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PREFACE

This book is the result of several years of classroom teaching, research investiga-
tions, and experiences with operating antennas. It is primarily intended for use
at the introductory and intermediate levels by seniors and graduate students ol
electrical engineering. Introductory course work in static and dynamic electro-
magnetics is required background but an effort is made, particularly in Chapters
2 to 6, not to rely heavily on the mathematics of electromagnetic theory.
Instead, the engineering aspects of antenna theory are emphasized.

The book covers the topic of antennas from roughly three vantage points:
antenna fundamentals, antenna techniques, and the design of various antenna
types. In the first four chapters fundamental material is stressed. Since the
beginning student typically has had very little exposure to antennas. many details
are found in Chapter 1. In that chapter the emergence of antenna theory from
Maxwell's equations is established. along with many definitions of terms used in
antenna practice. At the end of Chapter 1 are discussions of how antennas are
used in operating systems, so that the student can develop an immediate
appreciation for the uses of antennas. Chapter 2 examines a few simple antenna
systems to solidify the principles developed in Chapter | and to provide specific
antenna types for the discussion of arrays in Chapter 3. The discrete approach
(arrays) to antennas is considered early because the general relationship between
current distributed in space and radiation is more easily understood in that setting,
Then the continuous distribution of current follows naturally in the discussion
of line sources in Chapter 4.
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A survey of most of the antenna types encountered in practice is presented in
Chapter 5 (Wire Antennas), Chapter 6 (Broadband Antennas), and Chapter 8
(Aperture Antennas). These discussions are bound together with the analysis
principles described in the introductory material. Emphasis is placed on the
understanding of how antennas operate and on illustrating commonality among
antenna types. However, design principles are included for the various antenna
types, and “rules of thumb™ are often given to simplify design calculations.

Specialized techniques are also presented. In Chapter 7, moment methods are
used to analyze wire antennas of practically any configuration. High frequency
techniques are detailed in Chapter 9 with applications to aperture antennas and
antennas in the presence of ground surfaces. In Chapter 10 the topic of antenna
synthesis for line sources and linear arrays is introduced.

This book can be readily adapted to various curricula. After the first five
chapters are covered, any of the remaining five chapters could be selected. The
first six chapters are ideally suited to a one-quarter, senior course. For a semester
course, Chapter 8 is the logical addition to the first six chapters. Follow-on
courses at the graduate level in a quarter system could include a course using
Chapters 8 and 10 and a course using Chapters 7 and 9. An alternative would
be a course based on Chapters 7 and 10 and a course based on Chapters 8 and 9.

Several features have been incorporated into the text as aids to learning,
Defined terms follow the official IEEE (Institute of Electrical and Electronics
Engineers) standard definitions of terms. Specific references to the literature are
listed at the end of each chapter so that the reader may locate further source
material on topics of particular interest. The appendices provide useful data on
frequency designations and conductors, and many mathematical relationships.
Computer programs are also presented in Appendix G. These programs are
useful in solving many of the problems included at the end of each chapter.

We are appreciative of the assistance received during the writing of the
manuscript. In particular, we are grateful to the many students who provided
comments during the long classroom testing phase and to the publisher’s reviewers
for their valuable suggestions. Gary A. Thiele acknowledges colleagues at The
Ohio State University and friends from Australia who reviewed Chapters 7 and 9
and who contributed to the computer programs in Appendices G.7, G.8, and G.9.
Also, we express our deep appreciation to Cynthia Will for her expert typing of
several manuscript versions. Finally, we must recognize our families for the many
hours of neglect they endured. In particular, our wives, Claudia and Jo Ann are
to be commended for their patience.

Warren L. Stutzman
Gary A. Thiele
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ANTENNA FUNDAMENTALS
AND DEFINITIONS

1.1 INTRODUCTION

Since the dawn of civilization communications has been ol primary importance
to human beings. At first, communication was achieved by sound through voice.
As the distances of communicating increased, various devices were introduced.
such as drums, horns, and so forth. For even greater distances visual methods
were introduced. for example, signal flags and smoke signals in the daytime and
fireworks at night. These optical communication devices, of course, utilize the
light portion of the electromagnetic spectrum. It has been only very recently in
human history that the electromagnetic spectrum, outside the visible region, has
been employed for communication, through the use of radio.

The radio antenna is an essential component in any radio system. A radio
antenna is a device that provides a means for radiating or receiving radio waves.
In other words. it provides a transition from a guided wave on a transmission
line to a “free-space ™ wave (and vice versa in the receiving case). Thus, informa-
tion can be transferred between different locations without any intervening struc-
tures. The possible frequencies of the electromagnetic waves carrying this
information form the electromagnetic spectrum (the radio frequency bands are
given in Appendix D.1). One of human Kkind's greatest natural resources is the
clectromagnetic spectrum and the antenna has been instrumental in harnessing
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this resource. A brief history of antenna technology [1. 2, 3, 4] and a discussion
of the uses of antennas follow.

The theoretical foundations for antennas rest on Maxwell’s equations. James
Clark Maxwell (1831-1879) before the Royal Society in 1864 presented his re-
sults, which showed that light and electromagnetics were one in the same physi-
cal phenomenon. He also predicted that light and electromagnetic disturbances
both can be explained by waves traveling at the same speed.

In 1886 the German physicist Heinrich Hertz (1857-1894) was able to verify
experimentally the claim of Maxwell that electromagnetic actions are pro-
pagated through air. Hertz discovered that electrical disturbances could be
detected with a secondary circuit of the proper dimensions for resonance and
containing an air gap for sparks to occur. The primary source of electrical
disturbances studied by Hertz consisted of two metal plates in the same plane,
each with a wire connected to an induction coil; this earliest antenna is similar
to the capacitor-plate dipole antenna described in Section 2.1. Hertz constructed
dipole and loop antennas, as well as relatively sophisticated parabolic cylinder
reflector antennas fed with dipoles along the focal line.

Guglielmo Marconi (1874-1937), an Italian electrical engineer, also built a
microwave parabolic cylinder at a wavelength of 25 ecm for his original code
transmissions. But his subsequent work was at longer wavelengths for improved
communication range. The transmitting antenna for the first transatlantic radio
communication in 1901 consisted of a spark transmitter connected between the
ground and a system of 50 vertical wires. The wires were fanned out and sup-
ported on the top by a horizontal wire between two masts. The receiving
antenna was supported by kites. Marconi realized the importance of elevating
antennas at these low frequencies, which were around 60 kHz.

The Russian physicist Alexander Popov (1859-1905) also recognized the im-
portance of Hertz'’s discovery of radio waves, and began working on ways of
receiving them a year before Marconi. He 1s sometimes credited with using the
first antenna in the first radio system by sending a signal from ship to shore for
three miles in 1897. However, it was Marconi who developed radio commercially
and followed through to the impressive level of transoceanic radio communica-
tion. Marconi may be considered to be the father of amateur radio.

Antenna developments in the early years were limited by the availability of
signal generators. About 1920 resonant length antennas (such as a hall-
wavelength dipole) were possible after the De Forest triode tube was used to
produce continuous wave signals up to | MHz. At these higher frequencies
antennas could be built with a physical size in the resonance region (¢.g, a
half-wavelength). Before World War Il microwave (about 1 GHz) kylstron and
magnetron signal generators were developed along with hollow pipe waveguides.
These lead to the development of horn antennas, although Chunder Bose (1858~
1937) in India produced the first electromagnetic horn antenna many years
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earlier. The first commercial microwave radiotelephone system in 1934 was be-
tween England and France and operated at 1.8 GHz. During the war an inten-
sive development effort [S] primarily directed toward radar, spawned many
“modern”™ antenna types, such as large reflectors, lenses, and waveguide slot
arrays.

Let us now direct our attention to the uses of antennas. The transmission of
electromagnetic energy may employ some type of guiding structure (a transmis-
sion line) or can be accomplished with transmit and receive antennas with no
guiding structure in between. If a transmitter and receiver are spaced a distance r
apart, the power loss when using a transmission line is proportional to (e” *)?
where « is the attenuation constant of the transmission line. If antennas are used
in a line of sight configuration, the power loss is proportional to 1/r*. Many
factors enter into the decision of whether to use transmission lines or antennas.
Generally speaking, at low frequencies and short distances transmission lines are
practical, High frequencies are often used because of the available bandwidth. As
distances become large and the frequency high, the signal losses and the costs of
using transmission lines become large, and thus the use of antennas is favored.
A notable exception to this is the fiber optic transmission line in the visible
region.

In several applications antennas must be used. For example, in mobile com-
munications involving aircraft, spacecraft, ships, or land vehicles antennas are
required. Antennas are also popular in broadcast situations where one transmit
terminal can serve an unlimited number of receivers. which can be mobile (e.g..
car radio). Nonbroadcast radio applications such as municipal radio (police, fire,
rescue) and amateur radio also require antennas. In noncommunication applica-
tions such as radar, antennas are also necessary.

Other factors that influence the choice of the type of transmission system
include historical reasons, security, and reliability. Telephone companies began
interconnecting multiple transmit and receiver terminals with transmission lines
before radio technology was available. Recently the telephone companies have
employed radio more heavily: well over half of all long distance telephone calls
arc now carried over microwave radio links. Transmission lines also provide a
certain degree of security. When radio is used, anyone with an adequate receiv-
ing system can listen to a transmission. With transmission lines a “wire-tap ™ is
required to violate privacy. For more sophisticated systems coding may be
employed to secure a radio link. Also, security is a concern for only a small
fraction of the communication situations. Another factor to be considered is
reliability. For example, radio signals are affected by environmental conditions
such as structures along the signal path. the ionosphere, and weather. Further-
more, interference is always a threat to radio systems. All of these factors must
be examined together with a cost comparison of systems using transmission lines
and antennas. Every year radio equipment decreases in cost and increases in
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reliability. This tends to tip the scale in favor of radio systems. Thus, the demand
for antennas and a knowledge of their operation will be ever present.

The following two sections of this first chapter present a brief review of elec-
tromagnetic field principles and the solution of Maxwell’s equations for radia-
tion problems. After a few basic relationships are derived, direct application of
Maxwell's equations s required only in a few special situations. The remainder
of this chapter is devoted to antenna terminology and some simple examples.
Also included are discussions of antenna applications in communication systems
and radar.

1.2 ELECTROMAGNETIC FUNDAMENTALS

The fundamental electromagnetic equations are’

Vx&= _‘i:' (1-1)

Vi =L a4y, (1-2)
ot

V-% = pilt) (1-3)

V-#=0 (1-4)

Ve Sr=— 3 o) (1-5)

The first four of these differential equations are frequently referred to as
Maxwell’s equations and the last as the continuity equation. The curl equations
together with the continuity equation are equivalent to the curl and divergence
equations. In time-varying field problems the curl equations with the continuity
equation is the most convenient formulation. Each of these differential equations
has an integral counterpart.?

If the sources py(1)and ¥ (1) vary sinusoidally with time at radian frequency w,
the fields will also vary sinusoidally and are frequently called time-harmonic
fields. The fundamental electromagnetic equations and their solutions are con-
siderably simplified if phasor fields are introduced as follows:*

& = Re(Ee’™), # = Re(He'™"), elc. (1-6)

! Time-varying quantities will be denoted with script quantities, for example, & = &(x, y, 2, 1),

! For u thorough discussion of the fundamental electromagnetic equations sec [6].

! The student is cautioned that some authors use ¢/ which leads to sign differences in subsequent
developments.
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where phasor quantities E, H, D, B, p,, and J; are complex-valued functions of
spatial coordinates only (i.e., time dependence is not shown). Using the phasor
definitions of the electromagnetic quantities from (1-6) in (1-1) to (1-5) and
climinating the ¢’* factors that appear on both sides of the equations yields

VxE= —jwB (1-7)
V x H=joD+J; (1-8)
V-D=p, (1-9)
V-B=0 (1-10)
V-dy= —jop;. (1-11)

The time derivatives in (1-1) to (1-5) have been replaced by a jw factor in (1-7) to
(1-11) and time-varying electromagnetic quantities have been replaced by their
phasor counterpart. This process is similar to the solution of network equations
where the time dependent differential equations are Laplace transformed and the
time derivatives are thus replaced by jw (or s}. Equations (1-7) to (1-10) are often
referred to as the time-harmonic form of Maxwell’'s equations, because they
apply to sinusoidally varying (i.c., time-harmonic) fields.

If more than one frequency is present the time-varying forms of the electro-
magnetic quantities can be found by inverse transforms after (1-7) to (1-11) have
been solved for the phasor quantities as a function of radian frequency . This is
again analogous 10 the procedure used to solve network problems. Fortunately
this is not usually necessary in antenna problems since the bandwidth of the
signals is usually very small. In the typical case a carrier Irequency is accom-
panied by some form of modulation giving a spread of frequencies around the
carrier. For analysis purposes we use a single frequency equal to the carrier
frequency. Thus, all subsequent material in this book will assume time-harmonic
fields.

The total current density J, 1s composed of an impressed. or source, current J
and a conduction current density term ~E. which occurs in response 1o the
impressed current:

J,=cE+J. (1-12)

The role played by the impressed current density is that of a known quantity. It
is quite frequently an assumed current density on an antenna, but as far as the
field equations are concerned it 1s a known function. The current density oE is a
current density flowing on a necarby conductor due to the fields created by
source J and may be computed after the field equations are solved for E, In
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addition to conductivity o, a material is further characterized by permittivity &
and permeability g, where®

D= E (1-13)
and

B=uH (1-14)

We will now rewrite the field equations in preparation for their solution.
Substituting (1-12) and (1-13) into (1-8) gives
Vxl-l=jw(c+j%),£+.l=jmc’£+.! (1-15)

where we have defined & = ¢ — j(a/w). Let p be the source charge density corre-
sponding to the source current density J. Then using (1-12) to (1-14) in (1-7) and
(1-9) to (1-11), and repeating (1-15) we have [see Prob. 1.2-2 for (1-18)):

VxE= - jouH (1-16)
VxH=jwE+J (1-17)
V- r:=:’, (1-18)
V-H=0 (1-19)
V:J= —jwp. (1-20)

These are the time-harmonic electromagnetic field equations with source current
density J and source charge density p shown explicitly. Sometimes it is conven-
1ent to introduce a fictitious magnetic current density M. Then (1-16) becomes

VxE= —jouH - M. (1-21)

Magnetic currents are useful as equivalent sources that replace complicated
electric currents.

The solution of the fundamental electromagnetic equations is not complete
until the boundary conditions are satisfied. A sufficient set of boundary condi-
tions (in the time-harmonic form) is

ix(H,-H,)=J, (1-22)
(E; —E\)xn=M, (1-23)
* In general ¢ and p can be complex, but in many antenna problems they can be approximated as

real constants,

A e
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where the electric and magnetic surface currents, J, and M,, flow on the boun-
dary between two homogeneous media with constitutive parameters ,, u,, 6,,
and &;, 4y, 03. M, is zero unless an equivalent magnetic current sheet is used.
The unit normal to the boundary surface a is directed from medium 1 into
medium 2. The cross products with the unit normal form the tangential compon-

ents to the boundary, and these equations can be written as

HunJ=Hlul +"l (1'24)
Elul we El.:ml i 2 M:' (]'25)

These boundary conditions are derived from the integral form of (1-17) and
(1-21), If one side is a perfect electrical conductor, the boundary conditions
become

Hyon=J “ '26)
E, =0. (1-27)

The tangential boundary conditions on the magnetic field intensity are il-
lustrated in Fig. 1-1 for the general case and for the case where medium 1 is a
perfect conductor. It is important to note that all field quantities in the boundary
condition equations are evaluated at the boundary and that the equations apply
to each point along the boundary.

Also derivable from Maxwell's curl equations is a conservation of power
equation, or Poynting’s theorem [7]. Consider a volume ¢ bounded by a closed
surface s. The complex power P, delivered by the sources in v equals the sum of

fa) h)

Figure 1-1 Magnetic field intensity boundary condition. (a) General case. (b) One
medium a perfect conductor
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the power P, flowing out of s, the time-average power P,_ dissipated in v, plus
the time-average stored power in v,

P,=P;+ Py, +RoW,, — W) (1-28)

The complex power flowing out through closed surface s is found from
1 i
P, = 5 " Ex H*-ds (1-29)

where ds = dsi and # is the unit normal to the surface directed out from the
surface. The quantity S = }E x H* is the complex Poynting vector. The time-
average dissipated power in volume v bounded by closed surface s is

Pa=5 ||| ol ET dv. (1-30)
The time-average stored magnetic energy is

 prrd
W =3 Jl__l_l SHIHI de. (1-31)

The time-average stored electric energy is

gl
W =5 ) 52| EP dv. (1-32)

If the source power is not known explicitly, it may be calculated from the
volume current density as lollows:

l A
Po=—3 ||| E-J*de. (1-33)

L

Il ' magnetic current density is used, a term H* - M is added to the integrand in
the preceding equation.

From (1-29) we see that the integral of the complex Poynting vector {F, x H*
over a closed surface s gives the total complex power flowing out through the
surface s. It is natural to assume that the complex Poynting vector represents the
complex power density in watts per square meter at a point. Then the complex
power through any surface s (not necessarily closed) can be found by integrating
the complex Poynting vector over that surface. We are particularly interested in
real power (the real component of the complex power which represents the
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electric and magnetic field intensities being in-phase). The real power flowing
through surface s is
1
P“=5Re(”l5 x H* -ds | (1-34)

The reference direction for this average power flow is that of the specified unit
normal i contained in ds = dsn.

1.3 SOLUTION OF MAXWELL'S EQUATIONS FOR
RADIATION PROBLEMS

The antenna problem consists of solving for the fields that are created by an
impressed current distribution J. In the simplest approach this current distribu-
tion is obtained during the solution process. How to obtain the current distribu-
tion will be discussed at various points in the book, but for the moment suppose
we have the current distribution and wish to determine the fields E and H. As
mentioned in the previous section, we need only work with the two curl equa-
tions of Maxwell's equations as given by (1-16) and (1-17). These are two
coupled, linear, first-order differential equations. They are coupled because the
unknown functions, E and H, appear in both equations. Thus, these equations
must be solved simultaneously. In order to simplify the solution for E and H
with a given J we introduce the scalar and vector potential functions @ and A,

The vector potential is introduced by noting from (1-19) that the divergence of
H is zero,

V-H=0. (1-35)

Therefore the vector field H has only circulation; for this reason it is often called
a solenoidal field. Because it possesses only a circulation it can be represented by
the curl of some other vector function as follows

H=VxA (1-36)

where A is the (magnetic) vector potential. To be more precise. (1-36) is possible
because it satisfies (1-35) identically, that is, from (A-9)V -V x A =0 [or any A.
The curl of A is defined by (1-36), but its divergence is yet to be specified for a
complete definition of A.

The scalar potential is introduced by substituting (1-36) into (1-16), which
gives

V x (E + jwuA) =0 (1-37)
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The expression in parentheses is an electric field, and since its curl is zero, it is a
conservative field and behaves as a static electric field. The (electric) scalar
potential @ is defined from

E + jopA = -VO (1-38)

because this definition satisfies (1-37) identically, that is, from (A-10)
V x V® =0 for any @. Solving (1-38) for the total electric field gives

E= —jouA — VO (1-39)

which may be a familiar result.

The ficlds E and H are now expressed in terms of potential functions by (1-36)
and (1-39). If we knew the potential functions then the fields could be obtained.
We shall now discuss the solution for the potential functions. Substituting (1-36)
into (1-17) gives

VxH=VxVxA=jwE+J. (1-40)
Using the following vector identity, from (A-17),
VxVxA=V(V-A)-V3A (1-41)
and (1-39) in (1-40) yields
V(V - A) — VA = jor'(—jopA — VO) + J (1-42)
or
VA + 0’ A — V(jwe® + V- A)= —J. (1-43)

As we mentioned previously, the divergence of A is yet to be specified. A conven-
ient choice would be one that eliminates the third term of (1-43). It is the
Lorentz condition

V- A= —jor'd. (1-44)
Then (1-43) reduces to

VA + 0’ucA = =J. (1-45)

The choice of (1-44) leads to a decoupling of variables, that is, (1-45) involves
A and not ®. This is the vector wave equation. It is a differential equation which
can be solved for A after the impressed current J has been specified. The fields
are casily found then from (1-36) and

V(V - A)

E = —jouA + -
JoE

(1-46)
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where this equation was obtained from (1-39) and (1-44). Notice that only a
knowledge of A is required. A more cumbersome approach would be to solve the
scalar wave equation

VO + Purd = — f:’« (1-47)

in addition to the vector wave equation. [It is left as a problem to derive (1-47)]
If this approach is used, E is found from (1-39). Note that p in (1-47) is related to
J in (1-45) by the continuity equation; see (1-20).

The vector wave equation (1-45) is solved by first forming three scalar equa-
tions. This is done by decomposing A into rectangular components:

VIA =% VA, +§ V24, +2V24,, (1-48)

Rectangular components are used because the unit vectors in rectangular com-
ponents can be factored out of the Laplacian, since they are not themselves
functions of coordinates. This feature is unique to the rectangular coordinate
system. The Laplacian of A is always performed for A decomposed into rectan-
gular components; however, the Laplacian of cach component of A may be
expressed in any coordinate system. Proceeding with the solution, we substitute
(1-48) into (1-45) and equate rectangular components, and we get

VZAI + 32.4, = -JJ
VA, + fPA, = —J,
VA, + pPA. = -,

(1-49)

where 2 = w?us’. At this point we will assume that ¢ = 0 so that & = «, which is
also assumed to be real. Then

B = /i, (1-50)

which is a real number, may be recognized as the phase constant for a plane
wave, : .

The three equations of (1-49) are identical in form. Thus if we solve one of
them, the other two are easily solved. We first find the solution for a point
source, that is, the unit impulse response. The general solution is then the sum of
weighted point source responses. The differential equation for a point source is

V3 + By = —d(x) d(y) 8(z) (1-51)

where  is the response to a point source at the origin, and 4 is the unit impulse
function, or dirac delta function (see Appendix F.1). If the current is in the
z«lirection, for example, then = A, For all points except at the origin

Vi + PPy =0. (1-52)
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This is the complex scalar wave equation or Helmholtz equation. Because of
spherical symmetry the Laplacian is written in spherical coordindtes and ¢ has
only radial dependence. The two solutions to (1-52) are e /% /r and e*/"/r. These
correspond to waves propagating radially outward and inward, respectively. The
physically meaningful solution is the one for waves traveling away from the
point source. Evaluating the constant of proportionality (seec Prob. 1.3-2) we
have for the point source solution

e i
y="—. (1-53)

4nr

This is the solution to (1-51) and gives the effect of a point source at distance r
away [rom a point source located at the origin. If the source were positioned at
an arbitrary location, we must compute the distance R between the source
location and observation point P (see Fig. 1-2). Then

P
= (1-54)
The point source solution is actually that of an ideal dipole and will be discussed
more [ully in the next section.

For an arbitrary =-directed current density, the vector potential is z-directed. If
we consider the source to be a collection of point sources weighted by the
distribution J_, the response A. is a sum of the point source responses of (1-54).
This is expressed by the integral over the source volume v':

e JAR }
A:ZJ;U Ji g v (1-55)

Figure 1-2 Vectors used to solve radiation problems

E
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Similar equations hold for the x- and y-components. The total solution is then
the sum of all components:

A=([[s —;—" dv'. (1-56)

This is the solution to the vector wave equation (1-45). The geometry is shown in
Fig. 1-2. The coordinate system shown is used to describe both the source point
and field point. r" is the vector from the coordinate origin to the source point,
and r, is the vector from the coordinate origin to the field point P. The vector R
is the vector from the source point to the field point and is given by r, — r". This
geometry will be used henceforth.

We can summarize rather simply the procedure for finding the fields generated
by a current distribution J. First A is found from (1-56). The H field is found
from (1-36). The E field may be found from (1-46), but frequently it is simpler to
find E from (1-17) as

|
E=—(VxH-J -57)
Jwk ” ) (1-57)

if we are in the source region, or from just

E=' vxH (1-58)
Jew

il the field point is removed in distance from the source, that is, if J = 0 at point
P,

1.4 THE IDEAL DIPOLE

In this section the principles presented in the previous section are used to find
the fields of an infinitesimal element of current. We shall use the term ideal dipole
for a piece of uniform amplitude current which is of infinitesimal length or of
very small finite length, Az < A. It does not exist by itself, but it may be con-
sidered to be a piece of a larger current on an actual antenna. The ideal dipole
concept is also useful because its fields approximate those of electrically small
dipoles to be discussed in Chapter 2.

Consider an element of current of length Az along the z-axis centered on the
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coordinate origin. It is of constant amplitude 1. In this case the volume integral
of (1-56) for vector potential reduces to the one-dimensional integral®

A=a| 47 (1-59)

The length Az is very small compared to a wavelength and to the distance R. See
Fig. 1-3. Since Az is very small, the distance R from points on the current
clement to the field point approximately equals the distance r from the origin to
the field point. Substituting r for R in (1-59) and integrating gives

le-jp

A= > Azi. (1-60)

This is exactly true for an infinitesimal current element and is approximately
true for a small (Az < 4 and Az < R) but finite uniform current element, The
vector potential A, for an infinitesimal current was also derived in the previous
section; see (1-53) in which / Az = 1. For many current sources we can readily
make the substitution of r for R in the denominator of the integrand in (1-59)
but usually cannot make the same substitution in the exponent. However, in the
case of a very small source, we can use r for R in both the denominator and
exponent.

We are now ready to calculate the electromagnetic fields created by the ideal
dipole. The magnetic field is found from (1-36) as

H=Vx A=V x (4,%). (1-61)
If we apply the vector wdentity (A-16), the preceding equation becomes
H=(VA)xZ+ A(V x %)= (VA,) x £ (1-62)

The second term 1s zero because the curl of a constant vector is zero. Substitut-
ing (1-60) into (1-62) we have

H=v(-2

I Aze 1Fr )
- )xz. (1-63)

* The result in (1-59) could also be obtained by representing the current density as

. i Az . s
Jd=14x)sy'Rr for -?(.:c =

Substituting this into (1-56) vields
N . L2 L
A=12l| dh']d.t'_i 8y dy |

4
dz
" - Asi3 4xR

from which (1-59) follows
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Figure 1-3 The ideal dipole. The current /is uniform, Az < A, and R~ r.

Applying the gradient in spherical coordinates from (A-33) gives

1Az 43 e””’}._ _
= = x i

T
2 [ — iRo=1rr =Jpe
=’_4%:’ Ll el P9 (1-64)
From (A-3) we have
Fxi=Fx(Fcos O — 0 sin0)= —sin 0. (1-65)
Substituting (1-65) into (1-64) gives
H=;—flj-f +:—2- e " sin 0. (1-66)
The electric field can be obtained from (1-58) as
E=!—-A—:|}fm +\/I‘ !2 + - -l—; ¢ ™ sin 00
4n | r Lr Jeer:
4 ’—2-‘2—: J'f;L + ;1" :, le'm cos 0F (1-67)
where we still have
B = o/ . (1-68)

Note that if the medium surrounding the dipole is air or [ree space,
B=w/paty -
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Equations (1-66) and (1-67) may be written as

—ipr
H-———;ﬂ(l r)e‘_ru sin 6¢ - (1-69)
4 1 1 |ei* .
i 1+ iBr Uﬁf)zj ——sin 0
1Az 1 1 |e /™ 2
+T’“"“Lﬁr+ WJ—}—COSUI‘. (1-70)

If Br is large (ie., fir » 1, or r » 4 since f = 2n/4), then all terms having inverse
powers of jfr are small compared io unity, and (1-69) and (1-70) reduce to

1Az e im

E= —a-—;w,u— sin 00 (1-71)
1Az e * |

H= = ip = sin 0. (1-72)

These are the fields of an ideal dipole at large distances from the dipole. The
ratio of these electric and magnetic field components is

E; _op _ wp u
T ﬁ = f;’} - =n (1-73)

where 5 = \/";7.*: is the mtrinsic impedance of the medium (for freec space
N, = 376.7 ohms = 120x ohms). This is a property of plane waves. Also we shall
see that at large distances from any antenna, the fields are related in this manner.

Using the fields of (1-71) and (1-72), we can find an expression for the complex
power flowing out of a sphere of radius r surrounding the ideal dipole from
(1-29) as follows

Py = :-12.|'_|'|-: x H* - ds

l(fA.‘)z l_:-. l_x_ ('_”' ) m ( ) e‘jﬁr’ 0_ 4
= X {— -~ -
a\an ) ), 'o_nup ~ sin iB) ; sin Od - ds
] 1 Az 2 .It.ﬂsinlo !
( )wpﬂl | 2 t-r?sin 0 dO dpr
0 "o

I Az . 3= .-_
( ) wuB | dé | sin® 0 do
"2 ), ),

I Az 4
- —-—,mpﬁzn‘;

w.uﬂ ?

T {! Az (1-74)
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This is a real quantity, and real power indicates dissipated power. It is dissipated
in the sense that it travels away from the source and can never be recovered. In
fact, the average power going out through a sphere of radius r can be found [see
(1-34)] by taking the real part of (1-74), which leaves it unchanged. This power
expression is independent of r, and thus if we integrate over a sphere of larger
radius, we still have the same total power streaming through it. We refer to this
type of power as radiated power. The fields in (1-71) and (1-72) are called radia-
tion fields. The region in which the radiation fields are the most significant
portion of all fields arising from the antenna is called the far-field region, or
simply the far field or far zone. The distance away from an antenna where the far
field begins is discussed further in Section 1.5.

In the near-field region of an antenna, terms of the field expressions with
powers of inverse r greater than one are significant compared to the radiation
fields. The complex Poynting vector {E x H* will then contain terms with
powers of (1/r) of three and higher in addition to the radiation field term, that
varies as 1/r’. It turns out that these terms are pure imaginary, indicating reac-
tive power. Thus, in the near field of an antenna there is stored energy.

The input impedance of an antenna is, in general, complex. The real part
(neglecting ohmic losses on the antenna structure) represents radiation, while the
imaginary part corresponds to the reactive near-field power. Antenna impedance
will be discussed further in Section 1.8.

1.5 RADIATION PATTERN

A radiation pattern s a graphical representation of the radiation (far-field)
properties of an antenna. It can be measured by moving a probe antenna around
the test antenna at a constant distance from it. noting the response as a function
of angular coordinates. The probe antenna is usually maintained in a given
orientation. For example, consider an ideal dipole along the z-axis at the origin
as shown in Fig. 1-4a. Its radiation fields are given by (1-71) and (1-72). Since
the electric field is totally O-directed we would choose a probe antenna that
responds to this field. Another ideal dipole oriented as shown in Fig. 1-4a will
serve as a probe and it responds to E,. As this probe is moved over the spherical
surface its output (terminal voltage) varies and is recorded. The variation of E,
over the sphere, from (1-71), is sin 0; remember r is constant during this measure-
ment. Any plane containing the z-axis has the same radiation pattern since
there is no ¢ variation in the fields. A pattern taken in one of these planes is
called an E-plane pattern because it contains the electric vector. A pattern taken
in a plane perpendicular to an E-plane and cutting through the test antenna (the
xy-plane in this case) is called an H-plane pattern because it contains the mag-
netic field vector (H,). The E- and H-plane patterns for the ideal dipole are
shown in Fig, 1-4b and 1-4¢. These are polar plots in which the distance [rom the
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Figure 1-4 Radiation from an ideal dipole. (a)
Field components and the pattern measurement
scheme. The probe antenna is moved over the

\ spherical surface. (b) E-plane radiation pattern
polar plotof | E,| or | H, | . (€) H-plane radiation
pattern polar plot of | E,| or | H,|. (d) Three-
dimensional plot of radiation pattern.
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origin to the curve is proportional to the field intensity. The E- and H-plane
patterns, in general, are referred to as principal plane patterns.

The complete pattern for the ideal dipole is shown in isometric view with a
slice removed in Fig. 1-4d. It resembles a “holeless doughnut,” and is often
referred to as an omnidirectional pattern since it is uniform in the xy-plane. When
encountering new antennas the reader should attempt to visualize the complete
pattern in three dimensions.

Radiation patterns in general may be calculated in a manner similar to that
used for the ideal dipole if the current distribution on the antenna is known. This
is done by first finding the vector potential given in (1-56). As a simple example
consider a filament of current along the z-axis and located near the origin. Many
antennas may be modeled by this line source; straight wire antennas are good
examples. In this case the vector potential has only a z-component and the
vector potential integral is one-dimensional®

‘.‘Jﬂl

—5 & (1-75)

A= _|' (=)

Due to the symmetry of the source we expect that the radiation fields will not
vary with ¢. This is because as the observer moves around the source such that r
and z are constant, the appearance of the source remains the same; thus, its
radiation fields are also unchanged. Therefore, for simplicity we will confine the
observation point to a fixed ¢ in the yz-plane (¢ = 90°) as shown in Fig. 1-5.
Then from Fig. 1-5 we see that

ey 422 (1-76)
z=rcosf (1-77)
y=rsin (. (1-78)
Alsor,=r=yW+zzandr=:2leadto R=r, —r = y¥ + (- — =)z and then

R= _\'2 +(z—-=2)°

N e v (1-79)

Substituting (1-76) and (1-77) into (1-79), to put all field point coordinates into
the spherical coordinate system, gives

R={r +[—2rcos 0= + (=)]}' *. (1-80)

® This result could also be obtained by using J () = I{=") 8{x") 8{y') in (1-55) where di" = dx' dy’ ds'
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£

Figure 1-5 Geometry used for field calculations of a
line source along the =-axis

x

In order to develop approximate expressions for R, we expand (1-80) using the
binomial theorem (F-4):

R= () + % (r*) V[ ~2r cos 02" + ()] + i—(;“(r‘)' 7

“[=2rcos 0z + () + -
Y () cos® 0
2r 2

) (=) sin? 0
=r—2zcosl+———
2r

=r—2zcosl+ +tcmlsofordcr($)+'--

(1-81)

The terms in this series decrease as the power of z' increases if z' is small
compared to r. This expression for R is used in the radiation integral (1-75) to
different degrees of approximation. In the denominator (which affects only the
amplitude) we let

Rxr (1-82)

We can do this because in the far field r is very large compared to the antenna
size, 0 r » ' > 2 cos 0. In the phase term - fR we must be more accurate
when computing the distance from points along the line source to the observa-
tion point. The integral (1-75) sums the contributions from all the points along
the line source. Although the amplitude of waves due to each source point is
essentially the same, the phase may be different if the path length differences are
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a sizable fraction of a wavelength. We, therefore, include the first two terms of
the series in (1-81) for the R in the numerator of (1-75) giving

R=~r— 2 cos 6. (1-83)
Using the far-field approximations (1-82) and (1-83) in (1-75) yields

= jMr=z2"cos @)

A,='[ ()5 —
e'}' )
- Fd iz cos @ e i
- [ 12)e =2 (1-84)

where the integral is over the extent of the line source. This may be recognized as
a Fourier transform type integral. Next the magnetic field is found from

H=Vx A=V x (A4,%)
=V x (—A, sin 00 + A, cos 0r) (1-85)
where (A-3) was used. Since A, is a function of r and @, the curl in spherical
coordinates, as given by (A-35), leads to
1|é . é
H—é;la(—m,sm 8)_6‘7!"4":05 0)]. (1-86)

Substitution of (1-84) into the above gives

e it g
axr? 00

- |—sin @ . é
= N\ofP2 cos @ 3.~ ,—iBr _
H ¢! - .[ 1(z)e’ dz e
‘ lcos ] | l(:’)e’""‘"dz'“

—5 = |jpsing [ 1(z)er e dz
= 4nr Ij i )

1 ¢

réo

cos 0 _|' I(z)e’" < gz’ “ (1-87)

The ratio of the first term to the second term above s of the order fir. If fir » 1
the second term is small compared to the first and may be neglected, as we did
for the far-field approximation of the ideal dipole in Section 1.4 Thus (1-87)
becomes

g
H = $jf sin 0}; ' I(z')e™ <= * d2 = $jf sin 0A,. (1-88)
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The electric field is found from (1-46), which is

(VA)

E= —jopA + ——— (1-89)

Using (1-75) in (1-89) and retaining only the r~' term (and assuming fir > 1)
leads to the far-field approximation

E = —jouAd,0 = Bjwpu sin 04, . (1-90)

Note that (1-90) is the portion of the first term of (1-89) which is transverse to f
because —jwuA = —jou(— A, sin 8 + A, cos 0r). This is a general feature that
may be exploited to simplify radiation calculations.

The radiation fields from a z-directed line source (any z-directed current
source in general) are H,and E,, and are found from (1-88) and (1-90). The only
remaining problem is to calculate A, which is given by (1-55) in general and by
(1-84) for z-directed line sources. Calculation of A, is the focal point of antenna
analysis. We shall return to this topic after pausing to further examine the
characteristics of the far-field region.

The ratio of the radiation ficld components as given by (1-88) and (1-90) yieids

w,u
E,= H,
w: ; ;:

- 'rH. (1-91)

where n = V’,u_,f:: = intrinsic impedance of the medium. An interesting conclusion
can be made at this point. The radiation fields are perpendicular to each other
and to the direction of propagation f and their magnitudes are related by (1-91).
These are the properties of a plane wave except that the phase is not constant
over a plane, and from (1-88) the magnitude dependence is 1/r. However, at large
distances the wave appears to an observer to be a plane wave over a small
region. This is called “local plane wave behavior,” or more formally a TEM
(transverse clectromagnetic) wave. Thus, having found any one component of a
radiation field the other may be found by plane wave relationships. These are
general properties of radiating systems. If we get far enough away from any
source the fields exhibit local plane wave behavior and have a magnitude depen-
dence of 1/r.

These far-field approximations have a simple geometric interpretation. I we
draw the rays from each point on the source as parallel lines, then (1-83) is casily
verified as indicated in Fig. 1-6. The parallel ray assumption is exact only when
the observation point is at infinity, but it is a good approximation in the far field.
Radiation calculations are frequently begun by assuming parallel rays and then
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Figure 1-6 Parallel ray approximation for far-
field calculations of a line source.

determining R for the phase by geometrical techniques. Consider a general
source shown in Fig. 1-7. From the figure we see that

R=r—r cosa (1-92)
Using the definition of dot product, we have

R=r—r'l:-—,r.
rr
or
R=r—-i-r. (1-93)

Notice that if r'= ="z, as for line sources along the z-axis. (1-93) reduces to
(1-83). Equation (1-93) provides a general method for obtaining the far-field
approximation to R for the phase factor in the radiation integral.

The definition of the distance from the source where the far ficld begins is
taken to be where the parallel ray approximation begins to breakdown. To be
precise the distance where the far field begins, r,,, is that value of r for which the
path length deviation due to neglecting the thira term of (1-81) 1s a sixteenth of a
wavelength. This corresponds to a phase error (by neglecting the third term) of
2n/h 4116 = n/8 rad = 22.5°.

-
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Figure 1-7 Parallel ray approximation for far-field
calculations of a general source.

Il D is the length of the line source, r,, is found by equating the maximum
value of the third term of (1-81), that is, for 2" = D/2 and 0 = %", to a sixteenth
of a wavelength as

(D2)y _ 4
2r, 16 =)
Solving for ry, gives
2D?
e = ”_}._ . {l-g.S)
The far-field region is r > r,,.
The far-ficld conditions are summarized as follows.
2D?
r> 3 (1-96)
reD far-field conditions (1-97)
re i (1-98)
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The condition r > D was mentioned in association with (1-82) for the amplitude
approximation. The condition r > 4 follows from fir = (2ar/i) > | which was
used to reduce (1-87) to (1-88). Usually the far field is taken to begin at a
distance given by (1-95) where D is the maximum dimension of the antenna. This
is usually a sufficient condition for antennas operating in the VHF region and
above. At lower frequencies, where the antenna may be small compared to the
wavelength, the far-field distance may have to be greater than 2D?/J in order
that the conditions (1-97) and (1-98) be satisfied.

So far in this section we have derived expressions for radiation fields and have
defined the region over which they are valid. Fortunately it is not necessary to
repeat these derivations every time the radiation fields from an antenna are to be
calculated. The procedure for obtaining the radiation fields can be reduced to
three steps.

1. Find A. Select a coordinate system most compatable with the geometry of the
antenna, using the notation of Fig. 1-2. In general, use (1-56) with R = r and
the parallel ray approximation of (1-93) for determining phase differences
over the antenna. These yield

eI ioo —_
o _UJ Jeiftr gy (1-59)
For z-directed sources

A= z-'—— ||| J.e" v dy, (1-100)

For z-directed line sources on the z-axis

A= [ () e gz, (1-101)

“anr |

[ % ]

. Find E. In general, use the component of
E= —jouA (1-102)

which is transverse to the direction of propagation, f. This is expressed
formally as

E = —jopA — (—jopA - ). (1-103)
For z-directed sources

E = jwpu sin 04,0. (1-104)
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3. Find H. In general, use the plane wave relation
H=$ixE. ©(1-105)

This equation expresses the fact that in the far field the directions of E and H
are perpendicular to each other and to the direction of propagation, and also
that their magnitudes are related by . For z-directed sources

E,

Ho-——n— (1'106)

The most difficult step is the first, calculating the radiation integral. This topic
will be discussed many times throughout the book, but to immediately develop
an appreciation for the process we will present an example. This uniform line
source example will also serve to provide a specific setting for introducing gen-
cral radiation pattern concepts and definitions.

Example 1-1. The Uniform Line Source

The uniform line source is a line source for which the current is constant along its extent,
Il we use a z-directed uniform line source centered on the origin and along the z-axis, the
current is

i, =0, y=0 |7 <
S

0 elsewhere

tal =

(1-107)

where L is the length of the line source. See Fig 1-8. We first find A. from (1-101) as
follows.

l'-"" L2 y
A, = | 1e gy

e il t,t.l'll. Jhcon — ¢ JAL 2xon
= dar * jBcos
o loLe™ sin{(BL2)cos 0]

dnr (FL2)os O
The electric field from (1-104) is then
"sm[{ﬂLf?)cos OI

jeopl , Le” et
dnr (BL2)cos 0 (1:108)

The magnetic field is simply found from this using H, = E, /n.

(1-108)

E = jou sin 04,0 =
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Figure 1-8 The uniform line source (Example 1-1). (a)
Antenna geometry. (b) Current distribution.

Since the radiation pattern is the variation over a sphere centered on the
antenna, r is constant and we have only 0 and ¢ variation of the field. It is
convenient to normalize the field expression such that its maximum value is
unity. This is accomplished as follows for a z-directed source which has only a
O-component of E

E,

F0.¢)= E,(max)

(1-110)

where F(f), ¢) is the normalized field pattern and E (max) is the maximum value
of E, over a sphere of radius r. This variation is, or course, independent of . An
clement of current on the z-axis has a normalized field pattern from (1-71) of

(1 Az/am)joule” */r)sin 0
Fo)= (I Az/dn)joule ™ /r) =sin 0 (1-111)

and there is no ¢ variation. The normalized field pattern for the uniform line
source is from (1-109) in (1-110)

pSiol(BLR)kos 0]

L (BL2)cos 0

(1-112)

and again there is no ¢ variation. The second factor of this expression is the
function sin(u)/u and we shall be encountering it frequently. It has a maximum
value of unity at u = 0; this corresponds to # = 90° where u = (fiL/2)cos . Sub-
stituting 0 = 90° in (1-112) gives unity and we see that F(#) is normalized.
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In general, a normalized field pattern can be written as the product

F(8, ¢)=g(6, ¢)1(0. ¢) (1-113)

where g(0, @) is the element factor and f (0, ¢) is pattern factor. The pattern factor
comes {rom the integral over the current and is strictly due to the distribution of
current in space. The element factor is the pattern of an infinitesimal current
element in the current distribution. For example, we found for a z-directed
current element that F(@) = sin 8. This is, obviously, also the element factor, so

g(0) = sin 0 (1-114)

for a z-directed current element. Actually this factor originates from (1-90) and
can be interpreted as the projection of the current element in the f-direction, In
other words, at 8 = 90° we see the maximum length of the current, whereas at
0= 0° or 180° we see the endview of an infinitesimal current which yields no
radiation. The sin @ factor expresses the fraction of the size of the current as seen
from the observation angle 0. On the other hand, the pattern factor f(0, ¢)
expresses the fractional change in the radiation due to the total effect of parallel
rays eminating from the source. These rays arrive with different phases and the
radiation integral (1-99) sums all of these rays. For a source with constant phase
all rays arrive in-phase in the direction normal to the antenna and the pattern is
maximum there, For the ideal dipole we have said that the source is so small
that there are essentially no phase differences for rays along the source and thus
the pattern factor is unity.

For the z-directed uniform line source pattern of (1-112) we can identily the
factors as

gl0)=sin 0 (1-115)
and
oy SI[(BL2)cos 0]
f(0)= (BLRYos 0 ° (1-116)

For long line sources (L 3 Z) the pattern factor of (1-116) is much sharper than
the element factor sin 0, and the total pattern is approximately that of (1-116),
that is, F(A) = f(6). Hence, in many cases we need only work with ((6), which is
obtained from (1-101). If we allow the beam to be scanned (this will be discussed
below) the element factor becomes important as the pattern maximum
approaches the z-axis.

Frequently the directional properties of the radiation from an antenna are
described by another form of radiation pattern, the power pattern. The power
pattern gives the power density angular dependence and is found from the 0, ¢
variation of the r-component of the Poynting vector. For z-directed sources
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H,= E,/n so the r-component of the Poynting vector is 3E,H} = | E;|*/2n and
the normalized power pattern is simply the square of its field pattern

P(6) = |F(O)P. (1-117)
The normalized power pattern for a z-directed current element is
P(0) = sin® 0 (1-118)
and for a z-directed uniform line source is
_ .. o sinl(BL2)cos 6]
P(0)= {sin 0 (BL2Yos 0 | ° (1-119)

Frequently patterns are plotted in decibels. It is important 1o recognize that
the field (magnitude) pattern and power pattern are the same when plotted in
decibels. This follows directly from the definitions. For field intensity in decibels

| F(0)|4n = 20 log| F(0)| (1-120)
and for power in decibels
P(0)ys = 10 log P(0) = 10 log| F(0)|* = 20 log| F(0)| (1-121)
and we see that P(0) ., = | F(0)|as-

Radiation Pattern Parameters. Now we will discuss the structure of an
antenna patlern. A typical antenna power pattern is shown in Fig. 1-9 as a polar
plot in linear units (rather than decibels). The main lobe {or main beam or major
lobe) is the lobe containing the direction of maximum radiation. There are also
usually a series of lobes smaller than the main lobe. Any lobe other than the main
lobe is called a minor lobe. Also we can define a side lobe as a radiation lobe in
any direction other than that of the intended lobe. In most cases the main lobe is
the intended lobe and thus the minor lobes are side lobes; we shall assume this is
the case. Typically the side lobes are alternately positive and negative valued. In
fact, a pattern in its most general form may be complex-valued. Then we use the
magnitude of the field pattern | F(@)| or the power pattern P(0).

A measure of how well the power is concentrated into the main lobe is the
(relative) side lobe level which is the ratio of the pattern value of a side lobe peak
to the pattern value of the main lobe. The largest side lobe level for the whole
pattern is the maximum (relative) side lobe level, frequently abbreviated as SLL.
In decibels it is given by

= | F(SLL)|
SLL,y = 20 log (Fiman)] (1-122)
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/ Main lobe maximum direction

Mazin lobe

Half-power point {left) Half-power point (right)

05 Half power beamwidth (HP)

Beamwidth between first nulls (BWFN)

Minor
lobes

Figure 1-9 A typical power pattern polar plot.

where | F(max)| is the maximum value of the pattern magnitude and | F(SLL)|
is the pattern value of the maximum of the highest side lobe magnitude. For a
normalized pattern F(max) = 1.

For a specific example the pattern factor for a uniform line source is plotted in
a linear, rectangular form in Fig. 1-10. The smaller lobes are the side lobes and
they are alternately positive and negative. Note that to convert the plot in
Fig. 1-10 to a polar plot in terms of # we must specify the source length L. This
will be discussed further in Chapter 4.

Another meaningful parameter is the half-power beamwidth, HP. It 1s the angu-
lar separation of the points where the main beam of the power pattern equals
one-half, Hence

HP = | Oyp et — Oup rigne | (1-123)

where Oyp o and Oyp i, are points to the “left™ and “right™ of the main beam
maximum for which the power pattern has a value of one-half (see Fig. 1-9). On
the field pattern | F(6)| these points correspond to the value 1 /2. For example,
the sin O pattern of an ideal dipole has a value of 1/,/2 for @ values of
Onip 1ore = 135° and Oy 10, = 45°. Then HP = | 135° — 45°| = 90°. This is shown
in Fig. 1-4b, Note that the definition of HP is the magnitude of the difference of
the hal{-power points and the assignment of left and right may be interchanged
without changing HP.

We often refer to antennas as being broadside or endfire. A broadside antenna
is one for which the main beam maximum is in a direction normal to the plane
containing the antenna. An endfire antenna is one for which the main beam is in
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A flu) = “—'—:""

|

Figure 1-10 Pattern factor for a uniform line source of length L and u = (#1.,/2)
cos fl,

a direction parallel to the plane containing the antenna. For a linear current on
the z-axis, the broadside direction is ! = 90° and the endfire directions are 0°
and 180°. For example, an ideal dipole is a broadside antenna. For z-directed
line sources several patterns are possible. Figure 1-11 illustrates a few | £(0)]
patterns. The entire pattern (in three dimensions) is imagined by holding the
z-axis and spinning it. The full pattern can then be generated from the E-planc
patterns shown. The broadside pattern of Fig. I-11a is called a fan beam. The
full (in three dimensions) endfire pattern of Fig. 1-11c has a single lobe in the
endfire direction. This single lobe is referred to as a pencil beam. Note that the
sin 0 element factor, which must multiply these patterns to obtain the total
pattern, will have a significant effect on the endfire patiern.
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(a) (b) (c)

Figure 1-11 Polar plots of uniform line source patterns | f(6) | . (2) Broadside. (b)
Intermediate. (c¢) Endfire.

1.6 DIRECTIVITY AND GAIN

One very important description of an antenna is how much it concentrates
energy in one direction in preference to radiation in other directions. This char-
acteristic of an antenna is called its directivity and is equal to its power gain if
the antenna is 100% efficient. Usually power gain is expressed relative to a
reference such as an isotropic radiator or half-wavelength dipole.

Toward the definition of directivity, let us begin by recalling that the power
radiated by an antenna from (1-29) is

Re [[ (E x H?) - ds (1-124)

| -

P, =

Re H (E,Hs — E H})r* sin 0 d6 d¢. (1-125)

(o= 2]

In general there will be both #- and ¢-components of the radiation fields. From
(1-105) we find that

=D gl Beeate (1-126)
n n
Using these in (1-125) gives
P [ (B + [y d (1-127)
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d0 =sin 8 d6 do
» )}«
. sin 0 dé Figure 1-12 Element of solid angle dQ,

where dQ) = element of solid angle = sin 8 df d¢ which is shown in Fig. 1-12.
The integral may be evaluated over any surface enclosing the antenna, however,
for simplicity a spherical surface centered on the origin is usually used. Since the
amplitude variations of the radiation fields are 1/r we find it convenient to
introduce radiation intensity, which is defined from

U(6, $) = } Re(E x H*) - r'i. (1-128)

Radiation intensity is the power radiated in a given direction per unit solid angle
and has units of watts per square radian (or steradian, sr). It is independent of
distance r. Introducing the normalized electric field F(6, ¢) leads to

U0, ¢) = Un| (0, $)1? (1-129)

where U,, is the maximum radiation intensity, and |F(6, ¢)|* expresses the 0
and ¢ variation with a maximum value of unity in the direction (0., Pmax) that
is,

U, = UBss. o) (1-130)

The total power radiated is obtained by integrating the radiation intensity over
all angles around the antenna.

P, = [[ U, ¢) a0

= U, |[|F@. ¢)] a (1-131)

An isotropic source with uniform radiation in all directions is only hypotheti-

cal but is sometimes a useful concept. The radiation intensity of an isotropic

source is constant over all space, at a value of U, . Then P, = [ U, dQ =

U [f dQ = 4rU,,, since there are 4n sr in all space (see Prob. 1.6-1). For

nonisotropic sources the radiation intensity is not constant throughout space,
but an average power per steradian can be defined as

L[ v, ¢) da =1 (1-132)

Uahc — 4_3'[.. 4,‘_
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The average radiation intensity, U,,., may also be considered as the radiation
intensity of an isotropic source which radiates the same total power, P,, as our
real antenna, which produces U(6, ¢).

As an example consider the ideal dipole again: we find from (1-71), (1-72), and
(1-128) that

2
U, ¢) = %(%) Boou sin? 0 (1-133)
S0
-\2
Un=3( 2 ) B (1-134)
and
F(0, $) = sin 0. (1-135)

The average radiation intensity follows [rom the total radiated power expression
(1-74) for an ideal dipole as

P, (Pop/127)(I Az)?
U.“ = - = ——
4n 4n

11 Az\?
= 3% ) pon

2 ; 2
= 1-U_ (ideal dipole). (1-136)
Thus, U, = 1.5U,,. for the ideal dipole which means that in the direction of
maximum radiation, the radiation intensity is 50°, more than that which would
occur {rom an isotropic source radiating the same total power.

Directive Gain. Directive gain is defined as the ratio of the radiation inten-
sity in a certain direction to the average radiation intensity, or
U(o, ¢)

D(O, $) =~ (1-137)

ave

If we divide the numerator and denominator by r* then we would have power
densities. So directive gain is also the ratio of the power density in a certain
direction at a given range, r, to the average power density at that range, or

f r!
00,0 0.9

I Re(E x H*) - §
- P, /anr?

(1-138)
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Substitution of (1-132) for U,,. in (1-137) yields

' U, ¢)
i [[ve.¢)a
___|Fe.¢)f

i [[1F@. ) a0

D(6, ¢) =

4
- n_’: |F(0, ¢) (1-139)

where Q, is the antenna beam solid angle defined by

Q, = [[|F@. ¢) aa. (1-140)

The antenna beam solid angle is the solid angle through which all the power
would be radiated if the power per unit solid angle (radiation intensity) equaled
the maximum value over the beam area. This is illustrated in Fig. 1-13. From
(1-131) and (1-140) we see that

P.=U_0Q,. (1-141)
This may also be inferred from Fig. 1-13b.

U,
L‘-
2,
Actual
pattern
fa) — b

Figure 1-13 Antenna beam solid angle Q.. (a)
Plot of radiation intensity U(0, ¢) from an actual
antenna. (b) Plot of radiation intensity with all
radiation from the actual antenna concentrated into
a cone of solid angle Q, with constant radiation
intensity equal to the maximum of the actual pattern.
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Directivity. Directivity is now simply defined as the maximum value of direc-
tive gain, or

U
=" 1-142
i (1-142)
Using (1-132) and (1-141) in (1-142) gives
pe Un _4nU,
T PjAar UQ,
or
4n
- 1-143
D= (1-143)
Also from (1-129) in (1-137) we sec that
U, F(0, ¢)|?
D(0, ¢) = - 1(—}—?—)'- = D|F(0, ¢)|? (1-144)

ave

and since |F(0, #)|* has a maximum value of unity the maximum value of
directive gain is the directivity D. There is D times as much power density in the
direction (0.xs ®Pmas) s there would be if the same total power were radiated by
an isotropic source. Directivity is determined entirely by pattern shape.

The concept of directivity is illustrated in Fig. 1-14. If the radiated power were
distributed isotropically over all of space, the radiation intensity would have a
maximum value equal to its average value as shown in Fig. 1-14a, that is,
U, = U, or Q, = 4. Thus, the directivity of this isotropic pattern is unity. The
distribution of radiation intensity U(f, ¢) for an actual antenna is shown in

= DU e

fa) &)

Figure 1-14 lllustration of directivity. (a) Radiation intensity
distributed isotropically. (b) Radiation intensity from an actual
antenna,
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Fig. 1-14b. It has a maximum radiation intensity in the direction (0., @max) Of
U, = DU,,, and an average radiation intensity of U,,. = P, /4n. By directing the
radiated power P, in a preferred direction we can increase the radiation intensity
in that direction by a factor of D over what it would be if the same radiated
power had been isotropically radiated.

The directivity of an. ideal dipole may now be calculated easily. Using (1-136)
in (1-142) gives

U, U. 3 . .
D= U, = U, =3 (ideal dipole). (1-145)

Usually directivity is calculated directly from (1-143), and the directivity calcula-
tion reduces to one of finding the beam solid angle. To illustrate we will use the
ideal dipole example; substituting (1-135) in (1-140) gives

8n

in &
Q= | |sin O sin 0 d0 dg = 2% - 5 = (1-146)
|y 173
and we obtain the same value of directivity from -
4n 4n 3
b=a,~&@p =2 Qe

Thus, the directivity of an ideal dipole 1s 507, greater than that of an isotropic
source, which has a directivity of 1.

Gain. As noted above, directivity is solely determined by the radiation pattern
of an antenna. When an antenna is used in a system (say as a transmitting
antenna) we are actually interested in how efficiently the antenna transforms
available power at its input terminals to radiated power, together with its direc-
tive properties. To quantify this, power gain (or simply gain) is defined as 4n
times the ratio of the radiation intensity in a given direction to the net power
accepled by the antenna from the connected transmitter, or

4nU(6, ¢)
e

where G(0, ¢) is the gain and U(f, ¢) is the radiation intensity of the antenna in
the direction (0, ¢) including the effect of any losses on the antenna, and P,, is
the input power accepted by the antenna. This definition does not include losses
due to mismatches of impedance or polarization. The maximum value of power
gain is the maximum of (1-148), so

G(0, §) = (1-148)

4nU,,
G= ¥ (1-149)
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Thus, power gain may be expressed as a function of § and ¢ and may also be
given as a value in a specific direction. If no direction is specified and the power
gain value is not given as a function of 6 and ¢, it is assumed to be the maximum
power gain.

Directivity can be written as D = 4zU,_, /P,. Comparing this with (1-149) we
see that the only difference between maximum power gain and directivity is the
power value used. Directivity may be viewed as the power gain an antenna
would have il all input power appeared as radiated power, that is, P,, = P,.
Power gain reflects the fact that real antennas do not behave in this fashion and
some of the input power is lost. The portion of input power P,, which does not
appear as radiated power is absorbed on the antenna and nearby structures. This
prompts us to define radiation efficiency, e, as

i P%‘ (1-150)
Note that
O<e<l. (1-151)
Using (1-150) in (1-148) gives
60, )= e 2UO.0) _ UG 9) _ pis ) (1-152)
PI‘ Ul"
Similarly, for maximum power gain
G = eD. (1-153)

Thus, maximum power gain of an antenna is equal to its purely directional
characteristic of directivity reduced by its radiation efficiency.

The terminology found in the literature is inconsistent and often incorrect on
the topics of directive gain, directivity, and power gain. Current usage is slanted
toward using only the terms directivity and gain. Then directivity and gain can
be a function of angle or be maximum values, that is, D(0, @) or D, and G(0, ¢)
or G, If no other information is given during a discussion of directivity or gain it
can safely be assumed that the maximum value is intended. More importantly,

the concepts of directivity and gain are often confused and abused, so be on the
~ lookout in future reading.

Since gain is a power ratio it can be calculated in decibels as follows

Ggn=10log G. (1-154)

Similarly for directivity

OR(VINIBAD ACIONAL AUTOWORA e memesss Uan = 10 log D. (1-155)

DEPANTAMENTD ¢ S7AT 0 TECas
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For example, the directivity in decibels of an ideal dipole is
Dsg=10log 1.5= 176 dB (ideal dipole) (1-156)

Frequently gain is used to describe the performance of the antenna relative to
some standard reference antenna. In that case maximum power gain is defined as
the ratio of the maximum radiation intensity from the antenna U, to the maxi-
mum radiation intensity from a reference antenna U, ., with the same input
power, or

U

Gog = . 1-157
“« =g (1-157)
This is a convenient definition from a measurement standpoint. The previous
definition of gain employs a lossless isotropic antenna as a reference antenna.
This can be shown by noting that the lossless isotropic reference antenna has a
maximum radiation intensity of P, /4= since all of its input power is radiated,

and substituting this into (1-157) for U,, . leads to (1-149).
Gain Measurement. Power pattern measurement (to be discussed in Sec-
tion 1.7) is a relative measurement and does not require an accurate knowledge
of the gain of the antenna used to measure the pattern of the test antenna.
However, power gain measurement (either maximum or as a function of angle) is
an absolute measurement and thus, is more difficult. One method of maximum
power gain measurement is illustrated in Fig. 1-15. A source antenna is driven
by a constant power transmitter. First a standard gain antenna with a known
maximum power gain G, is used as the receiving antenna as shown in Fig. 1-15a.

>

Source of
constant Standard
power P, N
anlenna
of gain 6,
fa)
= Figure 1-15 Measurement of maxi-
! mum power gain by comparison to
an antenna of known maximum power
S gain. G, = (P/P)G,. (a) Measurement
antenna of power output P, from a standard gain
of gan «;, antenna. (b) Measurement of power
b output P, from the test antenna.
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It is oriented such that its output power P, is maximum. Next the test antenna
replaces the standard gain antenna and is oriented for maximum power output
P,. Since the absolute maximum power gain (relative to an isotropic lossless
antenna) of the standard gain antenna is known, the absolute maximum power
gain of the test antenna can be calculated from the differences in the measured
received powers. The ratio P, /P, is the increase in received power from the test
antenna over that of the standard gain antenna. The gain of the test antenna
must then have that much more gain, that is,

P
G = FiG,. (1-158)
As an example suppose that a standard gain antenna has a gain of 63, or 18 dB,
Following the measurement technique of Fig. 1-15 the measured powers are
P,= 316 mW, or 5dBm (5 dB above a milliwatt), and P,= 31.6 mW, or
15 dBm, The gain of the test antenna is then G, = (31.6/3.16)63 = 630, or in
terms of decibels

G(dB) = P(dBm) — P,(dBm) + G,(dB) = 15 — 5 + 18 = 28 dB.

1.7 RECIPROCITY AND ANTENNA PATTERN MEASUREMENTS

In this section we show that the radiation pattern of an antenna is the same
whether it is used as a transmitting antenna or receiving antenna. Reciprocity
allows the calculation or measurement of an antenna pattern in either the trans-
mit or receive case. Practical considerations for the measurement of antenna
patterns are also discussed in this section.

In order to show the reciprocity of the transmit and receive patterns for an
antenna it is necessary to discuss some reciprocity theorems. There are several
forms reciprocity theorems take for electromagnetic field problems. We will
consider two forms of reciprocity for use in antenna problems. First the Lorentz
reciprocity theorem will be discussed. Let sources J, and M, produce fields E,
and H, and sources J, and M, produce fields E, and H,. See Fig. 1-16. The
frequencies of all quantities are identical. The Lorentz reciprocity theorem that is
derivable from Maxwell's equations (see Prob. 1.7-1) states that for isotropic
media

”‘ (Eydg—Hy-M,) dv' = Hl (E,- J, - H, - M,) dr". (1-159)

Ve s

The left-hand side is the reaction (a measure of the coupling) of the fields from
source b on the sources a, and the right-hand side is the reaction of the fields
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Volume v, Volume &y
Figure 1-16 Source configuration for the Lorentz reciprocity
theorem.

from source a on the sources b. This is a very general expression but it can be
put into a more usable form. Let sources b consist of only an ideal electric dipole
of vector length p located at point (x,, y,, z,). Since the ideal dipole can be
represented as an infinitesimal source and M, is zero, (1-159) becomes’

Eu(xp. ¥pr 2p) 2= [[[ (B4 - 30~ Hy - M) v (1-160)

This expression allows us to calculate the electric field from sources a by evaluat-
ing the integral using known sources J, and M, and known ideal dipole fields E,
and H, of (1-67) and (1-66), evaluated at the location of sources a. This may be
performed for various orientations p of the ideal dipole, which is acting as a field
probe.

The Lorentz reciprocity theorem can also be used to derive a reciprocity
theorem using terminal voltages and currents. Suppose sources a and b are
antennas excited with ideal (infinite impedance) current generators I, and /,.
Since no magnetic sources are present (1-159) reduces to

(I[Ey- 3, dv=[[[E,-3,d (1-161)
For perfectly conducting antennas the electric fields will be zero over the
antennas; however, voltages will be produced across the terminals. Taking the

current to be constant in the terminal region and using the concept of
[E-df = —V, we see that (1-161) becomes

Vel = VeI, (1-162)

where Vi is the open circuit voltage across the terminals of antenna a due to the
field E, generated by antenna b and similarly V3° is the open circuit voltage at

? The ideal dipole current could be written as J; = d{x — x,) 8(y ~ v,) 8(z — z,)p This together with
M, = 0 in (1-159) yields (1-160)
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antenna b due to antenna a. Open circuit voltages have been used because of the
infinite impedances of the generators. Rearranging (1-162) leads to a statement
of reciprocity in circuit form

Ve 1
- (1-163)

;~_|;§_

Several factors affect the voltage appearing at one antenna due to another
antenna which is excited: the specific antennas used, the medium between the
antennas with perhaps other objects present, and the relative orientation of the
antennas. We can represent the general situation entirely in terms of circuit
parameters as follows

where V,, V,, 1,, and I, are the terminal voltages and currents of antennas a and
b, If antenna a is excited with a generator of current [, the open circuil voltage
appearing at the terminals of antenna b is V,|,, ., . The transfer impedance Z,, is
from (1-165) with I, zero,

V.
Zu=—1 . (1-166)

fal iJ'a~=[l

If antenna b is excited with a generator of current [, the open circuit voltage
appearing at the terminals of antenna a is V,|,, - . The transfer impedance Z,, is,
from (1-164) with [, zero.
. Ve
Za=-" . (1-167)

i

Comparing (1-166) and (1-167) to (1-163) we see that

Zo=20=2Zn (1-168)

where Z,, is the transler (or mutual) impedance between the antennas. This can
also be shown from the circuit formulation of (1-164) and (1-165) if the indivi-
dual impedances are linear, passive, and bilateral. (See Probs. 1.7-3. 1.7-4). This,
in turn, is true if the medium and the antennas are linear, passive, and isotropic.

[f an ideal current source of current I excites antenna a, the open circuit
voltage at the terminals of b from (1-166) is

Volimo = 1Zis. (1-169)
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If the same source is now applied to the terminals of antenna b, the open circuit
voltage appearing at the terminals of antenna a is from (1-167)

Vl=o=1Z. (1-170)
But Z,, = Z,,, so the preceding two equations yield
Val=0 = Wln=0=V. (1-171)

Thus the same excitation current will produce the same terminal voltage
independent of which port is excited, as illustrated in Fig. 1-17. In other words.
reciprocity states that the source and the measurer can be interchanged without
changing the system response. The same is true of an ideal voltage source and
short circuit terminal currents. These are familiar results from network theory.

I m
—_ L.,
| = | |
L _
fa)

z =

o S
®)
o—o =8 .
v ®
o—— °

fc)

Figure1-17 Reciprocity forantennas. The outputvoltage Fisthesamein
(b) and (¢) forthe same input current /. (a) Two-port representation of a
two-antenna system. (b) Antenna a excited with current source /. (¢)
Antenna h excited with current source /
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The self-impedances of the antennas from (1-164) and (1-165) are

- 5[ (1-172)
Io =0

Zy= (1-173)

]

Ia=0

If an antenna is isolated so that all objects including other antennas are far away
and the antenna is lossless, the selfimpedance equals its input impedance [8].

Suppose antenna a is excited (ie., acting as a transmitter) and the voltage
produced at the terminals of antenna b is measured with an ideal voltmeter. If
the antennas are separated so that they are in each others far field, the transfer
impedance Z,, is actually the far-field (or radiation) pattern of antenna a il
antenna b is moved around @ on a constant radius as shown in Fig. 1-18a. It is
normally assumed that as antenna b is moved it is maintained with the same
orientation and polarization relative to antenna a. The output voltage of b as a
function of angle around antenna a gives the relative angular variation of the
radiation {rom antenna a, that is, its radiation pattern. Examining (1-166) we see
that this is really Z,, (I, is constant). Thus Z,, as a function of angle is the
transmitting pattern of antenna a. If now antenna b is excited and antenna « acts
as a receiver, the terminal voltage of antenna a is the receiving patiern of
antenna a as antenna b i1s again moved around at a constant distance from
antenna a; see Fig. 1-18b. Thus Z_, as a function of angle is the receiving pattern
of antenna a. Since the transfer impedances are identical we can conclude that
the transmit and receive patterns of an antenna are identical. This is an important
consequence ol reciprocity.

It is important to note that reciprocity as illustrated in Fig. 1-17 (or equiva-
lently Z,, = Z,,) is true even if the antennas are not far removed from cach
other. In that case though, Z_(0, ¢) is not the far-ficld pattern.

Antenna Pattern Measurement. An antenna pattern is a graphical re-
presentation of the radiation properties of an antenna as a function ol the
direction from the antenna. With the antenna centered on the origin of a spheri-
cal coordinate system. the radiation fields E and H are perpendicular to each
other and both are transverse to the direction of propagation, . Also the field
intensities vary as ™. In antenna pattern discussions the electric field is used.
but the magnetic ficld behavior follows directly since its intensity is found from
H = E/n and its direction is perpendicular to E and r; see (1-105).

The electric field is both a vector and a phasor. In general it has two ortho-
gonal components, frequently decomposed into E, and E,. These components
are complex-valued having an amplitude and phase. The relative amplitude and
phase of these components determines the polarization that is discussed further
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Figure 1-18 Antenna pattern reciprocity. The transmitting and receiving
patterns of an antenna are identical because Z(f. ¢) = Z, (0, &) = Z (0, ¢)
(a) The transmitting pattern of antenna a is Z,.(0.¢) = ¥y (0, $)//,.
(b) The receiving pattern of antenna a is Z,(0,¢)=V, (0, d)/l,.

in Section 1.9, Separate antenna patterns may be given for each component of
the electric field. For simple antennas only one component is present. For exam-
ple, the ideal dipole on the z-axis has only an E, component. [t may be noted
that for actual antennas a small component of electric field perpendicular to that
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predicted from the ideal case always exists. This is referred to as the cross-
polarized component and arises from currents flowing on the antenna or sup-
porting structures, which are not accounted for in a simple mathemsitical model.

A complete representation of the radiation properties of an antenn: would, of
course, require measuring the radiation at all possible angles (€ @). " his 1 raruly
attempted and fortunately is also rarely necessary. For mo:: appiications the
principal plane patterns are sufficient. Figure [-4 illustrates 19¢ piincipal plane
patterns for an ideal dipole.

There are many ways of displaying antenna patterns. For example, a principal
plane pattern could be plotted in polar or rectangular form. In addition, the
scale could be either linear or logarithmic (decibel). All combinations of plot
type and scale type are used: polar-linear, polar-log, rectangular-linear, and
rectangular-log. Figure 1-9 illustrates a polar-linear pattern plot. A polar-log
pattern plot example is found in Fig. 5-9. Figure 1-10 shows a rectangular-linear
plot. Figure 4-1 is the same pattern as the last (a uniform line source) but in
rectangular-log form. Generally speaking log plots are used for high-gain, low-
side lobe patterns and linear plots are used when the main beam structure is of
primary interest, These various antenna pattern representations can be recorded
directly using commercially available measurement and recording equipment.
When more detailed information is required the results of several planar cuts can
be put together to make a contour plot.

Although we have conceptualized the measurement of a radiation pattern by
moving a receiver over a sphere of constant radius, this is obviously an impracti-
cal way of making such measurements. The important feature is to maintain the
distance between the antennas constant (but large enough so the antennas are in
each others far field) and to vary the observation angle. For example, to measure
the pattern of antenna a we could rotate it about its axis and keep antenna b
fixed. By reciprocity it makes no difference if we operate antenna a as a receiver
or as a transmitter. but usually the antenna whose pattern is desired 1s used as a
receiving antenna. In Fig. 1-19 the incident fields of transmit antenna b on
receive antenna a are constant and the output of antenna a varies with its
angular position, Thus, the antenna that is rotated is the pattern being
measured; in this case antenna a. Antenna positioners of many types together
with required control systems. receivers, and recording devices are available for
such rotation pattern measurements.®

Antenna pattern measuring equipment varies with frequency range and the
size of the antennas. If the antenna size is not extremely large in terms of a
wavelength, the far-field distance (20%/4) is small enough to permit indoor tests
in anechoic chambers, which are lined with special absorbing material to mini-
mize reflections, In other situations antenna test ranges are set up outdoors, In
this case the antennas are elevated on towers or hills to avoid ground reflections,

".Perhaps the most complete dncussion of antenna measurements is found in [9] Alse see |11
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Figure1-19 Radiauon pattern measurement. The
pattern of antenna a is proportional to the terminal
voltage ¥, which is a function of the angular
position of antenna a during rotation.

For very large antennas such as satellite ground station or radio astronomy
antennas, the far-field distance may be extremely large necessitating special
techniques for pattern measurement. For example, a satellite or airplane plat-
form can be used for the source antenna. Also, the sun or a “radio star" can be
employed as sources

1.8 ANTENNA IMPEDANCE AND RADIATION EFFICIENCY

The input impedance of an antenna is the impedance presented by the antenna
at its terminals. Thus, suitable terminals must be defined for an antenna. The
input impedance will be affected by other antennas or objects that are nearby,
but for this discussion we will assume that the antenna is isolated. The input
impedance is composed of real and imaginary parts.

Zm = ‘R'Il'l +jxin' (1'174)

The input resistance, R, . represents dissipation. Power can be dissipated in two
ways. There are hcating losses on the antenna structure and associated hard-
ware. Also power that leaves the antenna and never returns (radiation) is a form
of dissipation, On many antennas ohmic losses are small compared to radiation
losses, The input reactance. X ,, . represents power stored in the near field of the
antenna.

First we shall discuss the input resistance. The average power dissipated in an
antenna is

Pm - i'erll Iln{l “-1?5)

where I;, is the current at the input terminals. Note that a factor of one-half
appears in (1-175) because current is defined as a peak value. Separating the
dissipated power into radiative and ohimic losses we have

P n= Pr t Pnhmu‘

%‘RIII" --IA’ + iRHhIIIu! Iurl-‘ 4 (I—]?fj}
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where we define radiation resistance of an antenna referred to the input ter-
minals as

2P
= ["inlz (1-177)
and ohmic resistance of an antenna as
= 2Pﬂhml: Z(Pm . Pr)
Roaic= TG T (1-178)
From (1-34) the radiated power is
H (E x H*) - ds (1-179)

lﬂ

where s is a surface in the far field, usually spherical. Also the power density
S = 4E x H* will be real in the far field. Radiation resistance can be defined
relative to the current at any point on the antenna. It is customary to use the
maximum current; in other words the current in the denominator of (1-177), in
general, is the maximum current. The symbol R, will be reserved for radiation
resistance relative to the maximum current that occurs on the antenna. The
radiation resistance R, is referred to the input terminals. In this section we will
be dealing with electrically short antennas which always have a current maxi-
mum at the input, if fed in the center, and thus there is no chance for confusion.
In those cases R,; = R,, and the symbol R, will be used. In Section 5.1 we will
discuss this topic again.

As an example consider the ideal dipole antenna. The radiated power for an
ideal dipole of lcngth Az < 4 and input current [ is given by {1-74] The radia-
tion resistance is then

2P, 2 wuf ey /e
L s . | Az = Y EONINVE g
IGF P 127 ( )  E6n plasy
=P (azp = 1207 (2x ]
L= (Az)* = &= L1 Az
» A -~
R,=8(}n’(%—" :soo(-A;—‘) ohms (ideal dipole) (1-180)

Since Az < 4, R, for ideal dipoles is very small.
The relative amounts of input power dissipated by radiation and ohmic losses
determine the efficiency of the antenna. This is expressed by the radiation
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efficiency e which was introduced in Section 1.6 and defined in (1-150) as the
ratio of total radiated power to the net power accepted by the antenna, so

P, P,

.1 - : -181
== Py Pt Py 45)
Substituting (1-176) and (1-177) into (1-181) yields
iRﬁlfml
TR L+ WRopic Tl
oo SRR (1-182)

"R, + Ryme Ry

For many antennas radiation efficiency is nearly 1009, For electrically small
antennas, however, the radiation efficiency may be extremely small. A quick
calculation will show this. Consider an ideal dipole operating at | MHz and of
length Az = 1 m = 0.00334. It has a radiation resistance from (1-180) of

2
R, = ao,ﬁ(—;ﬁ) = 0.0088 ohm. (1-183)

The ohmic resistance for an antenna that carries a uniform current is

L
'Rollrm: = 2—'3—‘1 R‘ “'184)

where L is the length of the wire, a i1s the wire radius, and R, is the surface
resistance [11]

Rym [ (1-185)

At 1 MHz for copper wire

4nx]0’ 2nxl0 =7
R,=\/ STn 10 = 263 %107 ohm. (1-186)

Assuming that the wire is No. 20 AWG of radius a = 406 x 10" * m and evalu-
ating (1-184) gives

_ 1
ohmic = 32 - 406 x 10~ *
The radiation efficiency from (1-182), (1-183), and (!-187) s

0.0088 X
¢ = p——os = 187% (1-188)

R 263 x 107* = 0.103 ohm. (1-187)
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This is a low efficiency. Since the radiation resistance increases with length
squared and ohmic resistance increases linearly with length, the radiation
efficiency could be increased by lengthening the antenna. For broadcast receiv-
ing antennas, low efficiency is frequently overcome by using high-power trans-
mitters operating into tall antennas that are efficient. Thus cost and complexity
are concentrated into a few transmitting stations allowing nexpensive and
simple receiving antennas.

The ideal dipole mode!l is a uniform current element, as shown in Fig. 1-20a.
In reality the current on a straight wire antenna must smoothly go to zero at the
ends. The current distribution on a center fed wire dipole of length Az < A, called
a short dipole, is approximately triangular in shape as illustrated in Fig. 1-20h. If
end loading such as with metal plates (see Fig. 2-3) is added to the short dipole,
there is a place for charge to accumulate at the wire ends giving a nearly uniform
current on the dipole itsell which permits use of the wdeal dipole model. More
will be said about short dipoles in Section 2.1.

The triangular current distribution of the short dipole leads to an equivalent
length which 1s one-half that of its physical length. This is true because the
equivalent length is proportional to the total charge on the wire at any instant,
which is proportional to the area under the current versus distance curves shown
in Fig. 1-20. This follows directly from the fact that the radiation integral [see
(1-101)] reduces to [ I{z)d=" since exp(jfz cos @) = 1 for short dipoles. The

%
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Figure 1-20 The ideal dipole model and short dipole with current
distributions; Az « 2 [, isthe value of the input current at the terminals
in the center of each antenna. The short dipole of (b) is that which is
encountered in practice for a wire segment as shown. ( a) Ideal dipole.
(b) Short dipole
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radiated fields are, in turn, proportional to this equivalent length. Since
the radiation resistance 1s proportional to the integral of the far-zone electric
field squared and the patterns of the ideal and short dipoles are the same as will
be shown below, the radiation resistances are proportional to the equivalent
lengths squared. The area of the short dipole current triangle shape is one-half
that of the uniform current shape. This reduced equivalent length for the short
dipole leads 1o a reduction in the radiation resistance. Since the length is effectively
one-half for the short dipole. the radiation resistance is reduced by a factor of
four from that of the ideal dipole. Thus dividing (1-180) by four yields

A- 2
R, = :01:2(—; | ohms  (short dipole). (1-189)

In the pattern calculations for the ideal dipole (see Section 1.4) we assumed
that the phase and amplitude differences of rays coming from different points on
the wire due to different path lengths were neghgible. These effects influence the
pattern shape. Since the short dipole also satisfies Az < 4 the pattern is cal-
culated in the same fashion and will, thus, have the same sin 0 radiation pattern
as the ideal dipole. To be more specific. the vector potential of (1-60) is used for
both the uniform and triangular current models except Az/2 s used in place of
Az in the triangular current case because its equivalent length is one-half that of
the uniform current. The patterns are then the same since A is the same, except
for a constant factor of one-hall. The ideal dipole and short dipole will also have
the same directivity value of 1.5 because the pattern shape completely determines
directivity.

Not only is the radiation resistance of the short dipole reduced from that of
the ideal dipole. but the ohmic resistance is also reduced. The reduction is,
however, not the same. and as can be seen from (1-182), if R,, and R,;,.,;. change
differently, ¢ will be different from the ideal dipole case. First we will find an
expression for the ohmic resistance of a short dipole. Since the power dissipation
from ohmic losses at any point along the antenna is proportional to the current
squared at that point, the total power dissipated can, in general, be found from

2
p‘ = .’3‘ |

whmiy zna

: |1(2)|? d-. (1-190)

-Li2 -

It is easy to show that this reduces to (1-184) for a uniform current of length
L = A:z. The triangular current of Fig. 1-20b for the short dipole can be written
as a function of position along the wire as

1) =1,(1 1_\') 15| s X (1-191)
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Using this in (1-190) yields

Az R s
R ™= EETS (short dipole) (1-192)
for a short dipole of length Az with a triangular current distribution. Notice that
this 1s one-third that for an ideal dipole. Since the radiation resistance for the
short dipole is one-fourth that of an ideal dipole, the radiation resistance is
decreased more relative to the ohmic resistance and thus the efficiency is lower
for the short dipole than it is for an ideal dipole of the same length.

We now return to the example presented earlier in this section and redo it for
the case of a short dipole. This antenna now closely approximates the dipole
antenna found in the windshield of some automobiles. The wavelength at 1| MHz
(in the AM broadcast band) is 300 m and the length Az is I m. Then from

= JUR = & 'I

and from (1-186) and (1-192)
1 263 x 10 "

o = 00344 ohm. 1194
Rowmic =50 406 x 10 3 Uvioe -9

The radiation efficiency 1s then

0.0022
T 00022 + 00344

¢ 601", (1-195)
which is slightly less than the 787", for the corresponding ideal dipole.

In addition to loss of efficiency, ohmic losses on antennas have another undesir-
able effect. Any resistive element in an electrical system is a source of noise. Thus
ohmic losses on antennas are sources of noise. Large ohmic resistances on receiv-
ing antennas introduce noise into the receiver. It turns out. though, that for
frequencies around 1 MHz and below, external noise (mainly due to hightning)
is significant and always present. This external noise picked up by the antenna 1s
proportional to the antenna radiation resistance and is usually larger than the
noise arising from the ohmic resistance.

We now return to the reactive part of the input impedance. Radiated power
contributes to the real part of the input impedance whereas power stored in the
near field is represented by the reactive part of the input impedance. This beha-
vior is very similar to a complex load impedance in circuit theory. Antennas
that are electrically small (much smaller than a wavelength) have a large input
reactance, in addition to a small radiation resistance. For example, the short
dipole has a capacitive reactance whereas an electrically small loop antenna has
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an inductive reactance. This i1s an expected result from low-frequency circi:it
theory.

Antenna impedance 1s important to the transfer of power from a transmitter
to an antenna or from an antenna to a receiver. For example, to maximize the
power transferred from a receiving antenna the antenna impedance should be a
conjugate match (equal resistances, equal magnitude and opposite sign reac-
tances). Usually the receiver has a real impedance so it is necessary to “tune
out™ the antenna reactance with a matching network of variable inductances
and capacitances adjusted to cancel antenna reactance. It would at first appear
to be no problem if antenna impedances were reactive because they could always
be tuned. There are, however. two disadvantages to using matching networks.
They are always somewhat inefficient because there are ohmic losses in tuning
coils. Second, a matching network can provide a match only over a narrow band
of frequencies thus reducing the operational bandwidth. Impedance matching
techniques are discussed in Section 5.3.

Finally, we note that as a consequence of reciprocity. antenna impedance for
receiving and transmitting is the same.

1.9 ANTENNA POLARIZATION

We will first discuss the possible polarizations of an electromagnetic wave and
then antenna polarization will follow directly from wave polarization.® In fact,
the polarization of an antenna is the polarization of the wave radiated by the
antenna in a given direction.

If the electric and magnetic field vectors of an electromagnetic wave lie in a
fixed plane at all times, it is called a plane polarized ware. The tip of the instan-
taneous electric field vector traces out a figure with time: we refer to this phen-
omena simply as the polarization of the electric field vector. There may be a
random component to this figure (a nonperiodic behavior), but we will not
consider such randomly polarized wave components because antennas cannot
generate them. For a completely polarized wave the figure traced out is, in
general, an ellipse.

There are some important special cases of the polarization ellipse. If the path
of the electric field vector is back and forth along a line. it is said to be linearly
polarized. See Figs. 1-21a and 1-21h An example s the electric field from an
ideal dipole or any linear current. If the electric field vector remains constant in
length but rotates around in a circular path, it is circularly polarized, The rota-
tion radian frequency is @ and occurs in one of two directions, referred to as the
sense of rotation. If the wave is traveling toward the observer and the vector

¥ For a complete discussion of wave polarization see [12)
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Using this in (1-190) yields

Az R s
B o ix—af (short dipole) (1-192)
for a short dipole of length Az with a triangular current distribution. Notice that
this 1s one-third that for an ideal dipole. Since the radiation resistance for the
short dipole is one-fourth that of an ideal dipole, the radiation resistance is
decreased more relative to the ohmic resistance and thus the efficiency is lower
for the short dipole than it is for an ideal dipole of the same length.

We now return to the example presented earlier in this section and redo it for
the case of a short dipole. This antenna now closely approximates the dipole
antenna found in the windshield of some automobiles. The wavelength at 1 MHz
(in the AM broadcast band) is 300 m and the length Az is I m. Then from
(1-189)

1 2
= 20n? = 0.002 : 1-193
R, = 20m (_mn) 00022 ohm (1-193)
and from (1-186) and (1-192)

. B 1 263 x 10°*
ohmic = Jw - 406 x 10°* 3

= 00344 ohm. (1-194)

The radiation efficiency is then

0.0022

= = 601", 1-195
“ 700022 + 00344 ' )

which is slightly less than the 787", for the corresponding ideal dipole.

In addition to loss of efficiency, ohmic losses on antennas have another undesir-
able effect. Any resistive element in an electrical system is a source of noise. Thus
ohmic losses on antennas are sources of noise. Large ohmic resistances on receiv-
ing antennas introduce noise nto the receiver. It turns out. though, that for
frequencies around 1 MHz and below, external noise (mainly due to Iighlnmg)
is significant and always present. This external noise picked up by the antenna is
proportional to the antenna radiation resistance and is usually larger than the
noise arising from the ohmic resistance.

We now return to the reactive part of the input impedance Radiated power
contributes to the real part of the input impedance whereas power stored in the
near field s represented by the reactive part of the input impedance. This beha-
vior is very similar to a complex load impedance in circuit theory. Antennas
that are electrically small (much smaller than a wavelength) have a large input
reactance, in addition to a small radiation resistance. For example, the short
dipole has a capacitive reactance whereas an electrically small loop antenna has
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an inductive reactance. This 15 an expected result from low-frequency circuit
theory.

Antenna impedance 1s important to the transfer of power from a transmitter
to an antenna or from an antenna to a receiver. For example, to maximize the
power transferred from a receiving antenna the antenna impedance should be a
conjugate match (equal resistances, equal magnitude and opposite sign reac-
tances). Usually the receiver has a real impedance so it is necessary to “tune
out™ the antenna reactance with a matching network of variable inductances
and capacitances adjusted to cancel antenna reactance. It would at first appear
to be no problem if antenna impedances were reactive because they could always
be tuned. There are, however. two disadvantages to using matching networks.
They are always somewhat inefficient because there are ohmic losses in tuning
coils. Second, a matching network can provide a match only over a narrow band
of frequencies thus reducing the operational bandwidth. Impedance matching
techniques are discussed in Section 5.3.

Finally, we note that as a consequence of reciprocity. antenna impedance for
receiving and transmitting is the same.

1.9 ANTENNA POLARIZATION

We will first discuss the possible polarizations of an electromagnetic wave and
then antenna polarization will follow directly from wave polarization.” In fact,
the polarization of an antenna is the polarization of the wave radiated by the
antenna in a given direction.

I the electric and magnetic field vectors of an electromagnetic wave lie in a
fixed plane at all times, it is called a plane polarized ware. The tip of the instan-
taneous electric field vector traces out a figure with time: we refer to this phen-
omena simply as the polarization of the electric field vector. There may be a
random component to this figure (a nonperiodic bebavior). but we will not
consider such randomly polarized wave components because antennas cannot
generate them. For a completely polarized wave the figure traced out s, in
general, an ellipse.

There are some important special cases of the polarization ellipse. If the path
of the electric field vector is back and forth along a line. it is said to be linearly
polarized. See Figs. 1-21a and 1-21b. An example is the electric field from an
ideal dipole or any linear current. If the electric field vector remains constant in
length but rotates around in a circular path, it is circularly polarized. The rota-
tion radian frequency is @ and occurs in one of two directions, referred to as the
sense of rotation. If the wave is traveling toward the observer and the vector

* For a complete discussion of wave polarization see [12)
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Figure 1-21 Some wave polarization states. The wave is
approaching. (a) Linear (vertical) polarization. (&) Linear
{horizontal) polarization. (¢) Right-hand circular polarization
(d) Left-hand circular polarization. (e) Right-hand elliptical
polarization. (f) Left-hand elliptical poiarization.

rotates counterclockwise, it is right-hand polarized. The right-hand rule applies
here: with the thumb of the right hand in the direction of propagation, the
fingers will curl in the direction of rotation of the instantaneous electric field &. If
it rotates clockwise, it is lefi-hand polarized. Right- and left-hand circularly po-
larized waves are shown in Figs. 1-21¢ and [-21d. A helix antenna produces
circularly polarized waves (see Section 6.1) and the sense of rotation of the wave
is the same as the sense of the helix windings, for example, a nght-hand wound
helix produces a right-hand circularly polarized wave. Finally, a wave may be
elliptically polarized, with either right- or left-hand sense of rotation, as shown in
Figs. 1-21e and 1-21/.

Skt~
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A general polarization cllipse s shown in Fig. 1-22 with a reference axis
system. The wave associated with this polarization ellipse is traveling in the
+ z-direction. The sense of rotation can be either left or right. The instantancous
electric field vector & has components & and £ along the x and y axes. The peak
values of these components are E; and E,. The angle y describes the relative
values of E, and E, from

v=tan" " % 0 <y<90° (1-196)
|

The tilt angle of the ellipse, +, is the angle between the x-axis (horizental) and the

major axis of the ellipse. The angle ¢ is seen from Fig. 1-22 to be

t=cot"'(AR) 1< |AR| =<0, -45<e<d5° (1-197)

where the axial ratio of the ellipse, | AR/, is the ratio of the major axis electric
field component to that along the minor axis. The sign of AR is positive for
left-hand sense and negative for right-hand sense.

The instantaneous electric field for the wave of Fig. 1-22 can be written as
(with z = 0 for simplicity)

& =4.X+8,Y=E, cos wix + E; cos{wt + )y (1-198)

wliere § is the phase by which the y-component leads the x-component. This
representation describes the cllipse shape as time 1 progresses. [f the components

Figure 1-22 The genera! polanzation ellipse. The associated wave
direction is out of the page in the +:-direction. The tip of the
instantaneous electric field vector & traces out the ellipse.
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are in phase (6 = 0) the net vector is linearly polarized. The orientation of the
linear polarization depends on the relative values of E; and E, . For example, if
E, =0 vertical linear polarization results; if E, = 0 horizontal linear results; if
E, = E, the polarization is linear at 45° with respect to the axes. Linear polari-
zation is a collapsed ellipse with infinite axial ratio. If § is nonzero the axial ratio
is finite. When 6 > 0, &, leads &, in phase and the sense of rotation is left hand.
For § <0 the sense is right hand. If E, = E; and § = +90° the polarization is
circular (+90° is left and —90° is right). The axial ratio of a circularly polarized
wave is unity.,
The phasor form of (1-198) is

E=E % + E,el% (1-199)
which can be written as (see Prob. 19-3)
E = /EI + E3(cos 7% + sin ye'%§). (1-200)

The factor \/E] + E} is the field magnitude and the remaining factor is the
complex unit vector for the field. Thus y and & completely specify the polariza-
tion state of the wave. In fact, either pair of angles (& ) or (y, &) uniquely
define the polarization state of a wave. The transformations between these angles
are

7= § cos™ '(cos 2¢ cos 27) (1-201)
S (T 2 20
d = tan (sin = ) (1-202)

The polarization of an antenna is the polarization of the wave radiated by the
antenna in a given direction. Therefore, all of the discussions on wave polariza-
tion apply directly to antenna polarization. Usually the polarization character-
istics of an antenna remain relatively constant over its main beam. However. the
radiation from some side lobes may differ greatly in polarization from that of
the main beam. When measuring the radiation from an antenna both E,and E
should be measured to be complete. The principal plane patterns of a linearly
polarized antenna, such as a line source on the z-axis, are completely specified
when a linearly polarized probe antenna is oriented to respond to E,,

The polarization of an antenna is determined by the wave radiated from the
antenna, which must, of course, be in the far field where local plane wave
behavior exists. Therefore, the plane polarized wave discussions given earlier
apply. Furthermore, since the pattern (iec.. the radiation field) is reciprocal. the
polarization of an antenna is reciprocal. In other words, an antenna responds
best (gives maximum output) for an incident wave of given intensity when
the polarization ellipse of the incident electric field has the same axial ratio.
the same sense of polarization, and the same spatial orientation of the major axis

-
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as that of the receiving antenna for that direc!ion: For example, a riglht-har_:d
circularly polarized receiving antenna is polarization n?atched to a right cir-
cularly polarized wave. As a mechanical _analogy, let a right-hand thra?:aded rod
represent a right-hand circularly polarized (RHCP) wave and a right-hand
tapped hole represent a RHCP antenna. The rqd and hole are matched when
screwed either in or out, corresponding to reception or transmission.

1.10 ANTENNAS IN COMMUNICATION LINKS AND RADAR

It is important to have an appreciation for the role played by antennas w_hcn
they are employed in their two primary application areas, communication links
and radar. First, consider a simple transmit-receive communication link as
shown in Fig. 1-23. The transmitting antenna transmits power P,. It is of pri-
mary interest to be able to calculate how much of this power we can pick up
with the receive antenna. In the far field of the transmit antenna the waves are
essentially plane and of uniform amplitude over any small region. The total
power incident on the receiving antenna is found by summing. up the incident
power density (Poynting vector) over the “area” of the receive antenna; see
(1-34). How an antenna converts this incident power into available power at its
terminals depends on the type of antenna used, its pointing direction, and
polarization. .

Let us define maximum effective aperture A_,, of an antenna using the following
relationship

Pep=3S. A (1-203)

where P, is the time-average available power at the antenna terminals for a
lossless antenna aligned to pick up maximum power (i.e., beam maximum in the
direction of the incoming wave and its polarization state aligned with that of the
incoming wave), and S, is the time-average power density of the incoming wave.
A (in square meters) is a measure of how effectively the antenna converts
incident power density S,, (in watts per square meter) into received power P
(in watts). Il Z, = R, + jX, is the load impedance of the receiver at the antenna
terminals and Z, is the impedance of the antenna, we may model the antenna

Transmitter -—-< {  Receiver

r i

Figure 1-23 A communication link,
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Figure1-24 Equivalentcircuit forareceiving antenna.
(@) Receive antenna connected to a receiver with load
impedance 7, (b) Equivalent circuit.

and receiver in Fig. 1-24a with the equivalent circuit of Fig. 1-24h, The terminal
current is
"

!"‘=Z:-;-_7:'Ll “‘204)

The average power transferred to the load (receiver) is

Prp=31.PR,. (1-205)

Our definition of A_, is based on power available to the terminals and maxi-
mum transfer of this power occurs for a conjugate matched load impedance
Z, =Ry, = jX,,. Then (1-204) becomes

= (1-206)

where we have neglected losses on the antenna and thus R,, = R,,. Substituting
(1-206) into (1-205) and using R, = R,, (for maximum power transfer) yields

p 1V Ve
K=34R, " 4R, (1-207)
Then A, follows from its definition in (1-203) as
P %
Al i e O E
- Sa\ 4Rn'sa\ ‘ (l 208}
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As an example we can calculate the maximum effective aperture of an ideal
dipole of length Az by noting that if the dipole is oriented parallel to the
incoming electric field with rms value E__, we have

V=E. Az (1-209)

The power density of the incoming wave is

2
s,‘=E—""f. (1-210)
n
The radiation resistance for the ideal dipole from (1-180) can be written as
nin(Az/A)?; this with (1-209) and (1-210) in (1-208) gives
(Ems A2y 3
Afn(Az ) (Ernuin) ~ B
The maximum cffective aperture of an ideal dipole is independent of its length
Az (as long as Az < 2). However, it is important to note that R, is proportional
to (Az/A)? so that even though A, remains constant as the dipole is shortened,
its radiation resistance is decreasing rapidly and it is more difficult to realize this
maximum effective aperture because of the required conjugate impedance match
ol the receiver to the antenna.

The directivity of the ideal dipole is § and can be written in the following
manner

Am=

22 =0.119:2 (1-211)

3 4n3 _,
D=3 ~Pax*"

Grouping factors this way permits identification of A, from (1-211). Thus

(1-212)

4
D=4, (1-213)

/A

Although we derived this for an ideal dipole this relationship is true for any
antenna. Comparing this to D = 4n/Q , we see that

2=4_9, (1-214)

which is also a general relationship. We can extract some interesting concepts
from this relation. For a fixed wavelength A_, and Q, are inversely propor-
tional: as the maximum eflective aperture increases (as a result of increasing its
physical size) the beam solid angle decreases which means power is more con-
centrated (i.e, directivity goes up, which also follows from D = 4r/Q,). For a
fixed maximum eflective aperture (i.e. antenna size), as wavelength decreases
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(f‘requency increases) the beam solid angle also decreases which means increased
directivity.

Comm ulnication Links. We are now ready to completely describe the power
Fransfer in the communication link of Fig. 1-23. If the transmit antenna were
isotropic it would have power density at distance r of*®

S = U.n‘t . PT

e (1-215)

where P, is the time-average radiated power from the transmit antenna and
(1-128) and (1-132) have been used. For a transmit antenna that is not isotropic
but has directivity D, and is pointed for maximum power density in the direc-
tion of the receiver, we have

Spy=—73 =—5" =T J (1-216)

for the average power density incident on the receiver antenna, because
U, =Dy U,.and U, = Py/4n. Using this in (1-203) gives

DyP:A
PSSl ik

f.l! - 4,!’_2 (1'21?)
where A, x is the maximum eflective aperture of the receive antenna and we

assume it to be pointed and polarized for maximum response. Now from (1-213)
Aum g = Dy 2% /4n, so (1-217) becomes

“ " (4nr)?

(1-218)

which gives the available received power in terms of the transmitted power,
antenna directivities. and the wavelength. Or, we could use D, = 4n 4., /A% in
(1-217) giving

> T '4rrn T “1rrn R

Pa= Py i (1-219)
which is called the Friis transmission formula.

In the practical case antennas are not lossless. In Section 1.6 we saw that
power available at the terminals of a transmitting antenna was not all trans-
formed into radiated power, but rather the fraction e (radiation efficiency) of the
available power. The power received by a receiving antenna is also reduced by
the fraction ¢ from what it would be if the antenna were lossless. The concept of

' Note that U,,, 15 a spatial average of the time-average radiation intensity.
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gain was introduced to account for losses on an antenna, that is, G = eD. We can
form a gain expression from the directivity expression (1-213) by multiplying
both sides by e giving
4
= ;—’,‘eam_ (1-220)
We now define effective aperture (or effective area) A, as
A=A (1-221)

Effective aperture is then a measure of the ability of an antenna to collect power
from an incident wave and deliver it to its terminals. Combining these two
equations gives the important result

G (1-222)

We shall show in Section 8.3 that effective aperture is equal to or less than the
physical aperture area of the antenna.

The power transfer equation we have developed is now easily modified to
include lossy antennas. We merely replace directivities by gains. Then, (1-218)
becomes

. GyiGyl®

= Pr o (1-223)

P

This power transmission formula is very useful for calculating signal power
levels in communication links. It assumes that there are no impedance mis-
matches at the transmit and receive antenna terminals, and that the transmit and
receive antennas have identical polarizations and are aligned for polarization
match. It also assumes the antennas are pointed toward each other for maximum
gain. If any of the above conditions are not met, it is a simple matter to correct
for the loss introduced by impedance mismatch, polarization mismatch, or
antenna misalignment. The mismatch effects are discussed in the next section.
The antenna misalignment effect is easily included by using the power gain value
in the appropriate direction.

Communication link signal power calculations are usually computed in a
decibel form. For example. (1-223) may be written as

P (dBm) = P,(dBm) + G,(dB) + G,(dB) - 20 log r(km)
~ 20 log f(MHz) — 32.44 (1-224)

where Py(dBm) and Pg(dBm) are the transmit and receive powers in decibels
above a milliwatt, dBm: for example, 30 dBm is 1 W. The transmit and receive
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powers in this equation could alsc be expressed in units of decibels above a watt
(dBW). G{dB) and Gg(dB) are the transmit and receive antenna gains in dec-
ibels, r(km) is the distance between the transmitter and receiver in kilometers,
and f(MHz) is the frequency in megahertz. :

Example 1-2. The ATS-6 Satellite.

The 20-GHz transmitter on board the ATS-6 (Application Technology Satellite-6) satel-
lite has 2 W of power into a 37-dB gain, 45.7-cm diameter parabolic antenna. The
1.22-m diameter parabolic ground station antenna at the Virginia Tech earth terminal has
45.8-dB gain. Thus, P{dBm) = 10 log 2000 = 33.0, G{dB) = 37.0, G4(dB) = 45.8, and
f(MHz) = 2 x 10*. The satellite to earth distance for this synchronous satellite is
r= 36941031 km. Using these values in (1-224) yields

PdBm)= —940 or P,=398 x 107'° mW. (1-225)

High-gain antennas are extremely important for the successful operation of long com-
munication links such as encountered with satellites. The available power at the ground
station antenna terminals as calculated above is typical for satellite systems. If the
combined antenna gain, G {(dB) + Gg(dB) = 82.8 dB, were not present then Py would be
1.57 x 107! W. A signal of this power level would be hopelessly lost in noise.

EIRP. A frequently used concept in communication systems is that of effective
(or equivalent) isotropically radiated power, EIRP. It is formally defined as the
power gain of a transmitting antenna in a given direction multiplied by the net
power accepted by the antenna from the connected transmitter. Sometimes it is
denoted as ERP, but this term may also be used for effective radiated power
relative to a half-wave dipole. As an example, suppose an observer is located in
the direction of maximum radiation from a transmitting antenna with input
power P, Then

EIRP = P,G,. (1-226)

The radiation intensity there is U, as illustrated in Fig 1-25¢ and
Gy=4nU, /Py, 50

EIRP = P,4';,U"' =4xU,. (1-227)

L

The same radiation intensity could be obtained from a lossless isotropic antenna
(with power gain G;= 1) if it had an input power P,, equal to P, G, as il-
lustrated in Fig. 1-25b. In other words, to obtain the same radiation intensity
produced by the directional antenna in its pattern maximum direction, an isotro-
pic antenna would have to have an input power G, times greater, Effective
radiated power is a parameter frequently used in the broadcast business. FM
radio stations often give their effective radiated power when they sign off at
night.
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Figure1-25 lllustration of effective isotropically radiated
power. In both cases shown EIRP = 4xU_ is the same.
(a) Directional antenna with input power P; and gain
Gy. (b) Isotropic antenna with input power PGy and
unity gain.

Radar. We now turn our attention to the radar problem. Suppose an airplane
is the radar target as shown in Fig. 1-26. We shall assume that the transmit and
receive antennas are pointed such that the pattern maxima are directed toward
the target. The power density incident on the target is then

= PT PTAf'.I"
ine 4'"_2 T Alrl
where (1-216) was used with directivity D, replaced by gain G, to include losses

on the transmit antenna; (1-222) was used to obtain the last of (1-228). The
power intercepted by the target is proportional to the incident power density, 5o

Pmc = dsmc (1 '229)

where the proportionality constant ¢ has the units of area— o is the radar cross
section and is the equivalent area of the target as if the target reradiated the
incident power isotropically. Although the power P, is not really scattered
isotropically, the receiver is sampling scattered power in only one direction and

s (1-228)

Target

—f<— %

r

Figure 1-26 Radar example.
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we are only concerned about that direction and assume the target scatters isotro-
pically. Because P, appears to be scattered isotropically, the power density
arriving at the receiver is

Pim: f
Sn =5 - (1-230)

The power available at the receiver is then
PR == AGRSMJI " “"23] )
Combining the above four equations gives

=3 asim: = ArRArTa
* R 4nr? T 4nr*i?

P (1-232)
which is referred to as the radar equation. Usually the transmit and receive
antennas are one and the same, that is, A,z = A,y . Using (1-222) we can rewrite
this equation in a convenient form as

1 1*GyGo
Pg= P,--(“—:),r—i (1-233)
If the transmit and receive antennas are identical Gz G, = G*.

Combining (1-229) and (1-230) actually forms the definition of radar cross
section;

_4nr’S,,

S

a (1-234)
inc

which is the ratio of 4z times the radiation intensity, r’S,,, in the receiver
direction to the incident power density from the transmitter direction,

1.11 RECEIVING PROPERTIES OF ANTENNAS

In the preceding section we defined eflective aperture from

o |

o8

= — ..‘J
4, yra s (1-235)

The power available at the terminals of a receiving antenna with effective aper-
ture 4, and an incident wave of time-average power density S_, is
Py=A,S,,. (1-236)

It is assumed that the polarization of the receiving antenna is perfectly matched
to that of the incoming wave. Also the load must be a conjugate impedance
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match to the antenna in order to realize this available power. In general, the
antenna and the wave are not exactly matched in polarization and the antenna
and its load are not impedance matched. These two mismatches will reduce the
power delivered to the transmission line. Let P, be the power delivered to a
transmission line with input impedance Z, . Now we modify the effective aper-
ture definition to include the mismatches as follows

PD .~ ’48338 (1 '23?)

where A, is the effective receiving aperture. This effective receiving aperture is the
effective aperture A, reduced by the mismatch effects, or
Ap = pqA, (1-238)

where p is the factor representing polarization mismatch and q is the factor for
impedance mismatch. Using (1-235) in (1-238) gives
+d

A
= pg—G. -23
Ax=pa,_G (1-239)
With power gain as a function of angle of arrival this becomes

F
Ax(0, ¢) = pq s G(0, ). (1-240)

Impedance Mismatch. The impedance mismatch factor q is the fraction of
power transmitted across the antenna terminal-transmission line junction. that
is. the power transmission coefficient. From transmission line theory we have

g=1- |
= - i —112
L ant

where I" is the voltage reflection coefficient. Z, is the load impedance seen at the
antenna terminals, Z,,, is the antenna input impedance, and VSWR is the vol-
tage standing wave ratio on the transmission line. The possible values of ¢ are
from 0 to 1, with 1 being a perfect impedance match (VSWR = ).

Polarization Mismatch. The factor p is the polarization mismatch factor, or
polarization efficiency, and it also varies from 0 to 1 in value. It is unity when the
wave and the antenna have the same polarization state. It is zero when they are
orthogonal; for example, horizontal and vertical linear polarizations, and right-
and left-hand circular polarizations. The determination of p is facilitated by
introducing the concept of the effective length h of an antenna. It is defined from

V.=h*E (1-242)
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where V,_ is the open circuit voltage produced at the terminals of an antenna of
effective length h with an electric field E incident upon it. The complex conjugate
is used because h is that arising from the antenna when transmitting and (1-242)
is a receiving relationship. In other words, the complex conjugate acts to reverse
the reference direction, so that the components of antenna polarization and wave
polarization are referenced to the same reference axes. In general h may be a
complex vector. If h and E are, for example, both linear vectors and are parallel,
maximum voltage will result.

As an example consider the radiation electric field of an ideal dipole, which
from (1-71) is

_ joul e

. dn r

Az sin 0. (1-243)

If we let h be determined by the size of the antenna and the angular dependence
of the radiation pattern, then we may write

_ Joul e
E= % 3 (1-244)
where
h = Az sin 0. (1-245)

Note that the dimension of h is length and observe that, for the ideal dipole, the
effective length is the same as the projection of the physical length viewed from
the angle 0. This is not, however, true in general.

Now consider an arbitrary receiving antenna with effective length hy and an
incident wave field E. The power received is proportional to | ¥, |* which from
(1-242) is |hY - E|*. By normalizing this we can obtain the fraction of power lost
due to polarization mismatch as

|h% - EJ
P=TrT=iri2
|hg*|E|

because |hg|*|E|* in the denominator is the maximum possible value of the
numerator. We can write this as

(1-246)

bk EP o .
= |Thuy TET| = 1682 .

where hy and é are the complex unit vectors for the effective length of the
antenna and for the wave. Equation (1-247) is usually the most convenient form
for computing p. Note that é represents the polarization state of the incoming
wave, It is equal to the polarization state of the transmitting antenna, that is, .,
il the intervening propagation medium does not alter the wave polarization
state,
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It now remains to show how the complex unit vectors hg and & are
determined. To do this it is most convenient to set up an xy-coordinate system
perpendicular to the direction of arrival of the wave. Then we can use the
polarization ellipse definitions of Section 1.9. Also since we are only interested in
normalized values, the magnitude of the effective length [even though it is a
function of arrival angle as seen by (1-245)] does not enter into the problem.
From (1-200) we can write the required complex unit vectors as

fy = cos X + sin 7z (1-248)
and
é = cos yX + sin ye'% (1-249)

where (5, 0x) and (. 8) describe the polarization state of the antenna and the
wave. Summarizing, p is calculated by using (1-248) and (1-249) in (1-247).

To illustrate, consider a transmitting antenna that is vertically polarized, that
is, produces a linearly polarized wave along the y-axis as shown in Fig. 1-27a,
and a linearly polarized receiving antenna as shown in Fig. 1-27b. If the wave
from the transmitter arrives at the receiver without being depolarized by the
propagation path we see from Fig. 1-27 that

é=7y (1-250)

and
by = cos TxX + sin 1,¥ (1-251)

since Y, = T, in this case of linear polarization. Then from (1-247)

p=|(cos tgX + sin 7 ¥)* - ¥[* = sin? 7. (1-252)

When 1, =90° both the wave and the antenna are vertically polarized and

p=1; the wave and the antenna are said to be copolarized, or polarization

matched. If t, = 0° the wave and the antenna states are orthogonal and (1-252)

yields p = 0; the wave and antenna are referred to as being cross-polarized when
p=10

As a further illustration suppose the receiving antenna is now circularly po-

larized: Fig. 1-27¢ shows how this may be accomplished. For circular polariza-

tion the x- and y-components are equal in amplitude and 90° out-of-phase,

Suppose it is left-hand sense circular polarization. Then AR = +1 and gy = +45°

from (1-197) and y, = +45° 8z = +90° from (1-201) and (1-202). Then (1-248)
yields

PO A
hy = cos 45°% + sin 45%/°° § = 75 &+ i¥) (1-253)
W
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(a) ib)

Figure 1-27 A venical linearly
polarized transmit antenna and two
cases of receive antennas. (&)
Transmitting antenna along y-axis. (b)
Linearly polarized receiving antenna in
xy-plane. ‘c¢) Circularly polarized
receiving antenna: two crossed dipoles
whose outputs are combined with a 90"
(e} phase difference.

and

=:;. (1-254)

Thus half the power is lost in this case. In fact, for any linearly polarized wave
incident on any circularly polarized antenna (or vice versa) the power loss is
one-half. In many situations a 3-dB loss may be significant and the antenna
configuration must be altered to produce a better match, for example, by making
both antennas vertical linear or both same sense circular. On the other hand.

v

i B T e Fr Rl L ST e
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there are situations when operating with one antenna linear and the other circu-
lar is desired. For example, if a spacecraft has a linearly polarized antenna the
effects due to spacecraft motion or Faraday rotation in the ionosphere on the
incoming linearly polarized wave orientation angle will not lead to power level
fluctuations if a circularly polarized receive antenna is used. Thus, even though a
3-dB signal loss is encountered this loss is constant. If two linearly polarized
antennas were used for this example, there is the possibility of significant polari-
zation loss (p varies from 1 to 0 as t, varies from 90° to 0°) or a polarization
tracking system must be used to maintain alignment.

Power Budget Calculations Including Mismatches. The effects of mis-
match factors p and g can be included in power budget calculations for commun-
ication links rather simply. For example, the received power expression of
(1-224) is modified to give the power delivered to the load as follows

P,(dBm) = Px(dBm) + 10 log p + 10 log g. (1-255)

Field Intensity Measurements. A very small receiving antenna can be
used as a field probe. Probes are used when it is necessary to measure the spatiai
amplitude distribution of electromagnetic fields. The probe must be small relative
to the structure whose fields are being measured in order to minimize the
disturbance of the fields introduced by the probe itsell. The electrically small
dipole, in any of its practical forms discussed in Section 2.1, is used to probe
electric fields.

Receiving antennas are also used to measure absolute field intensity. For
example, it is often necessary to know the field intensity at a fixed distance from
a transmit antenna. The antenna pattern can, of course, be measured also by
moving around the transmitter at a fixed distance from it in the far field; this is
the relative field intensity variation. Measurements are often required because
the effects of terrain and the real earth surface are difficult to calculate. If the
gain of the measuring antenna is known (it usually is) and the voltage developed
across its terminals is measured, the field intensity incident upon the measuring
antenna can be calculated. We shall now discuss this.

Suppose the receiving antenna for field intensity measurements is matched
to its transmission line and the input impedance of the antenna is essentially
its radiation resistance. Then the antenna/receiver can be modeled as shown in
Fig, 1-28. From the figure we see that

o e (1-256)




70 ANTENNA FUNDAMENTALS AND DEFINITIONS

. !
-
\ ? R,
R,
i Figure 1-28 Equivalent circuit model for
| an antenna-receiver combination used to
Antenna Aeceiver measure field intensity.

The time-average power received is then

1.,
PN = EII‘H Rr
l'm i 1 lvzn Vuzn rms
- ]R.=j iy (1-257)

where Vi, om = Vin/n 2 since ¥, is a peak quantity. Using (1-203) and (1-210)
the received power can also be expressed in terms of the electric field intensity
incident upon the antenna as

3
Er_

Py=S,A4,=—"=4_. (1-258)
"
Then using (1-222) this becomes
E! ,'2
Pp="2G—. -2
=0 (1-259)
Equating the two power expressions (1-257) and (1-259) yields
3 V2 in 2 d = nin
A 2 pra — -2
Em=1"p G2 =/ G ™R (1-260)

where wavelength 4 was converted to frequency /by 4 = ¢/f with ¢ the velocity of
light. From this equation the rms electric field intensity can be calculated if the
voltage V), ,m. is measured. The decibel form of this equation is obtained by
taking 10 log of both sides of (1-260) giving

20 log E,,.. =20 log f(MHz) — G(dB)
+201log V,, ,m.— 10 log R, — 128, (1-261)

REFERENCES 7 |

A conventional unit for the electric field intensity 1s dBuV/m which is decibels
above a microvolt per meter. Then (1-261) is

E,,.(dBuV/m) = 20 Iog f(MHz) — G(dB)
Vo adBuV) — 10 log R, — 128 (1-262)

where ¥, ,m(dBuV) is the antenna terminal rms voltage in units of decibels
above a microvolt.

As an example suppose the antenna and transmission line input impedances
are both 300 ohms. Then (1-262) becomes [13]

E,,.(dBuV/m) = 20 log f(MHz) — G(dB) + V,, .(dBuV) — 376. (1-263)

To be specific consider a typical FM broadcast receiver with a sensitivity of
1 uV, that is, minimum satisfactory performance is produced when the value of
Vi v i5 1 1V, or 0 dBgV. The most popular receiving antenna for FM receivers
is the half-wave folded dipole (see Section 5.2) which has a real impedance
of about 300 ohms and a gain of 215 dB. At a frequency of 100 MHz the
incident field intensity required for minimum satisfactory performance from
(1-263) is 0.25 dBuV/m or 1.03 xV/m.

If impedance or polarization mismatches are present in the field intensity
measuring antenna, (1-262) is modified by including the terms —10 log p and
—10 log g on the right-hand side, as well as replacing R, by the transmission
line characteristic impedance R,. Gain loss due to mispointing can also be
accounted for. If, for example, a 10-dB gain antenna is pointed such that the
incoming wave approaches in a direction of the receiving antenna pattern where
the gain is 4 dB below its maximum. then 6-dB gain is used in (1-262) rather
than 10 dB.
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PROBLEMS

1.2-1 Use (1-6) in (1-1) to derive (1-7).
2.2 Use (1-13) in (1-9) together with (1-11), (1-12), and (1-20) to derive (1-18).
1.2-3 Assuming ¢ and u arc real and M =0, derive (1-28) through (1-33) using the
Jentity (A-19).
124 White the complex power equation for a series RLC network driven by a voltage
generator in a form analogous to the Poynting theorem.
L &1 Denve (1-47) starting with (1-18).
1 42 (a) Show that ¢ = Ce " /r sauisfies (1-52) at all points except the origin.
(b) By integrating (1-51) over a small volume containing the origin, substituting
¢ - Ce "™/r,and letting r approach zero, show that C = (4x) ', thus proving (1-53).
14-1 Show that (1-70) follows from (1-67).
\ 4-2 The expression for the electric field miensity of an ideal dipole can be derived in
Wi Wiy
) Derive (1-70) using the magnetic ficld intensity expression (1-69) in (1-58)
(b} Detive (1-70) using the vector potential expression (1-60) in (1-46) and ' =,
1 4-3 Vor a z-directed current element | Az in free space and located at the origin of &
Cenerical voordinate system:
) Caleulate the complex Poynting vector in the general case, where r can be in the
cat-ficht region. Use the fields of (1-69) and (1-70).
(b)) I'hen find the expression for the time-average power flowing out through a sphere
- iy 7 enclosing the current element. Your answer will be that of (1-74). Why"
+ 44 Show that the clectric ficld for the ideal dipole in (1-70) satisfies Maxwell's equation
v ER
&1 Prove (1-90) by using (1-84) in (1-89) and retaining only 1/r terms: that is. using
vow
<2 U nitorm line source.
41 b the half-power beamwidth of the uniform line source pattern factor | £(6)] of
“1o) Your answer should be in the form

HP = K4/L for L» 4

wierie the constant K. Hine: First find the values uge of u = (fL2)cos 0 for which
iarl = 1 2. Then use the approximation cos™ '( +x) = 272 T x for x small,
5} Cavulate the maximum side lobe level for the pattern in decibels relative to the
4 beam maximum. The side lobe maximum can be located by differentiating f (1) with
vt b i setting equal to zero, and solving for u.
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(¢) Suppose now that the current has a linear phase taper across it so that
I(Z) =1,

What is f(0) now? If we let f, = — B cos 0, where is the pattern maximum (main beam
pointing direction)? This is how the scanned beams of Fig. I-11 are generated.
1.5-3 Equation (1-93) can be derived without initially assuming that the rays are parallel.
Derive (1-93) by writing R = [(r — r) - (r — r')]"'?, expanding. factoring out an r, neglect-
ing the smallest term, and using the first two terms of the binomial expansion.
1.5-4 Using the inner boundary of the far-field to be ro = 2I7/4 for a lincar antenna of
length L, find ry, for the following three antennas: L = 54, a half-wave dipole (L = 4/2),
and a short dipole (L = 0.012). Is the far-field boundary you have computed valid for
each of these: if not, why not?
1.5-5 It can be shown that criteria for the far-field distance corresponding to (1-97) and
(1-98) are more accurately given by r > 5D and r > 1.64. Using these together with (1-96)
plot a single graph of r/i (vertical axis) versus D/ for the far-field boundary. Indicate
which region of the graph corresponds to the far field.
1.5-6 A car radio antenna is I m long and operates at a frequency of 1 MHz, Use the
graph of Prob. 1.5-5 to find the far-field distance
1.6-1 Show that there are 4x sr in all of space by evaluating (| 42 over a spherical surface.
1.6-2 A source has a power pattern of |cos* 0| for 0 <0 <n/2 and is 2ero for
n/2 <l <n.

(a) Calculate the directivity for n= 1, 2, and 3.

(b) Sketch the pattern in each case and comment on the general relationship between
directivity and beamwidth.

(¢) By physical reasoning alone. state the directivity for the n =0 case. Check your
answer mathematically.
1.6-3 An antenna has a far-field pattern which is independent of ¢ but which varies with
f! as follows:

F=1 for 0" << 30°
F=05 for 60° <0 <120°
F=0707 for 150° <@ < 180°
F=0 for W <il< 60°

and 120° <1 < 150°

Find the directivity. Also find the directivity in the direction () = 90°.
1.6-4 For a single-lobed pattern the beam solid angle 1s approximately given by

Q, = HP,HP,

where HP, and HP, are the half-power beamwidths in radians of the main beam in the E
and H planes. Show that

41253
HP, HP,,

where HP, and HPy, are the E and H plane hall-power beamwidths in degrees,

D=
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1.6-5 A horn antenna with low side lobes has half-power beamwidths of 29° in both
principal planes. Use the 2pproximate expression in Prob. 1.6-4 to compute the directivity
 of the horn in decibels.

1.6-6 A sector pattern has uniform radiation intensity over a specified angular region and
is zero elsewhere, An example is

n n
1 s —a<l<z +a
F(0) = - 2 2

IO clsewhere
Derive an expression for the directivity corresponding to this pattern.
1.6-7 An airplane is flying parallel to the ground (in the z-direction). For a surface search

radar an antenna is required which uniformly illuminates the ground over some region.
The so-called cosecant pattern will do this. From the figure we see that

h= 0(— ..0)
rl:52
or

h
r=sin8 = hcsc 0.

Thus the radiation must travel farther to reach the ground as 0 is decreased, The factor

csc 0 expresses the increase in this distance. If the angular variation in the radiation
pattern is

F(0) = csc 0,
this w_iII Ijusl_compensalc for the 1/r field variation with distance. Further assume that the
¢ variation is a sector pattern of small angular extent ¢,. The whole pattern is then,
fesco 0, <0<=.0<¢<
F0. 6)= - 1 3 ¢ <o,
lo elsewhere.

Derive an expression for the directivity.
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1.6-8 An antenna has a directivity of 20 and a radiation efficiency of 90%, Compute the
gain of thé antenna in decibels.
1.7-1 Let sources J,, M_, J,, and M, all be of the same frequency in a linear medium,
The following steps lead to the Lorentz reciprocity theorem:

(a) Maxwell's equations for sources a are

V x E, = —jouH, - M,
Vxl-l‘=jwt.l':,+.l..

Similar equations can be written for sources b. Manipulate these four equations and use
the vector identity (A-19) to show that

v'{[':')(H;—ngH.)=E.‘-’.+H.’Mt"'“b'Ml_Eu"lh'

(b) Integrate the above equation over a volume v enclosing all sources, employ the
divergence theorem (A-23) for the left-hand side, and let the volume extend to infinity.
Then the fields arriving at the surface of the volume behave like spherical waves, and the
TEM wave relationships can be employed to show that the left-hand side is zero, leading
to a proof of (1-159).

1.7-2 Use the reciprocity theorem form of (1-160) to show that the distant ficld of any
finite electric current distribution in free space can have no radial component.

1.7-3 Since any two port network can be reduced to an equivalent T section, the general
antenna system of Fig. 1-17a can be modeled as shown in the figure. First excite terminals
a with a current source I, and find the open circuit output voltage Vyls=0- Then excite
terminals b with a current source I, and find the open circuit output voltage Vol s
From these relationships find Z,, and Z,,; they will, of course, be equal.

1,0 Zy 23 0 o Iy
. 4
v Ve
& 23
o O

1.7-4 Write the voltage equations for the network representation of Prob. 1.7-3. and

compare to (1-164) and (1-165) to show that the T network impedances are

Z] =Z¢§ = Z-. Z; :Z,,,. — Z,..and Z)z Z-.

1.7-5 Il antennas a and b are identical, how is the network of Probs. 1.7-3 and 1.7-4

simplified ?

1.746 Reciprocity can also be shown with voltage generators and short circuit currents:
(a) Drive terminals a of the network in Prob. 1.7-3 with a voltage generator V, and

short circuit terminals b, Find the expression of ¥, //y|y,«0 in terms of Z,, Z;. and Z,.

Then drive terminals b with voltage source ¥, while short circuiting terminals . Find

Vy/la| ve0. 1t should equal ¥, /1] v 0.
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(b) Find the same transicr impedance expressions in terms of Z_.. Zy,. Z,, and Zy,

from (1-164) and (1-165). Show that they are equal if Z,;, = Z,,.

(¢) Using Z, =Zpg— Zms Z1=Zpp— Zw, and Z3 = Z, from Prob. 1.7-4, show that
the transfer impedance expressions of (a) are the same as those of (b).
1.8-1 A 2-m-long dipole made of 6.35-mm (0.25-in.) diameter aluminum is operaled at
500 KHz. Compute its radiation efficiency. assuming

(a) the current is uniform

{b) the current is triangular.
1.8-2 A citizen's band radio at 27 MHz uses a hall-wavelength long antenna that has a
radiation resistance of 70 ohms. Compute the radiation efficiency if the antenna is made
with 6.35-mm-diameter aluminum. As a rough approximation assume that the current is
triangular,
1.8-3 Use the ohmic resistance formula of (1-190) to verify the expression for R, m. for

{a) a uniform current given by (1-184)

(b) a triangular current given by (1-192).
1.9-1 The instantaneous electric field components of an elliptically polarized wave are
A= E, cos(wr — fiz)and £, = E, cos(mt — fiz + 8). Specily E,. E;, and d for the follow-
ing polarizations:

(a) Linear with E; =0 and E; = 0.

(b) Right circular

(¢) Lelt circular,

(d) Ellptical with E, = E, .

(e) Elliptical with & = 90"
1.9-2 Write the [requency domain form of the total vector electric fields given in
Prob. 1.9-1,
1.9-3 Start with (1-199) and prove (1-200). Use the fact that the magnitude of E follows
from |E|* = E - E*. Also note that ; in Fig. 1-22 is in a triangle with sides E, and E, and
hypotenuse |E|.
1.10-1 Calculate the beam solid angle Q , for an ideal dipole in steradians (square rad-
jans) and in square degrees. Use the fact that 4, = 0.1194% for an ideal dipole.
1.10-2 A half-wavelength dipole has a directivity of 2.15 dB. Derive an expression for its
maximum eflective aperture in terms of wavelength squared.
1.10-3 A certain parabolic reflector antenna 366 m (12 ft) in diameter has an effective
aperture of 6,30 m* Compute the gain in decibels at 11.7 GHz.
1.10-4 A parabolic reflector antenna is circular with a diameter of 1.22 m (4 ft), 11 the
effective aperture equals 55", of the physical aperture area. compute the gain of the
antenna in decibels at 20 GHz.
1.10-5 Suppose a transmitting antenna produces a maximum far-zone electric field in a
certain direction given by

I

E=901°
r

where [ is the peak value of the terminal current. The input resistance of the lossless
antenna is 50 ohms. Find the maximum effective aperture of the antenna, A,,. Your
answer will be a number times wavelength squared.

S et e e e e
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1.10-6 Derive the decibel form of the power transmission equation (1-224) from (1-223).
1.10-7 Write a power transfer equation similar 1o (1-224) but with distance r in units of
miles.
1.10-8 Calculate the received power in watts for the ATS-6 system of Example 1-2 using
(1-223).
1.10-9 The CTS (Communications Technology Satellite) satellite had an 11.7-GHz trans-
mitter on board which provided 200 mW to a 19.3-dB gam antenna. Use (1-224) to
determine the received power (in watts) available from the terminals of a ground station
antenna with 50.4-dB gain (3.66 m diameter parabolic reflector) The satellite is in synch-
ronous orbit 36941 km away from the ground station.
1.10-10 A VHF transmitter at 150 MHz delivers 20 W into an antenna with 10-dB gain.
Compute the power in watts available from a 3-dB gain receiving antenna 50 km away
from the transmitter
1.10-11 Let us compare the performance of the radio system of Prob. 1.10-10 to a trans-
mission }ine. Suppose an RG-8 coaxial cable were used instead of the antenna The
attenuation is 0.1 dB m

(a) Caleulate the cable loss in decibels for the 50 km distance

(b) What is the net loss for the radio system of Prob. 110-10; that is. the net loss
cncountered between the transmit antenna input and the receive antenna output?

{c) Would repeater amplifiers be necessary in the cable system '

(d) Repeat parts (a) and (b) for the case of a 500-m path length

(¢) Repeat (d) using a frequency of 300 MHz where the cable attenuation 15 0.14 dB/m.
Assume the antenna gams are the same

(f) Current fiber-optic cables have a loss of | dB/km. Compute the loss 1n decibels for
the 'S0 km and 500-m paths

{g) Tabulate results
1.10-12 Derive a power transfer equation in a form involving the eflective 1sotropically
radiated power of the transmutter, the effective aperture of the recewving antenna and free
space spreading loss. 1 4xr%. Start with (1-223).
1.10-13 The maximum radar cross section for a resonant hall-wavelength dipole 15 ap-
proximately 0.85:% The frequency is 10 GHz, the range is 1000 m, the gain ol the trans-
mit and receive antennas is 20 dB. and the transmit power 1s 1000 W. Compute the
received power if the receiver 1s in the same location as the transmitter (1.e., monostatic
radar case).
1.10-14 An FM broadcast radio station has a 2-dB gain antenna system and 100-kW
transmit power. Calculate the effective isotropically radiated power in Kilowalts,
1.11-1 Suppose a transmitting antenna s not impedance matched to 1ts input Lransmis-
sion line. The radiation mtensity. or equivalently the power densits at a specified distance,
will be reduced from the perfect impedance match case. Compute this reduction in dec-
ibels. in u fixed direction. for the mismatch conditions which give voltage stunding wave
ratios on the transmission line of 101, 1.2, 2, and 10
1.11-2 The magnitude of the axial ratio of a polarization ellipse 1 often given in decibels,
where AR(AB) = 20 log | AR | For a night-hand elliptically polarized wave with an axiul
ratio of 2 dB and a tilt angle = of 457, find the complea unit vector &.
1.11-3 For the wave of Prob. 1.11-2 compute the polarization mismaich factor for the
following reeeiving antennas
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{a) Horizontal linear.

(b} Vertical linear.

(c) Right-hand circular.

(d) Left-hand circular.

(e) Right-hand elliptical with AR(dB) = 2 and tilt angle © = 45°.

(f) Left-hand elliptical with AR(dB) = 2 and tilt angle t = 135°.

1.11-4 Derive (1-261) from (1-260).

1.11-5 To receive a certain FM radio station properly a terminal voltage of 200 uV
(peak) is required at the receiver terminals. The input impedance of the FM receiver is
300 ohms (pure real). The receiving antenna is a linearly polarized folded dipole whose
directive gain in the direction of the station is 1.64. The input impedance of the folded
dipole is 300 + jO ohms. The radiation resistance of the folded dipole i1s 300 ohms. The
FM receiver is connected to the folded dipole by a 300-ohm transmission line.

(a) Determine the radiation efficiency ¢ and q.

(b) If the radio station transmitting antenna is circularly polarized, find the minimum

electric ' field strength (peak) required for proper reception by the FM receiver at
100 MHz.
1.11-6 Justify the complex conjugate which appears in (1-242). To do this recall that the
polarization state of an antenna is the polarization of the wave radiated by the antenna
when transmitting. Set up a fixed xy-coordinate system with = directed toward the
antenna, Refer h and E to those x- and y-axes.
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SOME SIMPLE
RADIATING SYSTEMS

In this chapter we consider a few simple radiating systems such as electrically
small dipoles, the half-wave dipole, and small loop antennas. Also we show how
the presence of a perfect ground plane affects the performance of an antenna.

These simple antennas are introduced here so that the treatment of arrays in
the next chapter will be more meaningful. In Chapter 5 we return to the analysis
and design of antenna structures.

2.1 ELECTRICALLY SMALL DIPOLES

An antenna whose dimensions are much smaller than a wavelength is referred to
as an electrically small antenna. One possible definition for electrically small is
that the antenna must fit inside a “radiansphere™ (i.c.. a sphere whose diameter
is 42, or about one-sixth of a wavelength) [1, 2]. Such antennas are inherently
inefficient. However. considerations of size, weight, cost, and mobility frequently
require that an antenna be physically small. For low frequencies this means that
the antenna will be electrically small as well. The simplest of the electrically
small antennas are the electrically small dipoles. In Section 1.4 we discussed the
ideal dipole which is a small linear piece of uniform current. The ideal dipole
does not exist but can be approximated in practice.

79
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- b b
- b+

Figure 271 Shortdipole. Az « +. (a) Currentontheantenna and the electric fields
surrounding it. {b) Current and charge distributions.

First consider an {actual) short dipole shown in Fig. 2-1a. In this real antenna
the current must smoothly go to zero at the ends of the wire as indicated in
Fig. 2-1b. For a thin wire (diameter < Z) this current distribution is approxi-
mately sinusoidal. The decreasing current toward the wire ends requires that
charges peel off and appear on the wire surface as shown in Fig. 2-1a. This
charge accumulation leads to a displacement current density jw:E in the space
surrounding the dipole. The displacement current density in turn gives rise to an
electromagnetic wave which propagates outward from the source. This is one
visualization of the phenomena of radiation. Displacement current in space
couples a transmitting antenna to a receiving antenna, much as a conduction
current provides coupling between lumped elements in a circuit.

The current and charge distributions shown in Fig. 2-1b are for an instant of
time when the input current at the dipole terminals is maximum. Since the input
current is changing sinusoidally with time, the current and charge distributions
on the dipole will also. As A:- becomes extremely small the sinusoidal type
current distribution is well approximated by the triangular distribution of

Fig. 1-20b, The radation resistance using the triangular current distribution is
from (1-1%9)

Az \?
R, = 20;:1[:) ohms (short dipole). (2-1)

The input reactance of the actual short dipole is capacitive. This can be seen
by visualizing the antenna as an open circuited transmission line. The distance

Ry e R S R R STLeIE
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Az/2 from the end of the antenna to the feed point is much less than a quarter
wavelength and thus the input impedance is capacitive. (Recall from transmission
line theory that the impedance a distance s from an open circuit termination is
—1Z, cot fis. Loading coils are frequently used to tune out this capacitance. They
are sometimes seen on automobile radio antennas. A more complete discussion
of dipole impedance will be presented in Chapter 5.)

In the ideal dipole all charge accumulates at the ends of the antenna. In fact,
the ideal dipole may be analyzed as either a uniform current or 1wo point
charges (sce Prob. 2.1-1). all oscillating at radian frequency . See Fig. 2-2. The
charge dipole model shows that charge accumulates at the ends of the antenna.
Thus to realize a uniform current distribution in practice a mechanism must be
provided for charge storage at the ends of the short wire. One method of accom-
plishing this is to place metal plates at the ends of the wire. This is called a
capacitor-plate antenna, or top-hat-loaded dipole antenna. Figure 2-3 shows the
construction of the antenna and the current and charges on it. If Az < 4 the
radial currents on the plates will produce fields that almost cancel in the far field,
since the currents are opposite directed and the phase difference due to separa-
tion is small (B Az < 2x). If, in addition, Az < Ar the plates will provide for
charge storage such that the current on the wire is constant. The capacitor-plate
antenna then closely approximates the uniform current ideal dipole model.
Frequently in practice radial wires are used for the top loading in place of the
solid plates.

Another small antenna used to approximate the ideal dipole is the transmis-
sion line loaded antenna as shown in Fig. 2-4a. The results of transmission line
theory can be borrowed to determine the current distribution. The current is
essentially sinusoidal along the wire with a zero at the ends. This current distri-
bution is sketched in Fig. 2-4b for L < /4. If Az < / the fields from the currents

s ge™'
| Jl..’-‘
| . qe p=t
1= jeq
(a) i

Figure 2-2 Ideal dipole models. (a) Uniform
current model. (b) Charge dipole model
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—Ar >

Figure 2-3 Capacitor-plate antenna. The arrows on the
antennaindicate current. The charges on the plates are also
shown,

on the horizontal wires will almost cancel in the far field. If also Az < L, the
horizontal wires will provide an effective place for the charge to be stored and
the current on the vertical section will be nearly constant as illustrated in the
Fig. 2-4b. Then most radiation comes from a short section over which the current
is nearly constant and the antenna approximates an ideal dipole.

Transmission line loading ideas may be extended and several horizontal wires
can be attached to the ends of the short vertical section. If the transmission lines
of Fig. 2-4a are extended in opposite directions the reactance is one-half its
former value (by paralleling identical capacitive elements). As more wires arc
added the reactance is further reduced and the structure approaches that of a
capacitor-plate antenna.

For the small dipoles discussed in this section, if the current on the vertical
wire is nearly uniform the radiation resistance is given approximately by (1-180),
or

R, = SOnI(an ) ohms (2-2)

where Az is the length of uniform current section. The input reactance is capaci-
tive. If end loading is added this reactance is reduced as the loading (in the
form of wires or plates) is increased. This is because the distance from the open
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Figure 2-4 The transmission line loaded antenna. (a) The
antenna structure. Arrows indicate the current. (b) Current
distribution on the antenna if imagined to be bent back straight,
The solid line is the current on vertical section of (a) and the
dashed line is the current on the horizontal transmission line
section.
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circuit in the transmission line analog is increased. (See Prob. 2.1-3.) The radia-
tion pattern of all forms of the small dipole is that of the ideal dipole shown in
Fig. 1-4.

At different portions of the frequency spectrum electrically small antennas are
used for different reasons. For instance, in the VLF region where wavelength is
very large, an electrically short vertical radiator is used with a large top hat load.
The top hat loading makes the antenna appear like the capacitor-plate antenna
of Fig. 2-3. Further up the spectrum, such as in the AM broadcast band, receiv-
ing antennas are usually small clectrically, as we saw in Section 1.8. The trans-
mitting antennas are not small, but are of resonant size as discussed in the next
section. At VHF frequencies and above, electrically small antennas are only used
in special situations.

2.2 THE HALF-WAVE DIPOLE

A very widely used antenna 1s the half-wave dipole antenna. It s a linear current
whose amplitude varies as one-hall of a sine wave with a maximum at the center.
For simplicity we will assume this to be a filament of current. Also it could be
imagined to flow on an infinitely thin, perfectly conducting, half-wavelength long
wire, This is' a good approximation to a wire hall-wave dipole which has a
diameter much smaller than its length. The advantage of a half-wave dipole is
that it can be made to resonate and present a zero input reactance, thus eliminat-
ing the need for tuning to achieve a conjugate impedance match. Input im-
pedance of dipole antennas is discussed in detail in Section 5.1, but for now we
will just say that to obtain a resonant condition for a half-wave dipole the
physical length must be somewhat shorter than a free space half-wavelength and
as the antenna wire thickness is increased the length must be reduced more to
achieve resonance.

As usual the current distribution is placed along the z-axis and for the half-
sine wave current on the half-wave dipole the current distribution is writlen as

I(z)=1, sin

(f-1:1)] 1=t<5 @-3)

Recall that f# = 2n/4. This current goes to zero at the ends (for = = +1/4) and its
maximum value [, occurs at the center (z = 0) as shown in Fig. 2-5a. From this
current we can calculate the radiation pattern. Since it is a z=-directed line source
we can use (1-101) in (1-104) to find the electric field as

E, = jou sin 05— [ 1(2)el# <9 g 2
o = joj sin _4:'t—r| (z')e’ 8 (2-4)
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Figure2-5 The half-wavedipole. (a) Currentdistribution I(z). (b)
Radiation pattern Fi0).

Substituting (2-3) into the integral of (2-4) and evaluating,
' L A1s - .
= ‘ IZ)elF=tdr=| I sin(2 —ﬁ|:'])e’” -tk
: | -

0 n ) Lad - .
£ f | sin( -+ fiz’ )e‘”"'““ dz’ + I, | sin( - B )e”“ esldz” (2-5)
Yows \2 ‘o 2

where £, is the unnormalized pattern factor. Using the integral (F-5)

[ sin(a + bx)e* dx = 52%‘53 [c sin(a + bx) — beos(a + bx)]  (2-6)
in (2-5) we have
",Jﬂf' cos i 10

fon=1n 7 cos

ib|Juuc:«os 0 sin(g +ﬂ:']—ﬂcos(g +ﬂz')

L
ejx: cos

s 0

jB cos 0 sin(g = 35») +B cos(g i ”;4

= e irp L cosif — ¢ AN ff) 4 ARGy~ jp cow ]

L
“ fsin? 0

2 cos( cos f)) (2-7)
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Substituting this into (2-4) gives

. 2l,e 7" cos[(n/2)cos 0]
E,=}mp7 4nr e '{sirl:l 6

(2-8)

In this expression we can identify the element factor g(0) = sin ¢ and the nor-
malized pattern factor

o Cos[(r/2)cos G]_
rioy="22522 (29)
Both g(0) and f(#) are maximum for # = n/2 and have a value of unity there.
The complete (normalized) far-field pattern is then, see (1-113),

F(0) = g(0)/(0) = cm-[!;-ﬁ%g] (half-wave dipole). (2-10)

This pattern is plotted in Fig. 2-5b in linear, polar form. The half-power beam-
width is 78°, For comparison, the hall-power beamwidth of an ideal dipole
pattern is 90°; see Fig. 1-4b. Thus, there is a small increase in the directivity of
the half-wave dipole over the short dipole. In fact, the directivity for a short
dipole is 1.5; see (1-145). We shall show in Section 5.1 that it is 1.64 for a
half-wave dipole. The input impedance of an infinitely thin half-wavelength long
dipole is 73 + j42.5 ohms. If it is slightly reduced in length to achieve resonance,
the input impedance is about 70 + jO ohms.

In Section 2.1 we briefly discussed one viewpoint on the phenomena of radia-
tion. We are now ready to discuss another viewpoint in which the fields in space
are considered to be produced by currents and charges on the antenna as
sources, We know that in a complete system there must at any instant of time be
equal numbers of positive and negative charges, and, il these were static fields
(ie., zero frequency and infinite wavelength), then the fields at a great distance
from the positive and negative sources would practically cancel. However, when
the distance between positive and negative sources becomes comparable with
wavelength, the phase shift (or retardation) due to different path lengths from
positive and negative sources to an observation point may keep the effects from
canceling. In the case of the half-wave dipole when the current is essentially in
phase (either positive or negative), this means that radiation will be strongest in a
direction normal to the dipole and weakest along the axis of the dipole. For
longer dipoles (e.g., see Section 5.1), where the current s not in phase along the
entire length of the dipole, the phase shift between sources due to distance will
cause the radiation from the various sources (i.e., different parts of the dipole) to
add in certain directions and cancel in others, depending on whether the dis-

1
o

=

e T
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tances between plus and minus sources is an odd or even multiple of a half-
wavelength, respectively. This picture of radiation suggests why practical
antennas are comparable with a wavelength in size. It also tells us something
about the shape of the far-field pattern and will be useful to us in qualitative
thinking about arrays in the next chapter.

2.3 ANTENNAS ABOVE A PERFECT GROUND PLANE

Antennas are frequently operated in the presence of other structures. One such
structure that is commonly encountered is a ground plane. A ground plane in its
ideal form is infinite in extent and perfectly conducting, often referred to as a
perfect ground plane. A solid metal sheet or a planar wire grid system that is
large compared to the antenna size is, in most cases, well approximated as a
perfect ground plane. In this section we discuss the effect of a perfect grou'nd
plane on some simple antennas. The problem is most casily solved by employing
image theory, which will be discussed first. Antennas over a real earth ground
are covered in Section 5.5,

2.3.1 Image Theory

Most of the theory developed thus far is for antennas in a homogeneous
medium characterized by £ and . In other words, no other objects are present.
This is often a poor approximation to reality. But, by using image theory li‘{e
fields of an antenna operating in the presence of materials of simple geometric
shape may be determined.

Consider first an ideal dipole in front of an infinite plane perfect conductor
and oriented perpendicular to the plane as shown in Fig. 2-6. We wish to find
the fields E and H above the plane PP’ By the uniqueness of the solution to a
differential equation (the wave equation) plus its boundary conditions, we may
introduce an equivalent system that is different below PP’ but satisfies the same
boundary conditions on PP’ and has the same sources above PP’ Such an
equivalent system, which produces the same fields above PP’ as the original
system, has an image source the same distance below the plane PP’ and similarly
directed. In this case, the image source is another ideal dipole as shown in
Fig. 2-6b. It is a simple matter to prove that the boundary condition of zero
tangential electric field along plane PP is satisfied by this source configuration.
To do this we examine the electric field expression for an ideal dipole given by
(1-70). The complete expression must be used because the ground plane can be,
and usually is, in the near field of the antenna. The radial component varies as
cos 0 and the 0-component varies as sin 0, where 8 is the angle from the axis
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Figure 2-6 Ideal dipole above and perpendicular to a
perfectly conducting ground plane. (&) Physical model.
(b) Equivalent model using image theory.

along the direction of the current element. Let 8, and @, be the angles from the
line of the current elements to a point on the plane PP for the primary source
and its image, respectively. The radial components from the sources are then
E,, =Ccos 0, (2-11)
E,;=Ccos 0,. (2-12)
The constant C is the same for each field component since the amplitude of the

sources is the same and points on the boundary are equidistant from the current
elements. From Fig. 2-7a we see that

0, + 0, = 180°. (2-13)
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Figure 2-7 The ideal dipole and its image in a groqnd
plane as in Fig. 2-6. The source and its image acting
together give zero tangential electric field intensity along
the plane PP where the original perfect ground plane was
located. (a) Radial components. (b) Theta components.

So
E,, = C cos(180° — 0,) = —C cos 0. (2-14)
Comparing this to (2-12) we see that
E,, = —E,, along boundary. (2-15)

Thus along the plane PP the radial components are t‘qual in magni}udc an_d
opposite in phase. E,, is directed radially out from the image source since f, 1s
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less than 90°, and then cos 6, is positive. On the other hand, E,, is radially
inward toward the primary source since (2-14) is negative. Figure 2-7a illustrates
this and shows that the projections of each along PP’ will cancel. A similar line
of reasoning for the f-components leads to

E;, =Dsinf,=Dsindb, (2-16)
E, = D sin 0, (2-17)
where 0 is a constant and thus

E, = E,, along boundary. (2-18)

Figure 2-7b demonstrates that the net projection of these f#-components along
plane PP is zero.

We have shown that the total tangential electric field intensity is zero along
the image plane PP’ for an ideal dipole perpendicular to the plane and its image
acting together. Therefore, since the source configuration above the plane and
the boundary conditions were not altered, the system of Fig. 2-6b is equivalent
to the original problem of Fig. 2-6a. The systems are equivalent in the sense that
the fields above the plane PP’ are identical. The above derivation may be
reversed by starting with the two sources of Fig. 2-6b and then introducing a
perfect ground plane with its surface along plane PP, thus arriving at Fig. 2-6a.
The essential feature to remember is that the fields above a perfect ground plane
[rom a primary source acting in the presence of the perfect ground plane are
found by summing the contributions of the primary source and its image, each
acting in [ree space.

An ideal dipole oriented parallel to a perfect ground plane has an image that
again is equidistant below the image plane. but in this case the image is oppo-
sitely directed as shown in Fig. 2-8. The equivalent model of Fig. 2-8h, which
gives the same fields above plane PP’ as the physical model of Fig. 2-8a, may be
proven by simple sketches similar to those of Fig. 2-7.

The image of a current element oriented in any direction with respect to a
perfect ground plane may be found by decomposing it into perpendicular and
parallel components, forming the images of the components, and constructing
the image [rom these image components. An example is shown in Fig. 2-9, The
image ol an arbitrary current distribution is obtained in a similar fashion, The
current is decomposed into perpendicular and parallel current elements whose
images are readily found. The image current distribution is then the vector sum
of these image current elements.

The perfectly-conducting infinite ground plane is, of course, an idealization.
The perfectly conducting assumption s valid when good conductors such as
aluminum or copper are used. The infinitely large assumption is more severe,
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(k)
Figure 2-8 Ideal dipole above and paralleltoa Perfect
ground plane. (a) Physical model. (b) Equivalent
model using image theory.

however, It is difficult to give specific rules as to when this assumption is good.
Generally speaking, though, if the conducting plane cxtends. beyond the source
by several times the length of the source and il the source is not too far away
from the conducting plane, this assumption is also valid.

i ™

w

ib)

Figure 2-9 Ideal dipole above and obliquely
oriented relative to a perfect ground plane. (3)
Physical model. (b) Equivalent mode! using
image theory.
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2.3.2 Monopoles

The principles of image theory are illustrated in this section with several forms
of the monopole antenna. A monopole is a dipole divided in half at its center feed
point and fed against a ground plane. Three monopoles and their images in a
perfect ground plane are shown in Fig. 2-10. High-frequency monopoles are
often fed from coaxial cables behind the ground plane as shown in Fig, 2-11.

e
el

Figure 2-10 Monopole antennas over perfect ground
planes with their images (dashed). (a) Monopole
antenna. (b) Capacitor plate monopole. (¢) Transmission
line monopole.
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Figure 2-11 Monopole antenna fed from a coaxial cable.

The currents and charges on a monopole are the same as on the upper half of
its dipole counterpart, but the terminal voltage is only half that of the dipole.
The voltage is half because the gap width of the input terminals is half that of the
dipole, and the same electric field over half the distance gives half the voltage.
The input impedance for a monopole is therefore half that of its dipole counter-
part, or

AT LTS (2-19)

in, monu !nn. dipolc 2

This is easily demonstrated for the radiation resistance. Since the ficlds only
extend over a hemisphere the power radiated is only half that of a dipole with
the same current. Therefore, the radiation resistance of a monopole is given by

R Pnd.nmno - }Pnd..m;_u_ﬂ"ri_ = 1 R

r, mono - = 5 By, dipole - 2"20
! “f““ mm!: “!m. . Iz 3 M. dipol ( )
For example, the radiation resistance of an ideal monopole 15 from (2-2)
hy hy\? )
R, mose = 1601:’(:) S 1600(—.) for h<i (2-21)
’ /

where h is the length of the monopole and Az = 2h.

The radiation pattern of a monopole above a perfect ground plane. as in
Fig. 2-11, is the same as that of a dipole similarly positioned in free space since
the fields above the image plane are the same. Therefore, a monopole above a
perfect ground plane radiates one-half the total power of a similar dipole in free
space because the power is distributed in the same fashion but only over half as
much space. Equivalently, the beam solid angle of a monopole above a perfect
ground plane is one-half that of a similar dipole in free space. This leads to the
fact that the directivity doubles for a monopole since

Rl 4
Do = o = o = 2D gy (2-22)




94 SOME SIMPLE RADIATING SYSTEMS

This can be shown in another way. If a dipole in free space has a maximum
radiation intensity of U,,, a monopole of half the length above a perfect ground
plane with the same current will have same value of U,, since the fields are the
same. The total radiated power for the dipole is P,, so the power radiated from
the monopole is 4P,. The directivity from (1-142) for the two antennas is

U, U,
D gipote = u._ - P, /an (2-23)
and
U.
mono H;‘M,“ == 2Ddipol:' (2-24)

The directivity increase does not come from an increase in the radiation intensity
(and, hence, field intensity) but rather from a decrease in average radiation
intensity. This, in turn, comes about because only half the power radiated by a
dipole is radiated by a monopole. The directivity of a short monopole, for
example, is 2(1.5) = 3.

At low [requencies a monopole that is a quarter wavelength long or less may
be rather large physically. For example, in the standard AM broadcast band (say
1 MHz) the wavelength is 300 m, so a quarter-wave monopole would be 75 m
tall. Such a large structure is usually not self-supporting, and guy wires are
employed for support. Currents may exist in these guy wires in a downward
direction tending to cancel the effect of the vertical element. Insulators arc added
to break up these currents, as in Fig. 2-12a.

If currents are allowed to continue from the monopole out onto the guys. a
partial top-loading effect for towers shorter than a quarter wavelength may be
achieved, thereby increasing the radiation resistance. See Fig. 2-12b. The loading
is usually not enough to give uniform current on the vertical member. Secondly.
the downward angle of the guys gives a slight canceling of the fields from the
vertical current. For a comparable length monopole the umbrella loaded version
has a lower radiation resistance than the capacitor-plate monopole. Experimen-
tal data are available in the literature for umbrella-loaded monopoles [3).

(a) (&)

Figure2-12 Monopoles withsupporting guy wires, (a) Insulators added
to reduce currents in guys. (b) Umbrella-loaded monopole.
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2.4 SMALL LOOP ANTENNAS

A closed loop of current whose maximum dimension is less than about a tenth of
a wavelength is called a small loop antenna. So again small is to be interpreted as
meaning electrically small, or small compared to a wavelength. In this section we
will use two methods to solve for the radiation properties of small loop
antennas. First we will show that the small loop is the dual of an ideal dipole.
and by observing the duality contained in Maxwell’s equations we can use the
results previously derived for the ideal dipole to write the fields of a small loop.
Next we will derive the fields of a small loop directly and show that the results
are the same as obtained using duality.

2.4.1 Duality

Frequently an antenna problem arises for which the structure is the dual of an
antenna whose solution is known. If antenna structures are duals it is possible to
write the fields for one antenna from the ficld expressions of the other by inter-
changing parameters using the principle of duality. Before examining the small
loop we will discuss the general principle of duality as applied to antennas.

Dual antenna structures are similar to dual networks. For example, consider a
simple network of a voltage source applied to a series connection of a resistor R
and an inductor L as in Fig. 2-13a. The dual network of Fig. 2-13b is a current
source I (=) V applied to the parallel combination of conductance G (=) R and
capacitance C (=) L.' Since the networks are duals the solutions are duals. In
this example the original series network can be described by the mesh equation

V = RI + jolLl. (2-25)

® @ E T

(a) (h)

Figure2-13 Dualnetworks: /(=) V,G(=) R, C(=)L.(a) Original network.
(L) Dual network.

"In discussions of duality the symbol * (= )™ means replace the quantity on the left with the quantity
an the right, much as the equal sign in a computer program statement
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The dual to this mesh equation is a node equation obtained by replacing V by I,
R by G, and L by C. The node equation for the dual parallel network is then

I=GV + jaCV. (2-26)

_Returning to the antenna problem, suppose we have an electric current source
with current density J, and boundary conditions on materials present (i, ;.
a,). Maxwell's equations for this system from (1-16) and (1-17) are

V xE, = —jou,H, (2-27)
V x Hl - ij';E: + J| (2'28)

where E, and H, are the fields generated by J, with materials (¢, u,, a,)
present. Now suppose a fictitious magnetic current source with magnetic current
density M, exists with materials (¢,, u,, o,) present. Maxwell's equations for
this system from (1-17) and (1-21) are

V x H, = jugE; (2:29)
VxE;= —jou,H; - M, (2-30)

where E; and H, are the fields arising from M, .

The electric and magnetic systems are duals if the procedure in Table 2-1 can
be performed. This i easy to demonstrate. To see if (2-29) and (2-30) are the
duals of (2-27) and (2-28) we substitute the quantities in left-hand column of
Table 2-1 into (2-29) and (2-30) for the corresponding quantities of the right-
hand column. This yields

V xE, = jou,(-H,) (2-31)
Vx(-H,)= —joE, — J,. (2-32)

These equations are (2-27) and (2-28). In other words, using the parameter
substitutions of Table 2-1, the equations of the electric system, (2-27) and (2-28),

Table 2-1 Dual Radiating Systems.
Radiating system #1 with electric cur-
rents and system #2 with magnetic
currents are duals if one can:

Replace the following By the following

in system #2 in system # |
M, A
y My
A &
E, _Hl
H, E,
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are dual to the equations of the magnetic system, (2-29) and (2-30), just as (2-25)
and (2-26) are dual equations. Since the equations of the systems are dual, the
solutions will be also. Before illustrating this we will summarize the principle of

duality.
If the sources of two systems are duals, that is,
M, (=)J, (2-33)
and if the boundary coaditions are also dual,? that is,
w(=)ey & (=)m, (2-34)

then the ficlds of system #2 can be found from the solution of system # 1 by the
substitutions

E, (=) -H, H, (=) El (2'35)

in the field expressions for system # 1 along with the substitutions in (2-34),

Now we will use duality to find the fields of a small current loop from a
knowledge of the fields of an ideal electric dipole. A current loop may be repre-
sented as a fictitious (ideal) magnetic dipole with uniform magnetic current [™
and length Az. The sources are duals as required by (2-33) if we let

™(=)I° (2-36)
where I is the current of an ideal electric dipole of length Az. Since no materials

are present there are no boundary conditions. The ideal electric dipole has field
solutions of the form

E, =E,0+E,t (2-37)
H, = H,é. (2-38)
The fields of the dual magnetic dipole are then found from (2-35) as
E:(=) -H,= —H,$ (2-39)
H; (=)E, = E;,0 + E, ¢ (2-40)

if we make the substitutions
wy=p(=)ey=¢ and &y=c(=)uy,=4n (2-41)

which follow from (2-34) and the fact that in both systems the surrounding
medium is a homogeneous material of g and & Note that f remains the same
since replacing u by ¢ and ¢ by u in tu\f:l:: yields w\/’x;. Now, using (2-36) and

? Note that iy = ¢; — j{a, /w). If magnetic conductors of magnetic conductivity o were assumed (o
exist in system #2, then u, would become uy = u;y — j(a5 /w) in the equations above, Thus ¢ is
replaced by i}, or equivalently @, is replaced by o7,
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(2-41) in the ideal electric dipole field expressions of (1-69) and (1-70) together
with (2-39) and (2-40) give

Az e ir

; 1 .
Ey=— ;ﬁ(! +ﬁ) — sin 6% (2-42)
™Az 1 P & .
H.t = 4—" JE | +J‘ﬂ-r + GB-??'—?' sin 0
mA:. (11 e
+ 2“ Jeok ‘j‘ﬂr-f- mz]’ = cos fr. (2-43)

These are the complete field expressions (valid in the near-field region) for a
small loop of electric current. The far-field components are obtained by retaining
only those terms that vary as r ', giving

E mAzpt s 2-44

5y = —1 A.;ﬁ“—rsmﬂib (2-44)
e i

H, = I™ Azjwe —— sin 00 (2-45)
4nr

These radiation fields as well as those of the ideal electric dipole are shown in
Fig. 2-14. Both antennas have the same radiation pattern, sin 0. The magnetic
field component H, of the ideal electric dipole is easily remembered by use of the
right-hand rule. Place the thumb of your right hand along the current of the
dipole and pointing in the direction of current flow. Your fingers will then curl in
the direction of the magnetic field. This statement is implicit in Ampere's law of

1.

" \

fal th)

Figure 2-14 Radiation field components of ideal
magnetic and electricdipoles. (a) Smallcurrent loop
and equivalent magnetic dipole. ( b) Ideal electric
dipole
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(2-28). A similar relationship holds for the magnetic dipole, except the left-hand
rule is used and the field obtained is the electric field component —E,. This
follows from (2-30).

2.4.2 The Small Loop Antenna

Using duality we found the field expressions for a small loop of uniform
current. However, these expressions contain the equivalent magnetic dipole cur-
rent amplitude /™. By solving the small loop problem directly we can establish
the relationship between the current I in the loop and I™. This can be accom-
plished by dealing only with the far-field region.

It turns out that the radiation fields of small loops are independent of the
shape of the loop and depend only on the area of the loop. Therefore we will
select a square loop as shown in Fig. 2-15 to simplify the mathematics. The
current has constant amplitude | and zero phase around the loop. Each side of
the square loop is a short uniform electric current segment which is modeled as
an ideal dipole. The two sides parallel to the x-axis have a total vector potential
which is x-directed and is given by

I/ e‘}"! a‘f‘l!)

(2-46)

%= 4=\ R, R,

Figure 2-15 Geometry for calculating the radiation fields
from a small square loop antenna.
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which follows from (1-60). The minus sign in the second term arises because the
current in side 3 is negative x-directed. Similarly for sides 2 and 4 we find

1/ (e-iﬁh e—jﬁh)

*“a\"R, T R,

(2-47)

The far-field approximation is that the distances used for amplitude variations
are nearly equal (ie, R, *R, ~ Ry * R, =) and the phase differences are
found from assuming parallel rays emanating from each side. By comparing the
parallel path lengths we find from geometrical considerations that

£ . ;
R,=r+§smﬂsm¢, R,=r—gsin0ms¢

, (2-48)
R,-—-r—isinﬂsingb. R.=r+gsin0ws¢.

Substituting these into the exponents and r into the denominators of (2-46) and
(2-47) we have

Ire ™
= — “ IR 2pindning _ o+ IMA2)sin 0 sin @
) dnr (e - )
- ipr
= ‘_I/:Kr (e‘jﬂfzk\illlcmo = e-jﬂf?lhmlcmd)
or
Ite™ ™ B/
A= —2j [ :
iy sm( 3 sin @ sin ¢)
S e (Bl )
A 3piee T P
y=2j = :sm(2 sm()cosd;).

Since_ the loop is small compared to a wavelength, f/ = 2z//4 is also small and
the sine functions in (2-49) may be replaced by their arguments giving
~ e
A

x —j

B7? sin 0 sin ¢

x

4nr
fis (2-50)
A

=}

. = p7? sin 0 cos ¢.

Combining components to form the total vector potential gives

fe_lp

A=A X+ A¥=jpr?
¥ =Jb 4nr

sin O —sin ¢x + cos ¢¥). (2-51)

™
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The term in parentheses is the unit vector § in (A-6), so

I

= i 2-52
A=jBS Tar sin 8¢ (2-52)
where S is the area of the loop. All of A is transverse to the direction of

propagation, so the radiation electric field from (1-102) is —jwuA giving

Je~i*
i sin 6 (2-53)

E = nf’s

since wuff = m’u\/ﬁ = /pu/c@?*ue = nf?. The radiation magnetic field is

1, sl
JPxE= —ps—

H= sin 00, (2-54)

Comparing (2-53) or (2-54) to the magnetic dipole radiation fields of (2-44) or
(2-45) we find that

I" Az = joulS. (2-55)

This completes the relationship between the small current loop and its equiva-
lent magnetic dipole. The complete field expressions for a small loop of magnetic
moment IS are found from (2-42) and (2-43) using (2-55). The fields depend only
on the magnetic moment (current and area) and not the loop shape. And the
radiation pattern for a small loop, independent of its shape, equals that of an ideal
electric dipole. Thus if the small current loop is in the xy-plane its pattern is sin 0.
The radiation fields from a large loop are derived in Section 5.7.

The impedance of a small loop antenna is quite different from its ideal dipole
dual. While the ideal dipole is capacitive, the small loop is inductive, But first we
will discuss the input resistance. The radiation resistance is found by calculating
the power radiated using the small loop radiation fields with (1-125) which yieias

P, = 101*(f*S)*. (2-56)
The radiation resistance is then
r |
R,= g;;f = 20(f*S) = 31,200(%) ohms. (2-57)

This result provides a reasonable approximation to the radiation resistance of an
actual small loop antenna for a loop perimeter less than about three-tenths of a
wavelength,
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The radiation resistance of a loop antenna may be increased significantly by
using several turns. The magnetic moment of an n turn loop is nIS where § is the
area of a single turn. The radiation resistance is then

2
R, = 20(f*nS)* = 31.2(1)(::%) ohms. (2-58)

The radiation resistance thus goes up as n*. Another way to enhance the radia-
tion resistance is to wind the loop turns around a ferrite core. For a ferrite core
of effective relative permeability u ., rays from different parts of the loop, as in
Fig. 2-15, encounter a phase constant of f= w\/p_s = w\/1t, Merp =
(2m/A)/pere where A is the free-space wavelength. The relative effective
permeability® depends on the core size and shape and is usually less than the
relative permeability of the core material. The radiation resistance of a coil of n
turns wound on a ferrite core is then

2
R, ~ 31,200‘ np,,,f—,J ohms. (2-59)

A ferrite core multiturn loop antenna is often referred to as a loop-stick antenna,
It is a commonly used low-frequency receiving antenna. For example, it is used
with most AM broadcast receivers.

Small loop antennas also have considerable ohmic resistance. For a rectangu-
lar loop of wire 7, by /7, the ohmic resistance is given approximately by

R = ZL{E '_ . !.__ — -+ ] l

ohmic ‘.mrz "[((U{d)z — 1]! 2 [(/vgd)! = l]l.‘ll

where d is the wire diameter and R, is the surface resistance of (1-185). If 7, and
/5 are much larger than d (i.e., the wire is thin) then (2-60) reduces to

(2-60)

2(¢y + 73)
e B g
ohmic Tl'd R; (2 61]
This formula may be generalized to loops of arbitrary shape as follows
I
Rnhmic i ;; Rs (2-62)

where / is the mean length of the wire loop and w is the perimeter of the wire
cross section, For a circular loop this becomes

2nb 2b
R ienic = ‘:7 R, = i R, (circular loop) (2-63)

where b is the mean loop radius and d is the wire diameter.

? See [4] for a discussion of relative effective permeability.
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As mentioned previously, the small loop antenna is inherently inductive. The
inductance of a small 7, by 7, rectangular loop is given by
4

L=§(f, cosh 121 4 7, cosh™1 2

d d 254

where d is the wire diameter. For a small circular loop of radius b the inductance

is [5]
L=bu

ln(%‘? ) " 1.?5] (circular loop) (2-65)

ford <b.

Example 2-1. A Small Circular Loop Antenna

To illustrate the impedance calculations for small loop antennas, consider a circular loop
with a mean loop circumference of 0.2 and a wire radius of 00014, Then b= 0,14/ and
d = 00024 in (2-57) yields the radiation resistance as

nb?

2 2
) = 31.200(9'-0—'] = 0.316 ohm. (2-66)
i x

R.= 31.200(
The reactance from (2-65) is

Xin,=owL= lngbp

ln(%’ = 1.75' (2-67)

where ¢ is the velocity of light. For an air-filled loop u = y, and then

16
" 0.002x

a -
Xi,,=2!3 x.IO 0'ﬁdz 107
A X

1 = :.15‘ = 2858 ohms,  (2-68)

To determine the ohmic resistance a frequency must be specified; suppose it is 1 MHz,
Further suppose the wire is copper. and then u = g, and ¢ = 5.7 x 107 mhos/m in (1-185)
gives

| 2nf /4x>tl0"-2::x1_0‘_ > g
R, _\/ e~ Tawmn 263 x 10~ * ohm. (2-69)
And from (2-63)
2b 02
=—R,=———263 "4 =8 e ' 2-70
Rosaic 7 R, 0‘00212.6_ x 10 8.38 x 1077 ohm (2-70)
Adding this to (2-66) gives the total input resistance
R,,= R, + R ymic = 0.324 ohm. (2-71)



104 SOME SIMPLE RADIATING SYSTEMS

The input impedance is thus

Z,. =R, +jX;,=0324 + j2858 ohms. (2-72)
The radiation efficiency of this loop is
R, 0316 2
€= E. = 6_334 = 97.5 I (2-?3)

2.5 SOME PRACTICAL CONSIDERATIONS

In this chapter we have examined several simple but basic radiators. Some of
these were electrically small radiators while one (the half-wave dipole) was of
resonant size. We say more about resonant antennas in Chapter 5 and 6 but not
much more will be said about electrically small antennas. Thus, it is appropriate
at this point to consider the practical limitations of electrically small antennas.

Recall that an electrically small antenna is one that is smaller than a radian-
sphere, It is characterized by a radiation resistance that is much less than its
sell-reactance and by a far-field pattern that is independent of the antenna size.
An electrically small antenna is usually a simple electric or magnetic dipole. The
electric dipole is physically realizable, while the magnetic dipole is a flux element
simulated by a current loop. While the radiation pattern and the directivity of a
small antenna are independent of size or frequency, the radiation resistance and
especially the self-reactance are not. This makes it difficult to transfer power
[rom the antenna to a load or from a generator to the antenna as the {requency
changes. An antenna with this characteristic is said to have a high 0. We can
define antenna Q as 2nf times the peak energy stored/average power radiated,
but conceptually a high Q means that the input impedance is very sensitive 1o
small changes in frequency.

The Q of an ideal (lossless) antenna is shown in Fig. 2-16 versus fla, where a is
the radius of a sphere that would enclose the antenna [2]. While the Q of a
practical electrically small antenna may be less than this, the curve does serve to
show rather clearly what happens to the Q as the antenna size diminishes. The
increasing Q with diminishing size in turn implies a fundamental limitation on
the usable bandwidth of an electrically small antenna. The concept of bandwidth
will be considered more formally in Chapter 5, but for our purposes here let it
simply be the frequency range over which the antenna is usable without retuning
to a resonant condition (i.e., tuning out the self-reactance). Thus. the higher the
Q, the smaller the bandwidth. To reduce the Q, damping (resistance) can be
added to the antenna at the expense of efficiency. High Q and small bandwidth
are characteristic limitations of electrically small antennas [6, 7].

e e
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PROBLEMS

2.1-1 Use the oscillating charge model for an ideal dipole as shown in Fig. 2-2b to derive
the electric field expressions of (1-70). Hinrs: The far-field scalar potential function for this
problem is

o q ¢ sl = (Az 2icos ) & JEIr+ (A= 2cos B]
drr, |r—(Az2)os 0 r + (Az/2)cos

where the parallel ray approximation was used and the " time dependence was sup-
pressed. Use r 3 Az, 2 » Az, and | = jesg to show that

= ‘-_i‘ { A: 1 ; 0

T 4zt fm;,{ FRIRD.
Then make use of (1-39)
2.1-2 The current density on an actual short dipole antenna of Fig. 2-1 can be written as

o5 - 1)

Find an expression for the associated charge density. The relative variation of your
answer i§ indicated in Fig. 2-15.

2.1-3 Show that the capacitance of the capacitor of the capacitor-plate antenna of
Fig, 2-3 is given by

J = £}, sin

m(Ar)'s,
Az

c

Assume that capacitance is entirely due to the end plates and neglect fringing,

L

Lt Reis £ T 7
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2.1-4 (a) Using the capacitance formula m Prob. 2.1-3 calculate the capacitive reactance
of a capacitor-plate dipole for which Ar = 0.014 and Az = 0.024.

(b) Calculate the radiation resistance of this antenna.
2.2-1 Sketch the current distribution on a half-wave dipole for various instants during the
cycle of the current oscillation.
2.2-2 Show that the pattern factor for half-wave dipole in (2-9) is normalized to unity at
{) = n/2
2.2-3 Calculate and plot the radiation pattern F(0) for a half-wave dipole in (2-10) for
0 < () < 180°. Plot in linear, polar form as shown in Fig. 2-5h.
2.24 (a) Show that the ohmic resistance of a half-wave dipole from (1-190) is given by

R, 4
Ropmic = s

(b) Compare this to the result one would obtain if the current were assumed to be
uniform on the half-wave dipole.
2.2-5 Use the results of Prob, 22-4(a) to calculate the radiation efficiency of a hall-wave
dipole at 100 MHz if it is made of aluminum wire 6.35 mm (0.25 in.) in diameter. Assume
the radiation resistance to be 70 ohms.
2.3-1 Show that the image theory model of Fig. 2-8h for an ideal dipole parallel to a
perfect ground plane yields zero tangential electric field along plane PP
2.3-2 If a thin monopole as shown in Fig. 2-11 is a quarter wavelength long:

(a) Rough sketch the radiation pattern in polar form as a function of , if the mono-
pole is along the z-axis.

(b) What is the directivity?

(¢) What 1s the input impedance?
2.4-1 Use (1-93) to derive the far-field distance expressions (2-48) for the small square
loop.
2.4-2 Verily that the power radiated from a small loop is given by (2-56)
2.4-3 Show that (2-61) follows from (2-60).
2.4-4 Compute the radiation efficiency of a small single turn loop antenna at 1| MHz il it
is made of No. 20 AWG copper wire and has a loop radius of 0.2 m.
2.4-5 Compute the inductance of the loop antenna in Prob. 2.4-4.
2.4-6 A single turn circular loop 15 cm in radius is made of 3-mm-diameter copper wire,
Calculate the radiation resistance, ohmic resistance. nput impedance. and radiation
efficiency at 1| MHz
2.4-7 A [errite core loop antenna is 20 cm long and 1 cm in diameter. It has 22 turns of
wire and an effective relative permeability of 38. Compute its radiation resistance al a
[requency of 1 MHz
2.4-8 A single turn square loop antenna that is 1 m on a side operates at 30 MHz. The
wire is aluminum with a diameter of 2 em. Compute (a) the radiation resistance. (b) the
input reactance, and (c) the radiation efficiency.



ARRAYS

Several antennas can be arranged in space and interconnected to produce a
directional radiation pattern. Such a configuration of multiple radiating elements
is referred to as an array antenna, or simply, an array. The introduction of
shortwave radio equipment in the 1920s made possible the use of reasonably
sized antenna arrays, thereby providing a convenient way to achieve a directive
radiation pattern for radio communications. During World War Il UHF and
microwave array antennas were introduced for use in radar systems. Today
arrays at microwave frequencies and above are used extensively in satellite com-
munication systems.

Many small antennas can be used in an array to obtain a level of performance
similar to that of a single large antenna. The mechanical problems associated
with a single large antenna are traded for the electrical problems of feeding
several small antennas. With the advancements in solid state technology, the feed
network required for array excitation is of improved quality and reduced cost.
Arrays offer the unique capability of electronic scanning of the main beam. By
changing the phase of the exciting currents in each element antenna of the array.
the radiation pattern can be scanned through space. The array is then called a
phased array, Phased arrays have many applications, particularly in radar.

Arrays are found in many geometrical configurations. The most elementary is
that of a linear array in which the array element centers lie along a straight line,
The clements may be equally or unequally spaced. When the array clement
centers are located in a planc it is said to be a planar array. Examples of planar
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arrays are circular and rectangular arrays in which the element centers are
disposed on a circle, or are contained within a rectangular area, respectively. A
class of arrays which is just emerging is that of conformal arrays. In this applica-
tion the array element locations must conform to some nonplanar surface such
as found on an aircraft or missile.

The radiation pattern of an array is determined by the type of individual
clements used, their orientations, their positions in space, and the amplitude and
phase of the currents feeding them. To simplify our discussion of arrays we will
begin by letting cach element of the array be an isotropic point source. The
resulting radiation pattern is called the array factor. In this chapter the array
factors for several simple arrays will be examined before considering general
uniformly excited linear arrays. The principle of pattern multiplication will then
be introduced in Section 3.3 for the purpose of including the effect of the array
clement type. Array directivity is discussed in Section 3.4. By controlling the
current amplitudes in an array, the pattern can be shaped for special applica-
tions. The relationship between the radiation pattern of an array and its element
current amplitudes is illustrated by several linear array examples in Section 3.5.
The elfects of mutual coupling between elements of a real array on impedance
are detailed in Section 36. The scanning of the array pattern by element phase
control is discussed n Section 3.7. The chapter is closed with a perspective
discussion in Section 3.8.

3.1 THE ARRAY FACTOR FOR LINEAR ARRAYS

A typical linear array composed of similar element antennas 1s shown in Fig. 3-1.
The output of each array element may be controlled in amplitude and phase as
indicated by the phase shifters and attenuators. In addition to the amplitude and
phase control imposed on each element represented by /. there is relative phase
shift between the waves arriving at the antenna elements due to their positions in
space and the angle of arrival of the wave. Furthermore. the pattern of each
clement leads to a response that varies with the arrival angle of the incoming
plane wave. If it is the same for each element, the principle of pattern multiplica-
tion allows us to consider it as one multiplicative factor in the total pattern. This
is discussed in detail in Section 3.3, The remaining angular dependence ol the
pattern is called the array factor, and it is determined solely by the element
positions and their amplitudes and phases represented by /.. The array of
Fig. 3-1 is shown as a receiving array: however, the receiving pattern is the same
as the transmitting pattern by reciprocity. In our discussions of arrays either the
receiving or transmitting viewpoint will be used depending upon which is more
convenient.
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Figure3-1 Atypical linear array. The symbols & and z
indicate variable phase shifters and attenuators. The
output currents are summed in a summing device before
entering the receiver.

Since the pattern of an array obtained by neglecting the patterns of the indivi-
dual elements of the array is the array factor, if we replace each clement of the
array (without disturbing the relative currents or the positions) with an isotropic
point source, the resulting pattern is the array factor. An isotropic point source
is a hypothetical antenna occupying just a point in space and radiating uniformly
in all directions. It is referred to frequently as a point source. The radiation fields

of a point source at the origin of a spherical coordinate system are proportional
o

; o it

0 (3-1)
where 1, is the current of the point source. This can be seen by examining the
radiation field expressions, (1-71) and (1-72), for an ideal dipole and dropping
the angular dependence. The far-field pattern is obtained from the angular
dependence (i.c., at constant r) of the radiation fields, thus the pattern of a point
source, from (3-1), 1s constant and is given by

AF = I, (3-2)

where AF is the array factor for this “array " of only one point source. Since /,,
is constant the array factor in (3-2) could have been written as unity, but as
elements are added to the array, each with a different current, it is necessary to
account for their relative field strengths as determined by their element currents.
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Figure 3-2 Equivalent configuration
of the array in Fig. 3-1 for determining
the array factor. The elements of the
array are replaced by isotropic point
sources.

Array facior

The array factor for the array of Fig. 3-1 is found from the array of Fig. 3-2
which has point sources for array elements in place of the actual elements. The
array factor for this receiving array is then the sum of the point source receiving
antenna responses {e*°, &% ..} weighted by the amplitude and phase shift
{ly, I, ...} introduced in the transmission line connected to each element. The
array factor of the array shown in Fig. 3-2 is thus

AF = Ioe/ + 1, + 1,6 + -~ (3-3)

where &, &y, ... are the phases of an incoming plane wave at the clement
locations designated 0, 1, ... . Usually these phases are relative to the coordinate
origin, that is, the phase of the wave arriving at nth element leads the phase of
the wave arriving at the origin by ¢, .

Before going any further with general expressions such as (3-3), some specific
examples are in order to get a feel for what pattern eflects can be achieved
through the use of arrays. These examples will be kept simple so that a rough
pattern can be obtained by inspection.

Example 3-1. Two Isotropic Point Sources with Identical Amplitude and
Phase Currents, and Spaced One-Half Wavelength Apart (Fig. 3-3)

Figure 3-3a shows how the pattern of this example may be approximated by inspection. Itis
easier in the inspection method to consider the array to be transmitting. At points (in the
far field) along the perpendicular bisector of the line joining the point sources (x-axis),
path lengths from each point source are equal. Since the amplitudes and phases of each
source are also equal, the waves arrive in phase and equal in amplitude in the far field
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Figure 3-3 Two isotropic point sources with identical amplitude and phase
currents, and spaced one-hall wavelength apart (Example 3-1). (a) Inspection
method. (b) Polar plot of the array factor [ (#) = cos[(r/2) cos #]. (¢) Calculation
method
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along the x-axis, and the total field is double that for one source. The situation is different
along the axis of the array (z-axis). Looking to the right along the + z-axis, waves coming
from the left source must travel one-hall wavelength before reaching the source on the
right. This amounts to a 180° phase lag. The waves then continue traveling to the right
along the +:z-axis and maintain this same phase relationship on out to the far field. Thus,
in the far field. waves from the two sources traveling in + z-direction arrive 180° out-of-
phase (due to the one-hall wavelength separation of the sources) and are equal in ampli-
tude (since the sources are) Therefore, there is perfect cancellation and the total field is
zero. The same reasoning can be used to see the effect in the —:z-direction. The total
pattern has a relative value of two in the + x-directions, zero in the +:z-directions, and a
smooth variation in between (because the phase difference between waves from two sources
changes smoothly from 0 to 180° as the observer moves from the broadside direction to
the axial direction along a constant radius from the array center). This pattern is sketched
in Fig. 3-3b. The pattern in three dimensions can be imagined by holding the z-axis in
your finger tips and spinning the pattern shown to sweep out the total pattern.

We can also calculate the array factor exactly. Using phases corresponding to the path
length differences shown m Fig. 3-3c in (3-3) the array factor s

AF = ¢ malnme 4 lr”‘“"""-zms(ﬂgms U). (3-4)
The distance between the elements is d = 4/2, so fd/2 = n/2 and {3-4) becomes
AF =zcos‘gmsu). (3-5)
Normalizing the array factor for a maximum value of unity gives
[(0) = cos(; cos 0 ) (3-6)

This is maximum for 0 =n/2 since cos{(x/2) 0]=1 and zero for /=0 since
cos[(r2) * 1] = 0. This result agrees with the inspection method that leads to Fig. 3-3b.

Example 3-2. Two Isotropic Point Sources with Identical Amplitudes and
Opposite Phases, and Spaced One-Half Wavelength Apart (Fig. 3-4)

I we consider the array to be transmitting the gross features of the pattern may be
determined by inspection as shown in Fig. 3-4a. The path lengths from each point source
to a point on the v-axis are the same. But the left source 1s 180° out-of-phase with respect
to the right source, thus, waves arriving at points on the v-axis are 180° out-of-phase and
equal in amplitude giving a zero field. Along the z-axis (in both directions) the 180"
phase difference in the currents 1s compensated for by the half-wavelength path difference
between waves from the two sources. For example, in the +=-direction the waves from
left source arrive at the location of the right source lagging the phase of waves from the
right source by 360° (180° from distance traveled and 180° from excitation lag). This is an
in-phase condition and thus the waves add in the far field giving a relative maximum,
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Figure 3-4 Twoisotropic point sources with identical amplitudes and opposite
phases, and spaced one-half wavelength apart (Example 3-2). (2) Inspection
method. (b) Polar plot of the array factor magnitude |f(0)| =
| sin[(n/2) cos U] | .

From these few pattern values the entire pattern can be sketched yielding a plot similar to
that of Fig. 3-4b.
We calculate the array factor exactly using (3-3) and Fig. 3-3c as

AF = — Lo IMdnosd o g id Ixoss _ 9; sin(ﬂ‘-:cos 0). (3-7)
Using d = 4/2 and normalizing we have
1(0) = sin(f; cos 0 ) (3-8)

Plotting this pattern we obtain the same result as with the inspection method (see
Fig. 3-4h).
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Example 3-3. Two Isotropic Point Sources with Identical Amplitudes and
90° Out-of-Phase, and Spaced a Quarter-Wavelength Apart (Fig. 3-5)

Wayes leaving the left source of the transmitting array in Fig. 3-5 and traveling in the
+ z-direction arrive at the right source delayed by 90° due to the quarter-wavelength
path. But the excitation of the rnight source lags the left source by 90° so waves in the
+ z-dircction are in step and add in the far field. For waves leaving the right-hand source
and traveling in the —z-direction, the phase at the location of the left source is 180°
lagging with respect to the wave from the left source (90° from path difference and 90°
from excitation). See Fig. 3-5b. At angles between 0 =0° (+:z-direction) and 180°
(—z-direction) there is a smooth pattern variation from two (perfect addition) to zero
(perfect cancellation). This pattern is shown in Fig. 3-5¢ and is the so-called cardioid
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Figure 3-5 Twoisotropic point sources with identical amplitudes andthe
right element lagging the left by 90, and spaced a quarter-wavelength
apart (Example 3-3). (a) Array configuration. ( b) Inspection method. (¢)
Polar plot of the array factor f(0) = cos[(z 4)(cos 0 — 1)]. This pattern
shape is called a cardioid pattern
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pattern. It is used frequently in the area of acoustics for microphone patterns. The re-
sponse is strong in the direction of the microphone input and weak in the direction where
the speakers are aimed to reduce feedback.

Using these excitations in (3-3) and Fig. 3-3c we can calculate the array factor expres-
sion as follows

AF = lp—jld.zkni + Ie—j-'!lt.f.ir!m.l

= f-ﬁl_‘CT“ JMd 2 icos 8- e 4] + eﬁﬂ"zkﬂ" l‘-ll]
. pd x
= Axid) e S .
e Zcos(zcosﬂ 4). (39)
Substituting d = 4/4 and normalizing gives
(0) = cos [;-' (cos 0 — I)]. (3-10)

This function has a maximum value of unity for & = 0°, 1/\/2 for @ = 90°, and zero for
0 = 180° Again, this agrees with the pattern of Fig. 3-5¢ obtained by inspection,

Example 3-4, Two Identical Isotropic Point Sources Spaced One Wave-
length Apart (Fig. 3-6)

Since the currents are in phase the fields of each element add perfectly (1.e., double) in the
+ x-directions. Also. since the phase lag of the field from one element is 360° (one
wavelength additional path length) with respect to the other in either the +:z or —:z
direction, their effects add perfectly in the far field. However, with the one-wavelength
spacing there are directions of perfect cancellation as indicated in Fig. 3-6b. To determine
these directions we reason as follows. For perfect cancellation the waves from the two
sources must be 180° out-of-phase. This means a path length difference of onc-half
wavelength, Since the path length difference as a function of @ is 4 cos @ (see Fig. 3-3¢) we
must solve for the values of @ such that

—

scosll= + or cosfi=+ (3-11)

Pdl e

The solutions are 60° and 120°. By filling in smooth variations between the maxima and
zeros indicated in Fig. 3-6b, the pattern of Fig. 3-6¢ results.

The exact array factor calculation parallels that of Example 3-1 except that with d = 2
in (3-4)

AF=2co:(ﬁgcos u,-.?cos(rt cos ). (3-12)

The normalized array factor 1s

f(?) = cos(xn cos 1). (3-13)
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Figure 3-6 Two isotropic point sources with identical amplitude and phase
currents, and spaced one wavelength apart (Example 3-4). (a) Array
configuration. (b) Inspection method. (c¢) Polar plot of aray factor
magnitude | f(i) | = | costx cos ) |
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Note that | £(0)| has a maximum value of unity for # = 0°, 90°, and 180° and is zero for
0 = 60° and 120°. These are the same results we obtained by inspection in Fig. 3-6¢. This
example illustrates the fact that multiple lobes will appear for spacings greater than a
half-wavelength.

The inspection method is difficult to use in all but the simplest arrays. There-
fore, we shall examine the general array factor given by (3-3) for the case of
equally spaced arrays. We will study its properties and develop a method to
obtain a quick sketch of the radiation pattern.

Suppose we have a linear array of several elements. If the elements are equally
spaced as shown in Fig. 3-7, the array factor expression (3-3) may be simplified.
The angle 0 is that of an incoming plane wave relative to the axis of the recciving
array. The isotropic sources respond equally in all directions but when their
outputs are added together (ecach weighted according to I,), a directional re-
sponse is obtained. The phase of the wave arriving at the origin is set arbitrarily
to zero, so &, = 0. The incoming waves at element 1 arrive before those at the
origin since the distance is shorter by an amount d cos f. The corresponding
phase lead of waves at element | relative those at 0 is £, = fid cos 0. This process
continues and (3-3) becomes

b

N-1
AF = j'" < e .l",J!‘rnnll 4 fzt"”'"““' i Z l'emnnu-.u_ (3_14)

n=0

Now consider the array to be transmitting. If the current has a linear phase
progression (ie., relative phase between adjacent elements is the same), we will
separate out this phase explicitly as

I,= A e (3-15)

Figure 3-7 Equally spaced linear array of isotropic point sources.
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where the n + Ith element leads the nth clement in phase by a Then (3-14)
becomes

-1
AF = Z A e/Mpd etz (3-16)
n=0
Define
W = Pdcost + x. (3-17)
Then
N-1
AF = Z A ™, (3-18)
a=0

This array factor is a function of § and may be recognized as a Fourier series.
This form is convenient for calculations, but we usually want field plots in terms
of the polar angle (. The nonlincar transformation from ¥ to @ given by (3-17)
can be accomplished graphically.

For example, consider two clements spaced one-halfl wavelength apart and
with identical currents as in Example 3-1. We found the normalized array factor
in (3-6) to be /(0) = cos[(rn/2)cos A]. In this case ¥ from (3-17) is

= fdcos 0 + a2 =ncos (I (3-19)

since d = 4/2 and 2 = 0. Now { may be expressed in terms of i as

!(U'l}=cos'f.

(3-20)

This is a rather simple function to plot. From it we wish to obtain a plot of | ']
as a function of . To do this first plot |f(¥)| from (3-20) as shown in
Fig. 3-8. Then draw a circle of radius ¢ = = below it as shown, since (3-19) is a
polar equation of a circle. For an arbitrary value of . say ,. drop a line
straight down until it intersects the circle. The values of #=0, and | | =/,
corresponding to ¢ = ¢, are indicated on the figure. Locating several points
taken in this fashion will lead to the desired sketch. Note that as ¢/ ranges from 0
to 7, 4 goes from = 1o —= in this case. The resulting polar plot is shown in
Fig, 3-10h. It is the same as the result obtained using inspection in Fig, 3-3.
Belore proceeding with more specific examples. let us consider a general array
lactor and how a polar pattern is obtained from it. The magnitude of a typical
array fuctor is plotted as a function of w n Fig. 3-9. Below it a circle is con-
structed with a radius equal to fid and its center located at i = z The angle (/ is
as shown, It is very simple to use this plot. For a given value of ¢/ locate the
intersection of a radial line from the origin of the circle and the perimeter, point
a. The corresponding value of ., at point b, is on a vertical line from . The array
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. iﬂéli-——lmgn

Figure 3-8 Procedure for obtaining the polar plot of the array factor of two
elements spaced one-half wavelength apart with identical currents.

factor value corresponding to these values of i and 0 is then point ¢, also on the
vertical line from a. Notice that the distance from the ¢ = 0 axis to a point, say
at a, can be written as y = a + fd cos 0, which is (3-17).

To illustrate the procedure further we will find the polar plots of the array
factors for some two element arrays with equal current amplitudes which were
discussed carlier in this section. The array factor as a function of i, from (3-18)
with N =2, is

il

— 4 gl = LMY~ R 2) SJAN 2NN e 2) 3
A 1 + ¢ ¢ (e + & )= 2e cos

(3-21)
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Figure 3-9 Construction technique for finding the array factor as a function
of polar angle (.

where A, = A, = 1. Taking the magnitude eliminates the exponential factor and
normalization removes the factor of two. The normalized array factor magnitude
is

| f(w)]| = ]‘oos % (3-22)

which also follows from (3-20). The array factor | f(¥)] 1s the same for all two
clement arrays with the same current amplitudes, and is plotted in Fig. 3-10a. Of
course, i changes with element spacing and phasing. For example, il the spacing
is a half-wavelength and the phases of each element are zero (x = 0), the pattern
is obtained as shown in Fig. 3-8 with the resulting pattern plotted in Fig. 3-10b.
This is Example 3-1 discussed earlier. For Example 3-2.d = 2,2 and o = n. The
resulting polar plot of the array factor using the procedures of Fig. 3-9 is shown
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fighi=icos 5l

th)

Leifion

Figure 3-10 Array factors for two-element arrays with equal
amplitude currents. (a) Universal array factor. (b) Polar plot for
d = 32, fid = n.2 = 0 (Example3-1). (c) Polarplotiord = /./2, fid = n,
a=n (Example 3-2). (d) Polar plot d = +/4, fid = n/2, x = —n/2
(Example 3-3)
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in Fig. 3-10c. The array factor for Exampie 3-3 with d = 2/4 and 0 = —7n/2 is
shown in Fig. 3-104.

By examining the general array factor expression in (3-18) some general
properties may be derived which aid in the construction of pattern plots. First,
the array factor is periodic in the variable Y with period 2x. This is easily shown
as follows.

AF() + 2m) = T A, 6420 = T 4 ool = 3 4,0 = AF()). (3-23)

The array factor of a linear array along the z-axis is a function of 0 but not of ¢
(the element pattern may be though). In other words, the array factor is a
pattern that has rotational symmetry about the line of the array. Therefore, its
complete structure is determined by its values for

0<f<m (3-24)

This is called the wvisible region. This corresponds to —~1 <cosfl <1 or
—fd < fid cos 0 < fd or

a—pd <y <a+ pd (3-25)

Hence, the visible region in terms of 0 and ¢ are given by (3-24) and (3-25),
respectively. The element spacing of the array in terms of a wavelength, d/4,
determines the size of the circle in Fig. 3-9 and thus how much of the array
factor appears in the visible region. The visible region in the variable  is of
length 2fd, as seen from (3-25). This is the diameter of the circle in Fig, 3-9.
Suppose that exactly one period appears in the visible region. Since the period is
2n we have 2n = 2fd = 2(2n/2)d or d//. = 4. Thus, exactly one period of the array

factor appears in the visible region when the element spacing is one-half wavelength.

Less than one period is visible if 2fd < 2r which corresponds to d/4 < 4, that is,
for spacings less than one-hall wavelength. For spacings greater than one-half
wavelength more than one period will be visible. For one-wavelength spacings
two periods will be visible. For spacings larger than a half-wavelength there may
be more than one major lobe in the visible region, depending on the element
phasings. Additional major lobes which ris¢ to an intensity equal to that of the
main lobe are called grating lobes. In the one-wavelength spaced, two-element
array factor of Fig. 3-6¢ there are grating lobes at 6 = 0 and 180°, assuming that
the lobe in the @ = 90° direction is the desired lobe. In most situations, it is
undesirable to have grating lobes. As a result, most arrays are designed such that
the element spacing is less than one wavelength, usually close to a
half-wavelength.
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3.2 UNIFORMLY EXCITED, EQUALLY SPACED LINEAR ARRAYS

3.2.1 The Array Factor Expression

A very important special case of equally spaced lincar arrays is that of the
uniformly excited array. This is an array whose element current amplitudes are
identical, so

.40=A|=A1="‘. (3'26)

In this section we will consider only element phasings of a linear form accounted
for by interelement phase shift «. The array factor from (3-18) is then

N-1
AF=A° z C"'-*‘:Ao(l +P~+"'+€Jw_]»). (3-27)

a=0

Only a few short steps are required to sum this geometric series. First multiply
(3-27) by ¢/ to obtan

AFe® = Ag(e® + ¢/ + -+ + ™). (3-28)
Subtracting this from (3-27) gives

AF(1 — e#) = Ao(1 — &™)

or
| =g

AF = o Ao- (3-29)

This may be rewritten in a more convenient form as follows.

v — | oISV2 N2 _ - iNe 2

AF = A, o — 1 = Ao el gvi_ g w2
= o~ :»r:-”.‘iﬂ(_N_'i‘._z) 3-30
Age (7)) (3-30)

The phase factor ¢~ '"?2 is not important (unless one is going to further

combine the array output signal with the output from another antenna). In fact,

if the array were centered about the origin, the phase factor would not be present
since it represents the phase shift of the array phase center relative to the origin.
Neglecting the phase factor in (3-30) gives

sin(Nv/2)
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This expression is maximum for ¢ =0 and has a maximum value most easily
seen from (3-27) as

AF( =0)= Ag(1 + 1 + -+ 1) = A N. (3-32)
Dividing this into (3-31) gives the normalized array factor
_ sin(Ny/2)
fly)= N sinv2)’ (3-33)

This is the normalized array factor for an N eclement, uniformly excited, equally
spaced array which is centered about the coordinate origin. This function is
similar to a (sin u)/u function with a major difference that the side lobes do not
die off without limit for increasing argument. In fact, the function (3-33) is
periodic in 2x, which is true in general as we showed in (3-23).

In Fig. 3-11 are sketched the array factors for three values of N.! A number of
trends can be seen by examining the plots in Fig. 3-11.

[. As N increases the main lobe narrows.

2. As N increases there are more side lobes in one period of f(). In fact, the
number of full lobes (one main lobe and the side lobes) in one period of /(i)
equals N — 1. Thus there will be N — 2 side lobes and one main lobe in each
period.

3, The minor lobes are of width 2a/N in the variable ¢ and the major lobes
(main and grating) are twice this width.

4, The side lobe peaks decrease with increasing N. A measure of the side lobe
peaks is the side lobe level which we have defined as

| maximum value of largest side lobe |

Eant = L -34
St | maximum value of main lobe | (3:34)

and it is often expressed in decibels. The side lobe level of the array factor for
N=5is —12dB and it is —13 dB for N = 20. It approaches the value of a
uniform line source, —13.3 dB, as N is increased.

| f(y)] is symmetric about = It is left as an exercise to show this.

Ln

The radiation field polar plots in the variable # can be obtained from [ () as
discussed in Section 3.1. For example, consider the two-clement case. Then
(3-33) becomes

sin
2sin(2)

f(y)= (3-35)

" A comprehensive set of array factor plots for many values of N is found m [1]
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uniformly excited linear array for a few array
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This is a universal pattern function for all equal amplitude two element arrays
and is plotted in Fig. 3-10a. Note that by the techniques used in Section 3.1 we
found that the array factor for a two element array was cos(y//2); see (3-20). It
can be shown that this is identical to (3-35).

The universal array factor for a four-element, uniformly excited, equally
spaced array is plotted in Fig. 3-12b. Let us find the array factor polar plot for

- - - —_—
"'llﬂl 1"' 'f,ﬂ!ﬂi

fa)

)

fe)

Figure 3-12 Array factor for a four-element, uniformly excited,
equally spaced phased aray. (a) The array excitations (D)
Universal pattern for N = 4. (¢) Polarplotford = 22and 2 = 7,2
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the special case of half-wavelength spacing and 90° interelement phasing (ie.
o = m/2). The array excitations are shown in Fig. 3-12a. The pattern plot can be
sketched quickly by locating prominent features such as maxima and zeros.
Then vertical lines are dropped down from these points to the circle below.
From the intersection points with the circle. straight lines are drawn in to the
center of the circle. The perimeter of the circle has a pattern value of unity and
the center a value of zero. For lincar polar plots such as this one. the magnitude
of the pattern factor is linearly proportional to the distance from the origin. For
example, if the circle radius is 4 cm and the pattern value to be plotted is 0.25,
the pattern point is 1 em from the origin along a radial line at the appropriate
angle 0. After locating the relative maxima and the zeros a smooth curve is
drawn joining these points. The complete polar plot is shown in Fig. 3-12¢. Note
that a polar plot can be made larger or smaller by expanding or contracting the
construction circle.

3.2.2 Main Beam Scanning and Beamwidth

A maximum ol an array factor occurs for ¢ = 0. Let f, be the corresponding
value of ¢ for which the array factor is maximum. Then from (3-17) we have
0= fid cos U, + a, or

3= - fid cos (l, (3-36)

This is the element-to-clement phase shift in the excitation currents required 1o
produce an array factor main beam maximum n a direction @, relative to the
line along which the array elements are disposed. Thus. if we want an array
factor maximum in the 0 =@, direction. the required element currents from
(3-15) with (3-36) are

!. — ‘,mr = ¢ mid oo Ny [3_3?)

for a uniformly excited. equally spaced linear array. For the broadside case
(0, =90°) x = 0. For the endfire case (i, = 0" or 180°) x = —fid or fid. In the
example illustrated n Fig. 3-12. x=n2and d =22 s0 0, =cos '(—2/fid) =
cos '(—1) = 120°. This main beam scanning by phase control feature can be
explicitly incorporated into ¢ by substituting (3-36) into (3-17) giving

W = fid(cos 1} — cos (1) (3-38)

Scanning is discussed further in Section 3.7.

A measure of the width of the main beam of a umformly excited. equally
spaced linear array is given by the beamwidth between first mdlls, BWFN, which is
illustrated in Fig. 1-9 for a general pattern. The main beam nulls are where the
array factor (3-33) first goes to zero in 2 plane containing the hincar array. The
zeros of the numerator of (3-33) occur for Niby« 2 = + nx. When the denomina-

e et Ay

A= Pyt =
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tor also goes to zero (§¢gx = +nx) the pattern factor is unity, corresponding to
the main beam (n = 0) and grating lobes. The first nulls associated with the main
beam occur for Nign/2 = +n. For a broadside array (x = 0%) ¢ = fd cos 0. so
the angles 0 for the first nulls are found from

N 2rn

sam N2 ok O, (3-39)
AR |
or
A
O,N=cos"(i ﬁ}) (3-40)
The BWFN is then
BWFN = Igrmm = orrs nuul (3"'”)
- -1 i ) . -1 i.‘ , -4
S ( Na] (*.w' (342)

For long arrays (length L = Nd » /) we can approximate (3-42) as follows

x4 (!' . 1) a
2 "Nd ~\2 "Nd)|T Na
For an endfire array (a typical endfire pattern is shown in Fig. 1-11¢) the beam-

width between first nulls is twice that from the main beam maximum to the first
null. It is given approximately by

BWEN = (near broadside).  (3-43)

BWFN = 2\/E (endfire) (3-44)
Nd
for long arrays.

The half-power beamwidth (HP) is perhaps a more popular measure of the
main beam size than is BWFN. Both depend on the array length Nd and main
beam pointing angle 0,. For a long (Nd » 2) uniformly excited linear array the
HP is approximately [2]

HP = 0886 ':d csc i, (near broadside) (3-45)
and
HP =2 /0886 = (endfire). (3-46)
N Nd

By comparing the formulas for HP and BWFN it is seen that HP is roughly
one-halfl of the corresponding BWFN value for long. uniformly excited linear
arrays,
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3.2.3 The Ordinary Endfire Array

In many applications antennas are required to produce a single pencil beam.
The array factor for 2 broadside array produces a fan beam, although proper
selection of array elements may yield a total pattern that has a single pencil
beam. Another way to achieve a single pencil beam is by proper design of an
endfire array, We have said that an endfire condition results when 0, = 0° or
180°, which corresponds to « = — fd or + fd. Such arrays for which a = +fd
are referred to as ordinary endfire arrays. If the spacing d is a half-wavelength
there will be two identical endfire lobes (see Fig. 3-10c, for example). There are
several ways to eliminate one of these lobes, thus leaving a single pencil beam.
The most obvious way is to reduce the spacing below a half-wavelength. The
visible region is 2fd wide in the variable y, and to eliminate the unwanted major
lobe (grating lobe) we should reduce the visible region (and thus the spacing d)
below the half-wavelength spacing value of 2z Since the grating lobe half-
width. (maximum to null) is 2z/N, we can eliminate most of it by reducing
the visible region by at least n/N, that is,

Zﬁd:;_h*“

N (ordinary endfire). (3-47)

Dividing this by 2f gives the condition on the spacings as
A 1
o § (et inary ‘ 3
d < 2(1 ZNJ (ordinary endfire) (3-48)

An ordinary endfire array with spacing d satisfying (3-48) will produce a single
endfire beam at 0 =0° for x = —fid or at 0 = 180° for = = fid. A five-element
array example is shown in Fig. 3-13. From (3-48) we must have d <
(4/2)(1 — 1/10) = 0.454. Selecting d = 0.45/ with a main beam direction 0, =
180°, the required element-to-clement phase shift is a= —fd cos (), = fid =
(2m/2)(0.454) = 0.9x.

3.2.4 The Hansen—Woodyard Endfire Array

In the ordinary endfirc case the interclement excitation phase, x = + fid,
exactly equals the spatial phase delay of waves in the endfire direction. It is
possible to make the main beam narrower and thus increase directivity by
increasing the interelement phase shift. thereby moving some of the main beam
outside of the visible region. If the phase shift is increased over the ordinary
endfire case such that

xa= t (ﬁd + %j (Hansen-Woodyard) (3-49)

e e

S

e el
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A il

0 Dar 0.8 1.2 167 2

Figure 3-13 Asingle main beam ordinary endfire array of five elements that are
uniformly excited, equally spaced with d = 0.45/, and phased with 2 = 0.9x.
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it is called the Hansen-Woodyard condition for increased directivity [3]. This
condition was obtained by studying several long line sources, but also applies to
long arrays.

To illustrate the Hansen-Woodyard condition, return to Fig. 3-13 and notice
that as « is increased the circle will move to the right but the radius of the circle
will remain the same for fd unchanged. This will cause the main beam to narrow
since part of the main lobe of the | f()| plot does not appear in the visible
region. However, the side lobes will become larger relative to the main beam
and the back lobe will increase in magnitude. To prevent the back lobe from

IF i) \
- Ordinary endfire >

I Handsen-Woodyard endlire =

/ \

| ! /_% \ .L_-._ — 2

F_ a = 09%- _+ —Bd = 0.75—=

Figure 3-14 Single endfire beam for a five-element
Hansen-Woodyard increased directivity array with
2=0.9n and J = 0.35-.
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becoming equal to or larger than the main beam it is necessary that the phase «
be less than z. Using this fact with (3-49) yields

a:ﬂd+%qn (3-50)

or

d< %(I = %) (Hansen- Woodyard). (3-51)

Therefore, to achieve a single main beam in the Hansen-Woodyard case, it is
necessary that the elements be more closely spaced than for the ordinary endfire
condition of (3-48).

An example of a Hansen-Woodyard increased directivity array is shown in
Fig. 3-14. The array has five elements, so from (3-51) we must have d <
(4/2)(1 — 1/5) =044 Choosing d=0.35. leads to a=pd +n/N=07Tn+
0.2 = 097, The main beam is narrower than if the ordinary endfire condition
were used (see Fig. 3-13), but the side lobes are higher. Nevertheless, the array
exhibits increased directivity. The directivity as a function of spacing s
compared to that of an ordinary endfire five-element array in Fig. 3-15,

The Hansen-Woodyard example of an increased directivity array is important
for it is one of the very few instances where it is practical to obtain more
directivity than would normally be obtainable from an array of a given size.

30 T | 7 T T
Hansen-Woodyard case a = fid + =/N
= = = — = Ordinary endfire case o = §d

20 -
&
=
i
g

10 -

0
0

d/\

Figure 3-15 Comparison of directivities for two five-element equally spaced,
uniformly excited endfire arrays. From (3-48).d < 0.45/ forordinary endfire; and
from (3-51), d < 0.4, for Hansen-Woodyard endfire.



134  ARRAYS

Such arrays are said to be superdirective. Generally, the advantages of superdi-
rectivity are illusory since superdirectivity does not usually lead to supergain. A
measure of supergain is a quantity called the supergain ratio, which is the ratio
of the total power in all pattern space (visible and invisible) to the power in the
visible region only. Supergain ratio is equal to one plus the antenna Q. Thus, a
large value of antenna Q accompanies superdirective antenna arrays. The large
stored energy in turn requires that the element currents be exceptionally large
with a corresponding increase in ohmic losses. As a result, superdirectivity can
be achieved without supergain.

We will encounter the Hansen-Woodyard condition again when we study the
Yagi-~Uda antenna in Section 5.4 and the helix in Section 6.1.2.

3.3 PATTERN MULTIPLICATION

So far in our study of arrays we have discussed only arrays of isotropic point
sources, Actual arrays are usually made up of nearly identical element antennas
which, of course, are not isotropic. In this section we discuss how to compute
the radiation pattern from such arrays. We will find that the array factor still
plays a major role in these pattern calculations.

When the elements of an array are placed along a line and the currents in each
element also flow in the direction of that line, the array is said to be collinear. As
a simple example of a collinear array suppose we have N short dipoles as shown
in Fig. 3-16. The elements are equally spaced a distance d apart and have cur-
rents Iy, Iy, I3, ..., [x—y. The total current is the sum of the =-directed short
dipole currents and thus is z-directed and the vector potential is also. The vector
potential integral in (1-101) reduces to a sum over the element currents (modeled
as ideal dipoles) as*

e ¥ : )
A:=l4ﬁr A:{‘,O+ fl?JMcm#+fzeJﬁ'Zlcmv+__,
Xz _J.ﬂl\ Tad con - !"_-J_H' _\.Al S find cos i }_52
!\_Il. '] 4“,’ Aa- E !n( (. )
n=0

? This result could also be obtained by writing the =-directed current density as
Joom () S Todt) + 1,802 = d) + 1,8(=° = 2d) + -+ Iy 8(=" — (N = 1)) Az
and substituting this into (1-100) giving

o | .

Az | [1.8() 4 1,8(=" = d) 4 - Jet? " d:

™
A =
= dzr

from which (3-52) follows

R Y

o 7 F
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Figure 3-16 A collinear array of short dipoles.

in the far field. Then from (1-104)

‘,-Jﬂf N=1 )
Ey= jopg - 8z sin 0 T 1elier. (3-53)

From this expression we can identify sin @ as the pattern of a single element by
itsell, called the element partern. The remaining factor

N=1

AF = ¥ 1 e/ (3-54)

n=0

is the array factor of (3-14). The array factor may be thought of as a sum of
isotropic point sources located at the center of each array element. The array
factor is that factor of the radiation pattern which is found from the element
currents (amplitudes and phases) and their locations. On the other hand. the
element pattern is that factor of the radiation pattern determined by the indivi-
dual properties of an element (its current distribution and orientation in space).
We shall see that this factoring process holds in general if the elements have the
same pattern and are similarly oriented.

Let us now consider a slightly more complicated case. Suppose for the siake of
explanation we have N identical element antennas forming a collinear array
along the z-axis. The nth element is centered at = = =, and has a current distribu-
tion i,(z'). We are now relaxing the equal spacing constraint. The total current
along the z-axis is

N=1

(=)= Y i) (3-55)

n=0
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The vector potential is then
o= ik (x N-13 e
A= | Yil)ed*=2qr. (3-56)

4nr “—m m=0

The far-ficld electric field from this and (1-104) is

e iy N=1
E = jopu = .goﬁ,(ﬂ) (3-57)
where
E(0)=sin0 [ if)el <0 4= (3-58)

is the pattern of the nth element.

I the array possesses no symmetry (3-57) cannot be simplified. But if the array
elements are similar, a great deal of simplification is possible. By similar we mean
that the currents of each antenna clement are in the same direction, of the same
length, and have the same distribution (although there may be different current
amplitudes and phases for each element). Then the patterns of (3-58) will be
similar, that is. have the same spatial variation but may have different ampli-
tudes and phases. In the example at hand the currents are all =-directed. Now
assume that cach element is of length /7, has a normalized current distribution
over its length of i(="). and an input current of /,. Then

iW:=)=1,-=z, (3-59)
where z, is the position of the nth element center along the z-axis. Substituting
this into (3-58) gives

o 2

E(0)=sin 01, | i(E = z,)elPicoe g¢ (3-60)

e~ 2

where ¢ replaces =", Let 1 = { — =, then (3-60) becomes

N i
E(0)=sin 0, | i(z)elMr*wm® g
| [

72
=sin 0| i(r)e’""""“dt'l,,e”“""'. (3-61)
Y2
To maintain consistent notation, we replace t by =* vielding
2
E(f)=sin0]| i(z)e* " d= ,f,,v““- MES (3-62)
bl |

pivodydsfal

.,.,‘;;_M-‘.f.'.. by

Dl
:
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The pattern for each element of an array of similar elements given by (3-62) is a
product of the pattern of the current distribution, and the amplitude and phase
of excitation I, and the last factor represents the spatial phase due to the
separation from the origin. Substituting (3-62) into (3-57) gives

e i i#1d . N=1
E, = jwopu—— |sin 0 | i(z")ell= ot g Z I pirnsns, (3-63)
dnr Y2 n=0
The factor
12
sin@ | o) e d (3-64)
*=12

when normalized s the element pattern, g,(f), of any clement in the array of
similar elements. The sum

N o=

! 1
AF = ) ] et (3-65)

a=0

is the unnormalized array factor.

In going from (3-57) to (3-63) it was necessary to assume that the elements of
the array were similar. When this is true the electric field may be written as a
product of an element pattern, as in (3-64), and an array factor, as in (3-65).
Note that the array factor of (3-65) is the pattern of a linear array of N point
sources located at positions {=,} on the z-axis. If the elements are equally spaced
(3-14) results. If further, they are uniformly excited the array factor reduces to
(3-31). This result is not restricted to collinear elements but may be applied to
any array of similar elements. This will be discussed below.

The process of factoring the pattern of an array into an element pattern and
an array factor is referred to as the principle of pattern multiplication. 1t is stated
as follows: The electric field pattern of an array consisting of similar elements is
the product of the pattern of one of the clements (the element pattern) and the
pattern of an array of isotropic point sources with the same locations, relative
amplitudes and phases as the original array (the array factor).

In Section 1.5 we wrote the normalized electric field pattern of a single
antenna as a product of a normalized element factor g and a normalized pattern
factor f. For array antennas we expand this concept and call the pattern of
one element antenna in the array an element pattern g, . It in turn is composed
of an element factor which is the pattern of an infinitesimal piece of current on
the array element (i.e. an ideal dipole) and a pattern factor which is the pattern
due 1o its current distribution. The complete (normalized) pattern of an array
antenna is then

F(6, ¢) = g.(0. 6) /(0. ¢) (3-66)
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where g,(0, ¢) is the normalized pattern of a single element antenna of the
array (the element pattern) and (6, ¢) is the normalized array factor.

To illustrate pattern multiplication, consider two collinear short dipoles
spaced a half-wavelength apart and equally excited. The element pattern is sin 0
for an element along the z-axis and the array factor was found in (3-6) to be
cos[(m/2)cos 0]. The total pattern is then sin  cos[(n/2)cos 8]. The patterns are
illustrated in Fig. 3-17.

The principle of pattern multiplication can be used directly for many different
geometries. For example, suppose line sources positioned along the z-axis are
not z-directed, as in a collinear array, but are parallel as shown in Fig. 3-18. Let
7 be the spherical polar angle from the x-axis. Note 0° < y < 180°. The element
pattern is then found from the following expression which is analogous to (3-64)

2
siny | i(x)e o dy. (3-67)

2

Note that cos y = sin 0 cos ¢. The array factor of (3-65) is unchanged. For
example, il two short dipoles are parallel as shown in Fig. 3-194, the total
pattern is found by pattern multiplication as indicated in Fig. 3-19b and 3-19¢.
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Figure 3-17 Amay of two half-wavelength spaced, equal amplitude,
equal phase, collinear short dipoles. (&) The array. (b) The pattern,

o
a
i

\an

Vi

g

N

)X

Fia- =2

s

33 PATTERN MULTIPLICATION 139

Figure 3-18 A linear array of parallel line sources.

To illustrate parallel element arrays further, suppose the element antennas of
Fig. 3-18 are half-wave dipoles. Also suppose there are five elements arranged
and excited for ordinary endfire as in Fig. 3-13. The complete pattern is the
product of the single half-wave dipole element pattern and the array factor found
from five isotropic sources. The element pattern for a half-wave dipole element
in the array is

cos[(n/2)cos ;]

g.(7) = g s (3-68)
which is (2-10) with # replaced by 7. Since cos ; = sin 0 cos ¢ then
sin 3= /1 —sin? 0 cos” ¢
and (3-68) becomes
cos[(r/2)sin 0 cos ¢]
0. §) = — ——— = 3
9a(0. ) 7l s Do ¢ (3-69)
The array factor is (3-33) with N=35, or
Tt sin(3y) :
1) $sin(iy)’ (3-70)

For this example 2 = 0.9z and d = 0452 so § = fld cos ) + 2 = 097 cos () + 0.9x,
and (3-70) is

sin(2.25xn cos 0 + 2.257)
” B e—— e S, A1 1_
1(0) 5 sin(0.45x cos 0 + 0.45x)° Ll
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Figure 3-19 Aray of two half-wavelength spaced. equal amplitude, equal phase,
parallel short dipoles. (a) The array. (b) The xz-plane pattern. (¢) The v=-plane pattern.
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The total pattern of the array in terms of # and ¢ is then the product of (3-69)
and (3-71)

cos[(z/2}sin 8 cos ¢] sin(2.25x cos 6 + 2.257)
/1 —sin’ 0 cos® ¢ 5 sin(0.45x cos 0 + 0.45n)”

F(0. ¢) = (3-72)
The polar plot of this pattern is easily obtained by multiplying the plot in
Fig. 2-5b, where the axis of symmetry is now the x-axis instead of the z-axis,
times the polar plot of Fig. 3-13. This will be a polar plot similar to the array
factor plot except that the endfire lobes will be slightly narrower, and there will
be a pattern zero in the y = 0° direction caused by the element pattern.

3.4 DIRECTIVITY OF UNIFORMLY EXCITED,
EQUALLY SPACED LINEAR ARRAYS

Now that we have developed a method for obtaining the entire pattern expres-
sion for an antenna array we can discuss directivity of various arrays. The
directivity is, of course, determined entirely from the radiation pattern. The array
gain can be found by multiplying the array directivity by the radiation efliciency
ol one element (assuming all elements are alike).

To derive directivity expressions we use D = 4z/Q . first finding the beam
solid angle as

Q= [[|FO. ¢)F d2 = [[|4.0. 9)1*| 1(0) d2 (3-73)

where g,(0. ¢) and f(0) are the normalized element pattern and linear array
factor and dQ = sin 0 d0 d¢.

Let us begin by assuming the elements are equally spaced. uniformly excited.
and isotropic. This assumption leads to approximate results for situations where
the element pattern is much broader than the array factor and the main beams
of both are aligned. The appropriate array factor from (3-33) can be written as

sin(Nuy "’)
| S = 1 N sin(62)| (3-74)
1 2 A=1 s
- T + J\’ Z (N — m)cos mus (3-75)
) m=1

where (3-75) is another form for {’- 74). This identity can be shown to be true for
N = 2 since from (3-75)| F(¥)]* = § + § cos ¥ = cos?(/2) as in (3-20). With the
simple expression in (3-75) it is casier to perform the integration in (3-73) in
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terms of the variable ¢. Using g,(6. ¢)=1, ¥ = Bd cos f + o, and sin 0d0 =
—(1/pd) dy in (3-73) gives

2® = A~z 1 i
Q= '|U d¢ _|; | 7(0)] sin 6 d6 = 2= _|~ i fW)P| - Fd)dw

+ 9

pd+a

2 ;
- | f(W)]? dy. (3-76)
7l 1)
Substituting (3-75) in the above yields
om (1 (M N v e
nrl=ﬁ.& !_\"J-w,dwll- ”Z'::(!\-m) |_m”cosm¢d'#’

27‘ T aat 2 N-1 smmw i+ 2 '
2 N —m)-

ﬁd N'b : ):' ( .

- ?}3 = (2pd) + 3 \zl 4 > o [sin m(pd + =) — sin m(~ fd + )]

4:: 4n“‘N

=N N’ )3 mpd ™ 2 cos ma sin mfid (3-77)

where (B-6) was used in the last step. The directivity s then

4n 1
=— = 3-78
» Q, 1 2 I N=-m ( )

N N2 Zl mfid

sin mfid cos mx

for a linear array of N sotropic sources spaced a distance d apart with interele-
ment phase shift 2.

The directivity expression becomes extremely simple for a broadsldt. array of
half-wavelength spaced elements. For half-wavelength spacings d = n4/2 with »
an integer and fd = nm. so sin mfid = 0. The array gives a broadside pattern
when all elements are in-phase. or x = (). These conditions simplify (3- 78) to

D= N d=n : x=0 (3-79)
The directivity of 2 broadside array of isotropic clements as a function of the
spacing in terms of a wavelength. d 4. is plotted in Fig. 3-20 for several element
numbers N. Notice that the directivity equals N at integer multiples of a hall-
wavelength. Also the directivity curves for each N take a sharp dip for spacings
near one and two wavelengths. This is caused by the emergence ol grating lobes
into the visible region. For example, see Fig. 3-6 where full grating lobes appear
[or one-wavelength spacing
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Figure 3-20 Directivity as a function of element spacing for a broadside array of isotropic
elements for several element numbers, N.

The directivity of a broadside array of isotropic elements is approximated by

D= 2%’ =2 H’f‘ (broadside) (3-80)
where L = Nd is the array length. This is a straight line approximation to the
curves in Fig. 3-20, being very accurate in the region from d slightly less than
one-half wavelength to nearly one waveleagth. This approximation is shown in
Fig. 3-20 for N = 10: note the excellent agreement over a limited. but important,
range of spacings. Note that (3-80) is exact for d = 4/2, since then (3-80) equals
N as in (3-79). Similar approximations exist for endfire arrays of isotropic ele-
ments. For an ordinary endfire array with x = + fd and the spacing satisfving
(3-48), the directivity is

D= 4-':_' (ordinary endfire) (3-81)

and for an endfire array of the Hansen-Woodyard type it is given by
D=z 7.28? (Hansen-Woodyard). (3-82)
These approximations improve as L increases. The increased directivity claimed

for the Hansen-Woodyard endfire array over that of the ordinary endfire array
is apparent from these directivily expressions.
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It is also interesting to examine the directivity expression of (3-78) for various
scan angles. A few cases are given in Fig. 3-21. From the figure it is apparent
that d = nA/2 with n an integer is again a special case since the directivity is
independent of scan angle. This will be shown mathematically in Section 3.5. For
the four cases shown, the greatest directivity in the broadside direction (0, = 90°)
is for the largest spacing. In fact we would obtain even higher directivities for
spacings up to d = 082 in the N = 5 case (see Fig. 3-20). As can be seen from
this example, the directivity of lincar arrays remains constant over a wide range
of scan angles near broadside: this will be explained in Section 3.7. The greatest
directivity in the endfire direction (0, = 0 or 180°) is for the largest spacing that
satisfies the single main beam criterion of (3-48), which is d <0454 for N = 5.
For the four spacings shown d = 0.44 is the largest spacing satisfying this single
endfire beam condition, and thus displays the largest endfire directivity.

Il the element pattern is included in the directivity calculation, the appropriate
directivity expression is

1
s 2 2« N-m, _ _ RG]
N + N? L mpd (a, sin mPd + a; cos mfidcos ma

where a,, a4, and a, are given in Table 3-1 for various clement patterns [5, 6].
The directivity of long arrays (L » Z) is primarily controlled by the array factor
if the element pattern is of low directivity and its major lobe is aligned with that
of the array factor. In cases such as these, the approximate formulas of (3-80) to
(3-82) can be used.

10 T T T T T T T T Y ] T T J T !
| ——— d/x=05 x X x dA=03 a=—gdcosé, o
o6 o0 dh=086 ® e e 4n-04 N=5§ ]
—* » . '-'}
. .
e L - 3
g x x X . . ’ x X 3
T B e e Y e e e e _————— - — - ————
g ¥ LS - 3
a <G o g L S0P dieo s e e de dee s des® x ® -
© e & X s 28 o y
[ I 3y x ¥ %% % o % %X %xxx xX =5
0 I A | 1 ) l ry 1 i i )
0" 20° a0’ 60 80 100° 10° 1407 160" 180

i, ldegrees)

Figure 3-21 Variation of directivity with scan angle for five-element uniformly excited
arrays of various element spacings. The elements are isotropic
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Table 3-1 Parameters for Use in Computing the Directivity of
Uniform Current Ampiitude. Equally Spaced Linear Arrays;

see (3-83).
Element type j9.10. $)I° a, a, a;
Isotropic ! | 1 0
Collincar short sin® 0 2 2 -2
dipoles 3 {(mpd)’ mpd
{Fig 3-16)

Parallel short 1 -sin® 0 cos® @ 2 ; 1 1
dipoles =sm® 7 3 (mpdy mfld
(Fig 3-18)

It is important to note that array directivity represents the increase in the radia-
tion intensity in the direction of maximum radiation over that of a single element.
Consider a single isotropic element and an array of N equally excited isotopic
clements as shown in Fig. 3-22. The input power to the array is assumed to divide
equally among the array elements: thus, if the element powers are 1/N of the input
power, the element currents are 1/VN of its input current. The radiation intensity
U, for the isotropic element is proportional to its input power, which in turn is
proportional to the input current squared, 17. The maximum radiation intensity
U, of the array in Fig. 3-22b is proportional 1o (AF_.)* = [N(I/VN)J = NI:.
Thus, U,,, = NU, = DU_, since D = N for the array.

3.5 NONUNIFORMLY EXCITED, EQUALLY SPACED
LINEAR ARRAYS

We have seen that the main beam of an endfire array could be narrowed by
changing the phase from that which is required for the ordinary endfire case. We
can also shape the beam and control the level of the side lobes by adjusting the
amplitudes of the current in an array. General synthesis procedures for achieving
a specified pattern are presented in Chapter 10. In this section a few simple
techniques for controlling side lobe levels and beamwidth are introduced.
Several examples are given which reveal the array current distribution-radiation
pattern relationship. The directivity for arrays with nonuniform excitation will
also be examined,

The array factor of (3-18) can be written as a polynomial in terms of Z = ¢V
as tollows

AF = ) 4.e"= Y A2 (3-84)
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fa)

Iy
(h)

Figure 3-22 Arraydirectivity may be viewed as theratio of
radiation intensity in the maximum radiation direction for
an array with total input current | to that of an isotropic
element with the same input current. {a) Reference iso-
tropic antenna with input current |. (b) Equally excited
array with total input current |,. The power is assumed 1o
divide equally among the elements.

where the current amplitudes 4, are real and can be different for each n, S, A.
Schelkunofl [7] applied the existing knowledge about the algebra of polynomials
lo array factors. He showed the connection between placement in the complex
plane of the N —1 zeros (roots) of the array polynomial in (3-84) and the
radiation pattern and element currents. However, we shall examine the relation-
ship between the element excitation and the array factor in a direct fashion. It is
a simple matter to investigate element current distributions by utilizing a digital
computer to perform the array factor summation.* We will present the results of
several such calculations, The influence of the element current amplitudes will
become apparent if we use the same array configuration. Thus for purposes of
comparison we will use a five-clement. broadside lincar array with a hall-
wavelength element spacing throughout this section

Y See the program NEESLAP m Appendix G.5
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The basic array to which we will compare all others is the uniform array with
all current amplitudes equal. The pattern in linear, polar form is plotted in
Fig. 3-23a and the element currents are shown in Fig. 3-24a. If the element
current amplitude forms a triangle as shown in Fig. 3-24b, the radiation pattern of
Fig. 3-23b results. Notice that the side lobes are considerably smaller than those
of the uniformly illuminated array, but at the expense of increased beamwidth,
This increased beamwidth (from 20.8° to 26.0°) is responsible for reduced directi-
vity (from 5 to 4.26).

The side lobe reduction introduced by the triangular amplitude taper suggests
that perhaps an amplitude distribution exists such that all side lobes are com-
pletely eliminated. Indeed this is possible if the ratios of the currents are equal to
the coefficients of the binomial series. To see how this comes about, first consider
a two-element array with equal amplitudes and spacing d. The array factor from
(3-84) is AF = 1 + ¢/ which can be written in terms of Z = ¢V as

AF=1+Z. (3-85)

Il the spacing for this broadside array is less than, or at most cqual to, a
hall-wavelength, the array factor will have no side lobes (see Fig. 3-3). Now
consider an array formed by taking the product of two array factors of this type,

AF=(1+Z)1+2)=1+22+ 2% (3-86)

This corresponds to a three-clement array with the current amplitudes in the
ratio 1: 2 : 1. Since this array is simply the square of one which had no side lobes,
the three-element array also has no side lobes. This process can also be viewed as
arraying of two of the two-element arrays such that the centers of each subarray
are spaced d apart. This leads to a coincidence of two elements in the middle of
the total array, thus giving a current of two there. The total array factor is the
product of the “element pattern,” which is a two-clement subarray pattern, and
the array factor which is again a two-element. equal amplitude array, Thus the
total array factor is the square of one subarray pattern. Continuing this process
for an N clement array we obtain

AF = (1 + Z)* ! (3-87)
which is a binomial series: see (F-4). For N =35
AF=(14+2)'=1+4Z +62* +4Z* + Z°. (3-88)

Therefore the ratios of the current amplitudes are 1:4:6:4: 1. This current
distribution is shown in Fig. 3-24¢ and the resulting pattern is shown in
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Figure 3-23 Patterns of several uniform phase
(11, = 90 ), equally spaced (d = 7,2) linear arrays with
various amplitude distnbutions. The currents are
plotted in Fig. 3-2&_ (&) Uniform currents, 1:1:1:1:1.
(b) Triangular current amplitude distribution,
y e 55 o5 | (c) Binomial current amplitude
distnbution, 1:4:6:4:1. (d) Dolph-Chebyshev
current amplitude distnbution, 1:161:1.94:1.61:1,
for a side lobe level of - 20 dB. See Example 10-5. (e)
Dolph-Chebyshev current amplitude distribution,
1:241 314:241 1, withaside lobelevel of -30dB
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Fig. 3-23c. This pattern is broader than either the uniform or triangular distribu-
tion cases and has a lower directivity, but it has no side lobes.

From these three five-element array examples a trend has already emerged: As
the current amplitude is tapered more toward the edges of the array, the side lobes
tend 1o decrease and the beamwidth increases. This beamwidth/side lobe level
tradeoll can be optimized. In other words, it is possible to determine the element
current amplitudes such that the beamwidth is minimum for a specified side
lobe level, or conversely to specify the beamwidth and obtain the lowest possible
side ‘lobe level. This array is referred to as a Dolph-Chebyshev array and it
provides a pattern with all side lobes of the same level. The Dolph-Chebyshev
array synthesis procedure will be explained in detail in Section 10.4.1. For a five-
clement array with an element spacing of a half-wavelength and a specified side
lobe level of —20 dB, the Dolph-Chebyshev current distribution is plotted in
Fig. 3-24d and the corresponding pattern is shown in Fig. 3-23d. If the side lobe
level for the Dolph-Chebyshev array is specified to be —30 dB, the distribution
is that of Fig. 3-24¢ and the corresponding pattern is shown in Fig. 3-23¢. We
note that the main beam is slightly broader than in the previous case where the
side lobe level was 10 dB higher.

The discussion of nonuniformly excited arrays has, thus far. been concerned
with amplitude tapers that become small near the ends of the lincar array. If the
amplitude distribution becomes larger at the ends of the array (called an inverse
taper), we can expect the opposite effect, that is. that the side lobe level increases
and the beamwidth decreases. Suppose. for example, that we invert the triangu-
lar distribution such that the amplitudes are 3:2 :1:2: 3. The resulting pattern
shown in Fig. 3-25 demonstrates the expected decrease in beamwidth and in-
crease in side lobe level. Although the directivity for the inverse triangular
tapered current is greater than that for the triangular taper of Fig. 3-23h. it 15
still not as large as that produced by the uniform distribution.

The directivity values have been given for each of the examples in this section.
We shall close this section by developing the directivity expression. With liutle
additional complexity the treatment can be expanded to include unequal element
spacings as well as nonuniform excitation. The element positions along the z-axis
are =, and the clement current amplitudes are A, If the element phasings are
linear with distance. then 2, = — fiz, cos fl, where €, 15 the angle of the pattern
maximum: the applications of this type of phasing will be discussed in
Section 3.7, The array factor of (3-65) is then appropriate and when normalized
I
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And the appropriate beam solid angle expression is

Q,=2x -[:l f(0) sin 6 d6

2‘ N—1 N-1

= ¥ T AnAjehew [t gin 0 g, (3-90)
(Z Aa) m=0 p=0 ‘0
k=0

Evaluating the integral in the above expression and applying the result to
D = 4n/Q , yields

N=-1 2

(24)

k=0

T, (3-91)

a‘it xiaA P e’h_hlsin[ﬁ{z. —2,)]

m=0 p=0 B(:- _:p)

where a, = — fiz, cos 6, and the elements can have any positions z, and current
amplitudes A,. This general result can be simplified. For a broadside, equally

spaced array
N=3 2
(Z4)

k=0

D= SRS TR (3,=0. =z, =nd) (3-92)

m=0 p=0 (mhp)ﬂd

As another special case, when the spacings are a multiple of a half-wavelength
(3-91) reduces to

.\il i y )2

TN -

e=1

A ) (3-93)

L5 1 -

Note that this is independent of scan angle . as indicated in Fig. 3-21 for
d = 4/2. Also, il the amplitudes arc uniform (3-93) yields D = N as given by
(3-79). For a further example, consider the triangular excitation with the pattern
of Fig. 3-23b. The directivity value from (3-93) is [2(1) = 2(2) + 3]*/[2(1)* +
2(2)* 4 (3)*] = 4.26. Equation (3-93) is a very instructive formula for it tells us
that the directivity is a measure of the coherent radiation from the lincar array.
The numerator is proportional to the square of the rotal coherent field, whereas
the denominator s proportional to the sum of the squares of the field from cuch
of the elements.
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In conclusion, we have shown that the side lobe levels of a linear array can be
altered by controlling the amplitude distribution. To achieve low side lobe levels
it is necessary to taper the distribution such that the largest excitation occurs at
the center of the array. However, we pay a price for the smaller side lobe levels
in the form of reduced directivity associated with the corresponding increase in
beamwidth.

3.6 MUTUAL IMPEDANCE

When antennas are in close proximity they interact in a complicated manner.
This interaction is called mutual coupling and the effect is to change the current
on an antenna from that which it would have if it were isolated in free space.
Often it is the phase change of the current which is most noticeable, although the
amplitude may be different as well. Thus, the current in a given element depends
not only on the voltage source at its own terminals, but also on the current in all
other nearby antennas. Therefore the impedance at the terminals of an array
clement depends on the array configuration and excitations. Obviously, il a
designer is to accurately predict the pattern and especially the input impedance
of an array he or she must be able to take into account such mutual coupling
effects.

In general, it has been very difficult in the past to calculate mutual coupling
effects, and so analysis and design of arrays were initially based on the assump-
tion of constant current generators at the terminals of the array elements, as was
done in the preceding sections of this chapter. However, as we shall see in
Chapter 7, present day numerical procedures now make it possible to more or
less routinely take into account mutual coupling effects. Although the subject of
mutual effects will be taken up more fully in Chapter 7, in this section we will
attempt to impart some physical understanding to aid. for example, in the explan-
ation of phased arrays in the following section and in the study of wire antennas
stich as the Yagi-Uda array in Chapter 5.

To begin a discussion of mutual coupling effects, consider the input
impedance, or driving point impedance. of any element in an array of N ele-
ments, The relationship between the various currents and voltages are given by
the familiar network relationships

Vi=Zul+Z s+ + Z) ]
Vi=Znl+ Zyly + 0+ Zyl (3-94)

Ve=Zx1y + Zaxl; + o+ Z sl

i
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where ¥, and I, are the impressed current and voltage in the nth elcme::l.t, Z',,J is
the self-impedance of the nth element when all other elements are open circuited,
and Z,,,(= Z,., by reciprocity) is the mutual impedance between the mth and nth
elements. The mutual impedance Z,,, between the two terminal pairs of elements
m and n is the open circuit voltage produced at the first terminal pair di\:ide(_i by
the current supplied to the second when all other terminals are open circuited,
that is,

Vo

n =0

T = for all i except i = n. (3-95)

The active impedance of an element is the input impedance of that e.flc!ncnt when
all other clements are excited. For example, from (3-94) the active impedance of
element 1 is
V I Iy.
Z, o= =2+ 22+ T 2 (3-96)
« 1 !' Il !.

We note that the active impedance is not merely the sum of the sclf—impc:dancc_
and all the mutual impedances, but depends on the various currents as well.

Intuitively, one can suggest gross guidelines for estimating the degree of
mutual coupling.

1. To a first-order approximation, the strength of the coupling decreases as
spacing increases.

Considering the free-space pattern of each element, if the clements are
oriented such that they are illuminated by a pattern maximum then the
coupling will be appreciable. 1f, on the other hand, the individual patterns
exhibit a null in the direction of the coupled antennas, the coupling will be
small. For example, two similar parallel elements such as dipoles will couple
much more strongly than two collinear elements.

{ (9]

Figures 3-26. 3-27, and 3-28 illustrate these points for the cases ol two resonant
(when isolated) half-wave dipoles which are parallel, collinear. and staggered,

Next, let us consider how we might measure the mutual impedance between
1wo aritennas. Suppose an antenna when isolated in free space has a voltage 1)
and a current /,. so the input impedance 1s

zan___ le o I [3'9?}
If & second antenna is brought into proximity with the first then radiation from

the first antenna will induce currents on the second. wineh m turn will radiate by
virtue of that induced current and influence the current on the first antenna. The
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second antenna may either be excited or unexcited (parasitic), but in any case it
has terminal current I, . Then the total voltage at the first antenna is

V1=Z”II +Z|2!2- (3'98)
Similarly, the voltage at the terminals of the second antenna is expressed by
VI=Z2I"I +z;:fz- (3*99)

Note that (3-94) is a generalization of (3-98) and (3-99) and of (1-164) and
(1-165).

Now suppose the seccond antenna has a load impedance Z, across its ter-
minals such that V, = —Z, I,; see Fig. 7-21. We may write (3-99) as

""22!2=23|11+22212‘ {3-]0‘.})
Solving for 1, we obtain

_"Zzll| _Zl-\l] 1
o —Zudi oL 3101
T Znp+id; In+tZ; { )

Substituting this into (3-98) and dividing by I,. we find that

Vv, . - I
—!=Z1_m=zll ( 1_}_

- ’ 3-102
I Z3x+ 2, sl

This expresses the input impedance in terms of the two self-impedances (Z,; and
Z1a). the mutual impedance (Z,,) and the load (Z,) at the unexcited terminals
of antenna 2. For example. if the two antennas in question are hall-wave dipoles
and if the terminals of the second dipole are open circuited. then Z, =2,
because Z, = oc. Physically this means that very little current is induced on each
of the arms of the second dipole. As a consequence. one could measure the
sell-impedance of the first dipole in the presence of the second simply by open
circuiting the second dipole thereby rendering 1t nonresonant and reducing the
current on it. Clearly one could not do this if the second dipole were, say, one
wavelength long (see Fig. 5-3)

The above discussion suggesis the equivalent circuit of Fig. 3-29 for the coup-
ling between two resonant antennas (see Prob. 1.7 4). Note that if the werminals
on the right are open circuited Z, . = Z,,

I geiwral, 1o determine the mutual impedance belween rwo antennas, wé
perform the following three measurements [7].

1. Measure 4y, at the termingls of antenna 1 with antenna 2 either removed or
open circuited
2. Measure Z,, in a similar manner to that for Z,,
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o———— Zn—Zn
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Figure 3-29 Network representation of the coupling
between two antennas.

3. Measure Z,_;, when antenna 2 is short circuited, that is, Z, = 0. From (3-102)
we find that

Zyy=Z:Z\, - Z,.1) (3-103)

All quantities on the right are known from the three measurements and thus 72,
can be computed. Knowing the mutual impedance we can then use (3-96) to
calculate the active impedance. In turn. knowing the active impedance, we can
determine the vohage necessary 1o cstablish the current required for the proper
array radiation pattern. Of course this procedure is only valid fora Lwo-elcmetlu
array. In general, it is necessary 1o use the system of equations given by (3-94) in
an antenna synthesis procedure.

3.7 PHASED ARRAYS

An array antenna whose main beam maximum direction or pattern shape is
controlled primarily by the relative phase of the element excitation currents is
referred to as a phased array. Phased arrays™ are finding increasing application
in radar where extremely fast tracking is required, in direction finding. and
communications where the radiation pattern must be adjusted 10 accommodate
varying traflic conditions. In this section the scanning of the pattern ma in beam by
element current phase control is discussed. Pattern shaping by element current
amplitude and phase control is found in Chapter 10.

Consider an array of similar elements with centers at arbitrary locations on
the z-axis. The currents are

I, = 4,0 (3-104)

& An excellent review of microwave phased arrays s found i [9]

i
b
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If the elements are phased so that
a,= —fz_cosf,, (3-105)

the array is said to be of linear phase, or uniform progressive phase. The phase shift
is linear with the element positions z, and the slope, or proportionality constant,
is ff cos 0,. The array factor (3-65) then becomes

N-1

AF = z Aneiﬂ:.iws-cw&ll (3_106)

=0
The array factor is maximum when the far-field contributions from the clements
add in-phase. This occurs for cos 0 = cos f,, or # = 0,. In other words, the main
beam maximum direction is 4, . For an equally spaced array z, = nd and «, = no
where a = —fid cos 0,.

If the phase of each element is changed with time according to (3-105) the
pattern is scanned and thus the main beam pointing direction fi, changes with
time. Figure 3-30 shows the patterns of a linear array with different linear phase
shifts. Note that as ihe beam is scanned from broadside (0, = 90°) the main
beam broudens. This is called beam broadening. Remember that the entire pat-
tern is formed by rotating the pattern shown around the z-axis. It turns out that
as the main beam is scanned away from broadside the main beam broadening is
just about compensated by the reduced volume contained in the total pattern
(formed by rotation about the array axis). The directivity as a function of scan
angle is found in Fig. 3-21 for five element arrays. For equally spaced arrays
with spacings less than a half-wavelength, as the beam approaches endfire it is
not broadening as rapidly as is the pattern volume decreasing. Therefore, the
directivity remains nearly constant for wide scan angles about broadside but
increases near endfire. For slightly greater than half-wavelength spacings, a grat-
ing lobe begins to appear for scan angles near endfire and the directivity
decreases, Again, refer to Fig. 3-21.

Il an equally spaced array has half-wavelength spacings. there is exactly one
period of the array factor in the visible region At endfire then, there will be two
endfire main lobes. For spacings greater than a half-wavelength. part or all of a
grating lobe will become visible before endfire is reached. When large interele-
ment spacings arc used and many grating lobes appear in the visible region the
array is called an interferometer. Each major lobe has a narrow beamwidth but
there are many of them. 1 Jarge element antennas are used, the element pattern
will also have a refatively narrow beam which will decrease the size of the
grating lobes.

Occasionally array clement currents have a phase that is nonhnear with dis-
tance along the array. Nonlinear phase arises in certain shaped-beam synthesis
cases, The pattern, of course, can still be scanned by applying a linear phase
Then %, would contain both a linear part as in (3-105) and a nonlinear part,
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Figure 3-30 Scanned patterns of & uniformly (¢) Bifurcated panern; = 30". (d) Endfire
excited, equally spaced (d = 0.4.), five-element, case; il.=0

linear phased array. The patterns are linear, polar
plots. The element phases are found from (3-
105) with =, = md. (2) Broadside case; i/, = 90
(b) v,= 75
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In ordinary array theory as described in Section 3.3, the principle of pattern
multiplication allows us to factor the total pattern as

F(6, $)=a.(6. $)/(6. ¢)-- (3-107)

Here g, (0, ¢) is the pattern of a single element of the array when physically far
removed from all other elements of the array. The array factor f(0, ¢) is the
pattern of an array with the elements replaced by point sources with the same
current amplitudes and phases. This idealization is used when the element
antennas are similar; that is, each element of the array has an element pattern
given by g.(0, ¢). In practice, the performance of an element operating in the
array environment is different from its performance when isolated. Each element
of the array is affected by the presence of other elements as discussed in
the previous section. Since this mutual coupling depends on the array geometry,
the performance of the elements in the array will vary with location in the array
as well as scan angle. This is because in a (finite) array each element operates in
a different environment. For example. an element on the end of a linear array
“sees ™ all of ¢lements in one direction and none in opposite direction, whereas
the center element of the array “sees ™ half of the elements in each direction.

The ellect of mutual coupling between array elements is threefold. First, the
impedance of an element when operated in the array differs from its impedance
when it is far removed from any objects, as we saw in the previous section. The
impedance depends both on the location within the array and also the main
beam scan angle, that s, element phasing: see (3-96). Second, the radiation
pattern of an element when operated in the presence of the other array elements
is different from its pattern when isolated. Again the pattern of an individual
element in the array depends on its location in the arrav. Finally, the polarization
characteristics of an array of similar elements may be different from that of a
single isolated element.

The (unnormalized) pattern of an array which includes the effects of mutual
coupling is found as follows

Fur-(”‘ ¢] — E y-lll. . ﬂ"";'”:i e

"

(3-108)

where g (¢, ¢. n) is the patiern of the nth element of the array when operated al
its appropriate position in the array. The vector r, s a position vector from the
coordinate origin to the clement position. and f is unit spherical radius vector
for the same coordinate svstem: see (1-93). This formulation docs not restrict the
clement centers to be Jocated along a line. but permits arbitrary locations in
space. In general. 2 knowledge of the patterns g (0. ¢. n) s not available.
However, in many cases it i possible to obtain an approximate patiern expres.
sion. 11 the array is Jarge so that edge cffects are small. the elements and their
generator impedances are nominally identical, and the clements are regularly

P L
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spaced so that each element “sees™ about the same environment, then we can
obtain an array-element factor g,(0, ¢). This factor is an element pattern of a
“typical” element in the array and it contains the pattern effects of the element
type plus interaction effects between elements. It may be obtained by exciting a
typical element and match loading the remaining elements of the array. Since the
array-clement factor is typical of clement performance, (3-108) can be approx-
imated as

Fool0. ¢) = g..(0, ¢) ¥ 1,&7 . (3-109)
Note that the summation is now the array factor, that is, the pattern of point
sources with position vectors r, and currents /, .

So far we have not discussed how power is distributed to clements of an array.
There are many techniques employed in practice but they can be broadly
classified into three types: parallel, series, or space feed networks. Figure 3-31
shows examples of each. The parallel feed of Fig. 3-31a is also called a corporate

feed because it is similar to a corporate structure diagram of a large corporation,

Note that the path length to each element is equal, thus the amplitude and phase
of the currents will also be equal. Variable attenuators and phase shifters may be
inserted to adjust the amplitude and phase if desired

The array of Fig. 3-31h employs a series feed. which is casy to construct but
may be difficult to design. As the wave travels down the transmission line it is
attenuated because of power radiated by the antenna elements. This must be
accounted for in the design by determining the fraction of power radiated by
cach clement. The load impedance is usually a maiched load 1o prevent
reflections, The relative phase between each pair of adjacent elements is
determined by the transmission line electrical length and the effects of mutual
coupling, By changing the frequency. the electrical length, and thus the phase
between each element. is changed. The resulting phase control via frequency
control can be used to steer the pattern main beam. This is referred to as

freguency scanning. In all series fed arrays the relative phases of the antenna

elements are affected by changes in frequency, whereas in parallel fed arrays they
are not. One example of a series fed array 5 a wavegumide with milled slots which
act as radiating clements

A way 10 avoid a comphicated feed structure 1s 1o use a space feed. An example
is shown in Fig. 3-31¢. One primary radiating antenna is excited by the transmit-
ter and 18 used to illuminate several pickup antennas. The relative current ampli-
tudes in each pickup antenna is determined by the radiation properties of the
primary antenna. Phase differences may arise due to the differemt path lengths
from the primary antenna to the pickup antennas. Each pickup antenna is
connected, through perhups a variable attenuator and/or phase shifter, to 4
secondary transmitting antenna, These secondary transmitting antennas then
form the array
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Figure 3-31 Vanous types of feeding structures 101 arrays
(&) The curporate (or parallel) feed. (b) The series feed. (¢)

The space feed

Array antennas sre encountered in practice with many element types and
configurations. For example. a very popular antenna system is one employing an
array of antennas (usually horns) feeding a reflector antenra. This utilizes the
Jarge aperture of the reflector as well as the scanming capabilities of the feed
array, Also, practical array antenna feed networks are of many hybrid forms. For

example, the Hostile Weapons Locator System (HOWLS) experimental radar
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system for use in small Remotely Piloted Vehicles is a linear phased array which
combines corporate and series feeds [10]. The input is divided 16 ways with a
corporate feed and then each corporate feed output is connected to a series fed
subarray with 13 microstrip dipole radiating elements. The amplitudes 1o ¢ach of
the 208 elements is that of the 25-dB (i = 3) Taylor line source (see Section 10.4.2),
which is similar to the Dolph-Chebyshev array. The array has a hall-power
beamwidth of 0.45° at 16 GHz, is 2.5 m long. can be scanned + 30°, has a gain of
27.5dB and a side lobe level of —18.5 dB. This array architecture yields an
array system that can be mass produced without individual optimization of each
element alter production.

3.8 PERSPECTIVE

The first five sections of this chapter dealt with the analysis of lincar arravs of
elements having known currents. From this analysis it was possible to learn
miny things about arrays, such as how to scan a main beam and how to control
side lobe levels. Of necessity. the analysis ignored mutual coupling, In some
simple design situations it may be valid to do so. In more complex design
settings mutual coupling must be taken nto account, often quite accurately. This
is not an casy task. One of the real challenges in the design of arrays for the
creation of a desired pattern is the actual establishment of the current on the
¢lements dictated by the analysis procedure. The mutual coupling aspect of array
design will be addressed further in subsequent chapters.

Also in this chapter the relationship between a current distribution in space
and its radiation pattern was established. We found that for a uniformly spaced
array the array factor takes the mathematical form of a Fourier series: sce (3-18),
In the next chapter we will sce that the pattern factor of a continuous current
source i the form of a line source 1s related to the current distribution by a
Fourier transform. In both cases (discrete or continuous current distributions)
the sime general principles apply. That is. as the current amplitude taper towgrd
the ends ol the source is increussed. the side lobes are reduced and the beamwidth
i inerensed. Also, the main beam pomting direction can be scanned by applying
# phise shift along the source which s lincar with distance. These general
lemures which we have demonstrated for Iinear arravs will be seen to hold troe fon
all types of antennas.
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PROBLEMS

3.1-1 Consider anarray of two elements spaced one wavelength apart with currenty thi
are equal in amplitude and 1807 out-of-phase

(a) Use the inspection method 1o rough sketch the polar plot of the array factor

(h) Derive the exact array factor as a function of #if the elements are on the z-unis

(¢) For what angles of ¢ is this array fuctor maximum?

d) What is the expression for the normalized anay factor | {(#)] 7

(¢) Show that (3-20) reduces 1o your answer 1 (d)
31-2 Use the 1echnigues of Fig. 3-9 10 obtain a polar plot of the array factor ol the wrray
given in Prab, 3.1-1,
3.1-3 Use the technigues of Fig 3-9 to obtain a polar plot ol the array fuctor of o
two-element, onc-wivelength spaced artav with equal amplitude and equal phase Cuarrenty
(Fxample 3-4)
304 Usualy the merekement spacing of an aray » about one-half wavelenpth Spicings
much grearer than this produce magor lobes in undesired directions. To iHusirate Hins
point use the teghmigues of Fig 329 10 skeweh the array lacior for a iwo-clemem g
with equal amphivde, in-phase elements in polaz torm for the followmyg spacings! fu) d =
3o and (b)d = 24 Examples 321 and 3.4 and this problem show the etfects of spiscing on
an array of fixed eacitation
X1-8 Using the arvay factar for a two-clement broadside srray (2 = 0) warh equil currem
amplitude paint soupee elemems, show thit the directvity expression s

-

D=

1= (s fhl) pid

Hine: Change from vanable 0 1o g = fif cos ¢

ik ek & o 5
e S
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3.1-6 Plot the directivity expression of Prob. 3.1-5 as a function of d from zero to two
wavelengths.

3.2-1 Prove that the array factor magnitude | f(¥)| for a uniformly excited, equally
spaced linear array is symmetric about i = z.

3.2-2 Show that the array factor expressions (3-20) and (3-35) for a two-element uni-
formly excited array are identical.

3.2-3 Derive (3-44).

3.2<4 The expression for the hall-power beamwidth of the array factor for a broadside,
uniformly excited, equally spaced. linear array may be approximated as

HP =K ?ﬂi

for Nd » 4. Determine K for N = 10 and 20, and compare to (3-45).
3.2-5 In this problem the effects of phasings and spacings on a simple array are il-
lustrated. Consider an equally spaced five-clement array with uniform current amplitudes,
Sketch the array factors for:

(a) d = /2, broadside case (#, = 90°)

(h) d = 4, broadside case

(c) d = 24, broadside case.

(d) d =472, 0, = 45",

(¢) d= 402, 0,=0.
These five plots can be obtamed from one universal pattern plot as discussed in Sections
3.1 and 32, For the last two cases determine the mterelement phase shift a required to
steer the main beam as specified.
3.2-6 Repeat Prob 32-5 using the ARRFAC and PPLOT computer programs in
Appendix G
32-7 Design a five-clemem unilormly excited, equally spaced lincar array for:

(1) Main beam maximum at broadside.

(b)) Main beam maximum @t 45° from broadside (4, = 457)
In cach case seleet the clement spacing and lincar phasing such that the beamwidth is as
small as possible and also so that no part of a grating lobe appears in the visible region.
Sketeh the polar plots of the patterns,
328 Design and plot the array factor for an ordinary endfire. five-clement. unifermly
exened [mear array with spacings d = 0352, Use A, = 180 and find x Compare the polar
pattern 1o the one in Fig 3-14 which 15 of a simular array with increased directivity,
A3-1 Twao collinenr helt-wave dipoles are spaced a hali-wavelength apan (but not quite
touching) with ¢qual amplitude and cqual phase termmal currents. What is the expression
for the far-ficld patiern F(o) if the elemem centers are along the
multiplication ideas 10 rough sketch the pattern
332 {4) Repeat Prob. 2.3-1 for one-wavelength spacing

(b) Plov F(il) directls 1o check your pattern multiplication result
333 Two parullel half-wave dipoles are spaced one warelength apart with equal amply
tude and equal phase termimal corrents. The element centers are »'ong the -axis and the
dipales dre paraltel 1o the -anis. Write the expressions for the fur-field pattern F(f @)
Rough sheteh this puntern, using pattern multiphication weas, in both the xz-plane and
the ve-plane,

s Use patiern
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3.34 A linear array of three, quarter-wavelength long. vertical monopoles are operated
against an infinite, pesfectly conducting ground plane. Let the element feeds be along the
z-axis, the ground plane in the yz-plane, and the monopoles in the x-direction.

{a) Design the array as a Hansen-Woodyard increased directivity endfire array. that is,
determine the element spacings and phasings (choose d = 0.37).

(b) Use the universal array factor plot for three uniformly excited clements 1o obtain a
polar plot of the array factor for this problem.

(c) Write the expression for the complete pattern.

(d) Using pattern multiplication ideas rough sketch the complete far-field patierns in
the xz-planc and the yz-plane.
2,3-5 A two-clement array of vertical short dipoles s operated a quarter-wavelength
above a perfect ground plane as shown. The elements are a half-wavelength apart and arc
excited with equal amplitude and opposite phase. Obtain polar plots for the radiation
pattern of this radiating system in the xz- and yzo-planes. Carefully explain how you
obtain these plots

- A2 -

. d
]

1
1] H
P L LAER 4R TELE LA LI LI I AL APEL LGP LS I SIS

3.3-6 Prove that cos 7= sl cos . See | g 3-8
A3-T A four-element linear siray of parallel, in-phase, half-wave dipoles is located A4
in fron of @ lurge plansr reflector located in the yz-plane. Assume the reflector to be
4 prefect ground plane 11 the dipoles are parallel 10 the z-axis and spaced A/ 2 apirt,
sketeh the comnplete pattern in the av- and X2 planes. Show your reasoning.
338 Use the ARRPAT and PPLOT computer programs to gencrate the prinaipil plaiw
far-ficld plows of;

(&) The array n Prob < 3-0

{h} The urray of Prob 33-3

() Thearray i Prob 5 3.2

(d) The grray im Prob = 33

() The areay of Prob 3
I3 A undormby escsed, unequally spaced lincar amray of our solTORE sotives s
shiown below, g ¢ t pattern multuplication sheteh the g panern,
showing yomn intermeadnate steps Can 1 535) and 1w graphwal provedare be psed Tvseriny

vour fimal result? Wis

-
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3.3-10 A two-dimensional, uniformly excited array is shown below. Using the principle of
pattern multiplication sketch the pattern of the eight-clement array, showing your inter-
mediate steps.

a
rjhnr?! l,n-.i?l o ";l.rﬂ‘l
. - - - == ,l_
A
: ! 4
al® f° L P |
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3.4-1 Caleulute the directivities i decibels for the following broadside arrays of point
SOUTCES : ¥

(4) N=2,d=4if2.
() Ne=10.d = 272
) N=15.d= i
3,42 LEvaluate (3-78) for d = 325 and N = 10 for

(#) Broudside. and compare result 1o that of (3-80).

(b) Ordinury endfire. and compare result to that of (3-81).
3.4-3 Evuluate (3-78) and plor D as & function of d 2 for N = S and endfire aperation,
Compare 10 Fig, 321
3.4-4 The approximate direativity formula of (3-80) for fong. broadside lmviar arrays of
satropic lemems can be chedhed m the following two ways using HP = (L8N oL
from (3-45),

(1) Use D = 3nQ,to find D interms of 2 L.

(B) 1t has been shown [11] that the following formula gives good results for broudside
collinear arrays

A
|
|
M=

n 0l
WP, - OURT(HP,)
where TP, is the hall-puwer beamwadth of the aray pattern m degrees. Use HP % 00886

A and Lo avatind D= KL s tmd K

X4-5 Wie o computer program o calculate the directivany for the arrays given n
Talde 31, Treat N. D 2. and 2 as mput vasubles,

3440 Show that D= N lor an oiding
clements with spacing d = 2 4

rv o endfire lincar artay of equally eacined isotrome

Ade7 Fvalymie the directivity (i decibels) of @ uniformly exated, broadside srvay of
vight sottopie  lements spaced 07
( 3-80

apart o two ways: (a) from Fig 3-20,und (h) using

A5 Ulse the NEESLAP and PPLOT compuier progiams to plot the wray fadlon
shown in Figs. 323 and 325 Verily the side lobe levels and beamwidth values.
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3.5-2 (a) Show that (3-91) follows from (3-90).

(b) Show that (3-93) follows from (3-91).
3.5-3 Verify the directivity values given in Figs. 3-23¢, 3-23d, 3-23¢, and Fig. 3-25a.
3,6-1 Two antennas have the foilowing self- and mutual impedances:

Zy, =70L0° Z;y; = 100 L45°%, Ziy=60L-10°

(a) Find the input impedances to antenna I, if antenna 2 is short circuited.

(b) Find the voltage induced at the open circuited terminals of antenna 2 when the
voltage applied to antenna 1 15 107 V.
3.7-1 Compute the phases (in degrees) for each element current required to produce the
pattern of Fig. 3-30. Choose the center element to have zero phase.
3.7-2 Obtain a family of plots similar to those of Fig. 3-30 for (a) d =0.54 and (b)
d = 0.64. You can use ARRFAC. .
3.7-3 An interferometer is constructed from five collinear halfwave dipoles spaced two
wavelengths apart. Sketch the polar plot of the complete array pattern. You can use
ARRPAT,
3.7-4 Show how the general phase term fir-r, of (3-108) reduces to that of (3-65),
Pz, cos 0, for a lincar array.
3.7-5 A parallel fed, uniform array of five half-wave dipole elements has hall-wavelength
spacing at 300 MHz. The five dipoles are located along the z-axis as shown in Fig, 3-18,
and they all have the same phase. If the array is operated at 360 MHz, compare the
pattern in the yz-plane at 360 MHz with that at 300 MHz
3.746 Repeat Prob. 3.7-5 il the array is series fed, starting with the element closest to the
coordinate origin. Assume all elements have the same amplitudes and that there is | m of
transmission line between adjacent clements which are a half-wavelength apart at
300 MHz.

LINE SOURCES

In Chapter 1 we found that far-zone fields are obtained by a radiation integral
over the current distribution. For a line source along the z-axis the far-zone
electric field intensity from (1-101) and (1-104) is

E—fjou’ sind [ 1) =t dz gl
= bjouy_—sin0 [ 1) : (&1)

where the line source current distribution I(z') is of length L centered symme-
trically about the origin as shown in Fig. 1-8. The far-zone magnetic field inten-
sity is then simply H, = E,/n. The element factor is sin 6. The pattern factor is

f(0) and is obtained by normalizing the integral in (4-1). This pattern factor is

solely determined by the current distribution I(z').

In Chapter 3 we found that the far-zone fields of an array are obtained by
surnming over the individual element currents. For an array of collinear short
dipoles the far-zone electric field intensity from (3-53) is

E = Ojou’ o sin 0 Y [, 42
= Qjop—— sin ";o E L (4-2)

The factor sin @ is, in this case, the element pattern and the summation is the
array factor. Note the similarities between (4-1) and (4-2); the integral in (4-1) is
replaced by a summation in (4-2), z' s replaced by nd, and I1(=') i1s replaced by /,,.
The line source is, in a sense, a continuous array. It will become apparent to us
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in the discussion of the line source which follows that much of what we know
about the pattern characteristics of discrete arrays is also true of line sources.
Line sources are important because many antennas can be modeled as a line
source or combination of line sources.

4.1 THE UNIFORM LINE SOURCE

We begin our discussion of line sources by considering an important special
case, that of the uniform line source. A uniform line source has a current distrib-
ution with uniform amplitude and linear phase progression given by

'I,e“"” ~£’<:’«:£’
)=+ 2 2 (4-3)
0 elsewhere

where f, is the phase shift per unit length along the line source. The unnor-
malized pattern factor of the uniform line source is

b= HENelte ez = 1, (+4)

where
u:(ﬂoosup,)’;. (4-5)

The evaluation of (4-4) is similar to that given in (1-108) for a broadside uniform
line source.
It is convenient to introduce an angle 0, such that

B,= —P cos 0,. (4-6)
Then (4-5) becomes

u= B2 (cos  — cos 0,). (4-7)

The far-zone electric field from (4-1) and (4-4) is

- _j& -
joue . o.sinu
=———/[ Lsinét . 4-8
v dar ° o u (8]

The pattern factor of this uniform line source field expression is

Sin u

f(u)= (49)
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The linear, rectangular plot of this pattern is given in Fig. 1-10. It is shown in
Fig. 4-1 as a logarithmic (dB), rectangular plot. The maximum occurs for u =0
and is unity (0 dB) there. The nulls occur at multiples of = and are separated by
n, except for the beamwidth between first nulls which is 2z.

The half-power beamwidth of the uniform line source pattern factor is found
from solving

sin uH,

-\7_ - (4-10)

The solutions to this are uye = +1.39. Then from (4-7)

Oyp = cos™ ( +cosB,)=cos"(i0.443i+cosﬂ,). (4-11)

ﬁ_L Uyp

The plus sign corresponds to the half-power point on the right of the main beam
maximum and the minus sign to the left half-power point. So from (1-123)

HP = |Opp 1eer = Ouip rigne |

=|cos’l(-0‘443% +cos9,)—

This formula is general but useful only when both half-power points appear in
the visible region (0 < 6 < 180°) which in turn requires that the arguments of the

cos"(O.MS%. + cos o,)‘ (4-12)

IdB)

ol =
B -20f {\ -
—
0
a0 | "
10¢ Br 6r 4z 2= 0 2z 4n 6= Br 10

Figure 4-1 Pattern factor of a uniform line source
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arccosines in (4-12) are between —1 and +1. For a broadside uniform line
source 0, = 90° and {4-12) reduces to (see Prob. 4.1-1)

HP = 2 sin” I(0.443.%) (8, = 90°). (4-13)

For long (L 3 1) line sources this is approximately

A

I rad = 50.8 %. degrees (6, =90°) (4-14)

HP = 0.886

since sin™!(x) = x for x < 1. For an endfire uniform line source only one half-
power point appears in the visible region and then

HP=2cos"(l —0.443{) (0, = 0° or 180°). (4-15)

For long (L & 2) line sources this may be approximated as (see Prob. 4.1-2)

HP ~2 /0.886;: rad (6, =0° or 180°). (4-16)

Since (4-16) leads to wider beamwidths than does (4-14), we conclude that
beamwidth increases as the pattern is scanned away from broadside (see
Fig. 4-3).

%‘he h)alf—p()\vcr beamwidth expression HP = 0.886(4/L) for the broadside uni-
form line source was developed using two approximations. The effect of the
element factor sin @ was neglected and also it was assumed that the line source
was long. With a few examples we can see how these approximations affect the
beamwidth. In Table 4-1 half-power beamwidth values for three uniform line
sources are presented for various levels of approximation. The first column is
the HP found from the complete pattern expression

snf(BL2)cos 0]

FiO) =sin 0= o

(0, = 90°). (4-17)

The second column is the HP obtained from only the pattern factor of (4-9). The
third column is that of (4-14). Note that even for five wavelengths all values are
in very close agreement. We can also see that as the length increases the approxi-
mations improve.

The largest side lobe is the first one (i.c., the one closest to the main beam).
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Table 4-1 Half-Power Beamwidth Evaluation for Broadside
Uniform Line Sources

Value from
Exact value from pattern factor Value from
Length complete pattern F O ke = f
L of (4-17) / HE A L
24 24.766° 25.591° 25.382°
54 10.112° 10.166° 10.153°
104 5071° 5.080° 5.076¢

The side lobe maxima locations are found by differentiating (4-9) and setting it
equal to zero. This leads to

Uy = 1an ug . (4-18)

The intersections of the straight line curve ug, with the curve tan ug,_give the side
lobe maximum locations (the main beam maximum is at ug, = 0). The first side
lobe maximum occurs for ug , = +1.43x. This is not precisely midway between
the pattern nulls at = and 2n. The side lobe maxima are slightly closer to the
main beam than midway between their nulls. Evaluating (4-9) at the first side
lobe maximum location gives 0217 or —13.3 dB.

The polar plot of the pattern factor of a uniform line source can be obtained
from a universal pattern factor in a manner very similar to that used for linear
arrays. The uniform line source universal pattern factor is shown in Fig. 4-2a. It
is'used for all source lengths L and scan angles 6, . A typical case is shown in Fig.
4-2b. The transformation (4-7) between u and 0 is illustrated graphically by the
dashed lines. Pattern values for a given value of @ can be found from the
universal pattern factor using this graphical transformation. The radius of
the circle used in the transformation is fL/2 and its origin is at the value of u
equal to —(fL/2)cos 6, .

As an example consider a three-wavelength uniform line source. The universal
pattern factor is shown in Fig. 4-3a. The polar plot for the broadside case is
shown in Fig, 4-3b. The pattern factor for 2 main beam maximum angle of 45° is
polar plotted in Fig. 4-3c. The endfire case is shown in Fig. 4-3d. Notice that the
main beam (and also the side lobes) widen near endfire, as pointed out earlier.
The current distributions required to produce those patterns are shown in
Fig. 4-4, The amplitudes are constant in all cases, as illustrated in Fig. 4-4a. The
required linear phase distributions for main beam scanning are shown in
Fig. 4-4b.

The elfects of the element factor on the total pattern are shown in Fig, 4-5 for
the three-wavelength uniform line source. In the broadside case of Fig, 4-5a the
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10
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1.0
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Figure 4-3 Pattern factors for a three-wavelength lor
(L.=34) uniform line source for various scan cont
tions. (a) Universal pattern factor. (b) Polar plot of p
tern factor for B,L./2 = 0 (6, = 90°). {¢) Polar plot

pattern factor for B,L.'2 = -2.12= (0, = 45°). (d) Pol
plot of pattern factor for 8,1./2 = -AL/2 = -3n (0, = 0

Figure4-2 lllustration of obtaining a polar plot from the universal pattern
factor of a uniform line source. (a) Universal pattern factor. (b) Polar plot
of pattern factor for L = 4,

tuly
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I(z)
A
S 3
- — 4 >z
3x a2 0o A 2 A
2 2 2 2
(a)
APhase [1{z]] = B,3=—fzcosb,

k)

Figure 4-4 Current distributions for the three-wavelength
uniformlinesource patterns of Fig. 4- 3. (a) Currentamplitude
distribution. (b) Current phase distributions.

element factor has a relatively minor eflect. However, in the endfire case of
Fig. 4-5b where the pattern factor alone produces a single endfire beam, the
element factor effect on the total pattern produces a null in the endfire direction,

thus bifurcating the main beam.
Next we consider the directivity of the uniform line source. The directivity can

be found casily if the element factor is assumed to have a negligible effect on the
pattern. Then, we can work with the pattern factor f alone. First, the beam solid
angle is from (1-140) and (4-9)

Q=] |

‘0 0

sin u ?

sin 0 d0 do. (4-19)
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Element Pattern Total
factor factor pattern
¢(8) =sing fi8) F(8)

(&)

Figure 4-5 Total patterns for a three-wavelength uniform line source.
(a) Broaldside case (0,=90°, i, =0). Pattern factor is from Fig. 4-3b,
(b) Endfire case (0, = 0", f.L/2 = —3=7). Pattern factor is from Fig. 4-3d.

with‘ the element factor g set to unity. If we change the 0 integration variable to u
as given by (4-5) then du = —(fL/2)sin 0 d0 and (4-19) becomes

in A= B PILIT Gin2 du
Q= l. dé ' . e T 1

o cgeporz M (BL)2)

1 (Wt D2 G2

Lig-pp u
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Evaluation of this expression for the general case is discussed in Prob. 4.1-7. For
the broadside case (8, =0) the limits on the integral are —BL/2 to fL/2. If
further L > A, then SL/2 > 1 and we approximate the limits as — oo to + 00, and
using (F-12) the definite integral has a value of n. Thus Q, =2Axn/L and
D = 4n/Q , yields

D, =3 é’ (broadside, L > 4). (4-21)

where the subscript u indicates a uniform line source. For the endfire case
(B, = +p) the integral limits are 0 and L2 which are approximated as 0 and oo
when L » 4; this yields a value of n/2 for the integral. So Q, = An/L and

B'= 4;‘ (endfire, L » 4). (4-22)

These are the same directivity results we obtained for linear arrays; see (3-80)
and (3-81). The uniform line source exhibits the most directivity that can be
obtained from a linear phase source of fixed length. Other current distributions
will yield lower directivities. We found this principle to hold true in Section 3.5
for discrete current distributions (arrays).

From the beamwidth and directivity relationships presented here for the uni-
form line source we can begin to get a feel for the pattern changes as a function
of source length and scan angle. First consider the pattern factor alone. As the
length increases. the beamwidth decreases and the directivity increases. The side
lobe level (if the line source is long enough for the first side lobe maximum to be
visible) remains constant with length variations: it is always —13.3 dB for a
uniform line source. For a scanned line source the beamwidth increases as the
main beam is scanned away from broadside. However, the total main beam
volume (obtained by rotating E-plane pattern about z-axis) decreases and con-
sequently Q, decreases which in turn leads to an increase in directivity. The
beamwidth and directivity change slowly for scan angles near broadside but
change rapidly near endfire. The complete pattern must include the element
factor effects. For long sources (L > ) the pattern factor f(0) has a much nar-
rower pattern than the element factor g(f/) = sin ¢/ and the total pattern obtained
from g(0) /() is closely approximated by /(). The side lobe level, beamwidth,
and directivity values are then accurately determined from the pattern factor f(0)
alone. except near endfire where the element factor becomes significant since it
forces the total pattern to zero in the ¢ = 0 and 180° directions. as illustrated in
Fig. 4-5h.

Example 4-1. Plane Wave Incident on a Slit

A simple physical example of a uniform line source is a long narrow slit in 4 good
conductor which has a umform plane wave incident on it. as illustrated in Fig, 4-6. Phase

fe)

Figure 4-6 Example of a uniform line source: an
infinitely long slit of width L in a good con-
ductor illuminated by a uniform plane wave from
the left. (a) Broadside case: (/,= 90 and
fi,=—ficos90 =0 (b) Intermediate case:
fi,=—fcosfl,. (c) Endfire case: !, =0 and
f.= -

183
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fronts (plancs of constant phase) are indicated by the parallel lines. In Fig. 4-6a the wave
is normally incident on the slit. Thus, the slit has a uniform amplitude excitation and also
has uniform phase since the phase fronts are parallel to the slit. The shit then behaves as a
uniform line source with uniform phase across it. This equivalence of a field distribution
to a current distribution will be discussed further in Section B.1. It is obvious, however,
that the maximum radiation on the right-hand side of the slit will be primarily in the
direction of propagation of the incident wave coming from the left, that is, 6, = 90°. For a
line source the phase shift along the source is related to the direction of maximum
radiation 0, by 8, = —f cos @, where in this casc f§ is the phase constant of the incident
plane wave. Since 0, =90, f,= —f cos 90° = 0. This says that there is no phase shilt
along the slit, We already observed that this must be true for a plane wave normally
incident on the slit.

IT the direction of propagation of the plane wave makes an angle @, with the slit plane,
there will be a phase shift along the slit due to different arrival times of the wave. In fact,
this phase shift is given by f, 2" where B, is the phase shift per meter along the slit and we
have assumed zero phase at = = 0. But the phase shifts f rad/m in the direction of
propagation, so the phase shift for distance Ar along the direction of propagation is
A¢ = —BAr (since the wave propagates as ¢ /). The same phase shift is encountered in
the distance Az along the slit, or Ad = fi, Az (see Fig. 4-6b). But Ar = Az cos l,, and since
the phase shifts are equal we have Ap = — fidz cos 0, = f, Az. Thus f,= —f cos 0, as
given by (4-6), which was then a convenient definition. It is obvious from Fig, 4-6b that
the maximum radiation from the slit or its equivalent line source will occur in the
direction of propagation of the wave 0 = 0,

In Fig. 4-6¢ the incident wave is traveling parallel to the slit. The phase shift per meter
along the slit is obviously equal to the negative of the wave phase constant. This also
follows [rom B, = —f cos 0,= —f for #,=0°. The radiated wave on the right side is
endfire in this case.

4.2 TAPERED LINE SOURCES

Many antennas that can be modeled by line sources are designed to have
tapered distributions. This is because if the current amplitude decreases toward
the ends of a line source, the pattern side lobes are lowered and the main beam
widens. In many applications low side lobes are necessary and a wider main
beam is accepted as a consequence. This tradeofl between side lobe level and
half-power beamwidth is a major consideration to the antenna engineer,

As an example, consider a current distribution with the so-called cosine taper,
where

{ (“ . )..m-r Lk
@)= "\L* ; Haalia (4-23)
'0 elsewhere.

ot R
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The shape of this current distribution is plotted in Fig. 4-7a. The unnormalized
pattern factor is then found as follows

+Li2 -
f;m(ﬂ) = fg ' ms(i z Pﬂme’- Rol= g
142

i -{g [IJ! [ejl-lxlcmﬂivﬁ.lr + 8_“ F A ﬂm!‘j.ir] d._,'
2 =02 I
!n e,i:.!.ojmqof.,u— e-jxl.-lcml—l.lr L2
= TR et I
Evaluating the above expression leads to

% 1 [(Bcos 0+ B)Laf

Iz) | = cos (] 2)

1

flul cos e
1 2Z=ul?

b

Figure 4.7 Current distribution and pattern factor for a cosine-tapered line
source. (@) The current distribution amplitude. (b) The pattern factor.
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Using fi, = — P cos 6, as in (4-6) and normalizing such that the pattern factor is
unity for 6 = 0, gives :

COS[(ﬁLﬂ)(u)S 0 — cos 88)]

= T {(BL/m)eos 0 —cos 0,)F —
This pattern can be written in terms of u using (4-7) as
cos u
,f(u} = r;mji . (4-27)

This pattern is plotted in Fig. 4-7b. Compare it to that of the Fig. 1-10 for the
uniform line source.

The side lobe level for the cosine-tapered line source is —23.0 dB and the
beamwidth is given by

HP = 1.19% rad = 682 1 degrees (4-28)
for the broadside case. The side lobe level is 10 dB lower and the beamwidth is
389, greater than a uniform line source of the same length. Although the side
lobes are reduced from those of the uniform line source, the main beam widening
leads to smaller directivity than obtained from a uniform line source. The ratio
D/D, is used to compare the directivity of a tapered line source to that of a
uniform line source of the same length. For the cosine taper D/D, = 0.810. The
actual directivity D from (4-21) is then

D =0810D,= 1.620;‘ (broadside, L > 4). (4-29)

If the current amplitude taper is increased as in the case of a cosine-squared
taper, the side lobes are reduced even more and the beamwidth is further
widened. The pattern parameters of the cosine-squared case, as well as many
other important cases, are summarized in Table 4-2 [1, 2, 3].

As a further example, consider the triangular current taper given in Table
4-2a. The pattern (sin u/u)? is the square of the uniform line source pattern. This
property is apparent when the pattern of Fig. 4-8 for the triangular line source is
compared to that of the uniform line source in Fig. 4-1. The first nulls of the
triangular line source are twice as far out as for the uniform line source pattern.
Thus the beamwidth between first nulls is twice as large. The half-power beam-
width is 44°, larger (from 0.8864/L to 1.284/L). Also, the side lobes of the
triangular line source are twice as wide in the variable u and the side lobe level
in decibels is twice as small, —13.3dB for the uniform line source and —26.6 dB
for the triangular line source. The directivity (from Table 4-2a) is 75", of the
uniform line source value.
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Table 4-2 Characteristics of Tapered Line Source Distributions

(a) Triangular taper

![z}=l—~-§'|z| jzlsg
- sin(u/2) |
= [
Side lobe level L L 4
HP (rad) (dB) D/D, | 0 2
128(4/L) ~266 0.75
{b) Cosine tapers )
Hz)
o7 L
I(z)-m(I) |z|s-2 1.0 ::?
= /u - 2
=" a0 - d
1] =
r_

" COs u L 41 | . |
JW=———y n=1 L —3
= £ L
1 — (2u/n) L L

1 sin u
- Rk lesic -
f(u) T—(/nl w 2
Side lobe level
n  HP (rad) (dB) D/D, Type
0 o,sasi ~133 100  Uniform line source
1 1.192 —230 0810  Cosine taper
2 144 ;_ ~317 0667  Cosine-squared taper
(r) Cosine on a pedestal
I{z)=C + (1 - C)os "L
1 g |
Y L -0)° : “;:",R}.
n = (=l 2
[ {u) = -
C+(1-C)° -
n

(continued)
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Table 4.2 (continued)

Edge illumination

Side lobe level
0 log C HP (rad) (dB) D/D,
& (dB)
i
0.3162 10 1.03 L —-20 092
A
0.1778 -15 IBSL -22 0.88
0 x 119 $ -23 081
i 7

Note I: The pattern expressions are valid for any value of u = (BL 2)(cos 8 — cos 11,). However, the
hall-power beamwidth values and directivities are approximations for broadside line sources
(1, = 90 and u = (AL 2)cos 0) and L » i
Note 2. The directivity for each line source is found from the ratio D/D, as
) L
D e
D, D, i
for broadside line sources with L » 4
Note 3: The element factor sin 0 has been neglected in the calculations leading to the values in this
table. For long, broadside line sources its effect is mimmal.

0r—
g 10 =
.EI 20—
=N
Fi
2
| 30
=
) 0 /\ [\
ol & L) N A
L 1 1 i L L 1 | w

=10r -Br 6= 4 2 0 2r 4r 6r Br 10n

Figure 4-8 Pattern factor of a triangular tapered line source.
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From Table 4-2 we can generalize and make some statements about current
amplitude distributions and their influence on the far-field pattern. We assume
that the current is of constant phase. As the taper of the current amplitude from
the center to the edges of a line source becomes more severe, the side lobes decrease
and the beamwidth increases. Consequently, the directivity decreases. There is
then a tradeoll between the side lobe level and the beamwidth for the continuous
source just as there was for discrete sources (see Section 3.5). The antenna
engineer must decide on a compromise between beamwidth and side lobe level
for each specific design problem.

Example 4-2. A Parabolic Reflector Antenna

A circular parabolic reflector antenna (see Section 8.6) can be modeled for some purposes
as a line source. Suppose the reflector is 5 m in diameter and operates at 14 GHz. Further
suppose the field distribution across the aperture of the reflector is circularly symmetric
and can be modeled as a cosine on a pedestal line source with a - 10-dB edge illumina-
tion, Then rom Table 4-2¢ the half-power beamwidth is

A 00214

HP = I.03L =103 5

and the side lobe level s —20 dB. Due to the circular symmetry of the aperture distribu-
tion, these results are valid for any pattern plane containing the normal to the reflector
aperture, that is, the pattern is also circularly symmetric. Directivity cannot be calculated
from line source formulas since this is a two-dimensional aperture. Much more will be
said aboul aperture antennas in Chapter 8 where, as in this example. line source results
will play an important role.

= 0.00441 rad = 0.25°
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PROBLEMS
4.1-1 Show that
cos '(—x) —cos "(x)=2sin""(x)

and thereby proving (4-13). To do this introduce x such that v =sina and use
cos(a + n/2) = Fsinz
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4.1-2 Prove the half-power beamwidth expression for an endfire, uniform line source.
Start with (4-15) and derive (4-16). Hint: let x = cos 1 — ¥) where v = 0.443(A/L). then
form cos? o, neglect y*, expand 1 as cos® z + sin® 2, and use sin x ~a.

4.1-3 Show that the far-zone eclectric field expression E, for a broadside, uniform line
source approximates that of an ideal dipole for short line sources (L < 4).

4.1-4 Compute the half-power beamwidths (in degrees) and the directivities (in decibels)
for the following uniform line sources:

(a) Eight-wavelength broadside. uniform line source.

(b) Eight-wavelength endfire. uniform line source.

(c) Sixteen-wavelength broadside, uniform line source.

(d) Sixteen-wavelength endfire, uniform line source.

4.1-5 (a) Use the universal pattern factor for a uniform line source to obtain polar plots
of a four-wavelength uniform line source for two cases: broadside and endfire (0, = 0°).

(b) Measure the hall-power beamwidths from the polar plots obtained in part (a).

(c) Calculate the half-power beamwidths in degrees using (4-14) and (4-16). The

agreement between these results and those of (b) depends mainly upon how accurately
you constructed the polar plot.
4.1-6 Verily the half-power beamwidth values in Table 4-1 for the three levels of approxi-
mation for uniform line sources with the following lengths: (a) 24, (b) 54, and (¢) 104,
4.1-7 Uniform line source directivity.

(a) Show that (4-20) leads to the expression

BL cosa—1  cos b-1

D, = e - Si(a) + Si(b)

where D, is the directivity of a uniform line source with excitation phase shift per unit
length of f,, a=(f — B,)L. b= (B + B,)L. and Si is the sine integral function defined in
(F-13),

(b) Plot the directivity relative to that of the broadside. very long, uniform line source
case, that is, D, /(2L/z). for BL = 10 and L = 100 as a function of 0, from 90° 10 0°.

(c) What does the expression in part (a) reduce to for the broadside case ({, = 90°)?

(d) As L becomes much larger than a wavelength show that your result in part (c) gives
(4-21).

(¢) Use the result from part (c) and plot the directivity relative to that of a broadside,
very long, uniform line source (i.e. AD,/2L) for BL from | to 10. This result shows how
well the long line-source directivity approximation behaves.

4.2-1 Verily for the cosine-tapered line source pattern of (4-27) that (a) HP = 1.19(4 L) in
the broadside case for L » 4, and (b) the side lobe level is —23.0 dB.

4.2-2 Construct the linear, polar plot of the pattern factor for a broadside cosine-tapered
line source which is three wavelengths long. Proceed as in Fig 4-3.

4.2-3 A 3-m long. broadside line source operating at | GHz has a cosine-squared tapered
current distribution.

(a) Compute the half-power beamwidth in degrees.

(b) Compute the directivity in decibels,

4.2-4 Evaluate the half-power beamwidths in degrees and the directivities in decibels ol 104
long line sources with the following current distributions: (a) uniform, (b) triangular,
(¢) cosine, (d) cosine squared. and (¢) cosine on a — 10-dB pedestal.

|
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4.2-5 Triangular curreni-tapered line source.
(a) From the current distribution in Table 4-2a derive the normalized pattern factor

1 (u).

(b) Verify that the half-power beamwidth is given by 1.28(4/L) for L > 2 and that the
side lobe level is —26.6 dB. You may do this by substitution. and also you may find some
of the results from the uniform line source helpful.

4.2-6 The pattern from a triangular-tapered current distribution is the square of that of
the uniform current distribution. From Fourier transform theory. how are the current
distributions related ?

4.2-7 Dipole antennas with lengths less than a half-wavelength have current distributions
that are nearly triangular (see Fig. 1-20h).

(a) Write the complete electric field expression E, in the far field for a broadside line
source with a triangular current distribution.

(b) Approximate the expression of part (a) for short dipoles (L < 4).

(¢) Compare this to the far-field expression for E, of an ideal dipole. Discuss,

42-8 Derive the pattern factor expression in Table 4-2 for a cosine-squared line source
current distribution. Also verify the half-power beamwidth expression.

4.2-9 A broadside line source has a cosine on a — 10-dB pedestal current distribution. It
operates at 200 MHz and has a length of 20 m. Compute (a) the hall-power beamwidth in
degrees, and (b) the directivity in decibels.

4.2-10 Derive the pattern factor expression in Table 4-2 for a cosine on a pedestal current
distribution for a line source.

4.2-11 The directivity of a line source can be calculated [rom

.

II l
D= 3 e

|, e s

; I(z) d:l1

This is the one-dimensional analogy of (8-65). Use this formula to:

(a) Derive D, = 2L/A. the directivity of a uniform line source.

(b) Derive an expression for D/D, of a cosine on a pedestal current distribution. Evalu-
ate for C =1, 0.3162, 0.1778. and 0.
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In this chapter we discuss the important topic of wire antennas. Wire antennas
are the oldest and still the most prevalent of all antenna forms. Just about every
imaginable shape and configuration of wires have a useful antenna application.
Wire antennas can be made from either solid wire or tubular conductors. They
are relatively simple in concept, are easy to construct, and are very inexpensive.

To obtain completely accurate solutions for wire antennas the current on the
wire must be solved for, subject to the boundary condition that the tangential
clectric field is zero along the wire. This approach gives rise to an integral
equation, for which many approximate solutions have been reported over the
last several decades [1]. These classical solutions are rather tedious and are
limited to a few simple wire shapes. On the other hand, modern numerical
methods implemented on the digital computer are rather simple in concept and
are applicable to many wire antenna configurations. These numerical (moment
method) techniques are discussed in Chapter 7. In this chapter we adopt a
simple approach to solving for the properties of wire antennas. This affords a
conceptual understanding of how wire antennas operate, as well as yielding

surprisingly accurate engineering results. For example, during the discussion of

the loop antenna in Section 5.7 a detailed comparison of results from simple

theory and the more exact numerical methods demonstrates the accuracy of

simple theory.
In this chapter we discuss several resonant wire antennas such as straight wire
dipoles, vee dipoles, folded dipoles, Yagi-Uda arrays. and loops. Selected
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traveling-wave antennas are also discussed, but broadband wire antennas such
as the helix and log-periodic are presented in the next chapter. Methods of
feeding wire antennas and their performance in the presence of an imperfect
ground plane are included too. Most of the developments in this chapter utilize
the principles set forth thus far. Design data and guidelines for the construction
and use of wire antennas are emphasized.

5.1 DIPOLE ANTENNAS

We have discussed the short dipole in Sections 1.8 and 2.1 and the half-wave
dipole in Section 2.2. In this section dipoles of arbitrary length are examined.
The dipole antenna has received intensive study [1, 2, 3]. We will use a simple
but effective approach which involves an assumed form for the current distribu-
tion. The radiation integral may then be evaluated and thus also the pattern
parameters. For dipoles we assume that the current distribution is sinusoidal.
This is a good approximation verified by measurements. The current must, of
course, be zero at the ends. We are, in effect, using the current distribution which
is found on an open-<ircuited parallel wire transmission line. It is assumed that if
the end of such a transmission line is bent out to form a wire antenna, the
current distribution along the bent portion is essentially unchanged. Although
this is not strictly true it is a good approximation for thin antennas, for which
the conductor diameter is on the order of 0.014 or smaller [4].

5.1.1 Straight Wire Dipoles

A straight dipole antenna is shown in Fig. 5-1 oriented along the z-axis. It is
fed at the center from a balanced two-wire transmission line, that is, the currents
on each wire are equal in magnitude and opposite in direction. The current
distribution along the antenna is assumed to be sinusoidal and can be written as

I(z) = I, sin ﬁ(g—|z|” |;|<’5. (5-1)

Figure 5-1 The dipole antenna.
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1z}

Figure 5-2 Current distribution on a dipole of length
L < j2.

The dipole is surrounded by free space, thus the phase constant is that of free
space, f.

It is helpful to visualize the current distribution on an antenna. Figure 5-2
shows the current on a dipole for L < A/2. The solid lines indicate actual cur-
rents on the antenna and the dotted lines indicate extensions of the sine wave
function. As a note of caution with this visualization, the dotted portion of the
current distribution does not appear on the transmission line [5]. For this case
I, in (5-1) is not the maximum current attained on the antenna. The maximum
current on the antenna shown in Fig. 5-2 is at the input terminals where z = 0
and is of a value [, sin(fL/2). The arrows in Fig. 5-2 show the current direction.
The currents on the top and bottom halves of the antenna are in the same
direction at any instant of time. and thus the radiation effects from each half
reinforce. The transmission line, however, has oppositely directed currents which
have canceling radiation effects. for typical close conductor spacings.

In Fig. 5-3 current distributions on various dipoles are plotted together with
the antennas used to generate them. The sinusoidal curves superimposed on the
antennas indicate the intensity of the current on the wire. that is, the value of the
curve at point = is the current value on the wire at the same point z. Again
the arrows indicate current directions. To construct plots such as these, begin on
the z-axis at one end of the wire where the current is zero and draw a sine wave
while moving toward the feed point. The current on the other half is then the
mirror image. For dipoles longer than one wavelength the currents on the
antenna are not all in the same direction. Over a half-wave section the current is
in-phase and adjacent half-wave sections are of opposite phase. We would then
expect to see some large canceling effects in the radiation pattern. This will be
shown later to be precisely what happens. For all of the current distributions
presented, the plots represent the maximum excitation state. It is assumed that a
sinusoidal waveform generator of radian frequency @ = 2nc/A is connected to
the input transmission line. The standing wave pattern of the current at any
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Figure 6-3 Currentdistributions for various center-fed dipoles. Arrows indicate re]ative
current directions for these maximum current conditions. (8) L = 4/2. (b) L = 4. (¢)
L= {(d) L =3

instant of time is obtained by multiplying (5-1) by cos wt, which follows from
(1) o
To obtain the dipole radiation pattern we first evaluate the radiation integral
12 o
fu= [ 1) 04z (52)

*=ld2

Substituting the current expression from (5-1) gives

L/2

L0 . .
L:ﬂl: cox ) d:' o l ‘[m sin
0

o= [ Iusin |ﬁ(f5- o2

ﬂ(g’ = :')]F”I"‘""”d:’,

(5-3)

Evaluating these integrals (sce Prob. 5.1-1) gives the unnormalized pattern

) = 2
¢ w2acaiiftpjeos b —amii B} (5-4)
” Ji] sin® 0
Using this in (4-1) leads to the complete far-zone electric field
ety T 2)cos (] — cos(BL2

E, = jou sin 0° 2l oal (AL eon 0] = CoR(it i) . (5-5)

dnr B sin® 0
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Noting that wu/f = n. this expression simplifies to

e " cos[(BL2)cos 0] — cos(BLR) (5-6)

m sin @

Eo=in 2nr

The f-variation of this function determines the far-field pattern. For L = 4/2 it is

cos{(n/2)cos 0]

F(i)) =
(©) sin ()

(L=472). (5-7)
This expression was also derived in Section 2.2: see (2-10). This is the normalized
electric field pattern of a half-wave dipole. The half-power beamwidth is 78° and
its pattern plot is shown in Fig. 5-4a.

A
l- - 2
L=
b
L=y
Figure 5-4 Radiation patterns of center-fed straight

te) dipole antennas. (a) L = 42. (b) L = 2. (¢) L = {4.
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For L = / the normalized electric field pattern from (5-6) is

F(8) = PO_S(FE_CS{:.?}%)E (L= 2). (5-8)

The half-power beamwidth for this full-wave dipole is 47°. Its pattern is shown in
Fig. 5-4b. If L = 3., the pattern function is
cos(37 cos 0)

F(0) = 07148~ 2

2 (L =32). (5-9)

The factor 0.7148 is the normalization constant. As predicted earlier, for dipoles
of length greater than one wavelength, the pattern of the three-halves wavelength
dipole shown in Fig S-4c has a multiple lobe structure due to the canceling
effect of oppositely directed currents on the antenna.

As L/A becomes very small the dipole pattern variation in (5-6) approaches
sin . Thus we see again that the pattern of a short dipole along the z-axis is
sin 0. Recall that the short dipole pattern has a 90° half-power beamwidth: see
Fig. 1-4b.

To obtain the radiation resistance, first the radiated power must be found.
Substituting (5-6) into (1-127) gives

o2 m 12 [cos[(BL/2)cos 0] — cos(BL/2)|? , .
P = a_om 2 s o 0dod
i 2-'0 -l.)q (2nr)* | sin | roem ¢
.25 2y n s ] — i 1K
= g ‘0 sin {}
Changing the integration variable to t = cos (. so dt = —sin 0 d0), gives
p-lp J-" {cos[(BL2)t] — c‘:os(ﬂL.'?.)}z (—di)
2r " I -1
- |"('.[C°:‘:L(I’L{1’.,,)Il — cos(BL2))* | leos[(BL/2)t] ~ cos(BL12)}* ) i
4 ™l 141 1 -1
(5-11)
where in the last expression the identity
| 1f 1 1
T f v G-12)
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was used. Equation (5-11) can be evaluated in terms of sine and cosine integral
functions; see (F-13) and (F-14). A simpler expression for the special casc of the
half-wave dipole is obtainable in terms of a single cosine integral function. Thus,
when BL/2 = n/2, (5-11) becomes

pzﬂl’il cos(m ) 1{’“/2)

dn "o 1+t =¥ (G-13)

Changing variables again as r=1—1 and w= 1+ tr and substituting into
(5-13) gives

4z "

I T,
P = ﬂr_f_lel sin (mf.'Z)d
{4 1

22
+ ' gl_n____(ﬂm[Z] dw'
%

2) 'I — Cos mv
I’ sm (m,‘ oo 2 .
- _|U - | = (5-14)

Changing the variable of integration to 1 = nv leads to

n f’l "1—cost

= 'f_ 2 =1 1209 g
Pe=g-ln " dt= o I Cin(2r) = o~ 1,(244) (5-15)

where Cin(x) is related to the cosine integral function by (F-16) and is tabulated
in [6]. In this case Cin(2z) = 2.44. Using this and n = 120n in (5-15) leads to the
radiation resistance for a half-wave dipole as

2P, 2(15122.44)

R" f.! = ]2

/
= 73 ohms (L=§). (5-16)
The infinitely thin dipole antenna also has a reactive impedance component.
For the half-wave dipole the reactance is inductive, and the complete input
impedance is

Z. =73+ 43S ohis (L = ] (5-17)

(5% I

This can be calculated for an infinitely thin dipole by a classical procedure
known as the induced em! method [7]. However, the input impedance of dipoles
with finite wire diameter can be calculated using the numerical methods of
Chapter 7, where the form of the current is not assumed. The results of such a
calculation for the input resistance and reactance of a small diameter, center-fed
dipole are given in Figs. 5-5 and 5-6. The resonance effects are evident in these

Sy
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Figure 5-5 Calculated input resistance of a center-fed wire dipole of
0.0005/radius as afunction of length L (solid curve). Also shownisthe
input resistance R,, = 80x°(L »)° of an ideal dipole with a uniform
current distribution (dotted curve) and the input resistance
R,, = 207°(L +)* of ashort dipole with a triangular current distribution
approximation (dashed curve)

plots. Note that the input reactarice is capacitive for small lengths, as we pointed
out in Section 2.1.

The dotted curve in Fig. 5-5 is the input resistance from (1-180) for an ideal
dipole with uniform current. It does not give good results for an actual wire
dipole as shown by the solid curve of Fig. 5-5. However, the triangular current
approximation with R,, = 20n*(L/4)? from (1-189) does give a good approxima-
tion to the input resistance for short dipoles as demonstrated by the dashed
curve of Fig. 5-5. Some simple formulas that approximate the input resistance of
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Figure 5-6 Calculated input reactance of center-fed wire dipole of
radius 0.0005.. as a function of length L.

wire dipoles are given in Table 5-1 [8]. For example, using the second formula
for L= 4/2 gives R, = 24.7(n/2)** = 73.0 ohms which agrees with (5-17). The
values obtained from Table 5-1 also agree closely with those of Fig. 5-5.

Input resistance can be related to radiation resistance. There are several ways
to define radiation resistance by using different current reference points, Usually
radiation resistance is defined using the current distribution maximum /[,
whether or not it actually occurs on the antenna. We shall use the symbol R,,,
for this definition. It is also useful to refer the radiation resistance to the input
terminal point. In this case the symbol R,; is used. These definitions can be
related by writing the radiated power as

Pr = ili Rm = i’ianﬂ" (5'18)

2
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Table 5-1 Simple Formulas for
the Input Resistance of Dipoles

Input
Length resistance
L R, (ohms}
. Ly
0<L<Z 20:2( :)
4 i
3 '] 2.4
oS 2 24.7(:1—‘)
4 2

For dipoles that are odd integer multiples of a half-wavelength long, /,, = I, and
R,.= R,;. A third radiation resistance, denoted by R,, is often used; it is the
radiation resistance relative to the maximum curent that occurs on the antenna.
For dipoles less than a half-wavelength long the current maximum on the
antenna always occurs at the center, and then R,, = R, for center-fed dipoles;
this was discussed in Section 1.8. In practice we are interested in input resistance,
so R,; is of primary importance. It is related to R,, for center-fed dipoles by
setting z = 0 in (5-1) giving

Ii= I, 5in £ (5-19)
2
and substituting into (5-18), which yields
12 R .
= = )
Ri= 12, R = Sin2(pL2) 1520}

R,; is the component of input resistance due to radiation and equals the total
input resistance R, if ohmic losses are neglected, which we shall do unless other-
wise indicated.

For dipole lengths L = 4, 24, 34, ..., BL/2 = r, 2=, 3m, ..., and R,, from (5-20)
is infinite. For example, the one-wavelength dipole of Fig. 5-3¢ has a current
zero at its feed point and thus has an infinite input impedance. This. of course, is
based on the perfect sine wave current distribution. Dipoles of finite thickness
have large but finite values of input impedance for lengths near integer multiples
of wavelength, as seen in Fig. 5-5. This effect arises from the deviation of the
current distribution from that of (5-1) for dipole lengths near integer multiples
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of a wavelength: there is always a finite input current on an actual dipole. For
other length dipoles the sinusoidal current distribution is a good approximation
for thin wire dipole antennas.

By reducing the length of the half-wave dipole slightly the antenna can be
made to resonate (X;, = 0). The input impedance of the infinitely thin half-wave
dipole is then about 70 + jO ohms. In Fig. 5-6 the dipole of radius 0.00054 reso-
nates for lengths corresponding to the intersections with the horizontal (X, = 0)
axis. The first intersection is the half-wave dipole case and the resonant length is
slightly less than 4/2. It turns out that as the wire thickness increases the dipole
must be shortened more to obtain resonance. Approximate length values for
resonance are given in Table 5-2. For the dipole of 0.00054 wire radius the
length-to-diameter ratio, L/2a, is 500 for the half-wave case. From Table 5-2 we
see that about 49 shortening (L = 0.481) would be required to produce reson-
ance. This agrees closely with the resonance point from Fig. 5-6. In practice, wire
antennas are constructed slightly longer than required. Then a transmitter is
connected to the antenna and the standing wave ratio (or reflected power) is
monitored on the feed transmission line. The ends of the antenna are trimmed
until a low value of standing wave ratio is obtained. Note that as the length
is reduced to obtain resonance the input resistance also decreases. For example,
for a thick dipole with L/2a = 50 and L = 0.4754, the second formula of Table
5-1 gives R;, = 64.5 ohms; the reactance is, of course, zero.

Since dipoles are resonant type structures their bandwidth is low. The VSWR
as a function of frequency for a half-wave dipole is shown in Fig. 5-7. In general
bandwidth is defined as *the range of frequencies within which the performance
of the antenna, with respect to some characteristic, conforms to a specified
standard " [9]. In this case let the specified standard be a VSWR less than 2.0: 1.
From Fig. 5-7 we see that the bandwidths are 310 — 262 = 48 MHz and 304 —
280 = 24 MHz, respectively for a=0005m (L/22a=50) and a= 00001 m
(L/2a = 2500). In terms of percent relative to the design frequency (300 MHz)

Table 5-2 Wire Lengths Required To Produce
a Resonant Half-Wave Dipole for a Wire
Diameter of 2a and Length L

Length to
diameter Percent Resonant Dipole
ratio, shortening length thickness
L2a required L class
5000 2 0.494 very thin
50 5 0.4754 thin
10 9 0.4554 thick
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Figure5-7 Calculated VSWR as afunction of frequency fordipoles
of different wire diameters.

the bandwidths are 16 and 89, It is a general principle that the thicker the
dipole, the wider is its bandwidth. Also, note that the minimum VSWR for the
thicker dipole occurs at a lower frequency than for the thinner one. In fact, using
the rules in Table 5-2 the resonant frequencies are calculated to be 285 and
294 MHz for wire radii of 0.005 and 0.0001 m. These values agree well with the
minimum points of the curves in Fig. 5-7.

Finally, we compute the directivity of a half-wave dipole. It is found from
D = 4nU,,/P,. The radiated power P, was evaluated in (5-15). Using the far-
zone electric field of (5-6) leads to the maximum radiation intensity as

2 252
T 2 _ 17 ot _ M
Um = :?;? |Eﬂ max z_q (_2“__)2 == 81;[-2 Im x (5-21)
So
4nU,  4n(n/8n?)I:

2 tioote = — 5 = = ] 64=2.15dB. 5.22
D(A 2 \dipole P,. (?J’Sﬂ)li(z“) 1 6 IS dB ( )

This is only slightly greater than the directivity value of 1.5 for an ideal dipole
with uniform current. So for very short dipoles the directivity is 1.5 and increases
to 1.64 as the length is increased to a half-wavelength. As length is increased
further directivity also increases. A full-wave dipole has a directivity of 2.41.
Even more directivity is obtained for a length of about 1254. As the length is
increased further the pattern begins to break up (see Fig 5-4c) and directivity
drops sharply. See Prob. 5.1-12.
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5.1.2 The Vee Dipole

Wire dipole antennas that are fiot straight also appear in practice. One such
antenna is the vee dipole shown in Fig. 5-8. This antenna may be visualized as an
open circuited transmission line that has been bent so that ends of length / have
an included angle of y. The angle y for which the directivity is greatest in the
direction of the bisector of 7, is given by

h h h
p= 152(1) 388())+324 05 51 <15

; " (5-23)
y—lIS( ) &705(1)-!-162, 1.551~ <30
where the resulting angle y is in degrees. The corresponding directivity is
= 294() ) + 1.15. (5-24)

These equations have been empirically derived for antennas with 0.5 < h/A < 3.0
using the computational methods of Chapter 7

The directivity of a vee dipole can be greater than that of a straight dipole.
This can be seen from the pattern in Fig. 5-9 where h =0.754 and y from
(5-23) is 118.5°, Notice that the direction of maximum radiation is ¢ = 90° while
radiation in the ¢ = 270° direction is about 2 dB less. Even more significant is
the low level of the side lobes. For the most part it is the reduced side lobe levels
of the vee dipole which give it a greater directivity than the straight dipole
version (see Fig. 5-4¢). The directivity for the vee dipole of Fig. 5-9 from (5-24) is
D = 294(0.75) + 1.15 = 3.355 = 526 dB. The directivity of a 1.54 long straight
wire dipole is about 2.2, or 3.4 dB.

The input impedance of a vee dipole antenna is generally less than that of a
straight dipole of the same length. For example, the input impedance of the vee
dipole in Fig. 5-9 is 102 + j14 ohms which is less than for the straight dipole
version (L= 1.54) as found from Figs. 5-5 and 5-6.

N

]

i

Figure 5-8 The vee dipole antenna.
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Figure 5-9 Far-field pattern of a vee dipole shown in Fig.
5.8 with arm length h =0.75. and ;=118.5". The
plot is in decibels.

5.2 FOLDED DIPOLE ANTENNAS

An extremely practical wire antenna is the folded dipole. It consists of two
parallel dipoles connected at the ends forming a narrow wire loop, as shown in
Fig. 5-10, with dimension d much smaller than L and much smaller than a
wavelength. The feed point is at the center of one side. The folded dipole is
essentially an unbalanced transmission line with unequal currents. Its operation

il

£

\// Figure 5-10 The folded dipole antenna.
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is analyzed by considering the current to be composed to two modes: the trans-
mission line mode and the antenna mode. The currents for these modes are
illustrated in Fig. 5-11.

The currents in the transmission line mode have fields that tend to cancel in
the far field since d i small. The input impedance for this mode is given by the
equation for a transmission line with a short circuit load

Z,=jZ, tan § g‘ (5-25)

where Z, is the characteristic impedance of the transmission line.

In the antenna mode the fields from the currents in each vertical section
reinforce in the far field since they are similarly directed. In this mode the
charges “go around the corner™ at the end, instead of being reflected back
toward the input as in an ordinary dipole, which leads to a doubling of the input
current for resonant lengths. The result of this is that the antenna mode has an
input current that is half that of a dipole for resonant lengths.

Suppose a voltage V is applied across the input terminals. The total behavior
is determined by the superposition of the equivalent circuits for each mode in
Fig. 5-12. Note that if the figures for each mode are superimposed and the
voltages are added, the total on the left is ¥ and on the right is zero as it should
be. The transmission line mode current is

_vp_ v ,
f.,. = Z' — 22}' (5"-6)
)
| Y J
-
—
| !
(a) (b)

Figure 5-11 The current modes on a folded
dipole antenna. ( &) Transmission line mode. (b)
Antenna mode. '
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fa) (k)

Figure 5-12 Mode excitation and current for a
voltage V applied to the terminals of a foided dipole.
Superposition of these modes gives the complete
folded dipole model. (2) Transmission line mode.
(b) Antenna mode.

For the antenna mode, the total current is the sum of each side, or I ,. The
excitation for this current is V/2, thus the antenna current s

Ve VvV
= — = = =27
N2y B o)
where to a first-order approximation Z,, is the input impedance for an ordinary
dipole of the same wire size [10]. The total current on the left is 7, + §/ , and the

total voltage is V, so the input impedance of the folded dipole is
V

Z, = e (5-28)
Substituting (5-26) and (5-27) in (5-28) yields
= 1o 3
Zin= Zi+ 22y (5-22)

As an example consider the popular half-wave folded dipole. From (5-25) with
L= 12, Z;=jZ, an[(2r/i)(//4)] = jZ, tan(n/2) = co. Then (5-29) gives

lel .— 42” (L — ;:)' (5-30]
Thus the half-wave folded dipole provides a four fold increase in impedance over

its dipole version. Since the half-wave dipole (at resonance) has a real input
impedance, the hall-wave folded dipole will also.
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\

/ Figure5-13 Currentfor the antenna mode of a half-wave folded
Y dipole that has been folded out without disturbing the current.

The current on the half-wave folded dipole is particularly easy to visualize. We
will discuss this current and also rederive the impedance. If the vertical wire
section on the right in Fig. 5-10 were cut directly across from the feed point and
the wire folded out without disturbing the current, it would appear as shown in
Fig. 5-13. The current is not zero at the ends because they are actually con-
nected. Perhaps a better way to view this is to fold the current back down and
note that currents on the folded part are now upside down as shown in
Fig. 5-14a. The same total current (and thus same pattern) is obtained with both
the folded and the ordinary dipoles in Fig. 5-14. The difference is that the folded
dipole has two closely spaced currents equal in value, whereas in the ordinary
dipole they are combined on one wire. From this it is easy to see that the input
currents in the two cases are related as

I3, (L= ; ) (5-31)
The input powers are
P, =4Z,.1} (folded dipole) (5-32)
A
"W e
I'* fn_*

fa) [{]]

Figure 5-14 Currentson half-wave dipoles. (a)
Folded dipole. (b) Dipole.
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and
P,=13Z,1} (dipole). (5-33)
Since the total currents are the same in the half-wave case, the radiated powers
are also. Equating (5-32) and (5-33) and using (5-31) gives
%ZDI%J = %‘Zin%}f)
or
A

L= —). (5-34)

Zin=4zb 2

This result is an independent confirmation of the result in (5-30).

The input impedance of a half-wave folded dipole (at resonance) is four times
that of an ordinary dipole. A resonant half-wave dipole has about 70 ohms input
resistance, so a hall-wave folded dipole then has an input impedance of

Z; = 4(70) = 280 ohms (half-wave). (5-35)

This impedance is very close to the 300 ohms of common twin-lead transmission
line,

The input impedance curves for a folded dipole of finite wire thickness arc
given in Fig. 5-15 as a function of folded dipole length. The solid curves were
obtained from the transmission line model. The wire spacing d = 12.5a is such
that the characteristic impedance corresponds to a 300-ohm transmission line
[Z, = (n/m)In{d/a) = 120 In(12.5a/a) = 300 ohms]. The folded dipole input im-
pedance is then found from (5-25) and (5-29). As an example consider a folded
dipole of length L= 0.8/, spacing d = 12.5a4, and radius a = 0.0005A. From
(5-25)

Z = j300 tan 0.8n = —j218 ohms. (5-36)
From Figs. 5-5 and 5-6
Z =950 + j950. (5-37)
Using these in (5-29) yields
Z, =28 — j461 ohms (L =084). (5-38)

This result agrees with the values shown in Fig. 5-15.

Also shown in Fig. 5-15 as dashed curves is the input impedance calculated
using the more exact methods of Chapter 7. The agreement between the simple
transmission line model and the numerical method results is quite good. Both
methods show that the real part of the input impedance is slightly less than
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Folded dipole L/
(a)

Figure 5-15 Input impedance of a folded dipole. The solid curves are
caloulated from the transmission line model. The dashed curves are
calculated from more accurate numerical methods. The wire radius a is
0.0005; and wire spacing d is 12.5a4. (a) Input resistance.

300 ohms at the first resonance (L = 0.48%) and slightly larger than 300 ohms at
the second resonance (L = 1.474). It is this characteristic of the folded dipole
that makes it useful at harmonically related frequencies. Note too the very low
value of Z;, when L 4, 24, ... This can easily be explained from the transmis-
sion line model, since then tan(fL/2) =~ tan n = 0 and thus Z, = 0 and Z;, from
(5-29) is zero,

The folded dipole is used as an FM broadcast band receiving antenna, and it
can be simply constructed by cutting a piece of 300 ohm twin-lead transmission
line about a half-wavelength long (1.5 m at 100 MHz). The ends are soldered
together such that the overall length L is slightly less than a half-wavelength at
the desired requency (usually 100 MHz). One wire is then cut in the'middle and
connected to the twin-lead transmission line feeding the receiver.
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Figure 5-15 (b) Input reactance.

Occasionally two different wire sizes are used for a folded dipole as shown in
Fig. 5-16. The input impedance for the half-wave case is given by

Z,=(+erz, (L=3) (5-39)

For given values of d, a,, and a, the value of ¢ can be found [10, 11]. As is

frequently the case, if a, and a, are much less than d, ¢ is approximately given
by

_In(d/a,)
C == :

In(d/a,)
The folded dipole antenna is a very popular wire antenna. The reasons for this

are its impedance properties and ease of construction. The equal size conductor
half-wave folded dipole has an input impedance very close to that of a 300-ohm

(5-40)
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x:

243 2a;

(a} (b}

Figure 5-16 Folded dipole antenna constructed from
two different size conductors. (a) Side view. (b) End
view.

twin-lead type transmission line as seen from Fig. 5-15. Also, by changing the
conductor radii the input impedance can be changed. In addition to having
desirable impedance properties, the half-wave folded dipole has wider bandwidth
than an ordinary half-wave dipole [12]. For these reasons a folded dipole is
frequently used as a feed antenna for Yagi-Uda arrays and other popular
antennas,

5.3 FEEDING WIRE ANTENNAS

When connecting an antenna to a transmission line it is important to make
effective use of all available power from the transmitter in the transmit case and
from the antenna in the receive case. There are two primary considerations: the
impedance match between the antenna and transmission line, and the excitation
of the current distribution on the antenna. In this section these general topics are
discussed along with specific applications to wire antennas.

First, consider impedance matching. A typical transmitter or receiver circuit s
shown in Fig. 5-17. Usually the transmitter or receiver has an impedance equal
to that of the transmission line, Z,. However, the antenna impedance, Z,,,, is
frequently quite different from Z,. The question is whether this is a problem.
The answer depends upon the application. In some cases corrective measures
such as a matching network are necessary. Let us examine the effects created by
a mismatch. It is well known that maximum power is transferred when there is a
conjugate impedance match. Also, if the system were operated with a poor
match at the antenna there would be reflections set up along the transmission
line: that is, the voltage standing wave ratio (VSWR) is much greater than one.
If the transmission line is of high quality (low loss) these reflections represent
low-dissipative losses. For many applications an extremely low VSWR is a

wiul
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Transmitter = C Matchi —o
or Z, Z, —e r?(g ——
receiver o> o s o
Transmission line
Zi Zamt

Figure 5-17 Typical transmitter/receiver configuration.

luxury and not a necessity. This is demonstrated in Table 5-3, which follows
from (1-241). For example, a VSWR of 2: 1 leads to 899, power transmission.
On the other hand, if the VSWR is very high, power is traveling back and forth
along the transmission line, and if the line is lossy and /or of long length, dissipa-
tive losses may be significant.

High VSWR has other undesirable effects on a system. In high power applica-
tions very high voltages will be developed between the conductors at certain
points along a transmission line. These are called “hot spots™ and may cause
arcing. Also a high VSWR means that the impedance varies along the transmis-
sion line and further that the impedance at any point varies as the frequency is
changed. This may aflect transmitter operation. For example, the frequency of
the transmitter can be changed by severe input impedance mismatch; this is
called “frequency pulling.”

If the impedance mismatch is unacceptable there are several methods for
improving the performance. Usually the characteristic impedance Z, is nearly

Table 5-3 VSWR and Transmitted Power for a Mis-
matched Antenna

Percent reflected

TP posver Percent transmitted
= |[[* x 100 -
‘VSWR . r 100 =4 % rf(;;“r
= x

s VSWR 4 = (1= |TJ) x 100

10 0.0 100.0

1.1 0.2 09 &

1.2 0.8 992

1.5 40 96.0

20 1. 88.9

30 250 75.0

4.0 360 64.0

50 44.4 55.6

583 50.0 50.0

100 669 13
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real since low-loss transmission lines are used. For a match then the antenna
should have an input impedance equal to Z, + j0. Sometimes it is possible to
select an antenna that achieves this. If this is not possible a matching network
can be employed as shown in Fig. 5-17. Such matching networks take many
forms. One example is the quarter-wave transformer, which is a quarter-wave-
length long transmission line with characteristic impedance \/Z, R, where R,
is the antenna input resistance. If the antenna impedance has a reactive compon-
ent other devices may be used. At high frequencies tuning devices such as stub
tuners and irises are introduced to transform the real part of the impedance to
that of the transmission line as well as tuning out the reactive component. At
low frequencies reactive tuning is accomplished with variable capacitors and
coils.

There are disadvantages to using matching networks. The match is maintained
only over a narrow band of frequencies. Also matching networks introduce loss;
for example, the current in tuning coils leads to ohmic loss. :

On the other hand, there are several ways to change the input impedance of
an antenna without using a matching network. For example, the input resistance
of a dipole can be changed by displacing the feed point off center. If the feed
point is a distance z, from the center of the dipole the current at the input

terminals is
E
ﬂ(i’ = |zin|)

In the case of a half-wave dipole as shown in Fig. 5-18 BL/2 = n/2 and this
reduces to

I, =1, sin ; (5-41)

I, = I, cos fz;,. (5-42)
The input resistance (not including ohmic losses) is found from (5-42) in (5-20)
giving
I R, A
R, = f—i'R,,,, = oo i (L— E)A (5-43)

As the feed point approaches the end of the wire this result indicates that the
input resistance increases toward infinity. In practice, the input resistance be-

_;!;-___ Lo
T

Figure 5-18 Half-wave dipole with displaced feed.
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Figure 5-19 Currentdistribution on a full wave dipole for
1 an off-center feed.

comes very large as the feed point moves out. The pattern is essentially un-
changed as the feed point shifts. For longer dipoles the pattern and impedance
differ significantly from the center-fed case as the feed point is displaced. For
example, a full-wave dipole fed a quarter-wavelength from one end, as shown in
Fig. 5-19, will have a current distribution which is significantly different [rom the
center fed full-wave dipole of Fig. 5-3c.

The off-center feed arrangement is unsymmetrical and can lead to undesirable
phase reversals in the antenna, as shown in Fig. 5-19. A symmetrical fced that
increases the input resistance with increasing distance from the center point of
the wire antenna is the shunt feed. A few forms of shunt matching are shown in
Fig. 5-20. We will discuss the operation of the tee match and the remaining
shunt matches behave in a similar fashion. The center section of the tee match
may be viewed as being a shorted transmission line in parallel with a dipole of
wide feed gap spacing. The shorted transmission line is less than a quarter-
wavelength long and thus its impedance is inductive. Capacitance can be in-
troduced to tune out this inductance by either shortening the dipole length or by
placing variable capacitors in the shunt legs. As the distance D is increased the
input impedance increases and peaks for a D of about half of the dipole length.
As D is increased further the impedance decreases and finally equals the folded
dipole value when D equals the dipole length. The exact impedance value

fa) b) fe)

Figure 5-20 Shunt matching configurations. (a) Delta
match. (b) Tee match. (¢) Gamma match.
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depends on the distances C and D, and the ratio of the dipole wire diameter to
the shunt arm wire diameter (similar to the folded dipole behavior). In practice,
sliding contacts are made between the shunt arms and the dipole for impedance
~adjustment. Shunt matches will radiate and do so in an undesirable fashion.

We now turn our attention to a separate but related problem of balancing
currents on wire antennas. Many wire antennas are symmetrical in nature and,
thus, the currents should also be symmetrical (or balanced). An example of
balanced and unbalanced operation of a hall~wave dipole is shown in Fig. 5-21.
In the balanced case the currents on the transmission line are equal in magni-
tude and opposite in direction, which yields very small radiation from the trans-
mission line for closely spaced conductors. For unbalanced operation, as
illustrated in Fig. 5-21b, the current [, is greater than [, and there is a net current
flow on the transmission line leading to uncontrolled radiation, that is, not in the
desired direction or of the desired polarization. Also, the unbalanced current on
the antenna will change the radiation pattern from the balanced case. Thus, it is
clear that balanced operation is necessary.

Transmission lines are referred to as balanced and unbalanced. Parallel wire
lines are inherently balanced in that if an incident wave (with balanced currents)
is launched down the line it will excite balanced currents on a symmetrical
antenna. On the other hand, a coaxial transmission line is not balanced. A wave
traveling down the coax may have a balanced current mode, that is, the currents
on the inner conductor and the inside of the outer conductor are equal in
magnitude and opposite in direction. However, when this wave reaches a sym-
metrical antenna a current may flow back on the outside of the outer conductor
which unbalances the antenna and transmission line. This is illustrated in
Fig. 5-22. Note that the currents on the two halves of the dipole are unbalanced.
The current I, flowing on the outside of the coax will radiate. The currents /,
and I, in the coax are shielded from the external world by the thickness of the
outer conductor. They could actually be unbalanced with no resulting radiation:
it is the current on the outside surface of the outer conductor which must be

NN
=D =

(b)
Figure 5-21 Balanced and unbalanced operation
of a center-fed half-wave dipole. (a) Balanced
currents, I/, =/,. (b) Unbalanced currents,
1> 1.
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Figure5-22 Crosssection of a coaxial transmission line feeding
a dipole antenna at its center.

suppressed. To suppress this outside surface current, a balun (contraction for
*balanced to unbalanced ") is used.

The situation in Fig. 5-22 may be understood by examining the voltages that
exist at the terminals of the antenna. These voltages are equal in magnitude but
opposite in phase (i, V, = — V). Both voltages act to cause a current to flow
on the outside of the coaxial line. If the magnitude of the currents on the outside
of the coax produced by both voltages were equal, the net current would be zero.
However, since one antenna terminal is directly connected to the outer conduc-
tor, its voltage V; produces a much stronger current than does the other voltage
V,. A balun is used to transform the balanced input impedance of the dipole to

1| ~———

NN
I

D

22222 2z )

\\\\\\\\\‘&\\\\\\\*mxw

\\\\\.\\\\\‘-&\\\

Z,

Figure 5-23 Cross-section of a sleeve balun feeding adipole at
its center.
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Figure 5-24 Equivalent circuits for a dipole fed
from a coaxial transmission line of characteristic
impedance Z, and load impedance Z,. (&)
Equivalent circuit of coax-fed dipole in Fig. 5-22.
(b) Equivalent circuit of sleeve balun-fed dipole
inFig.5-23. (¢) Final equivalentcircuit for Fig. 5-
23 with quarter-wave transmission line removed,
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the unbalanced coaxial line such that there is no net current on the outer
conductor of the coax.

To illustrate how a balun works, consider the sleeve (or bazooka) balun in
Fig. 5-23. The sleeve and outer conductor of the coaxial line form another coax-
ial line of characteristic impedance Z, which is shorted a quarter-wavelength
away from its input at the antenna terminals. The equivalent circuit for Fig. 5-22
is that of Fig. 5-24a. The equivalent circuit of Fig. 5-23 is that of Fig. 5-24ph,
which shows that both terminals see a very high impedance to ground. Thus, the
situation in Fig. 5-24b is equivalent to the balanced condition of Fig. 5-24¢
wherein the currents I, and I, are equal.

The sleeve balun appears in practice in several forms. An easily constructed

Figure 5-25 The split coax balun.

288\ ohms

]

Bl ——

Figure 5-26 A balun that provides an impedance stepup
720 ratio of 4:1. -,
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form is the split coax balun shown in Fig. 5-25. The quarter-wavelength of coax
from the A terminal to the outer conductor of the transmission line does not
affect the antenna impedance Z_,. The extra quarter-wavelength of coax
together with the outer conductor of the main transmission line form another
equivalent transmission line, which is a quarter-wavelength long and is shorted
at C. Therefore, the short circuit at C is (ideally) transformed to an infinite
impedance at the antenna terminals, which is in parallel with Z,, leaving the
input impedance unchanged. The quarter-wavelength line induces a cancelling
current on the outside of the coaxial transmission line, so that the net current on
the outside of the main coax below point C is zero as shown in Fig. 5-25. The
sleeve balun is, of course. not broadband because of the quarter-wavelength
involved in its construction. Broadband baluns can be constructed by coiling a
coaxial line in a symmetrical fashion. If the coil is wound around a toroidal
ferrite core, a bandwidth of as much as 10: 1 s possible.

Impedance transformation may also be included in a balun for matching
purposes. For example, the “four-to-one™ balun in Fig. 5-26, will transform an
unbalanced 72-ohm impedance to one that is 288-ohm balanced. Such a balun is
useful with a folded dipole antenna. A balun that leaves the impedance un-
changed is frequently referred to as a *one-to-one™ balun.

5.4 YAGI-UDA ANTENNAS

We saw in Chapter 3 that array antennas can be used to increase directivity. The
arrays we have examined have had all elements active, requiring a direct connec-
tion to each element by a feed network. The feed networks for arrays are con-
siderably simplified if only a few elements are fed directly. Such an array is
referred to as a parasitic array. The elements that are not directly driven (called
parasites) receive their excitation by near-field coupling from the driven ele-
ments. A parasitic linear array of parallel dipoles is called a Yagi-Uda antenna, a
Yagi-Uda array, or simply "Yag." Yagi-Uda antennas are very popular be-
cause ol their simplicity and relatively high gain. In this section the principles of
operation and design data for Yagis will be presented.

The first research done on the Yagi-Uda antenna was performed by Shintaro
Uda at Tohoku University in Sendai, Japan, in 1926 and was published in
Japanese in 1926 and 1927: see [13]. The work of Uda was reviewed in an article
written in English by Uda’s professor, H. Yagi, in 1928 [14].

The basic unit of a Yagi consists of three elements. To understand the prin-
ciples of operation for a three-element Yagi we will begin with a driven element
(or “driver ") and add parasites to the array. Consider a driven element that is a
resonant half-wave dipole. If a parasitic element is spaced very close to it, it is

[t
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excited by the driven element with roughly equal amplitude, so the field incident
on the parasite is

(5-44)

A current is excited on the parasite and the resulting radiated electric field, also
tangent to the wire, is equal in amplitude and opposite in phase to the incident
wave. This is because the electric field arriving at the parasite from the driver is
tangential to it and the total electric field tangential to a good conductor is zero.
Thus the field radiated by the parasite is such that the total tangential field on
the parasite is zero, or 0 = E; en + Eparasiic - COmbining this fact with (5-44)
gives

Eincigen = Eaiver

E (5-45)

parasite — _Ein:id-cm = _Edri\-er -

From array theory we know that two closely spaced, equal amplitude, opposite
phase elements will have an endfire pattern: for example see Fig. 3-4. The pat-
tern of this simple two-element parasitic array for 0.044 spacing is shown in
Fig. 5-27h.

The simplistic beauty of the Yagi is revealed by lengthening the parasite. The
dual endfire beam is changed to a more desirable single endfire beam. This effect
is illustrated for the two-clement parasitic array of Fig. 5-28. The driver is a
dipole of length 0.47814, which is a half-wave resonant length when operated in
frec space. The parasite is a straight wire of length 0.492 and spaced a distance
0.04/ away from the driver. The H-plane pattern in Fig. 5-28b obtained from the
numerical methods of Chapter 7 demonstrates the general trend of a parasite
which is longer than the driver: a single main beam occurs in the endfire direc-
tion from the parasite to the driver along the line of the array. Such a parasite is
called a reflector because it appears to reflect radiation from the driver,

L
[

0.04
fit) ih)

Figure 5-27 Atwo elementarray of half-wave resonant dipoles, one adriver
and the other a parasite. The currents on both are equal in amplitude and
opposite in phase. (&) Array configuration. (b) H-plane pattern computed
from simple array theory. .
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N

(a) (b)

Figure 5-28 Two-element Yagi-Uda antenna consisting of a driver of
length 0.4781. and a reflector of length 0.494 spaced 0.041 away. The
wire radius for both is 0.0014. (a) Array configuration. (b) H-plane
pattern computed from numerical methods.

If the parasite is shorter than the driver, but now placed on the other side of
the driver, the pattern eflect is similar to that when using a reflector in the sense
that main beam enhancement is in the same direction. The parasite is then
referred to as a director since it appears to direct radiation in the direction from
the driver toward the director. The parasitic array in Fig. 5-29a consisting of a
driver and a director has the pattern shown in Fig. 5-29b.

y

= I

(a) th)

Figure 5-29 Two-element Yagi-Uda antenna consisting of a driver of
length 0.4781/ and adirectorof length 0.45/ spaced 0.04 1 away. The wire
radius for both is 0.001.. (a) Array configuration. (b) H-plane pattern
computed from numerical methods.
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The single endfire beam created by the use of a reflector or a director alone
with a driver suggests that even further enhancement could be achieved with a
reflector and a director on opposite sides of a driver. This is indeed the case. An
example of a three-element Yagi is shown in Fig. 5-30a, which is a combination
of the geometries of Figs. 5-28a and 5-29a. The pattern of Fig. 5-30b is improved
over that of either two-element array. The E-plane pattern for the three-element
Yagi is shown in Fig. 5-30c. It is essentially equal to the H-plane pattern mul-
tiplied by the element factor for the array, which is that of a half-wave dipole.
Again these patterns were obtained by numerical solution.

T || S ==

fa)

Figure 5-30 Three-element Yagi-Uda
antenna consisting of a driver of length
0.4781,, a reflector of 0.494, and a
= director of length 0.45/, each spaced
0.04, apart. The wire radius for each is
0.001 .. (a) Array configuration. (b) H-
plane pattern computed from numerical
methods. (¢) E-plane  pattern
(c) computed from numerical methods.
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The maximum directivity obtainable from a three-element Yagi is about 9 dB
[15]. The optimum spacings (for maximum directivity) are on the order of 0.15
to 0.25 wavelength between the reflector and driver and also between the driver
and director. Typically the reflector is lengthened 5% or more and the director is
shortened 5% or more from the length of the resonant length driver. The reson-
ant length of the driver does not differ significantly from its resonant length
when operated with no parasites present [16].

A considerable amount of experimental and theoretical work has been done
on extending the Yagi array beyond the basic three element unit. It has been
found that more than one reflector provides little improvement. On the other
hand, the addition of more directors does increase the gain. The general Yagi
array including several directors is shown in Fig. 5-31.

The Yagi is really an endfire traveling-wave antenna. A surface wave of the
slow wave type, with a phase velocity less than that of a free space plane wave,
propagates along the array. Since the array is parasitic the current on the direc-
tor elements farther out from the driver have decreasing current amplitudes. If
the amplitudes and phases of the currents on each element were known, array
analysis could be used to determine the radiation pattern. Numerical techniques
as found in Chapter 7 are required to determine the element currents. In the
remainder of this section we will present the results of numerical analysis for
Yagi antennas which can be used to design Yagis.

Because of the decreasing current amplitudes for the directors farther from the
driver, there is a smaller gain increase for each director added to the end of the
Yagi array. In fact, the addition of directors up to about five provides significant
increase in gain. But further addition of directors gives little gain improvement,
that is. there is a *point of diminishing returns.” This is illustrated in Fig. 5-32
where gain is plotted versus the total number of elements in the array (including
one reflector and one driver) [17]. The element spacing is fixed (Sg = S, = 0.154)
for this curve. Note that adding one director to increase N from 3 to 4 gives
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s
Figure 5-31 Configuration for a general Yagi-Uda
antenna.
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Gain (dB)

Figure 5-32 Gain of a typical Yagi-

Uda antenna versus the total number of

1+ 1 elements. The element spacings

e 0w ar iy ) Sg=S,=0154 The conductor

1 2 13 4 & 6 7 8 9 10 11 diameters are 0.0025:. (From Green
Number of elements, N [17].)

about 1-dB gain increase, whereas adding one director to increase N from 9 to
10 yields only about 0.2-dB gain increase.

The characteristics of a Yagi are aflected by all of the geometric parameters of
the array. Fortunately though, minor changes in the geometry likewise yicld only
minor changes in the Yagi performance. In Table 5-4 the characteristics of
several Yagi antennas are listed. These data were obtained by the method
of moments presented in Chapter 7. All array elements have a conductor
diameter of 0.0054, which corresponds to L/2a ~ 100. A popular construction
material for Yagis is 4-in.-diameter tubular aluminum, which has a 0.0051
diameter at 118 MHz. However, the conductor diameter is not a critical
parameter; Yagis can be constructed using the design data of Table 5-4 and
commonly available materials without significantly affecting the electrical perfor-
mance characteristics. The data in the table agrees well with experimental re-
sults; for example, see [18]. Details on precise design of Yagis are available in the
literature [19].

In all cases given in Table 5-4 the hall-power beamwidth in the E-plane
(xz-plane) is smaller than in the H-plane (yz-plane). This is due to the element
pattern of the array. In the E-plane the element pattern is approximately that of
a half-wave dipole since all elements are about a half-wavelength long. However,
in the H-plane the element pattern is isotropic because the clements are seen in
end view giving nearly zero extent, which yields an isotropic element pattern.



SLL,

(dB)
~345
-228
~254
-158

E-Plane

HP;
66
66
54
52

(degrees)

SLL,
(dB)
-11.0
—-11.6
-52
-58

H-Plane

HPy
(degrees)

84

84

64

60

Input

impedance
(ohms)
223 4+ j150
367 + 9.6
5.6 +,20.7
103 + j23.5

Front
to
back
ratio
(dB)
56
82
15
6.0

Gain
(dB)
94
9.7
9.3
104

(wavelengths)
0.451
0.453
0.463
0456

Directors, L,

Element Lengths
Driver, L
(wavelengths)
0.453
0.459
0474
0.463

0.479
0.486
0.503
0.486

Reflector, Ly
(wavelengths)

0.25
0.15
0.20
025

Spacing
(wavelengths)

N,
no. of

clements

Table 5-4 Characteristics of Equally Spaced Yagi—Uda Antennas
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M NE = Qxo =29

SupEe e Soy K

P S = Example 5-1. A Six-Element Yagi for TV Channel 15

- e e This example demonstrates how simple it is to design a Yagi antenna. Additionally, it is

REERS RRT 84N shown that liberties may-be taken with the design values of Table 5-4 without significant
performance degradation. The design has been tested by building the antenna according

- e i S to the techniques detailed in Prob. 5.4-7 and it was found to operate very well. The

Y T FE LA midband frequency for TV Channel 15 from Appendix D2 is 479 MHz, which corre-
sponds to a wavelength of 7= 62.63 cm. Number 8 wire was used to construct the
antenna elements. From Appendix E2 No. 8 wire has a 0.3264-cm diameter which leads

T 2289 228 223 to 2a = 0.00524. To test the sensitivity of Yagi performance to deviation from the lengths
and spacings given in Table 5-4, the following geometry was used:

ggégg 2;: gzg Lg=0514 =313cm S (195 e (8

T T YT TEY L=0472=294em *T 07 (5-46)

® CEMmM NN 9N $,=0304i=188 cm

M AXEm Mmoo S L,=043i=269cm

o TXWG W mee This six-element Yagi was evaluated using numerical methods with the following results:

i = input impedance Z,, = 59.5 + j47.5 ohms, gain G = 11.5 dB, E-plane hall-power beam-

& E e W R width HPg = 56°, H-plane half-power beamwidth HP, = 62°, E-plane first side 'lobt'.

S S-=—o === =0 SLL;= —16.6 dB, H-plane first side lobe SLL,, = —8.1 dB, and a front-to-back ratio of
9.7 dB. These values are in general agreement with those of Table 5-4 for six-clement
Yagis. The computed radiation patterns for this antenna are plotied in Fig. 5-33.

35335588 339 )

QT IR SRS In practice Yagi antennas are mounted on a mast that is usually constructed
of tubular aluminum. It is not necessary to insulate the parasitic elements from
the mast because very little current will be excited on it. Of course, the driven

e oo e o, 155 o v b ned element must be insulated to avoid shorting the terminals. When using a metal

X E2d% MRS T - mast it may be necessary to increase the element lengths slightly to achieve

‘ optimum performance. In most cases the driven element is a folded dipole. This
.I serves two purposes. First, the input impedance of the driver is increased. This is
| desirable because the input resistance values of Table 5-4, which are computed

W NeRN TN SR W for an ordinary resonant half-wave dipole feed, are relatively low and not well

= B i = i e S ead matched to common transmission lines. Second, the electrical performance of the
antenna will remain stable over a wider bandwidth when a folded dipole feed is

& used. It is also quite common to employ multiple, series fed, folded dipole driven
§ elements together with one reflector and several directors. Further gain can be

3 momicy a0 I obtained by arraying or “stacking” Yagi antennas. Maximum gain results for a

o eSS BaS Beo = stacking separation of almost one wavelength (see Fig. 3-20).

g The Yagi is one of the most popular antennas in use today in the HF-VHF-
i UHF frequency range. It provides high gain while at the same time offering low

o o e GRS T At § weight and low cost. It has relatively narrow bandwidth, but _if high gain is
E i required the Yagi antenna may be the lowest cost antenna available over the
O 2 stated frequency range.
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(b)

Figure 5-33 Six-element Yagi-Uda antenna for TV
Channel 15 (Example 5-1). See Fig. 5-31 and
(5-46) for the antenna geometry. (a) H-plane
pattern. (b) E -plane pattern.
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5.5 WIRE ANTENNAS ABOVE AN IMPERFECT GROUND PLANE

The operation of low-frequency (roughly VHF and below) antennas are affected
significantly by the presence of typical environmental surroundings, such as the
earth, buildings, and so forth. In Section 2.3 we discussed the principles for
analyzing antennas above a perfect ground plane. A perfect ground plane in its
ideal form is an infinite, plane, perfect conductor. It is well approximated in
practice by a planar good conductor which is large relative to the antenna
extent. Image theory from Section 2.3.1 reveals that an antenna above a perfect
ground plane, or an approximation thereof, has an equivalent form that is an
array. Array theory can then be used to obtain the radiation pattern above the
ground plane.

In this section we consider ground planes which are not well approximated by
a perfect ground plane. Since low-frequency antennas are most affected by their
surroundings and low-frequency antennas are usually wire antennas, the illustra-
tions will be for wire antennas above a ground plane. The general principles can,
however, be applied to many antenna types.

A ground plane can take many forms, such as radial wires around a mono-
pole, the roof of a car, or the real earth. In many situations the earth is well
approximated as being infinite and planar, but it is a poor conductor. Good
conductors have conductivities on the order of 107 mhos/m. Earth conductivity
varies greatly, but is typically 10~ " to 10™* mho/m with rich soil at the high end
and rocky or sandy soil at the low end. With these low conductivities electric
fields generated by a nearby antenna penetrate into the earth and excite currents
which in turn give rise to ¢ | E|* ohmic losses. This loss appears as an increase in
the input ohmic resistance and thus lowers the radiation efficiency of the
antenna.

5.5.1 Pattern Effects of a Real Earth Ground Plane

The pattern of an antenna over a real earth is different from the pattern when
the antenna is operated over a perfect ground plane. Approximate patterns can
be obtained by using image theory. The same principles discussed in Section
2.3.1 for images in perfect ground planes apply, except that the strength of the
image in a real ground will be reduced from that of the perfect ground plane case
(equal amplitude, and equal phase for vertical elements and opposite phase for
horizontal elements). The strength of the image can be approximated by weight-
ing it with the plane wave reflection coefficient for the appropriate polarization
of the field arriving at the ground plane. To illustrate, consider a short vertical
dipole a distance h above a ground plane, shown in Fig. 5-34 together with its
image. There is a direct and a reflected ray arriving in the far field. As can be
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Figure 5-34 Ashortvertical dipole of current / above a real earth ground plane,
together with its image of current I, /.

seen, the reflected ray appears 1o be coming from the image antenna. The pri-
mary source and its image form an array. The electric field above the ground
plane for this example, from (1-75) in (1-90), is

ak, TR,

(5-47)

iRy ~j#R2
E,= jousin 7 : )

where L is the length of the short dipole and I',. I is the current for the image
dipole. I'y. is the plane wave reflection coefficient for a planar earth and vertical
incident polarization. Using parallel rays for far-field calculations gives the
far-field distance expressions

y=r—hcos and R,=r+ hcos 0. (5-48)
Then (5-47) reduces to
= 1hr
Eg= jou 1—“’-—- sin O(e/P*<*® 4 [, g~ /Phcos0) (5-49)
n r

where R, = R, >~ r was used in the denominator. This expression is valid above
the ground plane. It contains an element pattern sin 0 and an array factor, in the
brackets, for a two-lement array with elements spaced 2h apart.

o

! Wity and,
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Similarly for a horizontally oriented short dipole as shown in Fig. 5-35, we
have (in the xz-plane)

. ILe i
E,= jou an

cos e/ =0 _ [\ ¢~ ishcme) (5-50)

where the minus sign appears because the image current is in the opposite
direction. This expression is valid only in the xz-plane. The field in the yz-plane
is given by

E; =i IL e;j,sr (e#h<os0 4 I,y o~ ##heoss) (5-51)
= dn r " ’
The element pattern is unity because a dipole has an omnidirectional pattern in
the plane normal to the dipole axis. The horizontal reflection coefficient I'y, is
used in this case because the electric field from the primary antenna in the
yz-plane is incident on the ground plane horizontally, that is, parallel to the
plane.
There is no minus sign in the second term of (5-51) because of the definition of
'y, which is [20]
cos 0 — e, — sin? 0
e e L (5-52)
cos 0 + /e, — sin® 0

[
>
. ;
Y, L P v

1 " |mage
l.",
Figure 5-35 Ashort horizontal dipole of current / above a real earth ground
plane together with its image of current I', / for the xz-plane. The image
current in the y=-planeis Iy, /.
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This is the plane wave reflection coefficient for an incident electric field perpendi-
cular to the plane of polarization (i, the plane formed by the surface normal
and the direction of propagation). Further, for I';, we have [20]

r _z;msﬂ—\/a:—sinzﬂ
y=

. 5-53
& cos 0 + /¢ —sin® 0 (9:32)
This is the plane wave reflection coefficient for an incident electric field parallel

to the plane of polarization. £ is the relative complex effective dielectric constant
(see Section 1.2) for the ground and is given by

3

£ ¢

e o 54
& Py & }ws, (5-5 )
¢, and o are the relative dielectric constant and conductivity of the ground plane.
The earth has an average value of £ = 15. Ground conductivities across the
United States vary from 107 to 3 x 102 mho/m [20]. A convenient parameter
is the ratio of the imaginary part of & to the real part, ¢,, given by

- —— (5-55)
e &,
The value of n increases for decreasing frequency and increasing conductivity
and is infinite for a perfect ground plane.

The reflection coefficients, I';, and I',., both approach —1 for a real earth
ground plane at angles of ¢ near 90° (grazing incidence). The reflection
coefficient for vertical polarization has, in general, a rather complex behavior as
a function of 0. On the other hand, I'j, always has a phase of about 180° and a
magnitude not too different from unity for all values of 6. In fact, for frequencies
of 1 MHz or below and good earth conductivities the magnitude of '), is very
nearly unity for @ from 0 to 90°.

The use of plane wave reflection coefficients to obtain the image strength is
only an approximation since antennas near a ground plane do not form plane
waves incident on the ground plane. In addition to the radiation we have
described above there is a surface wave that propagates along the ground plane
surface. For HF and VHF frequencies the surface wave attenuates very rapidly.
For grazing angles (0 near 90°) I', = —1 and vertical antennas close to a real
earth have zero radiation for 0 = 90°; see (5-49). In this case the surface wave
accounts for all propagation, as in daylight standard broadcast AM. The effect of
neglecting the surface wave, and using the procedure given above, has been
found not to be critical for vertical antennas [21]. For horizontal antennas the
antenna should be at least 0.22 above the earth for the plane wave reflection
coefficient method to be valid [22].

The elevation pattern for a short vertical dipole at the surface of various
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Figure 5-36 Elevation patterns of a vertical short dipole at the
surface of the ground plane, for a perfect ground plane (n = «0) and
typical soils (n =1 and 100) with ¢, = 15. (After Jordan and
Balmain [20]. Reprinted by permission of Prentice-Hall, Inc.,
Englewoad Cliffs, NJ.)

ground planes is shown in Fig. 5-36. When the ground plane is perfect (n = oc)
the pattern above the ground plane is the same as that of a short dipole in free
space, sin (. Thus, in the perfect ground plane case radiation is maximum along
the ground plane; whereas for a real earth ground plane the radiation maximum
is tilted up away from the ground plane and is reduced in intensity, for the same
input power, due to reduced efficiency. This is a general trend. The effect of a
lossy earth on vertical antennas is to tilt the radiation pattern upward. A good
radial ground system (to be discussed in Section 5.52) will make the pattern
behave more nearly like that for a perfect ground plane, that is, increase the low
angle radiation (along the ground plane). Low angle radiation is particularly
important for long distance communication links that rely on ionospheric
reflection (skip).

A short vertical dipole that is 4/4 above the ground plane forms a /2 spaced
array with its image. For the perfect ground plane ¢, = oo and I, from (5-53) is
+ 1. The array is then a 4/2 spaced, equally excited, in-phase collinear array, The
pattern for this is given in Fig. 3-17 and is also plotted in Fig. 5-37a (n = o).
For a real earth ground plane I';. = — 1 at grazing angles (0 near 90°). The array
contributions thus cancel giving a null along the ground plane as shown in
Fig. 5-37a. As the height h is increased to 4/2 the equivalent array of Fig. 5-34
has a A spacing and multiple lobes appear in addition to the effects described for
h = 1/4. The elevation patterns for h = 4/2 are plotted in Fig. 5-37b.
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70°

(b)

Figure 5-37 Elevation patterns (in the £-plane) of a vertical
short dipole above various ground planes. ¢, = 15 for real
earth cases. (@) A quarter-wavelength above ground,
h=/i/4. (b) A half-wavelength above ground, h=i/2.
(After Jordan and Balmain [20]. Reprinted by permission
of Prentice-Hall, Inc., Englewood Cliffs, NJ.)
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For a horizontal short dipole as shown in Fig. 5-35 the radiation is not the
same for all planes through the z-axis, as for vertical antennas. In the yz-plane
(perpendicular to the axis of the dipole) the radiation electric field is given by
(5-51). The reflection coefficient I';; is exactly —1 for a perfect ground plane and
approximately —1 for real earth ground planes at all angles 6. The element
pattern is isotropic since the elements are seen in end view in the H-plane
(vz-plane). Thus the array factor completely determines the pattern. The H-plane
patterns for h equal to A/4 and i/2 are shown in Fig. 5-38 for various ground
planes. Since the dipole and its image are nearly out-of-phase there will be a null
along the ground plane. For h= i/4 the half-wavelength spacing between the
dipole and its image compensates for the near out-of-phase array condition
giving a maximum for 6§ = 0° in Fig. 5-38a (see Fig. 3-4 also). Forh= 1/2and a
perfect ground plane, radiation from the dipole and its image are exactly out-of-
phase in the 6 = 0° direction giving a null. For real earth ground planes the
image is not exactly of equal amplitude and opposite phase so there is not a
perfect null in the = 0° direction but a low radiation value as seen in
Fig. 5-38b. Notice that the effects of finite conductivity are much less pro-
nounced for horizontal antennas than for vertical antennas.

The E-plane radiation from a horizontal short dipole can be found from
(5-50).

The field expressions of (5-49) to (5-51) for short dipoles above a ground plane
can be used for other antenna types by using the appropriate element pattern. In
particular, sin 0 in (5-49) and cos € in (5-50) are replaced by the free-space
pattern of the antenna considered.

5.5.2 Ground Plane Construction

An excellent ground plane can be constructed by using a metallic sheet that is
much larger than the antenna extent. Such ground planes become impractical at
low frequencies because of the size required. In this section various techniques
are discussed for increasing the apparent conductivity of a real earth ground.

Consider a vertical monopole antenna with its base at ground level. (See
Section 2.3.2 for a discussion of monopoles over a perfect ground plane.) Cur-
rents flowing up the antenna leave the antenna and form displacement currents
in air. Upon entering the earth, conduction currents are formed which converge
toward the base of the antenna. Losses in an earth ground can be reduced by
providing a highly conductive return path. This is commonly achieved with a
radial ground system. The size of the wires used is not critical and is determined
by the mechanical strength required. Number 8 AWG wire is typical. They need
not be buried, but it is usually convenient to do so. However, they should not be
buried too deep in order to minimize the extent of earth through which the fields
must pass. Sometimes the radial wires are linked together at the base of the
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Figure 5-38 /-plane elevation radiation patterns for a horizontal short dipole above

various ground planes. See Fig. 5-35. ¢, = 15 for real earth cases. (8) A quarter-
wavelength above ground, h = i/4. (b) A half-wavelength above ground, h = /2.
(After Jordan and Balmain [20]. Reprinted by permission of Prentice-Hall, Inc.,
Englewood Cliffs, NJ.)
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monopole by a ring shaped ground strap. Occasionally one or more stakes are
driven into the ground near the base on the monopole.

The ohmic resistance of the radial system and earth ground adds to the ohmic
resistance of the monopole structure to determine the total ohmic resistance
components of the input impedance. The efficiency of the antenna system
depends on the proportion of radiation resistance and ohmic resistance; see
(1-182). For high-power transmitting antennas it is important to have a well
designed radial system to achieve high efficiency. On the other hand, for simple
monopole structures, three equally spaced radial wires form the radial system.

The most sophisticated ground system such as used with a standard broadcast
AM transmitting antenna is 120 radial wires spaced equally, 3° apart, around the
tower out to a distance of about a quarter-wavelength from the tower. In
general, the length of the radials is roughly equal to the height of the monopole
antenna. The value of the total ohmic resistance of a ground system with 120
radials for typical soils is plotted in Fig. 5-39 for a few frequencies as a function
of radial length [23]. Note that at 3 MHz a ground system with 120 radials that
are about a quarter-wavelength long (25 m) gives a ground system resistance of
1 ohm. Since the surface resistance of the earth varies as the square root of
frequency [see (1-185)] the ground system resistance will be constant for lower
frequencies if the length of the radials is increased in proportion to the square
root of wavelength. For frequencies above 3 MHz, the curve for radial length in
Fig. 5-39 is only slightly to the right of the 3-MHz curve. This is because after
the radials reach a length of about a quarter-wavelength most of the large
current densities occur within the region of the radials and further length in-
crease is of no major consequence.

The construction principles for a radial wire ground system on top of or in the
carth can be summarized rather simply. The function of a radial system is to
prevent the electromagnetic fields from the antenna from penetrating into the
ground and exciting currents which in turn lead to ¢ |E|* ohmic loss. As can be
seen from the above discussion, il 120 quarter-wavelength long radials are
employed the ohmic resistance introduced by the ground system will be at most
a few ohms and usually well under an ohm. In most applications it is impractical
to install as many as 120 radials. Generally speaking, 50 radials about a quarter-
wavelength long will reduce earth losses to a few ohms. When only a few radials
are used the added resistance of the ground can be several ohms. Also if the
radial lengths (almost irdependent of the number used) are reduced below a
tenth of a wavelength the ground system resistance will increase significantly.!
The radial wires can be laid on top of the ground or buried slightly (but never
deeply buried). Wire selection is largely determined by mechanical considera-
tions. As the number of radials is increased the less current each one will have to

! More details and references for ground system design are available in [24],
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Figure 5-39 Typicalresistance of radial ground systems using 120radials in
average soil. (From Griffith [23]. © 1962 McGraw-Hill. Used with per-
mission of McGraw-Hill Book Company.)

carry and thus the smaller the wire diameter required. At the base of the antenna
the radials should be connected together and to one or more ground stakes.

At high frequencies (VHF and above) antennas are often mounted over metal-
lic (solid, mesh, or radial wire) ground planes of relatively small extent. Then the
dimensions and shape of the ground plane are important. In general the radia-
tion is greatest in the direction of the largest portion of the ground plane. For
example, consider a monopole antenna mounted on an automobile. If it is
placed on the right rear bumper a pattern maximum occurs off of the left front of
the car. When the antenna is mounted in the center of the car roof there is some
slight pattern enhancement in the forward and rear directions.
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5.6 TRAVELING-WAVE WIRE ANTENNAS

The wire antennas we have discussed thus far have been resonant structures. The
wave traveling outward from the feed point to the end of the wire is reflected,
setting up a standing-wave type current distribution. This can be seen by exa-
mining the expression for the current in (5-1) for the top half of the dipole which
can be written as

I, sin lﬁ(£ —z ” = ;—}’e"“""'z‘(e'”‘: — elf), (5-56)

The first term in brackets represents an outward traveling wave and the second
term a reflected wave. The minus sign is the current reflection coefficient at an
open circuit.

If the reflected wave is not present on an antenna it is referred to as a
traveling-wave antenna. A traveling-wave antenna acts as a guiding structure for
traveling waves whereas a resonant antenna supports standing waves. Traveling
waves can be created by using matched loads at the ends to prevent reflections.
Also, very long antennas will radiate most of the power. leading to small
reflected waves by virtue of the fact that very little power is incident on the ends.
In this section several wire forms of traveling-wave antennas will be discussed.
Other traveling-wave antennas are discussed under the topic of broadband
antennas in the next chapter. Some of the antennas in this section are essentially
the traveling-wave counterparts of resonant wire antennas presented previously
in this chapter, They tend to be broadband with bandwidths of as muchas 2: 1,

The simplest traveling-wave wire antenna is a straight wire carrying a pure
traveling wave, referred to as the traveling-wave long wire antenna. A long wire is
one that is greater than one-half wavelength long. The traveling-wave long wire
is shown in Fig. 5-40 with a matched load R, to prevent reflections from the
wire end. Exact analysis of this structure, as well as others to be presented in this
section, is formidable. We shall make several simplifying assumptions which
permit pattern calculations that do not differ greatly from real performance,
First, the ground plane effects will be ignored and we will assume the antenna

Ry

| T

Figure 5-40 Traveling- wave long wire antenna
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operates in free space. A traveling-wave long wire operated in the presence of a
ground plane is called a Beverage antenna, or wave antenna. The ground plane
can be accounted for using the techniques of the previous section. Second, the
details of the feed are assumed to be unimportant. In Fig. 5-40 the long wire is
shown being fed from a coaxial transmission line as one practical method. The
vertical section of length d is assumed not to radiate, which is approximately
true for d < L. Finally, we assume that the radiative and ohmic losses along the
wire are small. When attenuation is neglected the current amplitude is constant
and the phase velocity is that of free space [25]. We can then write

I(z) = I e * (5-57)

which represents an unattenuated traveling wave propagating in the +:z-
direction with the phase constant ff of free space.

The current of (5-57) is that of a uniform line source with a linear phase
constant of §, = —p. From (4-6) f, = —f cos 0,, so the pattern factor maxi-
mum radiation angle (not including element factor effects) is 6, = 0°, which
implies an endfire pattern. The complete radiation pattern from (4-8) is

_sin[(BL2)(1 — cos 0)]
F(0)= K sin 0~ (5-58)
i (BLR)(1 — cos 0)
where K is a normalization constant that depends on the length L. The polar
pattern for L = 64 is shown in Fig. 5-41. The element factor sin @ forces a null in

__—--"'/

Figure 5-41 Pattern of a traveling-wave long wire
antenna. L = 6/ and 0,, = 20",
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Pattern maximum angle, @,

Figure 5-42 Pattern maximum angle

o | | | | for a traveling-wave long wire antenna

0 2) 4 62 8\ 10 of length L operating in free space. See
Length, L (5-58).

the endfire direction. Hence, instead of having a single endfire lobe (which the
pattern factor produces), the “main beam ™ is a rotational symmetric cone about
the z-axis. The maximum radiation angle in this case is 0,(L = 64) = 20.1°. In
general it is a function of L. Solving (5-58) for 0,, as a function L produces the
plot of Fig. 5-42. An approximate expression for the angle of maximum radia-
tion is [26] '

0, = cos“(l _ Dbl J

L/A

The beam direction values from Fig. 5-42 or (5-59) for a traveling-wave long
wire of length L may be used to calculate an approximate beam direction for a
standing-wave straight wire antenna (i.e., dipole). For example, 0,, for L = 34/2
from Fig. 5-42 is 40° and 0,, for the dipole of Fig. 5-4¢ is 42.6°. As L increases the
traveling-wave and standing-wave antenna main beam maximum angles approach
each other [27]. The standing-wave wire antenna is distinguished from its
traveling-wave counterpart by the presence of a second major lobe in the reverse

(5-59)

'direction; see Fig. 5-4c. This can be seen by noting that the traveling-wave

current of (5-57) corresponds to the first term of the standing-wave current of
(5-56). The second term of (5-56), which is the reflected wave, produces a pattern
similar in shape but oppositely directed. Thus a traveling-wave antenna has a
beam with a maximum in the 0 = 0,, direction and a standing-wave antenna of
the same length has an additional beam in the 0 = 180° — 0,, direction.

The input impedance of a traveling-wave antenna is always predominantly
real. This can be understood by recalling that the impedance of a pure traveling
wave on a low-loss transmission line is equal to the (real) characteristic im-
pedance of the transmission line. Antennas that support traveling waves operate
in a similar manner. The radiation resistance of a traveling-wave long wire
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antenna is 200 to 300 ohms (se¢ Prob. 5.6-5). The termination resistance should
equal the value of the radiation resistance.

The resonant vee antenna discussed in Section 5.12 can be made into a
traveling-wave antenna by terminating the wire ends with matched loads. The
traveling-wave vee antenna is shown in Fig. 5-43. The pattern due to each arm
separately is expressed by (5-58), an example of which is shown in Fig. 5-41.
From Fig. 5-43 it is seen that when a ~ 0,,, the beam maxima from each arm of
the vee will line up in the forward direction. A more accurate analysis of vee (sce
Prob. 5.6-8) includes the spatial separation effects of the arms. Pattern calcula-
tions as a function of « reveal that a good vee pattern is obtained when

a ~ 080, (5-60)

where 8, is found from Fig. 5-42 or (5-59). For L = 64, 6,, = 20° from Fig. 5-42
and (5-60) yields a = 16°; the pattern for a vee with this geometry is shown in
Fig. 5-43. The large side lobes arise f[rom portions of the beams from each half of
the vee which do not line up along axis. The pattern of the vee out of the plane
of the vee is rather complicated due to the merging of the conical beams for
cach half of the vee. The traveling-wave vee provides relatively high gain for a
bent wire structure.

By extending the ideas of a traveling-wave vee antenna we obtain a rhombic
antenna as shown in Fig. 5-44. The operation of this antenna is visualized most
easily by viewing it as a transmission line that has been spread apart and
consequently the characteristic impedance is increased. The load resistor R, is of
such a value as to match the transmission line. The antenna carries outward

Resultant
pattern

Figure 5-43 The traveling-wave vee antenna. In this case L = 67 and
a=0.80, =16°
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Resultant
pattern

Figure 5-44 The rhombic antenna. Each side is of length L. Component beams 2 and 3,
and 5 and 8 line up to form the main beam of the resultant pattern. In thiscase L = 64 and
a=16°

traveling waves which are absorbed in the matched load. Since the separation
bct\.vcen the lines is large relative to a wavelength, the structure will radiate. If
designed properly a directive pattern with a single beam in the z-direction can be
obtained.

A rhombic antenna operating in free space can be modeled as two traveling-
wave vee antennas put together. Choosing « = 0.80,, as for the vee, the beams of
the rhombic in Fig. 5-44 numbered 2, 3, 5, and 8 will be aligned. Again 0,
follows from Fig. 5-42. Due to the spatial separation of the two vees the rhombic
pattern will not be the same as that of a single vee [27]. (See Prob. 5.6-9.)

The effects of a rhombic operating above a real earth ground can be included
by the techniques of the previous section. For a rhombic that is oriented hori-
zontally the reflection coefficient Iy, is approximately — 1 and the real earth may
be modeled as a perfect conductor; Fig. 5-38 illustrates that this assumption has
a minor effect for horizontal antennas. The array factor of a rhombic a distance
h above a perfect ground plane produces a null along the ground plane. There
are several designs for rhombics above a ground plane in the literature [26-29)].
One such design is for alignment of the major lobe at a specific elevation angle.
Then the rhombus angle x and the elevation angle of the main beam are equal,
and the height above ground is given by

A

i 4 sin z (B}
and the length of cach leg is
03714
L=""2-". §-
sin® x (<42}

For_ example, if ¢ = 14.4° then L= 64 and h = 1i. Rhombic impedances are
typically on the order of 600 to 800 ohms.
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The efficiency of the thombic antenna is decreased significantly because of the
matched termination. The power that is not radiated is absorbed in the load R, .
However, this loss of power is essentially that which would have appeared ina
large back lobe as a result of reflected current if the matched load were not
present. The traveling wave feature not only improves the pattern but also
produces wider bandwidth.

5.7 SQUARE LOOP ANTENNAS

Electrically small loop antennas with a perimeter that is much less than a
wavelength were discussed in Section 2.4. It was found that the pattern and
radiation resistance of a small loop are insensitive to the loop shape and depend
only on the loop area. Also the radiation from a small loop is maximum in the
plane of the loop and is zero along its axis. These facts follow directly as a
consequence of the current amplitude and phase being constant over the loop,
which in turn is due to the loop being electrically small. As the perimeter of a
loop antenna becomes a sizable fraction of a wavelength, the current amplitude
and phase will vary over the wire extent, much as we saw with dipole antennas.
Therefore, loop antennas with a perimeter that is on the order of half-wavelength
or larger will display performance variations with loop size and shape.

Discussions of large loop antennas are frequently approached by solving a
loop antenna under the assumption of uniform current amplitude and phase
(see Prob. 5.7-1). However, as we have mentioned, the current does not behave
this way. Instead of assuming a uniform current, we will analyze the square loop
antenna in a realistic fashion, thus yielding useful results. A square loop antenna
with a perimeter of one wavelength will be analyzed in detail. Although the
solution is rather involved, it provides an opportunity to show that the theoreti-
cal principles we have developed using a realistic current assumption will yield
relatively accurate results. This is demonstrated by comparison to the more exact
results from numerical solution methods.

The one-wavelength square loop antenna as shown in Fig. 5-45 has one-quarter
wavelength sides. For a one-wavelength perimeter it is reasonable to assume that
the current distribution is sinusoidal. Then the current distribution is continuous
around the loop as shown in Fig. 5-45 (solid curve). With the feed point in the
center of a side parallel to the x-axis this sinusoidal current is expressed as

I, =1, = —xI, cos(fx) |x'| <
(5-63)

1l

L= -Iy=ylsin(By) |y <

M“‘ s
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Figure 5-45 The one-wavelength square loop
antenna. Each side is of length i/4. The solid
curve is the sinusoidal current distribution of (5-
63). The dashed curve is the current magnitude
obtained from more exact numerical methods.

Solution for the radiation properties proceeds in the usual manner. First the
vector potential from (1-99) is

A e i . —
— ] AL
= le dl. (5-64)

To find the phase function, the expressions for vectors from the origin to arbi-
trary positions on each side must be written. They are

-
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(5-65)
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where the numbered subscripts indicate the corresponding loop side. Using the
expansion of f from (A-4) and (5-65) in (5-64) with the loop integral broken into
integrals over each side gives

_A{B

e—;ﬂr I [_ i ' Cﬂ‘s(ﬁr‘)ejﬁx- sinfcos g (e"jlx.r"i-lsinﬂsin é 4 ej(:r:'4}sitl @ 5in 4’!) dx'
i B

A=
4nr

* —I8

A8
4 y j_ L{ssin(ﬁy;kfﬁj" sin @ sin ¢ [__e—jl!;’ﬂi}sin @ cos ¢ + ej(nf.usin # cos ‘ﬁ) dy, ]
e'fﬂ'

4

T u8 e
I,|—x2 005(1 sin 0 sin ¢) [ cos(ﬁx')elﬂx sinfcosé gy
J_us

P AlB o )
+ ¥2j sin (,_ sin 0 cos ¢) I sin(fy’)ef= sinosine dy’]. (5-66)
4 - a8

The first factors in each of the above two terms in brackets are the array factors
for the pairs of sides 1, 2 and 3, 4, respectively. Evaluation of the integrals and
subsequent simplification lead to

i e 2\/51, {x ¢_:0§[(n:-'4)c‘c:')s Q]

. m n
dnr i A Ccos Sll’l(z cos ;)—1‘.205(;t Cos | )l

. sin[(rm/4)cos 3]

n s T
Sl 0 cos Q c«:os(:l cos Q) - sm( Ccos Q)“ (5-67)

4

where

cos y=sin 0 cos ¢ and cos Q= sin 0 sin ¢. (5-68)

The angles y and Q have a geometrical interpretation; they are the spherical
polar angles (similar to 6) for the x- and y-axes; see (A-4).
The far-zone electric field components are

E,= —jopd,= —jopA -0 = —jop(A.X 0+ 4,y-0)
= —jwu(A, cos 0 cos ¢ + A, cos 0 sin ¢). (5-69a)
E, = —jopA - = —jopu(—A, sin ¢ + A, cos ¢). (5-69b)
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Substituting 4, and A, from (5-67) gives

E,= il ne i . e;sin ¢ sin[{'n/‘i)sil? 8 cos ¢]
2nr 1 —sin? @ sin? ¢

: (sin @ sin ¢ cos(-g sin @ sin qb) - sin(% sin # sin ¢”

__cos ¢ cos[(m/4)sin @ sin @]
1 —sin? 0 cos? ¢

; lsin 0 cos ¢ sin(g siii /cos qs) N cos(% 50 ome ¢”} (5-70a)

_ jl,ne " |cos ¢ sin[(n/4)sin 6 cos ¢]

E
© S2ur 1 —sin? # sin? ¢

. (Sil"l 0 sin ¢ cos(% sin 6 sin ¢) - sin(—:; sin 0 sin ¢”

. sin ¢ cos[(n/4)sin A sin @]
I —sin® 6 cos® ¢

© |sin 6 cos ¢ sin(% sin ) cos d:) - ms(‘f1 sin @ cos ¢”: (5-70b)

These expressions are rather involved but were derived in a straightforward
fashion using the principles set forth in Section 1.5.

The far-field expressions simplify somewhat in the principal planes. In the
xy-plane, which is the plane of the loop (an E-plane), 0 = 90° and then (5-70)
reduces to

|4
Eu(” - §)= 0 | (5-71a)
V2mr 4| (m/d)cos ¢

4. Sos[(z/4)sin @]
(n/d)sin ¢

E (U B :r) _ gne " |sin[(n/4)cos @]
J0="5]= B s St il |
2

sin ¢ cos(g sin ¢J - sin(g sin ¢)'

cos ¢ sin(g cos q&) - cn:ns(‘%r cos q‘)”} (5-71b)

The E, exprcsgion is plotted in Fig. 5-46a (solid curve) in normalized form.
Along the x-axis (¢ = 0° and 180°) E, = 0. This is true because the sides 3 and 4
alone each have patterns that are zero in the broadside direction since the
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Figure 5-46 Principal plane patterns for one-
wavelength square loop antenna. The solid curves
are the patterns based on a sinusoidal current
distribution of Fig. 5-45. The dashed curves are the
patterns arising from the current distribution
obtained by the more exact numerical methods. (3)
The xy-plane normalized pattern plot of E,. In this
plane HP = 94°. (b) The xz-plane normalized
pattern plot of E,. In this plane HP = 85°. The
patterns from the two methods coincide in this plane.
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Figure 5-46 (c) The yz-plane pattern plot of E,.

current distributions on these sides are odd about their midpoints. Along the
y-axis (5-71b) reduces to

n n jlne™ " 1
E)f0==,p==]= ——— < 5-72
Jfo=34=3) S 2 (-72)
In the xz-plane, which is an E-plane, (5-70) yields
E,(¢=0)=0 (5-73a)
jl,me™ " sin @ sin[(n 4)sin 0] — cos[(n/4)sin 6]
e H e | . (5-73b) -
B¢ =0)=" 7 — (5-73b)

The normalized form of this E, expression is plotted in Fig. 5-46b (solid curve).
It can be shown that (5-73b) goes to zero for 6 = 90°, as it should by (5-71a).
In the yz-plane, which is the H-plane, (5-70) reduces to

E,,( - ’-2‘) -0 (5-74a)

_m)\_ _lne ™ (’E : ) -74b
E¢(¢-—*2')-—- ﬁ;oos 4sm0. (5 )
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Figure 5-46¢ (solid curve) gives the plot of the normalized form of this E,

Q'l T | B | LI LA I T 11
_expression. The cos[(n/4)sin 6] pattern is the array factor for two point sources EREETRLCEERE RS EE R . Tl ! : i
.at the midpoints of sides 1 and 2. Note that in the z-direction (5-73) and (5-74) - T .
give the same result (for # = 0°): an electric field parallel to the x-axis given by B i 0 3

g = e

J2nr
which is a factor of \/5 greater than E_ in the y-direction given in (5-72). This is
also seen in Fig. 5-46¢.

From the patterns in Fig. 5-46 we can make some general conclusions about
the radiation properties of the one-wavelength square loop antenna. Radiation is
maximum normal to the plane of the loop (along the z-axis) and in that direc-
tion is polarized parallel to the loop side containing the feed. In the plane of the
loop there is a null in the direction parallel to the side containing the feed point
(along the x-axis), and there is a lobe in a direction perpendicular to the side
containing the feed (along the y-axis). These results are quite different from the
small loop antenna which has a null on-axis and maximum (uniform) radiation : A
in the plane of the loop. : g 8

The accuracy of our results can be investigated by solving the square loop i v
problem without assuming the current distribution to be sinusoidal. The numeri- (swiyo)*'z|w)
cal methods of Chapter 7 applied to the one-wavelength loop antenna for a wire
radius of 0.0014 renders the current magnitude shown in Fig. 5-45 (dashed
curve). Note that the agreement is actually very good. The impact of the slight i
differences in these current distributions are revealed in Fig. 5-46. The dashed L TR 7 0 I 0 O L L AL B L AR
curves are the patterns corresponding to the exact current distribution and
calculated by a radiation integral procedure similar to that detailed above for
the assumed current. The agreement between the patterns arising from the - =
simple current assumption and that of more exact methods is very good. In fact, K 1
in the xz-plane the agreement is nearly exact. This detailed comparison of the
approximate antenna analysis methods employed thus far in the book to that of
more exact (but more difficult) numerical methods serves to provide confidence a
that good engineering results can be obtained from reasonable assumptions -
about the operation ol antennas.

The square loop antenna is most useful in practice for a one-wavelength
perimeter because of the desirable input impedance properties. The impedance of | 1
a square loop antenna with a wire radius of 0.0014 is plotted in Fig. 5-47 as a | 5
function of the perimeter. Note that for a one-wavelength perimeter the input
reactance is relatively small, and also note that resonance occurs for a 1.094
perimeter. The input resistance for a one-wavelength perimeter is about 100 ' £=o ' o peas ]
ohms. Other perimeter values give rather awkward input impedances. : g §J - g g =

The gain of the one-wavelength square loop is 309 dB, which is less than the g

(5-75)
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Figure 5-47 Input impedance of a square loop antenna as a function of the loop pe;imeter. The loop is fed in the
center of one side and has a wire radius of @ = 0.001/. Numerical calculation methods were used. (a) Input resistance

(b) Input reactance.

382 dB gain of a straight wire one-wavelength dipole. This is to be expected
from the obviously less -directive pattern of the loop in Fig. 5-46 compared to !
that of the one-wavelength dipole in Fig. 5-4b.
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PROBLEMS

5.1-1 Use the integral from (F-11) in (5-3) to prove (5-4).

5,1-2 Starting with (5-6) show that for L < 4, the radiation pattern of a dipole reduces to
that of a short dipole, sin 6.

5.1-3 (a) The outputs from two collinear, closely spaced, half-wave dipoles are added to-
gether as indicated by a summing device in the figure below. The transmission lines from
the antennas to the summer are of equal length. Write the pattern F,(0) of this antenna
system using array techniques.

>

— - s >~

(b) Now consider a center-fed, full-wave dipole which is along the z-axis. Write its
pattern expression Fy(0).

(¢) Now draw the current distributions I,(a) and Iy(z) for both antennas. From these
current distributions can you make a statement about the patterns from the two
antennas? Return to the pattern expressions and prove your statement mathematically.
5.1-4 The center-fed, full-wave dipole is rarely used because it has a current minimum at

the feed point. If it is instead fed as shown below, sketch the current distribution. A!so,
rough sketch how you think the pattern should look, and explain how you obtained it,

A 3

—— | =

4 4
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5.1-5 (a) The array of Prob. 5.1-3(a) is parallel fed, in-phase array. Show how the parallel
wire transmission lines are connected to perform the summing function. Also put current
arrows on each wire. S

(b) Consider an array similar to that of part (a) except now the array elements (hall-
wave dipoles) are fed 180° out-of-phase. Show how the transmission lines are arranged to
accomplish this subtraction function. Again show the currents on each wire.
5.1-6 Use the results of the cosine-tapered current distribution in Section 42 to derive the
pattern of a hall-wave dipole in (5-7).
5.1-7 Verify that the normalization constant in (5-9) is 0.7148 for the pattern of a 34/2
dipole. What are the angles 8, in degrees for maximum radiation?
5.1-8 A resonant half-wave dipole is to be made for receiving TV Channel 7 of frequency
177 MHz. If $-in. diameter tubular aluminum is used, how long (in centimeters) should
the antenna be?
5.1-9 A four-element collinear array of half-wavelength spaced, half-wave dipoles are
placed along the z-axis. All elements are fed with equal amplitude and phase.

(a) Determine the complete radiation pattern F(f) for the array.

(b) Plot a sketch of the pattern in linear, polar form using array concepts.
5.1-10 Repeat Prob, 5.1-9 except now the half-wave dipole elements are parallel to each
other and the x-axis, and are phased for ordinary endfire. The centers of the four elements
are located on the z-axis and are spaced a half-wavelength apart.
5.1-11 The antenna shown is operated over a perfect ground plane. Its purpose is to
enhance radiation in the xy-plane over that of a single quarter-wave monopole.

—_—

(a) Determine and sketch the current distribution. Assume b < 4.

(b) Use array concepts to obtain a linear, polar plot of the radiation pattern in a plane
containing the z-axis.

-
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5.1-12 (a) Show that the power radiated by a center-fed dipole of arbitrary length L with
a sinusoidal current is
z 1 ;
Py i % 05772 + In(BL) — Ci(BL) + 5 sin(BLYSi28L) — 2 Si(BL)]

+ % cos(BL) [05772 + In( 921' ] + Ci2pL) -2 Ci{BL}'

(b) Derive an expression for the directivity and then plot directivity as a function of
dipole length for L from 0 to 34.

5.1-13 Use the length reduction procedure for half-wave resonance in Table 5-2 to calcu-
late the resonant frequencies of the two dipoles in Fig. 5-7.

5.1-14 Design an optimum directivity vee dipole to have a directivity ol 6 dB.

5.1-15 To show that the vee dipole results of (5-23) and (5-24) give roughly the correct
results for a full-wave straight wire dipole; use D = 2.41 and determine 7.

5.2-1 (a) It is desired to have a simple formula for the length of a thin-wire half-wave
folded dipole antenna. Show that it is L(cm) = 14,250/ f(MHz).

(b) Determine the length in centimeters of half-wave folded dipoles for practical appli-
cation as receiving antennas for each VHF TV channel and the FM broadcast band
(100 MHz), Tabulate results.

5.2-2 Calculate the input impedance of a folded dipole of length L =044, wire size
2a = 0.0014, and wire spacing d = 12.5a using the transmission line model. Compare your
results to values from Fig. 5-15.

5.3-1 A receiving antenna with a real impedance R, attached to its terminals has the
equivalent circuit shown. Prove that maximum power transfer to the load for a fixed real
antenna impedance R , occurs for R, = R ;.

- Or

—
=t

5.3-2 A transmitter with a real impedance of R, is connected to a lossless transmission
line of real characteristic impedance R, and then to an antenna of real input impedance
R

(a) Derive an expression for the transmit efficiency, that is, power delivered to
antenna/total power dissipated. Neglect any mismatch effects.

(b) Find the percent efficiency for Ry = R,, Ry = 05R,.and Ry =0.1R,.
5.4-1 Use array theory to analyze the array of Fig. 5-27a where the pattern of each
element is that of a half-wave dipole.



256  WIRE ANTENNAS

(a) Plot the H-plane pattern and compare to Fig. 5-27b.

(b) Plot the E-plane pattern.
The program ARRPAT can be used.
5.4-2 Numerical methods reveal that the currents on the elements of the two-element.
parasitic array of Fig. 5-27a are nearly sinusoidal and the current amplitudes and phases
at each element center are 1.0/ —88° for the driver and 0.994 £ 81.1° for the parasite. Use
simple array theory to obtain and plot the H-plane pattern in linear, polar form. The
program ARRPAT can be used.
5.4-3 Phasor diagrams are often helpful in obtaining a rough idea about how arrays
perform. To illustrate, use phasor diagrams to obtain the relative far-zone field values in
the endfire directions of the two-element parasitic array of Prob. 5.4-2 (i.e, find the [ront
to back ratio). To do this find the total phasor at each element location including the

spatial phase delay due to the element separation. Assume the amplitudes of each element
are unity and the phases are —88° for the driver and 81.1° for the parasite.

5.4-4 Design a three-clement Yagi for FM broadcast reception at 100 MHz using the
data of Table 5-4. Give dimensions in centimeters.

5.4-5 Design a seven-element Yagi for TV Channel 13. Space all elements 0.254 apart and
use the values of Table 5-4. Give dimensions in centimeters.

5.4-6 Construction project—a ten cent Yagi. This project is designed to demonstrate how
a high gain antenna can be built for under ten cents! Locate a channel on your (or a
cooperating friend’s) TV receiver which has marginal reception, such as a snowy picture
when a modest antenna (like rabbit ears) is used. If it happens to be Channel 13 you can
use the design values from Prob, 5.4-5. If not, repeat the calculations for the channel you
have chosen. The construction phase proceeds as follows. Find a large rigid piece of
corrugated cardboard and trim it so that it is several centimeters longer than the total
array length and about 5 cm narrower than the director length. Now locate several thick
coat hangers. Straighten them as much as possible and cut them to the lengths required
for the reflector and directors. The feed element is a folded dipole constructed from a
piece of twin-lead transmission line. Cut it to a length that is a little longer than the driver
dimension. Strip the ends and solder the two wires at each end together such that the
overall length is equal to the driver dimension. Next cut one wire of the driver at the
center of the folded dipole and solder the ends to a long piece of twin-lead which serves as
a transmission line for the antenna. Lay out all element positions on the cardboard by
marking appropriately. Tape the folded dipole onto the cardboard at the driver location.
The coat hanger parasitic elements are positioned by merely inserting them into the
corrugations in the cardboard. Now connect the transmission line to the receiver. Rotate
the antenna and note the effect on the reception. Large performance differences should be
observed. Note that it may be necessary to elevate the antenna by placing it in the attic,
for example. With this construction it is very easy to change the element spacings by
placing the coat hanger elements into difference corrugations. Very little difference will be
observed for small distance changes. Normally the best performance is achieved for
horizontal polarization, that is, elements parallel to the ground.

5.4-7 Construction project—a slightly more expensive Yagi. A fairly rugged Yagi antenna
can be constructed using the following technique. Select a TV channel with marginal
reception and design a Yagi for that frequency. The materials required for this project are
a 1 by 2 in. board of length slightly greater than the overall length of the array and a few
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meters of aluminum wire (usually No.8 AWG). Trim and straighten wires for the
reflector and directors. Drill holes in the wooden mast at the appropriate positions for
the reflector and the directors. The holes should be just slightly greater than the wire
diameter. Be sure all holes are along a straight line. The driver is a folded dipole oriented
such that the plane of the dipole is perpendicular to the line of the array. Drill one hole in
the mast about 2 cm above the array line. At the same distance below the array line drill
in from each side of the mast about 0.5 cm. Cut a piece of wire more than twice the length
of the driver, Push it through the top hole and center it. Bend the wire at the required
length at each end and fold it back to the mast. Now carefully trim away any excess wire
such that the wire ends can just be forced into the shallow holes and still form a symme-
tric folded dipole. Now wrap the bared ends of a twin-lead transmission line to the ends
of the folded dipole close to the mast (at the feed point). Be sure to get a good mechanical
contact. Also leave a tab of polyethylene where you stripped the twin lead. Small wire
brads can be wedged between the wire ends at the feed point and the mast, and at the
same time pinch the twin lead connection between the antenna wire and the brad. Solder
the feed point connections. Tack the polyethylene tab to the bottom of the mast to
provide strain relief. Insert the remaining elements into their holes, center them, and nail
brads into the hole alongside the wires to secure their positions. The construction is now
complete and you can connect the transmission line to the receiver and test the reception.
Try several antenna locations and orientations.
55.1 A resonant, half-wave, thin, vertical dipole is operated a half-wavelength above a
perfect ground plane. Calculate the input impedance. Use the results in Section 3.6,
5.5-2 Derive an cxpression for the directivity of an ideal (infinitesimal) dipole as a func-
tion of its height h above a perfect ground plane. The dipole is oriented perpendicular to
the ground plane. Make use of the results in Sections 2.3 and 3.4.
5.5-3 A short dipole is a quarter-wavelength above a perfect ground plane. Use simple
array theory for the dipole and its image to obtain polar plot sketches of the E- and
H-plane patterns when the dipole is oriented (a) vertically, and (b) horizontally.
5.5-4 Repeat Prob. 55-3 for a short dipole a half-wavelength above a perfect ground
plane.
55.5 A horizontal short dipole is a quarter-wavelength above a planar real earth and is
operating at | MHz. The conductivity of the earth is o = 12 x 107 mho/m and the
relative dielectric constant is £, = 15. For this frequency, o, and ¢,, we can approximate
[Ty | by 0.9 and the phase of I’y by —190° for all 6.

(a) Calculate and plot the H-plane clevation pattern in polar form in the upper
half-space.

(b) Compare the pattern with that of the short dipole over a perfectly conducting
ground plane (i.c., the results of Prob. 5.5-3b).
5.5-6 A vertical short dipole is located a hall-wavelength above the surface of the earth at
100 MHz. ¢ = 12 x 10" * mho/m and &, = 15. The reflection coefficient may be approx-
imated as

Fy=054L-0° 0<6<40°
r,=03L-=10°% 40° < 0 < 70°
[y =0.14L-90° 70° < 0 < 80°
Iy =054L—180°% 80° < 0 <90°
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(a) Calculate and plot the elevation pattern in polar form.

(b) Compare the pattern with that of the short dipole over a perfectly conducting
ground plane [Prob. 55-4(a)].
5.5-7 A quarter-wave resonant monopole is to be used as a transmilting antenna at
1 MHz. A radial system of 120 radials is to be used. If 977, efficiency is to be achieved,
how long must the radial wires be? Neglect any tower ohmic resistance.
5.6-1 Verify that the maximum of the radiation from a traveling-wave long wire antenna
which is 64 long occurs at an angle of 20.1° from the wire.
5.6-2 Compare the approximate beam maximum angle formula of (5-59) for a traveling-
wave long wire. with the values of Fig. 5-42 for L/A =1, 3, 6, 10.
5.6-3 Show that the power radiated from a traveling-wave long wire antenna is

sin(2pL)
28L |

P, =302 |2.:os + 1n(§) — Ci(2BL) +

Use (4-8), (5-58), and (1-127).
5.64 Use the radiated power expression from Prob. 5.6-3 for a traveling-wave long wire
to:

(a) Derive the directivity expression

LA
2.108 + ln(%‘) ~ Ci(2BL) + ﬂ%’%—“

1.69 col”% cos” l‘l = e J

D=

(b) Evaluate the directivity for L/4i =2, 5, 10, 20. Ci(2fL) is approximately zero for
these values of L.
5.6-5 Use the radiated power expression from Prob. 5.6-3 for a traveling-wave long wire
to:

(a) Find an expression for the radiation resistance.

(b) Evaluate the radiation resistance for L/A =2, 5, 10, 20. Ci(2fL) is approximately
zero for these values of L.
5.6-6 Plot the linear, polar plot of a traveling-wave long wire antenna which is eight
wavelengths long.
5.6-7 To be completely gencral, the traveling-wave long wire antenna has a current
distribution given by

1(z) = I e e I

where a is the attenuation coefficient representing radiation and ohmic losses. ff, is the
phase constant and is related to the velocity factor p = v/c as f, = B.p.
(a) Derive the pattern function

sinh %L +j%£' }; — €OS 8”
F(0) = K sin 0 ‘!{-+-E{-£_ a)
3 +i%3 cos
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(b) Show that this reduces to (5-58) fora=0and p=1.

(c) Plot the polar pattern for e = 0 and L= 64, for p= 1.0, 0.75, 0.5.
5.6-8 Traveling-wave vee antenna.

(a) Place the zero-phase reference point at the vertex of the vee antenna of Fig. 5-43,
and derive the radiation pattern as

F,(0) = K[F.(6) — F.(0)]
where

BL2) - 1+ cosl@- 3] ¢ sinl(ALA)1 —cinl0 —a)]
Fl(a) = eff " 1sm(0 . G) (ﬂLﬁ){l — COS(B - "K))

and F,(0) is the same as F,(0) except —u is replaced by a. This pattern expression is valid
only in the plane of the vee.

(b) Plot the polar pattern in Fig. 5-43 for L = 61 and o = 16°.
5.6-9 Rhombic antenna.

(a) Show that the pattern of the rhombic in Fig. 5-44 is

Fu(0) = KafF1(0) — F2(0) + e #{Fy - Fu]}

where Fy = e/ < -0F. and F, = ¢/t <»@*3F  F, and F, are given in Prob. 5.6-8. This
expression is valid only in the plane of the rhombic.

(b) Plot the polar pattern in Fig. 5-44 for L = 64 and « = 16°.
5.6-10 A rhombic antenna above ground is to be designed for a main beam maximum at
an elevation angle of 20°. Determine the rhombic configuration required.
5.7-1 The uniform circular loop antenna. A circular loop in the xy-plane with its center at
the origin and a radius b carries a uniform amplitude, uniform phase current given by

1=1,¢.

(a) Due to symmetry the pattern will not be a function of ¢ and A will have only a
¢-component. Using these facts, show that

A 69_-_1_"! b I'hms PelPrvintcow g
TV d4nr %

in the far field. Use symmetry to reason that ¢ = 0 can be assumed and that only a
¢-component exists.

(b) Find an expression for E,. Hint: use (F-7).

(c) Show that this result reduces to that for a small loop antenna in (2-53).
Hint: J(x) = x/2 for x < 1.
5.7-2 Show that (5-66) yields (5-67). To perform the integrations decompose the functions
cos(fx’) and sin(By’) into sums of exponential functions using (C-6) and (C-7).
5.7-3 Compute the input reactance of a square loop antenna with a 0.24 perimeter using
small loop analysis and compare to the value from Fig. 5-47b.



BROADBAND ANTENNAS

In many applications an antenna must operate effectively over a wide range of
frequencies. An antenma with wide bandwidth is referred to as a broadband
antenna, The term “broadband ™ is a relative measure of bandwidth and varies
with the circumstances. We shall be specific in our definition of broadband.
Bandwidth is computed in one of two ways. Let f,- and /, be the upper and lower
frequencies of operation for which satisfactory performance is obtained. The
center (or sometimes the design frequency) is denoted as f-. Then bandwidth as
a percent of the center frequency is

[T (6-1)
e
Bandwidth is also defined as a ratio by

i
I e
The bandwidth ol narrow band antennas is usually expressed as a percent using
(6-1) whereas wide band antennas are quoted as a ratio using (6-2).

In the previous chapter we saw that resonant antennas have small bandwidths.
For example. the half-wave dipoles in Fig. 5-7 have bandwidths of 8 and 16%,
(fv and f, were determined by the VSWR = 2.0 points). On the other hand,
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antennas that have traveling waves on them rather than standing waves (as in
resonant antennas) operate over wider frequency ranges. The definition of a
broadband antenna is somewhat arbitrary and depends on the particular
antenna, but we shall adopt a working definition. If the impedance and the
pattern of an antenna do not change significantly over about an octave (fy;/ f; = 2)
or more, we will classify it as a broadband antenna.

As we will see in this chapter, broadband antennas usually require structures
that do not emphasize abrupt changes in the physical dimensions involved, but
instead utilize materials with smooth boundaries. Smooth physical structures
tend to produce patterns and input impedances that also change smoothly with
frequency. This simple concept is very prominent in broadband antennas.

6.1 HELICAL ANTENNAS

If a conductor is wound into a helical shape and is fed properly it is referred to
as a helical antenna, or simply as a helix.! The typical geometry for a helix is
shown in Fig. 6-1. I one turn of the helix is uncoiled the relationships among the
various helix parameters are revealed, as shown in Fig. 6-2. The symbols used to
describe the helix are defined as follows:

D = diameter of helix (between centers of coil material)

C = circumference of helix = D
y = spacing between turns = C tan x

: _i 5
1 = pitch angle = tan™! ¢
L = length of one turn = /C? + §?
N = number of turns
A = axial length = NS

d = diameter of helix conductor.

Note that when S =0 (z = 0°) the helix reduces to a loop antenna and when
D =0 (x = 90°) it reduces to a linear antenna.

The helix can be operated in two modes, the normal mode and the axial mode,
The normal mode yields radiation that is most intense normal to the axis ol the
helix. This occurs when the helix diameter is small compared to a wavelength,
The axial mode provides a radiation maximum along the axis of the helix. When
the helix circumference is on the order of a wavelength the axial mode will result.

! Most of the pioneering work on the helix was performed by J. D. Kraus. See [1] and [2].
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Metal s
ground helix

solid metal

Figure 6-1 Geometry and dimensions of a helical antenna. This is a
left-hand wound helix.

6.1.1 Normal Mode of Radiation

In the normal mode of operation the radiated field is maximum in a direction
normal to the helix axis and for certain geometries, in theory, will emit circularly
polarized waves. For normal mode operation the dimensions of the helix must
be small compared to a wavelength, that is, D < A. The normal mode helix is
electrically small and thus its efficiency is low.

Since the helix is small, the current is assumed to be constant in magnitude
and phase over its length. The far-field pattern is independent of the number of
turns and may be obtained by examining one turn. One turn can be approx-
imated as a small loop and ideal dipole as shown in Fig. 6-3. The far-zone
electric field of the ideal dipole from (1-71) is

= Jpr

E, = joulS sin 06 (6-3)

4nr

where S, the spacing between helical turns, is the length of the ideal dipole in
Fig. 6-3. The far-zone electric field of the small loop from (2-53) is

E, = nf* DI e i b (6-4)
= 4 4nr

Figure 6-2 One uncoiled turn of a helix.
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Figure 6-3 One turn of a normal mode
helix approximated as a small loop and
an ideal dipole.

where nD?/4 is the area of the loop. The total radiation field for one turn, as
modeled in Fig. 6-3, is the vector sum of the fields in (6-3) and (6-4). Note that
both components have a sin 6 pattern (see Fig. 6-4) and they are 90° out-of-
phase. The axial ratio of the polarization ellipse is found from the ratio of (6-3)
and (6-4) as

|Eo| _ dops _ 282 :5)
|Eo] — Jw/e)w/ue@n/ayxD?  n*D*

Since the (perpendicular) linear components are 90° out-of-phase, circular polar-
ization is obtained if the axial ratio is unity. This occurs for

|AR| =

C=nD=,/25] (6-6)

which was found by setting (6-5) equal to one. This circular polarization is
obtained in all directions, except of course where the pattern is zero (along the
axis of the helix).

7 i sin 8 g
fa)

k)

Figure 6-4 The normal mode helix and its radiation pattern. (a)
Geometry used. (b) Radiation pattern of both | E,| and |E,|.
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From Fig. 6-2 it is seen that
S
Lsma=S or a=sin"’ 7 (6-7)
and
Ctx§ =L, (6-8)
For circular polarization in the normal mode, the circumference of the helix
given by (6-6) and used in (6-8) gives
S?+285A—-I*=0. (6-9)
This is a quadratic equation which may be solved for S as

e Y R 1+(%) J (6-10)

2
Choosing the plus sign to keep the physical length S positive and substituting
into (6-7) yields the pitch angle required for circular polarization

—1+ T+ LA

- LR

acp =Ssin~!

(6-11)

6.1.2 Axial Mode of Radiation

In the axial mode of radiation the helix radiates as an endfire antenna with a
single maximum along the axis of the helix (+ z-direction in Fig. 6-1). The
radiation is close to circular polarization near the axis. Further, the half-power
beamwidth can be reduced by increasing the number of turns. The axial mode
occurs when the helix circumference is on the order of one wavelength. In fact,
the expressions presented in this section remain valid over at least a [requency
range corresponding to

M <C<ii (6-12)

Il /i is the upper and f; the lower frequency over this band. the bandwidth ratio
is

fo el _ 3%

e bt Rl (ehe

which is nearly the two-to-one bandwidth required to fit our definition of a
broadband antenna.

The axial mode helix carries nearly a pure traveling wave outward from the

feed, The electric field vector rotates around in a circular fashion as does the

current on the helix. The polarization is thus close to circular on axis. At the end

e
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of the helix there is very little reflection of the outward traveling wave. Therefore,
there will be very weak fields incident back onto the ground plane (except for
very short helices with A4 < 2/2), and the effect of the ground plane may be
neglected. The ground plane size is also not very critical, but should be made
wider than a half-wavelength. In addition, the conductor diameter d has little
effect on the axial mode helix antenna properties. The helix is most conveniently
fed using a coaxial transmission line with the center conductor attached to the
helix and the outer conductor attached to the ground plane as suggested in
Fig. 6-1. The ground plane can be either square or circular, made from either
solid metal or wire mesh.

The normal mode helix supports a wave that corresponds to a current along
the helix which is nearly uniform in amplitude and phase if the helix dimensions
are small relative to a wavelength. However, the axial mode helix has a circum-
ference of about a wavelength, so the transmission mode in this case leads to a
current distribution that has opposite phase on opposite sides of a turn (since
they are separated by about a half-wavelength of conductor). Also the helix coil
acts to reverse the current direction for opposite points. Thus the current at
opposite points of a turn are essentially in phase, leading to far-field reinforce-
ment along the helix axis. The radiation pattern can be found by considering the
helix to be an array of N identical elements (or turns). The element pattern for
one turn is approximately that of a one-wavelength loop. An approximate ex-
pression for this is cos 0; see Fig. 5-46b. Assuming equal amplitude of excitation
for each turn, the array factor is that of a uniformly excited, equally spaced array
given in (3-33). The total pattern is then

(0) = sin(Ny2) !
F(0) = K cos ”N Sin(W2) (6-14)
where
Y = BS cos 00 + =« (6-15)

and K is a normalization constant.

The traveling wave along the helix produces an endfire beam along the helix
axis (z-axis). Suppose initially that the helix can be modeled as an ordinary
endfire array. Then a main beam maximum occurs in the ) = 0 direction for
¥ = 0, which yields 2 = —fS from (6-15); also see (3-36). The — S phase is
phase delay due to axial propagation corresponding to the distance S along the
axis for one turn. However, the current wave follows the helix. This introduces
another —2n of phase shift since the circumference is about a wavelength. Thus
for ordinary endfire x= —fS — 22. Quite amazingly it turns out that the
traveling-wave mode on the axial mode helix corresponds to nearly a naturally
occurring Hansen- Woodyard increased directivity type endfire array. This effect
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is accounted for with an additional —n/N phase delay over the ordinary endfire
case; see (3-49). Thus, the element-to-eclement phase shift is

- -(ﬁs 4+ 2x +%) | (6-16)

This phase shift leads to a value for the phase velocity of the traveling wave. To
see this we write the phase shift of the wave in one transit around a turn of
length L as

x= —B,L (6-17)

where f3, is the phase constant associated with wave propagation along the
helical conductor. Equating this to (6-16) gives

1 T
ﬁh=1—_(ﬂs+2n+ﬁ). (6-18)
The velocity factor (phase velocity relative to the free-space velocity of light) is
e B (6-19)

¢ w - E,

where v is the phase velocity of the traveling wave along the helical conductor.
Using (6-18) in (6-19) yields
- Lii
P Si+@N+ )2N’ (6:20)

A typical configuration is C =4, x=12° and N=12 Then S=C tana =
02134, L= /C*+ 5= 10224, and p = 0815. Therefore, the traveling wave
has a phase velocity less than that if it were a plane wave in free space. Such a
wave is referred to as a slow wave, Another remarkable feature of the helix is that
as the helix parameters vary over rather large ranges (5° <« <20° and
34 < C < 44) the phase velocity adjusts automatically to maintain increased
directivity.

Returning to the pattern calculation, the main beam maximum occurs for
(0 =0 and from (6-15) and (6-16), y = —2x — n/N. Then (6-14) is

sin(—Nm —n2)  K(=1)**"!
N sin(—n — n/2N) ~ N sin(n/2N)’

Normalizing such that the maximum is unity yields K = (—1)**' N sin(n/2N),
and the final pattern function is

F(0=0)=K

(6-21)

F(6) = (—1)**" sin - cos g Sin(NY2)

IN a2 6:-22)
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where
w=ﬁS(oosﬂ-l)—Zx—%. (6-23)

This pattern expression applies to both E; and E .
From a large number of measurements an empirical formula for the half-
power beamwidth has been developed. It is

52°
P = CAJNEm G

This formula holds for 12° < @ < 15°, 34 < C < %4, and N > 3. Notice that as N
increases the beamwidth decreases. Also this is the beamwidth in any plane
containing the axis of the helix since the beam is circularly symmetric.

The directivity of the axial mode helix can be found from (8-80) as

an _ 41253
Q, HP; HP,

(6-25)

where HP, and HP,, are the half-power beamwidths in the E- and H-planes in
degrees. This expression follows from the fact that 4r sr = 4n(180/n)* = 41,253
square degrees and the beam solid angle Q, ~ HP, HP,, . Substituting (6-24)
into (6-25) for both HP, and HP,, , since the pattern is circularly symmetric,
gives

C\*NS

B '5(1 3 (6-26)

This directivity expression is a ratio (not decibels), and approximately equals the
gain since the axial mode helix is nearly lossless.

We have been assuming E, and E, to be equal in magnitude. This is only
approximately true. The infinite helix has perfect circular symmetry but a finite
helix does not, so one would expect that the fields radiated from a finite helix to
be slightly asymmetric. It has been found that the axial ratio is given by

2N + 1
= 27

in the main beam maximum direction. As N becomes large |AR| approaches
unity and the wave approaches perfect circular polarization, since the fields E,
and E, are also in time-phase quadrature. The sense of the polarization is
determined by the sense of the helix windings as shown in Fig. 6-5, that is, a
right- (left-) hand wound helix is a right- (left-) hand sensed polarized antenna.
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(&)

Figure 6-5 Left- and right-hand wound
helices. For the axial mode helix the sense
of the windings determines the sense of
polarization of the antenna. (a) Left-hand
sensed helix. (b) Right-hand sensed helix.

In general, the terminal impedance of a helical antenna operating in the axial
mode is nearly purely resistive since it is essentially a traveling-wave antenna,
An empirically derived formula for input resistance is

R;, = 140

g ohms
A

(6-28)

which is accurate to +20% for 12° <a < 15°, 34 <C <34, and N > 3.
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Figure 6-6
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]

(c)

Figure 6-6 Radiation patterns of a 10-turn axial mode
helixwithC = iandx = 13° (Example6-1).(a) Measured
E, pattern at 8 GHz [3]. (b) Measured E, pattern at 8 GHz

[3]. (¢) Pattern computed from (6-22).

269
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Examplé 6-1. A 10-Turn Helix Antenna

The helix antenna is rather easy to construct and will perform approximately as predicted
by the simple theory presented in this section, as will be demonstrated in this example.
Calculations are compared to experimental results for a 10-turn helix constructed for a
center frequency of 8 GHz (4 = 3.75 cm). At the center frequency the helix is designed to
have a circumference of € = 0924, or C = 3.45 cm. The helix was built with a pitch angle
of a = 13°. The spacing between turns is then S = C tan o = 345 tan 13° = 0.796 cm. The
measured radiation patterns for the two principal planes are shown in Figs. 6-6a and 6-65
[3]. Note that these patterns are nearly identical, as required for circular polarization. The
theoretical pattern based on (6-22) is plotted in Fig. 6-6c. Note the good agreement with
the measured patterns. The hall-power beamwidth of the calculated pattern is 38.8° and
the beamwidth of the measured patterns is 45°. The empirical formula of (6-24) with
C=092), N=10,and S = C tan « = 1 tan 13° = 02314 gives

52°
=377 6-29
/10(0231) (o-29)

Iy

6.2 BICONICAL ANTENNAS

The bandwidth of a simple dipole antenna can be increased by using thicker
wire. This concept can be extended to further increase bandwidth if the conduc-
tors are flared to form a biconical structure. Then the fixed wire diameter is
replaced by a smoothly varying diameter and a fixed angle (of the conical
surfaces). In this section the idealized biconical antenna is considered first,
followed by two practical forms— the finite bioconical antenna and the discone.

6.2.1 The Infinite Biconical Antenna

If the conducting halves of an antenna are two infinite conical conducting
surfaces end-to-end, but with a finite gap at the feed point, the infinite biconical
antenna of Fig. 6-7 results. Since the structure is infinite it can be analyzed as a
transmission line. With a time-varying voltage applied across the gap, currents
will flow radially out from the gap along the surface of the conductors, These
currents in turn create an encirculating magnetic field H,. Assiming a TEM
transmission line mode (all ficlds transverse to direction of propagation), the
electric field will be perpendicular to the magnetic field and be (-directed. When
the potential on the top cone is positive and the bottom cone is negative, the
electric field lines extend from the top to the bottom cone as indicated in
Fig. 6-7.
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Figure 6-7 Infinite biconical antenna. The
field components and current are shown.

In the region between the cones J =0, H= H,d}. and E = E,0. Then
Ampere’s law, V x H = jweE + J, reduces to

(3]
= = jweE, = -30
030 (sin O0H,) = joeE, =0 (6-30)
for the r-component and
12 (h,) = jock (6-31)
T rart el =0

for the f-component. From (6-30) we see that 8/00 (sin 0H,) = 0 so

1
H, x

e ! 6-32
sin 0 ( )

Since the structure acts as a guide for spherical waves we can write (6-32) as

AP sl TN (6-33)
¢ ° 4nar sin 0
Then, substituting this into (6-31) we obtain
11 H, &, _,. BH1e " |
™I rdxsm 0T ) wer ix dn0
e
-, 6 3)
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This equation is simply E, = nH, which confirms our statement that the wave is
TEM. The field components vary as 1/sin 8, so the radiation pattern is

sin 6,

F(0)=— 9

sin

0,<0<n—0, (6-35)

which is normalized to unity at its maxima on the conductor surfaces. This
pattern is plotted in Fig. 6-8.

In order to determine the input impedance we first find the terminal voltage
and current. Referring to Fig. 6-7 we see the voltage is found by integrating
along a constant radius r and it is

n— g

V)= [  E,rde. (6-36)

This can be performed for any r since the cones are equipotential surfaces.
Substituting (6-34) into the above equation yields

nH, _.. (* " do nH, _ g
Viry= —2L e It = 0 o~ Ibr —
=& .[,,, snd 4 || 2],
qu - " Gﬁ
= —2;— e ifir ll'l(COt 5 ) (6‘3?)

Flof

Figure 6-8 Radiation pattern of an infinite biconical antenna.
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The boundary condition on H at the conductor surface is J, = H,. The total
current on one cone is found by integrating the current density J, around the
cone as shown in Fig. 6-7, so

2=
I()= [ Hersin 0 dg =2nrH, sin 0. (6-38)
0
Substituting (6-33) in the above gives
I(r) = % & (6-39)
The characteristic impedance at any point , from (6-37) and (6-39), is
Vir) _n ( Os
o ] |
Zo=3y == "%t 2 ) (6-40)

Since this is not a function of r it must be also the impedance at the input
(r = 0). Thus, using n = 120z in (6-40) gives the input impedance

Z.=2,=120 ln(col %’)ohms. (6-41)
For 0, less than 20°
Z, =2, 120 |n(§)ohms (6-42)
]

where 6, is in radians. The input impedance is real because there is only a pure
traveling wave. Since the structure is infinite there are no discontinuities present
to cause reflections setting up standing waves, which would show up as a reac-
tive component in the impedance (except at a few resonance points). If 0, = 1°,
Z,, =568 + j0 ohms. If 8, = 50°, Z;, = 91 + jO ohms.

If one cone is flared all the way out to form a perfect ground plane a single
infinite cone above a ground plane results. This monopole version of the
infinite bicone then has an input impedance which is half that of the infinite
bicone.

6.2.2 The Finite Biconical Antenna

A practical biconical antenna is made by ending the two cones of the infinite
bicone. This finite biconical antenna is shown in Fig. 6-9. Inside an imaginary
sphere of radius h just enclosing the antenna, TEM waves exist together with
higher order modes created at the ends of the cones. Outside this sphere only
higher order modes exist. The ends of the cones cause reflections that set up
standing waves that lead to a complex input impedance. For a given voltage
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Figure 6-9 Finite biconical antenna.

excitation the resulting modes of H, can be obtained [4]. The boundary condi-
tion leads to the current as in (6-38) and then the impedance expression is found.
The values of input impedance resulting from this procedure are plotted in
Fig, 6-10 [5]. The capacitive effect of the ends has been neglected. To use these
curves first compute the characteristic impedance Z, from (6-41) using the
appropriate cone half-angle (,. Notice that the input resistance becomes very
large and the input reactance very small for an overall antenna length 2h of
slightly less than one-wavelength, just as with an ordinary dipole.

The pattern of the finite biconical antenna for small cone angles is very similar
to that of an ordinary dipole of the same length.

6.2.3 The Discone Antenna

If one cone of the finite biconical antenna is replaced with a disk-shaped
ground plane, the structure becomes a disk-cone, or discone, antenna (sce
Fig. 6-11). The discone antenna was developed by Kandoian [6] in 1945,
followed several years later by experimental design studies [7, 8]. It is used (like
a vertical dipole) for vertical polarization and nearly uniform azimuth coverage
(i.e., an omnidirectional pattern). But the discone offers satisfactory operation
over a wide frequency range (several octaves) while maintaining acceptable pat-
tern and impedance properties.
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The discone is constructed as shown in Fig. 6-11. The outer conductor of the
coaxial transmission line is connected to the cone and the inner conductor is
attached to the disk ground plane. The cone and disk can be either solid metal
or radial wires. Ideally the pattern between the ground plane and the cone is that
of the infinite bicone. This omnidirectional pattern is well suited to broadcast
applications.

The discone antenna can be designed for broadband impedance performance
(typically 50 ohms), while maintaining acceptable pattern behavior with
frequency [8]. Typical center frequency dimensions are H = 0.7, B= 0.64,
D =044, 0,=25° and & < D. For example, the discone with the patterns of
Fig. 6-12 has a center frequency of 1 GHz (A= 30cm) So at 1 GHz,
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Figure 6-10 Input impedance of a finite biconical antenna of half-length A,
Z, =120 In[cot (#,/2)]. (Reproduced, by permission, from [5). © 1952 John Wiley.)
(&) Input resistance.
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Figurs 6-11 Discone antenna. TYDiCB' . discone antenna for H = 21.3 cm, B =
dimensionsare H ~ 0.7, B~ 064, D ~ 0.4/, 19.3 ¢cm, and 6, = 25" [8]. (a) 500 MHz,
and & € D.

(b) 1000 MHz, (¢) 1500 MHz.
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H =213 cm=0.714, B= 193 cm = 0.644, and 6, ~ sin™ '[(B/2)/H] = 27°. Nail
[7] has given optimum design formulas of D = 0.7B and J = 0.3C, independent
of H and 6,.

The pattern performance over a 3 to 1 bandwidth is revealed in Fig. 6-12. At
low frequencies the structure is small relative to a wavelength, and the pattern is
not too different from that of a short dipole (see Fig. 6-12a). As frequency
increases the electrical size of the ground plane increases and the pattern is
confined more to the lower half-space (see Fig. 6-12b). For further increases in
frequency, the antenna behavior approaches that of an infinite structure. For
example, at 1500 MHz, the pattern (of Fig. 6-12¢) is very close to that of the
monopole version of the infinite biconical antenna in Fig. 6-8. Measurements
with several disk parameters, D, and spacings between the cone, 8, showed that
the patterns are insensitive to these parameters [8].

6.3 SLEEVE ANTENNAS

In Section 5.1 we saw that the dipole antenna is very frequency sensitive and its
bandwidth is much less than the octave bandwidth provided by the antennas
studied previously in this chapter. However, the addition of a sleeve to a dipole
or monopole can increase the bandwidth to more than an octave. In this section
we will briefly examine a few forms of the sleeve antenna, which incorporates a
tubular conductor sleeve around an internal radiating element. Emphasis will be
placed on practical configurations.

6.3.1 Sleeve Monopoles

Three sleeve monopole configurations are shown in Fig. 6-13 fed from a coax-
ial transmission line. The sleeve exterior acts as a radiating element and the
interior of the sleeve acts as the outer conductor of the feed coaxial transmission
line, The length of the sleeve may be any portion of the total length of the
monopole from zero (no sleeve) to that of Fig. 6-13h where the sleeve constitutes
the entire radiating portion of the antenna. There is an endless number of sleeve
antenna configurations. Frequently the sleeve is a large conducting structure or
the center radiating element is conical. These are, however, complex structures
and we will consider only the more common simple sleeve monopole of
Fig. 6-13c. Its characteristics are a function of the dimensions shown as well as
[requency. As for an ordinary monopole with no sleeve, the antenna dimensions
affect the impedance more than the pattern.
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Figure 6-13 Sleeve monopole configurations. The arrows in (a)
indicate polarity when / + L < A/2.

The first sleeve monopole resonance, as might be expected, occurs at a
frequency where the monopole length 7+ L is approximately 4/4. Design
proceeds by locating this first resonance near the lower end of the frequency
band, thereby fixing the total physical length # + L. The remaining design vari-
able is Z/L. It has been found experimentally that a value of 7/L = 2.25 yields
optimum (nearly constant with frequency) radiation patterns over a 4:1 band
[9]. The value of //L has little affect for / + L < 4/2 since the current on the
outside of the sleeve will have approximately the same phase as that on the top
portion of the monopole itsell, as suggested by the arrows of Fig. 6-13a.
However, for longer electrical lengths the ratio //L becomes very important and
has a marked effect on the radiation pattern, since the current on the outside of
the sleeve will not necessarily be in phase with that on the top podion of the
monopole. Some typical specifications for optimum performance are given in
Table 6-1. In some applications the VSWR may be too high, requiring a match-
ing network. -

Table 6-1 Specifications for Optimum Pat-
tern Design of a Sleeve Monopole

Pattern bandwidth 4:1
/+ L 4/4 at low end of band
/L 225
Did 30
VSWR less than 8:1
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{a) (b) Figure 6-14 Sleeve dipole configurations.

6.3.2 Sleeve Dipoles

The sleeve monopole has a counterpart in the sleeve dipole antenna, two forms
of which are shown in Fig. 6-14. The sleeve dipole of Fig. 6-14b can be approx-
imated with an open-sleeve dipole in which the tubular sleeve is replaced by two
conductors close to either side of the driven element as shown in Fig. 6-15. The
length of the parasites (simulated sleeve) is approximately one-half that of the
center-fed dipole. The open-sleeve dipole we will describe from an experimental
viewpoint is operated in front of a flat reflector, or ground plane [10]. The results
are also applicable to sleeve dipoles without a flat reflector present.

The antenna was designed for the 225-400 MHz frequency band. The dipole
to reflector spacing S, was chosen to be 0.294 at 400 MHz to avoid the deterior-
ation of the radiation pattern which occurs for larger spacings. All of the dimen-
sions required for design of the open-sleeve dipole are given in Table 6-2. These

Table 6-2 Electrical Dimensions of an Open-Sleeve
Dipole with a Reflector for Lowest VSWR

Electrical dimension Electrical dimension

at lowest frequency at highest frequency
Parameter (225 MHz) (400 MHz)
D 0.0264 00474
H 0.3854 0.6844
L 02164 0.3854
s 003814 0.06774
8 0.1634 0.294
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Figure 6-15 The open-sleeve dipole antenna with a flat
reflector shown in front, top, and side views.

design values yield low VSWR over a wide bandwidth. This is illustrated in
Fig. 6-16 by a comparison of the VSWR characteristics of a conventional (un-
sleeved) dipole and an open-sleeve dipole with a diameter D of 2.9 cm. While
these results do not represent exhaustive design data for the open-sleeve dipole,
they do serve as a starting point in the design of open-sleeve dipoles with or
without a reflector present.

6.4 SPIRAL ANTENNAS

Frequently it is desirable to have the pattern and impedance of an antenna
remain constant over a very wide range of frequencies (say 10:1 or higher). An
antenna of this type is referred to as a frequency independent antenna. The biconi-
cal antenna forms the emergence of a frequency independent antenna. In Section
6.2 we found that the input impedance and pattern of the infinite biconical

-
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Figure6-16 Comparison between the VSWR response of a conventional
(unsleeved) cylindrical dipole and an open-sieeve dipole both with a
diameter D of 2.9 cm [10].

antenna were independent of frequency. This is precisely the behavior we desire!
What then 1s the most distinctive feature of this antenna? It is the emphasis on
angles and complete removal of finite lengths. In fact, when the infinite biconical
antenna is truncated forming a finite biconical antenna most of its broadband
behavior disappears. The concept of angle emphasis has been exploited in recent
years and has lead to a family of wide bandwidth antennas. These antennas can
be divided into two types: frequency independent spiral antennas which we
discuss in this section and log periodic antennas to be discussed in the following
section.
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If we are to completely remove finite lengths and replace them with angles, an
infinite structure would always be required. Hence, in practice, frequency
independent antennas are designed to minimize finite lengths and maximize angular
dependence.

Before discussing specific antennas another feature of frequency independent
antennas will be introduced. Consider a metal antenna with an input im-
pedance Z,..;. A complementary structure can be formed which is an antenna
with air replacing the metal and metal replacing the air (of the original metal
antenna). Its impedance is Z,,, . Complementary antennas are similar to a posi-
tive and negative in photography. An example would be a dipole made of
ribbons of metal (instead of wire). Its complement is a slot in a sheet of metal. It
can be shown (Babinet’s principle) that the impedances of complementary
antennas are related as follows.

n?

zairzmﬂ:ll = Z £ (6-43)
If an antenna and its complement are actually the same, they are called self-
complementary, and then

Zio= s ™ g = 188.5 ohms. (6-44)
This relationship is frequency independent and is our second design principle for
frequency independent antennas, that is, self-complementary antennas tend to be
frequency independent. 1t turns out, however, that many frequency independent
antennas are not self-complementary and still have relatively constant
impedance.
Now we will examine a specific case of a self-complementary antenna. First
consider an equiangular spiral curve as shown in Fig. 6-17. In cylindrical coor-
dinates the distance of the curve from the origin is given by

r=r.e® (6-45)

Figure 6-17 Equiangular spiral curve.
r=r.e*withr, =0.311cmanda = 0.221.
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Figure 6-18 Planar equiangular spiral
antenna. (Self-complementary case
with & = 90°.)

where r, is the radius for ¢ =0 and a is a constant giving the flare rate of the
spiral. The spiral of Fig. 6-17 is right-handed; left-handed spirals can be gen-
erated using negative values of a. The equiangular spiral curve can be used to
make the angular antenna shown in Fig. 6-18 which is referred to as a planar
equiangular spiral antenna. The four edges of the metal (indicated by dots) each
have an equation for their curves of the form in (6-45). In particular, edge no. |
is that of Fig. 6-17, so r, = r,¢*". Edge no.2 has the same spiral curve but
rotated through the angle 8, so ry = r,¢™?"*. The other half of the antenna has
edges which make the structure symmetric, that is, by rotating one spiral arm
one-half turn it would coincide with the other arm. So ry=r, """ and
ro=r,e"* """ The structure of Fig. 6-18 is self-complementary so é = n/2. It
does not have to be constructed this way, but pattern symmetry is best for the
self-complementary case.

The impedance. pattern, and polarization remain nearly constant over a wide
range of requencies. The feed point at the center, the overall radius, and the flare
rate affect the performance. The flare rate a is more conveniently represented
through the expansion ratio

_ih o+ 2m) _reti® .
=N T e (646)

which is the increase factor of the radius for one turn of the spiral. A typical
value of ¢ is 4. Then from (6-46) a = 0221. The high-frequency end of the

b
L
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operating band is set by the feed structure: the minimum radius (r, for our
right-hand wound spiral case) is about a quarter-wavelength for an expansion
ratio ¢ of 4 [11]. Of course, the spiral terminates at this point and is connected to
the feed transmission line. The low-frequency limit is set by overall radius R,
roughly about a quarter-wavelength.

Spirals of from one-half to three turns have been found experimentally to be
relatively insensitive to the parameters a and 6 [12]. Around one and one-half
turns appears to be optimum. For example, consider a one and one-half turn
spiral with a = 0221 as shown in Fig. 6-18. Each edge curve is of the form in
(6-45), so the maximum radius is R = r(¢ = 3n)=r,e”??'** = 803r,. This
equals 4, /4, where 4, is the wavelength at the lower band edge frequency. At the
feed point r = r(¢ =0) = r,e” =r,, and this equals /,/4 where ; is the wave-
length at the upper frequency band edge. The bandwidth is then f,./f, =
Apfdy= (A, /4)/(4, /4)=803r,/r,=803. This 8:1 bandwidth is typical,
however bandwidths of 20 : 1 can be obtained.

The self-complementary equiangular spiral, from (6-44), has a theoretical
input impedance value of 188.5 + j0 ohms. In practice the measured impedance
values tend to be lower than this, as a result of the presence of the coaxial feed
line which is wound along one arm toward the feed at the center [11]. In fact, an
input impedance of about 164 ohms has been measured over a 6:1 frequency
range from 500 MHz to 3 GHz [13].

The radiation from the sell-complementary planar equiangular spiral antenna
has been shown experimentally to be a bidirectional pattern with two wide
beams broadside to the plane of the antenna. The field pattern is appproximately
cos 0 where the :z-axis is normal to the plane of the antenna. The half-power
beamwidth is, thus, approximately 90°. The polarization of the radiation is close
to circular over wide angles, out to as far as 70° from broadside. The sense of the
polarization is determined by the sense of the flare of the spiral. For example, the
spiral of Fig. 6-18 radiates in the right-hand sense for directions out of the page
and radiates in the left-hand sense for opposite propagation directions.

Another form of a planar spiral is the Archimedean spiral antenna shown in
Fig. 6-19. This antenna, as are many spiral antennas, is easily constructed using
printed circuit techniques. The equations of the two spirals in Fig. 6-19 are
r=r,¢ and r,(¢ — n). The properties of the Archimedean spiral antenna are
similar to those of the equiangular planar spiral antenna. A single main beam
can be obtained by placing a circularly cylindrical cavity on one side of the
spiral, forming a cavity-backed Archimedean spiral antenna. Commercially avail-
able cavity-backed Archimedean spiral antennas have a 90° half-power beam-
width, 2:1 VSWR, and a 1.1 axial ratio of polarization on boresight, over a
10:1 bandwidth.

Nonplanar forms of spiral antennas can be employed to produce a single main
beam. For example, the planar equiangular spiral antenna can be conformed
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Figure 6-19 The Archimedean spiral
antenna.

onto a conical surface, thus creating the conical equiangular spiral antenna. The
equation for a conical equiangular spiral curve is

r= e(n sin ﬂ.la_ (6-4?)

The planar spiral is a special case with @, = 90°. The equations for the edges of
one spiral of metal are that of (6-47) for r,, and r, = "¢~ and § = n/2
for the sell-complementary case. The other spiral arm is produced by a 180°
rotation. The edges of the arms maintain a constant angle « with a radial line for
any cone half-angle 6,, and [11]

a= cot a. (6-48)

The conical equiangular spiral antenna, unlike its planar counterpart, has a
single main beam. In particular, there is more intense radiation off the cone tip
(— z-direction) than there is in the opposite direction. The self-complementary
shape yields the best radiation patterns. Typical patterns for 6, < 15° and «
about 70° have a broad main beam with a maximum in the 0 = 180° direction
and a half-power beamwidth of about 80°. Since the structure is rotationally
symmetric, the pattern is also nearly rotationally symmetric. The polarization of
the radiated field is very close to circular in all directions, with the sense
determined by the sense of the spirals. However, the ellipticity does increase with
off-axis angle. The impedance [11] can be approximated by the relation

Z, = 300 — 1.56(degrees) ohms (6-49)

where d(degrees) is the angle 6 of Fig. 6-20 in degrees. For the self-
complementary case é is 90° and from (6-49) Z, = 165 ohms which is close to
the 188.5 ohms theoretical value. The impedance is not aflected significantly by
0, or o.

e
)
]
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2 Figure 6-20 The conical equiangular spiral antenna.

Design of the conical equiangular spiral antenna is rather simple and proceeds
as follows [14]. The upper frequency fy of the operatlng band occurs when the
truncated apex diameter is a quarter-wavelength, that is, d = 4, /4. The lower
band edge [requency f, is determined by the base diameter B and occurs for
B = 31,/8. 0, is usually less than 15° and « about 70°. For 6, = 10° and & = 73°
the front-to-back ratio is 15 dB and the axial ratio of the polarization is well
below 2 on axis.

In spiral antennas most radiation comes from the region of the structure
where the circumference is about one wavelength, often called the active region.
Thus, as frequency is changed a different part of the spiral supports the majority
of the current. This feature is responsible for the broadband performance. To see
this recall that the current amplitude on an infinite biconical antenna is con-
stant with distance from the feed. Therefore, it will be altered when the structure
is terminated to form a finite biconical antenna. On the other hand, an antenna
with a distinct active region in which the current farther out from the feed point
is very small essentially appears as if it were infinite. This property is exploited
further in the next section.

6.5 LOG-PERIODIC ANTENNAS

The spiral antennas of the previous section illustrate the principle that emphasis
on angles will lead to a broadband antenna. Although spiral antennas are not
complex structures, construction would be simplified if simple geometries, in-
volving circular or straight edges, could be utilized. Antennas of this type are
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discussed in this section. To see how the ideas develop, first consider the bowtie
antenna (also called the bifin antenna) of Fig. 6-21. It is the planar version of the
finite biconical antenna (see Fig. 6-9). It has a bidirectional pattern with broad
main beams perpendicular to the plane of the antenna. It is also linearly po-
larized. The bowtie antenna is used as a receiving antenna for UHF TV chan:
nels, frequently with a wire grid ground plane behind it to reduce the back lobe.
Since currents are abruptly terminated at the ends of the fins, the antenna has
limited bandwidth. As we shall see shortly, by modifying the simple bowtie
antenna as shown in Fig. 6-22, the currents will then die off more rapidly with
distance from the feed point. The introduction of periodically positioned teeth
distinguishes this antenna as one of a broad class of log-periodic antennas. A
log-periodic antenna is an antenna having a structural geometry such that its
impedance and radiation characteristics repeat periodically as the logarithm of
frequency. In practice the variations over the frequency band of operation are
minor, and log-periodic antennas are usually considered to be frequency
independent antennas.

Most of the work on frequency independent antennas took place at the
University of Illinois in the late 1950s and the 1960s [15]. A series of antennas
were developed through many experiments. Several geometries were examined,
and those that produced broadband behavior led to determination of the
properties necessary for wide bandwidth. Frequency independent spiral antennas
were discussed in the previous section. In this section we outline the develop-
ment of the log-periodic antenna family. The metamorphosis of the log-periodic
produced the log-periodic dipole antenna, which is made up of only straight wire
segments.

One of the first log-periodic antennas was the log-periodic toothed planar
antenna shown in Fig. 6-22. It is similar to the bowtie antenna except for the
teeth. The teeth act to disturb the currents which would flow if the antenna were
of bowtie-type construction. Currents flow out along the teeth and, except at the
frequency limits, are not significant at the ends of the antenna. The rather unusual
shape of this antenna is explained by examining the planar equiangular spiral

)

Figure 6-21 The bowtie antenna.
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Figure 6-22 Log-periodic toothed planar antenna. (Self-com-
plementary.)

antenna. Along a radial line from the center of the spiral, the positions of the far
(or near) edges of a conductor from (6-45) are

r, = r(¢ + n2n) = r,e*¢ ", (6-50)

The ratio of the n + 1th position to the nth position is
Fnv1 _ 'o‘-’qwt” 'R

= T ale+nin)
Ty rye™

= g (6-51)

which is the expansion factor of (6-46). This is a constant, and thus the distances
(or period) of the edges are of constant ratio for the planar spiral. For the
structure of Fig. 6-22 the ratio of edge distances is also a constant, and is given
by the following scale factor

<1. (6-52)
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The slot width is expressed by

o= gi <1 (6-53)

These relations are true for any n. The parameter t gives the period of the
structure. We would thus expect periodic pattern and impedance behavior with
the same period. In other words, if frequencies f,. , and £, from adjacent periods
Jead to identical performance, then

s ik (6-54)
j::+ 1

Forming f,., = f,/t from this equation and taking the logarithm of both sides,

we have

log f,., = log f, + log(1/z). (6-55)

Thus, the performance is periodic in a logarithmic fashion, and hence the name
log-periodic antenna. All log-periodic antennas have this property.

If the teeth sizes of the log-periodic toothed planar antenna are adjusted
properly, the structure can be made self-complementary. From Fig. 6-22 we see
that in general (whether self-complementary or not)

y+p=180° and f+20=u0. (6-56)
If the structure is self-complementary (as shown)
a=7 and f=24. (6-57)

Substituting (6-57) into (6-56) yields « + = 180° and f + 2f = a. Solving these
two equations gives

a=135° and f=45° (6-58)

for a self-complementary log-periodic toothed planar antenna. As we saw in the
previous section, an antenna that is self-complementary tends to be broadband
and has an input impedance of 188.5 ohms.

If the widths of the teeth and gaps are equalized, ¢ = a, /R, = R,., /a,. Using
(6-52) and solving for o gives

o=/t (6-59)

This relationship and the self-complementary feature are popular in practice.
The properties of the log-periodic toothed planar antenna depend upon z. It
has been found experimentally that the half-power beamwidth increases with
increasing values of  [11] as shown in Fig. 6-23. The pattern has two lobes with
maxima in each normal direction to the plane of the antenna. The radiation is
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Figure 6-23 Half-power beamwidth of the self-
complementary toothed planar antenna (for g = \/;)
as a function of scale factor r.

linearly polarized parallel to the teeth edges. This is perpendicular to what it
would be if there were no teeth (6 = 0), in which case the antenna would be a
bowtie. The fact that transverse current flow dominates over radial current flow
is significant. Most of the current appears on teeth that are about a quarter-
wavelength long (the active region). This, we have seen, is key to achieving wide
bandwidths. The frequency limits of operation are set by the frequencies where
the largest and smallest teeth are a quarter-wavelength long.

The log-periodic toothed planar antenna should have a performance (im-
pedance and pattern) that repeats periodically with frequency with period t
given by (6-52). The self-complementary version of the antenna, while not pro-
ducing frequency independent operation, does lead to performance that does not
vary greatly for frequencies between periods, that is, for f, <f<f,.y. In fact,
measurements have produced nearly identical patterns over a 10:1 bandwidth
[11].

The log-periodic toothed wedge antenna of Fig. 6-24 is a unidirectional pattern
form of its planar version in Fig. 6-22, in which the included angle v is 180°. A
single broad main beam exists in the +:z-direction. The patterns are nearly
frequency independent for 30° <y < 60°. The polarization. is linear and y-
directed for on-axis radiation, as indicated in Fig. 6-24. There is a small cross
polarized component (x-directed) arising from the radial current mode, as found
in a biconical antenna. Typically this cross-polarized component is 18 dB down
from the copolarized (y-directed) component on-axis, indicating a strong excita-
tion of the transverse current mode associated with frequency independent beha-
vior. The bandwidth of the wedge version is similar to the sheet version but the
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¥y

Figure 6-24 Log-periodic toothed wedge an-
tenna.

input impedance is reduced for decreasing . For the planar case (y = 180°) the
self-complementary antenna, which should have an impedance of 188.5 ohms,
has an impedance of about 165 ohms, whereas the wedge form with i = 30° has
a 70-ohm impedance. As ¢ is decreased the impedance variation over a period of
the structure (frequency ratio of ) increases. For example, a 3:1 variation
occurs for iy = 60° relative to the geometric mean [11].

From a construction standpoint it would be desirable if the toothed antennas
could be made with straight edges. This simplification of the structure turns out
to be of little consequence in the performance of the antenna. This is another
major step in the development of the log-periodic antenna. As an example, if the
tooth edges of the log-periodic toothed planar antenna in Fig. 6-22 are replaced
by straight edges the log-periodic toothed trapezoid antenna of Fig. 6-25 results.
The performance of this antenna is similar to its curved edge version in
Fig. 6-22. A log-periodic toothed trapezoid wedge antenna can be formed by bend-
ing the planar version into a wedge, creating an antenna similar to that of
Fig. 6-24. In fact, the patterns of the two wedge forms (curved edge and
trapezoid) are similar, but the trapezoid version has better impedance perform-
ance with only about a 1.6 : | variation over a period for yy = 60° [11].

The solid metal (or sheet) antennas we have described are practical for short
wavelengths, but for low frequencies the required structures can become rather
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/ \ Figure 6-25 Log-periodic toothed trap-
ezoid antenna.

impractical. It turns out that the sheet antennas can be replaced by a wire
version in which thin wires are shaped to follow the edges of the sheet antenna.
An example of this major structural simplification is that of Fig. 6-26, which is
the wire version of Fig. 6-25. This log-periodic trapezoid wire antenna can also be
bent at the apex to form a wedge that produces a unidirectional pattern. The
log-periodic trapezoid wedge wire antenna has a performance similar to its sheet
version. Measurements for a wedge angle ¢ = 45° have yielded E- and H-plane
half-power beamwidths of 66°, a gain of 9.2 dB, and a front-to-back ratio of
12.3 dB. The average input impedance has been measured as 110 ohms with a
VSWR of 145 over a 10:1 band [16]. As with other wedge log-periodics, the

hﬁunuﬂuwuﬂuﬂuﬂuﬂl

Figure 6-26 Log-periodic trapezoid wire antenna.



294 BROADBAND ANTENNAS

Figure 6-27 Log-periodic zig-zag wire antenna.

main beam maximum is straight off the apex and the radiation is linearly
polarized.

Other even simpler log-periodic wire antennas exist in both planar and wedge
shapes. The log-periodic zig-zag wire antenna of Fig. 6-27 is an example.

The final phase in this metamorphosis of log-periodic antennas is the use of
only parallel wire segments. This is the log-periodic dipole array of Fig. 6-28
[17, 18]. The log-periodic dipole array (LPDA) is a series-fed array of parallel
wire dipoles of successively increasing lengths outward from the feed point at the
apex. Note that the interconnecting feed lines cross over between adjacent ele-
ments. This can be explained by noting that the LPDA of Fig. 6-28 resembles
the toothed trapezoid of Fig. 6-25 when folded on itself, making a wedge with
zero included angle. The two center fins of metal then form a parallel transmis-
sion line with the teeth coming out from them on alternate sides of the fins. This
alternate arm geometry occurs for all wedge log-periodic antennas.

e '_"‘Rl-f ]
L—J_--"“'-.___ L

Figure 6-28 Log-periodic dipole array geometry.
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A particularly successful method of constructing an LPDA is shown in
Fig. 6-29. A coaxial transmission line is run through the inside of one of the feed
conductors. The outer conductor of the coax is attached to that conductor and
the inner conductor of the coax is connected to the other conductor of the
LPDA transmission line.

As shown in Fig. 6-28, a wedge of enclosed angle « bounds the dipole lengths.
The scale factor t for the LPDA is

——mtl g (6-60)

Right triangles of enclosed angle a/2 reveal that

o Ll/? Lni—lﬂ
—= = s 6-61
tan 3R, R... (6-61)
Thus
Ll L L +1 L.\'
ol T T .. ../ 6-62
RI n Rn+l 'R!\' ( )
Using this result in (6-60) gives
R!l"l Lu+l
= —_ 6-63
=R L (6-63)

Thus, the ratio of successive element positions equals the ratio of successive
dipole lengths.

Feed point

Array alements

j . Figure 6-29 Construction details of the log-
L) periodic dipole array.
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The spacing factor for the LPDA is defined as

d“ (6-64)

°=2L,

where the element spacings as shown in Fig. 6-28 are given by

d,=R,—R,,,. (6-65)
But R,.; = 1R,, s0
d,=R,—1tR,= (1 —1)R,. (6-66)
From (6-61) R, = L,/2 tan (%/2). Using this in (6-66) yields
L,
dﬁ— (l = t]m. (6-6?)
Substituting this in (6-64) gives
. b=«
=3, T dtan(x2) [5:08)
or,
l—%
- = =
a=2tan ( - ) (6-69)
Combining (6-68) with (6-63), we note that all dimensions are scaled by
T = F:u e Lnf_l — ‘_ff_"_! : (6-70)

R, L. d

As we have seen with other log-periodic antennas, there is also an active
region for the LPDA, where the few dipoles near the one that is a half-wavelength
long support much more current than do the other radiating elements. It is
convenient to view the LPDA operation as being similar to that of a Yagi-Uda
antenna. The longer dipole behind the most active dipole (with largest current)
behaves as a reflector and the adjacent shorter dipole in front acts as a director.
The radiation is then off of the apex. The wedge enclosing the antenna forms an
arrow pointing in the direction of the main beam maximum.

As the operating frequency changes, the active region shifts to a different
portion of the antenna. The frequency limits of the operational band are roughly
determined by the frequencies at which the longest and shortest dipoles are
half-wave resonant, that is,

and Ly = 2— (6-71)
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where 4, and i, are the wavelengths corresponding to the lower and upper
frequency limits. Since the active region is not confined completely to one dipole,
often dipoles are added to each end of the array to ensure adequate performance
over the band. The number of additional dipoles required is a function of r and
o [19, 20]. But for noncritical applications (6-71) is sufficient.

The pattern, gain, and impedance of an LPDA depend upon the design par-
ameters 7 and ¢. Since the LPDA is a very popular broadband antenna of simple
construction, low cost, and light weight, we will give the design details and
illustrate them by examples. Gain contours are plotted in Fig. 6-30 as a function
of 7 and o [18]. Note that high gain requires a large value of 7, which means a
very slow expansion, that is, a LPDA of large overall length. Gain is only
slightly affected by the dipole thickness. It increases about 0.2 dB for a doubling
of the thickness [11]. Optimum gain is indicated in Fig. 6-30, and it gives the
smallest scale factor for a given gain value. -

Further details on the design and calculations for the LPDA are available in
the literature [19-23]. Also the LPDA can be constructed in a size reduced form
or using printed circuit techniques [24-26].

0,22 T
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016} 124d8
° ™ i
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[ = ] | ] i | |
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Figure 6-30 Gain of a log-periodic dipole array. (From Carrel [18]. © 1961 IRE
(now IEEE). Reprinted with permission of IEEE.)
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Example 6-2. Optimum Design of a 54-216 MHz Log-Periodic Dipole
Antenna

It is desired to have an antenna that operates over the entire VHF-TV and FM broadcast
bands, which span the 54 to 216 MHz frequency range for a 4 : 1 bandwidth. Suppose the
design gain is chosen to be 85 dB. The corresponding values of T and ¢ for optimum
design from Fig. 6-30 are

t=0822 and o5 =0.149 (6-72)
Then from (6-69) we have
1 -06822
= o | SR ety (PR 2. -
=2 tan 4(0.149) J 3373, (6-73)

The length of the longest dipole is determined first. At the lowest frequency of operation.

(54 MHz) the dipole length from (6-71) should be near a half-wavelength, so
L, = 0.51, =0.5(5.55) = 2.78 m. (6-74)

The shortest dipole length should be on the order of Ly = 0.54, = 0.694 m at 216 MHz.
The LPDA element lengths are computed until a length on the order of 0.694 m is
reached. To be specific, element lengths are found from L, using L,., =tL,. For
example,

L, =1L, = (0.822)(2.78) = 228 m
and

Ly=rtL; = (0822)(228) = 1.88 m.

Completing this process leads to

Ly=2.78 m, L; =228 m, Ly=154m, Lg=127m,

Ly=104m, Ly=086m, L,=0704m Ly=058m 0

The array was terminated with cight elements since Ly = 0.578 m is less than the 0.694-m
length for the highest operating frequency. Elements could be added to either end to
improve performance at the band edges.

The element spacings for this example are found from (6-68) as

d, = 2oL, = 2(0.149)L, = 0.298L, . (6-76)
Using the element lengths of (6-75) gives

dy = 0828 m, dy = 0.679 m, d; = 0.459 m, dy = 0378 m,

(6-77)
ds=0310m, dg=0255m, d,=0210m

These dipole lengths and spacings completely specify the LPDA, as shown in Fig. 6-28.
The total length of the array is the sum of the spacings in (6-77), which gives 3.119 m.
The outline of the antenna fits into an angular sector of angle & = 33.3°

w
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Example 6-3. Characteristics of a 200-600 MHz LPDA

In this example we examine the gain, pattern, impedance, and current distribution s
LPDA as a function of frequency. Suppose it is to be constructed for operation overdir
200 to 600 MHz band. For optimum performance and a design goal of 10 dB gain, wezer
from Fig 630 that 7=0917 and ¢=0.169. The lowest frequency of operates
(200 MHz} has a waveiength of 1, =1.5m, so the first element has a length of
L= AL',/‘?;O.?? m. The length of the shortest element should be on the order ciz
half-wavelength at 600 MHz, and A;/2=0500m/2=0250m Using the desgn
techniques #lustrated in the previous example and four extra elements at the narrow ¢sé
gives the 18 glement LPDA shown in Fig. 6-31a. (The antenna geometry details are leftas
a problem.)

The LPD# of Fig. 6-31a was modeled using the computer techniques of Section 7%
The resulting current distributions at the band edges and one midway [requency e

B
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Figure 6-31 An optimum log-periodic dipole antenna for operation in the 200 to 600
MHz band (Example 6-3). (a) The geometry. (£) Current distributions.
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Figure6-32 Radiation patterns atseveral frequencies for the
log-periodic dipole antenna of Example 6-3. The gain and
impedancevalues are also given. (8) 150 MHz. (b) 200 MHz.
(c) 300 MHz. (d) 450 MHz. (e) 600 MHz. () 650 MHz.
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shown in Fig. 6-31b. These currents illustrate the active region behavier we have men-
tioned several times. For example, at 200 MHz there are three dipoles with strong cur-
rents on them and a total of five with significant currents. This is also true for other
frequencies in the operating band, with the active region shifted to some other portion of
the antenna as seen in Fig. 6-31b. At the high-frequency limit element 14 is about a
half-wavelength long and the extra four elements provide support for the active region at
600 MHz.

The gain, pattern, and impedance behavior as a function of frequency are shown in
Fig. 6-32. At 150 MHz the gain is considerably less than the 10-dB design value due to
the large back lobe. Also the input impedance has a substantial imaginary part. This
inferior performance is, of course, caused by insufficient antenna length required for proper
support of the active region at that frequency. At the lower band edge of 200 MHz,
however, the pattern has little back radiation, the gain is approaching the design goal,
and the input impedance has a small imaginary part. Similarly, at 650 MHz the perform-
ance is only slightly inferior to that at the upper band edge of 600 MHz because of the
added elements. At intermediate frequencies between the band edges the gain, pattern,
and impedance remain reasonably constant, indicating frequency independent behavior.
Figures 6-32¢ and 6-32d are typical of intermediate frequencies. The fact that the gain
never quite reaches the design goal of 10 dB is mostly due to the use of a characteristic
impedance termination of the transmission line rather than a reactive termination (that is,
open or short circuit). The use of a reactive termination can lead to unwanted resonances
on the LPDA caused by energy being trapped between the termination and the stop
region on the termination side of the active region. These high @ resonances can be
eliminated by using a termination that is at least slightly resistive or by using a relatively
high value for the LPDA transmission line impedance (e.g., Z, ~ 150 ohms) since this will
cause the dipole elements to more heavily load the line. This makes the active region
more efficient [27], with the result that there is relatively little energy left to propagate
past the active region and cause a strong resonance effect on the radiation pattern.
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PROBLEMS

6.1-1 An unfurable helix was built with an overall length of 78.7 cm, a diameter of
4.84 cm, and a pitch angle of 11.7°. The center frequency of operation is 1.7 GHz. Calcu-
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late the number of turns, the directivity in decibels, the half-power beamwidth in degrees,
and the axial ratio for the helix.
6.1-2 It is desired to achieve a right-hand circularly polarized wave with a pattern having
a half-power beamwidth of 39°. One of the easiest ways to do this is with a helix antenna.
It is to be built with a pitch angle of 12.5°, and the circumference of one turn is to be one
wavelength at the center frequency of operation, which is 475 MHz.

(a) Calculate the number of turns needed.

(b) What is the directivity in decibels?

(c) What is the axial ratio of the on-axis fields?

(d) Over what range of frequencies will these parameters remain relatively constant ?

(¢) Find the input impedance at the design frequency and at the ends of the band.
6.1-3 A commercially available axial mode helix antenna has six turns made of 0.95-cm
aluminum tubing supported by fiberglass insulators attached to 2 3.8-cm aluminum shaft.
The band of operation is 300 to 520 MHz. The mechanical characteristics are: length of
helix 118 cm, diameter of helix (center to center) 22.3 cm, ground screen diameter 89 cm.

(a) Determine the pitch angle a

(b) Compute the gain in decibels at edges of the frequency band of operation.
6.1-4 A 12-turn axial mode helix has a circumference of 0.197 m, a pitch angle of 8.53°,
and operates at 1525 MHz. Calculate and plot the radiation pattern in linear-polar form.
6.2-1 Calculate the input impedance for infinite biconical antennas of the following cone
half angles: 0.1°, 1°, 10°, 20°, 50°.
6.2-2 A finite biconical antenna has cones that are each 0.3/ long and a hall-angle 1°.
Determine the input impedance using Fig. 6-10.
6.3-1 Construction project. Select a frequency for which you have laboratory equipment to
measure impedance (probably in the VHF or UHF range). Construct both an optimum
open-sleeve dipole and its ordinary dipole version. (Alternatively, monopoles may be
constructed.) Measure the input impedance of both antennas over a 2 : 1 frequency range
about the center frequency. (Alternatively, measure the VSWR.)
6.4-1 Design an e¢quiangular spiral antenna for operation over the entire UHF TV broad-
cast band (use 450 to 900 MHz).
6.4-2 Construction project. Construct the equiangular spiral antenna of the previous prob-
lem using aluminum foil glued to cardboard. Test its performance with a receiver (per-
haps a television).
6.5-1 Design a sclf-complementary log-periodic toothed planar antenna for operation
from 400 MHz to 2 GHz with a half-power beamwidth of 70°
6.5-2 A log-periodic dipole array is to be designed to cover the frequency range 84 1o
200 MHz and have 9-dB gain. Give the required element lengths and spacings for optimal
design,
6-5-3 Evaluate the dipole lengths and spacings for the LPDA of Example 6-3.
6.5-4 Design an LPDA to operate over the UHF TV broadcast band with 10-dB gain.
Add one extra element to each end over that required by (6-71),
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Thus far we have studied a variety of antenna configurations, but for the most
part we have assumed either that the current distribution was uniform (c.g., the
ideal dipole) or that it was sinusoidal. It was then a relatively straight-forward
procedure to obtain the near-zone and far-zone fields created by the current.

In this chapter we wish to eliminate the need for assuming the form of the
current distribution. Naturally, this greatly expands the number of antenna
configurations which we can investigate. Indeed, we find that we are able to
study, for example, wire antennas of almost arbitrary configuration. The
methods we use to do this are, therefore, very general methods capable of yield-
ing answers whose accuracy is within the limit of experimental error. The poten-
tial price we pay for such a powerful technique lies in the effort required to write
the necessary computer software and the time required for computer execution.
Fortunately, for many problems efficient computer software is readily available
and it is not necessary to write software from “scratch.”

The general method we employ in this chapter is the method of moments. The
method of moments is a procedure for reducing an integral equation of the form

(1)K (. ) dz = ~E(2) (7-1)

to a system of simultaneous linear algebraic equations in terms of the unknown
current I(z'). Then, as we have seen in the previous chapters, once the current is

known, it is a fairly straightforward procedure to determine the radiation pattern
and impedance.
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Electromagnetic radiation problems can always be expressed as an integral
equation of the general form in (7-1) with an inhomogeneous source term on the
right and the unknown within the integral. However, it was not until the avail-
ability of modern high-speed digital computers in the mid 1960s that it was feasible
to solve most such equations. Since that time a large amount of effort has been
expended toward the understanding of the various numerical procedures in-
volved and the development of computer software [2-5].

In this chapter we will set forth the basic principles involved in solving inte-
gral equations via the method of moments and will demonstrate the procedure
with several examples. The serious student is encouraged to write a simple
computer program using the basic principles described herein, such as that
suggested by Prob. 7.2-1.

7.1 POCKLINGTON’S INTEGRAL EQUATION

One of the common integral equations that arises in the treatment of wire
antennas or wire scatterers is that derived by Pocklington in 1897 which enabled
him to show that on thin wires the current distribution is approximately sinu-
soidal and propagates with nearly the velocity of light. To derive this equation let
us consider the situation in Fig. 7-1 where we have a wire of conductivity ¢
surrounded by free space (y,, ¢,). Since the wire radius is taken to be much less

(4, €0)

Figure 7-1 Wire of conductivity ¢ in free space.
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than the wavelength, we may assume only z-directed currents are present. From
the Lorentz gauge condition in (1-44) we may write
0A,

e —jwe, D (7-2)

where @ is the scalar potential and A. is the z-component of the magnetic vector
potential. Using (1-39)

E= —jopA — VO (7-3)
we may write for the situation in Fig. 7-1 the scalar equation
o0
E,= —jou,A, — —. 7-4
= —jope A — o (7-4)

Taking the derivative of (7-2) and substituting into (7-4) we obtain

62
E’=j_-(l:?: aA ﬁzA) (?_5)

If we consider a z-directed current element J dv’
1 [0%(z, 2) > ,
Toe IT + Bz, Z) |J dv (7-6)

where /(z, z') is the free space Green’s function given in (1-54) as

dE, =

- ipR

Yo )=

(-7)

where R is the distance between the observation point (x, y, z) and the source
point (x', y', z') or

R=/e=xF+b-yF+E-7F (7-8)
The total contribution to the electric field is the integral over the wire volume
1 52!.!'/(:, 2') |
Foasiom— | ITE 2 o 2 ; 1 -

We only need consider a volume distribution of current density if the wire is
not of sufficiently high conductivity. If we assume the conductivity to be infinite,
then the current is confined to the wire surface and (7-9) reduces to

o e Ia l,b(z,z)

g = T

Jwgy < of _ 12

+ B (z, z)’J dz d¢’ (7-10)

— e
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Figure 7-2 (a) Wire with surface current density J, and observa-
tion point on the surface. (b) Wire with surface current density
J, and observation point on the wire axis. (c) Equivalent fila-
mentary line source for the situation in (b). (d) Alternate repre-
sentation of (¢).

where ¢ is the cross-sectional curve of the wire surface as shown in Fig. 7-2a. For
wires of good conducting material the assumption of a surface current is approx-
imately true and leads to no complications. If one observes the surface current
distribution from a point on the wire axis as in Fig. 7-2b, then

(z—=2) +a”. (7-11)

Since a <1 and we have assumed the current distribution to be uniform with
respect to ¢', we may reduce (?-10) to a line integral of current. Thus,

B 1 6:,’1(22)

=2 + Bz 2)|I(z') dz. (7-12)

We note that the equivalent filamentary line source is located a radial distance a
from the observation point as in Fig. 7-2¢ and 7-2d and that we have not
assumed the wire to be infinitely thin as was the case for dipoles studied in
Chapters 2 and 5.

In accordance with the surface equivalence principle [6] of Section 8.1, we can
denote the quantity E, in (7-12) as the scattered field Ei. That is E: is the field
radiated in free space by the equivalent current I(z'). The other field present is the



310 MOMENT METHODS

incident or impressed field E.. At the surface of the perfectly conducting wire and
also interior to the wire, the sum of the scattered field and the incident field must

be zero. Hence, E = — EL, and we may write (7-12) as
L @) o
ﬁ")—sj'—uzl(Z) oz +# I}'J(Z, Z) dz' = —E,(Z) (7—13)

which is the type derived by Pocklington and is of the general form discussed at
the beginning of this chapter in (7-1).

Equation (7-13) is known as an integral equation of the first kind because the
unknown I(z') appears only under the integral. In the following section we will
illustrate how an integral equation such as this may be solved numerically and
point out how the procedure is analogous to Kirchhoff’s network equations as
noted by Schelkunoff [1] many years ago.

7.2 INTEGRAL EQUATIONS AND KIRCHHOFF’'S
NETWORK EQUATIONS

One purpose of this section is to show the resemblance between integral equa-
tions of the type given in (7-13) and Kirchhoff’s network equations

N
YZ =V, m=123...,N. (7-14)
n=1

Thus, we will solve the integral equation numerically by writing N equations in
N unknowns just as we would do il we were solving an N mesh or N node
circuit problem.
For convenience, let us write (7-13) in the form
. L2 .
| I(=)K(z ) dz = —E(z). (7-15)
=il
Let us assume that the current is approximated by a series of expansion functions
F, such that

() = ?’“ F\() (7-16)

where the I,’s are complex expansion coefficients. To keep the discussion as
simple as possible, we will assume the expansion functions are a set of ortho-
gonal pulse functions given by

1 for z' in Az,

F.(2)= (7-17)

0 otherwise
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The expansion in terms of pulse functions is a “stairstep ” approximation to the
current distribution on the wire, where the wire is divided into N segments of
length Az,

Substituting (7-16) into (7-15) we obtain

},UZ

where the subscript m on z,, indicates the integral equation is being enforced at
segment m. Note that the left side is only approximately equal to the right side
because we have approximated the actual current distribution with an approxi-
mate distribution. Using (7-17) in (7-18) enables us to write

Y LEZ)K(zm, 7) 2 ~ —Eifz) (7-18)

-Li2 n=1

N o .
Y1, | K(z,, 2') dZ = —E{(z,,). (7-19)
n=1 Az

For convenience, we let

fam 2= [ Klzm,2)dz. (7-20)

Az,
Then (7-16) and (7-17) in (7-15) yield
L2
I y QI(:-:')K(z,,,. Z)dZ ~1,f(z., 2})
+ 1 (2ms 25)+ -+ 1 f (2, 2,) + -
+ In f(2n, 28) = —Eifz,) (7-21)
as illustrated in Fig. 7-3. A physical interpretation of this equation is as follows.

The wire has been divided up into N segments each of length Az, = Az’ with the
current being an unknown constant over each segment. At the center of the m"

I3

L7 Nl

/ \ Actual
2 " distribution 1,
\ 6~ \

Is \

/

Figure 7-3 " Staircase’ approximation to an actual current distribution.

-
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segment, the sum of the scattered fields from all N segments is set equal to the

negative of the incident field at the point z,,. The incident field is a known field

arising from either a source located on the wire (transmitting case) or from a

source located at a large distance (receiving case or radar scattering case). As we

might surmize, if we need a more accurate representation of I(z’), then shorter

segments (and a larger N) may be used. More will be said about this later.
Equation (7-21) leads to

=
Y Z L=V, (7-22)
n=1
where in this example situation
an =f(zmt Z;) (7'23)
and
V,= —Ei(z,) (7-24)

Note that we have achieved our goal of reducing the electromagnetic problem to
(7-22) which is identical to the network formulation of (7-14). It should be
mentioned, however, that in network problems we know Z,, at the start,
whereas in electromagnetic problems it is necessary to calculate Z,,, as we have
shown in this elementary example.

So far we have only generated one equation in N unknowns. We need N —1
additional independent equations so that we can solve for the N unknowns. To
obtain these additional equations, we choose a different z,, for each equation.
That is, we enforce the integral equation at N points on the axis of the wire. The
process of doing this is called point-matching. It is a special case of the more
general method of moments.

Point-matching at N points results in the following system of equations

Iif(zy, 23) 4+ Iaf (20, 23) + o+ Inf(zy, 28) = _Ei:(zl)
I f(z; 2)) + fzf(-'-:z- L)+t *'.s-f(lfz' ) = —E';-_(Zz) (7-25)
LS (2o 20) + 1af (2xs 23) + - + LS (2xs 26) = = Ei(zy)
which can be written in matrix form as
f(z521) Ml z3) oo [lzg, zv) I, = Ei(-?:)
flz2,2h) Sz, 22) oo Mz, 24) | |12 | = | —Eiz2) (7-26)

flean ) flzss 23) - flzonz)] LI —Ei(zy)

or in the compact notation as

[zme][fn] = [Vm] (?'27)

Ty
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where Z,, and V,, are given by (7-23) and (7-24), respectively. We refer to the
first index () as the match point index because it is associated with the observa-
tion point at which the m" equation is valid. We refer to the second index as the
source point index since it is associated with the field from the n™ segment or n™
source. Because of the analogy to the network equations, the matrices [Z,,,], (1,].
and [V,,] are referred to as generalized impedance, current and voltage matrices,
respectively. But this is only an analogy and thus the units of [Z_,], [1,], and [V, ]
need not necessarily be ohms, amperes, and volts, respectively. The analogy is
not restricted to collinear segments as in the example treated here, but applies to
arbitrary configurations of wires as well.
We can write the solution to (7-27) symbolically as

(1] = [Za] ' [Ved (7-28)

In practice, we will usually not explicitly generate [Z,,,] ', but instead solve the
system of equations by one of several fairly standard matrix algorithms. Once we
have found [/,], we know the current distribution in discrete form and can then
proceed to determine impedance and radiation patterns or the radar cross
section.

Example 7-1. Point matching on a short dipole

Let us illustrate the application of (7-26) with a simple example. Suppose we wish to
calculate the input impedance of a dipole that has a length of 0.1A and a radius of 0.0054.
For convenience we choose N = 5. We then obtain for [Z_)]

67924 ~90.01° 2924 £90.03°  33.01 L9027 9.74 L9001° 424 L9208
2924 £90.03°  679.2L —9001° 292429003  33.01L90.27° 9.74.9091"
[Zna] = 107:] 3301 £90.27°  2924,£9003° 679.2L —9001° 292.4 £ 90.03° 33.01 L90.27°
974490917 3301.L90.27° 29249003 679.2L —~9001° 292.4.L90.03°
4,24 £ 92.08° 9.74.£9091° 330149027 2924.9003°  679.2L - 90.01°

For a 1-V excitation at the center of the short dipole, the following voltage matrix [V
would be obtained using the frill source discussed in Section 7.7,

0.502 £ —179.69"
3.248 L —179.95°
(V] = | 70.55 £ —179.99°
3248 L —17995°
0.502 £ —179.69°

Solving (7-28) for [1,] yields

0.81£89.54°
1.54 £ 89.64°
[1) = 1072 -] 2.44 £.89.75° |.
1.54 £ 89.64°
0.81£89.54°
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We note that the current distribution decreases from the center toward the ends as expected.
The input impedance may be found from Z;, = V,/I;, = 1.0/(2.44 x 107* L 89.75°) =
409.74 /. —89.75° = 1.788 — j409.74 ohms. Comparing with the thinner dipole in Figs. 5-5
and 5-6, we see that the input impedance of a 0.14 long dipole also has a very small
real part and a large negative reactive part. Further, the real part of 1.788 ohms compares
fairly well with the approximate formula 20n*(L/1)* = 1.974 ohms even though only five
segments were used here. These results can be verified with the computer program in
Appendix G.7.

To summarize this section, we have obtained an elementary numerical solu-
tion to an integral equation of the form given in (7-15). This was done by
successively enforcing the integral equation at N different points, as illustrated in
(7-25). For mathematical convenience and simplicity, the locations of the points
were chosen to be at the center of the N equal length segments into which the
wire was divided. Strictly speaking, in order for the equations in (7-25) to be

0.014
T L =047\
a = 0.005x

L=
-
=
@
t
=
>
o

-0.23% 0.0 0.235

LN
Figure 7-4 Current distributions on a half-wave dipole for
various numbers of pulse expansion functions and a unit voitage
excitation.
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exact equalities, N must approach infinity. However, in practice we can obtain
accurate solutions for the current distribution by allowing N to be sufficiently
large. This is illustrated in Fig. 7-4 which shows the current distribution on a
half-wave dipole for several values of N, and in Fig. 7-5 which shows the cor-
responding input impedance for various values of N. In both instances, it is
apparent that for N sufficiently large, but finite, the solution has converged to a
final or stable result. It should be emphasized that N cannot be made arbitrarily
large without encountering a numerically unstable result in many instances. Thus,
a curve such as those in Fig. 7-5 is well worth the effort since it clearly shows
the convergence behavior of the solution. A comparison with experimental data
is shown in Fig. 7-6. .

As mentioned earlier, the point-matching procedure demonstrated in this sec-
tion is a special case of the more general method of moments. In the next section
we will develop a general moment method procedure.

7.3 WEIGHTED RESIDUALS AND THE MOMENT METHOD

Our objective in this section is to derive a moment method procedure more
general than the point-matching method of the previous section. We will accom-
plish this by using an approach known as the method of weighted residuals [7].

Consider the straight wire example of the previous section. Let us define the
residual R to be the sum of the tangential components of the scattered and
incident fields

R = E:an + Eian' (?'29}

Clearly we wish the residual to be zero and thereby satisfy the boundary condi-
tion. In our example with pulse expansion functions the residual is found from
(7-19) to be
i
R(z)= Y I.f(z z}) + Ei(2). (7-30)
n=1
Stated in terms of the electric field boundary condition, the residual is the sum of
the tangential components of the scattered and incident fields at the wire surface.
Equation (7-30) when evaluated for z = z,, gives the residual at the mth match
point where, of course, the residual must be zero since the solution for the I,’s
was obtained subject to the electric field boundary condition at the N matching
points. However, at points other than the match points, the total tangential
electric field will not generally be zero as Fig. 7-7 indicates. Therefore the resi-
dual for z# z,,, m= 1, 2, 3. ..., N, will not be zero either. Physically we can
view the point-matching procedure as a relaxation of the boundary condition
such that it is only satisfied at specified points. In between those points we can
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(b) Input reactance.

316

e ot LA R

7.3 WEIGHTED RESIDUALS AND THE MOMENT METHOD 317

T T T T T T T T T T ]
15— ]
= :h‘( — — — Measured {mack) n
L " l“ % x % %% X% Calculated B
& | i .
- l "i .
10 \ —
R f,ﬁ\ \ 4
i 8/ 1.
g Lo\ 2-7022x10°% |
E n ./ 'l I \¢ A B
c 7 h \ 7]
< ]
B <N ’ ‘ \x ]
Sl I N :
A O R oL
- x/ >i L""/’&‘—/-«-—-—»-
o 1 A =
«
- l / -
B \ x/ 2
i L, 0
i
i T
—5 I 1 ! ' ) | | 1 I | 1 1
0.5 1 2 3
AL
2

Figure 7-6 Comparison of measured dipole admittance
with data calculated using pulse functions (N = 100).

only hope that the boundary condition is not so badly violated that the solution
is rendered useless. Thus, it is not surprising that as N is increased (within limits)
the solution tends to improve as we saw in Figs. 7-4 and 7-5. ~

In the method of weighted residuals the I,’s are found such that the residual is
forced to zero in an average sense. So, in the wire problem of Fig 7-1 the
weighted integrals of the residual are set to zero as follows.

( W, (z)R(z)dz=0, m=1,2,3,....,N (7-31)
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Figure 7-7 Normalized tangential electric field along one-half of a center-fed
dipole with pulse expansion functions and delta weighting functions (courtesy of
E. K. Miller). Dots indicate match point locations.

where W, (z) is called a weighting or testing function. Substituting (7-30) into
(7-31) gives

A2 N Li2 ]

| Wo(z) > I1.f(z z,)dz + [ W, (z)Ei(z) dz = 0, (7-32)

C=LiZ n=1 e

= 152085 e NG
If the weighting functions are Dirac delta functions
W (z)=06(z — z,) (7-33)

then (7-32) reduces to (7-21). If the weighting functions are the pulse functions

1 for z in Az,
Walz) = " 7-34
(2) 0  otherwise (7-34)
then (7-32) becomes
‘\I " -
YI| flz,z)dz+| Ei(z)dz=0, (7-35)
n=1 "Azm Y Az :

m=1213,..,N.

The current obtained from solving (7-35) will not necessarily be such that the
sum of the scattered and incident fields (i.e., the residual) is zero everywhere
along the surface of the wire, but the average over the wire will tend to be zero,
presumably giving a more accurate current distribution for a given N than when
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the weight functions are delta functions. Actually this may or may not be the
case depending on the particular choice of expansion functions for the current
and weighting (or testing) functions. =
The question of how one chooses the expansion functions and weighting
functions is certainly a valid one. It is, however, a question without a concise
answer. But, as rules of thumb, it is desirable to choose expansion functions that
closely resemble the anticipated form of the current on the wire and to use the
same functions for the weighting functions as used for the expansion functions.
There are exceptions to these rules including the pulse point-matching solution
of Section 7.2. When the expansion function and the weight function are the
same, the procedure is often referred to as Galerkin’s method which is closely
related to variational methods [7].

Example 7-2. Galerkin's method on a short dipole

We now repeat Example 7-1 but instead use pulse functions for weight functions instead

of delta functions. The impedance matrix for this pulse-pulse Galerkin solution based on
(7-35) is

144/ —90.01° 6.14.90.03° 0.759.90.24°  0206.90.86°  0.087.92.02°
6.14 £.90.03° 1444 —90017 6149003  0.759.90.24%  0.206 £90.86°

[Zna] = 107 - 10.759 £.90.24" 6.14 £.90.03° 1444 —9001° 6.14/£9003°  0.759.£90.24°

0.206 £ 90.86°  0.759 £.90.24° 6.14 £.90.03° 144/ —90.01°  6.14 £90.03°
0.087492.02°  0.206£90.86°  0.759 .90.24° 6.14 £.90.03° 144/ —9001°

The voltage matrix is

0010 £ —179.72°
0.087 £ —179.97°
[(v,] =| 07952 —179.99°
0.087 £ —179.97°
00102 —179.72°

and the resulting solution for [/,] is

0.49 /£ 89.57°
091 L89.66°
[f.]=10"""]1.38289.76°
0.91 £ 89.66°
0.49 £ 89.57°

We note that all of these three matrices are different from those in Example 7-1. Of
course, we would expect [Z,,,] and [V,] to be different because they are computed by a
different process. The reason [1,] is different is solely attributable to the fact that N is only
5. As in Example 7-1, a larger value of N is required in order to obtain a converged result.
The input impedance based on the above current is Z;, = 3.08 — j723 ohms, whereas the
correct impedance is Z;, = 2.35 — j556 ohms based on N = 25.
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Next, we wish to relate the quantities in the weighted residual integral to
Kirchhofl’s network equations, just as was done in Section 7.2. In doing so let us
generalize somewhat and consider a wire as shown in Fig. 7-8. In this case the
residual may be written '

R() = Enll) + Enl) = 3 LE) + Ewll) (7-36)

and the weighted residual as

W,.(/) - R(/)d/ =0 (7-37)
“along wire
so that we have
R a2
[7 Wal¢) E(0)dr+ [ W,(/) E(/)dl =0, (7-38)
T —tmi2 S -

m=12,3...;N.

\,
[/

Figure 7-8 Segmented curved wire.
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This equation can be viewed in the form of (7-14) and if we denote the scattered
field from the n™ expansion function of the current by E;(¢), then we may write
for the general mnth element in the generalized impedance matrix

ml2

Zp= | W) Eil)dr (1-39)
Y= fmi2
and for the mth generalized voltage matrix element
/mi2
Vo= —[  Wal¢) E(/)ds (7-40)
"~ tml2
where W, (/) is the m™ testing function taken to be located interior to the wire
as suggested in Fig. 7-8. Strictly speaking, the test function should be located at
the wire surface (see Fig. 7-2a) in which case (7-39) and (7-40) would be double
integrals over the surface. In placing the test function on the axis we are in a
sense modifying the electric field boundary condition for the sake of mathemati-
cal simplification. In doing this, experience has shown that we are restricted to
wires for which the radius is less than about 0.014. This is sufficient for most wire
antenna or scattering problems. For thicker, wires, a more exact formulation is
available [8].

The process of expanding the unknown current I(/’) in a series of expansion
functions and then generating N equations in N unknowns using the weighted
residual integral of (7-37) is more commonly referred to in the electromagnetics
literature as the method of moments [1, 3-5]. The method of moments is, as we
have seen in this section, equivalent to the method of weighted residuals. If the
testing or weighting functions are delta functions, then the specific moment
method procedure is known as point-matching which is also known as colloca-
tion. This was the procedure used to obtain the system of equations in (7-25). If
both the test function and the expansion function are the same, then the specific
moment method procedure is known as Galerkin's method. A pulse-pulse Galer-
kin formulation was used in Example 7-2. There are functions other than the
pulse function which have been shown to be useful. One of the most useful
functions for wire geometries in empty space is the piecewise sinusoid. In Section
7.5 we will use the piecewise sinusoid in a Galerkin formulation for the wire. In
the next section we wish to discuss the concept of reaction which is yet another
way of physically interpreting the method of moments.

7.4 REACTION INTEGRAL EQUATION

In 1954 Rumsey introduced a physical observable (e.g., mass, length, charge, etc.)
called reaction which permitted a general approach to boundary value problems
in electromagnetic theory [9]. His approach resulted in the formulation of the
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reaction integral equation. Equation (7-38) is really a special form of the reaction
integral equation which applies to wire geometries. A rigorous derivation of the
reaction integral equation may be done using only principles of electromagnetic
theory. The derivation is somewhat difficult to follow and so we will obtain it by
inductive reasoning here, having derived (7-38) in the previous section by the
relatively straightforward weighted residual approach.

Reaction is basically “a measure of the coupling” between one source and
another. Thus, if we view the test function (weight function) as a test source, then
the impedance matrix elements given by (7-39) may be taken as a calculation of
the coupling between the m™ test source and the scattered field from the n™
expansion function or actual source. Similarly, the m™ voltage matrix element in
(7-40) may be interpreted as the coupling between the m™ test source and the
incident field. In talking about (7-40) for instance, we might say that we are
“reacting” the m™ test source with the incident field, or in the case of (7-39) that
we are “‘reacting” the electric field from the n™ actual source with the current
on the m™ test source.

We obtained (7-38) for a wire. The method of moments or the method of
weighted residuals applies to geometries other than just wire geometries as in-
dicated in Fig. 7-9. Consider the equivalent situation in Fig. 7-10. Let (J,,, M,,)
be the surface current densities of a test source and let (E,, H,) be the fields
from the test source. The currents on the conducting body are both replaced by
equivalent surface currents (J°, M*) radiating the fields (E*, H*) in free space. The
generalization of (7-38) then becomes

([ (3, E=M, - H)ds + [[ (3,  E = M,,- H)ds =0 (7-41)
me= 1,2 3 N

The minus sign associated with M,, can be justified by referring to the recipro-
city field theorems in Sections 1.7. The physical interpretation of (7-41) is that we
wish to have zero reaction (i.e., zero coupling) between the test source and the
sum of the incident and scattered fields. Clearly, this is equivalent to the condi-

METALLIC
SCATTERING
BODY

(E, H)

5

Figure 7-9 Source current densities J° and M' acting in the
presence of a metallic scattering body bounded by surface §
create fields (E, H) exterior to S.
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Figure 7-10 Test source interior to surface § with equivalent
currents (J°, M) in free space.

tion stated by (7-31). Nevertheless, the alternative physical interpretation offered
by (7-41) and the reaction concept is a useful one and the student will find it
used in the literature.

If we denote the fields from the n™ expansion function of the actual current by
(ES, H3), the sum of the N fields being (E*, H?), then we may write for the general
mn™ element in the generalized impedance matrix

Zow=|[ (3 Ez = M,, - H}) ds. (7-42)
5
Similarly, we may write the general m™ element in the voltage matrix

Vo= —[| Gn E =M, - H)ds. (7-43)
.
The incident field (E, H'), which originates from the impressed currents Jiin
Fig. 7-9, may be the field from a source located on S (antenna situation) or from
a source located at a great distance from S (radar scattering situation).

The general relationships in (7-42) and (7-43) will be useful in later sections for
both wire and nonwire geometries. In the next section we will need to only
consider the specialized forms of (7-42) and (7-43) which appear in (7-39) and
(7-40), respectively.

7.5 PIECEWISE SINUSOIDAL GALERKIN METHOD

One of the most useful functions in moment method solutions of thin wire
problems is the piecewise sinusoid shown _in Fig. 7-11a. It may be expressed
mathematically for z-directed segments by

Ty SELE, (7-44a)

3 _SEE(:"_“__:) Zy ST T i (7-44b)
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Ty —1 zn Ty i1

(a)

Py Py - Py Py FPg Fg
(b)
Figure 7-11 (a) Piecewise sinusoidal expansion func-

tion. (b) Set of overlapping piecewise sinusoidal expan-
sion functions.

An example of a piecewise sinusoidal approximation to a current distribution is
given in Fig. 7-11b. Note that each piecewise sinusoidal function spans two
connected segments and that each segment contains two piecewise sinusoidal
functions except those that have an unconnected end point (i.e, P, and P).
Experience has shown that the use of piecewise sinusoidal testing (weighting)
functions with piecewise sinusoidal expansion functions leads to a procedure
that is numerically efficient and highly accurate. Since both the expansion func-
tion and testing function are the same, it is a Galerkin method. It is possible to
use the pulse function for both the testing function and the expansion function.
However, experience has shown that the improvement of the pulse-pulse Galer-
kin formulation over the pulse point-matching procedure is usually rather small
and not worth the added numerical computation involved. On the other hand,
the computational efficiency of the piecewise sinusoidal Galerkin formulation
over the pulse Galerkin method is very substantial. This is demonstrated in
Fig. 7-12 which shows the rate of convergence for a dipole of this same dimen-
sion used in Fig. 7-5. We note that almost 10 times fewer segments are required

ke i
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for the piecewise sinusoidal (PWS) expansion function as for the pulse expansion
function. For thinner wires, the convergence of the piecewise sinusoid is even
faster since the approximation of Fig. 7-2b is less significant [10].

7.5.1 Two-Segment Solution

To illustrate both the use of the reaction integral equation and the piecewise
sinusoidal function, let us consider first the problem of a dipole divided into two
segments. This means there will be only one piecewise sinusoidal function in the
expansion of the surface current density J in Fig. 7-13a and only one test source
which will also have a piecewise sinusoidal current I,(z) given by

y _sin B(h — |z])

1{2) sin Sh e

104 ' E T
90 —

80— 4 = 0.005A

701~ 2= 0.0007 A .

60— -]

50 —

40— L=0477% =

Input resistance (ohms)

30} —

20 —

0 I | | | | | | |
0 5 10 15 20 25 30 35 40 45

Mumber of PWS functions

fa)

Figure7-12 (a) Input resistance convergence rate for the piecewise
sinusoid for two different wire radii.
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Figure7-12 (b) Inputreactance convergence rate for the piecewise
sinusoid for two different wire radii.

where h is the dipole half-length and z is measured from the center. The current
on the equivalent filamentary source in Fig. 7-13b is given by the classical
formula

sin f(h — |z|)
Ig)=1,—————*. -

) ! sin fih (7-46)

What we wish to do is to determine the terminal current I, excited by a given

voltage generator of voltage V. To do this we employ (7-39) where E, is the field
from the expansion function I(z). Thus, ZI, = V, where

" sin (h— |z|)

Z=| —————%-Ejd: 7-47

-[_h sin fih il ( )

and the solution for I, follows. We note in passing that this two-segment solu-
tion coincides with the well-known induced emf theory.

A

v S o
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(a)

Equivalent filamentary source I = J27a
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_@ Test source z

z=-h z=h

(k)
Figure 7-13 (a) Two-segment piecewise sinu-
soidal problem with the weighting function (test
source) located on the wire axis. (b) Current on
the wire surface replaced by equivalent filamentary
source.

The two segment solution is obviously useful only for a limited range of
antenna lengths. Therefore, let us consider next the four-segment solution for a
single linear antenna. The extension to the N segment solution for a single
antenna or for coupled antennas will then be obvious.

7.5.2 Four-Segment Solution

Consider the symmetrical dipole of Fig. 7-14a divided into four segments. The
complex coefficients I,, I,, and 5 represent samples of the current function /(z)
at the junctions of the various segments.

1, =1(0) (7-48a)
h

12:1(5)=1(~;)=13, (7-48b)

The current is assumed to vanish at the ends of the antenna.

I(h)y=0=I(—h). (7-49)
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Figure 7-14 (a) Four-segment piecewise sinu-
soidal problem with weight function (test source)
located on the wire axis. (b) Three overlapping
piecewise sinusoids.

Thus, the current on the equivalent filamentary source is

sin f(h/2 — z) i sin fiz
sin(fh/2) ?sin(Bh/2)’

[ sin B(h — z)
? sin(h/2)

sin B(h/2 — |z|) sin f|z| h
sin(ph2) ’%m(ﬂwz)' —5 <z2<0 (7-50c)

N g sinBth— |z|) ] h
I(J—I;—W, ~HEzrE =3 (7-50d)

as illustrated in Fig. 7-14h. The objective is to determine I,, I,, and I,. This is
accomplished by reacting each of the three test sources with the three filamen-
tary sources in a manner similar to (7-47), the details of which are given in

=

<

Iz)=d,

r
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(7-50a)

I(z) =
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5]
IA

(7-50b)

b3 =

I(z)=1,
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Section 7.5.3. This results in three equations in three unknowns. Since I, = I,
we need only solve for two unknowns, and thus

Zyl + (2 +Z3)L, =V, (7-51a)
Zpdy +(Zyy + Zza)fz = 0. (7-51b)

Zyy and Z,, represent the mutual impedance between parallel filamentary
dipoles with sideways displacement a and no stagger (with respect to the z-
direction). To obtain Z,, and Z,, the dipoles are in echelon with displacement a
and stagger h/2 whereas in obtaining Z,, and Z,, the stagger is h.

7.5.3 N-Segment Solution

Next let us consider the situation of an arbitrary number of equal length (Az,)
segments which are either coincident with the z-axis or are parallel to it. Thus,
we may consider, for example, a single dipole with N segments or an array of
parallel dipoles. Using (7-44) we may write for the mn" impedance matrix
element as

= sin fz ~ z,-4),

- Ef dz
sin(f Azm)

z,,,,=_[

“Emtd SinM!
', sin(f Az,)

We, of course, need an expression for the field E, from the n'" actual source in
order to evaluate (7-52). First we note that

WeE) )

7 Edz (7-52)

& " # (=53
and
Mz, 2) _ 82:,1;(% )
P a? - {7-54)

Next integrate the first term of (7-12) by parts twice using (7-54), substitute the
result into (7-12), and use (7-53) to obtain

[y g P
E: = (L)ﬂo d._ ‘1#(" )+ I( ) Jz'z:!
. |
P )]w ) d (7-55)
jeg,- . | dz

where the limits of integration are only over one segment.
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When the current on the segment is piecewise sinusoidal the bracketed expres-
sion in the integrand of (7-55) vanishes. Since we are using one-half of the
piecewise sinusoidal function depicted in Fig. 7-11a, the z-component of the field
from the unit current on the segment extending from z, to z,, EX(p, z), is [11]

o1 _ J |Bcos B(z — z,)
E:(p.2) [ sin f(z; — zl;

 dne,m
sin Bz — z,) @ }e"”’

=2,

sin B(z, — z,)dz| r (%-56)

=z

where

r=\/p*+(@E-7). (7-57)

When we consider that portion of the source from z, to z5, we obtain EZ(p, z).
Then the total field from both halves of one piecewise sinusoid of unit amplitude is

E. = El(p, z) + EX(p, z). (7-58)
We may generalize this result for the n™ and (n + 1)* segments as
E,= —j30 [ 'e_”m”_’ il l"_m“" sin ﬁ(3n+} = 1)
Rn—l sin ﬁ(Z" —Z,- l) Rn sim )8(2:: a zn—-l} s ﬁ(zrﬁ 1 Z,,}
e"jﬂRnd ]

- . (7-5
* RrHl sin B(:n+1 EE Z") ( 9)

The quantities R, _;, R,, and R, . , are shown in Fig. 7-15 and defined below. A
similar expression for E,, is obtainable but is not required here since all segments
are z-directed [1].

Pir, 0, 9)

y Figure 7-15 Wire segment along
Origin . z- axis.
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Finally, the elements of the generalized impedance matrix are given in general
for z-directed segments by

Z= [ M Epdz

~ p= sin Bz — 25-4) . [:mlsin Blzme1 — 2) J30
. I " sin(B Az,,) L sin(f Az,,) | sin(f Az,)
Lo ~ifRs = JfRa+ 1 |
T dcos(paz) e + S |z (1-60)

where
Rn—lz\fp +(Z-Z"_I), anvp +(Z_Zn)’ (7-61)
Rn+l= P +.(Z_:n+l)
Az, = 2y = Zai = Zat1 — Tt DI = Fm = Tt = Zayy — % (7-62)

Equation (7-60) may be evaluated without difficulty by numerical integration.
However, when p = a and a is quite small (i.e., wires of very small radius) it may
be preferable to carry out the integration in the form of sine “Si™ and cosine
*Ci” integrals of (F-13) and (F-14). When this is done, the elements of Z,,, are
given by Z,_. =R, + jX,, where

15
Roun = sin(B Az,,) sin(f Az,)
[cos B(za-1 — Zm-1) {Ci(vo) + Ciluo) — Ci(uy) — Ci(v,)}
+ 5in B(z,—1 — Zm-1) {Si(vg) — Si(ug) + Si(u;) — Si(vy)}
4 ¢08 B(Zps1 — Zm-1) {Ci(vs) + Ci(uy) — Ci(us) — Ci(vs)}
4 8in Bznes — Zme 1) {Si(ts) — Siua) + Sifus) — Si(os)}
— 2 cos(f Az,)cos Bz, — Zm-1) {Cilr,) + Ci(uz) — Ci(us) — Ci(rs)}
— 2 cos(f Az,)sin Bz, — zm-1) {Si{ry) — Si(uy) + Sius) — Si(ry)}
+ €05 B(z,-1 — Zm+1) {Ci(ve) — Ci(r,) + Ci(ug) — Cifu,))
+ 5in B(z,—1 — Zm+1) {Si(ve) — Si{ug) + Si(u;) — Si(,)}
+ €05 B(zps1 — Zms1) {Cilvs) — Cilrs) — Ci(us) + Cilug)]
+ 8in B(zas1 — Zm+ 1) {Si(vs) — Si(ug) + Si(us) — Si(vs)}
— 2 cos(f Az,c05 Blzn — Zme 1) {CilE7) — Ciles) — Cius) + Ciu))
— 2 cos(f Az,)sin Bz, — Zma 1) { = Si(us) + Si(r) + Si(us) — Si(rs)}]
(7-63)
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where
up = Bl/P* + (2u-1 — 2m-1)" + (L)Y 2m-1 — 20-1)] (7-64a)
uy = Bl/p* + (-1 — 2a) + (L)Em — 2-1)) (7-64b)
uy = Bly/p7 + (2, = 2= 1)’ + (L)zm-s = 2,)] (7-64c)
uy = BI/P" + (o= 2a)” + (L)zm — 2a)] (7-64d)
iy = B/ 0" F Bawy — Zama) F (LNZ0s 1 = S0 (7-64¢)
us = B/P* + (as1 — zn)" + (LY Em — Zass)] (7-64f)
Ug = ﬁ[\/ﬂz + (2= — 2 1+ (L)(zmsa = 26=1)] (7-64g)
ty = Bl/P* + (20— Zme1) + (L)Zms 1 — 2a)] (7-64h)
g = Bl/0* + (ur1 = Zmi 1) + (L)Ems s — T sl (7-64i)

and L= + 1. The t;’s are found in similar manner as (7-64) with L= —1. X,

can be obtained by replacing Ci(x) by —Si(x) and Si(y) by Ci(y) in the expres-
sion for R,,,.

The piecewise sinusoidal Galerkin method is treated in detail here because it 1s
the best known moment method procedure for thin wire antenna and scattering
problems in free space. While the mathematics of (7-63) and (7-64) may be a bit
overwhelming to the student, the methods employed are those used to write
general purpose computer programs given in the literature [12] and the one
listed in Appendix G.8. Actually. an understanding of (7-60) is sufficient to
appreciate the essential features of such programs.

The piecewise sinusoidal Galerkin method applies equally well to arbitrary
configurations of wires. We have restricted our discussion here to z-directed
wires for instructional convenience. The more general formulation appears in the
literature [12].

7.6 CALCULATION OF ANTENNA AND
SCATTERER CHARACTERISTICS

Thus far in our discussion of the method of moments we have been mainly
concerned with acquiring a knowledge of some unknown current distribution.
Let us now consider how we can obtain other information as well. But first, we
should make one further remark about the currents derived from the solution of
the matrix equation.

If pulse functions are used as the expansion functions in the point-matching
technique, a knowledge of the current coefficients I, means that the current
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distribution at the match points is known “ precisely,” assuming, of course, that
the solution has converged. In between the match points we do not know the
current but, since the distance between the match points is small in terms of a
wavelength, one can simply fit a curve through the current values at the match
points to obtain a good approximation to the current distribution along the
wire,

In the case of the piecewise-sinusoidal functions, a knowledge of the
coefficients I, again only means that the current is known at the junctions of the
segments. Along the segments we can use the piecewise sinusoidal functions
themselves to approximate the current distribution between segment junctions.
Thisapproximation is quite adequate except for some extremely unusual situations
which need not concern us here.

Having determined the current distribution, the input or terminal current can
be found by evaluating the current distribution at the antenna terminal location.
In turn then the input impedance may be calculated by dividing the terminal
voltage by the terminal current. The calculation of accurate impedance data is a
task that is somewhat sensitive to the model used for the feed point. Two such
models are discussed in the next section.

Distributive loading, which arises when a wire is not perfectly conducting,
may affect the current distribution in certain situations [13]. For simplicity,
consider a wire whose axis is parallel to the z-axis. When the wire has finite
conductivity, we can relate the tangential electric field at the surface of the wire
to the equivalent electric surface current density by the use of the surface im-
pedance Z, which is defined [14] as the ratio of the tangential electric field
strength at the surface of a conductor to the current density which flows as a
result of that tangential electric field. Thus,

E=2ZJ,. (7-65)

Using M, = E x n and the relationship J, = zI(z)/2ra. we can write

bZ 1(z
M,=ZJ, xp= ¢>} ) (7-66)
2na
Writing the reaction integral equation from (7-41) and reciprocity as
[ (€, "= H, M) ds =V, o (7-67)
e
and substituting (7-66) leads to
[ 1)z E, - Z,6-H,]dz=V,. (7-68)
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Note that if the wire is of perfect conductivity, the surface impedance goes to
zero and (7-68) reduces to a form similar to (7-47). We can write for the gener-
alized impedance matrix element Z,,,, modified for finite conducting wires, as

L@ Endz—Z[ 1) H, dz (7-69)

[ - 21
From Ampere’s law a suitable approximation for H,, is
pe pp m

§-H, =10 (7-70)

2na
and thus (7-69) can be written as
z
: -7
2| L (e)ale) dz (7-71)

*{m, n)

Z:nn = Zrm! =

where region (m, n) is the wire surface shared by testing function m and expan-
sion function n. In the case of overlapping expansion functions such as the
piecewise sinusoid, this region covers two intersecting segments if m and n are
equal. When m # n. the shared region covers at most one wire segment. This
means that distributive loading is accounted for by a modification of only the
appropriate main diagonal elements and those elements adjacent to the modified
main diagonal elements.

The effect of either lumped loading (considered in Section 7.9) or distributive
loading is to alter the current distribution on the wire antenna or scatterer.
Knowing the current distribution, the far field can be obtained by the classical
methods used previously in this book. To illustrate, consider again z-directed
segments with a piecewise sinusoidal expansion of the current. Let there be N
expansion functions. Then, from (4-1), we have

Jop I,
E (0 2~ sin
i0) = dnr € o Z sm[ﬁ Az,)
T ; i ‘:", 1 . . s ;
| sin f(z' — z,_ )" < dz’ + sin Mzy4q — 2’ )6t =0 d7'
" Zp- Y zp

(7-72)

The numerical evaluation of this is most easily accomplished by changing the
sine terms to exponentials, integrating the various exponentials, and then evalu-
ating the result with the specified limits.

Once the far field is known in the direction of maximum radiation, the power
gain may be determined from the general relationship

L Ef + |E [

G(0, ¢) = “30[1.[R,,

(7-73)
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where R,, is the real part of the antenna input impedance. The directivity may be
obtained by replacing R;, with R,;, the radiation resistance.
The radar cross section may be found from (1-234) as

. |E*[? .
o= lim 4nr? —5 Gl (7-74)
where E* can be determined, for example, from (7-72). The radar cross section
for a dipole scatterer is shown in Fig. 7-16.
The radiation efficiency is calculated using (1-184) as
.-
R]n er + Rl)hmlc

r—+an

(7-75)
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Figure 7-16 Monostatic radar cross section of a straight wire
at normal incidence as a function of wire length.
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R,, is the radiation resistance referred to the input terminals and Ry is the loss
resistance due to dissipative loading, either distributed or lumped (see Section
79.1). Alternatively, we could determine the radiated power by integrating the
power density in the far field as we did in Chapter 1. However, the above
method (i.e. (7-75)) is computationally more efficient.

From the discussion in this section we can sec, among other things, that such
a refinement as the losses due to finite conductivity can be included into a
moment method solution in a fairly straightforward manner. In the next section
we will examine the lone remaining major aspect of modeling wire antennas or
scatterers by the method of moments, namely the modeling of the source.

7.7 SOURCE MODELING

No doubt the most used generator model in wire antenna theory is the delta gap
model, shown in Fig 7-17a, which is often referred to as a slice generator.
Although such sources do not exist in practice, they do permit surprisingly good
calculations to be made. The source arises from the assumption that a voltage is
placed across the gap giving rise to an impressed electric field E' = V/§ confined
entirely to the gap (ie, no fringing).

Mathematically, the delta gap model enters into the method of moments in
the following way. From (7-43) we note that one can write for the generalized
voltage matrix element

V= — H (J,.-E =M, - H)ds (7-76)

h)

b

| i

fa)

L B )=

(h)

J_H

Figure 7-17 The delta gap source model. (a) Gap
with impressed field E' = 17/d. (b) The equivalent
magnetic current ring generator.
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or by reciprocity (see Fig. 7-10)

P |j | (€, J' - H, - M) do. (7-77)
v,
If we replace the narrow gap region in Fig. 7-17a by the narrow strips of

magnetic current (M= E’ x f) as in Fig. 7-17b, then, as the gap size tends
toward zero (using the definition of the Dirac delta function)

- [[ H, - M ds = ” % adpdz=1. (7-78)

5

Consequently, only those positions in the generalized voltage matrix correspond-
ing to segment junctions that contain generators will have nonzero values.
A second generator model, which has practical significance, is the so-called

frill generator. Consider Fig. 7-18a which shows a coaxial line feeding a mono-

pole on a ground plane. Assuming a purely dominant mode distribution (TEM)
in the coaxial aperture and image theory, we can replace the ground plane and the
coaxial aperture with a frill of magnetic current as shown in Fig. 7-18b. Since the
assumed form of the electric field in the aperture is

1

E (p)y=w-— 7-79
AP) = S nbra) (=12
the corresponding magnetic current distribution is

—1
M, = -
*= pln(b/a)

(7-80)

from which it can be shown that the electric field on the axis of the monopole is
[5, 14]

: | fe- iRy o ikR:
BOA) = el R T R (1)
where
Ri=T+d (7-82a)
Ry= /7 + 9 (7-82b)

il the frill center is at the coordinate origin. When this field is reacted with the
test source current as required by (7-76), each entry in the generalized voltage
matrix will have a nonzero entry. For segments not on the axis of the monopole,
the form of E' is more complicated.than (7-81) and is available in the literature
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Figure 7-18 Magnetic frill generator. (a) Coaxial
line feeding a monopole through a ground plane.
(b) Mathematical model of Fig. 7-18a. (See Sec. 8.1).
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Table 7-1 Voltage Matrix Values for
a Frill Generator (Z, = 50 ohms) and
Delta Function Testing Functions,
(L=0.47) a=0.005\ b/a=2.30)

Segment no. [Vl £V
1 0.005 154.1°
2 0.007 159.5°
3 0.009 164.4°
4 0.013 168.8°
5 0.020 172.5°
6 0.034 175.5°
7 0.067 177.7°
8 0.170 179.1°
9 0.715 179.8°

10 10.948 180°

11 10.948 180°

12 0.715 179.8°
13 0.170 179.1°
14 0.067 1773
15 0.034 1755
16 0.020 172.5°
17 0.013 168.8°
18 0.009 164.4°
19 0.007 159.5%
20 0.005 154.1°

[5, 15]. Table 7-1 gives the values for —EX(0, z) and V,, when the testing function
is a delta function. Note the rapid decrease in values with increasing distance
from the generator compared with the numerical values of zero or one that exist
when a delta gap generator is used.

7.8 SOME COMPUTATIONAL CONSIDERATIONS

There are essentially two limitations to the use of the moment method. These
are: (1) the amount of computer storage necessary for the N? elements of the
impedance matrix and, (2) the amount of time required to compute those N?
elements and solve the resulting system of equations. In this section we first
examine the time requirements of moment method techniques and then examine
ways of using symmetry advantageously to reduce those time and storage
requirements.
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7.8.1 Computer Time Considerations

An impedance matrix of N* elements is said to be of order N. Let N; be the
number of different source or incident fields (i.e., radar cross section is a function
of incidence angle) associated with a given impedance matrix and let N, be the
number of observation points at which the field is to be computed from
the current solution; then the time ¢ for execution will be approximately given

by [8]
t=~ AN? + ByN? + CN?N; + DNN,N, (7-83)
where the algorithm and computer dependent factors A, B, C, and D are:

A = time required to compute a typical impedance
matrix element,

B; = time required to solve [Z,,][1,] = [V,] for [I,] by
matrix inversion [I,] = [Z,.,] " ![V,,] for a system
of order N,

C = time required to perform the operation [Z,,,] '[V..]
or its equivalent for each new [V,],

D = time for computing far-field from [1,).

It is clear from (7-83) that the dominant factor in determining the required
time lies in the second term which is associated with the solution of the system of
equations. The dominant effect of this term can be reduced in a number of ways.
If instead of actually finding the inverse [Z,,,] ", an algorithm such as Crout or
Gauss-Jordan is used, then By N — B, N? and we have

t>~AN? 4+ B,N? + CN?N; + DNN,N, (7-84)

which is a significant reduction in the solution time required for a given N. If the
impedance matrix is toeplitz (see Section 7.8.2), then By N* — B; N°> and we
have

t>~ AN + B, N*? + CN2N; + DNN,N, (7-85)

for which there is a significant improvement in the first term as well as the
second. Figure 7-19 shows curves of CPU time for various values of N. The
curve labeled Crout follows from (7-84) and that labeled toeplitz follows from
(7-85), which is a faster approach.

When the second term in (7-83) is on the order of N? or less, then usually the
first term, which is associated with the time required to calculate the matrix
elements, becomes the dominating factor. In the following subsections we exa-
mine briefly some ways for reducing the total time required for the operations
associated with the first two terms in (7-83).

O T
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Figure 7-19 Typical CPU time for several types of matrix solutions.

7.8.2 Toeplitz Matrices

Certain types of problems produce impedance matrices wherein there is a
systematic repetition in the matrix elements. Often this repetition can be used to
decrease the impact of both the first and second terms in (7-83). Consider the
straight wire in Fig. 7-1. I the segments are of equal length, all the values of the
N? matrix elements are contained in any one row of [Z..). say the first one. All
other rows are mercly a rearranged version of the first. The remaining elements
can be obtained by the rearrangement algorithm

zmn=zl,im—n[+] fnzzs "TZ 1 (?“86)
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Such a matrix is said to be a toeplitz matrix. Computer programs exist for
solving toeplitz matrices that are considerably more efficient than ones for solv-
ing a non-toeplitz matrix. (See Appendix G.7.) For a toeplitz matrix the first two
terms in (7-83) become AN and BN, respectively, and the execution time is
approximately that given in (7-85).

Toeplitz matrices can arise in the treatment of certain wire geometries. These
are the straight wire (see Examples 7-1 and 7-2), the circular loop, and the helix
[16]. A toeplitz matrix can also arise in the treatment of geometries other than
the wire, but these are outside the scope of this chapter.

7.8.3 Block Toeplitz Matrices

Consider the linear array in Fig. 7-20. The impedance matrix that character-
izes the array will be toeplitz by blocks or by submatrices when the array
elements are of the same length and are equally spaced. Thus, if the impedance
matrix for the array [Z], .., is written in terms of submatrices [S] as

(Sl [Shz - [Shy [S1i: [S]i2 s Bha
[Z]arra)f—_ [S]ZI [S]ll [S]2J [5:‘]12 [S]“ ' [S]IIJ—I'!

5l [Sho-y - Bl

R M T T

(7-87)

Figure 7-20 Linear array of parallel dipoles.
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where [S];; = [Z,,], the entire impedance matrix is toeplitz by blocks. Thus, if
one row of submatrices is known, the remaining submatrices may be filled by the
algorithm '

[S1:; = [S)i. ji-ji+ i>2, j= 1L (7-88)

Consequently the first term in (7-83) is of order N?/J where J is the number of
independent submatrices. The second term in (7-83) will be of order N%?.

If the submatrices are themselves toeplitz, as they would be if all segments are
of identical length and radius, then the matrix fill time is reduced even further.
Computer programs exist for solving block toeplitz matrices. (See Appendix G.8.)
The potential savings in execution time for a problem that is block toeplitz over
the same size nonblock toeplitz problem can be considerable (see Fig. 7-19).

7.8.4 Compressed Matrices

In certain problems there will be a repetition in the values within [1,] due to
the symmetry of the problem. If this can be recognized in advance, it can be used
to advantage to compress the matrix from order N to order N/L where L is the
degree of symmetry.

Consider the following simple but very common example of symmetry sug-
gested by Fig. 7-18a. Here the monopole and its image will have a symmetrical
current about the feed point. Suppose I, = I, | ,, then we can write

N2 )
VN e+ Bormzl =W m=1,23,..., N2 (7-89)
=1

n

Solution of this compressed system of N/2 equations will yield the N;2 indepen-
dent I,’s. From (7-84) we can see that the solution time for the system will be
B,(N/2)?, or a reduction in time by a factor of 4 for this portion of the comput-
ing process. For higher degrees of symmetry the savings in time would be even
more considerable. For some large problems it may be necessary to compress
the matrix for another reason, namely storage requirements. It is possible that an
impedance matrix may be so large that it cannot be stored in readily available
core memory and that through symmetry it may be compressed to a reasonable
size [S].

So it is the execution time and computer storage that tend to limit the electri-
cal size of problems that may be reasonably treated by the moment method. In
some of the remaining sections of this chapter we will approach certain situa-
tions in such a way that we tend to minimize the impact of these two limitations.
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7.9 THE WIRE ANTENNA OR SCATTERER AS AN
N-PORT NETWORK

In Section 7.2 we saw the resemblance between the simultaneous linear equation
approximation of an integral equation and Kirchhoff’s network equations. It
follows that we may view the junction of two or more segments as a port in the
usual circuit sense as indicated by Fig. 7-21a. At each port we may place either
series or parallel elements which are either passive or active. Series connections
are treated on an impedance basis while parallel connections are handled on an
admittance basis. This section considers both types.

7.9.1 Series Connections

We already have used a single generator placed at the junction of two wire
segments (e.g, Section 7.7). This generator was in series with the implied port
terminals located at the ends of the two adjacent segments in question. We
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Figure 7-21 Nsegment wire (a) N - 1 port terminal

pairs. (b) Equivalent circuit for the mth pont.
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could, of course, place as many generators on the wire as there are segment
junctions. Thus, for an N-segment dipole there would be N — 1 ports. If there is
no generator or passive element across the port, the port is understood to be
short-circuited.

Previously in Section 7.6 we saw how distributed loading was accounted for in
the moment method by modifying certain elements in the impedance matrix.
Here, let us examine how lumped loading may be handled. If a load Z, is
inserted into a wire antenna at segment junction m having a current [,,, the total
voltage acting at that point is

Vm = V?n - Jrmzlﬂ (?-%)

where V¥, represents a voltage generator that may be located at point m in series
with Z,_, as indicated in Fig. 7-21b. In many cases V% will be zero. Considering
the m™ equation in a system of N linear equations, we can write

N
Z Zmnln = V% e Imzm (?-91)
n=1
or
N
Y Zoaln= V4, (7-92)
n=1
where
e L (7-93)

Except for the diagonal elements, the new impedance matrix is the same as the
original, or Z,,,= Z,,, m+ n. Thus, the effect of lumped loading may be ac-
counted for by simply adding the load impedances Z,, to the corresponding
diagonal elements in the impedance matrix. The effects of lumped loading can be
substantial. For example, it can be used to achieve increased bandwidth, but at
the expense of lower efficiency.

7.9.2 Parallel Connections

In the previous subsection we saw how circuit elements, when connected in
series at a given port, resulted in modification of certain entries in the open-
circuit moment method impedance [Z,,]. If, however, we wish to connect one
port in parallel with another as in a log-periodic antenna, then it is necessary to
work with the short-circuit moment method admittance matrix [Y,,,].

Consider Fig 7-22 which shows a log-periodic dipole antenna (LPDA). The
LPDA is viewed as the parallel connection of two N-port networks. One N-port
represents the mutual coupling between N dipole antennas. The other represents
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Figure 7-22 Single log-periodic dipole antenna.

the transmission line that interconnects the dipoles. Therefore, there is one
network port for each of the dipoles in the system.

The approach is shown schematically in Fig. 7-23. The N-port labeled
“antenna elements ” includes the self- and mutual impedances between N uncon-
nected dipole antennas located arbitrarily in space. The *transmission line”
N-port represents the transmission line connecting the dipole antennas. Included
in this network is the effect of reversing the polarity between successive dipoles.
Note that there is a current source, I, on the LPDA. If there are N, dipole
clements on the antenna, this means that there are voltage sources applied on
ports 1, 2, 3, ..., N,. Also there is a terminating admittance on the LPDA
antenna, Y,, which exists at port 1. We do not know the numerical values of the
applied voltage sources. Thus they must be found before we can solve for the
currents on the LPDA.

t [Y4] and [Z,] be the short-circuit admittance matrix and open-circuit
impedance matrix, respectively, for the “antenna elements” network. Note that
[Z4] is not the moment method impedance matrix. An element of [Z 4], say
[Z 4]i; represents the voltage induced on dipole i in the LPDA by a unit current
on dipole j with all other dipoles open-circuited. Thus.

Vi
Zu)ii= T (7-94)

J
Let [Y;] be the short-circuit admittance matrix for the “transmission line ™
network. Let [1,] and [V,] be the column matrices representing the voltage and

79 THE WIRE ANTENNA OR SCATTERER AS AN N-PORT NETWORK 347

Antenna ’—} { 1 ; elements

]
iy (ML)
L) 142) i, in) LN~ 1) poec=:
1401) Val2) Va() o—
< NCONCONON N #
.—[) ¢
\"-‘
2
ValN,)
VAN, = 1)

Transmission { ; ; S line

Figure 7-23 Schematic representation of the LPDA network.

current at each port of the “antenna elements ” network. Since the two networks
are in parallel, the total current can be written as

(L] = [V + [Y2]] V] (7-95)

where [I,] represents the applied current sources. The [/,] matrix contains all
zero elements, except at the port where there is a current source /. The current
source, of course, represents the excitation of the LPDA antenna. Note in (7-95)
that we know the entry in [/] but not the entries in [V,]. These must be found so
that the moment method column matrix [V,] can be constructed and the usual
equation [I.] = [Z,,]" '[Va] = [Yaa][V.] solved for the current distributions in
the antenna dipole elements. But. before we can solve (7-95) for [V,] and con-
struct [V, ], we must know [Y,] and [Y,].

To obtain the elements of [Y,] we proceed as follows. Consider an LPDA with
Nedipoles and M expansion functions on each dipole. The moment method
impedance matrix will be of order N,x M. To obtain the moment method

admittance matrix [Y,,] we note that [¥,,,] = [Z,..] ' and
U= [Zm] [ V] (7-96)
or
Mo N,
= Y ¥l m=12_...MxN,. (7-97)

To obtain [¥,] we note that most of the ¥,’s will be zero since voltages are only
applied by the transmission line on the center ports of each dipole in the LPDA.
Suppose we rearrange the system of equations in (7-97) such that the first N
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entries in [V] correspond to the center ports of the dipoles in the LPDA. Then
the currents at those ports containing a generator (i.e,, antenna element ports)
are related to the voltages at those ports by

=3 YV, j=12..N, (7-98)

or

it

["‘ 43 [YA][VA] (?'99)

where all the Vs in [V,] will be nonzero. In finding [Y,] in this manner we have
done so without making approximations other than those germain to the
moment method itself. Indeed, all mutual couplings have been taken into
account and we are not limited to LPDA’s of less than 2 : 1 bandwidth as in the
treatments by Carrel [17] and Kyle [18].

To obtain the transmission line admittance matrix [Y;] in (7-95) we first
recognize that [Y;] is the transmission line admittance matrix for a simple ter-
minated transmission line with a port at the position where each dipole is
connected. Since [Y;] is the short-circuit admittance matrix, a given element
(Y7);; represents the current induced across port j (which is shorted) by a unit
voltage at port i, with all other ports shorted. Thus, (Y;);; is nonzero only for
i-1<j<i+ L

It is possible to write the transmission line admittance matrix [ ¥;] in a straight-
forward fashion [18]. For a single LPDA it is

(% = J¥, cot fy) =13, csc pd, 0 9
—j¥, esc fd, —(Yicot fd, + cot fid,) ~jY, csc fd, 1]
[¥:]= 0 —iY, csc fid, J¥,lcot pd, + cot fid,) 0
1] 0 1] —JY, csc Bd, ., —jY,cot fd, _,
(7-100)

where Y, is the transmission line characteristic admittance and f the propagation
constant of the transmission line.

With the proper elements of both [Y,] and [Y;] in hand, we can obtain the
voltages [V,] acting at the driven port of each dipole by

[Val = [[Ya] + (Y21 [] (7-101)

where [I,] has one nonzero entry. Having these voltages at each dipole, the
moment method voltage matrix [V,,] can be filled and the current distribution on
each dipole in the LPDA obtained from

(1] = (Zu) 2] (-102)
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where the elements of [V,] are the nonzero elements of [V,,] and the elements of
[1,] are the complex coefficients associated with the expansion functions on the
various dipole elements.

It is worthwhile to summarize the above procedure for analyzing the LPDA.
First, the open circuit impedance matrix [Z,,,] was formed in the usual manner.
By taking the inverse of [Z,,,], the short circuit admittance matrix was obtained.
Next the antenna elements admittance matrix [Y,] was formed from [Y,,] as in
(7-97) and (7-98). Then [Y,] was added to the transmission line admittance
matrix [ Y;]. Then the current generator shown in Figs. 7-22 and 7-23 was used in
(7-101) to obtain the voltage [V,] acting at each dipole port. These voltages were
then used to obtain the moment method voltage matrix [V,,]. Solution for the
currents [I,] on each dipole in the LPDA followed according to (7-102). Patterns
obtained using this procedure are given in Fig. 6-32 and agree with those
in [19].

7.10 ANTENNA ARRAYS

The use of moment methods in the analysis and design of arrays of wire
antennas (or scatterers) has significant advantages over the more classical
methods used in treating arrays in that mutual coupling between array elements
is taken completely into account (e.g., see the LPDA treatment in Section 7.9.2).
Furthermore, no unrealistic assumptions need be made regarding the current
distributions on the wires, and the array elements can be excited at any point(s)
or be loaded at any point(s) along their lengths. Thus, the type of wire element
array problem that can be considered is rather general In this section we exa-
mine several array configurations of parallel dipoles and illustrate some typical
mutual coupling effects.

7.10.1 The Linear Array

Consider the linear array of parallel wire elements shown in Fig. 7-20. The
elements need not be of the same length and radius or be equally spaced in order
to be treated by the moment method. Clearly they could be quite arbitrarily
configured and. in fact, need not even be parallel. However, in this subsection we
wish to illustrate the effects of mutual coupling in a typical linear dipole array by
comparing results obtained here by the moment method (using a voltage genera-
tor with an internal impedance of 72 ohms) with results suggested by the
methods of Chapter 3 (i.e., current generator excitation). For this purpose, with-
out loss of generality, we will consider a linear array of 12 equally spaced,
parallel, center-fed, half-wave dipoles with 4/2 spacing. If we divide each dipole
into six segments and place a 1-V generator in series with a 72-ohm resistance at
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Table 7-2 Normalized Terminal Currents for a
Linear Array of 12 Half-Wavelength Spaced,
Parallel, Half-Wave Dipoles, 2 = 0.0001A

Zero generator 72-ohm generator
impedance impedance
Element
number “ia' |Zin[ “tnl Izinl
1 0.689 107.1 0.746 183.9
2 0.698 105.9 0.760 180.6
3 0.728 101.5 0.799 171.6
4 0.753 98.2 0.829 165.5
5 0.768 96.3 0.847 161.9
6 0.777 95.2 0.856 160.2
7 0.781 947 0.854 160.6
8 0.775 954 0.837 163.8
9 0.753 98.2 0.806 170.1
10 0.713 103.7 0.777 176.4
11 0.689 107.3 0.802 170.8
12 1.000 740 1.000 137.1

the center port of each dipole, the piecewise sinusoidal current amplitudes ob-
tained using (7-28) and the methods of Section 7.5 are given in Table 7-2. We
note that neither the feed point currents nor the input impedances (see (3-96))
are identical. This is due to mutual coupling, Since the main beam is at ¢, = 45°,
there is no symmetry in the currents about the array center as there would be if
the array were phased for broadside radiation. e

The normalized patterns are shown in Figs. 7-24a and 7-24b along with the
normalized pattern for uniform current excitation. In spite of the differences
noted in Table 7-2, there is little difference seen in the three normalized patterns
shown in Figs. 7-2d4a and 7-24b. There is, of course, some small difference in the
directivity in the two cases. It is possible to synthesize (see Chapter 10)
the ‘excitation voltages such that maximum gain is achieved. If this were done,
the resulting currents at the fed ports would be of unit magnitude while
the voltages needed to establish these unit magnitude currents would generally [
be of nonunit magnitude.

7.10.2 The Circular Array

Consider the circular array in Fig. 7-25 which is also known as a ring array ! Figure 7-24 Linear array patterns with main beam sieered to
[20]. Such arrays have been used in radio direction finding, radar, sonar and in - o =45 and ideal current generators (solid curve) compared to
other systems applications. Usually circular arrays are composed of identical. pELTRIES IVON i dicay With visteg: ganisiare. {6ad (1am 7=2).-[#)

. : Linear array pattern for unloaded voltage generator excitations
equally spaced elements. We will assu the A E v 2
q 3P me the array of Fig. 7-25 to have these (dashed curve). (b) Linear array pattern for 72-ohm loaded voltage

generator excitations (dashed curve),
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Figure 7-25 Circular array of dipoles.

characteristics and, further, that each dipole is excited at its center. If we tem-
porarily replace each dipole with a point source at the excited dipole ports, we
can write for the array factor (see Section 3.1)
N
AF[(}, ¢) = Z ]" @l pilfipn sin 6 cos (g =g (7_103)
n=1
where I, is the current excitation of the nth element located at ¢ = ¢, «, is the
associated phase excitation relative to the array center located at the coordinate
origin, and p, is the radial distance of each element center from the origin (all of
which equal b for the circular array case). For the usual case of cophasal
excitation
%, = —Bp, sin 0, cos(¢, — ¢,) (7-104)

where (0,, ¢,) 1s the desired position of the main beam maximum.

For the half-wave dipoles the element pattern is given approximately by (2-10).
Thus, the complete pattern for the circular array of half-wave dipoles with an
assumed sinusoidal current distribution can be written as

s y e
COS(;.S cos 0) Z ‘J"{_,Jln (,JTM'..um o cosld =g

i

F(i. ¢) = T = S, o ] (7-105)
2 1,

where the assumption is made that (3-109) applies rather than (3-108).

LAY,

i
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The analysis of the circular array in (7-103) to (7-105) is, of course, based on
known currents on the array elements. In practice we usually apply voltages
rather than currents to the array element ports. To determine the currents estab-
lished by the voltages we can use the method of moments thereby including all
mutual effects.

We will consider the circular array in Fig. 7-25 to be composed of identical,
equally spaced dipoles. Thus, certain simplifications in the moment method
formulation are possible. With the excitation at the centers of all dipoles, it is
clear that the current distributions will have even symmetry about the z =0
plane. This image symmetry can be used to compress the size of the impedance
matrix [Z,,] of each dipole as discussed in Section 7.8.4. (This could also have
been done for the linear array in the previous section.) In addition to this, the
impedance matrix for the circular array will take the submatrix from

[Shi [Shz - [Sh
[Zorey = (Shy (ST o [Shew-1 (7-106)

(512 [Shs .. (Sl

where [S];; = [Z,,], and each [Z,,] may be compressed as described in Section
7.8.4. The matrix in (7-106) is not only toeplitz but goes by the name * block
circulant.” It can be shown that the inverse of a block circulant mairix is also
block circulant. Thus [Y],,.,, would be block circulant.

Table 7-3 Normalized
Terminal Currents for
a Circular Array of
12 Half -Wavelength
Spaced, Parallel Half-
Wave Dipoles (72-ohm
loaded voltage gen-
erators)

Element
number [ 1]

0.735
0.566
0.628
0.517
0.547
0.791
1.000
0.791
0.547
0.517
0.628
0.566

TN D0 =) oL B b e

v I =
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With voltage generators of 1-V magnitude in series with a 72-ohm impedance
at the center of each dipole in a 12-element circular array with A/2 spacing, the
currents given in Table 7-3 resulted. The almost 2 : 1 variation in current magni-
tude is the result of mutual coupling. The corresponding pattern in the azi-
muthal plane is shown in Fig. 7-26 where a simple extension of (7-72) was used.
For purposes of comparison, also shown is the pattern for uniform (current)
excitation calculated using (7-105). The difference between the two types of
patterns is more noticeable here than in Fig. 7-24 for the linear array. Although
the pattern with the voltage gencrator obtained using the moment method is the
more realistic of the two, an advantage of the moment method is that it does
yield the input impedance of the elements for -any scan angle thereby providing
information for the design of the feed network (see Section 3.7).

7.10.3 Two-Dimensional Planar Array of Dipoles

Consider a two-dimensional array of parallel dipoles located in the xz-plane
as shown in Fig. 7-27. Our purpose here is to use the method of moments to
show how the input impedance of a given element in the array can vary with
scan angle.

—— — Current generator
—=—=Voltage generator

Figure 7-26 Patterns of the circular array of Fig. 7-25 with
12 elements for uniform current excration (solid curve) and for
72-chm loaded voltage generators with currents of Table 7-3
(dashed curve). *
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Figure7-27 Inputimpedance variation of a central element in a 7 by 9 dipole array
as a function of scan angle for three planes of scan (dx= dz=0.54).

Figure 7-27 shows the input impedance variation of the center element in a 7
by 9 array (i.e.. 7 collincar elements in an E-plane row by 9 parallel elements in
an H-plane row). Three scanning conditions are illustrated: H-plane. E-plane,
and the 45° plane between the E- and H-planes. It is clear from Fig. 7-27 that the
input impedance does vary considerably with scan angle and that the variation is
different for various planes of scan. Clearly this variation poses a challenging
design problem for the engineer responsible for designing the feed and matching
network for the array clements.
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Note that as the array is scanned in the E-plane (zy-plane) to 90° (ie,
“endfire ), the real part of the input impedance is tending toward zero which in
turn means the element is tending not to radiate! Indeed, although the other
elements in the array will not have exactly the same behavior, most of them
(except the edge elements) will behave similarly and the entire array will tend not
to radiate! This phenomena is known as the Wood's anomoly, or blindspot
phenomena, and it would seem inappropriate not to mention it in a book on
antenna principles. The Wood’s anomoly is more likely to occur in iarge arrays
than in the relatively small one considered here. Fortunately the Wood’s
anomoly can be avoided in some arrays by suitable choices in the array design
parameters as well as in the element design itself.

The moment method analysis of a two-dimensional array such as that in Fig.
7-27 is aided by the fact that such a problem is block toeplitz. Even so, the
moment method of analysis of such an array is limited to arrays on the order of
that analyzed here for the reasons mentioned in Section 7.8. For substantially
larger arrays of either dipoles or slots, other methods of analysis may be used

[21].
7.10.4 Summary

In this section we have illustrated, through the use of several examples, the
application of the moment method to antenna arrays. The examples show us
several things. First, the moment method takes into account all mutual coup-
lings and makes it unnecessary to assume the current distribution on the ele-
ments in the array or to assume that each element has the same pattern. Second,
the moment method directly provides accurate information concerning the input
impedance of various elements under any scan condition. Third, the assumption
of a sinusoidal current distribution on a thin half-wave dipole in an array envir-
onment is a pretty good one and therefore the classical methods of dipole array
analysis based on this assumption are quite accurate. It is for elements other
than the dipole that the moment method has an obvious additional advantage.

7.11 MODELING OF SOLID SURFACES

There are two principal ways in which the method of moments can be used to
model either two-dimensional or three-dimensional bodies (e.g., infinite cylinder
or finite cylinder, respectively). The simplest way to model a solid surface body is
with a grid of wires, the so-called wire-grid model. Examples of this approach are
illustrated in Fig. 7-28. The other common approach is to use a magnetic field
integral equation (see Prob. 7.11-5) in which the surface is broken up into
patches or cells each having a continuous metallic surface. In this section we take
a briel look at both of these approaches.
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Figure 7-28 Examples of wire-grid modeling.
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7.11.1 Wire-Grid Model

In this subsection we demonstrate the application of the wire segment
procedure to model not just a wire antenna or wire scatterer, but also to model
the metallic environment of the antenna. We can accomplish this by using a
wire-grid or wire mesh to simulate an actual continuous metallic surface. The
idea of using a wire mesh to simulate a continuous metallic surface precedes, of
course, the time when the moment method came into widespread useage. There
are many practical situations where the effect of a continuous metallic surface is
required but the weight and/or wind resistance offered by a continuous surface is
too large (e.g.,.a reflector surface).

The successful substitution of a wire-grid for a continuous metallic surface (in
reality or in a model) depends upon the fact that as the grid size becomes smaller
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Figure 7-29 Radar cross section of a MIG 19 aircraft.
(L = fuselage length)
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relative to the wavelength, the grid supports a current distribution ‘which
approximates that on the corresponding continuous surface. Tlhe current is only
an approximation to the actual current, however, and as such it can be t_:-xpacted
fo reasonably predict the far fields but possibly not the near fields. Th1§ is due to
the fact that the grid supports an evanescent reactive field on both sides of its
surface [22]. An actual continuous conducting surface is not capable of support-
ing such a field.

The accuracy with which a wire-grid model simulates an actual surface
depends on the computer code (i.c., expansion and weighting functions) used. the
radius of the wire segments used, as well as the grid size. For example, with pulse
expansion functions it has been found that a grid spacing of a_boul 0.14 to 0.24
yields good results [23]. With the piecewise sinusoidal Galerkin method, it has
been found that the grid size should not exceed A/4 and that a suitable wire
radius is a = w/25 where w denotes the width or length (whichever is greater) of
the apertures [24). A radar cross section result using the pie_oewifsc sinusoidal
Galerkin method for a 70-segment aircraft model is shown in Fig. 7-29. The
model is shown in Fig. 7-30 (1:200 scale).

Let us now consider the situation where a monopole is axially fnounled on the
base of a cone [5] as shown in Fig. 7-31. A wire-grid representation can be‘useq
in which the cone or frustum is represented by a number of * generating lines

|
S
i
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ey T ]

Figure 7-30 Wire-grid model for the MIG 19 with 70 segments.
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I
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¥ Figure 7-31 Dimensions of experimental cone
model. The 18'75 cm monopole is a quarter-
wavelength at 400 MHz.

consisting of a number of wires joined end to end, as shown in Fig. 7-32a. Except
for the base, no wires need to be provided in planes normal to the z-axis because
of symmetry. The length of the antenna and the dimensions for the cone, frustum.
or frustum and spherical cap can be arbitrarily specified.

An interesting simplification (see Section 7.8.4) can be obtained from the
symmetry of the configuration in the case where all generating lines have the
same number of segments, each segment being identical (except for the orienta-
tion on the ¢-coordinate) to the corresponding one on each other generating
line. The currents on such corresponding segments should be equal in magnitude
and phase, since I(z) is independent of ¢. Let the segments be numbered in a
consecutive way, starting with the line at ¢ = 0 and proceeding in a counter-
clockwise direction along the other lines. Let M be the number of segments on
each line, and L the number of generating lines. Thus, one can write

Lo
> Zyl;=~-E., k=12..L'M (7-107)

j=
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Since the currents on corresponding segments are equal,

Iy = Tem = Tgeam = Tjsw-1ym (7‘103)
and (7-107) can be written as (see Sec. 7.8.4)

L—1

M
Zli( Z Zt[j+nM]) = _Eiu k=12 ..M. (7-]09)
=1 n=10

The advantage of (7-109) is that it permits us to reduce the number of un-
known currents to M, while the actual number of wire segments is L - M, where
L is arbitrary. As a result, there is no limitation other than computer running
time to the number of generating lines (and thus to the total number of segments
represented ). The number of segments M in a generating line is, however, limited
because of computer memory size. For the patterns calculated here L was chosen
to be 10, M to be 170, and pulse basis functions were used.

%, » -
--..,_'_> matching points

la) &)

Figure 7-32 Wire grid model of come in Fig 7-33.
(a) Madel of monopole and cone (b) Cone gensrating
line showing distribution of segments and boundary
matching points.
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The left-hand side of (7-109) represents E® for the cone problem under con-
sideration here. It remains to determine E. For the monopole consider the
geometry depicted in Fig. 7-33. Starting with the vector potential, the following
expressions for the monopole configurations of Fig. 7-33 may be derived as
e ik Panr L

Ei= —j29.975|1| [

Fi r

cos fH ~j;%_e‘”’ sin fH

—-B%e*fﬂ' sin ,GH] (7-110)
and

: 97 ~ifra z
E3=}29995|” [(ZMH}e _ e cos g

1

2 e P’
——e " sin BH + — e " sin ﬁHJ. (7-111)
r pr
Solving for the current on the cone makes it possible to calculate the far-field
pattern of the cone-monopole structure by superimposing the fields of the cone
and those of the monopole. A necessary but not sufficient check on the validity
of the moment method solution in this problem requires that the currents at the
junction of the monopole with the wire grid representation of the cone satisfy
Kirchhofl’s current law. For the formulation in (7-109) and (7-110) with L = 10,

Plp, =)

Figure 7-33 Configuration used for determining the near
field of the monopole.
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the current on each of the 10 wire grid lines was found to be 0.1 A when the
monopole base current |I| = 1.0 A. That these 11 currents satisfy Kirchhoff’s
current law at their common junction is a direct consequence of Maxwell’s
equations since Kirchhoff’s current law was not explicitly built into the system of
equations [i.e., a constraining equation was not one of the equations in (7-109)].

To experimentally test the validity of the wire-grid representation of a metallic
surface, an actual wire-grid cone was built around a styrofoam core in a
configuration similar to that shown in Fig. 7-32a. A typical experimental com-
parison of the solid cone and its wire-grid counterpart is shown in Fig. 7-34a.
Some representative results showing both the results calculated for the wire-grid
cone and measurements for the solid surface cone are shown in Figs. 7-34b,
7-34¢, and 7-34d. The results in all four cases are generally quite good. The
difference between the two patterns in Fig. 7-34d for large angular values is due
to the presence of the coaxial cable used on the experimental cone for measure-
ment purposes.
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Figure 7-34 Cone patterns, (&) Experimental comparison at 400 MHz with
a /4 monopole. (b) Patterns at 300 MHz using a /4 monopole.
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Figure 7-34 (c) Patterns at 350 MHz using a 4/4 monopole. (d) Patterns
at 500 MHz using 2 0.312 1 monopole.

Other variations of the formulation given here are possible, of course. For
example, instead of assuming the current distribution on the monopole, it may
be treated as an unknown as are the currents on the metallic body. This could be
done ir? a number of ways. The monopole terminal current value could be
constrained to a particular value. This would take into account the interaction
between the cone and monopole, but would not conveniently provide for the
calculation of impedance. Alternatively one could use a voltage generator at the
base of the monopole such as the magnetic frill current discussed previously.
Calculation of the currents on the cone and monopole would account for
the cone-monopole interaction and also yield directly the monopole impedance.
Note that in either case the previously described symmetry for the cone due to
the symmetrical excitation could still be used to advantage.

‘ The accuracy of wire-grid models may be improved upon if the grid is reac-
tively loaded with lumped loads [22]. The motiviation for doing this is to elimin-
ate the effects of the evanescent reactive field that is in proximity to the wire grid.
Not only does this increase the accuracy of the model but it also permits ia;rger
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grid sizes to be used. Nevertheless, even without this loading, the wire-grid
model is a convenient and relatively straightforward tool for engineering
calculations.

7.11.2 Continuous Surface Modei

The continuous surfacé model of a three-dimensional body is a complex prob-
lem which is beyond the scope of this text. The interested reader is referred to
the literature for a discussion of this topic.

On the other hand, the continuous surface model of a two-dimensional body
follows directly from the earlier sections in this chapter. We will consider two
such examples here, that of a conducting cylinder with the incident electric field
parallel to the axis of the cylinder (TM case) and that of a conducting cylinder
with the incident magnetic field parallel to the axis of the cylinder (TE case).

In Section 1.3 we found the solution (Green’s function) to the spherical wave
equation. Here we need 2 solution to the cylindrical wave equation. For the TM
case our equation is

V2E, + B*E, = joud, (7-112)
where E. = E (x. y). A solution to this equation is
£.= ~Blimpislo— o)) (-113)

where H' is the Hankel function of the second kind and zero order. It repre-
sents an outward cylindrical traveling wave just as does e™#" for a spherical
wave. The total scattered field is then the integral of (7-113) over the cross
section of the cylinder or [4]

iy s 10 - 91) a5 (-114)

Ep)= -7

where the integration is over the cross section of the cylinder of currents J. as
indicated in Fig. 7-35a.

A simple formulation is to require that (7-29) applies or (7-31) with delta
weighting functions. Hence, the applicable integral equation is

Eip) =7 [ 1) H@Blo — o) &' ponc (7-115)
where Ei(p) is known and J_ is the unknown to be determined. Note that (7-115)
has the same form as {7-1). If pulse expansion functions are used, the impedance

matrix elements are

Z o = %’? [ HPB/ &~ xaF + [y — ¥a)) 7 (7-116)
~Ara
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Figure 7-35 Cylinder of arbitrary cross section for scattering calculations. (a) Geo-
metry for solid cylinder. (6) Line source approximation for the cylinder.

and the voltage matrix elements are
Vm = Ei(“’-mvym)‘ (7'117)

In order to calculate the elements of the generalized impedance matrix, it is
necessary to evaluate (7-116). Unfortunately there is no simple analytic expres-
sion for the integral, but it can be evaluated by one of several approximations.
The simplest (and crudest) approximation is to view a current element J, Ac, as a
filament of current when the field point is not on Ac,. Thus, when m # n

21 7 B Ay HOUB /(0 = )7+ (3 — 3. (7-118)

Note that although we are using a current filament approximation as shown in
Fig. 7-35b, this is not a wire grid model and shou!d not be confused with that
approach.

To obtain Z,,, we may recognize that the Hankcl function has an integrable
singularity and that the integral must be evaluated analytically. To do this, we
note that the small argument formula for the Hankel function of argument fp is

, 2 2
HP(Bp) =1~ j~ log( -5{—'{3) (7-119)
m 2
where v = 0.5772 ... is Euler’s constant and obtain
;f Ac, ‘; = !%( P e )J (7-120)
4¢ J
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where e = 2.718. Better formulations (e.g., faster convergence), although some-
what more complex, are possible w1th the use of other expansion functions and
other weighting functions.

Results for the z-directed current on a cylinder are given in Flg 7-36 for plane
wave incidence where E. = ¢~ %,

Next let us consider the TE case, where the incident magnetic field is parallel
to the cylinder axis. We will, by choice, use a magnetic field integral equation
(MFIE) which has the form

To0) +V 5 [ Jo(0) (o, ) &/ = Hifp). (7-121)

In contrast to the electric field integral equation (EFIE) in (7-1) where the
unknown current only appears under the integral sign, here the unknown cur-
rent appears both under and outside the integral sign. Thus, (7-121) is referred to
as an integral equation of the second kind. Integral equations of the second kind
are generally preferable for large smooth conducting bodies since the contribu-
tion by the integral part of the equation may be of second order importance.
However, the electric field integral equation is also useful for large conducting
bodies as we have seen in the treatment of the TM case. Magnetic field integral
equations are not useful for treating thin wires due to the singularity in the
integral. Recall that in Section 7.1 we avoided the singularity in the EFIE by
using the approximation that the observation points lie on the axis of the wire
rather than on the surface. That approach may not be employed for the MFIE.
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Figure 7-36 Normalized current on a conducting cylinder for TM polarization.
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To derive the magnetic field integral equation for the two-dimensional prob-
lem of interest here, we note that there will only be a z-component of H and a
transverse component of J, namely J,,. The total magnetic field H, at any point
on or outside the surface of the conducting body is the sum of the impressed
field H. plus the scattered field HS on the surface of the body. Thus,

H,=H. + H: (7-122)

Since H=V x A, we can write
Hijp) =1V x _| oo (p, p) d' (7-123)

where ¥ is the two-dimensional Green’s function (used for the TM case) and d¢”
specifies the reference direction of J. The discontinuity in H. at the conducting
surface is equal to the current density J,. So,

Jo= —[H.).. (7-124)

where ¢ indicates that H, is evaluated just external to cross-sectional surface
contour ¢. When (7-122) is applied to the contour ¢*, we may use (7-123) and
(7-124) to write

Jolp) = —[Hilp) + 2V x [ Jo(o)(p. p) d/").-. (7-125)

This is the magnetic field integral equation for the two-dimensional problem of
interest here. The current density J, is the unknown whereas the incident field
H. is known. The evaluation of the integral in (7-125) must be done with care
since: H. is discontinuous at ¢ and the Green’s function is singular, precluding a
simple interchange of differentiation and integration.

Rewriting (7-125) as

Ip)+ [z V x | JPHPBlp —p'])dl].. = H|,. (7-126)
and specifying pulse expansion functions and delta weighting functions enables
us to write

Loy = Op + H.(m, 1) {7-127)

where 8, is the Kronecker delta and H_(m, n) is the magnetic field at (x,,. y..)
on ¢ due 1o 4 unit current density on Ac, at {x,, y,). o

Hm n)=|i V «i HOB (5= ) + (= vn) dl').. (7-128)

t A,

iR

TR
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When the observation pomt and source segment coincide, H.(m, n) exhibits the
singularity mentioned previously. However, Z,,,,, may be evaluated by noting that

H:’r' i —”Hz;c‘ il "'Y (?-129)
since we are dealing with only a unit current. Thus,
m=1-%=14 (7-130)

To evaluate Z,, for m# n we can employ the approximation that when
Ac, < 1 and the field point at (x, y) is distant from the source Ac,, the fields from

the source appear to emanate from a magnetic line source located at the center
of Ac,. Thus,

H_(m, n)=

2 [ (o) (-131)

where the derivative is taken with respect to the normal to the surface and a
local coordinate system is implied. If ¢ is the angle between p and A, then

H.(m, n)= iﬁ Ac, cos ¢ H?(Bp) (7-132)

where H{ is the Hankel function of the first order. It is necessary to translate
this result from its local coordinate system to one with an arbitrary origin. This
is accomplished by replacing p by |p,, — p, | and cos ¢ by i - R where

R= Pm —Pn (7-133)
L0

is a unit vector from the source point (x,, y,) to the field point (x,,, y,.). Finally,
for m # n, we have

4 . 2 -
Zuw 2B 80,6 RIFD(B0,  p,) (7-134)
whereas for all m
Vo= —H{X5 ¥a) (7-135)
Solution of the usual matrix equation [Z,,)[1,] = [V.] yields the transverse

currents on the conducting cylinder. A result for the current J, on a circular
cylinder induced by a plane wave is shown in Fig. 7-37. The current is nor-
malized with respect 1o the magnitude of the incident field.

We have not considered the subject of internal resonances here but it should
be pointed out that it is possible to obtain erroneous currents on the cylinder at
those precise frequencies where the interior dimensions of the cylinder corre-
spond to the resonant frequency of a waveguide type mode [25]. Such erratic
behavior may be avoided if & formulation is used which combines both the EFIE
and the MFIE.
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Figure 7-37 Normalized current on a conducting cylinder for TE polarization.

7.12 SUMMARY

In this chapter we have presented a very useful and powerful technique, the
method of moments, for the analysis of certain types ol antennas f{e.g. wire
antennas) and arrays of antennas (e.g., Sections 7.9 and 7.10). While the method
has been applied primarily to z-directed wires, we have seen that it applies
equally well to arbitrary configurations of wires, for example, Section 7.10, as well
as to solid surfaces, for example. Section 7.11.2. Furthermore. the method of
moments has been used to generate some of the data presented in Chapters Sand 6.

The method of moments is often thought of as a low-frequency technique
because it generally cannot be applied to bodies that are arbitrarily large in
terms of the wavelength (c.g., Section 7.8). In contrast to this. in Chapter 9 we
will study high-frequency techniques that apply best to bodies that are arbi-
trarily large in terms of the wavelength.
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PROBLEMS
7.1-1 Show that the left-hand side of (7-13) may be expressed as

5 1 i i 2 2 2,2R2] d=
S = o O {, [ (1 4+ jBR)(2R? — 3a*) + p*a*R*] d:".

7.1-2 Through integration by parts, show that the left-hand side of (7-13) may be written

L2 ‘ -
y 1 alz) a |e iR
E= -~ o TR S B e [ )
{ 5 Joul(Z) jwe, dz' éz| 4nR

This equation may be derived by using both the vector and scalar potentials [4].
7.1-3 Another equation for the treatment of wire antennas is Hallen’s integral equation,

---:I((‘1 cos fz + Cysin Bz |)

where C, and C, are constants. The constant C, may be evaluated as V;/2 where Vy is
the terminal voltage of the antenna. Derive Hallen’s equation for the dipole by writing a
solution to the wave equation for A. that is proportional to the right-hand side of the
above equation and then equating this result to the integral form of the vector potential
for A. due to a perfectly conducting thin wire dipole.

7.2-1 In order to obtain some feeling for the method of moments, it is recommended that
the student write a computer program to solve the following problem. Consider a straight
dipole of length L (or monopole of length L/2) and radius a. Divide the dipole into N
segments of equal length each containing « pulse expansion function.

(a) Use point-matching and the equation in Prob. 7.1-1 for the scattered ficld to
compiite the elements in the first row of the impedance matrix [Zma) as given in (7-26)
noting that these are the only independent matrix elements since the matrix is toeplitz
(see Section 7.8.2). Note that the integrand tends toward singularity when R = u. but even
5o one may numerically integrate through this region 1f reasonable care is taken.

(b) Use (7-81) to compute the elements of [1,.). Obtain [1,] = [Zn.] [ V] and compare
with the results in Fig. 7-5.

(¢} Compute the far field pattern in the E-plane using (1-101) when L = 0474,

(d) Having successfully completed (b) and (c) use the relationship

}_‘l{_ J = @it vosd
“E\=mi T

to compute [V,] for # = %0° (i.c.. the broadsde case) and compute the radar cross section
(see (7-74)) when L = 2/2. Compuare vour result with Fig 7-16,

7.2-2 What are the units of ihe generalized voltage, current, and impedance mutny cle-
ments in (7-27)7

7.3-1 Expand the computer program in Prob, 7.2-1 10 use pulse weighting functions in
fashion similar to that in (7-35)

1"
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7.4-1 Show that (7-42) and (7-43) follow from (7-39) and (7-40), respectively.

7.5-1 Derive (7-52) from (7-42).

7.5-2 Derive (7-55).

75-3 Derive (7-59) from (7-55) and (7-12).

7.5-4 Show that the radial components associated with the electric field in (7-59) 1s

— P LL
Eom gl e = 2)
dnpsin(f Az,) R,

= JifRa e = H R g

(n-‘i Shad i o ompesd

=2z, ~ z)cos(f 6-..) oo |
7.6-1 Derive {7-72) from the far-field relationship E = jouA, sin 00, as in (1-90).
7.6-2 Derive (7-73) starting with the Poynting theorem.
7.7-1 Derive (7-78) from (7-43).
7.7-2 Starting with the electric vector potential and (7-80) derive (7-81).
7.8-1 Verify (7-87) using the algorithm in (7-88).
7.9-1 Extend the LPDA analysis in Section 7.9.2 to an array of M LPDA antennas as in
[18].
7.9-2 In Section 7.9.2 we obtained a solution to the LPDA. One of the important points
in that solution is the determination of [ Y,] in the manner indicated in u.quations {7-96) to
(7-99). Had we wished to then find [Z,]. we could have obtained it from [Z = [Y.] "
Denote this method A. Suppose instcad we find [Z,4] by considering the twe dipole
mutual impedance problem as Carrel [17] and Kyle [18] did. For example, [Z ma 18
obtained by temporarily removing all dipoles except m and n from the system and then
calculating [Z 4], Denote this method B.
(a) Will [#,] obtained by method A be the same as thal obtained by method B? Why?
(b) The following question refers to the concepts implied by part (a). When we calcu-
latc a moment method impedance matrix [Z,,,). in what way does that calculation process
relate to method B above?
7.10-1 Show that (7-106) is valid.
7.11-1 Derive (7-109) from (7-107).
7.11-2 Sketch a wire-grid model for a square plate 14 by 1A Il pulse expansion functions
are to be used, how many unknowns will your model have?
7.11-3 Sketch a wire-grid model for @ quarter-wavelength monopole at the center of &
circular ground plane of 44 radius. IT pulse expansion functions are used. how man)
unknowns will vour model have? IT piccewise sinusoidal functions are used, how many
unknowns will your model have?
7.11-4 Derive (7-115) from (7-112).
7.11-5 Derive (7-125) from (7-122
7.11-6 Derive (7-134) from (7-123).
7.11-7 In Secuons 7.3
sion functions such as the pulse funciion fand piccewise sinusoidal Tfunction) are often

and 711 we used pulse Tunctions in the moment method. Expan-

called suhdomain expansion functions because cach expansion function is generally non-

zero on only a relatively small part of the radiaung body.
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There is another type of expansion function called entire-domain expansion functions.
In this case, the function is generally nonzero over the entire radiating body and the
concept of segments is not used. For example, if one were to treat the dipole with an
entire-domain expansion function (i.e, a Fourier series), one could write for the current

I{)= n}::lll. Fa(2')
where

’ L .
— <<
5 &

Fu(z') = cos(2n — 1) %, -

(ST o]

(Note that each term in F,(z') goes to zero at the ends of the dipole.)

(a) Sketch the first two terms in the series for F,(z').

(b) If there are N terms.and N match points (ie., a point-matching solution), write an
expression for Z,,, using the notation in Sections 7.2 and 7.3.

(c) Give a physical interpretation of Zs (i, complete a statement similar to the
following: Z,5 represents the field from at ).

-

APERTURE ANTENNAS

An antenna that has as part of its structure an aperture through which the
clectromagnetic fields pass is referred to as an aperture antenna. An obvious
example of an aperture antenna is an open-ended waveguide. Slotted waveguides
and horns are other examples. Although an effective aperture value can be
calculated for any antenna (sce Section 1.10). this chapter will deal with antennas
that possess an obvious physical aperture. In the first section general principles
will be developed for calculating the radiation patterns from any aperture
antenna. Subsequent discussions will focus on rectangular and circular aperture
shapes. The properties of specific antennas such as horns and circular parabolic
refiectors then [ollow naturally. As in preceding chapters. the theoretical deriva-
tions lead to an accurate description of the antenna parameters. as well as to
design techniques. Both rigorous and approximate methods of gain calculation
arc also presented in this chapter

8.1 RADIATION FRON APERTURES AND HUYGENS' PRINCIPLE

Although aperture antennas were really not widely used until the World War 11
period, the basic concepts were available'in 1690 when Huygens explained. in 4

stmple way, the hending (or diffracnion) of leht waves around an object. This
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Figure 8-1 Secondary waves used to construct successive
wavefronts. (a) Plane wave. (b) Spherical wave.

was accomplished by viewing each point of a wavefront as a secondary source of
spherical waves. The next wavefront is the envelope of these secondary waves.
Figure 8-1 shows how a plane wave and a spherical wave can be constructed
from secondary waves. The envelope of secondary waves forms the new wave-
front. Geometrical optics {ray-tracing) predicts that light shining through a slit
in a screen will have a lit region and a completely dark shadow region with a
sharp boundary between thenm. This is only approximately true. even for very
large (relative to a wavelength) apertures Using the secondary source concepl
beginning at the aperture, the sccondary waves will lead to a spreading of the
wives and a smooth blending of the lit and shadow regions. This diffraction
effect is illustrated in Fig 8-2 for a shit in an opaque screen with a plane wave
incident on it.

This principle has been put on a theoretical foundation and is known as
Huygens' principle or the equivalence prineiple. Let celectromagnetic sources be
contained in a volume 1" bounded by surface § with outward normal n (sce Fig.
§-3a).! The fields E and H exterior to S can be found by removing the sources in
I and placing the following surface current densities on S (see Fig. 8-3h)

J,
M, =E(S)x i onS (8-2)

3
where H(S) and E(S) are the ficlds produced by the original sources and eva-
luated at the surface S fThus: with @ knowledge of the tangental ficlds over a
surface due to the original sources. we can find the fields evervwhere external 1o
the surface through the use of cquivalent surface current densitics J, and M,

olten referred 1o as the Huvgens' source).
v =

Poin this chapier the upper case symbols 1 oand 8 will be used 1o denote volume and surfiace

=nx H(§) on§ (8-1)°
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Figure 8-2 Plane wave incident on a slit in a screen.

The edge diffraction leads to spreading of the radiation
from the slit. '

It is relatively easy to explain how this form of the equivalence theorem with
zero fields inside (referred to as Love’s equivalence principle) is obtained. This
p_roblem, as in any electromagnetic problem, is described by Maxwell's equa-
tions plus the boundary conditions. From differential equation theory we know
that a solution that satisfies a differential equation and the boundary conditions
is the solution. The solution to Maxwell's equations (including the sources) and
the boundary conditions is unique. In the original problem of Fig 8-3a, the
fields which satisfy Maxwell’s equations in the region exterior to volume V and
which satisfy boundary conditions along S arc unique. As long as the sources
exterior to 1 and the boundary conditions along § are not changed, the solution
E. H will not change. In the equivalent problem the sources exterior to 1 are not
changed, since there are none. Also, the boundary conditions are not changed. as
will now be explained. In the original problem the fields along the hounda:r)' are
IC{S_} and H(S). In the equivalent problem the fields inside I" are zero and the
surlace currents are given by (8-1) and (8-2). For the boundary conditions to be
the same, the difference between the interior and exterior fields (tangential to
and evaluated at §) must be the same as in the original problem. The boundary
cor?dilioms (1-22) and (1-23) yield 6 x (H(S) — 0) = J, and (E(S)—=0)xn= M‘,
which arc identical to (8-1) and (8-2). Therefore. the boundary conditions are the
same for the original and equivalent problems. Thus, the ficlds exterior to V are
the same in the original and equivalent problems.

Moo cey

Zero fieios

fal thi

Figure 8-3 The equivalence prnciple (g) Qunginal problem
(b) Eguivaiant problem.
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Figure 8-4 Equivalent current configurations for a planar aperture
surface. (a) Both equivalent surface current densities acting in free
space. (b) Equivalent electric current density alone. (¢) Equivalent
magnetic current density alone.
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Since the fields inside S are zero in the equivalent problem, we may place a
perfect conductor along part of this surface. M, will vanish over that part be-
cause tangential E must be zero. Then J, over this part of S equals the true
electric surface current density induced on the perfect conductor and it radiates
in the presence of the conductor. If there is an opening (or aperture) in the
conductor, both currents J, and M, exist over the aperture portion.

In general it is difficult to calculate the radiation from sources over an arbx-
trary surface, which may have conducting portions. However, if the surface S is
an infinite plane, the problem is simplified through the use of image theory.
Many practical antennas, such as horns and parabolic reflectors, have a planar
aperture, so this simplification is usually not restrictive. In any case, even though
an antenna may not have a planar physical aperture, we can still define an
equivalent planar aperture surface §; this will be }frultful only if the tangential
fields over S are known. We can find the fields in the half-space (say z > 0)
which is exterior to the source half-space (z < 0) using the equivalent surface
currents acting in free space. This equivalent system is shown in Fig. 8-4a.

The contribution to the radiation fields from the electric surface current den-
sity is found by evaluating the magnetic vector potential [see (1-99)]¢ “~

=4 <
e —ifr | L :‘f,;_

(8-3)

HJ(r Jelti < dS’.

The far-zone electric field from (1-102) is then found from the components of
E, = —jouA (8-4)

which are transverse to f. The subscript 4 indicates that this field arises from the
magnetic vector potential A. By duality electric vector potential F, which is
associated with the magnetic current density, is found from?

e i .

=T || M a8, (5)
5

The far-zone magnetic field arising from F is the dual of (8-4), so
H, = —jexF. (8-6)

In both (8-4) and (8-6) we retain only those components that are transverse to f.
The electric field associated with H, is found from the TEM relationship
E; = nH; x 1. The total far-zone electric field of the equivalent current system of

* The symbol F for magnetic vector potential should not be confused with the notation F for
normalized radiation pattern.
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Fig. 8-4a is then
E=E,+ E; = —jouA — joenF x i (8-7)

where only transverse (6 and ¢) components are retained.

The equivalent system of Fig. 8-4a involves both the electric and magnetic
current densities. Computations would be reduced considerably if we had to deal
with only one of the current densities. We will now show this is possible. Since
the equivalent currents of Fig. 8-4a were obtained by using zero fields for z < 0,
we can introduce materials in the left half-space without altering the fields
there because they are zero. First we introduce a perfect magnetic planar con-
ductor along surface S. The image currents shown in Fig. 8-4b are obtained by
duality of images in a perfect electric ground plane: that is, a magnetic current
parallel to the plane has an oppositely directed image and a parallel electric
current has a similarly directed image. The fields for z > 0 are unchanged after
removing the conducting plane and introducing the images, as shown in
Fig. 8-4b. Since the currents and their images are adjacent to the plane S, we can
add them vectorially to obtain the final equivalent system, which has a doubled
electric surface current density and no magnetic surface current density. The
radiation fields for z > 0 are then found as follows.

¢ ([ 20,y < as' (8-8)
it

s

A=

and

E= —joud,b — jmpA'pt‘I‘J. (8-9)

In a similar fashion a perfect electric ground plane can be introduced along S
as shown in the left most part of Fig. 8-4¢. Image theory renders the images
shown. These images acting together yield a zero total electric surface current
density and a magnetic surface current density of 2M,. Then radiation fields for
z > 0 are found from

P | Nl s
= [. M (r)e!?  dS (8-10)
and

H = —jowcF,0 — joeF , . (8-11)

The equivalence theorem in a form most suitable to radiation pattern calcula-
tions will now be summarized. A coordinate system is selected such that the real
antenna is in the half-space for z <0. ll' the antenna has a planar physical
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aperture the xy-plane is often chosen to be tangent to it; in any event the!
aperture plane § is the xy-plane. Then the fields for z > 0 can be found by using
one of three equivalent surface current configurations acting in free space:

(a) J, and M, on plane S
or

(b) 2J, on plane S
or

(c) 2M; on plane S

where J; and M, are given by (8-1) and (8-2). The radiation fields for each of
these equivalent systems are obtained from the following:

(a) A and F from (8-3) and (8-5). E from (8-7).
or

(b) A from (8-8). E from (8-9).
or

(c) F from (8-10). H from (8-11).

So far no approximations have been introduced. Indeed, if the exact fields E(S)
and/or H(S) are used in any of the above three procedures, exact results (within
the limits of usual far-field approximations) will be obtained in the half-space
z > 0. However, such exact knowledge of the fields over the entire plane S is
rarely available. Usually at best it is possible to obtain only an approximate
knowledge of the fields over a finite portion of the infinite aperture plane. One
such approach is the popular physical optics approximation, in which it is
assumed that the aperture fields E, and H, are those of the incident wave. It is
usually assumed that these ficlds exist over only some finite portion S, of the
infinite plane S and the fields elsewhere over S are zero. In most cases the
aperture surface S, coincides with the physical aperture of the antenna. These
approximations improve as the dimensions of the aperture relative to a
wavelength increase.

The three solution procedures will now be simplified. Suppose that aperture
fields E, and H,, which exist over and are tangent to some portion S, of the
infinite plane S, are known, perhaps by employing the physical optics approxi-
mation. The equivalent surface current densities are then

x H, (8-12)
x i (8-13)

Il
=

J,
M,

IF
=
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on S, and zero elsewhere. Using these in (8-3) and (8-5) gives
e dbr

= i jpi - e i *
A= —hx U H, &% ds (8-14)
e "
Lt & fr-r 2] .
F= " hx y L (8-15)

The integral in each of the above two equations is a two-dimensional Fourier
transform. The two-dimensional Fourier transform of an aperture field plays an
important role in radiation calculations for aperture antennas, in a way similar
to the Fourier transform of the current distribution for line sources (see Chapter
4). We therefore make the following definitions for the integrals

P=[[Ee# " ds (8-16)
Sa

Q= [[ H,e as. (8-17)
S

The aperture surface S, is in the xy-plane, so r = x'% + y'y. This with f in
spherical coordinates from (A-4) in (8-16) and (8-17) yields

Px — ( '. Eax(xis yr)ejlfi(.t' sin ) cos @+ ¥ sin i sin ) dX' d}.’ [8_183)
$a

Py= l I Eﬂy(xf‘ y.-)ej_mx' sin @ cos g-+y'sin0siné) gy gy (8-18b)
5

0.= H H,(x'. yr)ejﬂ(x'cin Ocosd+y sin0sing) gyr gy (8-19a)
5

0, = [[ o', y)eilix sinocososy sinising gt gy, (8-19b)
5

Now, (8-14) and (8-15) together with i = Z reduce to

e—jﬁr

A=S—(-0%+0.d) (8-20)

e jfir

F= (—P,% + P.3). (8-21)

" 4mr
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Expressing % and § in spherical coordinates as in (A-1) and (A-2), and retaining
only the 6- and ¢-components gives

K = 84_]:' [0 cos O(Q, sin ¢ — Q, cos ) + H(Q, cos ¢ + 0, sin ¢)] (8-22)
F=_ e4?: [ cos O(P, sin ¢ — P, cos ¢) + G(P, cos ¢ + P, sin ¢)]. (8-23)

Using these in (8-7) yield the final radiation field components

—ipr
() E, = jp %ﬁ' [P, cos ¢ + P, sin ¢ + 1 cos 6(Q, cos ¢ — Q. sin ¢)]  (8-24a)
-

e
E,=j
ki jﬁﬁmr

[cos O(P, cos ¢ — P, sin ¢) — n(Q, sin ¢ + Q, cos $)]. (8-24b)

In a similar fashion the other two equivalent systems reduce to

—jfr
(b) E,= jﬁqez? cos 0(Q, cos ¢ — Q, sin @) (8-25a)
e iF _
E,= —jfn———(Q, sin ¢ + Q, cos ) (8-25b)
2nr
o ibr _
(¢) E;=jf—— (P, cos ¢ + P, sin ¢) (8-26a)
2nr ?
oo ‘
E,=jp Sy <08 0(P, cos ¢ — P, sin ¢). (8-26b)

If the exact aperture fields over the entire infinite aperture plane are used. the
three formulations of (8-24), (8-25), and (8-26) each yield the same result. Use of
the exact aperture fields leads to equal contributions arising from the electric and
magnetic currents [1]. Therefore, the equivalent system using both current types,
as in (8-24), gives zero total field for z < 0 because n/2 <0 < = renders cos 0
negative, and the contributions cancel as guaranteed by the equivalence theorem.
However, the single current systems of (8-25) and (8-26) do not yield zero ficlds
for z < 0. This is an expected result since image theory was involved in the
development of these, and identical fields are obtained only in the region = > 0.

In practice only approximate information about the aperture fields 1s
available, such as obtained from the physical optics approximation. Then the
three formulations give different results. The accuracy of the three results
depends on the accuracy of the aperture fields. but the differences are usually not
significant. It is obvious that the equivalent system using both equivalent cur-
rents involves several more calculations than those using only one equivalent
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current. Thus (8-25) or (8-26) are often used in preference to (8-24). Further, it is
customary to work with the aperture electric field, so the formulation of (8-26) is
very commonly used. :

It can be shown (see Prob. 8.1-5) that the trigonometric functions appearing in
(8-24) to (8-26) actually describe the projections of the aperture equivalent sur-
face current densities onto the plane containing the far-field components (the
0¢-plane). The element factor associated with the radiation fields from a line
source is interpreted in a similar fashion. For aperture field expressions the
trigonometric functions that multiply the radiation integrals are often referred to
as obliquity factors.

Example 8-1. Slit in an Infinite Conducting Plane

The aperture antenna calculation procedures and the physical optics approximation can
be illustrated rather simply for a plane wave normally incident on a slit in an infinite
perfectly conducting plane as shown in Fig. 8-5. This is the same problem as in Fig. 4-6q,
except for a coordinate system change. The physical optics approximation leads us to
assumne that the incident field E; = §E,e /7 associated with the plane wave propagating
in the + z-direction renders the field over the physical aperture, so

(98,  |j] €k E=0
= 2 (8-27)

' 0 clsewhere.

The magnetic current formulation is appropriate in this case because the aperture electric
field is zero over the perfectly conducting portion of the aperture surface. This is essen-
tially a one-dimensional problem because the aperture field is uniform in the x-direction;
and then the radiation fields will not change with position along the x-direction. We are
thus concerned only with the yz-plane (¢ = 90°). and since the aperture field is only
y-directed, (8-18) reduces to

L2 . - .
P_gp —§ E, ot 0 gy = 5-£,,L5'“[{ﬁ“2 Jsin 6]

(L2 0 (5:28)

The total radiation clectric field components are then found from (8-26) with ¢ = 907 as

_ e sin[(BL/2)sin 6]
Ev=JB 5 Bl (gL 2pin 6

Notice that on the conducting plane (8 = 90°) E, is nonzero; but, this is acceptable
because it is normal to the conductor. The normalized radiation pattern is

oy Sin[(BL/2)sin 0]
FO = L0 -

E,=0. (8-29)

(8-30)
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—— e ——

Incident
plane wave

Figure 8-5 Plane wave incident on a slit in
an infinite conducting plane. The slit is infinite
in the x-direction and is L wide in the
y-direction.

8.2 RECTANGULAR APERTURES

There are several antenna types which have a physical aperture that is rectangu-
lar in shape. For example, many horn antennas have rectangular apertures.
Another example is a rectangular slot in a metallic source structure such as a
waveguide. In this section we will present some general principles about rectan-
gular apertures that have uniform and tapered excitations. In Section 8.4 these
principles are applied to rectangular aperture horn antennas.

8.2.1 The Uniform Rectangular Aperture

A general rectangular aperture is shown in Fig. 8-6. It is excited in an idealized
fashion such that the aperture fields are confined to the L, by L, region. If the
aperture fields are uniform in phase and amplitude across the physical aperture,
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¥
A
i
l
L, — = X
11
T o -

Figure 8-6 The rectangular aperture.

it is referred to as a uniform rectangular aperture. Suppose the aperture electric
field is y-polarized, then the uniform rectangular aperture electric field is

L L L
E.=Ey || <5, Iy <3 (8-31)
Then from (8-18b)
W12 2
P.=E, | elfssinbend o | elfy vinlxind g0
' T =2 1.2 ’

B sin[(BL, 2)u] sin[(BL,/2)v]
=ELL G0 2n  (L2e Lo

where we have introduced the pattern variables

u = sin 0 cos ¢. = sin () sin ¢. (8-33)
The complete radiation fields are found {rom (8-26) as

. e . sin[(BL,2)u]sin[(fL,/2)r]
B, =i — ELL, it L Ao S0 .34

0= JB g EoLeLysin =g o (BL, 2) (8:34e)

& sin[(fLy/2)u] sin[(fL,/2)]

E, = =B L rees {igosigim— e L i -

o= IB 5y Eo L, cos 0 cos ¢ (AL 2 BL2 (8-34b)

These fields are rather complicated functions of ! and ¢. but fortunately they
simplify in the principal planes. In the E-plane (yz-plane) ¢ = 90°, and (8-34)
reduces to

e sin[(BL,/2)sin 0]

E,=jp E LT e e = ; .35
Z 2nr ’ (fL,/2)sin \B=phans) (8-33)

.
3t
i
=
+

ik
=
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In the H-plane (xz-plane) ¢ = 0°, and (8-34) becomes

T sin[(BL,/2)sin 6]
'E¢ = jﬁﬂ;— E,LXLJ, cos @ W (H-plane). (8'36)
The normalized forms of these principal plane patterns are
__sin[(BL,/2)sin 0] 2
Fe®) =L /2)in 6 B37)
B sin[(BL,/2)sin 0]

For large apertures (L., L, > 2) the main beam is narrow and the cos 0 factor
is negligible, and the principal plane patterns are both of the form sin(x)/x which
we have encountered several times before, as for example with the uniform line
source. By neglecting the obliquity factors in (8-34) the normalized pattern factor
for the uniform rectangular aperture is

o sin[(BL/2]sin[(BL,/2)e] :
S0 =8 oy (AL 2 3%
which is the normalized version of P, in (8-32).

The half-power beamwidths in the principal planes follow from the line source
result in (4-14). In xz- and yz-planes the beamwidth expressions are

A

A
I HP, = 0.886 —. (8-40)

HP, = 0.886 L

Example 8-2. A 20/ by 102 Uniform Rectangular Aperture

The complete pattern for a uniform rectangular aperture which has L, =204 and
L, = 104 is f[rom (8-39)

L L))

. r) 20mu 107 (8-41)

The contour plot of this pattern is shown in Fig. 8-7. The principal plane patterns, which
are profiles along the u and v axes of Fig. 8-7, are shown in Fig. 8-8. The aperture of
Fig. 8-6 has a ratio L,/L, = 2 as in this example. Notice that the wide aperture dimen-
sion, L,, leads to a narrow beamwidth in that direction (along the u-axis). The half-
power beamwidth in the xz-plane from (8-40) is HP, = 0.0443 rad = 2.54°, and in the
vz-plane HP, = 0.0886 rad = 5.08".

The transformation from 6 and ¢ to u and v given by (8-33) is essentially a
collapsing of the spherical surface of unit radius described by 0 and ¢ onto a
planar surface through the equator, giving a circular disk of unit radius. There is
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Figure 8-7 Contour plot of the pattern from a uniform amplitude, uniform phase
rectangular aperture (L, = 204, L, = 104). The solid contour levels are 0, -5, —10,
—15, =20, —25, =30 dB. The dashed contour levels are —35 and —40 dB. Principal
plane profiles are shown in Fig. 8-8.

an ambiguity here because points on the upper hemisphere (6 < n/2) project
onto the top of the u, v disk, and points on the lower hemisphere map onto the
bottom of the w, v disk. This is not a problem when using our equivalent
current/image theory formulation, because the solution is valid only over the
upper hemisphere (z > 0). The visible region in u and v corresponding to 0 < n/2
is

u? 4+ v2=sin? 0 <1 (8-42)
which follows from (8-33).
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Figure 8-8 Principal plane patterns for a uniform amplitude, uniform
phase rectangular aperture (L, = 204, L, = 104). The complete pattern
is shown in Fig. 8-7. (a) The xz-plane pattern; u =sin0. (b) The
vz-plane pattern; v = sin (.

Directivity calculations are greatly simplified when the v and v variables are
used. The beam solid angle is

2n mf2
Q=] [ IFe.9) d0 (8-43)

0

where, as mentioned above. only radiation for 0 < n/2 is considered. The beam
solid angle can be evaluated by integrating over the entire visible region in terms
of u and v. First, consider the projection of dQ onto the u, v plane; it is given by
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du dv = cos 0 dQ. From (8-42) it is seen that cos 6 = /1 — u” -— v*. Therefore,
dQ = du dv//1 — u* — v* and (8-43) becomes
| du dv

S0

= [[ |Feo)P (8-44)

1—u
wltplici

This is a general expression. For a large uniform phase aperture (L, and L, > 1)
the radiation will be concentrated in a narrow region about u=uv =0 (6 = 0).
Then the square root in (8-44) is approximately one. Also, since the side lobes
are very low we can extend the limits to infinity without appreciably affecting the
value of the integral. Using these results and (8-39) for the uniform rectangular
aperture in (8-44) yields

* BILO], (= do LN, (8-45)

=] ‘1 TTBL2)P

S ) [(ﬂijz)u]z

The following change of variables

u' = B;x- u= ﬁ;x sin 6 cos ¢ (8-46a)
o= % = E—;‘—f sin 0 sin ¢ (8-46b)

leads to
g,=-2 2 @l )'w ST (8-47)

AT BB TR e O
Each integral above, see (F-12), equals n; so
4 -

e 8-48
RrRAPLL, . LI, &)

Q,=

The directivity of the rectangular aperture with uniform amplitude and phase
is then

4 " 4
O 2

From this expression the physical area of the aperture can be identified as
A,=L.L,. Comparing this to D = 4nA.,,/A* from (1-213) we see that the maxi-
mum effective aperture A, equals the physical aperture A, for the uniform
rectangular aperture. This is true for any shape aperture with uniform excitation.
Also note that for ideal apertures there are no ohmic losses (radiation efficiency
e = 1), so gain equals directivity and 4, = A,,,.

Lol (8-49)
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8.2.2 Tapered Rectangular Apertures

In the previous section we saw that the uniform rectangular aperture has an
effective aperture equal to its physical aperture. In other words, uniform illumin-
atiorln leads to the most efficient use of the aperture area. It will be shown in
szctlon 8.3 that uniform excitation amplitude for an aperture gives the highest
directivity possible for all constant phase excitations of that aperture. In the
antenna design problem high directivity is not the only parameter to be con-
sidered. Frequently low side lobes are very important. As we saw in Chapter 4,
the side lobes can be reduced by tapering the excitation amplitude toward the
edges of a line source. This is also true for two-dimensional apertures. In fact,
many of the line source results can be directly applied to aperture problems.

To simplify our general discussion of rectangular aperture distributions, we
shall omit the polarization of the aperture electric field, so that E, can represent
either the x- or y-component of the aperture field. Then (8-18) becomes

P= [[ E (x', y')elP="elf dx' dy'. (8-50)
Sa

Most practical aperture distributions are separable and can be expressed as a
product of functions of each aperture variable alone:

E (X', y') = Eg1(x")E 2 (y). (8-51)
Then (8-50) reduces to
L2 - Lyl2 )
P=[  Ea()e® dx [~ En(y)e™ dy. (8-52)
= Ly2 Y= Ly2

Each of lh»:csc integrals is recognized as the pattern factor of a line source along
the respective aperture directions. The normalized pattern factor for the rectan-
gular aperture is then

JW, o) =fi(w) () (8-53)

where fl{uj) and f5(¢') arise from the first and second integrals in (8-52), which
are essentially pattern factors of line source distributions along the x- and y-
directions. Again here we have neglected any obliquity factors. The uniform
rectangular aperture result corresponding to (8-53) is (8-39). It is obtained
directly from sin(u)/u of (4-9) by using ' of (8-46a) in place of u for f,(u') and v'
of (8-46b) in place of u for f,(v'). Note the different definition of  in Chapter 4
and this chapter.

Thus, the pattern expression for a rectangular aperture distribution which is
separable as in (8-51) is obtained by finding the patterns f, and [ corresponding
to the distributions E,, and E,,, and then employing (8-53).
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Example 8-3. The Open-Ended Rectangular Waveguide

Suppose the aperture electric field is cosine tapered in the x-direction, similar to (4-23),
and is uniform in the y-direction. This particular example is similar to an open-ended
rectangular waveguide operating in the dominant TE;, mode, which has a cosine distrib-
ution in the broad dimension and a uniform distribution in the narrow dimension [2]. f; is
obtained from (4-27) by replacing u by «'-and f is obtained from sin(u)/u by replacing u
by v'. Thus

cosu  sinv

fet o= @ v

(8-54a)

or

w o) = COS(BLy/2)u] sin[(BL,/2)0] ;
S ) = T L (L (8-54b)

The half-power beamwidths in the principal planes are controlled by the aperture distrib-
utions in the same planes. so from Table 4-2
HP, = 1.19-* HP, = 0.886 - (8-55)
x= L9, y=0886 .

X ¥

The directivity (see Example 8-4 in Section 8.3) is 0.81 of a uniform aperture of the same
size, or

dwl.ly _32L.L, (8-56)

A2 T A2

D = 0.81

8.3 GAIN CALCULATIONS FOR APERTURE ANTENNAS

During the discussions of specific aperture antennas which follow, we shall have
need for the gain calculation techniques presented in this section. The gain of
aperture antennas can, in most cases, be estimated rather simply. Gain estima-
tion methods will be presented after a discussion of more formal methods.
Maximum power gain (or simply gain) is found from directivity using (1-153)
as -
G=¢eD (8-57)

where ¢ is the radiation efficiency arising from ohmic losses on the antenna
structure. Directivity from (1-143) is

4nlU, 4=
D - Pr — E}: (8'58)
where U, 1s the maximum of the radiation intensity defined by
1 TR
u(o, ¢)= 57[|E,,|2 + |EsP)r? = U, | F(0, ¢)]* (8-59)

&

sy
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Q, is the beam solid angle given by (8-43), and P, is the total radiated power
evaluated by integrating (8-59) over all radiation space.

If the tangential electric and magnetic aperture fields nearly form a plane
wave, the radiation intensity expression simplifies. This assumption provides a
good approximation if the aperture fields vary slowly relative to a wavelength
and if the aperture phase is nearly uniform. The plane wave assumption for the
aperture fields leads to

H,.=- & and H'a_}t = E—“ (8'60)
n n
These applied to (8-18) and (8-19) yield
P, P
= — — and ‘=—x‘ 8'61)
0= Q= (

Using these and the general aperture radiation field expressions of (8-24) in
(8-59) gives

u(o, ¢) = 325;'? (1 + cos O)[|P.J* + | P,|*]. (8-62)

The maximum value of this function, which corresponds to the main beam peak,
for a uniform phase aperture occurs in the broadside direction (0 = 0); so from
(8-16)

(8-63)

——

B |t ;
e l\ E, dS

‘ 2

since f - r' = 0 in the broadside case, because f = Z and r’ is in the xy-plane.
Integration of (8-62) to obtain P, is, in general, rather difficult. This can be
avoided by observing that the total power reaching the far field must have
passed through the aperture. Under the assumptions of (8-60) the power density
in the aperture is |E,|*/2n, and we can determine the radiated power from
"~

o= [[ |EdJ? dS. (8-64)

r 2?] J

Sa

1 .n
.

Substituting (8-63) and (8-64) in (8-58) gives a simplified, but powerful, directi-
vity relationship

B ,_S.a_|_.._.r _ (8-65)
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Note the similarity of this result and that of (3-93) for a half-wavelength spaced
linear array.

If the aperture distribution is of uniform amplitude (E,= E,), then (8-65)
reduces to

4r
o= 5, (8-66)

D
where A, is the physical aperture area. This was shown to be true for the
rectangular aperture by direct evaluation; see (8-49). Further, (8-66) is a general
result. The directivity of a uniform amplitude aperture is the highest obtainable
Jrom a uniform phase aperture. This is true because the maximum of (8-65) occurs
for a uniform illumination, which yields (8-66); see Prob. 8.3-2.

Example 8-4. The Open-Ended Rectangular Waveguide

To illustrate the aperture field integration method of determining directivity, we return to
the open-ended waveguide operating in the TE,, mode as described in Example 8-3. The
aperture field distribution is

! i nx’
E,=¥E, cos —
[

<x' <

LS 0 -

(8-67)

LS R~

where the waveguide (and. thus, the aperture) has wide and narrow dimensions of a and b
(Ly,=aand L, = b in Fig. 8-6). Then

o 2 a2 . b2 2 2
||| E, dS| = (r | cos I ax | dy‘) = 53(2") b? (8-68)
i Y -a2 a Y -h'2 n
and
34y La'2 o B2
|| [EJ ds = E2 | cos* =ax' [ dy =E2%), (8-69)
b *=al2 d t=h2 2
Substituting these into (8-65) gives
4n( 8 32 ab
b= }?(ﬁ?“”)= = 2 830

Gain is ecasily obtained from directivity using G = eD. For most aperture
antennas the ohmic losses are very small, so
ex1 (8-71)
and therefore
G =xD. (8-72)

=

k|

&
%
5
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Many gain calculations, though, can be performed without first computing direc-
tivity by using (1-222)
4n '
G= = A, (8-73)

where A, is the effective aperture. It is convenient for aperture antennas to relate
effective aperture directly to the physical aperture area A4, of the antenna as

A, =e,A,| 0<e,<1 (8-74)

L i 4

where the aperture efficiency ¢,, is a measure of how efficiently the antenna
physical area A, is utilized. Once &,, is calculated or estimated, it is a simple
matter to calculate gain from (8-73) and (8-74).

The aperture efficiency factor &,, represents many sources of efficiency reduc-
tion. In particular, it can be factored as

Bap = CEE1ExEy " . (8-75)

As mentioned above ¢ is approximately unity. Exceptions to this are: if the
antenna size is on the order of a wavelength or less, if a lossy transmission line is
considered to be part of the antenna, and if lossy materials are an integral part of
the antenna (such as in a dielectric lens antenna). The factor ¢, is the aperture
taper efficiency, which represents intentional gain loss due strictly to the design
aperture distribution. If an antenna is designed to have a directivity D, then ¢,
gives the fractional loss in directivity, and gain, relative to the maximum attain-
able, that is, from the uniformly illuminated case; thus

e
=2~

& (8-76)
Values of ¢, were given in Section 4.2 for line sources.

The remaining factors £, £,45 +- are referred to as achievement factors. They
represent the fractional deviation from design directivity caused by the many
changes from the design aperture illumination which occur when the antenna is
constructed. They are a measure of how the directivity D of the actual antenna
differs from the design directivity:

By a8y =t = —. (8-77)

Hence, the gain loss given by &, in (8-75) is composed of an ohmic loss [actor e
and directivity loss factors &, ;. £, £3,.... For simple directly radiating
antennas such as horns, slots, and so forth, the achievement factors are usually
taken to be unity, Antennas involving more complex configurations usually have
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achievement factor values less than unity. For example, reflector systems have
several sources of gain loss, such as spillover, random surface errors, aperture
blockage, and so forth. These will be discussed in Section 8.6.3.
Any of the efficiency factors in (8-75) can be expressed as a gain factor in
decibels as
&(dB) = 10 log ;. (8-78)

The gain “loss™ would be the negative of this. For example, the aperture taper
efficiency for Example 8-4 is & = Dy/D, = [(32/n)(ab/A%))/[(4n/2?)ab] = 8/n? =
0.81, so ¢/(dB)= —091 dB. Gain in decibels is then computed as G(dB)=
10 log(4nA,/A*) + e(dB) + ¢,(dB) + &,(dB) + ---. Recall that polarization mis-
match factor p and impedance mismatch factor g are not included in aperture
efficiency nor gain, but they play a role similar to the efficiency factors (as
discussed in Section 1.11).

If the aperture efficiency is known, the gain can be calculated very simply,
from (8-73) and (8-74), which give

4
G~ nspz—;rApzaapDu. (8-79)

The range of ¢,, for aperture antennas is about 30 to 90%,. Horn antennas have
values of ¢,, from about 40% to 80%, Optimum gain horn antennas typically
have an aperture efficiency of 50%,. The aperture efficiency of circular parabolic
reflector antennas is about 55%,.

The gain of an aperture antenna can be estimated very quickly using (8-79). If
the aperture efficiency in unknown, a value of 50% is usually a good estimate.
For a 20-dB gain antenna, if the aperture efficiency were really 60% instead of
509, the error is only 0.8 dB.

Directivity, and thus gain, can also be estimated from a knowledge of the
principal plane half-power beamwidths, HP, and HP,,. If the main beam of the
radiation pattern is relatively narrow and the side lobes are negligibly small,
then all power in the main beam can be imagined to be redistributed such that it
is uniform inside the half-power points and zero outside. Then the beam solid
angle (see Fig. 1-13b) is approximated by a rectangular solid angle HP, by HP,,,
so Q, = HPHP,. The directivity is approximated as

4n 4n 41,253

D=l — o =
Q, HPHP, HP.HP,

(8-80)

where HP, and HP,, are the principal plane half-power beamwidths in degrees.
Most pattern main beams have a smoothly varying cross section which is nearly

clliptical, rather than rectangular. The area is then (n/4)HP HP,, instead of
HPHP,, so
41,253 52,525

" (¢/4)HP.HP, ~ HP.HP,

(8-81)
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Actual antenna patterns will, of course, have side lobes which are ‘not-neg_li-
gible. Comparisons with several horn and circular parabolic antennas in practice
today reveal that the gain is fairly well approximated by 509 of the directivity in
(8-81), so

26,000
G o~

e ot (8-82)
HP,.HP,

This is an extremely simple yet very useful result.

Example 8-5. Pyramidal Horn Antenna

A pyramidal horn antenna (see Fig. 8-16a), with a rectangular aperture of width A4 and
height B, designed for optimum gain has an aperture efficiency of 50%; so from (8-79)

G =105 %_AB, (8-83)

As a specific example, a “standard gain horn” operating from 33 to 50 GHz ha}s a
measured gain of 24.7 dB (G = 295.1) at 40 GHz (A = 0.75 cm). The aperture dimensions
of this horn are 4 = 5.54 cm and B = 4.55 cm. Using these values of 4, 4, and B in (8-83)
gives G = 281.6 =24.5 dB. The gain can also be estimated from the principal plane
hall-power beamwidths, measured at 40 GHz to be HPp = 9° and HPy. = 10°. Then
(8-82) yields G = 288.9 = 24.6 dB. The gain values [rom both of these methods agree very
well with the measured gain of 24.7 dB.

Example 8-6. Circular Parabolic Reflector Antenna

The aperture efficiency of a typical circular parabolic reflector antenna with diameter d is
55%, so (8-79) becomes
4 dn( d* d?
G-——O.SSIJ-:A,.=0,55?(H?)= 54355 (8-84)
For a specific example, a 3.66-m (12-ft) circular reflector operating at ll.T.G Hz
(A= 2.564 cm) has a measured value of G = 504 dB and HP, = HP;; = 0.5°. Again we
will check our estimation formulas. First, (8-84) gives G = 5.43(366/2.564)% = 110,644 =

50.4 dB. Next, (8-82) yields G = 26,000/(0.5)* = 104,000 = 50.2 dB. Both of these estimates
are in good agreement with the measured gain.

8.4 RECTANGULAR HORN ANTENNAS

Horn antennas are extremely popular antennas in the microwave region above
about 1 GHz. Hormns provide high gain, low VSWR, relatively wide bandwidth,
low weight, and they are rather easy to construct. As an additional beneﬁl‘ the
theoretical calculations for horn antennas are achieved very closely in practice.
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(a)

(c)

i

>

(b)

Figure 8-9 Rectangular horn antennas. (a) H-plane sectoral horn.
(b) E-plane sectoral horn. (¢) Pyramidal horn.

The three basic types of horn antennas which utilize rectangular geometry are
illustrated in Fig. 8-9. These horps are fed by a rectangular waveguide which is

oriented with its broad wall horizontal. For dominant waveguide mode excita-

tion the E-plane is then vertical and the H-plane horizontal. If the horn serves to
flare the broad wall dimension and leave the narrow wall of the waveguide
unchanged, it is called an H-plane sectoral horn antenna as shown in Fig. 8-9a.
On the other hand, if the horn serves to flare only the E-plane dimension it is
called an E-plane sectoral horn antenna and is shown in Fig. 8-9b. When both
waveguide dimensions are flared it is referred to as a pyramidal horn antenna,
which is shown in Fig. 8-9c.

The operation of a horn antenna can be viewed as analogous to a megaphone,
which is an acoustic horn radiator providing directivity for sound waves. The
electromagnetic horn acts as a smooth transition from the waveguide mode to
the free-space mode. This smooth transition reduces reflected waves and empha-
sizes the traveling waves. This traveling wave behavior, as we have seen with
other antennas, leads to low VSWR and wide bandwidth.

Since the 1930s several horn antennas have been developed.® In addition to
rectangular horns discussed in this section, conical shaped horn antennas are
used when connection to circular waveguide is required. Special purpose horns
are those loaded with diclectric material or lined with metallic corrugations.
Corrugated horn antennas, as well as other horn types, are very popular for
feeds in reflector antenna systems.

¥ Sec [3] for a collection of many papers on horn antennas.

i
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8.4.1 The H-Plane Sectoral Horn Antenna

The H-plane sectoral horn of Fig. 8-10a is fed from a rectangular waveguide of
interior dimensions a and b, with a the broadwall dimension. The aperture is of
width 4 in the H-plane and height b in the E-plane. The H-plane cross section
of Fig 8-10b reveals the geometrical parameters we shall use. The following
relationships for the geometry will be of use in subsequent analysis:

(8-85a)
(8-85b)

(8-86)

|
1
RH__—!

(h)

Figure 8-10 H-plane sectoral horn antenna. (a) Overall
geometry. (b) Cross section through the xz-plane (H-plane).
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It is an exercise to prove (8-86). The dimensions 4 and Ry, (or ¢, or R,) must be
determined to allow construction of the horn. We shall investigate the principles
of operation and then present design procedures for determining the horn
dimensions.

The key to solving aperture antenna problems is to find the tangential fields
over the aperture. The aperture plane for the H-plane sectoral horn shown in
Fig. 8-10a will be taken to be the xy-plane. The aperture fields, of course, arise
from the attached waveguide. As is usually the case in practice, we will assume
that the waveguide carries the dominant TE;, rectangular waveguide mode. The
transverse fields in the waveguide are then given by

E, = E, cos “—: e~ et (8-87a)
H.o— — ? (8-87b)

4

where Z, = [l — (4/2a)*]" " is the waveguide characteristic impedance. The
fields arriving at the aperture are essentially an expanded version of these wave-
guide fields. However, the waves arriving at different points in the aperture are
not in phase because of the different path lengths. We will now determine this
phase distribution. -

The path length R from the (virtual) horn apex in the waveguide to the horn
aperture increases toward the horn mouth edges. Thus waves arriving at aper-
ture positions displaced from the aperture center lag in phase relative to those
arriving at the center. The phase constant changes from that in the waveguide,
B, to the [ree-space constant, ff, as waves progress down the horn. But for
relatively large horns the phase constant for waves in the vicinity of the aperture
is approximately that of free space. The aperture phase variation in the x-
direction is then given by

¢~ JPR= Ri) (8-88)
The aperture phase is uniform in the y-direction. An approximate form for R
using Fig. 8-10b is
X 2 |12
i
3 (R) l

R= \J'R? + x2 = R,

TR 1+I(“')l (8-89)
e 2AR, ) | *
for x < R, which holds 1f 4/2 < R,. Then
1?2
R—-—R, =-—. 8-90
e (8-90)
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The amplitude distribution is an expanded version of that in the. waveguide, so it
is a cosine taper in the x-direction. Using this fact and (8-90) in (8-88) leads to
the aperture electric field distribution:

E,, = E, cos %w‘”’f“i‘*’ (8-91)

inside the aperture and zero elsewhere. The above phase distribution is often
referred to as a quadratic phase error, since the deviation from a uniform phase
condition varies as the square of the distance from the aperture center. This
result can be derived more rigorously by representing the horn as a radial
waveguide [4].

The quadratic phase error complicates the radiation integral, however the
result is worth the effort. Substituting (8-91) into (8-18b) yields

Af2 Lby

) 2
cos TN g HMARDx 2 pifux’ gt e dy', (8-92)
— A2 v =hi2

Py=5, |

After considerable work this reduces to
| 1 [7R, sin[(Bb/2)sin 0 sin ¢]} _
Py =k {5\/ T'w’ ‘“J'"’ (Bb/2)sin 0 sin ¢ (:93)

where the factors in brackets correspond to each of the integrals in (8-92_} The
second factor is that for a uniform line source. The first involves the function

1(0, §) = elR2PPsind cor ot HAC(5)) — jS(s3) — C(s7) +JS(51)]

(8-94)
+ R oS~ ARC (1) — () — C{63) + JS(E)]
where
' 1 ([ p4 rrRl)
T EEI_{—I(_T ~ R
. R
o, [ -(@-—Rlﬁu—hJ
ARy A (8-95)

; [ 1 pA R,
I, = ﬂﬁRi ——2 —Rlﬁld-f"T)
- 1 fiA

74\l nBR,

nR,
(—2- — R, pu+ = )
and the functions C(x) and S(x) are Fresnel integrals defined in (F-17) and
tabulated in [5].
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The total radiation fields can now be cbtained. Using (8-61) in (8-24) gives the
far-zone electric field components

ﬁjr (1 + cos B)sin ¢P, (8-_96a)

—Jﬂr

)‘[3 {1 + cos ()cos ¢P,. (8-96b)

These together with (8-93) give the complete radiated electric field

E = jpE.b }n?le(h:’(l +cos{})(0 in ¢ + & cos )

_sin[(Bb/2)sin 0 sin @)
(Bb/2)sin 0 sin ¢ 6. ¢) (8-97)

where I(6, ¢) is still given by (8-94).
The complete radiation expression is rather cumbersome, so we will examine

the principal plane patterns. In the E-plane ¢ = 90°, and the normalized form of
(8-97) is

1 + cos O sin[(fb/2)sin 0]
2 (fb/2)sin O
The second factor is the pattern of a uniform line source of length b along the

y-axis, as one would expect from the aperture distribution.
In the H-plane ¢ = 0°, and the normalized H-plane pattern is

I+cos@ I(0,¢=0°
2 10=0° =07
The H-plane pattern can be displayed rather simply using universal radiation

pattern plots which are based on the maximum phase error across the aperture.
The aperture distribution phase error as a function of posmon x is from (8-91)

Fe(0) =

(8-98)

FH(Q)

(8-99)

Sim =2 [8-100)

5 p (A)2 o A? Dt 8-101
o .= — | — = AJr — = -
LE TN ) giR, " 10%)
where 1 is defined to be
A7 _1(.4'2 1 8.100
T 8IR, 8 /) Ryfs (3102)
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The function I(, ¢ = 0°) in (8-94) can be expressed in terms of ¢ as
10, ¢ = 0°) = lENMARInOH IO (s, ) — jS(s2) — Clsy) +S(s1)]  (8-103)
+ I RS0 VZFC 1) — jS(t) — C(t1) + 7S(e,)]

where
1

51&2\[' sin 9) 8:]
, 1

§; = Z\ﬁll = E(I sin 6‘) - g}]

t =2\/E[~1 —%(;sin 9)+—

1
t2—2\/t|1——( sin 9) § :

This function is plotted in Fig. 8-11 for various values of t. It is normalized to
the main beam peak for a zero phase error condition, which displays the directi-
vity loss (reduction of the main beam peak) as the maximum phase error 2nt
increases.

The curves in Fig. 8-11 are universal pattern plots from which antenna pat-
terns can be derived for specific values of A, b, and .. The H-plane plots (solid
curves) are a function of (A4/A)sin 6. The E-plane plot (dashed curve) is the
second factor of (8-98), and the abscissa for it is (b/A)sin 0. The factor
(1 + cos 0)/2 which appears in both pattern functions (8-98) and (8-99) is not
included in Fig. 8-11. For most situations it has a small effect on the total
pattern and may be neglected. Its effect, however, is easily included by adding
20 log[(1 + cos 6)/2] to the corresponding pattern value for () from the universal
pattern. Note the E-plane plot of Fig. 8-11 has the — 13.3-dB side lobe level of a
uniform line source pattern, and the H-plane constant phase (t = 0) plot has the
—23-dB side lobe level of a cosine-tapered line source pattern. As the phase
error increases the H-plane pattern beamwidth and side lobes increase.

The directivity for an H-plane sectoral horn is obtained from the aperture
integration method of (8-65) as

(8-104)

4HhR

Dy == H{[Cpi) = Cp2)* + [S(py) = S(p2)]’) (8-105a)
where
M= 1~_ }R;..J;/_ -+ —4:1‘ = ’ Pa= 1__ \"F.I:-'::/ 4’1__ {8_10513)
V2l Al VR4 V2| Al VR
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Figure 8-11 Universal radiation patterns for the principal planes of an
H-plane sectoral horn as shown in Fig. 8-10. The factor {1 + cos )2

is not included. (Reproduced, by permission, from [2]. © 1967 John
Wiley.) '
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Figure 8-12 Universal directivity curves for an H-plane sectoral horn. For
pyramidal horns the vertical axis values are (A B)D,, .

and p, = —sy=1y, py=sy= —1yin (8-95) for u=0. A family of universal
directivity curves is given in Fig. 8-12, where 2D,/b is plotted versus 4/4 for
various values of R, /4 Notice that for a given axial length R,. there is an
optimum aperture width 4 corresponding to the peak of the appropriate curve.
Il values of 4/ corresponding to optimum operation are plotted versus R, /4, it
is seen that a smooth curve with the equation 4/4 = \,"TR_,.K_}. passes through
those points: so

A= 3R, (optimum). (8-106)

For example, the value of 4/7 for the peak of the R, /4 = 30 curve of Fig. §-12is
9.5, and from (8-106) 4/4 = /3R, 7 = /3(30) = 9.49.
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Equation (8-106) can be used to find the corresponding phase error parameter
for optimum operation.

AZ

I =
*» = 8IR,

= g (optimum). '(8-107)

The optimum behavior of the directivity curves can be explained rather simply.
For a fixed axial length, as the aperture width A4 is increased from a small value
the directivity increases by virtue of the increased aperture area. Optimum per-
formance is reached when t = t,, = 3, which corresponds to a phase lag at the
aperture edges (x = +4/2) 0Of &y = 2mt,, = 3n/4 = 135°. As A is increased
beyond the optimum point, the phase deviations across the aperture lead to
cancellations in the far-field and decreased directivity, as can be seen from the
pattern plots of Fig. 8-11.

The half-power beamwidth relationship for optimum performance can be
determined from the pattern plot of Fig. 8-11 for t = 3. The 3-dB down point on
the main beam occurs for (A4/A)sin 6, = 0.68, so the H-plane beamwidth for an
optimum H-plane sectoral horn is 20, = 2 sin™*(0.684/4); and for A > 1

) p
HP, > 1,36% =785 (optimum). (8-108)

8.4.2 The E-Plane Sectoral Horn Antenna

A rectangular horn antenna can also be formed by flaring the feed waveguide
in the E-plane. The resulting horn is referred to as an E-plane sectoral horn
antenna as shown in Fig. 8-13. The geometrical relationships for this horn are

B 2
Ao RE4 (5 ] (8-1092)
B
==l e §-1%
3y =lan (ZRZJ (8-109b)
T .
Byt [_BJ - (8-110)

A similar line of reasoning as employed for the H-plane horn leads to the
following aperture electric field distribution for the E-plane horn.

X T T T
B, =, pon ——p FHENAE {8-111)
o
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b

Figure 8-13 E-plane sectoral horn antenna. (a) Overall
geometry. (b) Cross section through the yz-plane (E-plane).

The same steps as used with the H-plane sectoral horn yields the radiation field

(@R Sda e . .
E=jBE, | —— —— /MR iy ¢ -
Jf J F = ¢ (0 sin ¢ + & cos @)

1+ cos O cos[(far2)u]

3 T [(Barm]t € (r2) —SUa) = Cleu) S]] (8-1122)
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where

Fp= :%_;(—-?~R2u), r2=&(g——fzzv). (8-112b)

The normalized H-plane pattern follows from (8-112) with ¢ = 0° as

1 + cos 0 cos[(fa/2)sin 0]
Fu(0) = 2 1 — [(Ba/n)sin 0]*° 1)

The second factor in this expression is the pattern of a uniform phase, cosine
amplitude tapered line source of length a.

The phase distribution in (8-111) is 6 = (8/2R,)y*. The maximum phase error

occurs for y = +B/2, and there the phase error is &,,, = (8/2R,)(B/2)* =

max

2n(B?/84R,) = 2rs, where we define the phase error parameter

2 2
e Zl(_‘?) = - (8-114)
Rf_Rz 8 A RZ/)"

The E-plane pattern (magnitude) from (8-112) with ¢ = 90° can be expressed in
terms of s as

|Fe(0)] = I+ cos 0f[C(ry) - C(;-__‘)_f + [S(rs) — S(?'3}]_Zlm

2 | aqetess st | G-l

where

ry=2ys

1 (B
et i (—/ sin (] . 4= Z\E

1= (s a)J (8-115b)
4s\ A
The universal patterns for the E-plane sectoral horn are plotted in Fig. 8-14.
The E-plane patterns (solid curves) for various values of s are not normalized to
0 dB at the maximum point, but rather are given relative to the no phase error
case (i.e, the s =0 uniform line source pattern). The H-plane pattern (dashed
curve) is that of a cosine tapered line source-—the second factor of (8-113). The
factor (1 + cos 0)/2 1s not included in these plots. '
The directivity of the E-plane sectoral horn is given by
32aB C*(g) + S*(q)
Dp="— = 2T

E S (8-116)
T AT q

where g = B/, 2/R,. A family of universal directivity curves, AD; /a, for various

values of R, /4 is given in Fig. 8-15 as a function of B/i. Again optimal perfor-

mance is observed from these curves. A curve fit to pairs of values of 4/1 and

R, /4 for optimum conditions yields

=/2/R; (optimum). (8-117)
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Figure 8-14 Universal radiation patterns for the principal planes of an
E-plane sectoral horn antenna as shown in Fig. 8-13. The factor .
(1 + cos 1)/2 is not included. (Reproduced, by permission, from [2].
© 1967 John Wiley.)
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Figure 8-15 Universal directivity curves for an E-plane sectoral horn. For pyramidal
horns the vertical axis values are (4/4)D, .

The corresponding value of s is

B? 1 :
Sop = SiR. - (optimum). (8-118)

The half-power beamwidth relationship follows from the s = 1 plot in Fig. §-14
and is

, 0.47 A /
8 S -~ - -~
HP, =2sin B S 0.945 = 54§ (optimum). (8-119)

Gain for horn antennas nearly equals directivity, so Dy (and D,,) are taken as
Gy (and Gy). The gain of an E-plane sectoral horn has been shown to be more
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accurately given by [6]
2
16aB  C(gy) + 57(@,) i i1 - w29 (8-120)

VL T ) R

where 4,=4/\/1— (4/2a)* is the wavelength of the dominant mode in the
waveguide feeding the antenna and ¢, = B/VZNgR,. This expression yields values
that agree quite well with experimental results. The values from (8-116) are about
20% or less under those of (8-120).

8.4.3 The Pyramidal Horn Antenna

Probably the most popular form of the rectangular horn antenna is the pyra-
midal horn antenna. As shown in Fig 8-16, it is flared in both the E- and
H-planes. This configuration will lead to narrow beamwidths in both principal
planes, thus forming a pencil beam. The aperture electric field is obtained by
combining the results for H- and E-plane sectoral horns from (8-91) and (8-111).

giving

nx . . 5
Ea_}' = Eo COS(' 11 )9_1”‘ xR+ 2 Ra), (8"211

Following a procedure similar to that used for the sectoral horns will yield a
general radiation field expression. It turns out, though, that the principal plane
patterns are the same as those obtained from the sectoral horn calculations. To
be precise. the £- and H-plane patterns of the pyramidal horn equal the E-plane
pattern of the E-plane sectoral horn and the H-plane pattern of the H-plane
sectoral horn. Therefore, the E-plane pattern of the pyramidal horn can be found
from the universal pattern plots (solid curves) of Fig. 8-14, and the H-plane
pattern can be found from the solid curves of Fig. 8-11.
The directivity of the pyramidal horn is found rather simply from

P , o T5R
D= (500 )(520) B

The terms in parentheses are obtained directly from the directivity curves for
sectoral horns, To do this the ordinates of Figs. 8-12 and 8-15 are interpreted as
+Dy /B and AD /A, respectively. Gain values computed from (8-122) agree very
well with experiment. It includes the geometrical optics fields and simply dif-
fracted fields from the horn edges. Inclusion of multiple diffraction and diffrac-
tion at the edges arising from reflections from the horn interior leads to small
oscillations in the gain about that predicted by (8-122) as a function of fre-
quency, and even better agreement with experimental results is obtained [7].



Figure B-16 Pyramidal horn antenna. (a) Overall geometry.
(b) Cross section through the xz-plane (H-plane). (¢) Cross
section through the yz-plane (E-plane).
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A pyramidal horn must be designed such that when it is constructed it fits
together with the feed waveguide. In order to have a realizable structure it is
obvious from Fig. 8-16 that

Ry=R,=R, (8-123)

Pyramidal horns are frequently designed for optimum gain. We shall now give
a simple design procedure [or optimum performance. Since the sectoral horn
results apply, we can borrow them. For large horns where R; = /,,and R, = /..
(8-106) and (8-117) give

A= /3R, ~ /317, (8-124a)
B=/2IR, ~ \/217,. (8-124b)

Typically a gain G is specified, and the problem is to determine A. B. and R,. The
effective aperture of an optimum horn is nearly 50°, of its physical aperture area
[8]. so from (8-79)
4 4

P (8-125)

2 P_Z’;Z

G=qz, i
which provides a relationship between gain and 4 and B. Combining this with
(8-124) and enforcing the realizability condition Ry = R,,, through (8-86) and

(8-110), gives the design equation

i 5 G 1 BV 6>
/26 — 2| Ro—1)= BT ) I oy 8-126
2| B (2N_.fjnvfg ;.) (IBH'G ) it

-

where ¢ = /; /A The waveguide dimensions a and b are known, as well as the
gain G, so this equation can be solved by trial and error for ¢ to find /. Then B
follows from (8-124b), 4 from (8-125), 7/, from (8-124a), and R, = Rj; = R, from
(8-86) or (8-110). As a first trial for the solution of (8-126) one should use

G
= ; 8-127
0y 27{ 6 ( )

A very simple horn design procedure available in the literature [9] claims
0.1-dB gain accuracy. The results from it are in good agreement with the above
procedure.

Example 8-7. Design of an Optimum Gain Pyramidal Horn Antenna

A “standard gain” pyramidal horn antenna operates from 8.2 to 12.4 GHz (X-band). It is
fed from WR90 waveguide with ¢ = 0.9 in. = 2.286 cm and b = 0.4 in. = 1.016 cm, and is
to have a gain of 22.1 dB at 9.3 GHz (4 = 3.226 cm). For optimum gain (8-126) must be
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E-plane pattern =

i Hlplane pattern

Figure 8-17 Principal plane patterns for the optimum
pyramidal horn antenna of Example 8-7 at 9.3 GHz.
The patterns include the (1 + cos #)/2 factor. HP, = 12.0°
and HP,; = 13.6°,

solved using known values of G = 10*?' = 162.18, a/2 = 0.7087. and b 7 = 0.315. The
first trial for 0 = 6, = 10.54 from (8-127), followed by successive trials on ¢ leads to the
solution ¢ = ¢; /4 = 10.17. Then from (8-124b), (8-125), (8-124a), and (8-110) we find

A = 18.46 cm, B = 1455 cm

/e =328lcem.  /y=3521cm (8-128)

Ry= Ry =29.75cm.

n

As a check of our entire procedure we can locate the operating points on the gain curves.
From (8-85a) and the computed data in (8:128) we find R, = 3398 cm. Then R, /4 =
10.53 and /4 = 5.73 locale a point on the directivity plot of Fig. 8-12 which falls in the
optimum region. Similarly from (8-109a) we find R, = 31.98 cm and R, /4 = 9.91. Using
this and B Z=451 in Fig 8-15 again reveals optimum behavior. Reading from these

W‘«amw, i

85 CIRCULAR APERTURES 415

curves gives ADy,/B= 44 and AD;/A = 375, and from (8-122) D, = 162.0 =22.1 dB,
which is exactly the design gain value and is also the measured gain. The half-power beam-
widths from (8-108) and (8-119) are HP, = 13.6° and HPg = 12.0°, which are in good
agreement with measured values of 13° and 12°. We can also check the gain estimation
formula of (8-82) as G = 26,000/(HP; HP, )= 26000/(12.0 - 13.6) = 159.3 = 22.0 dB,
which is indeed a good result for such a simple formula,

The complete radiation patterns from (8-99) and (8-115) are plotted in Fig. 8-17. They
include the (1 + cos 0)/2 factor. The half-power beamwidths are HP, = 13.6° and
HP, = 12.0°, which are exactly the same as obtained from (8-108) and (8-119) even
though they do not include the effect of the (I + cos 6)/2. So we see that for narrow beam
patterns, (8-108) and (8-119) give very good results. The first side lobe of the H-plane
pattern in Fig. 8-17 is located at 0 = 42° and has a value of —32.0 dB, and the E-plane
pattern has a first side lobe at 0 = 16° with a value of —9.2 dB there. These compare o
—31 and —9dB from the patterns in Figs. 8-11 and 8-14. and we see that the
(1 + cos 1)/2 factor has a minor effect on the first side lobe.

8.5 CIRCULAR APERTURES

An antenna that has a physical aperture opening with a circular shape is said to
have a circular aperture. Various forms of circular aperture antennas are en-
countered in practice. In this section we will discuss ideal circular aperture
distributions with uniform and tapered amplitudes. This is followed in the next
section by a study of parabolic reflector antennas which are the most popular
circular aperture antennas.

8.5.1 The Uniform Circular Aperture

A general circular aperture is shown in Fig. 8-18. If the aperture distribution
amplitude is constant, it is referred to as a wniform circular aperture. This is
approximated by a circular hole in a conducting sheet with a uniform plane
wave incident from behind. Suppose the aperture electric field is x-directed, or

E,=%E, r=<a (8-129)
Then (8-16) gives
P=xE, ([ &7 a5 (8-130)
Sa
From Fig. 8-18 it is seen that
r'=r'cos ¢'X + r'sin @'y, (8-131)
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Far-field point
{r.0.0)

Figure 8-18 The circular aperture.

This with (A-4) yields

F-r =1 sin 0cos ¢ cos ¢ + sin ¢ sin ¢')

= r sin () cos(p — ¢'). (8-132)
Hence (8-130) becomes
P=xE, | |. i sin b cons= 4 d¢’ |r dr
= RE2n | rJ(pr sin 0) dr (8-133)

where (F-6) was used for the ¢’ integration. J(x) is a Bessel function of the first
kind and zero order, which is one at x = 0 and is a decaying oscillatory function
for increasing x. The r’ integration can be performed using

_{' xJo(x) dx = xJ,(x) (8-134)

which follows from (F-9). J,(x} is a Bessel function of the first kind and first
order, which is zero for x = 0 and is a decaying oscillatory function for increas-
ing x. Transforming variables as x = fr' sin 0 and using (8-134) in (8-133) yields

= XE2n—- —J i(Ba sin 0) = xXP,. (8-135)

ESI

=S o

|'|_1i£a: St
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The equivalent magnetic current formulation of (8-26) renders the radiation field
) b
= (0 cos ¢ — ¢ sin ¢ cos 9)}6-—2? [ (8-136)

This together with (8-135) comprises the radiated electric field expression for a
uniform circular aperture with an x-directed aperture electric field.

For large circular apertures the main beam will be narrow and for a uniform
phase aperture (as we have assumed here) the main beam maximum will be in
the 0 = 0° direction. Then cos ! = 1 near the z-axis (0 = 0°) and the polarization
of radiation, from (8-136), will be p p= 0 cos ¢ — ¢ sin ¢. Also the pro;ecuon of X
onto a far-field sphere, from (A-1),isX — t sin 0 cos ¢ =0 cos O cos p — P sin ¢ =
0 cos ¢ — & sin ¢ for 0 small, which equals p. Therefore, the polarization of the
radiated electric field equals that of the aperture electric field. or more accurately.
the projection of it onto the far-field sphere.

The relative intensity of the radiation, from (8-135), is

2J,(pa sin 6)

= ~ Pasin

(8-137)

which is normalized for a maximum of unity when 6 = 0°. This function is, of
course, circularly symmetric since the aperture field amplitude is. It is plotted in
Fig. 8-19 in the ur-plane for a =51 out to the limit of the visible region
(0 = 90°). A plot of the pattern through any plane passing through the center of
Fig. 8-19 is shown in Fig. 8-20. Note the similarity of the 2J,(u)/u function to the
sin(u)/u function.

The half-power point of (8-137) occurs at fasin # = 1.6. so the hall-power
beamwidth is

1.6 1.6 4

HP = 20,p =2 sin~! fa ::3_1% 5

[

HP = 107—rad (8-138)

«.d

for a > 4. For the 10/ diameter example HP = 0.102 rad = 5.84°. The side lobe
level of any uniform circular aperture pattern is —17.6 dB. This can be seen in
Fig. 8-20. Since the uniform circular aperture has uniform excitation amplitude,
it has unity aperture efficiency and the directivity, from (8-66). is

D, = A,= = (ra’). (8-139)
A Lt
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Figure 8-19 Radiation pattern of a uniform amplitude, uniform phase, 10-wave-
length diameter circular aperture.

8.5.2 Tapered Circular Apertures

Many circular aperture antennas can be approximated as a circular aperture

with an aperture field amplitude distribution which is tapered from the center of

the aperture toward the edge. In practice many circular aperture distributions
are close to radially symmetric: that is, not a function of ¢ (see Fig. 8-18). We
shall assume this is the case, and again we will confine our attention to a
broadside circular aperture which is large in terms of a wavelength. Then the
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Relative pattern (dB)

sin f§ —

Figure 8-20 Pattern of a 104 diameter uniform circular aperture. It
equals the pattern in any plane passing through the center of Fig. 8-19.

pattern is well approximated by the unnormalized radiation integral
27 .a
fun({)) = I | Eq(rr]ej,ﬁr' sin b cosld =t gy dg'. . (8-140)

00

Performing the integration over ¢’ with the aid of (F-6) leads to
Junl0) =27 | EL ()T o(Br sin 0) dr. (8-141)
B

This integral can be performed for various aperture tapers and normalized to
obtain f(f).

The results of several common circular aperture tapers are given in Table 8-1.*
This table is very similar to Table 4-2 for line sources. Note that the aperture
taper efficiency ¢, is the directivity of the pattern relative to that of the same
circular aperture uniformly illuminated (see Prob. 8.5-4). The parabolic taper
(n=1) is a smooth taper from the aperture center to zero at the aperture edge.
The parabolic-squared taper (n = 2) gives an even more severe taper. Parabolic
tapers on a pedestal provide for a nonzero edge illumination as might be en-
countered with a circular reflector antenna. The pedestal represents the fact that
the reflector intercepts the feed illumination only out to the reflector rim. Notice
that in all cases as the taper becomes more severe (n increases or C decreases)
the beamwidth increases, the side lobe level decreases, and the directivity
decreases.

* Extensive data are available in the literature for various aperture tapers [10, 11].
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Table 8-1 Characteristics of Tapered Circular Aperture Distributions

(a) Parabolic taper | Ealr)
el
Er) = [l_(u) J 1.0 —n =0
(0, Ay B ]
’ (Ba sin 0y ! =
0.5
n=2
| | | | | |
a ]
Side lobe Normalized
HP level pattern
n (rad) (dB) ¢ 16, n)
’ 5 :
o 102/ 176 100 Hilfasin0)
Ta fa sin §
1 1270 246 0.75 “"_z_(a“f_ ’ﬂ?_]
Ju (Ba sin 0)*
; 48 ;
1 14t g gz Bldlesng
2u (Ba sin 0y

(b} Parabolic taper on a pedestal

(o)

n

Eflr)=C+ (1 -C)

; L =& :
Cf(0.n=10)+ t [t n
n o+
fhn C)= ToC
-
n+ 1

Table 8-1 (continued)
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n=1 n=2
Edge
illumination Side lobe Side lobe
—_— HP level HP level
C(dB) C (rad) (dB) £ (rad) (dB) 3

A A

—8 0.398 112 — - 215 0.942 1.14 — —-24.7 0918
2a 2a
b A

- 10 0.316 1.14 — —223 0.917 117 — —-27.0 0.877
2a 2a

~12 0251 1160 229 0893 1202 ~295 0834
2a 2a
A A

— 14 0.200 1.17 — —-234 (L5871 1.23 — - 31.7 0.792
2a 2a
A A

— 16 0.158 1.19 — —238 0.850 1.26 — —33.5 0.754
2a 2a
A i

—18 0126 120~ 241 o833 1292 345 0719
2a 2a
A i

~20 0100 121 _243 0817 1322 ~347 0690
2a 2a

To illustrate the circular aperture pattern computations consider the circular
aperture with a parabolic taper. From (8-141) and the aperture field function in

Table 8-1(a),
ful®)=2x [ ‘1 -15)

The integral can be evaluated using

I‘l(l — x2Y'xJo(bx)dx =

0

bF.Tl

'3"‘,-[,!

o1 (D)

rJo(pr sin 0) dr'.

by letting x = r'/a and b = fa sin 0. Then (8-142) reduces to

"

e

Sunl0) = 2110, m)

where

: 24 1)V, (Ba sin 0)
SO = Gasmoy T

(8-142)

(8-143)

(8-144)

(8-145)

is the normalized pattern function. The patterns given in Table 8-1(a) follow

from (8-145).
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8.6 REFLECTOR ANTENNAS

In long-distance radio communication and high-resolution radar applications,
antennas with high gain are required. Reflector systems are perhaps the most
widely used high gain antennas. Reflecting antennas routinely achieve gains far
n excess of 30 dB in the microwave region. Such gains would be difficult to
obtain with any single antenna we have discussed thus far. In this section we will
consider a few of the more important forms of reflector antennas, with emphasis
on those that have circular apertures.

8.6.1 Prime-Focus Parabolic Reflector Systems

The simplest reflector antenna consists of two components: a large (relative to a
wavelength) reflecting surface and a much smaller feed antenna. The most pro-
minent example is the parabolic reflector antenna as shown in Fig 8-21a. The
reflector (or “dish™) has a paraboloid of revolution shape. The intersection with
the reflector of any plane containing the reflector axis (z-axis) forms a curve of
the parabolic type. The cross section in Fig. 8-21b is typical. The equation
describing the parabolic reflector surface shape in the coordinates used is

"

(" =41(/-2) r<a (8-146)

For a given displacement ' from the axis of the reflector the point P on the
reflector surface is a distance p away from the focal point F. For example, at the

apex of the dish " =0 and =" = . and at the edge of the dish r' = gand =" = [ —
a?/4f. The parabolic curve can also be expressed in polar coordinate form as
2 _ {r
= = f'sec? - 8-147
¢ 1 4+ cos ! 2 ( )
or
. 2fsin (F o 2
r=psinfl = ! - =2 tdn (8-148)
1 4+ cos @) i 2

At the apex (0'=0°). p=f and r=0. At the reflector edge (0'=10,)
p=2f/(1 4 cos (,).

The parabolic shaped reflector has a very unique feature: A1l path lengths from
the focal point to the reflector and on to the aperture plane are the same. This can
be shown using (8-147) as follows

FP+PA=p+ pcostl = p(l ~ cos ) =2f (5-149)

The implications of this constant path length property will be examined by
considering the reflector system to be a transmitting antenna. Suppose a feed
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Figure 8-21 The parabolic reflector antenna. (a) Parabolic reflector
and coordinate system. (b) Typical cross section.

423
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_— Aperture plane

Figure 8-22 Prime-focus parabolic reflector an-
tenna in cross section.

antenna is placed at the focal point; such a configuration is referred to as a
prime-focus reflector antenna. For large reflectors (a > 4) geometrical optics
principles can be applied and radiation from the feed antenna is analyzed by ray
tracing as shown in Fig. 8-22. Since all rays from the feed travel the same
physical distance to the aperture plane, the excitation is of uniform phase.

The field amplitude distribution over the aperture plane, of course, depends
upon the radiation propertics of the feed antenna. First assume the feed antenna
is an isotropic point source at the focal point. so we can examine the eflects of
the reflector alone. The power density leaving the feed falls off as 1/p? since the
wave 1s spherical. After reflection there is no spreading loss since the wave 15
then planar. Hence, power density in the aperture varies as 1/p?, and the field
intensity varies as 1/p.

The power density variation in the aperture can also be determined using
geometrical optics ideas (see Section 9.1), which apply to structures large relative
to a wavelength, The assumption of geometrical optics is that power density in
free space follows straight line paths. Applied to this case, the power in a conical
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wedge of sold angle dQ with cross-sectional angle d0'(as shown in Fig. 8-22) will
remain confined to that conical wedge as it progresses out from the feed. After
reflection the power associated with the increment df) arrives at the aperture
plane in a thin ring of thickness dr’ and area d4. The power leaving the feed in
this direction is proportional to P, dQ where P, is the transmit power. This
power is distributed over area d4 in the aperture plane. Thus, the power density
in the aperture plane varies as

P dQ  dQ
) o7 A Rl 8-150
since P, is a constant. Now dQ = 2z sin ('d0'and dA = 2nr" dr', so
2n sin @' d0° sin 0" dO
2 = Sy 8-151
S} 2ur’ dr rodr ( )
From (8-148)
' d (... 0\ . L0
= an — | = = 8-152
0~ do (2-Jf k) ) jsec” 5 =1 (8-152)
where (8-147) was used for the last equality. Then
d—(), . . (8-153)
dr' p
Hence, (8-151) with (8-148) and (8-153) becomes
sin¢” 1 1 (8-154)

a W T - 2

psinflp p

which we already noted from the spherical wave nature of the feed. The field
variation then follows from S, = EZ/Z,.

!
E(0') = ~. 8-155
)% (8-155)

Thus, there is a natural amplitude taper in the aperture plane caused by the
reflector.

If the primary (or feed) antenna is not isotropic the effect of its normalized
radiation pattern F (0. ¢). using the coordinate system of Fig 8-21, can be
included as

E, (0, ¢') = E, ff“’{;’ ¢,

where 4, is the unit vector of the aperture electric field. The coordinates r and ¢’
are appropriate for describing the aperture electric field. Thus 0" and p must be

(8-156)

r
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expressed in those coordinates. From (8-148)

H
'=2tan ! — )
an o ; (8-157)
and it may be shown from (8-147) and (8-148) that
4}'2 3L r!.!
Pp=— ‘r‘ 5 (8-158)

Thus far we have derived the amplitude and phase of the aperture field distrib-
ution. It remains to determine the direction @,, which is the unit vector for E, in
the aperture plane, after the feed radiation is reflected from the reflector. The
reflection process for large reflectors is well approximated by Snell’s law for
planar reflection surfaces. Thus the angle of incidence and angle of reflection are
equal; as shown in Fig. 8-21h this angle is #/'/2 relative to the reflector surface
unit normal i. If E; and E, are the incident and reflected electric fields at the
surface of the reflector, the tangential component of the total field E, + E, must
be zero to satisly the boundary condition on a perfect conductor. Due to the
symmetry about i the normal components double. So E; + E, = 2(ii - E,), or

E, =2n-En-E,. (8-159)

Since the amplitude of the incident and reflected waves are equal, |E,| = |E;|.
the above equation can be divided by this amplitude giving

i, = 2(h - §)h — @, (8-160)

where i, = E,/|E,| and 4, = E, |E,|.

The radiation pattern from the entire parabolic reflector antenna system,
referred to as the secondary pattern, can now be calculated from the aperture
field. We shall use the equivalent magnetic current formulation. From (8-16) and
(8-132)

2 a g \ '
| s ¢ }ﬁ, gl it Geasdi=ainy, il (8-161)

L I Iy

The complete radiation field is then obtained from (8-26).
The approach presented here for radiation pattern calculations is referred to
.as the “aperture method.” The pattern could also be obtained by using the
electric surface current excited on the reflector surface. The two methods are
essentially equivalent. The aperture field is the projection of the surface current
distribution onto the aperture plane. In both models it is usually assumed that
the excitation does not extend beyond the reflector edge and that the direct feed
radiation is small. We chose the aperture method to avoid integrating over the
curved reflector surface.
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As an example consider a short dipole at the focal point and oriented parallel
to the y-axis. The radiation from the dipole has no p-component, and the electric
field direction can be written from (A-2) as

i m@’sin @ cos 0 + ¢ cos ¢’

= 8-162
1 —sin* ¢’ sin? ¢ ( )
The reflector surface unit normal is
" . & e o
= —pcos 5 + 0" sin 5 (8-163)
Hence (8-160) leads to
e X sin @' cos ¢'(1 — cos 0) — §(sin® ¢’ cos (' + cos’ ¢>_) (8-164)

! - Ry | ’
W 1 —sin® @' sin” 0

The pattern of a short dipole along the z-axis is sin ), and when along the y-axis
it is

Fi0, ¢')= /1 —sin? ¢ sin? 0. (8-165)
Using (8-164) and (8-165) in (8-156) gives the aperture electric ficld

E,=E, i [X sin ¢’ cos ¢'(1 — cos 0') — §(sin? @' cos 0 + cos® ¢')].  (8-166)
0

It is instructive to examine this aperture field. In the H-plane (¢’ = 0°) the
bracketed factor in (8-166) reduces to —y and in the E-plane (¢' = 90°) it
reduces to —y cos (. Thus in the principal planes the aperture field is polarized
in the same fashion as the feed dipole; the radiation from the reflector will be
also. For nonprincipal planes the radiation will contain field components ortho-
gonal to that of the feed (x-components), that is, cross-polarized components.
Figure £-23 illustrates the orientation of the electric field vector over the aper-
ture. The largest cross-polarized components introduced by the reflector occur
along the 45° planes. As the focal length to diameter (d = 2a) ratio f/d increases,
fl, decreases and the cross-polarized component decreases.

The combination of the short electric dipole and a short magnetic dipole
perpendicular to it along the x-axis at the feed point with the same phase and
appropriate magnitude (called a Huygen's source) yields a purely linear polarized
(v-directed) field over the aperture and thus a purely linear far field.

Since the radiation integral of (8-161) together with (8-157) and (8-158) is an
involved analytical problem, it is rarely performed. To obtain the radiation
pattern one of two approaches is commonly used: numerical evaluation of the
radiation integral [12] or, if approximate results are satisfactory, the aperture
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—— H-plane

N e e e e —

E-plane

Figure B-23 Electric field distribution in the aper-
ture of a parabolic reflector for a y-polarized short
dipole feed antenna. The electric field is decomposed
into its x- and y-components. See (8-166).

distribution can be approximated and the techniques of Section 8.5.2 employed.
We shall discuss the latter approach.

Most practical feed antennas have circularly symmetric patterns, that is, the
feed pattern F, is not a function of ¢’ (if it is not symmetric, the average of the
E- and H-plane pattern values can be used). The aperture field in (8-156) consists
of two factors, the primary (feed) pattern F, and the 1/p spreading loss of an
isotropic feed. Using (8-148) and (8-158) leads to the normalized aperture field

distribution
I” 21=1
4+ (g) }

| + (;7)2 J dB. (8-167)

E (r)= FI-( ¥ = 2f tan %

=20 log| F,| — 20 log

Jhis could be used in (8-141) to obtain the pattern of the reflector system.
However, the aperture distribution is often well approximated by a parabolic-
squared taper (or sometimes a parabolic taper) on a pedestal. The edge illumina-
tion is found from (8-167) with 6" = @, for the feed pattern and 1’ = a = d/2 for

i |
!
I
i

.
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the spreading loss term, giving

C(dB) = 20 log|F,(8,)| — 20 log

1{d\
1+—[=] | 8-
.+16(f) } =
The secondary pattern of the reflector is then obtained from Table 8-1(b). A
simplified method for obtaining such patterns is available in the literature [11].

Example 8-8. A 28-GHz Parabolic Reflector Antenna

A prime focus parabolic reflector antenna is used at VPI&SU to receive a beacon signal
from the COMSTAR series of satellites. The characteristics of this antenna are given in
Table 8-2.° The characteristics listed arc measured values. The reflector is an epoxy
fiberglass structure coated with metal. The feed antenna is a circular corrugated horn,
positioned at the focal point and supported by four thin spars. The differences in the
beamwidths and side lobe levels of the secondary radiation pattern are caused by the
asymmetry of the feed radiation and the presence of the feed waveguide and support
structure. We will give the details of the E-plane pattern calculations. From (8-157), at
the reflector rim.

00'-'-'2lan"(%%)=2tan'1[;2)=53.1° (8-169)

Table 8-2 Characteristics of the 28 GHz Parabolic
Reflector Antenna of Example 8-8

Frequency 28.56 GHz
Reflector characteristics:
Diameter, d 1219 m (4 t)
Focal length/diameter, f/d 0.50

Surface tolerance (rms) 0.2 mm (0.008 in.)

Feed characteristics:

E-plane HP 56°
E-plane 10-dB beamwidth 104°
H-plane HP 59°
H-plane 10-dB beamwidth 112°
System charactenistics:
E-plane HP 0.605°
E-plane side lobe level —-28.5dB
H-plane HP 0.556°
H-plane side lobe level —17.5dB
Gain 47.6 dB

* The antenna was manufactured by Alpha Industries. Inc.. TRG Division.
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Figure 8-24 Measured (solid) and computed (dashed) E-plane patterns for the
1.22 m diameter prime-focus parabolic reflector antenna at 28.66 GHz
(Example 8-8).

since f/d = 0.5. The feed radiation pattern is 10 dB down for §' = 104° 2 = 52°; thus, at
the edge of the dish the illumination is slightly lower than — 10 dB, or about —11 dB.
The total edge illumination from (8-168) is then

C(dB)= —11 — 20 log[! + {4(2)*] = —12.9, or € =0.2265. (8-170)

Using the pattern of a parabolic-squared taper on a pedestal in (8-145) and evaluating for
C = 0.2265 gives

HP, = 1214~ = 0.01045 rad = 0.599° (8-171)

~dl
since 4=100105m and ¢ = 2¢ = 122 m. The computed side lobe level is —30.5 dB.
These values agree very well with the measured values of HP, = 0.605° and SLL; =

—28.5dB. In fact, the computed radiation pattern agrees amazingly well with the measured
pattern as shown in Fig. 8-24.

8.6.2 Cassegrain Reflector Systems

Another very popular form of the circular parabolic reflector is the Cassegrain
reflector antenna shown in Fig. 8-25. It consists of a feed horn. a subreflector,
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Figure 8-25 The Cassegrain reflector antenna. (a) The ray paths. (b) The
parameters, :
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and a main reflector with rays from the feed experiencing reflections off of both
the subreflector and main reflector. The antenna operates in fashion similar to
the prime-focus parabolic reflector except for the extra reflection introduced by
the subreflector. The subreflector is a hyperboloid of revolution. Its cross section
as shown in Fig, 8-25 is a hyperbolic curve expressed by

wily P _
=1 "ecos ¢ (Rel2)
where
1
pzc(l —8—2) (8-173)

and the eccentricity is

_ sin[§(0, + ¢,)]

- - ; -17
sin(i(0, — ¢,) Y
The parabola is still defined by (8-147). If
f_ L
Pkt (8-175)

5

where f, f,. d, and d, are the focal lengths and diameters of the main and
subreflectors, then the Cassegrain system is highly efficient.

There is an equivalent single prime-focus parabolic reflector which produces
the same aperture distribution as the Cassegrain system (see Fig. 8-25b). The
equivalent paraboloid has a focal length /,, diameter d, and half-angle ¢,.

The Cassegrain system oflers several advantages over a prime-focus parabolic
reflector of the same main reflector size. First, the primary feed antenna is near
the apex of the main reflector facilitating access and adjustments such as feed
rotation. Also the feed waveguide length is reduced, thus reducing attendent loss
and noise. For reflector systems there is always a portion of the feed antenna
pattern which is not intercepted by the main reflector in the prime focus case
and by the subreflector in the Cassegrain case. This is referred to as spillover. For
receiving antennas this spillover contributes to noise pickup from the environ-
ment surrounding the antenna. For earth terminal receiving antennas the spill-
over from a Cassegrain antenna is directed toward the relatively low noise sky,
whereas the prime-focus antenna spillover is directed toward the more noisy
ground. Thus, the Cassegrain system inherently has lower noise. The Cassegrain
antenna is also capable of providing a lower cross-polarization level. This can be
seen by the fact that the equivalent parabola for the Cassegrain antenna is of
long focal length and, as we saw earlier, cross polarization reduces as focal
length increases for the simple focus-fed reflector.
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On the other hand, the subreflector tends to be much larger than the feed horn
for a prime-focus reflector. These structures in front of the main reflector block
the final emergent rays leading to gain reduction. This aperture blockage is thus
smaller for the prime-focus reflector. For this reason, the Cassegrain reflector
configuration is usually only employed for situations requiring narrow half-
power beamwidths (about a degree or less).

8.6.3 Gain Calculations for Reflector Antennas

In Section 8.3 gain calculations for aperture antennas were discussed. Since
gain is perhaps the single most important parameter for a reflector antenna, we
shall return to the topic of gain calculations for this purpose. Once we have
determined the aperture efficiency ¢,, the gain is obtained from (8-79) as

G= *ﬂp Az = 39( ) (8-176)
where from (8-75)
Eap = €& E E283 """ . (8-177)

The radiation efficiency e for reflector antennas represents the ohmic iosses,
which are usually very small, unless lossy devices are included as part of the feed
system. Hence, usually we take e > 1.

The aperture taper efficiency &, is the gain loss due to an aperture illumination
that is tapered relative to uniform illumination, which produces maximum gain.
In Example 8-8 we saw that the parabolic-squared taper on a pedestal provided
good pattern results. The aperture taper efficiency values from Table 8-1(b) are
plotted in Fig. 8-26.

The remaining efficiency factors, referred to as achievement factors, represent
many factors causing gain reduction by not achieving the aperture distribution
assumed in the aperture efficiency factor. The most prominent of this is the
spillover (or feed) efficiency &,. In the aperture taper calculation it was assumed
that the aperture fields were confined to the circular area represented by the
reflector aperture. However, the feed antenna illumination does not drop to zero
beyond the reflector rim in the prime focus case and the subreflector rim in
the Cassegrain case. That portion of .the feed radiation which is not intercepted
by the reflector (spillover) leads to gain loss, since this power is not directed in
the main beam maximum direction. We define &, as that fraction of power radiated
by the feed which is intercepted by the main reflector of prime focus systems and
by the subrefiector of Cassegrain systems. As the aperture taper increases, the
spillover will decrease (and thus &, increases) [13], while the aperture taper
efficiency factor decreases. The tradeoff between ¢, and &, has an optimum solution,



434 APERTURE ANTENNAS

1.0 T T
Aperture
taper
efficiency
L.
0.9} =
g
7
2 Spillover
g 0.8 efficiency —
i €
2
b Combined
efficiency
€€
0.7 —
| ]
0.6
o =5 — 10 —15

Edge illumination C (dB)

Figure 8-26 Aperture taper and spillover efficiencies
as a function of edge illumination for a circular parabolic
reflector antenna.

as indicated by the combined efficiency ¢,¢, in Fig. 8-26. The maximum of ¢ ¢,
occurs for an edge taper of about — 11 dB and has a value of about 0.8. A value
of —10-dB edge taper is frequently quoted as being optimum.

The random surface error factor ¢, is the efficiency factor associated with
far-field cancellations arising from phase errors in the aperture field. For small
phase errors ¢, = ¢~ 2™ 4% where § is the rms phase front deviation from planar
over the aperture. For reflector antennas 4 is replaced by 28’ where &' is the rms
surface deviation from the true paraboloid. The factor of two comes from the
two-way path, leading to a doubling of the phase error. Then

£, = e n8IM, " (8-178)

In many cases ¢, is very nearly unity. Table 8-3 gives typical rms surface toler-
ances for various reflector construction methods. For example, the best spun
aluminum reflector has 6" = (0.15/30)4 at 10 GHz(4 = 30 mm), and &, = 0.996.
Equation (8-178) is based on flat reflectors (fid = =) and g, is increased somewhat
as f/d is reduced; that is, it is a worst case value. The values in Table 8-3
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Table 8-3 Typical Reflector Surface Toler-
ances

Reflector type RMS surface tolerance, &'

Spun aluminum-—good
Spun aluminum-——best
Metalized plastic
Machined aluminum

0.64 mm (0.025 in.)
0.15 mm (0.006 in.)
0.06 mm (0.0025 in.)
0.04 mm (0.0015 in.)

are primarily for small reflectors. A simple formula representing current state-of-
the-art reflector surface accuracy as a function of reflector diameter is given by

& =3 x 107%d mm (8-179)

where d is in meters. For example, a 1-m reflector has a surface error of 0.03 mm,
whereas a 10-m diameter reflector has a 0.3-mm accuracy.

Structures placed in front of the aperture will block the emergent radiation,
leading to a gain loss. The aperture blockage efficiency & is due to the presence
of a feed antenna or a subreflector in the Cassegrain case. Also sometimes
prime-focus reflector systems employ a metal structure behind the feed to house
RF signal processing hardware, giving additional blockage. Values of ¢ are
given in Table 8-4 as a function of the ratio of the diameter of the blocking
structure near the focal point d, to the main reflector diameter d. Blockage can
also arise from the spars (or struts) used to support the feed antenna or
subreflector. The spar blockage efficiency &, values are given in Table 8-4 for
various main reflector sizes and numbers of half-wavelength thick spars.

If the feed antenna is not placed at the focal point of a reflector system (this is
sometimes done intentionally when using multiple feed antennas) reduced
efficiency results. The squint factor s represents lateral displacement (in the
aperture plane), which squints, or shifts, the main beam maximum off axis. If the
beam shifts off axis by one half-power beamwidth, ¢5 =~ 0.98. The astigmatism
efficiency &4 represents axial displacements of the feed. It is a function of
frequency and f/d. For example, for a 0.14 axial displacement &g is 0.996, 0.98,
and 0.93 for an f/d of 4, 1, and 4, respectively.

Other efficiency factors are possible. If a reflector antenna employs mesh
surface rather than continuous metal the surface leakage efficiency &, is slightly
less than unity; that is, ¢, ~0.99 for a mesh with several grid wires per wave-
length. Also an effective gain loss arises from depolarization; that is, power
generated in a polarization state orthogonal to that desired. The depolarization
efficiency ¢g is usually greater than 0.98.

To illustrate these efficiency factors, we return to Example 8-8. If the
parabolic-squared taper on a — 12.9-dB pedestal used for the E-plane was valid
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Table 8-4 Blockage Efficiencies for Reflector An-
tennas

(a) Aperture blockage efficiency ¢,
dgfd 0.05 0.10 0.20

£y 0.990 0.956 0.835

(b) Spar blockage efficiency &,

d
N 104 1004 2004
3 0.946 0.995 0.999
B 0.935 0.994 0.998

d, = diameter of blocking structure near focal point
d = diameter of main reflector
N = number of support spars which are 4/2 thick

for the entire aperture, then ¢, would equal 0.81; see Prob. 8.5-4. As can be seen
from Table 82, though, since the feed pattern is not symmetric, the aperture
distribution will not be either. If an effective — 10-dB edge taper is assumed, the
combined efficiency &, &, from Fig. 8-26 is about 0.78. Now, for a 0.2-mm surface
error and a 10.5-mm wavelength, (8-178) yields ¢, = ¢~ 14™®-2/1051 = 0.94,
The feed horn diameter is about 0.05 m so d,/d = 0.05/1.22 = 0.04 ~ 0.05, and
Table 8-4(a) yields ¢5 = 0.99 for aperture blockage efficiency. The spar blockage
efficiency follows from Table 8-4(b) as &, = 0.994, since d = 1.22/0.01/4 = 1004
and N = 4. The remaining achievement factors are all near unity, so we have

£y = (1)(0.78)(0.94)(0.99)(0.994) = 0.72.. (8-180)

Typical efficiency values quoted for high efficiency feeds, such as in this case, are
from 0.65 to 0.70. The efficiency of (8-180) would lead to a gain of

nl.22

2
S = 95934 = 49.8 dB. -181
0.0105) t b ® )

G=an(

However, the antenna system of Example 8-8 had several waveguide components
behind the feed horn to provide for adjustable dual polarization. Thus, the
measured gain of 47.6 dB indicates losses of 49.8 — 47.6 = 2.2dB. These feed losses
are represented through the radiation efficiency, which is now e = 0.60. Then the
overall aperture efficiency including these losses is &,, = 0.60(0.72) = 0.43.
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8.6.4 Other Reflector Antennas

The principles of reflecting surfaces for focusing have been employed in opti-
cal telescopes for several centuries. The reﬁector'antenna, however, did not
appear until 1888 when Hertz used a cylindrical parabolic mirror of zinc, fed
v\.filh a dipole along the focal line connected to a spark-gap generator. He used a
§tmilar antenna for receiving, at a wavelength of 66 cm. Several other scientists
investigated reflectors shortly after Hertz’s work. But reflector antenna techno-
logy did not really emerge until shortly before World War II, when in 1937
Grqtc Reber constructed a 9.1-m-diameter prime-focus, reflector antenna for
radio astronomy. More detailed history of reflector antennas can be found in
[14] and [15].

Thc prime-focus and Cassegrain fed parabolic reflectors, as described so far in
this chapter, were developed roughly from World War 11 through 1960. Since
that period modifications to these basic reflector types have been introduced for
the purpose of increasing the aperture efficiency or for special antenna pattern
shaping applications to produce a pencil beam, a fan beam, a shaped main beam,
low side lobes, or multiple main beams. There are several excellent reviews of the
yarious reflector configurations, solution techniques, and feed design available
in the literature [14-18]. We will give a brief accounting of a few of the promin-
ent reflecting antennas in current use.

If a simple feed is used, a single-reflector antenna should be of paraboloidal
shape (unless it is small in terms of a wavelength) to achieve a uniform phase
over the aperture. The prime-focus parabolic reflector was discussed in Section
8.6.1. There are several variations of the paraboloidal reflectors as shown in
Fig. 8-27. The parabolic cylinder is used for producing a narrow beamwidth in
the plane of the axis of the reflector. The parabolic torus is, in a sense. a curved
version of the parabolic cylinder and can be used for beam scanning with a
rotating feed or for multiple beams with a cluster of feeds. The spherical reflector
can be used in a similar fashion to produce a pencil beam, because, unlike the
paraboloidal reflector, the focal region is diffuse. This allows feed displacement
for beam scanning without severe gain loss. Reflectors do not always involve
curved structures. The corner reflector of Fig. 8-27¢ is made of planar reflecting
sheets joined together forming an angle «. It can be used in either an active or
pgssive manner. In the passive case, the angle « is 90° and incoming plane waves
will be reflected back in the same direction. Such an antenna is called retro-
directive. The corner reflector can be used actively by placing a feed antenna
between the reflecting sheets [19]. A rapidly advancing area of reflector techno-
logy is that of the offset reflector, an example of which is shown in Fig. 8-27f
Aperture blockage is reduced by off-setting the feed. However. the design is
complicated by the need for determining the reflector shape.

Greater flexibility is often possible with multiple-reflector systems, some
examples of which are shown in Fig. 8-28. The Cassegrain refiector antenna was
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discussed in Section 8.6.2. Increased pattern control is obtained by changing the
paraboloidal main reflector and/or hyperboloidal subreflector shapes of the classi-
cal Cassegrain reflector system. Galindo [20] showed that it is possible to
achieve arbitrary aperture phase and amplitude with the shaped dual reflector
system of I'ig. 8-28a. This can be done by starting with a conventional Casse-
grain system and deforming the subreflector to obtain a nearly uniform ampli-
tude aperture distribution. The phase errors introduced can then be corrected
with minor changes to the main reflector shape without significantly altering the
aperture amplitude. This approach provides dramatic improvement in the aper-
ture efficiency [21]. The reflectors may also be shaped to produce low side lobes
[22]. A reduced aperture blockage version of the dual reflector antenna is that
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employing an offset subrefiector, as shown in Fig. 8-28b. In this case the main
reflector and subreflector shapes must be determined in the design process. A
series of several small reflectors in the so-called beam waveguide feed system has
several variations for special purpose feeds used with a single large reflector.

There are also several hybrid reflector systems involving different antenna
types. The periscope antenna of Fig. 8-28¢ has been used extensively for micro-
wave links. The paraboloidal antenna is located near the ground and the flat
reflector on a tower redirects the radiation in the desired direction. Another
hybrid antenna used very heavily in microwave links is the horn-reflector antenna
of Fig. 8-28d. It combines a conical or pyramidal horn and a portion of a
paraboloidal reflector. This is actually an offset feed configuration. It is excellent
for low noise applications because of the low back lobes and far out side lobes,
not afforded by open reflector systems. Horn-reflectors are well suited to side-by-
side or back-to-back applications. The most notable horn-reflector antenna is
the one in Andover, Maine used to track the Echo balloon in 1961. It is 15 m
long and has a 6 by 6 m aperture.

Feeds for large reflector antennas have gradually evolved from dipoles to
horns and finally to hybrid mode (combining both TE and TM modes) feeds,
which are usually corrugated horns.
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PROBLEMS

8.1-1 An ideal dipole with an infinitesimal current centered along the z-axis has only a
fl-component of E. If this uniform current clement is now rotated to line up with the
x-axis, there will be both (- and ¢-components. Make the necessary changes to the
far-zone E expression for the z-directed current case to obtain the far-zone E expression
for the x-directed current case. Draw sketches in the xz- and yz-planes indicating the E
and H field orientations for the x-directed ideal dipole.

8.1-2 Use the principle of duality to derive (8-5) and (8-6) from (8-3) and (8-4).
respectively.

8.1-3 Show that (8-24) follows from (8-22) and (8-23).

8.1-4 Show that (8-26) follows from (8-11).

8.1-5 The trigonometric obliquity functions in the far-field expression of (8-24) actually
represent projections of the aperture equivalent surface currents onto the plane contain-
ing the far-field components (ie.. the 0, ¢-plane). Examine the relationships connecting
the equivalent currents 1o the far-zone fields to show this for both the electric and
magnetic currents. You need only examine the vector nature of the relationships.

8.1-6 If the incident field is x-polarized in Example 81, write radiation field E, and the
pattern F(f). Your answer will be that of (4-17) with a coordinate change. Is the appro-
priate boundary condition for E, satisfied on the conducting plane?

8.2-1 Derive (8-32).

8.2-2 Use geometric arguments to prove that du dv = cos # dQ where dQ = sin 0 dtl do.

8.3-1 Prove (8-62).
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8.3-2 Prove that the uniform amplitude aperture excitation yields the highest directivity
of all uniform phase excitations. Hint: Use (8-65) and the Schwarz inequality

!H,!’g ds"2 < ”,1’2 ds'’ ” g ds'
|-x- -S- w e

5

for any functions fand g. Let g = 1 and [ equal the aperture field.

8.3-3 Show that the aperture taper efficiency is § for a rectangular aperture with a
uniform amplitude distribution in one direction and a cosine squared distribution in the
other. :

8.3-4 A rectangular aperture (L, by L,) has a field distribution which is cosine tapered in
both the x- and y-directions. Derive the directivity expression. What is the aperture taper
efficiency?

8.3-5 Compute the directivity in decibels for a rectangular aperture with L, = 104 and
L, = 202 for (a) a completely uniform aperture illumination and (b) a cosine amplitude
tépcr in one direction and a uniform taper in the other aperture direction.

8.3-6 Evaluate the aperture taper efficiency for a triangular tapered aperture distribution
where

L,

L% |x| £=2

L,
5. i}“| = 2}‘

8.3-7 Is the uniform aperture distribution physically realizable? Why?
8.3-8 An antenna operating at 150 MHz has a physical aperture arca of 100 m?, a gain of
23 dB. and a directivity of 23.5 dB. Compute (a) effective aperture 4., (b) maximum
effective aperture A,,,. (c) aperture efficiency «,,, (d) radiation efficiency e. and (e) D/D, .
8.3-9 Prove the last of (8-80).
8.3-10 The approximate directivity formula of (8-81) can be derived rather simply for the
special case where HP, = HP,, = HP and HP is small. Assume all radiation is uniform and
confined to a cone of half-angle HP/2. Then compute £, by integration and utilize the fact
that HP is small.
8.3-11 A horn antenna with a 185.5 by 1374 cm rectangular aperture has the following
measured parameter values at 0.44 GHz: HP, = 30°, HP;, = 27", and G = 15.5 dB.

(a) Compute the aperture efficiency.

(b) From the measured half-power beamwidths_estimate the gain.
8.3-12 Repeat Prob. 83-11 for a horn with a 28.85 by 21.39 cm aperture and HP, = 127,
HPy = 13° and G = 22.1.dB at 6.3 GHz.
8.3-13 A 3.66-m (12-ft) diameter circular parabolic reflector operates at 460 MHz. The
measured parameters of this antenna are: G =222 dB and HP, = HP, = 12.5°. Esu-
mate the gain using both (§-84) and (8-82).
8.3-14 Estimate the gain of a circular parabolic reflector operating at 28.56 GHz in two
Ways:

(a) Using only its size which is 1.22 m {4 t) in diameter.

{b) Using only the measured hal-power beamwidths which are HP, = 0.605" and
HP,; = 0.556".
8.4-1 Derive the expression for Ry in (8-86).
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8.4-2 Derive the H-plane sectoral horn radiation field expression in (8-93) to (8-95).
84-3 In the H-plane pattern expression of (8-103) and (8-104) for an H-plane sectoral
horn:

(a) Show that s, follows from s; of (8-95).

(b) Show that the phase term (n'81)[(A/A)sin @@ + 4]* follows from the corresponding
term in (8-94).
8.4-4 Derive the directivity formula (8-105) for an H-plane sectoral horn from (8-65). The
numerator of (8-65) can be evaluated using (8-92) to (8-94).
8.4-5 Plot 4/4 versus R, /4 for an optimum H-plane sectoral horn using the approximate
formula (8-106). Then indicate the points on this graph which correspoad to opiimum
performance for each curve of the family of curves in Fig. 8-12.
8.4-6 The H-plane pattern for an H-plane sectoral horn arises from the first integral in
(8-92).

(a) First evaluate this integral for a no phase error condition.

(b) Show that the on-axis value of the H-plane pattern relative to the on-axis value of
the zero phase error case is given by

i
— [t} =0°, ¢p = 0°).
16 r{ ¢ )

N

(c) Evaluate this for t = 4, 4, 3. and 4 and compare to the values from Fig. §-11.
8.4-7 An H-plane sectoral horn antenna has an axial length of 5 and a flare half-angle
2y of 12.6°,

(a) Plot the polar plot of the H-plane radiation pattern in decibels. Use Fig. 8-11,

(b} Compute the directivity function 4D, ‘h using (8-103) and compare to that ob-
tained from Fig. 8-12.

(c) Since the aperture is not large relative to a wavelength, use the zero phase error
directivity formula of (8-56) to compute iD,, /b.
8.4-8 Design an optimum H-plane sectoral horr’ antenna with 12.15 dB gain at 10 GHz
[t 1s fed with WR90 waveguide.

(a) Find the horn dimensions employing Fig. 8-12.

(b) Draw the H-plane horn geometry to scale.

{c) Use (8-105) to compute the directivity as a check.
8.4-9 Repeat Prob. 8.4-8(a) except use (8-106) in (8-105) instead of Fig. 8-12.
8.4-10 Derive the E-plane sectoral horn far-zone electric field expression of (8-1 12}
8.4-11 Show how the E-plane pattern magnitude expression lor an E-plane sectoral horn
of (8-115) follows lrom (8-112).
8.4-12 Find the physical length in wavelengths by which waves at the edges of a horn
aperture trail those at the center. Do this for optimum operation and in both the H-plane
and E-plane.
8.4-13 Use physical reasoning to explain why the phase error parameters for optimum E-
and H-plane sectoral horns are different.
8.4-14 An optimum gain E-plane sectoral horn antenna is to have a half-power beam-
width of 117 in the E-plane at 10 GHz. It is to attach to a WR90 waveguide. Determine
the horn dimensions to achieve the required beamwidth and 14.9 dB gain.
8.4-15 An E-plane sectoral horn antenna has an E-plane aperture height of 24.0 cm and a
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half-fiare angle of 16.5°. It is attached to a WR284 waveguide. Compute the gain at
3.75 GHz (a) using (8-116) and (b) using (8-120).

8.4-16 Explain why the E-and H-plane sectoral horn radiation fields do not go to zero for
! > 7/2 as we said they would in connection with (8-24).

8.4-17 Derive the optimum pyramidal horn antenna design equation of (8-126).

8.4-18 Start with the value of & = 10.17 given in Example 8-7 and verify the horn dimen-
sions of (8-128).

8.4-19 Design an optimum gain pyramidal horn antenna with 20 dB gain at 10 GHz. It is
connected to a WR90 waveguide.

8.4-20 An * off-the-shell” pyramidal horn antenna that operates f[rom 18 to 26.5 GHz has
a gain of 24.7 dB at 24 GHz. It is fed from WR42 waveguide.

(a) Use optimum design principles to determine the horn dimensions in centimeters
necessary for construction of the antenna,

(b) Compute the principal plane hall-power beamwidths in degrees.

(¢) Use these beamwidth values to estimate the gain,

(d) Compute the half-power beamwidths that follow from line source theory with the
same amplitude tapers in the principal planes as the horn. Compare to the values from (b)
and explain any differences

(e) Plot the E- and H-plane patterns in polar-dB form.

8.4-21 Derive the following relationship which must be satisfied for a physically realizable
pyramidal horn antenna.

fiek h,_f_).
R, B/i R
s afd A"
o8 Alr

8.4-22 A4 square main beam horn antenna. It is often desirable to have equal principal
plane half-power beamwidths. This problem develops a design technique for a so-called
square main beam pyramidal horn. If optimum design technigues under the condition of
a square main beam are used, the resulting horn dimensions will render a horn that
cannotl be constructed. To avoid this problem we can design for a square main beam and
aim for near optimum conditions. To do this we first determine the aperture dimensions
that give the desired beamwidths and optimum operation. Then the axial lengths are
adjusted to provide a physically realizable structure. This will probably not move the
operating point too far from optimum. Follow this procedure to design a square main
beam horn at 8 GHz with 127 beamwidths and fed by WR%) waveguide.

(a) Determine 4/ and B /.

(b) Use the results of Prob. 8.4-21 for adjusting the axial lengths. Do this to keep the
fractional increase or decrease of both the same, that is, use

R,

e

=R3nn_;- snd- B2 Bausd

‘ i f

and solve for the constant 7
(¢) Evaluate the final phase error parameters 1 and s.
(d) Give the horn dimensions in centimeters.

e
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(e) Evaluate the gain.

(f) Compute the aperture efficiency.
8.5-1 If the equivalent current formulation is used which includes both electric and mag-
netic surface current 'densities, write the radiated electric field expression analogous to
(8-136).
8.5-2 Verily that the uniform circular aperture pattern of (8-137) is unity for # = 0.
8.5-3 Derive the pattern expression f (0, n, C) in Table 8-1(b) for a parabolic taper on a
pedestal.
B.5-4 The directivity of a circular aperture antenna can be found from (8-65).

(a) Show that for a parabolic taper (n= 1) on a pedestal that

gl o1 TP
=D, 4C+i1—CP
(b) Show that for a parabolic taper squared (n = 2) on a pedestal that
B F (1+2C)
D,  9CT+3C(1 - C)+ 41 - C)P*

£ =

(c) Evaluate ¢ for n=1 and 2 for a — 10-dB edge taper.
8.6-1 Derive (8-158).
8.6-2 Sketch to scale the cross section of parabolic reflectors for the f/d ratios of §, 4, and 4.
8.6-3 Plot the edge illumination (in decibels) of a circular parabolic reflector due to
spreading loss only (i.e., for an isotropic feed) as a function of f/d from 0 to 1.
8.6-4 Compute the half-power beamwidth for the H-plane pattern of the parabolic
reflector antenna of Example 8-8. Use the H-plane feed horn characteristics ol Table 8-2.
Interpolate between values given in Table 8-1 for a parabolic-squared on a pedestal taper.
8.6-5 A commercially available parabolic reflector antenna operating at 2.1 GHz has an
aperture diameter of 1.83 m (6 ft). Compute the gain in decibels.
B.6-6 A commercially available parabolic reflector antenna operating at 11.2 GHz has an
aperture diameter of 3.66 m (12 ft). Compute the gain in decibels.
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Optics is a well-understood area of physics which deals with the characteristics
of light wave propagation. It was Maxwell who showed before 1873 that the
propagation of light could be viewed as an electromagnetic phenomenon. Since
the wavelength of light waves is usually small compared to objects with which it
interacts, the analytical treatment of light wave propagation is much different
than that employed to analyze lower frequency propagation where the size of a
scattering surface is comparable to the wavelength.

A very useful and easily understood method for aralyzing optical problems is
the ray concept. The relationship between ray optics and wave propagation is
apparent from the famous works of Huygens in 1690 and Fresnel in 1818, but
was not formally shown until the works of Luneberg in 1944 and Kline in 1951
[1]. Since that time the well-known methods of optics have found increasing use
in the treatment of many electromagnetic problems in the radio frequency por-
tion of the spectrum for situations where the wavelength is small compared to
the geometrical dimensions of the scatterer or antenna. In these cases asymptotic
high-frequency methods must be employed since it is not practical to use
moment methods (Chapter 7) or eigenfunction expansions. This is because the
rate of convergence of both of these techniques is generally quite poor when
dealing with an electrically large antenna or scatterer.

In this chapter we will first examine the principles of geometrical optics
followed by a briefl discussion of the more general concept of physical optics. We
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will then see that in many situations geometrical optics is inadequate to com-
pletely describe the behavior of the electromagnetic field and that it is necessary
to include another field called the diflracted field. The diffracted field, when
added to the geometrical optics field, permits us to solve many practical radia-
tion and scattering problems in a moderately straightforward manner that could
not be solved any other way.

9.1 GEOMETRICAL OPTICS

Geometrical optics, or ray optics as it is often called, was originally developed to
analyze the propagation of light where the frequency is sufficiently high that the
wave nature of light need not be considered. Indeed, geometrical optics can be
developed by simply considering the transport of energy from one point to
another without any reference to whether the transport mechanism is particle
or wave in nature.

Classical geometrical optics applies to isotropic lossless media which may or
may not be homogeneous. In this chapter we will only consider homogeneous
media where the index of refraction is assumed to be real and is given by

b (9-1)
and is not a function of position within a given medium. Here c is approximately
3 x 10° m/s and v is the velocity of propagation in the medium. In a homogen-
eous medium energy moves along ray paths that are straight lines. Normal to
these ray paths are a family of surfaces called the eikonal of the ray system. In
applying geometrical optics it is only necessary that we know either the eikonal
of the ray system or the ray paths, since the two are uniquely related.

For a plane wave in homogeneous media the eikonal surfaces are planes
perpendicular to the ray paths as shown in Fig. 9-1a. For a spherical source, the
eikonal surfaces are spherical surfaces perpendicular to the ray paths as shown
in Fig. 9-1b.

The variation of the amplitude of the geometrical optics field within a ray tube
is determined by the law of energy conservation since the rays are lines of energy
flow. Consider two surfaces L, and L, + AL as shown in Fig 9-2, Between the
two surfaces we can construct a tube of constant energy flux by using the rays.
Thus, the energy through cross section do, at P, must equal the energy flux
through cross section do at P. If § is the rate of energy flow per unit area. the
condition of constant energy flow through the flux tube is

S, do,= § do. (9-2)
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Eikonal
surfaces
Rays
Rays
e ERT Eikonal
surfaces )
Point source
(a) b)

Figure 9-1 The relation of rays and eikonals for two types of
sources. (a) Plane wave. (b) Spherical wave.

In the case of electromagnetic waves the quantity S is the real part of the
complex Poynting vector and we can assume that

1 |¢
== | Z|EP
s=1 /512

Substituting (9-3) into (9-2) yields ‘

03

R

|E,|? do, = |E|* do. (9-4) ‘
Solving for |E| we obtain 1
do
= |E,| |52 9-5
|E| = |E| |4 (9-5)

Wavefront

at time ¢
Wavefront

at time t + At

: Figure 9-2 The relation of rays and wave-
L, + AL fronts.
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Figure 9-3 An astigmatic ray tube.

Therefore we have obtained a relationship between the amplitude of the geo-
metrical optics field at one point in terms of the amplitude at another.

The relationship in (9-5) would be more useful if the radii of curvature of the
wavefront surfaces do and do, were used. Consider the astimatic ray tube picture
in Fig. 9-3. The principle radii of curvature of do, are p, and p, while the
principle radii of curvature of do are (p, + /) and (p, + /). We can write for
the ratios

da do
== 9-6
P1P2 (P1+/)(Pz+’l) =l
and thus
d
Ty _ P1P2 (9_?)

do (py+ s +4)

. PP i
£l = 'E°'\/ (o + Vo2 +7) )

Note that the tube of rays converge to a line at p, = 0 and p, = 0 where the
cross section of the ray tube goes to zero. Therefore the amplitude of the geo-
metrical optics field description becomes infinite there although the actual field
does not. The locus of points where the ray tube cross section exhibits such
behavior is called a caustic. Caustics may be a point, a line. or a surface. For
example, consider a point source as shown in Fig. 9-4. We can construct a ray
tube from four rays and write

From (9-5) we have

do do
e 9-9
Pt ety &3
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\
B

Figure 9-4 A tube of rays from a point source.

Thus

p p
(p+(f)2_|Ea1p_!_£;' (9 ]'0]
The caustic would be located at the point source in this case.

In both (9-8) and (9-10) we note that as / becomes large we have the usual
inverse distance type field dependence found in the far zone of a three-
dimensional source. Often, however, one is concerned with two-dimensional
problems where one of the radii of curvature, say p,, becomes infinite. In such

problems
Bl = |E| |5 (o-11)
1

Here, the eikonal surfaces are cylindrical and, as / — cc, we have an amplitude

[E| = |E,|

dependence of the field at large distances of the form 1/,/¢. Obviously, if both p, -

and p, are infinite the eikonal surfaces are planes and |E| is a constant for all
values of /.

The results of (9-8), (9-10) and (9-11) are extremely important for they permit
us to easily compute the amplitude of the geometrical optics field at one point in
terms of its known value at another. In electromagnetic field problems, however,
we must also include the phase. Phase can be introduced into (9-8) artificially.

e o
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First, we take our phase reference to coincide with the amplitude referenoe..
Thus, the electrical phase of the ray tube is given by e 7#/ and we may write for
the amplitude and phase of the field in the ray tube of Fig. 9-3

E=Ee% | Pl oy (9-12)

V(1 + oz +0)°

or
E=E,e™A(p;, p;, (e ¥ (9-13)

where E, is the reference amplitude at / = 0, ¢, is the reference phase at / = 0,
A(py, pa, £) is the general spatial attenuation factor, and e /#/ is the spatial
phase delay factor.

Note that when ¢ becomes less than — p, the quantity under the radical sign
in A(py, p,, ¢) becomes negative and a phase jump of m/2 occurs when the
observer passes through the caustic. While we can neither predict the amplitude
or the phase of the geometrical optics field at the caustic, we can determine the
fields on either side of the caustic.

Equation (9-12) or (9-13) permits us to approximately express the field at a
point (i.e, /) in terms of the value at a known point (i.e., / = 0). Rigorously, the
result is only approximate, becoming more accurate as the wavelength tends
toward zero. In practice, however, we will find the geometrical optics expression
to be highly accurate for engineering purposes where the assumptions of geo-
metrical optics are valid.

To finish our initial discussion of geometrical optics, we illustrate its use by
considering the problem of reflection at a curved surface and the subsequent
calculation of the radar cross section of a sphere. From (9-12) it is apparent that
we need an expression for the radii of curvature of the wavefront in terms of the
geometrical radius of curvature of the surface. Consider Fig. 9-5 which depicts a
line source parallel with the axis of a convex cylinder of arbitrary cross section.

From Fig 9-5a
n=n—oa—(n—0,)=0,—« (9-14)

The element of arc length in Fig. 9-5b is equal to r¢ Ax and

Ay, 7, (MG, — Aa)/,

rs Ao = - -
1A= s 6, cos 0, (-13)
Since Ay, = Af, + Ax we have
A
e P DY, DO EAH (9-16)

cosf, cos 0,
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Medium 1 Medium 2

Line source

(a)
Ay = A, — Ao af, =62 "'8]
Ava = AB, + Aa

(b)

Figure 9-5 Ray geometry for reflection by a
curved conducting surface.

Solving both (9-15) and (9-16) for r{ A« cos ), we have, respectively,
ri Az cos 0,= /7, A0, — /, Ax (9-17)
and
r{ Ax cos U, = p, A0, + p, Ax. (9-18)
solving both of these equations for Ax and equating the two results yields
A8,  p,Af,

ricos@, +/, ricosb,—p, &1
wnich after some manipulation gives us the desired result
1 1 2
S N L 9-20
1 ’/o ¥ ?’"i cos gn ( )

-

A

a
.
|
!
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Specular
point

Figure 9-6 Geometrical optics scattering by a
sphere.

This equation® relates the principal radii of curvature of the reflected wavefront
to the geometrical radius of curvature of the surface at the point where the ray
strikes the surface.

As a simple example of the application of (9-20), consider the situation shown
in Fig. 9-6 wherein a plane wave is incident upon a sphere. We wish to find the
field scattered back in the direction of the transmitter and from this back-
scattered field find the radar cross section of the sphere. Thus, the only ray we
need consider is that reflected from what is called the specular point. In this
situation, then, /, = o, f, = 0°, and r. = a in (9-20) and we have the result that

pr=35=r (9-21)
where p, is the radius of curvature of the reflected wavefront orthogonal to p,.
(See Prob. 9.1-1 for an expression for p,.)

If the incident field has a value of E, at the specular point, then in the

backscattered direction,

_BL - (9-22)

P p
“py+/

there being the same value for p, as for p, in this example. Therefore, using

(1-234) the radar cross section is (at high frequencies)

a/2
a2+ /

2

= na*. (9-23)

o= lim 4n/?
f—x

' Even though this result is based on a two-dimensional configuration. the result is somewhat more
general than this in that it holds true in the plane of incidence (see Section 9.4) whenever the plane of
incidence coincides with the principal planes of the surface.
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Figure 9-7 Radar cross section, ¢, of a sphere versus the electrical radius of the
sphere [2; 3, 4].

The exact value for g/ma’ is shown in Fig. 9-7. We note that as the radius of
the sphere becomes larger, the more closely the geometric optics cross section
approaches the exact result. That is what one would expect since geometrical
optics assumes the wavelength is small when compared to the geometrical
dimensions of the scattering surface. Furthermore, the result in (9-23) is
frequency independent, which is typical of geometrical optics calculations.

9.2 PHYSICAL OPTICS

In the previous section we calculated the scattered field from the sphere by
geometrical optics. Often we can calculate these same scattered fields by physical
optics. The concept of physical optics can be considered to be somewhat more
general than geometrical optics since the equations obtained from physical
optics for the scattered field from a conducting body often reduce to the equa-
tions of geometrical optics in the high-frequency limit. In fact, it is assumed in
physical optics that the field at the surface of the scattering body is the geometri-
cal optics surface field. This implies that, at each point on the illuminated side of
the scatterer, the scattering takes place as if there were an infinite tangent plane
at that point while over the shadowed regions of the scatterer the field at the
surface is zero.

For a perfectly conducting body the assumed physical optics surface current is

_ A xHg, in the illuminated region

hai = I 0 in the shadowed region

(9-24)
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where 1 is a unit normal vector outward from the surface of interest as shown in
Fig. 9-8. Let us derive an expression for the scattered electric field from such a
body. Starting with the vector potential, we have

e —JifR
A= 2=t g (9-25)
)

4nR

where R is the distance between the source point and observation point.

From image theory, the tangential components of H at a perfect conductor are
Just twice those from the same source when the conducting scatterer is replaced by
equivalent currents in free space. Thus the physical optics current is given by

Joo =2 x HY) (9-26)
if we assume the incident field phase to be zero at the phase reference plane.
Thus, making the customary far-field assumptions we can write

e Bt 0 —
A= a7 _L_j 2(f x Hi)e 7% ds (9-27)

from which the far-zone scattered field is given by E* = — jwuA., or

I —ibfla

Jjoue K g

E = — 225 [ 23 x H)e 7" ds (9-28)
4n/, "
Phase
reference
plane
n Shadow boundary

1 |
Shadow
region

Conducting
scatterer

Shadow boundary

Figure 9-8 Physical optics current on a conducting scatterer.
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where / is the distance from phase reference plane in Fig. 9-8 to the scatterer and
/, is the distance from the phase reference plane to the far-field observation
point. It should be noted that this expression for the scattered field is frequency
dependent in contrast to the geometrical optics expression which is frequency
independent. It might, therefore, be intuitively inferred that physical optics pro-
vides a more accurate approximation to the scattered field. While this may be so
in certain cases, a general conclusion cannot be reached since necessary and
sufficient conditions for the valid application of physical optics are not known. It
is fortunate for the engineer that physical optics works in many practical prob-
lems, even though in some of these problems prior justification of its application
would be difficult to make.

Let us make a physical optics calculation of the radar cross section of the
sphere, and then compare the result with that obtained via geometrical optics.
From (9-28) we can write for the magnitude of E*

st = M| [T 2 Vo~ iB e "
| [—22/0-L_|2(an)¢J’da. (9-29)
Using the definition of the radar cross section (RCS) we obtain
4| 1 ¢ . iy &
7= ‘T'L" (@ x H')e 3# s (9-30)

For the case of the sphere shown in Fig. 9-9, we note that the only component
of current that will have a net contribution to the backscattered field is given by

Figure 9-9 Physical optics scattering by a sphere.
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2i x (i x X)H'. Using the vector identity (A-7), this reduces to —(Z- A)XH'.
Thus,

- . 2

S

since / = 2z due to the reference plane being the = = 0 plane. From Fig. 9-9 we
note that

P

Z-A=cos U=a—a-" (9-32)

and that an element of surface area is ds = asin 8 df d¢. Since a — z = a cos 0,
dz = a sin 0 d) and we have

du| 2 0 fa—z 2
o= .‘.;, '|0e ﬂﬂ-( = )ad: dg | . (9-33)
Performing the integration we have
4n 1 ( 1 — e /202
6= S|2n—|la———s- ) (9-34
2| * gl s ’

The exponential term arises from the artificially imposed discontinuity in the

current at the ¢/ = 7/2 location onthe sphere. Since this discontinuity 1s nonphysi-
cal, so too is the exponential term in (9-34) and we must disregard it. Thus.

2

}(l*ﬁa)

We see then that the radar cross section of the sphere obtained via physical optics
reduces to the geometrical optics result in the high-frequency limit.

The fact that we have had to eliminate the third term in (9-34) is not a
peculiarity of the sphere, but is common to any problem employing physical
optics wherein a nonphysical discontinuity will give rise to an erroneous contri-
bution to the scattered field that can be numerically significant when compared to
the geometrical optics contribution.

The second term in (9-35) may be taken to be the second term n a high-
frequency asymptotic expansion of the scattered field. Such an expansion is in
inverse powers of the frequency and is known as a Luneburg-Kline expansion
[1]. The Luneburg-Kline expansion satisfies the wave equation and is a formal
way of showing the correspondence between optics and electromagnetics in the
high-frequency limit. The leading term in the Luneburg-Kline expansion is, in
fact, the geometrical optics term which is also the first term in (9-35).

na’. (9-35)

fa-—= =
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Physical optics is more useful to us than just finding radar cross sections. For
example, if we wish to find the far-field pattern of a parabolic reflector antenna,
physical optics is one way of doing so. In fact, it is probably the easiest way of
finding the radiated field on the forward axis of the reflector antenna. In direc-
tions other than on the forward axis of the reflector antenna, physical optics
provides us with a nonzero estimate of the radiation pattern. This should be
contrasted with geometrical optics which can only provide information in a
specular direction, but does so in a straight-forward manner.

In summary, physical optics is an approximate method of considerable
uscfulness that can be expected to provide an accurate representation of the
scattered field arising from a surface where the postulated physical optics current
is reasonably close to the true current distribution. We recall from the discussion
at the beginning of this section that the physical optics current will be a reason-
able representation of the true current if the field at the scatterer surface is
correctly given by the geometrical optics surface field. Thus, we can view physi-
cal optics as an extension of geometrical optics and as such it is a high-frequency
method.

9.3 WEDGE DIFFRACTION THEORY

In the previous two sections we introduced the ray-optical concept of geometri-
cal optics and the somewhat more general concept of physical optics. Both
theories were applied to the calculation of the backscattered field from a sphere.
but no attempt was made to determine the field in the forward scattering direc-
tion, in particular the shadowed region in Figs. 9-6 or 9-8. Since physical optics
postulates a current only on the lit side and zero current on the shadowed side.
the physical optics current alone is incapable of correctly predicting a nonzero
field in the shadow region even though an actual measurement would generally
indicate the presence of a field there. By simple ray tracing it is quite apparent
that geometrical optics is also incapable of correctly predicting a nonzero field in
the shadow region. However, geometrical optics may be extended to include a
class of rays, called diffracted rays [5, 6], which permit the calculation of fields in
the shadow region of a scatterer. Diffracted rays are produced, for example.
when a ray strikes an edge, a vertex, or is incident tangentially to a curved surface
as illustrated in Fig. 9-10. It is these rays that account for a nonzero field in the
shadow region. In addition, they also modify the geometrical optics field in the
illuminated region. It is the purpose of this section to examine in some detail one
type of diffracted ray, the wedge diffracted ray of Fig. 9-10a.

Consider the wedge diffraction situation shown in Fig. 9-10a. Geometrical
optics would predict a sharp discontinuity in the field at a shadow boundary as

S PR
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Figure 9-10 Examples of diffraction: (a) wedge diffraction, (4) tip diffraction, (c)
curved surface diffraction.

shown in Fig. 9-11. Since physical phenomena in nature are not perfectly discon-
tinuous, it is apparent that geometrical optics by itself constitutes an incomplete
treatment of problems such as those in Fig. 9-10. It will be shown that the wedge
diffracted rays will make the total electric field continuous across the shadow
boundary in Fig. 9-10a.

Because diffraction is a local phenomena at high frequencies, the value of the
field of a diffracted ray is proportional to the field value of the incident ray at the
point of diffraction multiplied by a coefficient called the diffraction coefficient.
That 1s, the diffraction coefficient is determined largely by the local properties of
the field and the boundary in the immediate neighborhood of the point of
diffraction. Since it is oniy the local conditions near the point of diffraction that
are important, the diffracted ray amplitude may be determined from the solution

| Magnitude of
:geomevical optics field
1.0
—0.5
S S | S—
0 [ § 2n @ il

Figure 9-11 Magnitude of the geometrical optics field near
either a reflected field shadow boundary (¢ + ¢' = =) or an
incident field shadow boundary (¢ — ¢’ = n).
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of the appropriate boundary value problem having these local properties. Such a
problem is called a canonical problem and wedge diffraction is one such canoni-
cal problem. Wedge diffraction is perhaps the most important canonical problem
in the extension of geometrical optics as originally proposed by Joseph Keller in
1953. Keller’s theory is known as the geometrical theory of diffraction, or GTD
[5. 6. 7).

Through the use of geometrical optics and the solution to a number of canoni-
cal problems, such as those in Fig. 9-10, we can construct solutions to more
complex problems via the principle of superposition. Let us now consider the
canonical problem of wedge diffraction. To start, we will consider scalar diflrac-
tion by an infinitely conducting and infinitesimally thin half-plane sheet as
shown in Fig. 9-12. The half-plane is a wedge of zero included angle. To calcu-
late the field in the region z > 0, we will use Huygens principle in two dimen-
sions. Thus, each point on the primary wavefront along z = 0 is considered to be
a new source for a secondary cylindrical wave, the envelope of these secondary
cylindrical waves being the secondary wavelront. Thus,

X =
E(P)=| dE (9-36)
tx=a
X
T
|
|
o |
dv R 6ix)
|
—— ?
Plane
wave 7
— a
f}
—— 0 T e -
—_—
Conducting
Half-plane
Y

o

Figure 9-12 Plane wave diffraction by a conducting half-plane.
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where dE is the electric field at P due to,a magnetic line source parallel to the
y-axis in the z = 0 plane, or
G,
—_— H-_"'_"_ﬂ
V7 +6(x)

g™ IO+ 4 g (9-37)

where C, i1s a constant. If (/ + ) > 4 and / » d, we may write for the contribu-
tion to E(P) from those two-dimensional Huygens sources between x = a and
K=

a

E(P) = \Cf’{ I [ eI gy, (9-38)

We will consider the contribution from x, to oo later. When § < 7, we can follow
the same reasoning as in (1-81) to show that / + = / + x?/2/. Making the
substitutions 3? = 2/4/ and u = 7x gives

. i Xg

E(P)=C, /32 | o Mn3e gy (9-39)
If the upper limit in (9-39) is allowed to go to infinity, the integral will be in the
standard form of a Fresnel integral [7, 8]. The Fresnel integral may be easily
evaluated on a digital computer or from a graph known as-Cornu’s spiral, which
is shown in Fig. 9-13a. A vector drawn from the origin to any point on the curve
represents the magnitude of a Fresnel integral with lower limit zero and upper
limit u,. As u, approaches infinity the tip of the vector will circle the point (4, )
an infinite number of times which suggests that the contribution to the value of
the integral comes primarily between the limits zero and u, provided u, > 1.26.
For this reason, we can argue that allowing yx, — o0 in (9-39) has little effect on
the value of the integral. Thus,

E(P) = Cy /7[2e M | o In2wi gy (9-40)
The value of the integral in (9-40) can be represented by a vector drawn from
any point on the Cornu spiral to the point (4, ) (e.g.. see Prob. 9.3-2).

If the lower limit in (9-40) is allowed to go to minus infinity E(P) will equal

the field strength without the half-plane present [8]. Thus,

E(P)lo=-w=Ci/%2(1 = jle ™ = E e ¥, (9:41)

Solving for C, and substituting into (9-40) gives the value of E(P) in terms of the
free space field E,,

E g*ti=i®) - = .
o€ ) e it i e )= 2l du {9_42)

\,."; 2 va

E(P) =
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and ¢, correspond to positive valuss of a. At a
fi the direct field and diffracted fields are
in-phase.

Note: The value of the relative field is 0.5 —0.5
at the shadow boundary corresponding by
to line dy.

€
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A vector drawn from the origin to any point on
the curve represents the magnitude of the Fresnel
integral and the negative of its phase.
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Figure 9-13 (a) Use of the Cornu spiral in evaluating the Fresnel integral as a
function of the parameter a. (b) Relative magnitude of the diffracted field in the
vicinity of a shadow boundary. Refer to Fig. 9-12 for values of a.
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where for this approximate analysis to hold it is necessary that # > 4 and that
the point x = a not be far removed from the z-axis so that the assumption £ > §
holds. A more exact (and complicated) analysis of this problem is possible but it
has not been presented here for we wish simply to show how the Fresnel integral
arises naturally in the study of wedge diffraction.

Equation (9-42) and the Cornu spiral make it possible to visualize the varia-
tion of the electric field as the point a moves along the x-axis causing the
observation point to change from the lit region to the shadow region. The
corresponding plot of the relative electric field in the vicinity of the shadow
boundary is shown in Fig. 9-13b. We note that on the shadow boundary
the value of the relative field is 4 and that in the lit region the value of the field
oscillates about the value of unity. This oscillation can be interpreted as being
caused by interference between the diffracted field and the direct field. Since there
is no direct field in the shadow region, we observe that no such oscillation
occurs. Unfortunately it is not convenient to explicitly distinguish between
the direct and diffracted field in (9-42). In many applications of the geometrical
theory of diffraction it is essential that we be able to mathematically distinguish
between the direct and diffracted fields, as well as the reflected field which we
have yet to consider.

Referring to Fig. 9-14, we can identify two shadow boundaries, the incident or
direct field shadow boundary and the reflected field shadow boundary. These
two shadow boundaries serve to divide space into three regions wherein region I -
contains direct and diffracted rays as well as reflected rays: region II contains
direct and diffracted rays but no reflected rays; region III contains only dif-
fracted rays.

~ Ed
N 1l /
3 /s
Reflected field 7 Incident field
shadow boundary N / shadow boundary
i Fa

Conducting
half-plane

=

Figure 9-14 Diffraction by a conducting half-plane
showing the location of shadow boundaries.
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For a field in any one of the three regions let us write E(p, ¢) as consisting of
a reflected field v"(p, ¢ + ¢') and an incident field v'(p, ¢ — ¢'). Thus,

Elp. )= x0"(p, ¢ + ¢') + v'(p, ¢ — ¢). (9-43)

The choice of sign depends on the polarization of the incident field. If the electric
field is perpendicular (parallel) to the diffracting edge, the plus (minus) sign is
used. The field E at the point P must be a solution to the scalar wavc equation
with the appropriate boundary conditions. The boundary value problem
depicted in Fig. 9-14 was first solved by Sommerfeld in 1896. We will first
consider his solution. To do so we must examine (9-43) more fully.

The first term in (9-43) gives the reflected fields while the term v'(r, ¢ — ¢')
represents the incident field. If the ground plane were infinite in extent, the
reflected field term would simply be the geometrical optics reflected field.
However, in the case of the half-plane in Fig. 9-14, the reflected field will consist
of two parts, namely a geometrical optics reflected field and a diffracted field.
Both parts of the reflected field will appear to originate from an image source
behind the half-plane. Similarly, the incident field can be thought to consist of
two parts, a geometrical optics incident field and a diffracted field. Thus, for the
reflected field

+u'(p, ¢ + @)= £[vi(p, ¢ + @) + thlp, ¢ + ¢)] (9-44)
and for the incident field
v'(p, ¢ — @) = velp, @ — ') + vi(p, ¢ — ¢') (9-45)

where v, denotes the geometrical optics field and v, denotes the diffracted feld.
Thus, (9-43) may be thought of as being composed of four parts. Each of the
terms on the right-hand side of (9-44) and (9-45) satisfies the wave equation
individually except at the reflected field and incident field shadow boundaries,
respectively. However, the sum of v}, and v}, makes ¢" continuous across the
reflected field shadow boundary and thus ¢ satisfies the wave equation there.
(Similar comments apply to ¢'.) But, neither v" nor ' alone satisfy the boundary
conditions at the wedge. However, the sum of v" and ¢' in (9-43) does satisfy
the boundary conditions as well as the wave equation.

From simple geometrical considerations we can see that for reflected geo-
metrical optics rays, all points on a constant phase wavefront are given by

vi(p: @ + @) = elferosioted 0<¢<n— ¢ in region I (9-46)

wherein the phase reference is taken to be at the edge of the half-plane in
Fig. 9-15 since we are using a cylindrical coordinate system whose origin is on
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Figure 9-15 Geometry for the reflected field
wavefront from a conducting half-plane.

the edge of the wedge. By similar considerations for direct incident rays, points
on a constant phase wavefront are given by

(o, ¢ — @)= Preee=¢) 0 < ¢ < m+ ¢ in regions I and II. (9-47)
For other values of ¢
Uf* == [J;_ (9-43)

In other words, v, is zero in regions II and III for reflected rays and is zero in
region III for direct or incident rays. It is the diffracted field that compensates
for this discontinuity in the geometrical optics field as shown in Fig. 9-16. We
see in Fig. 9-16 that for ¢ > 255° the total field is just the diffracted field and
that the total field is continuous across the incident field shadow boundary at
¢ = 255° where the value of the difiragted field is 0.5. For 105° < ¢ < 255°, the
total field oscillates due to the interference between the incident field and the
diffracted field. At ¢ = 105° the diffracted field again rises to 0.5 and the total field
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Figure 9-16 Diffraction by a half-plane showing the total electric field and the total
diffracted field separately. The incident field is polarized perpendicular to the edge
of the half-plane.

is continuous across the reflected field shadown boundary. For ¢ < 105°, the total
field oscillates almost between zero and two due mainly to the standing wave
produced in region I by the incident and reflected fields and the fact that
the field is observed at a constant distance (p = 32) from the edge of the hall-
plane requiring the observation point to sweep through the standing wave field.
The field is normal to the half-plane at ¢ = 0 and is nonzero there.
Mathematical expressions for the diffracted field v, have been a subject of
considerable research in the past several decades in an effort to improve upon
the early classical work of Sommerfeld [9]. For the hall-plane problem of
Fig. 9-14, Sommerfeld obtained an expression for the diffracted field due to an
incident plane wave in terms of the Fresnel integral. This expression is*

: 2
colp, 7)== |2
X

etremor o5 O g gy (9-49)

tafip

* Note that in (9-49) we are really writing two equations, one for t(r. ¢*) and the other for
vh{r, ¢ ). The use of the notation ¢* is for convenience and the reader should keep in mind that
wherever it appears there are two separate equations implied, one associated with the reflected field
and one associated with the incident field.
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where

pt=¢+¢ (9-50)

and

a=1+cos ¢*. (9-51)

We note that this solution is in a form somewhat similar to that of (9-42). The
mathematical details of deriving the above are beyond the scope of this text.

Sommerfeld’s work was more general than that of just a half-plane. He also
considered the more general case of a plane wave illuminating a conducting
wedge of interior angle (2 — n)zn where 0 < n < 2.% For this case he obtained an
asymptotic evaluation of a contour integral representation for the diffracted field
which is given by

e HBp+ nid) (1{!1)5&1(?‘[;‘!1)
J2nBp cos(n/n) — cos(d*/n)’

_Un[ortunate]y, this asymptotic form yields infinite fields in the immediate vicin-

ity of the shadow boundary [10]. The region near a shadow boundary is usually

referred to as a transition region. Equation (9-52) is only valid outside a transi-
tion region where the condition

velp. @) =

(9-52)

T2

Bp|cos T _ cos u > 1 (9-53)
n n

is satisfied. This condition is always met if the quantity fp(1 + cos ¢*)is large,
which means that the observation point at P(p, ¢, z) must be at a large electrical
distance from the diffracting edge. Nevertheless, (9-52) is a useful one if the
observation point is not near a shadow boundary and the above conditions are
met.

In 1938 Pauli [11] improved upon the work of Sommerfeld by obtaining a
series form for Sommerfeld’s contour integral solution. Pauli’s result is given by

2efteit) sin(n/n)

! ¢
Un(p, S e o . k. (L
o2 4%) n/m cos(r/n) — cos(¢* /n) T
s ‘x 3
< gl cos g I _____ e~ " dr + [higher order terms]. (9-54)
<

This expression is far more accurate, particularly near the shadow boundaries,
than (9-52) while being only slightly more difficult to evaluate. It is valid for
O<n<2 In the case of the half-plane (n=2), the higher order terms are

3 Refer forward to Fig. 9-17.

-
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identically zero and Pauli’s result in (9-54) reduces to that of Sommerfeld in
(9-49). Pauli’s expression was the first practical formulation of Sommerfeld’s
original solution which included a finite observation distance.

Example 9-1. Sample wedge diffraction calculations

The use of equations (9-49). (9-52), and (9-54) is best illustrated by an example. Let us
calculate the diffracted field in Fig. 9-16 for ¢ = 250°. Using (9-49) we obtain
3,47 ) = (—9.146 — j9.146)(0.0436)
(0.997 + j0.0717)(0.359 ~ j0.620)
~0.397 + j0.0760
(—0418 — j0.418)(—0.954)
“(—0.964 + j0.264)(—0.0237 + j0.0820)
= (0.0345 — jO.0335

f's[3a ¢")

Thus the exact Sommerfeld solution gives for the diffracted field magnitude | —0.3625 +
j0.0435] = 0.365 which agrees with Fig. 9-16. Using (9-54) we should obtain the same
result for the hall-plane case since Pauli’s equation reduces to Sommerfeld’s. Thus,
a3 @) = (0.798 + j0.798)( — 11.46)(0.0436)
+(0.997 + j0.0717)(0.359 — j0.620)
= —0.397 + j0.0760
ra(3, 7)) = (0.798 + j0.798)(0.524)
(0.954)( —0.964 + j0.264)
- (—0.0237 + j0.0820)
= 0.0345 — j0.0335
and the diffracted field magnitude is once again (0.365. We note that since ¢ = 250° is near
the incident field shadow boundary, r4(3, ¢ ) is the major contributor to the diffracted
field and © 3. ¢7 ). which 15 associated with the reflected field shadow boundary, makes
only a minor contribution. Both (9-49) and (9-54) would go to infinity precsely at the
shadow boundary ¢ =255 (or ¢ = 105°). For this reason we have elected to use
¢ = 250° in this example. Finally. let us use the asymptotic form in (9-52). Thus
ral3. 0 ) = (0065 — j0.065)( — 11.46)
= —0.745 + j0.745
va(3. ) = (0.065 — j0.065)(0.524)
= 0.034 — j0.034

and the magnitude of the diffracted field alone exceeds unity or that of the incident field.
This result is in error because the condition in (9-53) has been violated. The result would
be only 10", in error at p = 104 il ¢ = 255% 4- 12°, at 207 if ¢ = 255° + 5° at 304 il
¢ =255° £ 4° and at 1002 if ¢ = 255" + 3°. However, no matter how large p is. the
asymptotic form will be singular right at the shadow boundary.
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Starting in 1953 it was Keller [5, 6] who systematically developed the geo-
metrical theory of diffraction, or GTD as it is often referred to. In his work, he has
called the quantities D(¢* ) and D(¢~ ) diffraction coefficients where

- fe
[vhlp, 67) T vilp. ¢*)] = [D( ) F D(cﬁ*)]e?; (9-55)

and used the asymptotic expression of Sommerfeld in (9-52) to calculate the
diffracted field due to plane wave incidence. The postulates of Keller’s theory are

1. The diffracted field propagates along ray paths that include points on the
boundary surface. These ray paths obey the principle of Fermat, known also
as the principle of shortest optical path.

2. Diffraction, like reflection and transmission, is a local phenomenon at high
frequencies. That is, it depends only on the nature of the boundary surface
and the incident field in the immediate neighborhood of the point of
diffraction.

3. A diffracted wave propagates along its ray path so that
(a) power is conserved in a tube of rays, and

(b) phase delay equals the wave number times the distance along the ray
path.

A consequence of the second postulate is that the diffracted fields caused by the
edge of the infinite wedge in Fig. 9-15, for example. appear to be cylindrical wave
fields that originate at the wedge edge. This is consistent with the (p)~ 12
dependence in (9-55).

The simple ray formulation of Keller's geometrical theory of diffraction is
restricted to the calculation of fields in regions of space that exclude transition
regions adjacent to shadow boundaries, caustics, and focal points. To calculate
the field at such points, additions and modifications to the geometrical theory of
diffraction are required. Further, if the incident field is not a plane wave, but a
cylindrical or spherical wave, GTD must be modified to accept these incident
fields as well. These various modifications will be considered in later sections.

9.4 THE RAY-FIXED COORDINATE SYSTEM

In the previous section we considered the scalar diffracted field due to a plane
wave normally incident (i.e., traveling in the negative p-direction) upon a per-
fectly conducting infinite wedge whose edge was along the z-axis. Such a coor-
dinate system is said to be an edge-fixed coordinate system. On the other hand,
the obliquely incident and obliquely diffracted rays associated with the point Q
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Figure 9-17 Geometry for three-dimensional diffraction
problem.

in Fig. 9-17 are more conveniently described in terms of spherical coordinates
centered at Q. Such a coordinate system is said to be ray-fixed [1]. Let the
position of the source of the incident ray be defined by the spherical coordinates
(s", 7o. ¢'). and the observation point by the coordinates (s, 7o, ¢) as indicated
in Fig. 9-17. Note that the point Q is a unique point on the edge for a given
source location and a given observation point.

The plane containing the incident ray and the edge of the wedge will be

referred to as the plane of incidence, while that plane containing the diffracted
ray and the edge of the wedge will be referred to as the plane of diffraction. The
unit vector §' is in the direction of incidence and the unit vector § is in the
direction of diffraction. It is then apparent that the unit vectors {4 and ¢ are
parallel and perpendicular, respectively, to the plane of incidence, and that the
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Plane of
diffraction (5, @)

Figure 9-18 Ray-fixed coordinate system.

unit vectors f, and ¢ are parallel and perpendicular, respectively, to the plane of
diflraction as shown in Fig. 9-18. y, and 7y, are angles less than n/2 measured
from the edge to the incident and diffracted rays, respectively, while Yo and ¥,
are the implied unit vectors. Further, ¢ and ¢ are angles measured from one
face of the wedge to the plane of incidence and diffraction, respectively, while ¢’
and ¢ are the implied unit vectors. Note that ¢ and ¢ are measured from the
same face of the wedge.
Let us write a symbolic expression for the diffracted field in matrix form as

[E“] = [D)[ET]A(p)e " (9-56)

where [E?] and [E'] are column matrices consisting of the scalar components of
the diffracted and incident fields respectively. [D] is a square matrix of the
appropriate scalar diffraction coefficients, and p is the distance from the wedge
edge to the observation point and A4(p) is a spreading factor. Now if the edge-
fixed coordinate system is used, it is clear that [E?] will have in general three
scalar components E¢, E$, and EZ and that [D] will be a three by three matrix.
It can be shown that in such a situation seven of the nine terms in [D] are
nonvanishing. However, when the ray-fixed coordinate system is used, there is
no component of the diffracted field in the direction of the diffracted ray tube
since the incident field is not allowed to have a component in the direction of the
incident ray tube. It follows that there are then only two possible components of
the diffracted field, E{ and E, and only two components of the incident field, E',
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and Ei,.. Clearly [D] is a two by two matrix. In this case [D] has nonvanishing
terms on the main diagonal. Thus, for plane wave incidence in the ray-fixed
system (9-56) can be written as .

Es)] |-D, o© HE;-(Q)
Ei(s) 0 —D, ||E\(Q)

where the scalar diffraction coefficients D, and D, are momentarily undefined
and will be given in the following section.

It is apparent that the use of the ray-fixed coordinate system instead of the
edge-fixed system reduces the diffraction matrix from a three by three matrix
with seven nonvanishing terms to a two by two matrix with but two nonvanish-
ing terms. Thus, the ray-fixed system is the natural coordinate system to be used
for wedge diffraction and the importance of using it can hardly be
overemphasized.

We have chosen to use the notation D in association with E..(Q) and D, in
association with Ej.(Q) not because E!. and E},. are parallel and perpendicular,
respectively, to the diffracting edge (which they are at normal incidence when
7o = 90°), but because E'. and E}. are parallel and perpendicular, respectively, to
the plane of incidence as shown in Fig. 9-18.

Since E', and E},. are parallel and perpendicular, respectively, to the plane of
incidence we will let E.. be written as E{. and let E},. be written as E',.. Similarly,
Ei(s) and E(s) are parallel and perpendicular respectively to the plane of diffrac-
tion as shown in Fig. 9-18. Thus, we will let EY be written as E and let E¢ be
written as E{. With these notational changes, (9-57) may be rewritten as

E‘f.(sJ: -D, 0 ”E‘”r(Q)'
Ei(s) 0 -D.||E(Q)

We will use this notation throughout the remainder of the chapter keeping in
mind that when the | and L symbols are primed, reference to the plane of
incidence is implied. When the || and | symbols are unprimed, reference to the
plane of diffraction is implied.

JA(s)e_”" (9-57)

A(s)e™ . (9-58)

9.5 A UNIFORM THEORY OF WEDGE DIFFRACTION

The modern version of GTD can be divided into the two basic canonical prob-
lems of wedge diffraction and curved surface diffraction plus the lesser but more
complex problems of vertex diffraction and tip diffraction. In the application of
wedge diffraction to antenna problems, the important features of antennas are
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modeled by perfectly conducting wedges. For example, the pyramidal horn
antenna can be modeled by two half-planes as shown in Fig. 9-20 for the pur-
pose of analyzing the E-plane pattern [10]. In such a problem, however, it is
necessary to use cylindrical wave diffraction coefficients instead of plane wave
diffraction coefficients as in Section 9.3. The first use of cylindrical wave diffrac-
tion in the treatment of antenna problems such as in Section 9.6 was by Rudduck
[10] who used Pauli’s formulation together with the principle of reciprocity to
calculate the necessary cylindrical wave diffraction. Problems involving spherical
wave diffraction are also common.

In Section 9.3 some early developments in the study of diffraction by a con-
ducting wedge were presented. We saw that although some of the formulas
presented are certainly useful for some engineering calculations, they are limited
in their accuracy in a transition (shadow boundary) region [e.g., (9-52)], or when
the observation point is near (r < A) the diffracting edge [e.g. (9-54)]. It would
obviously be useful and convenient if there were available to us a theory of
wedge diffraction having the property that it could accurately predict the dif-
fracted field in such places as the transition regions or near the diffracting edge
without the necessity for considering each type of incident field separately. Such
a -theory is available and is known as a uniform theory of wedge diffraction
because it applies in all situations consistent with the postulates of the geometri-
cal theory of diffraction given in Section'9.3. It is the purpose of this section to
present the important results in this theory, known as the UTD, which is based
on the numerous works of Kouyoumjian and Pathak [12, 13, 14].

In 1967 Kouyoumjian and co-workers obtained a generalized version of
Pauli’s result [ie., (9-54)] with the resultant diffraction function vg expressed as
ve(L, ¢*) where L is a distance parameter more general than just the distance p
used in Section 9.3 while ¢* retains the meaning used previously. In their work
the distance parameter L is given by

s sin? y, for plane waves
Lo ﬂ; for cylindrical waves (9-59)
Y
s's sin? 7, ) )
f*} for conical and spherical waves.
s+s

We note immediately that L is dependent upon the type of incident wave and the
angle of incidence y; (which equals the angle of reflection y4) as well as the
distances involved. The distance parameter L in (9-59) can be found by imposing
the condition that the total field, which is the sum of the geometrical-optics field
and the diffracted field, be continuous at shadow or reflection boundaries.
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When the work of Kouyoumjian and co-workers is expressed in terms of the
scalar diffraction coefficients D, and D, where

FL

D\(L, ¢. ¢') = [v(L, ¢~ ) — v4(L, ¢" }]\ﬁ.‘: (9-60)
jpL

DAL, 6. #) = el )+ alls 8N (9-61)

we have (without proof) [12, 14]

e-.ﬂx-"l
O )= o sin
) cot( = 1) )F[ﬂLa @ - &)
+cot( ‘E ¢))F[3L (¢ - 9]

T cot(“ ki (‘f 9 ))F[ﬁf_a"(cﬁ + ¢')]

(¢+¢))f[ﬁL weoll|  oe)

T+ CO[(

where, if the argument of F is represented by X,

e[ eI dr, (9-63)
"l X

F(X)=2j| /X

Again we see that a Fresnel integral appears in the expression for the diffraction
coefficient. The factor F(X) may be regarded as a correction factor to be used in
the transition regions of the shadow and reflection boundaries. Outside of the
transition regions where the argument of F exceeds about 3, the magnitude of F
is approximately equal to one as Fig. 9-19 shows. Even within a given transition
region, usually only one of the four terms in (9-62) is significantly different from
unity.

The argument of the transition function, which is X = fLa*(¢ + ¢’). may be
calculated for a known value of SL if @™ as a function of (¢ + ¢') is known. To
determine a* (¢ + ¢') and a (¢ + ¢') we use

,[2naN* — (¢ + ¢')

. (9-64)

a*(¢ + ¢) =2
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Figure 9-19 Magnitude and phase of the transition function F(fLa) where a = a*
or a .

in which N* are the integers which most nearly satisfy the four equations

2mN* —(p+¢')=n (9-65)
and
2inN~ — (¢ + ¢')= — (9-66)

We note that N* and N~ may each have two separate values in a given prob-
lem. For exterior wedge diffraction where 1 <n <2, N* =0orl1but N~ = — 1,
0 or 1. The factor a*(¢ + ¢') may be intepreted physically as a measure of the
angular separation between the field point and a shadow or reflection boundary.
Now that we have all the necessary relationships to calculate D and D, . we
repeat (9-57) in the format of UTD as
E\.(Q)

Ei(s)| _ |-D 0
-5 b leo

A(s)e 9-67
where the spatial attenuation factor A(s) is defined as

1 S
'— 7 for plane, cylindrical, and conical wave incidence
/' 8
Als)=" L, (9-68)
——— )’ for spherical wave incidence.
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It should also be mentioned that, since diffraction concepts apply to acoustical
problems, the diffraction coefficients D, and D, in (9-67) are sometimes written
D, and D,, respectively, which correspond to the acoustlic soft and hard boun-
dary conditions [14]. Equation (9-67) for the UTD is programmed in
Appendix G.9.

Example 9-2 Sample UTD Calculation

The use of equations (9-59) to (9-68) is best illustrated by an example. Suppose we wish to
calculaie the difiracted field in Fig. 9-16 when ¢ = 250°. We have in this case: ¢ + ¢' =
325% ¢p—¢' = 175°% L=3A; BL = 6mr; n = 2. Thus, from (9-64) to (9-66)

a* (¢ + ¢') =2 cos?(197.5°), where N*
a* (¢ — ¢') = 2 cos?(87.5°), where N*
a (¢ +¢)=2cos?(162.5°), where N°
a (¢ — @) =2 cos?(87.5°), where N~

I

1
0
0
0

From Fig. 9-19, using the respective values of a* and a~ above, we obtain

F(6m - 1.819) = 0.999 + j0.0146

F(6m - 0.0038) = 0.318 + j0.216
F(6m - 1.819) = 0.999 + j0.0146
F(6n - 0.0038) = 0.318 + j0.216.

Using (9-62) and (9-68)

D,(L, ¢, ¢')= —~0.628 + j0.0735
A(s)e 7 = 0.577.

From (9-67)

E'(s)= —0.363 + j0.0424
or
| E4(s)| = 0.365

which agrees with Fig. 9-16. It 1s worth noting that when the four correction factors F
above are multiplied by their associated cotangent factor, it is the fourth term above which
is much larger than the others. As mentioned earlier. usually just one of the terms in
(9-62) turns out to be large, even close to a shadow boundary. Equation (9-62) will not
exhibit a singular behavior at a shadow boundary as was the case in Section 9.3 with
(9-49) and (9-54).

w
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If the field point is not close to a shadow or reflection boundary and ¢’ # 0 or
nn (grazing incidence), the scalar diffraction coefficients D and D, reduce to
Keller’s diffraction coefficients [see (9-52) and (9-53)] which may be written as

ooy €7 sin(w/n)
Dy(#. ¢ vo) =~ 2nf sin v,
WV 1 ) 1
o— ¢ i 5 cos M |

n
Cos — — COs cos
n n n n

(9-69)

This expression is valid for all four types of incident waves given in (9-59), which
is important because the diffraction coefficient should be independent of the edge
illumination away from shadow and reflection boundaries. However, from Sec-
tion 9.3 we know that (9-69) will become singular as a shadow or reflection
boundary is approached.

Grazing incidence, where ¢’ = 0 or nr, is a special case which must be con-
sidered separately. In this case D; =0, and the expression for E{ must be mul-
tiplied by a factor of 4. If we consider grazing incidence to be the limit of oblique
incidence, we can see how the need for the factor of 4 arises, because at grazing
incidence the incident and reflected fields merge. When they merge, one-half of
the total field propagating aiong the face of the wedge toward the edge is the
incident field and the other half is the reflected field. The merged field is then
regarded as being the “incident ” field but it is too large by a factor of 2 and the
factor of § becomes necessary. That is, (9-67) requires the use of the free space
incident field and not the merged field.

The uniform theory of wedge diffraction described in this section (which is
programmed in Appendix G.9) permits us to consider diffraction problems where
in both the source and observation points are quite close to the diffracting edge
(i.e, a wavelength or even less). It also permits us to consider any type of TEM
incident field. A more general expression for L, valid for an arbitrary wavefront
incident on the straight edge of a wedge, appears in the literature [13, 14].

* Unlike the edge diffraction formulas presented in Section 9.3, (9-62) is valid in
the transition regions of the incident field shadow boundary and the reflected
field shadow boundary. Equation (9-62) cannot be used to calculate the field at a
caustic of the diffracted ray. This does not conflict with the concept of a uniform
theory of wedge diffraction because geometrical optics itself is incapable of deter-
mining the field at a caustic. The field at a caustic may, however, be found
through use of a supplementary solution in the form of an integral representa-
tion of the field. The equivalent sources in the integral representation are deter-
mined from a suitable high-frequency approximation such as a geometrical
optics or the geometrical theory of diflraction. The calculation of the field at a
caustic by such methods will be considered in Section 9.10.
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9.6 E-PLANE ANALYSIS OF HORN ANTENNAS

To illustrate the application of the uniform theory of diffraction presented in the’

previous section, consider the E-plane horn antenna shown in Fig. 9-20a. In this
section we use the model shown in Fig. 9-20b to compute the complete E-plane
pattern of the horn antenna. The model is simple and therefore particularly
well-suited to use as a first example of the application of the UTD. The model
has only three sources of radiation and is two-dimensional in nature (i.e., infinite
in the +x-directions) which in the E-plane well-represents a three-dimensional
horn antenna.

The equations applicable to the analysis are as follows. Note that the angle {
(0 < < 2n) is used instead of 6 (0 <0 < n) so that positions in the yz-plane
may be defined unambiguously. In the far field we have (in the yz-plane)

ry=r—asn/{ (9-70)
ry=r+asin{ (9-71)
ry=r-+ pgcos{ cos { (9-72)

where r, and r, are distances to the far-field observation point P(r, {, ¢ = n/2)
from diffracting edges 1 and 2 respectively, and ry is the distance from the line
source to the far-field observation point as shown in Fig. 9-20b. Thus, the inci-
dent field along the direct ray can be expressed by

pribts =il

E:(P)= ——— = — g—jﬂpt cos L cos .:,5‘ _:E .‘E‘: < ‘:F (9_?3)
VAL v T
and
E(P)=0, (p<<2m—{. (9-74)

Note that in applying the UTD we do not replace the conducting surfaces with
equivalent currents radiating in free space as in the preceding chapters of this
book. Instead, the conducting surfaces are retained. As a consequence, for exam-
ple, E{(P) =0 when { > ;.

The edge diffracted field at P(r, {, ¢ = n/2) from a diffraction point Q; on the
“top” edge may be written

1. =i 1. e M
Ed P i Ell D L, : ’ = BTy L, : ' s i sin £
1[ ) 2 (Ql) J.( ¢ ‘;b) x/: 2 5 .E.( ¢ ¢) \fr €
—gSCSﬂﬁ‘ﬂ:f: ' (6-75)
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Figure 9-20 (a) E-plane sectoral horn. (b) Model of
E-plane sectoral horn. (¢) Neglected rays.
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and
in

Ei(P)=0, n+C5<Cc?. (9-76)
Similarly, the diffracted field at P(r, {, ¢ = n/2) from a diffraction point Q, on
the “bottom™ edgc may be written
e —jfir2 I —; r

Eg(‘p) Qz)D (L, ¢, ‘.f')T 2 D (L, ¢, ¢) 7 e pasing

ry

_E_gﬁﬁgg’_z‘ (9-77)
and
E4(P) = ’; elen— (9-78)
where
, : e s
E\(Q) = Ei(Q,) = e (9-79)

Thus, the total field at an observation point P(r, {, ¢ = x/2) may be written as
the scalar sum

E(P) = E'(P) + E{(P) + E5(P). (9-80)

In the above equations scalar D, denotes the diffraction coefficient at the
point of diffraction Q,, for the case where the incident electric field is normal to
the edge. The diffraction coefficient at Q,, depends on the geometry of the inci-
dent and diffracted rays at Q,, and is most accurately given by (9-59) and (9-62).
Here, of course, we consider the incident field to be cylindrical and use the
cylindrical wave form for the distance parameter L. E'(Q,,) is the incident field
that is both perpendicular to the edge and to the incident ray.

At first glance the factor of one-half in (9-75) and (9-77) might appear to be
incorrect. However, in this problem the rays from the line source are incident at
a grazing angle with the surface of the horn walls and therefore deserve special
consideration. Grazing incidence, where ¢’ = 0 or nx, requires that D, in (9-67)
be multiplied by a factor of } as discussed in the preceding section.

Figure 9-21 shows results calculated with the model shown in Fig. 9-20b and
also experimental data. The agreement between the calculated results without
using double diffractions (dashed curve) and the experimental results is seen to
be very good. Note that there is a discontinuity in the calculated results when
{ =90° (or 270°). This discontinuity may be removed simply by including rays
which diffract from Q, (or Q,) and travel across the horn aperture to @, (or Q,)
and are diffracted a second time as indicated in Fig. 9-20c.
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Figure 8-21 Calculated and experimental E-plane patterns of an E-plane sectoral
horn.

_ Also shown in Fig. 9-20¢ are several other rays which have not been included
in the _calculated results because in this problem they provide a relatively weak
numerical contribution. Strictly speaking, those rays shown in Fig. 9-20¢ which
do not involve double diffractions should be included in the analysis. These are
the two rays that experience a reflection after undergoing diffraction at Q, (or
Q. which are not shown). Of the two doubly diffracted rays shown, here uonly
the one from Q, to Q, is important because it compensates for the shadowing of
Q, when { > 90°. There is no similar compensation needed in the case of the
othér doubly diffracted ray which goes from Q, to the “top” wall and back
to Q,.

In conclusion, we have used a simple model (i.e., Fig. 9-20b) to calculate the
E-plane pattern of horn antennas with good results. Strictly speaking, we should
have included some of the rays in Fig. 9-20c but did not do so for the sake of
simplicity without a loss of accuracy. It is a fundamental fact that in applying the
UTD (or GTD), one must be careful to identify and to include all rays that arise
in the problem. In the horn problem here we were able to omit some of the rays
only because they were not in or near a transition region. '
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9.7 CYLINDRICAL PARABOLIC ANTENNA

As a second example of the application of the UTD, we consider the cylindrical
parabolic antenna shown in Fig. 9-22. We use the aperture integration procedure
given in Chapter 8 to obtain the pattern in and near the main beam, but use the
UTD to compute the pattern everywhere else. As in the study of the horn
antenna in the previous section, the model here is two-dimensional. We consider
only the diffractions that occur at the edges of the parabolic surface and ignore
any higher order rays associated with the curved surface (e.g., see Section 9.12).
First let us consider the equation for obtaining the main beam and first few
side lobes. From Section 8.1 we may write for the far field E* obtained by
aperture integration
,—ifir .a
ENP) =i~ | -f(%) el ntdy (9-81)
21 s NP )
where F, (0,) is the pattern of the electric line source current I which serves as the
feed for the cylindrical parabolic reflector antenna. (If the line source pattern is

Figure 9-22 Cylindrical parabolic antenna geometry.
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isotropic, F, (6,) = 1.)Equation (9-81) is a two-dimensional specialization of the
equations in Section 8.1.

Equation (9-81) can, of course, give us the pattern for 90° > (= —90°.
However. since we must perform the aperture integration anew for each value of
{, it is more efficient in the computational sense to use (9-81) for {, ={ = —(,
where {, is the angular extent of the main beam and the first side lobe or two
and then to use the UTD for the remainder of the pattern. Clearly, we do not use
aperture integration and the UTD simultaneously in the same angular sector.

For the UTD model of the antenna the following equations apply. For the
singly diffracted field from Q, we have at the far-field observation point
P(r,{, ¢ = 7/2) )

3n In
Ej(P)=0, 5 sl (9-82)
and elsewhere
. (;‘ff‘fl
E‘: (P) = E‘iI(Q‘IJD .[L, ¢, ¢')- T
VR |
- ._jfir . ' >,
S E(Q1)D (L. ¢, ) etasins (9-83)
\/"
where (9-70) has been used in (9-83). Similarly the diffracted field at P(r, {, ¢ =
n/2) from Q, may be written
E5(P) =0, ; <{ g; + (9-84)
and elsewhere
F ; ; p il
ES(P)=E' (Q,)D (L ¢, ¢')—=
V2
_ N
SE(Q:)D (Lo ¢) = ¢ LR (9-85)
b
where (9-71) has been used in (9-85). In both (9-83) and (9-85)
. _ o ihne
Er';(Ql) == E‘..(Q3}= ,(T_ F,r’{UE}' (9'86)
N o

The total field at an observation point P(r, {. ¢ = n/2) may be written as either

E(P)= E(P)+ E*(P) (9-87)
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Figure 9-23 Calculated H-plane pattern of a cylindrical parabolic reflector 104 across
having a focal-length-to-diameter ratio of 0.5.

or "
E(P)= E(P) + E4(P) + E4(P) (9-88)

depending on the angle { as mentioned earlier.

Figure 9-23 shows a calculated pattern for a cylindrical parabolic reflector
having a 104 aperture (i.e, 2a = 104) and a focal length to diameter ratio of 0.5.
The electric line source that models the feed has a patternof F, (6,)=cos?® 6, for
B, > 90°and F, (6,)=0 in the forward half-space where 6, < 90°. We note that the
pattern has a small discontinuity at { = 90° (and 270°) and that this discontinu-
ity can be removed by including double diffracted rays between Q, and Q, as
was done for the horn in the previous section. We also note that there is a small
discontinuity at about { = 127° (and 233°) which is a result of the shadowing of
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Figure 9-24 Aperture distribution for the parabola of Fig. 9-23 with
a feed pattern of cos® 4,

Q, (or Q; when { ~233°). The relatively high level of the pattern in the vicinity
of { = 120° is due to the spillover caused by the feed pattern.

It is interesting to note that for the chosen feed pattern of cos? 6, the aperture
electric field distritution is almost that of a cosine on a pedestal with a — 15-dB
edge illumination as shown in Fig. 9-24. Referring to Table 4-2, we see that such
a distribution should produce a pattern with a side lobe level of —22 dB. Exam-
ination of the pattern in Fig. 9-23 shows that indeed the side lobe level is
—22 dB. Thus, the pattern in the forward half-space could be well-represented
by a line source, as discussed in Chapter 4, once the aperture field distribution is
known.

In this section we have examined the H-plane pattern of a cylindrical para-
bolic antenna (i.e., an electric line source was used to model the feed). We could
also analyze the E-plane pattern when a magnetic line source is used to model the
feed. This is left as an exercise for the student.

9.8 RADIATION BY A SLOT ON A FINITE GROUND PLANE

To illustrate further the application of the uniform theory of diffraction, con-
sider the situation in Fig. 9-25 wherein a radiating slot is asymmetrically located
along the x-axis of the rectangular plate. We desire pattern information in both
principal planes to determine the amount of ripple in the pattern caused by edge
diffraction. In general the edges denoted Q, and Q, will be illuminated unequally
unless d, = d, and thus the pattern in the xz-plane will not be symmetrical about
the z-axis.
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Figure 9-25 Geometry of a slot on a rectangular plate.

The geometry of the problem to be investigated, as depicted in Fig. 9-25, is a
narrow aperture (or slot) with length T on a finite ground plane of dimensions A
and B. The narrow slot has an electric field polarized in the x-direction and has
a cosine-distribution in the y-direction. The length of the slot is taken to be
one-half wavelength at the operating frequency.

For radiation in the xz-plane above the ground plane the problem is repre-
sented, to a first degree approximation, by an infinitely long slot. According to
UTD there exists two edge-diffracted rays originating from edge points Q, and
Q, due to the finiteness of the ground plane. Therefore, for a far-field observa-
tion point P(r, 0, ¢ = 0) in the region of interest, the total field is the sum of the
contributions from the direct ray and two edge-diffracted rays as shown in
Fig. 9-26. Doubly diffracted rays exist but are small compared to the singly
diffracted rays shown in Fig. 9-26 and are not included in the present analysis.

For radiation in the yz-plane above the ground plane, a sampling of N + 1
ideal dipole sources with cosine distribution is performed. There exists no first-
order edge-diffracted rays because the incident ray is zero in the yz-plane. A
geometry of five samplings (N = 4) is shown in Fig. 9-27. The end dipole sources
are of zero amplitude since tangential E is zero at the ends of the slot.

First let us consider the radiation pattern in the xz-plane. The direct ray from
the narrow slot at an observation point P(r, 6, ¢ = 0) is

e dfr

“(P)=0E, ? - (9-89)
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The edge-difiracted ray from Q, at P(r, 6, ¢ = 0) becomes
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Figure 9-27 Direct rays from the dipoles
representing the slot contributing to the
yz-plane pattern.
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The edge-diffracted ray from Q, at P(r, 6, ¢ = 0) yields

~ifirz
B4(P) = 05 ELQ:ID(L, 6. 9) (9-92)
with
E\(0:)= 25, — =E,(Q.) (999)
Vda

The total field at an observation point P(r, . ¢ = 0) then becomes (in the sym-
metrical case)

E(P) = E(P) + E{(P) + E5(P). (9-94)

The parameters r, ry, dy, r,, and d, are shown in Fig. 9-26. The parameter E,
represents the magnitude of the electric field at the narrow slot in the xz-plane.
E'(Q,,) is that component of the incident field which is both perpendicular to the
edge and to the incident ray. To first order D is zero. However, there is a small
amount of diffraction that does take place and this is called slope diffraction (see
Prob. 9.8-1). The addition of slope diffraction to the diffracted field ensures that
not only is the total field continuous across a shadow boundary, but also that
the derivative of the total field is continuous.

For the slot problem of Fig 9-25, the radiation in the yz-plane may be
analyzed in the region above the ground plane to a first degree approximation,
by an array of dipole sources with a cosine distributed amplitude across the
array. Let the total number of dipoles in the array be N + 1, then the separation
between dipoles is

t 9-95)
Bi= N (9-95
The total field at an observation point P(r, 0, ¢ == /2) then becomes
S NI s\
E(P) =0E,sin(90° —0) )  cos = )e"‘"’“‘"" (9-96)
n=-—N/2

In Fig 9-27 the geometry of yz-plane with five dipoles (N = 4) in the array is
shown.

Figure 9-28 shows the far-field pattern results in the xz- and yz-planes at both
1 GHz and 3 GHz. The ground plane is 61 by 61 cm but the slot is taken to be
one-half wavelength at each [requency and diffraction in the yz-plane has been
assumed to be neligible, and under this assumption the pattern in the yz-plane is
the same at each frequency as indicated in Fig. 9-28. However, due to diffraction
the two patterns in the xz-plane are different, the “ripple” in the patterns being
the result of the diffracted energy. Since the slot is located symmetrically on the

P
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Figure 9-28 Far-field patterns in both principal planes at 1 GHz and 3 GHz.

ground plane, we see that the pattern is symmetric about the z-axis. For com-
pleteness the slope diffraction contribution to the yz-plane pattern at | GHz and
3 GHz is also shown.

While an experimental comparison is not shown here, such comparisons have
been made with excellent results [14] even though diffraction from the four
corners or vertices of the ground plane has been neglected. Although a formal
solution for vertex diffraction does not yet exist, we know from experimental
measurements that vertex diffraction is generally much weaker than wedge
diffraction. Thus, the total far field is given to a good approximation by (9-94).
In the problem considered here, vertex diffraction is weak in the xz- and yz-
planes and somewhat stronger in the ¢ = 45° and ¢ = 135° planes.

9.9 RADIATION BY A MONOPOLE ON A
FINITE GROUND PLANE

As another application of the uniform theory of diffraction and also as an
example of a problem with a caustic in it, let us consider the two situations
depicted in Fig. 9-29. First, consider the situation in Fig. 9-29a of a 4/4 mono-
pole on a square plate and suppose we wish to obtain the pattern in the xz-
plane. For purposes of far-field calculation and conceptual simplicity, a suitable
approximation to the 4/4 monopole is the ideal dipole of Chapter 1. We will

e
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diffracted ray from Q, at P(r, 0, ¢ = 0) appears to emanate from a single point
and is therefore

: 1 , e P
E{(P)= 05 EL(QuIDL(L, ¢, ¢)/di (9-98)
1
with
: e~ P )
EY(Q,)=2E,—— = ZE\(Q)) (9-99)
1
z
|
(a) :" 1
z =
|
| ___3;\_.‘_‘
|
| i
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5
e R YO RS ) PR & @
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(b) @ 15
= —_M d (circul )
Figure 9-29 Monopole on a finite ground plane: (a) square = A e e
. o — — — (Calculated {square case]
ground plane, (b) circular ground plane. L siins)
—207 X ® Equivalent current solution i
; ; : : : ‘,’ {circular case)
consider the ideal dipole to be resting on the surface of the ground plane. Thus, -
following the development of the previous section for the slot, we have for the o 1 ! | | | | |
direct ray from the ideal dipole at P(r, 0, ¢ =0) 0 20 40 60 a0 100 120 140 160 180
T Pattern angle, # (degrees)
- -~ e . ’ o .
E'(P)=0E,—— sin 0 (9-97) Figure 9-30 Radiation pattern of a short monopole on a circular ground
r

plane 64 in diameter. The calculated curve by Lopez [15] is for a 64 x 64
which now must obviously be considered to be a spherical wave. The edge- ' square ground plane.
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Similarly, the edgediﬂracted ray from Q, at P(r, 6, ¢ =0) is

E4(P) = 61 EL(Q:)D,(L, 6. ¢/ S

with E' (Q,) given by (9-99) since the source is located at the center of the ground
plane. Diffraction from the sides containing Q5 and Q, does not contribute to
the far field in the xz-plane since the monopole is positioned at the center of the
ground plane and the diffracted fields from these two sides will cancel one
another. As in the case of the slot of the previous section, we neglect diffraction
from the four corners or vertices of the ground plane. The corresponding pattern
for a 64 square ground plane is giver in Fig. 9-30 (dashed curve)

If we now consider the geometry of Fig. 9-29b, we note that in the xz- plane
the diffracted radiation will also appear (due to Fermat’s principle) to come from
two points which are called stationary points. We note too that the z-axis is a
caustic in this problem because all rays from the circular edge of the ground
plane intersect along the z-axis. Therefore, while we can expect to use the two
stationary points to calculate the diffracted field contribution to the pattern in
regions not near the caustic [15], we can likewise expect the “ two-point approxi-
mation” to be increasingly in error as the observation point P moves nearer the
caustic. Figure 9-30 shows that indeed this is the case since the measured and
two-point calculated patterns diverge both as 0 —» 0 and 6 — n, which is also a
caustic. The apparent difficulty in the vicinity of the caustic can be overcome, as
suggested in Fig. 9-30, by the use of a fictitious equivalent edge current. As will
be seen in the next section, the so-called equivalent current is not a physical
current at all, but rather a mathematical artifice for predicting the correct dif-
fracted field at or near a caustic.

(9-100)

9.10 EQUIVALENT CURRENT CONCEPTS

In the previous section we saw that, in the treatment of the circular ground
plane, we could obtain the diffracted field using ordinary wedge diffraction
theory if the point of observation was not near a caustic. In essence, we were
treating the problem as a two-dimensional one with the diffraction being taken
as that from an infinite two-dimensional wedge, whereas in fact we had a finite
edge that was not straight, but curved.

To properly treat the diffraction by a curved edge or a finite wedge (i.c., finite
length of the edge), it is necessary to consider the concept of equivalent currents
[16]. As we shall see, the strengths (i.e., amplitude and phase) of these so-called

equivalent currents will be dctermmcd by the canonical problem of wedge
diffraction.
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Consider the wedge of Fig. 9-17 to be of finite extent, —//2 < z(Q) < 7/2. To
start, we assume the currents are the same as those on an infinite wedge. Let us
determine the current flowing on the edge of the infinite wedge which would
produce the scattered field predicted by wedge diflraction analysis. Fhus, we
specify an infinite line source whose current is determined by the diffraction
coefficient. If the z-directed line source is an electric current, it can be shown in a
manner similar to that used in Sections 1.3 and 7.11, that the solution to the
scalar wave equation is [17]

b = HP(p) (9-101)
i
and therefore that the z-component of the electric field is
2
E,.= i H(Bp) (9-102j
T 4o

where ¢ denotes an electric current. If the argument of the Hankel function
H{?(Bp) is large. then using the asymptotic representation of the Hankel func-
tion, we obtain

Mtmid

E.=npl* ——g i, . (9-103)

2 2:rt£fp
We note that (9-103) represents an outward traveling wave in the cylindrical
coordinate system with the proper |/ p dependence for a two-dimensional prob-
lem. If instead the line source is a magnetic current I™ then we have
)’ St 4 .
H.= —'{—l SLA— (9-104)
i n 2 2npBp
Since we are al present considering a strictly two-dimensional problem. we
can also apply wedge diffraction theory to obtain the diffracted field from the
edge for the two orthogonal polarizations. Thus,
' e M
E.=D (L, ¢, ¢ )E.—— (9-105)
.-' p

and
= jie

H.=D_(L ¢ ¢)H (9-106)
N K
where D and D_ are given in Section 9.5. Usually, however, we find that the use
of equivalent currents involves the calculation of diffracted fields in regions away
from an incident field or a reflected field shadow boundary or their associated
transition regions. Thus, the asymptotic form in (9-69) for arbitrary incidence
angle 7,'1s usually sufficient.
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From (9-103) with (9-105) and also (9-104) with (9-106) we can solve for the
electric and magnetic currents of an infinite line source which will produce the
same far fields predicted using the diffraction coefficients. Thus.*

e~ p " B 3

r=—pE _(d),ar.z)\/mw“ (9-107)
and

"= -m HD (qaqs ) 27 H ), (9-108)

We note that (9-107) and (9-108) give us the equivalent currents I and I™ but
that they are numerically different for each value of ¢ and ¢'. The fact that these
currents are different for different observation points (i.e., values of ¢) serves to
emphasize the fact that these equivalent currents are not true currents, but
fictitious currents that simply aid us in calculating diffracted fields.

Considering Fig. 9-17 with the ray incident normally on the edge (yy'= n/2),
we have, respectively, for the far-zone diffracted fields

v'lruju S!.I] 0 ~ i iz of .t jfiz" cos il ’
— ! I(z' )el#e dz 9-109
"T 4w Yo i w()e ( )
and
Jopsin @ 0T s 5
Hm =, AL e ifir Jp;: = Sz’ cos d.'.." : (9_1 ’0)
p= IS | e

As in Chapter 4, we see that since the currents are constant with respect to -
(9-109) and (9-110) reduce to results in the general form of sin(x)/x with respect
to the -coordinate.

For the case of non-normal incidence (i.e., 7¢'# n/2), we can proceed in the
same manner and show that

. ol ;
1= 2 ELD (9. 9" yol Bk e = (o-111)
n
and
2 foe e
1" = HLD (. ¢'1 o)/ Znfeitn it <o o (9-112)
g e :

which includes the phase term to account for the traveling wave type current due
to the non-normal angle of incidence. In obtaining (9-111) and (9-112) we have
neglected the effects of the terminations at z = +//2. If the effect of the termina-
tion could be specified. an alternative equivalent current could be composed of

* Note that we denote the diffraction coefficient to be a function of L, ¢, and ¢’ to imply the Fresnel
integral form of the uniform theory in (9-62) and use ¢, ¢', and 3, when the asymptotic form in (9-69)
is intended.
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the currents given above plus a reflected current due to the termination. These
reflection effects would be expected to be of most concern in the backscatter
direction, rather than in the direction of the bistatic scattered field. Even so, as the
edge becomes long in terms of the wavelength, termination effects diminish. In
addition, usually the above currents find their application in the angular region
near the plane normal to the edge, further diminishing any possible termination
effects.

When we obtain equivalent currents, we invoke the postulate of diffraction
theory that diffraction is a local phenomena. For curved edges, we stretch this
postulate even further than for the straight edge. That is, we assume that each
point on a curved edge acts as an incremental section of an infinite straight edge
and thereby determine the equivalent current. Thus, for example, the equivalent
current that would enable us to calculate the diffracted field at the caustic of the
problem in Fig. 9-29b, would be [14]

81!
B

where we have used the result of (9-108) and the fact that (¢ x §) gives us the
unit vector perpendicular to the ray from the sources to the edge. The use of
(9-113) gives the calculated results in Fig. 9-30 which agree with experimental
measurements in the caustic region.

If, on the other hand, the source in Fig. 9-29 were a magnetic dipole, then the
required equivalent current would be [14]

P _‘i_’_;fh' (¢, & )\/S—T;{,-_nm‘ (9-114)

For an arbitrary polarization of the incident wave, both electric and magnetic
currents are necessary to obtain the total diffracted field. Such a situation would
occur, for example, in the calculation of the fields at or near the rear axis of a
circular parabolic reflector antenna which is a caustic region. At the rim of the
parabolic dish, the polarization of the field incident from the feed is generally
neither perpendicular nor parallel to the edge. Thus, both electric and magnetic
equivalent currents at the rim would be required to obtain the total diffracted
field in the rear axial region.

—Bx8)- EDL(¢,¢, ) S nee (9-113)

9.11 A MULTIPLE DIFFRACTION FORMULATION

In the previous two sections we considered radiating elements on infinitely thin
ground planes (i.e., n=2). If, instead, the ground plane were “thick " such that
one side could be represented by two 90° wedges as shown in Fig. 9-31, then it
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Figure 9-31 Magnetic line source exciting
surface rays on a half-plane of finite thickness.
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would have been necessary to consider the multiple diffractions that occur be-
tween the two closely spaced edges. In such a situation, some of the energy
diffracted by one edge is in turn diffracted by the other giving rise to second
order diffraction or to double diffracted rays. Clearly, some of these double
diffracted rays give rise to still higher order multiple diffractions.

If, to reasonably approximate the total diffracted energy, it is necessary to
include doubly diffracted rays, then it is usually simplest to include them in the
same manner used to account for the first order diffraction in the previous two
sections. On the other hand, if it 1s necessary to account for diffractions higher
than second order, it 1s advantageous to use a procedure known as the method of
self-consistency.

Briefly, the method of self-consistency incorporates all the diffracted rays (i.e.,
single as well as all higher order multiple ones) into a total (or net) diffracted
field from each diffracting edge. Thus, each of these total edge diffracted fields is
excited by a surface ray. Between the two diffracting edges there are, therefore,
two surface rays traveling in opposite directions. The amplitudes and phases of
these two surface rays are treated as unknowns. To solve for the two unknowns,
two equations are generated by applying single diffraction conditions at each of
the two diffracting edges.

To illustrate, consider Fig. 9-31. The coefficients C, and C; are the unknown
amplitudes (i.e, magnitude and phase) of the.two surface rays on the surface ab.
The coefficients C, and C, are known once C, and C, are known. Thus, we may
write the lollowing equations. At edge a.

Ci=C3Rpa+ V; (9-115)
and at edge b,
Cy=CRy+V; (9-116)

S AT R e ks

i ln FAES

9.11 A MULTIPLE DIFFRACTION FORMULATION 497

and knowing C, and C; we have .
Co=T,Cs+V; (9-117)
Co=T,C,+V, (9-118)
where R and T are reflection and transmission coefficients, respectively, and V is

the direct source contribution to the corresponding surface ray.
Equations (9-115) and (9-116) may be written in matrix form as

n EE)-

[Zlcl=[v] (9-120)

where [Z] is taken to be a coupling matrix and [V] is the excitation matrix. The
clements of the coupling matrix specify the interactions between the two surface
rays. In general, two surface rays may couple only if they travel on the same or
adjacent faces of a polygon as shown in Fig. 9-32. This, in general, leads to a
sparse [Z] matrix.

For the situation in Fig. 9-31, the reflection and transmission coefficients are

V.
V;} (9-119)

or compactly as

= Brar 1
Ry =" =5 D.(L, ¢, 9) (9-121)
pnb
where ¢ = ¢~ =0 and y, = 90°, and
—JBnas
R il N Y (9-122)

Y= e
\/pab 2

where ¢ =2n —n/2, ¢~ =0, and y, = 90°. For T,,, ¢* is 2r less the interior

wedge angle of /2. In both cases the distance parameter L used is that for

cylindrical waves. For the special situation depicted in Fig. 9-31, R,, = R,, and

.\-\ Magnetic
line source
C, G
Cz* a b }C_,
1 rc Figure 9-32 Magnetic line source exciting
Gl L4 : €1 1™®  surface rays on an infinite four-sided polygon
Cy Cs cylinder.
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Figure 9-33 Polygon approximation
Q Q of a curved surface cylinder. (a)
Curved surface. (b) Polygon approxi-

fa) (b)

mation.

T, = T,,. This is not true in general. For example, it would not be true lor the
situation depicted in Fig. 9-33.
For the two excitation matrix elements we have

e Jifpsa

V, = DL &, ¢ 9-123
7: (L, ¢, ¢) ( )

o ABpab

Vy=—7= D,(L, ¢, ¢") (9-124)
\/ Psb

where p,, is the distance from the line source to edge a and py, is the distance
from the line source to edge b. If the line source did not directly illuminate, say,
edge b, then V, would be zero. Here we have considered only the TE case. A
consideration of the TM case requires a knowledge of slope diffraction (see
Section 9.8).

As stated earlier, it may be sufficient in many problems to only take into
account second order diffraction thereby neglecting all higher order multiply
diffracted rays. An example of a situation where the method of self-consistency
greatly simplifies the amount of work required for solution is suggested by
Fig. 9-33. It is possible and practical to approximate the curved surface of
Fig 9-33a with a polygon such as that in Fig. 9-33b. For an accurate approxima-
tion to the curved surfaces, the edges in Fig 9-33b may be sufficiently close
together that higher order multiple diffractions should be taken into account.
The easiest way of doing that is via the method of self-consistency. However, the
self-consistent field method only works well provided an edge is not in the
transition region of a diffraction from another edge. This is a possibility if
adjacent edges of the polygon are closely aligned and this limits the degree to
which the curved surface may be approximated.

9.12 DIFFRACTION BY CURVED SURFACES

In previous sections we have seen how a perfectly-conducting wedge diffracts
energy into the shadow region. Curved surfaces may also diffract energy [14. 19].
That is, when an incident ray strikes a smooth, curved perfectly-conducting
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Figure 9-34 Creeping wave concept of dif-
fraction by a curved surface.

surface at grazing incidence, a part of its energy is diffracted into the shadow
region as illustrated by Fig. 9-34.

In Fig. 9-34, the incident plane wave undergoes reflection from the illuminated
portion of the scatter and undetgoes diffraction at the shadow boundary at point
A which is a point of tangency for the incident ray. At this point a portion of the
energy is trapped resulting in a wave which propagates on the surface of the
scatterer, shedding energy by radiation as it progresses in directions tangent to
the surface (e.g., point B).

This wave that propagates along the surface is known as a creeping wave. The
creeping wave can be described by a launching coefficient at the point of capture,
by a diffraction coefficient at the point of radiation, by an attenuation factor to
account for the rate of radiation, and by a description of the path on the
scatterer traversed by the creeping wave. Thus, we could write for the creeping
wave contribution to the scattered field, E2,, in the case of a two-dimensional
problem

Pt Lig ol
e e (9-125)
VY

E:, = Ey L DyG(s)

where

E},, = creeping wave scattered field
L , = the launching coefficient at point 4
Dy = the curved surface diffraction coefficient at point B
y(s) = «(s) + jB(s) = creeping wave propagation factor
s = arc length along the creeping wave path

G(s) = the ray divergence factor determined by the
geometry of the ray.
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The concept of a creeping wave is valuable in that it helps one visualize the
physical process involved in diffraction by curved surfaces. For example, the RCS
of a sphere as a function of the sphere radius is presented in Fig. 9-7. We can
interpret the oscillatory feature of the curve as being caused by two creeping
waves traveling around the sphere in opposite directions. Depending upon the
electrical size of the sphere, these two creeping waves tend to either construc-
tively or destructively interfere with each other causing the RCS to oscillate
about the value contributed by the specular scattering in (9-23). As the sphere
becomes larger, the amount of oscillation decreases which may be attributed to
the decreasing amplitudes of the two creeping waves due mostly to the factor
a(s) in (9-125).

Diffraction by curved surfaces 1s mathematically more complex than that for
the canonical problem of the wedge, so we will not pursue it further here. For
many engineering purposes, the student can adequately approximate a curved
surface by the method of the previous section.

9.13 EXTENSION OF MOMENT METHODS
USING THE GTD

In Chapter 7 we saw how the method of moments could be applied to many
antenna and scattering problems wherein the antenna or scatterer was not exces-
sively large in terms of the wavelength. In this chapter we have scen how
geometrical optics and the GTD can be applied to problems that are large in
terms of the wavelength. The purpose of this section is to show how the class of
problems solvable by moment methods can be enlarged by incorporating the
GTD into the moment method solution [20]. In studying this section, the stu-
dent will have an opportunity to test his or her understanding of the fundamen-
tal concepts developed in Chapter 7 and in the previous sections of this chapter.

Recall from (7-42) the elements of the generalized impedance matrix which
may be given in inner product notation as '

Z.=, E) (9-126)

(]

This states that the Z,,th element of the impedance matrix is found by reacting
the mth test function with the electric field from the nth basis function. Similarly,
the mth element in the generalized voltage matrix is found by reacting the mth
test function with the incident field.

Now in a strictly moment method formulation of a given problem all material
bodies are removed and replaced with equivalent currents radiating in [ree space.
Thus, when one reacts the mth test function with the field from the nth basis
function, it is only that field which directly arrives at the mth test function via the
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shortest free space path which one needs to consider since it is the only possible
field. However, suppose there exists in a given situation a portion of the struc-
ture which is not represented by equivalent currents (i.e., a material body re-
mains as shown in Fig 9-35). In this case, the calculation of the impedance
matrix elements is more complex but not unduly so. Let these new impedance
matrix elements be denoted Z;,,. In terms of (9-126), the reaction of J,, with E,
may be interpreted to mean the reaction of the test source with not only the field
from the true source arriving at the test source directly, but in addition the
reaction of the test source with fields from the true source that arrive by other
means as suggested by Fig. 9-35. Therefore, one can write

Z,,=4{J,, aE, + bE,> (9-127)

where a may be set to unity and b = b(m, n) is different for each m and n. The
quantity bE, also represents the field due to J,. but arriving at the mth observa-
tion point or region due to a physical process, such as a geometrical optics or a
diffraction mechanism, which is not accounted for in that portion of the problem
formulated by the moment method. Thus,

Zpw=Jn. ED + {,,. bE,> (9-128)

or

Zow= Zyu+ Z}y, (9-129)

where the superscript g denotes that Z¢, is an additional term added to. in
general, each impedance matrix element due to a physical process ¢ that redir-

ects energy from the nth basis current function to the location of the mth test
source.

E=0=H - @
b} J;
Wi E,H / |
1 P, /
1ol
11 ~Ha,
i : : x"“"@;ﬁ
A | —
T | e
ol |
1S,
Material bqu Material structure
replaced by equivalent not characterized
currents in localized by equivalent
free space currents

Figure 9-35 A source radiating in free space with one
scatterer replaced by an equivalent current and the other
remaining as a material body.
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As implied by Fig. 9-35, there is also a modification of the usual generalized
voltage matrix terms. That is, -

Vin= (T, E; + cE), (9-130)
where E; is the incident field arriving directly at region m and cE; is that field

from the source redirected to region m by a physical process g. We note that
¢ = ¢(m) is different for each m.

Vo= Tns E + J i cED, (9-131)
or
V=V, + VE. (9-132)
As a direct consequence of the foregoing discussion, we have
()] = [V] (9-133)
and its solution as
(11=[271"'[V] (9-134)

where [I'] is the current on, for example, an antenna opcrating in the p.resence.of
scattering mechanisms that may be accounted for by either geometrical optics
techniques or GTD. - _
Initially, to combine the method of moments and GTD into a hyb‘rld
technique, consider the problem ol a monopole near a perfec?ly cpnductmg
wedge as shown in Fig. 9-36. If we describe the monopole on an lpﬁnlte ground
plane strictly by the moment method matrix representation given in (7_-42), then
for the monopole near the conducting wedge we utilize (9-133) where in (9-129)
the term Z9, is obtained by considering that energy radiated by the nth basis

1
WL il

|:2' whm = WA

Figure 9-36 Monopole on a conducting wedge.

9.13 EXTENSION OF MOMENT METHODS USING THE GTD 503

function on the monopole that is diffracted by the wedge to the mth observation
point or region. In the work here we employ pulse basis functions and point-
matching wherein the testing functions are delta functions. However, the choice
of basis and testing functions is not restricted to these functions.

To calculate Z5, we compute the electric field from the nth pulse basis func-
tion incident upon the edge of the wedge at the stationary point. Taking that
component of the electric field perpendicular to the edge and to the direction of
propagation of the incident field, we then compute the energy diffracted to the
observation point at the center of the mth segment on the monopole. The com-
ponent of this field tangential to segment m is the term Z2,, of (9-129) since we
are employing delta weighting functions. To compute the diffracted field, we use
the formulation in Section 9.5 for the case of spherical wave incidence.

Shown in Fig. 9-37a is a calculated curve for the input resistance of a quarter-
wavelength monopole a distance d from the edge of a perfectly conducting wedge
(see Fig. 9-36). We note that the resistance oscillates about the value for a
quarter-wavelength monopole on an infinite ground plane and also that the
amount of variation is relatively small being only a few ohms. A similar curve is
shown in Fig. 9-37b for the input reactance. Data for both curves was obtained
directly from (9-134) without the need for any a priori knowledge of the current
distribution or the terminal current value.

Thus far the discussion has centered upon the calculation of input impedance.
Obviously, if one can accurately compute the input impedance, then quite accur-
ate far-field information can readily be obtained too. For example, in the case of
a monopole near a single wedge. as in Fig. 9-36, there may be as many as three
contributors to the far field. First, there is direct source radiation except in the
shadow region. Second, there is the reflected field, which is most conveniently
accounted for by using the image in the horizontal surface. Third. there is the
diffracted field that contributes in all regions and, of course. is the only source of
radiation in the shadow region. A typical far-field pattern is shown in Fig. 9-38.
Note that for 2= 90° the field does not go to zero as would be the case if the
ground plane was infinite in extent.

[l 'we wish to investigate a circular ground plane as in Fig. 9-39, we must use
the equivalent edge currents described in Section 9.10. Thus, we replace the edge
of the disk with an equivalent magnetic current M given by

M = —2E,e” "D (L. ¢, ¢') n 7 . (9-135)

This equivalent magnetic current is used to calculate the field at the segment at s
due to the current at s" as indicated in Fig, 9-39. Note that an equivalent mag-
netic ring current must be calculated for each choice of s and "

[t is useful for us to break up the equivalent magnetic ring current of Fig 9-39
into differential elements d/ so that the observation point is in the far field of
cach element even though it may be in the near field of the total ring current.
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The electric field in a plane perpendicular to an element d/ is given by

. Md/(jo 1 :
lE, = ——|=— 4 < |~ /¥ {9-136
i (cr 3 )e \ )
where r = (p* + z%)'"%, Letting d/ = p dy where  is the azimuth angle, taking
only the z-component at the monopole, and integrating over the range i = 0 to
i = 2x yields

Mp?(j 1
E,= £ (j—g+
r

- jpr
5 2 I)e p (9-137)
The value for E, is the term Z¢, that is added to the impedance element
obtained for a monopole on an infinite ground plane. This process gives the
modified impedance element needed Z',, to calculate the modified currents (and
hence input impedance) of a monopole on the finite circular ground plane.

Figures 9-40a and 9-40h show a comparison between calculations made with
the equivalent magnetic ring current and measurements for a monopole of
length 0.224/ and radius 0.0034 on a circular ground plane for varying radius. It
is apparent that the correct variation is accurately predicted for both the real
and imaginary parts of the input impedance. For the input resistance the
agreement between the measurements and the theory is excellent. For the input
reactance the agreement is very good but there is a shight shift in the calculated
curve when compared to the measurements. The amount of this shift is
sufficiently small that it can be attributed to the usual problems associated with
modeling the region in proximity to the driving point.

Next, consider the situation shown in Fig. 9-41 where a monopole of height h
is a distance d, away rom a vertical conducting step. To properly determine the
Z%, term in (9-129), it is necessary to determine all the various combinations of
reflections that can occur for rays emanating from the monopole and reflecting
back to it as well as the diffraction from the top edge of the step. Since the
vertical wall is at a right angle to the lower horizontal surface, there will be no
diffraction from the interior wedge and all the reflections can most conveniently
be accounted for by imaging the monopole into the horizontal ground plane and
then imaging the resulting dipole into the plane of the vertical wall.

Shown in Fig. 9-41 are two example situations that depict the utilization of
the images. Considering the uppermost segment of the monopole to be the
source segment, one set of rays shows the use of the image in the horizontal
surface to calculate reflected-diffracted energy reaching the segments of the
monopole. The other set of rays shows the use of the image in the vertical wall to
calculate singly reflected energy. In the calculated results that follow, all combin-
ations of singly reflected, doubly reflected, dilfracted, diffracted-reflected,
reflected-diffracted, and reflected-diflracted-reflected rays are taken into account.
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Figure 9-40 Theoretical and experimental input impedance of a monopale of radius
0.0031 at the center of a circular disk as shown in Fig. 9-39. (a) Input resistance.
(b) Input reactance.
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Figure 9-41 Monopole near a conducting step showing the
partial use of images.

All rays that involve combinations of double (or higher order) diffractions are
negligible.

Figure 9-42 shows the calculated input impedance for a quarter-wavelength
monopole a quarter-wavelength away from a vertical wall whose height is
d, > 0.25A. As d, increases the impedance oscillates about the value for the case
where d, = 00. The results of Fig. 9-42a and 9-42b show that as the diffracting
edge recedes from the vicinity of the monopole, its effect upon the input im-
pedance rapidly diminishes. Although we have not shown results for the case
where the step height is less than the height of the monopole the same method
could be used to investigate such situations.

In combining moment methods with GTD we have proceeded from the philo-
sophical viewpoint of extending the method of moments via GTD. In so doing
we have shown that modifying the impedance matrix to account for diffraction
effects (or geometrical optics effects) enables one to accurately treat a larger class
of problems than could be treated by moment methods alone. An alternative
interpretation of the hybrid method is also possible. That is, the procedure
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Figure 9-42 Input impedance of a quarter-wave monopole as a function of step
height for the geometry of Fig. 9-41. (a) Input resistance. (b) Input reactance.
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employed can be viewed as using GTD to obtain an approximation to the exact
Green’s function needed.

While the hybrid method possesses many of the advantages inherent in both
moment method (MM) and GTD, it also has some of the limitations peculiar to
each. For example, as in the usual MM problem, one can treat arbitrary
configurations of wire antennas (or slot antennas) taking into account lumped
loading, finite conductivity, and so forth, and obtain accurate impedance data
and current distributions. Naturally, one still must take the usual precaution of
using a sufficient number of basis functions to assure convergence. On the other
hand, as in the usual GTD problem, one must take care that the antenna is not
too close to a source of diffraction (e.g., d > 0.24).

9.14 SUMMARY

In this chapter on high-frequency methods we have presented a variety of
techniques for predicting both the near- and far-zone fields from perfectly con-
ducting bodies whose dimensions are large in terms of the wavelength. Parti-
cularly valuable for computational purposes is the uniform theory for wedge
diffraction presented in Section 9.5 which can also be used to approximate
curved surfaces as in Section 9.11.

The importance of the GTD method in antenna and scattering problems
stems from the significant advantages to be gained from its use, namely: (a) it is
simple to use, and yields accurate results; (b) it provides some physical insight
into the radiation and scattering mechanisms involved; (c) it can be used to treat
problems for which exact analytical solutions are not available. The GTD is also
used in acoustic problems such as SONAR and in problems involving inho-
mogeneous media or anistropic media [21].

The methods of this chapter tend to complement the low-frequency moment
method techniques presented in Chapter 7. And, as we have seen in Section 9.13,
the two techniques may be formally combined into a hybrid technique which
extends the class of problems to which we can apply moment methods. We can
do so not only because both the method of moments and the GTD are highly
practical techniques, but also because they are inherently flexible in their appli-
cation to analysis and design problems.
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PROBLEMS

9.1-1 It can be shown [12] that the principal radii of curvature of the geometrical optics
reflected wavefront are given by

Lo 1( ‘ +i)+i and — = !(l +-‘_)+i
P 2\p% Pl.z fi p2 2\py P4 S
where p) and p% are the principal radii of curvature of the incident wavefront and p, and

p, are the principal radii of curvature of the reflected wavefront. General expressions for
/1 and f; are given in the literature [12]. However, for an incident spherical wave,

1 (sin2 0, _I__sin2 01)
fi.a cosB\ H r3

e
cos* ;)\ 1§ rs $ TS

where 6, and 0, are the angles between the incident ray and the principal directions (i.e.,
tangent unit vectors) associated with the principal radii of curvature of the surface r§ and
r§, respectively,

(a) Show that for 8, =8, and 0, = 90°, the first equation reduces to (9-20) and the
second Lo

I 1  2cosly
P2 o ‘o rh I
(b) Without using (9-20) or the expression for p, immediately above, show that in the
case of plane wave illumination

pipa=1/rirs.
9.1-2 An infinite elliptical paraboloid is described by the equation
¥ yz

AT

where ry and r, are the principle radii of curvature at the specular point. Using geometri-
cal optics, show that the radar cross section for axial incidence is

g =nrirs.

Actually, this result applies to any surface expressible in terms of a second-degree polyno-
mial where r and rj are the principle radii of curvature at the reflection point [2, 3]. Is
the above result valid for a cylindrical surface or flat plate? Why not?

9.1-3 A plane wave is incident on a smooth three-dimensional conducting convex body.
The two principal radii of curvature of the body at the specular point are r§ = 54 and
r§ = 104. Write expressions for the electric and magnetic backscattered fields if the incident
plane wave fields are

E'=ye * and H'=1%
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9.2-1 Using physical optics show that the radar cross section of a flat rectangular plate at
normal incidence is

2
g=4n j—,_
where A is the area of the plate.
9.2-2 Equation (9-31) can be converted to a different and often useful form by noting that
(2 - @) ds is the projection of the element of surface area ds onto the xy-plane. Thus,
ds.

(i-ﬁ)ds=ds==(5?)df

where ds, is the projection of ds onto the xy-plane. Then (9-31) becomes

411'( Lo ds

i =Jjapes E

=13 L e 7 d()

where ¢ is the distance from the reference plane to the surface. Use the above expression
for the radar cross section to derive the physical optics expression for the RCS of the
sphere.

9.2-3 Show that the RCS of an infinite cone (as shown) is

A% tan* o
i6n

g =

Ef

Reference
plane

9.2-4 Show that the RCS of a square flat plate with edges parallel to the x- and y-axes,

and the direction of incidence in the xz-plane, is

sin(fa sin 6)
fa sin 0

where a is the length of one side. Compare the angular variation of this result with that of
the uniformly illuminated line source in Chapter 4.

4na*

2
: cos® B
}‘2
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9.2-5 Show that the RCS of a circular flat plate, or disk, in the xy-plane is
4na sin 0 )’

o= o (™

where a in the radius of the disk and J,(x) is the Bessel function of order one. Also show
that at 0 = 0° the above expression reduces to

o= T: A?
where A is the area of the disk [4].
9.3-1 A plane wave is incident upon a cylindrical parabolic reflector as shown. To obtain
the diffracted field from the top edge (only) at any point in space, the edge may be
analyzed as if a half-plane were tangent to the upper most portion of the parabolic
surface. Divide the space around the top edge into three separate regions and write
general expressions (with numerical values for ¢') for the total electric field from the
top edge in those three regions of space. In which of the three regions is the total
geometrical optics field zero?

El
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9.3-2 Evaluate the following Fresnel integrals:
) | e
0
.5
(b) | e 'dx
0

| (c) [zf‘”’ dr.
’s
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9.3-3 Find vg(p, ¢*) using both (9-52) and (9-54) for a 90° interior angle wedge when:

(a) ¢ =45° p= 104, ¢ = 220°.

(b) ¢ =45°, p = 104, ¢ = 230°.
Compare your results in (a) and (b) and explain any differences. What is v, in parts (a)
and (b)?
9.3-4 Find vglp, ¢*) for a 90° interior wedge angle (both polarizations) when:

(a) ¢ =45° p =10/, ¢ = 90°.

(b) ¢' =45° p =104, ¢ = 138°.

(c) ¢ =45° p= 104, ¢ = 180°.
Comment on your results and justify the formulas you used to evaluate the diffracted field
in each case.
9.3-5 A vertically polarized TV antenna transmits 10 kW at 600 MHz. A receiving
antenna is shadowed by a I-km high ridge normal to a line drawn between the two
antennas as shown. How much power is available at the terminals of the receiving
antenna if the gain of the receiving antenna in the direction of the ridge is 8 dB and that
of the transmitting antenna is 10 dB toward the ridge? As a rough approximation, assume
the ridge is perfectly conducting.

30°| 30°

|
1
I
i
|
1

Y A e o L e e 74

|
| i |
e———  f0km— e Ikm—

9.3-6 Substitute (9-44) and (9-45) into (9-43) and explain the physical significance of each
of the four terms you obtain.

9.4-1 Consider a magnetic line source parallel to the edge of a half-plane as shown. In
this situation the diffracted field appears to originate from a magnetic line source located

o)
\ —_.________-I"__________;—I!

Magnetic
_ line source

——

Conducting
¥ half-plane
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at the edge. Using the flux tube concept of Fig. 9-3, show that the diffracted field may be
written as

mm=—amum%§

where E'(Q) is the value of the incident field at the edge.
9.4-2 Repeat Prob. 9.4-1 when the magnetic line source is replaced by an electric line
source and show that

~ ke

mm=—omwmiﬂ-

9.4-3 Consider the situation where a point source illuminates the edge of a half-plane at
normal incidence. Unlike the previous two problems, in this case there will be spreading
in both principal planes. Using the flux tube concept of Fig. 9-3, show that the diflracted
field may be written as either

5 e it

Ef(s)= - D, E) (Q)\/S»"+ . \73

or

9.4-4 Show that the diffraction coefficient matrix [D] in (9-56) will generally have seven
nonvanishing coefficients if an edge-fixed coordinate system is used rather than a
ray-fixed system.

9.5-1 Derive (9-69) from (9-62) and show that (9-69) is the same as (9-52).

9.5-2 Consider the case where a half-plane is illuminated by a plane wavz and the obser-
vation point is near the edge of the wedge.

(a) Show that the UTD reduces to the Sommerfeld/Pauli result in (9-54) and hence
that the UTD is exact.

(b) Is the UTD an exact solution if the source is near the wedge edge and the observa-
tion point is at a very large distance? Why?

(c) If both the source and observation points are near the wedge edge, the UTD
solution will not be exact. Why? (Although the solution may not be exact, the results may
still be useful—see Section 9.13.)
9.5-3 Show that an alternative to (9-65) would be to define N* as the value of [(¢p + ¢') +
n)/2rn rounded to the nearest integer. Define a similar alternative to (9-66).
9.5-4 Consider a wedge illuminated by either an electric or magnetic line source parallel
to the edge and at some distance from it (p’ > A).

(a) Atthe reflection boundary (or incident boundary) show that the diffraction coefficient

~must have a discontinuity of magnitude \/p'p,f(p + o).
(b) Show that at the reflection boundary (or incident boundary) the UTD diffraction
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coefficient 1s discontinuous by an amount + \/‘I. What determines the sign of the discon-
tinuity ? The following approximation is useful:

X 2p fnid) ej'lm'd +X

F(X)~ | /nX —2Xe!™H —

| b2

which is valid when X is small.

(c) From the results of (a) and (b) show that the total field is continuous across the
reflection (or incident) shadow boundary.
9.5-5 A plane wave is incident at an angle of 7, = 45°, ¢’ = 30° on the edge of a 90°
(n = 3) conducting wedge.

(a) Use (9-62) and Fig. 9-19 to calculate E{ at a distance s = 24 when ¢ = 120°, 132°,
[38°, 180°, 222°, 228°, and 260° when E| = | V/m,

(b) Repeat (a) for E when E{ =1 V/m.
9.6-1 Use the E-plane model in Fig. 9-20b and the computer program in the Appendix
GJ9 to verily the curves in Fig. 8-14 which were obtained by aperture integration.
9.6-2 Show why the rays in Fig 9-20c make a negligible contribution to the radiation
pattern except when { = 90°.
9.6-3 Show that the doubly diflracted field from @, in Fig. 9-20¢ can be written as
ke ) W i i ifba sin 2
f?;: D;(L, ¢, ¢')D (L. ¢, ‘1’)‘\/5} '\:f;‘e' '

N

4 (py=1€
E].Z{P)_ 2

9.7-1 Use the computer program in Appendix G.9 to calculate the total diffracted field for
0 < { < 2x for the antenna of Fig. 9-22. Compare your results with Fig. 9-23. Why is
there a difference?

9.7-2 Draw a sketch of the “creeping wave " rays (see Section 9.12) on the back side of
the parabolic reflector of Fig. 9-22. Now draw rays which originate at Q, or @, and reflect
several times along the inside surface parabolic reflector. These rays are called whispering
gallery rays.

9.7-3 Show that the doubly diffracted ray from @, in Fig. 9-22 can be written as

ik
BLa(P) = f(00D o{L. 6. 90D (L, 6. 6)
N He
¢ ii_r‘:_{_ﬂ e JI" pifasinl
o 2 T
9.7-4 Derive (9-81).
9.7-5 If the line source in Fig 9-22 is a magnetic line source, calculate the far-field
pattern. Your result will be similar to that in Fig. 9-23. except that the discontinuity at
{ = 90° will be greater and the back lobes will be about 8 dB higher. Why?
9.7-6 Use the UTD to calculate the H-plane pattern of a 90° corner reflector antenna
with a dipole feed. The dipole feed is 0.5/ from the apex of the reflector, the reflector sides
are 1.04 long and the aperture of the corner reflector is 1.4144 across.



518 HIGH-FREQUENCY METHODS

9.8-1 The difiracted field that is neglected in (9-96) may be written generally as [14]

- i
Edo(P) = Z_ f‘_l:;LQ) __(3_.‘ D, . e I,
2ip en @ g\ slp +5)

Compare the value of this slope diffracted field with the direct field in (9-96) when
fl = 90°.

9.8-2 (a) Using (9-46) and (9-47) in (9-43) show how a factor of two arises in E(p, ¢) lor
the perpendicular polarization in the infinite ground plane case (vz = 0) when the plane
wave has grazing incidence to the ground plane (¢' = 0).

(b) Then verify in general that at grazing incidence the diffracted field must be mul-
tiplied by 4, as in (9-90) and (9-92), to obtain the correct value of the diflracted field. To
do this use either the asymptotic form in (9-52) or (9-69) to show that D, — 0 and that a
factor of 2 naturally arises in D
9.9-1 A short monopole (stub antenna) is mounted at the center of a circular ground
plane 62 in diameter as shown in Fig. 9-29b,

(a) Using the two point approximation show that the relative diffracted field in the
region 90° < 0 < 180° can be expressed by

e Htgat nisdy ] (,—jb.u o g

d
i J2pfr |eos(¢/2)  cos(e/2)
where ¢ =312 — (..

(b) Why must the diffracted ficld be zero when () = 180° for this problem? Use a sketch
and physical reasoning to explain why

(c) Calculate and plot a graph of the diffracted field for 90° < ¢ < 180", Compare your
results with Fig. 9-30.
9.10-1 Derive (9-107) and (9-108).
9.10-2 Derive (9-111) and (9-112).
9.10-3 A short monopole (stub antenna) is mounted at the center of a circular ground
plane 64 in diameter as shown in Fig. 9-29h.

(a) Using the equivalent concept, show that the relative diffracted field in the region
90° =< {I < 180° can be expressed by
Mt m &)

¢

Et= — 2njJ (67 sin f1)

3 ‘j'.rrﬂl,-; cos(h 2)
where J, is the first order Bessel function. Note that

-1
| - cos(s — &)el s D dg = 2mid i (x).
)

(b) Calculate the diffracted field and compare with that calculated in Prob. 9.9-1.
9.11-1 A triangular cylinder is illuminated by a line source as shown. Apply the self-
consistent method to this problem by setting up (9-120) in a form similar to (9-119). Note
that some of the matrix elements will be zero, Check your solution with that in [18].
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® Line source

Ca Cy
B ? E A

\/

C

9.13-1 Consider a monopole at the center of a square ground plane whose sides are 1/2
long. The monopole is to be represented using pulse basis functions and delta weighting
functions. The four sides of the ground plane are to be accounted for using wedge
diffraction. Diffraction by the four corners is to be ignored. Derive the necessary equa-
tions that would enable you to calculate Z%,, in (9-133).

9.13-2 Derive (9-135).

9.13-3 For the problem in Fig. 9-41, show all possible ray paths that do not involve
double (or higher order) diffractions.

9.13-4 A dipole of length ¢ is located a distance d from the surface of an infinitely long
circular cylinder of radius a. The dipole is parallel to the axis of the cylinder. Show how

you would account for the presence of the cylinder if only the dipole is represented by the
method of moments.



10

ANTENNA SYNTHESIS

Thus far in this book attention has been focused on antenna analysis and design.
The analysis problem is one of determining the radiation pattern and impedance
of a given antenna structure. Antenna design is the determination of the hard-
ware characteristics (lengths, angles, etc.) for a specific antenna to produce a
desired pattern and/or impedance. Antenna synthesis is similar to antenna
design and, in fact, the terms are frequently used interchangeably. However,
antenna synthesis, in its broadest sense, is one of first specifying the desired
radiation pattern and then using a systematic method or combination of
methods to arrive at an antenna configuration which produces a pattern that
acceptably approximates the desired pattern, as well as satisfying other system
constraints. Hence, antenna synthesis, in general, does not depend on an a priori
selection of the antenna type. Unfortunately, there is no single synthesis method
that yields the “optimum” antenna for the given system specifications. There
are, however, several synthesis methods for different classes of antenna types. In
this chapter we shall discuss the more useful synthesis methods in current use.
The discussion serves as an introduction to the topic of synthesis and should
provide a foundation for studying more advanced treatments [1].

10.1 THE SYNTHESIS PROBLEM

We will pose the antenna synthesis problem as one of determining the excitation
of a given antenna type that leads to a radiation pattern which suitably approxi-
mates a desired pattern. The desired pattern can vary widely depending on the
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application. Several radiation pattern variables are listed in Table 10-1. To illus-
trate, consider a communication satellite in synchronous orbit which is required
to generate separate antenna beams for the western United States and for
Alaska. Two main beams are required, both shaped for nearly uniform illumina-
tion of each region. Also low side lobes may be specified to minimize interference
over other regions of the earth, but higher side lobes could be permitted for
directions not toward the earth. This type of pattern has multiple shaped main
beams and a shaped side lobe envelope.

The antenna itself can take many forms as indicated by the antenna variables
listed in Table 10-1. The antenna type is composed of the continuity, shape, and
size. There are many other antenna specifications, or boundary conditions, that
are often included in the synthesis problem. A few follow: frequency of opera-
tion, bandwidth, impedance, power handling capacity, polarization properties,
efficiency, weight, and reliability. These specifications together with the desired
pattern form the complete synthesis problem. A general solution procedure
would provide the antenna type and excitation that give the best approximation
to the pattern while satisfying all other specifications. Since no single method
exists for such a solution, the synthesis methods are categorized by antenna type.
Before discussing these methods a few preparatory remarks are required.

If the radiation electric field components E, and E, are specified in the syn-
thesis problem, a secondary synthesis problem can be formulated in terms of
antenna aperture field transform components. For example, the aperture magnetic
equivalent surface current solution of (8-26) can be solved giving

E,

‘J;J:J=(j 54";')' cos ¢ sin ¢ l" o

—cos 00 sin ¢ cos 0 cos ¢
This can be used to obtain P, and P, from specified functions E, and E;. The
problem is then of synthesizing desired functions P, and P,. which are Fourier

(10-1)

Table 10-1 Antenna Synthesis Variables

Antenna variables Radiation pattern variables
Continuity Main beam region
Continuous . Narrow main beam
Discrete—array Single beam
Shape Multiple beams
Linear Shaped beam
Planar Side lobe region
Conformal Nominal side lobes
Three-dimensional Low side lobes

Size Shaped side lobes
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transforms of the aperture electric field components; see (8-18). The process is
similar for each of P, and P,. Therefore we shall let (6, ¢) be the normalized
pattern factor for either and frame our discussions using f(6, ¢). As another
example, consider a line source along the z-axis. If F,(0) is the normalized
desired radiation pattern (from E;), then
: Fy(0)

Ja(0) = 5in 0 (10-2)
is the desired pattern factor.

Throughout this chapter we will discuss the synthesis of f, which can represent
several antenna types; for example, either P, or P, of an aperture antenna. Also f
can be used for one principal plane pattern of a separable aperture distribution
function (see Section 8.2.2). The total pattern is then the product of the principal
plane patterns which can be synthesized separately.

Our discussion of antenna synthesis will be limited to linear antennas, that is,
either line sources or linear arrays. Many of the results, though, can be applied
to two-dimensional antennas. Synthesis methods can be separated by antenna
type or by pattern type. Only a few methods exist which can be applied to a
variety of antenna and pattern types [2]. Usually synthesis methods for shaped
beam patterns are completely different from those for low side lobe, narrow
beam patterns, so we will separate the methods by pattern type. Line source and
linear array synthesis principles with applications to shaped beam patterns are
detailed in Sections 10.2 and 10.3. Low side lobe, narrow main beam methods
are presented in Section 10.4.

10.2 LINE SOURCE METHODS

The radiation electric field from a line source of current (actual or equivalent)
along the z-axis and of length L is given by (4-1). For synthesis problems we are
only interested in the relative pattern variations. Furthermore, the element factor
g(0) = sin 0 is accounted for separately; for narrow-beam, broadside line sources
it 1s, in fact, negligible. The normalized pattern factor of a line source follows
from (4-1) as’

. 1 L2 .
[O0)=5|  i(z)er=est gz (10-3)
A
where i(z) is the normalized form of the current function /(z), and it is usually
normalized such that (10-3) produces a pattern f(0) which is unity at its maxi-

' Frequently the z-axis is selected to be normal to the line source, in which case cos # in (10-3)
becomes sin ().
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mum. The linear phase shift which scans the main beam is contained in i(z), for
example, see (4-3). For convenience we define?

w=cos 0 and s=§. (10-4)
Then (10-3) becomes
JLI2A
f(w)= J i(s)e/2™* ds. (10-5)
—L/24

This equation forms the relationship between the relative current distribution
i(s) and the normalized pattern factor f(w).

10.2.1 The Fourier Transform Method

Since the current distribution i(z) extends only over the length L, [that is, i(s)
is zero for |s| > L/24), the limits of the integral in (10-5) can be extended to
infinity giving

fw)= [ i(s)er™ ds. (10-6)
.This is recognized as a Fourier transform. The corresponding inverse Fourier

transform is
. OO

i(s) = | f(w)e™2=* dw. (10-7)

— o

(See Prob. 10.2-1). This immediately suggests a synthesis procedure. If fy(w) is t?ae
desired pattern, the corresponding current distribution i,(s) is found rather easily
from (10-7) as

W)= [ e (10:)

This is very direct, but unfortunately the resulting iy (s) will not, ‘in gf:neral. be
confined to |s| < L/24 as required; it will usually be. in fact. of infinite extent.
An approximate solution can be obtained by truncating iy(s) giving the syn-
thesized current distribution as follows

‘ igls) |s] 5%
i(s) = (10-9)

0 |>£
l Is| >3;-

1 Note that w is related to u of Chapter 4 by u = (fL2)w.
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The current i(s) produces an approximate pattern f (w) from (10-6). The current =

i4(s) extending over all s produces the pattern f;(w) exactly. '
The Fourier transform synthesized pattern yields the least mean squared error

(MSE), or least mean squared deviation from the desired pattern, over the entire

w-axis, The mean squared error '

—_— 7

fatw)

i

MSE = _] | | f(w) — fa(w)|? dw, (10-10)

with f(w) corresponding to i(s) in (10-9), is the smallest of all patterns arising
from line sources of length L. The Fourier transform synthesized pattern,
however, does not provide minimum mean squared deviation in the visible |
region.

Example 10-1. Fourier Transform Synthesis of a Sector Pattern

A sector pattern is a shaped beam pattern which, ideally, has uniform radiation over the
main beam (a sector of space} and zero side lobes. Such patterns are popular for search [ oo 1 N 1
applications where vehicles are located by establishing communications or by a radar echo 10 &~ \j _
in the sector of space occupied by the antenna pattern main beam. As a specific example,

let the desired pattern be

LN s e
"~ I.OW cos

el cos e <0 <cos (—c)
) = 10-11
140) [0 elsewhere ( &)

or, equivalently,

! [w] < ¢

folw) (10-11b)

o elsewhere’

falw) is shown in Fig. 10-1a by the dashed curve, Using (10-11b) in (10-8) and (10-9) gives
sin(2mes) L

ifel = 2p | < . = 2

ifs) = 2 St |s| < 7 (10-12)

If this sin(x}/x function were not truncated, its Fourier transform (its pattern) would be
exactly the sector pattern of (10-11). The actual pattern from (10-6) using (10-12) is

1 it I,
flw)= = 18| s mowie o)t =il ww— el (10-13)
nl |4 P |
where Si is the sine integral of (F-13). This synthesized sector pattern is plotted in Fig. 10-1a [\ /\ .
for ¢ = 0.5 and L = 104.* The pattern is plotted in linear form, rather than in decibels, to . E 3 s A
emphasis the details of the main beam. Note the oscillations about the desired pattern \/ \/

on the main beam, called ripple, and the nonzero side lobes. This appearance of main
beam ripple and finite side lobes is typical of any synthesized pattern. The current
distribution of (10-12) is plotted in Fig. 10-1b,

(b) 2

Figure 10-1 Fdurier transform synthesis of a sector. pattern using a 104 line source
(Example 10-1). (a) The synthesized pattern (solid curve) and the desired sector

% R lemh i T ) Ty Pyt
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10.2.2 The Woodward-Lawson Sampling Method

A particularly convenient way to synthesize a radiation pattern is to specify
values of the pattern at various points, that is, to sample the pattern. The
Woodward-Lawson method is the most popular of the sampling methods [3, 4].
It is based on decomposition of the source current distribution into a sum of
uniform amplitude, linear phase sources:

ial8) = ;;'A e |s| < % (10-14)
The pattern corresponding to this component current, from (10-6), is
: L
Iw)=a, Sa|n ; (w— w,')’ (10-15)

where the sampling function Sa(x) is defined as Sa(x) = sin(x)/x. This compon-
ent pattern has a maximum of a, centered at w = w,. The current component
phase coefficient w, in (10-14) controls the location of the component pattern
maximum, and the current component amplitude coefficient a, controls the com-
ponent pattern amplitude.

In the Woodward-Lawson method the total current excitation is composed of
a sum of 2M + | component currents as

M 1 M .
i(s)= Z i(x)=— z a, e JEmw (10-16a)
n=-M LIA .2
where
“"‘:Lj»: In| <M, |w,| <10 (10-16b)
The pattern corresponding to this current is
M M L
fw)y= Y fhiw)= Y a,Sa|n— (w-— \\'")}
n=— M n=-M ’
M I
= ) a,Sa n(:w—n” (10-17)
n=-M 4

At pattern points w = w, = nA/L, we have [(w = w,) = a,. Thus, the pattern can
be made to have specified values a,, called pattern sample values, at the pattern
locations w, of (10-16b), called sample points. The pattern sample values are
chosen to equal the values of the desired pattern at the sample points.

a, = fow = w,).

(10-18)

R
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The Woodward-Lawson synthesis procedure is very ¢asy to visualize. The cur-
rent distribution required to produce a pattern with values a, at locations w, is
that of (10-16).

The Woodward-Lawson sampling method can be made more flexible by
noting that as long as adjacent samples are separated by the sampling interval
Aw = /L, the pattern values at the sample points are still uncorrelated, that is,
(10-18) holds. The total number of samples is chosen such that the visible region
is just covered; samples located outside the visible region could lead to superdi-
rective results. Since the visible region is of extent 2 and Aw = A/L, the number of
samples 2M + 1 is on the order of 2/(4/L), or M is on the order of L/A.

Example 10-2. Woodward-Lawson Line Source Synthesis of a
Sector Pattern

The sector pattern of (10-11) is now to be synthesized with a 10 wavelength long line
source using the Woodward-Lawson method. Sampling this pattern according to
a, = folw = w,) with sample locations w, = ni/L = 0.1n gives the values in Table 10-2.
The sample value at the discontinuity (w = 0.5) could be selected as 1, 0.5, or 0 according
to the specific application. Using a,s = 1 gives the widest main beam, whereas a.s =0
gives the narrowest. In this case we choose a.s = 0.5 as a compromise. The synthesized
pattern, from (10-18) with the values from Table 10-2, is plotted in Figure 10-2a. The
sample points are indicated by dots. The SPAP computer program was used to generate
the pattern; SPAP will produce any pattern that can be expressed in the Woodward-
Lawson form of (10-17); see Appendix G.6.

Table 10-2 Sample Locations and
Sample Values fora 104 Woodward-
Lawson Sector Pattern (Example

10-2)
Sample
location, Pattern sample
n W, value, a,
0 0 1
o +0.1 1
+2 +0.2 1
+3 +03 1
+4 +04 1
+5 +0.5 0.5
+6 +0.6 0
+7 +0.7 0
+8 +0.8 0
+9 +0.9 0
+ 10 +1.0 0




w = cos

Sa[10w(w + 0.1)]

-1 Sal10rw)

528
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F ’“‘i\_/'a/\z

fc)

Figure 10-2 Woodward-Lawson synthesis of a sector pattern using a 104 line source
(Example 10-2). (a) The synthesized pattern (solid curve) and the desired pattern
(dashed curve). The dots indicate the sample values and locations. () Two com-
ponent patterns at sample locations w_, = 0.1 and wy, = 0. (¢) The current distribution
corresponding to the synthesized pattern,

To illustrate the sampling nature of the Woodward-Lawson method, two sampling
functions from the sum in (10-17) are shown in Fig. 10-2b for sample locations
w_y= —0.1 and wo = 0. Note that when one sampling function is maximum the other is
zero, thus making the samples independent. Further, each sampling function is zero at all
sample locations w, = ni/L, except at its maximum. When all samples are included, the
value of the total synthesized pattern at locations w, is completely determined by the Sa
function centered at that location. This is the beauty of the Woodward-Lawson sampling
method.

Note that the Woodward-Lawson pattern of Fig. 10-2a is a better approximation to the
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desired pattern (in the visible region) than is that of the Fourier transform method in Fig.
10-1a, both generated from a 10-wavelength line source. Detailed comparisons of all the
sector pattern examples presented are found in Section 10.3.3.

The current distribution corresponding to the sector pattern of this example is plotted
in Fig. 10-2¢. It was obtained from (10-16) using the SPAP program. Note the similarity

to the current distribution in Fig, 10-1b for the Fourier transform method. This occurs.

because the Fourier transform of any pattern is the antenna current distribution. Since
the patterns in Examples 10-1 and 10-2 are both close to a secter pattern, their Fourier
transforms (currents) must be close to that of an ideal sector pattern, which is sin(ns)/ns
in these examples.

10.3 LINEAR ARRAY METHODS

In this section the Fourier series and Woodward-Lawson methods for equally
spaced linear arrays are discussed. These two important pattern synthesis
methods are the array counterparts of the Fourier transform and Woodward-
Lawson methods of the previous section. Before presenting these methods we
shall model the array configuration for use with any synthesis method.

Consider an equally spaced linear array along the z-axis with interelement
spacings d. For simplicity the physical center of the array is located at the origin.
The total number of elements in the array P can be either even (then let P = 2N)
or odd (then let P = 2N + 1). For an odd element number, the element locations
are given by

T =md [m| <N (10-19)

and P = 2N + 1. The corresponding array flactor is

N

f#)= 3 inelrmaiam (10-20)

=N

where i,, are the element currents and again w = cos 6. This expression is similar
to (3-54).
For an even number of elements the element positions are

2m —
Zp= I) ld l<=sm<N
i 10-21
2m — 1 ( )
Bom= = d —-N<-m< -1
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and P = 2N. The corresponding array factor is

N
f(W) - Z (i_me—ijM— 1)di Ayw 3 imejnumv I){dfi]w) (10_22)
m=1
for P even.
For comparison to a line source the total array length is defined as
L= Pd. (10-23)

This definition applies to both the even and odd element cases, and it includes a
distance d/2 beyond each end element.

10.3.1 The Fourier Series Method

The array factor resulting from an array of identical discrete radiators (ele-
ments) is, of course, the sum over the currents for each element weighted by the
spatial phase delay from each element to the far-field point. This array factor
summation can be made to be of a form which is very similar to a Fourier series,
just as the radiation integral for a continuous source resembles a Fourier trans-
form (see Section 10.2.1). To see how this correspondence comes about, we first
observe that a function fy(w), the desired pattern function, can be expanded into
a Fourier series in the interval —A/2d < w < 4/2d as

_,-",',(w) = z bm pi2mmid Aw (10_24)
where
" e —
b =7 | falw)emrm@ian gy, (10-25)
L —j2d

If we identify d as the spacing between elements of an equally spaced linear array
and w = cos ) where 6 is the angle from the line of the array, the sum in (10-24)
is recognized as the array factor of an array with an infinite number of elements
with currents b, .

An infinite array is, of course, not practical, but truncating the series (10-24) to
a finite number of terms produces the following approximation to fy(w),

fwW)= Y byerrmin (10-26)

m=-N
If we let the currents of each element in the array equal the. Fourier series
coefficients, that is,

. |m| <N (10-27)
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then (10-26) is identical to (10-20), the array factor for an array with an odd
number of elements.

Table 10-3 Array Positions and
Currents for a Fourier Series Syn-

The Fourier series synthesis procedure is, then, to use element excitations i, E 3 thesized Linear Array of 20 Half-
equal to the Fourier series coefficients b,, calculated from the desired pattern f;, . Wavelength Spaced Elements for a
as in (10-25). The array factor f arising from these element currents is an approx- I Sector Pattern (Example 10-3)
imation to the desired pattern. This Fourier series synthesized pattern provides :
the least mean squared error [see (10-10)] over the region —2d/A < w < 2d/A. If = Element  Element  Excitation
the elements are half-wavelength spaced (d = A/2), this region is exactly the o ‘ number,  position,  current,
visible region (—1 <w< l,0or0 <0 < n). Y- | e e -

A similar line of reasoning leads to the results for an even number of elements. =l +1 40257 04502
In this case the Fourier series coefficient currents are f +2 +0.754 0.1501

+3 +1.251 ~0.0900
d L A2d S ¥
i = by = Al _ mr;,(w)e‘f*“’"‘ S 5 | ir; i;;i: —g:g?bg
e +6 +2.752 0.0409
SR §_|_m;;,(w;ew'~~ DAy m< -1 (10-28) st 1um  Snew
: s o sl . +9 +4.251 0.0265
for P even. The synthesized pattern is given by (10-22). Note that if N is infinite, _ +10 +4754 00237
(10-22) together with (10-28) is the Fourier series expansion of f;, that is,

S(w) = fa(w)

— | flw)i

Example 10-3. Fourier Series Synthesis of a Sector Pattern

For an equally spaced linear array with an even number of elements and ¢ < 1/2d, the
sector pattern of (10-11) in (10-28) yields excitation currents

n(2m — 1}?{( 1<m<N. (10-29)

; ; d
a,,,—i_.,,,—21< Sa

Since these currents are symmetric, the array factor of (10-22) reduces to

— o T IR

f(w)=2 i i, COS

(10-30)

n(2m — I)gw

which is a real function. In general, the synthesized currents or current distribution will be
real and symmetric if the desired pattern is real and symmetric, that is, if fy( —w) = fy(w):
and, in turn, the synthesized pattern will be real and symmetric.

The specific case of ¢ = 0.5, d/4A = 0.5, and 20 elements (N = 10) has an array length
I.= Pd = 104 and excitation currents from (10-29) given by

i_=f._={Sa[§(2m—l) 1 <m < 10. (10-31)
These excitation values are listed in Table 10-3, together with the element positions from 5 L I s s
(10-21). When these are used in the pattern expression (10-30) the pattern shown in Fig. -10 -08 -06 04 02 ] 0z 0.4 06 08 1.0
10-3 is produced. The NEESLAP computer program of Appendix G.5 can be used for Figure10-3 Fourier series synthesized array factor for a 20-element, A/2 spaced linear

these pattern calculations. array (Example 10-3). The desired pattern (dashed curve) is a sector pattern.

<
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10.3.2 The Woodward-Lawson Sampling Method

The Woodward-Lawson sampling method for linear arrays is analogous to the
Woodward-Lawson sampling method for line sources (see Section 10.2.2). In the
array case the synthesized array factor is the superposition of array factors from
uniform amplitude, linear phase arrays,

f(w)= i‘: . sin[(P/2)(w — w,)(2n/A)M]

w=n " P sin[l(w — w,)2n/A)d] (10-32)
where the sample values are
ay = filw = w,) (10-33)
and the sample points are
W, =n !_jd - ﬁi In|] <M, |w,]| <10. (10-34)
The element currents required to give this pattern are given by
i = ?l) ) i‘: Ma,,e'“ Wl Dy (10-35)

These results hold for arrays with either an even or odd number of elements.

Example 10-4. Woodward-Lawson Array Synthesis of a Sector Pattern

Again the sector pattern of (10-11) with ¢ = 0.5 is to be synthesized, this time with a
20-element, hall-wavelength spaced linear array using the Woodward-Lawson method.

Table 10-4 Element Currents and
Positions Synthesized from the
Woodward-Lawson Method for a
Sector Pattern (Example 10-4)

Element Element Excitation
number, position, current,
m g i,
+1 +0.254 0.44923
+2 +0.75. 0.14727
+3 +1.25; —0.08536
+4 +1.754 —-0.05770
+5 +2.254 0.04140
+6 +2.754 0.03020
+7 +3.25. -0.02167
+8 +3.75 —001464
+9 +4.25; 0.00849
+10 +4.754 0.00278

ST
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If{w)]

b o = cos §
-1.0 —05 R 1.0

Figure 10-4 Woodward-Lawson synthesized array factor for a 20-element, /2
spaced linear array (Example 10-4). The desired pattern (dashed curve) is a sector
pattern.

The sample locations from (10-34) are w, = 0.1n. Thus the sample locations and values
are the same as for Example 10-2 and are given in Table 10-2. Using these and element
positions z,, from (10-21) in (10-35) yields the array currents of Table 10-4. The pattern
can be generated from cither the Woodward-Lawson pattern expression of (10-32), or b\
direct array computation using (10-30), which is the version of (10-22) for the symmetric
case, and the array parameters of Table 10-4. The pattern is plotted in Fig. 10-4,

10.3.3 Comparison of Shaped Beam Synthesis Methods

Most shaped beam antenna patterns have three distinct types of pattern re-
gions. The side lobe region is easily recognized, and the side lobe level, SLL, is
defined from

value of the highest side lobe peak

_ (10-36)
maximum of desired pattern

SLL = 20 log
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over the side lobe region. The quality of fit to the desired pattern f;(w) by the
synthesized pattern f(w) over the main beam is measured by the ripple, R, which
is defined as

S (u)

Jalu)
over the main beam. Also of interest is the region between the main beam and
side lobe region, referred to as the transition region. In many applications, such
as direction finding, it is desirable to have the main beam fall off very sharply

into the side lobe region. To quantify this, transition width T is introduced and
defined as

R =20

log{maximum

]PB (10-37)

T= |W;'=n.9 - W;=0.1| (10'38)

where w,_qo and w, ., , are the values of w where the synthesized pattern f
equals 909, and 10% of the local discontinuity in the desired pattern. For
unsymmetrical, single beam patterns there are two transition regions with differ-
ent transition widths. Transition width is analogous to rise time in time-signal
analysis.

The shaped beam synthesis methods we have discussed in this and the
previous section can be compared rather easily using SLL, R, and T. The sector
pattern results of Examples 10-1 to 10-4 are presented in Table 10-5. A few
general trends can be extracted from the table. The Woodward-Lawson methods
(for both line sources and arrays) tend to produce low side lobes and low main
beam ripple at some sacrifice in transition width. On the other hand, Fourier
methods yield somewhat inferior side lobe levels and ripples. The Fourier series
synthesized pattern gives very sharp rollofl from the main beam to the side lobe
region, that is, small transition width.

Table 10-5 Comparison of Synthesized Sector Patterns (c = 0.5, L = 104)

Side level Transition
Example Figure level, Ripple, width,
Method Type number  number  SLL (dB) R (dB) T
Fourier 104 line 10-1 10-la —-219 0.83 0.0893
transform source
Woodward- 104 line 10-2 10-2a —298 0.27 0.1303
Lawson source
Fourier series 20-element, 10-3 10-3 —-22.6 0.87 0.0941
4/2 spaced array
Woodward- 20-element 10-4 10-4 —29.6 027 0.1343
Lawson A/2 spaced array

i kel M fomtyntics
3 - . ;
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10.4 LOW SIDE LOBE, NARROW MAIN BEAM METHODS

The synthesis methods presented in the previous two sections are most useful for
shaping the main beam of an antenna pattern. Another major class of pattern
synthesis methods is that for achieving a narrow main beam accompanied by
low side lobes. Patterns of this type have many applications, such as in point-to-
point communications and direction finding. In this section we will discuss the
two most important narrow main beam, low side lobe methods: the Dolph-
Chebyshev method for linear arrays and the Taylor line source method. These two
methods are closely related and the Dolph-Chebyshev method is presented first
to simplify the development.

10.4.1 The Dolph-Chebyshev Linear Array Method

In Section 3.5 several excitations of equally spaced, linear arrays were
examined. It was found that as the current amplitude taper from the center to
the edges of the array increased the side lobe level decreased, but with an
accompanying increase in width of the main beam. In most applications it is
desirable to have both a narrow main beam as well as low side lobes. It would,
therefore, be useful to have a pattern with an optimum compromise between
beamwidth and side lobe level. In other words, for a specified beamwidth the
side lobe level would be as low as possible; or vice versa, for a specified side lobe
level the beamwidth would be as narrow as possible. In this section a method for
achieving this is presented for broadside, linear arrays with equal spacings that
are equal to or greater than a half-wavelength.

As might be expected the optimum beamwidth-side lobe level performance
occurs when there are as many side lobes in the visible region as possible and
when they have the same level. Dolph [5] recognized that Chebyshev polyno-
mials possess this property, and he applied them to the synthesis problem. It is
important to be familiar with Chebyshev polynomials, so we shall give a briel
treatment of them before proceeding to synthesis.

The Chebyshev (sometimes spelled “ Tchebyscheff”) polynomials are defined
by

'(—1)"cosh(ncosh"“x[) x< —1
~1<x<1 (10-39)

cos(n cos ™! x)

l cosh(n cosh ™! x) x= 1
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A few of the lower order polynomials are

To(x) =1
Ti(x)=x
Ti(x) =2x% - | (10-40)

Ti(x) = 4x® - 3x
Ty(x) = 8x* — 8x2 + 1.

Higher order polynomials can be generated from the recursive formula
Tova(x) = 2xTy(x) = Ty_, (x) (10-41)

or by letting = cos ! x and expanding cos mé in powers of cos 8. For example
T5(x)=cos(3 cos ' x)=cos 36 =4 cos’0 —3 cos &  from (B-13). Hence
T3(x) = 4x? — 3x. A few polynomials are plotted in Fig. 10-5.

Some im;?ortanl general properties of Chebyshev polynomials follow from
(10-39) or Fig. 10-5. The even ordered polynomials are even, that is, T(—x)=
T,(x) for n even, and the odd ordered ones are odd, that is, T,(—x) = —"T(_\-) for
n odd. All polynomials pass through the point (1, 1). In the range —1 g"x <1

74 T,ix)
651
54
Ty 44 Ty
T
3l 3
I 2+ T3
Ty
_——-'-'.-'

Figure 10-5 Chebyshev polynomials To(x). Ty(x), Ty(x), Ta(x), and T(x).
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the polynomial values lie between —1 and 1, and the maximum magnitude is
always unity there. All zeros (roots) of the polynomials also liein —1 <x < 1.
The equal amplitude oscillations of Chebyshev polynomials in the region
|x| < 1is the desired property for equal side lobes. Also the polynomial nature
of the functions makes them suitable for array factors since an array factor can
be written as a polynomial. The connection between arrays and Chebyshev
polynomials is established by considering a symmetrically excited, broadside

array for which
(10-42)

Symmetrical excitation leads to a real-valued array factor which, from (10-20)
and (10-22), is given by
i :
]ig+22imcosmyf1 P odd
fwy=¢ " (10-43)
2 B3 cosl(Zm— l)%‘ P even
m=1

where § = 2n(d/A)w. This array factor (for either odd or even P) is a sum of cos
(my/2) terms for m up to P — 1. But each term containing cos (my/2) can be
written as a sum of terms with powers of cos (//2) up to m, through the use of
trigonometric identities. Therefore, the array factor is expressible as a sum of
terms with powers of cos (/2) up to P — 1.

By choosing an appropriate transformation between x and i the array factor
and Chebyshev polynomial will be identical. The transformation

G SE T 1 % (10-44)
and the correspondence
JW)=Tp 1(-‘79 cos %) (10-45)

will yield a polynomial in powers of cos(//2) matching that of the array factor.
The main beam maximum value of R occurs for § = 90°, or y = 0, for a broad-
side array.* Then (10-44) indicates that x = x, at the main beam maximum. The
visible region extends from 0 = 0° to 180°, or ¢ = 2n(d 4) to —2n(d/1). These
limits correspond to x = x, cos(nd/A); for half-wavelength spacing the limits are
x =0. Thus, for d=//2 the visible region begins at x =0, or § =0° and x
increases as ¢ does until x, (the main beam maximum point) is reached and
retraces back to x =0, or f = 180° (see Fig. 10-6).

* The symbol fis usually reserved for a pattern normalized to a maximum value of unity, but for the
Dolph-Chebyshev array it is more convenient to normalize the array factor f to a maximum value
of R.
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1
73 Talx)

/\ I |
j"\ —100“?5 ~05/ —025 0.26 w“
-1.26

Figure 10-6 Chebyshev polynomial 7;(x).

The main beam-to-side lobe ratio, R, is the value of the array factor at the
main beam maximum, since the side lobe level magnitude is unity (see Fig. 10-6).
The side lobe level is thus 1/R, or

SLL= -20log R  dB. (10-46)
Evaluating (10-45) at the main beam maximum gives
R = T,_(x,) = cosh[(P — 1)cosh™! x,] (10-47)
from (10-39). Or, solving for x,,
x, = cosh AR -
X, = COS (P_lcosh R) (10-48)

The design procedure can be summarized. For a given side lobe level, R can
be determined from (10-46) leading to x, from (10-48). The array factor is then
given by (10-45), or it can be computed from (10-43) directly from the current
values. The excitation currents are found by comparison between the array
factor of (10-43) and the Chebyshev polynomial of (10-45). This synthesis
procedure will be illustrated by the following example.
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Example 10-5. A Five-Element, Broadside, —20-dB Side Lobe,
Half-Wavelength Spaced Dolph-Chebyshev Array

For a five-element array (P = 5, N = 2) the array factor from (10-43) is
S(W) =i, + 2i; cos Y + 2i; cos 2y (10-49)

where ¢ = 2n(d/i)cos 0 = n cos 0 for d = A/2. Using cos (2y/2) = 2 cos*(y/2) — 1 from
(B-12) and cos(4y//2) = 8 cos*(14/2) — 8 cos?(y/2) + 1 from (B-14), the array factor can be
wrilten as

v

S) = (ig — 20, + 2i3) + {40, — lGr’z)cosz = + 16i, COS" (10-50)
And from (10-40)
Ta(x) =1 — 8x? + 8x*
= 1 — 8x} cos? 'g + Bx§ cos* % (10-51)

where (10-44) was used in the second step. Now the currents are found by successively
equating coefficients of like terms of (10-50) and (10-51). From the cos*(i/2) term

- | (10-52)
The cos®(f/2) term yields
iy = 4i; — 2x2 = 2x} — 2x? (10-53)
using (10-52). The final term gives
o= —2ip+2, +1=3x—dx? +1 (10-54)

using (10-52) and (10-53). The current values will be completely determined when x, is
evaluated. This is accomplished by first finding the. main beam-to-side lobe ratio from
(10-46) using the specified — 20-dB side lobe level;

R = 107511120 _ 10 (10-55)
Then from (10-48) with P =5 and R = 10,
= 1.293. (10-56)

" The element currents from (10-52) to (10-54) with (10-56) are

ip=i_y=13975, i, =i_,=22465  i;=2.6978. (10-57)

These currents yield a main beam maximum of R = 10 and unity side lobes. Normalizing
these to unity edge currents gives a 1:1.61: 1.93: 1.61: 1 current distribution. The cur-
rents of (10-57) in (10-49), or in the NEESLAP program, lead to the pattern in Fig. 10-7,
which was normalized to 0 dB on the main beam maximum. This same pattern was
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i | 1 | | |
0.2 0.4 0.6

w=cosfl —

Figure 10-7 Dolph-Chebyshev synthesized array factor for a five-element, Af2
spaced, broadside array with —20-dB side lobes (Example 10-5).

plotted in Fig. 3-23d in polar form. The directivity for equiphased, half-wavelength spaced
arrays can be obtained from (3-93). For this example the directivity is

2
pD=1"="2 J _ 469 (10-58)

I d < 7/2 the Dolph-Chebyshev broadside array is not optimum. Also if
X, cos(fd/2) < —1, additional main beams begin to appear. However, the
Dolph-Chebyshev method can be extended to linear arrays with arbitrary spac-
ings and to endfire applications [6, 7].

An approximate solution to the optimum (low side lobe, narrow main beam)
linear array is obtained by setting the element currents equal to that of the

Taylor line source at the appropriate locations; the Taylor line source is dis-

cussed in the next section. Also see Prob. 10.4-10.
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10.4.2 The Taylor Line Source Method

The optimum narrow beam pattern from a line source antenna occurs when
all side lobes are of equal level, just as in the array case. The required functional
form, as we have seen, is that of the Chebyshev polynomial. The Chebyshev
polynomial Ty(x) has N — 1 equal level “side lobes” in the region —1 < x < 1,
and for |x| > 1 its magnitude increases monotonically. A change of variables
will transform the Chebyshev polynomial into the desired pattern form; that is
with a zero slope main beam maximum at x = 0 and equal level side lobes. The
new function resulting from the variable change is

Pan(x) = Ta{x, — a’x?) (10-59)

where a is a constant and
.t——w%cas{):%w. (10-60)

At the pattern maximum
Pyylw=0)= Ty(x,)=R (10-61)

which is the main beam-to-side lobe ratio. A plot of (10-59) for N = 4 is shown
in Fig. 10-8; it is the transformed version of Fig. 10-6.
From (10-39) we have in the side lobe region

P,5(x) = cos[N cos™*(x, — a*x?)] |x, — a*x?| < L (10-62)

The zeros of this function occur when cosine argument equals (2n — 1)n/2, or
when the values of x are as follows,

1 (2n— 1)n
i ms g = i e -63
%, ia\/xﬂ cos — [n] =1 (10-63)

where the plus sign is used for zero locations on the positive x-axis and
X_-, = —X,. In the main beam region, from (10-39),

P, x(x) = cosh[N cosh™!(x, — a®x?)] [x, —a’x?| > 1.  (10-64)

The main beam maximum value of P,y is R and occurs for x = 0: see (10-60)
and (10-61). Solving (10-64) for x, at the main beam maximum yields

1
o cosh(ﬁ cosh™* R ] (10-65)
" It is convenient to introduce 4 such that

A= cash ViR (10-66)
s



544 ANTENNA SYNTHESIS

t
Pg(x)

I AKX
AN NFEVE
Figure 10-8 Transformed Chebyshev polynomial Pg(x) = T,(x, — a?x?).

Values of a = 0.55536 and x, = 1.42553 corresponding to Example 10-6 were
used.

so then

nA
= cosh —.
X, = cosh —= (10-67)

In order to have all side lobe levels equal we let N approach infinity, but
simultaneously the argument of P,y is changed to keep the first nulls stationary,
thus leaving the beamwidth unchanged. For N large x, = cosh(r4/N) =1 +
{nA/N)* and

L

2:1 = (2n — lh‘t
( [
and using these in (10-63) gives

L JTTE-T Now. (10-68)

X, =+
V2N

n

8|
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By letting
n
a= m (10-69)
the first zero location remains fixed as N increases. Then
A+ (n —1)% (10-70)

The pattern factor is a polynomial in x with an infinite number of roots x,,
and can be expressed as a product of factors (x — x,) for n from — oo to +oo0.
And since x_, = —x, the pattern is

H(x = )= H[x — A2 = (n—4)] (10-71)
Normalizing this to unity at x = 0, gives
K. i AzJ
=17

The iast step above utilizes the closed form expression for the infinite products.
Using (10-60) and (10-66) in (10-72) gives the pattern in w as

Fw)= cosr [(L{i}W] — 47 (10-73)

Note that this is normalized to unity at the maximum (w = 0) and oscillates
between —1/R and 1/R in the side lobe region. For large w the argument of the
cosine function in (10-73) is approximately awlL/4, so the zero locations of the
pattern are w, = +A(n —4)/L or x,~ +(n—4), and thus they are regularly
spaced. Also note that for w < AA/L the cosine argument of (10-73) is imaginary
and since cos(jf) = cosh 0, (10-73) is more conveniently expressed as

T vl | UL ) i (A ATA . (10-74)

cosh A

This pattern is that of the ideal Taylor line source [8]. It is a function of A which
is found from the side lobe level; see (10-46) and (10-66). The line source is
“ideal™ in the sense that equilevel side lobes extend to infinity in pattern space,
thus leading to infinite power. The required source excitation, in turn, must
possess infinite power and, in fact, will have singularities at each end of the line
source.

An approximate realization of the ideal Taylor line source, referred to as the
Taylor line source, renders the first few side lobes of a nearly equal level and
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decreasing far-out side lobes [8]. The decaying side lobe envelope removes the
infinite power difficulty encountered with the ideal Taylor line source. The
Taylor line source pattern is again a polynomial in x, but with zero locations
given by

+a./A7+ (n—3)? l<n<n

+n A<n<o (10-75)

The zeros for n < n are those of the ideal line source in (10-70) scaled by the
factor g. The far-out side lobes for n > 71 are located at the integer x positions.
The zero arrangement for a sin(mx)/nx pattern is x = +n for n > 1 so the Taylor
pattern far-out side lobes are those of the sin(nx)/nx pattern. The scaling par-
ameter ¢ is determined by making the zero location expressions in (10-75) identi-
cal for n = i, which yields

n
s 1 10'?6
N/ .
From the zero locations of (10-75) we may write the approximate Taylor line
source pattern as

sin ax A2t 1 — (x/x,)?

flx, A, 7)= n];[ T (on)®

X
The side lobes are nearly constant at the value 1/R out to x = i1 and decay as 1/x
beyond x = fi. The pattern in terms of w = cos 0 is

sin(mLw/A) " 1 — (w/w,)?

(10-77)

A, 7
o a, my=—ror= [l1= (Lw/in)? VOR)
where the pattern zero locations on the w-axis are
ticr A* + (n—4)? l<n<n

B~ o~
A

-

A

8

with o given by (10-76).

The Taylor line source is actually a pattern of the Woodward-Lawson family.
We shall show how this comes about and also determine the sample values and
locations. First assume that the required source excitation can be expanded in a
Fourier series as

aa

f(s)—% E a e~ - g] < _24 (10-80)

i
.

- g R A
i T S R
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The corresponding pattern from (10-18) is

e A _\L
flw)= ”zz_:wa,, Sa [(w—zn)zn] (10-81)
where the sample locations are identified as
wi= A n {10-82)

L

The infinite expansion of (10-81) gives the exact pattern if the sample values are
(see Prob. 10.4-6)

a,=f(w=wi)=f(n A, n). (10-83)

But the pattern zeros correspond to the sample locations of (10-82) for |n| =7
since x, = n, or w, = (4/L)n for |n| > i from (10-75). Thus

a,=0 for |[n|=n (10-84)

Using (10-83) and (10-84) in (10-81) gives the pattern expression

f(w)= Z f(n A, n)Sa[w wi)— :rc} (10-85)
The required current distribution from (10-80) is
i(s) = l+2_ilf[n A, n)cos(Zn%ns)] (10-86)

The coefficients f (n, A, i1) are the samples of Taylor line source pattern for x = n
and n < fi. They are found from

[(ﬁ—l)]2 a=1
fn 4, 7)={ G—1T+m)E—1—n) . [
0 In| =7

- f'_z) In| <@ (10-87)

and f(—n, A, 1) =f(n, A, i1). Tables of the coefficient values are also available
[9]. These coefficients together with (10-85) and (10-86) determine the Taylor line
source pattern and current.

The half-power beamwidth expression is obtained rather easily for the ideal
pattern. Evaluating (10-74) at the half-power points yields

1
2

n [A? - (%wm, ‘ (10-88)

:ci-—-
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Solving this gives the two solutions
A

Wyp = iL:rr

(cosh™! R)?> — (cosh“l %)zrz_ (10-89)

The half-power beamwidth in w is then

(cosh™* R)* — (cosh“ %)2

The angle from broadside is y = 0 — 90°, so w = cos 0 = cos(y + 90°) = —sin y
and y = —sin~ ! w, The hall-power beamwidth based on the ideal Taylor line
source 1§

A2 11/2
HB,,. =2 |wyp| = P

(10-90)

HPi = |0”i’ncn i Uupl’rlghl| = IYHFHGH - ?lerlghtl

= [sin " wyp. —sin” ! wyp_| =2|sin ™! wyp|

(cosh" R)2 - (cosh" %)Tu} (10-91)

where wyps and wyp- are the two solutions of (10-89). The beamwidth for the
approximate Taylor line source is given approximately by [10]

HP, ~oHP, (10-92)

= 2:5in "

T

and in 6 by

2
HP =2 sin’ 1{?:” {(cosh"l R)? — (Cosh_‘ i) I
n

/2

l.'.?.]
| (10-93)

Example 10-6. A 10-Wavelength Taylor Line Source With —25-dB Side
Lobes and n =5

The main beam-to-side lobe level ratio, since SLL = —25 dB, is
R = 107514120 — 10125 — 17.7828. (10-94)
From (10-66)

A= a—i cosh ™! R = 1.13655. (10-95)

Then from (10-76)

o= L 107728 (10-96)

VAT + (A= 4)
Using these values of 4 and o, the zero locations x, can be calculated from (10-75), and
then the sample coefficients follow from (10-87) as given in Table 10-6. The sample
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_ Table 10-6 Sample Values and
Locations for the Taylor Line Source
of Example 10-6 (L = 104,7/i=15)

a, = f(n, 4, i)
n = f(n, 1.13655, 5) w?
1.000000 0
+1 0.221477 +0.1
+2 —0.005370 +02
o —0.006621 +03
+4 0.004917 +04

549

locations from (10-82) are also tabulated. The pattern and current distribution can now
be computed from (10-85) and (10-86) with the sample values and locations of Table 10-6.
The resulting pattern and current distribution are plotted in Fig. 10-9; the SPAP program

t
HP, = 0.1054 If(w)] (dB)
f{ \\
f=o1 | N
% \
i N\
’ Y
s hY
I Y
b il S
rd \\
/’/ ~
// '\\
- ~30 1~ S
[\[\ —40 : _ |
—1.0 ~0.8 —0.6 -0.4 —-0.2 0 0.2 0.4 0.6 0.8 1.0

w=cosf —
(a)

Figure 10-9 A 104 Taylor line source with _25.dB side lobes and i = 5 (Example
10-6). (2) The synthesized pattern.
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0.20

018 i)
0.16 1

013
0.12
0.10

0.08

0.06

0.04 1+

0.02-1+

(b)
Figure 10-9 (continued) (b) The current distribution,

may be used to generate these. The side lobe decay env

the pattern is shown in Fig. 10-9a. The half- il e

power beamwidths from (10-90) to (10-93) are

HP,, = 00978 HP; = 5.606° (10-97)
and

HP, ~0.1054  HP x 6039°. (10-98)

In this case the ideal Taylor line source beamwidth is ve

. [ .
mate Taylor line source. The half-power beamwidth HP ot

w 15 indicated in Fig. 10-9q.
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PROBLEMS

10.2-1 If g(r) and G(w) are a Fourier transform pair, then

Glw) = | glt)e™ " dt

x

and

glr) = 2 | Glw)e™" dw.
2n _ o

If g, t, G, and w are replaced by f, u, i, and 2nrs, respectively, show that (10-6) and (10-7)

follow from the above equations.

10.2-2 Use (10-6) to find the pattern from a uniform amplitude, zero phase line source of

length L centered on the z-axis.

10.2-3 Find the current distribution is(s) required to exactly produce the sector pattern of

(10-11b).

10.24 (a) Derive the Fourier transform synthesis pattern of (10-13) for a sector pattern.

(b) Plot this pattern, thus verifying Fig. 10-la. Numerical integration of the Fourier

transform via computer may be easier than using (10-13).

10.2-5 Derive (10-15).

10.2-6 Repeat the Woodward-Lawson synthesis of the sector pattern of Example 10-2,

but this time [or a five-wavelength line source.

(a) Plot the pattern in linear, rectangular form as a function of w.

(b) Plot the current distribution.
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10.2-7 A cosecant pattern (see Prob. 1.6-7 for a discussion of the cosecant pattern) is
given by
1 0<w<0.1
Jalw) = 0l <w<05
0 elsewhere

Use the Woodward-Lawson method to synthesize an approximation to this pattern for a
104 line source.

(a) Plot the pattern in linear, rectangular form together with the desired pattern as a
function of w.

(b) Plot the required current amplitude and phase.
10.3-1 Discuss the conditions under which the f(w) can be represented by the Fourier
series in (10-24).
10.3-2 Derive the Fourier series coefficient expression in (10-25).
10.3-3 Derive the element current expression (10-29) for the Fourier series synthesis of a
sector pattern.
10.3-4 Synthesize a sector pattern with ¢ = 0.5 using the Fourier series method as in
Example 10-3 for an array of 20 elements which are spaced 0.6 apart.

(a) Determine the element locations and current values.

(b) Plot the radiation pattern in linear, rectangular form as a function of w.
10.3-5 Repeat Prob. 10.3-4 for an array of 10 elements and half-wavelength spacings.
10.3-6 Use the Fourier series synthesis method to synthesize a sector pattern with ¢ = 0.5
for an array of 21 half-wavelength spaced elements. Derive the general element current
expression and evaluate for each clement. Plot the pattern. Compare to the 20-element
array result of Example 10-3.
10.3-7 Repeat the cosecant pattern synthesis as in Prob. 10.2-7 using the Fourier series
method for a 20-element, half-wavelength spaced array.
10.3-8 Show that the Woodward-Lawson sampling method pattern of (10-32) arises from
the array factor with the currents of (10-35) for:

(a) An odd number of elements. Hint: use (10-19) and (10-20).

(b) An even number of elements. Hint: use (10-21) and (10-22).
10.3-9 Verify the array element positions and currents of Table 10-4 for the Woodward-
lLawson synthesized sector pattern of Example 10-4,
10.3-10 Repeat the Woodward-Lawson synthesis as in Example 10-4 for a 10-element,
half-wavelength spaced array.
10.3-11 A collinear array of 18 half-wave dipole antennas is to be used to synthesize a
sector pattern with a main beam sector over the region 70° < 8 < 110°, that is, F(0) =
over this region and zero elsewhere.

(a) For 0.654 spacings determine the input currents required for Woodward-Lawson
synthesis of the complete pattern. Account for the element factor.

(b) Plot the total array pattern in linear, polar form as a function of .
10.3-12 Repeat Prob. 103-11 for a cosecant desired pattern where F,f) is 1 for
80° < 0 < 90°, cos 80°/cos 8 for 0° < 0 < 80°, and zero elsewhere.
10.4-1 For the five-element, broadside, —20-dB side lobe, half-wavelength spaced Dolph-
Chebyshev array of Example 10-5:
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(a) Obtain the pattern plot in logarithmic, rectangular form as a function of w. The
NEESLAP program may be used.

(b) Verify the side lobe level and beamwidth (see Fig. 3-23d) from your pattern
calculations.
10.4-2 Design a Dolph-Chebyshev broadside array of five, half-wavelength spaced ele-
ments for —30-dB side lobes.

(a) Verify the current distribution as given in Fig. 3-23e.

(b) Compute the directivity.
10.4-3 Design a broadside Dolph Chebyshev array with six, 0.61 spaced elements for
—25-dB side lobes.

(a) Obtain the element currents.

(b) Plot the pattern in logarithmic, rectangular form.
10.4-4 Derive the ideal Taylor line source pattern results of (10-71) and (10-72).
10.4-5 Show how the approximate Taylor line source pattern of (10-77) follows from the
zero locations.
10.4-6 The sampling theorem from time-signal analysis states that a signal g(t) is exactly
reconstructed from the time samples g(m/2B) as

2118( 3 B”

w0=_% ofz)sa

where B is the highest frequency component of the signal. Draw the appropriate analogies
to antenna theory to obtain the sampled data pattern expression of (10-81).

10.4-7 Verify (10-89).

10.4-8 Compute the sample values a, of Table 10-6 for the Taylor line source of Example
10-6.

10.4-9 Compute the half-power beamwidth values for the Taylor line source of Example
10-6. Compare your answers to those of (10-97) and (10-98).

10.4-10 An array antenna can be designed by choosing the element current excitations at
the corresponding points of the continuous current from a line source synthesized for the

Array Excitations for Prob-
lem 10.4-10

m Z )14

1 +0.25 0.14234
+2 +0.75 0.13833
+3 +1.25 0.13127
+4 +1.75 0.12175
+5 +2.25 0.10935
+6 +2.75 0.09429
+7 +3.25 0.07891
+8 +3.75 0.06676
+9 +4.25 0.05980
+10 +4.75 0.05720
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desired pattern. This is illustrated in this problem with a narrow main beam, low side
lobe pattern. The Taylor line source of Example 10-6 has current values appropriate for a
20-element array given in the table.

(a) Use these current values to obtain the array factor of the corresponding linear
array.

(b) Compare the half-power beamwidths and side lobe levels of the array and line
source patterns.
10.4-11 Design an eight-wavelengih Taylor line source (i = 7) with —30-dB side lobes.

(a) Obtain and tabulate the sample values and locations.

(b) Plot the pattern in rectangular-logarithmic form as a function of w.
10.4-12 Evaluate o for several values of #i for the case of a —25-dB side lobe level. Using
HP, = ¢HP,,, explain the half-power beamwidth behavior as a function of 7.

APPENDIX

VECTORS

A.1 UNIT VECTOR REPRESENTATIONS

sin @ cos ¢ + 0 cos 6 cos ¢ — ¢ sin ¢

sin 0 sin ¢ + @ cos A sin ¢ + ¢ cos ¢

4
]
[ 13

[ B
Il
-

cos 0 — @ sin 0

I
-

e 1
Il
i

sin & cos ¢ + ¥ sin 6 sin ¢ + Z cos @

(==
Il
o

cos B cos ¢ + § cos B sin ¢ — Zsin

E=2)
Il

—X sin ¢ + y cos ¢

A.2 VECTOR IDENTITIES

Ax(BxC)=(A-C)B—(A-B)C
(A xB)x C=(C-A)B— (C-B)A
V- (VxG)=0

V x Vg=0

(A-7)
(A-8)
(A-9)
(A-10)

5565




556 APPENDIX A: YECTORS

V:Vg=V
V(f+4g)=V+Vg
V-F+G)=V-F+V-G
V(fg) = gV/ +/Vg
V-(fG)=G (V) +/f(V:G)
Vx (fG)= (V) x G +f(V x G)
V x (V x G)= V(V - G)— V2G
V2G = &V2G, + §V°G, + iV?G,
V- (FxG)=G: (VxF)—F(VxG)
F-(GxH)=G-(HxF)=H- (F x G)

Vx(FxG)=F(V:G)- GV F)+ (G- V)F -
V(F-G)=(F-V)G+ (G- V)F+F x (VxG)+ G x (V x F)

[[[V G o= G-as

i

[[(vxG)ds=fG-a

-
5

(F - V)G

divergence theorem

Stokes’ theorem

A.3 VECTOR DIFFERENTIAL OPERATORS

Rectangular Coordinates

3 3 3
Vo= +§29 4 3%
cx dy dz
V.G - (lGx : (“?ﬂ(r‘ aG
éx lig) dz
G i) 3
VG =x( - Ty 5 -
( dz z
g g &y
Vig=— + —3
9= "o Taz

Cylindrical Coordinates

1 dg Aég

Vg-r— d)—— =

G,

=ity

aG,
cx

aG

)

o

(A-11)
(A-12)
(A-13)
(A-14)
(A-15)
(A-16)
(A-17)
(A-18)
(A-19)
(A-20)
(A-21)
(A-22)

(A-23)

(A-24)

(A-25)

(A-26) .

(A-27)

(A-28)

(A-29)

A3 VECTOR DIFFERENTIAL OPERATORS

V-G=%§(rc,)+la£; +ac,
¥ el (ma(; agf’)+$a£'-6;‘)+’1[ (rG,) —
Vzg_rar( if)*rizg;_gz +-‘2§
Spherical Coordinates
Vo=ig +0150 + ¢rsi1xlt9§_j:
V-G P6)+ sjnﬁaii(G”S’“ o sizﬂi—(j;
VxG=F lenglaﬂ((;wm 6) — %(;"}
‘% ﬁ%—?—%(rﬁ})]
+$%l§(rGa)—%l

aG

&57

(A-30)

(A-31)

(A-32)

(A-33)

(A-34)

(A-35)

(A-36)
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TRIGONOMETRIC
RELATIONS

sin(x + f)=sin 2 cos ff + cos « sin f8

cos(ox + fi)= cos « cos f# F sin a sin B

. n
sm(i + a)= COS o

ccns(;r—zr + z)z + sin z

sin « cos f= §{sin(x + ﬂ) + sin(x — f)]

cos a sin f= §[sin(x + #) — sin(x — B)]

cos x cos fi = 3[cos(x + B) + cos(x — B)]

sin x sin ff= — 3[cos(x + ) — cos(x — f)]
sin 2= 2 sin %‘cos %

sin 22 = 2 sin o €Os «

(B-1)
(B-2)

(B-3)

(B-4)

(B-5)
(B-6)
(B-7)
(B-8)
(B-9)

(B-10)

558

- APPENDIX B: TRIGONOMETRIC RELATIONS

cosa=2coszg--l=l—25inz

N R

(5]

cos20=2cos?a— 1=cos’a—sin2a=1-2sin«a
cos 3o =4 cos® o — 3 cos o

'. cos 4o = 8 cos* o — 8 cos? a + 1

m
COs ma = cos mo = 2™ cos™ o — 1 2™ cos™? o

| m(m-3
; +—(—2,—12"“5cos"”a+
1=sin?ua+ cos?a
. o o o
SN of = o 3! + gl T! -+
cos o= 1 o @
=LTm Tt Ta T

et)* = cos o + j sin a
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(B-11)

(B-12)
(B-13)
(B-14)

(B-15)
(B-16)

(B-17)

(B-18)

(B-19)
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C

HYPERBOLIC RELATIONS

e —e " A

sinh o = By -=a+ﬂ+.5_!+ﬂ+... (C-l)
e +e” a ot b
cosh o = 5 _]+.2_!+E+a+... (C-2)
sinh o 1
tanh o0 = — i ’
- cosh x  coth « (C-3)
sinh(x + jf) = sinh « cos f + j cosh a sin f (C-4)
cosh(a + jf) = cosh « cos f + j sinh a sin f (C-5)
. . e — g s
Slnh(ﬁ) = j sSin o= 2" (C_G)
ej: = jx
COShUa) = COS i = +2€ {C_?}
560

APPENDIX

D

TABLES OF COMMONLY
USED FREQUENCIES

D.1 RADIO FREQUENCY BANDS .

Frequency =
3kHz 30kHz 300kHz 3 MHz 30MHz 300MHz 3GHz 30 GHz 300 GHz
viF | wF | MF | BF | VvHF | UnF | |
100 km 10 km 1 km 100 m 10 m Im 10 cm 1 cm I mm
= Wavelength

D.2 TELEVISION CHANNEL FREQUENCIES

. VHF
Frequency Frequency
Channel range Channel range
no. (MHz) no. (MHz)
2 54-60 8 180-186
3 60-66 9 186-192
5 66-72 10 192-198
5 76-82 11 198-204
6 82-88 12 204-210
7 174-180 13 210-216

561




562  APPENDIX D: TABLES OF COMMONLY USED FREQUENCIES

UHF
Frequency Frequency Frequency
Channel range Channel range Channel range

no. (MHz) no. (MHz) no. (MHz)
14 470-476 30 566-572 46 662-668
15 476-482 31 572-578 47 668-674
16 482-488 32 578-584 48 674-680
17 488-494 33 584-590 49 680-686
18 494-500 34 590-596 50 686-692
19 500-506 35 596-602 51 692698
20 506-512 36 602-608 52 698-704
21 512-518 37 608-614 53 704-710
22 518-524 38 614-620 54 710-716
23 524-530 39 620-626 55 716-722
24 530-536 40 626-632 56 722-728
25 536-542 41 632-638 57 728-734
26 542-548 42 638-644 58 734-740
27 548-554 43 644-650 59 740-746
28 554-560 44 650-656 :
29 560-566 45 656-662 83 884-890

Note: The carrier frequency for the video portion'is the lower frequency plus
1.25 MHz. The audio carrier frequency is the upper frequency minus 0.25 MHz. All
channels have a 6 MHz bandwidth. For example, Channel 2 video carrier is at

55.25 MHz and the audio carrier is at 59.75 MHz

D.3 RADAR BANDS

World War 1
band.designations

New [EEE
band designations

390-1550 MHz
1550-3900 MHz
3.9-62 GHz
6.2-129 GHz
u  129-18 GHz
18-26.5 GHz
e 26540 GHz

mAMAR O

hf

vhi

uhf
L-band
S-band
C-band
X-band
K, -band
K-band
K,-band
Millimeter

3-30 MHz
30-300 MHz
300-1000 MHz

1-2 GHz
2-4 GHz
4-8 GHz
8-12 GHz
12-18 GHz
18-27 GHz
27-40 GHz
40-300 GH

z

APPENDIX

CONDUCTOR DATA

E.1 CONDUCTIVITIES OF GOOD CONDUCTORS

Conductor

Conductivity (mhos/m)

Silicon steel
Brass
Aluminum
Gold
Copper
Silver

2 % 10° *
1.1 x 107
3.5 x 107
4.1 x 107
5.7 x 107
6.1 x 107
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564 APPENDIX E: CONDUCTOR DATA

E.2 WIRE DATA

Single copper Copper wire dc
wire continuous resistance
Wire size Diameter in duty current per unit length
AWG mm (in.) capacity (A) (ohms/100 m)
8 3.264 (0.1285) 73 0.1952
9 2.906 (0.1144) 0.2462
10 2.588 (0.1019) 55 03103
11 2305 (0.0907) - 0.3914
12 2053 (0.0808) 41 0.4935
13 1.828 (0.0720) 2 0.6224
14 1.628 (0.0641) 32 0.7849
16 1.291 (0.0508) 22 1.248
18 1.024 (0.0403) 16 1.984
20 0812 (0.0320) 1t 3.155
2 0.644 (0.0253) 5017

APPENDIX

SOME USEFUL
MATHEMATICAL RELATIONS

F.1 DIRAC DELTA FUNCTION

The Dirac delta function (or impulse function) is zero everywhere except when
the argument is zero

ox—x,)=0 for x#x,. (F-1)

For the zero argument case the function is singular but in a special way: the
area is unity, that is,

[m 8(x — x,) dx = 1. (F-2)

Y-

Another useful property of the Dirac delta function follows,

o

[ g6ple - x,) dx = g(x,). (F-3)

- ]
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566 APPENDIX F: SOME USEFUL MATHEMATICAL RELATIONS

F.2 BINOMIAL THEOREM

(@a+by=da"+na"" b+ ”(Hz D a~2p?
y ; (F-4)
n(n — 3)!(” =2) p-3p3 i
(1+xy=tl+nx for x<1 (F-5)
F.3 BESSEL FUNCTIONS
J 1 2n .
o) = fo eIx s gy (F-6)
j—ﬂ 2n
= Jjx cosa s
Julx) o ‘[0 e cos(na) do (F-7)
o L] {_l)thnri—n
Zn m!(m + n)!22m+n
=2y - Es)
[+ tag)dz = > 10, 0) (F-9)
i 5 2"n!
_|0 (1 — x?pxJo(bx) dx = w71 Jns1(b) (F-10)

F.4 SOME USEFUL INTEGRALS

CX

[ sin(a + bx)e= dx = 5 [esin(a + bx) — beos(a + bx)]  (F-11)

b* + ¢
" sin® x ,
.‘_m o x=n (F-12)
; s
Si(. | H:_ P sine integral (F-13)
Cilx)= — [ co;s T de cosine integral (F-14)

F.4 SOME USEFUL INTEGRALS 567

Cin(x) = f: -1—“--‘:"5 L7 (F-15)

Cin(x) = 0.5772 + In(x) — Ci(x) (F-16)

Cx)=L ms(gtz)dr; C(—x)= —C(x) (F-17a)
- . Fresnel integrals

S(x)= Io sin(irz)dr; S(—x)= —8(x) l (F-17b)



COMPUTER PROGRAMS

In this appendix FORTRAN statement listings of several computer programs
are presented. Many are useful throughout the text. For example, the subpro-
grams PPLOT or PROFIL can be used to display data (generated by a main
program) in a polar or rectangular form using the line printer of a computer.
The program ARRFAC generates the array factor pattern of an equally spaced,
uniformly excited linear array. The ARRPAT program is a general array pro-
gram useful for any array geometry, excitations, or element type. The program
NEESLAP is a general linear array factor program especially suited to the
synthesis techniques of Chapter 10, The SPAP program is intended for use with
the line source synthesis methods in Chapter 10 which are of the Woodward-
Lawson or Taylor line source type.

G.1 LINE PRINTER POLAR PLOT SUBROUTINE—PPLOT

Subroutine PPLOT provides a polar plot, such as of an antenna pattern, on the
line printer of a computer. It is used in conjunction with a program which
generates the pattern values of a radiation pattern at 1° intervals and loads them
in the data array DATA. For example DATA(1) is the pattern value at a polar
angle of 1°, DATA(2) is the pattern value at angle 2°, and so on up to 360°, The

568

G.2 LINE PRINTER RECTANGULAR PLOT SUBROUTINE—PROFIL 569

pattern does not have to be normalized to a maximum value of unity because
this subroutine will automatically normalize it. In addition to the polar plot,
the pattern values for all angles are tabulated. The locations and values of
the pattern maxima and minima are printed out separately.

) UBRQUTINE PPLOT (DATA}
0 % i"ﬁ?’ghﬂ"ﬁ‘{‘3‘?'“"““‘”
034 zﬁ GERBLARR/® /o STAR/®#%/,DASH/ *=+/ ,WOASH/® |/ JORIGIN/*CY/
305 ELTAL=1. =07
& DELTA2=1-E-06
0007 AMAX=DATA( L
0008 AMIN=DATA (1
0009 90 20 1=2,360
9010 ACTIoLT.AMIND an N=pATAL )
911 20 JE(DATACI)-CT.AMAX) AMAX=DATA{I}
) F{{AMAX-ANIN].GT.1.E-06) GO TO 23
913 MRITE(6 4] ANA
A 4 1:2 ' 1}Iun.u.-un PPLOT PLOT GENERATED - - ALL VALUES EQUAL',
015 #na
016 23 CONTINVE
017 MRITE(6r21
018 21 FORMAT(F1750X, 1 TABLE OF DATA PLOTTED'://)
020 22 FORMAT(} T, S("ANGLE',2X,*VALUE OF R '), "ANGLE®,2X,'VALUE OF R*)
921 00 8 I=1,6
o3 Kiseo
& mKe
3025 FE e
00;? N-mgu
002 8 MRITE (60161 1DATALL) s JsOATA(J) 4K (DATA(K) oL, DATAIL) 4 My DATALN),
0028 16 FORNATLS #5130 1X,EL14aTy2X) 5 1301XsEL4T]
9929 WRITE(6y2) ANAX
030 2 FORNA };{H.- MAXIMUM VALUE OF R=",Gl4.7,/,* MINIMUM VALUE OF R=",
9031 iuu-lnn:ngsunu}
K =
0033 ORvAL L IZBXRT 1) sams camaxy
0034 E{OATACI).LE. (ANINSDELTAL)) WRITE(6461) 1
0035 FADATA(I).CGEo(1.~DELTAZ)) WRITELG,60)
0036 61 FORMAT(® MINIMUM VALUE CCCURS AT ANGLE=',14)
0037 62 FORMAT(' MAXIMUM VALUE OCCURS AT ANGLE=',14)
00‘ 8 10 Cﬂl{TlNUE
0039 NeiTE(es1)
0040 | FCRMAT(}/77,% ¢ $6X:"POLAR PLUT,NORNALIZED" 1/ //)
0041 CONV=3.1415%265/ 180"
0042 DO 30 1=1,360
0043 Y=ABS(DATAUI))®S IN(1*CONV]
0044 30 LINELT)=35,5-ve 3.
0045 LL=1,131
0046 33 LINEL(LLY=BLAN
Q047 INEL(&6)=VOASH
0048 L T
3049 (J.NE.38) 60 TO &0
2050 pg 180 fiN=1:131
3051 100 LINEL(NN)=DASH
0052 &0 CONTINUE
2053 00 50 1=1,360
9355 1 :uusu{!.nf.u GG TG 50
0055 IIIBS;EA ALL))eCOS(I*CONV)
0056 K=b6,54X265,
0057 LINEL(K)=STAR
3058 50 CONT INUE
2059 IF!J-EO.)‘)I LINEL(66)=DRIGIN
0060 MRITE (6331 (LINELILT L=10131)
2061 3 FORMAT(! ', 131A1)
o0&z O 120 t=lildl
3063 120 LINEL(LI=BLANK
Qb4 EINEII&&J’VB‘SH
0085 40 CONTINUE
JIbs RETURN
JuT END

G.2 LINE PRINTER RECTANGULAR PLOT
SUBROUTINE—PROFIL

Subroutine PROFIL provides a rectangular plot on the line printer of a
computer. It is used for plotting patterns either as a function of angle or of a
parameter such as w = cos 0. Current magnitudes and phases can also be plotted
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G.3 UNIFORMLY EXCITED ARRAY FACTOR PROGRAM--ARRFAC

COMPUTER PROGRAMS

APPENDIX G:
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