listing 7.6 Enabling ASP.NET Compatibility on the Service Configuration

<�����������	����
��?
<����	������	��&��	�������#���B�
(����
�����
	"�������)
���) 9?
<����	���?
<����	��#��8�	������	����	��47�&O����	��������8�	��7#

���47&�����	�(�)����������	��7?
<��
��	��#

����477#�	�
	��47��	������	�
	��7#

�������47&�����	�(�)�+���������	��7#9?
<��
��	��#

����47���7#�	�
	��47��������	�
	��7#

�������47+���
�&��8���7#9?
<9����	��?

<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47�&O����	��������8�	��7?
<����	�����
�#8���$��&����
47����7#9?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<9�����������	����
��?

Chapter 7: Hosting298

Listing 7.7 shows how to enable cookies in the client-side configuration.
This listing was generated by Add Service Reference in Visual Studio. Note
that the default value for ��������	�� is set to ����.

Listing 7.7 Enabling Cookies in the Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?
<�	�
	���?

<��	������	�
	��?
<�	�
	��#���47��	������	�
	��F+���������	��7#

������	�����47::/:B/::7
�����	�����47::/:B/::7#����	���	�����47::/B:/::7#
���
�	�����47::/:B/::7
�����(��0����)
���)
�����!����"�;���47����7#
8���=�������	�����
�47������(�
��
7
���������	G�47H33IH7#��������!����	G�473J1J227#
��>���	��
�������	G�47H33IH7
������&���
	��47����7#����&���
	��47���C27#
���������
�47�������
7
���D�����(��!����47����7?
<��
��K����#��D���847IJ7#

�����	���������;����8472B0J7#
��%���;����847BHI217
�������!��>�
471:0H7#
��=�������8������47BHI217#9?

<�����	��#��
�47=���7?
<��������#��	������
���	�����47=���7#

��������
���	�����47=���7
����477#9?

<������#��	������
���	�����476���=��7#
����	�8���	��47D�����7#9?

<9�����	��?
<9�	�
	��?

<9��	������	�
	��?
<9�	�
	���?
<��	���?

<��
��	��

����478���/99��������9(�)%��O����9���������	������7
�	�
	��47��	������	�
	��7#
�	�
	������	����	��47��	������	�
	��F+���������	��7
�������47����8����+���������	��7#
���47��	������	�
	��F+���������	��7#9?

<9��	���?
<9�����������	����
��?

<9����	����	��?

Enabling ASMX Features in an IIS-Hosted Ser vice 299

Enabling ASP.NET impersonation is done the same way in WCF as it
was in .NET 1.X. This is accomplished by including <	
���	��#	�������C
��47����79? in the <����������? section of the ��������	� file. When
you do this, client credentials are automatically passed to the service, and
the service executes operations using the client’s credentials.

Enabling impersonation can be done in one of two ways. To set it at the
service level, use 	��������������)��%��"����	���=���� in the ser-
vice behavior and +��������	��"��	���%�����
 in the operation behav-
ior. To enable it at the operation level, use +��������	��"��	���>�S�	��

in the operation behavior without any reference at the service behavior.

Listing 7.8 shows setting impersonation at the operation level, assuming
it is not disallowed at the service level in ��������	�. When a client accesses
this service, the logged-on identity of the user is returned in the >�S�����
��
member. If the operation behavior is removed, the >�S�����
�� member
defaults to the network service. Impersonation is covered in more detail in
Chapter 8, “Security.”

Listing 7.8 Enabling Impersonation

�������#&�����	�(�)
*

�D��������
����	�#����#�����!�	��
*

�D������� #����	�#���	��#>�S�����
��'
�D������� #����	�#
�����#��	��'

.

�����	���������
����	�#	�������#+���������	��
*

�"����	���������
�����!�	��#$��!�	��,���	��#�	����-'

.

�����	����8�	��
.#��B�
(����
�����
	<�@�������
�

�<�@�������
������
#��B�
(����
�����
	<�@�������
�����<�@������/

�����	���������
����	�#����#���������	��#/#+���������	��

Chapter 7: Hosting300

*
.2����
������������%��������
������

%��������
���2�
���<�@������/
�"����	���������
����	�#�����!�	��#$��!�	��,���	��#�	����-
*

�����!�	��#�#4#���#�����!�	��,-'
��>�S�����
��#4#9������%���
�
	!�
(�����
��B����
����	��#4#01�23'
������#�'

.
.

.

Self-Hosting

The most common environment for hosting WCF services is IIS or WAS.
Built on a common architecture, they both provide robust process control
and life cycle services, as well as a familiar management interface. This is
the right solution for most scenarios where IIS infrastructure is already in
place.

However, there may be cases where you don’t want to host a service
within IIS or WAS. You may want explicit control of the startup and shut-
down events. Or you may want to provide a custom administration interface
rather than using the IIS or WAS tools. For this, you can host a service in any
program by using the ����	������ class from the �����������	����
��
namespace. When you do that, you’re self-hosting a WCF service.

A common scenario is to host a WCF service in a managed Windows ser-
vice that starts when the system boots and shuts down with the system. A
managed Windows service may run on an operating system that supports
WCF, including Windows XP, Windows 2003 Server, Windows Vista, or
Windows Server 2008. This is covered in detail in the “Self-Hosting in a
Managed Windows Service” section of this chapter.

Another scenario is to host the service in a desktop application, using
WinForms or Windows Presentation Framework or a command-line con-
sole application. The service could use peer networking, use a well- known
address so that other clients can send it messages, or advertise its address
in some other way. If the service uses a persistent queue as the transport,

Self-Hosting 301

messages can be sent to this service even when the client isn’t running. A
persistent queue, implemented by MSMQ or tables in a relational database,
is a good mechanism to facilitate communication between a client and ser-
vice; the two may be temporarily disconnected from each other.

Implementing a self-hosted service is very straightforward. The three
steps are listed in Listing 7.1. The host, the program that creates the
����	������ object and calls its "��� method, is responsible for staying
alive until it’s time to shut down. There are a few options when creating the
����	������, such as where to get the server base address from and
whether to create a singleton, but that’s about it.

Listings 1.1 and 1.2 in Chapter 1 demonstrate the bare minimum for self-
hosting a service. Those listings show self-hosting from a console applica-
tion that could be run on the console of a server or on an administrator
desktop.

Self-Hosting in a Managed Windows Service

Managed Windows services are operating system processes that are con-
trolled by the Service Control Manager (SCM). They are administered using
the Services Microsoft Management Console (MMC), but Windows Man-
agement Instrumentation (WMI) and SCM APIs make them available to
other configuration tools and scripting. Through these tools you can
configure a variety of features, such as whether they start automatically
with the OS and the Windows identity in which they run. Windows ser-
vices are a common hosting environment for enterprise applications such
as Microsoft SQL Server and Microsoft Exchange.

The managed Windows service infrastructure, available in unmanaged
code via Win32 APIs and managed code derived from ����	����� in the
�����������	��!������ namespace, provides a basic administration inter-
face but does nothing for the actual hosting, scaling, security, and reliabil-
ity of your code. You are responsible for implementing all communication
(MSMQ, named pipes, TCP, and so on) as well as threading, instancing, and
throttling. Fortunately, those features are implemented in WCF, so when
you host a WCF service in a Windows service, this is done for you.

Chapter 7: Hosting302

Visual Studio has a built-in template for defining a Windows service.
When creating a project from this template, the skeleton has a static �	�,-
that starts the service and a class that derives from ����	����� into which
you put your code. The skeleton code needs to be completed in two ways:
Add the WCF ServiceHost to instantiate your service and register the ser-
vice with the SCM.

First, you need to add code to the "����� method to start processing
incoming messages. Prior to the introduction of WCF, this is where you
would create thread pools, listeners, and a recycling mechanism, all typi-
cally driven off of configuration files. But by using WCF, all you need to do
in the "����� method is create the ����	������ and start it listening. It’s
also helpful to use the &����;�� to log an informational startup message.

Second, you need to implement a !��X���+�������, which is defined
and referenced in the �����������	����	���+����� namespace. The
!��X���+������� class is used to install the managed service on the tar-
get machine. You could do this in a setup program or you can include it
right within the service itself. To install the service, you then use the
installutil.exe utility to register the service with the SCM. After running the
utility, the service will be ready to run from the SCM.

Listing 7.9 shows the fully implemented Windows service.

Listing 7.9 WCF Service Hosted in a Windows Service

��	��#������'
��	��#������������������
��'
��	��#�������D	�����	��'
��	��#�����������	��!������'
��	��#�����������	����	��'
��	��#�����������	����	���+�����'
��	��#�����������	����
��'
��	��#�����������	����
���D����	��	��'

�������#&�����	�(�)
*

.<��%��
������
����/
�������������3��Q��
%��
������6�%��
�����
*

��	���#����	��!������+�������#�������'
��	���#����	��+�������#����	��'

����	�#!��X���+�������,-
*

Self-Hosting in a Managed Windows Ser vice 303

Listing 7.9 continued

�������#4#���#����	��!������+�������,-'
��������%������#4#����	��%�������;���������'
����	��#4#���#����	��+�������,-'
����	�������	��=��#4#7&�����	�(�)7'
+���������%

,�������-'
+���������%

,����	��-'

.
.

�����	���������
����	�#����#���������	��
*

�"����	���������
��	���#
�����#$��!�	��,���	��#�	����-
*

������#01�23'
.

.

����	�#���	�#����#����	��#/#����	�����
*

����	�#����	��,-
*

+�	�	�	G����������,-'
.

���
��
�����������������2��
��
��
����./������
*

����	������#����	������#4#���#
����	������,������,���������	��--'

����	�������"���,-'
����	��&�
��	��#��
��	��#4

����	�������D����	��	���&�
��	����: '

&����;���(�	��&����,��
��	�����������=��#T#7#�����
7
T#7#�	����	��#��#7#T#��
��	���%

����#
T#7#,7#T#��
��	����	�
	���=��#T#7-75
�������D	�����	���

&����;��&���������+������	��-'
.

��������
#�����	
�#��	
#"�����,-
*

&����;���(�	��&����,7&�����	�(�)#�����	��75#
�������D	�����	���

&����;��&���������+������	��-'
.

.
.

Chapter 7: Hosting304

Figure 7.5 shows a screenshot of the Service Control Manager with the
EffectiveWCF service started.

Hosting Multiple Ser vices in One Process 305

Figure 7.5 Service control manager

Hosting Multiple Services in One Process

Aggregating application capabilities to just the right service level is an
essential element of system design. Build a system with too many interfaces
and it becomes confusing. Build one with too few interfaces and it becomes
monolithic and difficult to change.

In Chapter 2, “Contracts,” we described how to aggregate multiple class
interfaces into a single endpoint. This is accomplished through .NET inter-
face aggregation. We also described how to expose multiple endpoints
within a single service. This section takes an alternative approach. Rather
than aggregating two interfaces into one and exposing the aggregate as a

service, here we demonstrate how to expose two services independently
within a single operating system process.

A ����	������ exposes exactly one service. So, to expose multiple ser-
vices within an operating system process, you need to implement multiple
����	������ classes. This is precisely what WAS does—it creates a
����	������ for each service activated via an SVC file. The SVC contains a
service name that has endpoints described in the ��������	� for the appli-
cation. The endpoint lists the address, binding, and contract, so the
����	������ has everything it needs to begin listening for and dispatching
messages.

When self-hosting services, you can similarly instantiate multiple
����	�������. Each host is truly independent, other than sharing the same
operating system process. Each host has its own configuration in the
<�����������	����
��? section of �������	� file. After the ����	������
is started, threading and instance management is managed independently
by WCF so the hosting program does not need to implement that logic.

Listing 7.10 demonstrates a console application that is hosting two ser-
vices. The $�������!�	�� method of $��
���������	�� waits ten seconds
before returning a result, whereas the same method of $������������	��
returns results immediately. Because the service behaviors are configured in
WCF, this simple application is multithreaded, so when $��
���������	��
is sleeping, $������������	�� is responding to requests. And even the slow
service is multithreaded, dispatching multiple inbound messages to new
instances of $�������!�	�� as needed.

Listing 7.10 Multiple Self-Hosted Services in One Process

��	��#������'
��	��#�����������	����
��'
��	��#�����������	����
���D����	��	��'
��	��#�����������	����	��'
��	��#��������8��
	��'

�������#&�����	�(�)
*

.�������(��
���
/
�������������!����
��0�������
*

�"����	���������
����	�#
�����#$�������!�	��,���	��#�	����-

Chapter 7: Hosting306

*
�8��
������,B::::-'
������#01�23'

.
.
.�������(��
���
/
�������������!���
�
��0�������
*

�"����	���������
����	�#
�����#$�������!�	��,���	��#�	����-
*

������#01�23'
.

.

����	�#����#������
*

99#����#�8�#����	��#�	�8	�#�8	�#&O&#�������#���	��	���
����	�#���	�#��	
#�	�,#-
*

����	��D����	��	��#
���#4#����'
������� ��
�������� ��
>�������

������� ��
�
	���$�!����
��0����������
������� ��
>2������
��������(�	��;	��,7����	��#NB#	�#��
��7-'

������� ��
�������� ��
?�������
������� ��
�
	���$�!���
�
��0����������

������� ��
?2������
��������(�	��;	��,7����	��#NJ#	�#��
��7-'

��������(�	��;	��,7!����#<&=�&>?#��#����	����@�@�7-'
��������>�
;	��,-'

99#�����#�8�#����	�������#��#�8��
���#�8�#����	���
����	������B������,-'
����	������J������,-'

.
.

.

The �������	� file in Listing 7.11 has two entries in the <�������
����	������? section—one for each service. Each service has a unique base
address. Note that each endpoint within each service has a blank address.
An endpoint with a blank address listens for incoming messages on the ser-
vice’s base address. There can be, at most, one endpoint within a service
that specifies a null address using the same URI scheme as the service’s
base address.

Hosting Multiple Ser vices in One Process 307

Listing 7.11 Configuration for Multiple Self-Hosted Services in a Process

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)�$��
���������	��7#

��8�	������	����	��47�������	����8�	��7?
<8���?
<���%

������?
<

#���%

����478���/99����8���/2::B9&�����	�(�)979?

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47��	������	�
	��7
�������47&�����	�(�)�$��
���������	��7#9?

<9����	��?

<����	��#���47&�����	�(�)�$������������	��7#
��8�	������	����	��47�������	����8�	��7?

<8���?
<���%

������?
<

#���%

����478���/99����8���/2::J9&�����	�(�)979?

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47��	������	�
	��7
�������47&�����	�(�)�$������������	��7#9?

<9����	��?
<9����	���?

<��8�	���?
<����	����8�	���?
<��8�	��#���47�������	����8�	��7?
<����	�����
�#8���$��&����
47����79?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?

<9�����������	����
��?
<9����	����	��?

Defining Service and Endpoint Addresses

A WCF service is a collection of endpoints, where each endpoint has a
unique address. The endpoint address and binding defines where and how

Chapter 7: Hosting308

the endpoint listens for incoming requests. In addition to the endpoint
addresses, the service itself has an address, which is called the base address.

The base address for a service is used as a base for relative addresses that
may be defined in the endpoints. Using relative, rather than absolute, end-
point addresses makes it easier to manage endpoints in a service. With rel-
ative addresses, you can change all the endpoint addresses in a service by
just changing the service’s base address.

When using a relative address in an endpoint, the relative address is
appended to the base address to form the service base address. For instance,
if a service base address is http://localhost/foo and the endpoint’s address
is bar, the endpoint will listen at http://localhost/foo/bar for incoming
messages.

When using absolute addresses in an endpoint, the endpoint address is
unrelated to the service base address. For instance, a service base address
can be http://localhost/foo, whereas an endpoint address within that is
net.tcp://bar/MyOtherService/.

A service can have multiple base addresses, but only one per URI
scheme. When a relative address is used in an endpoint, WCF finds the base
address of the service with a transport that matches the protocol defined by
the endpoint’s binding. For instance, if a service defines two base
addresses, http://localhost/ and net.tcp://bigserver/, and an endpoint
uses a relative address of foo with a binding of ��	������	�
	��, the end-
point’s address is http://localhost/foo. If another endpoint in that service
uses the same relative address foo, that endpoint’s address is netc.tcp/
bigserver/foo.

When hosting a service in IIS, the base address of the service is the
address of the IIS virtual directory in which the SVC file resides. If the
������	����P� file resides in the http://localhost/foo/, the base address of
the service is http://localhost/foo. Endpoint addresses specified within
the ��������	� must be relative when hosting in IIS.

Listing 7.12 shows a configuration file for a service. Note a few points:

• Base addresses. Two base addresses are defined for the service, each
using a different protocol. If two base addresses are defined with the
same protocol, it would be impossible to know how to build full

Defining Ser vice and Endpoint Addresses 309

addresses from relative addresses specified in the endpoints, so
WCF will throw an error at service activation time.

• Blank relative address. The address of the first endpoint is blank.
Combined with the base address of the service using the same pro-
tocol, the address of the endpoint is the same as the address of the
service.

• Nonblank relative address. The address of the second endpoint is
ws. Combined with the base address of the service using the same
protocol, the address of the endpoint is http://localhost:8000/
EssentialWCF/ws.

Listing 7.12 Service and Endpoint Addressing in Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)����������	��7
<8���?
<���%

������?
<

#����#������478���/99����8���/2:::9&�����	�(�)979?
<

#����#������47�������/99����8���/2::B9&�����	�(�)979?

<9���%

������?
<98���?
*�������
���������))

�	�
	��47��	������	�
	��7
�������47&�����	�(�)�+���������	��7#9?

*�������
���������)������)
�	�
	��47�������	�
	��7
�������47&�����	�(�)�+���������	��7#9?

*�������
���������)$��
)
�	�
	��47�������	�
	��7
�������47&�����	�(�)�+���������	��7#9?######<9����	��?

<9����	���?
<9�����������	����
��?

<9����	����	��?

Using the �����������	����
���D����	��	�� namespace, you can
access all the address and binding information from the ����	������. List-
ing 7.13 shows a code snippet to point out this information.

Chapter 7: Hosting310

Listing 7.13 Code Snippet to Print Address and Binding Information

�����8#,6�	#��	#	�#����	����������%

������-
��������(�	��;	��,7���#%

�#6�	#####/##*:.75#��	�%�������6�	-'

�����8#,����	��&�
��	��#��
��	��#	�#����	�������D����	��	���&�
��	���-
*

��������(�	��;	��,7@�&�
��	��#C#

����/##*:.75
��
��	���%

����-'

��������(�	��;	��,7###########�	�
	��/##*:.75#
��
��	����	�
	���=��-'

��������(�	��;	��,7###########�������/#*:.75#
��
��	�����������=��-'

.

Figure 7.6 shows the output of this code when run against the configu-
ration in Listing 7.12.

Summary 311

Figure 7.6 Viewing address and binding from a running service

SUMMARY

WCF has great flexibility when it comes to hosting. WCF services can be
hosted in practically any operating system process. The service host, or just
“host,” is responsible for starting and stopping the service and providing
some basic management functions for controlling it. Choosing the right
hosting environment for a service is based on operational quality require-
ments such as availability, reliability, and manageability.

Both IIS and Windows Process Activation Services (WAS) have built-in
infrastructure for hosting WCF services. Features previously available only
in IIS, such as process activation, recycling, and identity management, have
been moved into WAS and made available to protocols other than HTTP.
This makes WAS a superset of IIS, but IIS is ideally suited for hosting
HTTP-based WCF services. WCF supports many of the ASMX features
through ASP.NET Compatibility mode.

In addition to IIS, managed Windows services is also a common tech-
nique for hosting WCF services. These processes are controlled by the Ser-
vice Control Manager (SCM) and have a familiar administration interface.
Visual Studio has a built-in template for defining a Windows Service, so
between the ease of development and ease of management, Managed Win-
dows Services make a good candidate for self-hosting WCF services.

Table 7.2 summarizes the common hosting choices.

Table 7.2 Hosting Choices

Host When to Use

IIS Host in IIS for unattended services that start and stop
with the system. If you’re deploying into an environ-
ment that already has IIS running, many of the admin-
istrative policies are already in place, and IT staff may
already be trained. IIS hosting is limited to HTTP
transports.

Host in IIS if you want to leverage WCF for services
(as opposed to ASMX) but want access to some of the
ASMX/ASP.NET features.

WAS Host in WAS for unattended services that start and
stop with the system but that use TCP, MSMQ, named
pipes, or other transports.

Managed Service Host in a managed service (a.k.a. NT Service) if you
want a custom administration interface for starting
and stopping the host. Managed services can be con-
figured to start and stop with the system. Many com-
mercial grade applications run as managed services.

Chapter 7: Hosting312

Host When to Use

Desktop Application Host a desktop application if you’re implementing a
service for user interaction. Peer networking is a com-
mon example.

Console Application Console applications are great for testing services
because debugging is very straightforward.

Summary 313

This page intentionally left blank

8
Security

I T’S H A R D TO I M A G I N E A facet of business applications in today’s envi-
ronment that is more critical than security. Certainly performance and

availability are also central concerns, but there is little value in an applica-
tion that is sometimes secure (in fact, it is probably more harmful than valu-
able). When we use an online banking service, we trust that the application
providers have done their utmost to prevent abuse, corruption of data,
hacking, and exposure of our financial details to others. The same is
expected of us as we provide WCF-based services to consumers.

This chapter will focus on the concepts behind security and the practical
means by which services are secured (when necessary) using WCF. We’ll
begin by introducing the major concepts, and then work our way into the
details, showing many examples along the way.

After a description of concepts, to provide background necessary to
work with the remainder of the chapter, we begin with an introduction to
the creation and use of certificates to secure services. That in hand, we cover
the details behind ensuring security from the transport and message
perspectives.

A large part of the chapter focuses on practical approaches for security
services in commonly encountered scenarios. These are categorized into
two broad groups, modeling intranet and Internet environments.

315

Finally, we end the chapter by showing how to enable WCF’s security
auditing features, enabling us to track and diagnose issues related to
authentication and authorization of callers to our service operations.

WCF Security Concepts

Before we get to the code, configuration, and processes for implementing
secure services, let’s begin by introducing four major tenets of service secu-
rity: authentication, authorization, confidentiality, and integrity. With those
defined, we’ll then describe the concepts of transport and message security
as they apply to WCF.

Authentication
One of the .most fundamental concepts of security is knowing who is
knocking on your door. Authentication is the process of establishing a clear
identity for an entity, for example, by providing evidence such as username
and password. Although this is clearly important for a service to under-
stand of its callers, it is equally important that callers have an assurance that
the service being called is the expected service and not an impostor.

WCF provides several options for this mutual authentication by both
the service and the caller—for example, certificates and Windows accounts
and groups. By using these and other options, as we’ll show throughout
this chapter, each side can have firm trust that they are communicating with
an expected party.

Authorization
The next step in .security, after identity has been established, is to deter-
mine whether the calling party should be permitted to do what they are
requesting. This process is called authorization because the service or
resource authorizes a caller to proceed. Note that you can choose to author-
ize anonymous users for actions as well, so although authorization is not
strictly dependent on authentication, it does normally follow.

Authorization can be performed by custom code in the service, native or
custom authorization providers, ASP.NET roles, Windows groups, Active
Directory, Authorization Manager, and other mechanisms.

Chapter 8: Security316

Confidentiality
When dealing with sensitive information, there is little use in establishing
identity and authorization if the results of a call will be broadcast to anyone
who is interested. Confidentiality is the concept of preventing others from
reading the information exchanged between a caller and a service. This is
typically accomplished via encryption, and a variety of mechanisms for this
exist within WCF.

Integrity
The final basic concept of security is the assurance that the contents of a
message have not been tampered with during transfer between caller and
service, and vice versa. This is typically done by digitally signing or gen-
erating a signed hash for the contents of the message and having the receiv-
ing party validate the signature based on the contents of what it received. If
the computed value does not match the embedded value, the message
should be refused.

Note that integrity can be provided even when privacy is not necessary.
It may be acceptable to send information in the clear (unencrypted) as long
as the receiver can be assured that it is the original data via digital signature
verification.

Transport and Message Security
There are two major classifications of security within WCF; both are related
to the security of what is transferred between a service and caller (some-
times called transfer security). The first concept is of protecting data as it
is sent across the network, or “on the wire.” This is known as transport
security. The other classification is called message security and is concerned
with the protection that each message provides for itself, regardless of the
transportation mechanism used.

Transport security provides protection for the data sent, without regard
to the contents. A common approach for this is to use Secure Sockets Layer
(SSL) for encrypting and signing the contents of the packets sent over
HTTPS. There are other transport security options as well, and the choice of
options will depend on the particular WCF binding used. In fact, you will
see that many options in WCF are configured to be secure by default, such
as with TCP.

WCF Security Concepts 317

One limitation of transport security is that it relies on every “step” and
participant in the network path having consistently configured security. In
other words, if a message must travel through an intermediary before
reaching its destination, there is no way to ensure that transport security
has been enabled for the step after the intermediary (unless that interme-
diary is fully controlled by the original service provider). If that security is
not faithfully reproduced, the data may be compromised downstream. In
addition, the intermediary itself must be trusted not to alter the message
before continuing transfer. These considerations are especially important
for services available via Internet-based routes, and typically less important
for systems exposed and consumed within a corporate intranet.
Message security focuses on ensuring the integrity and privacy of individ-
ual messages, without regard for the network. Through mechanisms such
as encryption and signing via public and private keys, the message will be
protected even if sent over an unprotected transport (such as plain HTTP).

The option to use transport and message security is typically specified
in configuration; two basic examples are shown in Listing 8.1.

Listing 8.1 Transport and Message Security Examples

<��	������	�
	��?
<�	�
	��#���47���	�
	��7?
*������
	������)-�������
),
*
�������
������
(�����
���-	���)(�
���)+,

*+������
	�,
<9�	�
	��?

<9��	������	�
	��?

<�������	�
	��?
<�	�
	��#���47���	�
	��7?
*������
	������)�������),
*
�������
������
(�����
���-	���)B���)+,

*+������
	�,
<9�	�
	��?

<9�������	�
	��?

As you progress through this chapter, you’ll see scenarios with exam-
ples using transport or message security, and in some cases, a mixture of
both.

Chapter 8: Security318

Certificate-Based Encryption

Certificates, and the claims they represent, are a secure, general-purpose
method for proving identity. They embody a robust security mechanism
that makes them a great option for encryption and authentication. WCF
uses industry-standard X.509 certificates, which are widely adopted and
used by many technology vendors. Internet browsers and Internet servers
use this format to store encryption keys and signatures for SSL communi-
cation on the Web. Certificates provide strong encryption and are well
understood and documented.

The primary disadvantages of certificates are the expense of acquiring
them for production from a third-party authority and the complexity asso-
ciated with provisioning them. How do you distribute them? What do you
do if one is stolen? How do you recover data after one is lost? If you store
them on a client computer, how can you access information from the road?
A variety of solutions address these problems, from storing certificates in a
directory within an intranet or on the public Internet, to storing them in
Smart Cards that we can carry in our wallets. Regardless of the provisioning
solution, certificates are a good option for encryption and authentication.

Concepts
The overall concept of message encryption with asymmetric keys is fairly
simple. Imagine an algorithm that can encrypt an arbitrary string using one
key and that can decrypt it with another key. Now imagine that I have a
pair of those keys, and I make one of them public so that everyone on the
Internet can see it, but I keep the other one private so that only I can see it.
If my friend wants to send me a message, he looks up my public key, runs
the algorithm to encrypt the message, and sends it. If the encrypted mes-
sage is intercepted by my enemy, that person can’t read it because only I,
with my private key, can decrypt it. When I send a response back to my
friend, I look up his public key, run the algorithm to encrypt the response,
and send it. Again, only he can decrypt the encrypted messages, so it will
be kept confidential between us.

Certificate-Based Encryption 319

Digital signatures use message encryption, but in reverse. A digital sig-
nature is simply a string that is encrypted with a private key so that it can
only be decrypted with a corresponding public key. The correct decryption
of the string (for example, my name) is public information, so after some-
one decrypts the string using my public key, the person can verify that my
name was stored in the message.

Trust is another important aspect of certificates. In our example of
exchanging messages with a friend, how do we know that we have the pub-
lic key of our friend and not of our enemy? For a client and service to trust
that each other’s certificates are correct, valid, and have not been revoked,
they must trust a common authority. It’s okay if the client and service use
certificates issued by different authorities, as long as those authorities both
trust a third, common authority. The common authority is often referred to
as the root authority, which typically is self-signed, meaning that it doesn’t
trust anyone else. When a client receives a certificate from a service, it looks
at the certification path of the service certificate to see if the path is valid
and terminates at a trusted authority. If so, the client trusts that the certifi-
cate is valid; if not, it rejects it. There are provisions in WCF for disabling the
certification path validation so that untrusted certificates can be used in
development and testing.

Setup
Certificates can be used for transport- or message-level security. A com-
monly used transport-level encryption option, SSL, is applied to the trans-
port by using a certificate on the server. Message-level encryption works on
individual messages. Whereas transport-based encryption requires a cer-
tificate to be installed with the service, message-based encryption supports
a variety of modes with client and/or server certificates.

The examples in the “Transport-Level Security” and “Message-Level
Security” sections of this chapter will use two machines: a Vista desktop
and a Windows 2003 server. The desktop has a certificate, MyClientCert.
The server has a certificate, MyServerCert. Listing 8.2 shows the commands
that run on Vista to generate the necessary certificates. Makecert.exe creates
a certificate. The C�� switch makes the private key exportable. The C�
switch defines the name of the certificate that will be the name that is used

Chapter 8: Security320

for authentication. The C�� switch defines the private key file. The C���
switch can be “exchange” or a digital signature. Pvt2pfx is a utility that
combines the private key and public key into a single file.

If you’re developing on one machine, change the name MyServer to
localhost. All other instructions will remain the same.

Certificate-Based Encryption 321

NOTE Production Certificates

Keep in mind that certificates generated in this fashion should not be
used in production scenarios. Certificates for use in production envi-
ronments should be requested from a trusted third-party certificate
authority.

Listing 8.2 Generating Certificates

�����������#C�#C��#C���#���8���#
E�#7�=4����	�������7##����	�����������#
C��#����	�����������#

���J�������##C���#����	�����������#
C���#����	�����������#
C���#����	�����������#

�����������#C�#C��#C���#���8���#
C�#7�=4������������7##����������������
C��#����������������

���J�������##C���#����������������#
C���#����������������#
C���#����������������

The .cer file is the public key, the .pvk file is the private key, and the .pfx
file is a key exchange file that contains both. The following keys must be
installed using the Certificates snap-in in the Microsoft Management
Console.

1. Install the following on the server, in the local computer certificate
store:

a. Import �	������(��
�$& to the Personal folder. This enables the
server to decrypt messages that have been encrypted with its pub-
lic key. It also enables the server to encrypt messages with its pri-
vate key.

b. Import �	(����
(��
��� to the Trusted People folder. This
enables the server to decrypt messages that have been encrypted
with the MyClientCert private key, such as data messages and
digital signatures for authentication. It also enables the server to
encrypt messages with the MyClientCert public key.

2. Install the following on the client, in the current user certificate store:

a. Import �	(����
(��
�$& to the Personal folder. This enables the
client to decrypt messages that have been encrypted with its pub-
lic key. It also enables the client to encrypt messages with its
private key.

b. Import �	������(��
��� to the Trusted People folder. This
enables the client to decrypt messages that have been encrypted
with the MyServerCert private key, such as data messages and
digital signatures for authentication. It also enables the client to
encrypt messages with the MyServerCert public key.

Transport-Level Security

Transport-level security, as its name implies, provides security in the com-
munication channel between the client and the service. Security at this level
can include both encryption and authentication. The channel stack (binding)
determines the types of encryption and authentication protocols available.

At a minimum, transport-level security ensures that communication is
encrypted between the client and the service so that only the client or ser-
vice can understand the messages exchanged. The specific algorithm used
for encryption is either a function of the underlying protocol (HTTPS uses
SSL, for example) or it can be specified in the binding. (MSMQ can use
RC4Stream or AES.)

In addition to encryption, transport-level security can include client
authentication by requiring credentials to be passed from the client to the
service when establishing the communication channel. Credentials may be
digital certificates, SAML tokens, Windows tokens, or a shared secret such
as a username and password. Transport-level security also validates the

Chapter 8: Security322

service identity before establishing a secure channel between client and ser-
vice. This validation protects against man-in-the-middle and spoofing
attacks.

Encryption Using SSL
SSL is a convenient, secure way to encrypt communications. It’s well under-
stood by IT organizations, it is firewall friendly, and there are many
management and performance tools on the market. Using SSL with
��	������	�
	�� enables the broadest reach of a secure Web service.

SSL requires a digital certificate with an asymmetrical (public/private)
key to establish an encrypted pathway. After it is established, SSL uses this
pathway, with a more efficient symmetric encryption algorithm, to encrypt
messages going both ways on the channel.

A digital certificate can be obtained from a number of sources. There are
public entities, such as Verisign, that issue certificates for testing and pro-
duction purposes. Windows Server itself ships with a certificate issuing ser-
vice, so you can generate your own certificates that can be trusted by your
organization or partners. In addition, .NET ships with a utility, MakeCert,
which generates certificates for testing purposes.

SSL over HTTP

SSL can be applied to most transport protocols (a notable exception being
queued transports), but it is most commonly used with HTTP. When using
a binding based on the HTTP transport, whether you’re hosting the services
in IIS or self-hosting in another process, HTTP.SYS must be configured for
SSL. For IIS, you can add the binding using the IIS Administration tool. For
IIS 7, this is done by selecting the Web site under which the virtual root is
defined, and then selecting the Bindings link in the Actions pane. This will
launch a dialog from which you can select the certificate to use for SSL com-
munications (see Figure 8.1).

For self-hosting a service on Windows Server 2008 or Vista, you can use
the netsh tool. Listing 8.3 shows the command line to configure HTTP.SYS
to allow SSL traffic on port 8001. Specifying IP address 0.0.0.0 indicates all
IP addresses. The 40-digit hex number is the thumbprint of a certificate

Transport-Level Security 323

installed on the machine. The thumbprint can be found by using the Cer-
tificates Add-In in the Microsoft Management Console and viewing the cer-
tificate details. The final GUID is an application identifier, representing who
enabled this access. Any GUID that you generate is acceptable here and will
be associated with your application.

Chapter 8: Security324

Figure 8.1 Configuring IIS 7 for SSL

Listing 8.3 Using B�
�� to Configure HTTP.SYS to Allow SSL on Different Ports

����8#8���#

#�������#:�:�:�:/2::B
B
�R�H
1J32B0�0:0�2���0JR3::R
3HJ
��#
*1
�I�B2BC�B1�C1JBC�:JJC30��HH0�:0B1.

After you’ve registered the certificate with HTTP.SYS, you can then con-
figure a service to use SSL encryption. Listing 8.4 shows a service configu-
ration file that is using the ��	������	�
	�� binding, transport-level

encryption, and no client authentication. Note that two base addresses are
specified in this self-hosted configuration file, one for encrypted and one for
non-encrypted communication. This enables the MEX endpoint to use a
non-encrypted channel and the subsequent communication to be
encrypted. If you don’t want to expose a MEX endpoint, or if it is okay to
expose it on a secure channel, you don’t need the non-encrypted address.

Listing 8.4 Encryption with �����

��������

<�����������	����
��?
<����	���?
<����	��#���47&�����	��(�)����������	��7

��8�	������	����	��47����8�	��7?
<8���?
*����#��������,
*��������#�������)�

�6++��������
67888+"$$��
���9(5)�+,
*��������#�������)�

��6++��������
6788>+"$$��
���9(5)+,

*+����#��������,
<98���?
<��
��	��#

����477

�	�
	��47��	������	�
	��7
�	�
	������	����	��47���	�
	��7
�������47&�����	��(�)�+���������	��7#9?

<��
��	��#

����47���7
�	�
	��47��������	�
	��7
�������47+���
�&��8���7#9?

<9����	��?
<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47����8�	��7?
<����	�����
�#8���$��&����
47����7#9?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<�	�
	���?
<��	������	�
	��?
<�	�
	��#���47���	�
	��7?
*������
	������)-�������
),
*
�������
������
(�����
���-	���)B���)+,

*+������
	�,
<9�	�
	��?

<9��	������	�
	��?
<9�	�
	���?

<9�����������	����
��?

Transport-Level Security 325

SSL over TCP

Like HTTP, the TCP transport can be used with SSL for encrypted commu-
nication. Configuration options for specifying transport security for TCP
are similar to HTTP. To configure a service to use the TCP security, three
changes must be made to Listing 8.4.

First, the binding specified for the non-MEX endpoint is =������	�
	��
rather than ��	������	�
	��. Second, the base address of the service
should be a TCP URI address rather than an HTTP URI, of the form
�������/99*8������.�/���� 9*����	��#����	��.. Third, a =������	�
C
	�� configuration should be used rather than a ��	������	�
	�� configu-
ration to specify the <�����	��# ��
�47��������7? setting. Listing 8.5
shows this configuration.

Listing 8.5 Encryption with B�
-���������

<�����������	����
��?
<����	���?
<����	��#���47&�����	��(�)����������	��7

��8�	������	����	��47����8�	��7?
<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	��(�)7#9?
*��������#�������)��

��6++��������
6788?+"$$��
���9(5)�+,

<9���%

������?
<98���?
<��
��	��#

����477

��������)��
-���������)
�	�
	������	����	��47���	�
	��7
�������47&�����	��(�)�+���������	��7#9?

<��
��	��#

����47���7
�	�
	��47��������	�
	��7
�������47+���
�&��8���7#9?

<9����	��?
<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47����8�	��7?
<����	�����
�#8���$��&����
47����7#9?

<9��8�	��?
<9����	����8�	���?

Chapter 8: Security326

<9��8�	���?
<�	�
	���?
*��
-���������,
*�������������)�	�������),
*������
	������)-�������
),
*
�������
������
(�����
���-	���)B���)+,

*+������
	�,
*+�������,

*+��
-���������,
<9�	�
	���?

<9�����������	����
��?

Client Authentication
A client authenticates with a service by presenting a set of claims that the
service trusts. The claims can be in any format, as long as both the client and
the service understand the format and trust its source.

If the client and service share a secret, such as a username and password,
as long as the client sends over a valid credentials, the service trusts that the
client is who it says it is. This is the mechanism for basic authentication with
HTTP. In a Windows-only environment where the client machine and ser-
vices are running under accounts defined in Active Directory or in a
domain, both the client and the services are already in a trust relationship.
In this case, Windows authentication can be specified, whereby Kerberos or
NTLM tokens will be used. If the client and service each trust some third
party and are not part of a Windows domain, certificate authentication is
most appropriate, in which the client sends a certificate from a source that
the service trusts.

A service specifies a client authentication requirement in the ��	���C
���
���	����� attribute on the �������� element while setting the secu-
rity mode to ��������. This is done within the binding configuration in
the service description of the service, whether defined in configuration file
or in code. Different client authentication schemes are available for differ-
ent bindings. Table 8.1 summarizes the options for the built-in bindings.

Transport-Level Security 327

Table 8.1 Client Authentication with Transport Security

None User/Pswd Windows Certificate

��	������	�
	�� ✓ ✓ ✓ ✓

�������	�
	�� ✓ ✓ ✓ ✓

��D�������	�
	��

�������	�
	�� ✓ ✓ ✓

���=��
!	���	�
	�� ✓ ✓ ✓

������S�	�
	�� ✓ ✓ ✓

���!�������	�
	�� ✓ ✓

���S+������	���	�
	�� ✓ ✓ ✓

��)�
���	�������	�
	��

When using client authentication with transport security, the client must
attach claims to the channel before sending messages. The client must
attach claims that match the service requirement. For instance, if basic
authentication is required with an HTTP-based binding, the client must
send a username and password. If certificate authentication is required
with any binding, the client must sign the message with its private key and
send a digital certificate from an authority trusted by the service (if the ser-
vice does not already have it).

Authenticating with Basic Credentials and ��
������
��
��

Listing 8.4, “Encryption with ��	������	�
	��,” depicts a service config-
uration that uses ��	������	�
	�� transport mode security to implement
encryption via SSL. To add username/password authentication to this
example, the ��	������
���	����� attribute is changed to ��	�. Listing
8.6 shows a fragment of the changed configuration that implements a ser-
vice that requires authentication at the transport layer. This service would
be appropriate for Internet communication because the credentials are
passed over a secured transport.

Chapter 8: Security328

Listing 8.6 Basic Authentication with �����

��������

<��	������	�
	��?
<�	�
	��#���47���	�
	��7?
<�����	��#��
�47��������7?
*
�������
������
(�����
���-	���)�����)+,

<9�����	��#?
<9�	�
	��?

<9��	������	�
	��?

When using basic authentication, the client must pass a username and
password to the service. This is done using a proxy class or directly on the
channel. Listing 8.7 shows client code that passes credentials to a service
whose endpoint is using ��	������	�
	�� and Basic credentials.

Listing 8.7 Passing Username and Password from a Client

��������	������
���	���6���=���6���=��#4#7��D��	�@@��7'
��������	������
���	���6���=���!�����
#4#7������!�����
7'

Basic, or username/password, authentication is appropriate when it’s
feasible for a client and service to share a secret and when security risks
aren’t that great. Because passwords tend to be stored on sticky notes on
people’s desks, in database tables, or in configuration files, they’re easily
copied or viewed without notice. To keep them “fresh,” they’re frequently
invalidated (“your password will expire in 10 days”) so there’s additional
overhead involved. In addition, because people often reuse the same pass-
words for multiple accounts, compromise of one account can lead to com-
promises on other systems.

Authenticating with Windows Credentials

Other authentication schemes are more secure than username/password.
If you’re working in a Windows environment that has Active Directory
deployed, Windows authentication can be used. This leverages the identity
of the user/process of the client and sends those credentials to the service.
This is a single-sign-on solution, in that after the user signs on to the Win-
dows domain, the user’s credentials can automatically be passed from the
client machine to the service. When using Windows authentication, the
client code shown in Listing 8.7 is not needed. Listing 8.8 shows �������
binding using Windows authentication.

Transport-Level Security 329

Listing 8.8 Windows Authentication with ��
������
��
��

<��	������	�
	��?
<�	�
	��#���47���	�
	��7?
<�����	��#��
�47��������7?
<��������#��	������
���	�����479������79?

<9�����	��#?
<9�	�
	��?

<9��	������	�
	��?

Authenticating with Certificates and �������
��
��

Digital certificates provide a more comprehensive form of authentication
than passwords. For scenarios requiring secure, fast, certificate-based com-
munication, �������	�
	�� is a good choice. Certificates work with mixed
security models found on complex intranets, including Windows, UNIX, and
third-party LDAP authentication. On the Internet, if you need fast, secure
server-to-server communication, and you can specify which firewall ports
are open, �������	�
	�� can prove very valuable. Using =������	�
	��with
certificate authentication combines fast communication and robust security.

Listing 8.9 shows a service configuration using transport-level security
with certificate-based client authentication. There are a few points worth
noting. First, the service is configured to require client certificates by using
the ��	������
���	����� in the =������	�
	�� binding. Second, the
server’s certificate is specified in the <����	�����
���	�? node. This is
necessary so that the server knows which certificate and key pair to use in
the SSL handshake. Third, the service is configured to bypass verifying the
certification path of the client’s certificates by specifying PeerTrust as the
����	�	��	��P�	
�	����
�. This is necessary when working with cer-
tificates generated by �����������, rather than real certificates obtained or
generated from a trusted authority.

Listing 8.9 Certificate Authentication with B�
-���������

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?

<����	���?
<����	��#���47&�����	��(�)����������	��7

��8�	������	����	��47����8�	��7?

Chapter 8: Security330

<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	��(�)7#9?
<

#���%

����47�������/99����8���/2::B9&�����	��(�)7#9?

<9���%

������?
<98���?
<��
��	��#

����477

��������)��
-���������)
�	�
	������	����	��47���	�
	��7
�������47&�����	��(�)�+���������	��7#9?

<��
��	��#

����47���7
�	�
	��47��������	�
	��7
�������47+���
�&��8���7#9?

<9����	��?
<9����	���?

<��8�	���?
<����	����8�	���?
<��8�	��#���47����8�	��7?
<����	�����
�#8���$��&����
47����7#9?
*�������(�����
����,
*�������(��
�$���
��$���E�����)��������
)�

�
���H���
����)H�����������)��
���B����)�)�
&K8M5���-	���)5����	���Q��
B���)+,

*�����
(��
�$���
�,
*��
���
���
�������
�$���
�E�����
��������)3���-���
)+,

*+�����
(��
�$���
�,
*+�������(�����
����,

<9��8�	��?
<9����	����8�	���?

<9��8�	���?

<�	�
	���?
<�������	�
	��?
<�	�
	��#���47���	�
	��7?
*������
	������)-�������
),
*
�������
������
(�����
���-	���)(��
�$���
�)+,
*�������������
(�����
���-	���)B���)+,

*+������
	,
<9�	�
	��?

<9�������	�
	��?
<9�	�
	���?

<9�����������	����
��?
<9����	����	��?

Transport-Level Security 331

To initiate communication between the client and service, the client must
specify a certificate for authentication. This can be done in configuration or
in code. Listing 8.10 shows client-side code that attaches a certificate to the
channel for the service to use in authentication. Under peer trust, the ser-
vice will look up the certificate in its Trusted People folder. If found, access
will be granted; if not, access will be denied.

Listing 8.10 Client Code for Certificate Authentication

���������	����	���#�����#4#���#���������	����	���,-'
���&	(����
(�����
�����������(��
�$���
�

#�
���
���
���(��
�$���
�E�����
���������
�	�
��������������������
	

;K8M(��
�$���
�E�����
�������3���-���
�
���&	(����
(�����
����(����
(��
�$���
���
(��
�$���
��

�
���H���
���(�����
A���'
�
���B����	'
;K8M5���-	��5����	���Q��
B���'
)�	(����
(��
)��

���
*

�����#�#4#������$��!�	��,7����7-'
��������(�	��;	��,7!�	��/*:.75#�-'

.
���8#,&�����	��#��-
*
��������(�	��;	��,7������/*:.75#���������-'
	�#,���+����&�����	��#U4#����-
��������(�	��;	��,7+����/*:.75#���+����&�����	���������-'

.

Service Identity
When establishing a secure communication channel between the client and
the service, the client can authenticate with the service through a variety of
methods described in this chapter. The client can be authenticated with a
username/password, Windows, or certificate credentials. Equally impor-
tant, however, is authenticating the service. If a client is going to exchange
sensitive information with the service, then service authentication is just as
important as client authentication. Failure to do so enables the popular
spoofing scams on the Internet to occur in services. To guard against this,
WCF checks the service identity before establishing a secure communica-
tion channel through transport-level security.

Chapter 8: Security332

When the MEX endpoint of a service is called to generate WSDL, it
returns the identity of the service. If the binding supports the WS-Security
protocol (all preconfigured bindings do, except ��	������	�
	��), the
WSDL will include information about the identity of the service. Depend-
ing on the binding and service authentication mechanism, different identity
information is returned.

When svcutil is used to generate a client proxy and client configuration
file from a running service, the identity of the service is written into the con-
figuration file. At runtime, the identity of the service is verified to ensure
that the client is communicating to the proper service. If the runtime service
has a different identity from what the client is expecting, WCF will not
establish the secure channel.

Listing 8.11 shows a configuration file generated by svcutil for a service
using �������	�
	�� with certificate-based client authentication for
message-level security. Note that the server’s encrypted certificate is
included. If the client attempts to initiate secure communication with a ser-
vice but the service does not have that certificate, WCF will throw an error.

Listing 8.11 Service Identity Generated for Certificate-Based Authentication

<��	���?
<��
��	��#

����478���/99����8���/2:::9&�����	��(�)7#

�	�
	��47�������	�
	��7
�	�
	������	����	��47(������	�
	��F+���������	��7#
�������47+���������	��7
���47(������	�
	��F+���������	��7?

<	
���	��?
<����	�	���#����
�
P���4

➥7%�%%%%&%%%%6%%%%���JBQ^\$��S��XSR^^B%�B(;�2�%%%%%K%%%;
➥:�%%%���$3�++�\H%D%�&�%8%=1��+	H�"S&\����!+"�!�%:$��S$�
➥+�IDK&��%6%��\�)D%���=P�%���B^��IK�K(
���=3��1OD�%I�D��
➥"D+��G��"P�OD��3��+G��+G=��B"P��)D&���%$%B6&%��^�$0X\(�
➥��I=:�+$��%:$��S$�+�IDK&�%K6%%1$=%D��	KQ��K��\��\;��!T�
➥8�&���8���+�$8S;2H�"
�&���B
�\X��%86����P�8�2�P��Z��X�
➥:0)Q���9���G(�ZP>X��91�G"�����:=$!+2PIBZT�\�60G8=O�0
➥1
3�=�0��RK"8���>��R1+�2	!�0($&�BPB!�9Q\�\��S=�2%�+D%K%
➥��:��������=P�K&&KD%T��%�3%���8:
���=\���)�>X�>��)X&6��
➥+$%B6&%��;6�0�
���ZJP�\I��&%\I�%�S%$�Q&�T1BQ��=�K�DK\^Q
➥�Z+8��=%K&&�K%DKK�T��O1T^�2;H=�K2\X>3B��)��H�IOZ��9X3�S
➥�!+��62BJ9$&&1=9�2XO+O�H8�KS���0�QO����\=	��O�JK7#9?

<9	
���	��?
<9��
��	��?

<9��	���?

Transport-Level Security 333

Listing 8.12 shows a configuration file generated by svcutil for a service
using �������	�
	�� with Windows-based client authentication. Note that
the server’s Windows credentials are included. If the client attempts to ini-
tiate secure communication with a service but the service is running under
a different Windows account, WCF will throw an error. It may be the case
that the service account that generated the WSDL in the development envi-
ronment had one set of credentials, but in production a different Windows
account is used. In that case, the client-side configuration file must be
changed to match the new identity of the service.

Listing 8.12 Service Identity Generated for Certificate-Based Authentication

<��	���?
<��
��	��#

����478���/99����8���/2:::9&�����	��(�)7#

�	�
	��47�������	�
	��7
�	�
	������	����	��47(������	�
	��F+���������	��7#
�������47+���������	��7
���47(������	�
	��F+���������	��7?

<	
���	��?
<����!�	��	��=��#����47��D��	�@��79?

<9	
���	��?
<9��
��	��?

<9��	���?

If the client cannot verify that the service is running on the configured
account for any reason, it will throw an error. For instance, if you’re doing
development offline and do not have access to Active Directory, the client
may time out waiting to verify the services credentials. In that case, you can
change the identity of the service from <����!�	��	��=��? to
<����	��!�	��	��=��? and change the value from ��D��	�@�� to
8���9����8��� in the client configuration file.

Message-Level Security

Message-level security ensures confidentiality of messages by encrypting
and signing messages before sending them out over the transport. This
way, only the parties who know how to decrypt the message can read them.

In some scenarios, message-level security can provide a longer confi-
dentiality lifetime than transport-level security. A common example
involves intermediaries. For instance, when a message is sent from a client

Chapter 8: Security334

to a service, what if the message is actually sent to an intermediary for
queuing or routing rather than the ultimate recipient endpoint? Transport-
level security would ensure confidentiality up until the intermediary but
not further. After the intermediary, the client loses control of the confiden-
tiality because encryption was used only until the intermediary. By using
message-level security, the intermediary can read header information but
not the contents of the message. Only the intended recipient, whose pub-
lic key was used to encrypt the message, can decrypt the message with the
corresponding private key and access its contents. In this way, confiden-
tiality is maintained end-to-end.

Like transport-level security, message-level security is based on X.509
certificates, though custom implementations are possible. The service must
have a certificate installed so that a client can send an encrypted message to
the service to initiate communication. This is necessary when negotiating
communication so that if credentials are required, those credentials are pro-
tected. By default, most predefined WCF bindings, with the exception of
��	������	�
	�� and ���=��
!	���	�
	��, use message-level encryp-
tion. This helps to ensure that default WCF communications are secure.

Authenticating with ��

��������
The �������	�
	��#uses message-level security. It uses the WS-Security
protocol to send the encrypted messages between client and service over
the HTTP transport channel. You do not need to configure HTTP.SYS or IIS
to support SSL, because WS-Security enables secure communication on any
protocol. Because of this, the service endpoint and its MEX sibling can be on
the same port, making secure IIS hosting very simple. A potential disad-
vantage of �������	�
	�� is that because it uses port 80 rather than 443 for
SSL, it can be more difficult to use hardware-based encryption accelerators.

The �������	�
	�� binding supports numerous methods for client
authentication. The default is Windows authentication, but other options
available include including None, Basic, and Certificate.

Windows Authentication

Listing 8.13 shows �������	�
	�� being used to secure messages. Note that
only one base address is present, because an SSL channel isn’t needed as it
is with transport-level security. By default, �������	�
	�� uses Windows

Message-Level Security 335

authentication for transport security. Therefore, this configuration would
work well on an intranet where both client and service belong to the same
Windows domain, but it will not work on the Internet or across untrusted
Windows machines.

Listing 8.13 Encryption with ��

�������� and Windows Authentication

<�����������	����
��?
<����	���?
<����	��#���47&�����	��(�)����������	��7

��8�	������	����	��47����8�	��7?
<8���?
*����#��������,
*��������#�������)�

�6++��������
67888+"$$��
���9(5)�+,

*+����#��������,
<98���?
<��
��	��#

����477

�	�
	��47��

��������7
�������47&�����	��(�)�+���������	��7#9?

<��
��	��#

����47���7
�	�
	��47��������	�
	��7
�������47+���
�&��8���7#9?

<9����	��?
<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47����8�	��7?
<����	�����
�#8���$��&����
47����7#9?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<9�����������	����
��?

No Authentication

If you don’t want any client authentication, specify None for the ��	���C
���
���	����� attribute. Listing 8.14 shows the binding configuration
used to specify no client authentication.

Listing 8.14 Encryption with ��

�������� and No Client Authentication

<�����������	����
��?
<����	���?
<����	��#���47&�����	��(�)����������	��7

��8�	������	����	��47����8�	��7?
<8���?

Chapter 8: Security336

*����#��������,
*��������#�������)�

�6++��������
67888+"$$��
���9(5)�+,

*+����#��������,
<98���?
<��
��	��#

����477

�	�
	��47�������	�
	��7
�	�
	������	����	��47���	�
	��7
�������47&�����	��(�)�+���������	��7#9?

<9����	��?
<9����	���?
<�	�
	���?
<�������	�
	��?
<�	�
	��#���47���	�
	��7?
*������
	������)�������),
*
�������
������
(�����
���-	���)B���)+,

*+������
	�,
<9�	�
	��?

<9�������	�
	��?
<9�	�
	���?

<9�����������	����
��?

Certificate Authentication

Using certificates for authentication with the �������	�
	�� binding ensures
a good reach for secure Internet applications. Configuring certificate-based
authentication is similar to other authentication schemes at the message
level.

Listing 8.15 shows a service configuration file that uses certificate-based
authentication. There are a few points worth noting. First, the service is con-
figured to require client certificates by using the ��	������
���	����� in
the �������	�
	�� binding. Second, the server’s certificate is specified in
the <����	�����
���	�? node. This is necessary so that the client can
encrypt messages with the server’s public key. Third, the service is config-
ured to bypass verifying the certification path of the client’s certificates by
specifying !�������� as the certificationP�	
�	����
�. This is necessary
when working with certification generated by �����������, rather than
real certificates obtained or generated from a trusted authority.

Listing 8.15 Service Configuration for Client Certificate Authentication

<�����������	����
��?
<����	���?
<����	��#���47&�����	��(�)����������	��7

��8�	������	����	��47����8�	��7?

Message-Level Security 337

Listing 8.15 continued

<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	��(�)7#9?

<9���%

������?
<98���?
<��
��	��#

����477

�	�
	��47�������	�
	��7
�	�
	������	����	��47���	�
	��7
�������47&�����	��(�)�+���������	��7#9?

<9����	��?
<9����	���?

<��8�	���?
<����	����8�	���?
<��8�	��#���47����8�	��7?
<����	�����
�#8���$��&����
47����7#9?
<����	�����
���	��?
*�������(��
�$���
��$���E�����)��������
)�

�
���H���
����)H�����������)��
���B����)�)�
&K8M5���-	���)5����	���Q��
B���)+,

*�����
(��
�$���
�,
*��
���
���
�������
�$���
�E�����
��������)3���-���
)+,

*+�����
(��
�$���
�,
<9����	�����
���	��?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?

<�	�
	���?
<�������	�
	��?
<�	�
	��#���47���	�
	��7?
*������
	������)�������),
*�������������
(�����
���-	���)(��
�$���
�)+,

*+������
	,
<9�	�
	��?

<9�������	�
	��?
<9�	�
	���?

<9�����������	����
��?

To communicate with a service that requires certificate-based authentica-
tion, clients must attach a certificate to each message. This can be done in
code or in configuration. If done in configuration, the configuration file gen-
erated by svcutil must be modified to include the certificates. Specifically,
an endpoint behavior must be added in which the client certificate is spec-
ified. And if nontrusted certificates are used, the behavior must also indi-
cate that !�������� should be used for the certificate validation method.

Chapter 8: Security338

Listing 8.16 shows an updated client-side configuration file that attaches a
certificate to messages.

Listing 8.16 Client Configuration for Certificate Authentication

<A���#����	��47B�:7#����
	��47���C27A?
<����	����	��?

<�����������	����
��?
<�	�
	���?

<�������	�
	��?
<�	�
	��#���47(������	�
	��F+���������	��7

�
�
<�����	��#��
�47������7?

<��������#��	������
���	�����47(�
���7#
��������
���	�����47=���7
����477#9?

<������#��	������
���	�����47����	�	���7#
�����	������	�����
���	�47����7
����	�8���	��47D�����7#
�����	�8�����	���������47����7#9?

<9�����	��?
<9�	�
	��?

<9�������	�
	��?
<9�	�
	���?
<��	���?

<��
��	��#

����478���/99����8���/2:::9&�����	��(�)7#
�	�
	��47�������	�
	��7
�	�
	������	����	��47(������	�
	��F+���������	��7#
�������47+���������	��7
��������(��$�����
����)(����
(��
)

���47(������	�
	��F+���������	��7?
<	
���	��?

<����	�	���#����
�
P���4
➥7%�%%%%&%%%%6%%%%���JBQ^\$��S��XSR^^B%�B(;�2�%%%%%K%%%;
➥:�%%%���$3�++�\H%D%�&�%8%=1��+	H�"S&\����!+"�!�%:$��S$�
➥+�IDK&��%6%��\�)D%���=P�%���B^��IK�K(
���=3��1OD�%I�D��
➥"D+��G��"P�OD��3��+G��+G=��B"P��)D&���%$%B6&%��^�$0X\(�
➥��I=:�+$��%:$��S$�+�IDK&�%K6%%1$=%D��	KQ��K��\��\;��!T�
➥8�&���8���+�$8S;2H�"
�&���B
�\X��%86����P�8�2�P��Z��X�
➥:0)Q���9���G(�ZP>X��91�G"�����:=$!+2PIBZT�\�60G8=O�0
➥1
3�=�0��RK"8���>��R1+�2	!�0($&�BPB!�9Q\�\��S=�2%�+D%K%
➥��:��������=P�K&&KD%T��%�3%���8:
���=\���)�>X�>��)X&6��
➥+$%B6&%��;6�0�
���ZJP�\I��&%\I�%�S%$�Q&�T1BQ��=�K�DK\^Q
➥�Z+8��=%K&&�K%DKK�T��O1T^�2;H=�K2\X>3B��)��H�IOZ��9X3�S
➥�!+��62BJ9$&&1=9�2XO+O�H8�KS���0�QO����\=	��O�JK7#9?

<9	
���	��?
<9��
��	��?

<9��	���?

Message-Level Security 339

Listing 8.16 continued

<��8�	���?
*�������
���������,
*��������������)(����
(��
),
*�����
(�����
����,
*�������(��
�$���
�,
*��
���
���
�������
�$���
�E�����
��������)3���-���
)+,

*+�������(��
�$���
�,
*�����
(��
�$���
�
$���E�����)�	(����
(��
)
�
���H���
����)(�����
A���)
�
���B����)�)
&K8M5���-	���)5����	���Q��
B���)+,

*+�����
(�����
����,
*+��������,

*+�������
���������,
<9��8�	���?
<9�����������	����
��?

<9����	����	��?

The client-side certificate can also be added to the service description in
code. The client-side code looks up the certificate in the local certificate
store and adds it to the service description via the proxy before making calls
to the service. WCF will attach the certificate to each message sent to the
service. Listing 8.10 shows the client-side code necessary to do this.

When svcutil is used to generate the client-side configuration from a ser-
vice with no client authentication, it inserts an <	
���	��? element in the
endpoint definition of the service description. This element contains the
signature of the service from which the configuration was generated. At
runtime, this signature is checked against the identity of the running ser-
vice. If the client attempts to communicate with a service with a different
signature, an error will be thrown:

7�8�#�������
#	
���	��#	�#b	
���	��,8���/99��8��������������9��9J::39:39
	
���	��9�	�8�9���������������/#8���/99��8��������������9��9J::39:39
	
���	��9��	��9�8�����	��-b#���#�8�#b8���/99����8���/2:::9&�����	��(�)b
�����#��
��	���7#

Securing Services with Windows Integrated Security

In this section, we’ll focus on the issues and opportunities faced when
deploying and consuming services internally to an organization or other

Chapter 8: Security340

trusted environment. As the service may be called by another machine on
a Windows network, we can take advantage of shared authentication and
authorization systems that are not natively available for Internet-based
deployments.

Because we are on a local network, we can take advantage of binding
types, such as TCP (=������	�
	��), and on the same machine, named
pipes (=��=��
!	���	�
	��), to improve performance and efficiency. We
can also leverage reliability mechanisms such as MSMQ (via the
=�����S�	�
	��).

Section Examples Introduction
The examples in this section are modeled to reflect having WCF-based ser-
vices and callers communicating over a LAN behind a corporate firewall.
We follow the basic model of having a contract/implementation class
library, host console application (���������), and client console applica-
tion (��	����������). The topology is shown in Figure 8.2, where the client,
host, and other resources such as the database are all behind a corporate
firewall separating communications from the open Internet.

Securing Ser vices with Windows Integrated Security 341

Client

Windows Application

Desktop

Web Server Database Server

Internet

Figure 8.2 Services over corporate LAN with Windows application

The service implementation is ���������	�� and has an +���������
defining three simple operations, $����������
�, $����������
�, and
$��!���	���
�, as shown in Listing 8.17.

Listing 8.17 %��������� Service Contract Interface

��	��#�����������	����
��'

�������#���������	��
*

�����	���������
����	�#	�������#+������
*

.2����
���(��
���
/
�
�����!�
�����
(������
.2����
���(��
���
/
�
�����!�
������(������
.2����
���(��
���
/
�
�����!�
3�����(������

.
.
.

The +������ interface is implemented in the ��������� class file
shown in Listing 8.18.

Listing 8.18 ��������� Service Implementation Class

��	��#������'
��	��#������������	���!�	��	��'
��	��#�����������	����
��'
��	��#��������8��
	��'

�������#���������	��
*

����	�#����#������#/#+������#######
*

��������
�����!�
�����
(�����
*

D	���������	��D��	��,-'
������#7�8�#������#��
�7'

.

��������
�����!�
������(�����
*

D	���������	��D��	��,-'
������#7�8�#������C"���#��
�7'

.

��������
�����!�
3�����(�����

Chapter 8: Security342

*
D	���������	��D��	��,-'
������#7�8�#!���	�#��
�7'

.

��	���#���	�#��	
#D	���������	��D��	��,-
*

��������(�	��;	��,7(�
���#+
���	��#4#7#T#
➥(�
���+
���	���$���������,-�=��-'

��������(�	��;	��,7�8��
#�������!�	��	��#+
���	��#4#7#T#
➥�8��
��������!�	��	���+
���	���=��-'

��������(�	��;	��,7����	�������	���������#!�	���#+
���	��#
➥4#7#T#����	�������	������������������!�	���+
���	���=��-'

��������(�	��;	��,7����	�������	���������#(�
���#+
���	��#
➥4#7#T#����	�������	������������������(�
���+
���	���=��-'

.
.

.

We have also created two local test accounts in Windows to be used in
the next few examples. Use the Computer Management console and open
the Local Users and Groups node. Under Users, create two accounts. In our
case, we created Peter Admin (username “peter”) and Jessica Member
(username “jessica”).

Authenticating Users with Windows Credentials
Let’s begin by looking at the default behavior for a TCP-based service using
Windows credentials for authentication. The service has been configured
with =������	�
	��, as shown in Listing 8.19. Note that we have also
enabled metadata exposure for proxy generation.

Listing 8.19 Service Configuration for TCP with Default Security Settings

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#��8�	������	����	��47����	����8�	��7#

���47���������	���������7?
<��
��	��#

����477#�	�
	��47�������	�
	��7#���47������7

�������47���������	���+������7#9?
<��
��	��#

����47���7#�	�
	��47��������	�
	��7#���47���7

�������47+���
�&��8���7#9?

Securing Ser vices with Windows Integrated Security 343

Listing 8.19 continued

<8���?
<���%

������?
<

#���%

����478���/99����8���/2:2:9������7#9?
<

#���%

����47�������/99����8���/2:0:9������7#9?

<9���%

������?
<98���?

<9����	��?
<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47����	����8�	��7#?
<����	�����
�#8���$��&����
47����7#9?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<9�����������	����
��?

<9����	����	��?

The ClientConsole application simply creates an instance of the gener-
ated proxy class and makes calls sequentially to each operation, shown in
Listing 8.20.

Listing 8.20 (����
(������ Application Calling ������������� via TCP

��	��#������'

�������#��	����������
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

��������(�	��;	��,7!����#&=�&>#��#���#����	��#����7-'
��������>�
;	��,-'

��������������(����
����&	���
������������������(����
�)��
-��)��

���
*

(������9��
�H�������&	!�
3�����(�������
(������9��
�H�������&	!�
������(�������
(������9��
�H�������&	!�
�����
(�������

.
���8#,&�����	��#�-

Chapter 8: Security344

*
��������(�	��;	��,7&�����	��#4#7#T#��������-'

.

��������>�
;	��,-'
.

.
.

When ��	���������� is run against the ���������, each call is made
successfully and the ��������� writes identity details to its console (via
the D	���������	��D��	�� method). All identities are reported as the
Windows user running the ��	���������� application. This is expected
because we haven’t introduced any other identities yet.

Specifying Alternative Identities

Generated WCF proxies support a mechanism for specifying alternative
credentials to services. This can be useful in a variety of scenarios. For
example, if a client application supports multiple user identities, those
identities can be supplied at runtime by the client through the proxy so the
service can determine which actions may be taken by the current user.

Using the ���������������	��� proxy, we supply the username
and password for the “peter” account we created earlier, as shown in List-
ing 8.21.

Listing 8.21 Providing Alternative Credentials via the Client-Generated Proxy

��	��#������'
�������	�
��B�
�

�������#��	����������
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

��������(�	��;	��,7!����#&=�&>#��#���#����	��#����7-'
��������>�
;	��,-'

���������������	���#�����#4#
���#���������������	���,7������7-'

Securing Ser vices with Windows Integrated Security 345

Listing 8.21 continued

���&	(����
(�����
����9������(����
(�����
�����
����B�
���0(�����
����)�#(%B"B#�"WW��
��)'�)�X���8��>)��

���
*

��������(�	��;	��,������$��!���	���
�,--'
��������(�	��;	��,������$����������
�,--'
��������(�	��;	��,������$����������
�,--'

.
���8#,&�����	��#�-
*

��������(�	��;	��,7&�����	��#4#7#T#��������-'
.

��������>�
;	��,-'
.

.
.

Running the application now results in all three services being called
successfully, but the console D	���������	��D��	�� method shows us
that while the host identity ((�
���+
���	���$���������,-�=��)
remains as the system user, the other displays of identity show
MACHINENAME\peter. WCF has automatically mapped the credentials
we supplied on the client side into the security context and thread identity.

Chapter 8: Security346

NOTE Non-Windows Usernames and Passwords

It is possible to provide basic usernames and passwords that are not spe-
cific to Windows. Certain bindings, such as (������	�
	��, support this
option (see Table 8.1 for a list of binding options). To enable this, con-
figure message security with ��	������
���	�����476���=��7.

In these cases, however, WCF will require transport security (for exam-
ple, a certificate) to protect the confidentiality and integrity of those
credentials on the wire. Certificates were described earlier in this
chapter.

Authorizing Users with Windows Credentials
We’ve shown that we can identify users via Windows credentials; now let’s
focus on determining access permissions (authorization) for the same

scenario. To begin, we’ll use the standard security !�	��	��!���	��	��C
%���	����. This attribute can be used to decorate members and restrict or
permit access to callers.

To begin, let’s decorate methods with attributes to limit access only to
Peter ($����������
�) and both Peter and Jessica ($����������
�). Add the
following to $����������
� (where �%��+=&=%�& should be replaced with
your own system’s name):

�!�	��	��!���	��	��,�����	��%��	���D���
5#=��#4#M7�%��+=&=%�&@�����7-

Now add the following to $����������
�:

�!�	��	��!���	��	��,�����	��%��	���D���
5#=��#4#M7�%��+=&=%�&@�����7-
�!�	��	��!���	��	��,�����	��%��	���D���
5#=��#4#M7�%��+=&=%�&@X���	�7-

Run the service and client applications, ensuring Peter remains specified in
the proxy’s ClientCredentials property. The result should be that all three ser-
vice operations are called successfully. Now change “peter” to “jessica” in the
client code, updating the password if necessary. Running the client this time
should result in an Access Is Denied exception for the $����������
�
method.

Certainly this approach works and provides a mechanism for authenti-
cating and authorizing known Windows accounts for specific service oper-
ations. However, for almost all production systems, you will need an easier
way to configure and maintain access lists for a variety of users.

The !�	��	��!���	��	��%���	���� also supports a >��� parameter
that lets us specify a specific Windows group rather than a named user.
Before proceeding, use the Computer Management console to create tem-
porary Sample Admins and Sample Members local Windows groups,
adding Peter to the former and both Peter and Jessica to the latter. Now,
adjust the attributes as shown in Listing 8.22.

Listing 8.22 Specifying Access by Security Role

��	��#������'
�������	�
��������
	3�����������
��	��#������������	���!�	��	��'
��	��#�����������	����
��'
��	��#��������8��
	��'

Securing Ser vices with Windows Integrated Security 347

Listing 8.22 continued

�������#���������	��
*

����	�#����#������#/#+������#######
*

.3��������3����������������
	#�
���������'�
<����)�������#�����)�/

����	�#���	��#$����������
�,-
*���.

.3��������3����������������
	#�
���������'�
>���47�����#�������7-

����	�#���	��#$����������
�,-
*���.

����	�#���	��#$��!���	���
�,-
*���.

��	���#���	�#��	
#D	���������	��D��	��,-#*���.
.

Running the client again should produce similar results, but now you
can rely on membership in Windows groups to determine which users are
authorized to make calls to WCF operations.

Chapter 8: Security348

NOTE Using Native Windows Groups

To use the standard Windows groups as roles with the !�	��	��!��C
�	��	��%���	����, prepend the word BUILTIN as a machine name
before the group name. For example, the Administrators group is ref-
erenced by M7�6+;�+=@%
�	�	�������7 and Users by M7�6+;�+=@
6����7. Also note that, in C#, you’ll need the @ symbol to unescape the
embedded backslashes, or else you’ll need to double the backslash to
avoid a compilation error.

Authorization Using AzMan
Windows Authorization Manager (AzMan) is a system that provides cen-
tralized (and therefore easier to maintain) role-based authorization services
to applications, including WCF, based on policies defined in authorization
stores. AzMan features an MMC-based utility for managing both the
authorization stores and related access levels. The runtime of Authorization

Manager is independent of the physical authorization stores, which may be
based on SQL Server, Active Directory, ADAM, or XML, depending on the
operating system used.

In this section, we’ll use a simple XML authorization store to configure
role-based access to our prior service example. To work with Authorization
Manager, use the Microsoft Management Console (MMC) and ensure
Authorization Manager has been added via the File, Add/Remove Snap-In
option.

To create an authorization store, you must be in Developer mode (ver-
sus Administrator mode), which enables access to all features. From the
Action menu, choose Options, then Developer Mode. In Developer mode,
right-click the Authorization Manager node and choose New Authoriza-
tion Store, which will open a dialog similar to Figure 8.3.

Securing Ser vices with Windows Integrated Security 349

Figure 8.3 Configuring an XML Authorization store

For our example, choose XML file, leave the schema version as 1.0, and
give the store a name and description. Note that, depending on your oper-
ating system, you may also use Active Directory, ADAM, or SQL Server.

Having created the store, ensure that the XML file is highlighted, then
right-click and choose New Application. Name the application #=�������
and click OK.

To define the roles to which we’ll assign user permissions, expand the
AzManDemo node in the left pane, and then expand Definitions. Right-
click Role Definitions and choose New Role Definition. We’ll create two
roles, Member Role and Admin Role; however, for the latter, click Add on
the New Role Definition dialog and choose the Member Role to include that
role as part of the Admin Role definition, shown in Figure 8.4.

Chapter 8: Security350

Figure 8.4 Creating a role definition with Authorization
Manager

To assign users to roles, right-click the Role Assignments node and
choose New Role Assignment. The Admin and Member roles should
appear beneath Role Assignments. Right-click each role and choose Assign
Users and Groups, then From Windows and Active Directory. Add the sam-
ple “Peter” account to Admin Role and “Jessica” to Member Role. The final
configuration should appear similar to Figure 8.5.

Figure 8.5 Authorization Manager showing example configuration

Now that Authorization Manager has been configured with a role and
user assignment, we can tell WCF to leverage AzMan for authorization. The
flexibility of WCF combined with the capability to access the AzMan run-
time via the AzRoles assembly gives us a number of options. For example,
we could create a custom ����	��%��8��	G�	������� and manually
call the AzRoles assembly for role and operation verification. However, by
leveraging existing ASP.NET 2.0 functionality, we can integrate AzMan
authorization and WCF with less effort.

The role-based provider system of ASP.NET is useful to us here because
WCF can automatically integrate with its services and because there is a
native %��8��	G�	�������>���!���	
�� that we can use to communicate
with our AzMan-created authorization store.

To enable use of Authorization Manager, in the ��������� project’s
%�������	� file, we need to add the <���������? node under
<�������(��?. The service’s behavior needs to include a <����	��%��8�C
�	G�	��? to enable use of ASP.NET roles with the %��8��	G�	��C
�����>���!���	
��. We also need to specify the path to the XML
authorization store in the <�������	�����	���? node. These settings are
shown in Listing 8.23.

Securing Ser vices with Windows Integrated Security 351

Listing 8.23 Service Configuration for TCP with Authorization Manager Integration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?

*������
����
�����,
*���������)#�
����=�
����
���)�

������
����
�����)��&��6++(6W#=���������W;�H#�
����=�
����
���&��)
+,

*+������
����
�����,

<�����������	����
��?
<����	���?
<����	��#��8�	������	����	��47����	����8�	��7

���47���������	���������7?
<��
��	��#

����47���7#�	�
	��47��������	�
	��7

�	�
	������	����	��477
���47���7#�������47+���
�&��8���7#9?

<��
��	��#

����477#�	�
	��47�������	�
	��7#�	�
	������	����	��477
���47������7#�������47���������	���+������7#9?

<8���?
<���%

������?
<

#���%

����478���/99����8���/2:2:9������7#9?
<

#���%

����47�������/99����8���/2:0:9������7#9?

<9���%

������?
<98���?

<9����	��?
<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47����	����8�	��7#?
*�������#�
����=�
����

���������3��������������)A��#��B�
<����)
����3�������B����)#�
����=�
����
���<���3�������)�+,

<����	�����
�#8���$��&����
47����7#9?
<9��8�	��?

<9����	����8�	���?
<9��8�	���?

<9�����������	����
��?

*�	�
�����,
*�����������

��$���
3��������)#�
����=�
����
���<���3�������)
��������)
���)
�����<����%�(��0���)
���)
���0��B����)#�3<2H"�)
���0��3�
��)+)
���0��3��
��
����)#��)��
���0��<�@������H�)$����)
���0���������"&����
����)
���)

Chapter 8: Security352

���0��-�����
�)G8)
,
*���������,
*������+,
*���
�����)#�
����=�
����
���<���3�������)

	���)�	�
��9��������
	#�
����=�
����
���<���3�������)
������
����
����B����)#�
����=�
����
���)
�������
���B����)#=�������)�+,

*+���������,
*+�����������,

*+�	�
�����,
<9����	����	��?

Finally, to bind operations to specific Authorization Manger groups,
modify the !�	��	��!���	�	��%���	���� to reference the role definitions
contained in the authorization store. Modifying the Windows groups exam-
ple from before, change the role names from Sample Admins and Sample
Members to #�����<��� and �������<���, respectively, matching the names
given via the AzMan utility.

�!�	��	��!���	��	��,�����	��%��	���D���
5#>���47%
�	�#>���7-
�!�	��	��!���	��	��,�����	��%��	���D���
5#>���47������#>���7-

Running the application again for each user (Peter and Jessica) should
again result in Peter having unrestricted access while Jessica is unable to
call the $����������
� method. However, now that AzMan is configured
for access, we can use the convenient tools and authentication stores to
maintain the roles, users, tasks, and operations for our application with
limited modification to the service code itself.

Impersonating Users
By default, WCF services access local and remote resources using the cre-
dentials under which the service host is executing. It is up to the service to
authenticate callers to verify who they are, then perform authorization
checks to ensure that they can access other resources (which would be
accessed as the host identity). When running services that receive Windows
credentials, we have another option called impersonation.

Impersonation is the process by which an alternative credential is used
for execution of program logic. A service may impersonate a caller by

Securing Ser vices with Windows Integrated Security 353

assuming that caller’s identity. This is typically for the duration of a single
call, but the impersonation token could be retained and reused by the ser-
vice. The thread under which the call is executing is assigned to the imper-
sonated identity, and operations are performed under the authorization
and roles of that assumed identity.

Impersonation is important because, by adopting the identity of a caller,
the service is only able to access resources for which the caller has permis-
sions. By running under the privileges of the caller, it is easier to ensure that
only the data and resources appropriate for that user are accessed.

Impersonation is an agreement between the service and its callers.
Higher levels of impersonation require permission from both the client and,
in some cases, system permissions on the host machine. To begin, let’s
configure the service code to support impersonation. This is done via the
"����	����8�	��%���	����, which has an +��������	�� parameter.
This parameter is given a selection from the +��������	��"��	�� enu-
meration. An example of this is shown in Listing 8.24.

Listing 8.24 Requiring Impersonation via the 2����
�����������#

����
�

.2����
������������%��������
������%��������
���2�
���<�@������/��
����	�#���	��#$����������
�,-
*

D	���������	��D��	��,-'
������#7�8�#������#��
�7'

.

+��������	��"��	�� can be =��%�����
, which disables imperson-
ation, >�S�	��
, which demands that the client agree to be impersonated
(otherwise the call will fail), and %�����
, which will use impersonation if
agreed to by the client, but will continue without impersonation if the client
does not agree, although doing so is uncommon and typically avoided.

It is possible to configure "����	����8�	�� for impersonation on all
necessary operations, but you may also enable impersonation for all
operations in configuration. Listing 8.25 shows how to use the +�������C
�������)��%��"����	��� option, which is ���� by default.

Chapter 8: Security354

Listing 8.25 Enabling Impersonation via %��������
�(�����5��#��2����
����

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#��������(��$�����
����)���������������)

���47���������	���������7?
<��
��	��#

����47���7#�	�
	��47��������	�
	��7

�	�
	������	����	��477
���47���7#�������47+���
�&��8���7#9?

<��
��	��#

����477#�	�
	��47�������	�
	��7#�	�
	������	����	��477
���47������7#�������47���������	���+������7#9?

<8���?
<���%

������?
<

#���%

����478���/99����8���/2:2:9������7#9?
<

#���%

����47�������/99����8���/2:0:9������7#9?

<9���%

������?
<98���?

<9����	��?
<9����	���?
<��8�	���?
<����	����8�	���?
*��������������)���������������)�,
*�������#�
����=�
���
���������3��������������)A��9������!�����)
���������
�(�����5��#��2����
�����)
���)�+,

<����	�����
�#8���$��&����
47����7#9?
<9��8�	��?

<9����	����8�	���?
<9��8�	���?

<9�����������	����
��?
<9����	����	��?

Securing Ser vices with Windows Integrated Security 355

NOTE Impersonation via Code

It is also possible to invoke impersonation manually through code. The
(�
���+
���	�� exposed via ����	�������	����������������� fea-
tures an +��������� method that can be invoked to activate imper-
sonation. Ensure you have first verified that the (�
���+
���	�� is
not ���� before attempting the call.

Next, the client (in cases where full impersonation or delegation is nec-
essary) must explicitly designate that it supports impersonation. This can
be done via configuration or code. For configuration, ensure that the client
has settings similar to those shown in Listing 8.26.

Listing 8.26 Specifying ������
��%��������
��� Level in Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��8�	���?
<��
��	����8�	���?
*��������������)"��������),
*�����
(�����
����,
*���������������%��������
���H�����)%��������
���)�+,

*+�����
(�����
����,
*+��������,

<9��
��	����8�	���?
<9��8�	���?
<�	�
	���?
<�������	�
	��?���<9�������	�
	��?

<9�	�
	���?
<��	���?
<��
��	��#

����47�������/99����8���/2:0:9������7

��������(��$�����
����)"��������)�
�	�
	��47�������	�
	��7
�	�
	������	����	��47������7
�������47��	������������������+������7
���47������7?

<	
���	��?���<9	
���	��?
<9��
��	��?

<9��	���?
<9�����������	����
��?

<9����	����	��?

You can also specify a specific impersonation level via the service proxy
in the client code, as shown in Listing 8.27.

Listing 8.27 Specifying Impersonation via Client-Side Proxy

��	��#������'
��	��#�������=��'
��	��#������������	���!�	��	��'

�������#��	����������
*

����#!�����
*

Chapter 8: Security356

���	�#��	
#�	�,���	��� #���-
*

���������������	���#�����#4#
���#���������������	���,7������7-'

���&	(����
(�����
����9������#������%��������
���H������
-�0��%��������
���H����������
����

���
.

.
.
<9����	����	��?

The %�����
+��������	��;���� property, whether set in configuration
or code, supports the following options from the �����+��������	��C
;���� enumeration:

• B���. No impersonation performed.

• #���	����. Impersonation is used for access checks, but the service
code does not know who the caller is. Can be used only for same-
machine bindings such as =��=��
!	���	�
	��.

• %���
�$. No impersonation is performed, but the service code
knows who the caller is and can make access decisions based on that
identity.

• %��������
�. The service can identify the caller as with +
���	��,
but in this mode, impersonation can be used for resources on the
same machine.

• ������
�. The same as +���������; however, the credentials can be
used for network-based resource access.

Use caution when enabling impersonation, and consider the effects of
having part of the overall system compromised by attackers. For example, if
you enable delegation (in this case via configuration and Active Directory
permissions, which by default would not allow this scenario,) and a user
with domain administrator access calls your service (via a client that has
opted to enable delegation), should your service logic be compromised, those
administrator credentials could be used to access arbitrary resources on the
domain with elevated permissions. Clearly, the risks are high, and you
should invest time to fully understand the options around impersonation

Securing Ser vices with Windows Integrated Security 357

and the ability to deny permissions via the !�	��	��!���	��	��%���	����
introduced earlier.

If you understand the risks, impersonation remains a powerful con-
cept that can be used to effectively manage access to resources by service
code according to the permissions of callers to that service.

Securing Services over the Internet

This section will focus on securing services over the Internet. Figure 8.6
shows a Windows application that accesses services over the Internet.
This figure begins to highlight the Software + Services model from
Microsoft, where you have client applications that run on the desktop that
accesses services over the Internet. These types of applications need
mechanisms for managing users that come from the Internet. This
includes authenticating and authorizing users that come from the Inter-
net. The typical approach for this style of application is to use a database
to store usernames, passwords, and roles. This is done for a variety of rea-
sons, including account management, security scope, and ease of backup
and restore. ASP.NET 2.0 offers these capabilities through application-
level services such as Membership and Role-Based Authorization. WCF
integrates with these application-level services for authentication and
authorization of users. This means that developers can reuse several of
the out-of-the-box providers available in ASP.NET to manage access to
WCF services.

We will look at a sample application to understand the integration
with ASP.NET. This application just happens to be a Web application built
using ASP.NET. The use of these capabilities is not tied solely to Web
applications and could have easily been a Windows desktop application.
Figure 8.7 shows a sample application built using ASP.NET that will be
used to highlight features in this section. This application displays a list of
games and allows users to log in and provide reviews on their favorite
games. The premise behind this application is that both anonymous and
registered users can view the games and their reviews. Only registered
users that are logged in can add reviews, and only administrators can
moderate reviews. More details about this application will be given in
Chapter 13, “Programmable Web.”

Chapter 8: Security358

Figure 8.6 Services over Internet with Windows application

Securing Ser vices over the Internet 359

Windows Application Web Server Database Server

Internet

Desktop

Client

Figure 8.7 Sample Internet application

Because this is a Web application, we will also look into Forms Authenti-
cation and how to authenticate requests using the Forms Authentication

HTTP cookie that is based to a service hosted over an HTTP-based
endpoint.

ASP.NET Integration
ASP.NET and WCF support slightly different activation and hosting mod-
els. WCF was designed to support activation of services using a variety of
transports, such as TCP, HTTP, and MSMQ, whereas ASP.NET was
designed primarily for activation over the HTTP protocol. WCF was also
designed to support multiple different hosting models, including self-
hosting as well as hosting inside of Internet Information Services (IIS).
When hosted inside of IIS, WCF can either receive messages directly or
using an ASP.NET Compatibility mode. The default mode is to run side-by-
side with ASP.NET within the same AppDomain. This allows WCF to
behave consistently across hosting environments and transport protocols.
If you are not concerned about this and need only HTTP, WCF can leave
ASP.NET Compatibility mode to access some of the capabilities of
ASP.NET. ASP.NET Compatibility mode allows WCF services to access the
runtime capabilities of ASP.NET, such as the ����������� object, File and
URL Authorization, and ���!��
��� Extensibility. Listing 8.28 shows how
to enable ASP.NET compatibility within configuration.

Listing 8.28 Setting ASP.NET Compatibility Mode (in ������$��)

<�����������	����
��?
<����	������	��&��	�������#��=�������	�	�	��&����
47����7#9?

<9����	����	��?

Services can also register whether they require the use of ASP.NET Com-
patibility mode. This is done by specifying the %��=�������	�	�	��>�C
S�	�������%���	���� attribute on the service. Listing 8.29 shows an
example of a service that sets this attribute. Much of the code for the service
was removed for the sake of brevity.

Listing 8.29 #�3B"-(����
����<�@�������
� Attribute (in ������$��)

�������#&�����	�(�)
*
�����	���������,=������47&�����	�(�)7-
.#��B�
(����
�����
	<�@�������
��<�@�������
������
#��B�
(����
�����
	<�@�������
�����<�@������/

Chapter 8: Security360

����	�#����#$��>��	������	��
*
�"����	���������
�(��$��
����	�#$��>��	��� #>��	���,���	��#���+
%����	��-
*
.

�"����	���������
�(��+�����
�!�	��	��!���	��	��,�����	��%��	���D���
5#>���#4#76���7-
����	�#��	
#%

>��	��,���	��#���+
%����	��5#���	��#�������-
*
.

.
.

It is important to understand that ASP.NET Compatibility mode is not
always needed. For example, we will be examining how to use the
ASP.NET Membership Provider to authenticate access to WCF services.
This feature does not require the use of ASP.NET Compatibility mode.
However, if you want to be able to access the Principal and Identity of a
user from the ASP.NET �����������5 or use other security-related features
such as File and URL Authorization, you will need to use ASP.NET Com-
patibility mode. In this scenario, WCF services act more like ASP.NET Web
Services because they have similar capabilities. One important point is that
you should not use ASP.NET Compatibility mode if your intent is to host
services outside of IIS or use other transports besides HTTP.

Authentication Using Membership Providers
ASP.NET 2.0 provides a number of services such as Membership, Roles,
Profiles, and more. These services are prebuilt frameworks that developers
can use without the need for writing additional code. For example, the
Membership service provides the capabilities to manage users, including
the creation, deletion, and updating of users. ASP.NET also allows for
Forms Authentication to use the Membership service to authenticate users
for Web applications.

WCF provides a similar mechanism to authenticate user access to ser-
vices against the Membership services. This capability can be used whether
or not there is an ASP.NET Web application to consider. This means that any

Securing Ser vices over the Internet 361

ASP.NET Membership service can be used to authenticate access to a WCF
service. Because the Membership service provides its own mechanism for
managing users, we need to use UserName tokens. Listing 8.30 gives an
example of a binding that uses the UserName tokens to authenticate its
users. UserName tokens are unencrypted, therefore they need to be
encrypted using either transport-level or message-level encryption. This
example shows the use of transport-level encryption, which is the more
common scenario. It is important to mention that WCF requires the use of
encryption in this scenario, so skipping the encryption is not optional.

Listing 8.30 Use UserName/Password Credentials (in ������$��)

<�����������	����
��?
<�	�
	���?
<�������	�
	��?
<�	�
	��#���47�������8	��	�
	��7?
<�����	��#��
�47��������(�8���������
���	�7?
<������#��	������
���	�����476���=��79?

<9�����	��?
<9�	�
	��?

<9�������	�
	��?
<9�	�
	���?

<9�����������	����
��?

The next step to using the ASP.NET Membership service is to configure a
service behavior that specifies username authentication to be performed
using a membership provider. We will use the �������(��������	���
�S��������8	�!���	
��, which uses SQL Server as the mechanism for stor-
ing and retrieving user information. Listing 8.31 shows how to specify a
service behavior that validates users against an ASP.NET Membership
Provider.

Listing 8.31 Service Credentials Using SQL Membership Provider (in ������$��)

<�����������	����
��?
<��8�	���?
<����	����8�	���?

<��8�	��#���47����	����8�	��7?
<����	�����
���	��?
<����=��%��8���	��	��
����=��!�����
P�	
�	����
�47�������8	�!���	
��7
�������8	�!���	
��=��47%��=���S��������8	�!���	
��7

9?

Chapter 8: Security362

<9����	�����
���	��?
<9��8�	��?

<9����	����8�	���?
<9��8�	���?

<9�����������	����
��?

Listing 8.31 uses the default ASP.NET Membership Provider for SQL
Server. Listing 8.32 shows the default configuration for the ASP.NET Mem-
bership Providers in ��8	�������	�.

Listing 8.32 Membership Provider Configuration (in ����������$��)

<����������?
<���������
��#�������	�47����79?
<8�����
����9?
<�������8	�?
<����	
���?
<

#���47%��=���S��������8	�!���	
��7

����47�������(��������	����S��������8	�!���	
��5#
➥�������(��5#P���	��4J�:�:�:5#�������4������5
➥!���	�Q�������4�:I�3�R�BB
3:I7

�������	�����	��=��47;����S�������7
�����!�����
>���	���47����7#
�����!�����
>����47����7
��S�	���K����	��%�
%�����47����7
���	��	��=��4797
��S�	���6�	S��&�	�47����7
������
)����47��8�
7
��+���	
!�����
%�������4737
�	�>�S�	��
!�����
;����847R7
�	�>�S�	��
=����8�����	��8������47B7
������
%������(�
��47B:7
������
�������8>�����&������	��4779?

<9����	
���?
<9�������8	�?

<9����������?

A common development task is setting up transport encryption using a
self-signed certificate. WCF will attempt to validate this certificate and fail
with the following error:

7����
#���#�����	�8#�����#����	���8	�#���#�8�#��;9�;�#������#�8����#�	�8
��8��	��#b����8���b�7

Securing Ser vices over the Internet 363

Looking to the inner exception shows that the remote certificate failed
validation. The following was the original exception thrown:

7�8�#������#����	�	���#	�#	���	
#����
	��#��#�8�#��	
�	��#�����
����7

Listing 8.33 shows how to force a validation of a certificate that cannot be
validated, such as a self-signed certificate. This code should be imple-
mented by the client and should be used only in development for testing
purposes.

Listing 8.33 Developing Using Self-Signed Certificate

��	���#��	
#(�
��F;�
�
,��X���#���
��5#>����
&����%���#�-
*

�������=�������	��!�	������������������	�	���P�	
�	��������
T4#���#�������=��������	���>���������	�	���P�	
�	��������,
>���������P�	
��-'

.

���	�#����#>���������P�	
��,��X���#���
��5#
O3:0����	�	���#����5#O3:0�8	�#�8	�5
�������=��������	������!��	��&�����#�����-

*
������#����'

.

Role-Based Authorization Using Role Providers
ASP.NET role-based authorization allows developers to perform authori-
zation checks based on roles. It also uses a provider model, which abstracts
the details of user role storage from the application’s code. There are several
provider models in ASP.NET for roles, including the �S�>���!���	
��,
(�
��������>���!���	
��, and %��8��	G�	�������>���!���	
��.
Because we are assuming an Internet-facing application, we will examine
how to use the �S�>���!���	
�� to perform authorization checks. There are
several steps to using an ASP.NET role provider. The first step is to enable
the use of roles. This is done via configuration within either �������	� or
��������	� using the ��������� element.

<���������#�����
#47����7#9?

This allows the application to use roles, but it does not specify which
role provider to use. The next step is to configure a service behavior that

Chapter 8: Security364

specifies which role provider to use. Listing 8.34 shows a service behavior
that specifies the ��	��	��!���	��	����
� and the ����!���	
��=��
attributes on the ����	��%��8��	G�	�� configuration element. The
��	��	��!���	��	����
� is used to specify how authorization checks are
performed. In this situation we are using 76��%��=��>����7, which means
to use ASP.NET roles for authorization checks. We also specify the provider
name.

Listing 8.34 Service Authorization Using ASP.NET Roles

<�����������	����
��?
<��8�	���?

<����	����8�	���?
<��8�	��#���47����	����8�	��7?

<����	��%��8��	G�	��
��	��	��!���	��	����
�476��%��=��>����7
����!���	
��=��#47%��=���S�>���!���	
��7
9?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<9�����������	����
��?

Listing 8.34 uses the default ASP.NET Role Provider for SQL Server. List-
ing 8.35 shows the default configuration for the ASP.NET Role Providers
in ��8	�������	�.

Listing 8.35 Role Providers (in ����������$��)

<���������?
<����	
���?
<

#���47%��=���S�>���!���	
��7

�������	�����	��=��47;����S�������7
���	��	��=��4797
����47�������(��������	����S�>���!���	
��5#

➥�������(��5#P���	��4J�:�:�:5#�������4������5#
➥!���	�Q�������4�:I�3�R�BB
3:I7

9?
<

#���47%��=��(�
��������>���!���	
��7

���	��	��=��4797
����47�������(��������	���(�
��������>���!���	
��5#

➥�������(��5#P���	��4J�:�:�:5#�������4������5#
➥!���	�Q�������4�:I�3�R�BB
3:I7

9?
<9����	
���?

<9���������?

Securing Ser vices over the Internet 365

For ASP.NET Web applications, the typical approach for performing access
checks is to call 6����+�+�>��� method. This approach works well for Web
pages that often show or hide access to features based on authorization
checks, but it does not work well for WCF services. WCF performs author-
ization checks at the service level using the !�	��	��!���	��	��%�C
��	���� attribute. Listing 8.36 shows an example of a service that specifies
permission checks. The attributes look to see whether the user is in the
Administrator role. If the user does not belong to the role, the user is denied
the ability to call the service.

Listing 8.36 Principal Permission

�������#&�����	�(�)
*

�����	���������,=������47&�����	�(�)7-
�%��=�������	�	�	��>�S�	�������,>�S�	���������
�

4%��=�������	�	�	��>�S�	���������
��%�����
-
����	�#����#$��>��	��%����������	��
*

�"����	���������
.3��������3����������������
	#�
���������'

<������)#������
��
��)�/
����	�#��	
#%������,	��#���>��	��+
5#����#������
-
*
.

�"����	���������
.3��������3����������������
	#�
���������'

<������)#������
��
��)�/
����	�#$��>��	��� #>��	�����%������,-
*
.

.
.

Using Forms Authentication
All the approaches so far show how services can be accessed over the Inter-
net from a Windows-based application. Figure 8.8 shows a Web application
that accesses services over the Internet from the browser. We will now
consider how Web applications can access WCF services securely using a
Web-centric approach. This means that we want to use standard HTTP
approaches for securely accessing our services. This includes using

Chapter 8: Security366

HTTP cookies for authentication and SSL for encryption. SSL for encryption
has been covered earlier in this chapter, so we will focus on the use of HTTP
cookies for authentication.

Securing Ser vices over the Internet 367

Web Server
Browser Application

Database Server

Internet

Desktop

e

Figure 8.8 Services over Internet with Web application

ASP.NET provides a feature known as Forms Authentication, which
uses HTTP cookies for authentication. Forms Authentication allows a
developer to build a Web application that uses an HTML form for user
login. After the user types in the username and password, the form is sub-
mitted to the Web server for authentication. After the user is authenticated,
an HTTP cookie is sent down to the browser and used as an authentication
token. Successive calls from the browser can then use this token to authen-
ticate the user. By default, Forms Authentication works directly with the
ASP.NET Membership to perform authentication checks. Using Forms
Authentication and Membership, developers can write little or no code to
secure their Web applications. This is great for Web applications, but it does
nothing to help us for WCF services.

Unfortunately, there is no direct integration between WCF and Forms
Authentication at this time. Fortunately, a simple fix solves this problem.
Listing 8.37 shows a custom attribute that allows Forms Authentication to
be used with a WCF service. This attribute sets the principal on the current
thread to the principal specified in the current �����������. This simple
attribute allows for access checks using !�	��	��!���	��	��%���	���� to
work with Forms Authentication.

Listing 8.37 A��5����#�
���
���
��� Attribute

��	��#������'
��	��#��������������	����"�X�����
��'
��	��#�������D�'
��	��#�����������	����	��'
��	��#������������	���!�	��	��'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'
��	��#�����������	����
���D����	��	��'
��	��#�����������	����
���D	����8��'
��	��#��������8��
	��'
��	��#�������(��'
��	��#�������(��������	��'

�������#&�����	�(�)
*

����	�#����#6��)����%��8���	��	��#/#+D	����8������+��������
*

����	�#6��)����%��8���	��	��,-
*
.

N���	��#+D	����8������+��������#�������

����	�#��X���#%����>���	��>�S����,���#������#��S����5
+��	����8����#�8����5
+�������������#	�������������-

*
+!�	��	��#�������6���#4
�������(�����������������������6���'

	�#,,�������6���#	�#�������(��������	���>���!�	��	��-#cc
,�������6���#U4#�8��
��������!�	��	��--
�8��
��������!�	��	��#4#�������6���'

������#����'
.

����	�#��	
#���������
>����,���#������#�����5
��X���#�������	������-

*
.

N��
���	��
.

�%���	����6���,%���	���������������-
����	�#����#6��)����%��8���	��	����8�	��%���	����#/#%���	����5

+����	����8�	��

Chapter 8: Security368

*
N���	��#+����	����8�	��#�������

����	�#��	
#%

�	�
	��!�������,
����	��D����	��	��#����	��D����	��	��5
����	���������#����	���������5
�������	��<����	��&�
��	��?#��
��	���5
�	�
	��!�������������	��#�	�
	��!�������-

*
.

����	�#��	
#%����D	����8��8�	��,
����	��D����	��	��#����	��D����	��	��5
����	���������#����	���������-

*
�����8#,�8����D	����8��#�8����D	����8#	�

����	�����������8����D	����8���-
*

�����8#,&�
��	��D	����8��#��
��	��D	����8#	�
�8����D	����8�&�
��	���-

*
��
��	��D	����8�D	����8>���	���������+����������%

,

���#6��)����%��8���	��	��,--'
.

.
.

����	�#��	
#P�	
��,����	��D����	��	��#����	��D����	��	��5
����	���������#����	���������-

*
.

N��
���	��
.

.

Listing 8.38 shows a service that uses the Forms Authentication attribute.
It should be mentioned that the attribute is intended to be used with
ASP.NET Compatibility mode. The GameReviewService service shown in
Listing 8.38 is exposed using the new ��������	�
	�� binding. It allows all
users to retrieve reviews on games from the browser, but only authenti-
cated users can add reviews. This binding is used to expose WCF services
using a REST/POX style endpoint. It also integrates well with the ASP.NET
AJAX Extensions. For more information about these features, refer to
Chapter 13.

Securing Ser vices over the Internet 369

Listing 8.38 Services Using A��5����#�
���
���
��� Attribute

��	��#������'
��	��#�������D��;	�S'
��	��#�������;	�S'
��	��#�������=��'
��	��#������������	���!���	��	���'
��	��#������������	���!�	��	��'
��	��#�����������	����
��'
��	��#�����������	����
���%��	��	��'
��	��#�����������	����
���(��'
��	��#��������8��
	��'

�������#&�����	�(�)
*

.A��5����#�
���
���
�����������#

����
�/
�����	���������,=������47&�����	�(�)7-
�%��=�������	�	�	��>�S�	�������,>�S�	���������
�

4%��=�������	�	�	��>�S�	���������
��>�S�	��
-
����	�#����#$��>��	������	��
*

����	�#$��>��	������	��,-
*
.

�"����	���������
�(��$��
����	�#$��>��	��� #>��	���,���	��#���+
%����	��-
*

(��"����	���������#����#4#(��"����	�����������������'
�����"����	��>����������
����%

,
����>���������
�����8��������57��C��8�7-'

	��#���+
#4#����������+��IJ,���+
%����	��-'
$��>��	��� #����#4#����'

���
*

��	��#,$��>��	��D��������#
�#4
���#$��>��	��D��������,--

*
��#S����#4#����#�#	�#
��$��>��	���

�8���#,��$��+D#44#���+
-#cc
,��%������
-

��
����#�������
#
�����
	��
������#�'

����#4#S�������%���,-'
.

.
���8

Chapter 8: Security370

*
�����"����	��>���������������
�#4
�������=��������������
��+������������&����'

.

������#����'
.

�"����	���������
�(��+�����
�!�	��	��!���	��	��,�����	��%��	���D���
5#>���#4#76���7-
����	�#��	
#%

>��	��,���	��#���+
%����	��5#���	��#�������-
*

���	��#����=��#4#�8��
��������!�	��	���+
���	���=��'
	��#���+
#4#����������+��IJ,���+
%����	��-'
����#�%�����	�%������#4

�8��
��������!�	��	���+�+�>���,7%
�	�	������7-'

��	��#,$��>��	��D��������#
�#4
���#$��>��	��D��������,--

*

��$��>��	����%

,���#$��>��	��,-#
*#$��+D#4#���+
5
>��	��#4#�������5#%������
#4#�%�����	�%������5
6���#4#����=��5#�����
#4#�������D���	���=��#.-'

������	��8����,-'
.

.
.

.

Logging and Auditing

As you’ve seen in this chapter, there are many options for configuring secu-
rity with WCF services and client applications. Given so many configura-
tion possibilities, the ability to diagnose authentication and authorization
issues is of great importance. In addition, the ability to create audit trails to
record the calls (whether successful or not) to the security infrastructure is
critically important for many industries, such as banking and health care,
and also for companies seeking to maintain compliance with Sarbanes-
Oxley and other regulatory requirements.

Fortunately, WCF supports an easy-to-configure mechanism for creating
logs and audit trails of the security-related activities involving services.

Logging and Auditing 371

Security auditing can be enabled via configuration using the
����	�������	��%�
	���8�	�� as shown in Listing 8.39.

Listing 8.39 Configuring a Service to Audit Security Events via

�������������
	#���
��������

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#��������(��$�����
����)���������������)

���47���������	���������7?
<��
��	��#

����477#�	�
	��47�������	�
	��7#���47������7

�������47���������	���+������7#9?
<��
��	��#

����47���7#�	�
	��47��������	�
	��7#���47���7

�������47+���
�&��8���7#9?
<8���?���<98���?

<9����	��?
<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47����	����8�	��7#?
*�������������
	#���

����
H��H���
�����)#������
���)
�������#�
���
���
���#���
H�����)�������2�5������)
�������#�
����=�
���#���
H�����)�������2�5������)
��������#���
5�������)$����)�+,

<����	�����
�#8���$��&����
47����7#9?
<9��8�	��?

<9����	����8�	���?
<9��8�	���?

<9�����������	����
��?
<9����	����	��?

The �
	�;��;���	�� specifies which event log should be used for
auditing; it can be Default, Application, or Security. The ������%��8���	C
��	��%�
	�;���� and ����	��%��8��	G�	��%�
	�;���� properties can
be None, Success, Failure, or SuccessOrFailure. Finally, the ��������%�C

	�)	���� property can be set to true to prevent an exception from being
thrown when the system fails to log an audit message.

Running a service with the ����	�������	��%�
	���8�	�� options
shown in Listing 8.39 will result in MessageAuthentication and ServiceAu-
thorization events (for both failing and successful authentications/
authorizations) being written to the system’s Application log. Each entry

Chapter 8: Security372

will contain information such as the caller identity, time, target service URI,
and protocol. Should any message fail to be written to the event log, an
exception will be thrown.

By combining an auditing policy with the detailed options for message
logging and system tracing described in Chapter 9, “Diagnostics,” you can
more effectively and reliably track the behavior and usage of your WCF
applications.

SUMMARY

Security is clearly not an easy “feature” to provide in applications, espe-
cially when they are distributed over various programs, machines, and
even companies. The penalty for overlooking a proper security policy and
infrastructure is severe, and the loss of public trust associated with failure
is difficult, if not impossible, to reverse. Therefore, a careful consideration
of where, when, and how to apply security should never be overlooked.

By ensuring authentication of both the caller and service, parties can be
assured they are exchanging information with an expected party. Autho-
rization allows a service to verify that a caller should be granted access to
functionality or data directly or indirectly accessible through the service.
Finally, the privacy of the data exchanged can be protected via encryption,
and the integrity of the data can be preserved by digital signatures.

You’ve seen how to leverage certificates for message- and transport-
level security, which are especially useful for authentication as well as the
protection of exchanged data. Besides certificates, you saw a variety of
other options for configuring transport and message security, ensuring
overall transfer security between callers and services.

Several scenarios related to intranet and Internet-based service exposure
and consumption were introduced and detailed, helping to categorize your
own requirements and providing a practical basis for implementation.

Finally, you saw how to enable WCF’s native support for security-event
auditing and logging. Through logging security events, your organization
can quickly diagnose security issues in addition to creating a durable
record of requests made for authentication and authorization.

Summary 373

Despite the potential complexities of security, you’ve seen that WCF
offers many options to protect WCF services, as well as the consumers of
those services. Details at times may be daunting, especially to those new to
the underlying concepts, but with WCF, many of these features come at
little more expense than enabling basic options in configuration or code.

Chapter 8: Security374

9
Diagnostics

A S Y O U’V E S E E N in the previous chapters, WCF offers numerous
options for configuring your distributed applications and for extend-

ing WCF with custom code. Combine that with the complexities of cross-
machine and even cross-company interactions and you have many places
to look for sources of unexpected behavior.

Debugging distributed applications can be a challenging prospect. Even
if you do have access to the processes and symbol tables necessary for step-
ping through flow across service call boundaries, remote logic might have
been created by a different team with different coding and execution prac-
tices. There is also the difficulty of filtering diagnostic information to isolate
a particular flow of execution—for example, a single user’s session across
multiple services and machines.

However, the challenge of any distributed system is not only its initial
development, but ensuring ease of maintenance as that application is uti-
lized in production scenarios. IT administrators need efficient means for
finding root causes of issues so that the responsible company and devel-
opment team can be notified.

Fortunately, WCF has a number of built-in features and tools for diag-
nosing causes of issues, often without much more effort than electing to
enable those features in your configuration files. As you’ll see in this chap-
ter, WCF utilizes and builds on the native tracing and diagnostics features

375

of the .NET Framework. This allows you to leverage your existing knowl-
edge, and it enables integration of WCF applications’ diagnostics with
those of other applications.

In this chapter, we describe how to use tracing facilities to capture WCF
events and logging to capture details of exchanged messages. Trace listen-
ers are described, along with examples that show how to configure the set-
tings for different events. The Service Trace Viewer, a powerful tool that is
included with WCF, is also described, which enables you to inspect activi-
ties across service call boundaries.

Sample WCF Application

This chapter uses the SelfHost sample application that is included with the
Windows SDK. Details on obtaining, configuring, and running the sample
can be found on MSDN at http://msdn2.microsoft.com/en-us/library/
ms750530.aspx. If you have the SDK installed, you’ll find the SelfHost
application under Basic\Service\Hosting\SelfHost\ with both C# and
VB.NET versions available.

SelfHost is an introductory sample consisting of simple service and
client Windows console projects. The client console application makes sev-
eral calls to the WCF service, and results are displayed on both the client
and service consoles.

Tracing

The core diagnostics capabilities of WCF build on the existing tracing facil-
ities provided by the .NET Framework itself. The �������D	�����	��
namespace includes classes that enable applications to easily emit tracing
information and store those details in a variety of formats and locations.

�������D	�����	�� features tracing capabilities organized around the
concepts of trace sources and trace listeners. Trace sources are configured
using the �������D	�����	������������� class and enable applications
to emit details of execution, such as data or events. The traces emitted by a
trace source can be received and processed by one or more trace listeners,

Chapter 9: Diagnostics376

http://msdn2.microsoft.com/en-us/library/ms750530.aspx
http://msdn2.microsoft.com/en-us/library/ms750530.aspx

classes derived from the abstract base class �������D	�����	���

����;	������.
WCF natively utilizes these features to emit details about the actions

occurring during the processing of service calls and responses. No custom
code is required to create these details and the developer or IT administra-
tor need only add configuration to enable the source and listener, as
described next. However, developers are free to add their own tracing calls
to emit additional details as desired.

End-to-End Tracing
A central feature for monitoring WCF applications is called end-to-end (E2E)
tracing. This concept utilizes �������D	�����	�� features of the .NET
Framework to pass identifiers between the various entities of a distributed
application so that their actions can be correlated into a logical flow. Using
E2E tracing, it is possible to follow a sequence of actions across service and
machine boundaries—for example, from request origination on the client
through the business logic invoked by the target service.

E2E tracing uses a specific XML schema to persist details of processing
across logical boundaries. The XML is created by registering an instance of
the �������D	�����	���O�;(�	�������;	������, which processes trace
information into the E2E XML format (defined at http://schemas.
microsoft.com/2004/06/E2ETraceEvent).

Listing 9.1 shows an abridged E2E trace XML fragment.

Listing 9.1 End-to-End Trace Sample

<&J&����&����#�����47���7?
<������#�����47���7?
<&����+D?BIB:23<9&����+D?
<�	�������
#�������	��4

➥7J::RC:3C:H�B3/J2/BB�1BR2:1:Z7#9?
<������#=��47�����������	����
��7#9?
*(������
����#�
���
	%��

➥)1L>LK�7L$J�LMIJF$7�J�F>IJ$?�?7F�F�$GM4)�+,
<&�����	��#!������=��47�������8���7#

➥!������+D473II7#�8��
+D47379?
<��������?;%&>�&�<9��������?

<9������?

Sample WCF Application 377

http://schemas.microsoft.com/2004/06/E2ETraceEvent
http://schemas.microsoft.com/2004/06/E2ETraceEvent

Listing 9.1 continued

<%���	��	��D�?
<����D�?<D�+���?<����>����
?

<D����	��	��?%��	�	��#����
���<9D����	��	��?
<%��D��	�?�������8�������<9%��D��	�?
<&����
�
D�?
<%��	�	��=��?���������#����	������#

➥b����	��b�<9%��	�	��=��?
<%��	�	������?���������<9%��	�	������?
<9&����
�
D�?
<9����>����
?<9D�+���?<9����D�?

<9%���	��	��D�?
<9&J&����&����?

Note in particular the �������	�� node and the %��	�	��+D property.
These are the keys to combining individual trace fragments from a variety
of sources into a unified logical flow. The concepts behind correlation are
described next.

Activities and Correlation
A WCF activity is a logical subset of functionality used to group traces for
ease of identification and monitoring. An example is the processing of a call
into a service endpoint. Although activities are independently useful, effec-
tive monitoring requires a mechanism to track flow between multiple
activities.

Correlation is the concept of associating multiple activities to create a log-
ical sequence of flow in a distributed application. Correlation is performed
via transfers, linking activities within an endpoint, and propagation, linking
activities across multiple endpoints.

Activities are correlated by the interchange of an identifier called
the activity ID. This identifier, a GUID, is generated by the �������
D	�����	����������	������� class. �������	������� is associated
with a trace and can be retrieved via the static property �������
D	�����	���������������	�������. It has two primary methods,
����;��	��"����	��,- and ����;��	��"����	��,-, used to link
associated actions into a logical unit for tracing purposes.

Chapter 9: Diagnostics378

Enabling Tracing
Tracing is disabled by default and can be enabled by configuring a trace
source to emit information and trace listeners to process and save the final
trace details.

Listing 9.2 shows the relevant portions of the ��������#%�������	� file
configured for tracing.

Listing 9.2 Enabling Tracing in Configuration

<����	����	��?
<�����������	����
��#���#9?
<�������
	�����	��?
<�������?
*������������)�	�
��������������)��������
�#�
���
	�)
���)�

���
��E�����)9������'#�
���
	-������),
*���
�����,
*����
	���)�	�
���������
�����$���
-����H��
����)�

�����)��$���
),
*$��
���
	���))�+,

*+���,
*�������
����=���
��)���:
�������������)�

	���)�	�
���������
���;��9��
��-����H��
����)
�����)
�������)�
����2�
��
2�
�����)-����
���),

*$��
���
	���))�+,
*+���,

*+���
�����,
*+������,

<9�������?
<9�������
	�����	��?

<9����	����	��?

In Listing 9.2, the <������? node references the �����������	����
��
trace source, which is the source used by WCF to emit tracing details. In the
<�	�������? node, we can add one or more trace listeners to process those
details. The ���� property indicates the listener class to invoke and the
	�	�	�	G�D� contains arguments to that listener, such as a file loca-
tion. An O��(�	�������;	������ is configured to write details to the
��F������������� file.

Sample WCF Application 379

Chapter 9: Diagnostics380

NOTE Service Configuration Editor

To avoid having abstractions hide the mechanics of WCF diagnostics,
we’re enabling tracing and message logging by manually specifying
settings in the respective %�������	� files. Later in this chapter, we’ll
show how to use the Service Configuration Editor to quickly and accu-
rately make such changes without editing the configuration files
directly.

The trace source has a ��	��8P��� property that is used to specify the
level of detail that should be captured. Table 9.1 shows the possible values
for the ��	��8P��� property when configuring the trace source.

Table 9.1 Tracing Source ���
��E���� Options

Option Purpose

"�� Disables the trace source.

��	�	�� Tracks the most serious application and environmental fail-
ures, such as a service failing or a service being unable to
start.

&���� Issues with application logic or the environment—for
example, an unrecoverable exception.

(��	�� Scenarios that may result in an exception or failure in the
future, or notifications that the application recovered from
an exception.

+������	�� Details about system events that may be helpful for debug-
ging, simple auditing, and overall monitoring.

P������ Full information at each processing step. Useful for pin-
pointing sources of issues.

%��	�	�����	�� Uses correlation to track flow between logically connected
components of the distributed application.

Note that %��	�	�����	�� can be combined with a verbosity selector
(for example, ��	��8P���47(��	��5#%��	�	�����	��7).

Verbosity Recommendations
Using the more verbose options for tracing can quickly lead to large
amounts of traced information, which can add to system overhead and
increase the challenge of separating the relevant data from extraneous data.
When diagnosing an issue, we recommend that you begin tracing at the
(��	�� level.

When operating under normal production conditions, consider leaving
tracing off or at ��	�	�� or &���� until conditions require further infor-
mation for diagnostics or monitoring.

Message Logging

Tracing is used to record the flow and individual actions of the various
components of a distributed application. Another feature, message logging,
is used to record the contents of the messages from or to clients and ser-
vices. Message logging can be configured to capture messages at the serv-
ice level, the transport level, and to record messages that are malformed.
The data captured via message logging can be useful for a variety of situa-
tions, from diagnostics to creating audit trails of service utilization.

Enabling Message Logging
Like tracing, message logging is based on �������D	�����	�� and is dis-
abled by default. It can be enabled first by adding a trace listener (for exam-
ple, O�;(�	�������;	������) to process messages from the �������
����	����
���������;���	�� trace source.

Message Logging 381

Listing 9.3 shows our SelfHost application, configured for message
logging.

Listing 9.3 Enabling Message Logging in Configuration

<����	����	��?
<�����������	����
��?
<����	���#���#9?
<��8�	���#���#9?
<
	�����	��?
*�������H������
���"�
�����������)
���)
�����������#
�������H�����)
���)
��&��������-�H���)F888)+,

<9
	�����	��?
<9�����������	����
��?

<�������
	�����	��?
<�������?
*������������)�	�
���������������������H������),
*���
�����,
*���������)��������)

	���)�	�
���������
���;��9��
��-����H��
����)
���
����=���
��)��������������)�+,

*+���
�����,
*+������,

<9�������?
<9�������
	�����	��?
<9����	����	��?

The <�������
	�����	��? section looks similar to that used for
enabling tracing. We have added a source using �����������	����
���
������;���	��, the mechanism through which messages are emitted for
logging, and are processing that source with the same listener class,
O��(�	�������;	������, used earlier for tracing.

Unlike tracing, however, the format and verbosity of messages emitted
by the ������;���	�� source is specified in a <������;���	��? element
added to the <�����������	����
��?<
	�����	��? configuration node.
Table 9.2 shows the ������;���	�� options along with descriptions of
their purposes. Any number of these options may be specified in configu-
ration, and those that are not will use the default values shown in Table 9.2.

Chapter 9: Diagnostics382

Table 9.2 �������H������ Options

Option Default Purpose

���&��	�������� False If true, both the message
header and body are logged. If
false, only the message header
will be logged.

����������
������� False Logs incorrectly formatted
messages.

����������%�����	��;���� False Logs messages as received or
sent by the service itself.

����������%���������;���� False Logs messages either just
before encoding for transport
or directly after being received
from transport.

�����������;�� 10,000 Number of logged messages
after which further logging
will be suspended.

���	G�"���������;�� 262,144 Maximum message size, in
bytes, that will be logged. If a
message exceeds this limit, it
will be ignored and a warning
trace will be emitted.

Note that messages logged at the transport level may be encrypted,
depending on the binding or configuration options you have selected.

Additional Configuration Options

The previous sections described basic approaches for configuring logging
and tracing. In this section, we’ll describe several other options that you
should be aware of for configuring your WCF application.

Additional Configuration Options 383

Shared Listeners
The previous examples have used dedicated listeners for each of the
sources (messages and tracing.) You may choose to configure a shared lis-
tener and assign multiple sources, unifying the output to a single item, such
as an XML file. Listing 9.4 shows how to configure both tracing and mes-
sage logging to use the same output file.

Listing 9.4 Tracing and Message Logging to a Shared Listener

<����	����	��?
<�����������	����
��#���#9?
<�������
	�����	��?
<�������?
<������#���47�����������	����
��7#�������%��	�	��47����7#

��	��8P���47(��	��5%��	�	�����	��7?
*���
�����,
*���������)�������
���)�+,

*+���
�����,
<9������?
<������#���47�����������	����
���������;���	��7?
*���
�����,
*���������)�������
���)�+,

*+���
�����,
<9������?

<9�������?
*������H��
�����,
*���������)�������
���)

	���)�	�
���������
���;��9��
��-����H��
����)
���
����=���
��)�������
���������)�+,

*+������H��
�����,
<9�������
	�����	��?

<9����	����	��?

For each source, add a listener whose name matches the name of one of
the shared listeners. In this case, we’re matching the “diagnostics” listener,
which will write traces and messages to the same
	�����	��������� file.

Message Filters
By default, all messages appropriate for the level specified in the
<������;���	��? configuration element are logged. However, to reduce
the overhead associated with logging and to decrease the size of log files,
you might want to include only messages that match a set of rules you
configure.

Chapter 9: Diagnostics384

Message filters are XPath expressions that must be satisfied before a mes-
sage will be logged. Messages that do not match the XPath queries are
excluded, except for malformed messages, which are not affected by filters.

Specify the filters by adding a <�	�����? node to <������;���	��? as
shown in Listing 9.5.

Listing 9.5 Adding a Filter for Message Logging

<����	����	��?
<�����������	����
��?

<����	���#���#9?
<��8�	���#���#9?
<
	�����	��?

<������;���	��#����������
�������47����7
����������%���������;����47����7?

*$��
���,
*��������R��
��)>888)

&����6�>?�)�

�6++����G���+?88G+8K+����J��������)
&����6���>8�)�

�6++����G���+?88K+87+����������),

+�>?6"�������+�>?6 �����+���>86#�
���.�
��
�J
��
��
�&
��'Y�

�6++�������$
�������������������+%(������
��Y�/

*+���,
*+$��
���,

<9������;���	��?
<9
	�����	��?

<9�����������	����
��?

<�������
	�����	��#���#9?
<9����	����	��?

This example may seem complex, but the bulk of it defines the name-
spaces used in the XPath expression. The namespaces are for the SOAP
envelope and addressing schemas. The expression checks the header of
each message to ensure it is directed to one of the ICalculator services
defined in our SelfHost example. Messages for other services are ignored.

Trace Source Auto Flushing
If you want each tracing or message logging operation to automatically
complete (write to disk,) after each trace, enable auto flushing in the
<����? element of the <�������
	�����	��? configuration node as
shown in Listing 9.6.

Additional Configuration Options 385

Listing 9.6 Enabling Auto Flushing

<����	����	��?
<�����������	����
��#���#9?
<�������
	�����	��?
<�������#���#9?
*
�������
�$�����)
���)�+,

<9�������
	�����	��?
<9����	����	��?

Trace auto flushing is off by default. Before enabling auto flushing in
production scenarios, be certain to measure the impact in a test environ-
ment because it can add overhead, especially as message traffic increases.

Performance Counters
Three sets of WCF-related performance counters are installed with the .NET
Framework 3.0. In Performance Monitor, you can see these counters under
ServiceModelService, ServiceModelEndpoint, and ServiceModelOperation.
You can choose to enable these for your application via configuration, shown
in Listing 9.7.

Listing 9.7 Enabling Performance Counter Updates

<����	����	��?
<�����������	����
��?
<
	�����	��#���$�������(���
����)�������2��	7?
<������;���	��#����������
�������47����7#
����������%���������;����47����7#9?

<9
	�����	��?
<9�����������	����
��?

<9����	����	��?

Enable performance counters by including the ������������������
attribute in the <�����������	����
��?<
	�����	��? node. Valid settings
are "�� (the default), ����	��"���, and %��. Enabling all performance coun-
ters is recommended for development and diagnostic purposes, but
because performance counters do come with some cost of overhead,
����	��"��� is recommended for normal production operations, which
will enable only those in the ����	����
������	�� category.

Chapter 9: Diagnostics386

Windows Management Instrumentation (WMI)
WCF supports the capability to expose settings and status via Windows
Management Instrumentation, or WMI. Many popular application admin-
istration and management applications, such as Microsoft Operations Man-
ager and HP OpenView, use WMI to access various systems across an
enterprise. Windows PowerShell also has native WMI capabilities, enabling
you to write custom scripts for specific management and monitor scenarios.

You can enable the WMI provider for your WCF application in config-
uration as shown in Listing 9.8.

Listing 9.8 Enabling the WMI Provider

<����	����	��?
<�����������	����
��?
<
	�����	��#���3�������"�������)
���)?
<������;���	��#����������
�������47����7
����������%���������;����47����7#9?

<9
	�����	��?
<9�����������	����
��?

<9����	����	��?

Enabling WMI is similar to enabling performance counters. Add the
��	!���	
��&����
 attribute to the <�����������	����
��?<
	�����	��?
node. After it is enabled, administration applications will be able to moni-
tor and manage your WCF application.

Using the Service Configuration Editor

So far in this chapter, we’ve been specifying the manual XML-based meth-
ods of updating configuration files to enable tracing and message logging.

Using the Ser vice Configuration Editor 387

NOTE Observing Performance Counters

You need a running instance of a WCF service or client to add per-
formance counters in the Performance Monitor application. Ensure
performance counters are enabled in configuration and start your serv-
ice, then add the counters you want to observe, and then run your
client application.

In practice, there’s an easier and less error-prone way to add and modify
configuration settings using the SDK tool, Service Configuration Editor. If
the Window SDK has been installed, this editor can be found under All Pro-
grams, Microsoft Windows SDK, Tools. However, in Visual Studio you can
quickly launch the editor by right-clicking a configuration file and choosing
Edit WCF Configuration.

Let’s use the Service Configuration Editor on the service project’s
%�������	� file. Right-click the SelfHost service project’s %�������	� file,
choose Edit WCF Configuration, and select the Diagnostics node from the
Configuration pane.

To enable message logging and tracing, click the Enable MessageLog-
ging and Enable Tracing hyperlinks. Doing so will configure the system as
shown in Figure 9.1.

Chapter 9: Diagnostics388

Figure 9.1 Tracing and MessageLogging enabled

Notice that the listeners and sources are now displayed in the left panel.
You can now click the hyperlinks in each section to configure other related
options.

Tracing Options
Once tracing is enabled, explore the available options by clicking the link
next to the Trace Level label.

Here you can elect to enable activity propagation and tracing (described
earlier in this chapter, and both are typically enabled) as well as the verbosity
level from Off through Verbose. Remember that the trace level will affect the
amount of space consumed by trace logs. A large log is more difficult to nav-
igate, so you should typically choose the least verbose level necessary.

Logging Options
To access the Message Logging Settings dialog, click the link next to the

Log Level label in the MessageLogging section. As described earlier, you
can choose to log any of three types of messages: those that are malformed,
messages as they are received or sent by the service level, and messages as
they are ready for transport or just received from transport.

Clicking the Message Logging item inside the Diagnostics node on
the left panel will show the advanced logging settings options shown in
Figure 9.2.

Using the Ser vice Configuration Editor 389

Figure 9.2 Advanced Message Logging settings

These options affect the behavior of the ����	����
���������;���	��
source. They relate directly to the <������;���	��? configuration node,
the defaults and purposes of which were shown previously in Table 9.2.

Earlier, we showed that message logging supports the concept of filters
to log only those messages that pass specified XPath filters. The Message
Logging node in the Service Configuration Editor exposes a New XPath Fil-
ter option in the Tasks pane. Figure 9.3 shows the same XPath filter we used
earlier defined in the Service Configuration Editor.

Chapter 9: Diagnostics390

Figure 9.3 Message Logging XPath Filter

The tool lets you specify the maximum number of nodes to search (the
��
�K��� attribute) and lists commonly used namespaces, along with the
prefix for each. You can add more namespaces if you need and reference
them via the prefix in your XPath expression.

Configuring Sources
Enabling tracing and logging via the Service Configuration Editor will auto-
matically configure the �����������	����
�� and �����������	����
���

������;���	�� trace sources. To see them, expand the Diagnostics/Sources
node in the Configuration pane. Select the �����������	����
�� source and
you will see the settings shown in Figure 9.4.

Using the Ser vice Configuration Editor 391

Figure 9.4 Trace Source settings

On this screen, you can view or change the verbosity level as well as
whether activity tracing and propagation will be used. Note that activity
tracing and propagation are available only for tracing listeners and not for
message logging listeners.

Configuring Listeners
Returning to the main diagnostics screen (shown in Figure 9.1), you can
access detailed listener settings by clicking the links for each listener name
(for example, ServiceModelTraceListener.) These options, shown in Figure
9.5, enable you to specify the target file for the listener as well as multiple
options for the details included with each trace or message.

The check boxes relate to the �������D	�����	�������"��	��� enu-
meration. The basic options are to include Timestamp, Process ID, Thread
ID, Callstack, and/or DateTime of the trace. The Logical Operation Stack

Chapter 9: Diagnostics392

includes the correlation “stack” of the trace, essentially the correlated his-
tory of the trace, which is not necessarily the same as the environmental
callstack.

Figure 9.5 Listener settings

For a summary of each listener’s settings, expand the Listeners node in
the Configuration pane and click a listener. This displays the option sum-
mary for each listener, shown in Figure 9.6.

Figure 9.6 Detailed listener configuration

Here you can quickly review or change all the listeners’ configuration
options.

Service Trace Viewer

We’ve described how to enable various options for tracing and message
logging, but how will the output of those diagnostic tools be put to effective
use? Even over a brief period of time, tracing and message logging can emit
large amounts of data.

WCF works with a powerful tool for analyzing diagnostics logs called
the Service Trace Viewer. This tool can be used to import both trace and
message log files from one or more components of a distributed applica-
tion. After installing the Windows SDK, you can find the Service Trace
Viewer via the All Programs, Microsoft Windows SDK, Tools menu.

Ser vice Trace Viewer 393

TIP Configuring the SelfHost Example

In this section, we have enabled tracing and message logging for both
the client and service projects. To follow along on your computer, use
the Service Configuration Editor described earlier to enable tracing
and message logging in both projects, selecting Information verbosity
levels and defaults for all other settings. After it is configured, run the
application to generate client and service log files.

Let’s use the Service Trace Viewer to analyze the log files generated by
the SelfHost example. Launch the Service Trace Viewer and choose File,
Open from the menu. Find the SelfHost/client directory and select both the
trace (��F�����������) and message (��������������) log files by
holding the Shift key while clicking each. Be certain to select them both
because subsequent uses of Open will clear any previously loaded infor-
mation. (We’ll later use File, Add to merge additional logs.)

Activity View
The Service Trace Viewer is able to merge the contents of multiple trace and
log files. Figure 9.7 shows the Service Trace Viewer with the SelfHost client
project’s log files loaded.

Figure 9.7 Service Trace Viewer with client trace and message logs

This screen shows the merged results in the default Activity view. The
left pane lists each of the activities along with the number of traces they
contain, the duration, the start time, and the end time. When one or more
activities are selected, the upper-right pane shows the individual traces
associated with the selected activities.

Chapter 9: Diagnostics394

TIP Warnings and Exceptions

Service Trace Viewer displays activities containing warning traces
highlighted in yellow. Those with exceptions in their traces are shown
with red text.

The first activity, 000000000000, is a dedicated root activity from which
all others are linked. Moving down the list, we see the activities the client
processed during the program run. First, �8����)����� is constructed
and opened, enabling communications with the service.

Each service call is shown as a Process action activity. There are four of
these in our trace, relating to the %

, �������, ����	���, and D	�	
� ser-
vices that our client code invokes. The client also negotiates a secure session
(Set Up Secure Session) as required by the service binding options.

Click the various activities and note the list of associated traces shown
in the top-left pane. You can see the type of trace and a brief description.
We’ll see in a moment another option for inspecting these traces.

Project View
Another view, the Project view, can be shown by clicking the Project tab in
the left pane. The Service Trace Viewer supports the concept of projects. A
project enables you to specify multiple tracing and logging files that should
be loaded when the project is opened. This is especially useful when you
have multiple participants (for example, a client calling multiple services)
that you are debugging together. From the File menu, choose Save Project
after you have loaded the files you want to associate.

The Project view displays the files associated with the current project.
Using this view, you can create or modify projects and add or remove asso-
ciated files.

Message View
The Message view lists all the logged messages, independently of any cor-
related activities. This is useful for quickly finding a specific message—for
example, the message sent to the ����	��� service—and inspecting its
contents.

Figure 9.8 shows the Message view, highlighting the message sent from
the client to the D	�	
� service.

Graph View
The Graph view is the most complex, yet potentially useful option in the
Service Trace Viewer. You can access it by double-clicking any activity or
message in the previous views or by selecting the Graph tab. The Graph
view shown will be similar to Figure 9.9.

Ser vice Trace Viewer 395

Figure 9.8 Service Trace Viewer Message view

Chapter 9: Diagnostics396

Figure 9.9 Service Trace Viewer Graph view

In this view, the activities are now arranged across the top of the left
pane. The vertical “swimming lanes” show each trace within those activi-
ties, with connections between correlated activities. Select any trace on the
left side and the right pane will highlight that trace among all traces for that
activity.

The primary benefit of this view will be seen in a moment when we
include trace files from the service project.

Ser vice Trace Viewer 397

TIP Live Service Trace Viewer

Although the Service Trace Viewer is excellent for after-the-fact analy-
sis of service interactions, a sample tool, called the Live Service Trace
Viewer, offers an alternative approach. This application uses a custom
����;	������ and a Windows Presentation Foundation (WPF) inter-
face to receive and display diagnostic information as it occurs, which
can be very useful, especially during development to avoid the man-
ual process of continually reloading log files between runs.

Note that the Live Service Trace Viewer is not supported by Microsoft,
but is an interesting example of how WCF diagnostics can be
extended.

Details and code can be found at http://blogs.msdn.com/
craigmcmurtry/archive/2006/09/19/762689.aspx.

Analyzing Logs from Multiple Sources
Although the Service Trace Viewer is helpful for viewing the logs for a sin-
gle service or client, the real power of both the tool and of end-to-end trac-
ing is realized when log files are added from more than one participant of
a distributed application.

To see this, choose File, Add (which, unlike File, Open, merges new logs
with currently loaded logs) and select the SelfHost service project’s tracing
and message logs. The service log files will be imported and correlated with
the previously loaded client logs, as shown in Figure 9.10.

http://blogs.msdn.com/craigmcmurtry/archive/2006/09/19/762689.aspx
http://blogs.msdn.com/craigmcmurtry/archive/2006/09/19/762689.aspx

Figure 9.10 Service Trace Viewer with service and client logs loaded

As you can see, there is much more detail available to us. The activity list
now displays activities for both the client and service projects.

Select the Process Action activity for the ������� service call and either
double-click it or click the Graph tab above. You should see the Graph view
similar to Figure 9.11.

Now we can see how the Graph view can help us visualize otherwise
complex interactions between services and callers. The top of the main
pane organizes the activities by host, in our case service and client. Hover
the mouse pointer over each activity to see its description. As you expand
the traces within activities, you may see visual indicators of correlation
between activities.

In Figure 9.11, you can see that the client sent a message to the service, the
service processed that message by calling the ������� method, and then a
response message was created and sent back to the client. This visualization

Chapter 9: Diagnostics398

Figure 9.11 Service Trace Viewer graph of activity transfer

Clicking the plus symbol next to the highlighted trace in Figure 9.11
expands the display to show us another level of detail. Figure 9.12 shows
the resulting detail.

A new activity is displayed under the ����	�����8��� block, Execute
‘Microsoft.ServiceModel.Samples.ICalculator.Subtract’. If there had been
any exceptions or warnings traced, we would see them in the Graph view
as yellow triangles or red circles, respectively. By expanding details to show
contained activities and observing how interactions between activities and
hosts are correlated, you can quickly use the Service Trace Viewer to locate
the sources of unexpected behavior, whether you are a developer creating
a distributed application or an IT professional investigating reported issues
in production.

Ser vice Trace Viewer 399

is possible because of end-to-end tracing and the use of correlation to link
activities.

Figure 9.12 Service Trace Viewer with expanded subtract call activity

Filtering Results
You may find, especially with production-generated log files, that locating
specific information in trace and message logs can become a challenge. For
example, you may know that a particular user’s session led to unexpected
behavior (and for the sake of example, let’s say there were no warnings or
exceptions thrown, only incorrect data). This would be an extremely chal-
lenging prospect, but the Service Trace Viewer offers a flexible infrastruc-
ture for finding and filtering entries.

In the toolbar, the Find What option enables you to quickly search all
traces for matching text. For example, type ������ and click Find. The trace
list will highlight those traces containing that word.

You can use the Look For box to quickly limit the displayed traces to
those matching your criteria. Click the Search In drop-down and select cri-
teria (for example, Start Time). The Look For field becomes enabled. Enter

Chapter 9: Diagnostics400

the earliest time you are seeking and click Filter Now. The activities list dis-
plays only those activities that started on or after the selected time. You can
also use the Level field to select the severity of messages you want to see
(for example, Warning.) The Clear button returns the results to the unfil-
tered view.

The most powerful filtering option is the capability to create and save
custom filters. Click the Create Custom Filter button at the top of the trace
list to see a dialog similar to Figure 9.13.

Ser vice Trace Viewer 401

Figure 9.13 Creating a custom filter in the Service Trace Viewer

This editor allows composition of filters with one or more XPath expres-
sions. The nodes and attributes in the left pane default to those of the activ-
ity or trace that was selected when the Create Custom Filter button was
clicked. Select the attribute(s) you want to query and then give the filter a
name and description. After clicking OK, you can select your custom filter

from the Search In list on the top toolbar to constrain the display to show
only entries matching your custom filter.

SUMMARY

In this chapter, we described how WCF utilizes much of the native func-
tionality of the .NET Framework to improve developers’ and IT profes-
sionals’ abilities to diagnose issues in distributed applications.

End-to-end tracing is the concept where logically related actions in dif-
ferent areas of applications, and perhaps on different systems altogether,
can be linked to improve our ability to follow specific scenarios through
logged information. This correlation is performed by passing unique iden-
tifiers within and between endpoints of a WCF system.

Tracing and logging are simple to enable and configure, building on
familiar concepts from the �������D	�����	�� namespace. Tracing gives
us insight into the actions occurring in our distributed applications. Mes-
sage logging enables us to inspect the actual data being passed between
clients and services.

The Service Configuration Editor is a useful Windows SDK tool that
helps developers and administrators quickly and reliably inspect and
change WCF configuration settings, including options for diagnostics.

Finally, we saw how the Service Trace Viewer, also included with the
Windows SDK, is a powerful tool for visualizing and inspecting the often
large amounts of data captured through tracing and message logging. It is
especially useful when exceptions and warnings occur and multiple sys-
tems (or companies) are potentially involved. Developers or administrators
can use the Service Trace Viewer to quickly isolate sources of unexpected
behavior.

The diagnostic capabilities of WCF are an easy-to-use yet powerful way
to ensure that your complex distributed applications can be effectively
maintained and extended.

Chapter 9: Diagnostics402

1 0
Exception Handling

T H E H A R S H R E A L I T Y of software development is that even carefully
written systems break and unanticipated scenarios occur. It’s the job of

a good developer to ensure a balance between creating software that pre-
vents problems and software that handles problems as they arise. Distrib-
uted service-based systems are no exception. In fact, service-based systems
exacerbate the problem by introducing dependencies such as server avail-
ability, network conditions, and service version compatibility.

Exceptions are a critical component of a robust system and can be indi-
cators of a variety of situations. For example, a caller may not have pro-
vided correct or complete information to a service, a service may have
encountered an issue attempting to complete an operation, or a message
may be formatted according to an unsupported version.

In this chapter, we’ll talk about the effect exceptions have in WCF and
the features WCF provides for communicating and processing exceptions.
We’ll describe the difference between exceptions and faults, the ways to cre-
ate faults to send to a caller, and ways to process exceptions on both the ser-
vice and caller. Finally, we’ll describe ways to centralize exception
processing in the service host, catching unexpected exceptions or perform-
ing additional processing on exceptions and faults, such as logging.

403

Introduction to WCF Exception Handling

Before we get to the details of properly handling exceptions in a WCF ser-
vice and associated client applications, let’s look at what happens when
exceptions are thrown using default settings. Understanding what happens
if you do not account for exceptions is important for all WCF developers.

A WCF service typically wraps calls to underlying business logic
libraries, and as would be expected in any managed code, these libraries
may raise standard .NET exceptions to their callers. Exceptions are raised
up the call stack until either they are handled by a layer or reach the root
application’s context, at which point they are typically fatal to the calling
application, process, or thread (depending on what type of application is
running).

Although unhandled exceptions are not fatal to WCF itself, WCF makes
the assumption that they indicate a serious issue in the service’s capability
to continue communications with the client. In those cases, WCF will fault
the service channel, which means any existing sessions (for example, for
security, reliable messaging, or state sharing) will be destroyed. If a session
is part of the service call, the client channel will no longer be useful, and the
client-side proxy will need to be re-created for the client to continue call-
ing the service.

WCF Exception Communication via SOAP
Exceptions that occur either in the service implementation logic or within the
mechanics of the service host itself are natively CLR-based &�����	�� types.
Because services need to support communication between any type of client
and service regardless of technology, those .NET-specific details must be
translated to a standardized format for interoperable communications.

Interoperability is ensured by serializing those platform-specific excep-
tion details to the common data schema described by the Simple Object
Access Protocol (SOAP) specification. The SOAP specification provides for
a fault element that may be present in a SOAP message’s body.

In this chapter, we describe several ways in which exceptions can be
communicated as faults from the service to the caller. Detailed knowledge

Chapter 10: Exception Handling404

of the SOAP fault schema is generally not necessary because the WCF infra-
structure abstracts those details, providing a variety of ways to supply
additional information that is then associated with the appropriate SOAP
fault elements and properties.

Minimally, a SOAP fault must specify two values. The reason is a
description of the error condition. The other required value is an error code,
which can either be a custom indicator or one of the predefined codes enu-
merated in the SOAP specification. We’ll return to these concepts later
when we discuss the)���&�����	�� type.

More information on the SOAP specifications for fault management can
be found on the W3C’s website at www.w3.org/TR/2007/REC-soap12-
part0-20070427/#L11549.

Unhandled Exception Example
To see how WCF behaves when unhandled exceptions are raised to the ser-
vice host, create a basic WCF service and minimal Windows client. To
demonstrate the effects of the server channel faulting, ensure your service
involves a session, for example by choosing wsHttpBinding, which estab-
lishes a session for security.

In the service implementation, create an operation similar to the one
shown in Listing 10.1.

Listing 10.1 Sample Contract and Implementation

��	��#������'
��	��#�����������	����
��'

�������#����	��;	����
*

�����	���������,-
����	�#	�������#+����	��
*

�"����	���������

�����#D	�	
�,
�����#��������5#
�����#
����	����-'

.

����	�#����#����	��B#/#+����	��
*

����	�#
�����#D	�	
�,
�����#��������5#
�����#
����	����-

Introduction to WCF Exception Handling 405

www.w3.org/TR/2007/REC-soap12-part0-20070427/#L11549
www.w3.org/TR/2007/REC-soap12-part0-20070427/#L11549

Listing 10.1 continued

*
	�#,
����	����#44#:-

�8���#���#%�������"��"�>���&�����	��,7
����	����75
7����#��##�����	�#����#����#�8�#��#

➥������#�8�#G���7-'

������#��������9
����	����'
.

.
.

From the Windows client application, use the Add Service Reference
option to create a proxy for the service. Create a simple form with two
TextBoxes and two Buttons. Assign the first button to call the D	�	
� Web
service, passing the values from the TextBoxes as arguments. Assign the
second button to refresh the local instance of the service proxy. Your client
code might look similar to Listing 10.2.

Listing 10.2 Client Windows Application Code

��	��#������'
��	��#�����������	����
��'
��	��#�������(�
����)����'

�������#(�
�����	���
*

����	�#���	�#����#)���B#/#)���
*

����	��B�����	����	���#F����	��!����#4#���
(�
�����	��������	��B�����	����	���,-'

����	�#)���B,-#*+�	�	�	G����������,-'.

��	���#��	
#������BF��	��,��X���#���
��5#&����%���#�-
*

���
*###################

�����������8��,F����	��!�����D	�	
�,

������!���,���+����%�����-5#

������!���,���+����������--������	��,--'

.
���8#,)���&�����	��#���-
*

�����������8��,������
��=��#T#7/#7#T#
����������������	��,-5#
����$������,-������	��,--'

Chapter 10: Exception Handling406

.
.

��	���#��	
#��
=��!����F��	��,��X���#���
��5#&����%���#�-
*

F����	��!����#4#���#(�
�����	��������	��B�����	����	���,-'
.

.
.

Run the application and pass functional arguments (for example, 10 and
5.) Assuming you’ve coded the sample correctly, the result of the division
should be displayed (for example, 2). Now change the denominator value
to zero and retry the call. You should see a result similar to Figure 10.1.

Introduction to WCF Exception Handling 407

Figure 10.1 5���
"&���
��� returned by calling service
with zero denominator

Finally, return the denominator to a nonzero value and call the service
again. Although the call would normally be successful, the call fails, receiv-
ing a ������	��	��"�X���)����
&�����	�� with a message similar to
Figure 10.2.

Figure 10.2 (��������
���2�Q��
5���
��"&���
���
for faulted channel

Because WCF received an unhandled exception at the service host, it
assumed the exception was indicative of a fatal issue and therefore faulted
the server channel. In our case with �������	�
	��, the established security
session is no longer valid, so communications must be reestablished by
recreating the client proxy.

Chapter 10: Exception Handling408

NOTE One-Way Operations and Faults

Operations with one-way designations by design do not receive a mes-
sage from the called service, regardless of whether that call was suc-
cessful. Because no message is returned, there is no indication to the
client that a fault has occurred.

In addition, if that fault was caused by an unhandled exception, the
server channel will be considered faulted, but the client will not be
aware of that fact. In a session-dependent interaction, continued calls
will fail (with ������	��	��"�X���)���&�����	��) until the proxy
is re-created. Be certain to account for this behavior in your client and
server logic when utilizing one-way operations.

Detecting and Recovering a Faulted Channel
Faulted channels can and should be detected by the client. Client code
should inspect the channel after each fault to determine whether that fault
resulted in faulting of the channel itself. This can be done by having the
client code check the channel’s ���� property in exception-handling code
as shown in Listing 10.3.

Listing 10.3 Verifying a Channel Is Not Faulted

��	���#��	
#������BF��	��,��X���#���
��5#&����%���#�-
*

���
*

�����������8��,F����	��!�����D	�	
�,
������!���,���+����%�����-5

������!���,���+����������--������	��,--'

.
���8#,)���&�����	��#���-
*

�����������8��,������
��=��#T#7/#7#T#����������������	��,-5
����$������,-������	��,--'

	�#,F����	��!���������#44#������	��	�������)����
-

*
�����������8��,7������	��	��#�8����#8�#����#�����
�

➥%������	��#��#��������7-'
��
=��!����F��	��,����5#����-'

.
.
���8#,������	��	��&�����	��#���-
*

�����������8��,7������	��	��#�����/#7#T#
����������������	��,-5#����$������,-������	��,--'

.
���8#,&�����	��#���-
*

�����������8��,7$�����#�����/#7#T
����������������	��,-5����$������,-������	��,--'

.
.

If a faulted state is detected, you should log the conditions and cause,
attempt to re-create the proxy, and continue. When that is not feasible, such
as when a session was underway that you cannot manually re-create, the
user should be notified and further calls with that proxy prevented.

Communicating Exception Details

In the earlier example, we called a service that raised an unhandled excep-
tion to the service layer, and the client received the minimal information
shown in Figure 10.1. By default, WCF relays this message, rather than
details about an exception, to a caller to prevent exposure of sensitive
details about the system’s implementation or infrastructure.

����	��D������8�	�� has an +����
�&�����	��D��	�+�)���� prop-
erty that can be used to enable transmission of exception details to the
client. To enable this behavior, modify your project’s �������	� file to be
similar to Listing 10.4.

Listing 10.4 Enabling %������"&���
�����
����%�5���
� Option via Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47����	��;	���������	��B7

��8�	������	����	��47���
�%�
&�����	��D��	�7?

Communicating Exception Details 409

Listing 10.4 continued

<��
��	��#�������47����	��;	�����+����	��7
�	�
	��47�������	�
	��79?

<��
��	��#�������47+���
�&��8���7#�	�
	��47��������	�
	��7

����47���7#9?

<9����	��?
<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47���
�%�
&�����	��D��	�7#?
<����	�����
�#8���$��&����
47����7#9?
*��������������������"&���
�����
���%�5���
��)$����)�+,

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<9�����������	����
��?

<9����	����	��?

After the 	����
�&�����	��D��	�+�)���� option has been enabled,
run the sample service again and supply a zero denominator, which will
result in the message shown in Figure 10.3.

Chapter 10: Exception Handling410

Figure 10.3 Exception detail included with
��������������������

Note that you can also set this behavior by using the
����	����8�	��%���	���� on the service definition. For example, we
could enable the communication of debugging information by modifying
the Service.cs definition to Listing 10.5.

Listing 10.5 Using ���������������#

����
� to Enable

%������"&���
�����
����%�5���
�

��	��#������'
��	��#�����������	����
��'

�������#����	��;	����

*
.����������������%������"&���
�����
���%�5���
��
����/
����	�#����#����	��B#/#+����	��
*

����	�#
�����#D	�	
�,
�����#��������5#
�����#
����	����-
*���.########

.
.

Note that using the attribute in this manner to enable exception detail
will override any other settings in the configuration that may be intended
to disable the feature. Therefore, we recommend you use a configuration-
based approach for production applications, perhaps reserving the attrib-
ute usage for development purposes.

Whether you elect configuration- or attribute-based use of this feature,
remember to disable the option when you do not actively require the details
to be transmitted. Using this option only when necessary will help you to
ensure that sensitive service details are not exposed.

Managing Service Exceptions with 5���
"&���
���

The first example demonstrated the effect of allowing an unhandled excep-
tion to rise through the service implementation layers to the service host.
Notice that in Figure 10.1, the type of exception returned to the caller is
)���&�����	��. This is a base &�����	��-derived type used in WCF to
integrate with the SOAP fault specification.

By default, exceptions that reach the service host that are not derived
from)���&�����	�� are considered indications of a potentially fatal con-
dition. The exception is replaced by a)���&�����	�� and the original
exception’s details are omitted unless the +����
�&�����	��D��	�+�)����
option is enabled. The)���&�����	�� is then serialized as a SOAP fault for
communication back to the caller (save for one-way invocations.) Again, if
the call was part of a session, that session will be destroyed and will need to
be re-created.

The fatal condition created by unhandled exceptions can be prevented
by catching exceptions before they reach the service host and throwing a
)���&�����	�� manually. The)���&�����	�� class has a number of

Managing Ser vice Exceptions with 5���
"&���
��� 411

constructors and properties that allow you to specify different required and
optional values that relate to the SOAP fault representation.

A recommended pattern is for the service code to catch any exceptions
and extract the relevant details for inclusion in a new)���&�����	��
instance. An example of this is demonstrated in Listing 10.6.

Listing 10.6 Catching an Exception and Throwing a 5���
"&���
���

����	�#����#%������+���	��,	��#	���	��+
-
*

���
*

+���	��#	���	��#4#+���	���������$��+���	��,	���	��+
-'
������#	���	���%������,-'

.
���8#,%�������&�����	��#���-
*

99#;��#
��	��#��#�8�#%�������&�����	��#�
#�������#8���

99#>	��##)���&�����	��#��#�8�#�����

���������5���
"&���
�����������%��N�)�����
������)��

.
���8#,&�����	��#���-
*

99#;��#
��	��#��#�8�#&�����	��#�
#�������#8���

99#>	��##)���&�����	��#��#�8�#�����

���������5���
"&���
����)"�����������������������6�)�N��&����������

.
.

Using 5���
(��� and 5���
<����� to Extend 5���
"&���
���
Listing 10.5 is a good start, but it does not specify additional information
that could be useful to the client. The)���&�����	�� constructor also sup-
ports)���>���� and)�����
� arguments, used to specify the reason
and code elements of the SOAP fault, respectively.

There are three main options for the)�����
�. A���
�� code indicates
a problem with the message as sent by the caller. This is the default code if
none is supplied to the)���&�����	��. A >���	��� code indicates that
processing could not be completed because of an issue encountered by the
service implementation. Alternatively, a custom code can be provided.

Chapter 10: Exception Handling412

The)���>���� class is helpful for creating multiple reason messages
featuring locale-based translations for localization of the application.
The SOAP 1.2 specification provides for multiple reason nodes, each fea-
turing a localeID (for example, ��C6� for English in the United States). The
)���>���� class accepts a collection of)���>�������� instances, which
themselves include strings of translations with locale identifiers.

In Listing 10.7, we revisit the sample code in Listing 10.6 and utilize the
)�����
� and)���>���� classes to enhance the fault information we’re
serializing back to the caller.

Listing 10.7 Extending 5���
"&���
��� Using 5���
(��� and 5���
<�����

����	�#����#%������+���	��,	��#	���	��+
-
*

���
*

+���	��#	���	��#4#+���	���������$��+���	��,+���	��+
-'
������#	���	���%������,-'

.
���8#,%�������&�����	��#���-
*

�8���#���#)���&�����	��,	���	��+
#T#7	�#���#��	
�7-'
.
���8#,+���	��=��)���
&�����	��#���-
*

���������5���
"&���
�����������%��N�)��������
����������)'
5���
(���(���
�<�������5���
(��������5���
(����)!�
%������)����

.
���8#,&�����	��#���-
*

H��
*5���
<�����-�&
,�$�
��������H��
*5���
<�����-�&
,���
$�
�#�������5���
<�����-�&
�)"�����������������������)���
$�
�#�������5���
<�����-�&
�)*5������
������
���,)'�

����(��
���%�$��)$�J5<)����
$�
�#�������5���
<�����-�&
�)*(=����
������
���,)'�

����(��
���%�$��)��J(P)����

���������5���
"&���
��������5���
<������$�
��'

5���
(���(���
�<�������5���
(����
����5���
(����)#������%������)����

.
.

.

Because the %�������&�����	�� indicates a problem with the value that
was supplied to the service operation, we do not specify a)�����
�, so the
default of ���
�� will be used. For the +���	��=��)���
&�����	��, we

Managing Ser vice Exceptions with 5���
"&���
��� 413

want to indicate that there was a service-related problem, so the static
method �����>���	���)�����
�,- was used to create a >���	��� code.

In the catch-all section, we’re demonstrating the use of the other
)���>���� constructors to provide translated error messages to the caller.
First, a generic ;	�� of)���>�������� entries is created, supplying trans-
lations and associated culture codes. Then the)���&�����	�� is con-
structed, including that list of translations with the)���>���� constructor.

To access the translations on the client side, the)���&�����	�� class
exposes a >���� property that features a $�����8	��������	��,-
method. Call <������	��?�>�����$�����8	��������	��,- without
arguments to automatically retrieve the translation for the current thread’s
culture, or supply a specific �������+��� as an argument to retrieve a spe-
cific translation.

Limitations of Basic 5���
"&���
����

Using the base)���&�����	�� class is a simple way to prevent unhandled
exceptions from reaching the service host and potentially canceling your
sessions and invalidating the client proxy. However,)���&�����	��s suf-
fer from a lack of identity. If your service returns only)���&�����	��s,
you are making it difficult for client application developers to create robust
exception-handling logic. Consider the example in Listing 10.8.

Listing 10.8 Processing Untyped 5���
"&���
����

����	�#
�����#$��!�	��,	��#	���+
-
*

���
*

99#���##����	��#�����	��
.
���8#,)���&�����	��#���-
*

99#!������#(�)#������	���
99###!������#>����5#��
�5#������5#����#��#
�����	��#��	��

.
���8#,&�����	��#���-
*

99#!������#��#��8��#������	���5#���8��#����#��#�8�#�����
.

.

Chapter 10: Exception Handling414

The challenge here is that there is no subclass of)���&�����	�� that
can be used to create error handling ���8 regions specific to a set of sce-
narios. The next best approach that the client application developer can
take is writing code to investigate each exception at runtime to parse infor-
mation from the properties to hopefully determine the correct course of
recovery or processing.

Creating and Consuming Strongly Typed Faults

As we just described, a basic)���&�����	�� does not provide a type-
specific way to create robust ���9���89�	���� error-handling logic on
the client side. To enable that kind of handling on the client, consider using
the generic-based)���&�����	��<#? class.

)���&�����	��<#? accepts a type that defines the structure of exception
data being serialized. This could be any type that can be serialized for trans-
mission, but for the client to have strongly typed access to that type, it must
have access to a definition of that type.

For example, we could use the %�������&�����	�� from the example
in Listing 10.6 and throw a)���&�����	��<%�������&�����	��?. In the
case where the client is a .NET application, this would indeed work, each
side having strongly typed access to the details of the %�������&�����	��.
However, what happens when a client based on non-.NET technology, such
as Java, attempts to use the service? Java has no inherent knowledge of
.NET’s %�������&�����	��, so the Java proxy would not be able to provide
strongly typed access to the fault details our service may return.

To ensure interoperability, the WSDL for the service should describe the
structure of the type used to create the)���&�����	��<? instance. This is
done by providing a fault contract.

Declaring Fault Definitions with 5���
(��
���

Remember that data contracts are used to define data structures that can
be represented by a service’s WSDL definition, enabling a client to know
exactly the types and structures of data to supply or process when inter-
acting with a service. Now we’ll use the same concepts of data contracts to

Creating and Consuming Strongly Typed Faults 415

describe the structures used to convey fault information from a service to
a caller.

One or more)���������� attributes can be used to decorate a service
operation. This indicates to WCF that a service’s WSDL definition should
include the details of fault-related information potentially thrown by the
operation. This means that proxy-generating tools will be able to create
strongly typed representations of the classes you use to convey fault infor-
mation. Having well-defined proxies for the fault information will help
developers create robust and reliable client applications that utilize your
services. Note that because the details are contained in standard WSDL for-
mat, any type of tool can generate platform-specific proxies for your faults,
not just .NET applications.

Let’s create a data structure to convey details of an error condition back
to a calling application. Create a �����
)��� class as shown in Listing 10.9.

Listing 10.9 Creating a ��
�(��
���
 for Use from a 5���
(��
���
�

��	��#������'
��	��#�������>���	������	�	G�	��'

�������#����	��;	����
*

�D��������
����	�#����#�����
)���
*

$�	
#F����	��+
'
���	��#F
��	��'
D���	��#F
���	��'

�D�������
����	�#$�	
#����	��+

*

���#*#������#F����	��+
'#.
���#*#F����	��+
#4#����'#.

.

�D�������
����	�#���	��#D��	��
*

���#*#������#F
��	��'#.
���#*#F
��	��#4#����'#.

.

�D�������

Chapter 10: Exception Handling416

����	�#D���	��#D��%�
�	��
*

���#*#������#F
���	��'#.
���#*#F
���	��#4#����'#.

.

����	�#�����
)���,$�	
#	
5#���	��#
��	��5#D���	��#
���	��-
*

F����	��+
#4#	
'
F
��	��#4#
��	��'
F
���	��#4#
���	��'

.
.

.

Defining a FaultContract
After you have one or more data contracts that you want to use to convey
exception details to your callers, add the)���������� attribute to your
operation, specifying the name of the associated data contract(s).

For example, the %������+���	�� operation in Listing 10.10 has been
extended to potentially raise a)���&�����	�� based on the �����
)���
data contract we defined earlier.

Listing 10.10 Extending an Operation Definition with a 5���
(��
���

�"����	���������
.5���
(��
���
�-���0��5���
�/
����	�#����#%������+���	��,	��#	���	��+
-
*

���
.

Creating and Consuming Strongly Typed Faults 417

NOTE One-Way Operations and 5���
(��
���
�

As mentioned earlier, one-way operations do not return messages to
callers, so there is no direct mechanism for returning faults. Because
faults are not returned, an +���	
"����	��&�����	��will be thrown
at service load time if you decorate any one-way operations with a
)����������.

Throwing a 5���
"&���
���*, with a Defined 5���
(��
���

Having indicated to WCF that the %������+���	�� operation may throw an
exception that serializes data within the �����
)��� data contract, we
need only add the logic to populate that data contract and raise the excep-
tion. Listing 10.11 demonstrates this by extending the code from Listing 10.7.

Listing 10.11 Throwing a 5���
"&���
���*, with a 5���
(��
���

�"����	���������
�)����������,������,�����
)���--
����	�#����#%������+���	��,	��#	���	��+
-
*

���
*

+���	��#	���	��#4#+���	���������$��+���	��,	���	��+
-'
������#	���	���%������,-'

.
���8#,%�������&�����	��#���-
*

�8���#���#)���&�����	��,	���	��+
#T#7	�#���#��	
�7-'
.
���8#,+���	��=��)���
&�����	��#���-
*

-���0��5���
�
$�������-���0��5���
�
!���B��!�����'
�������%��N�)��������
����������)'
��
�-���B����

���������5���
"&���
���*-���0��5���
,�

$'
����5���
<������)%������B�
5����"&���
���)�'
5���
(���(���
�<�������5���
(�������

5���
(����)!�
%������)����
.
���8#,&�����	��#���-
*

;	��<)���>��������?#����#4#���#;	��<)���>��������?,-'
�����%

,���#)���>��������,7&����#�������	��#	���	��7--'
�����%

,���#)���>��������,7<)����8#������	��?75#

���#�������+���,7��C)>7---'
�����%

,���#)���>��������,7<�G��8#������	��?75#

���#�������+���,7��C�Z7---'
�8���#���#)���&�����	��,���#)���>����,����-5

)�����
�������>���	���)�����
�,
���#)�����
�,7%������+���	��7---'

.
.

Chapter 10: Exception Handling418

Fault Contract Strategies
A variety of strategies exist for describing your services with fault contracts.
You could define a shared core library of contracts that are used by all your
company’s services. Fault contracts may be specific to a single service or
application, including details specific to that system. You might decide to
create a contract associated specifically with individual problems poten-
tially encountered by your services.

We suggest that each time you create WCF service projects, you consider
a comprehensive)����������-based approach to be your default excep-
tion policy. Careful decoration of your operations with)����������� for
expected exceptions will enable creation of client applications with strongly
typed representations of the exceptions that may be thrown by your services.

Whatever strategy you adopt, ensure that you consistently follow that
strategy so that clients developed against your services will have improved
maintainability and usability.

Implementing Client Fault Handlers

If you have declared your service’s operations using the)����������
attribute to define the data contracts included with any thrown faults, your
service’s WSDL description will include details of those data contracts. This
will enable you or others to create client-side handlers that have full access
to the details and types of those contracts.

Extending the earlier example of a basic client-side service invocation
with exception handling, Listing 10.12 demonstrates how the strongly
typed)���&�����	�� based on the �����
)��� data contract could be
structured.

Listing 10.12 Processing Untyped 5���
"&���
����

����	�#
�����#$��!�	��,	��#	���+
-
*

���
*

99#���##����	��#�����	��
.
���8#,)���&�����	��<�����
)���?#�����-
*

Implementing Client Fault Handlers 419

Listing 10.12 continued

99#)���#�
#��������#����
#�����#��#�����
)���#
��	��

99#�����
)���#�������	��#��#�	����#�	#�8�#D��	�
99###��������#��#�8�#)���&�����	��<?#�����

�����������8��,7%#�������#8�#����#����������
#�
#�����
�
�
➥!����#���������#+
#7#T#������D��	�������	��+
#T#7#�8��
➥������	��#��������7-'

.
���8#,)���&�����	��#����-
*

99#!������#��8��#(�)#������	���

99#+������#>����5#��
�5#������5#����#��#
�����	��#��	��
.
���8#,&�����	��#���-
*

99#!������#��#��8��#������	���5#���8��#����#��#�8�#�����
.

.

Exposing the details of ����	��)��� via the service’s WSDL allows a
proxy generation tool to create strongly typed properties for each of the
����	��)���’s members. A client exception handler can access
the details of the embedded data contract by using the D��	�� property of
the)���&�����	��<? instance. In Listing 10.12, the user is given the track-
ing ID by accessing the D��	�������	��+
 property of the typed excep-
tion instance.

Remember that, as with all .NET exception code, the ordering of the
���8 regions is significant. The)���&�����	��<�����
)���? is the
most specific type and so should be first. Because)���&�����	�� is more
specific than &�����	�� (the type from which it derives), it should be next,
followed by &�����	��, which should be last.

Full implementation details have been omitted from the example, but
could include a variety of options from logging exception details, to
informing the user and aborting, to retrying the service call.

Error-Handling Application Block

The Patterns and Practices team at Microsoft creates guidance and tools to
help address gaps between available technologies and recommended best

Chapter 10: Exception Handling420

practices. The Enterprise Library is a free collection of integrated libraries
of code, called application blocks, which can be used to quickly implement
proven practices into an application.

The latest release of the Enterprise Library (currently version 3.1)
includes new features that integrate with some of the capabilities of the
.NET Framework 3.0 and 3.5. One of the application blocks contained in the
Enterprise Library, called the Exception Handling Application Block, can be
used to define policies for handling exceptions within an application. For
example, you may create a policy where all data-related exceptions are
logged and a new, generic &�����	�� is rethrown in the original exception’s
place.

Error-Handling Application Block 421

NOTE More on Enterprise Library

Full coverage of the Enterprise Library as it relates to .NET 3.x is
beyond the scope of this book, but details can be found at http:
//msdn.com/practices.

Exception Shielding
The latest release of the Enterprise Library extends the functionality of the
Exception Handling Application Block to provide a feature called exception
shielding. It features a new attribute, &�����	���8	��
	��, that can be used
to invoke an exception policy when a service is accessed. Used in conjunc-
tion with the)����������&�����	����
���, you can fairly easily con-
vert .NET exceptions thrown by your operations into strongly typed
)���&�����	��<? instances related to a target data contract.

In addition to the other handlers such as wrap, replace, and logging, the
)����������&�����	����
���, based on configuration, can be used to
perform a fielded mapping between a thrown exception and the data con-
tract specified with a)���������� attribute.

Consider using exception shielding as a way to catch and convert either
all or a specific subset of exception types that are not already processed
using one of the techniques described in this chapter.

Details and examples of using Enterprise Library for WCF exception
shielding can be found on MSDN at http://msdn2.microsoft.com/en-us/
library/aa480591.aspx.

http://msdn2.microsoft.com/en-us/library/aa480591.aspx
http://msdn2.microsoft.com/en-us/library/aa480591.aspx
http://msdn.com/practices
http://msdn.com/practices

SUMMARY

In this chapter, we introduced how WCF processes exceptions and the vari-
ety of options you have to influence those operations. The first and perhaps
most important was to understand what happens when you do nothing. By
default, unhandled exceptions may lead to interruptions of sessions and
the invalidation of client proxies.

Knowing how to use the)���&�����	�� class is central to creating an
effective exception-handling strategy and avoiding the potential issues
associated with unhandled exceptions.)���&�����	�� is helpful for
abstracting the details of the SOAP fault schema and how WCF converts
exception information into that schema for transmission to callers. You saw
that)���&�����	�� can be extended to provide detailed codes and rea-
sons, even supplying locale-specific translations of exception messages to
support a localized client application.

From unhandled exceptions and basic)���&�����	��s, we moved on to
the concept of strongly typed exceptions using the generic)���&�����	��<?.
By using data contracts to define data structures for conveying exception
information, client applications can include effective type-driven exception-
handling code without the need to parse individual)���&�����	��
instances at runtime to determine the correct course of action. Use of the
)���������� attribute enables proxy-generation tools to analyze a service’s
WSDL to create strongly typed representations of the source data contracts,
regardless of the technology used by the client.

Finally, we introduced the concepts behind the WCF integration found
in the Enterprise Library’s Exception Handling Application Block. This
enables you to easily create policies for handling exceptions at your services
boundaries.

Having a well-defined and understood exception-handling strategy in
your team, group, or company is of critical importance. As you create your
WCF services and client applications, take the time to consider the mecha-
nisms by which you’ll ensure that your service will behave predictably
while also enabling the development of robust and maintainable clients.

Chapter 10: Exception Handling422

11
Workflow Services

A T T H I S P O I N T I N T H E B O O K , you already know that WCF is all about
services—it’s about defining, building, and securing services. Services

have well-defined boundaries formally described in their contract, but the
inner workings are entirely opaque outside the service. WCF says little
about the service implementation; it simply provides the interfaces to reli-
ably and securely exchange messages with clients.

Windows Workflow Foundation (WF) is complementary technology to
WCF. It’s all about defining and executing activities of a multistep process
(a.k.a. workflow). WF can model workflows that are sequential or event-
driven in nature. The WF runtime executes activities by branching, looping,
forking, and joining the execution path. Workflows can be very short or can
run for a long time. They can implement a single transaction or coordinate
the work of many. WF says little about the interface to the workflow, which
makes it useful in a variety of applications.

423

TIP New to .NET 3.5

WCF and WF shipped in .NET 3.0. Integration between the two, as
described in this chapter, is new with .NET 3.5 and Visual Studio 2008.

Combining WCF and WF provides a robust platform for defining mul-
tistep processes and exposing them to clients in a secure, reliable way. There
is a built-in activation model so that workflows can be started in response
to a message being received. There is also a built-in persistence model so
that the state of a running workflow can be saved between activities. And
dispatcher support allows multiple instances of workflow to run simulta-
neously with incoming messages routed to the proper running instance.

Important: To fully understand the material in this chapter, you should
have a good understanding of WF. This is not a tutorial on the subject of
WF. Rather, it focuses on the integration points between WCF and WF with
Visual Studio and .NET 3.5. A most excellent text on WF is the Essential
Windows Workflow Foundation (Addison-Wesley; ISBN 0-321-39983-8), by
Dharma Shukla and Bob Schmidt. In addition, because the integration WCF
and WF relies heavily on bindings and behaviors, you should be sure to
read Chapter 4, “Bindings,” and Chapter 5, “Behaviors,” of this book.

Integration Points

There are two ways to describe the integration between WCF and WF. From
the WCF perspective, WF enables you to “implement a service as a work-
flow.” From the WF viewpoint, WCF enables you to “service enable a work-
flow.” Both are saying the same thing: That is, by combining WCF and WF,
you model and implement logic that is exposed through a standards-based
interface. Your logic can be compatible with many standards, such as SOAP,
JSON, or X.509, and can be hosted by IIS, WAS, Windows Service, or any
other WCF-supported hosting environment. In addition, the tracing, diag-
nostics, and unit testing tools available in Visual Studio can also be used
with WCF and WF.

WF integrates with WCF by leveraging WCF extensibility. So although
WF knows about WCF, WCF does not know about WF. The integration in
.NET 3.5 is by WF plugging deeply into the WCF extensibility points. With
.NET 3.5, WF updated its visual modeling tools in Visual Studio and added
runtime support that leverages WCF.

Three elements are needed for integration between WCF and WF. First,
you need a way to model service interactions. WF is good at defining a

Chapter 11: Workflow Ser vices424

workflow as a set of activities, so all that’s needed is a way to extend activ-
ities to interoperable services. With that, you can use WF to model interac-
tions among services. Second, you need hosting an activation infrastructure
for exposing a workflow as a service itself. This must support event-driven
models, transactions, and persistence, so that the workflow can survive
system reboots. Third, you need to support correlation between client and
services, so that clients can communicate with the right instance of a service
when there may be thousands running.

The integration built into .NET 3.5 and Visual Studio 2008 supports each
of these scenarios. Each topic is briefly introduced here and covered in
more detail in this chapter.

• Send and Receive activities are added to the WF designer.

• The (�����������	������ class wraps the WCF hosting class.

• New bindings and behaviors add context information to the channel
to support correlation and long-running workflows.

The Send activity is used to send a message to a WCF service endpoint.
At design time, the WF designer maps the incoming and outgoing types in
the WCF-generated proxy to WF variables. At runtime WF uses the proxy
to communicate with the service endpoints. The Receive activity does the
opposite of the Send activity. Rather being a client of an existing service,
the Receive activity exposes the workflow as a service itself. At design time,
the WF designer is used to specify a service endpoint and operation con-
tracts for the workflow, including the messages it receives and returns. At
runtime, when the endpoint receives a message, either a new workflow is
instantiated or the message is routed to an already running workflow.

The (�����������	������, as its name implies, derives from WCF’s
����	������ class and is really the tip of the iceberg for the WF-WCF inte-
gration. It leverages a set of custom behaviors and bindings to accomplish
WF-specific tasks relating to correlation and instance management. It also
provides access to the WF runtime in the service host so that a persistence
provider can enable long-running processes within a stateless WCF service.

As discussed in Chapter 5, WCF behaviors are a very flexible extensi-
bility point in the WCF architecture. WCF uses service and operation
behaviors to operate on messages and instances, as shown in Figure 11.1.

Integration Points 425

Figure 11.1 WF behaviors

Calling a WCF Service from WF

WF activities are the building block of workflow programs. Each activity
typically performs one task, such as calling a method on a class, calling a
Web service, or invoking another program. WF ships with a few built-in
activities, and developers can create their own activities by inheriting from
one of the activity base classes.

There are at least four ways to invoke a service from WF: use the Send
activity, write a custom activity, use the InvokeWebService activity, or use
the Code activity. The Send activity is best for calling WCF or other inter-
operable Web services and is introduced in .NET 3.5 for exactly this pur-
pose. A custom activity is a lightweight mechanism for encapsulating code
that can be easily reused across workflows. The InvokeWebService activity
is useful when calling ASMX Web services but doesn’t have any advantages
over the Send activity. A Code activity is, well, code. Of these four, this
chapter covers the Send activity and writing a custom activity. First we’ll
call a Web service using a Send activity, and then we’ll write a very simple
custom activity and use it instead.

Chapter 11: Workflow Ser vices426

Operation Behaviors

WF Behaviors

Contract Behaviors
Service/Endpoint Behaviors

Service Behaviors Extensibility

GetPrices(...);

Parameter
Inspection

Message
Inspector

Message
Formatting

Dispatch Runtime

Dispatch
Operation

Operation
Invoker

Operation
Selector

Workflow
Operation

Invoker

Durable
instance
Provider

Message
Context

Inspector

Listing 11.1 shows the interface of the service that will be used in this
example. $��!�	�� accepts a simple type as input and returns a complex
type, �����!�	��.

Create a project in Visual Studio 2008 using the “Sequential Workflow
Console Application” template in the Workflow folder. This template
includes a class file ((�������B���) that implements the workflow and a
main program (!��������) that initializes the workflow runtime and
starts an instance of the workflow class.

Listing 11.1 �
��0������� Invoked by WF

�D��������
����#�����!�	��
*

�D������� #����	�#
�����#��	��'
�D������� #����	�#	��#����'

.

�����	���������
	�������#+�����!�	��
*

�"����	���������
�����!�	��#$��!�	��,���	��#�	����-'

.

Using a Send Activity
The Send activity is one of the built-in activities with Visual Studio 2008.
Its purpose is to use a WCF proxy to call a Web service. The design envi-
ronment supports the common properties that need to be configured to call
a Web service, including endpoint information. The property sheet and
designer is also used to bind WF variables to the service operation param-
eters. In addition, the activity can override the URI address of the service.

Before accessing the Web service, the project must first contain a proxy
to the Web service you want to invoke. The proxy can be generated using
the Add Service Reference tool in Visual Studio or by using the �����	��
��� tool.

To use the Send activity, drag it from the toolbox onto the workflow
design surface as you would with any other activity. Figure 11.2 shows the
workflow designer with the Send activity added to the workflow.

Calling a WCF Ser vice from WF 427

Chapter 11: Workflow Ser vices428

Figure 11.2 Adding a Send activity to a workflow design surface

The Send activity must be configured to specify the service operation to
be called, the WF variables that will provide the input and receive the out-
put of the service operation, and the endpoint name.

First, choose the service operation by setting the ����	��"����	��
property. When you select the ellipsis in the property sheet, a dialog will
pop up from which you select the service operation. If this is the first time
you’re referencing the service from this workflow, you need to import the
types from the WCF-generated proxy into WF. Select the Import button and
then browse to the proxy in the project. Figure 11.3 shows the dialog after
the proxy’s type was imported from WF project. In this example, the
$��!�	�� operation is selected. After the service operation is selected, the
property sheet is expanded to include the parameters and return value of
the service operation.

The next step is to bind WF variables to the proxy call. When you select
the ellipsis in the property sheet next to variable names (in this example,
�	���� and the >�����P���) a dialog will pop up for you to select or create
WF variables of the appropriate type. You can create a WF field or a WF

Figure 11.3 Proxy type was imported so an operation can be chosen.

Calling a WCF Ser vice from WF 429

TIP Property or Field

A property is a field that can be initialized when a workflow instance
is started. You can send a value into the workflow on startup by defin-
ing a dictionary object and passing it as the optional second parame-
ter of ��������>���	��������(�������. If you define a property, the
value passed into the workflow can be passed along to subsequent ser-
vices or other activities invoked from the workflow.

Figure 11.4 shows the WF variable, ���
%��	�	��BF>�����P���FB,
bound to the return value from the ���!�	�� operation.

Finally, you must configure the service endpoint properties so that the
Send activity formats and sends the message to the right location. This is

property; a field is local to the workflow class, whereas a property has
broader visibility within the WF design environment.

done by configuring the �8��������� property, which has three compo-
nents: =��, &�
��	��=��, and "����%��	�	��=��. The "����%��	�	C
��=�� indicates the scope of the �8��������� and is selected from a
drop-down list box. The &�
��	��=�� must match an endpoint configura-
tion name in �������	� such as one that was generated from Add Service
Reference or �����	�����.

Chapter 11: Workflow Ser vices430

Figure 11.4 Binding WF variable to service operation parameters

Writing a Custom Activity
Custom activities in WF are a great way to encapsulate business capabili-
ties. By providing the right level of abstraction and granularity in custom
activities, a WF developer can model an application by combining those
capabilities. Although using the Send activity is a great method for calling
any interoperable Web service, it requires the WF developer to know that
the business capability they want to consume is, in fact, a Web service. Cus-
tom activities encapsulate that knowledge so the WF developer can model
the application, not the plumbing.

In the simplest case, a custom activity is a .NET class that derives from
�������(�������������������
���%��	�	��. There are many subclasses
that derive from this, to specialize for sequential or state-machine models,

or composite activities. Only one method in that class, &������, is required.
The return value from the &������ method is an %��	�	��&�����	�������
enumeration. If set to �����
, the activity is done. If not, WF manages the
activity instance until the activity notifies the WF runtime that it is
complete.

Custom activities can expose properties to the WF designer at runtime.
Properties can be set in Visual Studio at design time and can be bound to
WF variables that are available at runtime. The properties are, in effect, the
interface to the custom activity. The &������ method on the custom activity
only requires context as a parameter, because the interface is done through
properties. To create a custom activity, you can use the Workflow Activity
Library template in Visual Studio 2008. The template creates a custom activ-
ity of ��S�����%��	�	�� type, which derives from %��	�	��.

Listing 11.2 shows a custom activity. Note that other than the construc-
tor, there is only one method, &������. This method is where you insert
code to call the WCF service. In this example, we create the proxy and call
the method off the proxy. When the proxy is generated, WCF creates an
app.config file in the local project. At runtime, when the activity is called,
WCF will look in the current application configuration file for service
model information. Therefore, the service model configuration must be
copied into the �������	� file used for the workflow host.

There are two properties defined, �	���� and price. Both are visible
from the Visual Studio design surface and from code at runtime.

Listing 11.2 Implementing a Custom WF Activity

�������#��%��	�	��;	����
*
����	�#���	�#����#$��!�	��%��	�	��/#%��	�	��
*
����	�#$��!�	��%��	�	��,
*
+�	�	�	G����������,-'

.
���
��
������������#�
���
	"&���
����
�
���

"&���
��#�
���
	"&���
���(��
�&
����
�&
�
1

��������
�
��0�������(����
����&	���
����#�
���
	H�����	>��������
�
��0�������(����
���

�����������&	!�
3�����
��0����
��
����#�
���
	"&���
����
�
��(������

Calling a WCF Ser vice from WF 431

Listing 11.2 continued

4

��������
�
������������	3�����
	�
��0��3�����
	���
���������	3�����
	<����
���)
��0��)'�

	���$��	�
���
�����'�

	���$�!�
3����#�
���
	���

.�������
���#

����
��)3�����������$	����
��0��	�����)�/

.���������������=�
���E�������
	#

����
�
����������������=�
���E�������
	E�������/

.���������#

����
��
����/
��������
�����
��0��
*
���
*
������#,,���	��-##

,����$��P���,$��!�	��%��	�	����	����!�������---'
.

���
*
�������P���,$��!�	��%��	�	����	����!�������5#����-'

.
.

��������
�
������������	3�����
	������3�����
	���
���������	3�����
	<����
���)�����)'

	���$���������
�
��03�����'�

	���$�!�
3����#�
���
	���

.�������
���#

����
��)
����3����)�/

.���������������=�
���E�������
	#

����
�
����������������=�
���E�������
	E�������/

.���������#

����
��
����/
���������������
�
��03����������
*

���
*

������#,,����8���������!�	��-
,����$��P���,$��!�	��%��	�	�����	��!�������---'

.
���
*

�������P���,$��!�	��%��	�	�����	��!�������5#����-'
.

.
.

.

After creating the activity library, the activity can be used in a workflow
project. The workflow is unaware the WCF is involved, because that

Chapter 11: Workflow Ser vices432

plumbing is encapsulated in the custom activity. Figure 11.5 shows a work-
flow using the $��!�	�� custom activity.

Exposing a Ser vice from WF 433

Figure 11.5 Using a custom activity in a workflow

Exposing a Service from WF

Developers typically use WF for building reactive programs. The program
starts, does something useful, waits for input, does something else useful,
waits for more input, and so on. At some deterministic point, the workflow
program ends. Reactive programs may run for a very long time, during
which the client or server computer may be shut down. There also may be
many copies of the workflow instances running simultaneously, and each
instance must be uniquely addressable so it can receive external input.
Although these qualities are not unique to WF, they do require special
attention.

The WF design and runtime environment taps into WCF extensibility
points to support these key requirements. It handles long-running work-
flows that persist across system failure. It correlates incoming messages to
existing workflows so that a scalable host can support many running

instances. It exposes service endpoints from the workflow program so that
standards-based messages can be used for communication.

This section, and the subsequent sections in this chapter, will cover the
details of how WF exposes workflow programs as services. We will start
by showing how to expose a simple workflow. We’ll define an interface in
C# and import that interface into the WF designer. We will configure a
Receive activity to expose a workflow as a service endpoint and define one
request-response operation. We’ll then expand the workflow to have mul-
tiple steps, one of which waits for external input, and define a second ser-
vice operation for the second Receive activity. We will show how a client
can target messages to a particular running WF instance, and finally we’ll
add durability support to the workflow so it can survive system failures.

Define the Interface
To build a workflow that implements a particular interface, we created a
new project in Visual Studio using the Sequential Workflow Service Library
template, found in the WCF folder. In this example, the solution and proj-
ect are named SimpleService. We deleted +(�������B��� and (�������B���

and defined an interface, +���������	��, shown in Listing 11.3. Note that
the namespace in the file is �	��������	��. The fully qualified interface
name, �	��������	���+���������	��, must be specified as the contract for
the endpoint in the �������	� for the project.

The service contract has two operations: +�	�	����
� and %������.
The +�	�	����
� operation places a fictitious stock order and returns a
confirmation number in the ��
�>�S��������� structure. The %������
operation is used after a potentially fraudulent stock order has been
reviewed. This operation is called to restart a workflow that is waiting on
an external event.

The interface shown Listing 11.3 is the interface that the workflow service
exposes. Alternatively, we could have defined the interface from within the
WF designer for more of a code-first style. By starting with the interface, we
could publish it and iterate with other developers and then use that as the
starting point to implement the service. Either way, starting with the inter-
face or starting with the designer, would produce the same result but con-
tract-first feels like a more deliberate method to building services.

Chapter 11: Workflow Ser vices434

Listing 11.3 Service Interface Exposed from WF

����������������������� *
�����	���������
����	�#	�������#%�
��0�������
*
�"����	���������
��
�>�S��������� %��
��
�-����,��
�>�S����#��
�>�S����-'

�"����	���������
��	
##�������,%������>�S����#������>�S����-'

.

�D��������
����	�#����#��
�>�S����
*
�D������� #����	�#���	��#������'
�D������� #����	�#���	��#��	��'
�D������� #����	�#���	��#�	����'
�D������� #����	�#
�����#��	��'

.

�D��������
����	�#����#%������>�S����
*
�D������� #����	�#���	��#��
�=�����'
�D������� #����	�#���	��#������'
�D������� #����	�#���	��#�����'

.

�D��������
����	�#����#��
�>�S���������
*
�D������� #����	�#���	��#����	���	��=�����'
�D������� #����	�#���	��#�����'

.

.

Receive Activity
A Receive activity models an operation contract. Because there are two
operation contracts defined in Listing 11.3, there should be two Receive
activities on the workflow. The properties of the Receive activity are the
input and return messages of the operation contract.

Exposing a Ser vice from WF 435

To implement the workflow, we added a new item using the Sequential
Workflow (with Code Separation) template. The code separation enables us
to look at the XOML representation of the workflow, which is an XML
grammar that defines the workflow and its activities. With the StockSer-
vice.xoml file open in the WF designer, a Receive activity is placed on
design surface and the result is shown in Figure 11.6.

Chapter 11: Workflow Ser vices436

Figure 11.6 Adding a Receive activity to the workflow design surface

Selecting the ����	��"����	��+��� property and clicking the ellipsis
presents a dialog box for choosing or defining a contract. The first time that
you launch that dialog box, there will be no operation contracts defined.
Clicking the Import button in Figure 11.7 will show all the classes included in
the project and referenced assemblies marked with the �����	���������
attribute. Only the methods marked with �"����	��������� in those
classes can be imported. A contract definition can be entered directly though
the dialog, or you can select an existing class definition already present in the
project. We included the +���������	�� interface in the project for exactly
this purpose, and the resulting dialog is shown in Figure 11.7. Note that two
operations are listed, along with the complex .NET types used as arguments.

Exposing a Ser vice from WF 437

Figure 11.7 Entering or importing an interface for a Receive activity

A WF program is just like any other program, so service-enabling a WF
program via WCF integration adds all the WCF capabilities afforded to
other programs. When a WCF receives a message, it deserializes it to the
.NET type and passes the type to the appropriate class method. In a WF
program, the .NET type is assigned to a local variable in the workflow
program.

Each parameter defined in the operation contract must be bound to a
WF field or property. A dialog box is presented for this purpose where you
can select an existing variable (field or property) or create a new one to
bind to the parameter. The dialog pops up when you click the ellipsis next
to a parameter name in the Receive activity’s property sheet. Figure 11.8
shows the dialog box for binding workflow variables to operation contract
parameters.

Figure 11.8 Binding operation contract parameters to workflow variables

At this point the service interface is completely defined. The service
doesn’t yet do anything, but its interface is defined. The next step is to
update the Receive activity to include a Code activity to send a meaning-
ful response back to the client. We will implement the Approval code later
in this chapter. In this example, the code sets the return value of the oper-
ation contract to some text purporting to be a confirmation number. Note
that a Receive activity is a composite activity, so you can place any activity
within the Receive activity and it will execute before the response messages
is sent back to the client. By keeping the code within the Receive activity to
a minimum, the service operation will deliver fast performance to clients.

The final configured workflow is shown in Figure 11.9. Note that the
return value and the input parameter for the +�	�	����
� operation are
bound to variables. Also note the �������+������ property is set to true.
This tells the hosting environment to spin up a new service instance within
the WF runtime when it receives a message not associated with other
instances.

Chapter 11: Workflow Ser vices438

Figure 11.9 Workflow exposing one Receive activity

Configuration in ������$��
As with most WCF services, information on endpoints and security and
behavioral settings are stored in the �������	� or ��������	� files.

When Visual Studio created the project using the Sequential Workflow
Service template, it included an �������	� file. But because the template
included in the +(�������B and (�������B interface and class and the
example shown in this section use +���������	�� and ���������	��, these
names need to be adjusted in the �������	�. The updated WCF settings in
the �������	� file for this project is shown in Listing 11.4. A few settings
are noteworthy.

First is the service name. This must match the class name that imple-
ments the service. Because the fully qualified class name was changed from
�	����()����	���9��0$���> to �	����()����	����
��0������� in the
���������	���O�";��� file, the service name must match in the ���
����	�. The same situation exists for the contract name in the endpoint,

Exposing a Ser vice from WF 439

which must match the fully qualified interface name in the +��������C
�	����� file.

Finally, note the binding used in the endpoint. It defaults to ���������C
�����	�
	��. This binding contains the ��������	�
	��&������ and sup-
ports sessions, which is necessary to support long-running workflows. Three
bindings provided by WF implement the �������	�
	��&������: ������C
��������	�
	��, ��	�������������	�
	��, and ��������������	�
	��. In
addition, the ��������	�
	��&������ can be added to other custom bindings
so they can also be used to communicate with service-enabled workflows.
Note that the ��������	�
	��&������does not support one-way operations,
so it cannot be used with MSMQ bindings. Chapter 4 has detailed informa-
tion on how to build custom bindings.

Listing 11.4 ������$�� for Service-Enabled Workflow

<�����������	����
��?
<����	���?
<�������������)������95��������
��0�������)

��8�	������	����	��47�	����()����	���(�������B��8�	��7?
<8���?
<���%

������?
<

#���%

����478���/99����8���/2:2:9(�������B7#9?

<9���%

������?
<98���?
*�������
�

����477

��������)��

�(��
�&
�������)
���
���
�)������95�������%�
��0�������)�+,

<��
��	��#

����47���7#
�	�
	��47��������	�
	��7#
�������47+���
�&��8���7#9?

<9����	��?
<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47�	����()����	���(�������B��8�	��7?
�
�
�

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<9�����������	����
��?

Chapter 11: Workflow Ser vices440

Hosting a Service-Enabled Workflow
Many options exist for hosting WCF services. Hosting is covered in detail
in Chapter 7, “Hosting,” but for a brief review, a WCF host is any process
that instantiates the ����	������ class. The most common hosting envi-
ronment for services is IIS. There is direct support for IIS in WCF, so host-
ing and managing services in IIS is relatively easy. Vista and Windows
Server 2008 generalized IIS to Windows Activation Services (WAS) for non-
HTTP protocols, so hosting services through WAS is equally robust. Host-
ing services in Windows Services (a.k.a. NT Services) is also very common,
with a familiar interface for system administrators. For testing or special-
ized scenarios, WCF services can be hosted in a command-line console or
Windows applications.

Regardless of the hosting environment, the ����	������ class adds end-
points to the service description at startup. At runtime, the ����	������
requests the channel listeners specified in the bindings to listen for incom-
ing messages. The ����	������ reads the service description from the
<����	����
��> node of the configuration file, from the attributes
([����	���������], [����	����8�	��], ["����	���������], and so on)
in code, and from class definitions. The ����	������ can also be manipu-
lated programmatically. The host program can also add behaviors to the
service, which controls what happens when messages are received or sent
and when instances are created or destroyed. As messages are received by
the channel listeners, they are routed to the proper service contracts for pro-
cessing. Much of this is implemented in behaviors, which is covered in
detail in Chapter 5.

Hosting a service-enabled workflow is similar to hosting any other ser-
vice. When hosting service-enabled workflows, WF provides a new class,
(�����������	������, that derives from ����	������ to address WF-
specific needs. Whereas the ����	������ constructor accepts any class
marked with �����	��������� , the (�����������	������ constructor
requires information (types derived from %��	�	�� or the XAML
stream/file) that can be used to instantiate a workflow. The (����������C
�	������ adds three behaviors to the service: (�����������	����8�	��,
(�������"����	����8�	��, and (�������>���	����8�	��. It also adds
a D�����+������!���	
�� and �������������+��������. Combined,

Exposing a Ser vice from WF 441

they manage service instances and dispatch messages into and out of work-
flows. In addition, the (�����������	������ requires that bindings used
with a service endpoint include the ��������	�
	��&������.

Self-Hosting a Service-Enabled Workflow
Listing 11.5 shows a minimal self-hosting console application that exposes
a service-enabled workflow. Compare this to Listing 1.2 in Chapter 1,
“Basics,” and you’ll see that they’re virtually identical. The only difference
is that the (�����������	������ class is used instead of the ����	������
class.

Listing 11.5 Self Hosting a Service-Enabled Workflow

9��0$���������� ��
 ����	������#4#
���#9��0$���������� ��
,������,���������	��--'

����	�������"���,-'

��������(�	��;	��,7����	���#	�#��
��#!����#<&=�&>?#��#����	����7-'
��������>�
;	��,-'

����	������������,-'

Listing 11.6 shows the configuration file associated with the self-hosted
workflow. Compare this with Listing 1.5 in Chapter 1 and you’ll see that
they are virtually identical. The only difference here is the inclusion of
authentication information in the behavior that is needed to enable the
security features of service-enabled workflows. This security information is
covered later in this section.

One housekeeping note: The �������	� file created by Visual Studio is
in the Sequential Workflow Library project. This file should be moved from
the workflow library project to the console application project shown in
Listing 11.5 because the (�����������	������ will look in its own folder
for configuration information.

Listing 11.6 Configuration for a Workflow-Enabled Service

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?

Chapter 11: Workflow Ser vices442

<����	��#���47�	����()����	������������	��7#
��8�	������	����	��47�	����()����	���(�������B��8�	��7?

<8���?
<���%

������?
<

#���%

����478���/99����8���/2:::9&�����	��(�)7#9?

<9���%

������?
<98���?
<��
��	��#

����477

��������)�����

�(��
�&
�������)
�������47�	����()����	���+���������	��7#9?

<��
��	��#

����47���7#
�	�
	��47��������	�
	��7#
�������47+���
�&��8���7#9?

<9����	��?
<9����	���?
<��8�	���?
<����	����8�	���?
<��8�	��#���47�	����()����	���(�������B��8�	��7##?
<����	�����
�#8���$��&����
47����7#9?
*�������(�����
����,
*�������#�
���
���
���

�����#���	����H������)$����)
�������9������!������)
���)�+,

*+�������(�����
����,
<9��8�	��?

<9����	����8�	���?
<9��8�	���?

<9�����������	����
��?
<9����	����	��?

Hosting a Service-Enabled Workflow in IIS
Hosting a workflow-enabled service in IIS is the same as hosting any other
service. The steps needed to host a service in IIS are described in Chapter
1. There needs to be an IIS application, an SVC file that describes how to
instantiate the service, a ��������	� file to include the <����	����
��? con-
figuration, and the implementation in the /bin folder of the virtual root
pointed to by the application.

Listing 11.7 shows a minimal SVC file associated with a service-enabled
workflow. Comparing this to Listing 1.9 from Chapter 1 shows the similar-
ity. The only difference is the inclusion of the)����� element, which tells
IIS to use the (�����������	������)����� instead of the default
����	������)����� when creating the ����	������.

Exposing a Ser vice from WF 443

Listing 11.7 SVC File for Hosting a Workflow-Enabled Service in IIS

<LM#����	������#
����	��47�	����()����	������������	��7
5��
��	�)�	�
��������������#�
���
���9��0$���������� ��
5��
��) L?

The ��������	� file is updated to include the <����	����
��? informa-
tion from Listing 11.6, with the exception of the <8���? node, because the
base addresses for IIS are determined by the virtual root of the application.

Correlation and Durable Services

Workflows are often used to model business transactions. As in real-world
business transactions, these may run for seconds (transfer money at the
ATM machine) or considerably longer (purchase something from eBay, pay
for it, receive it, and leave feedback). The transaction is modeled once and
then thousands of instances may be launched, many running in parallel.
While any of these transactions are running, the client, the server, or the net-
work may be unavailable or rebooted along the way.

To support long-running transactions, two elements are needed: corre-
lation and durability. Correlation allows a client to specify a particular
workflow instance that it wants to communicate with. Durability allows a
workflow instance to survive system failures and enables the work-
flow environment to efficiently use memory and CPU resources. The
(�����������	������ class implements extensions to support correlation
and durability. It accomplishes these using two elements: a context class
that is passed in the channel between the client and the service, and a
durable instance provider that can dehydrate (write from memory to disk)
and hydrate (read from disk to memory) a workflow instance.

The context passed between the client and service uniquely identifies
the workflow instance. When the client sends a message to a WF-enabled
service, the message is inspected to see if a context is present. If there is no
context, a new workflow instance is created in the WF runtime. If a context
is present on the message, the message is sent to an existing workflow
instance. The WF runtime checks to see whether the instance is in memory,
and if it’s not, it calls the durable instance provider to read it from disk. The
message is then deserialized to a .NET type and passed into the WF run-
time and routed to the proper instance.

Chapter 11: Workflow Ser vices444

Note that the WF runtime is completely embedded in a single WCF ser-
vice instance and is responsible for workflow instances and persistence. In
other words, if 50 instances of a workflow are running, messages sent to all
workflows flow into a single workflow runtime. The workflow runtime has
its own internal mechanism for correlating and queuing messages to work-
flow instances. The Instance ID stored in the context, in conjunction with
the Durable Instance Provider, is used to ensure that the workflow runtime
has the right instance in memory.

Long-Running Workflow
In this section, we’ll model a business process that accepts and executes
stock trades. Fraud detection is done early in the workflow, for obvious rea-
sons. If a trade is suspicious, it gets routed to an analyst for review. If it
looks good to the analyst, the order goes through; if not, it’s rejected. Most
workflow instances in this example will complete within a few seconds
because most trade requests are not fraudulent. But when a request is
received that requires manual review, the process may take minutes or
hours to complete. On a busy trading day, hundreds of stock trades might
require review. The process is identical with each stock trade, but the details
(the input and output) will be different.

In this scenario, our fictitious stock trader using a Web or rich-client
application calls the +�	�	����
� method to execute a new stock trade. If
the status returned is �������
, her trade is finished. If the status is ���	��,
then the trade is not complete and she should expect to receive a notifica-
tion shortly (the example doesn’t show any notification, but you can imag-
ine e-mail, voice, SMS, or instant messaging here). If the status is ���	��,
somewhere else in the world, a financial analyst is notified that a stock
trade requires review. The analyst uses a Web or rich-client application to
review the trade request and then calls the %������ method indicating
whether the system should execute trade.

Recall the interface for this scenario in Listing 11.3. It contains the three
message formats and two service operations. The messages are
��
�>�S����, ��
�>�S���������, and %������>�S����. Clients send a
��
�>�S���� to initiate a new trade and send an %������>�S���� to
approve or deny a dubious trade. Client communication with the workflow,
from instantiation through termination, will be done exclusively with these

Correlation and Durable Ser vices 445

messages. The interface contains two service operations: +�	�	����
� and
%������, which each use the message’s formats.

Figure 11.10 shows the start of the workflow. The Receive activity
is named +�	�	����
� and is a composite activity that has three code
activities, two of which are embedded in an +��8��&��� structure. The
�8���)��
 activity calls a routine to evaluate the trade for possible fraud.
If it looks okay, the &��������
� activity is called to execute the stock trade
and return a >�S������
������ structure with a confirmation number
and a �����#4#7�������
7. If the trade is potentially fraudulent, it is sent
to a work queue (external to this workflow), and the return structure has a
confirmation number and a �����#4#7���	��7. These three code activi-
ties run synchronously (and presumably fast) within the Receive activity, so
whichever branch is taken, a response is sent back in a timely manner.

Chapter 11: Workflow Ser vices446

Figure 11.10 Composite Receive activity in a long-running workflow

The configuration file for this workflow is shown in Listing 11.6. As
required by the service-enabled workflows, the ��������	�
	�� element is
used in the channel, and in this case the ��������������	�
	��. When the
��
�>�S���� message is received by the service, an internal WF behavior
inspects the message to see if the context is present. If there is no context,
the (�������>���	�� creates a new instance of the workflow. When the
synchronous ��
�>�S��������� message is sent back from the Receive
activity to the client, the WF behavior stamps the message with a context,
indicating the Instance ID of the workflow.

Continuing with the example, if the trade request is not executed imme-
diately, the workflow pauses, listening for the results of a manual review
of the stock trade request. Figure 11.11 shows the remaining workflow. The
Listen activity has two branches: one a Delay and the other a Receive activ-
ity. If the Receive activity is not called before the time indicated in the Delay
activity, the workflow will continue without the input. Like the initial
+�	�	����
� activity, the %������ activity is also a composite activity,
but this time it has only one code activity embedded. The >��	��>���	��

code looks at the %������>�S���� message to see if the trade is okay. If so,
it sets a flag indicating that the trade should be executed. Regardless of
whether the trade is executed in &��������
�J, the NotifyCustomer activ-
ity sends an e-mail to the customer who initiated the trade.

The workflow depicted in Figures 11.10 and 11.11 has two Receive activ-
ities, labeled +�	�	����
� and %������. The �������+������property
of +�	�	����
� is set to ����, indicating that this operation can be called
without passing an Instance ID in the context. When WF receives the mes-
sage, it will create a new instance of the workflow program. The �������C
+������ of the %������ activity is set to ����, indicating that this
operation cannot be called without an Instance ID in the context. If a client
attempts to call it without an instance ID, it will receive a SOAP fault.

Listing 11.8 shows the code that implements this workflow. A code
activity, ��
��8���)��
F&��������
� , is used for calling the internal val-
idation routine and setting the return value from within the Receive loca-
tion. Another code activity, ��
�=��
�>��	��F&��������
�FB, is used to
call the internal routine to store the context. A third code activity,
>��	��>���	��
F&��������
�, is used to inspect the approval message sent

Correlation and Durable Ser vices 447

and set the validation flat accordingly. This internal routine, ����������,
is overly simple in this example and stores the +������+
 in a file. In pro-
duction, this internal routine should be enhanced to store the name/value
pair in a database or Web service that is accessible from the client and
service.

Chapter 11: Workflow Ser vices448

Figure 11.11 Completing a long-running workflow

Listing 11.8 Code for a Long-Running Workflow

����	�#����
#���	�#����#���������	��/#��S����	�(�������%��	�	��
*
����	�#���������	��,-
*
+�	�	�	G����������,-'
.

����	�#����#�P�	
�	��'
����	�#��
�>�S���������#����	��%��	�	��BFF>�����P���FB'
����	�#%������>�S����#����	��%��	�	��JF������>�S����B'
����	�#��
�>�S����#����	��%��	�	��BF��
�>�S����B'

�����
�����������(���05����:"&���
�(���
,��X���#���
��5#&����%���#�-

*
��������#8#4#���#��������,-'
�P�	
�	��#4#8�&�����,����	��%��	�	��BF��
�>�S����B-'
����	��%��	�	��BFF>�����P���FB#4#���#��
�>�S���������,-'
����	��%��	�	��BFF>�����P���FB�����	���	��=�����#4#7BJI7'
	�#,�P�	
�	��-

����	��%��	�	��BFF>�����P���FB������#4#7"Q7'
����

����	��%��	�	��BFF>�����P���FB������#4#7>��	��7'
.

�����
�����������B����<�����:"&���
�(���:>
,��X���#���
��5#&����%���#�-

*
��������#8#4#���#��������,-'
8�����������

,����	��%��	�	��BFF>�����P���FB�����	���	��=�����5#
�8	��(�������+������+
������	��,--'

.

�����
�������<�����<�������:"&���
�(���
,��X���#���
��5#&����%���#�-

*
��������#8#4#���#��������,-'
�P�	
�	��#4#8�&�����,����	��%��	�	��JF������>�S����B-'

.

.

����	�#����#��������
*
����	�#�����#���	��#+=��%=�&)+;&=%�#7�/@����@	������+D����7'

����	�#����#&�����,��
�>�S����#��
�>�S����-
*

	�#,��
�>�S�����������#44#7:::7-#������#,����-'
����#������#,����-'

.

����	�#����#&�����,%������>�S����#������>�S����-
*

	�#,������>�S�����������#44#7"Q7-#������#,����-'
����#������#,����-'

Correlation and Durable Ser vices 449

Listing 11.8 continued

.

99�8	�#����#�����#	�#
���9
����#�	���#�8�#��	���#�
#����	��#
99#8��#�����#��#�8�#���
��#�8���#���9	������+D#	�#�����
�
99#)��#���5#	�#�8���
#���#(�#�8�#�8�#��	���#�
#����	��#
99#��#���8
����������������(��
�&
��
�����0�	'��
��������
����%��
*

	�#,)	���&�	���,+=��%=�&)+;&=%�&--#
)	���D�����,+=��%=�&)+;&=%�&-'

���	��#���#4#���	���)����,7*:.5*B.75#���5#	������+
-'
)	���(�	��%������,+=��%=�&)+;&=%�&5#���-'

.
.

Handling the Context
A long-running workflow may have multiple Receive activities, as shown
in Figures 11.10 and 11.11. When the first Receive activity is called and a
workflow instance is created, all subsequent calls to that workflow instance
must attach a context to the binding channel to ensure proper correlation.
This means that the client is responsible for tracking the context of work-
flow instances that it wants to communicate with. WF uses the
��������	�
	�� element to make this available for the client.

By default, the context is available to the client in the channel. The per-
tinent information in the context is the +������+
 that uniquely identifies
the workflow. The client can pull the +������+
 from the context, store it
in memory or in a local file, and attach it to the channel on subsequent calls.
This method works well as long as one client makes the initial and subse-
quent calls, and the client isn’t restarted between calls. Figure 11.12 shows
the sequence.

It is common, however, that multiple clients access a single workflow
instance. These different clients may be different Web sites or two different
people. In any case, clients making the subsequent calls to the workflow
must obtain the context from the first client.

Chapter 11: Workflow Ser vices450

Figure 11.12 One client maintaining context with multiple calls to a workflow instance

To handle the case of multiple clients accessing a single workflow
instance, the context, or +������+
, must be stored separately from the
client and workflow instance. Additionally, a friendly name should be asso-
ciated with the +������+
 so that clients do not need to work with inter-
nally generated artifacts. In most business scenarios, this isn’t a problem
because the business transaction usually has a confirmation number or
unique transaction number of some sort.

Figure 11.13 shows a design for enabling multiple clients to access a sin-
gle workflow instance. In this design, the Receive activity in the workflow
explicitly stores the WF +������+
 in a place that the client can later
retrieve. It stores it with a friendly name, such as a confirmation number
so that the client can easily look it up. The confirmation number is probably
already returned from the initiating Receive activity or can be embedded in
a URL.

Regardless of how the client gets the +������+
, it must create a con-
text and place it on the channel to make subsequent calls. Listing 11.9 shows
client-side code to do this. It calls the $��)��������8��� method to obtain
the +������+
 and then places it in the context in the channel off of the
proxy.

Correlation and Durable Ser vices 451

message

1. Client creates proxy/channel
and sends a message to service to
initiate a workflow.

Ctx

Channel

message

4. Client uses the same channel,
which is now the context, to send
subsequent messages.

Ctx

Channel

2. WorkflowServiceHost
receives message without context
so it starts a new WF instance.

3. WorkflowServiceHost places
context with Instance ID in
channel.

5. WorkflowServiceHost
receives a message with a
context so it routes it to an
already running WF instance.

WorkflowServiceHost

WF Runtime

Figure 11.13 Multiple clients maintaining context with multiple calls to a workflow
instance

Listing 11.9 Client Attaching Workflow Context ID onto the Channel

	������+D#4#$��)��������8���,������	���	��=�����-'
+������������#��#4#

������+�����8�����$��!�������<+������������?,-'
+D	��	����<���	��5#���	��?#�������#4#���#D	��	����<���	��5���	��?,-'
��������%

,7+������+
75	������+D-'
�������������,�������-'

Persisting Workflow State on the Server
The state of a long-running workflow is stored within the (�������>���	��
class. As events trigger activities within the workflow, the (�������>���	��
executes those activities.

When a workflow is idle and waiting for an event, the (�������>���	��
can persist the workflow state to external storage to free system resources
such as memory and CPU. More importantly, when the (�������>���	�� is

Chapter 11: Workflow Ser vices452

message

1. Client creates proxy/channel
and sends a message to service to
initiate a workflow.

Ctx

Channel

message

4. Client uses friendly key (for
example, confirmation #) and looks up
Instance ID from Context CRUD
sevice. It attaches the InstanceID
to the context in the channel.

Ctx

Channel

2. WorkflowServiceHost
receives message without context
so it starts a new WF instance. WF
instance [manually] saves
its Instance ID to service with
friendly key for later lookup.

3. WorkflowServiceHost places
context with Instance ID in
channel.

5. WorkflowServiceHost
receives a message with a
context so it routes it to an
already running WF instance.

WorkflowServiceHost

ServiceHost

WF Runtime

Context
CRUD
Service

shut down, the state of all active workflows must be written to external
storage, or the workflow instances won’t be able to resume when the run-
time comes back up.

The WF runtime uses a persistence service to save state in external stor-
age. It calls the persistence service when workflows are idle and again
when the runtime shuts down. A persistence provider is registered with the
runtime before workflows are initiated, and the runtime uses the service to
serialize workflow instances to external storage. There is nothing WCF-
specific about the persistence service, but it is mentioned here to support
the scenario in this example.

A persistence service can register with the runtime in either code or con-
figuration. If self-hosting a workflow within a WCF service, the host can
register the service in code. Listing 11.10 shows the code to register the SQL
persistence service with the runtime.

Listing 11.10 Adding a Persistence Service in Code

(�����������	������#����	������#4#
���#(�����������	������,������,���������	��--'

(�������!���	����������	��#����	����������	��#4
���#�S�(�������!���	����������	��,
7+�	�	�#�����4()!���	������'D�#������4����8���'#

+�������
#�����	��4��!+'75
����5
���#�	�����,B5#:5#:-5
���#�	�����,:5#:5#3--'

(�������>���	��#����	��#4#
����	�������D����	��	�����8�	����)	�

<(�������>���	����8�	��?,-�(�������>���	��'#
����	���%

����	��,����	����������	��-'

����	�������"���,-'

To add a persistence service to a service-enabled workflow where you
do not have access to the (�����������	������, you need to define the per-
sistence store through configuration. This is done as a service behavior.
Listing 11.11 shows the configuration file for a service. It is similar to List-
ing 11.6, with the addition of the persistence service in the behaviors
section.

Correlation and Durable Ser vices 453

Listing 11.11 Adding Persistence Service in ������$��

<��8�	���?
<����	����8�	���?
<��8�	��#���47D������(�������B��8�	��7##?
<����	�����
�#8���$��&����
47����7#9?
<����	��D����#	����
�&�����	��D��	�+�)����47����7#9?
<����	�����
���	��?
<�	�
���%��8���	��	��

����%��������;�����47����7
	����
�(�
���$�����47����7#9?

<9����	�����
���	��?
*���0$���<��
���������)9��0$���������� ��
<��
���),
*��������,
*����
	���)�	�
��9��0$���<��
��� ��
���

�@�9��0$���3�����
�����������'
�	�
��9��0$���<��
���'�
E�������G8888888'�(��
�������
���'
3�����C�	-�0���G>�$G7KI��GIF�GK)

������
����
�����)%��
����(�
�����953�����
�����
��
�����������������
�
%�
����
���������
	���3%�)

H���%�
�������������)>)�A�H���2�%�����)
���)�+,
*+��������,

*+���0$���<��
���,
<9��8�	��?

<9����	����8�	���?
<9��8�	���?

Controlling Access to Service-Enabled Workflows

Integration between WF and WCF occurs largely through behavior exten-
sions. Behaviors can inspect and augment messages before they arrive at
the (�������>���	�� or after they leave. Behaviors have access to the full
message, including the SOAP headers. Depending on the security model
specified in the service description, different security information is passed
from the client to the service in the SOAP header.

The example in Listing 11.6 shows that <�	�
���%��8���	��	��> is
used. This instructs WCF to serialize and send Windows Authentication
information (encrypted over the wire) in the SOAP header. The
	����
�(�
���$�����4���� setting instructs WCF to include all the
Windows groups that the current user belongs to. Together, these settings

Chapter 11: Workflow Ser vices454

enable the workflow program to make decisions based on the user and
group membership.

For workflow-specific access control, two mechanisms are built in to the
Receive activity. First, a Receive activity can be configured to allow access
for only certain users or users in certain groups. This is done declaratively.
Second, a Receive activity can have an Operation Validation method that
sets a flag to grant or deny access the operation. This is done program-
matically. This section reviews these alternatives.

Declarative Access Control
There are many ways to control access to WCF services. Chapter 8, “Secu-
rity,” describes these in detail, including ASP.NET roles, certificates and
Kerberos, and others. In addition to the WCF facilities, WF provides some
in the Receive activity.

Remember that the Receive activity in WF exposes an operation contract
of the service. When the operation contract is added into the project, a dia-
log box is presented for configuring parameters, properties, and permis-
sions. Figure 11.14 shows this dialog. A domain\username can be entered
in the Name field, or domain\group in the Role field. At runtime, after the
message is received by the service but before it is dispatched to the (���C
����>���	��, a behavior will check membership permissions. It does this
by looking at the message header and comparing the claims against what’s
indicated in this dialog box. If the message is coming from a valid user or
group, then the operation is called. If not, a security exception is returned.

Programmatic Access Control
Each Receive activity can specify a method for authorizing access. The
method is called before the operation contract is called and has the oppor-
tunity to grant or deny access. The method name is stored in the "���C
�	��P�	
�	�� property of the Receive activity and can be generated from
the WF designer. At runtime, the method is called by the WCF behavior
before invoking the operation contract. It is passed an object containing all
the claims configured by the client. This makes it relatively easy to do
claims-based authorization.

Controlling Access to Ser vice-Enabled Workflows 455

Figure 11.14 Declarative authorization within a Receive activity

Let’s add a new requirement to the stock trade/approve example: The
person who initiates the trade cannot be the same person who approves it. To
implement this, we need to do two things. In the first Receive activity
(Figure 11.10), an Operation Validation routine finds and stores the user-
name who initiated the trade. In the second Receive activity (Figure 11.11)
an Operation Validation routine compares the user requesting approval to
the user who initiated the trade. If they’re the same, or if either is blank, the
authorization will be denied.

Listing 11.12 shows a small function for determining the user’s name
based on the ��	����� sent to the service. This function would be more
robust working with more predictable claims, such as those in certificates,
but to illustrate how access to service operations is controlled program-
matically, it will suffice.

Chapter 11: Workflow Ser vices456

Listing 11.12 Function to Find the Name Claim from a Windows (������

��	���#���	��#�	�
��	�=��,"����	��P�	
�	��&����%���#�-
*
���	��#��	�=��477'
	�#,����	�����������#44#B-
*
+&��������#����	��#4#����	������: �

)	�
��	��,78���/99��8��������������9
��9J::39:39	
���	��9��	��9���75#
>	�8���!������!�������-'

�����8#,��	�#�#	�#����	��-#�8	��#,��	�=��#4477-
��	�=��#4#��>�������������	��,-'

.
������#��	�=��'

.

Listing 11.13 shows how �	�
��	�=�� is used. The two functions,
����	��BF"�P�	
�	�� and ����	��JF"�P�	
�	��, are generated by the
WF designer. The first one stores the username in a variable scoped to the
workflow class. If it cannot find the username, it sets the %�E�������$����,
rejecting the call. The second function compares the current username to
the previous one. If they are the same, it sets the %�E�������$����, again
rejecting the call. In both cases, when %�E�������$����, the Receive activ-
ity does not call the operation contract.

Listing 11.13 Operation Validation Methods

��	���#��	
#�������>:2�E�����
���,��X���#���
��5#
"����	��P�	
�	��&����%���#�-

*
	�	�	��
��#4#$���(����B���,�-'
	�#,	�	�	��
��#44#77-#�%�E�������$����'

.

��	���#��	
#�������?:2�E�����
���,��X���#���
��5#
"����	��P�	
�	��&����%���#�-

*
���	��#���	���
��#4#$���(����B���,�-'
	�#,���	���
��#44#	�	�	��
��-

�%�E�������$�����
.

Controlling Access to Ser vice-Enabled Workflows 457

SUMMARY

Windows Workflow Foundation (WF) is complementary technology to
WCF. Whereas WCF defines and implements the interface to a service, WF
models and implements the business logic of the service. Visual Studio 2008
and .NET 3.5 provide deep integration between the two.

To invoke services from WF, you can use a Send Activity, Code activity,
or a custom activity. The Send Activity requires the least code but a custom
activity is by far the most flexible option.

The Receive activity is used in the WF designer to expose a workflow
as a service. After it is configured, WF defines a �����	��������� for the
service and an �"����	��������� for each Receive activity. You can
either point the Receive activity at proxies imported or included in the proj-
ect, or you can define interfaces using a WF designer. The Receive activity
binds WF variables to the service operation. Using the WF designer, you
can select or create WF-scoped variables to bind for each input variable in
the operation.

The WF class, (�����������	������, is used to instantiate the WF run-
time. This class is used instead of ����	������ for service-enabled work-
flows. This class must be used when self-hosting. When hosting in IIS, a
factory class must be specified in the SVC file to achieve the same result.

One of the context bindings must be used when exposing a service-
enabled workflow: ��	�������������	�
	��, ��������������	�
	��, or
��������������	�
	��. These bindings use the context channel element,
which adds context information to the channel. You can also add this chan-
nel element to custom bindings. The context information is required for cor-
relating inbound messages with existing workflows.

Many workflow programs that model business processes must run for
days, weeks, or months, during which time clients may be offline, services
may be recycled, or networks may be down. To support the long-running
nature of these processes, a persistence service is necessary. When a work-
flow instance is idle, or when the runtime is shutting down, the persistence
service saves the state, or “dehydrates” it to durable storage. When the WF
receives a message for a dehydrated instance, the WF “hydrates” it from the
persistence service.

Chapter 11: Workflow Ser vices458

12
Peer Networking

M A N Y D E V E L O P E R S T H I N K of the client-server or n-tier models when
building distributed applications. Another approach to building dis-

tributed applications that is often overlooked is the peer-to-peer (P2P)
model. Some of the most popular Internet applications, including instant
messaging, games, and file sharing, use the P2P approach. Unlike other
types of applications, a P2P application assumes no central infrastructure,
which means there is no distinction between client and server. This intro-
duces a significant amount of complexity in the design of the application.
Most developers shy away from building P2P applications because of the
complexity and difficulty associated with building these types of applica-
tion. If done properly, P2P applications can offer distinct advantages in
terms of scalability and reliability. This chapter will focus on building P2P
applications using WCF and Windows Vista. We will examine the capabil-
ities in WCF and demonstrate new capabilities in the .NET Framework 3.5.

Approaches to Building Distributed Applications

Most distributed applications today are built using one of three types of
network architectures: client/server, n-tier, and peer-to-peer. This section
will compare the different approaches so that we can understand the moti-
vation behind peer-to-peer applications.

459

Client/Server Applications
Many distributed applications in the past few decades have been built
using the client/server approach. In this model, both the client and the
server are participants in the distributed application, and each has a distinct
role. Clients initiate requests and servers respond to those requests. Easily
the most widely used client-server applications today are Web browsers
such as Internet Explorer. A user initiates a request by typing a URL into the
address bar of the Web browser and a server responds to that request. The
URL contains the request as well as the location of the Web server to send
that request to. Web servers such as Internet Information Services (IIS) han-
dle the incoming request and send a response back to the client. Figure 12.1
shows the client/server model.

Chapter 12: Peer Networking460

Client Server
Request/Response

Figure 12.1 Client/server model

N-Tier Applications
Distributed applications then grew from client/server (two-tier) into n-tier
configurations. The most common form of n-tier application is the three-tier
model, where the user interface, business logic, and data layer are sepa-
rated onto different physical tiers. Figure 12.2 shows the three-tier model.
Many distributed applications are built using this model. There are many
advantages to using this model. One of the most common reasons is encap-
sulating business logic onto a physically separate tier that can be secured. It
also offers a way to scale applications, albeit with more hardware.

Approaches to Building Distributed Applications 461

Figure 12.2 Three-tier model

Peer-to-Peer Applications
Another type of distributed application is the peer-to-peer (P2P) applica-
tion. In a pure peer-to-peer application each participate (node) acts as both
a client and a server to the other participants in the network. There is no dis-
tinction as to who can make or handle requests. P2P applications are often
associated with collaboration applications. An example of a well-known
P2P application is Gnutella, an Internet file-sharing application. Other
examples of P2P applications include instant messaging, presentation,
whiteboard, and document collaboration applications. Figure 12.3 shows
the model for a P2P application with three nodes.

User Interface DataBusiness Logic

Peer A

Peer C Peer B

Figure 12.3 Peer model with three nodes

Comparison of Distributed Approaches
Client/server and n-tier applications are typically much easier to build
than P2P applications. They have many advantages, including ease of
development, centralized management, and securitdy. Disadvantages
include scalability and reliability. Improvements in scalability can be
achieved by using a scale-up (better, more costly hardware) or scale-out
(more servers) approach. Reliability can be improved by adding redundant
hardware. In either situation expensive hardware is needed, significantly
adding to the overall cost of the solution. P2P applications are almost the
opposite by comparison. Many of the advantages of a P2P application are
disadvantages of a client/server application, and vice versa. For example,
additional nodes can be added using commodity hardware to increase the
scalability and reliability of a P2P application. This means that scalability
and reliability can be improved without the costs associated with expensive
server hardware. It also means that there is no central management or secu-
rity that makes P2P applications harder to deploy, secure, and maintain.
The reality is that each approach is no better than the other, but one may
be more suitable, based on your requirements. Some applications may use
multiple approaches to building distributed applications.

The remainder of this chapter will focus on building P2P applications
using WCF.

Peer-to-Peer Applications

This section discusses the support that the Windows Communication
Foundation (WCF) offers for creating P2P applications. To do this we exam-
ine the different ways P2P applications communicate.

Mesh Networks
P2P applications communicate to one another using a mesh network (a.k.a.
peer mesh). A mesh network is a grouping of peer nodes that are connected
together. A peer node is an instance of a P2P application. A fully connected
mesh is one where all nodes in the mesh are connected to each other. An
example of a fully connected mesh is shown in Figure 12.4.

Chapter 12: Peer Networking462

Peer-to-Peer Applications 463

Figure 12.4 Fully connected mesh

Fully connected meshes make sense only for small mesh sizes. It would
be impossible to have a fully connected mesh where the number of users
is attempting to scale to the Internet. Instead, most meshes are only par-
tially connected. These types of meshes are called partially connected meshes.
In a partially connected mesh, peer nodes are connected to adjacent nodes,
called neighbors. Figure 12.5 shows a partially connected mesh. Partially
connected meshes reduce the number of resources needed on each node
and in turn increase the scalability of the mesh. Scalability for a mesh net-
work is measured by the number of participants in the mesh. The disad-
vantage to this type of mesh is that you cannot send messages directly to all
nodes in the mesh. Instead, messages are forwarded between neighbors
until all participants are sent the message. Messages traverse the mesh until
all nodes have been contacted or messages reach a specified depth within
the mesh.

Peer A

Peer D Peer C

Peer B

Chapter 12: Peer Networking464

Peer A

Peer D Peer C

Peer B

Figure 12.5 Partially connected mesh

Resolving Peer Meshes
P2P applications use mesh names to identify the mesh network to partici-
pate in. A mesh name is a logical network name that applications use to
address the mesh network. At some point a mesh name needs to be resolved
into a set of network addresses to connect to. This typically involves con-
necting to other participants in the mesh and exchanging information about
other participants connected to the mesh. There are many techniques used
by P2P applications to discover other nodes in the mesh. Examples include
the use of multicast protocols, such as UDP, or well-known servers, referred
to as bootstrap servers. The WCF uses a specific implementation known as
Peer Network Resolution Protocol (PNRP), which is available in both Win-
dows XP SP2 and Windows Vista. PNRP uses a combination of techniques
that allow for discovery across a variety of networks. See “Resolving Peers
Using PNRP” for more information about PNRP.

Message Flooding Versus Directional Messaging
Communication over a mesh network is done using either message flooding
(a.k.a. multiparty messaging) or directional messaging. Message flooding

tries to send messages to all nodes in the mesh network. Messages propa-
gate through a mesh network through nodes forwarding messages that are
received to their neighbors. Directional messaging tries to send messages to
a specific node in a mesh by routing a message across a set of connected
nodes. Messages are sent from the originating node to one of its neighbors.
Its neighbor then forwards the message to other nodes until the message
reaches its destination. In either case, techniques are typically used to limit
the number of messages sent across the mesh.

WCF supports building P2P applications that use message flooding.
There is no out-of-the-box support for directional messaging; however, this
type of communication can be layered on top of the existing peer network-
ing capabilities using one or more of the extensibility features available
in WCF.

Creating Peer-to-Peer Applications

WCF supports creating P2P applications using the ���!�������	�
	��
binding. This binding allows for multiparty communication over a peer
transport protocol. It also defines the means that nodes use to resolve
neighbors within the mesh network. The default resolution protocol used
by the peer transport channel is the PNRP. This technology is a part of the
Windows operating system and has been available since Windows XP SP2.
We discuss PNRP in more detail in the “Resolving Peers Using PNRP” sec-
tion in this chapter.

��
3���-���������
The ���!�������	�
	�� binding offers support for peer communication
with WCF. Peer communication is facilitated using the !�����������C
�	�
	��&������. This transport uses TCP and binary as the default trans-
port protocol and message encoder.

The following code shows the addressing formats for the ���!������C
�	�
	�� binding:

��������/99*���8���.�/���� 9*����	��#����	��.

Creating Peer-to-Peer Applications 465

The default port is set to 0. This means that the peer transport will ran-
domly select a port for communication. A specific port is used if a port other
than 0 is specified.

Table 12.1 lists the default binding properties for the ���!�������	�
C
	�� binding.

Table 12.1 ��
3���-��������� Binding Properties

Attribute Name Description Default

������	����� The maximum time to wait 00:01:00
for the connection to be closed.

�	����+!%

���� The IP address for the peer n/a
transport to listen on.

���� The listener port for the peer 0
transport. Specifying zero means
that a randomly assigned port
is used.

���������	G� The maximum amount of 65,536
memory used to store messages
in memory.

���������	��� The maximum number of 10
outbound or inbound connec-
tions. Outbound and inbound
connections are counted separately.

��>���	��
�������	G� The maximum size of an 65,536
incoming message.

��� The name of the binding. n/a

�����	����� The maximum time to wait for 00:01:00
an open connection operation
to complete.

��
��K���� Specify the complexity of n/a
messages that can be processed
(for example, size).

����	���	����� The maximum time to wait for a 00:01:00
receive operation to complete.

Chapter 12: Peer Networking466

Attribute Name Description Default

�����	�� Specifies the security settings n/a
of the binding.

���
�	����� The maximum time to wait for a 00:01:00
send operation to complete.

�������� The peer resolver used to register n/a
and to resolve other participants on
a mesh network.

The minimal configuration to expose a service using the ���!������C
�	�
	�� binding is shown in Listing 12.1.

Listing 12.1 ��
3���-��������� Host Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<����	���?
<����	��#���47&�����	�(�)������(���
7?
<��
��	��#�	�
	��47���!�������	�
	��7

�������47&�����	�(�)�+�����(���
7

����47��������/99�����8=��9�����(���
97#9?

<9����	��?
<9����	���?

<9�����������	����
��?
<9����	����	��?

The minimal configuration to consume a service using the ���!������C
�	�
	�� binding is shown in Listing 12.2.

Listing 12.2 ��
3���-����������Client Configuration

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<��	���?
<��
��	��#�	�
	��47���!�������	�
	��7

�������47&�����	�(�)�+�����(���
7

����47��������/99�����8=��9�����(���
97#9?

<9��	���?
<9�����������	����
��?

<9����	����	��?

Creating Peer-to-Peer Applications 467

Resolving Peers Using PNRP

PNRP is a distributed name resolution protocol that enables publication
and discovery of P2P resource information. WCF uses PNRP to resolve peer
nodes in a mesh network. This allows for participants in a peer mesh to dis-
cover other participants so that they can communicate with one another.
This protocol has been available for some time either as an optional down-
load to Windows XP or as a part of Windows XP SP2. Windows Vista now
includes PNRP v2.0 out of the box when you enable IPv6 support. PNRP
is important to the peer transport channel in WCF because it is the default
way that neighbors are discovered within a mesh network.

Chapter 12: Peer Networking468

NOTE Get PNRP v2.0 for Windows XP SP2

PNRP v2.0 comes with Windows Vista. This is a new version of PNRP
that is not interoperable with older PNRP clients such as Windows XP
SP2. Microsoft has provided a download on its support Web site
(http://support.microsoft.com/kb/920342). This allows for peer
applications using PNRP running on Windows XP SP2 to talk to Win-
dows Vista clients.

PNRP is built on top of IPv6 and therefore requires IPv6 to be installed.
You can still use the peer networking capabilities in WCF, even if your net-
works do not support IPv6, by implementing a custom peer resolver. Cus-
tom peer resolvers allow a custom resolution protocol to be used instead
of PNRP. The section on “Implementing a Custom Peer Resolver” in this
chapter goes into detail about how to do this.

PNRP works by exposing P2P resource information for discovery by
other participants in a peer mesh. Resource information typically includes
a list of clients and their associated IP addresses endpoints that are bound
to a mesh names. PNRP can be used to store all sorts of information; how-
ever, we will focus only on the peer transport channel and how it leverages
PNRP. The peer transport channel leverages PNRP to publish information
on how to talk other P2P applications on the same mesh network. The infor-
mation published to PNRP includes the name of the mesh as well as the

http://support.microsoft.com/kb/920342

services endpoints associated with each node. When another P2P applica-
tion starts up, it uses PNRP to discover other applications that are on the
same mesh network.

PNRP Bootstrap Process
PNRP uses multiple steps to bootstrap itself into a mesh network (a.k.a.
PNRP Cloud). This approach allows participants in a mesh to register
themselves in the mesh and subsequently discover one another. This multi-
step approach also helps PNRP scale on isolated networks such as corpo-
rate LANs or on the Internet because it tries to minimize the amount of
network traffic needed to join a mesh:

1. Check previously cached entries. PNRP maintains a local cache of
resource endpoints for each host. If a client previously registered
itself with a particular mesh, PNRP will use those previously cached
entries to try to reconnect to the mesh network.

2. Simple Service Discovery Protocol (SSDP). SSDP is a part of the
Universal Plug-n-Play (UPnP) specification that allows for UPnP
compliant devices to discover each other on a local network. This
same technique allows for peer nodes to discover one another on the
local network.

3. PNRP seed nodes. PNRP clients can be configured to look for
another PNRP node that can be used as a bootstrap into a PNRP
Cloud. These types of nodes are often referred to as a seed node.
Microsoft provides a publicly available seed node on the Internet at
pnrpv2.ipv6.microsoft.com. Users may also choose to host their own
seed node on their own network.

Windows Internet Computer Names
Windows Vista allows for a name associated with your computer to be pub-
lished using PNRP. This gets around the need for managing a domain name
and adding records to the Domain Name System (DNS). These names are
called Windows Internet Computer Names (WICN). You might find WICN

Resolving Peers Using PNRP 469

referred to as PNRP Peer Names. There are two types of names: secured
and unsecured. Unsecured names usually take a human readable form
such as richshomecomputer.pnrp.net. These names are easy to remember
but cannot be guaranteed to be secured. Figure 12.6 demonstrates using the
����8 command to query a computer’s WICN name. The command used is
����8#�J�#����#����#�8��#��8	��#���.

Chapter 12: Peer Networking470

Figure 12.6 Windows Internet Computer Name (WICN)

Secure names, on the other hand, are secured using a private key, which
is needed to prove ownership. Secure names are generated using a hash of
the public key. To publish a secure name you must have the corresponding
private key to the public key contained within the name. An example of a
secure name is shown here:

�00HJ�32RH�123JB��1BI3::BI13RB:0�B�:JB0

An interesting fact about WICN names is that they can be queried using the
DNS APIs. The following code shows the same WICN name using a for-
mat that can be queried by DNS:

���00HJ�32RH�123JB��1BI3::BI13RB:0�B�:JB0���������

3���3���<�������
Built in to the ���!�������	�
	�� is the capability to specify a peer resolver
that resolves other participants within a mesh network. By default, the

!���!���>������� class is chosen by the ���!�������	�
	�� binding if no
other peer resolver is specified. The !���!���>������� class is an imple-
mentation of the abstract class !���>�������. These classes can be found
in the �����������	����
����8����� namespace.

Mesh Authentication
Mesh networks can be protected by specifying a password or using an
X.509 certificate associated with a mesh. For an application to participate on
the mesh, it must specify the correct password for the mesh network. Mesh
passwords allow applications to register on a mesh network and discover
other participants in a mesh. They do not say whether a participant is an
authenticated user. Mesh passwords need to be specified on both the server
and the client. Listing 12.3 shows a mesh password being configured on the
����	������.

Listing 12.3 Setting Mesh Password on ������� ��

8���#4#���#����	������,������,!����8�����	��-5#���%

������-'
8�������
���	���!�������8!�����
#4#���8!�����
������	��,-'
8����"���,-'

The corresponding client code for setting the mesh password is shown
in Listing 12.4. This example uses the �8����)����� approach described
in Chapter 3, “Channels.”

Listing 12.4 Client Code for Setting Mesh Password on ������� ��

��	��#,�8����)�����<+!����8�?#��#4
���#�8����)�����<+!����8�?,�	�
	��5#��--

*
������
���	���!�������8!�����
#4#���8!�����
������	��,-'

+!����8�#�8�#4#���������8����,-'
�8�����
,����5#������-'

.

Registering Names Using PNRP

WCF can use PNRP to discover other participants on a mesh network. In its
implementation, the WCF peer channel abstracts away the use of PNRP so

Registering Names Using PNRP 471

an application does not need to work with PNRP directly. However, some
peer application might like to publish and resolve identifiers (peer names)
themselves outside of the WCF peer channel. Unfortunately, prior to .NET
Framework 3.5 there was no way from managed code to register PNRP
names. A new namespace called �������=���!��� was added in .NET
Framework 3.5 to be able to work with the PNRP infrastructure using man-
aged code.

�	�
��B�
3���
As mentioned previously, PNRP is used to publish and resolve peer names.
To publish a peer name, we first need to create an instance of the !���=��
class. The !���=�� class specifies the identifier (peer name) and
whether the identifier is secure or unsecure. From there we use the
!���=��>��	����	�� class to register the peer name. To do this we are
required to set the !���=�� and !��� properties and then call the ����
method. The ���� method is used to unregister the peer name. Listing 12.5
shows an example of registering a peer name.

Chapter 12: Peer Networking472

NOTE Peer Names Are Owned by Applications

A peer name is owned by the application that registered it. If the appli-
cation exits for any reason, the peer name is unregistered. This means
that the application must be running in order to resolve a peer name.

Listing 12.5 Publishing a Peer Name

��	��#������'
��	��#��������������	����$����	�'
��	��#�������;	�S'
��	��#�������=���!�����!���'
��	��#�����������'

�������#!���	�8=��
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

!���=��#����=��#4
���#!���=��,7!����8�75#!���=�������6�������
-'

!���=��>��	����	��#��>��#4#���#!���=��>��	����	��,-'
��>���!���=��#4#����=��'
��>���!���#4#2:2:'
��>����������#4#7��#���	����	���7'
��>���D�#4#&���
	���6�)2�$�������

➥,7����#
�#��#	����
�#�	�8#��#���	����	���7-'

��>�������,-'

��������(�	��;	��,7�	�# &���� #��#��	��7-'
��������>�
;	��,-'
��>�������,-'

.
.

.

Listing 12.6 shows how we can resolve the same peer name shown in
Listing 12.5. In this example we use the !���=��>������� class to get back
a collection of !���=��>����
 instances. We then enumerate over the col-
lection and output the information contained within each record.

Listing 12.6 Resolving a Peer Name

��	��#������'
��	��#��������������	����$����	�'
��	��#�������;	�S'
��	��#�������=��'
��	��#�������=���!�����!���'
��	��#�����������'

�������#>������=��
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

!���=��>�������#��������#4#���#!���=��>�������,-'
!���=��#����=��#4#���#!���=��,7:�!����8�7-'

!���=��>����
�������	��#�������#4
���������>������,����=��-'

!���=��>����
#�����
'

���#,	��#	4:'#	<�������������'#	TT-
*

�����
#4#��������	 '

Registering Names Using PNRP 473

Listing 12.6 continued

��������(�	��;	��,7>����
#N*:.75#	-'
	�#,�����
��������#U4#����-

��������(�	��;	��,�����
��������-'

��������(�	��,7D�/#7-'
	�#,�����
�D�#U4#����-

��������(�	��;	��,&���
	���%��++�$�����	��,�����
�D�--'
����

��������(�	��;	��,-'

��������(�	��;	��,7&�
��	���/7-'

�����8#,+!&�
!�	��#��
��	��#	�
�����
�&�
!�	���������	��-

��������(�	��;	��,7&�
��	��/*:.75#��
��	��-'

��������(�	��;	��,-'
.

��������(�	��;	��,7�	�# &���� #��#��	��7-'
��������>�
;	��,-'

.
.

.

Implementing a Custom Peer Resolver

The peer transport channel allows developers to implement their own peer
resolutions by specifying a custom peer resolver. There are many reasons to
implement your own custom peer resolver rather than using the default
PNRP resolver. PNRP requires the use of IPv6 and needs an additional
download for Windows XP SP2 and Vista clients to work together. In these
situations a custom peer resolver can be used to leverage an existing IPv4
infrastructure and to ease deployment. There are many examples of imple-
menting a custom peer resolver. The Windows SDK shows an example of
this approach using a WCF service. We will give a similar example of a cus-
tom peer resolver using a service, but backed by a SQL Server 2005 data-
base. Many applications can leverage this implementation to have a
number of computers collaborate on a network.

Chapter 12: Peer Networking474

To create a new peer resolver, you must inherit from the abstract base
class !���>�������. This class has a number of methods on it that allow a
client to register, update, and unregister a client from a mesh network. It
also has a method to resolve other members of the mesh. Listing 12.7 shows
the �S�!���>������� class and the configuration classes associated with it.

Listing 12.7 �@�3���<�������

��	��#������'
��	��#��������������	����$����	�'
��	��#��������������	����"�X�����
��'
��	��#�����������	����	��'
��	��#�����������	����
��'
��	��#�������>���	������	�	G�	��'

�������#&�����	�(�)�!���=������	��
*

����	�#����#�S�!���>�������#/#!���>�������
*

��	���#���	�#��X���#
�;���#4#���#��X���,-'
��	���#���	�#�S�!���>�������D����#
�'

��	���#���	�#�S�!���>�������D����#D%;
*

���
*

	�#,
�#44#����-
*

����#,
�;���-
*

	�#,
�#44#����-

�#44#���#�S�!���>�������D����,-'

.
.

������#
�'
.

.

����	�#�����	
�#����#���8��>�������
*

���#*#������#����'#.
.

����	�#�����	
�#��X���#>��	����,���	��#���8+
5
!���=�
�%

����#��
�%

����5#�	�����#�	�����-

Implementing a Custom Peer Resolver 475

Listing 12.7 continued

*
��������+
,��
�%

�����+!%

������-'
	��#���	����	��+
#4#D%;�>��	����,���8+
5#��
�%

����-'
������#���	����	��+
'

.

����	�#�����	
�#��	
#6����	����,��X���#���	����	��+
5
�	�����#�	�����-

*
D%;�6����	����,,	��-���	����	��+
-'

.

����	�#�����	
�#��	
#6�
��,��X���#���	����	��+
5
!���=�
�%

����#��
��
=�
�%

����5#�	�����#�	�����-

*
��������+
,��
��
=�
�%

�����+!%

������-'
D%;�6�
��,,	��-���	����	��+
5#��
��
=�
�%

����-'

.

����	�#�����	
�#>�
"����������	��<!���=�
�%

����?
>������,���	��#���8+
5#	��#��%

������5#�	�����#�	�����-

*
!���=�
�%

����� #

������#4#����'

������#4#D%;�>������,���8+
5#��%

������-'

	�#,

������#44#����-

������#4#���#!���=�
�%

�����: '

������#���#>�
"����������	��<!���=�
�%

����?,

������-'
.

��	
#��������+
,>�
"����������	��<+!%

����?#	�%

������-
*

�����8#,+!%

����#

����#	�#	�%

������-
*

	�#,

�����%

����)�	��#44
%

����)�	���+����=������PH-

����������+
#4#:'

.
.

.

����	�#����#�S�!���>��������	�
	��&������#/
!���>��������	�
	��&������

*
!���>������!��	��#����>������!��	��#4

!���>������!��	����8��'

Chapter 12: Peer Networking476

���	�#�S�!���>�������#����������	���#4#���#�S�!���>�������,-'

����	�#�S�!���>��������	�
	��&������,-#*#.
��������

➥�S�!���>��������	�
	��&������,�S�!���>��������	�
	��&������
➥��8��-#/#���,��8��-#*#.

����	�#�����	
�#!���>������!��	��#>������!��	��
*

���#*#������#����>������!��	��'#.
���#*#����>������!��	��#4#����'#.

.

����	�#�����	
�#�	�
	��&������#�����,-
*

������#���#�S�!���>��������	�
	��&������,�8	�-'
.

����	�#�����	
�#+�8����)�����<��8����?
➥��	�
�8����)�����<��8����?,�	�
	���������#�������-

*
���������	�
	��!��������%

,�8	�-'
������#����������	�
+�����8����)�����<��8����?,-'

.

����	�#�����	
�#����
➥����	�
�8����)�����<��8����?,�	�
	���������#�������-

*
���������	�
	��!��������%

,�8	�-'
������#������������	�
+�����8����)�����<��8����?,-'

.

����	�#�����	
�#+�8����;	������<��8����?
➥��	�
�8����;	������<��8����?,�	�
	���������#�������-

*
���������	�
	��!��������%

,�8	�-'
������#����������	�
+�����8����;	������<��8����?,-'

.

����	�#�����	
�#����
➥����	�
�8����;	������<��8����?,�	�
	���������#�������-

*
���������	�
	��!��������%

,�8	�-'
������#������������	�
+�����8����;	������<��8����?,-'

.

����	�#�����	
�#!���>�������#�����!���>�������,-
*

������#����������	���'

Implementing a Custom Peer Resolver 477

Listing 12.7 continued

.

����	�#�����	
�#�#$��!�������<�?,�	�
	���������#�������-
*

������#��������$��+����!�������<�?,-'
.

.

����	�#����#�S�!���>�����������	����	���	�
	��&������#/
�	�
	��&������&�����	��&������

*
����	�#�����	
�#����#�	�
	��&����������
*

���#*#������#������,�S�!���>��������	�
	��&������-'#.
.

��������
#�����	
�#�	�
	��&������#������	�
	��&������,-
*

������#���#�S�!���>��������	�
	��&������,-'
.

.
.

Limiting the Number of Hops for a Message

Peer networks based on message flooding typically provide a way to limit
the distance a message travels with the network. The distance a message
travels is often referred to as the number of hops it makes when traveling
on the network. The number of hops is determined by counting the num-
ber of times a message is sent between neighbors. For those familiar with
socket programming, this is similar to the Time-to-Live (TTL) setting on the
TCP protocol, which specifies the maximum number of routers a packet can
traverse before being discarded. Figure 12.7 illustrates this point by repre-
senting nodes that are connected. Four nodes are labeled A, B, C, and D. A
message sent by Node A will make three hops to be received by Node D.
The number of hops can be significant when working with Internet-scale
meshes. We look for ways to limit the number of hops when we encounter
these situations.

Chapter 12: Peer Networking478

Figure 12.7 Number of hops across connected nodes

WCF provides a very simple mechanism using message contracts to
limit the number of hops a message passes through in a peer mesh. Listing
12.8 shows the ����8>�S���� message contract for sending a request for
a distributed search. One of the members of the contract is attributed with
the !����������� attribute. The !����������� attribute can be associated
with an integer value. This value is decremented each time the message is
sent to a different node. The message will not be passed to any neighbor-
ing nodes when the message has passed through enough nodes to decre-
ment the count to zero. A hop count essentially puts a stop condition on the
number of nodes the message can travel through. In our case the number of
hops is set to 3.

Listing 12.8 Message Contract Using 3��� ��(���

��������������
����	�#����#����8>�S����
*

�!�����������
��	���#	��#F8�������'

���������
�������
��	���#���	��#FS����'

Limiting the Number of Hops for a Message 479

B

A

C

D

Listing 12.8 continued

����	�#���	��#K����
*

���#*#������#FS����'#.
���#*#FS����#4#����'#.

.

���������
�������
��	���#!���+������#F���	�	���'

����	�#!���+������#!��	�	���
*

���#*#������#F���	�	���'#.
���#*#F���	�	���#4#����'#.

.

����	�#����8>�S����,-
*
.

����	�#����8>�S����,���	��#S����-
*

F8�������#4#I'
FS����#4#S����'
F���	�	���#4#���#!���+������,-'

.

����	�#����8>�S����,	��#8�������5#���	��#S����-
/#�8	�,S����-

*
F8�������#4#8�������'

.
.

Collaboration Using Windows Vista

WCF provides the infrastructure for creating peer applications that can
communicate across a mesh network. It does not provide capabilities for
discovery and ad-hoc collaboration. For these we will rely on some new
capabilities built in to Windows Vista and into the .NET Framework 3.5.
These include People Near Me, Windows Contacts, and Invitations. This
section examines these features and demonstrates how to use them using
the classes found in the new �������=���!�����!��� namespace.

Chapter 12: Peer Networking480

People Near Me
Windows Vista provides a capability to discover other people connected to
the same local subnet and invite them to collaborate. This feature is avail-
able only in Windows Vista and is not available with Windows XP. People
Near Me can be configured using the Control Panel or the associated tray
application. Figure 12.8 shows the People Near Me Control Panel. The
People Near Me Control Panel is also accessible from the system tray.

Collaboration Using Windows Vista 481

Figure 12.8 People Near Me Control Panel

The control panel allows you to configure your presence information,
such as your name and picture. It also allows you to configure how you
would like to collaborate with other people by specifying who can send you
invitations. By default, anyone is allowed to send an invitation, but it can
be configured to allow only trusted contacts or to disable invitations
altogether. Figure 12.9 shows the available options for configuring who is
allowed to send invitations.

Figure 12.9 Allow invitations

Windows Contacts
You can use Windows Vista to keep track of your contacts using a new fea-
ture called Windows Contacts. Windows Contacts is a central place to store
your contact list. Figure 12.10 shows the Windows Contacts folder, which
shows a list of contacts.

Chapter 12: Peer Networking482

Figure 12.10 Windows Contacts

By default a contact is created for each user and contains the username
and an account picture. This contact is often referred to as the “Me” contact.
The Windows Contacts can be used to collaborate with your contacts either

through e-mail or other activities, such as ad-hoc meetings, using Windows
Meeting Space. One of the most important concepts about Windows Con-
tacts is trusted contacts. Trusted contacts are contacts that have exchanged
their Me contact with trusted people. One of the most common ways to
exchange Me contact information is through e-mail.

Windows Contacts can be edited by double-clicking the contact in the
Windows Contacts folder. Figure 12.11 shows the Windows Contacts Prop-
erties page.

Collaboration Using Windows Vista 483

Figure 12.11 Windows Contact Properties

Invitations
Applications can use People Near Me to send invitations to people to start
a collaborative activity. Figure 12.12 shows an invitation sent by Windows
Meeting Space to start an ad-hoc meeting. When users receive the invitation
they are asked to perform an action: View, Decline, or Dismiss.

Figure 12.12 Windows Meeting
Space invitation

If the user chooses Decline, a response is sent back to the application that
sent the invitation saying that the invitation was declined. If the user
chooses Dismiss, the invitation will be ignored and no response will be sent
back to the application. After a timeout period, the invitation will expire. If
the user chooses View, the user will be allowed to see the invitation. Figure
12.13 shows an example of an invitation sent by Windows Meeting Space.
The invitation provides a number of important pieces of information, such
as who sent the invitation, whether they are a trusted contact, and what
application will be launched if the application is accepted. At this point the
user can accept the invitation by choosing Accept.

Chapter 12: Peer Networking484

Figure 12.13 Windows Meeting Space invitation details

�	�
��B�
3���-�3���(��������
���
People Near Me, Windows Contacts, and Invitations all allow an applica-
tion to start a collaborative activity. Prior to .NET Framework 3.5, develop-
ers needed to work with unmanaged APIs to use these features. This meant
that they needed to be developing in either C++ or at the very least create
interop assemblies (using P/Invoke) for use in .NET. .NET Framework 3.5
changed this by introducing managed libraries that can use the People
Near Me, Windows Contacts, and Invitation infrastructure built in to Win-
dows Vista. These libraries are provided in a new namespace called
�������=���!�����!���. A developer needs to add a reference to the
�������=�� assembly to use these new libraries. We will look at a sample
application called Peer Chat to see how to use these new libraries. Figure
12.14 shows the Peer Chat application.

Collaboration Using Windows Vista 485

Figure 12.14 Peer Chat sample application

The first thing that an application should consider is registering itself
with the collaboration infrastructure in Windows Vista. This is required if
you would like to send an invitation to launch the application. Listing 12.9
shows how the Peer Chat application registers itself with the peer infra-
structure. To do this we call the >��	����method on the !�����������	��
static class found in �8�# �������=���!�����!������������	�� name-
space. This method accepts an instance of !���%���	��	�� class. An
instance of this class is a description of the peer application, including an
application identifier and a description.

Listing 12.9 Registering a Peer Application

��	��#������'
��	��#��������������	����$����	�'
��	��#�������;	�S'
��	��#�������=���!�����!���'
��	��#�������=���!�����!������������	��'
��	��#�����������'

�������#!����8�
*

����	�#����#!����8�%���	��	��
*

��	���#���	�#!���%���	��	��#!����8�!���%���	��	��'
��	���#���	�#$�	
#!����8�%��+
#4

➥���#$�	
,71��H)30&CBJ1&C1�R3C2�D0C��R3��%R2�%27-'
��	���#���	�#���	��#!����8�D����	��	��#4

7%#�����#����#�������	��#���	��	���7'

���	�#!����8�%���	��	��,-
*

!����8�!���%���	��	��#4
���#!���%���	��	��,!����8�%��+
5

!����8�D����	��	��5
����5

�������(�
����)�����%���	��	���&��������!�85
����5
!���������%��-'

.

����	�#���	�#��	
#>��	����,-
*

!���%���	��	���������	��#����%�������#4
!�����������	���$��;���>��	�����
%���	��	���,
!���%���	��	��>��	����	�������%��6����-'

99#\��#����#����#;+=KU##+�#	�#��#����U

Chapter 12: Peer Networking486

+&��������<!���%���	��	��?#�	�
!���%��#4
����#����%��#	�
!�����������	���$��;���>��	�����
%���	��	���,
!���%���	��	��>��	����	�������%��6����-
�8���#����%���+
#44#!����8�%��+

������#����%��'

	�#,�	�
!���%��������<!���%���	��	��?,-#U4#:-
!�����������	���6����	����%���	��	��,

!����8�!���%���	��	��5
!���%���	��	��>��	����	�������%��6����-'

!�����������	���>��	����%���	��	��,
!����8�!���%���	��	��5
!���%���	��	��>��	����	�������%��6����-'

.

����	�#���	�#��	
#6�>��	����,-
*

!�����������	���6����	����%���	��	��,
!����8�!���%���	��	��5
!���%���	��	��>��	����	�������%��6����-'

.
.

.

The next thing an application might want to do is to display a list of peo-
ple that are on its local subnet so the user can invite them to collaborative
activity. This is done by enumerating the people signed into the People
Near Me infrastructure. A user needs to be signed into People Near Me to
retrieve this list of people near them. To help with this process, we created
a helper class that ensures that the user is signed in before the first request.
Listing 12.10 shows the !�����=���������� class. The class calls the
�	��+� method of the !�����������	�� static class to ensure that the user
is signed into People Near Me. After the user is signed in, the user is free
to call the $��!����=���� static method, which returns a collection of
!���=���� instances. A !���=���� instance is a description of a person
logged into People Near Me on the local subnet.

Listing 12.10 The People Near Me

��	��#������'
��	��#��������������	����$����	�'
��	��#�������;	�S'
��	��#�������=���!�����!���'

Collaboration Using Windows Vista 487

Listing 12.10 continued

��	��#�������=���!�����!������������	��'
��	��#�����������'

�������#!����8�
*

����	�#����#!�����=����������
*

����	�#!�����=����������,-
*

!�����������	����	��+�,!���������%��-'
.

����	�#!���=�����������	��#!�����=����
*

���
*

������#!�����������	���$��!����=����,-'
.

.
.

.

Next we need to send an invitation to another user so he can collaborate.
The Peer Chat application sends an invitation to other users to start a chat
together. To do this, we not only need to send the invitation, we also need
to send some additional information to bootstrap the communication
process. Remember that the actual act of communication between peers is
handled by WCF and the peer channel infrastructure. This means that we
need additional information, such as the name of the mesh to communicate
on and the mesh password. This additional information is sent with the
invitation. Listing 12.11 shows how to send and receive invitations from the
collaboration infrastructure in Windows Vista. An invitation is sent using
either the +��	�� or +��	��%���� method on an instance of a !���=����
class. It is recommended that you use the +��	��%���� method; otherwise,
the user interface is blocked, waiting for the user to accept the invitation.
Both methods have an option to send additional data in the form of a byte
array. In our situation, we package up the mesh name and password into
a byte stream and send that along. Many might be concerned that infor-
mation might be exposed by sending the mesh name and password with
the invitation. No worries! The People Near Me infrastructure transmits
this information over an encrypted connection.

Chapter 12: Peer Networking488

Listing 12.11 Sending and Receiving Invitations

��	��#������'
��	��#��������������	����$����	�'
��	��#�������;	�S'
��	��#�������+"'
��	��#�������=���!�����!���'
��	��#�������=���!�����!������������	��'
��	��#�����������'

�������#!����8�
*

����	�#����#+��	��	��������
*

��	���#���	�#!���%���	��	��#!����8�!���%���	��	��'
��	���#���	�#$�	
#!����8�%��+
#4

���#$�	
,71��H)30&CBJ1&C1�R3C2�D0C��R3��%R2�%27-'
��	���#���	�#���	��#!����8�D����	��	��#4

7%#�����#����#�������	��#���	��	���7'

���	�#+��	��	��������,-
*

!����8�!���%���	��	��#4
���#!���%���	��	��,!����8�%��+
5

!����8�D����	��	��5
����5

�������(�
����)�����%���	��	���&��������!�85
����5
!���������%��-'

.

����	�#���	�#!���+��	��	��>�����������
+��	��,!���=����#��������5

$�	
#�8�+
5
$�	
#���8!�����
-

*
����� #
�'
��	��#,�����������#��#4#���#�����������,--
*

��	��#,�����(�	���#��#4#���#�����(�	���,��--
*

���(�	��,�8�+
������	��,--'
���(�	��;	��,-'
���(�	��,���8!�����
������	��,--'

.

�#4#�����%���,-'

.

!���+��	��	��>�������#��������#4
���������+��	��,!����8�!���%���	��	��5

Collaboration Using Windows Vista 489

Listing 12.11 continued

7\��#��#��	��#	��	��
#��#�8��75#
�-'
������#���������!���+��	��	��>�����������'

.

����	�#���	�#��	
#+��	��%����,!���=����#��������5
$�	
#�8�+
5#$�	
#���8!�����
-

*
����� #
�'
��	��#,�����������#��#4#���#�����������,--
*

��	��#,�����(�	���#��#4#���#�����(�	���,��--
*

���(�	��,�8�+
������	��,--'
���(�	��;	��,-'
���(�	��,���8!�����
������	��,--'

.

�#4#�����%���,-'

.

��X���#���������#4#$�	
�=��$�	
,-'
���������+��	��%����,!����8�!���%���	��	��5

7\��#��#��	��#	��	��
#��#�8��75#
�5#���������-'
.

����	�#���	�#����#+�;���8�

*

���
*

������
,!�����������	���%���	��	��;���8+���#U4#����-#cc
,!�����������	���%���	��	��;���8+����D�#U4#����-'

.
.

����	�#���	�#$�	
#�8�+

*

���
*

$�	
#�8�+
'

��	��#,�����������#��#4
���#�����������,

!�����������	���%���	��	��;���8+����D�--
*

��	��#,�����>�
��#��#4#���#�����>�
��,��--
*

Chapter 12: Peer Networking490

���	��#�8�+
���	��#4#���>�
;	��,-'
���	��#���8!�����
���	��#4#���>�
��&�
,-'

�8�+
#4#���#$�	
,�8�+
���	��-'
.

.

������#�8�+
'
.

.

����	�#���	�#$�	
#���8!�����

*

���
*

$�	
#���8!�����
'

��	��#,�����������#��#4
���#�����������,

!�����������	���%���	��	��;���8+����D�--
*

��	��#,�����>�
��#��#4#���#�����>�
��,��--
*

���	��#�8�+
���	��#4#���>�
;	��,-'
���	��#���8!�����
���	��#4#���>�
��&�
,-'

���8!�����
#4#���#$�	
,���8!�����
���	��-'
.

.

������#���8!�����
'
.

.
.

.

The last thing to consider is how to determine whether an application
was launched based on an invitation from People Near Me. To do this we
need to get an instance of the !���%���	��	��;���8+��� class. This is
available from the %���	��	��;���8+��� property on the !���������C
��	�� static class. Listing 12.11 also shows how this class can be used to
determine if the application was launched because of invitation and how to
access any additional data sent with that invitation.

Collaboration Using Windows Vista 491

Directional Messaging Using Custom Binding

A common mistake when working with the peer transport channel is to
assume that it supports directed communication over a peer mesh. Direc-
tional messaging means that a message can be sent to a particular node in
a peer mesh by propagating it across a peer mesh to its destination (that is,
routing). This is not possible using the peer transport channel. This limits
the types of peer applications that can be built, because all messaging
assumes that messages will be sent to every node. However, with a little
know-how and very little effort, some of these limitations can be eliminated.

There are several ways directional messaging can be utilized, including
one-to-one and many-to-one style communication. One-to-one communi-
cation is the capability to send a message to a particular node in a peer
mesh. Many-to-one is the capability for a node to respond back to the orig-
inator of a request. One-to-one messages require the use of routing tech-
niques to route the message through the peer mesh to its destination. This
approach typically uses routing indices to rank neighbors by their likeliness
to resolve the request to its destination. Unfortunately, the complexity of
the solution and time prevent us from covering this form of directional
messaging. Instead, we will focus on the easier form of directional mes-
saging, which is the many-to-one scenario.

Many-to-one allows for a node to send a callback message back to the
originator of a request. Two approaches can be used to implement this sce-
nario. The first approach is to send a callback message to the originator of
the message over the peer mesh. This is similar to the one-to-one approach.
The second approach is for the originator to send an address on which it
can receive callback messages. This approach is much easier to implement
and is easily handled using the existing WCF infrastructure. The solution
involves the creation of a composite transport channel. This takes two exist-
ing one-way transport channels and combines them to allow for request
messages to be sent on one channel and callback messages to be received
over a different channel. In our situation, we will use the peer transport
channel to send messages while using the TCP transport channel to receive
callback messages. We will also layer on a shape-changing channel using
the ������	��D������	�
	��&������ binding element to allow for duplex

Chapter 12: Peer Networking492

messaging over the composite transport. Listing 12.12 shows the
������	�����������	�
	��&������ binding element that is used to create
the asymmetric transport.

Listing 12.12 (������
�-�������
�������"�����

��	��#������'
��	��#�����������'
��	��#��������������	����$����	�'
��	��#�����������	����
����8�����'

�������#&�����	�(�)�!���%���	��	����	�
	���
*

����	�#����#������	�����������	�
	��&������<��8�����	�
	��5
�;	�������	�
	��?

/#���������	�
	��&������
�8���#��8�����	�
	��#/#�	�
	��5#���,-
�8���#�;	�������	�
	��#/#�	�
	��5#���,-

*
��8�����	�
	��#�8�����	�
	��'
�;	�������	�
	��#�	�������	�
	��'

����	�#������	�����������	�
	��&������,��8�����	�
	��
�8�����	�
	��5#�;	�������	�
	��#�	�������	�
	��-

*
�8	���8�����	�
	��#4#�8�����	�
	��'
�8	���	�������	�
	��#4#�	�������	�
	��'

.

����	�#������	�����������	�
	��&������,
������	�����������	�
	��&������<��8�����	�
	��5

�;	�������	�
	��?
��8��-
/#���,��8��-

*
�8	���8�����	�
	��#4

,��8�����	�
	��-��8����8�����	�
	��'
�8	���	�������	�
	��#4

,�;	�������	�
	��-��8����	�������	�
	��'
.

����	�#��8�����	�
	��#�8�����	�
	��
*

���#*#������#�8	���8�����	�
	��'#.
.

����	�#�;	�������	�
	��#;	�������	�
	��
*

Directional Messaging Using Custom Binding 493

Listing 12.12 continued

���#*#������#�8	���	�������	�
	��'#.
.

����	�#�����	
�#����#����	�
�8����)�����<��8����?,
�	�
	���������#�������-

*
�8���+��������+�=���,�������-'

������#�8�����	�
	�������	�
�8����)�����<��8����?,
���������	�
	��!�������-'

.

����	�#�����	
�#����#����	�
�8����;	������<��8����?,
�	�
	���������#�������-

*
�8���+��������+�=���,�������-'

������#�	�������	�
	�������	�
�8����;	������<��8����?,
���������	�
	��!�������-'

.

����	�#�����	
�#+�8����)�����<��8����?
��	�
�8����)�����<��8����?,�	�
	���������#�������-

*
�8���+��������+�=���,�������-'

������#�8�����	�
	�����	�
�8����)�����<��8����?,
���������	�
	��!�������-'

.

����	�#�����	
�#+�8����;	������<��8����?
��	�
�8����;	������<��8����?,�	�
	���������#�������-

*
�8���+��������+�=���,�������-'

������#�	�������	�
	�����	�
�8����;	������<��8����?,
��������;	����6�	���%

����5
��������;	����6�	>���	��%

����5
��������;	����6�	��
�5
���������	�
	��!�������-'

.

����	�#�����	
�#�	�
	��&������#�����,-
*

������
���#������	�����������	�
	��&������<��8�����	�
	��5
�;	�������	�
	��?,�8	�-'

.

Chapter 12: Peer Networking494

����	�#�����	
�#�#$��!�������<�?,�	�
	���������#�������-
*

�8���+��������+�=���,�������-'

�#������#4
�8	���8�����	�
	���$��!�������<�?,
���������	�
	��!�������-'

	�#,������#U4#
�����,�--
������#������'

������#4
�8	���	�������	�
	���$��!�������<�?,
���������	�
	��!�������-'

	�#,������#U4#
�����,�--
������#������'

������#��������$��+����!�������<�?,-'
.

����	�#�����	
�#���	��#��8���
*

���
*

������#�	�������	�
	�����8���'
.

.
.

.

Leveraging the ������	�����������	�
	��&������ alone does not
complete the solution. We must create a binding that combines several
binding elements to create the composite transport binding. It is important
to point out that the client and server do not use the same binding. The
binding must be asymmetric because the transport is asymmetric. Listing
12.13 shows how these different bindings are created.

Listing 12.13 Custom Bindings Using (������
�-�������
�������"�����

��	��#������'
��	��#��������������	����$����	�'
��	��#�������=��'
��	��#�����������	����
��'
��	��#�����������	����
����8�����'
��	��#�����������	����
���D����	��	��'

��	��#&�����	�(�)�!���%���	��	����	�
	���'
��	��#&�����	�(�)�!���%���	��	����������'

Directional Messaging Using Custom Binding 495

Listing 12.13 continued

��	��#&�����	�(�)�!���%���	��	���&���
��'

�������#&�����	�(�)�!���%���	��	����������
*

����	�#���	�#����#�	�
	��������
*

����	�#���	�#�	�
	��#�������	����	�
	��,-
*

6�	#������6�	#4#���
6�	,6�	�������$������8������6�	,--'

;	����6�	�	�
	��&������#�	����6�	#4#���
;	����6�	�	�
	��&������,������6�	5#775
;	����6�	��
��&���	�	�-'

�	���������&���
	���	�
	��&������#�	���&���
��#4
���#�	���������&���
	���	�
	��&������,-'

�	���&���
���������P���	��#4
������P���	������BJ(�%

����	��%�����J::1'

$Z	�������&���
	���	�
	��&������#����
��#4
���#$Z	�������&���
	���	�
	��&������,�	���&���
��-'

"��(��	�
	��&������#���(�#4#���#"��(��	�
	��&������,-'
������	��D������	�
	��&������#
�����#4

���#������	��D������	�
	��&������,-'
������������	�
	��&������#�����������#4

���#������������	�
	��&������,-'
����������������%

����	��#4#����'
������������!����8�	��&����
#4#����'
����������������
�&����
#4#����'
!������������	�
	��&������#������������#4

���#!������������	�
	��&������,-'
�����������������%

����	��#4#����'
!���!���>��������	�
	��&������#����>�������#4

���#!���!���>��������	�
	��&������,-'

�������	�
	��#����	�
	��#4#���#�������	�
	��,���(�5
�	����6�	5#����
��5#�����������-'

����
���������P���	��#4
������P���	������BJ(�%

����	��B:'

�������	�
	��#�����	�
	��#4#���#�������	�
	��,����>�������5
����
��5#������������-'

������	�����������	�
	��&������<�������	�
	��5
�������	�
	��?#������	����������#4

���#������	�����������	�
	��&������<�������	�
	��5
�������	�
	��?,�����	�
	��5#����	�
	��-'

Chapter 12: Peer Networking496

��������	������%

����#4#������6�	'

������#���#�������	�
	��,
�����5#������	����������-'
.

����	�#���	�#�	�
	��#������������	�
	��,-
*

�	���������&���
	���	�
	��&������#�	���&���
��#4
���#�	���������&���
	���	�
	��&������,-'

�	���&���
���������P���	��#4
������P���	������BJ(�%

����	��%�����J::1'

$Z	�������&���
	���	�
	��&������#����
��#4
���#$Z	�������&���
	���	�
	��&������,�	���&���
��-'

"��(��	�
	��&������#���(�#4#���#"��(��	�
	��&������,-'
������	��D������	�
	��&������#
�����#4

���#������	��D������	�
	��&������,-'
������������	�
	��&������#�����������#4

���#������������	�
	��&������,-'
����������������%

����	��#4#����'
������������!����8�	��&����
#4#����'
����������������
�&����
#4#����'
!������������	�
	��&������#������������#4

���#!������������	�
	��&������,-'
�����������������%

����	��#4#����'
!���!���>��������	�
	��&������#����>�������#4

���#!���!���>��������	�
	��&������,-'

�������	�
	��#����	�
	��#4#���#�������	�
	��,���(�5
����
��5#�����������-'

����
���������P���	��#4
������P���	������BJ(�%

����	��B:'

�������	�
	��#�����	�
	��#4#���#�������	�
	��,����>�������5
����
��5#������������-'

������	�����������	�
	��&������<�������	�
	��5
�������	�
	��?#������	����������#4
���#������	�����������	�
	��&������<�������	�
	��5
�������	�
	��?,����	�
	��5#�����	�
	��-'#'

������#���#�������	�
	��,
�����5#������	����������-'
.########

.
.

One final point is that this binding does not allow for automatic address-
ing to occur within WCF. There are two approaches to handling this. The
preferred approach is to use a custom binding element or possibly a mes-
sage inspector to handle the addressing. This would allow the addressing

Directional Messaging Using Custom Binding 497

to be wired up properly within the channel stack and is the recommended
approach. The simple and easy approach is to handle the addressing man-
ually within application code, which we will demonstrate next. Listing
12.14 shows the client code needed to handle addressing. The manual
addressing is handled by setting the "����	����������
����>������
location to the +�����8�����;���%

����. The local address is the
address that the client is listening on to receive callback messages.

Listing 12.14 Manual Addressing on the Client

����	�#��	
#����8,����8>�S����#��S����-
*

����8��	���#��	���#4#��	����������$������8��	���,-'

��	��#,"����	��������������#���#4
���#"����	��������������,��	����+����D������8����--

*
���	��#;���%

����#4

��	����+�����8�����;���%

����������	��,-'
"����	������������������"����	����������
����>������#4

��	����+�����8�����;���%

����'
���
*

��	��������8,��S����-'
.
���8#,������	��	��&�����	��#��-
*

D�����(�	��;	��,���������-'
.

.
.

Listing 12.15 shows the same type of technique used by the server
to take the +����	����������
����>������ address and set the
"����	����������
������ location. This is needed to send messages
back to the client using the callback contract.

Listing 12.15 Manual Addressing on the Server

�"����	����8�	��
����	�#��	
#����8,����8>�S����#����8-
*

"����	���������#���#4#"����	�����������������'
����"����	����������
������#4

Chapter 12: Peer Networking498

����+����	����������
����>�������6�	'
+����8������#��	���#4#����$���������8����<+����8������?,-'

;	��<����8+���?#�������#4#F����8!���	
���&������,����8�K����-'

	�#,,�������#U4#����-#cc#,�������������#?#:--
��	�������
>������,�������-'

.

There is a drawback to the composite approach in that the client must
instantiate a service to receive callback messages. The WCF channel infra-
structure will instantiate a listener to receive these requests. However, we
are leveraging a separate communication channel, which means that the
client must be directly reachable to receive callback messages. This limits
the use of clients that are behind network devices such as firewalls or NAT
routers. One way this limitation can be diminished is by leveraging IPv6
addressing and enabling Teredo capabilities of the TCP transport channel.
Teredo is a Network Address Translation (NAT) traversal technology for
IPv6 traffic that allows IPv6 traffic to be tunneled across one or more NAT
routers to access hosts on an IPv6 network. Listing 12.16 shows how to
enable Teredo using a custom binding specified in configuration.

Listing 12.16 Enabling Teredo Using Custom Binding

<A���#����	��47B�:7#����
	��47���C27#A?
<����	����	��?
<�����������	����
��?
<�	�
	���?
<�������	�
	��?
<�	�
	��#���47�������	�
	��(�8����
�7?
<�����������#����
�&����
47����7#9?

<9�	�
	��?
<9�������	�
	��?

<9�	�
	���?
<9�����������	����
��?

<9����	����	��?

Most home routers that can be purchased use NAT technology to let
multiple computers share an Internet connection. For the TCP transport
channel to use Teredo it must also be enabled at the computer level. Figure
12.15 shows how to enable Teredo using the ����8 command from the com-
mand line.

Directional Messaging Using Custom Binding 499

Figure 12.15 Enabling Teredo using NetSh

Teredo is a machinewide setting and therefore allows any IPv6 enabled
service running on the client computer to be exposed. This includes ser-
vices such as Remote Desktop and Internet Information Services (IIS).
Because of this, using Teredo may be undesirable for security reasons and
alternative methods may be needed. The final thing to mention about
Teredo is that it relies on a centrally available server known as a Teredo
server. This server can be hosted on the Internet or internally within a com-
pany. Microsoft provides a public server available at teredo.ipv6.
microsoft.com. For more information about Teredo, visit www.microsoft.
com/technet/network/ipv6/teredo.mspx and http://en.wikipedia.org/
wiki/Teredo_tunneling.

Another approach that can be used to address the issue of clients behind
firewalls and NAT routers is to use a relay service that allows for comput-
ers to exchange messages between one another using a central server
known as a relay server. The idea is that the relay server is available on the
Internet to both computers and can facilitate the exchange of messages.
This allows for developers to expose services to the Internet even if the
server is behind a NAT router or a firewall. This approach requires a sig-
nificant amount of effort and therefore requires much more detail than can
be provided in this book. However, Microsoft is working on a set of prod-
ucts and technologies that help enable this approach. BizTalk Services are
a new set of Internet services from Microsoft that provide identity and con-
nectivity services. One of the connectivity services is a publicly available

Chapter 12: Peer Networking500

www.microsoft.com/technet/network/ipv6/teredo.mspx
www.microsoft.com/technet/network/ipv6/teredo.mspx
http://en.wikipedia.org/wiki/Teredo_tunneling
http://en.wikipedia.org/wiki/Teredo_tunneling

relay service. At the time of this writing, BizTalk Services are still experi-
mental and will take some time to bring to market. They will eventually be
a part of an effort Microsoft is working on, code named Oslo. Oslo is a com-
bination of a number of Microsoft products to provide a better way of
building model-driven and service-enabled applications. For more infor-
mation about BizTalk Services and Oslo, visit http://labs.biztalk.net or
http://www.microsoft.com/soa/products/oslo.aspx.

SUMMARY

Peer-to-peer (P2P) applications are a very compelling way to build distrib-
uted applications. P2P applications assume no central infrastructure, which
means there is no distinction between client and server. If done properly,
P2P applications can offer distinct advantages in scalability and reliability.
Examples of peer applications include popular Internet applications such
as instant messaging, games, and file sharing use the P2P approach.

The major hurdle to developing P2P applications has been the complex-
ity and understanding needed to build them. WCF significantly reduces the
complexity by providing the infrastructure for creating peer applications.
The ���!�������	�
	�� binding provides this capability by allowing com-
munication across a mesh network. Windows Vista provides additional
capabilities for discovery and collaboration using technologies such as Peer
Name Resolution Protocol (PNRP), People Near Me, and Windows Con-
tacts and Invitations. Using WCF and Windows Vista together provides a
platform on which developers can build peer-to-peer applications.

Summary 501

http://www.microsoft.com/soa/products/oslo.aspx
http://labs.biztalk.net

This page intentionally left blank

13
Programmable Web

P R O G R A M M A B L E WE B R E F E R S to a set of enabling technologies
designed to help developers build the services for the Web. There are

many ways of building services for the Web. We have already mentioned
throughout the book how WCF can be used to build WS-* Web services,
which use SOAP, HTTP, and XML. Services based on WS-* are typically
built using a service-oriented architecture approach.

A service-oriented architecture approach follows four main tenants:

• Boundaries are explicit.

• Services are autonomous.

• Services share schema and contract, no class.

• Services compatibility is determined based on policy (see http://
msdn.microsoft.com/msdnmag/issues/04/01/Indigo/
default.aspx).

503

http://msdn.microsoft.com/msdnmag/issues/04/01/Indigo/default.aspx
http://msdn.microsoft.com/msdnmag/issues/04/01/Indigo/default.aspx
http://msdn.microsoft.com/msdnmag/issues/04/01/Indigo/default.aspx

Services can be built from other styles of architectures, such as Repre-
sentational State Transfer (REST). REST is an architectural style described
in a dissertation from Roy Fielding (see www.ics.uci.edu/~fielding/pubs/
dissertation/rest_arch_style.htm). REST follows a set of principles that are
based on constraints:

• A client/server approach is used to separate user interface from data
storage.

• Client/server interaction is stateless.

• Network efficiency is improved using caching.

• Components of the system interact using a uniform interface.

• The overall system can be composed using a layering approach.

The REST architectural style is often referred to as the architectural style
of the Web because the constraints can easily be seen in modern Web archi-
tectures. We mention service orientation and REST because these are two
common architectural styles for building services on the Web today. It is
important to understand that WCF does not dictate the architectural style
or manner in which to build services. Instead it exposes a set of features and
capabilities that allow you to build services using a variety of architectural
styles. The rest of this chapter will focus on the features that help devel-
opers build services for the Web. To help understand the motivation behind
these new features, we will examine how developers use the Web today.

All About the URI

Most everyone should be familiar with URIs because this is how people
browse the Web today. People access resources, such as HTML pages, via
URIs typed into the address bar of their browsers. Browsers can access a
variety of resources using URIs, including images, videos, data, applica-
tions, and more. Accessing of resources via a URI is also one of the princi-
ples behind the REST architectural style.

Table 13.1 shows several examples of resources on the Web that can be
accessed in this manner.

Chapter 13: Programmable Web504

www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Table 13.1 URI Examples

URI Description

http://finance.yahoo.com/d/ Microsoft (MSFT) stock quotes
quotes?s=MSFT&f=spt1d in comma-separated (CSV)

format from Yahoo!

http://finance.google.com/finance/ Microsoft (MSFT) stock quote
info?q=MSFT in custom JSON format from

Google

http://en.wikipedia.org/wiki/Apple A Wikipedia Web page about
“Apples”

www.weather.com/weather/local/02451 Weather information for
Waltham, MA from
Weather.com

www.msnbc.msn.com/id/20265063/ News article on MSN.com

http://pipes.yahoo.com/pipes/pipe.run?_ Wall Street corporate events
id=jlM12Ljj2xGAdeUR1vC6Jw&_ listing services (for example,
render=json&merger=eg stock splits, mergers, and so on)

in JSON format

http://rss.slashdot.org/Slashdot/slashdot Slashdot syndication feed in
RSS format

http://api.flickr.com/services/rest/ Flickr photo search in
?method=flickr.photos.search&api_key= custom XML format
20701ea0647b482bcb124b1c80db976f&text=
stocks

Each of the examples specifies a URI that takes a set of parameters that
identifies a resource to retrieve. Parameters are sent either as query strings
or embedded as a part of the path of the URI. This means that the URI is
used to identify, locate, and access resources. To better understand what we
mean, we look at the URL used to retrieve stock quotes from Google. It is
obvious from the following URL that the parameter S represents the stock
symbol and is passed into the service as a query string parameter.

8���/99�	���������������9�	����9	���AS4��)�

What is not represented is whether this URL is accessed using an HTTP
GET or some other HTTP action. For now, we will assume that GET is being

All About the URI 505

www.weather.com/weather/local/02451
http://finance.yahoo.com/d/quotes?s=MSFT&f=spt1d
http://finance.yahoo.com/d/quotes?s=MSFT&f=spt1d
http://finance.google.com/finance/info?q=MSFT
http://finance.google.com/finance/info?q=MSFT
http://en.wikipedia.org/wiki/Apple
www.msnbc.msn.com/id/20265063/
http://pipes.yahoo.com/pipes/pipe.run?_id=jlM12Ljj2xGAdeUR1vC6Jw&_render=json&merger=eg
http://pipes.yahoo.com/pipes/pipe.run?_id=jlM12Ljj2xGAdeUR1vC6Jw&_render=json&merger=eg
http://pipes.yahoo.com/pipes/pipe.run?_id=jlM12Ljj2xGAdeUR1vC6Jw&_render=json&merger=eg
http://rss.slashdot.org/Slashdot/slashdot
http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=20701ea0647b482bcb124b1c80db976f&text=stocks
http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=20701ea0647b482bcb124b1c80db976f&text=stocks
http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=20701ea0647b482bcb124b1c80db976f&text=stocks
http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=20701ea0647b482bcb124b1c80db976f&text=stocks

used. The URL can be rewritten with a parameter for the stock symbol in
place of the MSFT stock symbol. Using this simplification of the URL, we
can identify a number of resources.

8���/99�	���������������9�	����9	���AS4*�����������.

This example helps form the basis for how we can identify and access
resources on the Web.

The Ubiquitous GET
One thing in common with all the URIs in Table 13.1 is that they use the
HTTP protocol to access resources. The HTTP protocol is considered the
protocol of the Web. The original purpose of HTTP was to exchange HTML
pages, but it has since been used to access all types of resources, including
images, video, applications, and much more. The way in which it does this
is by specifying a resource identifier and an action to be performed on that
resource. URIs identify the resource. The action is defined by a set of HTTP
verbs that specify the action to be performed on the resource. Table 13.2
shows a list of common HTTP verbs used on the Web today. There are many
ways to interact with resources over the Web using the HTTP protocol, but
none is as ubiquitous as GET. GET is by far the most widely used verb.
POST comes in second, followed by other verbs such as PUT and DELETE.

Table 13.2 Common HTTP Verbs

Verb Description

GET Retrieve the resource identified by the URI.

POST Send a resource to the server based on the resource identified by
the URI.

PUT Store a resource based on the resource identified by the URI.

DELETE Delete a resource based on the resource identified by the URI.

HEAD Identical to GET except that the response is not returned. This is
used to retrieve metadata for the resource identified by the URI.

Chapter 13: Programmable Web506

HTTP verbs form the basis for how we can interact with resources on the
Web. GET is the most widely used HTTP verb because it is used to retrieve
resources. HTTP verbs help to provide a uniform interface for interacting
with resources, which is a constraint based on the REST architectural style.

Format Matters
The list of URIs in Table 13.1 demonstrates the vast number of formats
available on the Web today. The content returned from these URIs includes
HTML, XML, JSON, RSS, CSV, and custom formats. This means that devel-
opers have not found a single format that can represent all resources on the
Web. For a while, it seemed that all roads would lead to XML as the single
format. XML is a great mechanism for providing structure to data and for
sharing information. For example, SOAP is a protocol for exchanging XML-
based messages and is the foundation for traditional Web services. WCF
provides support for the SOAP protocol. SOAP does more than provide
structure to data, though. SOAP adds header information, which allows for
advanced capabilities such as transport independence, message-level secu-
rity, and transactions. Web developers are not necessarily concerned about
such capabilities and need a way to exchange information. In these situa-
tions, formats such as Plain-Old-XML (POX) and JavaScript Object Nota-
tion (JSON) are often used.

POX is usually about developers not needing the capabilities that WS-*
has to offer and not wanting the perceived overhead of SOAP. In these sit-
uations, using POX is a “good enough” format for their needs. JSON, on the
other hand, is an efficient format for returning data to browser clients that
leverage JavaScript. JSON as a format is more efficient than SOAP and can
offer significant performance and scalability benefits when you are trying
to reduce the number of bytes on the wires. What this comes down to is that
format matters, and developers need to be able to work with a number of
formats when using the Web.

Web Programming with WCF
Table 13.3 highlights some of the major features available to developers
when they use WCF and .NET Framework 3.5. The remainder of this chap-
ter focuses on the features within WCF that help enable the “programmable
Web.”

All About the URI 507

Table 13.3 Web Programming Features in .NET Framework 3.5

Verb Description

Uri and UriTemplates Enhanced support for working with URIs to
support REST architectural patterns.

��������	�
	��#Binding A new binding that builds in support for POX
and JSON, formal support for HTTP verbs
including GET, and URI-based dispatching.

ASP.NET AJAX Integration Integration with ASP.NET AJAX to support
client-side service proxies.

Content Syndication Classes for publishing and consuming RSS and
ATOM syndication feeds.

URI and UriTemplates

Microsoft has provided support for URIs since .NET Framework v1.0. The
�������6�	 class allows developers to define and parse basic information
within a URI. This class allows developers to access information such as the
scheme, path, and hostname. This is great for passing a URI to Web clients
such as the �������(�
����)�����(��������� control or the �������=���
(����	��� class. A companion to the �������6�	 class is the �������
6�	��	�
�� class. This class provides a way to modify the �������6�	#class
without creating another �������6�	 instance. These classes are the foun-
dation for working with URIs based on the HTTP protocol. Additional
capabilities are needed to support the REST architectural style used by
developers today.

Table 13.1 showed that developers embed parameters in URIs as either
query string parameters or as parts of the path. The �������6�	 or �������
6�	��	�
�� classes do not allow building and parsing of URIs based on this
approach. Another approach that has been used is to build and parse URIs
based on patterns that specify named tokens. The tokens represent the
parameters that are needed to build URIs using logical substitution. They
also define how parameters can be parsed from URIs. .NET Framework 3.5

Chapter 13: Programmable Web508

introduces a new class called the �������6�	������� that provides a con-
sistent way for building and parsing URIs based on patterns. This class
defines a pattern based on named tokens. Tokens are represented in curly
braces within a pattern. For example, the pattern 9�	����9	���AS4*������.
specifies a stock symbol that is sent as a query string parameter. Named
tokens can also be embedded as a part of the URI path and are not limited to
query string parameters. For example, the following pattern, 9������9
*���
., specifies a parameter within the URI path. �������6�	 instances can
be built or parsed based on these patterns. We will now examine how we can
use the �������6�	������� class do this.

Building A<%�
Listing 13.1 shows two examples of how we can build �������6�	 instances
based on �������6�	������� classes. The first example uses the
�	�
��!��	�	�� method to create a �������6�	 instance to retrieve Yahoo!
stock quotes. The second example uses the �	�
��=�� method to pass a
collection of name/value pairs to create a �������6�	 instance to retrieve
Google stock quotes.

Listing 13.1 Binding Parameters with A��-�����
�

��	��#������'
��	��#��������������	��������	�	G�
'

�������#&�����	�(�)
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

���	��#������#4#7��)�7'

99#�	�
��!��	�	��
6�	#\8����������6�	#4

���#6�	,78���/99�	������8������7-'
6�	�������#\8�������6�	�������#4

���#6�	�������,79
9S�����A�4*������.c�4��B�B
B7-'
6�	#\8�������6�	#4

\8�������6�	���������	�
��!��	�	��,
\8����������6�	5
������-'

��������(�	��;	��,\8�������6�	������	��,--'

URI and UriTemplates 509

Listing 13.1 continued

99#�	�
��=��
6�	#$�������������6�	#4

���#6�	,78���/99�	���������������7-'
6�	�������#$����������6�	�������#4

���#6�	�������,79�	����9	���AS4*������.7-'
=��P����������	��#$�����!���#4

���#=��P����������	��,-'
$�����!����%

,7������75#������-'
6�	#$����������6�	#4

$����������6�	���������	�
��=��,
$�������������6�	5
$�����!���-'

��������(�	��;	��,$����������6�	������	��,--'

��������>�
;	��,-'
.

.
.

Parsing URIs
We just saw how easy it was to create �������6�	 instances based on pat-
terns. Listing 13.2 shows how we can take existing URIs and parse out
parameters. Again we have two examples. The first example shows how we
can parse out parameters based on query string parameters. The second
example shows how we can parse out parameters based on a path. In both
cases, we are able to extract a set of name/value pairs based on a pattern.
We will see in the “Creating Operations for the Web” section how the
6�	������� can be used to dispatch Web service methods based on URIs.

Listing 13.2 Matching Parameters with A��-�����
�

��	��#������'

�������#6�	�������B:J
*

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

6�	#\8�����6�	#4#���#6�	,78���/99�	������8������7-'
6�	�������#\8��������������#4

���#6�	�������,79
9S�����A�4*������.7-'

Chapter 13: Programmable Web510

6�	#\8�������6�	#4
���#6�	,78���/99�	������8������9
9S�����A�4��)�c�4���B
7-'

6�	����������8#���8#4
\8������������������8,\8�����6�	5#\8�������6�	-'

�����8#,���	��#���#	�#���8�����
P�	�����Q���-
��������(�	��;	��,���	���)����,7*:./#*B.75#���5
���8�����
P�	�������� --'

��������(�	��;	��,-'

6�	#>��������D��������6�	#4
���#6�	,78���/99
	��	������������������7-'

6�	�������#>��������D������������#4
���#6�	�������,79������9*���
.7-'

6�	#>��������D�����6�	#4
���#6�	,78���/99
	��	������������������9������9��S��7-'

���8#4
>��������D����������������8,>��������D��������6�	
>��������D�����6�	-'

�����8#,���	��#���#	�#���8�����
P�	�����Q���-
��������(�	��;	��,���	���)����,7*:./#*B.75#���5
���8�����
P�	�������� --'

��������>�
;	��,-'
.

.
.

Creating Operations for the Web

Creating operations for the Web means that we will want to expose services
based on URIs, encode messages without the overhead of SOAP, pass
parameters using the HTTP protocol, and format data using JSON or
POX. WCF provides the (�������	�
	�� binding that supports these capa-
bilities. The (�������	�
	�� binding is constructed using two binding
elements. The first binding element is a new message encoder called
(��������&���
	���	�
	��&������. This is a new binding element that
allows for the encoding of messages using either JSON or POX. The second
binding element is a transport binding element based on either the
�������������	�
	��&������ or ��������������	�
	��&������. These

Creating Operations for the Web 511

binding elements enable communication using the HTTP protocol. The
��������������	�
	��&������ binding element is used to support
transport-level security.

Hosting Using 9��

��������
To examine how to use the (�������	�
	�� binding, we will create a sim-
ple Echo Web service. We are going to keep this example simple because we
will expand on how to use this binding later on in this chapter. Listing 13.3
shows the +&�8�����	�� interface. This interface defines a service contract
that has a single operation contract called &�8�. Notice that the &�8� oper-
ation contract is also attributed with the (��$�� attribute. This attribute tells
the ��������	�
	�� binding to expose this operation over the HTTP pro-
tocol using the GET verb.

Listing 13.3 %"���������� Interface

��	��#������'
��	��#�����������	����
��'
��	��#�����������	����
���(��'

�����	���������
����	�#	�������#+&�8�����	��
*

�"����	���������
�(��$��
���	��#&�8�,���	��#��8��8	�-'

.

Listing 13.4 shows the &�8�����	�� class that implements the
+&�8�����	�� interface. This class implements the &�8� operation by taking
the ��8��8	� parameter and returning it to the client.

Listing 13.4 "���������� Class

��	��#������'
��	��#�����������	����
��'

����	�#����#&�8�����	��#/#+&�8�����	��
*

N���	��#+&�8�����	��#�������

����	�#���	��#&�8�,���	��#��8��8	�-
*

Chapter 13: Programmable Web512

������#���	���)����,7\��#����#�8	�#b*:.b�75#��8��8	�-'
.

N��
���	��
.

The last thing needed is to host the &�8�����	�� service within IIS. List-
ing 13.5 shows the configuration file that allows us to host this service using
the (�������	�
	�� binding. The ��������	�
	�� configuration element
exposes services using the (�������	�
	�� binding. One important point is
that the (�������	�
	�� binding does not specify the format to expose
services. Instead we need to use an endpoint behavior to specify the for-
mat returned from services exposed with the (�������	�
	�� binding.
Two endpoint behaviors can be used: (��������8�	�� and
(�����	��&���	����8�	��. The (�����	��&���	����8�	�� behavior
will be discussed in the section “Programming the Web with AJAX and
JSON” later in this chapter. For now we will discuss the (��������8�	��
behavior. The (��������8�	�� endpoint behavior is used with the
(�������	�
	�� to format messages using either JSON or XML. The default
for this behavior is to use XML.

Listing 13.5 "���������� Configuration

<�����������	����
��?
<����	���?
<����	��#���47&�8�����	��7?
<��
��	��#

����477

��8�	������	����	��47(����8�	��7
�	�
	��47��������	�
	��7#�������47+&�8�����	��79?

<9����	��?
<9����	���?
<��8�	���?
<��
��	����8�	���?
<��8�	��#���47(����8�	��7?
<�������#9?

<9��8�	��?
<9��
��	����8�	���?

<9��8�	���?
<9�����������	����
��?

Figure 13.1 shows the output from the &�8�����	�� service when
exposed over the (�������	�
	�� binding. Because we exposed the service
using the (��$�� attribute, we can call the service by typing the URI in a

Creating Operations for the Web 513

browser. The URI that was used is http://localhost/SimpleWebService/
EchoService.svc/Echo?echoThis=helloworld.

Chapter 13: Programmable Web514

Figure 13.1 Response in browser using 9��

�������� binding

Using 9��!�
 and 9��%���0�

Services can be exposed using the (�������	�
	�� binding using either the
(��$�� or (��+����� attributes. Each of these attributes specifies the HTTP
verb, message format, and body style needed to expose an operation. We
will examine each of these attributes and reasons to use each.

9��!�

The (��$�� attribute exposes operations using the GET verb. The GET has
significant advantages over other HTTP verbs. First, the endpoint is
directly accessible via a Web browser by typing the URI to the service into
the address bar. Parameters can be sent within the URI either as query
string parameters or embedded in the URI. Second, clients and other down-
stream systems such as proxy servers can easily cache resources based on
the cache policy for the service. Because of the caching capability, the
(��$�� attribute should be used only for retrieval.

9��%���0�
The (��+����� attribute exposes services using other HTTP verbs such as
POST, PUT, and DELETE. The default is to use POST, but it can be changed
by setting the ���8�
 property of the attribute. These operations are meant
to modify resources; therefore, the (��+����� attribute is used to make
modifications to resources.

Listing 13.6 shows a service that defines services that are exposed in the
(��$�� and (��+����� attributes. The (��$��#attribute is used to retrieve
customer information. The (��+����� attribute is used for those opera-
tions that modify data such as adding or deleting customers. Last, the
6�	������� property is specified on (��$�� and (��+����� attribute to
identify a customer resource using the URI.

Listing 13.6 (��
�����������

��	��#������'
��	��#�����������	����
��'
��	��#�����������	����
���(��'

�������#&�����	�(�)
*

�����	���������
����	�#����#������������	��
*

�"����	���������
�(��$��,6�	�������479��������9*	
.7-
����	�#��������#$����������,	��#	
-
*

��������#��������#4#����'

99#$��#��������#����#
����

������#��������'
.

�"����	���������
�(��+�����,���8�
#4#7!6�75#6�	�������#4#79��������9*	
.7-
����	�#��	
#!����������,	��#	
5#��������#��������-
*

99#!��#��������#	�#
����
.

�"����	���������
�(��+�����,���8�
#4#7D&;&�&75#6�	�������#4#79��������9*	
.7-
����	�#��	
#D�������������,	��#	
-
*

99#!��#��������#	�#
����
.

.
.

Using 9��!�
 and 9��%���0� 515

Programming the Web with AJAX and JSON

So far we have seen how to host services using the (�������	�
	�� binding
and the (��������8�	�� endpoint behavior. This allows us to expose ser-
vices using POX. Many Web developers want to forgo the use of XML and
instead use JSON, a simpler format. JSON is well suited for browser appli-
cations that need an efficient means of parsing responses from services, and
it has the added benefit of integration with JavaScript, the programming
language most often used for client-side Web development. JSON is a sub-
set of JavaScript’s object literal notation, which means you can easily cre-
ate objects in JavaScript. Because of this, it’s a perfect alternative to using
XML for use with AJAX applications.

AJAX stands for Asynchronous JavaScript and XML. AJAX-based Web
applications have significant benefits over traditional Web applications.
They allow for improved user experience and better bandwidth usage. This
is done by improving browser-to-server communication so that the
browser does not need to perform a page load. This in turn is done by com-
municating with a server asynchronously using the JavaScript and the
O�;����>�S���� class. Because communication with the server can be done
without the need for a page load, developers can create richer user interface
experiences approaching that of desktop applications. These types of Web
applications are often referred to as Rich Internet Applications, or RIAs.

ASP.NET AJAX Integration
Many frameworks exist for building these AJAX-based Web applications.
One of the more popular frameworks is the ASP.NET AJAX framework.
This framework has a great client-side and server-side model for building
AJAX-enabled Web applications. It includes many capabilities such as a
rich client-side class library, rich AJAX-enabled Web controls, and auto-
matic client-side proxy generation for communication with services. It is
also based on ASP.NET, which is Microsoft’s technology for building Web
applications using .NET. WCF already integrates with ASP.NET in .NET
Framework 3.0. .NET Framework 3.5 introduces new support for ASP.NET
AJAX applications using the (�����	��&���	����8�	�� endpoint behav-
ior. This replaces the (��������8�	�� endpoint behavior. It adds support
for using JSON by default and ASP.NET client-side proxy generation. These

Chapter 13: Programmable Web516

new capabilities can be used by replacing the ������� endpoint behavior
configuration element with the �����(�����	�� configuration element.

We created a sample ASP.NET AJAX application called the XBOX 360
Game Review to see how we can use the (�������	�
	�� binding and the
(�����	��&���	����8�	�� to build AJAX-based applications. This sim-
ple Web application enables users to provide reviews about their favorite
XBOX 360 game. The application was built using an ASP.NET AJAX Web
site project template in Visual Studio 2008. Figure 13.2 shows a picture of
this Web site.

Programming the Web with AJA X and JSON 517

Figure 13.2 XBOX 360 Game Review AJAX-enabled application

This site has a number of features. First is a list of games that is dis-
played in a ;	����� control to the user. Users can select a game and see a list
of comments for each game. Then a user can add comments for the each
game. Listing 13.7 lists the service that provides this functionality.

Listing 13.7 !���<��������������

��	��#������'
��	��#��������������	���'
��	��#��������������	����$����	�'
��	��#�������>���	������	�	G�	��'
��	��#�����������	����
��'

Listing 13.7 continued

��	��#�����������	����
���%��	��	��'
��	��#�����������	����
���(��'

�������#&�����	�(�)
*

�����	���������,=������47&�����	�(�)7-
�����	����8�	��,+���������������
�#4#+���������������
���	����-
�%��=�������	�	�	��>�S�	�������,>�S�	���������
�#4

%��=�������	�	�	��>�S�	���������
��%�����
-
����	�#����#$��>��	������	��
*

��	���#���	��� #����	��#4#���#���	��� #*#7P	�#!	��75
7���#(��#;���75#7��	
����#6��	���75
7$���#��#(�75#7���#J75#7���#I7#.'

��	���#D	��	����<���	��5#;	��<���	��??#���	���'

����	�#$��>��	������	��,-
*

���	���#4#���#D	��	����<���	��5#;	��<���	��??,-'
�����8#,���	��#���#	�#����	��-

���	����%

,���5#���#;	��<���	��?,--'
.

�"����	���������
�(��$��
����	�#���	��� #$���,-
*

������#����	��'
.

�"����	���������
�(��$��
����	�#���	��� #>��	���,���	��#���-
*

(��"����	���������#���#4#(��"����	�����������������'
����"����	��>����������
����%

,7��8�C�������75
7��C��8�7-'

	�#,U���	��������	��Q��,���--
������#����'

;	��<���	��?#�	��"�>��	���#4#���	������� '

	�#,�	��"�>��	���������#44#:-
������#���#���	��� #*

���	���)����,7=�#���	���#����
#���#*:.�75���-#.'
����

������#�	��"�>��	������%���,-'

Chapter 13: Programmable Web518

.

�"����	���������
�(��+�����
����	�#��	
#%

>��	��,���	��#���5#���	��#�������-
*

���	������� �%

,�������-'
.

�"����	���������
�(��+�����
����	�#��	
#����>��	���,���	��#���-
*

���	������� �����,-'
.

.
.

We chose to host this service within Internet Information Server (IIS).
Listing 13.8 shows the $��>��	������	������ used to host the service.

Listing 13.8 !���<���������������

<LM#����	������#;�����47�N7#D����47����7
➥����	��47&�����	�(�)�$��>��	������	��7
➥��
���8	�
47d9%��F��
�9$��>��	������	�����7#L?

Listing 13.9 shows the configuration information used to host the
$��>��	������	��. The most important aspect of this configuration infor-
mation is the use of the ��������	�
	�� binding and the �����(�����	��
endpoint behavior. This enables the use of JSON and generates the neces-
sary client-side proxy code for the $��>��	������	�� with ASP.NET.

Listing 13.9 ������$��

<�����������	����
��?
<����	������	��&��	�������

��=�������	�	�	��&����
47����79?
<����	���?

<����	��#���47&�����	�(�)�$��>��	������	��7
��8�	������	����	��47���
���8�	��7?

<��
��	��#

����477
��8�	������	����	��47%X���8�	��7
�	�
	��47��������	�
	��7
�������47&�����	�(�)�$��>��	������	��79?

<��
��	��#

����47���7
�	�
	��47��������	�
	��7

Programming the Web with AJA X and JSON 519

Listing 13.9 continued

�������47+���
�&��8���79?
<9����	��?

<9����	���?
<��8�	���?

<��
��	����8�	���?
<��8�	��#���47%X���8�	��7?

<�����(�����	��9?
<9��8�	��?

<9��
��	����8�	���?
<����	����8�	���?

<��8�	��#���47���
���8�	��7?
<����	�����
�#8���$��&����
47����7

8���$��6��4779?
<9��8�	��?

<9����	����8�	���?
<9��8�	���?

<9�����������	����
��?

You configure the $��>��	������	�� to be used with ASP.NET by
adding a reference to the service using the ASP.NET ���	�������. Listing
13.10 shows the markup used to reference the $��>��	������	��. Behind
the scenes this is generating client-side script that references a JavaScript
file with the client-side proxy. For our example, the URI to the client-side
JavaScript is http://localhost/GameReviewService/GameReviewService.
svc/js.

Listing 13.10 Referencing Services Using ASP.NET �����
�������

<��/���	�������#+D47���	�������B7#����47������7?
<����	���?

<��/����	��>��������#!�847$��>��	������	������7#9?
<9����	���?

<9��/���	�������?

We have included the ASP.NET Web form used to build the XBOX 360
Game Review Web application. This shows how the services are called
from client-side script and how the results are used to dynamically popu-
late controls.

Chapter 13: Programmable Web520

Listing 13.11 Making Client-Side Proxy Calls

<LM#!��#;�����47�N7#%���&����(����47����7
➥��
�)	��47D������������7#+�8��	��47FD�����7#L?

<LM#>��	����#%�������47%X�������������	�7
➥=������47%X�������������	�7#��!���	�47��B7#L?
<UD"��\!���#!6�;+�#7C99(I�99D�D#O���;#B�:#����	�	���99&=7
78���/99�����I����9�>9�8���B9D�D9�8���BC����	�	����
�
7?
<8���#�����478���/99�����I����9B0009�8���7?
<8�
#	
47��
B7#����47������7?

<�	���?O�"O#IH:#$��#>��	���<9�	���?

<���	��#����47����9X����	��7?

�����	��#���;�
,-#*
.

<9���	��?

<98�
?
<��
�?

<����#	
47����B7#����47������7?
<
	�?

<��/���	�������#+D47���	�������B7#����47������7?
<����	���?

<��/����	��>��������#!�847$��>��	������	������7#9?
<9����	���?

<9��/���	�������?

<���	��#����47����9X����	��7?
&�����	�(�)�$��>��	������	������F
�����)	��
������,"�&����-'
�����	��#;	��$���,-
*
&�����	�(�)�$��>��	������	���$���,"�;	��$�����������-'

.
�����	��#;	��>��	���,-
*

��#���;	�����#4#
�����������&��������+
,7$��;	�����7-'
&�����	�(�)�$��>��	������	���>��	���,���;	����������5

"�;	��>��	�����������-'
.
�����	��#%

>��	��,-
*

��#���;	�����#4#
�����������&��������+
,7$��;	�����7-'
��#���	���������#4

�����������&��������+
,7>��	���������7-'
&�����	�(�)�$��>��	������	���%

>��	��,���;	����������5

���	��������������5#"�6�
��>��	���-'
.

Programming the Web with AJA X and JSON 521

Listing 13.11 continued

�����	��#����>��	���,-
*

��#���;	�����#4#
�����������&��������+
,7$��;	�����7-'
&�����	�(�)�$��>��	������	�������>��	���,���;	����������5

"�6�
��>��	���-'
.
�����	��#"�;	��$�����������,������-
*
��#���;	�����#4#
�����������&��������+
,7$��;	�����7-'
����%�
���;	�����+����,���;	�����5#������-'##########

.
�����	��#"�;	��>��	�����������,������-
*
��#���	��;	�����#4#
�����������&��������+
,7>��	��;	�����7-'
����%�
���;	�����+����,���	��;	�����5#������-'

.
�����	��#"�6�
��>��	���,������-
*
;	��>��	���,-'

.
�����	��#����%�
���;	�����+����,�	�����5#����-
*

���#,��#	#4#�	���������	���������8CB'#	#?CB'#	CC-
*

�	���������	����	 #4#����'
.

��#����P���'#
��#���	��+���'
���#,��#X#4#:'#X#<#����������8'#XTT-
*

����P���#4#�����X '
���	��+���#4#���#"��	��,#����P���5#����P���5
����5#����-'
�	���������	�����	�����������8 #4#���	��+���'

.
.
�����	��#"�&����,������-
*
����,7&����/#7#T#����������F������,--'

.
�����	��#"�;�
,-
*#
;	��$���,-'

��#���;	�����#4#
�����������&��������+
,7$��;	�����7-'
	�#,���;	���������8&����-#*

Chapter 13: Programmable Web522

���;	���������8&����,7���8���75#;	��>��	���-'
.
����#*
���;	������

&����;	������,7�8���75#;	��>��	���5#����-'

.
.
����%���	��	���

F��
,"�;�
-'
<9���	��?

<8B?O�"O#IH:#$��#>��	��<98B?
<����?
<��#�����478�	�8�/J3:��'����	��C�	��/���'7?<�

�����47�	
�8/J1:��7?������##���/<��#9?<��/;	�����
+D47$��;	�����7#����47������7
(
�847B::L7?<9��/;	�����?<9�
?
<�
#�����47�	
�8/1::��7?��������/<��#9?<��/;	�����
+D47>��	��;	�����7#����47������7#(
�847B::L7
��	�8�47B::L7?<9��/;	�����?<9�
?<9��?

<��#�����47����	��C�	��/���'7?<�
#������47J7?
&����##�������/<��#9?
<��/�������#+D47>��	���������7#����47������7
�	
�8471::��7?<9��/�������?
<	����#	
47%

>��	��������7#����47������7#����47%

7

����	��47%

>��	��,-'7#9?
<	����#	
47����>��	��������7#����47������7#����47����7

����	��47����>��	���,-'7#9?
<9�
?<9��?
<9����?

<9
	�?
<9����?

<9��
�?
<98���?

Using the 9��2����
���(��
�&

One common thing to do when hosting services using the (�������	�
	��
binding is to read or write to the HTTP context. This can be done using the
(��"����	��������� class. There are a variety of reasons to access the
HTTP context. You might want to read custom authentication or authori-
zation headers, control caching, or set the content type, for example.

Figure 13.3 shows a Web application that displays wallpaper images on
the current machine. The entire application is built using a WCF service and
is accessible using any Web browser.

Using the 9��2����
���(��
�&
 523

Figure 13.3 Wallpaper Web application

Listing 13.12 shows code for the (����������	�� service. There is an
+���� operation that displays an HTML page of all images. This operation
sets the ����������� header so that the browser interprets the output as
HTML. It also sets the ��8�C������� header so that additional images can
be added to the application without the browser caching the display.
Finally, there is an +��� operation that returns an image to the browser.
This operation sets both the ����������� and &�� header.

Chapter 13: Programmable Web524

NOTE Taking the .svc Out of REST

WCF Services hosted in IIS use the ���� extension. This does not fol-
low common REST URI naming practices. For example, the service in
Listing 13.12 is accessed using the following URI:

http://localhost/Wallpaper/WallpaperService.svc/images

You can remove the ���� extension by using an ASP.NET ������
���
(with IIS 7.0 only) to call ������������>���	��!�8 to modify the URI.
This would allow the URI to take the following form:

http://localhost/Wallpaper/WallpaperService/images

Listing 13.12 Wallpaper Image Service

��	��#������'
��	��#��������������	���'
��	��#��������������	����$����	�'
��	��#�������+"'
��	��#�������>���	������	�	G�	��'
��	��#�����������'
��	��#�������(���6+'
��	��#�������(���6+�(����������'
��	��#�����������	����
��'
��	��#�����������	����
���%��	��	��'
��	��#�����������	����
���(��'

�������#&�����	�(�)
*

�D��������
����	�#����#+���
*

���	��#���'
���	��#��	'

����	�#+���,-
*
.

����	�#+���,���	��#���5#���	��#��	-
*

�8	�����#4#���'
�8	����	#4#��	'

.

����	�#+���,���	��#���5#6�	#��	-
*

�8	�����#4#���'
�8	����	#4#��	������	��,-'

.

�D�������
����	�#���	��#=��
*

���#*#������#�8	�����'#.
���#*#�8	��=��#4#����'#.

.

�D�������
����	�#���	��#6�	
*

���#*#������#�8	����	'#.
���#*#�8	����	#4#����'#.

Using the 9��2����
���(��
�&
 525

Listing 13.12 continued

.
.

�����	���������
�%��=�������	�	�	��>�S�	�������,>�S�	���������
�#4

%��=�������	�	�	��>�S�	���������
��>�S�	��
-
����	�#����#(����������	��
*

��	���#���	�#6�	�������#+���6�	�������#4
���#6�	�������,79	���9*���.7-'

��	���#���	��#+���!�8
*

���
*

������#M7�/@(�
���@(��@(������7'
.

.

��	���#+���#$��+���,���	��#���5#6�	#���6�	-
*

������#���#+���,���5
+���6�	���������	�
��!��	�	��,���6�	5
���#���	��� #*#���#.--'

.

��	���#��	
#!������;	��"�+����,;	��<+���?#�	��5
6�	#���6�	-

*
�������(��������������#���#4

�������(����������������������'
D	�������+���#
#4#���#D	�������+���,+���!�8-'
)	��+���� #�	���#4#
�$��)	���,7W�X��7-'

�����8#,)	��+���#�#	�#�	���-
*

���	��#�	��=��#4#��=������	�,���#�8�� #*#b�b#.-�: '
���	��#���#4#�	��=��#T#7F7#T

��;��(�	���	��������	��,-'
�	���%

,$��+���,�	��=��5#���6�	--'

.
.

�"����	���������
�(��$��,6�	�������479	����7-
����	�#��	
#+����,-
*

(��"����	���������#����#4#(��"����	�����������������'

Chapter 13: Programmable Web526

�����"����	��>�������������������#4#7����98���7'
�����"����	��>����������
����%

,7��8�C�������75

7��C��8�7-'

6�	#���6�	#4
�����+����	��>�S�����6�	����������8����6�	'

;	��<+���?#�	��"�+����#4#���#;	��<+���?,-'
!������;	��"�+����,�	��"�+����5#���6�	-'

����(�	���#��#4#���#���	��(�	���,-'
����IJ����(�	���#8���(�	���#4#���#����IJ����(�	���,��-'

8���(�	����(�	��)������	���,7���;7-'
8���(�	����(�	��)������	���,7�"D\7-'
8���(�	����(�	��)������	���,7�B7-'
8���(�	����(�	��,7(������7-'
8���(�	����(�	��&�
��,7�B7-'
8���(�	����(�	��)������	���,7�%�;&7-'
8���(�	����(�	��)������	���,7�>7-'

	��#	#4#:'

+���#	���'
�8	��#,	#<#�	��"�+����������-
*

	���#4#�	��"�+�����	 '

8���(�	����(�	��)������	���,7�D7-'
8���(�	����(�	��,	����=��-'
8���(�	����(�	������,-'
8���(�	����(�	�����	���,7+�$7-'
8���(�	����(�	��%���	����,7�>�75#	����6�	-'
8���(�	����(�	��%���	����,7��\;&75

7�	
�8/B3:��'8�	�8�/B3:��7-'
8���(�	����(�	��&�
��,7+�$7-'
8���(�	����(�	��&�
��,7�D7-'

	�#,,,	TB-#L#3-#44#:-
*

8���(�	����(�	��&�
��,7�>7-'
8���(�	����(�	��)������	���,7�>7-'

.
	TT'

.
8���(�	����(�	��&�
��,7�>7-'
8���(�	����(�	��&�
��,7�%�;&7-'
8���(�	����(�	��&�
��,7�"D\7-'
8���(�	����(�	��&�
��,7���;7-'

�������(��������������#���#4

Using the 9��2����
���(��
�&
 527

Listing 13.12 continued

�������(����������������������'
����>��������(�	��,��������	��,--'

.

�"����	���������
�(��$��,6�	�������#4#79	���9*���.7-
����	�#��	
#$��+���,���	��#���-
*

(��"����	���������#����#4#(��"����	�����������������'
�����"����	��>�������������������#4#7	���9X���7'

�������(��������������#���#4
�������(����������������������'

���	��#�	��=��#4#����'
����� #�	�������#4#����'
���
*

�	��=��#4#���	���)����,M7*:.@*B.�X��75
+���!�85
���-'

	�#,)	���&�	���,�	��=��--
*

��	��#,)	�������#�#4#)	���"���>�
,�	��=��--
*

�	�������#4#���#�������;����8 '
��>�
,�	�������5#:5

����������+��IJ,��;����8--'
.

.
����

�����"����	��>���������������
�#4#
�������=��������������
��=��)���
'

.
���8
*

�����"����	��>���������������
�#4
�������=��������������
��=��)���
'

.

)	��+���#�	#4#���#)	��+���,�	��=��-'
�����"����	��>��������&��#4#�	��=��#T#7F7#T

�	�;��(�	���	��������	��,-'
����>��������"�����������(�	��,�	�������5#:5

�	��������;����8-'
.

.
.

Chapter 13: Programmable Web528

The following configuration in Listing 13.13 is used to host the
(����������	�� service. The service is hosted using the (�������	�
	��
binding and the (��������8�	�� endpoint behavior.

Listing 13.13 Wallpaper Image Service Configuration

<�����������	����
��?
<����	������	��&��	�������#��=�������	�	�	��&����
47����79?
<����	���?
<����	��#���47&�����	�(�)�(����������	��7

��8�	������	����	��47���
���8�	��7?
<��
��	��#

����477#��8�	������	����	��47(����8�	��7

�	�
	��47��������	�
	��7
�������47&�����	�(�)�(����������	��79?

<��
��	��#

����47���7
�	�
	��47��������	�
	��7
�������47+���
�&��8���79?

<9����	��?
<9����	���?
<��8�	���?
<��
��	����8�	���?
<��8�	��#���47(����8�	��7?
<�������#9?

<9��8�	��?
<9��
��	����8�	���?
<����	����8�	���?
<��8�	��#���47���
���8�	��7?
<����	�����
�#8���$��&����
47����7#8���$��6��477#9?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<9�����������	����
��?

Listing 13.14 shows the .��� file used to host the (����������	��
in IIS.

Listing 13.14 9������������������

<LM#����	������#;�����47�N7#D����47����7
����	��47&�����	�(�)�(����������	��7#
➥��
���8	�
47d9%��F��
�9(����������	�����7#L?

Using the 9��2����
���(��
�&
 529

Hosting for the Web

Arguably one of the best improvements in WCF is the feature for hosting
services on the Web. Prior to .NET Framework 3.5, you had to provide
configuration or write code to host services. This was true even if you
hosted your services within IIS. This became tedious for those hosting ser-
vices on the Web. There are many capabilities offered by WCF to host
services, but only a limited configuration was used by Web developers
building services. For example, you would not expect an AJAX-based
application to support multiple bindings, use message-level security, or
require transactions. To simplify hosting of services, WCF introduced a fea-
ture called Configuration Free Hosting. This allows developers to host
services without providing configuration or writing any code. The infra-
structure for this feature was always a part of the hosting model within
WCF. We will examine two ways to use this feature.

9�������
������� ��

There is a new class available in the �����������	����
���(�� name-
space called the (�����	������	������ class. This class allows for self-
hosting of services using the (�������	�
	�� binding and the
(�����	��&���	����8�	�� endpoint behavior. The advantage to using
this class over the ����	������ class is that you do not have to provide any
binding or behaviors to host a service.

9�������
������� ��
5��
��	
Another class in the �����������	����
���%��	��	�� namespace, called
the (�����	������	������)����� class, is meant to be used with IIS
hosting and ���� files. It allows for hosting of services in IIS using the
(�������	�
	�� binding and the (�����	��&���	����8�	�� endpoint
behavior without the need for configuration. Listing 13.15 shows an exam-
ple of an ���� file that uses the (�����	������	������)����� class. This is
the same ���� file used to host the (����������	�� service shown in List-
ing 13.12. The advantage of this approach is that the configuration infor-
mation shown in Listing 13.13 is no longer required to host the service.

Chapter 13: Programmable Web530

Listing 13.15 9�������������������(Configuration Free)

<LM#����	������#)�����4
➥7�����������	����
���%��	��	���(�����	������	������)�����7
➥;�����47�N7#D����47����7#����	��47&�����	�(�)�(����������	��7
��
���8	�
47d9%��F��
�9(����������	�����7#L?

Content Syndication with RSS and ATOM

RSS and ATOM are content syndication formats for the Web. These formats
are used for all types of content syndication, such as news, video, and
blogs. By far the widest use for these formats is for blogging. Since its initial
popularity, RSS and ATOM have been used by every major Web site. WCF
provides several mechanisms for working with RSS and ATOM syndication
feeds. A new namespace, called �����������	����
������
	��	��, con-
tains classes for creating, consuming, and formatting syndication feeds
based on RSS and ATOM. The core class for creating and consuming con-
tent syndication feeds is the ���
	��	��)��
 class. Listing 13.16 shows an
example application using this class to expose an RSS and ATOM. This
application enumerates over a music collection and exposes the informa-
tion using a syndication feed.

Listing 13.16 Zune Music Syndication

��	��#������'
��	��#�������+"'
��	��#��������������	����$����	�'
��	��#�����������	����
��'
��	��#�����������	����
������
	��	��'
��	��#�����������	����
���(��'

Content Syndication with RSS and ATOM 531

NOTE Configuration-Free Hosting for WebHttp

Two additional classes, called (������	������ and
(������	������)�����, host services using the (�������	�
	��
binding and the (��������8�	�� endpoint behavior. They
offer the same configuration-free hosting capabilities as the
(�����	������	������ and (�����	������	������)����� classes.

Listing 13.16 continued

�����	���������
����	�#����#Z���)��
����	��
*

��	���#���	�#6�	#;	������8���6>+#4
���#6�	,78���/99����8��	������7-'

��	���#���	�#6�	�������#;	������8�������#4
���#6�	�������,M79�����������AS4*�����.7-'

��	���#���	��#���	�!�8
*

���
*

������#M7�/@6����@�	����@���	�@Z���7'
.

.

��	���#���
	��	��)��
#Z���)��

*

���
*

���
	��	��)��
#���
#4#���#���
	��	��)��
,-
*

�	���#4
���#�������
	��	���������,7��#Z���#���	�#;	����7-5
D����	��	��#4
���#�������
	��	���������,7��#Z���#���	�#;	����7-

.'

D	�������+���#
	#4#���#D	�������+���,���	�!�8-'
D	�������+���� #��	���#4#
	�$��D	������	��,-'

;	��<���
	��	��+���?#	����#4#���#;	��<���
	��	��+���?,-'

�����8#,D	�������+���#��	��#	�#��	���-
*

���
	��	��+���#	���#4#���#���
	��	��+���,-
*

�	���#4
���#�������
	��	���������,���	���)����,7%��	��/#*:.75#��	���=��--5

������#4
���#�������
	��	���������,��	���)���=��-5

!���	�8D��#4#D���	���=��5
;��6�
��
�	��#4#��	���;��%������	��5
�����	�8�#4

���#�������
	��	���������,M7Z���#;	����#,�-7-
.'

Chapter 13: Programmable Web532

6�	#����86�	#4#
➥;	������8���������	�
��!��	�	��,;	������8���6>+5#��	���=��-'

	����;	����%

,���#���
	��	��;	��,����86�	--'
	�����%

,	���-'

.

���
�+����#4#	����'

������#���
'
.

.

�"����	���������
�(��$��
�����	��Q��������,������,%���B:)��
)�������--
�����	��Q��������,������,>��J:)��
)�������--
����	�#���
	��	��)��
)�������<���
	��	��)��
?

$�����	�,���	��#�����-
*
���
	��	��)��
)�������<���
	��	��)��
?#������'

	�#,�����#44#7���7-
������#4#���#>��J:)��
)�������,Z���)��
-'

����
������#4#���#%���B:)��
)�������,Z���)��
-'

������#������'
.

.

Listing 13.17 shows the code to host the syndication service. The appli-
cation self-hosts the service using the (������	������ class. It then con-
sumes the service and outputs the feed to the display.

Listing 13.17 Zune Music Feed Console Application

��	��#������'
��	��#��������������	����$����	�'
��	��#�������D	�����	��'
��	��#�����������	����
��'
��	��#�����������	����
���D����	��	��'
��	��#�����������	����
������
	��	��'
��	��#�����������	����
���(��'

�������#Z���)��

*

Content Syndication with RSS and ATOM 533

Listing 13.17 continued

����#!�����
*

���	�#��	
#�	�,���	��� #���-
*

����	������#8���#4#���#����	������,������,Z���)��
����	��-5
���#6�	,78���/99����8���/2:::9G���7--'

����	��&�
��	��#���&�
��	��#4
8����%

����	��&�
��	��,������,Z���)��
����	��-5

���#(�������	�
	��,-5#7���
7-'
���&�
��	�����8�	����%

,���#(��������8�	��,--'

8����"���,-'

��������(�	��;	��,7����	��#8���#����7-'

���
	��	��)��
#���
#4
���
	��	��)��
�;�
,
���#6�	,78���/99����8���/2:::9G���9���
9A�����4���7--'

�����8#,���
	��	��+���#	���#	�#���
�+����-
*

��������(�	��;	��,7%��	��/#7#T#	�����	��������-'
��������(�	��;	��,7������/#7#T#	���������������-'

.

��������(�	��;	��,7!����#�&���� #��#��	�� 7-'
��������>�
;	��,-'

.
.

.

SUMMARY

The new Web programming capabilities in WCF simplify the building of
services for use on the Web. They help Web developers get stuff done
quickly in the manner that they wish to build and consume services for the
Web. This means providing features that allow developers to work with the
Web. The following summarizes those capabilities of WCF for the Web:

Chapter 13: Programmable Web534

• The .NET Framework 3.5 provides a new 6�	������� class that
allows for the efficient parsing of URIs based on their path and a
query component. The 6�	������� class is used by WCF in its Web
programming model calls to services.

• Information can be exposed with WCF using a variety of serializa-
tion formats including SOAP and POX. .NET Framework 3.5 adds
support for JSON as a serialization format.

• An additional binding provided by WCF, called the ��������	�
	��
binding, exposes services using WCF’s Web programming model.

• The ��������	�
	�� binding is used with either the
(��������8�	�� or (�����	��&���	����8�	�� endpoint behav-
iors. The (��������8�	�� endpoint behavior is used to expose
services using POX or JSON. The (�����	��&���	����8�	�� end-
point behavior is using JSON with additional support for generating
ASP.NET AJAX client proxies.

• WCF provides a new hosting feature called configuration-free host-
ing. This feature allows services to be hosted in IIS without the need
for configuration. Out of the box, WCF provides two classes that
support configuration-free hosting: (������	������)����� and
(�����	������	������)�����. The (������	������)�����
supports configuration-free hosting using the ��������	�
	��
binding and the (��������8�	�� endpoint behavior. The
(�����	������	������)����� supports configuration-free
hosting using the ��������	�
	�� binding and the
(�����	��&���	����8�	�� endpoint behavior.

• WCF in .NET Framework 3.5 provides a rich extensible program-
ming model for content syndication found in the �������
����	����
������
	��	�� namespace. Support for both RSS
and ATOM syndication feeds is included, using the
%���B:)��
)������� and >��J:)��
)������� classes.

Summary 535

This page intentionally left blank

Appendix
Advanced Topics

T H E R E A R E M A N Y things to know to develop applications with Win-
dows Communication Foundation (WCF). Although this book has

tried to incorporate everything the average developer needs to know about
WCF, some things did not get discussed. The purpose of this appendix is
to fill some of those gaps.

Publishing Metadata Endpoints

We have already discussed metadata in Chapter 1, “Basics.” This discussion
gave an introduction to exposing the configuration of services using meta-
data. However, it did not go into details on how the metadata is exposed.
Later on we introduced the concept of bindings in Chapter 4, “Bindings,”
but limited the discussion to those bindings meant to expose services;
we did not focus on metadata bindings. WCF provides four additional
bindings: ��������	�
	��, ���������	�
	��, �������	�
	��, and the
���=��
!	���	�
	��#binding. These bindings expose the configuration of
services using metadata over different transport protocols.

537

��&

��������
The ��������	�
	�� binding exists so that metadata can be exposed over
the HTTP transport protocol. This is the appropriate metadata binding to
use if exposing services over the ��	������	�
	��, �������	�
	��,
��J::R�����	�
	�� bindings, or any custom binding that contains the
�������������	�
	��&������ binding element. For most situations the
��������	�
	�� binding is what you will want to use because it offers the
broadest access to your metadata. This means that the metadata is directly
accessible through client tools such as svcutil.exe and Visual Studio 2005
through Add Service Reference. It also means that this metadata can be
accessed using other HTTP clients. This includes web browsers such as
Internet Explorer, Firefox, and Opera. Depending on your security require-
ment, this may not be desirable. For example, if you are exposing services
locally for on-machine communication using the ���=��
!	���	�
	��

binding, you probably do not want to use this binding.

��&B����3����������
The ���=��
!	���	�
	�� binding exists so that metadata can be exposed
over the Named Pipes transport protocol. This binding exists to expose
metadata for services that use the ���=��
!	���	�
	�� binding or any
custom binding that contains the =��
!	�����������	�
	��&������
binding element. The ���=��
!	���	�
	�� binding does not expose meta-
data to the network and guarantees that it is accessible only from the local
machine. WCF specifically limits the use of named pipes to local machine
communication. This was discussed in the “Local Machine Communication
Between .NET Applications” section of Chapter 4.

��&-���������
The �������	�
	�� binding exists so that metadata can be exposed over the
TCP transport protocol. This binding exists to expose metadata for services

Appendix: Advanced Topics538

TIP Bindings That Start with “mex” Expose Service Metadata

Windows Communication Foundation prefixes all bindings that are
meant to expose metadata with the “mex” prefix.

that use either the �������	�
	�� or ���!�������	�
	�� bindings or any
custom bindings based on the ������������	�
	��&������ binding ele-
ment. There is one issue to consider when using the �������	�
	�� bind-
ing with port sharing. The underlying ������������	�
	��&������
binding element used by the �������	�
	�� binding has port sharing
disabled. If port sharing is needed, a custom binding based on the
�������	�
	�� binding can be created to set the !����8�	��&����
 prop-
erty to true on the transport. For more information, see “Sharing Ports
Between Services” later on in this appendix.

��&

���������
The ���������	�
	�� binding exists so that metadata can be exposed over
the HTTP transport protocol using SSL/TLS transport encryption (HTTPS).
Like the ��������	�
	�� binding, the ���������	�
	�� is intended to be
used with the ��	������	�
	��, �������	�
	��, or ��J::R�����	�
	��
bindings or any custom binding based on the �������������	�
	��&������
binding element. Using the ���������	�
	�� binding allows for transport-
level encryption, which prevents metadata from being exposed on the
network.

Creating Clients from Metadata

The ���
�>������� class allows for binding information to be retrieved
programmatically rather than using configuration. This means that clients
can be created dynamically without the need for specifying a configuration
file. This is useful if you want to deploy clients and then later change the
configuration of the service. Listing A.1 shows an example of how to use
the ���
�>������� class to point to a known metadata endpoint. The
>������ method on the ���
�>������� class is used to build the bind-
ing information. The binding information is contained within one or more
����	��&�
��	�� instances. There is one instance of a ����	��&�
��	��
class for every available endpoint. The ����	��&�
��	�� instance is then
used to create a client.

Creating Clients from Metadata 539

Listing A.1 Using the ��
���
�<������� class

��	��#������'
��	��#��������������	����$����	�'
��	��#�����������	����
��'
��	��#�����������	����
���D����	��	��'
��	��#�����������'
��	��#�������(�
���'
��	��#�������(�
������������'
��	��#�������(�
����D�'
��	��#�������(�
����D��������'
��	��#�������(�
����+����'
��	��#�������(�
������
	'
��	��#�������(�
������
	�+��	��'
��	��#�������(�
�����8���'

�������#&�����	�(�)
*

999#<������?
999#+������	��#���	�#���#�	�(�
������
999#<9������?

����	�#���	�#����#�	�(�
��#/#�������(�
����(�
��
*

����	�#�	�(�
��,-
*

+�	�	�	G����������,-'
.

��	
#$��!�	��������F��	��,��X���#���
��5#>����
&����%���#�-
*

����#����"�#4#������,+�	�������������	��-'
6�	#���
�6�	#4

���#6�	,78���/99����8���9�	�������������	��9����	������9���7-'
&�
��	��%

����#���
�%

����#4

���#&�
��	��%

����,���
�6�	-'
����	��&�
��	���������	��#��
��	���#4

���
�>��������>������,����"�5#���
�%

����-'
���	��#������#4#������������������'

��	��#��	��'

�����8#,����	��&�
��	��#��	��#	�#��
��	���-
*

	�#,��	��#U4#����-
*

��	��#,�8����)�����<+�	�������������	��?#��#4
➥���#�8����)�����<&�����	�(�)�+�	�������������	��?,��	��--

*
+�	�������������	��#��	���#4

Appendix: Advanced Topics540

���������8����,-'
��	��#4#��	����$��K����,������-'

������!�	���;	������+�����+�����,:5
������#T#747#T#��	��������	��,--'

.
.

.#########
.

.
.

Creating Silverlight Clients from Metadata

Silverlight is Microsoft’s technology for delivering next-generation media
experiences and rich interactive applications for the Web. It allows devel-
opers to build compelling user interfaces for the Web with interactivity, ani-
mation, video, and graphics. One major advantage to Silverlight is that it
is a cross-platform, cross-browser technology that runs on multiple oper-
ating systems such as Windows, Mac OS, and Linux, and multiple browsers
such as Internet Explorer, Firefox, and Safari. There are two versions of
Silverlight available, v1.0 and v1.1.

Silverlight 1.0 is the first release, which focuses on rich media experi-
ences including interactivity, animation, video, and graphics. This version
supports JavaScript code-behind. This means that JavaScript hosted in the
browser is used to interact with the user interface that is developed in
Silverlight. WCF allows for Silverlight applications using JavaScript to con-
sume services based on REST/POX style endpoints using AJAX. This
approach is described in detail in Chapter 13, “Programmable Web.”

Silverlight 1.1 (a.k.a. SL 1.1 alpha) is currently in an alpha release and is
subject to change, but it is important enough to understand how it works
with WCF. SL 1.1 alpha includes a mini version of the .NET Common Lan-
guage Runtime. This allows for Silverlight applications to be developed
with .NET code-behind. Although using JavaScript is still possible, many
.NET developers will want to use .NET code-behind because this is famil-
iar to them. This also means that we can generate WCF client proxies that
are based on .NET code and reference them in code. Client proxies are

Creating Silverlight Clients from Metadata 541

generated using a new utility called ����
�����. This utility is an update to
the ��
����� utility available with the .NET Framework. This utility allows
developers to generate client code for calling into Web services from
Silverlight. An example of using the ����
����� to generate a client proxy
is shown next:

����
�����#9�	�����	�8���	���#8���/99����8���9����	������

The generate proxy is a .NET class based on base classes found in the
Silverlight version of the .NET Framework. This is similar to how a devel-
oper generates a client proxy using �����	����� for WCF-enabled desktop
applications. The eventual goal is for developers to have a similar experi-
ence when developing WCF-enabled Silverlight applications as they do
when they develop WCF-enabled desktop applications.

For more information about Silverlight, visit the Microsoft Silverlight
Web site at www.silverlight.net. Additional information can be found at the
Moonlight project page at www.mono-project.com/Moonlight. Moonlight
is the open source implementation of Silverlight on Linux.

Sharing Ports Between Services

Internet Information Services 6.0 (IIS) and later provides a way to share
ports across multiple processes. The actually mechanism that is responsible
for sharing ports is the new HTTP service (8�������). This is a kernel-mode
service that does connection management for both IIS and self-hosted WCF
services. This approach works well for services that use the HTTP transport
protocol and is transparent across hosting environments. WCF provides the
Net.Tcp Port Sharing Service Windows Service to facilitate port sharing for
TCP connections. By default this service is disabled. Figure A.1 shows how
to start the Net.Tcp Port Sharing Service from the command line.

Appendix: Advanced Topics542

www.mono-project.com/Moonlight
www.silverlight.net

Figure A.1 Starting Net.Tcp Port Sharing Service from command line

Port sharing can be enabled on a binding after the port sharing service is
started. Listing A.2 shows how to enable port sharing using configuration.

Listing A.2 Enabling Port Sharing in Configuration

<�����������	����
��?
<�	�
	���?
<�������	�
	��?
<�	�
	��#���47=�����(�8!����8�	��7

�����8�	��&����
47����7#9?
<9�������	�
	��?

<9�	�
	���?
<9�����������	����
��?

Listing A.3 shows how to enable port sharing using code.

Listing A.3 Enabling Port Sharing in Code

����	�#��	
#&����!����8�	��,-
*

=������	�
	��#�#4#���#=������	�
	��,-'
��!����8�	��&����
#4#����'

.

Configuring Service Quota Settings

Microsoft products ship with a “secure by default” approach. This includes
WCF, which means that various settings within WCF are set to prevent
attacks such as denial-of-service attacks. Microsoft chose the default values

Configuring Ser vice Quota Settings 543

for many of these settings based on a single machine development envi-
ronment. This means that some of the default settings may need to be
changed for use in a production environment.

One set of default settings that may need changing are those set by the
����	���8�����	����8�	�� behavior. This behavior limits the amount of
resources consumed by placing quota limits on services. This behavior
has three settings: ����������������, ������������+�������,
and ����������������	���. Table A.1 lists the properties of the
����	���8�����	����8�	�� behavior along with their default values.

Table A.1 �������-���

������������ Properties

Setting Description Default Value

���������������� Limits the total number of 16
simultaneous calls that will
be processed.

����������������	��� Limits the maximum number 10
of concurrent sessionful channel
connections to a service.

������������+������� Limits the maximum number Int32.MaxValue
of concurrent instances to a
service.

Both the ���������������� and the ����������������	��� have
default values that can potentially limit the throughput in a production
environment. You will want to adjust these settings if your services need
to accept more throughput and your servers have resources available to
handle the additional load. Just be aware of the potential impact these set-
tings have on denial-of-service attacks. Listing A.4 shows how to adjust
these settings using configuration.

Listing A.4 Adjusting �������-���

���� in Configuration

<�����������	����
��?
<��8�	���?
<����	����8�	���?
<��8�	��#���47����	���8�����	����8�	��7?
<����	���8�����	��#����������������47B:::7

Appendix: Advanced Topics544

������������+�������47B:::7
����������������	���47B:::7#9?

<9��8�	��?
<9����	����8�	���?

<9��8�	���?
<9�����������	����
��?

Listing A.5 shows how to adjust the settings using code.

Listing A.5 Adjusting �������-���

���� in Code

����	�#��	
#+�������8������,����	������#����	������-
*

����	���8�����	����8�	��#�8��������8�	��#4
➥����	�������D����	��	�����8�	����)	�
<����	���8�����	����8�	��?,-'

	�#,�8��������8�	��#44#����-
*

�8��������8�	��#4#���#����	���8�����	����8�	��,-'
����	�������D����	��	�����8�	����%

,�8��������8�	��-'

.

�8��������8�	�������������������#4#1:::'
�8��������8�	���������������+�������#4#1:::'
�8��������8�	�������������������	���#4#1:::'

.

Configuring HTTP Connections

The HTTP 1.1 specification includes a feature called HTTP Keep-Alives.
HTTP Keep-Alives allow for HTTP connections to be persisted connections
between clients and servers. This allows clients to keep connections open so
that they can be reused for subsequent requests. To limit the resources used
by a single client, the HTTP 1.1 specification specifies a maximum of two
connections per server from an application. By default, HTTP clients in the
.NET Framework use HTTP 1.1 Keep-Alives including WCF.

The �������������	�
	��&������ binding element leverages classes
found in the �������=�� namespace for managing and making HTTP
requests. The �������������	�
	��&������ binding element uses the
����(��>�S���� class to make HTTP requests. The ����(��>�S���� class
uses other classes, ����	��!�	������� and ����	��!�	��, to manage
HTTP connections. These classes help manage HTTP connections including

Configuring HTTP Connections 545

connection lifetime. This section looks at how to manage HTTP connections
to get the best performance and scalability for WCF services.

Recycling Idle Connections
The ��+
���	�� property on the ����	��!�	�� class specifies the time that
connections can remain idle before they are closed. Each new ����	��!�	��
instance has a default value of 100 seconds. This is based on the
������	��!�	��+
���	�� property of the ����	��!�	������� class.
Adjusting this property is especially useful when load balancing services
across a farm of servers. Setting this value lower increases the likelihood
that idle connections will be recycled. This allows for clients to establish
new connections to other servers within the load-balanced server farm.
Listing A.6 shows how to adjust the ��+
���	�� property on the
����	��!�	�� class.

Listing A.6 Setting ��&%���-��� for HTTP Using Code

����	�#��	
#����������	���,-
*

6�	#��6�	#4#���#6�	,78���/99���������8�������97-'
�������=�������	��!�	��#��#4

����	��!�	��������)	�
����	��!�	��,��6�	-'
�����+
���	��#4#I::::'

.

Adjusting Connection Lifetime
The �������	��;����	����� property on the ����	��!�	�� class specifies
the maximum time a connection can remain active before it is eligible for
recycling. Each new ����	��!�	�� instance has a default value of –1. A
value of –1 means that connections can remain open indefinitely. This may
not be desirable in load-balanced server farms because clients stay con-
nected to the same server. Connections can be recycled after a period of
time by setting the �������	��;����	����� to a value greater than 0. For
each new request, the �������	��;����	����� is checked. If the connec-
tion lifetime has elapsed, the active connection closes and a new connection
is created. Connections can be forced to be closed after each request by set-
ting the �������	��;����	����� to 0. Listing A.7 shows how to adjust the
�������	��;����	����� on the ����	��!�	�� class.

Appendix: Advanced Topics546

Listing A.7 Setting (�����
���H����-�����
 for HTTP Using Code

����	�#��	
#����������	���,-
*

6�	#��6�	#4#���#6�	,78���/99���������8�������97-'
�������=�������	��!�	��#��#4

����	��!�	��������)	�
����	��!�	��,��6�	-'
����������	��;����	�����#4#���#�	�����,:5:5I:-'

.

Disabling HTTP Keep-Alives
Adjusting the ��+
���	�� and �������	��;����	����� properties of the
����	��!�	�� class helps manage connection lifetime. This is especially
useful when working with load-balanced server farms. Unfortunately, not
all load-balanced scenarios support HTTP Keep-Alives. Sometimes the
only way to achieve an even load balance is to turn off the use of HTTP
Keep-Alives. This can be achieved a number of ways.

Many places affect whether HTTP Keep-Alives is used. For example,
HTTP Keep-Alives can be set by Internet Information Services (IIS). Figure
A.2 shows the HTTP Response Headers feature available in IIS 7.0 on Win-
dows Server 2008 and Windows Vista with Service Pack 1.

The IIS 7.0 setting for HTTP Keep-Alives can also be set using the com-
mand line. The following command shows how to disable HTTP Keep-
Alives for IIS 7.0 using the command line. This was the only way to disable
HTTP Keep-Alives in IIS 7.0 on Window Vista prior to SP1.

����
#���#����	�#9����	��/8���!�������#9����Q���%�	��/����

HTTP Keep-Alives can also be enabled or disabled using the
Q���%�	��&����
 property of the �������������	�
	��&������ binding
element. Listing A.8 shows how to disable HTTP Keep-Alives on the
�������������	�
	��&������ binding element.

Listing A.8 C���#����"������ on

�-�������
�������"�����
 Binding Element

����	�#��	
#�������Q���%�	���,-
*

�������������	�
	��&������#��#4#���#�������������	�
	��&������,-'
���Q���%�	��&����
#4#����'

.

Configuring HTTP Connections 547

Figure A.2 IIS 7.0 settings for HTTP Keep-Alives

HTTP Keep-Alives can also be disabled in configuration using a custom
binding based on the �������������	�
	��&������ binding element.
Listing A.9 shows how to disable HTTP Keep-Alives using a custom bind-
ing in configuration.

Listing A.9 Setting 0���#����"������ Using �

�-�������
 Element

<�����������	����
��?
<�	�
	���?
<�������	�
	��?
<�	�
	��#���47�������	�
	��(�8���Q���%�	���7?
<8�����������#����%�	��&����
47����7#9?

<9�	�
	��?
<9�������	�
	��?

<9�	�
	���?
<9�����������	����
��?

The last approach, which was mentioned previously, is to set the
�������	��;����	����� on the ����	��!�	�� class. Setting the value to 0
means that connections will be closed after each request. This forces each

Appendix: Advanced Topics548

new request to obtain a new connection. This has the same effect as dis-
abling HTTP Keep-Alives.

Increasing Number of Connections
The �������	��;	�	� property on the ����	��!�	�� class specifies the
maximum number of connections the ����	��!�	�� instance can open. The
default value is set based on the host environment. The value is set to 2 con-
nections per ����	��!�	�� instance in client and 10 connections per
����	��!�	�� instance in ASP.NET server environments. This is based on
the D������������	��;	�	� property of the ����	��!�	������� class.
Increasing the �������	��;	�	� property may increase throughput in
server-to-server communication or multithreaded client scenarios. Listing
A.10 shows how to set the maximum number of connections using
configuration.

Listing A.10 Setting ��&(�����
��� for HTTP Using Configuration

<����������?
<�������	����������?
<

#

����478���/99���������8�������97#���������	��#47B:::7#9?

<9�������	����������?
<9����������?

Configuring TCP Connections

Unlike HTTP connections, WCF does not leverage classes in the .NET Frame-
work to manage TCP connection lifetime. Instead, WCF uses a connection
pool to cache connections. The connection pool can be managed using the
�������	��!�������	��� property of the ������������	�
	��&������
binding element. The �������	��!�������	��� property returns an
instance of the ����������	��!�������	��� class. This class has three
properties that help manage connections in the connection pool:
+
���	�����, ;����	�����, and ��"������
�������	���!��&�
��	��.

Recycling Idle Connections
The +
���	����� property specifies how low a connection can remain idle
in the connection pool before it is closed and removed from the connection

Configuring TCP Connections 549

pool. The default value is set to two minutes. Setting this value lower can
be useful in load-balancing scenarios by increasing the likelihood that idle
connections will be recycled.

Adjusting Connection Lifetime
The ;����	����� property specifies how long a connection can be active
before it is eligible for recycling. After the lifetime is elapsed, idle connec-
tions can be closed and removed from the connection pool. The default
value is set to five minutes. Setting this value lower can be useful in load
balancing scenarios by decreasing the time before connections can be rebal-
anced across a server farm.

Increasing Number of Connections
The ��"������
�������	���!��&�
��	�� property specifies the maxi-
mum number of connections that can be cached in the connection pool. By
default the value is set to 10 connections. Increasing this value may
improve performance and scalability in server-to-server or multithreaded
client communication scenarios.

Using LINQ with WCF

Language Integrated Query (LINQ) is one of the new technologies avail-
able in .NET Framework 3.5 that allows for data to be queried using C# or
Visual Basic .NET. Traditionally, data is queried by an application using a
string expression, such as SQL or XPath query expressions, without the
benefits of compile time checking or IntelliSense support. LINQ enables
these capabilities by making a query a first-class language construct. LINQ
supports several data sources including SQL Server databases, XML docu-
ments, ADO.NET DataSets, and .NET objects. LINQ provides a single
mechanism for querying data across these different data sources. Using
LINQ can help bridge the world of data and the world of objects.

Exposing LINQ-to-SQL Entities
LINQ-to-SQL refers to the features in LINQ that expose relational data
stored in SQL Server as objects. This is great for mapping entities stored
within tables in the database to objects within an application. This is often

Appendix: Advanced Topics550

referred to as object-relational mapping (ORM). To help facilitate the mapping
process, Visual Studio 2008 provides the Object Relational Designer. This
provides a visual designer for creating LINQ-to-SQL entities. Figure A.3
shows the Object Relational Designer for LINQ-SQL entities.

Using LINQ with WCF 551

Figure A.3 LINQ-to-SQL Object Relational Designer

One thing to know is that the designer does not expose LINQ-to-SQL
entities using the D�����������	�	G�� by default. This means that
LINQ-to-SQL entities cannot be exposed over WCF services. The capability
to expose entities stored in a database using a service is important to devel-
opers building service-oriented applications. Fortunately, Microsoft pro-
vided a property called ���	�	G�	��# ��
�, which is available on the
LINQ-to-SQL design surface. Setting this property to 6�	D	����	���
allows LINQ-to-SQL entities to be attributed with the �D�������� and
�D������� attributes. This exposes LINQ-to-SQL entities as a data con-
tract that can be serialized by WCF. This setting is also available using the
�S��������� command-line utility. This utility can be used to generate
code for LINQ-to-SQL entities from a SQL Server database. Passing the
9���	�	G�	��/6�	
	����	��� parameter on the command line
instructs �S��������� to generate types that can be serialized using WCF.

This page intentionally left blank

Index

A
absolute addresses, 309
access to service-enabled workflows,

controlling, 454
declarative access control, 455
programmatic access control,

455-457
ACID transactions, 208
activities, 378
activity ID, 378
Activity View (Service Trace

Viewer), 393
Add Web Reference, 19-22
adjusting TCP connection

lifetime, 550
advanced Web services
DualHttpBinding binding, 143-151
ws2007HttpBinding binding, 140-143
wsHttpBinding binding, 137-139

advanced Web services, 135-136
AJAX Web programming, ASP.NET

integration, 516-523
app-domains, 127
application blocks, 421
ASMX
enabling features in IIS-hosted

services, 294-301
WCF clients, implementing, 27-31

ASP.NET integration, 360-361
AJAX integration, 516-523
authentication
Forms Authentication, 366-371
membership provider, 362-364
membership services, 361-362

authorization using role providers,
364-366

ASR (Add Service Reference), 19-22
asynchronous request-response

operations, 41-44
ATOM, content syndication, 531-533
auditing configuration, 372-373
authentication, 316
mesh authentication, 471
using ASP.NET Forms

Authentication, 366-371
using Windows credentials, 343-346

authorization, 316
using ASP.NET role providers,

364-366
using AzMan, 348-353
using Windows credentials, 346-348

auto flushing, 385
AzMan, authorization, 348-353

553

B
base address, defining, 308-311
basicHttpBinding binding, client

authentication, 328-329
behaviors, 181
client-side functions, 182
custom behaviors
implementing, 224-232
service behavior, exposing through

configuration, 233-236
metadata, exporting and publishing,

204-207
runtime initialization, 182-184
security behaviors, 237
server-side functions, 183
service behaviors
concurrency, controlling, 184-186
concurrent calls, controlling,

199-201
concurrent instances, controlling,

195-199
concurrent sessions, controlling,

201-204
session-level instances, 193-195
single instances, multithreading,

189-190
singletons, implementing, 190-192

transaction service behaviors,
223-224

bidirectional communication, 46-47
duplex service contracts
client portion, implementing, 53-54
server portion, implementing, 48-52

binary encoding
MTOM encoding, 283
versus text encoding, 282-283

binding elements, 4, 92, 114, 171
encoders, 173-174
security protocols, 174
shape change, 176

transports, 172-173
upgrades/helpers, 175

bindings, 92-93, 111-114. See also
channel stacks

cross-matching communication, 123
custom bindings, creating, 168-171
DualHttpBinding, 143-151
HttpBinding, Web services

communication, 132-135
mexHttpBinding, 538
mexHttpsBinding, 539
mexNamedPipeBinding, 538
mexTcpBinding, 538
msmqIntegrationBinding,

communication using queued
services, 165-168

netMsmqBinding, communication
using queued services, 155-164

netNamedPipeBinding, 128-131
netPeerTcpBinding, P2P

applications, creating, 465-467
netTcpBinding, 123-126
performance of, comparing, 152-153
scalability of, comparing, 152-153
selecting, 116, 119
service contracts, exposing, 177-179
sessionless, controlling concurrency,

187-188
stock quote service example, 119-123
WebHttpBinding, 511

service hosting, 512-514
WebGet attribute, 514
WebInvoke attribute, 514-515
WebOperationContext class,

523-529
ws2007HttpBinding, 140-143
wsHttpBinding, 115, 137-139

message security, 335
blank relative addresses, 310
breaking changes, 73
buffered mode, 276-277
building URIs, 509

Index554

Index 555

C
callback behaviors, 181
calling WCF services from WF, 426
with custom activity, 430-433
with Send activity, 427-429

calls, controlling concurrency,
199-201

certificates, 319-320
authentication, 337-340
key installation, 321

channel factories, 102-105
channel listeners, 101
channel shapes, 94
session-aware, 99
shape changing, 98

channel stacks, 91-93. See also
bindings

channels, 92, 100
transport channels, 93

class hierarchies, defining, 65-67
client fault handlers, implementing,

419-421
client/server applications, 460
client/service communication, 4-5
clients
authenticating with transport

security, 327-329
digital certificates, 330-332
Windows credentials, 329

creating from metadata, 539
Silverlight clients, 541-542

implementing, 17-22
for ASMX service, 27-31

collections, 76-77
communicating exception details,

409-411
communication
using advanced Web services,

135-136
DualHttpBinding binding, 143-151

ws2007HttpBinding binding,
140-143

wsHttpBinding binding, 137-139
using queued services, 154

msmqIntegrationBinding binding,
165-168

netMmqBinding binding, 155-164
using Web services, 131

basicHttpBinding binding, 132-135
comparing
approaches to building distributed

applications, 462
binding performance and scalability,

152-153
serialization and encoding, 241-243

concurrency, controlling, 184-186
concurrent calls, 199-201
concurrent instances, 195-199
concurrent sessions, 201-204
default concurrency, 187-188

confidentiality, 317
configuration files, writing services,

10-16
Configuration Free Hosting, 530
configuring
HTTP connections, 545-549
service quota settings, 543-544
TCP connections, 549-550

content syndication, 531-533
Context, handling in workflows,

450-451
contracts, 33
data contracts, 60-61

class hierarchies, defining, 65-67
collections, 76-77
equivalence, 75-76
KnownTypes, 67-72
versioning, 72-74
XML schema, defining for .NET

class, 62-65

message contracts, 78
typed messages, 79-82
untyped messages, 82-87

multiple contracts in services, 54-57
service contracts, 37
asynchronous request-response

operations, 41-44
duplex operations, 46-54
one-way operations, 44-45
synchronous request-response

operations, 38-41
WSDL, 34-36

controlling
access to service-enabled workflows,

454-455
declarative access control, 455
programmatic access control,

455-457
concurrency, 184-186
concurrent calls, 199-201
concurrent instances, 195-199
concurrent sessions, 201-204
default concurrency, 187-188

WSDL terms, 58-60
correlation, 378, 444-445
creating
custom bindings, 168-169
user-defined, 171

data contracts, 416-417
P2P applications
netPeerTcpBinding, 465-467
PNRP, 468-473

SVC files, 24-25
credentials
client authentication, 328-329
impersonation, 353-358

cross-machine communication, 123
CRUD (Create Read Update

Delete), 2
custom activities, writing, 430-433

custom behaviors
implementing, 224-227
message inspectors, implementing,

227-232
service behavior, exposing through

configuration, 233-236
custom bindings, 26
creating, 168-169
directional messaging, 492-501
user-defined, creating, 171

custom serialization, XmlSerializer,
277-281

cyclical references, preserving, 254
XmlSerializable interface, 255-259

D
data contracts, 34, 60-61
class hierarchies, defining, 65-67
collections, 76-77
creating, 416-417
equivalence, 75-76
KnownTypes, 67-72
versioning, 72-74
XML schema, defining for .NET

class, 62-65
DataContractJsonSerializer option,

252-253
DataContractSerializer option,

243-247
declarative access control, 455
default concurrency mode, 187-188
defining
class hierarchies, 65-67
fault contracts, 417-419

detecting faulted channels, 408-409
diagnostics
activities, 378
correlation, 378
message logging

auto flushing, 385
enabling, 381-383
filters, 384-385

Index556

Index 557

message logging, 381
performance counters, enabling,

386-387
Service Configuration Editor
listeners, configuring, 391
logging options, 389-390
sources, configuring, 391
tracing options, 389

Service Trace Viewer, 376, 387-388
Activity View, 393
Graph View, 395-397
logs, analyzing from multiple

sources, 397-399
Message View, 395
Project View, 395
results, filtering, 400-402

shared listeners, 384
tracing
E2E, 377-378
enabling, 378-381
verbosity, 381

tracing, 376-377
WMI, 387

diagnostics, 375-376
digital certificates, client

authentication, 330-332
digital signatures, 320
directional messaging, 465, 492-501
disabling HTTP Keep-Alives,

547-549
disconnected applications, 155
distributed applications
building approaches to, 459
client/server applications, 460
comparing, 462
N-Tier applications, 460
P2P applications, 461

P2P applications, 459
collaboration using Windows Vista,

480-491
creating, 465-467
directional messaging, 465, 492-501
mesh networks, 462-464

message flooding, 464
message hops, limiting, 478-480
PNRP, 468-473

DTC (Distributed Transaction
Coordinator), 222

DualHttpBinding binding,
communication using advanced
Web services, 143-151

duplex communication, 95
duplex service contracts, 46-47
client portion, implementing, 53-54
server portion, implementing, 48-52

durability, 444-445

E
E2E tracing, 377-378
enabling
message logging, 381-383
performance counters, 386-387
tracing, 378-381

encoding, 173-174
encoders, selecting, 282-283
MTOM encoding, 283
versus serialization, 241-243
WebMessageEncoder, 284-285

encryption
certificates, 319-320
key installation, 321

SSL
over HTTP, 323-325
over TCP, 326-327

endpoint address, defining, 308-311
endpoints, 3
client/service communication, 4-5
metadata endpoints, publishing,

537-539
MEX, 5-6, 204

exposing, 15-16
multiple endpoints in services, 54-57
service endpoints, implementing,

10-22

Enterprise Library, 421
equivalent data contracts, 75-76
examples
of bindings, stock quote service

example, 119-123
of Windows Integrated Security,

341-343
exception handling, 404-405
fault contracts, defining, 417-419
FaultException class, limitations

of, 415
service exceptions, managing with

FaultException, 411-414
unhandled exceptions, 405-408

Exception Handling Application
Block, 421

exception shielding, 421
exceptions, 403
details, communicating, 409-411

execution time, 184
exporting metadata, 204-207
exposing
MEX endpoints, 15-16
service contracts over multiple

bindings, 177-179
services from WF, 433-443

extending FaultException
constructor, 412-414

F
fault contracts, 415-416
defining, 417-419

faulted channels, detecting and
recovering, 408-409

FaultException class
limitations of, 414-415
service exceptions, managing,

411-414
FaultException constructor,

extending, 412-414

faults, 408. See also exception
handling

SOAP, 405
filtering
message logging, 384-385
results in Service Trace Viewer,

400-402
flowing transacations across

operations, 215-220
Forms Authentication (ASP.NET),

366-371
fully connected mesh, 462

G–H
GET, 506-507
Graph View (Service Trace Viewer),

395-397

handling context in workflow,
450-451

hosting services, 14-16
base address, defining, 308-311
endpoint address, defining, 308-311
hosting service-enabled workflow

self-hosting, 442
service-enabled workflow, 441-442
using IIS, 443

IIS, 7, 23-26, 292-294
ASMX features, enabling, 294-301

self-hosting
hosting multiple services in one

process, 305-308
in managed Windows service,

302-305
self-hosting, 301-302
WAS, 288-291
Web services

WebScriptServiceHost class, 530
WebScriptServiceHost Factory

class, 530-531

Index558

Index 559

WebHttpBinding binding, 512-514
WebGet attribute, 514-515
WebOperationContext class,

523-529
HTTP
connections, configuring, 545-549
GET, 506
keep-alives, disabling, 547-549

HttpBinding binding, Web services
communication, 132-135

I
ICommunicationObject interface,

105-109
idle HTTP connections,

recycling, 546
IExtensibleDataObject, roundtrip

serialization, 264
roundtrip serialization, 265-270

IIS, 7
service-enabled workflow,

hosting, 443
services, hosting, 23-26, 292-294
ASMX features, enabling, 294-301

impersonation, 353-358
implementing
client fault handlers, 419-421
custom behaviors, 224-227
message inspectors, 227-230
parameter inspectors, 230-232
service behavior, exposing through

configuration, 233-236
peer resolvers, 474-478
services, 8-12
clients, 17-22
configuration files, 13-16

singletons, 190-192
WCF clients for ASMX service, 27-31

installing keys, 321
instances
concurrent, controlling, 195-199
session-level, 193-195

integrity, 317
Internet services security, ASP.NET

integration, 358-371
interprocess communication, 127
intraprocess communication, 127
invitations, P2P application

collaboration, 483-491
IXmlSerializable interface, reference

preservation, 255-259

J–K
JSON, 507
Web programming, 516

keep-alives (HTTP), disabling,
547-549

keys, installing, 321
known types, defining, 70-72

L
layered channels, 91
libraries, Enterprise Library, 421
limitations of FaultException class,

414-415
limiting message hops, 478-480
LINQ (Language Integrated

Query), 550
LINQ-to-SQL entities, 550-551
listener adapter architecture

(WAS), 289
listeners, configuring in Service

Configuration Editor, 391
Live Service Trace Viewer, 397
local-machine communication, 127
logging. See message logging
long-running workflows, 445-450

M
managing service exceptions, 411-414
membership provider (ASP.NET),

362-364
mesh authentication, 471

mesh networks, 462-463
resolving peer meshes, 464

message contracts, 34, 78
typed messages, 79-82
untyped messages, 82-84
SOAP headers, 85-87

message flooding, 464
message hops, limiting, 478-480
message inspectors, implementing,

227-230
message logging
auto flushing, 385
enabling, 381-383
filters, 384-385
shared listeners, 384

message security, authentication,
318, 334

certificate authentication, 337-340
Windows authentication, 335
with wsHttpBinding, 335

Message View (Service Trace
Viewer), 395

messages, streaming, 276-277
metadata
clients, creating, 539
Silverlight clients, 541-542

endpoints, publishing, 537-539
exporting and publishing, 204-207

MetadataResolver, 539
MEX (Metadata Exchange)

endpoints, 5-6, 204
exposing, 15-16

mexHttpBinding binding, 538
mexHttpsBinding binding, 539
mexNamedPipeBinding binding, 538
mexTcpBinding binding, 538
MSMQ (Microsoft Message

Queue) , 154
msmqIntegrationBinding binding,

165-168
netMsmqBinding, 155-164

msmqIntegrationBinding binding,
communication using queued
services, 165-168

MTOM encoding, binary data,
sending, 283

multiple concurrency mode, 185-186
multiple contracts in a service, 54-57
multiple endpoints in a service,

54-57
multistep business processes, 207
multithreading single instances,

189-190

N
N-Tier applications, 460
named pipes, 127
naming conventions, controlling

WSDL terms, 58-60
Net.Tcp Port Sharing Service, 542-543
NetDataContractSerializer option,

247-248
sharing type with, 260-264

netMsmqBinding binding,
communication using queued
services, 155-164

netNamedPipeBinding binding,
128-131

netPeerTcpBinding, creating P2P
applications, 465-467

netTcpBinding binding, 123-126
nonblank relative addresses, 310
nonbreaking changes, 73

O
Object Relational Designer, 551
OleTx protocol, selecting, 221-222
one-way communication patterns, 94
one-way message exchange, 44-45
one-way operations, 408, 417
operation behaviors, 181
ORM (object-relational

mapping), 550

Index560

Index 561

P
P2P applications, 461
collaboration using

Windows Vista, 480
invitations, 483-491
People Near Me, 481
Windows Contacts, 482-483

communication
directional messaging, 465
mesh networks, 462-463
message flooding, 464
peer meshes, resolving, 464

creating netPeerTcpBinding binding,
465-467

directional messaging, 492-501
message hops, limiting, 478-480
PNRP, 468-469
bootstrap process, 469
mesh authentication, 471
registering names, 471-473
WICN, 469

parameter inspectors, exposing,
230-232

parsing URIs, 510
partially connected meshes, 463
peer meshes, resolving, 464
Peer Network Resolution Protocol.

See PNRP
peer nodes, 462
peer resolvers, implementing,

474-478
People Near Me, 481
performance of bindings,

comparing, 152-153
performance counters, enabling,

386-387
persisted queues, 155
persisting workflow state on server,

452-454

PNRP (Peer Network Resolution
Protocol), 464

bootstrap process, 469
mesh authentication, 471
peer resolution, 468-469
registering names, 471-473
WICN, 469

ports, sharing between services,
542-543

POX (Plain Old XML), 507
preserving cyclical references,

254-255
IXmlSerializable interface, 255-259

Programmable Web, 503
AJAX, ASP.NET integration, 516-523
content syndication, 531-533
JSON, 516
URIs

building, 509
format of, 507
GET, 506-507
parameters, 505
parsing, 510

URIs, 504, 508
programmatic access control, 455-457
Project View (Service Trace

Viewer), 395
propagation, 378
protocol channels, 91
publishing metadata, 204-207
endpoints, 537-539

Q–R
queued services communication, 154
msmqIntegrationBinding binding,

165-168
netMsmqBinding, 155-164

Receive activity, 435-438
recovering faulted channels, 408-409

recycling idle connections
HTTP, 546
TCP, 550

reentrant concurrency mode, 185-186
reference preservation, 254
IXmlSerializable interface, 255-259

registering names with PNRP,
471-473

relative addresses, 309
Reliable Sessions, 193
request-reply communication, 97
resolving
peer meshes, 464
peers with PNRP, 468-469

REST (Representational Entity State
Transfer), 2, 504

role provider (ASP.NET), 364-366
round tripping, 74
roundtrip serialization,

ExtensibleDataObject, 264-270
RSS, content syndication, 531-533
runtime initialization, 182

S
sample stock quote service

application, 119-123
scalability of bindings, comparing,

152-153
security
ASP.NET integration, 360-371
auditing, 372-373
authentication, 316
Windows credentials, 343-346

authorization
AzMan, 348-353
Windows credentials, 346-348

authorization, 316
certificate-based encryption, 319-320
key installation, 321

confidentiality, 317
credentials, impersonation, 353-358

integrity, 317
Internet services, securing, 358
message security, 318, 334-335

authentication, 335-340
transport security, 322

client authentication, 317-318,
327-332

service identity, 332-334
SSL, 323-327

Windows Integrated Security, 340
examples, 341-343

security behaviors, 237
selecting
bindings, 116-119
encoders, 282-283
transaction protocols, 221-222

self-hosting, 14-16, 301
hosting multiple services in one

process, 305-308
in managed Windows service,

302-305
self-hosting service-enabled

workflow, 442
SelfHost sample application, 376
Send activity, calling WCF services

from WF, 427-429
serialization
custom serialization, XmlSerializer,

277-281
DataContractJsonSerializer option,

252-253
DataContractSerializer option,

243-247
NetDataContractSerializer option,

247-248
sharing type with, 260-264

reference preservation, 254-255
XmlSerializable interface, 255-259

roundtrip serialization,
ExtensibleDataObject, 264-270

serializers, selecting, 254

Index562

Index 563

using surrogates, 270-275
versus encoding, 241-243
XmlSerializer option, 249-251

service behavior, exposing through
configuration, 233-236

service behaviors, 181
concurrency, controlling, 184-186
concurrent calls, 199-201
concurrent instances, 195-199
concurrent sessions, 201-204
default concurrency, 187-188

exposing through configuration,
233-236

metadata, exporting and publishing,
204-207

session-level instances, 193-195
single instances, multithreading,

189-190
singletons, implementing, 190-192
transaction service behaviors,

223-224
Service Configuration Editor, 380,

387-388
listeners, configuring, 391
logging options, 389-390
sources, configuring, 391
tracing options, 389

service contracts, 34, 37
asynchronous request-response

operations, 41-44
duplex operations, 46-52
client portion, implementing, 53-54

exposing over multiple bindings,
177-179

one-way operations, 44-45
synchronous request-response

operations, 38-41
service endpoint behaviors,

implementing message
inspectors, 227-230

service exceptions, managing,
411-414

service hosting,
IIS, 292-294

ASMX features, enabling, 294-301
self-hosting, 301

hosting multiple services in one
process, 305-308

in managed Windows service,
302-305

WAS, 288-291
WCF service

base address, defining, 308-311
endpoint address, defining, 308-311

service hosts, 287
service identity, 332-334
service quota settings, configuring,

543-544
Service Trace Viewer, 36, 376
Activity View, 393
Graph View, 395-397
logs, analyzing from multiple

sources, 397-399
Message View, 395-396
Project View, 395
results, filtering, 400-402

service-enabled workflows
controlling access to, 454

declarative access control, 455
programmatic access control,

455-457
hosting, 441

in IIS, 443
self-hosting, 442

service-oriented architecture, 503
services
ASMX, implementing WCF clients,

27-31
calling from WF, 426

with custom activity, 430-433
with Send activity, 427-429

clients, implementing, 17-22
configuration files, 13-16
exposing from WF, 433-443
hosting, 14-16
in IIS, 23-26
WebHttpBinding binding, 512-529

implementing, 8-12
multiple contracts and endpoints,

54-57
Web services, hosting, 530-531

session-aware channel shapes, 99
session-level instances, 193-195
sessionless bindings, controlling

concurrency, 187-188
sessions, controlling concurrency,

201-204
shape change binding elements, 176
shape changing, 98
shared listeners, 384
sharing
ports between services, 542-543
type with NetDataContractSerializer,

260-264
short-running transactions, 207
Silverlight clients, creating from

metadata, 541-542
single concurrency mode, 185-186
single instances, multithreading,

189-190
singletons, implementing, 190-192
SOAP (Simple Object Access

Protocol), 2, 404
faults, 405
message contracts, 78
typed messages, 79-82
untyped messages, 82-87

sources, configuring in Service
Configuration Editor, 391

SSL
over HTTP, 323-324
over TCP, 326-327

state of workflow, persisting on
server, 452-454

stock quote service binding example,
119-123

streamed mode, 276-277
streaming messages, 276-277
surrogates, type serialization,

270-275
SVC files, creating, 24-25
SvcUtil.exe, 36
synchronous request-response

operations, 38-41
System.UriBuilder class, 508-509

T
TCP connections, configuring,

549-550
TcpBinding binding, client

authentication, 330-332
terms (WSDL), controlling, 58-60
text encoding, versus binary

encoding, 282-283
throughput, 184
tracing, 376-377
E2E, 377-378
enabling, 378-381
shared listeners, 384
verbosity, 381

transaction flow, 215-220
transaction managers, 221
transaction protocols, selecting,

221-222
transaction service behaviors,

223-224

transactions, 207
ACID, 208
flowing across operations, 215-220
within a service, 208-215

transfers, 378
transport channels, 91-93, 172-173

Index564

Index 565

transport security, 317-318, 322
client authentication
digital certificates, 330-332
Windows credentials, 329

client authentication, 327-329
service identity, 332-334
SSL
over HTTP, 323-325
over TCP, 326-327

trust, 320
two-way communication,

request-reply, 97
typed messages, 79-82

U
unhandled exceptions, 405-408
untyped messages, 82-84
SOAP headers, 85-87

upgrades/helpers, 175
URIs, 504, 508
building, 509
format of, 507
GET, 506-507
parameters, 505
parsing, 510

user-defined bindings, creating, 171

V–W
verbose tracing options, 381
versioning data contracts, 72-74

WAS (Windows Process Activation
Service), service hosting, 288-291

Web hosting
WebScriptServiceHost class, 530
WebScriptServiceHostFactory class,

530-531
Web services, 131. See also advanced

Web services
communication, basicHttpBinding

binding, 132-135

WebHttpBinding binding, 511
hosting, 512-514
WebGet attribute, 514
WebInvoke attribute, 514-515
WebOperationContext class, 523-529

WebMessageEncoder, 284-285
WebOperationContext class, 523-529
WebScriptServiceHost class, 530
WebScriptServiceHostFactory class,

530-531
WF (Windows Workflow

Foundation), 423
services, exposing, 433-443
WCF integration, 424-425
WCF services, calling, 426

with custom activity, 430-433
with Send activity, 427-429

WICN (Windows Internet Computer
Names), 469

Windows authentication, 335
Windows Contacts, 482-483
Windows credentials
authentication, 343-346
authorization, 346-348
client authentication, 329

Windows Integrated Security, 340
examples, 341-343

Windows Vista, P2P application
collaboration, 480

invitations, 483-491
People Near Me, 481
Windows Contacts, 482-483

WMI (Windows Management
Instrumentation), 387

workflows
context, handling, 450-451
correlation, 444-445
durability, 444-445
long-running, 445-450
service-enabled, controlling access

to, 454-457
state, persisting on server, 452-454

writing
custom activities, 430-433
WCF clients in code, 18-22
WCF service, 8-12
configuration files, 13-16

WS-* specifications, 135
WS-AT (Web Service Atomic

Transactions), 215
selecting, 221-222

ws2007HttpBinding binding,
communication using advanced
Web services, 140-143

WSDL (Web Service Description
Language), 34-36

terms, controlling, 58-60
wsHttpBinding binding, 115
communication using advanced Web

services, 137-139
message security, 335

X–Z
XML schema
class hierarchies, defining, 66-67
defining for .NET class, 62-65

XmlSerializer option, 249-251
custom serialization, 277-281

Index566

Microsoft .NET Development Series

0321154894 0321194454 0321374479 0321113594

0321228359 0321334884 0321411757 0321160770

0321334434 0321418344

0321197690 0321237706

0321418506

0321278720 0321350170

0321410599

For more information go to www.informit.com/msdotnetseries/

0321382188

032126892X

0321398203

0321341384

0321169514

0201734117

0321246756 0321334213

0321150775 0321154932 032124673X

0321303636 0321267966 0321399838

0201745682 0321174038 0321174046

www.informit.com/msdotnetseries/

	Praise for Essential Windows Communication Foundation
	Microsoft .NET Development Series
	Copyright
	Contents
	Figures
	Tables
	Foreword
	Preface
	Acknowledgments
	About the Authors
	1 Basics
	Why WCF Matters
	Introduction
	Implementing a WCF Service
	Just the ABCs
	Writing a WCF Service Entirely in Code
	Writing a Service with Code and Configuration Files
	More on Configuration Files
	More on Service Hosting
	Exposing the Metadata Exchange (MEX) Endpoint

	Implementing a Client for a WCF Service
	Writing a WCF Client Entirely in Code
	Writing a Client with Code and Configuration

	Hosting a Service in IIS
	Discussion
	Hosting a Service in IIS in Three Steps

	Implementing a WCF Client for an ASMX Service
	Tools Support
	Generating Client Proxy Class and Configuration Files

	2 Contracts
	Service Contracts
	Synchronous Request-Response Operations
	Asynchronous Request-Response Operations
	One-Way Operations
	Duplex Operations
	Multiple Contracts and Endpoints in a Service
	Names of Operations, Types, Actions, and Namespaces in WSDL

	Data Contracts
	Defining XML Schema for a .NET Class
	Defining Class Hierarchies
	Exposing Additional Types in WSDL with KnownTypes
	Versioning Data Contracts
	Data Contract Equivalence
	Working with Collections

	Message Contracts
	Typed Messages
	Untyped Messages
	Using SOAP Headers with Untyped Messages

	3 Channels
	Channel Shapes
	One-Way Communication Pattern
	Duplex Communication
	Request-Reply Communication
	Shape Changing

	Operation Contract and Channel Shapes
	Channel Listeners
	Channel Factories
	ChannelFactory<>

	ICommunicationObject

	4 Bindings
	Choosing an Appropriate Binding
	Sample Application

	Cross-Machine Communication Between .NET Applications
	netTcpBinding

	Local Machine Communication Between .NET Applications
	netNamedPipeBinding

	Communication Using Basic Web Services
	basicHttpBinding

	Communication Using Advanced Web Services
	wsHttpBinding
	ws2007HttpBinding
	wsDualHttpBinding

	Comparing Binding Performance and Scalability
	Communication Using Queued Services
	netMsmqBinding
	msmqIntegrationBinding

	Creating a Custom Binding
	User-Defined Bindings

	Binding Elements
	Transports
	Encoders
	Security
	Transport Upgrades/Helpers
	Shape Change
	Other Protocols

	Exposing a Service Contract over Multiple Bindings

	5 Behaviors
	Concurrency and Instancing (Service Behavior)
	Default Concurrency and Instancing with Sessionless Binding
	Multithreading a Single Instance
	Implementing a Singleton
	Session-Level Instances
	Controlling the Number of Concurrent Instances
	Controlling the Number of Concurrent Calls
	Controlling the Number of Concurrent Sessions

	Exporting and Publishing Metadata (Service Behavior)
	Implementing Transactions (Operation Behavior)
	Transactional Operations Within a Service
	Flowing Transactions Across Operations
	Choosing a Transaction Protocol—OleTx or WS-AT
	Transaction Service Behaviors

	Implementing Custom Behaviors
	Implementing a Message Inspector for Service Endpoint Behavior
	Exposing a Parameter Inspector for Service Operation Behavior as an Attribute
	Exposing a Service Behavior Through Configuration

	Security Behaviors

	6 Serialization and Encoding
	Serialization Versus Encoding
	Comparing WCF Serialization Options
	DataContractSerializer
	NetDataContractSerializer
	XmlSerializer
	DataContractJsonSerializer
	Choosing a Serializer

	Preserving References and Cyclical References
	Sharing Type with the NetDataContractSerializer
	Roundtrip Serialization Using IExtensibleDataObject
	Serializing Types Using Surrogates
	Streaming Large Data
	Using the XmlSerializer for Custom Serialization
	Custom XmlSerialization Using Attributes
	Custom XmlSerialization Using IXmlSerializable

	Choosing an Encoder
	Text Versus Binary Encoding
	Sending Binary Data Using MTOM Encoding
	Getting to Know the WebMessageEncoder

	7 Hosting
	Hosting a Service in Windows Process Activation Services
	Hosting a Service in IIS 7
	Enabling ASMX Features in an IIS-Hosted Service
	Self-Hosting
	Self-Hosting in a Managed Windows Service
	Hosting Multiple Services in One Process
	Defining Service and Endpoint Addresses

	8 Security
	WCF Security Concepts
	Authentication
	Authorization
	Confidentiality
	Integrity
	Transport and Message Security

	Certificate-Based Encryption
	Concepts
	Setup

	Transport-Level Security
	Encryption Using SSL
	Client Authentication
	Service Identity

	Message-Level Security
	Authenticating with wsHttpBinding

	Securing Services with Windows Integrated Security
	Section Examples Introduction
	Authenticating Users with Windows Credentials
	Authorizing Users with Windows Credentials
	Authorization Using AzMan
	Impersonating Users

	Securing Services over the Internet
	ASP.NET Integration
	Authentication Using Membership Providers
	Role-Based Authorization Using Role Providers
	Using Forms Authentication

	Logging and Auditing

	9 Diagnostics
	Sample WCF Application
	Tracing
	End-to-End Tracing
	Activities and Correlation
	Enabling Tracing
	Verbosity Recommendations

	Message Logging
	Enabling Message Logging

	Additional Configuration Options
	Shared Listeners
	Message Filters
	Trace Source Auto Flushing
	Performance Counters
	Windows Management Instrumentation (WMI)

	Using the Service Configuration Editor
	Tracing Options
	Logging Options
	Configuring Sources
	Configuring Listeners

	Service Trace Viewer
	Activity View
	Project View
	Message View
	Graph View
	Analyzing Logs from Multiple Sources
	Filtering Results

	10 Exception Handling
	Introduction to WCF Exception Handling
	WCF Exception Communication via SOAP
	Unhandled Exception Example
	Detecting and Recovering a Faulted Channel

	Communicating Exception Details
	Managing Service Exceptions with FaultException
	Using FaultCode and FaultReason to Extend FaultException

	Limitations of Basic FaultExceptions
	Creating and Consuming Strongly Typed Faults
	Declaring Fault Definitions with FaultContract
	Defining a FaultContract
	Throwing a FaultException<> with a Defined FaultContract
	Fault Contract Strategies

	Implementing Client Fault Handlers
	Error-Handling Application Block
	Exception Shielding

	11 Workflow Services
	Integration Points
	Calling a WCF Service from WF
	Using a Send Activity
	Writing a Custom Activity

	Exposing a Service from WF
	Define the Interface
	Receive Activity
	Configuration in app.config
	Hosting a Service-Enabled Workflow
	Self-Hosting a Service-Enabled Workflow
	Hosting a Service-Enabled Workflow in IIS

	Correlation and Durable Services
	Long-Running Workflow
	Handling the Context
	Persisting Workflow State on the Server

	Controlling Access to Service-Enabled Workflows
	Declarative Access Control
	Programmatic Access Control

	12 Peer Networking
	Approaches to Building Distributed Applications
	Client/Server Applications
	N-Tier Applications
	Peer-to-Peer Applications
	Comparison of Distributed Approaches

	Peer-to-Peer Applications
	Mesh Networks
	Resolving Peer Meshes
	Message Flooding Versus Directional Messaging

	Creating Peer-to-Peer Applications
	netPeerTcpBinding

	Resolving Peers Using PNRP
	PNRP Bootstrap Process
	Windows Internet Computer Names
	PnrpPeerResolver
	Mesh Authentication

	Registering Names Using PNRP
	System.Net.Peer

	Implementing a Custom Peer Resolver
	Limiting the Number of Hops for a Message
	Collaboration Using Windows Vista
	People Near Me
	Windows Contacts
	Invitations
	System.Net.PeerToPeer.Collaboration

	Directional Messaging Using Custom Binding

	13 Programmable Web
	All About the URI
	The Ubiquitous GET
	Format Matters
	Web Programming with WCF

	URI and UriTemplates
	Building URIs
	Parsing URIs

	Creating Operations for the Web
	Hosting Using WebHttpBinding

	Using WebGet and WebInvoke
	WebGet
	WebInvoke

	Programming the Web with AJAX and JSON
	ASP.NET AJAX Integration

	Using the WebOperationContext
	Hosting for the Web
	WebScriptServiceHost
	WebScriptServiceHostFactory

	Content Syndication with RSS and ATOM

	Appendix: Advanced Topics
	Publishing Metadata Endpoints
	mexHttpBinding
	mexNamedPipeBinding
	mexTcpBinding
	mexHttpsBinding

	Creating Clients from Metadata
	Creating Silverlight Clients from Metadata
	Sharing Ports Between Services
	Configuring Service Quota Settings
	Configuring HTTP Connections
	Recycling Idle Connections
	Adjusting Connection Lifetime
	Disabling HTTP Keep-Alives
	Increasing Number of Connections

	Configuring TCP Connections
	Recycling Idle Connections
	Adjusting Connection Lifetime
	Increasing Number of Connections

	Using LINQ with WCF
	Exposing LINQ-to-SQL Entities

	Index
	A
	B
	C
	D
	E
	F
	G–H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V–W
	X–Z

	Microsoft .NET Development Series

