Praise for Essential Windows Communication Foundation

“Resnick, Crane, and Bowen have surveyed the essence of Microsoft’s Web services
platform. Whether this is the first time or the fifty-first time you're using WCEF, you’ll
learn something new by reading this book.”

—Nicholas Allen, Program Manager, Web Services, Microsoft

“As developers, we are constantly called upon to be ‘instant experts’ in many areas.
When the time comes for you to begin working with distributed systems develop-
ment and messaging in the new Microsoft .NET 3.x world, you find yourself con-
fronted by the new 800-pound gorilla called Windows Communication Foundation
(WCEF). This is the book you want sitting on your desk when that day comes.”

—Ron Landers, Senior Technical Consultant, IT Professionals, Inc.

“Designing and writing distributed applications was one of the most complex and
frustrating challenges facing .NET developers and architects. What technologies do
you pick? There were so many choices and so little coding time. Windows Com-
munication Foundation (WCF) solves this problem as the single unified platform
to build distributed applications for .NET. Like any distributed system, WCF has a
lot of choices and possibilities. This book provides an easy-to-digest approach that
answers the spectrum of choices with real-world explanations and examples. Start-
ing with the basics of WCF and building from there, this book answers the how you
can use WCF today. It's a must-read for application developers and architects build-
ing any type of distributed application.”

—Thom Robbins, Director of .NET Platform Product Management, Microsoft

“Essential Windows Communication Foundation (WCF) is a truly comprehensive
work that presents the technology in a clear, easy to read, yet comprehensive man-
ner. The book will be an invaluable asset for both the advanced reader and new-
comer to WCE.”

—Wiilly-Peter Schaub, Technology Specialist,
Barone, Budge, and Dominick Ltd., Microsoft MVP

“It’s clear the authors drew on years of distributed applications development to dis-
till and present the essence of WCEFE. The result is a book full of practical informa-
tion designed to save you time and guide you on your WCF project. The chapter on
diagnostics alone will save you hours of troubleshooting and frustration. Highly
recommended.”

—Yasser Shohoud, Technical Director, Microsoft Technology Center, Dallas

This page intentionally left blank

Essential
Windows
Communication
Foundation

Microsoft .NET Development Series

John Montgomery, Series Advisor
Don Box, Series Advisor
Brad Abrams, Series Advisor

The Microsoft .NET Development Series is supported and developed by the leaders and experts of
Microsoft development technologies including Microsoft architects. The books in this series provide a core
resource of information and understanding every developer needs in order to write effective applications
and managed code. Learn from the leaders how to maximize your use of the .NET Framework and its

programming languages.

Titles in the Series

Brad Abrams, .NET Framework Standard Library
Annotated Reference Volume 1: Base Class Library and
Extended Numerics Library, 0-321-15489-4

Brad Abrams and Tamara Abrams, .NET Framework
Standard Library Annotated Reference, Volume 2: Networking
Library, Reflection Library, and XML Library, 0-321-19445-4

Chris Anderson, Essential Windows Presentation Foundation
(WPF), 0-321-37447-9

Keith Ballinger, .NET Web Services: Architecture and
Implementation, 0-321-11359-4

Bob Beauchemin and Dan Sullivan, A Developer’s Guide to
SQL Server 2005, 0-321-38218-8

Don Box with Chris Sells, Essential .NET, Volume 1:
The Common Language Runtime, 0-201-73411-7

Keith Brown, The .NET Developer’s Guide to Windows
Security, 0-321-22835-9

Eric Carter and Eric Lippert, Visual Studio Tools for Office:
Using C# with Excel, Word, Outlook, and InfoPath,
0-321-33488-4

Eric Carter and Eric Lippert, Visual Studio Tools for
Office: Using Visual Basic 2005 with Excel, Word, Outlook,
and InfoPath, 0-321-41175-7

Mahesh Chand, Graphics Programming with GDI+,
0-321-16077-0
Steve Cook, Gareth Jones, Stuart Kent, Alan Cameron

Wills, Domain-Specific Development with Visual Studio
DSL Tools, 0-321-39820-3

Krzysztof Cwalina and Brad Abrams, Framework Design
Guidelines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries, 0-321-24675-6

Len Fenster, Effective Use of Microsoft Enterprise Library:
Building Blocks for Creating Enterprise Applications and
Services, 0-321-33421-3

Sam Guckenheimer and Juan J. Perez, Software
Engineering with Microsoft Visual Studio Team System,
0-321-27872-0

Anders Hejlsberg, Scott Wiltamuth, Peter Golde, The C#
Programming Language, Second Edition, 0-321-33443-4
Alex Homer and Dave Sussman, ASP.NET 2.0 Illustrated,
0-321-41834-4

Joe Kaplan and Ryan Dunn, The .NET Developer’s Guide to
Directory Services Programming, 0-321-35017-0

Mark Michaelis, Essential C# 2.0, 0-321-15077-5

James S. Miller and Susann Ragsdale, The Common
Language Infrastructure Annotated Standard, 0-321-15493-2

Christian Nagel, Enterprise Services with the NET
Framework: Developing Distributed Business Solutions
with .NET Enterprise Services, 0-321-24673-X

Brian Noyes, Data Binding with Windows Forms 2.0:
Programming Smart Client Data Applications with .NET,
0-321-26892-X

Brian Noyes, Smart Client Deployment with ClickOnce:
Deploying Windows Forms Applications with ClickOnce,
0-321-19769-0

Fritz Onion with Keith Brown, Essential ASPNET 2.0,
0-321-23770-6

Fritz Onion, Essential ASPNET with Examples in C#,
0-201-76040-1

Fritz Onion, Essential ASPNET with Examples in Visual
Basic .NET, 0-201-76039-8

Scott Roberts and Hagen Green, Designing Forms

for Microsoft Office InfoPath and Forms Services 2007,
0-321-41059-9

Dr. Neil Roodyn, eXtreme .NET: Introducing eXtreme
Programming Techniques to .NET Developers, 0-321-30363-6
Chris Sells and Michael Weinhardt, Windows Forms 2.0
Programming, 0-321-26796-6

Dharma Shukla and Bob Schmidt, Essential Windows
Workflow Foundation, 0-321-39983-8

Guy Smith-Ferrier, .NET Internationalization:

The Developer’s Guide to Building Global Windows

and Web Applications, 0-321-34138-4

Will Stott and James Newkirk, Visual Studio Team System:
Better Software Development for Agile Teams, 0-321-41850-6
Paul Vick, The Visual Basic .NET Programming Language,
0-321-16951-4

Damien Watkins, Mark Hammond, Brad Abrams,
Programming in the NET Environment, 0-201-77018-0
Shawn Wildermuth, Pragmatic ADO.NET: Data Access
for the Internet World, 0-201-74568-2

Paul Yao and David Durant, .NET Compact Framework
Programming with C#, 0-321-17403-8

Paul Yao and David Durant, .NET Compact Framework
Programming with Visual Basic .NET, 0-321-17404-6

For more information go to www.informit.com/msdotnetseries/

www.informit.com/msdotnetseries/

- Essential

=" Windows
Communication

Foundation

For .NET Framework 3.5

Steve Resnick
Richard Crane
Chris Bowen

vv Addison-Wesley

Upper Saddle River, NJ ¢ Boston ¢ Indianapolis ¢ San Francisco
New York e Toronto ® Montreal * London ¢ Munich e Paris

Madrid ¢ Cape Town ¢ Sydney ¢ Tokyo ¢ Singapore ¢ Mexico City

Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark
claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the
preparation of this book, but make no expressed or
implied warranty of any kind and assume no respon-
sibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection
with or arising out of the use of the information or pro-
grams contained herein.

The publisher offers excellent discounts on this book
when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or
custom covers and content particular to your business,
training goals, marketing focus, and branding inter-
ests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data:

Resnick, Steve.

Essential Windows Communication Foundation

(WCEF) / Steve Resnick, Richard Crane, Chris Bowen.
p- cm.

Includes index.

ISBN 0-321-44006-4 (pbk. : alk. paper) 1. Applica-
tion software—Development. 2. Microsoft Windows
(Computer file) 3. Web services. 4. Microsoft .NET.
1. Crane, Richard. II. Bowen, Chris. III. Title.

QA76.76.A65R46 2008

005.2'768—dc22

2007049118

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of
America. This publication is protected by copyright,
and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, record-
ing, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671 3447

ISBN-13: 978-0-321-44006-8

ISBN-10: 0-321-44006-4

Text printed in the United States on recycled paper at
Courier in Stoughton, Massachusetts.

First printing, February 2008

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Joan Murray

Development Editors
Sheri Cain
Chris Zahn

Managing Editor
Gina Kanouse

Project Editor
Betsy Harris

Copy Editor
Barbara Hacha

Indexer
Tim Wright

Proofreader
Paula Lowell

Technical Reviewers
Nicholas Allen

Jeff Barnes

Keith Brown

Tom Fuller

John Justice

Ron Landers

Steve Maine
Willy-Peter Schaub
Sowmy Srinivasan

Publishing Coordinator

Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
Nonie Ratcliff

http://www.informit.com/onlineedition

To my parents for pointing me in the right direction, to Zamaneh for making
the journey so sweet, and to Noah and Hannah for showing me the future.
—Steve

Dedicated to my loving wife, Nicki, my son, Matthew, and my daughter,
Charlotte. Thank you for your support and understanding. I love you all
very much and look forward to spending more time together.
—Rich

Thank you to my wife, Jessica, and my daughters, Deborah and Rachel, for
their love and understanding as I again devoted long nights and weekends
to research and writing. We have a book we can be proud of, but now I'm
going to enjoy catching up on that missed family time.

—Chris

This page intentionally left blank

Contents

Foreword XX0
Preface xxvii
Acknowledgments XXXiii
1 Basics 1
Why WCF Matters 1
Introduction 3
Implementing a WCF Service 6
Just the ABCs 7
Writing a WCF Service Entirely in Code 7
Writing a Service with Code and Configuration Files 10
More on Configuration Files 12
More on Service Hosting 13
Exposing the Metadata Exchange (MEX) Endpoint 14
Implementing a Client for a WCF Service 18
Writing a WCF Client Entirely in Code 18
Writing a Client with Code and Configuration 19
Hosting a Service in IIS 23
Discussion 23
Hosting a Service in IIS in Three Steps 24
Implementing a WCF Client for an ASMX Service 27
Tools Support 27

Generating Client Proxy Class and Configuration Files 28

Contents

2 Contracts 33
Service Contracts 37
Synchronous Request-Response Operations 38
Asynchronous Request-Response Operations 41
One-Way Operations 44
Duplex Operations 46
Multiple Contracts and Endpoints in a Service 54
Names of Operations, Types, Actions, and Namespaces in WSDL 57
Data Contracts 60
Defining XML Schema for a .NET Class 62
Defining Class Hierarchies 65
Exposing Additional Types in WSDL with KnownTypes 67
Versioning Data Contracts 72
Data Contract Equivalence 75
Working with Collections 76
Message Contracts 78
Typed Messages 79
Untyped Messages 82
Using SOAP Headers with Untyped Messages 85

3 Channels 91
Channel Shapes 94
One-Way Communication Pattern 94
Duplex Communication 95
Request-Reply Communication 97
Shape Changing 98
Operation Contract and Channel Shapes 99
Channel Listeners 101
Channel Factories 102
ChannelFactory<> 104
ICommunicationObject 105
4 Bindings 111
Choosing an Appropriate Binding 116

Sample Application 119

Contents

Cross-Machine Communication Between .NET Applications

netTcpBinding

Local Machine Communication Between .NET Applications

netNamedPipeBinding
Communication Using Basic Web Services
basicHttpBinding
Communication Using Advanced Web Services
wsHttpBinding
ws2007HttpBinding
wsDualHttpBinding
Comparing Binding Performance and Scalability
Communication Using Queued Services
netMsmqBinding
msmaqlntegrationBinding
Creating a Custom Binding
User-Defined Bindings
Binding Elements
Transports
Encoders
Security
Transport Upgrades/Helpers
Shape Change
Other Protocols
Exposing a Service Contract over Multiple Bindings

Behaviors
Concurrency and Instancing (Service Behavior)
Default Concurrency and Instancing with Sessionless Binding
Multithreading a Single Instance
Implementing a Singleton
Session-Level Instances
Controlling the Number of Concurrent Instances
Controlling the Number of Concurrent Calls
Controlling the Number of Concurrent Sessions

Exporting and Publishing Metadata (Service Behavior)

123
123
127
128
131
132
135
137
140
143
152
154
155
165
168
171
171
172
173
174
175
176
177
177

181
184
187
189
190
193
195
199
201
204

Xl

X

Contents

Implementing Transactions (Operation Behavior)
Transactional Operations Within a Service
Flowing Transactions Across Operations
Choosing a Transaction Protocol—OleTx or WS-AT
Transaction Service Behaviors

Implementing Custom Behaviors
Implementing a Message Inspector for Service Endpoint Behavior
Exposing a Parameter Inspector for Service Operation Behavior
as an Attribute
Exposing a Service Behavior Through Configuration

Security Behaviors

Serialization and Encoding
Serialization Versus Encoding
Comparing WCF Serialization Options
DataContractSerializer
NetDataContractSerializer
XmlSerializer
DataContract]sonSerializer
Choosing a Serializer
Preserving References and Cyclical References
Sharing Type with the NetDataContractSerializer
Roundtrip Serialization Using IExtensibleDataObject
Serializing Types Using Surrogates
Streaming Large Data
Using the XmlSerializer for Custom Serialization
Custom XmlSerialization Using Attributes
Custom XmlSerialization Using IXmlSerializable
Choosing an Encoder
Text Versus Binary Encoding
Sending Binary Data Using MTOM Encoding
Getting to Know the WebMessageEncoder

Hosting
Hosting a Service in Windows Process Activation Services
Hosting a Service in IIS 7

207
208
215
221
223
224
227

230
233
237

241
241
243
243
247
249
252
254
254
260
264
270
276
277
278
279
281
282
283
284

287
288
292

Contents m X

Enabling ASMX Features in an IIS-Hosted Service 294
Self-Hosting 301
Self-Hosting in a Managed Windows Service 302
Hosting Multiple Services in One Process 305
Defining Service and Endpoint Addresses 308
Security 315
WCF Security Concepts 316
Authentication 316
Authorization 316
Confidentiality 317
Integrity 317
Transport and Message Security 317
Certificate-Based Encryption 319
Concepts 319
Setup 320
Transport-Level Security 322
Encryption Using SSL 323
Client Authentication 327
Service Identity 332
Message-Level Security 334
Authenticating with wsHttpBinding 335
Securing Services with Windows Integrated Security 340
Section Examples Introduction 341
Authenticating Users with Windows Credentials 343
Authorizing Users with Windows Credentials 346
Authorization Using AzMan 348
Impersonating Users 353
Securing Services over the Internet 358
ASP.NET Integration 360
Authentication Using Membership Providers 361
Role-Based Authorization Using Role Providers 364
Using Forms Authentication 366

Logging and Auditing 371

Xiv

9

10

Contents

Diagnostics
Sample WCF Application
Tracing
End-to-End Tracing
Activities and Correlation
Enabling Tracing
Verbosity Recommendations
Message Logging
Enabling Message Logging
Additional Configuration Options
Shared Listeners
Message Filters
Trace Source Auto Flushing
Performance Counters
Windows Management Instrumentation (WMI)
Using the Service Configuration Editor
Tracing Options
Logging Options
Configuring Sources
Configuring Listeners
Service Trace Viewer
Activity View
Project View
Message View
Graph View
Analyzing Logs from Multiple Sources
Filtering Results

Exception Handling
Introduction to WCF Exception Handling
WCF Exception Communication via SOAP
Unhandled Exception Example
Detecting and Recovering a Faulted Channel
Communicating Exception Details
Managing Service Exceptions with FaultException
Using FaultCode and FaultReason to Extend FaultException

375
376

376
377
378
379
381
381
381
383
384
384
385
386
387
387
389
389
390
391
393
393
395
395
395
397
400

403
404
404
405
408
409
411
412

11

12

Limitations of Basic FaultExceptions

Creating and Consuming Strongly Typed Faults
Declaring Fault Definitions with FaultContract
Defining a FaultContract

Throwing a FaultException<> with a Defined FaultContract

Fault Contract Strategies
Implementing Client Fault Handlers
Error-Handling Application Block

Exception Shielding

Workflow Services
Integration Points
Calling a WCF Service from WF
Using a Send Activity
Writing a Custom Activity
Exposing a Service from WF
Define the Interface
Receive Activity
Configuration in app.config
Hosting a Service-Enabled Workflow
Self-Hosting a Service-Enabled Workflow
Hosting a Service-Enabled Workflow in IIS
Correlation and Durable Services
Long-Running Workflow
Handling the Context
Persisting Workflow State on the Server
Controlling Access to Service-Enabled Workflows
Declarative Access Control

Programmatic Access Control

Peer Networking
Approaches to Building Distributed Applications
Client/Server Applications
N-Tier Applications
Peer-to-Peer Applications
Comparison of Distributed Approaches

414
415
415
417
418
419
419
420
421

423
424
426
427
430
433
434
435
439
441
442
443
444
445
450
452
454
455
455

459
459

460
460
461
462

XV

Xvi

13

Contents

Peer-to-Peer Applications
Mesh Networks
Resolving Peer Meshes
Message Flooding Versus Directional Messaging
Creating Peer-to-Peer Applications
netPeerTcpBinding
Resolving Peers Using PNRP
PNRP Bootstrap Process
Windows Internet Computer Names
PnrpPeerResolver
Mesh Authentication
Registering Names Using PNRP
System.Net.Peer
Implementing a Custom Peer Resolver
Limiting the Number of Hops for a Message
Collaboration Using Windows Vista
People Near Me
Windows Contacts
Invitations
System.Net.PeerToPeer.Collaboration
Directional Messaging Using Custom Binding

Programmable Web
All About the URI
The Ubiquitous GET
Format Matters
Web Programming with WCF
URI and UriTemplates
Building URIs
Parsing URIs
Creating Operations for the Web
Hosting Using WebHttpBinding
Using WebGet and WebInvoke
WebGet
Weblnvoke

462
462
464
464
465
465
468
469
469
470
471
471
472
474
478
480
481
482
483
485
492

503
504
506
507
507
508
509
510
511
512
514
514
514

Contents B Xvi

Programming the Web with AJAX and JSON 516
ASP.NET AJAX Integration 516
Using the WebOperationContext 523
Hosting for the Web 530
WebScriptServiceHost 530
WebScriptServiceHostFactory 530
Content Syndication with RSS and ATOM 531
AppenDIX Advanced Topics 537
Publishing Metadata Endpoints 537
mexHttpBinding 538
mexNamedPipeBinding 538
mexTepBinding 538
mexHttpsBinding 539
Creating Clients from Metadata 539
Creating Silverlight Clients from Metadata 541
Sharing Ports Between Services 542
Configuring Service Quota Settings 543
Configuring HTTP Connections 545
Recycling Idle Connections 546
Adjusting Connection Lifetime 546
Disabling HTTP Keep-Alives 547
Increasing Number of Connections 549
Configuring TCP Connections 549
Recycling Idle Connections 549
Adjusting Connection Lifetime 550
Increasing Number of Connections 550
Using LINQ with WCF 550
Exposing LINQ-to-SQL Entities 550

Index 553

This page intentionally left blank

Figures

FIGURE 1.1: Communication between client and service 4

FIGURE 1.2: Communication between client and service endpoints 5

FIGURE 1.3: Hosting a service 6

FIGURE 1.4: Obtaining metadata through MEX endpoint 15

FIGURE 1.5: Visual Studio generating client proxy class and configuration file 21

FIGURE 2.1: High-level translation of code artifacts to WSDL 37

FIGURE 2.2: High-level translation of code syntax to WSDL 38

FIGURE 2.3: Synchronous request-response communication 38

FIGURE 2.4: Specifying asynchronous methods in Add Service Reference 42
FIGURE 2.5: Asynchronous request-response communication 43

FIGURE 2.6: Duplex communication 47

FIGURE 2.7: High-level translation of code artifacts to XSD 61

FIGURE 2.8: High-level translation of code syntax to XSD 62

FIGURE 2.9: Specifying message contracts in Add Service Reference 80

FIGURE 3.1: Channel stack 93

FIGURE 3.2: One-way communication 95

FIGURE 3.3: Duplex communication 96

FIGURE 3.4: Request-reply communication 97

FIGURE 3.5: [CommunicationObject state diagram 107

Xix

XX Figures

FIGURE 4.1: Binding Explorer 115
FIGURE 4.2: Selecting a binding 118
FIGURE 4.3: Average response time 153
FIGURE 4.4: Operations per second 153
FIGURE 4.5: Cost per operation 154

FIGURE 5.1: Behavior elements 183
FIGURE 5.2: Output from default InstanceContextMode and ConcurrencyMode with
sessionless binding 189
FIGURE 5.3: Output from InstanceContextMode.Single and ConcurrencyMode.
Multiple 191
FIGURE 5.4: Output from singleton: InstanceContextMode.Single and
ConcurrencyMode.Single 192
FIGURE 5.5: Output from session-aware service 196
FIGURE 5.6: Output controlling the number of concurrent instances 199
FIGURE 5.7: Output controlling the number of concurrent calls 202
FIGURE 5.8: Output controlling the number of concurrent sessions 204
FIGURE 5.9: ACID transaction within an operation 209
FIGURE 5.10: Output from transactional service showing local and distributed
transaction IDs 214
FIGURE 5.11: Output from optimized transactional service 215
FIGURE 5.12: Transaction that spans service boundaries 216
FIGURE 5.13: Output from two transactional services coordinated in a single
transaction 221
FIGURE 5.14: Interfaces for building custom behaviors on the client 225
FIGURE 5.15: Interfaces for building custom behaviors on the server 225

FIGURE 6.1: XML Information Set 242
FIGURE 6.2: XSD types 244

FIGURE 7.1: WAS architecture 289

FIGURE 7.2: Enabling Windows Process Activation Services 290
FIGURE 7.3: Enabling WCF non-HTTP activation 290

FIGURE 7.4: IS implemented on WAS 293

FIGURE 7.5: Service control manager 305

FIGURE 7.6: Viewing address and binding from a running service 311

FIGURE 8.1:
FIGURE 8.2:
FIGURE 8.3:
FIGURE 8.4:
FIGURE 8.5:
FIGURE 8.6:
FIGURE 8.7:
FIGURE 8.8:

FIGURE 9.1:
FIGURE 9.2:
FIGURE 9.3:
FIGURE 9.4:
FIGURE 9.5:
FIGURE 9.6:
FIGURE 9.7:
FIGURE 9.8:
FIGURE 9.9:
FIGURE 9.10:
FIGURE 9.11:
FIGURE 9.12:
FIGURE 9.13:

FIGURE 10.1:
FIGURE 10.2:
FIGURE 10.3:

FIGURE 11.1:
FIGURE 11.2:
FIGURE 11.3:
FIGURE 11.4:
FIGURE 11.5:
FIGURE 11.6:
FIGURE 11.7:
FIGURE 11.8:

Figures =

Configuring I1IS 7 for SSL 324

Services over corporate LAN with Windows application 341
Configuring an XML Authorization store 349

Creating a role definition with Authorization Manager 350
Authorization Manager showing example configuration 351
Services over Internet with Windows application 359
Sample Internet application 359

Services over Internet with Web application 367

Tracing and MessageLogging enabled 388

Advanced Message Logging settings 389

Message Logging XPath Filter 390

Trace Source settings 391

Listener settings 392

Detailed listener configuration 392

Service Trace Viewer with client trace and message logs 394
Service Trace Viewer Message view 396

Service Trace Viewer Graph view 396

Service Trace Viewer with service and client logs loaded 398
Service Trace Viewer graph of activity transfer 399

Service Trace Viewer with expanded subtract call activity 400

Creating a custom filter in the Service Trace Viewer 401

FaultException returned by calling service with zero denominator 407
CommunicationObjectFaultedException for faulted channel 407
Exception detail included with ServiceDebugBehavior 410

WEF behaviors 426

Adding a Send activity to a workflow design surface 428
Proxy type was imported so an operation can be chosen 429
Binding WF variable to service operation parameters 430
Using a custom activity in a workflow 433

Adding a Receive activity to the workflow design surface 436
Entering or importing an interface for a Receive activity 437

Binding operation contract parameters to workflow variables 438

XXI

XX

Figures

FIGURE 11.9:
FIGURE 11.10:
FIGURE 11.11:
FIGURE 11.12:

FIGURE 11.13:

FIGURE 11.14:

FIGURE 12.1:
FIGURE 12.2:
FIGURE 12.3:
FIGURE 12.4:
FIGURE 12.5:
FIGURE 12.6:
FIGURE 12.7:
FIGURE 12.8:
FIGURE 12.9:
FIGURE 12.10:
FIGURE 12.11:
FIGURE 12.12:
FIGURE 12.13:
FIGURE 12.14:
FIGURE 12.15:

FIGURE 13.1:
FIGURE 13.2:
FIGURE 13.3:

FIGURE A.1:
FIGURE A.2:
FIGURE A.3:

Workflow exposing one Receive activity 439

Composite Receive activity in a long-running workflow 446
Completing a long-running workflow 448

One client maintaining context with multiple calls to a
workflow instance 451

Multiple clients maintaining context with multiple calls to a
workflow instance 452

Declarative authorization within a Receive activity 456

Client/server model 460

Three-tier model 461

Peer model with three nodes 461

Fully connected mesh 463

Partially connected mesh 464

Windows Internet Computer Name (WICN) 470
Number of hops across connected nodes 479
People Near Me Control Panel 481

Allow invitations 482

Windows Contacts 482

Windows Contact Properties 483

Windows Meeting Space invitation 484
Windows Meeting Space invitation details 484
Peer Chat sample application 485

Enabling Teredo using NetSh 500

Response in browser using WebHttpBinding binding 514
XBOX 360 Game Review AJAX-enabled application 517
Wallpaper Web application 524

Starting Net.Tcp Port Sharing Service from command line 543

IIS 7.0 settings for HTTP Keep-Alives 548
LINQ-to-SQL Object Relational Designer 551

Tables

TABLE 1.1: Options for Generating Proxy Class and Configuration File 28

TaBLE 2.1: WSDL Elements 35

TABLE 2.2: Paired One-Way Versus Duplex Contracts for Bidirectional
Communication 48

TABLE 2.3: WCF Attributes That Override Default WSDL Names 58

TABLE 3.1: Channel Shapes Based on OperationContract Attributes 100

TABLE 4.1: WCF Communication Bindings in .NET Framework 3.5 112
TABLE 4.2: Supported Features of Each Binding 117
TABLE 4.3: netIcpBinding Binding Properties 124
TABLE 4.4: netNamedPipeBinding Binding Properties 129
TABLE 4.5: basicHttpBinding Binding Properties 133
TABLE 4.6: WS-* Specifications Supported by the wsHttpBinding Binding 136
TABLE 4.7: wsHttpBinding Binding Properties 137
TABLE 4.8: WS-* Specifications Supported by the ws2007HttpBinding
Binding 140
TABLE 4.9: ws2007HttpBinding Binding Properties 141
TABLE 4.10: wsDualHttpBinding Binding Properties 144
TABLE 4.11: netMsmqBinding Binding Properties 156
TABLE 4.12: msmqlntegrationBinding Binding Properties 166

TaBLE 5.1: Combining InstanceContextMode and ConcurrencyMode 186
TABLE 5.2: Interaction of TransactionFlow elements 217

xXiii

XXIV

Tables

TABLE 7.1:
TABLE 7.2:

TABLE 8.1:

TABLE 9.1:
TABLE 9.2:

TABLE 12.1:

TABLE 13.1:
TABLE 13.2:
TABLE 13.3:

TABLE A.1:

Settings for Enabling ASMX Features in a WCF Service
Hosting Choices 312

Client Authentication with Transport Security 328

Tracing Source switchValue Options 380
messageLogging Options 383

netPeerTcpBinding Binding Properties 466

URI Examples 505
Common HTTP Verbs 506

Web Programming Features in .NET Framework 3.5 508

ServiceThrottlingBehavior Properties 544

296

Foreword

I’'M WRITING THIS foreword in December of 2007, a little more than a year
after the first release of Windows Communication Foundation hit the
streets as part of NET Framework 3.0 and less than a month after we
shipped significant additions to the platform as part of NET Framework
3.5. Saying there’s a lot to absorb in those two releases is something of an
understatement.

One of the goals of WCF was to unify the programming experience for
building all types of distributed applications on the Microsoft platform. We
wanted a core set of concepts that were simple and approachable, yet
expressive enough to model the underlying semantics of all the technologies
we intended to replace. The Microsoft stacks that came before us (ASMX,
Remoting, COM+, MSMQ), and WSE) had strong benefits as well as signifi-
cant limitations; our mission was to leverage ideas that had worked well in
the past and learn from those that didn’t. If we succeeded, developers would
be able to write many different types of distributed applications without
having to learn many different (and often wildly discontinuous) program-
ming models.

To make the vision of a unified developer experience successful in the
real world, we needed a highly flexible runtime architecture that matched
the richness of the programming model. Key areas of variability had to be
identified and isolated into generalized extensibility mechanisms to avoid
unnecessarily restricting the capabilities of our new platform. Our goal
with the runtime was to make sure that, if our default behavior didn’t meet
the needs of a particular application or we lacked a feature required by a

XXVI

Foreword

specific scenario, there would be a natural point in the runtime into which
an external developer could plug some customization to address the issue.

The most exciting part about WCF for me is the amazing breadth of sce-
narios to which this technology can be applied. Nothing demonstrates that
more concretely than the feature set we delivered in .NET 3.5. This release
had two parallel thrusts covering very different types of distributed appli-
cation scenarios. One thrust was about integrating WCF with the power of
Windows Workflow Foundation to provide a substrate for long-running,
declarative, connected business processes. The other thrust was about
extending the reach of WCF to address the needs of today’s evolving Web.
Both of these scenarios impose unique requirements on the runtime and
programming model, and the fact that we were able to address these
requirements via extensions to WCF without requiring significant changes to
the existing implementation is a strong indicator that the WCF architecture
will be able to address the evolving needs of distributed applications for a
long time to come.

Now that we’re a year out from shipping our first bits, it’s exciting to see
real customers make big bets on our platform. It’s more exciting to hear
about the gains they see in the areas of developer productivity, perform-
ance, and interoperability as a result of betting on WCF. We judge the suc-
cess of our platform first and foremost by the success of our customers, and
by that metric WCF will be a very successful platform indeed.

Really, this is all just a long-winded way of saying that the time you
invest in learning WCEF is well spent. To that end, you're very lucky to be
holding this book in your hands right now. Rich, Chris, and Steve have
done a fantastic job distilling the broad story of WCF down to the essential
elements required to be productive on our platform. The authors” unique
combination of technical acumen, field experience, and close relationship
with the product team has yielded a book that will undoubtedly hold a dis-
tinguished place on every WCF developer’s bookshelf. I'm incredibly
happy to have these guys telling the technical story of our product. By the
end of this book, I'm sure you'll feel the same way.

Steve Maine
Seattle, Washington
December 2007

Preface

WINDOWS COMMUNICATION FOUNDATION (WCF) is the unified pro-
gramming model for writing distributed applications on the Microsoft plat-
form. It subsumes the prior technologies of ASMX, .NET Remoting,
DCOM, and MSMQ and provides an extensible API to meet a wide variety
of distributed computing requirements. Prior to WCF, you needed to mas-
ter each of those technologies to select the right approach for a particular
distributed application requirement. WCF simplifies this considerably by
providing a unified approach.

XML Web Services is the most common technique for distributed com-
puting in modern applications. They’re used to expose technical and busi-
ness functions on private or public networks. Sometimes they use the
SOAP specification, sometimes they don’t. They typically transmit infor-
mation as text documents containing angle brackets, but not always. They
generally use HTTP for the transport, but again, not always. WCF is a
framework for working with XML Web Services and is compatible with
most technology stacks.

Rich, Chris, and I have each developed code with .NET from the begin-
ning (circa 1999). We work at Microsoft in the field, helping customers use
WCF to solve real-world problems. Our customers range from large multi-
national corporations to ISVs to Web startups. Each has different chal-
lenges, needs, and priorities that we individually address. We show them
what’s possible, recommend what works well, and steer clear of what
doesn’t. We have experience building distributed applications and leverage
that experience in teaching others about WCF.

XXvii

XXVII

Preface

Our goal for this book is to present WCF in a way that can immediately
be put to use by software developers. We cover the material in enough
detail that you know how and why to use different features. We go a bit fur-
ther in most cases, describing some of the subtleties in the framework, but
not so far as to document the APL

The Blogosphere is rich with WCF details. Much of it comes from the
NET product team and much of it comes from other developers learning it
along the way. We made extensive use of blogs as source material. This book
brings order to that repository by organizing it in a way that can be easily
consumed from your desk, sofa, or wherever you do your best reading.

Who Should Read This Book?

We wrote this book for software developers who want to build distributed
applications on the .NET platform. As fellow developers, we know the
importance of solid advice and clear examples on how to use new technol-
ogy. We've trolled the Blogosphere, scoured internal Microsoft e-mail
aliases, and wrote plenty of code to provide you with the best examples for
doing the things you need to do.

Architects who need to understand WCF will also benefit from this
book. The chapters covering basics, bindings, channels, behaviors, hosting,
workflow, and security describe important aspects of designing and imple-
menting services with WCE. Reading the two- to three-page introductions
in each of these chapters may be the best way to get the 50,000-foot view of
the technology.

Our goal in writing this book is to shorten your learning curve for WCFE.
We describe and demonstrate how to do the common tasks, addressing the
basics as well as advanced topics. Throughout the book, we approach top-
ics as a series of problems to be solved. Rather than documenting the AP],
we describe how to use WCF to accomplish your goals.

Prerequisites for this book are modest. If you're interested in WCE, you
probably already have grounding in .NET. You're probably competent in
C# or Visual Basic, or at least you were at one point. And, of course, you
probably know your way around Visual Studio. So we’re assuming that

Preface [

you can write decent .NET code and are motivated to make the best use of
your time in becoming proficient in WCFE.

Installation Requirements

WCEF is a key component of the Microsoft .NET Framework 3.x. WCF was
first released with .NET 3.0 and has been enhanced in .NET 3.5. The delta
between the two releases is modest: enhancements for non-SOAP Web
services, integration between WCF and WF, and a healthy service pack.
This book covers .NET 3.5. Unless there’s a reason to use an older release,
this is the clear recommendation.

NET is packaged in two forms: the redistributable runtime libraries and
the software development kit (SDK). The runtime libraries are meant for
target machines—those machines that are not for development. This
includes testing, staging, and production environments. The SDK is meant
for your development machines. The SDK contains code samples, docu-
mentation, and tools that are useful for development. Each of these .NET
packages, the runtime and SDK versions, can be downloaded from
Microsoft’s MSDN site at http://msdn2.microsoft.com/en-us/netframe-
work/default.aspx. The .NET 3.5 SDK also ships with Visual Studio 2008.

The Microsoft INET Framework 3.5 can be installed on Windows XP
SP2, Windows Vista, Windows Server 2003, and Windows Server 2008.

Organization

We don’t expect you to read the book cover to cover. If you're new to WCE,
you may want to read and try the samples in Chapter 1, “Basics,” first. Fol-
lowing that, each subsequent chapter covers a major feature set of WCFE. We
include a few introductory pages in each chapter to describe the motivation
and some design goals, and then we cover subtopics within the chapter.
Chapter 1, “Basics,” is where we cover the basics of building and con-
suming WCEF services. We discuss and demonstrate how to implement dif-
ferent types of interfaces and why you may choose each. By the end of this
chapter, you'll be able to produce and consume services using WCF.

XXIX

http://msdn2.microsoft.com/en-us/netframework/default.aspx
http://msdn2.microsoft.com/en-us/netframework/default.aspx

XXX

Preface

Chapter 2, “Contracts,” covers the three primary types of contacts in
WCF: service contracts, data contracts, and message contracts. Each of these
enables you to define complex structures and interfaces in code. Data con-
tracts map .NET types to XML, service contracts expose service interface
endpoints in WSDL that can be consumed in a cross-platform manner, and
message contracts enable developers to work directly on the XML in a mes-
sage, rather than working with .NET types. For each of these contracts,
WCF tools generate and export standards-based WSDL to the outside
world.

Chapter 3, “Channels,” covers channels and channel stacks. The channel
model architecture is the foundation on which the WCF communication
framework is built. The channel architecture allows for the sending and
receiving of messages between clients and services. Channel stacks can be
built to exactly match your needs.

Chapter 4, “Bindings,” describes how to configure the communication
stack to use exactly the protocols you need. For instance, if you're commu-
nicating within an enterprise and won’t be crossing firewalls, and you need
the fastest performance, a binding named netTcpBinding will give you best
results. If you're looking to communicate with every last Web client out
there, then HTTP and text encoded XML is necessary, so basicHttpBinding
is the way to go. A binding is synonymous with a preconfigured channel
stack.

Chapter 5, “Behaviors,” covers service behaviors. In WCF, behaviors are
the mechanism for affecting service operation outside of the actual message
processing. Everything that is done after a message is received but before
it is sent to the service operation code is the domain of behaviors. In WCE,
this is where concurrency and instance management is handled, as well as
transactional support. This chapter also demonstrates how to build custom
behaviors for additional service control.

Chapter 6, “Serialization and Encoding,” describes the process by which
data is serialized from a .NET Type (class) to an XML Infoset and the way that
XML Infoset is represented on the wire. We typically think of XML as a text
document with angle brackets around field names and values, but the XML
Infoset is a more basic data structure. This chapter discusses ways of con-
verting that structure into a format that can be exchanged over a network.

Preface [

Chapter 7, “Hosting,” describes the various options in hosting a WCF
service. The most common environment, IIS, is described, but it is by far not
the only option. WCF services can be hosted in Managed .NET applica-
tions, Windows Activation Services, or any other NET program. This chap-
ter discusses the options and techniques for hosting.

Chapter 8, “Security,” is a large chapter and covers the multitude of
security options. Different authentication schemes are discussed and
demonstrated. Transport- and message-level security are compared, with
examples of each. Intranet and Internet scenarios are also described.

Chapter 9, “Diagnostics,” describes how to use the built-in trace facilities
in .NET to capture WCF events. Trace Listeners are described, along with
examples that show how to configure the settings for different events. The
Trace Viewer, a powerful tool that is shipped with WCF, is also described,
which enables you to trace activities across service call boundaries.

Chapter 10, “Exception Handling,” offers practical guidance on han-
dling exceptions within WCFE. SOAP faults are described using fault con-
tracts, and examples demonstrate how to throw and catch them to
minimize errors.

Chapter 11, “Workflow Services,” covers the integration points between
WCF and Windows Workflow Foundation (WF) introduced in Visual Stu-
dio 2008 and .NET 3.5. We describe how to call WCF services from WF and
how to expose WF workflows in WCE.

Chapter 12, “Peer Networking,” shows how to build client-to-client
applications that leverage a network mesh to enable clients to find each
other. We cover mesh addressing and techniques for establishing point-to-
point connections after the client addressing is resolved.

Chapter 13, “Programmable Web,” covers how to use WCF for non-
SOAP Web Services. Examples are shown with Asynchronous JavaScript
and XML (AJAX) and JSON for simpler, JavaScript-friendly data formats.
The hosting classes specific to non-SOAP protocols are described. Like
WCF-WF integration, this is new with .NET 3.5.

Finally, the appendix, “Advanced Topics,” covers advanced topics that
we didn’t fit into other chapters. Rather than burying them somewhere
they don’t belong, we include them separately.

XXXI

XXX

m Preface

Because of the broad nature of the WCF subject, not all topics are
covered in equal depth. This book’s goal is to help developers be super
productive when working with WCEF. If we do our job, readers will use this
book as they learn the technology. This book does not attempt to document
WCF—that’s what the good tech writers at Microsoft have done with the
help files and MSDN. But a combination of that documentation and the
good guidance found in these pages should enable developers to quickly
and productively build robust applications with WCE.

": NOTE Code Continuation Arrows

When a line of code is too long to fit on one line of text, we have
wrapped it to the next line. When this happens, the continuation is pre-
ceded with a code-continuation arrow ().

Acknowledgments

IT TOOK THE efforts of many people to deliver this book. We started this
more than two years ago as “Indigo” entered its first public beta. Between
then and now, we built our samples, tested and revised them with each
update, and did it one last time with .NET 3.5 and Visual Studio 2008. In
addition to coding, we wrote the book that you're now holding in your
hands. But that’s the fun part in working with such rapidly changing
technology.

This book could not have been possible without great support from the
WCF product team and from other really smart people at Microsoft. Each
contributed by reviewing our words and code and setting us straight when
we veered off course. We’d like to thank the following people for their time,
thoughts, and patience: Wenlong Dong, Bill Evjen, Steve Maine, Doug
Purdy, Ravi Rao, Yasser Shohoud, and David Stampfli.

We’d also like to thank the technical reviewers, who read, commented,
argued, and ultimately made this a much better book. We’ve been fortunate
to have some of the top WCF experts on our side. So to our reviewers,
please accept this note of gratitude for your help: Nicholas Allen, Jeff
Barnes, Ron Landers, Sowmy Srinivasan, Tom Fuller, and Willy-Peter
Schaub. We’d like to offer a special thanks to John Justice, who helped nav-
igate the product team to find our reviewers. Also special thanks to Thom
Robbins, who taught us how to write in plain English.

XXXiii

XXXIV

Acknowledgments

We also must thank Liam Spaeth and the whole Microsoft Technology
Center team for supporting our effort. Ideas came from the worldwide
MTC team as a whole and from colleagues and customers at the Boston
MTC.

In addition to the Microsoft crowd, we also owe gratitude to Keith
Brown and Matt Milner at PluralSight for their thorough review of the secu-
rity and workflow material. These two topics are deep enough and new
enough that we greatly needed and benefited from their expertise.

And finally, the good folks at Addison-Wesley really pulled this
together. We might know how to code and how to write, but they know
how to make a book. So, thank you to Joan Murray, Betsy Harris, and team.

About the Authors

Steve Resnick has worked at Microsoft since the mid-1990s, spanning
architect, developer, and evangelist roles in the field. He specializes in Inter-
net technologies, architecting and designing high-volume, high-value Web
applications. Steve is the National Technology Director for the Microsoft
Technology Centers in the United States, where he sets strategy and direc-
tion so that his team can solve the toughest customer challenges. He has
worked with .NET since the beginning and is an expert in Web services,
BizTalk, transaction processing, and related technologies. He holds a M.S.
and B.S. in Computer Science from Boston University and University of
Delaware, respectively.

Rich Crane is a Technical Architect at the Microsoft Technology Center in
Waltham, Massachusetts. A software architect and engineer with more than
18 years of experience, Rich has spent the last six years helping customers
architect and build solutions on the Microsoft platform. He has worked
with numerous Microsoft products and technologies and is an expert in
BizTalk, SQL Server, SharePoint, Compute Cluster Server, and of course
Visual Studio and the NET Framework. He has spoken at conferences and
community events such as TechEd and Code Camp. He graduated Summa
Cum Laude from Drexel University with a B.S. degree in Electrical and
Computer Engineering.

XXXV

XXXVI

About the Authors

Chris Bowen is Microsoft’s Developer Evangelist for the northeastern
United States, specializing in development tools, platforms, and architec-
tural best practices. A software architect and engineer with 15 years of expe-
rience, Chris joined Microsoft after holding senior positions at companies
such as Monster.com, VistaPrint, Staples, and IDX Systems, and consulting
on Web presence and e-commerce projects with others. He is coauthor of
Professional Visual Studio 2005 Team System (2006, WROX) and holds an M.S.
in Computer Science and a B.S. in Management Information Systems, both
from Worcester Polytechnic Institute.

n 1

Basics

W INDOWS COMMUNICATION FOUNDATION (WCF) is all about ser-
vices. It’s about creating, hosting, consuming and securing them. It’s
about standards and interoperability. It’s about developer productivity. In
short, it’s all about putting distributed computing within reach of profes-
sional software developers.

In this chapter, we will cover the basic concepts you’ll need to under-
stand to work with WCF services. We'll focus on the most commonly used
features. By following the text and examples, you will be able to create and
consume services locally and across the network.

Why WCF Matters

Before going too far with the how of services, it’s important to understand
the why. So, why is WCF important? Simple—because services are the core
of the global distributed network, and WCEF is the easiest way to produce
and consume services on the Microsoft platform. By leveraging WCE,
developers can focus on their applications rather than on communication
protocols. It’s a classic case of technology encapsulation and tooling. Devel-
opers are more productive if their tools encapsulate (but not hide) technical
chores wherever possible. WCF, combined with Visual Studio 2008, does
just this.

2

Chapter 1: Basics

Modern application architecture takes devices, client software, and ser-
vices into account. There is no doubt that the model of the circa 1995 Web
site (host an application on a Web server and deliver the Ul via HTML to
any browser) will endure, but new models that combine local software with
Web services will also become common. Examples are the iPod, XBOX 360,
RSS, AJAX, Microsoft Office, and SharePoint and 3D immersive environ-
ments, where they each combine locally installed software and Web
services.

For consumer applications, the prevalent Web service interface circa
2008 is Representational Entity State Transfer (REST). This combines HTTP
and a good URI scheme for addressing XML-based data. Data manipula-
tion using REST typically mirrors the Create Read Update Delete (CRUD)
pattern, and simplicity is the hallmark of the REST protocol.

For business applications, the prevalent Web service interface circa 2008
is Simple Object Access Protocol (SOAP). This provides a more robust
model for exchanging complex data. SOAP messages contain an envelope
and body so they can be encrypted and securely routed around the Inter-
net. If the message is part of a logical session or transaction, semantics are
placed in the envelope and propagate along with the message. If the infor-
mation must be secured, the body of the message can be encrypted, with
security information placed in the envelope. SOAP messages are strongly
typed, which makes them developer friendly. Like REST, SOAP messages
circa 2008 are primarily transmitted over HTTP and encoded as text.

WCF is agnostic to protocol and message format. Chapter 2 of this book,
“Contracts,” describes services using SOAP message formats. Chapter 13,
“Programmable Web,” describes the same using REST protocols. Although
some subtle but important distinctions exist between the two, you'll see far
more similarities than differences in the programming model covered in the
remainder of the book.

Regardless of the wire protocol used, writing solid code requires solid
software engineering practices. Developers writing the code for business
transactions in a service, or compelling user experiences in a client, typi-
cally prefer not to work directly with XML. Why not? Because decades of

Introduction [

language research and compiler design have produced much better tools.
Working with objects, classes, and components produces more robust code
than laborious string manipulation in XML.

Developers building .NET applications use Visual Studio. WCF and
Visual Studio provide the tooling for implementing services. WCF has a
built-in model for hosting, so services can reside within IIS or in Managed
Services on Windows. It provides a rich threading and throttling model
where instancing is controlled with minimal effort. Whether defining a
singleton or a multithreaded service to handle simultaneous requests, the
programming model remains constant, and the developer is insulated (but
not obfuscated) from the details.

WCEF supports various message exchange patterns, such as request-
response, one-way, and duplex. Peer networking is also supported by
leveraging mesh networks and addressing so that clients can find and com-
municate with each other without a central control mechanism.

In summary, WCF matters because the modern applications are all
about services, and that’s what WCF is all about.

Introduction

As a comprehensive system for working with services, WCF comes with a
set of terms that you need to be familiar with to be productive. In most
cases, these terms don’t necessarily represent new concepts, but they pro-
vide a consistent taxonomy that we can use to discuss the new technology.

At its core, a service is a set of endpoints that provide useful capabilities
to clients. An endpoint is simply a resource on the network to which mes-
sages can be sent. Clients access these capabilities by sending messages to
the endpoints, formatted according to the contract agreed on by both the
client and the service. Services listen for messages on the address specified
by the endpoint and expect the message to arrive in a particular format. Fig-
ure 1.1 shows the basic relationship between client and service.

3

Chapter 1: Basics

WCF Client WCF Service

Py

FicUre 1.1 Communication between client and service

For the client to communicate meaningful information to the service, it
needs to know the ABCs: the address, the binding, and the contract.

e “A” is for address, the where. It defines where on the network mes-
sages should be sent so that the endpoint receives them. This is the
location to which messages must be sent by the client. For HTTP, the
address would look like http:/ /myserver/myservice/; for TCD, it
would look like net.tcp:/ /myserver:8080/myservice.

* “B” is for binding, the how. The binding defines the channel used to
communicate with an endpoint. Channels are the conduit through
which all messages pass within a WCF application. A channel is
composed of a series of binding elements. The lowest level binding
element is the transport, which delivers messages over the network.
The built-in transports include HTTP, TCP, Named Pipes,
PerChannel, and MSMQ. Above this are binding elements that
specify security and transactions. Fortunately, WCF ships with
system-provided bindings that have the channels stacked and con-
figured correctly to save you the time of figuring it out yourself.
The basicHttpBinding facilitates communication with most Web
services built prior to 2007. It corresponds to WS-I BP 1.1 and is
included for its widespread interoperability. The wsHttpBinding
implements the common WS-* protocols to enable secure, reliable,
and transacted messaging.

* “C” is for contract, the what. It defines the capability, or feature set,
offered by the endpoint. The contract defines the operations that an
endpoint exposes and the message formats that the operations
require. Contract operations map to class methods that implement
the endpoint, including the signature of parameters passed in and
out of the methods.

Introduction [

As shown in Figure 1.2, multiple endpoints compose a WCF service,
where each endpoint is defined by an address, binding, and contract.
Because message flow is typically bidirectional, clients also implicitly host

endpoints.
WCF Client WCF Service
Endpoint Message(s) Endpoint
o | Gl
Endpoint
[A[8]c]
Endpoint
[A[e]c]

FiGure 1.2 Communication between client and service endpoints

A service endpoint cannot respond to messages until the service is
hosted in a running operating system process. The host can be any process,
such as an unattended server process, a Web server or even a client appli-
cation running full screen on a desktop or minimized in the Windows tray.
Services have behaviors that control their concurrency, throttling, transac-
tions, security, and other system semantics. Behaviors may be implemented
using .NET attributes, by manipulating the WCF runtime, or through con-
figuration. Behaviors, in conjunction with a flexible hosting model, greatly
reduce the complexity of writing multithreaded code.

As shown in Figure 1.3, a main program can instantiate a ServiceHost
class to create the endpoints of the service.

For discoverability, a service may include an infrastructure endpoint
called the Metadata Exchange (MEX) endpoint. This endpoint is accessible
by clients to obtain the ABCs of the service and returns Web Service
Description Language (WSDL). The MEX endpoint is called when you click
Add Service Reference in Visual Studio 2008 or when you use the
svcutil.exe utility at design time. After the WSDL is obtained, two artifacts
are generated: a proxy class in the language of the project and an app.
config file. The proxy class mirrors the signature of the endpoint operations

5

6

Chapter 1: Basics

so that client code can simply “call” an endpoint. The proxy interface doesn’t
have to be identical to the service signature, but the proxy needs to ensure
that the message transmitted to the service is precisely what is described by
the service contract. The app. config file contains the binding specifics.

WCF Service

public static void Main ()

{

new ServiceHost(...);
serviceHost.Open() ;

[Behavior...Instancing=Single]

WCF Client WCF Service
Endpoint Message(s) Endpoint

e ||
Endpoint

[A[s]c]

Endpoint
a[s]c

serviceHost.Close() ;

FIGURE 1.3 Hosting a service

Implementing a WCF Service

This section describes how to implement a simple service with WCE. By
simple, we’ll assume HTTP as the wire protocol, and we’ll assume a text-
based representation of an XML document on the wire. For security, we'll
assume it’s handled somehow in the application. We’ll assume a synchro-
nous request-reply conversation and that our service supports just one
operation, which takes a string as input and returns a double as output. In
later chapters, we’ll vary all these assumptions, but for now, we’ll exclude
unnecessary complexity.

Implementing a WCF Service =

Just the ABCs
To define a service endpoint, remember the ABCs: address, binding, and
contract. In Listings 1.1 to 1.3, the following are described:

* “A” is for address, the where. This service listens for incoming
requests at http:/ /localhost:8000/Essential WCF.

e “B” is for binding, the how. This example uses basicHttpBinding,
which directs WCF to implement WS-I Basic Profile 1.1, the common
protocols of Web service communication.

e “C” is for contract, the what. This is the syntactic description of
what operations the service responds to and what message formats
it expects in and out. In this example, the contract is defined by the
StockService class.

In this section we will implement the service twice. First we’ll demon-
strate the solution completely in code, where the ABCs are defined directly
in the source code. This will remove external dependencies. Then we’ll
demonstrate the solution again using configuration files. This will result in
less code but will increase the service complexity because of dependencies
between code and configuration. In reality, you'll probably take the latter
approach because the increased complexity is richly rewarded with flexi-
bility. The flexibility derives from exposing some features in configuration,
where system administrators can modify them, while exposing other fea-
tures in code, where only developers can make changes.

Writing a WCF Service Entirely in Code

At a super-high level, writing a WCF service is similar to writing any other
service, regardless of internals. You first write some code that implements
a capability or feature; then you host that code in an operating system
process, and that process listens for requests and responds. WCF formalizes
these steps a bit and makes it easy for the developer to do the right thing
at each juncture. For instance, using the system-supplied bindings and
encoders, WCF services will communicate though standards-based SOAP
messages. By default, threading, concurrency, and instancing are well
implemented and have predicable behavior.

7

8

Chapter 1: Basics

To implement a WCF service, you implement a .NET class and then
decorate the class with System.ServiceModel attributes. The System.
ServiceModel namespace is installed with .NET 3.0 and contains most of
the WCF implementation. When the code compiles, the CLR interprets
those attributes, replacing them with runtime code. Attributes are nothing
new to .NET; they’ve been around since .NET 1.0. WCE, like ASMX in .NET
1.0and 1.1 and 2.0, uses attributes to make you more productive when writ-
ing services.

Listing 1.1 shows the complete code for a WCF service that is hosted in
a console application. In this example, we do the following.

* Define the contract. Write a .NET class that does something useful
and decorate it with WCEF attributes. The [ServiceContract] attribute
marks a class as a contract. Expressed in standards-based WSDL, the
[ServiceContract] defines a PortType. The [OperationContract]
attribute defines methods that can be invoked on the class through the
service interface. It also defines the messages that are passed to and
from those class methods. Expressed in WSDL, the [Operation
Contract] defines Operations and Messages. Listings 1.1 to 1.3 use
a class named StockService that has a single method, GetPrice.

"= NOTE

The samples in this book use very simplistic interfaces, often accepting
and returning a single string or number. In practice, your service oper-
ations will likely accept and return complex types. Communicating
over a wire should be more “chunky” than “chatty,” minimizing net-
work traffic and response latency. This requires passing more infor-
mation with each call, requiring complex types for input and return
values.

* Define an endpoint. Within the endpoint definition, we’ll specify an
address, binding, and contract by using the AddServiceEndpoint
method on the ServiceHost class. The address is blank, which indi-
cates that the address of the endpoint is the same as the base address

Implementing a WCF Service

or the service. The binding is basicHttpBinding, which is WS-I BP
1.1 compliant and interoperable with most systems that implement
XML Web Services. WS-1, or Web Services Interop, is a collaborative
effort among major system vendors including Microsoft, IBM, BEA,
Oracle, and others to determine and publicize compliance levels.
WS-I doesn’t define standards; it provides guidance and tools for
determining whether software complies with existing standards,
such as HTTP and XML.

Host the service in a process so it is listening for incoming
requests. Listings 1.1 to 1.3 host the service in a console application
by using the ServiceHost class. The service listens at http://
localhost:8000/Essential WCE.

LisTING 1.1 Service Implemented Entirely in Code

using System;
using System.ServiceModel;

namespace EssentialWCF

{

[ServiceContract]
public interface IStockService
{
[OperationContract]
double GetPrice(string ticker);
}
public class StockService : IStockService
{
public double GetPrice(string ticker)
{
return 94.85;
}
}

public class service
{

public static void Main()

{

ServiceHost serviceHost = new
ServiceHost(typeof(StockService),

9

10

Chapter 1: Basics

LisTiNG 1.1 continued

new Uri("http://localhost:8000/EssentialWCF"));

serviceHost.AddServiceEndpoint(
typeof(IStockService),
new BasicHttpBinding(),
s

serviceHost.Open();

Console.WriteLine("Press <ENTER> to terminate.\n\n");
Console.ReadlLine();

serviceHost.Close();

}

Writing a Service with Code and Configuration Files

WCEF provides rich support for defining service attributes in configuration
files. You still need to code the feature or algorithm you're exposing in the
service, but endpoint addressing, bindings, and behaviors can be moved
from the code into configuration files.

Defining endpoints and behaviors in configuration files makes for a
much more flexible solution when compared with defining this in code. For
example, suppose that an endpoint was implemented to communicate with
clients via HTTP. In Listing 1.1, this is implemented by specifying
BasicHttpBinding in the call to AddServiceEndpoint. But suppose that
you’d like to change the binding to WSHttpBinding, which delivers better
security by implementing message-level in addition to transport-level secu-
rity. In that case, you’d need to change and recompile the code. By moving
the binding selection from code to configuration, this change can be made
without a recompile. Or, if you'd like to expose the contract over both
protocols, you can define two endpoints: one for basic HTTP and the other
that uses WS-Security without changing code. This makes the code more
manageable.

Listing 1.2 shows the complete code for a WCF service that is hosted in
a console application. This code requires a configuration file that defines
behavior and endpoint information. In this example, we do the following.

Implementing a WCF Service m 11

* Define the contract. Write a .NET class that does something useful
and decorate it with WCF attributes. There is no difference in a ser-
vice definition, whether it is exposed in code or configuration. Listing
1.2 uses a class named StockService that is identical to Listing 1.1.

* Host the service in an operating system process so it can be
accessed by a client on the network. This is done by creating a
ServiceHost object defined in System.ServiceModel namespace
and calling its Open method, as it was in Listing 1.1.

* Define a configuration file that specifies the base address for a ser-
vice and the ABCs of the service endpoint. Note that the code
in Listing 1.2 does not reference the configuration file. When the
ServiceHost.Open method is called, WCF looks in the appli-
cation’s configuration file (app.config or web. config) for the
<servicemodel> to apply the configuration data.

LisTING 1.2 Service Implemented in Code and Configuration Files

using System;
using System.ServiceModel;
namespace EssentialWCF

{ [ServiceContract]
public interface IStockService
{
[OperationContract]
double GetPrice(string ticker);
}
public class StockService : IStockService
{
public double GetPrice(string ticker)
{
return 94.85;
}
}

public class service

{

public static void Main()

{

ServiceHost serviceHost = new
ServiceHost (typeof(StockService));

12 Chapter 1: Basics

LisTING 1.2 continued

serviceHost.Open();

Console.WriteLine("Press <ENTER> to terminate.\n\n");
Console.ReadlLine();

serviceHost.Close();

Listing 1.3 shows the complete configuration file that works with the code
in Listing 1.1. In the ServiceModel section, define the endpoint. For each end-
point, define the address, binding, and contract. The address is blank, which
indicates that the endpoint address is the same as the base address for the ser-
vice. If there is more than one endpoint, each endpoint must have a unique
address. The binding in this case is basicHttpBinding and the contract name
is the class name defined in the source code, EssentialWCF.StockService.

LisTiNG 1.3 Configuration for a Service Implemented in Code and Configuration Files

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>

<services>
<service name="EssentialWCF.StockService">
<host>
<baseAddresses>
<add baseAddress="http://localhost:8000/EssentialWCF"/>
</baseAddresses>
</host>
<endpoint address=
binding="basicHttpBinding"
contract="EssentialWCF.IStockService" />

</service>
</services>
</system.serviceModel>
</configuration>

More on Configuration Files

The service configuration file, web.config or app.config depending on
how the service is hosted, must contain a <system.serviceModel> node.
Under this node, services, bindings, behaviors, clients, diagnostics, exten-

Implementing a WCF Service =

sions, hosting environment, and COM+ interop settings can be specified. At
a minimum, there must be a <services> node that contains endpoints and
at least one non-infrastructure <endpoint> node under that. Within that, the
ABCs are defined for each endpoint.

The address attribute defines the URI to which clients will send messages
to the endpoint. For instance, if a service is using the basicHttpBinding, a
binding based on the HTTP protocol, the URI will look like http://www.
myserver.com:8080/MyService/. If an address specified is an absolute address
(thatis, not blank and not just a path), this address overrides the base address
specified by the host when creating the service. When the service is started by
a host, WCF starts the listener, which listens on this address for incoming
requests. In the case of IIS hosting, the listener is likely already started, so
WCF registers with it so that requests for that URI are directed to the WCF
service.

The binding attribute defines the communications details needed to
connect to the service. It defines the entire channel stack, which at a mini-
mum includes the network adapter channel. It could also include encryp-
tion, compression, and other channels. Many system-provided bindings
ship with WCF, such as BasicHttpBinding, which is compatible with
ASMX, WSHttpBinding, which implements more advanced Web services
that require message-level security, transactions, and other advanced
features, and NetTcpBinding, which implements a secure fast wire format
similar to .NET Remoting and DCOM.

The contract attribute references the type defined by the service end-
point. WCF inspects the type and exposes that as metadata at the MEX
endpoint, if a MEX endpoint is present in the service. WCF finds the type
information by looking first in the \bin folder and then in the Global
Assembly Cache (GAC) for the machine. If it can’t find the type informa-
tion, the service will return error information to Add Service Reference or
svcutil.exe when those tools request the WSDL. If the MEX endpoint does
not exist, the service will function fine, but clients will not be able to inspect
its ABCs.

More on Service Hosting
WCEF enables you to host services in any operating system process. In the
majority of situations, IIS is the right hosting environment to achieve great

13

14

Chapter 1: Basics

performance, manageability, and security. If you already have IIS running
in your environment, you already have security practices in place. Sophis-
ticated IT shops often define explicit policies and procedures for security
and have automated tools for verifying compliance. Smaller shops often
use the implicit security built in to IIS and Windows 2003. In either case,
existing security practices would be applied to IIS-hosted WCF services.

But there are also reasons to not use IIS for hosting. You may not want to
use HTTP as the protocol. You may want explicit control of the startup and
shutdown events. Or you may want to provide a custom administration
interface rather than using the IIS tools. If you don’t want to use IIS for host-
ing, this is no problem. WCF makes self-hosting very easy and flexible. Self-
hosting is the term used to describe a hosting method where the developer
instantiates the service host, rather than relying on IIS or Windows Process
Activation Services (WAS).

The simplest way of hosting a service is to write a console application,
as shown in Listing 1.1. This isn’t too useful in production because having
command windows on a server isn’t a great practice, but for getting started,
it eliminates all dependencies on IIS infrastructure. The main program cre-
ates a new instance of ServiceHost, which, as the name implies, will host
the service. The program calls the Open method on the ServiceHost and
then continues about its business. In this case, there’s nothing to do except
wait for someone to press Enter, at which point the application calls the
Close method on the ServiceHost.

After Open is called, the ServiceHost listens on the addresses specified
by the endpoints. When messages arrive, the ServiceHost does a few
things. First, based on the channel stack defined by the binding, it applies
any decryption, decompression, and security rules. Second, based on the
contract, it deserializes the incoming message into .NET types, creates a
new object, and then invokes the proper operation on the object.

Exposing the Metadata Exchange (MEX) Endpoint

Metadata in WCEF refers to the information that describes precisely how to
communicate with a service. Clients can request metadata from a running
service to learn about their endpoints and the message formats that they

Implementing a WCF Service m

require. At design time, clients send a request message defined by the
WS-MetadataExchange standard and receive WSDL in return. The WSDL
can be used by the client to define a proxy class and configuration file that
will later be used at runtime to communicate with the service. Figure 1.4
shows this interaction.

WCEF Client WCF Service

—]
Endpoint GetMetaData MEX Endpoint
cle]a ; :

<
<

Endpoint
Proxy Class ’ WSDL | A C
(c# or VB) app.config .E.

Endpoint

A A
Afe]c]

FIGURE 1.4 Obtaining metadata through MEX endpoint

By default, WCF services do not expose a MEX endpoint. This means
that nobody can query the service to find out how to communicate with it.
Without knowing the address, binding, and contract, it’s very difficult to
communicate with the service, unless the service is listed in a registry. For-
tunately, WCF makes it easy to expose a MEX endpoint so that clients can
communicate properly with services. The MEX endpoint can be exposed
in code or in configuration.

Listing 1.4 shows the code necessary to expose a MEX endpoint in a ser-
vice. This expands on the example in Listing 1.1 in a few ways. First, a
behavior is added to the service that directs WCF to include the MEX con-
tract, IMetadataExchange in the service. Second, an endpoint is added to
the service, where the contract is IMetadataExchange, the transport is
HTTP, and the address is "mex". Because the address is specified as a rela-
tive address, the base address of the service is used as the prefix, so the full
address is http:/ /localhost:8000/ Essential WCF /mex. Note that the behav-
ior is also modified to enable HTTP GET. This is not required but allows
users to access the MEX endpoint via a browser.

15

16

Chapter 1: Basics

LiSTING 1.4 Service Exposing MEX Endpoint in Code

using System;
using System.ServiceModel;
using System.ServiceModel.Description;

namespace EssentialWCF

{

[ServiceContract]
public interface IStockService
{
[OperationContract]
double GetPrice(string ticker);
}
public class StockService : IStockService
{
public double GetPrice(string ticker)
{
return 94.85;
}
}

public class service
{
public static void Main()
{
ServiceHost serviceHost = new
ServiceHost(typeof(StockService),
new Uri("http://localhost:8000/EssentialWCF"));

serviceHost.AddServiceEndpoint(
typeof (IStockService),
new BasicHttpBinding(),
")

ServiceMetadataBehavior behavior = new
ServiceMetadataBehavior();

behavior.HttpGetEnabled = true;

serviceHost.Description.Behaviors.Add(behavior);

serviceHost.AddServiceEndpoint(
typeof (IMetadataExchange),
MetadataExchangeBindings.CreateMexHttpBinding(),
"mex");

serviceHost.Open();

Console.WriteLine("Press <ENTER> to terminate.\n\n");
Console.ReadlLine();

Implementing a WCF Service m

serviceHost.Close();

}

If you choose to specify endpoints in configuration files rather than
code, you need to expose the MEX endpoint in the configuration file. List-
ing 1.5 shows how the configuration file in Listing 1.3 is modified to expose
the MEX endpoint. A MEX endpoint is added to the service and a Service-
Behavior is added so that the MEX endpoint can be accessed via HTTP.

LisTING 1.5 Service Exposing MEX Endpoint in Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.serviceModel>

<services>
<service name="EssentialWCF.StockService"
behaviorConfiguration="myServiceBehavior">
<host>
<baseAddresses>
<add baseAddress="http://localhost:8000/EssentialWCF"/>
</baseAddresses>
</host>
<endpoint address=
binding="basicHttpBinding"
contract="EssentialWCF.IStockService" />
<endpoint address="mex"
binding="mexHttpBinding"
contract="IMetadataExchange" />

</service>
</services>

<behaviors>
<serviceBehaviors>
<behavior name="myServiceBehavior">
<serviceMetadata httpGetEnabled="True"/>
</behavior>
</serviceBehaviors>
</behaviors>

</system.serviceModel>
</configuration>

18

Chapter 1: Basics

Implementing a Client for a WCF Service

WCEF provides a rich API for clients to use when communicating with a ser-
vice. The API, implemented by System.ServiceModel, takes care of serial-
izing types to XML and sending a message from the client to the service.
You can either program directly to that API, or you can use tools to gener-
ate a proxy class and configuration file. In this section, we will first demon-
strate how to call a service directly in code, and then we’ll do the same
using tools. The former approach involves less code and externalizes the
configuration data. The latter approach has fewer dependencies and gives
more fine-grained control over invocation. There are situations when each
solution is the best alternative.

Writing a WCF Client Entirely in Code

Just as a service endpoint must define the ABCs of WCF to expose its capa-
bilities on the network, a client must know the ABCs to access those
capabilities. Therefore, when writing the code to access services endpoints,
the ABCs are coded into the client application.

The endpoint address is simple—it’s a network address to which mes-
sages are sent. Its format is defined by the transport protocol being used in
the binding. The endpoint binding defines the exact communication mech-
anism though which the endpoint is exposed. WCF ships with a set of
preconfigured bindings, such as netTcpBinding, wsHttpBinding, and
basicHttpBinding. The contract defines the precise XML format that the
service understands. It’s typically expressed using [ServiceContract] and
[DataContract] notation in class and/or interface definition in code, and
WCF serializes the class structure to XML for transmission over the wire.

Listing 1.6 shows code to invoke a service operation. This code embod-
ies the ABCs of the service endpoint so that it can access its capabilities.

First, the client defines the interface it wants to call. This interface defi-
nition is shared between the client and service. Syntactically, the C# defini-
tion is very different from XML or WSDL, but semantically it’s the same.
That is, it precisely describes how to access the service capabilities, includ-
ing the name of the operation and its parameters. Then the client creates a
ChannelFactory class to create a channel, passing in the ABCs. In this

Implementing a Client for a WCF Service m

case, the address is an address hosted by an IIS server, the binding is
BasicHttpBinding, and the contract is the IStockService interface. Finally,
the client creates the channel to establish communication with the service
and “calls a method” on the service.

LisTING 1.6 WCF Client Entirely in Code

using System;
using System.ServiceModel;

namespace Client

{
[ServiceContract]
public interface IStockService
{
[OperationContract]
double GetPrice(string ticker);
}
class Client
{
static void Main(string[] args)
{
ChannelFactory<IStockService> myChannelFactory =
new ChannelFactory<IStockService>(
new BasicHttpBinding(),
new EndpointAddress
("http://localhost:8000/EssentialWCF"));
IStockService wcfClient = myChannelFactory.CreateChannel();
double p = wcfClient.GetPrice("msft");
Console.WriteLine("Price:{0}",p);
}
}
¥

Writing a Client with Code and Configuration

Back in 2001, Visual Studio introduced Add Web Reference, which in just
three words reduced a major undertaking in distributed computing to a
right-click. This was a good thing, because it delivered an entry point to
scalable, standards-based distributed computing to most professional
developers. But in making distributed computing so accessible, it hid many

19

20

Chapter 1: Basics

of the important complexities. Visual Studio 2008 continues to support Add
Web Reference for compatibility with ASMX and other Web services, but
also introduces Add Service Reference (ASR) to support WCE. Because
WCEF is protocol independent and supports a variety of serialization,
encoding, and security mechanisms, ASR offers great flexibility in provid-
ing support for manageability, performance, and security.

The ASR feature of Visual Studio is used to obtain metadata from a WCF
service and generate a proxy class and configuration file, as shown in Fig-
ure 1.4. Behind the scenes, ASR calls svcutil.exe, which invokes a ser-
vice’s MEX endpoint to query for its interfaces and to generate a proxy class
and configuration file. The proxy class enables the client to access the
service operations as if they were methods of a local class. The proxy class
uses WCF classes to build and interpret SOAP messages according to the
contract defined by the service endpoint. The configuration file stores the
ABCs of the service.

There are two steps to writing a client that invokes a service: first, gen-
erate a configuration file and the proxy class, and second, write code that
uses the proxy class to invoke the service. To use ASR within Visual Studio
2008, right-click the Service References node within the Solution Explorer
and then select Add Service Reference from the context menu. This will
launch a dialog box shown in Figure 1.5.

This dialog calls the svcutil utility to create a source code file that imple-
ments the proxy class in the language of the project. It also creates an
app.config file with a <system.serviceModel> node that stores the
address, binding, and contract information necessary to call the endpoints.

As an alternative to using ASR, you can also use the svcutil.exe util-
ity directly. This utility, found in the C:\Program Files\Microsoft SDKs\
Windows\v6.0\Bin folder, takes many switches, and help is available by
using the -h switch from the command line. The utility accepts metadata
as input and can produce various forms of output. The metadata can come
from the DLL that implements the class, from a WSDL file, or from the
WSDL returned by a WS-Metadata call to a running service. Listing 1.7
shows how to use svcutil.exe to generate metadata from the service
defined in Listings 1.4 and 1.5.

Implementing a Client for a WCF Service

Add Service Reference

(2 [

services, click Discover.

Address:

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available

http://localhost:B000/EssentialWCF

Services:

Operations:

) o) | [

-3 4 StockService

L5

% GetPrice

Namespace:

1 service(s) found at address 'http://localhost:8000/Essential WCF',

ServiceReference

0K] ’ Cancel

)

FiGure 1.5 Visual Studio generating client proxy class and configuration file

LISTING 1.7 svcutil.exe Generating Client Proxy Class and Configuration File

svcutil http://localhost:8000/EssentialWCF/mex/

-config:app.config

-out:generatedProxy.cs

Regardless of which technique is used to generate the proxy and con-

figuration file, svcutil.exe produces the same result. Listing 1.8 shows the

configuration file. Note that the client-side configuration file is quite a bit

more verbose than the services from which it was generated (refer to List-

ing 1.3). This gives the client the flexibility to override specific attributes,

such as timeouts, buffers, and client-supplied security credentials.

LiSTING 1.8 app.config Generated from svcutil.exe

<?xml version="1.0" encoding="utf-8"?>

<configuration>
<system.serviceModel>
<bindings>

<basicHttpBinding>

<binding name="BasicHttpBinding_StockService"

21

22

Chapter 1: Basics

LisTING 1.8 continued

closeTimeout="00:01:00" openTimeout="00:01:00"
receiveTimeout="00:10:00" sendTimeout="00:01:00"
allowCookies="false" bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard"
maxBufferSize="65536" maxBufferPoolSize="524288"
maxReceivedMessageSize="65536"
messageEncoding="Text" textEncoding="utf-8"
transferMode="Buffered" useDefaultWebProxy="true">
<readerQuotas maxDepth="32"
maxStringContentLength="8192"
maxArrayLength="16384"
maxBytesPerRead="4096"
maxNameTableCharCount="16384" />
<security mode="None">
<transport clientCredentialType="None"
proxyCredentialType="None"
realm="" />
<message clientCredentialType="UserName"
algorithmSuite="Default" />
</security>
</binding>
</basicHttpBinding>
</bindings>
<client>
<endpoint address="http://localhost:8000/EssentialWCF"
binding="basicHttpBinding"
bindingConfiguration="BasicHttpBinding_StockService'
contract="StockService"
name="BasicHttpBinding_StockService" />
</client>
</system.serviceModel>
</configuration>

After the configuration file and proxy class are generated, invoking a
request-response service operation is quite simple. The name of the
proxy class is the name of the ServiceContract appended with “Client.”
The name of proxy class for the service defined in Listings 1.4 and 1.5 is
StockServiceClient. The client code creates an instance of the proxy class
and then calls a method on that class. Listing 1.9 shows the code.

LisTING 1.9 Client Code for Invoking a Service Operation

using System;
using System.ServiceModel;

namespace EssentialWCF

Hosting a Service in 1IS [|

{
class Client
{
static void Main(string[] args)
{
StockServiceClient proxy = new StockServiceClient();
double p = proxy.GetPrice("msft");
Console.WriteLine("Price:{0}", p);
proxy.Close();
}
}
}

Hosting a Service in 1IS

A WCEF service can be hosted by any managed process running in the oper-
ating system. The service itself typically doesn’t know or care about how
itis hosted, although there are plenty of APIs through which it can find out.
It can be hosted in an unattended Windows Service that starts when the
machine is booted and shuts down only when the machine does so, or even
in a client-side application minimized in the Windows system tray. The
most common usage, however, is to host a WCF service in IIS.

Discussion

IIS is well suited for hosting services. It’s built in to Windows and there is
a significant knowledge base published about managing, securing, and
developing applications. IIS is scalable, reliable, and can be made quite
secure so it provides an excellent base for hosting services. ASMX, based on
IIS, was the most widely adopted mechanism for publishing Web services
before WCF, and WCF builds on that legacy. ASMX is replaced by WCF in
NET 3.5 as the recommended way to publish Web services in IIS.

Again, remember the ABCs of WCEF: address, binding, and contract.
When hosting in IIS, the address of a service is defined by the virtual direc-
tory that contains the service files. The binding will always use the HTTP/S
protocol because that’s what IIS understands, so basicHttpBinding and
wsHttpBinding are available. These are just two of the system-defined bind-
ings that can be used; any binding that leverages the HTTP protocol is valid
for IIS hosting. The contract, the SOAP definition of the service endpoints,

23

24

Chapter 1: Basics

is not constrained by the fact that IIS is hosting the service, so no special
contract rules apply for IIS hosting.

Like ASMX, metadata, in the form of WSDL, can be obtained from an
IIS-hosted service by addressing the service with WSDL as a parameter
(http:/ /localhost/myservice.svc?wsdl). When IIS receives this request, it
calls the MEX endpoint of the service and returns the result as WSDL.
Unlike ASMX, however, the MEX endpoint is not exposed by default, so it
will not respond to metadata requests from Visual Studio 2008 Add Service
Reference or svcutil.exe. You must explicitly enable the MEX endpoint in
code (shown in code Listing 1.4) or configuration (shown in Listing 1.5).

Hosting a Service in 1IS in Three Steps
There are three steps in hosting a service in IIS:

* Create a virtual application in IIS to store the service.
* Create a SVC file to define the service implementation.

* Augment the web.config file to include a <system.serviceModel>
section.

Define an IIS Virtual Application

A virtual application in IIS associates an application pool and a virtual
directory. For WCF, the application pool creates the ServiceHost and the
virtual directory stores of the service files (SVC, config, .dll).

Create an SVC File

The SVC file references the service implementation. The SVC file can be cre-
ated using any text editor or Visual Studio. In most cases, the implementa-
tion class will reside in a DLL and will be referenced by the SVC file. The
DLL must reside in the /bin folder in the virtual directory or stored in the
GAC. Listing 1.10 shows an SVC file that references a compiled .NET class.

LisTING 1.10 SVC File Referencing a Compiled Service

<%@ServiceHost Service="EssentialWCF.StockService" %>

Hosting a Service in 1IS [|

Alternatively, the SVC file can contain the actual implementation. In that
case, the SVC file will be longer, but there will be fewer external depend-
encies. Because the source code is resident on the IIS server that is hosting
the service, the source code can be modified by an operations or support
team without access to a development environment for compiling a DLL.
This has obvious risks and benefits. Risks include loss of control over intel-
lectual property and change management, because the code is visible and
updatable on every Web server. Also, performance will suffer with this
method. Benefits include code transparency and break-fixes, because cus-
tomers know exactly what the code does and how to change it if necessary.
Listing 1.11 shows an SVC file that contains a service implementation. This
code will be compiled on its first invocation.

LisTING 1.11 SVC File Containing Inline Implementation

<%@ServiceHost Language=c# Service="EssentialWCF.StockService" %>

using System;
using System.ServiceModel;

namespace EssentialWCF

{
[ServiceContract]
public interface IStockService
{
[OperationContract]
double GetPrice(string ticker);
}
public class StockService : IStockService
{
public double GetPrice(string ticker)
{
return 94.85;
}
}
¥

Implement <System.serviceModel> in web. config

Because IIS is hosting the service, the service endpoint definitions must be
specified in configuration rather than code. The configuration information is
stored in web.config, under the <system.serviceModel> node. As with

25

26

Chapter 1: Basics

other hosting models, the endpoint must define the ABCs: address, binding,
and contract. Listing 1.12 shows a web. config file that hosts a service within
IIS. Note that the <system.serviceModel> node is identical to Listing 1.5.

The address of the service is defined by the address of the virtual directory
in which the SVC file resides. If there’s just one endpoint defined in the ser-
vice, then the endpoint address can be blank, which implies that the endpoint
address is the same as the service address. If there are multiple endpoints
defined in a service, then each endpoint can have a relative address.

The binding must use a channel stack that uses HTTP as the trans-
port. Two transports that are built in to WCF are basicHttpBinding and
wsHttpBinding. Custom bindings, those that compose a channel stack dif-
ferently than the built-in implementations are also supported, so long as
they use http as their transport. Custom bindings are covered in detail in
Chapters 3 and 4.

The endpoint contract defines the class implemented by the service. The
runtime code must be accessible to the service, either in the /bin directory,
in the GAC, or inline in the SVC file.

LISTING 1.12 web.config Defining a Service

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.serviceModel>
<services>
<service name="EssentialWCF.StockService"
behaviorConfiguration="MEXServiceTypeBehavior" >
<endpoint address=""
binding="basicHttpBinding"
contract="EssentialWCF.IStockService " />
<endpoint address="mex"
binding="mexHttpBinding"
contract="IMetadataExchange" />
</service>
</services>

<behaviors>
<serviceBehaviors>
<behavior name="MEXServiceTypeBehavior" >
<serviceMetadata httpGetEnabled="true" />

Implementing a WCF Client for an ASMX Service =

</behavior>
</serviceBehaviors>
</behaviors>
</system.serviceModel>

</configuration>

Implementing a WCF Client for an ASMX Service

WCF clients can call any standards-based service regardless of the target
hosting environment. Web services built on the .NET 1.1 Framework
(ASMX) are fully compatible. The standard defined by WS-I Basic Profile
1.1 ensures they are callable from WCEF clients.

Tools Support

Just like calling a WCF service, you can use Add Service Reference (ASR) or
Svcutil.exe to create the proxy class and configuration file to invoke
ASMX service operations. After these artifacts are created, the client can
communicate with ASMX Web services by instantiating the proxy and call-
ing its methods. Alternatively, you can use the Add Web Reference (AWR)
or wsdl.exe to generate the proxy class and configuration file. Again, after
the artifacts are created, the client calls methods on the proxy to communi-
cate with the service.

For new client applications calling existing ASMX Web services, it’s best
to use ASR or svcutil.exe. For existing applications that already have
proxies generated by AWR/wsdl.exe, it’s best to continue to use AWR/
wsdl.exe. This way, the client doesn’t have two types of proxies and con-
figuration files in use to communicate with the ASMX services. If the client
is enhanced to call new WCEF services that use the basicHttpBinding, you
can still use AWR/wsd1.exe to generate new proxies for the WCF services.

28 Chapter 1: Basics

TaBLE 1.1 Options for Generating Proxy Class and Configuration File

ASMX Service WCF Service

Modifying existing client Add Web Reference Add Web Reference or

that already references or wsdl.exe wsdl.exe

ASMX services

Developing new clients Add Service Add Service Reference
for ASMX services Reference or or svcutil.exe

svcutil.exe

Regardless of whether you use svcutil.exe or wsdl.exe to generate the
proxy class, the client code uses that proxy to access the remote service. In
addition, entries are made in the app. config for the client program to sup-
port the proxy class.

Generating Client Proxy Class and Configuration Files

If you are modifying an existing client that already had ASMX proxies, you
should use Add Web Reference. Listing 1.13 shows the client code that uses
a proxy generated by Add Web Reference to call a service operation.

LisTING 1.13 Client Code Using Add Web Reference Proxy to Access an ASMX Service

using System;
namespace Client

{
class Program
{
static void Main(string[] args)
{
ASMXReference.StockService proxy =
new ASMXReference. StockService ())
double p = proxy.GetPrice("msft");
Console.WriteLine("Price:{0}", p);
proxy.Close();
}
}
}

Listing 1.14 shows a configuration file that was generated by Visual
Studio from Add Web Reference. Notice that the only attribute stored in the
app.config is the address of the service. This is in stark contrast to the

Implementing a WCF Client for an ASMX Service =

detail described in the app.config generated by Add Service Reference
shown in Listing 1.16. The additional configuration specified by Add Ser-
vice Reference enables developers or administrators to change parameters,
such as timeouts, without changing code.

LISTING 1.14 app.config Generated by Add Web Reference for an ASMX Service

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<configSections>
<sectionGroup name="applicationSettings"
type="System.Configuration.ApplicationSettingsGroup,
System, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" >
<section name="Client.Properties.Settings"
type="System.Configuration.ClientSettingsSection,
System, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
requirePermission="false" />
</sectionGroup>
</configSections>
<applicationSettings>
<Client.Properties.Settings>
<setting name="Client_ASMXReference_StockService"
serializeAs="String">
<value>http://localhost/asmx/service.asmx</value>
</setting>
</Client.Properties.Settings>
</applicationSettings>
</configuration>

If you are creating a new client that doesn’t already have ASMX proxies,
you should use Add Service Reference so that you start the new project
with new proxies. Listing 1.15 shows the client code that uses a proxy gen-
erated by Add Service Reference with an ASMX service. Note that the end-
point name, StockServiceSoap, must be specified when the proxy is
created. This is because Add Service Reference adds two endpoints into the
app.config file: one that uses basicHttpBinding and one that uses a cus-
tom binding compliant with SOAP 1.1.

LisTING 1.15 Client Code Using Add Service Reference Proxy to Access ASMX

using System;
namespace Client

{

29

30 Chapter 1: Basics

LisTING 1.15 continued

class Program

{
static void Main(string[] args)
{
using (WCFReference.StockServiceSoapClient proxy =
new client.WCFReference.StockServiceSoapClient
("StockServiceSoap"))
{
double p = proxy.GetPrice("msft");
Console.WriteLine("Price:{0}", p);
}
¥
}

Listing 1.16 shows a configuration file that was generated by Visual
Studio from Add Service Reference to an ASMX service. Notice the full detail
of binding and endpoint information that was derived from the ASMX ser-
vice and stored in the app.config. Also notice that two endpoints are
defined. The first endpoint, StockServiceSoap, uses the basicHttpBinding,
which complies with the WS-I Basic Profile 1.1 standard. The second end-
point, StockServiceSoap12, uses a custom binding that communicates using
a later SOAP protocol. Because ASMX is WS-I Basic Profile 1.1 compliant, the
1.1 endpoint is used.

LISTING 1.16 app.config Generated by Add Service Reference for an ASMX Service

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<bindings>
<basicHttpBinding>
<binding name="StockServiceSoap" closeTimeout="00:01:00"
openTimeout="00:01:00" receiveTimeout="00:10:00"
sendTimeout="00:01:00" allowCookies="false"
bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard"
maxBufferSize="65536" maxBufferPoolSize="524288"
maxReceivedMessageSize="65536"
messageEncoding="Text" textEncoding="utf-8"
transferMode="Buffered"
useDefaultWebProxy="true">
<readerQuotas maxDepth="32"
maxStringContentLength="8192" maxArraylLength="16384"
maxBytesPerRead="4096"

Implementing a WCF Client for an ASMX Service

maxNameTableCharCount="16384" />
<security mode="None">
<transport clientCredentialType="None"
proxyCredentialType="None"
realm="" />
<message clientCredentialType="UserName"
algorithmSuite="Default" />
</security>
</binding>
</basicHttpBinding>
<customBinding>
<binding name="StockServiceSoap12">
<textMessageEncoding maxReadPoolSize="64"
maxWritePoolSize="16"
messageVersion="Soap12" writeEncoding="utf-8">
<readerQuotas maxDepth="32"
maxStringContentLength="8192"
maxArraylLength="16384"
maxBytesPerRead="4096"
maxNameTableCharCount="16384" />
</textMessageEncoding>
<httpTransport manualAddressing="false"
maxBufferPoolSize="524288"
maxReceivedMessageSize="65536"
allowCookies="false"
authenticationScheme="Anonymous"
bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard"
keepAliveEnabled="true" maxBufferSize="65536"
proxyAuthenticationScheme="Anonymous"
realm="" transferMode="Buffered"
unsafeConnectionNtlmAuthentication="false"
useDefaultWebProxy="true" />
</binding>
</customBinding>
</bindings>
<client>
<endpoint address="http://localhost/asmx/service.asmx"
binding="basicHttpBinding"
bindingConfiguration="StockServiceSoap"
contract="Client.WCFReference.StockServiceSoap"
name="StockServiceSoap" />
<endpoint address="http://localhost/asmx/service.asmx"
binding="customBinding"
bindingConfiguration="StockServiceSoap12"
contract="Client.WCFReference.StockServiceSoap"
name="StockServiceSoap12" />
</client>
</system.serviceModel>
</configuration>

32

Chapter 1: Basics

SUMMARY

In this chapter, we covered the basics of WCEF, neatly described as the ABCs.
A service is composed of endpoints, and each endpoint has the ABCs:
address, binding, and contract. Services also have behaviors that describe
their operating semantics, such as threading and concurrency, but that will
be covered in later chapters.

Services can be hosted in any operating system process, from a console
application running on a Windows desktop to an IIS server in a server farm.
We showed an example of hosting in each. IIS is the most common mech-
anism for hosting WCF services. When .NET 3.5 is installed on an IIS server,
requests for SVC resources are dispatched to WCEF. The SVC file contains a
reference to the service implementation. The implementation is either in a
DLL in the /bin of the IIS virtual directory hosting the SVC file, in a DLL
loaded into the global assembly cache (GAC) of the server, or it can be
inline in source code in the SVC file.

Clients communicate with services exclusively through messages. For
developer productivity, Visual Studio provides tools for building client-
side proxy classes to represent server operations. Client applications use
the proxy classes to communicate with the service. Inside the proxy class,
WCF serializes the parameters as XML and sends the XML message to the
proper service endpoint address. Configuration needed by the client proxy
is stored in an app.config file on the client. The proxy and configuration
files are generated by svcutil.exe or by using Add Service Reference from
within the Visual Studio environment. Although the tools can greatly
improve productivity, there are cases when you’d rather code directly to the
WCF APL. This is entirely possible.

ASMX services are compatible with the WS-I Basic Profile 1.1 specifica-
tion. The basicHttpBinding WCF binding is also compatible with that
specification, so using this binding, WCF clients can access ASMX services.

Using the information in this chapter, you should be able to define,
expose, and consume WCF services.

2

Contracts

I N THE WORLD OF atoms and money, a contract is a binding agreement

between two or more parties that specifies the supply of goods or ser-
vices for a known price. In the world of bits and services, a contract has a
similar function: It’s an agreement between two or more parties that spec-
ifies the messages that can be exchanged and the terms and conditions of
those messages.

A contract is a description of the messages that are passed to and from
service endpoints. Each endpoint is defined by the ABCs: an addressable
location on the network where messages are sent, a binding that describes
how messages are sent, and a contract that describes the message formats.

Remember that a service is really a collection of endpoints, and the end-
points implement the specific algorithms in code. They can implement
high-level business functions, such as entering orders into a fulfillment sys-
tem, or they can be more fine-grained, such as looking up a customer’s
address. High-level functions typically require complex data structures,
whereas targeted functions often work in more basic data types. In either
case, an endpoint must specify the operations it implements and the data
formats it expects. Together, these specifications make up the contract.

33

34 Chapter 2: Contracts

There are three types of contracts in WCF:

* Service contracts. Service contracts describe the functional opera-
tions implemented by the service. A service contract maps the class
methods of a .INET type to WSDL services, port types, and opera-
tions. Operation contracts within service contracts describe the ser-
vice operations, which are the methods that implement functions of
the service.

* Data contracts. Data contracts describe data structures that are used
by the service to communicate with clients. A data contract maps
CLR types to XML Schema Definitions (XSD) and defines how they
are serialized and deserialized. Data contracts describe all the data
that is sent to or from service operations.

* Message contracts. Message contracts map CLR types to SOAP mes-
sages and describe the format of the SOAP messages and affect the
WSDL and XSD definitions of those messages. Message contracts
provide precise control over the SOAP headers and bodies.

To make contracts interoperable with the widest range of systems, they
are expressed in Web Service Description Language (WSDL). So, before
going too much further in discussing contracts, a short review of WSDL is
helpful. According to the W3C, the standards body through which indus-
try vendors (Microsoft, IBM, and so on) defined the WSDL specification

WSDL is an XML format for describing network services as a set of end-
points operating on messages containing either document-oriented or
procedure-oriented information. The operations and messages are
described abstractly, and then bound to a concrete network protocol and
message format to define an endpoint. Related concrete endpoints are
combined into abstract endpoints (services). WSDL is extensible to allow
description of endpoints and their messages regardless of what message
formats or network protocols are used to communicate[;] however, the
only bindings described in this document describe how to use WSDL in
conjunction with SOAP 1.1, HTTP GET/POST, and MIME.

Contracts [|

The full specification, available at www.w3.org/TR/wsdl, describes the
key concepts and supporting details so that vendors such as Microsoft can
build tools to produce and consume WSDL. The major elements of WSDL
are described in Table 2.1, paraphrased and expanded from the public spec-
ification.

TaBLE 2.1 WSDL Elements

WSDL Element Description

Type Data type definitions used to describe the messages
exchanged. These are typically expressed in XML Schema
Definition.

Message Represents an abstract definition of the data being transmit-

ted. A message consists of logical parts, each of which is
associated with a definition within some type system. A
message is similar to a formal parameter in a function call or
a method parameter in an interface and is used to define the
signature of operations.

Operation A name and description of an action supported by the ser-
vice. The operations expose the capability or functionality of
a service endpoint.

PortType A named set of abstract operations and the abstract mes-
sages involved. A service endpoint implements a PortType,
which groups related operations.

Binding Defines the message format and protocol details for opera-
tions and messages defined by a particular PortType.

Port Defines an individual endpoint by specifying a single
address for a binding.

Service Defines a set of related ports.

Because contracts are described in WSDL and XSD but code typically
works with CLR types, there needs to be a mapping between the two
systems. WCF facilitates that mapping in a three-stage process. First,
when writing service code, you decorate the class with the WCF-defined
attributes [ServiceContract], [OperationContract], [FaultContract],

35

www.w3.org/TR/wsdl

36

Chapter 2: Contracts

[MessageContract], and [DataContract]. Then, when writing the client
code, you query the service to learn the contract details and to generate a
proxy class that exposes a service interface, which can be called from the
code. This is done using Visual Studio or svcutil.exe, which invokes a
metadata infrastructure endpoint on the service to generate WSDL from the
attributed code. Finally, at runtime when a client calls a method on a service
interface, WCF serializes the CLR types and method calls into XML and
sends the message over the wire according to the binding and encoding
scheme agreed upon in the WSDL.

Four constructs are in play here; two on the .NET side and two on the
XML side. On the .NET side, a CLR type defines the structure of data or
capabilities, but not until an object of that type is instantiated can it do any-
thing. On the XML side, an XSD defines the structure of data, but not until
an XML Instance is created does an actual message exist.

So to properly understand how WCF works, you need to understand
both the code and WSDL artifacts. Fortunately, WCEF ships with two essen-
tial tools for mapping between the two. The first tool, SvcUtil.exe, can be
explicitly called from the command line or implicitly called when you use
Add Service Reference from Visual Studio. This tool, with its many
switches, produces WSDL and generates proxy classes that facilitate map-
ping between .NET types and XSD, and .NET class methods and WSDL
operations. The second tool, Service Trace Viewer, or SvcTraceViewer.exe,
is a graphical tool that reads and interprets diagnostics log files written by
WCEF. Using this tool, we can see the message formats received and sent by
endpoints and trace the message flow. This tool is described in detail in
Chapter 9, “Diagnostics.”

In this chapter we will describe how to use four of the five contract
types. We'll start by looking at service contracts that expose the endpoints
and operation contracts that define the methods. Then we’ll examine data
contracts that describe the data passed in and out of the endpoints. Finally,
we’ll cover message contracts that provide more control over SOAP mes-
sages. We'll discuss fault contracts later in the book, in Chapter 10, “Excep-
tion Handling.”

Service Contracts [

Service Contracts

A service contract describes the interface to operations implemented by a
service endpoint. Service contracts reference message formats and describe
how they are exchanged. Message formats are further described by data
contracts and message contracts. This section covers the message exchange
patterns that service contracts implement.

Service contracts are used by WCF at design time and runtime. At
design time, they identify classes in code that should be exposed as end-
points in WSDL. A class marked with [ServiceContract] and its methods
marked with [OperationContract] are exposed in WSDL so that they can
be accessed by clients. The class is identified as wsd1: service and the oper-
ations are identified as wsdl:operation. At runtime, when the WCF dis-
patcher receives a message, it looks at the wsdl:operation name to
determine which class method marked with [OperationContract] should
receive the deserialized message. Figure 2.1 depicts the high-level transla-
tion of code to WSDL.

Code WSDL
[ServiceContract] service
Class A definitions
porttype
operation
[OperationContract] _ > action
operation
Method 1 input
output
[OperationContract] binding
Method 2
[OperationContract]
Method 3

FiIGURE 2.1 High-level translation of code artifacts to WSDL

Figure 2.2 shows the same translation depicted in Figure 2.1, but shows
also the syntax of the C# and WSDL elements for clarity.

37

38

Chapter 2: Contracts

Compiled Code WSDL

<wsdl:definitions ... >
<wsdl:types> ... </wsdl:types>
<wsdl:message
name="StockService_GetPrice_InputMessage's
<wsdl:part .. element="tns:GetPrice" />
</wsdl :message>
{ <wsdl:message
return 94.85; name="StockService GetPrice OutputMessage"s
} <wsdl:part .. element="tns:GetPriceResponse" />
} </wsdl :messages>
<wsdl:portType name="StockService"s
<wsdl:operation name="GetPrice"s ..
</wsdl:operations>
</wsdl :portTypes
<wsdl:service name="StockService"s
<wsdl:port name="BasicHttpBinding StockService"
<soap:address
location="http://localhost/RequestResponse/

[ServiceContract]
public class StockService
{
[OperationContract]
double GetPrice(string ticker)

Y

StockService.sve" />
</wsdl:ports>
</wsdl:service>

<wsdl:definitions>

FiIGURE 2.2 High-level translation of code syntax to WSDL

Synchronous Request-Response Operations

The synchronous request-response message exchange is the most common
pattern for service operations. This pattern is familiar to anyone who has
programmed in a procedural or object-oriented language. The request-
response pattern is the prototypical local procedure call and is also quite
common for remote procedure calls. Figure 2.3 shows a request-response
interaction, where a proxy running within a client sends a request to a ser-
vice and the service responds synchronously back to the client.

WCF Client WCEF Service

Endpoint

FIGURE 2.3 Synchronous request-response communication

WCF makes request-response communication between client and
service very easy. At design time, you use Add Service Reference or
svcutil.exe to call the service’s Metadata Exchange (MEX) endpoint and
generate a client-side proxy that mimics the signature of the service oper-
ations. This allows the client code to call methods on the proxy as local

Service Contracts m 39

function calls. The proxy serializes the method name and parameters into
a SOAP message, sends the SOAP message to the service, listens for a mes-
sage to be sent back from the service, and then creates a .NET type repre-
senting the message response from the service.

Listing 2.1 shows a service contract definition. One service contract and
one operation contract are defined in the code. The operation contract rep-
resents a method that can be called by a client or, more accurately, a mes-
sage that can be sent by the client and understood by the service. Note that
the contract is defined on the interface, not the class definition.

LISTING 2.1 Request-Response Service

using System;
using System.ServiceModel;

namespace EssentialWCF

{
[ServiceContract]
public interface IStockService
{
[OperationContract]
double GetPrice(string ticker);
}
public class StockService : IStockService
{
public double GetPrice(string ticker)
{
return 94.85;
}
}
¥

Listing 2.2 shows the client code, using a proxy generated by Add Ser-
vice Reference that calls the service in Listing 2.1. This is similar to the code
shown in Listing 1.2.

LISTING 2.2 Request-Response Client

using System;
using System.ServiceModel;

namespace Client

{

class client

40 Chapter 2: Contracts

LISTING 2.2 continued

{
static void Main(string[] args)
{
localhost.StockServiceClient proxy =
new localhost.StockServiceClient();
double price = proxy.GetPrice("msft");
Console.WriteLine("msft:{0}", price);
proxy.Close();
}
}

Listing 2.3 shows the SOAP message that is sent from the client to the
service endpoint. There are a few points worth noting:

* The namespace of the SOAP message is http:/ /tempuri.org/, which
is the default unless overridden in the [ServiceContract] attribute.
If the service is going to be exposed outside an application or out-
side a relatively small organization, you should override the default
because the namespace construct is designed to uniquely identify
your service and eliminate ambiguity as multiple services are
combined.

* The method name in the class definition in Listing 1.1, GetPrice is
used to form the wsa:Action in the SOAP header. The full action
value is a combination of the contract namespace, the contract name
(interface name or the class name, if no explicit service interface is
used), the operation name, and an additional string (Response) if the
message is a correlated response.

* The SOAP body is controlled by the signature of the method and
the qualifiers specified with the [OperationContract] and
[DataContract] attributes.

* The SOAP header includes the address to which the message is sent.
In this case, it’s the SVC file hosted on the IIS machine.

http://tempuri.org/

Service Contracts [

LISTING 2.3 SOAP Message Sent in Request-Response Pattern

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<To s:mustUnderstand="1"
xmlns="http://schemas.microsoft.com/ws/2005/05/addressing/none" >
http://localhost/RequestResponseService/StockService.svc
</To>
<Action s:mustUnderstand="1"
xmlns="http://schemas.microsoft.com/ws/2005/05/addressing/none">
http://tempuri.org/StockService/GetPrice
</Action>
</s:Header>
<s:Body>
<GetPrice xmlns="http://tempuri.org/">
<ticker>msft</ticker>
</GetPrice>
</s:Body>
</s:Envelope>

Asynchronous Request-Response Operations

Good design minimizes situations in which the user must wait for one task
to complete before initiating the next task. For instance, when an e-mail
client is downloading new messages, you can still read or delete messages
already downloaded. Or while a Web browser is downloading images ref-
erenced on a Web page, you can still scroll the page or navigate elsewhere.
This form of multitasking within the client program is accomplished
through an asynchronous design pattern.

In WCF, request-response service operations cause the client to block
while the service operation is executing. One level deeper, the proxy code
generated by svcutil.exe uses a blocking call to the WCF channel stack
responsible for communicating with the service. This forces the client appli-
cation to block for the duration of the service call. If a service takes ten sec-
onds to complete, the client application will freeze for the duration of the
call waiting for the response.

Fortunately, you can use the asynchronous programming pattern in the
.NET Framework to introduce asynchronous behavior on the client. This
pattern, introduced in .NET 1.0, enables a caller of any synchronous

41

42

Chapter 2: Contracts

method to call it asynchronously. It accomplishes this by introducing the
IAsyncResult class and by creating two methods, BeginOperationName and
EndOperationName. The client first calls BeginOperationName and then can
continue executing code on its current thread while the asynchronous oper-
ation executes a different thread. For each call to BeginOperationName, the
client later calls EndOperationName to get the results of the operation. The
client passes a delegate to the BeginOperationName, which is called when
the asynchronous operation is called and can store state information from
the BeginOperationName call.

You can direct Add Service Reference to generate asynchronous
methods. This is done by clicking the Advanced button in the Add Service
Reference dialog box and selecting the Generate Asynchronous Operations
check box. The Service Reference Settings dialog is shown in Figure 2.4.
Alternatively, the SvcUtil utility with the /async switch uses this pattern to
create a Begin<operation> and End<operation> method for each service
operation, in addition to the synchronous method.

Service Reference Settings @Iﬁ

Client

Access level for generated classes: Public v]

Generate asynchronous operations

Data Type

[] Always generate message contracts

Collection type: [System.Array v]

Dictionary collection type: [System.CuIIectiuns.Generic.D\ctiunary v]

Reuse types in referenced assemblies

@ Reuse types in all referenced assemblies

(0 Reuse types in specified referenced assemblies:

[C] “Dmscorlib
[<O System |
[] -2 System.Care

[] -3 System.Data

[] -3 System.Runtime.Serialization
[] -3 System.ServiceModel f
[[] <3 System.Xml '

Compatibility

Add a Web Reference instead of a Service Reference. This will generate code based on NET Framework 2.0
Web Services technology.

Add Web Reference...

o) (s

FIGURE 2.4 Specifying asynchronous methods in Add Service Reference

Service Contracts [

Figure 2.5 shows the .NET Framework asynchronous pattern in use with
a proxy generated by SvcUtil. Note that the service doesn’t know that the
client is using asynchronous programming; the contract for the service just
specifies request-response communication while the client implements the
asynchronous pattern without participation from the service.

WCF Client WCF Service

Begin<operation> .
(Callback, state, params) Endpoint

<> [[5]¢]

Proxy

Callback (state, params)
call End<operation>...

End<operation>
(params)

FIGURE 2.5 Asynchronous request-response communication

Listing 2.4 demonstrates using the BeginGetPrice and EndGetPrice
along with the IAsyncResult to maintain status of the service operation.
BeginGetPrice takes two parameters in addition to the string that is defined
as input for the service operation. The first argument, the AsyncCallback
routine, is a local method that accepts one parameter, AsyncResult. The
second argument can be any object and is used to communicate state
from the initiating routine to the AsyncCallback routine. It is passed as the
AsyncResult.AsyncState property to AsyncCallback when the service oper-
ation completes. It’s helpful to pass the proxy that initiated the service com-
munication so EndGetPrice can be called from within the AsyncCallback to
get the service operation response. The static variable, c, is used to prevent
the client from exiting before the service completes, and the Interlocked
class is used to ensure proper thread safety on multiprocessor machines.

LISTING 2.4 Request-Response Client Using .NET Async Pattern

using System;
using System.Threading;

namespace AW.EssentialWCF.Samples

{

class Program

{

static int ¢ = 0;

43

44 Chapter 2: Contracts

LISTING 2.4 continued

static void Main(string[] args)
{
StockServiceClient proxy = new StockServiceClient();
IAsyncResult arGetPrice;
for (int i = @; i < 10; i++)
{
arGetPrice = proxy.BeginGetPrice("msft",
GetPriceCallback, proxy);
Interlocked.Increment(ref c);

}

while (c > @)
{
Thread.Sleep(1000);
Console.WriteLine("Waiting... Calls outstanding:{@}", c);
}
proxy.Close();
Console.WriteLine("Done!");

// Asynchronous callbacks for displaying results.

static void GetPriceCallback(IAsyncResult ar)

{
double d = ((StockServiceClient)ar.AsyncState).EndGetPrice(ar);
Interlocked.Decrement(ref c);

}

One-Way Operations
The one-way message exchange pattern is useful when a client needs to
send information to a service but doesn’t receive a response. With this pat-
tern, the client just needs acknowledgement of successful delivery; it does
not need an actual response from the service. Sometimes the one-way pat-
tern is erroneously called “fire-and-forget.” In reality, it’s “fire and
acknowledge” because the caller receives an acknowledgement that the
message was successfully committed to the communication channel.
WCF supports the one-way message exchange pattern at the service
operation level. That is, service operations can be marked as one-way and
the infrastructure will optimize for that case. When a client calls a one-way

Service Contracts [

method on the service, or more accurately, when a client sends a message to
a service endpoint whose operation is marked as one-way, control is
returned to the caller before the service operation completes. One-way oper-
ations are specified on the [OperationContract] attribute by using the
IsOneWay=true modifier. Listing 2.5 exposes a service contract with two ser-
vice operations. The implementation of both is the same, but one is marked
as a one-way operation. When a client application calls DoBigAnalysisFast,
the client-side proxy call returns immediately and doesn’t wait the ten sec-
onds while the service is in the Thread.Sleep statement. When the client
calls DoBigAnalysisSlow, the client-side proxy call blocks for ten seconds
while the service executes the Thread.Sleep statement.

Note that as with other message patterns, the code does not know about
the binding or communication protocol being used to deliver the message.
Just because netTcpBinding supports bidirectional communication and
basicHttpBinding supports request response, either could be used to sup-
port the one-way pattern.

LISTING 2.5 One-Way Operation Contract

[ServiceContract]

public interface IStockService

{
[OperationContract(IsOneWay = true)]
void DoBigAnalysisFast(string ticker);

[OperationContract]
void DoBigAnalysisSlow(string ticker);
¥

public class StockService : IStockService

{
public void DoBigAnalysisFast(string ticker)

{
Thread.Sleep(10000);

}
public void DoBigAnalysisSlow(string ticker)

{
Thread.Sleep(10000);

}

45

46

Chapter 2: Contracts

Duplex Operations

Request-response communication is the most prevalent message-exchange
pattern between a client and the service. Communication is initiated on the
client, the client sends a request message to the service, and then the service
sends a response message back to the client. If the response is expected
quickly, this can be implemented synchronously, so the client application
blocks waiting for the response. If a delay is expected between the request
and the response, a request-response pattern can be implemented asyn-
chronously on the client using standard .NET techniques. In that case, WCF
returns control to the client application immediately after sending the
request to the service. When the response is received from the service, a
NET callback routine is called to complete the WCF reply.

However, what if the service needs to initiate a message, such as a noti-
fication or an alert? What if the client and service need to correlate infor-
mation at a level higher than the individual message, where numerous
requests sent from the client are correlated to one response sent by the ser-
vice? What if a request is expected to take ten minutes to complete?

WCF enables bidirectional communication through duplex service con-
tracts. A duplex service contract implements the duplex message pattern, in
which unsolicited messages can be sent in either direction after the com-
munication channel is established. Operations over a duplex channel can be
request-reply or one-way.

Because messages can flow in either direction, from client to service or
service to client, both parties need an address, binding, and contract defin-
ing where, how, and what messages can be sent. To facilitate messages flow-
ing back from the service to the client, WCF may create an additional
channel. If the initial channel cannot support bidirectional communication,
then WCF creates a second channel, using the same protocol as was speci-
tied by the service’s endpoint, making the protocols symmetrical in both
directions. This is illustrated in Figure 2.6.

Depending on the binding used when establishing the session from the
client to the service, WCF will create one or two channels to implement the
duplex message pattern. For protocols that support bidirectional commu-
nication, such as named pipes and TCP, only one channel is required. For
those that don’t support bidirectional communication, such as http, WCF
creates an additional channel for communication from the service back to the

Service Contracts [

client. Of the preconfigured WCF bindings, those with dual in the name (for
example, wsDualHttpBinding) implement two channels. Custom bindings,
which are combinations of channel elements that meet a specific need, can
also implement this dual channel pattern by specifying compositeDuplex
in the channel stack. Custom bindings are covered in detail in Chapter 4,
“Bindings.”

WCF Client WCF Service

Endpoint

Proxy

Callback

Endpoint >
E i

FIGURE 2.6 Duplex communication

When sending messages from the client to the service, the client uses the
address specified in the service’s endpoint. Conversely, when sending mes-
sages from the service back to the client over a composite duplex channel,
the service must also know the client’s endpoint address. The address of the
client-hosted, WCF-generated endpoint is generated by the WCF channel.
This address, which is the network location to which messages are sent
from the service back to the client, can be overridden by setting the client-
BaseAddress attribute of the compositeDuplex element of the binding.

Paired One-Way Versus Duplex Contracts

You can solve the problem of two-way messaging with two distinct mes-
sage exchange patterns. You could either use a pair of one-way contracts
or you could use a single duplex contract. With a pair of one-way contracts,
both the client and service are independent WCF hosts. They each expose
endpoints to which the other sends messages. Because they are full-fledged
services, they can expose multiple endpoints, use multiple bindings, and
version their contracts independently. With a duplex contract, the client

47

48

Chapter 2: Contracts

does not explicitly become a WCF service and does have the complexity
(and freedom) to choose bindings or expose other endpoints. Rather, the
address, binding, and contract that defines the client-side endpoint are
implemented by the channel factory when the duplex communication is
initiated by the client.

A comparison of two one-way contracts versus a single duplex contract
is shown in Table 2.2.

TABLE 2.2 Paired One-Way Versus Duplex Contracts for Bidirectional Communication

Paired One-Way Contracts Duplex Contract

Contracts can be versioned inde- Client-side callback contract is deter-

pendently. Because the client is a mined by the service. If the service

full-fledged service, it can expose versions its contract, this might require

and version contracts independent a change on the client. This suggests

of the service that the only consumer of the client’s
callback capability is the service that
defines it.

Each one-way contract defines its The communication protocol will be

binding, so you can use a different the same in both directions because it

protocol, encoding, or encryption is defined by the service’s binding.

in each direction.

Implementing the Server Portion of a Duplex Service Contract

A duplex contract contains the interface specifications for both the service
and the client endpoints. In this type of contract, portions of the service-side
contract are implemented on the client.

Listing 2.6 defines a service contract for a service that provides stock
price updates. It uses duplex communication so that a client can register for
updates, and the service will periodically send updates to the client. The
client initiates communication by calling the service’s RegisterForUpdates
operation. The service then creates a thread that will periodically send
updates to that client by calling the client’s PriceUpdate operation.

Service Contracts

LISTING 2.6 Duplex Service Contract: Server-Side Implementation

[ServiceContract(CallbackContract = typeof(IClientCallback))]
public interface IServerStock

{
[OperationContract (IsOneWay=true)]
void RegisterForUpdates(string ticker);
}
public interface IClientCallback
{
[OperationContract(IsOneWay = true)]
void PriceUpdate(string ticker, double price);
}
public class ServerStock : IServerStock
{
// This is NOT a good notification algorithm as it’s creating
// one thread per client. It should be inverted so it’s creating
// one thread per ticker instead.
public void RegisterForUpdates(string ticker)
{
Update bgWorker = new Update();
bgWorker.callback =
OperationContext.Current.
GetCallbackChannel<IClientCallback>();
Thread t = new
Thread(new ThreadStart(bgWorker.SendUpdateToClient));
t.IsBackground = true;
t.Start();
}
}

public class Update
{
public IClientCallback callback = null;
public void SendUpdateToClient()
{
Random p = new Random();
for (int i=0;i<10;i++)
{
Thread.Sleep(5000); // updates occurs somewhere
try
{
callback.PriceUpdate("msft", 100.00+p.NextDouble());

49

50 Chapter 2: Contracts

LISTING 2.6 continued

catch (Exception ex)

{

Console.WriteLine("Error sending cache to client: {0}",
ex.Message);

And for completeness, the associated configuration file is shown in List-
ing 2.7. Note the dual binding that is used.

LisTING 2.7 Duplex Service Contract: Server-Side Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<services>
<service behaviorConfiguration="MEXServiceTypeBehavior"
name="EssentialWCF.StockService">
<endpoint address="" binding="wsDualHttpBinding"
contract="EssentialWCF.IStockService" />
<endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="MEXServiceTypeBehavior" >
<serviceMetadata httpGetEnabled="true" />
</behavior>
</serviceBehaviors>
</behaviors>
</system.serviceModel>
</configuration>

One problem with the code in Listing 2.6 is that it creates one thread per
client. For this scenario, there’s an unpredictable number of clients (could
be millions), but there’s a finite number of stock tickers (thousands). There-
fore, it would be better to create a thread per stock ticker rather than per
client.

Listing 2.8 shows an alternative algorithm. In this example, a hashtable
is maintained to track the stock tickers for which clients requested updates.
Update class is stored in the hashtable and each Update class runs on its own

Service Contracts [

thread. The list of client callbacks is stored in thread local storage in the
Update class, so the Update class can notify all clients about a particular stock
ticker. Notice that a 1lock is placed when accessing the client list collection,
both from the RegisterForUpates method of the main StockService class
and in the Update class itself. This is necessary so the collection isn’t updated
by the StockService class as it’s being iterated by the Update class.

LisTING 2.8 Duplex Service Contract: Server-Side Implementation
(Better Thread Utilization)

public class StockService : IStockService

{
public class Worker
{
public string ticker;
public Update workerProcess;
}

public static Hashtable workers = new Hashtable();

public void RegisterForUpdates(string ticker)

{

Worker w = null;

// if needed, create a new worker, add it to the hashtable
// and start it on a new thread
if (!workers.ContainsKey(ticker))
{
w = new Worker();
w.ticker = ticker;
w.workerProcess = new Update();
w.workerProcess.ticker = ticker;
workers[ticker] = w;

Thread t = new Thread(new
ThreadStart(w.workerProcess.SendUpdateToClient));
t.IsBackground = true;
t.Start();
}

// get the worker for this ticker and
// add the client proxy to its list of callbacks
w = (Worker)workers[ticker];
IClientCallback c =
OperationContext.Current.
GetCallbackChannel<IClientCallback>();
lock (w.workerProcess.callbacks)

51

52

Chapter 2: Contracts

LIsTING 2.8 continued

w.workerProcess.callbacks.Add(c);

}
}
public class Update
{
public string ticker;
public List<IClientCallback> callbacks =
new List<IClientCallback>();
public void SendUpdateToClient()
{
Random w = new Random();
Random p = new Random();
while(true)
{
Thread.Sleep(w.Next(5000)); // assume updates from somewhere
lock (callbacks)
foreach (IClientCallback c¢ in callbacks)
try
{
c.PriceUpdate(ticker, 100.00+p.NextDouble()*10);
}
catch (Exception ex)
{
Console.WriteLine("Error sending cache to client: {0}",
ex.Message);
}
}
}
¥

With either the thread-per-client implementation shown in Listing 2.7 or
the thread-per-ticker implementation shown in Listing 2.8, there are still
reliability questions. For instance, if service cannot call the client callback
operation, it logs a message to the console, but it never retries. Should the
service retry, and if so, how often, and when should it stop? Or, if there is
a scheduled window during which the client knows it won’t be available to
receive updates, where can the updates be queued so that they are deliv-
ered at a later time? These are important issues that are resolved by using
a message broker such as Microsoft BizTalk Server or similar product.
Message brokers typically have durable storage (database, file system, or
message queue) at the heart of the system and include robust configuration

Service Contracts [

tools for specifying transports and retry protocols. But they also bear over-
head in terms of performance, complexity, and cost, so the solution will
vary depending on requirements.

Implementing the Client Portion of a Duplex Contract

To participate in a duplex message exchange pattern, the client must imple-
ment the ABCs of WCF—it must define an address on the client where the
service sends messages, a binding that directs how the service sends mes-
sages to the client, and a contract that defines exactly what the messages
look like. Fortunately, this is largely taken care of when you generate a
client-side proxy and by the channel infrastructure at runtime.

To generate the client-side proxy, use can use svcutil.exe or Add
Service Reference. The proxy defines an interface with the same name as the
service, with Callback appended to the end. If the service contract interface
is IStockService, the client interface is IStockServiceCallback. The client
must implement a class derived from this interface.

At runtime, just like the service, the client is accessed strictly through the
endpoint definition and by sending messages to it. The major difference
between the service-side endpoint and the client-side endpoint is that the
client-side endpoint is created dynamically by WCE. There is no configu-
ration file or explicit ServiceHost call in the client code. Again, WCF takes
care of this, so the client just needs to implement a class derived from the
generated interface.

Listing 2.9 shows a client that calls the RegisterForUpdates method of
the StockService service to request periodic updates. It also implements a
callback interface, PriceUpdate, as required by the service, with stock price
updates. Notice that an InstanceContext object is instantiated and used to
create the proxy. The InstanceContext object stores context information for
a service, such as references to incoming and outgoing channels created on
the client’s behalf.

LisTING 2.9 Duplex Service Contract Implemented in a Client

using System;
using System.ServiceModel;

namespace Client

{

53

Chapter 2: Contracts

LISTING 2.9 continued

public class CallbackHandler : IServerStockCallback

{
static InstanceContext site =
new InstanceContext(new CallbackHandler());
static ServerStockClient proxy = new ServerStockClient (site);
public void PriceUpdate(string ticker, double price)
{
Console.WriteLine("Received alert at : {@}. {1}:{2}",
System.DateTime.Now, ticker, price);
}
class Program
{
static void Main(string[] args)
{
proxy.RegisterForUpdates("MSFT");
Console.WriteLine("Press Enter or any key to exit");
Console.ReadLine();
¥
}
}

Multiple Contracts and Endpoints in a Service
A service is defined as a collection of endpoints. Each endpoint has an
address, binding, and contract. The contract is what exposes the endpoint
capabilities. The address is simply where those application (or service)
capabilities live on the network, and the binding is how to access them.

There is a one:many relationship between endpoints and contracts. An
endpoint can have only one contract, but a contract can be referenced by
many endpoints. And although an endpoint can specify only one contract,
interface aggregation enables a single contract to expose multiple inter-
faces. In addition, multiple endpoints with the same binding but different
contracts can be located at the same address, giving the illusion that a sin-
gle endpoint implements both contracts.

By exposing a contract through multiple endpoints in a service, you can
make it available through multiple bindings. You can define one endpoint
that exposes a contract using the WS-I Basic Profile binding for maximum

Service Contracts m 55

reach while exposing it through another endpoint that uses TCP protocol

and binary encoding for much faster performance. By aggregating multiple

interfaces into one, you can provide consolidated access to capabilities ini-

tially codified into separate interfaces in a single service.

Listing 2.10 shows two service contracts, IGoodStockService and

IGreatStockService, that are aggregated into a third service contract,

IStockServices. The methods defined in those interfaces are implemented

in the aggregate. Although the service interfaces can be inherited, the
[ServiceContract] attribute must be defined to expose each interface.

LisTING 2.10 Exposing Multiple Contracts in an Endpoint

namespace EssentialWCF

{

[ServiceContract]
public interface IGoodStockService
{
[OperationContract]
double GetStockPrice(string ticker);
¥
[ServiceContract]
public interface IGreatStockService
{
[OperationContract]
double GetStockPriceFast(string ticker);

[ServiceContract]
public interface IAllStockServices :
IGoodStockService, IGreatStockService { };

public class AllStockServices : IAllStockServices

{
public double GetStockPrice(string ticker)
{
Thread.Sleep(5000);
return 94.85;
}
public double GetStockPriceFast(string ticker)
{
return 94.85;
}
}

56 Chapter 2: Contracts

Listing 2.11 shows a configuration file that exposes multiple endpoints
for the three contracts. There is one endpoint for the IGoodStockService
contract, two endpoints for the IGreatStockService contract, and one end-

point for the TA11StockServices contract.

Because there are multiple endpoints using the binding that shares an
addressing scheme,
Relative addresses are used, so the full address of each endpoint is the

a different address must be specified for each endpoint.

services-based address plus the relative qualifier.

LISTING 2.11 Exposing Multiple Endpoints in a Service

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.serviceModel>

<services>

<service name="EssentialWCF.StockServices"

<host>

behaviorConfiguration="mexServiceBehavior">

<baseAddresses>

<add baseAddress="http://localhost:8000/EssentialWCF/"/>

</baseAddresses>

</host>

<endpoint name="GoodStockService"

<endpoint

<endpoint

<endpoint

<endpoint

</service>
</services>

binding="basicHttpBinding"
contract="EssentialWCF.IGoodStockService" />
name="BetterStockService"

address="better"

binding="basicHttpBinding"
contract="EssentialWCF.IGreatStockService" />
name="BestStockService"

address="best"

binding="wsHttpBinding"
contract="EssentialWCF.IGreatStockService" />
name="AllStockServices"

address="all"

binding="wsHttpBinding"
contract="EssentialWCF.IAllStockServices" />
address="mex"

binding="mexHttpBinding"
contract="IMetadataExchange" />

Service Contracts m 57

<behaviors>
<serviceBehaviors>
<behavior name="mexServiceBehavior">
<serviceMetadata httpGetEnabled="True"/>
</behavior>
</serviceBehaviors>
</behaviors>

</system.serviceModel>
</configuration>

Because the IGreatStockService contract is exposed at multiple end-
points, client applications must reference the endpoint by name when cre-
ating a proxy instance to that contract. If the endpoint name wasn’t specified,
WCF would throw an error because it couldn’t know which endpoint to use.
Listing 2.12 shows the use of the GreatStockServiceClient proxy two times:
first to access the BetterStockService using basicHttpBinding and second
to access BestStockService using wsHttpBinding.

LIsTING 2.12 Specifying Endpoints by Name When Multiples Are Defined

using (localhost.GreatStockServiceClient proxy = new
Client.localhost.GreatStockServiceClient
("BetterStockService"))

{
Console.WriteLine(proxy.GetStockPriceFast("MSFT"));

}
using (localhost.GreatStockServiceClient proxy = new
Client.localhost.GreatStockServiceClient
("BestStockService"))

Console.WriteLine(proxy.GetStockPriceFast("MSFT"));

Names of Operations, Types, Actions, and Namespaces in WSDL

WCF generates the externally exposed service artifacts based on the inter-
nally named classes and attributes defined in the source code of the service.
These artifacts are exposed through the MEX endpoint of the service and
typically consumed as WSDL by a client at design time. On the client side,
the WSDL is then used to write code that builds the proper message for-
mat through which it communicates with the service. So the names you

58

Chapter 2: Contracts

choose for classes, methods, and parameters can potentially have a life far
beyond the service boundary.

However, it’s generally bad form to expose internal names and details
externally at the service interface. For instance, you may have an allocation
algorithm called BurgerMaster that you’d like to expose externally as an
operation called Resources. Or there may be coding standards in place that
dictate how you should name interfaces. Fortunately, you can control all
names exposed from the service by modifying the [ServiceContract],
[OperationContract], and [ServiceBehavior] attributes. Table 2.3 lists
how to control the WSDL terms with WCF attributes in code.

TaBLE 2.3 WCF Attributes That Override Default WSDL Names

WSDL Term WCF Attribute

targetNamespace Defaults to http:/ /tempuri.org. Can be changed by
using [ServiceBehavior] attribute in code.

wsdl:service and [ServiceBehavior(Name="myServiceName")]
wsdl:definitions

wsdl:porttype [ServiceContract(Name="myContractName")]

wsdl:operation and [OperationContract(Name="myOperationName")]
soap:operation

xs:element [MessageParameter(Name = "myParamName")]
wsdl:input and [OperationContract(Action="
wsdl:output myOperationAction”,

ReplyAction="myOperationReplyAction")]

wsdl:Binding Use and Style attributes of [DataContract] and
[ServiceContract]

The service defined in Listing 2.13 uses WCF attributes to override the
default names generated by WCFE.

http://tempuri.org

Service Contracts [

LisTING 2.13 Service Definition Controlling WSDL Names

[ServiceBehavior (Namespace="http://MyService/")]
[ServiceContract
(Name="MyServiceName",
Namespace="http://ServiceNamespace")]
public class BurgerMaster

{
[return: MessageParameter(Name = "myOutput")]
[OperationContract
(Name="OperationName",
Action="OperationAction”,
ReplyAction="ReplyActionName")]
public double GetStockPrice(string ticker)
{
return 100.00;
}
¥

The svcutil.exe utility with the -t:metadata switch can be used to
generate WSDL from a service. Alternatively, if the service exposes a MEX
endpoint over an http binding, the WSDL can be viewed by accessing the
base address from Internet Explorer. The format of the WSDL will vary
slightly whether you use svcutil.exe or Internet Explorer to view it, but
the differences are insignificant and just relating to packaging. In either
case, Listing 2.14 shows the WSDL associated with the code listed in Listing
2.13. The wsd1:portType, wsdl:operation and wsdl:action names are con-
trolled by the code. Note that the wsd1:portType name is MyServiceName
and not BurgerMaster, as the class is named in Listing 2.13.

LISTING 2.14 WSDL Listing by Controlling Names

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://ServiceNamespace"
targetNamespace="http://ServiceNamespace"

60 Chapter 2: Contracts

LISTING 2.14 continued

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:types>
<xsd:schema targetNamespace="http://ServiceNamespace/Imports">
<xsd:import
schemaLocation=
"http://localhost:8000/EssentialWCF/?xsd=xsde"
namespace="http://ServiceNamespace"” />
<xsd:import
schemalLocation=
"http://localhost:8000/EssentialWCF/?xsd=xsd1"
namespace="http://schemas.microsoft.com/
2003/10/Serialization/"/>
</xsd:schema>
</wsdl:types>

<wsdl:message name="MyServiceName_OperationName_InputMessage">
<wsdl:part name="parameters" element="tns:OperationName" />
</wsdl:message>
<wsdl:message name="MyServiceName_OperationName_OutputMessage">
<wsdl:part name="parameters" element="tns:OperationNameResponse" />
</wsdl:message>
<wsdl:portType name="MyServiceName">
<wsdl:operation name="OperationName">
<wsdl:input wsaw:Action="OperationAction"
message="tns :MyServiceName_OperationName_InputMessage" />
<wsdl:output wsaw:Action="ReplyActionName"
message="tns:MyServiceName_OperationName_OutputMessage" />
</wsdl:operation>
</wsdl:portType>
</wsdl:definitions>

Data Contracts

Inside a service, functional application capabilities are implemented in

code. Outside a service, functional capabilities are defined in WSDL. Inside

a WCF service, application data is represented in simple and complex types

while outside the service data is represented by XML Schema Definitions
(XSD). WCF data contracts provide a mapping function between NET CLR
types that are defined in code and XML Schemas Definitions defined by the

W3C organization (www.w3c.org/) that are used for communication out-

side the service.

www.w3c.org/

Data Contracts [|

Using WCE, developers spend more time with code and interface
semantics and less time with XSD and WSDL syntax. That’s not to say that
XSD and WSDL syntax aren’t important; they are crucial elements in build-
ing interoperable systems across heterogeneous platforms. But it turns out
that compilers are good at translating data structures written in a .NET lan-
guage into their XSD and WSDL representation required for cross-platform
interoperability.

At design time, the [DataContract] attribute is used to indicate which
classes should be represented as an XSD and included in the WSDL
exposed by the service. The [DataMember] attribute further defines the XSD
by indicating which class members should be included in the external rep-
resentation. At runtime, the DataContractSerializer class serializes
objects to XML using the rules described by the [DataContract] and
[DataMember] attributes. Figure 2.7 shows the classes, which are native to
a .NET implementation represented as XML Schema, which is interopera-
ble with other systems.

Code
[DataContract]
Class A | XSD
[DataMember] xs:schema
xs:complexType
_member1 EEE— Xs:sequence
xs:element

[DataMember]
_member2

[DataMember]
_member3

FiIGURE 2.7 High-level translation of code artifacts to XSD

Figure 2.8 shows the same translation depicted in Figure 2.7, but shows
also syntax of the C# and XSD elements for clarity.

61

62

Chapter 2: Contracts

Compiled Code XSD
[DataContract] <xs:schema>
public class StockPrice <xs:complexType name="StockPrice"s>

<Xs:sequence>
<xs:element name="CurrentPrice"
type="xs:double" />
[DataMember] <xs:element name="CurrentTime"
DateTime CurrentTime; type="xs:dateTime" />
<xs:element name="Ticker" nillable="true"
type="xs:string" />
<xs:element minOccurs="0" name="Volume"
[DataMember] type="xs:long" />
public long Volume; </xs:sequence>
</xs:complexType>
<xs:element name="StockPrice" nillable="true"
type="tns:StockPrice" />
</xs:schema>

[DataMember]
double CurrentPrice;

[DataMember]
string Ticker;

FiIGURE 2.8 High-level translation of code syntax to XSD

The DataContractSerializer will serialize types and expose them in
WSDL contracts if they meet any of the following conditions:

* Types marked with the [DataContract] and [DataMember] attributes
* Types attributed with [CollectionDataContract]
* Types derived from IXmlSerializable

* Types marked with [Serializable] attribute whose members are
not marked with [NonSerialized]

* Types marked with [Serializable] attribute and implements
ISerializable

* CLR built-in primitive types, such as int32 and string

* Bytes array, DateTime, TimeSpan, Guid, Uri, XmlQualifiedName,
XmlElement, and XmINode

* Arrays and collections such as List<T>, Dictionary<K,V> and
Hashtable

e Enumerations

Defining XML Schema for a .NET Class

The [DataContract] attribute, defined in System.Runtime.Serialization,
indicates that a class should be exposed as an XSD in the WSDL that rep-
resents the service. If a class doesn’t have the [DataContract] attribute, it
will not be present in the WSDL. By default, the name of the XML Schema

Data Contracts | |

is the same as the name of the class and the target namespace of the schema
is http://schemas.datacontract.org/2004/07/ concatenated with the
.NET namespace of the class. Both of these can be overridden. You may
want to override them to control the names exposed outside the service. For
instance, an internal class name of reqOrderIn can be exposed as Order in
the XSD. Listing 2.16 shows how to override the name and namespace of
an XSD.

The [DataMember] attribute, also defined in System.Runtime.
Serialization, identifies members of the .NET class marked with the
[DataContract] attribute to include in the XML Schema. If a class member
is not attributed with [DataMember], it is not included in the XML Schema,
even though it’s a member of the class. By default, class members are not
contained in the XML Schema Definition, which makes this strictly an opt-
in model. The scoping of .NET class members, whether it’s public or pri-
vate, does not impact its inclusion in the XML Schema; that decision is
strictly made based on the presence of the [DataMember] attribute.

Listing 2.15 demonstrates a class definition, StockPrice, with five public
data members. Three of them, ticker, theCurrentPrice, and theCurrent-
Time, are required because they are marked with isRequired=true. A few
additional features of [DataMember] are also shown:

* The names of class members are all prefixed with m_ in the code. The
class member names are overridden so that m_ notation is not carried
into the XSD defined in the service interface.

* The order of class members is specified in the [DataMember] attrib-
ute. If the order isn’t specified, the elements would appear in alpha-
betical order in the XSD. Order is typically not important, but
controlling it is necessary for interoperability. If you're sending mes-
sages to a service that expects elements ordered in a particular way,
this attribute can control the order of the elements encoded in the
text XML.

¢ The class members m_CurrentPrice, m_CurentType and m_ticker
are marked as required, but m_dailyVolume and m_dailyChange are
not. Nonrequired class members can be absent from XML instances
and still are considered valid according to the XSD.

63

64 Chapter 2: Contracts

LIsTING 2.15 Defining a Data Contract

using System;
using System.ServiceModel;
using System.Runtime.Serialization;

namespace EssentialWCF
{
[DataContract (Namespace="http://EssentialWCF",Name="StockPrice")]
public class clsStockPrice
{
[DataMember (Name="CurrentPrice",Order=0,IsRequired=true)]
public double theCurrentPriceNow;

[DataMember (Name = "CurrentTime", Order=1, IsRequired = true)]
public DateTime theCurrentTimeNow;

[DataMember (Name = "Ticker", Order=2, IsRequired = true)]
public string theTickerSymbol;

[DataMember(Name = "DailyVolume", Order=3, IsRequired = false)]
public long theDailyVolumeSoFar;

[DataMember(Name = "DailyChange", Order=4, IsRequired = false)]
public double theDailyChangeSoFar;

[ServiceContract]
public class StockService
{
[OperationContract]
private clsStockPrice GetPrice(string ticker)
{
clsStockPrice s = new clsStockPrice();
s.theTickerSymbol = ticker;
s.theCurrentPriceNow = 100.00;
s.theCurrentTimeNow = System.DateTime.Now;
s.theDailyVolumeSoFar = 450000;
s.theDailyChangeSoFar = .012345;
return s;

The svcutil.exe -t:metadata command generates the XSD using the
[DataMember] elements defined by a class. Listing 2.16 shows the XSD gen-
erated by the code shown in Listing 2.15. Notice that the element names and
order are defined according to the attributes in code. Also note that the non-
required class members are indicated as minOccurs=0 in the XML Schema.

Data Contracts | |

LISTING 2.16 Generated XSD Representing a Data Contract

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:tns="http://EssentialWCF" elementFormDefault="qualified"
targetNamespace="http://EssentialWCF"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:complexType name="StockPrice">
<XS:sequence>
<xs:element name="CurrentPrice" type="xs:double" />
<xs:element name="CurrentTime" type="xs:dateTime" />
<xs:element name="Ticker" nillable="true" type="xs:string" />
<xs:element minOccurs="0" name="DailyVolume" type="xs:long" />
<xs:element minOccurs="0" name="DailyChange" type="xs:double" />
</xs:sequence>
</xs:complexType>
<xs:element name="StockPrice" nillable="true" type="tns:StockPrice"/>
</xs:schema>

Defining Class Hierarchies

Complex types are typically implemented as classes in code. Complex
classes are further defined through inheritance as a way of representing
increasingly specific constructs. This way, a general type like ‘price’ can be
subclassed to a more specific type like ‘stock price” or ‘house price’. WCF
supports class hierarchies by representing them properly in WSDL, serial-
izing and deserializing them between class structure and XML and by car-
rying the attributes of each class forward into the aggregate.

In Listing 2.17, the class Price is defined with three elements and a sub-
class, StockPrice, which inherits from Price. The namespace is provided
with both classes so they can be resolved through fully qualified names in
XML. Each element retains its namespace.

LisTING 2.17 Class Hierarchy Defined with Data Contract

[DataContract(Namespace = "http://EssentialWCF/Price/")]
public class Price

{
[DataMember] public double CurrentPrice;
[DataMember] public DateTime CurrentTime;
[DataMember] public string Currency;

}

[DataContract(Namespace = "http://EssentialWCF/StockPrice")]
public class StockPrice : Price

{

65

66

Chapter 2: Contracts

LISTING 2.17 continued

[DataMember] public string Ticker;
[DataMember] public long DailyVolume;
[DataMember] public double DailyChange;

The two XML Schemas generated to support this hierarchy are shown in
Listing 2.18. First, the Price XML Schema is shown. Then the StockPrice
XML Schema is shown. Note that StockPrice imports the Price schema.
Note that in the XSD, all elements are attributed with minOccurs=0 because
in the code, none were attributed with [isRequired=true].

LisTING 2.18 Class Hierarchy Defined in XML Schemas

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:tns="http://EssentialWCF/Price/"
elementFormDefault="qualified"
targetNamespace="http://EssentialWCF/Price/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:complexType name="Price">
<XS:sequence>
<xs:element minOccurs="0" name="Currency"
nillable="true" type="xs:string" />
<xs:element minOccurs="0" name="CurrentPrice" type="xs:double" />
<xs:element minOccurs="0" name="CurrentTime" type="xs:dateTime"/>
</Xs:sequence>
</xs:complexType>
<xs:element name="Price" nillable="true" type="tns:Price" />
</xs:schema>

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:tns="http://EssentialWCF/StockPrice"
elementFormDefault="qualified"
targetNamespace="http://EssentialWCF/StockPrice"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<xs:import namespace="http://EssentialWCF/Price/" />
<xs:complexType name="StockPrice">
<xs:complexContent mixed="false">
<xs:extension xmlns:ql="http://EssentialWCF/Price/"
base="ql:Price">
<XSs:sequence>
<xs:element minOccurs="0" name="DailyChange"
type="xs:double" />
<xs:element minOccurs="0" name="DailyVolume"
type="xs:long" />
<xs:element minOccurs="0" name="Ticker"
nillable="true

type="xs:string" />

Data Contracts m 67

</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="StockPrice" nillable="true" type="tns:StockPrice"/>
</xs:schema>

The SOAP body of a serialized StockPrice type is shown in Listing 2.19.
Notice that the namespaces of Price and StockPrice are carried from the
code in Listing 2.17 to the XML Schema in Listing 2.18 all the way through
to the SOAP body.

LisTING 2.19 Class Hierarchy Serialized in SOAP body

<s:Body>
<GetPriceResponse xmlns="http://EssentialWCF/FinanceService/">
<GetPriceResult
xmlns:a="http://EssentialWCF/StockPrice"
xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance">
<Currency xmlns="http://EssentialWCF/Price/">Dollars</Currency>
<CurrentPrice xmlns="http://EssentialWCF/Price/">
100</CurrentPrice>
<CurrentTime xmlns="http://EssentialWCF/Price/">
2006-12-13T21:18:51.313-05:00</CurrentTime>
<a:DailyChange>0.012345</a:DailyChange>
<a:DailyVolume>450000</a:DailyVolume>
<a:Ticker>msft</a:Ticker>
</GetPriceResult>
</GetPriceResponse>
</s:Body>

Exposing Additional Types in WSDL with KnownTypes

Data types are exposed in WSDL if they meet any of the conditions
described earlier. There are additional cases, however, when you would
also like to force a type to be included in the WSDL contract.

One example is class hierarchies. If a serialized derived class arrives at
an endpoint that is expecting the serialized base class, WCF will not know
how to deserialize the class because the derived class was not part of the
contract. Another example is a hashtable class, which stores other classes
as its element. The WSDL will define the hashtable class, but not the
classes contained in the hashtable.

68

Chapter 2: Contracts

In these cases, you must tell WCF about the classes that should explicitly
be included in the WSDL contract. This is done with KnownTypes. It can be
done in four ways: by adding the KnownType attribute to a [DataContract],
by the attribute in the [ServiceContract] or [OperationContract], by
adding a reference to it and its assembly into the configuration, or by deter-
mining it when generating the WSDL.

Listing 2.20 shows a data contract that defines a base class, Price, and
two classes derived from the base class, StockPrice and MetalPrice. Note
the [KnownType] attribute on the data contract. This tells WCF to include
the XSD representation of StockPrice and MetalPrice in the WSDL when
exposing the contract. The listing also contains an implementation of
the service. The GetPrice operation is polymorphic and returns either a
StockPrice or MetalPrice type, depending on what was requested. The
client code that calls GetPrice through the proxy must cast the result to the
expected type to access the return value class.

LISTING 2.20 KnownType Defined in a Data Contract

using System;
using System.ServiceModel;
using System.Runtime.Serialization;

namespace EssentialWCF

{
[DataContract(Namespace = "http://EssentialWCF/")]
[KnownType(typeof(StockPrice))]
[KnownType(typeof(MetalPrice))]
public class Price

{
[DataMember] public double CurrentPrice;
[DataMember] public DateTime CurrentTime;
[DataMember] public string Currency;

}

[DataContract(Namespace = "http://EssentialWCF/")]
public class StockPrice : Price
{
[DataMember] public string Ticker;
[DataMember] public long DailyVolume;
}
[DataContract(Namespace = "http://EssentialWCF/")]
public class MetalPrice : Price

{
[DataMember] public string Metal;

Data Contracts | |

[DataMember] public string Quality;

[ServiceBehavior (Namespace="http://EssentialWCF/FinanceService/")]
[ServiceContract (Namespace="http://EssentialWCF/FinanceService/")]
public class StockService

{
[OperationContract]
private Price GetPrice(string id, string type)
{
if (type.Contains("Stock"))
{
StockPrice s = new StockPrice();
s.Ticker = id;
s.DailyVolume = 45000000;
s.CurrentPrice = 94.15;
s.CurrentTime = System.DateTime.Now;
s.Currency = "USD";
return s;
}
if (type.Contains("Metal"))
{
MetalPrice g = new MetalPrice();
g.Metal = id;
g.Quality = "@.999";
g.CurrentPrice = 785.00;
g.CurrentTime = System.DateTime.Now;
g.Currency = "USD";
return g;
}
return new Price();
}
}

Alternatively, you can define the KnownType at the OperationContract
level with the [ServiceKnownType] attribute. When KnownTypes are defined
at the Operation level, the derived types can be used only in the operation
that defines the known types. In other words, not all operations in a ser-
vice can use the derived types. Listing 2.21 shows a snippet of code that
uses a [ServiceKnownType] attribute. In this example, a client can call
GetPrice and when the message is returned from the service, the deserial-
izer will create a StockPrice or MetalPrice object. But the client can pass
only a Price object, not a StockPrice or MetalPrice, when calling SetPrice,

69

70 Chapter 2: Contracts

because the serializer will not know how to represent those derived types
in XML.

LISTING 2.21 KnownType Defined in an Operation Contract

[ServiceBehavior (Namespace="http://EssentialWCF/FinanceService/")]
[ServiceContract (Namespace="http://EssentialWCF/FinanceService/")]
public class StockService
{
[ServiceKnownType(typeof(StockPrice))]
[ServiceKnownType(typeof(MetalPrice))]
[OperationContract]
private Price GetPrice(string id, string type)

{

}
[OperationContract]
Void SetPrice(Price p)

{

The disadvantage of defining known types in code, whether at the data
contract or service contract level, is that you need to know the universe of
derived types at compile time. If a new type is added, you need to recom-
pile the code. This can be resolved with two methods.

First, you can move the known type reference from code to configuration
and include known type information in the system.runtime.serialization
section of the service configuration file. Respecting the class hierarchy, you
need to add a reference to the base class and then add knownType references to
the derived classes. This is shown in Listing 2.22, where EssentialWCF.Price
is the base class and EssentialWCF.StockPrice and EssentialWCF.
MetalPrice are the derived classes. StockService is the DLL hosting these

types.

Data Contracts m 71

LISTING 2.22 KnownType Defined in Configuration

<system.runtime.serialization>
<dataContractSerializer>
<declaredTypes>
<add type="EssentialWCF.Price, StockService,
Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null">
<knownType type="EssentialWCF.StockPrice, StockService,
Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null"/>
<knownType type="EssentialWCF.MetalPrice, StockService,
Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null"/>
</add>
</declaredTypes>
</dataContractSerializer>
</system.runtime.serialization>

The most general solution for specifying the derived types in the con-
tract is to generate it at runtime. This can be done thanks to some hooks
exposed in WCE. The constructor of both the [KnownType] attribute and
[ServiceKnownType] attribute accepts a string parameter. This string is a
method name that is called at serialization or deserialization time to return
a list of known types. If you use a metadata repository, you could look up
type information from the repository or database and expose the types at
runtime. Listing 2.23 shows a simpler implementation, where the type
names are hardcoded in the GetknownTypes method rather than being
pulled from an external repository.

LISTING 2.23 KnownType Defined in Code at Runtime

[DataContract(Namespace = "http://EssentialWCF/")]
[KnownType (“GetKnownTypes")]
public class Price
{
[DataMember] public double CurrentPrice;
[DataMember] public DateTime CurrentTime;
[DataMember] public string Currency;
static Type[] GetKnownTypes()
{
return new Type[] { typeof(StockPrice),
typeof(MetalPrice) };

72 Chapter 2: Contracts

LIsTING 2.23 continued

[DataContract(Namespace = "http://EssentialWCF/")]
public class StockPrice : Price
{
[DataMember] public string Ticker;
[DataMember] public long DailyVolume;
}
[DataContract(Namespace = "http://EssentialWCF/")]
public class MetalPrice : Price
{
[DataMember] public string Metal;
[DataMember] public string Quality;

Versioning Data Contracts

Change is inevitable. Businesses change, technologies change, laws change,
and so do software contracts. In the face of software changes, a solid ver-
sioning strategy is essential. Care must be taken up front to plan for
inevitable changes and to preserve backward compatibility with existing
clients.

The most common need for data contract versioning is when members
are added to an existing data contract. By following the nonbreaking
changes described in this section, you can freely do this without breaking
existing clients. But if you need to break backward compatibility with exist-
ing clients, you must version the entire data contract by changing its name
or namespace.

A little caution is in order with respect to nonbreaking changes. Non-
breaking, from WCF’s standpoint, could quite possibly break compatibility
with other systems. For instance, if communicating with a system that
requires strict schema validation, that system may reject messages if it
receives XML instances with unexpected elements. The term “nonbreak-
ing” change in this chapter refers to changes that can be made without
impacting WCF to WCF communication.

Data Contracts | |

Nonbreaking Changes
Two types of changes will not break compatibility with existing clients:

* Adding new nonrequired data members

* Removing existing nonrequired data members

In both of these cases, it’s possible to create an old type from a new mes-
sage by simply ignoring the new or missing nonrequired data members.
Conversely, it’s also possible to create a new message from the old type. The
DataContractSerializer will do this automatically at runtime.

Breaking Changes

Although you can change certain attributes in a data contract that preserve
backward compatibility, many item changes will break existing clients. If
you make any of these changes to a data contract defined, existing clients
will no longer function properly:

* Change the name or namespace of a data contract.

* Rename an existing data member that was previously required.

* Add a new data member with a name that has been used previously.
* Change the data type of an existing data member.

* Add new members with IsRequired=true on DataMemberAttribute.

* Remove existing members with IsRequired=true on
DataMemberAttribute.

Listing 2.24 shows two data contract definitions: The first is defined in a
V1 service, the second in the V2 version of that service. Notice that between
V1 and V2, the data member Currency is removed and DailyVolume is
added. This change is nonbreaking.

74 Chapter 2: Contracts

LisTING 2.24 Nonbreaking Change to a Data Contract—Adding and Removing Data

Members

[DataContract (Namespace="http://EssentialWCF")]
public class StockPrice //V1

{
[DataMember] public double CurrentPrice;
[DataMember] public DateTime CurrentTime;
[DataMember] public string Ticker;
[DataMember] public string Currency;

}

[DataContract (Namespace="http://EssentialWCF")]
public class StockPrice //V2

{
[DataMember] public double CurrentPrice;
[DataMember] public DateTime CurrentTime;
[DataMember] public string Ticker;
[DataMember] public int DailyVolume;

)i

For existing clients to properly pass around data after new members are
added, the original data contract must support extensibility. That is, the orig-
inal contract must support serialization of unknown future data. This enables
round tripping, where a client can pass V2 data to a V1 service and have the V1
service return V1 data back to the client with the V2 elements still intact. WCF
implements extensibility by default in the proxy code generated by
svcutil.exe. If you do not want to support this capability, it can be disabled
by specifying <dataContractSerializer ignoreExtensionDataObject=
"true"/> in the ServiceBehavior section of the service configuration file.

Listing 2.25 shows client code that calls GetPrice to obtain a StockPrice
object and then passes that object to StoreStockPrice. Assume that the
proxy for the StockService was generated using svcutil.exe pointing to
the V1 service, and then the service was upgraded to V2 from Listing 2.24.
When the client runs against the V2 service, GetPrice will return XML with
the DailyVolume member added and the Currency member missing. The
data contract deserializer, who knows about V1 StockPrice object, will
place that DailyVolume member in the ExtensionData field of the object
and will not complain about the missing Currency member. The client code
will receive the expected StockPrice object, only to find it with Currency
initialized to its default value and the overall object being a bit “heavier.”

Data Contracts m 75

This is because extra extension data (DailyVolume) is available in the class.
This way, the service is passing valid V2 data and the client is consuming
a valid V1 representation of that data.

LisTING 2.25 Calling a V2 Service with a V1 Contract

localhost.StockServiceClient proxy=new localhost.StockServiceClient())
localhost.StockPrice s = proxy.GetPrice("msft");
proxy.StoreStockPrice(s);

Data Contract Equivalence
If you're using WCF to expose a service and using svcutil.exe to build a
proxy for accessing the service, you typically don’t need to be concerned
about the wire representation of the messages passed between client and
service. Data contracts direct WCF to serialize a .NET type into an XML
Infoset and to deserialize an XML Infoset back into a .NET type. The XML
Infoset might be encoded as text or binary on the wire according to the bind-
ing used for communication, but again, the .NET code is unaware of the
encoding. This way, you work with .NET types in code but an encoded rep-
resentation of the standards-based XML Infoset is transmitted on the wire.
There are cases, however, where you may work with different types in
the client versus in the service. This could occur if the client and service are
developed by different organizations, or if only one side of the communi-
cation is using WCE. In fact, if you're not using svcutil.exe or Add Service
Reference to generate the proxy on the client, there’s a good chance that
member names on the client will be different from member names on the
service. But by controlling those names with the [DataMember] attribute,
you can make them appear the same in the XML representation. As long as
both the client and service work with an equivalent XML representation,
it’s okay for WCF to deserialize the XML Infoset into different .NET types.
If two classes serialize into the same XML schema, the data contracts rep-
resenting those classes are said to be equivalent. For data contracts to be
equivalent, they must have the same namespace and name and members.
The data members must be of the same type and appear in the same order
within the XML. In summary, they must be indistinguishable on the wire.

76

Chapter 2: Contracts

Listing 2.26 shows two equivalent data contracts. The first contract is
exposed by the service; the second class is described by the client. The two
are equivalent and generate identical XML Schema Definitions. In the
service, by default, WCF will order the XML elements alphabetically so
the second schema forces the order to be alphabetical. Because of the
Name="StockPriceSvc" and Name="Currency" attributes placed on the
DataContract and DataMember respectively, the XSD generated in the sec-
ond contract is identical to the first.

LISTING 2.26 Equivalent Data Contracts

[DataContract(Namespace = http://EssentialWCF)]

public partial class StockPriceSvc

{
[DataMember] public double CurrentPrice;
[DataMember] public DateTime CurrentTime;
[DataMember] public string Ticker;
[DataMember] public string Currency;

}

[DataContract(Namespace = http://EssentialWCF, Name="StockPriceSvc")]
public partial class StockPrice

{
[DataMember(Order=4)] public string Ticker;
[DataMember(Order=2)] public double CurrentPrice;
[DataMember(Order=3)] public DateTime CurrentTime;
[DataMember (Order=1, Name="Currency")] public string Money;
¥

Working with Collections
Collections are very convenient data constructs in .NET that combine the
benefits of dynamic memory allocation, enumeration, and list navigation.
Although useful, there is no XSD or WDSL standard equivalent of a collec-
tion. Therefore, to serialize a collection into XML, WCEF treats them as arrays.
In fact, the wire-level serialization of a collection is identical to that of an
array. In addition to collections (types that implement ICollection<T>), this
is also true for types that implement the IEnumerable<T> or IList<T>.
Listing 2.27 shows a service contract and operation that uses a collection.
The collection is decorated with the [CollectionDataContract] attribute,
which is a special WCF attribute specifically provided for this purpose. This

Data Contracts m 77

attribute directs WCF to serialize any type that supports IEnumerable and
implements an Add method into an array. The StockPriceCollection class
inherits from the List generic, which implements the base ICollection
interface to enable serialization.

LiIsTING 2.27 Exposing a Collection from a Service

using System;

using System.ServiceModel;

using System.Runtime.Serialization;
using System.Collections.Generic;

namespace EssentialWCF

{
[DataContract(Namespace = "http://EssentialWCF")]

public class StockPrice

{
[DataMember] public double CurrentPrice;
[DataMember] public DateTime CurrentTime;
[DataMember] public string Ticker;

}

[CollectionDataContract]
public class StockPriceCollection : List<StockPrice>

{
}
[ServiceContract]
public class StockService
{
[OperationContract]
private StockPriceCollection
GetPricesAsCollection(string[] tickers)
{
StockPriceCollection list = new StockPriceCollection();
for (int 1 = @; i < tickers.GetUpperBound(®) + 1; i++)
{
StockPrice p = new StockPrice();
p.Ticker = tickers[i];
p.CurrentPrice = 94.85;
p.CurrentTime = System.DateTime.Now;
list.Add(p);
¥
return list;
}
}

78

Chapter 2: Contracts

Message Contracts

Message contracts describe the structure of SOAP messages sent to and
from a service and enable you to inspect and control most of the details in
the SOAP header and body. Whereas data contracts enable interoperabil-
ity through the XML Schema Definition (XSD) standard, message contracts
enable you to interoperate with any system that communicates through
SOAP.

Using message contracts gives you complete control over the SOAP
message sent to and from a service by providing access to the SOAP head-
ers and bodies directly. This allows use of simple or complex types to
define the exact content of the SOAP parts. Just as you can switch from the
DataContractSerializer to XmlSerializer when you need complete
control over the data serialization, you can switch from DataContracts to
MessageContracts when you need complete control over the SOAP
message.

Passing information in SOAP headers is useful if you want to commu-
nicate information “out of band” from the operation signature. For
instance, session or correlation information can be passed in headers, rather
than adding additional parameters to operations or adding this informa-
tion as fields in the data itself. Another example is security, where you may
want to implement a custom security protocol (bypassing WS-Security)
and pass credentials or tokens in custom SOAP headers. A third example,
again with security, is signing and encrypting SOAP headers, where you
may want to sign and/or encrypt some or all header information. All these
cases can be handled with message contracts. The downside with this tech-
nique is that the client and service must manually add and retrieve the
information from the SOAP header, rather than having the serialization
classes associated with data and operation contracts do it for you.

The [MessageContract] attribute defines the structure of SOAP mes-
sages. There aren’t many modifiers to this attribute because its purpose is
to define the boundary of the message, not the content itself. The only mod-
ifiers relate to how multiple bodies are wrapped into a single SOAP mes-
sage, specifying whether to wrap at all and, if so, specifying the name and
namespace of the wrapper.

Message Contracts [

Typed messages use [MessageHeader] and [MessageBodyMember] attrib-
utes to describe the structure of the SOAP header and body. The client and
the service can then reference this data using serialized types. Additional
information can be associated with headers, such as name and namespace,
whether the message can be relayed, and who is the final actor or recipient
of the message. Additional information can also be associated with the
body, such as name and namespace. If multiple bodies are used, the
MessageContract can define the order of those parts. Both the header and
body can have simple or complex type definitions.

Untyped messages do not use any attributes to describe their contents.
It’s left entirely up to the runtime code to make sense of the contents. This
is very useful for working directly with the InfoSet of the XML message, in
which case you’d want WCF to stay out of the way as you code directly to
the Document Object Model. Service operations that work with untyped
messages accept and return message types, which implement the XML
Infoset.

Typed Messages

Listing 2.28 shows a typed message contract, StockPrice. The header con-
tains a simple type, DateTime, and the body contains a complex type,
PriceDetails. The PriceDetails class must be serializable, either by using
a [DataContract] attribute or, as shown here, with the [Serializable]
attribute. This example has just one header and one body, but there can be
numerous headers and bodies specified.

You may want to specify numerous headers or bodies if they are to be
consumed by different layers of software on the client. For instance, one
layer may want correlation information in the SOAP header to associate a
response with a request, whereas another layer may want to identity infor-
mation so it can route the message appropriately. In this case, two headers
have two purposes, so there’s no reason to combine them into one structure.

Note that the service operation receives and sends message types. When
using message contract, both input and output parameters must be mes-
sages and marked with the [MessageContract] attribute. More specifically,
operations must contain exactly one input parameter and must return
exactly one result, both of which are messages, because the request and

79

80

Chapter 2: Contracts

response messages sent to and from the operation will map directly their
SOAP representation. In addition, message-based programming and
parameter-based programming cannot be mixed, so you cannot specify a
DataContract as an input argument to an operation and have it return a
MessageContract, or specify a MessageContract as the input argument to
an operation and have it return a DataContract. You can mix typed and
untyped messages, but not MessageContracts and DataContracts. Mixing
message and data contracts will cause a runtime error when you generate
WSDL from the service.

To generate client-side proxy code that represents the typed message in
the [MessageContract], you need to check the Always Generate Message
Contracts option in the Advanced dialog box of Add Service Reference, as
shown in Figure 2.9.

— - N
Service Reference Settings L_ @Iﬁ

Client

Access level for generated classes: [Publ[c ']

[] Generate asynchronous operations

Data Type

Always generate message contracts

Collection type: [System.hrray v]

Dictionary collection type: [Syst:m.Cnll:ct[nns.G:n:r[c.D[ct[nna:)r V]

Reuse types in referenced assemblies
@ Reuse typesin all referenced assemblies

() Reuse types in specified referenced assemblies:

[F] O mscorlib

[[] -3 System

[] -3 System.Core
[] -3 System.Data
[<3 System.EnterpriseServices ‘
[] -3 System.Runtime.Serialization ‘
[] -3 System.ServiceModel >,

| »

m

Compatibility

Add a Web Reference instead of a Service Reference. This will generate code based on JNET Framework 2.0
Web Services technology.

Add Web Reference...

e

FIGURE 2.9 Specifying message contracts in Add Service Reference

Message Contracts m 81

Alternatively, you can use the /messageContract , or /mc, switch on
svcutil.exe. This causes svcutil.exe to generate the proxy with public
methods accepting the typed message so clients can call method-oriented
methods. If you use svcutil.exe without the /mc switch, or if you use Add
Service Reference without checking the Always Generate Message
Contracts, the proxy will be generated with public methods accepting
parameters and will internally call the message-based operation. In either
case, the same XML messages are sent on the wire.

LisTING 2.28 Defining a Typed Message Contract

namespace EssentialWCF
{
[Serializable]
public class PriceDetails
{
public string Ticker;
public double Amount;
}
[MessageContract]
public class StockPrice
{
[MessageHeader]
public DateTime CurrentTime;
[MessageBodyMember]
public PriceDetails Price;

[MessageContract]
public class StockPriceReq

{

[MessageBodyMember] public string Ticker;

[ServiceContract]
public interface IStockService

{
[OperationContract]
StockPrice GetPrice(StockPriceReq req);

public class StockService : IStockService

{

82

Chapter 2: Contracts

LISTING 2.28 continued

public StockPrice GetPrice(StockPriceReq req)

{
StockPrice resp = new StockPrice();
resp.Price = new PriceDetails();
resp.Price.Ticker = req.Ticker;
resp.Price.Amount = 94.85;
return resp;

¥

Listing 2.29 shows the XML that’s passed on the wire when the SOAP
message is returned from the service back to the client. Note that the
[MessageHeader] element, CurrentTime, is in the SOAP header and the
[MessageBodyMember] element, Price, is in the SOAP body.

LISTING 2.29 SOAP Response Generated Using a Typed Message Contract

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<h:CurrentTime xmlns:h="http://tempuri.org/">
2006-12-18T10:31:55.0584-05:00
</h:CurrentTime>
</s:Header>
<s:Body>
<StockPrice xmlns="http://tempuri.org/">
<Price
xmlns:a="http://schemas.datacontract.org/2004/07/EssentialWCF"
xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance">
<a:Amount>94.85</a:Amount>
<a:Ticker>MSFT</a:Ticker>
</Price>
</StockPrice>
</s:Body>
</s:Envelope>

Untyped Messages

In some scenarios, you may not know the structure of messages passed
between a client and service at design time. For instance, intelligence might
be built in to the messages themselves, such as routing and service opera-
tions that are determined at runtime. Or a layer of software (or hardware)
might be between the client and service that manipulates SOAP messages

Message Contracts [

and requires special data formats. For these cases, untyped operation con-
tracts can be very useful.

Untyped operation contracts enable the client and service to pass virtu-
ally any content in the SOAP body, as long as the content can be encoded by
the binding stack being used for communication. The contents of the mes-
sage are effectively opaque to the WSDL because there is no XSD to define
the data. The client and service work with the Message class, which is
defined in System.ServiceModel.Channels, to create, read, and write
messages.

Listing 2.30 shows an operation contract that uses the message type as
input and output. Notice that the GetBody method of the message is a
generic method that deserializes the message body into a type. This method
uses an XMLReader to read the <body> element of the SOAP message.
Because it uses an XML Reader, the <body> can be read only once; if you
want to read it more than once, you should use the CreateBufferedCopy
method of the message. The SOAP action on the reply is the request action
with “Response” concatenated to the end. This can be overridden by a
(ReplyAction=) in the [OperationContract] attribute.

The Message class has numerous methods for creating, reading, and
writing the message contents. The client is responsible for creating a mes-
sage before sending it to the service and the service is responsible for cre-
ating a message to send back. Before sending the message, the contents
must be placed in the body. This can be done with CreateMessage,
WriteMessage, or WriteBody methods.

LisTING 2.30 Defining and Implementing Untyped Message Contract

[ServiceContract (Namespace="http://EssentialWCF")]
public class StockService
{
[OperationContract]
private Message GetPrice(Message req)
{
string ticker = req.GetBody<String>();
Message resp = Message.CreateMessage(
req.Version,
req.Headers.Action + “Response”,
ticker + "|" + "94.85");
return resp;

83

84

Chapter 2: Contracts

The client code is similar to the service code, using CreateMessage to
create the message with the proper version to match the binding and then
using GetBody to read the result that comes back from the service. Note that
the CreateMessage method used takes three parameters: the version, the
action, and the string message. When creating the message, the version of
the message must be compatible with the binding used to communicate
with the service, as defined by the MessageVersion property in the channel.
The action, in this case http://EssentialWCF/StockService/GetPrice, is
used by SOAP and the WCF infrastructure to route the message to the
proper operation in the service. Listing 2.31 shows client code that initiates
communications with the service listed in Listing 2.30.

LisTING 2.31 Client Initiating Communication Using an Untyped Message Contract

using (localhost.StockServiceClient proxy =
new localhost.StockServiceClient())

{
new OperationContextScope(proxy.InnerChannel);
Message msgReq = Message.CreateMessage(
OperationContext.Current.OutgoingMessageHeaders.
MessageVersion,
"http:// EssentialWCF /StockService/GetPrice",
"msft");
Message msgResp = proxy.GetPrice(msgReq);
Console.WriteLine("Returned {0} ", msgResp.GetBody<string>());
)

Listing 2.32 shows the SOAP message transmitted back from the service
to the client in response to the request in Listing 2.31. Notice that the action
in the SOAP header has “Response” concatenated to the end, and that the
body of the SOAP message is a string with no XML formatting.

LisTING 2.32 SOAP Response Generated Using an Untyped Message Contract

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<Action s:mustUnderstand="1"
xmlns="http://schemas.microsoft.com/ws/2005/05/addressing/none">
http://EssentialWCF/StockService/GetPriceResponse
</Action>
</s:Header>
<s:Body>
<string xmlns=

Message Contracts [

"http://schemas.microsoft.com/2003/10/Serialization/">
msft|94.85
</string>
</s:Body>
</s:Envelope>

Using SOAP Headers with Untyped Messages

Whether you're working with typed or untyped messages, you may want
to pass information in the SOAP header in addition to the SOAP body. A
common need is to pass session or context information along with a mes-
sage. So, rather than creating additional wrapper messages, the SOAP
header is a convenient and well-understood mechanism of passing that
information.

If you're using typed messages, WCF explicitly supports this through
the [MessageHeader] attribute as demonstrated in Listing 2.28. If using an
untyped message, however, you need to explicitly add an untyped message
header.

Listing 2.33 shows a service contract that implements an untyped mes-
sage operation and reads data from the message header. Note how the
message header data, timeZone, is accessible with one line of code.

LisTING 2.33 Service Accessing Message Headers with an Untyped Message Contract

[ServiceContract]
public class StockService
{

[OperationContract]

private Message GetPrice(Message req)

{

string timeZone =
OperationContext.Current.IncomingMessageHeaders.
GetHeader<String>
(“TimeZone", “http://EssentialWCF/");

string ticker = req.GetBody<String>();
Message resp = Message.CreateMessage(

req.Version,

req.Headers.Action + "Response”,

timeZone + "|" + ticker + "|" + "94.85");
return resp;

85

86 Chapter 2: Contracts

Listing 2.34 demonstrates how a client can add a SOAP header to an
untyped message being sent to a service. First a message is created with
CreateMessage and data is placed in that message with the constructor. Then
a typed MessageHeader is created; in this case it’s a string, and the data is
placed in the header with the constructor. Next, an untyped MessageHeader
is created from the typed one, and then finally, that untyped MessageHeader
is added to the message being sent to the service.

LisTING 2.34 Client Inserting Message Headers into an Untyped Message

static void Main(string[] args)
{
using (localhost.StockServiceClient proxy
= new localhost.StockServiceClient())

new OperationContextScope(proxy.InnerChannel);
Message msgReq =
Message.CreateMessage
(OperationContext.Current.
OutgoingMessageHeaders.MessageVersion,
"http://tempuri.org/StockService/GetPrice",
"msft");
MessageHeader<String> msgHeader = new
MessageHeader<string>(“GMT-05:00");
MessageHeader untypedHeader =
msgHeader.GetUntypedHeader (“TimeZone",
“http://EssentialWCF/");
msgReq.Headers.Add(untypedHeader);
Message msgResp = proxy.GetPrice(msgReq);

Listing 2.35 shows the SOAP message generated from the client-side
code. Notice the TimeZone element that is inserted into the message header
in the proper namespace.

LisTING 2.35 Client Inserting Message Headers into an Untyped Message

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<TimeZone xmlns="http://EssentialWCF/">GMT-05:00</TimeZone>
<To s:mustUnderstand="1"
xmlns="http://schemas.microsoft.com/ws/2005/05/addressing/none">
http://localhost/UntypedMessageHeader/StockService.svc

Summary H

</To>
<Action s:mustUnderstand="1"
xmlns="http://schemas.microsoft.com/ws/2005/05/addressing/none">
http://tempuri.org/StockService/GetPrice
</Action>
</s:Header>
<s:Body>
<string
xmlns="http://schemas.microsoft.com/2003/10/Serialization/">
msft
</string>
</s:Body>
</s:Envelope>

SUMMARY

This chapter covers quite a bit of ground with contracts, which are the basis
for interoperability. Contracts precisely describe the messages that a service
understands.

WCF heavily leverages SOAP for contract definitions. Specifically, it
uses WDSL for describing service endpoints and XSD for describing data.
The service operations defined in WSDL are used to route incoming mes-
sages to the correct .NET class at runtime. Similarly, the XML documents
defined by XSD contracts are deserialized into .NET types and passed to the
service operations at runtime. Together, the WSDL and XSD definitions pro-
vide a standards-based representation of the .NET types used within a ser-
vice implementation.

Three types of contracts were defined in detail:

* Service contracts. Service contracts describe the functional opera-
tions implemented by the service.

* Data contracts. Data contracts describe the data structures through
which the service communicates. A data contract serializes CLR
types to XML and is strictly opt-in with their data members.

* Message contracts. Message contracts work with typed and
untyped data and provide precise control over the SOAP headers
and bodies.

88

Chapter 2: Contracts

Service Contracts

Service contracts define service operations—the methods that the service
class interface exposes. They provide the formal WSDL interface to a
service. Service contracts are defined with the [ServiceContract] and
[OperationContract] attributes. Operation names are derived from the
class and method names but can be overridden when defining these attrib-
utes. Service contracts support three message exchange patterns: request-
response, one-way, and duplex.

Request-response operation contracts are blocking calls on the client,
where the client waits for the service operation to complete before regain-
ing execution control. Therefore, they should be used only for relatively fast
service calls where the user is willing to wait for the response. In the client,
the NET asynchronous pattern can be applied to the request-response mes-
sage exchange pattern to prevent the client from blocking while a long-
running service request is executing.

One-way operation contracts are, as the name implies, one way; they do
not return a result to the client. Service operations must have a return type
of void and are marked by [IsOneWay=true] on the [OperationContract]
attribute. One-way contracts can be implemented over any transport,
including MSMQ.

Duplex operation contracts provide the greatest flexibility and per-
formance because they decouple the request and response execution from
the client and service. After the duplex channel is established between the
client and service, either the client or service can initiate a message. This
pattern is well suited for client notification.

Data Contracts

Data contracts define the application data interface to services. Classes
marked with [DataContract] and [DataMember] attributes are included in
the XML Schema Definitions in the part of WSDL representing the service
contract. Other data types can also be exposed in WSDL, such as base types
and those marked with [Serializable]. Because [DataContract] has seri-
alization rules designed for interoperability, it is the preferred serialization
mechanism for WCFE.

Summary H

Class members are included in a data contract with the [DataMember]
attribute. This is strictly an opt-in model so only members with this attrib-
ute are included in the contract. This also makes [DataContract] a more
suitable serialization mechanism than [Serializable] because the latter
can cause internal structures to be exposed outside of the service.

Class hierarchies are supported and their namespaces are carried
through the hierarchy. To support polymorphism and collections that con-
tain objects, WCF enables a service to publish the list of known types. Data
contracts are also designed for versioning. When new members are added
to a contract, existing clients will continue to work, providing certain rules
are followed.

Message Contracts

Message contracts are operation contracts that enable access to SOAP head-
ers and bodies. Messages can be typed with [DataContract] or [Serializ-
able], or they can simply be of the type Message. Typed messages are
defined with [MessageHeader] and [MessageBody] attributes. Message data
can be undefined at design time, enabling the greatest flexibility. Untyped
messages also have access to the SOAP headers and body.

89

This page intentionally left blank

3

Channels

A CHANNEL IS THE CONDUIT through which all messages pass to and
from WCF applications. It is responsible for preparing and delivering
messages in a consistent way. Channels are defined for transports, proto-
cols, and message interception. Channels are layered together to create a
channel stack. A channel stack is a layered communication stack that
processes messages. For example, a channel stack could be constructed
using a TCP transport channel and a transaction protocol channel. Such a
channel stack would allow sending and receiving messages across a net-
work using the TCP protocol and transactions to flow from client to server.

The goal of a channel stack is to transform a message into a wire format
compatible with the sender and receiver and to transport the message.
There are two types of channels that are used to do this: transport channels
and protocol channels. Transport channels always sit at the bottom of the
channel stack and are responsible for transporting messages using a trans-
port protocol. WCF provides a number of transport protocols, including
HTTP, TCP, MSMQ), peer-to-peer, and named pipes. Protocol channels
reside on top of transports or other protocol channels. Because protocol
channels reside on top of other channels, they are often referred to as layered
channels. Protocol channels are responsible for implementing wire-level
protocols by transforming and modifying messages. WCF provides many
types of protocol channels. Examples include protocol channels that imple-
ment support for security, transactions, and reliable messaging.

91

92

Chapter 3: Channels

"= TIP Transport Channels

WCF provides several transport channels, including HTTP, TCP,
MSMQ, peer-to-peer, and named pipes. Other transports are available
in sample code or through third parties for a wide range of transports,
including SMTP, FTP, UDP, WebSphere MQ, and SQL Service Broker.
Many of these transports can be found on the http://wcf.netfx3.com
Web site. The UDP transport channel can be found in the Windows
SDK. The transport channel for WebSphere MQ can be found on IBM’s
alphaWorks Web site.

For communication to occur, clients and servers each need to instanti-
ate a channel stack that is compatible with others. Between .NET applica-
tions, this is typically done by using the same channel stack on the client
and the server. In general, this means that their capabilities must match. We
use bindings to simplify the creation of channel stacks. A binding captures
the configuration of the channel stack and knows how to create that chan-
nel stack at runtime. Bindings are built from a collection of binding elements,
which typically represent channels in the channel stack. Bindings and bind-
ing elements will be discussed in detail in Chapter 4, “Bindings.”

The WCEF channel architecture provides enormous flexibility by allow-
ing the communication to be abstracted away from the application. This
enables developers to build services that can be exposed over multiple
communication mechanisms, which allows application services to change
over time as the requirements change. For example, a WCF service exposed
between two .NET applications can easily be exposed to a Java application
without modifying the application. Support for additional features such as
interoperability, durable messaging, and transactions can easily be added
to WCF services as the requirements change. Prior Microsoft technologies
(such as ASPNET Web Services, NET Remoting, Enterprise Services, or
MSMQ) required you to rewrite portions of the application for each new
form of communication. With WCE, you can now pick and choose the fea-
tures you want without requiring a significant rewrite of the application.

The capability for WCF to offer such flexibility can be found in how
WCF composes a channel stack using layering. Figure 3.1 shows how a

http://wcf.netfx3.com

Channels [

message flows from a WCF client application through a client-side chan-
nel stack over a given transport to a server. The server’s channel stack
listens for messages and then dispatches them to the server application.

WCF Client WCF Service

Client Application Server Application

Protocols Protocols

Protocols

Protocols

Transport Transport

A
Y

FiGure 3.1 Channel stack

A channel stack is a series of channels that are configured using bind-
ing elements. A preconfigured channel stack is also called a binding. A
binding is made up from a series of binding elements, just as a channel
stack is made from a series of channels. At the top of the stack are the pro-
tocol channels. Protocol channels interact with a message and facilitate
security, reliable messaging, transactions, and logging features. There can
be any number of protocol channels in a channel stack, depending on the
required features.

Transport channels are responsible for sending bytes over a transmis-
sion protocol such as TCP or HTTP. They are also responsible for using an
encoder to convert messages into an array of bytes for transport. It is the job
of an encoder to convert a message from its XML representation to an array
of bytes. Encoders are exposed to the transport channel using binding ele-
ments. Transport channels look in the binding context for an implementa-
tion of a MessageEncoder class. If none are available, the transport channel
can specify a default message encoder.

93

94

Chapter 3: Channels

" TIP Channel Stacks Have a Transport and an Encoder

Channel stacks have at least one transport and one encoder. Usually
the transport will specify a default encoding to use. An example is the
tcpTransport transport channel, which specifies the use of the
binaryMessageEncoding. This is all that is needed to implement a
channel stack in WCE. Protocol channels are optional when you are
composing a channel stack.

Channel Shapes

WCEF supports three distinct message-exchange patterns: one-way,
duplex, and request-reply. To facilitate each of these patterns, WCF pro-
vides ten different interfaces called channel shapes. The five shapes are
IOutputChannel, IInputChannel, IDuplexChannel, IRequestChannel, and
IReplyChannel. Each of these shapes has an equivalent shape to support
sessions. These include I0utputSessionChannel, IInputSessionChannel,
IDuplexSessionChannel, IRequestSessionChannel, and IReplySession-
Channel. These interfaces implement the different message-exchange pat-
terns within a channel stack. In this section, we will look at each of the
communication patterns and the various interfaces associated with them.

One-Way Communication Pattern
In the one-way communication pattern, messages are sent in only one
direction, from the client to the server. One-way communication is common
when the sender does not need an informational response back right away;
the sender just needs an acknowledgement that the message was sent. After
the message is sent, that is the end of the communication exchange. The
two interfaces used to facilitate one-way communication are the
IOutputChannel and the IInputChannel interface. Figure 3.2 shows how
messages flow between a client and server for one-way communication.
In this pattern, the IOutputChannel interface is responsible for sending
messages, and the IInputChannel is responsible for receiving messages.
Listing 3.1 shows a client application that uses the IOutputChannel channel
shape to send a message.

Channel Shapes m

WCF Client WCF Service

Messages

EEE—— Server Application

Client Application

I0utputChannel
linputChanne

FIGURE 3.2 One-way communication

LISTING 3.1 IOutputChannel Example

using System;

using System.Collections.Generic;
using System.ServiceModel;

using System.ServiceModel.Channels;
using System.Text;

namespace EssentialWCF
{
class Program
{
static void Main(string[] args)
{
BasicHttpBinding binding = new BasicHttpBinding();
BindingParameterCollection parameters =
new BindingParameterCollection();

Message m =
Message.CreateMessage(MessageVersion.Soapll, "urn:sendmessage");
IChannelFactory<IOutputChannel> factory =

binding.BuildChannelFactory<IOutputChannel>(parameters);
IOutputChannel channel = factory.CreateChannel(
new EndpointAddress("http://localhost/sendmessage/"));
channel.Send(m);
channel.Close();
factory.Close();

Duplex Communication
Duplex communication uses two one-way channel shapes combined
into a third interface called IDuplexChannel, as shown in Figure 3.3. The

95

96

m Chapter 3: Channels

advantage of duplex communication over one-way or request-reply is that
messages can be sent from either the client or the server.

WCEF Client WCF Server

Messages

[9]
S
c
]
<
Q
2
3
=%
5
=1
Qe

Jouueyonduy|

Client Application Server Application

Messages

[
<
=4
°
c
S
@)
>
o
=}
=
@

linputChannel

FIGURE 3.3 Duplex communication

An example of duplex communication is an event notification system. A
server will send events to a client that receives events. The client provides
an endpoint on which the server can send messages to the client. The server
will then use this endpoint to send messages to the client. Listing 3.2 shows
an example of a client that uses the IDuplexChannel channel shape.

LisTING 3.2 IDuplexChannel Example

using System;

using System.Collections.Generic;
using System.ServiceModel;

using System.ServiceModel.Channels;
using System.Text;

namespace EssentialWCF
{
class Program
{
static void Main(string[] args)
{
NetTcpBinding binding = new NetTcpBinding();
BindingParameterCollection parameters =
new BindingParameterCollection();

Message m =
Message.CreateMessage(MessageVersion.Soapl2WSAddressingle,

"urn:sendmessage");

Channel Shapes

IChannelFactory<IDuplexChannel> factory =
binding.BuildChannelFactory<IDuplexChannel>(parameters);

IDuplexChannel channel = factory.CreateChannel(
new EndpointAddress("net.tcp://localhost/sendmessage/"));

channel.Send(m);
channel.Close();
factory.Close();

Request-Reply Communication

Request-reply communication is a special form of two-way communication

where there is exactly one reply for each request, and it is always initiated

by the client. After the client sends a request, it must wait for a response

before it can send another request.

A common use of request-reply communication is an HTTP request from

a browser. The browser makes an HTTP request to the server, such as GET

or POST, the server processes that request, and then a reply is sent back.

WCF handles request-reply communication using the IRequestChannel and

IReplyChannel interfaces as shown in Figure 3.4.

WCF Client

Client Application

©
c
c
©
<
o
=
5
o
5
S
]

lInputChannel

Messages

Messages

FIGURE 3.4 Request-reply communication

WCF Server

jouueyindul|

Server Application

(e}
c
=3
S
<
S
(e}
>
o
=}
=1
o3

Listing 3.3 shows a client application that uses the IRequestChannel to

send a message. Notice that the Request method returns the reply message

as the return parameter.

97

98 Chapter 3: Channels

LiSTING 3.3 IRequestChannel Example

using System;

using System.Collections.Generic;
using System.ServiceModel;

using System.ServiceModel.Channels;
using System.Text;

namespace EssentialWCF
{
class Program
{
static void Main(string[] args)
{
BasicHttpBinding binding = new BasicHttpBinding();
BindingParameterCollection parameters =
new BindingParameterCollection();

Message request =
Message.CreateMessage(MessageVersion.Soapll, "urn:sendmessage");
IChannelFactory<IRequestChannel> factory =
binding.BuildChannelFactory<IRequestChannel>(parameters);
IRequestChannel channel = factory.CreateChannel(
new EndpointAddress("http://localhost/sendmessage/"));
Message response = channel.Request(request);
channel.Close();
factory.Close();

Shape Changing

There is an inherent request-reply nature built in to the HTTP protocol, and
therefore the HTTP transport channel uses the request-reply channel shape.
Other forms of communication, such as one-way and duplex over HTTP,
are done through shape changing. This is done by layering a protocol chan-
nel on top of the transport channel to support one-way or duplex commu-
nication. Listing 3.4 shows a custom binding that layers a one-way
shape-changing binding element, OneWayBindingElement, on top of an
HTTP transport. We will see more advanced examples of shape changing
using the CompositeDuplexBindingElement binding element in Chapter 12,
“Peer Networking.”

Operation Contract and Channel Shapes =

LISTING 3.4 OneWayBindingElement Example

using System;

using System.Collections.Generic;
using System.ServiceModel;

using System.ServiceModel.Channels;
using System.Text;

namespace EssentialWCF

{
class Program
{
static void Main(string[] args)
{
CustomBinding binding = new CustomBinding(
new OneWayBindingElement(),
new TextMessageEncodingBindingElement(),
new HttpTransportBindingElement());
}
¥
}

Operation Contract and Channel Shapes

Channels use channel shapes to implement the various types of message
exchange patterns that they support. For example, a transport channel
based on TCP would implement the IInputChannel and IOutputChannel
because these transports are inherently one-way. Other transports based on
other protocols such as TCP may implement multiple channel shapes.
Developers do not work with channel shapes directly. Instead, WCF chooses
the channel shape based on the OperationContract of a service. Table 3.1
lists the various attributes that you can set on an OperationContract and the
resulting channel shape. Notice that most channel shapes have a sessionless
(default) and session-aware variant. Session-aware channels pass an iden-
tifier from the client to the server. This can be used to maintain state between
client and server. This is similar to how ASP.NET does state management.
There is no state-management feature built in to WCEF, but you can use ses-
sions with instancing to be able to manage state. Instance management is
described in Chapter 5, “Behaviors.”

99

100 m Chapter 3: Channels

TaBLE 3.1 Channel Shapes Based on OperationContract Attributes

Request/
OneWay Reply Session Callback Channel Shape
Any Any No Yes IDuplexChannel
Any Any No Yes IDuplexSessionChannel
Any Any Yes Yes IDuplexSessionChannel
Yes Yes No No IDuplexChannel
Yes Yes No No IRequestChannel
Yes Yes No No IDuplexSessionChannel
Yes Yes Yes No IDuplexSessionChannel
Yes Yes Yes No IRequestSessionChannel
Yes No No No IOutputChannel
Yes No No No IDuplexChannel
Yes No No No IDuplexSessionChannel
Yes No No No IRequestChannel
Yes No Yes No IOutputSessionChannel
Yes No Yes No IDuplexSessionChannel
Yes No Yes No IRequestSessionChannel
No Yes No No IRequestChannel
No Yes No No IDuplexChannel
No Yes No No IDuplexSessionChannel
No Yes Yes No IRequestSessionChannel
No Yes Yes No IDuplexSessionChannel

Not all channels implement each of these interfaces. If the underlying
channel does not support a particular channel shape, WCF will try to adapt

Channel Listeners [

an existing channel shape to suit its needs. For example, if a channel does
not implement the IInputChannel and IOutputChannel interfaces for one-
way communication, WCF will try to use either the IDuplexChannel or the
IRequestChannel/IReplyChannel instead.

Channel Listeners

Channel listeners form the basis for server-side communication within WCE.
They are responsible for listening for incoming messages, creating channel
stacks, and providing a reference to the top of the stack to applications. They
receive messages from either the transport channel or the channel below in
the channel stack. Most developers will not work with channel listeners
directly. They will use the ServiceHost class to host services, which uses a
channel listener to listen for messages. See Chapter 7, “Hosting,” for more
details about the ServiceHost class. Listing 3.5 shows a channel listener
being created to receive a message. The BuildChannellListener method of
the binding builds a channel listener based on the channel shape specified.
In this case we are using the BasicHttpBinding and the IReplyChannel
shapes.

LisTING 3.5 Using a Channel Listener

using System;

using System.Collections.Generic;
using System.Text;

using System.ServiceModel;

using System.ServiceModel.Channels;

namespace EssentialWCF

{

class Program

{

static void Main(string[] args)
{
BasicHttpBinding binding = new
BasicHttpBinding(BasicHttpSecurityMode.None);

Uri address = new Uri("http://localhost/request”);
BindingParameterCollection bpc = new

BindingParameterCollection();

Console.WritelLine("Starting service...");

101

102 Chapter 3: Channels

LisTING 3.5 continued

IChannellListener<IReplyChannel> listener =
binding.BuildChannellListener<IReplyChannel>(address, bpc);

listener.Open();

IReplyChannel channel = listener.AcceptChannel();

channel.Open();

Console.WriteLine("Service started!");

Console.WriteLine("Waiting for request...");
RequestContext request = channel.ReceiveRequest();
Message message = request.RequestMessage;
string data = message.GetBody<string>();
Message replymessage =
Message.CreateMessage(message.Version,
"http://localhost/reply",
data);
request.Reply(replymessage);
Console.WriteLine("Service stopped!");

message.Close();
request.Close();
channel.Close();
listener.Close();

Console.ReadlLine();

Channel Factories

A channel factory creates a channel for sending messages and maintains
ownership of the channels it creates. Most developers will never use a chan-
nel factory directly. Instead, they will use a class derived from ClientBase<>,
which is typically generated from svcutil.exe or Add Service Reference in
Visual Studio. However, it is important to understand channel factories
because they form the basis for client-side communication within WCE

Channel Factories [|

®: TIP Channel Factories Own Their Channels

One important distinction between channel listeners and factories is
that channel factories are responsible for closing down all associated
channels; channel listeners are not. This distinction was made so that
channel listeners could be shut down independent of their channels.

Listing 3.6 shows the use of a channel factory to call a service. This is the
client to the server in Listing 3. The code uses the CreateChannel method of
the binding to create a new channel.

LisTING 3.6 Using Channel Factories

using System;

using System.Collections.Generic;
using System.Text;

using System.ServiceModel;

using System.ServiceModel.Channels;

namespace EssentialWCF
{
class Program
{
static void Main(string[] args)
{
BasicHttpBinding binding = new
BasicHttpBinding(BasicHttpSecurityMode.None);

IChannelFactory<IRequestChannel> factory =
binding.BuildChannelFactory<IRequestChannel>(
new BindingParameterCollection());
factory.Open();
IRequestChannel channel = factory.CreateChannel(
new EndpointAddress("http://localhost/request"));
channel.Open();

Message requestmessage = Message.CreateMessage(
MessageVersion.Soapll,
"http://contoso.com/reply",

"This is the body data");

103

104

Chapter 3: Channels

LiIsTING 3.6 continued

Console.WritelLine("Sending message...");

Message replymessage = channel.Request(requestmessage);
string data = replymessage.GetBody<string>();
Console.WriteLine("Reply received!");
requestmessage.Close();

replymessage.Close();

channel.Close();

factory.Close();

Console.ReadlLine();

ChannelFactory<>

Two classes refer to channel factories within WCF: ChannelFactory and
ChannelFactory<>. They might seem similar, but they are actually separate
classes that do different things. The ChannelFactory<> class is used in
advanced situations where multiple clients need to be created. Essentially
it works with a given ChannelFactory, but it does not have any responsi-
bilities for creating a channel stack. The ChannelFactory<> class is used by
defining the class with a specific ServiceContract type. Listing 3.7 shows
an example of using the ChannelFactory<> class to call a service that imple-
ments the IStockQuoteService interface.

"= TIP Using Statement and ChannelFactory<>

Be careful when implementing the using statement to close the
ChannelFactory. Listing 3.7 shows a best practice of having a
try..catch around the service call so that any errors from the service
are known. If we didn’t have this try..catch, any exceptions would
bubble up through the using. At that point the channel factory would
throw an exception because it is closed. This would mask the previous
error raised from the service call. We use two try. .catch blocks so that
we can catch any errors from the service calls.

ICommunicationObject m 105

LisTING 3.7 Using ChannelFactory<>

using System;

using System.Collections.Generic;
using System.Text;

using System.ServiceModel;

using System.ServiceModel.Channels;

namespace EssentialWCF

{
class Program
{
static void Main(string[] args)
{
try
{

using (ChannelFactory<IStockQuoteService> cf =
new ChannelFactory<IStockQuoteService>())

{
IStockQuoteService service = cf.CreateChannel();
try
{
double value = service.GetQuote("MSFT");
}
catch (Exception ex)
{
// check exception from call to GetQuote
Console.WritelLine(ex.ToString());
}
}
}
catch (Exception ex)
{
// check exception for creating channel
Console.WriteLine(ex.ToString());
}

Console.ReadLine();

ICommunicationObject

The ICommunicationObject interface (see Listing 3.8) is the basis of all com-
munication objects (channels, channel factories, channel listeners, and so

106

Chapter

3: Channels

on) within WCE. Developers who are planning to build custom channels

or work with channels directly need to know this interface. Communica-

tion objects within WCF need to implement a specific state machine. The

state machine represents the state that all communication objects go

through. This approach is similar to what other communication objects (for

example, sockets) go through. The purpose of the ICommunicationObject

interface (and its associated methods, states, and events) is to implement

that state machine. This allows WCEF to treat all communication objects the

same and abstracts away their underlying implementations.

LISTING 3.8 ICommunicationObject Interface

public inte

{

rface ICommunicationObject

// Events

event
event
event
event
event

// Me
void
IAsyn
IAsyn
AsyncCallba
IAsyn
IAsyn
AsyncCallba
void
void
void
void
void
void

// Pr
Commu

EventHandler Closed;
EventHandler Closing;
EventHandler Faulted;
EventHandler Opened;
EventHandler Opening;

thods

Abort();

cResult BeginClose(AsyncCallback callback, object state);
cResult BeginClose(TimeSpan timeout,

ck callback, object state);

cResult BeginOpen(AsyncCallback callback, object state);
cResult BeginOpen(TimeSpan timeout,

ck callback, object state);

Close();

Close(TimeSpan timeout);

EndClose(IAsyncResult result);

EndOpen(IAsyncResult result);

Open();

Open(TimeSpan timeout);

operties
nicationState State { get; }

Listing 3.9 shows the states provided by the CommunicationState enu-

meration.

ICommunicationObject m 107

LISTING 3.9 CommunicationState Enumeration

public enum CommunicationState
{

Created,

Opening,

Opened,

Closing,

Closed,

Faulted

The CommunicationState enumeration lists six states that communica-
tion objects go through. The initial state for all communication objects is
Created. This is the state that communication objects are in when they are
instantiated. The final state for all communication objects is Closed. Along
the way, methods are called on the ICommunicationObject interface that
transitions the communication object from one state to the next. For exam-
ple, the Open () method is called to transition a communication object from
the Created state to the Opened state. Figure 3.5 shows a state diagram
showing the states and state transitions that a communication object goes
through.

Abort()

Abort()

Abort()

Close() or Abort()

Abort()

One example of a communication object is the ClientBase<> class, which is

FIGURE 3.5 ICommunicationObject state diagram

the base implementation for clients generated from Add Service Reference
from Visual Studio or svcutil.exe.

108

Chapter 3: Channels

. NOTE Cannot Reuse Clients

There is no going back after a communication object has transitioned
from the Opened state to either the Closing or Faulted state. This
means that the communication state cannot go back to the Opened state
without first re-creating the communication object. Therefore, clients
need to be re-created after they are closed (that is, when they are in the
Closed state).

Five events (Opening, Opened, Closing, Closed, and Faulted) are sup-
ported by the ICommunicationObject interface. These events are used to
notify code of state transitions.

" TIP Client Notifications

It is common for applications to maintain a reference to a client proxy.
In these situations it is important to use the state transitions events to
be notified when the client proxy enters the Faulted state (and even-
tually the Closed state) so that communication between client and
server can be maintained.

The ICommunicationObject interface is typically used by casting an
existing communication object to the interface to gain access to the methods
and events that the ICommunicationObject exposes. However, at other
times you want to create a new communication object that extends the
capabilities of WCE. In this situation, WCF has provided an abstract base
class called CommunicationObject, which provides an implementation of
the ICommunicationObject interface and the associated state machine. List-
ing 3.10 shows a StockQuoteServiceClient that was generated from
svcutil.exe. This client inherits from the ClientBase<> class. The code
shows the client being cast to an ICommunicationObject interface so that
we can receive communication events.

LISTING 3.10 ICommunicationObject Example

using System;
using System.Collections.Generic;
using System.Net;

Summary m 109

using System.Text;
using System.ServiceModel;
using System.ServiceModel.Channels;

namespace EssentialWCF
{
class Program
{
static void Main(string[] args)
{
string symbol = "MSFT";
double value;

StockQuoteServiceClient client =
new StockQuoteServiceClient());

ICommunicationObject commObj =
(ICommunicationObject)client;

commObj.Closed +=
new EventHandler(Closed);
commObj.Faulted +=
new EventHandler(Faulted);
value = client.GetQuote(symbol);

Console.WriteLine("{0} @ ${1}", symbol, value);
Console.ReadLine();

}
static void Closed(object sender, EventArgs e)
{
// Handle Closed Event
}
static void Faulted(object sender, EventArgs e)
{
// Handle Faulted Event
}
}
¥
SUMMARY

A channel stack is a layered communication stack that is made up of one or
more channels that process messages. Channels are either protocol or trans-
port channels. Transport channels sit at the bottom of the channel stack and
are responsible for transmitting messages over a transport mechanism (for

110

Chapter 3: Channels

example, HTTP, TCP, MSMQ). Protocol channels (a.k.a. layered channels)
implement protocols (security, reliable messaging, transactions, and so on)
by transforming and modifying messages.

Channel factories and listeners form the basis for sending and receiving
messages. They are responsible for creating channel stacks and exposing
the channel stack to applications.

WCF does a good job of abstracting away the details of the channel
model from developers. Most developers will use a class derived from the
ClientBase<> to send messages and the ServiceHost class to host services.
These classes are built on top of the channel model architecture.

The channel model architecture forms the basis for all communication
within WCFE. After developers know about concepts within the channel
model architecture, such as channel stacks, channels, channel factories, and
channel listeners, they can use this knowledge to extend or customize com-
munication within WCF.

n 4

Bindings

A S COVERED IN CHAPTER 3, “CHANNELS,” a channel stack is a lay-
ered communication stack that is made up of one or more channels
that process messages. Bindings are preconfigured channel stacks. They rep-
resent wire-level agreements between a client and a server. Each binding
specifies the transport, encoding, and protocols involved in the communi-
cation. WCF encapsulates the configuration for the various communication
scenarios using bindings. The most common communication scenarios,
such as Web services, REST/POX services, and queue-based applications,
are provided out of the box. For example, the basicHttpBinding binding
is meant to work with services based on ASPNET Web Services or WS-1
Basic Profile 1.1 compliant services. The ws2007HttpBinding and
wsHttpBinding bindings are similar to the basicHttpBinding binding, but
they support more features, such as reliable messaging and transactions,
and use newer standards such as WS-Addressing. The ws2007HttpBinding
binding ships with .NET 3.5 and is based on newer standards than the
wsHttpBinding binding. Table 4.1 lists the 12 bindings used for communi-
cation and a description of the use of each binding.

111

112 Chapter 4: Bindings

TABLE 4.1 WCF Communication Bindings in .NET Framework 3.5

Binding Name

Description

NET Framework

basicHttpBinding

Binding for WS-I Basic
Profile 1.1 Web Services
including ASMX Web Services.

3.0/3.5

wsHttpBinding

Binding for advanced WS-*
based Web Services such as
WS-Security, WS-Transactions,
and the like.

3.0/3.5

wsDualHttpBinding

Binding to support bidirectional
communication using duplex
contracts.

3.0/3.5

webHttpBinding

Binding that supports REST/
POX-based services using XML
and JSON serialization.

3.0/3.5

netTcpBinding

Binding for communication
between two .NET-based
systems.

3.0/3.5

netNamedPipeBinding

Binding for on-machine
communication between one or
more .NET-based systems.

3.0/3.5

netMsmgBinding

Binding for asynchronous
communication using Microsoft
Message Queue (MSMQ).

3.0/3.5

netPeerTcpBinding

Binding for building peer-to-
peer networking applications.

3.0/3.5

msmgIntegrationBinding

Binding for sending and
receiving messages to applica-
tions through the use of queues
using MSMQ.

3.0/3.5

wsFederationHttpBinding

Binding for advanced WS-*
based Web services using
federated identity.

3.0/3.5

Ws2007HttpBinding

Binding derived from the
wsHttpBinding with additional
support for the latest WS-*
specifications based on
standards available in 2007.

3.5

Bindings =

Binding Name Description .NET Framework

ws2007FederationHttpBinding Binding derived from the 3.5

wsFederationHttpBinding
with additional support for
the latest WS-* specifications
based on standards available
in 2007.

The bindings listed in Table 4.1 can be specified in either code or configu-

ration. Listing 4.1 shows the basicHttpBinding binding specified in con-

figuration. Using configuration allows developers the flexibility to change

or modify the binding later on without recompiling the application.

LISTING 4.1 Using a Binding in Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<client>

<endpoint address="http://localhost/helloworld"
binding="basicHttpBinding"
contract="EssentialWCF.HelloWorld">
</endpoint>

</client>
</system.serviceModel>
</configuration>

The BasicHttpBinding binding class is shown in Listing 4.2. Using code

allows a developer to use a specific binding without the possibility of its

changing later on.

LISTING 4.2 Using a Binding in Code

using
using
using
using
using
using

System;
System.Collections.Generic;
System.Net;

System.Text;
System.ServiceModel;
System.ServiceModel.Channels;

namespace EssentialWCF

{

class Program

{

113

114 Chapter 4: Bindings

LISTING 4.2 continued

static void Main(string[] args)

{
BasicHttpBinding binding = new BasicHttpBinding();

using (HelloWorldClient client =
new HelloWorldClient(Binding,
"http://localhost/helloworld"))
client.SayHello("Rich");

Console.ReadlLine();

Bindings compose a channel stack through a collection of binding
elements. Binding elements represent a channel object in the channel stack.
Each binding, such as the basicHttpBinding binding, is composed of sev-
eral binding elements. You can examine this through code by instantiating
the binding and enumerating over the binding element collection. This is
shown in Listing 4.3.

LISTING 4.3 Examining BindingElementCollection

using System;

using System.Collections.Generic;
using System.Text;

using System.ServiceModel;

using System.ServiceModel.Channels;

namespace EssentialWCF

{
class Program
{
static void Main(string[] args)
{
OutputBindingElements(new WSHttpBinding());
OutputBindingElements(new NetTcpBinding());
OutputBindingElements(new NetNamedPipeBinding());
OutputBindingElements(new BasicHttpBinding());
Console.ReadLine();
¥

static void OutputBindingElements(Binding binding)
{

Bindings =

Console.WriteLine(" Binding : {@}", binding.GetType().Name);

BindingElementCollection elements =
binding.CreateBindingElements();

foreach (BindingElement element in elements)
Console.WriteLine(" {0}", element.GetType().FullName);

Console.WriteLine();

Figure 4.1 shows the output for the code in Listing 4.3 using four of the
out-of-the-box bindings: WSHttpBinding, NetTcpBinding, NetNamed-
PipeBinding, and the BasicHttpBinding binding. We will look at the
WSHttpBinding binding so we can understand the binding elements used to
construct the binding.

The default configuration for the WSHttpBinding is made up of four
binding elements: HttpTransportBindingElement, TextMessageEncoding-
BindingElement, SymmetricSecurityBindingElement, and Transaction-
FlowBindingElement. These binding elements allow for communication
over the HTTP protocol, text-based message encoding, security, and trans-
action support, respectively. Note that the list of binding elements is based
on the default configuration. The binding may add or remove binding ele-
ments depending on how you configure the binding.

&R filey///Cy/Users/ricrane/Documents/Visual Studio 2005/Projects/BindingExplorer/biryDebug/Binding... L= =0 (S

Binding = WSHttpBinding -
System.ServiceModel.Channels.TransactionFlowBindingElement =
System.ServiceModel.Channels.SymmetricSecurityBindingElement
System.ServiceModel.Channels.TextMeszsageEncodingBindingElement
System.ServiceModel.Channels.HttpTransportBindingElement

Binding = MetTcpBinding
System.ServiceModel.Channels.TransactionFlowBindingElement
System.ServiceModel.Channels.BinaryMessageEncodingBindingElement
System.ServiceModel.Channels WindowsStreamSecurityBindingElement
System.ServiceModel.Channels.TcpTransportBindingElement

Binding = MetMamedPipeBinding
Sysztem.ServiceModel.Channels.TransactionFlowBindingElement
System.ServiceModel.Channels.BinaryMessageEncodingBindingElement
Sysztem.ServiceModel.Channels WindowsStreamSecurityBindingElement
System.ServiceModel.Channels.NamedPipeTransportBindingElement

Binding = BasicHttpBinding
System.ServiceModel.Channels.TextMeszsageEncodingBindingElement
System.ServiceModel.Channels.HttpTransportBindingElement

FIGURE 4.1 Binding Explorer

115

116

Chapter 4: Bindings

Note how each binding is composed of one or more binding elements and
that some of those binding elements are common across bindings. For
example, both the WSHttpBinding and the BasicHttpBinding use the
HttpTransportBindingElement. These two bindings use the same transport
mechanism but differ in the functionality and capabilities they support. We
will discuss the difference between these bindings in this chapter.

The remainder of this chapter focuses on Web services, cross-machine,
local-machine, and queue-based communication. These are the forms of
communication that developers should know to get started with WCE.
There are other forms of communication based on REST/POX, peer net-
working, and federated security that are discussed in more detail in Chap-
ter 13, “Programmable Web,” Chapter 12, “Peer Networking,” and Chapter
8, “Security,” respectively.

Choosing an Appropriate Binding

There are nine preconfigured bindings in WCE. Each of these provides the
means for a particular distributed computing need. There are several fac-
tors that determine which binding to choose for a specific application,
including security, interoperability, reliability, performance, and transaction
requirements. Table 4.2 compares the nine preconfigured bindings by
showing the common features they support. This table can be used to select
a best binding for a particular need.

The approach used to choose a binding is to examine the features your
application needs and determine a binding that matches those require-
ments. Table 4.2 compares features of each preconfigured binding so you
can select the binding based on your requirements. There are many fea-
tures, including interoperability, durability, reliability, and transactions. For
example, if your application needs to communicate over an unreliable net-
work, such as a wireless network connection, you might want a binding
that supports reliable sessions (RS). Figure 4.2 shows a process you might
use to select a binding.

TaBLE 4.2 Supported Features of Each Binding

Binding Name Communication
7| =| 3 & gl 2 . | 7
> n ® * =g)] = o
£ | 88 s=| 5 | 25| = S | 3§ 3 2
c 9 c o o n = 2 = " 3 2 : °
=7 | 22 8 % g w5 2 H = s)
Sp ¥ | 27 & | F5| & 2 3] & | 7
s 5| F S = S ® Z
wn wn
basicHttpBinding X X X Good X X
wsHttpBinding X X X RS* Good X X
wsDualHttpBinding X X X X RS* Good X X X
netTcpBinding X X X RS* Better X X X
netNamedPipeBinding X X Best X X X
netMsmgBinding X X X Better X
netPeerTcpBinding X Good X X
msmgIntegrationBinding X X Better X
wsFederationHttpBinding X X X RS* Good X X
Ws2007HttpBinding X X RS* Good X
ws2007FederationHttpBinding X RS* Good X

* RS = WCF Reliable Sessions is an implementation of SOAP reliable messaging defined by the WS-Reliable Messaging (WS-RM)

standard.

Sujpuig 9jenadorddy ue Suisooy)

11

Need
Interoperability
?

basicHttpBinding

Need
Duplexing?

YES—3» | wsDualHttpBinding

NO

Need
Federated
Security

/ wsFederationHttpBinding or
YES—>> ws2007FederationHttpBinding

NO

wsHttpBinding or
ws2007HttpBinding

FIGURE 4.2 Selecting a binding

NO

v

Need
Queuing?

Need Peer

netTcpBinding

YES» |netNamedPipeBinding

YES—»

Need Legacy
MSMQ?

NO

msmglntegrationBinding

811

ti7 193deyy =

sSujpulg

Choosing an Appropriate Binding =

You need to consider many features when selecting a binding. Table 4.2
cannot list them all; therefore, you may need to do further investigation to
select an appropriate binding.

Each of the bindings supports a particular communication scenario,
such as cross-machine, on-machine, and interoperable communication
using Web services. We will examine these scenarios along with the bind-
ings associated with each. There are other scenarios, such as federated secu-
rity and peer communication. These topics deserve deeper discussion and
will be discussed in detail in Chapter 8, “Security,” and Chapter 12, “Peer
Networking,” respectively.

Sample Application

We will now examine each of the preconfigured bindings available in WCE.
To demonstrate each binding we will use a sample application based on
stock quotes. The sample asks for quotes based on a ticker symbol and
returns the stock price. The intent is to expose and consume the same ser-
vice over different bindings and take note of any changes in code or con-
figuration. Listing 4.4 shows the stock quote service.

LISTING 4.4 StockQuoteService Service

using System;

using System.Collections.Generic;
using System.Text;

using System.ServiceModel;

using System.Runtime.Serialization;

namespace EssentialWCF

{
[ServiceContract]
public interface IStockQuoteService

{

[OperationContract]
double GetQuote(string symbol);

public class StockQuoteService : IStockQuoteService

{
public double GetQuote(string symbol)

{

double value;

if (symbol == "MSFT")

119

120 Chapter 4: Bindings

LISTING 4.4 continued

value = 31.15;

else if (symbol == "YHOO")
value = 28.10;

else if (symbol == "GOOG")
value = 450.75;

else
value = double.NaN;

return value;

Listing 4.5 shows the client proxy that was generated using Add Service
Reference from Visual Studio. We hand-edited the proxy to remove any
comments and added using statements for commonly used namespaces for
formatting purposes. Other than these minor edits, this is the same client
code you should expect if you generate your proxies through Add Service
Reference or svcutil.exe. Our intent is to use the same client code with the
different bindings and take note of any changes in code or configuration.

LISTING 4.5 StockQuoteService Client Proxy

using System.CodeDom.Compiler;
using System.Diagnostics;

using System.ServiceModel;

using System.ServiceModel.Channels;

namespace EssentialWCF

{

[GeneratedCodeAttribute("System.ServiceModel”, "3.0.0.0")]

[ServiceContractAttribute(
ConfigurationName="IStockQuoteDuplexService",
CallbackContract=typeof(IStockQuoteDuplexServiceCallback),
SessionMode=SessionMode.Required)]

public interface IStockQuoteDuplexService

{

[OperationContractAttribute(IsOneWay=true,
Action="http://tempuri.org/IStockQuoteDuplexService/
wSendQuoteRequest™)]

void SendQuoteRequest(string symbol);

Choosing an Appropriate Binding

[GeneratedCodeAttribute("System.ServiceModel"”, "3.0.0.0")]
public interface IStockQuoteDuplexServiceCallback

{

[OperationContractAttribute(IsOneWay=true,
Action="http://tempuri.org/IStockQuoteDuplexService/
wSendQuoteResponse™)]

void SendQuoteResponse(string symbol, double price);

[GeneratedCodeAttribute("System.ServiceModel"”, "3.0.0.0")]
public interface IStockQuoteDuplexServiceChannel :
IStockQuoteDuplexService, IClientChannel

[DebuggerStepThroughAttribute()]

[GeneratedCodeAttribute("System.ServiceModel"”, "3.0.0.0")]

public partial class StockQuoteDuplexServiceClient :
DuplexClientBase<IStockQuoteDuplexService>,
IStockQuoteDuplexService

{

public StockQuoteDuplexServiceClient(
InstanceContext callbackInstance)
: base(callbackInstance)

public StockQuoteDuplexServiceClient(
InstanceContext callbackInstance,
string endpointConfigurationName)

: base(callbackInstance,
endpointConfigurationName)

public StockQuoteDuplexServiceClient(
InstanceContext callbackInstance,
string endpointConfigurationName,
string remoteAddress)
: base(callbackInstance,
endpointConfigurationName,
remoteAddress)

public StockQuoteDuplexServiceClient(
InstanceContext callbackInstance,
string endpointConfigurationName,

121

122 Chapter 4: Bindings

LISTING 4.5 continued

EndpointAddress remoteAddress)

: base(callbackInstance,
endpointConfigurationName,
remoteAddress)

public StockQuoteDuplexServiceClient(InstanceContext
callbackInstance, Binding binding, EndpointAddress remoteAddress)

base(callbackInstance, binding, remoteAddress)

{
}
public void SendQuoteRequest(string symbol)
{

base.Channel.SendQuoteRequest(symbol);
}

This sample application is hosting the service using self-hosting. Listing
4.6 shows the code to self-host the StockQuoteService. See Chapter 7,
“Hosting,” for more information on self-hosting.

LISTING 4.6 StockQuoteService ServiceHost

using System;

using System.Collections.Generic;
using System.Configuration;

using System.Text;

using System.ServiceModel;

namespace EssentialWCF

{

internal class MyServiceHost

{

internal static ServiceHost myServiceHost = null;

internal static void StartService()

{
myServiceHost =
new ServiceHost(typeof(EssentialWCF.StockQuoteService));
myServiceHost.Open();

internal static void StopService()

Cross-Machine Communication Between .NET Applications =

{

if (myServiceHost.State != CommunicationState.Closed)
myServiceHost.Close();

Cross-Machine Communication Between .NET
Applications

This section describes the bindings used for cross-machine communication
between .NET applications. We will demonstrate how to customize each
binding through configuration and code. Each binding will be reviewed in
the context of a typical scenario.

"= TIP Bindings That Start with “net” Should Be Used with
.NET Applications

WCEF prefixes all bindings that are meant to be used between .NET
applications with the “net” prefix. The binding name prefix is one indi-
cator that you should use when selecting a particular binding to use.
This means that these bindings have specific features that are available
only to .NET applications. Conversely, all bindings that begin with the
“ws” prefix are meant for interoperability with non-.NET applications
using Web services.

netTcpBinding
The netTcpBinding binding is designed to support communication
between .NET applications that are deployed on separate machines across
a network, including communication across intranets and the Internet. We
refer to this type of communication as cross-machine communication. In this
situation there is no need for interoperability because both applications are
built on .NET. This gives us a great deal of flexibility when communicating
across the network. Because no interoperability requirement exists, com-
munication can be optimized for the best performance.

The netTcpBinding binding uses binary encoding and the TCP protocol
to achieve the best performance across the network. The general guideline

123

124

Chapter 4: Bindings

is to use the netTcpBinding binding for cross-machine communication
between .NET applications. This is not a hard-and-fast rule, but it covers
most situations. An example of when the netTcpBinding binding is not
appropriate is when a firewall separates the two .NET applications. Often
the only way you can communicate across a firewall is to use HTTP. In this
situation, you will need to use a binding that supports the HTTP protocol
used by basicHttpBinding binding rather than netTcpBinding binding.

The following code shows the addressing format on the netTcpBinding
binding:

net.tcp://{hostname}[:port]/{service location}

The default port for the TCP transport is 808. This is the case for any
binding based on the TcpTransportBindingElement binding element,
including the netTcpBinding binding.

Table 4.3 lists the binding properties that are configurable on the
netTcpBinding binding. All of them are important to know, depending on
the situation. For example, the default for the netTcpBinding binding is to
turn off port sharing. This has an impact on your application if you plan to
host multiple services over the same port. See the “Sharing Ports Between
Services” section in the appendix, “Advanced Topics,” for more informa-
tion on port sharing. Another important property of the netTcpBinding is
the maxConnections property. The maxConnections property limits the
number of connections to an endpoint. The default value is 10. This needs
to be increased in order to maximize throughput.

TABLE 4.3 netTcpBinding Binding Properties

Attribute Name Description Default

closeTimeout The maximum time to wait 00:01:00
for the connection to be
closed.

hostNameComparisonMode Specifies the method for StrongWildCard
hostname comparison when
parsing URIs.

Cross-Machine Communication Between .NET Applications m
Attribute Name Description Default
listenBacklog The maximum number of channels 10
waiting to service a request. Any
connections greater than this
amount are queued.

maxBufferPoolSize Maximum size of any buffer pools 524,888
used by the transport.

maxBufferSize Maximum number of bytes used to 65,536
buffer incoming messages in memory.

maxConnections The maximum number of outbound 10
or inbound connections. Outbound
and inbound connections are counted
separately.

maxReceivedMessageSize The maximum size of an incoming 65,536
message.

name The name of the binding. n/a

openTimeout The maximum time to wait for an open 00:01:00
connection operation to complete.

portSharingEnabled Enable port sharing for the service false
listener.

readerQuotas Specify the complexity of messages n/a
that can be processed (for example, size).

receiveTimeout The maximum time to wait for a 00:01:00
receive operation to complete.

reliableSession Specify whether the binding supports n/a
exactly once delivery assurances
using WS-Reliable Messaging.

security Specifies the security settings of n/a
the binding.

sendTimeout The maximum time to wait for a 00:01:00
send operation to complete.

transactionFlow Enable transactions to flow from the false
client to the server.

transactionProtocol The type of transactions supported— Ole
either OleTransactions or WSAtomic- Trans-
Transactions. actions

n/a—means that the setting is a child element that requires multiple properties to be set or
does not apply unless another property is set.

125

126 Chapter 4: Bindings

The following configuration information is meant to be used with the
sample application shown in Listings 4.2 through 4.4. The configuration
information shown in Listing 4.7 exposes the StockQuoteService service
using the netTcpBinding binding.

LISTING 4.7 netTcpBinding Host CONFIGURATION

<?xml version="1.0" encoding="utf-8" ?>

<configuration>
<system.serviceModel>
<services>
<service name="EssentialWCF.StockQuoteService">

<host>

<baseAddresses>
<add baseAddress="net.tcp://localhost/stockquoteservice" />

</baseAddresses>

</host>

<endpoint address=
contract="EssentialWCF.IStockQuoteService"
binding="netTcpBinding" />
</service>
</services>
</system.serviceModel>
</configuration>

Listing 4.8 shows the client configuration to consume the service using
the netTcpBinding binding shown in Listing 4.7.

LISTING 4.8 netTcpBinding Client Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<client>
<endpoint address="net.tcp://localhost/stockquoteservice”
binding="netTcpBinding"
contract="EssentialWCF.IStockQuoteService">
</endpoint>
</client>
</system.serviceModel>
</configuration>

Local Machine Communication Between .NET Applications =

Local Machine Communication Between .NET
Applications

Interprocess, or cross-process, communication refers to communication
between two separate processes running on the same machine. Intra-
process, or in-process, communication refers to communication between
two software components running within one process. Together these types
of communication make up what we refer to as local-machine communica-
tion (a.k.a. on-machine communication)

Application domains (a.k.a. app-domains) are a mechanism in .NET for
further partitioning a Windows process to support multiple .NET applica-
tions by isolating them along security and activation boundaries. This
means that app-domains are another communication boundary that can be
crossed by .NET applications. Because of this we define two additional
terms: inter-appdomain and intra-appdomain.

* inter-appdomain or cross-appdomain. Communication that occurs
between two .NET applications that run in separate app-domains
within the same Windows process. This could also be communica-
tion within a single .NET application that is designed to run within
multiple app-domains.

* intra-appdomain or in-appdomain. Communication that occurs
within a single NET application that runs in a single application
domain. For our discussion, think of an app-domain as being one or
more .NET processes that run within a Windows process.

WCF does not make a distinction between interprocess, intraprocess,
inter-appdomain and intra-appdomain communication. Instead, WCF offers
a single on-machine transport channel based on named pipes. Named pipes
are a standard means of interprocess communications (IPC) on Windows as
well as UNIX environments. The WCF team considered an in-process bind-
ing but decided that it was not necessary for most situations. Do not concern
yourself over this decision. There is no loss in functionality. The only differ-
ence between a named pipe and a true in-process binding is performance.

127

128

Chapter 4: Bindings

The performance of the named pipes binding is good enough for most in-
process communication situations. If you find that a single on-machine
transport is not sufficient, you have the capability of creating a custom bind-
ing that uses a custom transport channel. See the “Creating a Custom Bind-
ing” section later in this chapter for more information on creating a custom
binding.

netNamedPipeBinding

WCF supports interprocess and intraprocess communication scenarios
with the netNamedPipeBinding binding. The netNamedPipeBinding binding
leverages a named pipes transport. This is a great binding to use for doing
interprocess communication (IPC) because it provides a significant per-
formance increase over the other standard bindings available in WCEF. See
the “Comparing Binding Performance and Scalability” section later in this
chapter for a quick comparison of the performance.

" TIP WCF Restricts the netNamedPipeBinding Binding to
Local Machine Communication!

Although it is possible to use named pipes to communicate across a
network, WCF restricts the use to local machine communication. This
means that the netNamedPipeBinding binding (and any other binding
based on the namedPipeTransport binding element) can be used to
ensure that your service is not available across a network. This is
accomplished using two mechanisms. First, the Network Security
Identifier (SID: S-1-5-2) is denied access to the named pipe. Second, the
name of the named pipe is randomly generated and stored in shared
memory so only clients running on the same machine can access it.

An address using the netNamedPipeBinding binding is formatted as
follows:

net.pipe://localhost/{service location}

Table 4.4 shows the binding properties that are configurable on the
netNamedPipeBinding binding. An important property of the netNamed-
PipeBinding is the maxConnections property. The maxConnections property

Local Machine Communication Between .NET Applications

limits the number of connections to an endpoint. The default value is 10. This

needs to be increased in order to maximize throughput.

TABLE 4.4 netNamedPipeBinding Binding Properties

Attribute Name

Description

Default

closeTimeout

The maximum time to wait
for the connection to be
closed.

00:01:00

hostNameComparisonMode

Specifies the method for
hostname comparison when
parsing URIs.

StrongWildCard

maxBufferPoolSize

Maximum size of any
buffer pools used by the
transport.

524,888

maxBufferSize

Maximum number of bytes
used to buffer incoming
messages in memory.

65,536

maxConnections

The maximum number of
outbound or inbound
connections. Outbound and
inbound connections are
counted separately.

10

maxReceivedMessageSize

The maximum size of an
incoming message.

65,536

name

The name of the binding.

openTimeout

The maximum time to wait
for an open connection
operation to complete.

00:01:00

readerQuotas

Specify the complexity of
messages that can be

processed (for example, size).

n/a

receiveTimeout

The maximum time to wait
for a receive operation to
complete.

00:01:00

continues

129

130 Chapter 4: Bindings

TABLE 4.4 continued

Attribute Name Description Default
security Specifies the security settings n/a

of the binding.
sendTimeout The maximum time to wait for a 00:01:00

send operation to complete.

transactionFlow Enable transactions to flow from false
the client to the server.

transactionProtocol The type of transactions supported OleTransactions
either OleTransactions or
WSAtomicTransactions.

n/a—means that the setting is a child element that requires multiple properties to be set
or does not apply unless another property is set.

The following configuration information is meant to be used with the
sample application shown in Listings 4.2 through 4.4. The configuration
information shown in Listing 4.9 exposes the StockQuoteService service
using the netNamedPipeBinding binding.

LISTING 4.9 netNamedPipeBinding Host Configuration

<?xml version="1.0" encoding="utf-8" ?>

<configuration>
<system.serviceModel>
<services>
<service name="EssentialWCF.StockQuoteService">

<host>

<baseAddresses>
<add baseAddress="net.pipe://localhost/stockquoteservice" />

</baseAddresses>

</host>

<endpoint address=
contract="EssentialWCF.IStockQuoteService"
binding="netNamedPipeBinding" />
</service>
</services>
</system.serviceModel>
</configuration>

Communication Using Basic Web Services =

Listing 4.10 shows the client configuration to consume the service using
the netNamedPipeBinding binding shown in Listing 4.9.

LISTING 4.10 netNamedPipeBinding Client Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<client>
<endpoint address="net.pipe://localhost/stockquoteservice"
binding="netNamedPipeBinding"
contract="EssentialWCF.IStockQuoteService">
</endpoint>
</client>
</system.serviceModel>
</configuration>

Communication Using Basic Web Services

Web services are the foundation for interoperable communication among
heterogeneous systems. For example, services built on Java-based plat-
forms such as IBM Websphere or BEA WebLogic must communicate seam-
lessly with clients and services built on .NET. And services built on .NET
must communicate seamlessly with clients or services built on Java-based
platforms. Prior to WCE, ASPNET Web Services (ASMX) and Web Service
Enhancements (WSE) provided this capability on the .NET platform. With
.NET 3.0, WCF is a direct replacement for these technologies and provides
a single unified framework for building Web services. WCF includes
several bindings for exposing interoperable Web services, including
basicHttpBinding, wsHttpBinding, wsDualHttpBinding, and wsFedera-
tionHttpBinding bindings.

In this section, we examine the basicHttpBinding binding, which offers
support for Web services based on the WS-I Basic Profile 1.1. As of 2007, the
WS-I Basic Profile 1.1 covers the most widely deployed set of Web service
protocols and is the Web service technology that most developers are famil-
iar with. Other bindings based on Web services are discussed in the “Com-
munication Using Advanced Web Services” section later in this chapter and
are also discussed in Chapter 8 of this book.

131

132

Chapter 4: Bindings

basicHttpBinding

The basicHttpBinding binding offers support for Web service communi-
cation based on the WS-I Basic Profile 1.1 (WS-BP 1.1) specification. This
includes standards such as SOAP 1.1, WSDL 1.1, and Message Security 1.0
(including X.509 and UserName Tokens Profile v1.0). The WS-BP 1.1 spec-
ification has been around since 2004. Although the basicHttpBinding bind-
ing offers interoperability across heterogeneous systems, it does not offer
support for the latest Web service standards such as transactions and reli-
able messaging. The basicHttpBinding binding is meant to be used with
applications that use Web services based on the WS-BP 1.1 specification,
such as ASPNET ASMX Web Services.

". NOTE Create Services Based on the Latest Standards

The basicHttpBinding binding is meant to work with legacy Web ser-
vices based on prior technologies such as ASP.NET. This means that
the basicHttpBinding binding is configured by default to use older
standards such as SOAP 1.1. The basicHttpBinding binding is also the
only binding that is not secure by default. If you need to create new
Web services, we recommend using the ws2007HttpBinding binding
because it is configured to use newer standards and is secure by
default.

The following code shows the addressing formats for the basicHttpBind-
ing binding:

http://{hostname}[:port]/{service location}
https://{hostname}[:port]/{service location}

The default port is port 80 for http and port 443 for https. This is the case
for any binding based on the HttpTransportBindingElement binding ele-
ment, including the basicHttpBinding binding. The most common way to
secure the basicHttpBinding binding is to use https, which uses SSL/TLS
encryption.

Table 4.5 lists the binding properties that are configurable on the
basicHttpBinding binding.

Communication Using Basic Web Services m 133

TABLE 4.5 basicHttpBinding Binding Properties

Attribute Name Description Default

bypassProxyOnLocal Bypass the proxy settings for false

local endpoints.

closeTimeout

The maximum time to wait

for the connection to be closed.

00:01:00

hostNameComparisonMode

Specifies the method for
hostname comparison when
parsing URIs.

StrongWildCard

maxBufferPoolSize

Maximum size of any buffer
pools used by the transport.

524,888

maxBufferSize

Maximum number of bytes
used to buffer incoming
messages in memory.

65,536

maxReceivedMessageSize

The maximum size of an
incoming message.

65,536

messageEncoding

The type of encoding used to
encode messages.

Text

name

The name of the binding.

openTimeout

The maximum time to wait for
an open connection operation
to complete.

00:01:00

proxyAddress

Specify a specific Web proxy
to use. useDefaultWebProxy
must be false for this setting

to apply.

n/a

readerQuotas

Specify the complexity of
messages that can be
processed (for example, size).

n/a

receiveTimeout

The maximum time to wait
for a receive operation to
complete.

00:01:00

continues

134 Chapter 4: Bindings

TABLE 4.5 continued

Attribute Name Description Default
security Specifies the security settings n/a

of the binding.
sendTimeout The maximum time to wait for 00:01:00

a send operation to complete.

textEncoding The method of character utf-8
encoding used to encode
messages. messageEncoding
must be set to Text for this
setting to apply.

transferMode Determines how messages are Buffered
sent across the network. Messages
can either be buffered or streamed.

useDefaultWebProxy Use the default Web proxy true
specified by the operating system.

The following configuration information is meant to be used with the
sample application shown in Listings 4.2 through 4.4. The configuration
information shown in Listing 4.11 exposes the StockQuoteService service
using the basicHttpBinding binding.

LISTING 4.11 basicHttpBinding Host Configuration

<?xml version="1.0" encoding="utf-8" ?>

<configuration>
<system.serviceModel>
<services>
<service name="EssentialWCF.StockQuoteService">
<host>
<baseAddresses>
<add baseAddress="http://localhost/stockquoteservice"” />
</baseAddresses>
</host>

<endpoint address=""
contract="EssentialWCF.IStockQuoteService"
binding="basicHttpBinding" />
</service>
</services>
</system.serviceModel>
</configuration>

Communication Using Advanced Web Services m 135

Listing 4.12 shows the client configuration to consume the service using
the basicHttpBinding binding shown in Listing 4.11.

LISTING 4.12 basicHttpBinding Client Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<client>
<endpoint address="http://localhost/stockquoteservice"
binding="basicHttpBinding"
contract="EssentialWCF.IStockQuoteService">
</endpoint>
</client>
</system.serviceModel>

</configuration>

Communication Using Advanced Web Services

As mentioned previously, Web services are the foundation for interoperable
communication among heterogeneous systems. Advanced Web services are
those Web services exposed using the WS-* specifications (pronounced ws-
star). WCF has support for the WS-* specifications including security, reliable
messaging, and transactions. The list of supported specifications is shown in
Table 4.6. Support for these features is available in the wsHttpBinding,
wsDualHttpBinding, and wsFederationHttpBinding bindings.

"= NOTE Bindings That Start with “ws” Should Be Used for
Interoperability Using Web Services.

Windows Communication Foundation prefixes all bindings that are
meant for interoperability using Web services begin with the “ws” pre-
fix. Conversely, all bindings that begin with the “net” prefix should be
used only between .NET applications.

136

Chapter 4: Bindings

TABLE 4.6 WS-* Specifications Supported by the wsHttpBinding Binding

Standard

Description

SOAP 1.2

Lightweight protocol for exchange of informa-
tion in a decentralized, distributed environment

WS-Addressing 2005/08

Transport-neutral mechanisms to address Web
services and messages

WSS Message Security 1.0

Specification for securing Web services using a
variety of mechanisms such as PKI, Kerberos,
and SSL

WSS Message Security
UsernameToken Profile 1.1

Support for security tokens based on a username
and optionally a password (or password equiva-
lent such as a shared secret)

WSS SOAP Message
Security X509 Token
Profile 1.1

Support for tokens based on X.509 certificates

WS-SecureConversation

Extensions to WS-Security to provide a secure
context for multiple message exchanges

WS-Trust

Extensions to WS-Security to request and issue
tokens and to manage trust relationships

WS-SecurityPolicy

Policy assertions for WS-Security, WS-Secure-
Conversation, and WS-Trust, which are
expressed using WS-Policy

WS-ReliableMessaging

A protocol for guaranteeing messages are deliv-
ered, properly ordered, and received without
duplication

WS-Coordination

A framework for providing protocols that coordi-
nate the actions of distributed applications

WS-Atomic Transactions

A protocol that coordinates the actions of
distributed applications based on the atomic
transactions

WS-Addressing

A transport-neutral mechanism for addressing
Web services

Communication Using Advanced Web Services =

wsHttpBinding
Support for WS-* is included throughout the WCF framework. The wsHttp-
Binding binding is an example of this support. This binding provides inter-
operable communication across heterogeneous platforms as well as
advanced infrastructure level protocols, such as security, reliable messag-
ing, and transactions. The wsHttpBinding binding is the default binding in
NET Framework 3.0 whenever you need interoperable communication
based on Web services.

The following code shows the addressing formats for the wsHttpBind-
ing binding:

http://{hostname}:{port}/{service location}
https://{hostname}:{port}/{service location}

The default port is port 80 for http and port 443 for https. This is the case
for any binding based on the HttpTransportBindingElement binding ele-
ment, including the wsHttpBinding binding.

Table 4.7 shows the binding properties that are configurable on the
wsHttpBinding binding.

TABLE 4.7 wsHttpBinding Binding Properties

Attribute Name Description Default

bypassProxyOnLocal Bypass the proxy settings false
for local endpoints.

closeTimeout The maximum time to wait
for the connection to be closed. 00:01:00

hostNameComparisonMode Specifies the method for StrongWildCard
hostname comparison when
parsing URIs.

maxBufferPoolSize Maximum size of any buffer 524,888

pools used by the transport.

maxReceivedMessageSize The maximum size of an 65,536
incoming message.

continues

137

Chapter 4: Bindings

TABLE 4.7 continued

Attribute Name

Description

Default

messageEncoding

The type of encoding used to
encode messages.

Text

name

The name of the binding.

openTimeout

The maximum time to wait for
an open connection operation
to complete.

00:01:00

proxyAddress

Specify a specific Web proxy to
use. useDefaultWebProxy must
be false for this setting to apply.

n/a

readerQuotas

Specify the complexity of messages
that can be processed (for example,
size).

n/a

receiveTimeout

The maximum time to wait for a
receive operation to complete.

00:01:00

reliableSession

Specify whether the binding
supports exactly once delivery
assurances using WS-Reliable
Messaging.

n/a

security

Specifies the security settings of
the binding.

n/a

sendTimeout

The maximum time to wait for a
send operation to complete.

00:01:00

textEncoding

Determines how messages are sent
across the network. Messages can
either be buffered or streamed.

utf-8

transactionFlow

Enable transactions to flow from
the client to the server.

false

useDefaultWebProxy

Use the default Web proxy specified
by the operating system.

true

Communication Using Advanced Web Services =

The following configuration information is meant to be used with the
sample application shown in Listings 4.2 through 4.4. The configuration
information shown in Listing 4.13 exposes the StockQuoteService service
using the wsHttpBinding binding.

LISTING 4.13 wsHttpBinding Host Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<services>
<service name="EssentialWCF.StockQuoteService">
<host>
<baseAddresses>
<add baseAddress="http://localhost/stockquoteservice" />
</baseAddresses>
</host>
<endpoint address=
contract="EssentialWCF.IStockQuoteService"
binding="wsHttpBinding" />

</service>
</services>
</system.serviceModel>
</configuration>

Listing 4.14 shows the client configuration to consume the service using
the wsHttpBinding binding shown in Listing 4.13.

LISTING 4.14 wsHttpBinding Client Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<client>
<endpoint address="http://localhost/stockquoteservice”
binding="wsHttpBinding"
contract="EssentialWCF.IStockQuoteService">
</endpoint>
</client>
</system.serviceModel>
</configuration>

139

140

Chapter 4: Bindings

ws2007HttpBinding

NET Framework 3.5 introduces a new binding for Web service interoper-

ability called the ws2007HttpBinding binding. This binding is similar to the

wsHttpBinding binding except that it supports the latest WS-* standards

available for messaging, security, reliable messaging, and transactions.
Table 4.8 lists the new WS-* standards that are supported by the

ws2007HttpBinding binding.

TABLE 4.8 WS-* Specifications Supported by the ws2007HttpBinding Binding

Standard

Description

WS-SecureConversation v1.3

Extensions to WS-Security to provide a secure
context for multiple message exchanges

WS-Trust v1.3

Extensions to WS-Security to request and
issue tokens and to manage trust relation-
ships

WS-SecurityPolicy v1.2

Policy assertions for WS-Security, WS-Secure-
Conversation, and WS-Trust, which are
expressed using WS-Policy

Web Services Reliable
Messaging v1.1

A protocol for guaranteeing messages are
delivered, properly ordered, and received
without duplication

Web Services Atomic
Transaction v1.1

A protocol that coordinates the actions of
distributed applications based on the atomic
transactions

Web Services Coordination v1.1

A framework for providing protocols
that coordinate the actions of distributed
applications

The following code shows the addressing formats for the ws2007Http-

Binding binding:

http://{hostname}:{port}/{service location}
https://{hostname}:{port}/{service location}

Communication Using Advanced Web Services m 141

The default port is port 80 for http and port 443 for https. This is the case
for any binding based on the HttpTransportBindingElement binding ele-
ment, including the wsHttpBinding binding.

Table 4.9 shows the binding properties that are configurable on the
wsHttpBinding binding.

TABLE 4.9 ws2007HttpBinding Binding Properties

Attribute Name Description Default
bypassProxyOnLocal Bypass the proxy settings for

local endpoints. false
closeTimeout The maximum time to wait 00:01:00

for the connection to be closed.

hostNameComparisonMode Specifies the method for StrongWildCard
hostname comparison when
parsing URIs.

maxBufferPoolSize Maximum size of any buffer 524,888

pools used by the transport.

maxReceivedMessageSize The maximum size of an 65,536
incoming message.

messageEncoding The type of encoding used to ~ Text
encode messages.

name The name of the binding.

openTimeout The maximum time to wait for 00:01:00
an open connection operation
to complete.

proxyAddress Specify a specific Web proxy n/a
to use. useDefaultWebProxy
must be false for this setting

to apply.

readerQuotas Specify the complexity of n/a
messages that can be
processed (for example, size).

continues

142 Chapter 4: Bindings

TABLE 4.9 continued

Attribute Name

Description

Default

receiveTimeout

The maximum time to wait for
a receive operation to complete.

00:01:00

reliableSession

Specify whether the binding
supports exactly once delivery
assurances using WS-Reliable
Messaging.

n/a

security

Specifies the security settings
of the binding.

n/a

sendTimeout

The maximum time to wait for
a send operation to complete.

00:01:00

textEncoding

Determines how messages are

sent across the network. Messages
can either be buffered or streamed.

utf-8

transactionFlow

Enable transactions to flow from
the client to the server.

false

useDefaultWebProxy

Use the default Web proxy

specified by the operating system.

true

n/a—means that the setting is a child element that requires multiple properties to be set

or does not apply unless another property is set.

The following configuration information is meant to be used with the
sample application shown in Listings 4.2 through 4.4. The configuration
information shown in Listing 4.15 exposes the StockQuoteService service

using the ws2007HttpBinding binding.

LISTING 4.15 ws2007HttpBinding Host Configuration

<?xml version="1.0" encoding="utf-8" ?>

<configuration>
<system.serviceModel>
<services>

<service name="EssentialWCF.StockQuoteService">

<host>
<baseAddresses>

<add baseAddress="http://localhost/stockquoteservice"” />

Communication Using Advanced Web Services m 143

</baseAddresses>
</host>
<endpoint address=""
contract="EssentialWCF.IStockQuoteService"
binding="ws2007HttpBinding" />
</service>
</services>
</system.serviceModel>
</configuration>

Listing 4.16 shows the client configuration to consume the service using
the ws2007HttpBinding binding shown in Listing 4.15.

LISTING 4.16 ws2007HttpBinding Client Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<client>
<endpoint address="http://localhost/stockquoteservice”
binding="ws2007HttpBinding"
contract="EssentialWCF.IStockQuoteService">
</endpoint>
</client>
</system.serviceModel>
</configuration>

wsDualHttpBinding

The wsDualHttpBinding binding is similar to the wsHttpBinding binding,
with additional support for duplex communication and lack of support for
transport-level security. Duplex communication is accomplished through
two shape-changing binding elements: the OneWayBindingElement and
CompositeDuplexBindingElement binding elements. The CompositeDu-
plexBindingElement binding element layers a duplex communication
channel on top of two one-way channels. The wsDualHttpBinding binding
uses the HttpTransportBindingElement binding element. This transport
supports only the request-reply message exchange pattern. The OneWay-
BindingElement binding element allows the HttpTransportBindingEle-
ment binding element to be used with the CompositeDuplexBindingElement
binding element.

144

Chapter 4: Bindings

The wsDualHttpBinding binding does not support transport-level
security. This means that SSL/TLS encryption is not possible using the
wsDualHttpBinding binding.

The following code shows the addressing formats for the wsDualHttp-
Binding binding.

http://{hostname}:{port}/{service location}

The default port is port 80 for http. This is the case for any binding based
on the HttpTransportBindingElement binding element, including the
wsDualHttpBinding binding.

Table 4.10 lists the binding properties that are configurable on the
wsDualHttpBinding binding.

TABLE 4.10 wsDualHttpBinding Binding Properties

Attribute Name Description Default

bypassProxyOnLocal Bypass the proxy settings false
for local endpoints.

closeTimeout The maximum time to wait for 00:01:00
the connection to be closed.

hostNameComparisonMode Specifies the method for StrongWildCard
hostname comparison when
parsing URIs.

maxBufferPoolSize Maximum size of any buffer =~ 524,888

pools used by the transport.

maxReceivedMessageSize The maximum size of an 65,536
incoming message.

messageEncoding The type of encoding used Text
to encode messages.

name The name of the binding.

openTimeout The maximum time to wait 00:01:00
for an open connection
operation to complete.

Communication Using Advanced Web Services =

Attribute Name Description Default

proxyAddress Specify a specific Web proxy touse. n/a
useDefaultWebProxy must be false
for this setting to apply.

readerQuotas Specify the complexity of messages n/a
that can be processed (for example,
size).

receiveTimeout The maximum time to wait for 00:01:00

a receive operation to complete.

reliableSession Specify whether the binding n/a
supports exactly once delivery
assurances using WS-Reliable

Messaging.
security Specifies the security settings of n/a
the binding.
sendTimeout The maximum time to wait for a 00:01:00

send operation to complete.

textEncoding Determines how messages are sent utf-8
across the network. Messages can
either be buffered or streamed.

transactionFlow Enable transactions to flow from false
the client to the server.

useDefaultWebProxy Use the default Web proxy specified true
by the operating system.

We have modified the StockQuoteService application for the wsDualHttp-
Binding binding to support duplex communication. Listing 4.17 shows the
StockQuoteDuplexService implementation. The service supports the duplex
message exchange pattern using the IStockQuoteCallback contract, which is
the callback contract specified for the IStockQuoteDuplexService contract.

145

146

Chapter 4: Bindings

LISTING 4.17 IStockQuoteDuplexService, IStockQuoteCallback, and

StockQuoteDuplexService

using System;

using System.Collections.Generic;
using System.ServiceModel;

using System.Text;

namespace EssentialWCF

{

[ServiceContract(CallbackContract = typeof(IStockQuoteCallback),

SessionMode = SessionMode.Required)]
public interface IStockQuoteDuplexService

{ [OperationContract(IsOneWay = true)]
void SendQuoteRequest(string symbol);
}
public interface IStockQuoteCallback
{
[OperationContract(IsOneWay = true)]
void SendQuoteResponse(string symbol, double price);
}

[ServiceBehavior(InstanceContextMode =
InstanceContextMode.PerSession)]

public class StockQuoteDuplexService : IStockQuoteDuplexService

{
public void SendQuoteRequest(string symbol)
{
double value;
if (symbol == "MSFT")
value = 31.15;
else if (symbol == "YHOO")
value = 28.10;
else if (symbol == "GOOG")
value = 450.75;
else

value = double.NaN;

OperationContext ctx = OperationContext.Current;

IStockQuoteCallback callback =
ctx.GetCallbackChannel<IStockQuoteCallback>();

callback.SendQuoteResponse(symbol, value);

Communication Using Advanced Web Services m 147

We must change the self-hosting code for our example because we
changed the implementation that we are using to one that supports duplex
messaging. Listing 4.18 shows the hosting code for the StockQuoteDu-
plexService service.

LISTING 4.18 StockQuoteDuplexService ServiceHost Service

using System;

using System.Collections.Generic;
using System.Configuration;

using System.Text;

using System.ServiceModel;

namespace EssentialWCF

{

internal class MyServiceHost

{

internal static ServiceHost myServiceHost = null;

internal static void StartService()
{
myServiceHost =
new ServiceHost(typeof(EssentialWCF.StockQuoteDuplexService));
myServiceHost.Open();

}
internal static void StopService()
{
if (myServiceHost.State != CommunicationState.Closed)
myServiceHost.Close();
}

The configuration information shown in Listing 4.19 exposes the
StockQuoteDuplexService service using the wsDualHttpBinding binding.

LISTING 4.19 wsDualHttpBinding Host Configuration

<?xml version="1.0" encoding="utf-8" ?>

<configuration>
<system.serviceModel>
<services>
<service name="EssentialWCF.StockQuoteDuplexService">
<host>
<baseAddresses>

<add baseAddress="http://localhost/stockquoteservice” />

148 Chapter 4: Bindings

LISTING 4.19 continued

</baseAddresses>
</host>
<endpoint address=
binding="wsDualHttpBinding"
contract="EssentialWCF.IStockQuoteDuplexService">
</endpoint>
</service>
</services>
</system.serviceModel>
</configuration>

The configuration information shown in Listing 4.20 is for the client to
consume a service based on the IStockQuoteDuplexService contract using
the wsDualHttpBinding binding. The clientBaseAddress specifies the end-
point on which the client will listen for callback messages.

LISTING 4.20 wsDualHttpBinding Client Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<client>
<endpoint address="http://localhost/stockquoteservice"
binding="wsDualHttpBinding"
bindingConfiguration="SpecifyClientBaseAddress"
contract="IStockQuoteDuplexService">
</endpoint>
</client>
<bindings>
<wsDualHttpBinding>
<binding name="SpecifyClientBaseAddress"
clientBaseAddress="http://localhost:8001/client/" />
</wsDualHttpBinding>
</bindings>
</system.serviceModel>
</configuration>

The client application is shown in Listing 4.21. The client implements
the IStockQuoteDuplexServiceCallback interface to receive callback mes-
sages from the service. The client application passes a reference to the
IStockQuoteDuplexServiceCallback interface using the InstanceContext
class. The InstanceContext class is passed to the constructor of the client

proxy.

Communication Using Advanced Web Services

LISTING 4.21 wsDualHttpBinding Client Application

using
using
using
using
using
using
using

System

System.
System.
System.
System.

System

System.

3

Collections.Generic;
Net;

Text;

Threading;
.ServiceModel;
ServiceModel.Channels;

namespace EssentialWCF

{

public class Program : IStockQuoteDuplexServiceCallback

{

priv

stat
{

#reg

publ
{

#end

ate static AutoResetEvent waitForResponse;

ic void Main(string[] args)

string symbol = "MSFT";

waitForResponse = new AutoResetEvent(false);

InstanceContext callbackInstance =
new InstanceContext(new Program());

using (StockQuoteDuplexServiceClient client =
new StockQuoteDuplexServiceClient(callbackInstance))
client.SendQuoteRequest(symbol);
waitForResponse.WaitOne();

Console.ReadLine();

ion IStockQuoteDuplexServiceCallback Members
ic void SendQuoteResponse(string symbol, double price)
Console.WriteLine("{0} @ ${1}", symbol, price);

waitForResponse.Set();

region

Listing 4.22 shows the client proxy generated by svcutil.exe. The big
difference between this client proxy and the previous implementation is

149

150

Chapter 4: Bindings

that the client derives from the DuplexClientBase class rather than the
ClientBase class. The DuplexClientBase class adds support for duplex

messaging.

LISTING 4.22 wsDualHttpBinding Client Proxy

using System
using System
using System
using System

.CodeDom.Compiler;
.Diagnostics;
.ServiceModel;
.ServiceModel.Channels;

namespace EssentialWCF

{

[GeneratedCodeAttribute("System.ServiceModel”, "3.0.0.0")]

[ServiceContractAttribute(
ConfigurationName = "IStockQuoteDuplexService",
CallbackContract = typeof(IStockQuoteDuplexServiceCallback),
SessionMode = SessionMode.Required)]

public interface IStockQuoteDuplexService

{

[OperationContractAttribute(IsOneWay = true,
Action="http://tempuri.org/IStockQuoteDuplexService/
wSendQuoteRequest™)]

void

SendQuoteRequest(string symbol);

[GeneratedCodeAttribute("System.ServiceModel”, "3.0.0.0")]
public interface IStockQuoteDuplexServiceCallback

{

[OperationContractAttribute(IsOneWay = true,
Action="http://tempuri.org/IStockQuoteDuplexService/
= SendQuoteResponse™)]

void

SendQuoteResponse(string symbol, double price);

[GeneratedCodeAttribute("System.ServiceModel”, "3.0.0.0")]
public interface IStockQuoteDuplexServiceChannel :
IStockQuoteDuplexService, IClientChannel

[DebuggerStepThroughAttribute()]

[GeneratedCodeAttribute("System.ServiceModel”, "3.0.0.0")]

public partial class StockQuoteDuplexServiceClient :
DuplexClientBase<IStockQuoteDuplexService>,

Communication Using Advanced Web Services

IStockQuoteDuplexService

public StockQuoteDuplexServiceClient(
InstanceContext callbackInstance)
: base(callbackInstance)

public StockQuoteDuplexServiceClient(
InstanceContext callbackInstance,
string endpointConfigurationName)
: base(callbackInstance, endpointConfigurationName)

public StockQuoteDuplexServiceClient(
InstanceContext callbackInstance,
string endpointConfigurationName,
string remoteAddress)
: base(callbackInstance,
endpointConfigurationName,
remoteAddress)

public StockQuoteDuplexServiceClient(
InstanceContext callbackInstance,
string endpointConfigurationName,
EndpointAddress remoteAddress)
: base(callbackInstance,
endpointConfigurationName,
remoteAddress)

public StockQuoteDuplexServiceClient(
InstanceContext callbackInstance,
Binding binding,
EndpointAddress remoteAddress)
: base(callbackInstance, binding, remoteAddress)

public void SendQuoteRequest(string symbol)

{
base.Channel.SendQuoteRequest(symbol);

151

152

Chapter 4: Bindings

Comparing Binding Performance and Scalability

Developers need to know about the performance and scalability character-
istics of bindings. Performance and scalability are important when you are
working with real-world applications where service-level agreements and
user experience matters. Users will complain about an application that per-
forms poorly. Applications that do not scale usually mean that business
objectives are not being met.

We have provided a simple performance comparison of four bindings
available in WCF. The operation under test is a simple operation that
returns a 256-character string. Listing 4.23 shows the service being used to
compare performance between each binding.

LISTING 4.23 Performance Test Service

public class PerformanceTestService : IPerformanceTestService

{
private static string String256;

static PerformanceTestService()

{
String256 = "".PadRight(256, X’);
}
public string Get256Bytes()
{
return String256;
}

The service was exposed over four different bindings: netNamedPipe
Binding, netTcpBinding, wsHttpBinding, and basicHttpBinding. A test
client called the Get256Bytes operation 50,000 times sequentially to com-
pare the differences between the bindings. We then measured the average
elapsed time, operations per second, and CPU time. All tests were per-
formed on a single workstation running both server and client. This was
done so that we could compare the performance of all the bindings. Figure
4.3 shows the average response time for each binding. You can use the
response-time measurement to help examine user experience.

Comparing Binding Performance and Scalability m

Average Response Time (ms)
(Smaller Bars Are Better)

1.2
1
0.8
0.6
0.4
-
0 T T T T 1

ws2007HttpBinding wsHttpBinding basicHttpBinding netTcpBinding netNamedPipeBinding

FIGURE 4.3 Average response time

Figure 4.4 shows the average number of operations per second for each
binding. This measurement has an impact on the throughput. Only a single
instance of the test client was used for these tests. Additional throughput
could be achieved if multiple clients were used. Operations per second is
one measurement we use to determine scalability.

Operations Per Second
(Bigger Bars Are Better)

8000

7000

6000

5000

4000

3000

2000

i

0 T T T T d

ws2007HttpBinding wsHttpBinding basicHttpBinding netTcpBinding netNamedPipeBinding

FIGURE 4.4 Operations per second

153

154

Chapter 4: Bindings

Scalability should also take into account hardware resources consumed
for each operation. Figure 4.5 attempts to measure scalability by showing
the cost of an operation in MCycles. MCycles is a measurement based on
CPU processing power an operation uses. For the purposes of this test, we
used a Dell 4700 with a 3.4GHz Pentium 4 processor, which equates to 3400
MCycles. Notice that the measurements for the ws2007HttpBinding,
wsHttpBinding, and the basicHttpBinding bindings have significantly
higher cost than the netTcpBinding or the netNamedPipeBinding bindings.
This is because of the overhead needed for interoperability.

Cost Per Operation (Mcycles)
(Smaller Bars Are Better)

25

) l .
0 T T T T 1

ws2007HttpBinding wsHttpBinding basicHttpBinding netTcpBinding netNamedPipeBinding

FIGURE 4.5 Cost per operation

The WCF team has released a whitepaper on the performance of WCF
(available at http:/ /msdn2.microsoft.com/en-us/library /bb310550.aspXx).
The paper goes into much more detail and considers security settings such
as transport, message, and mixed mode, and compares previous technolo-
gies such as NET Remoting, Web Service Enhancements, ASPNET Web
Services, and Enterprise Services.

Communication Using Queued Services

Connected applications are applications that require both the client and the
server to be running at the same time and reachable over a network.

http://msdn2.microsoft.com/en-us/library/bb310550.aspx

Communication Using Queued Services =

Disconnected applications are ones in which the client can function without
connectivity to the server, but not all features are available in that mode.
Disconnected applications must cache data locally, must communicate in
some asynchronous manner, and must persist any messages so they can be
delivered when connectivity is reestablished.

Persisted queues are a common technique for building disconnected
applications. Queues can be implemented in a file system as a series of
folders and files, in a relational database as rows in a table, or using special
purpose software. Regardless of the technique, queues offer many advan-
tages, such as inherent asynchronous messaging and automatic load level-
ing. WCF offers the capability for communication through queues using
Microsoft Message Queue (MSMQ). There are two bindings available to
use with MSMQ: netMsmgBinding and msmqIntegrationBinding. The
netMsmgBinding binding is used when you are developing a new applica-
tion that wants to use WCF and MSMQ as a transport. The msmqIntegra-
tionBinding binding is used for interoperability with an existing MSMQ
application.

netMsmgBinding

MSMQ offers support for building distributed applications using queues.
WCEF supports communication through MSMQ queues as the underlying
transport for the netMsmgqBinding binding. The netMsmgBinding binding
allows clients to post messages directly to a queue and services to read mes-
sages from a queue. There is no direct communication between the client
and server; therefore, the communication is inherently disconnected. It also
means that all communication must be one-way. Therefore, all operations
must have the IsOneWay=true property set on the operation contract.

"= TIP Creating Queues Dynamically

It is common to automatically create MSMQ queues dynamically for
use with the netMsmgqBinding binding. This is especially true when
building disconnected client applications where the queue resides on
a user’s desktop. This can be done using the Create static method of
the System.Messaging.MessageQueue class.

155

156

Chapter 4: Bindings

The following code shows the addressing format for the netMsmq
Binding:

net.msmq://{hostname}/[private/|[public/]]{queue name}

The default port for MSMQ is 1801 and is not configurable using the
addressing scheme. Take note of the use of the words public and private
in the address format. You can explicitly specify whether the queue name
refers to either a private or public queue. If omitted, the queue name is
assumed to refer to a public queue.

Table 4.11 shows the binding properties that are configurable on the
netMsmgBinding binding.

TABLE 4.11 netMsmqgBinding Binding Properties

Attribute Name Description Default

closeTimeout The maximum time to wait for 00:01:00
the connection to be closed.

customDeadLetterQueue The location of the per-application n/a
dead letter queue. Dead letter refers
to a message that has expired or

failed delivery.

deadLetterQueue The type of dead letter queue to None
use. The types are None, System,
or Custom.

Durable Specifies whether the queue is true

durable or volatile.

exactlyOnce Specifies whether delivery supports true
exactly once delivery assurances.

maxBufferPoolSize Maximum size of any buffer pools 524,888
used by the transport.

maxReceivedMessageSize The maximum size of an incoming 65,536
message.

maxRetryCycles The number of retries before a 2
message is considered a poison
message.

Communication Using Queued Services m 157

Attribute Name Description Default

queueTransferProtocol Specifies the queued transport Native
protocol. The types of queued
transport protocols include
Native, Srmp, and SrmpSecure.
Native refers to the native MSMQ
protocol, and Srmp refers to the
Soap Reliable Messaging Protocol.

name The name of the binding. n/a
openTimeout The maximum time to wait for an 00:01:00
open connection operation to
complete.
readerQuotas Specify the complexity of messages n/a
that can be processed (for example,
size).
receiveErrorHandling Specifies how poison messages Fault

are handled. Valid types include
Drop, Fault, Move, and Reject.

receiveRetryCount Maximum number of attempts to 5
send a message before it enters
the retry queue.

receiveTimeout The maximum time to wait for a 00:10:00
receive operation to complete.

retryCycleDelay The type to wait between retry cycles. 00:10:00

Security Specifies the security settings of the n/a
binding.

sendTimeout The maximum time to wait for a 00:01:00

send operation to complete.

timeTolLive The length of time that messages 1.00:00:00
are valid before they are expired
and put into the dead-letter queue.

useActiveDirectory Specify whether the queued false
transport should resolve the
computer name using Active
Directory rather than DNS,
NetBIOS, or IP.

continues

158

Chapter 4: Bindings

TABLE 4.11 continued

Attribute Name Description Default

useMsmgqTracing Specifies whether MSMQ tracing false
is enabled. Trace messages are
sent to the report queue each
time a message leaves or arrives
in a queue.

useSourceJournal Specifies whether a copy of each false
message should be sent to the
journal queue.

The StockQuoteService sample application that we have been using
in Listings 4.2 through 4.4 needs to be modified to work with the
netMsmgqBinding binding. The netMsmgBinding supports only one-way
operations (see Table 4.2). Our original operation contract uses a request-
reply message exchange pattern (see Listing 4.4). Rather than show a dif-
ferent example, we will modify the StockQuoteService example to show
two-way communication over the netMsmqBinding binding.

We need to use two one-way operation contracts to maintain two-way
communication between the server and the client. This means that we need
to redefine our contracts to use the netMsmqBinding binding. Listing 4.24
shows the stock quote contracts written for use with the netMsmqBinding
binding. First, notice that we separated out the request and response
contracts into two separate service contracts: IStockQuoteRequest and
IStockQuoteResponse. The operations on each contract are one-way. The
IStockQuoteRequest contract will be used by the client to send a message
to the server. The IStockQuoteResponse contract will be used by the server
to send a message to the client. This means that both the client and the
server will be hosting services to receive messages.

LISTING 4.24 IStockQuoteRequest, IStockQuoteResponse, and

StockQuoteRequestService

using System;

using System.Collections.Generic;
using System.ServiceModel;

using System.ServiceModel.Channels;
using System.Text;

Communication Using Queued Services

using System.Transactions;

namespace EssentialWCF
{
[ServiceContract]
public interface IStockQuoteRequest
{
[OperationContract(IsOneWay = true)]
void SendQuoteRequest(string symbol);

[ServiceContract]
public interface IStockQuoteResponse

{
[OperationContract(IsOneWay = true)]

void SendQuoteResponse(string symbol, double price);

public class StockQuoteRequestService : IStockQuoteRequest

{
public void SendQuoteRequest(string symbol)

{

double value;

if (symbol == "MSFT")
value = 31.15;

else if (symbol == "YHOO")
value = 28.10;

else if (symbol == "GOOG")
value = 450.75;

else

value = double.NaN;

// Send response back to client over separate queue
NetMsmgBinding msmgResponseBinding = new NetMsmgBinding();
using (ChannelFactory<IStockQuoteResponse> cf =

= new ChannelFactory<IStockQuoteResponse>(“NetMsmgResponseClient™))

{

IStockQuoteResponse client = cf.CreateChannel();

using (TransactionScope scope =
= new TransactionScope(TransactionScopeOption.Required))

{

client.SendQuoteResponse(symbol, value);
scope.Complete();

cf.Close();

159

160

Chapter 4: Bindings

The next consideration for netMsmgBinding is the use of ServiceHost
class. The previous examples were able to reuse the same ServiceHost code
across different bindings. This was because the service contract could
remain the same. This is not the case with the netMsmgBinding. The
updated ServiceHost code to host the StockServiceRequestService ser-
vice is showing in Listing 4.25. We have updated the code to dynamically
create a MSMQ queue based on the queueName specified in configuration.
This helps simplify configuration by allowing the application to be
deployed without any additional configuration in MSMQ.

LISTING 4.25 StockQuoteRequestService ServiceHost Service

using System;

using System.Collections.Generic;
using System.Configuration;

using System.Messaging;

using System.Text;

using System.ServiceModel;

namespace EssentialWCF

{

internal class MyServiceHost

{

internal static string queueName = null;
internal static ServiceHost myServiceHost = null;

internal static void StartService()
{

queueName = ConfigurationManager.AppSettings["queueName"];

if (!MessageQueue.Exists(queueName))
MessageQueue.Create(queueName, true);

myServiceHost =
wnew ServiceHost(typeof(EssentialWCF.StockQuoteRequestService));

myServiceHost.Open();

¥
internal static void StopService()
{
if (myServiceHost.State != CommunicationState.Closed)
myServiceHost.Close();
¥

Communication Using Queued Services m 161

The configuration information shown in Listing 4.26 exposes the
StockQuoteRequestService service using the netMsmgBinding binding. It
also configures a client endpoint for the IStockQuoteResponse contract so
that responses can be sent to the client.

LISTING 4.26 netMsmqBinding Host Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<client>
<endpoint
address="net.msmq://localhost/private/stockquoteresponse”
contract="EssentialWCF.IStockQuoteResponse"
binding="netMsmgBinding"
bindingConfiguration="NoMsmgSecurity"
name="NetMsmgResponseClient"
/>
</client>
<services>
<service name="EssentialWCF.StockQuoteRequestService">
<endpoint
address="net.msmq://localhost/private/stockquoterequest™
contract="EssentialWCF.IStockQuoteRequest"
bindingConfiguration="NoMsmgSecurity"
binding="netMsmgBinding"
/>
</service>
</services>
<bindings>
<netMsmgBinding>
<binding name="NoMsmqgSecurity">
<security mode="None" />
</binding>
</netMsmgBinding>
</bindings>
</system.serviceModel>
<appSettings>
<add key="queueName" value=".\private$\stockquoterequest" />
</appSettings>
</configuration>

The client application must host a service using the netMsmgBinding to
receive responses and configure an endpoint to send requests to the server.
Listing 4.27 shows the ServiceHost class that the client uses to host a ser-
vice that implements the IStockQuoteResponse contract. We added code to

162

Chapter 4: Bindings

dynamically create the queue on which the client is listening. Again, this

helps simplify configuration by allowing the application to be deployed

without any additional configuration in MSMQ.

LISTING 4.27 StockQuoteResponseService ServiceHost Client

using System;

using System
using System
using System
using System
using System

.Collections.Generic;
.Configuration;
.Messaging;

.Text;

.ServiceModel;

namespace EssentialWCF

class MyServiceHost

internal static ServiceHost myServiceHost = null;

internal static void StartService()

string queueName =

ConfigurationManager.AppSettings["queueName"];

if (!MessageQueue.Exists(queueName))

MessageQueue.Create(queueName, true);

myServiceHost =

new ServiceHost(typeof(EssentialWCF.Program));

myServiceHost.Open();

internal static void StopService()

{
internal
{
{
}
{
}
}
}

if (myServiceHost.State != CommunicationState.Closed)

myServiceHost.Close();

Listing 4.28 shows the client implementation for the IStockQuoteRe-

sponse interface. The client implements this interface, which is then used

by the server as a callback to send a response on. This is not using the

duplex capabilities available within WCEF. Instead, the callback is imple-

mented using a separate one-way binding.

Communication Using Queued Services

LISTING 4.28 IStockQuoteResponse Client

using
using
using
using
using
using
using
using

System

System.
System.
System.
System.
System.
System.
System.

3

Collections.Generic;
Messaging;
ServiceModel;
ServiceModel.Channels;
Text;

Threading;
Transactions;

namespace EssentialWCF

{

public class Program : IStockQuoteResponse

{

priv

stat
{

ate static AutoResetEvent waitForResponse;
ic void Main(string[] args)

// Start response service host
MyServiceHost.StartService();
try

{

waitForResponse = new AutoResetEvent(false);

// Send request to the server
using (ChannelFactory<IStockQuoteRequest> cf =

= new ChannelFactory<IStockQuoteRequest>("NetMsmgRequestClient"))

{
IStockQuoteRequest client = cf.CreateChannel();

using (TransactionScope scope =

= new TransactionScope(TransactionScopeOption.Required))

{ client.SendQuoteRequest("MSFT");
scope.Complete();
}
cf.Close();
¥
waitForResponse.WaitOne();
}
finally
{
MyServiceHost.StopService();
¥

Console.ReadLine();

163

164

Chapter 4: Bindings

LISTING 4.28 continued

}

#region IStockQuoteResponseService Members

public void SendQuoteResponse(string symbol, double price)

{
Console.WriteLine("{0} @ ${1}", symbol, price);
waitForResponse.Set();

}

#endregion

The final piece to make the netMsmgBinding stock quote sample appli-
cation work is the client configuration. Listing 4.29 shows the client
configuration, which contains the information to host the IStockQuoteRe-
sponse service implementation, and the endpoint configuration to call the
IStockQuoteRequest service.

LISTING 4.29 netMsmgBinding Client Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<client>
<endpoint address="net.msmq://localhost/private/stockquoterequest”
contract="EssentialWCF.IStockQuoteRequest"
binding="netMsmgBinding"
bindingConfiguration="NoMsmgSecurity"
name="NetMsmgRequestClient"
/>
</client>
<services>
<service name="EssentialWCF.Program">
<endpoint
address="net.msmq://localhost/private/stockquoteresponse”
contract="EssentialWCF.IStockQuoteResponse"
binding="netMsmgBinding"
bindingConfiguration="NoMsmqSecurity"
/>
</service>

Communication Using Queued Services [

</services>
<bindings>
<netMsmqBinding>
<binding name="NoMsmqgSecurity">
<security mode="None" />
</binding>
</netMsmgBinding>
</bindings>
</system.serviceModel>
<appSettings>
<add key="queueName" value=".\private$\stockquoteresponse" />
</appSettings>
</configuration>

msmqIntegrationBinding
The msmgIntegrationBinding binding is used to communicate between a
WCF application and an application that leverages MSMQ directly—for
example, using System.Messaging. This allows developers to leverage
WCF but still leverage their existing MSMQ applications. The msmqInte-
grationBindingbinding allows for MSMQ messages to be mapped to WCF
messages. This is facilitated by wrapping MSMQ messages in the MsmgMes -
sage generic class. This class is located in the System.ServiceModel.
MsmgIntegration namespace. Instances can be sent or received using one-
way contracts.

The following code shows the addressing format for the msmqIntegra-
tionBinding binding:

msmq.formatname:{MSMQ format name}

The MSMQ address format does not require a port to be specified. How-
ever, MSMQ does require certain ports to be open, such as 1801. Table 4.12
shows the binding properties that are configurable on the msmgqIntegra-
tionBinding binding.

165

166

Chapter 4: Bindings

TABLE 4.12 msmgIntegrationBinding Binding Properties

Attribute Name

Description

Default

closeTimeout

The maximum time to wait for
the connection to be closed.

00:01:00

customDeadLetterQueue

The location of the per-application
dead letter queue. Dead letter
refers to a message that has
expired or failed delivery.

n/a

deadLetterQueue

The type of dead letter queue to
use. The types are None, System,
or Custom.

None

Durable

Specifies whether the queue is
durable or volatile.

true

exactlyOnce

Specifies whether delivery
supports exactly once delivery
assurances.

true

maxReceivedMessageSize

The maximum size of an
incoming message.

65,536

maxRetryCycles

The number of retries before a
message is considered a poison
message.

nameName

The name of the binding.

n/a

openTimeout

The maximum time to wait for
an open connection operation
to complete.

00:01:00

readerQuotas

Specify the complexity of
messages that can be processed
(for example, size).

n/a

receiveErrorHandling

Specifies how poison messages
are handled. Valid types include
Drop, Fault, Move, and Reject.

Fault

receiveRetryCount

Maximum number of attempts to
send a message before it enters the
retry queue.

Communication Using Queued Services

Attribute Name

Description

Default

receiveTimeout

The maximum time to wait for a
receive operation to complete.

00:10:00

retryCycleDelay

The type to wait between retry
cycles.

00:10:00

Security

Specifies the security settings
of the binding.

n/a

sendTimeout

The maximum time to wait for a
send operation to complete.

00:01:00

serializationFormat

Specifies the serialization for
the message body. The available
options include XML, Binary,
ActiveX, ByteArray, and Stream.

Xml

timeTolLive

The length of time that messages
are valid before they are expired

and put into the dead-letter queue.

1.00:00:00

useMsmgTracing

Specifies whether MSMQ tracing

is enabled. Trace messages are sent

to the report queue each time a

message leaves or arrives in a queue.

false

useSourceJournal

Specifies whether a copy of each
message should be sent to the
journal queue.

false

Listing 4.30 shows the minimal configuration to expose a service using the

msmqIntegrationBinding binding.

LISTING 4.30 msmqIntegrationBinding Host Configuration

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.serviceModel>

<services>

<service name="Essentia