Mathcad

User's Guide

Mathcad 2000 Professional
Mathcad 2000 Standard

Mathcad

User's Guide
 Mathcad 2000 Professional
 Mathcad 2000 Standard

MathSoft, Inc.
101 Main Street
Cambridge
Massachusetts 02142
USA
http://www.mathsoft.com/

MathSoft
$\Sigma+\sqrt{ }=\times \int \div \delta$

MathSoft, Inc. owns both the Mathcad software program and its documentation. Both the program and documentation are copyrighted with all rights reserved by MathSoft. No part of this publication may be produced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form without the written permission of MathSoft, Inc.
U.S. Patent Numbers 5,526,475 and 5,468,538.

See the License Agreement and Limited Warranty for complete information.
English spelling software by Lernout \& Haspie Speech Products, N.V.
MKM developed by Waterloo Maple Software.
VoloView Express technology, Copyright © 1999 Autodesk, Inc. All Rights Reserved.
The Mathcad Collaboratory is powered by O'Reilly WebBoard, Copyright © 19951999 Duke Engineering/O’Reilly \& Associates, Inc.

Copyright © 1986-1999 MathSoft, Inc. All rights reserved.
MathSoft, Inc.
101 Main Street
Cambridge, MA 02142
USA

Mathcad, Axum, and S-PLUS are registered trademarks of MathSoft, Inc. Electronic Book, QuickSheets, MathConnex, ConnexScript, Collaboratory, IntelliMath, Live Symbolics, and the MathSoft logo are trademarks of MathSoft, Inc.
Microsoft, Windows, IntelliMouse, and the Windows logo are registered trademarks of Microsoft Corp. Windows NT is a trademark of Microsoft Corp.
Open $G L$ is a registered trademark of Silicon Graphics, Inc.
MATLAB is a registered trademark of The MathWorks, Inc.
SmartSketch is a registered trademark of Intergraph Corporation.
Other brand and product names referred to are trademarks or registered trademarks of their respective owners.

Printed in the United States of America. First printing: August 1999

MATHSOFT, INC. LICENSE AGREEMENT

Both the Software and the documentation are protected under applicable copyright laws, international treaty provisions, and trade secret statutes of the various states. This Agreement grants you a personal, limited, nonexclusive, non-transferable license to use the Software and the documentation. This is not an agreement for the sale of the Software or the documentation or any copies or part thereof. Your right to use the Software and the documentation is limited to the terms and conditions described therein.

You may use the Software and the documentation solely for your own personal or internal purposes, for nonremunerated demonstrations (but not for delivery or sale) in connection with your personal or internal purposes:
(a) if you have a single license, on only one computer at a time and by only one user at a time, the user of the computer on which the software is installed may make a copy for his or her exclusive use on a portable computer so long as the Software is not used on both computers at the same time;
(b) if you have acquired multiple licenses, the Software may be used on either stand alone computers, or on computer networks, by a number of simultaneous users equal to or less than the number of licenses that you have acquired; and
(c) if you maintain the confidentiality of the Software and documentation at all times.

Persons for whom license fees have not been paid may not access or use the Software, or any part thereof, through "programmatic access" or otherwise. Anyone wishing programmatic access will need to be established as users under the terms of this Agreement.

You may make copies of the Software solely for archival purposes, provided you reproduce and include the copyright notice on any backup copy.

You must have a reasonable mechanism or process which ensures that the number of users at any one time does not exceed the number of licenses you have paid for and prevents access to the Software to any person not authorized under the above license to use the Software. Any copy which you make of the Software, in whole or in part, is the property of MathSoft. You agree to reproduce and include MathSoft's copyright, trademark and other proprietary rights notices on any copy you make of the Software.

You may receive the Software in more than one medium. Regardless of the type or size of media you receive, you may use only one medium that is appropriate for your single computer. You may not use or install other medium on another computer. You may not loan, rent, lease, or otherwise transfer the other medium to another user.

You may not reverse engineer, decompile, or disassemble the Software, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.

If the Software is labeled as an upgrade, you must be properly licensed to use a product identified by MathSoft as being eligible for the upgrade in order to use the Software. Software labeled as an upgrade replaces and/or supplements the product that formed the basis of your eligibility for the upgrade. You may use the resulting upgraded product only in accordance with the terms of this license, which superseded all prior agreements.

MathSoft reserves all rights not expressly granted to you by this License Agreement. The license granted herein is
limited solely to the uses specified above and, without limiting the generality of the foregoing, you are NOT licensed to use or to copy all or any part of the Software or the documentation in connection with the sale, resale, license, or other for-profit personal or commercial reproduction or commercial distribution or computer programs or other materials without the prior written consent of MathSoft. You will not export or re-export the Software without the appropriate United States and/or foreign government licenses.

LIMITED WARRANTY

MathSoft warrants that the media on which the Software is recorded will be free from defects in materials and workmanship under normal use for a period of ninety (90) days from the date of purchase as evidenced by a copy of your receipt. The liability of MathSoft pursuant to this limited warranty shall be limited to the replacement of the defective media. If failure of the media has resulted from accident, abuse, or misapplication of the product, then MathSoft shall have no responsibility to replace the media under this limited warranty.

Abstract

THIS LIMITED WARRANTY AND RIGHT OF REPLACEMENT IS IN LIEU OF, AND YOU HEREBY WAIVE, ANY AND ALL OTHER WARRANTIES BOTH EXPRESS AND IMPLIED, RELATING TO THE SOFTWARE, DOCUMENTATION, MEDIA OR THIS LICENSE, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NONINFRINGEMENT. IN NO EVENT SHALL MATHSOFT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED TO LOSS OF USE, LOSS OF REVENUES OR PROFIT, LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES EVEN IF MATHSOFT HAS BEEN ADVISED OF THE POSSIBILITIES OF SUCH DAMAGES. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY MATHSOFT, ITS EMPLOYEES, DISTRIBUTORS, DEALERS, OR AGENTS SHALL INCREASE THE SCOPE OF THE ABOVE WARRANTIES OR CREATE ANY NEW WARRANTIES; WE DISCLAIM AND EXCLUDE ALL OTHER IMPLIED OR EXPRESS WARRANTIES. This warranty gives you specific legal rights which may vary from state to state. Some states do not allow the limitation or exclusion of liability for consequential damages, so the above limitation may not apply to you.

MathSoft hereby warns you that due to the complexity of the Software it is possible that use of the Software could lead unintentionally to the loss or corruption of data. You assume all risk for such data loss or corruption; the warranties provided hereunder do not cover any damage or losses resulting therefrom.

MathSoft's licensors do not warrant the Software, do not assume any liability regarding the Software and do not undertake to furnish any support or information regarding the Software.

IN NO CASE WILL MATHSOFT'S LIABILITY EXCEED THE AMOUNT OF THE LICENSE FEE ACTUALLY PAID BY YOU TO MATHSOFT.

The Software and documentation are provided with restricted rights. Use, duplication, or disclosure by the Government is subject to restriction as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer SoftwareRestricted Rights at 48 CCFR 52.227-19, as applicable. Manufacturer is MathSoft, Inc., 101 Main Street, Cambridge, MA 02142 .

Without prejudice to any other rights, MathSoft may terminate this license if you fail to comply with the terms and conditions of this Agreement. If this license is terminated, you agree to destroy all copies of the Software and documentation in your possession.

This License agreement shall be governed by the laws of the Commonwealth of Massachusetts and shall insure to the benefit of MathSoft, its successors, representatives, and assigns. The license granted hereunder may not be assigned, sublicensed, or otherwise transferred by you without the prior written consent of MathSoft. If any provisions of this Agreement shall be held to be invalid, illegal or unenforceable, the validity, legality, and enforceability of the remaining provisions shall in no way be affected or impaired thereby.

Mathcad

User's Guide

Mathcad 2000 Professional
Mathcad 2000 Standard

Contents

How to Use This User's Guide 1
The Basics
1: Welcome to Mathcad 3
What Is Mathcad? 3
Mathcad Editions 4
New in Mathcad 2000 4
System Requirements 5
Installation 5
Contacting MathSoft 6
2: Getting Started with Mathcad 7
The Mathcad Workspace 7
Regions 10
A Simple Calculation 12
Definitions and Variables 13
Entering Text 14
Iterative Calculations 15
Graphs 17
Saving, Printing, and Exiting 19
3: On-Line Resources 21
Resource Center and Electronic Books 21
Help 26
Internet Access in Mathcad 27
The Collaboratory 28
Other Resources 32
Creating Mathcad Worksheets
4: Working with Math 33
Inserting Math 33
Building Expressions 39
Editing Expressions 43
Math Styles 51
5: Working with Text 55
Inserting Text 55
Text and Paragraph Properties 58
Text Styles 61
Equations in Text 63
Text Tools 64
6: Working with Graphics and Other Objects 67
Overview 67
Inserting Pictures 67
Inserting Objects 71
Inserting Graphics Computationally Linked to Your Worksheet 74
7: Worksheet Management 75
Worksheets and Templates 75
Rearranging Your Worksheet 79
Layout 83
Safeguarding an Area of the Worksheet 85
Hyperlinks 87
Creating an Electronic Book 89
Printing and Mailing 93
Computational Features
8: Calculating in Mathcad 97
Defining and Evaluating Variables 97
Defining and Evaluating Functions 104
Units and Dimensions 106
Working with Results 110
Controlling Calculation 117
Animation 119
Error Messages 121
9: Operators 123
Working with Operators 123
Arithmetic and Boolean Operators 125
Vector and Matrix Operators 127
Summations and Products 130
Derivatives 133
Integrals 136
Customizing Operators 140
10 : Built-in Functions 143
Inserting Built-in Functions 143
Core Mathematical Functions 145
Discrete Transform Functions 150
Vector and Matrix Functions 152
Solving and Optimization Functions 157
Statistics, Probability, and Data Analysis Functions 163
Finance Functions 173
Differential Equation Functions 176
Miscellaneous Functions 187
11: Vectors, Matrices, and Data Arrays 191
Creating Arrays 191
Accessing Array Elements 196
Displaying Arrays 198
Working with Arrays 201
Nested Arrays 204
12:2D Plots 207
Overview of 2D Plotting 207
Graphing Functions and Expressions 209
Plotting Vectors of Data 212
Formatting a 2D Plot 216
Modifying Your 2D Plot's Perspective 220
13:3D Plots 223
Overview of 3D Plotting 223
Creating 3D Plots of Functions 224
Creating 3D Plots of Data 228
Formatting a 3D Plot 234
Rotating and Zooming on 3D Plots 243
14: Symbolic Calculation 245
Overview of Symbolic Math 245
Live Symbolic Evaluation 246
Using the Symbolics Menu 254
Examples of Symbolic Calculation 255
Symbolic Optimization 265
15: Programming 267
Defining a Program 267
Conditional Statements 269
Looping 271
Controlling Program Execution 272
Error Handling 274
Programs Within Programs 276
16: Advanced Computational Features 279
Worksheet References 279
Exchanging Data with Other Applications 280
Scripting Custom OLE Automation Objects 292
Accessing Mathcad from Within Another Application 294
Appendices 297
Operators 298
Symbolic Transformation Functions 301
SI Units 303
CGS units 305
U.S. Customary Units 307
MKS Units 309
Predefined Variables 311
Suffixes for Numbers 312
Greek Letters 313
Arrow and Movement Keys 314
Function Keys 315
ASCII codes 316
Index 317

How to Use This User's Guide

This User's Guide is organized into the following parts:
$\tau \quad$ The Basics
This section contains a quick introduction to Mathcad's features and workspace, including resources available in the product and on the Internet for getting more out of Mathcad. Be sure to read this section first if you are a new Mathcad user.
τ Creating Mathcad Worksheets
This section describes in more detail how to create and edit Mathcad worksheets. It leads you through editing and formatting equations, text, and graphics, as well as opening, editing, saving, and printing Mathcad worksheets and templates.
τ Computational Features
This section describes how Mathcad interprets equations and explains Mathcad's computational features: units of measurement, complex numbers, matrices, builtin functions, solving equations, programming, and so on. This section also describes how to do symbolic calculations and how to use Mathcad's two- and three-dimensional plotting features.
The User's Guide ends with reference appendices and a comprehensive index.
As far as possible, the topics in this guide are described independently of each other. This means that once you are familiar with the basic workings of Mathcad, you can just select a topic of interest and read about it.
The on-line Mathcad Resource Center (choose Resource Center from the Help menu) provides step by step tutorials, examples, and application files that you can use directly in your own Mathcad worksheets. Mathcad QuickSheets are templates available in the Resource Center that provide live examples that you can manipulate.

Notations and Conventions

This User's Guide uses the following notations and conventions:
Italics represent scalar variable names, function names, and error messages.
Bold Courier represents keys you should type.
Bold represents a menu command. It is also used to denote vector and matrix valued variables.
An arrow such as that in "Graph $\Rightarrow \mathbf{X}-\mathbf{Y}$ Plot" indicates a pull-right menu command.
Function keys and other special keys are enclosed in brackets. For example, [$\uparrow]$, $[\downarrow]$, $[\leftarrow]$, and $[\rightarrow]$ are the arrow keys on the keyboard. [F1], [F2], etc., are function keys; [BkSp] is the Backspace key for backspacing over characters; [Del] is the Delete key for deleting characters to the right; [Ins] is the Insert key for inserting characters to the left of the insertion point; [Tab] is the Tab key; and [Space] is the space bar.
[Ctrl], [Shift], and [Alt] are the Control, Shift, and Alt keys. When two keys are shown together, for example, [Ctrl]V, press and hold down the first key, and then press the second key.

The symbol [\lrcorner] and [Enter] refer to the same key.
When this User's Guide shows spaces in an equation, you need not type the spaces. Mathcad automatically spaces the equation correctly.

Pro This User's Guide applies to Mathcad 2000 Professional and Mathcad 2000 Standard. If you're not using Mathcad 2000 Professional, certain features described in the User's Guide will not be available to you. The word Pro appears:

- In the page margin, as it does above, whenever a section in a chapter describes a feature or a function that is unique to Mathcad 2000 Professional.
- In the page footer, whenever all features described in that chapter are unique to Mathcad 2000 Professional.
This User's Guide also describes a few product features that are available only in addon packages for Mathcad. For example, some numerical solving features and functions are provided only in the Solving and Optimization Extension Pack (Expert Solver).

Chapter 1 Welcome to Mathcad

τ What Is Mathcad?
τ Mathcad Editions
τ New in Mathcad 2000
τ System Requirements
τ Installation
τ Contacting MathSoft

What Is Mathcad?

Mathcad is the industry standard calculation software for technical professionals, educators, and college students. Mathcad is as versatile and powerful as programming languages, yet it's as easy to learn as a spreadsheet. Plus, it is fully wired to take advantage of the Internet and other applications you use every day.

Mathcad lets you type equations as you're used to seeing them, expanded fully on your screen. In a programming language, equations look something like this:

$$
x=(-B+S Q R T(B * * 2-4 * A * C)) /(2 * A)
$$

In a spreadsheet, equations go into cells looking something like this:

$$
+(\mathrm{B} 1+\mathrm{SQRT}(\mathrm{~B} 1 * \mathrm{~B} 1-4 * \mathrm{~A} 1 * \mathrm{C} 1)) /(2 * \mathrm{~A} 1)
$$

And that's assuming you can see them. Usually all you see is a number.
In Mathcad, the same equation looks the way you might see it on a blackboard or in a reference book. And there is no difficult syntax to learn; you simply point and click and your
 equations appear.

But Mathcad equations do much more than look good. You can use them to solve just about any math problem you can think of, symbolically or numerically. You can place text anywhere around them to document your work. You can show how they look with Mathcad's two- and three-dimensional plots. You can even illustrate your work with graphics taken from another Windows application. Plus, Mathcad takes full advantage of Microsoft's OLE 2 object linking and embedding standard to work with other applications, supporting drag and drop and in-place activation as both client and server.
Mathcad comes with its own on-line reference system called the Resource Center. It gives you access to tutorials as well as many useful formulas, data values, and reference material at the click of a button.

Mathcad simplifies and streamlines documentation, critical to communicating and to meeting business and quality assurance standards. By combining equations, text, and graphics in a single worksheet, Mathcad makes it easy to keep track of the most complex calculations. By printing the worksheet exactly as it appears on the screen, Mathcad lets you make a permanent and accurate record of your work.

Mathcad Editions

Mathcad 2000 is available in two versions:

- Mathcad Professional is the industry standard for applied math in technical fields, delivering complete calculation and reporting functionality for professional results. With the most complete set of features available, the Professional edition delivers an integrated environment for performing, sharing, and communicating technical work.
- Mathcad Standard is the ideal application for everyday technical calculations, well suited for quick and easy use when pencil and paper, calculators, and spreadsheets aren't up to the job.

New in Mathcad 2000

Improved Computational Features

- New boolean operators for AND, OR, NOT, and XOR logical statements
- Improvements to the root function
- New special-purpose fitting functions for statistical analysis of exponential, logarithmic, power, sinusoidal, and logistic data

Pro

- New differential equation solve block and Odesolve function for solving a differential equation more easily using real math notation
- 19 new functions for financial calculations

Math Display

- Better display of characters and operators in equations
- Choice of appearance of certain operators for presentations

Visualization and Graphing

- New 3D QuickPlots for quickly graphing a function of two variables

Pro - Axum LE extends the 2D plotting capabilities of Mathcad via the Axum component

- SmartSketch LE for Mathcad allows you to insert technical drawings that are computationally linked to your Mathcad equations

Document Preparation, Presentation, and Publishing Features

- Control for layering regions on top of one another
- New ruler for aligning regions and setting tabs and indents in text

Pro - Ability to create an Electronic Book with a table of contents and index

Usability Enhancements

- New error tracing tool for finding errors in a worksheet
- Improved support for sharing Mathcad worksheets over a network
- Improved Collaboratory for communicating with Mathcad users around the world

System Requirements

In order to install and run Mathcad Professional or Standard, the following are recommended or required:

- Pentium 90-based IBM or compatible computer
- CD-ROM drive
- Windows 95 or higher or Windows NT 4.0 or higher
- At least 16 megabytes of memory. 32 is recommended.
- For improved appearance and full functionality of on-line Help, installation of Internet Explorer 4.0 or higher is recommended. IE does not need to be your default browser.

Installation

You should first read and accept the license agreement found in the beginning of the Mathcad User's Guide. Then install Mathcad:

1. Insert the CD into your CD-ROM drive. The first time you do this, the CD will automatically start the installation program. If the installation program does not start automatically, you can start it by choosing Run from the Start menu and typing D: ISETUP (where "D:" is your CD-ROM drive). Click "OK."
2. Click the Mathcad icon on main installation page.
3. When prompted, enter your product serial number, which is located on the back of the CD envelope.
4. Follow the remaining on-screen instructions.

To install other items such as Axum LE, SmartSketch LE, or on-line documentation, follow step 1 above. Then click the icon for the item you want to install.

Contacting MathSoft

General

US and Canada

MathSoft, Inc.
101 Main Street
Cambridge, MA 02142
Phone: 617-577-1017
Fax: 617-577-8829

All other countries

MathSoft International
Knightway House
Park Street
Bagshot, Surrey
GUI19 5AQ
United Kingdom
Phone: +44 1276452299
Fax: +44 1276451224

Web Site: http:/ / www.mathsoft.com

Technical Support

MathSoft provides free technical support for individual users of Mathcad. In the United States and Canada, contact MathSoft Technical Support:

- Email: support@mathsoft.com
- Fax: 617-577-8829
- Automated support and fax-back system: 617-577-1778
- Web: http://www.mathsoft.com/support/support.htm
- Phone: 617-577-1778

If you reside outside the U.S. and Canada, please refer to the technical support card in your Mathcad package to find details for your local support center. You may also contact:

- Automated solution center and fax-back system: +44 1276475350
- Fax: +44 1276451224 (Attn: Tech Support)
- Email: help@mathsoft.co.uk

Contact MathSoft or your local distributor for information about technical support plans for site licenses.

Chapter 2
 Getting Started with Mathcad

τ The Mathcad Workspace
τ Regions
τ A Simple Calculation
τ Definitions and Variables
τ Entering Text
τ Iterative Calculations
τ Graphs
τ Saving, Printing, and Exiting

The Mathcad Workspace

For information on system requirements and how to install Mathcad on your computer, refer to Chapter 1, "Welcome to Mathcad."

When you start Mathcad, you'll see a window like that shown in Figure 2-1. By default the worksheet area is white. To select a different color, choose Color \Rightarrow Background from the Format menu.

Figure 2-1: Mathcad Professional with various toolbars displayed.

Each button in the Math toolbar, shown in Figure 2-1, opens another toolbar of operators or symbols. You can insert many operators, Greek letters, and plots by clicking the buttons found on these toolbars:

Button Opens math toolbar...

Calculator-Common arithmetic operators.
Graph-Various two- and three-dimensional plot types and graph tools.
Matrix-Matrix and vector operators.
Evaluation-Equal signs for evaluation and definition.
$x=$
Calculus-Derivatives, integrals, limits, and iterated sums and products.
Boolean-Comparative and logical operators for Boolean expression.
Programming—Programming constructs (Mathcad Professional only).
$\alpha \beta$
Greek-Greek letters.
Symbolic-Symbolic keywords.

The Standard toolbar is the strip of buttons shown just below the main menus in Figure 2-1:

Many menu commands can be accessed more quickly by clicking a button on the Standard toolbar.

The Formatting toolbar is shown immediately below the Standard toolbar in Figure 2-1. This contains scrolling lists and buttons used to specify font characteristics in equations and text.

Tip To learn what a button on any toolbar does, let the mouse pointer rest on the button momentarily. You'll see a tooltip beside the pointer giving a brief description.

To conserve screen space, you can show or hide each toolbar individually by choosing the appropriate command from the View menu. You can also detach and drag a toolbar around your window. To do so, place the mouse pointer anywhere other than on a button or a text box. Then press and hold down the mouse button and drag. You'll find that the toolbars rearrange themselves appropriately depending on where you drag them. And Mathcad remembers where you left your toolbars the next time you open the application.

Tip The Standard, Formatting, and Math toolbars are customizable. To add and remove buttons from one of these toolbars, click with the right mouse button on the toolbar and choose Customize from the pop-up menu to bring up the Customize Toolbar dialog box.

The worksheet ruler is shown towards the top of the screen in Figure 2-1. To hide or show the ruler, choose Ruler from the View menu. To change the measurement system used in the ruler, click on the ruler with the right mouse button, and choose Inches, Centimeters, Points, or Picas from the pop-up menu. For more information on using the ruler to format your worksheet, refer to "Using the worksheet ruler" on page 79.

Working with Windows

When you start Mathcad, you open up a window on a Mathcad worksheet. You can have as many worksheets open as your available system resources allow. This allows you to work on several worksheets at once by simply clicking the mouse in whichever document window you want to work in.
There are times when a Mathcad worksheet cannot be displayed in its entirety because the window is too small. To bring unseen portions of a worksheet into view, you can:

- Make the window larger as you do in other Windows applications.
- Choose Zoom from the View menu or click 100% on the Standard toolbar nd choose a number smaller than 100%.
You can also use the scroll bars, mouse, and keystrokes to move around the Mathcad window, as you can in your other Windows applications. When you move the mouse pointer and click the mouse button, for example, the cursor jumps from wherever it was to wherever you clicked.

Tip Mathcad supports the Microsoft IntelliMouse and compatible pointing devices. Turning the wheel scrolls the window one line vertically for each click of the wheel. When you press [Shift] and turn the wheel, the window scrolls horizontally.

See "Arrow and Movement Keys" on page 314 in the Appendices for keystrokes to move the cursor in the worksheet. If you are working with a longer worksheet, choose Go to Page from the Edit menu and enter the page number you want to go to in the dialog box. When you click "OK," Mathcad places the top of the page you specify at the top of the window.

Tip Mathcad supports standard Windows keystrokes for operations such as file opening, [Ctrl] \mathbf{O}], saving, [Ctrl]S], printing, [Ctrl]P, copying, [Ctrl]C], and pasting, [Ctrl]V]. Choose Preferences from the View menu and check "Standard Windows shortcut keys" in the Keyboard Options section of the General tab to enable all Windows shortcuts. Remove the check to use shortcut keys supported in earlier versions of Mathcad.

Mathcad lets you enter equations and text anywhere in the worksheet. Each equation, piece of text, or other element is a region. Mathcad creates an invisible rectangle to hold each region. A Mathcad worksheet is a collection of such regions. To start a new region in Mathcad:

1. Click anywhere in a blank area of the worksheet. You see a small crosshair. Anything you type appears at the crosshair.
2. If the region you want to create is a math region, just start typing anywhere you put the crosshair. By default Mathcad understands what you type as mathematics. See "A Simple Calculation" on page 12 for an example.
3. To create a text region, first choose Text Region from the Insert menu and then start typing. See "Entering Text" on page 14 for an example.
In addition to equations and text, Mathcad supports a variety of plot regions. See "Graphs" on page 17 for an example of inserting a two-dimensional plot.

Tip Mathcad displays a box around any region you are currently working in. When you click outside the region, the surrounding box disappears. To put a permanent box around a region, click on it with the right mouse button and choose Properties from the pop-up menu. Click on the Display tab and click the box next to "Show Border."

Selecting Regions

To select a single region, simply click it. Mathcad shows a rectangle around the region.
To select multiple regions:

1. Press and hold down the left mouse button to anchor one corner of the selection rectangle.
2. Without letting go of the mouse button, move the mouse to enclose everything you want to select inside the selection rectangle.
3. Release the mouse button. Mathcad shows dashed rectangles around regions you have selected.

Tip You can also select multiple regions anywhere in the worksheet by holding down the [Ctrl] key while clicking. If you click one region and [Shift]-click another, you select both regions and all regions in between.

Moving and Copying Regions

Once the regions are selected, you can move or copy them.

Moving regions

You can move regions by dragging with the mouse or by using Cut and Paste.
To drag regions with the mouse:

1. Select the regions as described in the previous section.
2. Place the pointer on the border of any selected region. The pointer turns into a small hand.
3. Press and hold down the mouse button.
4. Without letting go of the button, move the mouse. The rectangular outlines of the selected regions follow the mouse pointer.
At this point, you can either drag the selected regions to another spot in the worksheet, or you can drag them to another worksheet. To move the selected regions into another worksheet, press and hold down the mouse button, drag the rectangular outlines into the destination worksheet, and release the mouse button.
To move the selected regions by using Cut and Paste:
5. Select the regions as described in the previous section.
6. Choose Cut from the Edit menu (keystroke: [Ctrl] x), or click y on the Standard toolbar. This deletes the selected regions and puts them on the Clipboard.
7. Click the mouse wherever you want the regions moved to. Make sure you've clicked in an empty space. You can click either someplace else in your worksheet or in a different worksheet altogether. You should see the crosshair.
8. Choose Paste from the Edit menu (keystroke: [Ctrl] V), or click 㖊 on the Standard toolbar.

Note You can move one region on top of another. If you do, you can move a particular region to the top or bottom by clicking on it with the right mouse button and choosing Bring to Front or Send to Back from the pop-up menu.

Copying Regions

You copy regions by using the Copy and Paste commands:

1. Select the regions as described in "Selecting Regions" on page 10.
2. Choose Copy from the Edit menu (keystroke: [Ctrl] C), or click 唒 on the Standard toolbar. This copies the selected regions to the Clipboard.
3. Click the mouse wherever you want to place a copy of the regions. You can click either someplace else in your worksheet or in a different worksheet altogether. Make sure you've clicked in an empty space. You should see the crosshair.
4. Choose Paste from the Edit menu (keystroke: [Ctrl] v), or click on the Standard toolbar.

Tip If the regions you want to copy are coming from a locked area (see "Safeguarding an Area of the Worksheet" on page 85) or an Electronic Book, you can copy them simply by dragging them with the mouse into your worksheet.

Deleting Regions

To delete one or more regions:

1. Select the regions as described in "Selecting Regions" on page 10.
2. Choose Cut from the Edit menu (keystroke: [Ctrl] X), or click $\begin{aligned} & X \\ & 0\end{aligned}$ Standard toolbar.
Choosing Cut removes the selected regions from your worksheet and puts them on the Clipboard. If you don't want to disturb the contents of your Clipboard, or if you don't want to save the selected regions, choose Delete from the Edit menu (Keystroke:
[Ctrl] D) instead.

A Simple Calculation

Although Mathcad can perform sophisticated mathematics, you can just as easily use it as a simple calculator. To try your first calculation, follow these steps:

1. Click anywhere in the worksheet. You see a small crosshair. Anything you type appears at the crosshair.
2. Type 15-8/104.5=. When you type the equal sign or click $=$ on the Evaluation toolbar, Mathcad computes and shows the result.

This calculation demonstrates the way Mathcad works:

- Mathcad shows equations as you might see them in a book or on a blackboard, expanded fully in two dimensions. Mathcad sizes fraction bars, brackets, and other symbols to display equations the same way you would write them on paper.
- Mathcad understands which operation to perform first. In this example, Mathcad knew to perform the division before the subtraction and displayed the equation accordingly.
- As soon as you type the equal sign or click \triangle on the Evaluation toolbar, Mathcad returns the result. Unless you specify otherwise, Mathcad processes each equation as you enter it. See the section "Controlling Calculation" in Chapter 8 to learn how to change this.
- As you type each operator (in this case, - and /), Mathcad shows a small rectangle called a placeholder. Placeholders hold spaces open for numbers or expressions not yet typed. As soon as you type a number, it replaces the placeholder in the expression. The placeholder that appears at the end of the expression is used for unit conversions. Its use is discussed in "Displaying Units of Results" on page 113.
Once an equation is on the screen, you can edit it by clicking in the appropriate spot and typing new letters, digits, or operators. You can type many operators and Greek letters by clicking in the Math toolbars introduced in "The Mathcad Workspace" on page 7. Chapter 4, "Working with Math," explains in detail how to edit Mathcad equations.

Definitions and Variables

Mathcad's power and versatility quickly become apparent once you begin using variables and functions. By defining variables and functions, you can link equations together and use intermediate results in further calculations.

The following examples show how to define and use several variables.

Defining Variables

To define a variable t, follow these steps:

1. Type t followed by a colon: or click $:=$ Calculator toolbar. Mathcad shows the colon as the definition symbol :=.
2. Type $\mathbf{1 0}$ in the empty placeholder to complete the definition for t.

$$
t:=10
$$

If you make a mistake, click on the equation and press
[Space] until the entire expression is between the two editing lines, just as you did earlier. Then delete it by choosing Cut from the Edit menu (keystroke: [Ctrl] X). See Chapter 4, "Working with Math," for other ways to correct or edit an expression.

These steps show the form for typing any definition:

1. Type the variable name to be defined.
2. Type the colon key : or click $:=$ on the Calculator toolbar to insert the definition symbol. The examples that follow encourage you to use the colon key, since that is usually faster.
3. Type the value to be assigned to the variable. The value can be a single number, as in the example shown here, or a more complicated combination of numbers and previously defined variables.

Mathcad worksheets read from top to bottom and left to right. Once you have defined a variable like t, you can compute with it anywhere below and to the right of the equation that defines it.

Now enter another definition.

1. Press [\downarrow]. This moves the crosshair below the first equation.
2. To define acc as -9.8 , type: acc: $\mathbf{- 9 . 8}$. Then press [] again. Mathcad shows the crosshair cursor
```
t:= 10
acc := -9.8
``` below the last equation you entered.

\section*{Calculating Results}

Now that the variables acc and \(t\) are defined, you can use them in other expressions.
1. Click the mouse a few lines below the two definitions.
2. Type acc/2[Space]*t^2. The caret symbol (^) represents raising to a power, the asterisk (\(*\)) is multiplication, and the slash (/) represents division.
```

t := 10
acc:= -9.8
acc

```
3. Press the equal sign (=).

This equation calculates the distance traveled by a falling body in time \(t\) with acceleration acc. When you enter the equation and press the equal sign (=), or click
\(=\) on the Evaluation toolbar, Mathcad returns the result.
Mathcad updates results as soon as you make changes. For example, if you click on the 10 on your screen and change it to some other number, Mathcad changes the result as soon as you press [.] or click outside of the equation.

\section*{Entering Text}

Mathcad handles text as easily as it does equations, so you can make notes about the calculations you are doing.

Here's how to enter some text:
1. Click in the blank space to the right of the equations you entered. You'll see a small crosshair.
2. Choose Text Region from the Insert menu, or press " (the double-quote key), to tell Mathcad
 that you're about to enter some text. Mathcad changes the crosshair into a vertical line called the insertion point. Characters you type appear behind this line. A box surrounds the insertion point, indicating you are now in a text region. This box is called a text box. It grows as you enter text.
3. Type Equations of motion. Mathcad shows the text in the worksheet, next to the equations.

Note If Ruler under the View menu is checked when the cursor is inside a text region, the ruler resizes to indicate the size of your text region. For more information on using the ruler to set tab stops and indents in a text region, see "Changing Paragraph Properties" on page 59.

Tip If you click in blank space in the worksheet and start typing, which creates a math region, Mathcad automatically converts the math region to a text region when you press [Space].

To enter a second line of text, just press [\(\curvearrowleft \downarrow\)] and continue typing:
1. Press [-」].
2. Then type for falling body under gravity.
3. Click in a different spot in the worksheet or press [Ctrl][Shift][.] to move out of the text region. The text box disappears and the cursor appears as a small crosshair.

Equations of motion for falling body under gravity.
\(+\)

Note Use [Ctrl][Shift][.」] to move out of the text region to a blank space in your worksheet. If you press [\(\downarrow \downarrow\)], Mathcad inserts a line break in the current text region instead.

You can set the width of a text region and change the font, size, and style of the text in it. For more information on how to do these things, see Chapter 5, "Working with Text."

\section*{Iterative Calculations}

Mathcad can do repeated or iterative calculations as easily as individual calculations. Mathcad uses a special variable called a range variable to perform iteration.

Range variables take on a range of values, such as all the integers from 0 to 10. Whenever a range variable appears in a Mathcad equation, Mathcad calculates the equation not just once, but once for each value of the range variable.

This section describes how to use range variables to do iterative calculations.

\section*{Creating a Range Variable}

To compute equations for a range of values, first create a range variable. In the problem shown in "Calculating Results" on page 14, for example, you can compute results for a range of values of \(t\) from 10 to 20 in steps of 1 . To do so, follow these steps:
1. First, change \(t\) into a range variable by editing its definition. Click on the \(\mathbf{1 0}\) in the equation \(t:=10\). The
\(t:=10\) insertion point should be next to the 10 as shown on the right.
2. Type, 11. This tells Mathcad that the next number in the range will be 11 .
```

t:= 10, 11

```
3. Type ; for the range variable operator, or click m.-n on the Calculator toolbar, and then type the last number, 20. This tells Mathcad that the last number in the range will be 20. Mathcad shows the range variable operator as a pair of dots.
4. Now click outside the equation for \(t\). Mathcad begins to compute with \(t\) defined as a range variable. Since \(t\) now takes on eleven different values, there must also be eleven different answers. These are displayed in an output table as shown at right. You may have to resize your window or scroll down to see the whole table.

\section*{Defining a Function}

You can gain additional flexibility by defining functions. Here's how to add a function definition to your worksheet:
1. First delete the table. To do so, drag-select the entire region until you've enclosed everything between the two editing lines. Then choose Cut from the Edit menu (keystroke: [Ctrl] X) or click \(y\) on the Standard toolbar.
2. Now define the function \(d(t)\) by typing \(\mathbf{d}(t)\) :
3. Complete the definition by typing this expression: \(1600+\) acc \(/ 2\) [Space]*t^2[.]]

The definition you just typed defines a function. The func-
\[
\begin{aligned}
& \mathrm{d}(\mathrm{t}):=\mathrm{I} \\
& \mathrm{~d}(\mathrm{t}):=1600+\frac{\mathrm{acc}}{2} \cdot \mathrm{t}^{2}
\end{aligned}
\]
\(\frac{\mathrm{acc}}{2} \cdot \mathrm{t}^{2}=\)
\begin{tabular}{|r|}
\hline-490 \\
\hline-592.9 \\
\hline-705.6 \\
\hline-828.1 \\
\hline-960.4 \\
\hline\(-1.103 \cdot 10^{3}\) \\
\hline\(-1.254 \cdot 10^{3}\) \\
\hline\(-1.416 \cdot 10^{3}\) \\
\hline\(-1.588 \cdot 10^{3}\) \\
\hline\(-1.769 \cdot 10^{3}\) \\
\hline\(-1.96 \cdot 10^{3}\) \\
\hline
\end{tabular} tion name is \(d\), and the argument of the function is \(t\). You can use this function to evaluate the above expression for different values of \(t\). To do so, simply replace \(t\) with an appropriate number. For example:
1. To evaluate the function at a particular value, such as 3.5 , type \(\mathbf{d}(3.5)=\). Mathcad returns the correct value as
\[
d(3.5)=1.54 \times 10^{3}
\] shown at right.
2. To evaluate the function once for each value of the range variable \(t\) you defined earlier, click below the other equations and type \(d(t)=\). As before, Mathcad shows a table of values, as shown at right.

\section*{Formatting a Result}

You can set the display format for any number Mathcad calculates and displays. This means changing the number of decimal places shown, changing exponential notation to ordinary decimal notation, and so on.
\begin{tabular}{c}
\begin{tabular}{c}
\(\mathrm{d}(t)=\) \\
\begin{tabular}{|r|}
\hline \(1.11 \cdot 10^{3}\) \\
\hline \(1.007 \cdot 10^{3}\) \\
\hline 894.4 \\
\hline 771.9 \\
\hline 639.6 \\
\hline 497.5 \\
\hline 345.6 \\
\hline 183.9 \\
\hline 12.4 \\
\hline-168.9 \\
\hline-360 \\
\hline
\end{tabular} \\
\end{tabular}\(.\)\begin{tabular}{r}
\\
\hline
\end{tabular} \\
\hline
\end{tabular}

For example, in the example above, the first two values, \(1.11 \cdot 10^{3}\) and \(1.007 \cdot 10^{3}\), are in exponential (powers of 10) notation. Here's how to change the table produced above so that none of the numbers in it are displayed in exponential notation:
1. Click anywhere on the table with the mouse.
2. Choose Result from the Format menu. You see the Result Format dialog box. This box contains settings that affect how results are displayed, including the number of decimal places, the use of exponential notation, the radix, and so on.

3. The default format scheme is General which has Exponential Threshold set to 3 . This means that only numbers greater than or equal to \(10^{3}\) are displayed in exponential notation. Click the arrows to the right of the 3 to increase the Exponential Threshold to 6 .
4. Click "OK." The table changes to reflect the new result format. For more information on formatting results, refer to "Formatting Results" on page 110.

Note When you format a result, only the display of the result is affected. Mathcad maintains full precision internally (up to 15 digits).

\section*{Graphs}

Mathcad can show both two-dimensional Cartesian and polar graphs, contour plots, surface plots, and a variety of other three-dimensional graphs. These are all examples of graph regions.
This section describes how to create a simple two-dimensional graph showing the points calculated in the previous section.

\section*{Creating a Graph}

To create an X-Y plot in Mathcad, click in blank space where you want the graph to appear and choose Graph \(\Rightarrow \mathbf{X}\)-Y Plot from the Insert menu or click \(\nsim\) on the Graph toolbar. An empty graph appears with placeholders on the \(x\)-axis and \(y\)-axis for the expressions to be graphed. X-Y and polar plots are ordinarily driven by range variables you define: Mathcad graphs one point for each value of the range variable used in the
graph. In most cases you enter the range variable, or an expression depending on the range variable, on the \(x\)-axis of the plot. For example, here's how to create a plot of the function \(d(t)\) defined in the previous section:
1. Position the crosshair in a blank spot and type \(d(t)\). Make sure the editing lines remain displayed on the expression.
2. Now choose Graph \(\Rightarrow \mathbf{X}\)-Y Plot from the Insert menu, or click \(\underset{\sim}{ }\) on the Graph toolbar. Mathcad displays the frame of the graph.
3. Type \(t\) in the bottom middle placeholder on the graph.
4. Click anywhere outside the graph. Mathcad calculates and graphs the points. A sample line appears under the " \(d(t)\)." This helps you identify the different curves when you plot more than one function. Unless you specify otherwise, Mathcad draws straight lines between the points and fills in the axis limits.

For detailed information on creating and formatting graphs, see Chapter 12, "2D Plots." In particular, refer to Chapter 12 for information about the QuickPlot feature in Mathcad which lets you plot expressions even when you don't specify the range variable directly in the plot.

\section*{Resizing a graph}

To resize a plot, click in the plot to select it. Then move the cursor to a handle along the edge of the plot until the cursor changes to a double-headed arrow. Hold the mouse button down and drag the mouse in the direction that you want the plot's dimension to change.

\section*{Formatting a Graph}

When you first create a graph it has default characteristics: numbered linear axes, no grid lines, and points connected with solid lines. You can change these characteristics by formatting the graph.

To format the graph created previously, follow these steps:
1. Click on the the graph and choose \(\mathbf{G r a p h} \Rightarrow \mathbf{X}\)-Y Plot from the Format menu, or double-click the graph to bring up the formatting dialog box. This box contains settings for all available plot format options. To learn more about these settings, see Chapter 12, "2D Plots."
2. Click the Traces tab.
3. Click "trace 1 " in the scrolling list under "Legend Label." Mathcad places the current settings for trace 1 in the boxes under the corresponding
 columns of the scrolling list.
4. Click the arrow under the "Type" column to see a drop-down list of trace types. Select "bar" from this drop-down list.
5. Click "OK" to show the result of changing the setting. Mathcad shows the graph as a bar chart instead of connecting the points with lines. Note that the sample line under the \(d(t)\) now has a bar on top of it.
6. Click outside the graph to deselect it.

\section*{Saving, Printing, and Exiting}

Once you've created a worksheet, you will probably want to save or print it.

\section*{Saving a Worksheet}

To save a worksheet:
1. Choose Save from the File menu (keystroke: [Ctrl] S) or click \(\mathbf{H}_{\square}\) on the Standard toolbar. If the file has never been saved before, the Save As dialog box appears. Otherwise, Mathcad saves the file with no further prompting.
2. Type the name of the file in the text box provided. To save to another folder, locate the folder using the Save As dialog box.
By default Mathcad saves the file in Mathcad (MCD) format, but you have the option of saving in other formats, such as RTF and HTML, as a template for future Mathcad worksheets, or in a format compatible with earlier Mathcad versions. For more information, see Chapter 7, "Worksheet Management."

\section*{Printing}

To print, choose Print from the File menu or click \(\square\) on the Standard toolbar. To preview the printed page, choose Print Preview from the File menu or click \(\square\) the Standard toolbar.

For more information on printing, see Chapter 7, "Worksheet Management."

\section*{Exiting Mathcad}

When you're done using Mathcad, choose Exit from the File menu. Mathcad closes down all its windows and returns you to the Desktop. If you've made any changes in your worksheets since the last time you saved, a dialog box appears asking if you want to discard or save your changes. If you have moved any toolbars, Mathcad remembers their locations for the next time you open the application.

Note To close a particular worksheet while keeping Mathcad open, choose Close from the File menu.

\section*{Chapter 3 \\ On-Line Resources}
\(\tau\) Resource Center and Electronic Books
\(\tau\) Help
\(\tau\) Internet Access in Mathcad
\(\tau\) The Collaboratory
\(\tau\) Other Resources

\section*{Resource Center and Electronic Books}

If you learn best from examples, want information you can put to work immediately in your Mathcad worksheets, or wish to access any page on the World Wide Web from
within Mathcad, choose Resource Center from the Help menu or click \(\square\) on the Standard toolbar. The Resource Center is a Mathcad Electronic Book that appears in a custom window with its own menus and toolbar, as shown in Figure 3-1.

Figure 3-1: Resource Center for Mathcad Professional. Topics available in Mathcad Standard differ somewhat.

Note A number of Electronic Books are available on the MathSoft Web Library which you can access through the Resource Center. In addition, a variety of Mathcad Electronic Books are available from MathSoft or your local distributor or software reseller. To open an Electronic Book you have installed, choose Open Book from the Help menu and browse to find the location of the appropriate Electronic Book (HBK) file.

The Resource Center offers:
- A comprehensive Mathcad Electronic Book containing a collection of tutorials, QuickSheet templates, examples, reference tables, and samples of Mathcad add-on products. Simply drag and drop information from the Resource Center into your own Mathcad worksheets.
- Immediate access to Mathcad worksheets and Electronic Books on MathSoft's World Wide Web site and other Internet sites.
- Access to the full Web-browsing functionality of Microsoft Internet Explorer from within the Mathcad environment.
- Access to the Collaboratory where you can exchange messages with other Mathcad users

Tip The Resource Center may open automatically every time you start Mathcad. To prevent it from opening automatically, choose Preferences from the View menu, click the General tab, and check "Open Resource Center at startup."

Note You can make your own Mathcad Electronic Book. See "Creating an Electronic Book" on page 89 for more information.

\section*{Content in the Resource Center}

Here are brief descriptions of the topics available in the Resource Center. Exact topics vary in Mathcad Professional and Mathcad Standard.
- Overview and Tutorials. A description of Mathcad's features, tutorials for getting started with Mathcad, and tutorials for getting more out of Mathcad's solving, data analysis, programming, graphing, and worksheet creation features.
- QuickSheets and Reference Tables. Over 300 QuickSheets - "recipes" take you through a wide variety of common mathematical tasks that you can modify for your own use. Tables for looking up physical constants, chemical and physical data, and mathematical formulas you can use in your Mathcad worksheets.
- Extending Mathcad. Dozens of discipline- and industry-specific examples, taken from Mathcad Electronic Books and Extension Packs, show how you can apply Mathcad to your work.
- Collaboratory. A connection to MathSoft's free Internet forum lets you consult with the world-wide community of Mathcad users.
- Web Library. A built-in connection to regularly updated technical content and resources for Mathcad users.
- MathSoft.com. MathSoft's Web page with access to Mathcad and mathematical resources and the latest information from MathSoft.
- Training/Support. Information on Mathcad training and support available from MathSoft.
- Web Store. MathSoft's Web store where you can get information on and purchase Mathcad add-on products and the latest educational and technical professional software products from MathSoft and other choice vendors.

\section*{Finding Information in an Electronic Book}

The Resource Center is a Mathcad Electronic Book-a hyperlinked collection of Mathcad worksheets. As in other hypertext systems, you move around a Mathcad Electronic Book simply by clicking on icons or underlined text. The mouse pointer automatically changes into the shape of a hand when it hovers over a hypertext link, and a message in the status bar tells you what will happen when you click the link. Depending on how the book is organized, the activated link automatically opens the appropriate section or displays information in a pop-up window.

You can also use the buttons on the toolbar at the top of the Electronic Book window to navigate and use content within the Electronic Book:

\section*{Button Function}

Links to the Table of Contents, the page that appears when you first open the Electronic Book.

Opens a toolbar for entering a World Wide Web address.
Backtracks to whatever document was last viewed.

Reverses the last backtrack.

Goes backward one section in the Electronic Book.
Goes forward one section in the Electronic Book.

Displays a list of documents most recently viewed.

Searches the Electronic Book for a particular term.
Copies selected regions to the Clipboard.
Saves current section of the Electronic Book.

Prints current section of the Electronic Book.

Mathcad keeps a record of where you've been in the Electronic Book. When you click
\(\hookleftarrow\), Mathcad goes back to the last page you were on when you left it. Backtracking is especially useful when you have clicked to look at a cross- reference and then want to return to the section you just came from.

If you don't want to go back one section at a time, click \({ }^{-}\). This opens a History window from which you can jump to any section you viewed since you first opened the Electronic Book.

\section*{Full-text search}

In addition to using hypertext links to find topics in the Electronic Book, you can search for topics or phrases. To do so:
1. Click 84 box.
2. Type a word or phrase in the "Search for" text box. Select a word or phrase and click "Search" to see a list of topics containing that entry and the number of times it occurs in each topic.
3. Choose a topic and click "Go To." Mathcad opens the Electronic Book section containing the entry you want to search for. Click "Next" or
"Previous" to bring the next or previous occurrence of the entry into the window.

\section*{Annotating an Electronic Book}

A Mathcad Electronic Book is made up of fully interactive Mathcad worksheets. You can freely edit any math region in an Electronic Book to see the effects of changing a parameter or modifying an equation. You can also enter text, math, or graphics as annotations in any section of your Electronic Book, using the menu commands on the Electronic Book window and the Mathcad toolbars.

Tip By default any changes or annotations you make to the Electronic Book are displayed in an annotation highlight color. To change this color, choose Color \(\Rightarrow\) Annotation from the Format menu. To suppress the highlighting of Electronic Book annotations, remove the check from Highlight Changes on the Electronic Book's Book menu.

\section*{Saving annotations}

Changes you make to an Electronic Book are temporary by default: your edits disappear when you close the Electronic Book, and the Electronic Book is restored to its original appearance the next time you open it. You can choose to save annotations in an Electronic Book by checking Annotate Book on the Book menu or on the pop-up menu that appears when you click with the right mouse button. Once you do so, you have the following annotation options:
- Choose Save Section from the Book menu to save annotations you made in the current section of the Electronic Book, or choose Save All Changes to save all changes made since you last opened the Electronic Book.
- Choose View Original Section to see the Electronic Book section in its original form. Choose View Edited Section to see your annotations again.
- Choose Restore Section to revert to the original section, or choose Restore All to delete all annotations and edits you have made to the Electronic Book.

\section*{Copying Information from an Electronic Book}

There are two ways to copy information from an Electronic Book into your Mathcad worksheet:
- You can use the Clipboard. Select text or equations in the Electronic Book using one of the methods described in "Selecting Regions" on page 10, click 匰 on the Electronic Book toolbar or choose Copy from the Edit menu, click on the appropriate spot in your worksheet, and choose Paste from the Edit menu.
- You can drag regions from the Book window and drop them into your worksheet. Select the regions as above, then click and hold down the mouse button over one of the regions while you drag the selected regions into your worksheet. The regions are copied into the worksheet when you release the mouse button.

\section*{Web Browsing}

If you have Internet access, the Web Library button in the Resource Center connects you to a collection of Mathcad worksheets and Electronic Books on the World Wide Web. You can also use the Resource Center window to browse to any location on the World Wide Web and open standard Hypertext Mark-up Language (HTML) and other Web pages, in addition to Mathcad worksheets. You have the convenience of accessing all of the Internet's rich information resources right in the Mathcad environment.

Note When the Resource Center window is in Web-browsing mode, Mathcad is using a Webbrowsing OLE control provided by Microsoft Internet Explorer. Web browsing in Mathcad requires Microsoft Internet Explorer version 4.0 or later to be installed on your system, but it does not need to be your default browser. Although Microsoft Internet Explorer is available for installation when you install Mathcad, refer to Microsoft Corporation's Web site at http : / / www.microsoft.com/for licensing and support information about Microsoft Internet Explorer and to download the latest version.

To browse to any World Wide Web page from within the Resource Center window:
1. Click on the Resource Center toolbar. As shown below, an additional toolbar with an "Address" box appears below the Resource Center toolbar to indicate that you are now in a Web-browsing mode:

2. In the "Address" box type a Uniform Resource Locator (URL) for a document on the World Wide Web. To visit the MathSoft home page, for example, type http: //www.mathsoft.com/ and press [Enter]. If you have Internet
access and the server is available, you load the requested page in your Resource Center window. Under Windows NT 3.51 or if you do not have a supported version of Microsoft Internet Explorer installed, you launch your default Web browser instead.
The remaining buttons on the Web Toolbar have the following functions:

\section*{Button Function}
畨 Bookmarks current page for a later visit.
(+4 Reloads the current page.
-
Interrupts the current file transfer.

Note When you are in Web-browsing mode and click with the right mouse button on the Resource Center window, Mathcad displays a pop-up menu with commands appropriate for viewing Web pages. Many of the buttons on the Resource Center toolbar remain active when you are in Webbrowsing mode, so that you can copy, save, or print material you locate on the Web, or backtrack to pages you previously viewed. When you click , you return to the Table of Contents for the Resource Center and disconnect from the Web.

Tip You can use the Resource Center in Web-browsing mode to open Mathcad worksheets anywhere on the World Wide Web. Simply type the URL of a Mathcad worksheet in the "Address" box in the Web toolbar.

\section*{Help}

Mathcad provides several ways to get help on product features through an extensive on-line Help system. To see Mathcad's on-line Help at any time, choose Mathcad Help from the Help menu, click \(\%\) on the Standard toolbar, or press [F1]. Mathcad's Help system is delivered in Microsoft's HTML Help environment, as shown in Figure 3-2. You can browse the Explorer view in the Contents tab, look up terms or phrases on the Index tab, or search the entire Help system for a keyword or phrase on the Search tab.

Note To run the Help, you must have Internet Explorer 3.02 or higher installed, but not necessarily set as your default browser.

You can get context-sensitive help while using Mathcad. For Mathcad menu commands, click on the command and read the status bar at the bottom of your window. For toolbar buttons, hold the pointer over the button momentarily to see a tool tip.

Note The status bar in Mathcad is displayed by default. You can hide the status bar by removing the check from Status Bar on the View menu.

Figure 3-2: Mathcad on-line Help is delivered in HTML Help.
You can also get more detailed help on menu commands or on many operators and error messages. To do so:
1. Click an error message, a built-in function or variable, or an operator.
2. Press [F1] to bring up the relevant Help screen.

To get help on menu commands or on any of the toolbar buttons:
1. Press [Shift][F1]. Mathcad changes the pointer into a question mark.
2. Choose a command from the menu. Mathcad shows the relevant Help screen.
3. Click any toolbar button. Mathcad displays the operator's name and a keyboard shortcut in the status bar.
To resume editing, press [Esc]. The pointer turns back into an arrow.
Tip Choose Tip of the Day from the Help menu for a series of helpful hints on using Mathcad. Mathcad automatically displays one of these tips whenever you start it if "Show Tips at Startup" is checked.

\section*{Internet Access in Mathcad}

Many of the on-line Mathcad resources described in this chapter are located not on your own computer or on a local network but on the Internet.
To access these resources on the Internet you need:
- Networking software to support a 32-bit Internet (TCP/IP) application. Such software is usually part of the networking services of your operating system; see your operating system documentation for details.
- A direct or dial-up connection to the Internet, with appropriate hardware and communications software. Consult your system administrator or Internet access provider for more information about your Internet connection.

Before accessing the Internet through Mathcad, you also need to know whether you use a proxy server to access the Internet. If you use a proxy, ask your system administrator for the proxy machine's name or Internet Protocol (IP) address, as well as the port number (socket) you use to connect to it. You may specify separate proxy servers for each of the three Internet protocols understood by Mathcad: HTTP, for the World Wide Web; FTP, a file transfer protocol; and GOPHER, an older protocol for access to information archives.

Once you have this information, choose Preferences from the View menu, and click the Internet tab. Then enter the information in the dialog box.

The remaining information in the Internet tab of the Preferences dialog was entered at the time you installed Mathcad:
- Your name
- Your Internet electronic mail address

- The URL for the Collaboratory server you contact when you click the Collaboratory button on the Resource Center home page

\section*{The Collaboratory}

If you have a dial-up or direct Internet connection, you can access the MathSoft Collaboratory server from the Resource Center home page. The Collaboratory is an interactive World Wide Web service that puts you in contact with a community of Mathcad users. The Collaboratory consists of a group of forums that allow you to contribute Mathcad or other files, post messages, and download files and read messages contributed by other Mathcad users. You can also search the Collaboratory for messages containing a key word or phrase, be notified of new messages in forums that interest you, and view only the messages you haven'tread yet. You'll find that the Collaboratory combines some of the best features of a computer bulletin board or an on-line news group with the convenience of sharing worksheets and other files created using Mathcad.

\section*{Logging in}

To open the Collaboratory, choose Resource Center from the Help menu and click on the Collaboratory icon. Alternatively, you can open an Internet browser and go to the Collaboratory home page:
http://collab.mathsoft.com/~mathcad2000/

You'll see the Collaboratory login screen in a browser window:

\section*{Welcome!}

To participate in the Mathcad Collaboratory, you can \(\log\) in as an Existing User, a New User, or a Guest.

NEW USER New users click here to create a personalized profile.

GUEST
Guests entering conferences are limited to read-only access.

The first time you come to the login screen of the Collaboratory, click "New User." This brings you to a form that you should fill out with your name and other required and optional information about yourself.

Note MathSoft does not use this information for any purposes other than for your participation in the Collaboratory and to notify you of important information concerning Mathcad.

Click "Create" when you are finished filling out the form. In a short while, check your email box for an email message with your login name and password. Go back to the Collaboratory, enter your login name and password given in the email message and click "Log In." You see the main page of the Collaboratory:

Figure 3-3: Opening the Collaboratory from the Resource Center. Available forums change over time.

A list of forums and messages appears on the left side of the screen. The menubar at the top of the window gives you access to features such as searches and on-line Help.

Tip After you log in, you may want to change your password to one you'll remember. To do so, click More Options on the menubar at the top of the window, click Edit User Profile and enter a new password in the password fields. Then click "Save."

Note MathSoft maintains the Collaboratory server as a free service, open to all in the Mathcad community. Be sure to read the Agreement posted in the top level of the Collaboratory for important information and disclaimers.

\section*{Reading Messages}

When you enter the Collaboratory, you see text telling you how many messages are new and how many are addressed to your attention. Click the links on the text to see these messages or examine the list of messages in the right part of the screen. To read any message in any forum of the Collaboratory:
1. Click on the \(\boldsymbol{\square}\) next to the forum name or click on the forum name.
2. Click on a message to read it. Click the \(\boldsymbol{\square}\) to the left of a message to see replies underneath it.
3. The message shows in the right side of the window.

Messages that you have not yet read are shown in italics. You may also see a "new" icon next to the messages.

\section*{Posting Messages}

After you enter the Collaboratory, you can go to any forum and post a message or a reply to a message. To post a new message or a reply to an existing one:
1. Decide which forum you want to post a message in. Click on the forum name to show the messages under it. If you want to reply to a message, click on the message.
2. Choose Post from the menubar at the top of the Collaboratory window to post a new message. Or, to reply to a message, click Reply at the top of the message in the right side of the window. You'll see the post/reply page in the right side of the window. For example, if you post a new topic message in the Biology forum, you see:

3. Enter the title of your message in the Topic field.
4. Click on any of the boxes below the title to specify whether you want to, for example, preview a message, spell check a message, or attach a file.
5. Type your text in the message field.

Tip You can include hyperlinks in your message by entering an entire URL such as http:// www.myserver.com/main.html.
6. Click "Post" after you finish typing. Depending on the options you selected, the Collaboratory either posts your message immediately or allows you to preview it. It might also display possible misspellings in red with links to suggested spellings.
7. If you preview the message and the text looks correct, click "Post."
8. If you are attaching a file, a new page appears. Specify the file type and file on the next page and click "Upload Now."

Note For more information on reading, posting messages, and other features of the Collaboratory, click Help on the Collaboratory menubar.

To delete a message that you posted, click on it to open it and click Delete in the small menubar just above the message on the right side of the window.

\section*{Searching}

To search the Collaboratory, click Search on the Collaboratory menubar. You can search for messages containing specific words or phrases, messages within a certain date range, or messages posted by specific Collaboratory users.
You can also search the Collaboratory user database for users who are in a particular country or have a particular email address, etc. To do so, click Search Users at the top of the Search page.

\section*{Changing Your User Information}

When you first logged into the Collaboratory, you filled out a New User Information form with your name, address, etc. This information is stored as your user profile. To change any of this information or to make changes to the Collaboratory defaults, you need to edit your profile. To do so:
1. Click More Options on the menubar at the top of the window.
2. Click Edit Your Profile.
3. Make changes to the information in the form and click "Save."

You can change information such as your login name and password. You can also hide your email address.

Note For privacy when posting messages, you can hide your email address or change your login name by editing your profile. Be aware, however, that if you hide your email address, other Collaboratory participants cannot send you email messages.

\section*{Other Features}

The Collaboratory has other features which make it easy to find and provide information to the Mathcad community. To perform activities such as creating an address book, marking messages as read, viewing certain messages, and requesting automatic email
announcements when specific forums have new messages, choose More Options from the Collaboratory menubar.

The Collaboratory also supports participation via email or a news group. For more information on these and other features available in the Collaboratory, click Help on the Collaboratory menubar.

\section*{Other Resources}

\section*{On-line Documentation}

The following pieces of Mathcad documentation are available in PDF form on the Mathcad CD in the DOC folder:
- Mathcad User's Guide. This User's Guide with the latest information, including updates since the printed edition was created.
- Mathcad Reference Manual. An in-depth guide to Mathcad's built-in functions, operators, and symbolic keywords.
- MathConnex User's Guide. A guide to using MathConnex, an environment for visually integrating and linking applications and data sources.
Pro - Creating a User DLL. A file with instructions for using C or C++ to create your own function in the form of a DLL.

You can read these PDF files by installing Adobe Acrobat Reader which is also available on the Mathcad CD in the DOC folder. See the readme file in the DOC folder for more information about the on-line documentation.

\section*{Samples Folder}

The SAMPLES folder, located in your Mathcad folder, contains sample Mathcad and MathConnex files which demonstrate components such as the Axum, Excel, and SmartSketch components. There are also sample Visual Basic applications designed to work with Mathcad files. Refer to Chapter 16, "Advanced Computational Features," for more information on components and other features demonstrated in the samples.

\section*{Release Notes}

The release notes are located in the DOC folder located in your Mathcad folder. It contains the latest information on Mathcad, updates to the documentation, troubleshooting instructions, and more.

\title{
Chapter 4 \\ Working with Math
}
\(\tau\) Inserting Math
\(\tau\) Building Expressions
\(\tau\) Editing Expressions
\(\tau\) Math Styles

\section*{Inserting Math}

You can place math equations and expressions anywhere you want in a Mathcad worksheet. All you have to do is click in the worksheet and start typing.
1. Click anywhere in the worksheet. You see a small crosshair. Anything you type appears at the crosshair.
2. Type numbers, letters, and math operators, or insert them by clicking buttons on Mathcad's math toolbars, to create a math region.
\(+\)
\(15-\frac{8}{104.5}=14.923\)

You'll notice that unlike a word processor, Mathcad by default understands anything you type at the crosshair cursor as math. If you want to create a text region instead, follow the procedures described in Chapter 5, "Working with Text."
You can also type math expressions in any math placeholder, which appears when you insert certain operators. See Chapter 9, "Operators," for more on Mathcad's mathematical operators and the placeholders that appear when you insert them.

The rest of this chapter introduces the elements of math expressions in Mathcad and describes the techniques you use to build and edit them. See the chapters in the Computational Features section of this User's Guide for details on numerical and symbolic calculation in Mathcad.

\section*{Numbers and Complex Numbers}

This section describes the various types of numbers that Mathcad uses and how to enter them into math expressions. A single number in Mathcad is called a scalar. For information on entering groups of numbers in arrays, see "Vectors and Matrices" on page 35.

\section*{Types of numbers}

In math regions, Mathcad interprets anything beginning with one of the digits 0-9 as a number. A digit can be followed by:
- other digits
- a decimal point
- digits after the decimal point
- one of the letters \(\mathbf{b}, \mathbf{h}\), or \(\mathbf{o}\), for binary, hexadecimal, and octal numbers, or \(\mathbf{i}\) or \(\mathbf{j}\) for imaginary numbers. These are discussed in more detail below. See "Suffixes for Numbers" on page 312 in the Appendices for additional suffixes.

Note Mathcad uses the period (.) to signify the decimal point. The comma (,) is used to separate values in a range variable definition, as described in "Range Variables" on page 101. So when you enter numbers greater than 999 , do not use either a comma or a period to separate digits into groups of three. Simply type the digits one after another. For example, to enter ten thousand, type "10000".

\section*{Imaginary and complex numbers}

To enter an imaginary number, follow it with \(i\) or \(j\), as in \(\mathbf{1 i}\) or \(\mathbf{2 . 5 j}\).
Note You cannot use \(i\) or \(j\) alone to represent the imaginary unit. You must always type \(\mathbf{1 i} \mathbf{i}\) or \(\mathbf{1 j}\). If you don't, Mathcad thinks you are referring to a variable named either \(i\) or \(j\). When the cursor is outside an equation that contains \(1 i\) or \(1 j\), however, Mathcad hides the (superfluous) 1 .

Although you can enter imaginary numbers followed by either \(i\) or \(j\), Mathcad normally displays them followed by \(i\). To have Mathcad display imaginary numbers with \(j\), choose Result from the Format menu, click on the Display Options tab, and set "Imaginary value" to "j(J)." See "Formatting Results" on page 110 for a full description of the result formatting options.

Mathcad accepts complex numbers of the form \(a+b i\) (or \(a+b j\)), where \(a\) and \(b\) are ordinary numbers.

\section*{Binary numbers}

To enter a number in binary, follow it with the lowercase letter b. For example, 11110000 b represents 240 in decimal. Binary numbers must be less than \(2^{31}\).

\section*{Octal numbers}

To enter a number in octal, follow it with the lowercase letter o. For example, 256360 represents 11166 in decimal. Octal numbers must be less than \(2^{31}\).

\section*{Hexadecimal numbers}

To enter a number in hexadecimal, follow it with the lowercase letter \(\mathbf{h}\). For example, \(\mathbf{2 b} 9 \mathrm{eh}\) represents 11166 in decimal. To represent digits above 9, use the upper or lowercase letters \(\mathbf{A}\) through \(\mathbf{F}\). To enter a hexadecimal number that begins with a letter, you must begin it with a leading zero. If you don't, Mathcad will think it's a variable name. For example, use \(0 a 3 \mathrm{~h}\) (delete the implied multiplication symbol between 0 and a) rather than \(\mathbf{a} 3 \mathrm{~h}\) to represent the decimal number 163 in hexadecimal.
Hexadecimal numbers must be less than \(2^{31}\).

\section*{Exponential notation}

To enter very large or very small numbers in exponential notation, just multiply a number by a power of 10 . For example, to represent the number \(3 \cdot 10^{8}\), type \(3 * 10^{\wedge} 8\).

\section*{Vectors and Matrices}

A column of numbers is a vector, and a rectangular array of numbers is called a matrix. The general term for a vector or matrix is an array.
There are a number of ways to create an array in Mathcad. One of the simplest is by filling in an array of empty placeholders as discussed in this section. This technique is useful for arrays that are not too large. See Chapter 11, "Vectors, Matrices, and Data Arrays," for additional techniques for creating arrays of arbitrary size.

Tip You may wish to distinguish between the names of matrices, vectors, and scalars by font. For example, in many math and engineering books, names of vectors are set in bold while those of scalars are set in italic. See "Math Styles" on page 51 for a description of how to do this.

\section*{Creating a vector or matrix}

To create a vector or matrix in Mathcad, follow these steps:
1. Choose Matrix from the Insert menu or click [i:i] on the Matrix toolbar. The dialog box shown on the right appears.
\begin{tabular}{|c|c|}
\hline Insert Matrix & x \\
\hline Rows: 3 & OK \\
\hline Columns: 3 & Insert \\
\hline & Delete \\
\hline & Cancel \\
\hline
\end{tabular}
2. Enter a number of rows and a number of columns in the appropriate boxes. In this example, there are two rows and three columns. Then click "OK." Mathcad inserts a matrix of placeholders.
3. Fill in the placeholders to complete the matrix. Press [Tab] to move from placeholder to placeholder.

You can use this matrix in equations, just as you would
 a number.

Tip The Insert Matrix dialog box also allows you to insert or delete a specified number of rows or columns from an array you have already created. See"Changing the size of a vector or matrix" on page 192.

Note Throughout this User's Guide, the term "vector" refers to a column vector. A column vector is simply a matrix with one column. You can also create a row vector by creating a matrix with one row and many columns.

\section*{Strings}

Although in most cases the math expressions or variables you work with in Mathcad are numbers or arrays, you can also work with strings (also called string literals or string variables). Strings can include any character you can type at the keyboard, including letters, numbers, punctuation, and spacing, as well as a variety of special symbols as listed in "ASCII codes" on page 316 in the Appendices. Strings differ from variable names or numbers because Mathcad always displays them between double
quotes. You can assign a string to a variable name, use a string as an element of a vector or matrix, or use a string as the argument to a function.

To create a string:
1. Click on an empty math placeholder in a math expression, usually on the right-hand side of a variable definition.
2. Type the double-quote (") key. Mathcad displays a pair of quotes and an insertion line between them.

Type any combination of letters, numbers, punctuation, or spaces. Click outside the expression
```

s:= "|"

``` or press the right arrow key \((\rightarrow)\) twice when you are finished.

To enter a special character corresponding to one of the ASCII codes, do the following:
1. Click to position the insertion point in the string.
2. Hold down the [Alt] key, and type the number " 0 " followed immediately by the number of the ASCII code using the numeric keypad at the right of the keyboard in number-entry mode.
3. Release the [Alt] key to see the symbol in the string.

For example, to enter the degree symbol \(\left(^{\circ}\right)\) in a string, press [Alt] and type " 0176 " using the numeric keypad.

Note The double-quote key (") has a variety of meanings in Mathcad, depending on the exact location of the cursor in your worksheet. When you want to enter a string, you must always have a blank placeholder selected.

Valid strings include expressions such as "The Rain in Spain Falls Mainly on the Plain," "Invalid input: try a number less than -5, ," and "Meets stress requirements." A string in Mathcad, while not limited in size, always appears as a single line of text in your worksheet. Note that a string such as " 123 ," created in the way described above, is understood by Mathcad to be a string of characters rather than the number 123.

Tip Strings are especially useful for generating custom error messages in programs, as described in Chapter 15, "Programming." Other string handling functions are listed in "String Functions" on page 187. Use strings also to specify system paths for arguments to some Mathcad built-in functions; see "File Access Functions" on page 188.

\section*{Names}

A name in Mathcad is simply a sequence of characters you type or insert in a math region. A name usually refers to a variable or function that you use in your computations. Mathcad distinguishes between two kinds of names:
- Built-in names, which are the names of variables and functions that are always available in Mathcad, and which you can use freely in building up math expressions.
- User-defined names, which are the names of variables and functions you create in your Mathcad worksheets.

\section*{Built-in names}

Because Mathcad is an environment for numerical and symbolic computation, a large number of names are built into the product for use in math expressions. These built-in names include built-in variables and built-in functions.
- Mathcad includes several variables that, unlike ordinary variables, are already defined when you start Mathcad. These predefined or built-in variables either have a conventional value, like \(\pi\) (3.14159...) or \(e\) (2.71828...), or are used as system variables to control how Mathcad calculates. See "Built-in Variables" on page 98 for more information.
- In addition to these predefined variables, Mathcad treats the names of all built-in units as predefined variables. For example, Mathcad recognizes the name "A" as the ampere, " \(m\) " as the meter, " \(s\) " as the second, and so on. Choose Unit from the
Insert menu or click \(\mathrm{F}^{3}\) on the Standard toolbar to insert one of Mathcad's predefined units. See "Units and Dimensions" on page 106 for more on built-in units in Mathcad.
- Mathcad includes a large number of built-in functions that handle a range of computational chores ranging from basic calculation to sophisticated curve fitting, matrix manipulation, and statistics. To access one of these built-in functions, you can simply type its name in a math region. For example, Mathcad recognizes the name "mean" as the name of the built-in mean function, which calculates the arithmetic mean of the elements of an array, and the name "eigenvals" as the name of the built-in eigenvals function, which returns a vector of eigenvalues for a matrix.

You can also choose Function from the Insert menu or click \(f\) on the Standard toolbar to insert one of Mathcad's built-in functions. See Chapter 10, "Built-in Functions," for a broad overview of Mathcad's built-in functions.

\section*{User-defined variable and function names}

Mathcad lets you use a wide variety of expressions as variable or function names.
Names in Mathcad can contain any of the following characters:
- Uppercase and lowercase letters.
- The digits 0 through 9.
- The underscore (_).
- The prime symbol ('). Note that this is not the same as an apostrophe. You'll find the prime symbol on the same key as the tilde \((\sim)\) or press [Ctrl][F7] to insert it.
- The percent symbol (\%).
- Greek letters. To insert a Greek letter, click a button on the Greek toolbar or type the equivalent roman letter and press [Ctrl]G. The section "Greek letters" on page 38 gives more details.
- The infinity symbol \(\infty\), which you insert by clicking \(\infty\) on the Calculus toolbar or by typing [Ctrl][Shift]z.

The following are examples of valid names:
alpha
xyz700
b
A1_B2_C3_D4\% \% \%
F1'

The following restrictions apply to variable names:
- A name cannot start with one of the digits 0 through 9 . Mathcad interprets anything beginning with a digit as either an imaginary number (\(2 i\) or \(3 j\)), a binary, octal, or hexadecimal number (e.g., \(5 \mathrm{o}, 7 \mathrm{~h}\)), or as a number times a variable \((3 \cdot x)\).
- The infinity symbol, \(\infty\), can only appear as the first character in a name.
- Any characters you type after a period (.) appear as a subscript. This is discussed in "Literal subscripts" on page 39.
- All characters in a name must be in the same font, have the same point size, and be in the same style (italic, bold, etc.). Greek letters can, however, appear in any variable name. See "Math Styles" on page 51.
- Mathcad does not distinguish between variable names and function names. Thus, if you define \(f(x)\), and later on you define the variable \(f\), you will find that you cannot use \(f(x)\) anywhere below the definition for \(f\).
- Although you can redefine Mathcad's names for built-in functions, constants, and units, keep in mind that their built-in meanings will no longer exist after the definition. For example, if you define a variable mean, Mathcad's built-in function mean (v) can no longer be used.

Note Mathcad distinguishes between uppercase and lowercase letters. For example, diam is a different variable from DIAM. Mathcad also distinguishes between names in different fonts, as discussed in "Math Styles" on page 51. Thus, Diam is also a different variable from Diam.

Tip To type symbols such as \$ in a name, press [Ctrl][Shift]K, type the symbol(s), and type [Ctrl][Shift]K again.

\section*{Greek letters}

There are two ways to enter a Greek variable name in Mathcad:
- Click on the appropriate letter on the Greek toolbar. To see this toolbar, click \(\alpha \beta \beta\) on the Math toolbar, or choose Toolbars \(\Rightarrow\) Greek from the View menu.
- Type the Roman equivalent of the Greek symbol and then press [Ctrl]G. For example, to enter \(\phi\), press \(\mathbf{f}[\mathbf{C t r l}] \mathbf{G}\). See "Greek Letters" on page 313 in the Appendices for a table of Greek letters and their Roman equivalents.

Note Although many of the uppercase Greek letters look like ordinary capital letters, they are not the same. Mathcad distinguishes between Greek and Roman letters, even if they appear visually equivalent.

Tip Because it is used so frequently, the Greek letter \(\pi\) can also be typed by pressing [Ctrl][Shift]P.

\section*{Literal subscripts}

If you include a period in a variable name, Mathcad displays whatever follows the period as a subscript. You can use these literal subscripts to create variables with names like \(v e l_{\text {init }}\) and \(u_{\text {air }}\).

To create a literal subscript, follow these steps:
1. Type the portion of the name that appears before the subscript.
2. Type a period (.), followed by the portion of the name that is to become the subscript.

Note Do not confuse literal subscripts with array subscripts, which are generated with the left bracket key ([) or by clicking \(\times_{n}\) on the Calculator toolbar. Although they appear similar-a literal subscript appears below the line, like an array subscript, but with a slight space before the subscript-they behave quite differently in computations. A literal subscript is simply a cosmetic part of a variable name. An array subscript represents a reference to an array element. See Chapter 11, "Vectors, Matrices, and Data Arrays," for a description of how to use subscripts with arrays.

\section*{Operators}

As described in the previous section, certain characters, like letters and digits, make up parts of names and numbers. Other characters, like * and \(\boldsymbol{+}\), represent "operators." Operators are symbols like " + " and " - " that link variables and numbers together to form expressions. The variables and numbers linked together by operators are called operands. For example, in an expression like:
\[
a^{x+y}
\]
the operands for the " + " are \(x\) and \(y\). The operands for the exponent operator are \(a\) and the expression \(x+y\).

You type the common arithmetic operators using the standard keystrokes, like * and \(\boldsymbol{+}\), used in your spreadsheet and other applications. But all of Mathcad's operators can be entered with keystrokes or by clicking buttons in the Math toolbars. For example, you insert Mathcad's derivative operator by typing ? or by clicking \(\frac{\frac{d}{d x}}{}\) on the Calculus toolbar. See "Operators" on page 298 in the Appendices for a complete list of operators. Mathcad's operators are also discussed in detail in Chapter 9, "Operators."

\section*{Building Expressions}

You can create many mathematical expressions by simply typing in a stream of characters, or by inserting appropriate operators from the Math toolbars.

For example, if you type the characters
\[
3 / 4+5^{\wedge} 2=
\]
you get the result shown at the right.
\[
\frac{3}{4+5^{2}}=0.103
\]

On the surface, Mathcad's equation editor seems very much like a simple text editor, but there's more to it than this. Mathematical expressions have a well-defined structure and Mathcad's equation editor is designed specifically to work within that structure. In Mathcad, mathematical expressions are not so much typed-in as they are built.

Mathcad automatically assembles the various parts that make up an expression using the rules of precedence and some additional rules that simplify entering denominators, exponents, and expressions in radicals. For example, when you type / or click \(/ /\) on the Calculator toolbar to create a fraction, Mathcad stays in the denominator until you press [Space] to select the entire expression.

\section*{Typing in Names and Numbers}

When you type in names or numbers, Mathcad behaves very much like a standard word processor. As you type, you see the characters you type appear behind a vertical editing line. The left and right arrow keys move this vertical editing line to the left or to the right a character at a time, just as they would in a word processor. There are, however, two important differences:
- As it moves to the right, the vertical editing line leaves behind a trail. This trail is a "horizontal editing line." Its importance becomes apparent when you begin working with operators.

- Unless the equation you've clicked in already has an operator in it, pressing [Space] turns the math region into a text region. It is not possible to turn a text region back into a math region.

\section*{Typing in Operators}

The key to working with operators is learning to specify what variable or expression is to become an operand. There are two ways to do this:
- You can type the operator first and fill in the placeholders with operands, or
- You can use the editing lines to specify what variable or expression you want to turn into an operand.
The first method feels more like you're building a skeleton and filling in the details later. This method may be easier to use when you're building very complicated expressions, or when you're working with operators like summation that require many operands but don't have a natural typing order.

The second method feels more like straight typing and can be much faster when expressions are simple. In practice, you may find yourself switching back and forth as the need arises.

Here's how to create the expression \(a^{x+y}\) using the first method:
1. Press \(\wedge\) to create the exponent operator, or click \(x^{\gamma}\) on the Calculator toolbar. You see two placeholders. The editing lines
 "hold" the exponent placeholder.
2. Click in the lower placeholder and type a.
3. Click in the upper placeholder.
4. Type +.
5. Click in the remaining placeholders and type \(\mathbf{x}\) and \(\mathbf{y}\).

To use the editing lines to create the expression \(a^{x+y}\), proceed as follows:
1. Type a. The editing lines hold the \(a\) indicating that \(a\) becomes the first operand of whatever operator you type next.
2. Press \({ }^{\wedge}\) to create the exponent operator. As promised, \(a\) becomes the first operand of the exponent. The editing lines now hold another placeholder.

3. Type \(\mathbf{x + y}\) in this placeholder to complete the expression.

Note that in this example, you could type the expression the same way you'd say it out loud. However, even this simple example already contains an ambiguity. When you say " \(a\) to the \(x\) plus \(y\) " there's no way to tell if you mean \(a^{x+y}\) or \(a^{x}+y\). For more complicated expressions, the number of ambiguities increases dramatically.

Although you can always resolve ambiguities by using parentheses, doing so can quickly become cumbersome. A better way is to use the editing lines to specify the operands of whatever operator you type. The following example illustrates this by describing how to create the expression \(a^{x}+y\) instead of \(a^{x+y}\).
1. Enter \(\mathbf{a}^{\wedge} \mathbf{x}\) as you did in the previous example. Note how the editing lines hold the \(x\) between them. If you were to type + at this point, the \(x\) would become the first operand of the plus.

2. Press [Space]. The editing lines now hold the entire expression \(a^{x}\).

3. Now type + . Whatever was held between the editing lines now becomes the first operand of the plus.

4. In the remaining placeholder, type \(\mathbf{y}\).

\section*{Multiplication}

A common way to show multiplication between two variables on a piece of paper is to place them next to each other. For example, expressions like \(a x\) or \(a(x+y)\) are easily understood to mean " \(a\) times \(x\) " and " \(a\) times the quantity \(x\) plus \(y\)," respectively.
This cannot be done with Mathcad variables for the simple reason that when you type ax, Mathcad has no way of knowing whether you mean " \(a\) times \(x\) " or "the variable named \(a x\)." Similarly, when you type a (\(\mathbf{x}+\mathbf{y}\)), Mathcad cannot tell if you mean " \(a\) times the quantity \(x\) plus \(y\) " or whether you mean "the function \(a\) applied to the argument \(x+y\)."
To avoid ambiguity in your everyday work, we recommend that you always press * explicitly to indicate multiplication, as shown in the following example:
1. Type a followed by *. Mathcad inserts a small dot after the " \(a\) " to indicate multiplication.
2. In the placeholder, type the second factor, \(\mathbf{x}\).

Note In the special case when you type a numerical constant followed immediately by a variable name, such as \(\mathbf{4 x}\), Mathcad interprets the expression to mean the constant multiplied by the variable: \(4 \cdot x\). Mathcad displays a space between the constant and the variable to indicate that the multiplication is implied. In this way, you can produce math notation that closely approximates the notation you see in textbooks and reference books. However, Mathcad reserves certain letters, such as " \(i\) " for the imaginary unit and " \(o\) " for octal, as suffixes for numbers, and in these cases does not attempt to multiply the number by a variable name but rather treats the expression as a single number with a suffix.

Tip You can change the display of the multiplication operator to an X , a thin space, or a large dot. To do so, click on the multiplication operator with the right mouse button and choose View Multiplication As... Or to change all the multiplication operators in a worksheet, choose Options from the Math menu, click on the Display tab, and choose from the selections next to "Multiplication." See "Changing the Display of an Operator" on page 124 for additional information.

\section*{An Annotated Example}

When it comes to editing equations, knowing how to use the editing lines assumes an importance similar to knowing where to put the flashing vertical bar (insertion point) you see in most word processors. A word processor can use a simple vertical bar because text is inherently one-dimensional, like a line. New letters go either to the left or to the right of old ones. An equation, on the other hand, is really two-dimensional, with a structure more like a tree with branches than like a line of text. As a result, Mathcad has to use a two-dimensional version of that same vertical bar. That's why there are two editing lines: a vertical line and a horizontal line.

Suppose, for example, that you want to type the slightly more complicated expression
\[
\frac{x-3 \cdot a^{2}}{-4+\sqrt{y+1}+\pi}
\]

Watch what happens to the editing lines in the following steps:
1. Type \(\mathbf{x}-\mathbf{3 *} \mathbf{a \wedge}\) ^2. Since the editing lines contain just the " 2 ," only the " 2 " becomes the numerator when you press the /.
\[
x-3 \cdot a^{2}
\] Since we want the whole expression, \(x-3 \cdot a^{2}\), to be the numerator, we must make the editing lines hold that entire expression.
2. To do so, press [Space]. Each time you press [Space], the editing lines hold more of the expression. You need to press
 [Space] three times to enclose the entire expression.
3. Now press / to create a division bar. Note that the numerator is whatever was enclosed between the editing lines when you pressed /.

4. Now type \(\mathbf{- 4 +}\) and click \(\Gamma\) on the Calculator toolbar. Then type \(\mathbf{y}+1\) under the radical to complete the denominator.
5. To add something outside the radical sign, press [Space] twice to make the editing lines hold the radical. For example, to add the number \(\pi\) to the denominator, press [Space] twice.

6. Press +. Since the editing lines are holding the entire radical, it is the entire radical that becomes the first operand when you press + .

\section*{Editing Expressions}

This section describes how to make changes to an existing expression.

\section*{Changing a Name or Number}

To edit a name or number:
1. Click on it with the mouse. This places the vertical editing line where you clicked the mouse.
2. Move the vertical editing line if necessary by pressing the \([\rightarrow]\) and \([\leftarrow]\) keys.
3. If you type a character, it appears just to the left of the vertical editing line. Pressing [Bksp] removes the character to the left of the vertical editing line. Pressing [Delete] removes the character to the right of the vertical editing line.

If you need to change several occurrences of the same name or number, you may find it useful to choose Replace from the Edit menu. To search for a sequence of characters, choose Find from the Edit menu. These commands are discussed further in "Text Tools" on page 64.

\section*{Inserting an Operator}

The easiest place to insert an operator is between two characters in a name or two numbers in a constant. For example, here's how to insert a plus sign between two characters:
1. Place the editing lines where you want the plus sign to be.
2. Press the + key, or click + on the Calculator toolbar.

Note You never need to insert a space when typing an equation. Mathcad inserts spaces automatically around operators wherever doing so is appropriate. If you do try to insert a space, Mathcad assumes you meant to type text rather than math and converts your math region into a text region accordingly.

Operators such as division and exponentiation result in more dramatic formatting changes. For example, when you insert a divide sign, Mathcad moves everything that comes after the divide sign into the denominator. Here's how you insert a divide sign:
1. Place the editing lines where you want the divide sign to be.
2. Press the / key or click \(\square\) on the Calculator toolbar. Mathcad reformats the expression to accommodate the division.

Some operators require only one operand. Examples are the square root, absolute value, and complex conjugate operators. To insert one of these, place the editing lines on either side of the operand and press the appropriate keystroke. Many of these operators are available on the Calculator toolbar as well. For example, to turn \(x\) into \(\sqrt{x}\) do the following:
1. Place the editing lines around the " \(x\)," either preceding or following the character.
2. Press \(\backslash\) to insert the square root operator, or click
 on the
2. Press \(\backslash\) to insert the
Calculator toolbar.

\section*{Applying an Operator to an Expression}

The methods described in the previous section work most predictably when you want to apply an operator to a variable or a number. If, however, you want to apply an operator to an entire expression, there are two ways to proceed:
- Surround that expression in parentheses and proceed as described in the previous section, or
- Use the editing lines to specify the expression to which you want to apply the operator.

Although the first method may be more intuitive, it is slower since you need to type a pair of parentheses. The more efficient, second method is the subject of this section. The sections "Inserting Parentheses" on page 48 and "Deleting Parentheses" on page 49 describe ways to work with parentheses more efficiently.

The editing lines consist of a horizontal line and a vertical line that moves left to right along the horizontal line. To make an operator apply to an expression, select the expression by placing it between the two editing lines. The following examples show how typing *c results in completely different expressions depending on what was selected.
- Here, the two editing lines hold only the numerator. This means any operator you type will apply only to the numerator.
- Typing *c results in this expression. Note how the expression held between the editing lines became the first operand of the multiplication.
- Here, the editing lines hold the entire fraction. This means any operator you type will apply to the entire fraction.
- Typing * \(\mathbf{c}\) results in this expression. Note how everything between the editing lines became the first operand of the multiplication.
- Here, the editing lines hold the entire fraction as they did in the previous example. However, this time the vertical editing line is on the left side instead of on the right side.
- Typing *c results in this expression. Note how the expression enclosed by the editing lines became the second rather than the first operand of the multiplication. This happened because the

\[
\frac{a+b}{x+d}
\] vertical editing line was on the left side rather than the right side.

\section*{Controlling the editing lines}

You use the following techniques to control what's between the editing lines:
- Click on an operator. Depending on where on the operator you click, you'll find the vertical editing line either on the left or on the right of the operator, with the horizontal line selecting an operand of the operator. If you want to move the vertical editing line from one side to the other of the currently selected expression, press [Insert].
- Use the left and right arrow keys to move the vertical editing line one character at a time. The horizontal editing line selects an operand of the nearest operator. If your expression contains built-up fractions, you can also use the up and down arrow keys to move the editing lines.
- Press [Space] to select progressively larger parts of the expression with the editing lines. Each time you press [Space], the editing lines enclose more and more of the
expression, until eventually they enclose the entire expression. Pressing [Space] one more time brings the editing lines back to where they were when you started.

Tip You can also drag-select parts of an expression to hold it between the editing lines. When you do this, the selected expression is highlighted in reverse video. Note that whatever you type next overwrites the highlighted expression.

The following example walks you through a short cycle of using [Space]:
1. This is the starting position. The two editing lines hold just the single variable " \(d\)."
2. Pressing [Space] makes the editing lines grow so that they now hold the entire denominator.
3. Pressing [Space] once makes the editing lines grow again so that they now hold the entire expression.
4. At this point, the editing lines can't become any longer. Pressing [Space] brings the editing lines back to the starting point of the cycle.

You'll notice that in stepping through the previous cycle there was never an intermediate step in which the editing lines held just the numerator. Nor was there ever a step in which the editing lines held just the \(a\) or just the \(b\) in the numerator. That's because the sequence of steps the editing lines go through as you press [Space] depends on the starting point of the cycle.

To set the starting point of the cycle, either click on the appropriate part of the expression as described earlier, or use the arrow keys to move around the expression. The arrow keys walk the editing lines through the expression in the indicated direction. Keep in mind, however, that the idea of "up" and "down" or "left" and "right" may not always be obvious, particularly when the expression becomes very complicated or if it involves summations, integrals, and other advanced operators.

Note Editing of strings differs from editing of other math expressions because you must use the arrow keys or click outside the string to move out of a string. Pressing [Space], which can be used in other expressions to change the position of the editing lines, is interpreted as just another character in a string.

\section*{Deleting an Operator}

To delete an operator connecting two variable names or constants:
1. Place the vertical editing line after the operator.

\section*{2. Press [BkSp].}

Now you can easily insert a new operator to replace the one you deleted
 just by typing it in.

Tip You can also delete an operator by placing the editing lines before it and pressing [Delete].

In the above examples, it is easy to see what "before" and "after" mean because the expressions involved naturally flow from left to right, the same way we read. Fractions behave the same way. Since we naturally say " \(a\) over \(b\)," putting the editing lines "after" the division bar means putting them just before the \(b\). Similarly, putting the editing lines "before" the division bar means putting them immediately after the \(a\). The following example illustrates this:
1. Place the vertical editing lines after the division bar.

\section*{2. Press [BkSp].}

To delete an operator having only one operand (for example, \(\sqrt{x},|x|\) or \(x!\)):
1. Position the editing lines just after the operator.
2. Press \([\mathrm{BkSp}]\).

For certain operators, it may not be clear where to put the editing lines.

For example, it is not clear when looking at \(|x|\) or \(\bar{x}\) what "before" and "after" mean. When this happens, Mathcad resolves the ambiguity by referring to the spoken form of the expression. For example, since you read \(\bar{x}\) as " \(x\) conjugate," the bar is treated as being after the \(x\).

\section*{Replacing an Operator}

To replace an operator after deleting it between two variables or constants or on a single variable, as shown in the steps above, simply type the new operator after pressing [BkSp].

To replace an operator between two expressions:
1. Position the editing lines just after the operator.
2. Press \([\mathrm{BkSp}]\). An operator placeholder appears.
3. Type the new operator.

\section*{Inserting a Minus Sign}

The minus sign that means "negation" uses the same keystroke as the one that means "subtract." To determine which one to insert, Mathcad looks at where the vertical editing line is. If it's on the left, Mathcad inserts the "negation" minus sign. If it's on the right, Mathcad inserts the "subtract" minus sign. To move the vertical editing line from one side to the other, use [Insert].

The following example shows how to insert a minus sign in front of " \(\sin (a)\)."
1. Click on the \(\sin (a)\). If necessary, press [Space] to select the entire expression.
2. If necessary, press [Insert] to move the vertical editing line all the way to the left.
3. Type -, or click \(\square\) on the Calculator toolbar, to insert a minus sign.

If what you really want to do is turn \(\sin (a)\) into \(1-\sin (a)\), insert another operator (say, "+") as described in the section "Inserting an Operator" on page 44. Then replace the operator with a minus sign as described in the section "Deleting an Operator" on page 46 . Notice that in Mathcad the unary negation symbol in the expression \(-\sin (a)\) appears smaller than the minus sign in expressions such as \(1-\sin (a)\).

Note When you are replacing an operator and the operator placeholder is showing, select an expression, rather than a single variable, to the right of the operator placeholder and type - in order to put a subtraction minus sign in the placeholder. Otherwise Mathcad inserts a negation sign.

\section*{Inserting Parentheses}

Mathcad places parentheses automatically as needed to maintain the precedence of operations. There may be instances, however, when you want to place parentheses to clarify an expression or to change the overall structure of the expression. You can either insert a matched pair of parentheses all at once or insert the parentheses one at a time. We recommend you insert a matched pair since this avoids the possibility of unmatched parentheses.
To enclose an expression with a matched pair of parentheses:
1. Select the expression by placing it between the editing lines. Do this by clicking on the expression and pressing [Space] one or more times.
2. Type the single-quote key () , or click () on the Calculator toolbar. The selected expression is now enclosed by
 parentheses.

It is sometimes necessary to insert parentheses one at a time using the (and) keys. For example, to change \(a-b+c\) to \(a-(b+c)\) do the following:
1. Move the editing lines just to the left of the \(b\). Make sure the vertical editing line is on the left as shown. Press [Insert] if
 necessary to move it over.
2. Type (and click to the right of the \(c\). Make sure the vertical editing line is to the right as shown. Press [Insert] if
 necessary to move it over.
3. Type).

\section*{Deleting Parentheses}

You cannot delete one parenthesis at a time. Whenever you delete one parenthesis, Mathcad deletes the matched parenthesis as well. This prevents you from inadvertently creating an expression having unmatched parentheses.

To delete a matched pair of parentheses:
1. Move the editing lines to the right of the " \((\) ".
2. Press \([\mathbf{B k S p}]\). Note that you could also begin with the editing lines to the left of the ")" and press [Delete] instead.

\(a-b+c\)

\section*{Applying a Function to an Expression}

To turn an expression into the argument of a function, follow these steps:
1. Click in the expression and press [Space] until the entire
expression, \(w \cdot t-k \cdot z\), is held between the editing lines.
2. Type the single-quote key (\()\), or click () on the Calculator toolbar. The selected expression is enclosed by parentheses.
3. Press [Space]. The editing lines now hold the parentheses as well.

4. If necessary, press the [Insert] key so that the vertical editing line switches to the left side. If the vertical editing line is already on the left side, skip this step.
5. Now type the name of the function. If the function you wish to use is a built-in function, you can also choose Function from the Insert menu or click \(f x\) on the Standard toolbar and double-click the name of the function.

\section*{Moving Parts of an Expression}

The menu commands Cut, Copy, and Paste from the Edit menu are useful for editing complicated expressions. They function as follows:
 is between the editing lines and copies it to the Clipboard.
- Copy (舁臽 on the Standard toolbar or [Ctrl]C on the keyboard) takes whatever is between the editing lines and copies it to the Clipboard.
- Paste on the Standard toolbar or [Ctrl]V on the keyboard) takes whatever is on the Clipboard and places it into your worksheet, either into a placeholder or into the blank space between other regions.

The Copy and Paste commands use the Clipboard to move expressions from one place to another. You can, however, bypass the Clipboard by using Mathcad's equation drag and drop feature.
Suppose you want to build the expression
\[
\cos (w t+x)+\sin (w t+x)
\]
1. Drag-select the argument to the cosine function so that it is highlighted in reverse
```

cos(wtt+x)+\operatorname{sin}(1)

``` video.
2. Press and hold down [Ctrl] and the mouse button. The pointer changes to indicate that it carries the selected expression with it. It
```

cos(w\cdott+x]+\operatorname{sin}(1)
=--4

``` continues to carry the selected expression until you release the mouse button.
3. With the mouse button still held down, drag the pointer over the placeholder.

4. Release the mouse button. The pointer drops the expression into the placeholder. It then recovers its original form.
\[
\cos (w \cdot t+x)+\sin (w \cdot t+x)
\]

Tip You can drag and drop expressions, or even entire math regions, into placeholders in other expressions or into any blank space in your worksheet. Just be sure you don't let go of the mouse button before you've dragged the expression to wherever you want to drop it. If you're trying to drop the expression into a placeholder, be sure to position the pointer carefully over the placeholder.

\section*{Deleting Parts of an Expression}

You can delete part of an expression by using either the [Delete] key or the [BkSp] key. If you use this method, whatever you delete is not placed on the Clipboard. This is useful when you intend to replace whatever you delete with whatever is currently on the Clipboard.
To delete part of an expression without placing it on the Clipboard:
1. Drag-select the part of the expression (in this case, the numerator) so that it is highlighted in reverse video.
2. Press [Delete] or [BkSp]. This removes the numerator and leaves behind a placeholder.

Note If you select an expression with the editing lines instead of drag-selecting as shown above, you must press [Bksp] or [Delete] twice to remove it. In this case, [Bksp] removes the expression to the left of the editing lines, and [Delete] removes to the right.

You may already have encountered styles in your other applications to determine the appearance of text or other elements. By making changes to text styles rather than to individual text elements in a word processing document, you can make sweeping and strikingly uniform changes in the way that documents looks. (See Chapter 5, "Working with Text," for an explaination of Mathcad's text styles) You can get this same kind of leverage by using math styles to assign particular fonts, font sizes, font styles and effects, and colors to the elements of your math expressions.

Mathcad has predefined math styles that govern the default appearance of all the math in your worksheet, but you can define and apply additional styles to enhance the appearance of your equations.

Mathcad's predefined math styles are:
- Variables, which governs the default appearance of all variables.
- Constants, which governs the default appearance of all numbers you type in math regions as well as all numbers that appear in results.
Whenever you type a variable name, Mathcad:
- Assigns to it a math style named "Variables."
- Displays the variable name using the characteristics associated with the style named "Variables."

Similarly, when you type a number or when a result is calculated, Mathcad:
- Assigns to it a math style named "Constants."
- Displays the number using the characteristics associated with the style named "Constants."

\section*{Editing Math Styles}

To change Mathcad's default style for all variables and plots:
1. Click on a variable name in your worksheet.
2. Choose Equation from the Format menu. The style name "Variables" is selected.
3. Click "Modify" to change the font associated with the "Variables" style. You'll see a dialog box for changing fonts.
4. Make any changes using the dialog box and click "OK." Mathcad changes the font of all variables in the worksheet.

If you change the Variables style, you may also want to change the style used for numbers so that the two look good together. To do so:
1. Click on a number.
2. Choose Equation from the Format menu to see the Equation Format dialog box. The style name "Constants" is now selected.
3. Follow the procedure given above for modifying the Variables style.

You can also use the Formatting toolbar to change the font, font size, or font style associated with a math style. For example, to use the Formatting toolbar to modify some of the settings for the Variables math style, click on a variable, then click on the appropriate Formatting toolbar button to make variables bold, italic, or underlined or to specify the font or point size in the drop-down lists.

Note Mathcad's line-and-character grid does not respond automatically to changes in the font sizes used in text and math. Changing font characteristics, particularly font sizes, may cause regions to overlap. You can separate these regions by choosing Separate Regions from the Format menu.

You may wish to have your equations display in a different color than your default text regions to avoid confusing the two. To change the default color of all equations in your worksheet,
1. Choose Equation from the Format menu.
2. Select a color in the "Default Equation Color" drop-down list.
3. Click "OK."

\section*{Applying Math Styles}

The "Variables" and "Constants" styles govern the default appearance of all math in your worksheet. These two style names cannot be changed. You may, however, create and apply additional math styles, named as you choose, in your worksheets and templates.
To see what math style is currently assigned to a name or number, simply click in the name or number, and look at the style window on the Formatting toolbar.
Alternatively, click the name or number and choose Equation from the Format menu. The math style associated with whatever you clicked on appears in the drop-down list in the Equation Format dialog box.
If you click on the button to the right of "Variables" in either the Formatting toolbar or the Equation Format dialog box, you'll see a dropdown list of available math styles. If you now
 choose "User 1" and click "OK," a new math style is applied to the selected element and its appearance changes accordingly.
In this way you can apply any of a variety of math styles to:
- individual variable names in an expression, or
- individual numbers in a math expression (but not in computed results, which always display in the "Constants" style).

For example, many math books show vectors in a bold, underlined font. If you want to use this convention, do the following:
1. Choose Equation from the Format menu.
2. Click the down arrow beside the name of the current math styles to see a drop-down list of available math styles.
3. Click on an unused math style name like "User 1" to select it. The name "User 1" should now appear in the "New Style Name" text box. Click in this text box and change the name to something like "Vectors."
4. Click "Modify" to change this style to a bold, underlined font.

This creates a math style called "Vectors" with the desired appearance. When you're done defining the style, click "OK."
Now rather than individually changing the font, font size, and font style for names of vectors, you can simply change their math styles.

Note All names, whether function names or variable names, are font sensitive. This means that \(\boldsymbol{x}\) and \(x\) refer to different variables, and \(\mathbf{f}(x)\) and \(f(x)\) refer to different functions. In deciding whether two variable names are the same, Mathcad actually checks math styles rather than fonts. To avoid having distinct variables that look identical, don't create a math style with exactly the same font, size, and other characteristics as another math style.

\section*{Saving Math Styles}

Once you've completed a set of math styles that you like, you need not repeat the process for other worksheets. You can save math style information by saving a worksheet as a template. Choose Save As from the File menu and select Mathcad Template (*.mct) as the file type in the Save As dialog box.

To apply math style information to another worksheet, open your template from the File menu and copy the contents of the worksheet to the template. For more information about worksheet templates, see Chapter 7, "Worksheet Management."

\section*{Chapter 5 Working with Text}
\(\tau\) Inserting Text
\(\tau \quad\) Text and Paragraph Properties
\(\tau\) Text Styles
\(\tau\) Equations in Text
\(\tau\) Text Tools

\section*{Inserting Text}

This section describes how to create text regions in Mathcad. Text regions are useful for inserting any kind of text into your worksheets and templates: comments around the equations and plots in your worksheet, blocks of explanatory text, background information, instructions for the use of the worksheet, and so on. Mathcad ignores text when it performs calculations, but you can insert working math equations into text regions as described in "Equations in Text" on page 63.

\section*{Creating a Text Region}

To create a text region, follow these steps. First, click in a blank space in your worksheet to position the crosshair where you want the text region to begin. Then:
1. Choose Text Region from the Insert menu, or press the double-quote (") key. Mathcad begins a text region. The
 crosshair changes into an insertion point and a text box appears.
2. Now begin typing some text. Mathcad displays the text and surrounds it with a text box. As you type, the insertion point

Fluid flow example] moves and the text box grows.
3. When you finish typing the text, click outside the text region. The text box disappears.

Fluid flow example \(+\)

Note You cannot leave a text region simply by pressing [[ل]. You must leave the text region by clicking outside the region, by pressing [Ctrl][Shift][\(\downarrow\)], or by repeatedly pressing one of the arrow keys until the cursor leaves the region.

To insert text into an existing text region:
- Click anywhere in a text region. A text box now surrounds your text. Anything you type gets inserted at the insertion point.
To delete text from an existing text region, click in the text region and:
1. Press \([\mathbf{B k S p}]\) to delete the character to the left of the insertion point, or
2. Press [Delete] to delete the character to the right of the insertion point.

To overtype text:
1. Place the insertion point to the left of the first character you want to overtype.
2. Press [Insert] to begin typing in overtype mode. To return to the default insert mode, press [Insert] again.
You can also overtype text by first selecting it (see "Selecting Text" on page 56). Whatever you type next replaces your selection.

Tip To break a line or start a new line in a text region, press [[ل]. Mathcad inserts a hard return and moves the insertion point down to the next line. Press [Shift][.]] to start a new line in the same paragraph. When you rewrap the text by changing the width of the text region, Mathcad maintains line breaks at these spot in the text.

\section*{Moving the Insertion Point}

In general, you move the insertion point within text regions by clicking with the mouse wherever you want to put the insertion point. However, you can also use the arrow keys to move the insertion point.

The arrow keys move the insertion point character by character or line by line within text. Pressing [Ctrl] and an arrow key moves the insertion point word by word or line by line. These and other ways of moving the insertion point are summarized below.
\begin{tabular}{ll}
Key & Action \\
{\([\rightarrow]\)} & Move right one character. \\
{\([\leftarrow]\)} & Move left one character. \\
{\([\uparrow]\)} & Move up to the previous line. \\
{\([\downarrow]\)} & Move down to the next line. \\
{\([\mathrm{Ctrl}][\rightarrow]\)} & \begin{tabular}{l}
Move to the end of the current word. If the insertion point is already \\
there, move to the end of the next word.
\end{tabular} \\
{\([\mathrm{Ctrl}][\leftarrow]\)} & \begin{tabular}{l}
Move to the beginning of the current word. If the insertion point is \\
already there, move to the beginning of the previous word.
\end{tabular} \\
{\([\mathrm{Ctrl}][\uparrow]\)} & \begin{tabular}{l}
Move to the beginning of the current line. If the insertion point is \\
already there, move to the beginning of the previous line.
\end{tabular} \\
{\([\mathrm{Ctrl}][\downarrow]\)} & \begin{tabular}{l}
Move to the end of the current line. If the insertion point is already \\
there, move to the end of the next line.
\end{tabular} \\
{\([\mathrm{Home}]\)} & \begin{tabular}{l}
Move to the beginning of the current line. \\
{\([E n d]\)}
\end{tabular}
\end{tabular}

\section*{Selecting Text}

One way to select text within a text region is:
1. Click in the text region so that the text box appears.
2. Drag across the text holding the mouse button down.
for a falling body under gravity.

Mathcad highlights the selected text, including any full lines between the first and last characters you selected.

On-line Help You can also select text using arrow keys and multiple clicks of the mouse button, just as you can in most word processing applications. For more information, refer to the topic "Selecting text" in the on-line Help.

Once text is selected, you can delete it, copy it, cut it, check the spelling, or change its font, size, style, or color.

Tip Once you've cut or copied text to the Clipboard, you can paste it back into any text region or into an empty space to create a new text region.

To select and move an entire text region or group of regions, follow the same steps that you would use with math regions, described on "Moving and Copying Regions" on page 10. To perform other editing actions, select the regions, and then choose Cut, Delete, Paste, or Copy from the Edit menu, or click the corresponding buttons on the Standard toolbar.

\section*{Greek Letters in Text}

To type a Greek letter in a text region, use one of these two methods:
- Click on the appropriate letter on the Greek toolbar. To see this toolbar, click on the Math toolbar, or choose Toolbars \(\Rightarrow\) Greek from the View menu, or
- Type the Roman equivalent of the Greek symbol and then press [Ctrl]G. For example, to enter \(\phi\), press \(\mathbf{f}[\mathbf{C t r l}] \mathbf{G}\). See "Greek Letters" on page 313 in the Appendices for a table of Greek letters and their Roman equivalents.

Tip As discussed in the section "Inserting Math" in Chapter 4, typing [Ctrl]G after a letter in a math region also converts it to its Greek equivalent. In addition, [Ctrl] \(\mathbf{G}\) converts a nonalphabetic character to its Greek symbol equivalent. For example, typing [Shift]2[Ctrl]G in a text region produces the " \(\cong\) " character.

To change a text selection into its Greek equivalent, select the text and then:
1. Choose Text from the Format menu.
2. From the Font list select the Symbol font.

You can also change the font of a text selection by using the Formatting toolbar.

\section*{Changing the Width of a Text Region}

When you start typing in a text region, the region grows as you type, wrapping only when you reach the right margin or page boundary. (The location of the right margin is determined by the settings in the Page Setup dialog box, which you can modify by choosing Page Setup from the File menu.) Press [[]] whenever you want to start a new line. To set a width for your whole text region and have lines wrap to stay within that width as you type. To do this:
1. Type normally until the first line reaches the width you want.
2. Type a space and press [Ctrl][.J].

All other lines break to stay within this width. When you add to or edit the text, Mathcad rewraps the text according to the width set by the line at the end of which you pressed [Ctrl][.J].
To change the width of an existing text region, do the following:
1. Click anywhere in the text region. A selection box encloses the text region.
2. Move the pointer to the middle of the right edge of the text region until it hovers over the "handle" on the selection rectangle. The pointer changes to a doubleheaded arrow. You can now change the size of the text region the same way you change the size of any window-by dragging the mouse.

Tip You can specify that a text region occupies the full page width by clicking on the region and choosing Properties from the Format menu. Click the Text tab and check "Occupy Page Width." As you enter more lines of text into a full-width text region, any regions that are below are automatically pushed down in the worksheet.

\section*{Text and Paragraph Properties}

This section describes changing various font properties and changing the alignment and indenting of paragraphs within a text region.

\section*{Changing Text Properties}

To change the font, size, style, position, or color of a portion of the text within a text region, first select the text. (See "Selecting Text" on page 56.) Then choose Text from the Format menu to access the Text Format dialog box. The Text Format dialog box also appears when you click with the right mouse button on selected text and choose Font from the pop-up menu.

Many of the options of the Text

Format dialog box are also available via the buttons and drop-down lists on the Formatting toolbar:

When you first insert text, its properties are determined by the worksheet or template defaults for the style called "Normal." See "Text Styles" on page 61 to find out about applying and modifying existing text styles and creating new ones for governing the default appearance of entire text paragraphs or regions. Any properties that you change for selected text as described here override the properties associated with the style for that text region.

Tip If you simply place the insertion point in text and then change the text properties through the Text Format dialog box or the Formatting toolbar, any text you now type at that insertion point will have the new properties you selected.

You can change the following properties of selected text:
- Font
- Font style
- Font size
- Effects such as subscripts and superscripts
- Color

Font sizes are in points. Note that some fonts are available in many sizes and others aren't. Remember that if you choose a bigger font, the text region you're in may grow and overlap nearby regions. Choose Separate Regions from the Format menu if necessary.

Tip You can specify that a text region automatically pushes following regions down as it grows by clicking on the region and choosing Properties from the Format menu. Click the "Text" tab and select "Push Regions Down As You Type."

Tip As a shortcut for creating subscripts and superscripts in text, use the Subscript and Superscript commands on the pop-up menu that appears when you click with the right mouse button on selected text.

\section*{Changing Paragraph Properties}

A paragraph in a text region is any stream of characters followed by a hard return, which is created when you type [\(\sqrt{ }\)]. You can assign distinct properties to each paragraph in a text region, including alignment, indenting for either the first or all lines in the paragraph, tab stops, and bullets or sequential numbering to begin the paragraph.
When you first create a text region, its paragraph properties are determined by the worksheet or template defaults for the style called "Normal." See "Text Styles" on page 61 to find out about text styles for governing the default appearance of entire text regions or paragraphs. Any paragraph properties that you change as described here override the paragraph properties associated with the style for that text region.

Note When you type [Shift][]] Mathcad inserts a new line within the current paragraph; it does not create a new paragraph.

You can change the properties for a paragraph within a text region by doing the following:
1. Select the paragraph by clicking in it to place the insertion point, by dragselecting it, or by triple-clicking it.
2. Choose Paragraph from the Format menu, or click with the right mouse button and choose Paragraph from the pop-up menu. Mathcad displays the Paragraph Format dialog box.

3. Change the appropriate properties in the dialog box and click "OK."
You can change the following paragraph properties:

\section*{Indent}

To indent every line in the paragraph the same amount, enter numbers in the "Left" and "Right" text boxes. To indent the first line of the paragraph a different amount than the rest of the lines, as for a conventional or hanging indent, select "First Line" or "Hanging" from the "Special" drop-down list and enter a value below.

You can also set indents using the text ruler. Click in a paragraph and choose Ruler from the View menu. Move the top or bottom arrow in the ruler to set a different indent for the first line, or move both arrows to indent all the lines in the paragraph.

\section*{Bullets and numbered lists}

To begin the paragraph with a bullet, select "Bullets" from the "Bullets" drop-down list. Select "Numbers" from the drop-down list to have Mathcad number successive
 Formatting toolbar.

\section*{Alignment}

To align the paragraph at either the left or right edge of the text region, or to center the text within the text region, use the three alignment buttons in the dialog box. Alternatively, click one of the three alignment buttons on the Formatting toolbar:

or

Tab stops
To specify tabs, click the "Tabs" button in the Paragraph Format dialog box to open the Tabs dialog box. Enter numbers into the "Tab stop position" text box. Click "Set" for each tab stop then click "OK."
Altenatively, you can set tab stops using the text ruler. Click in a paragraph and choose Ruler from the View menu. Click in the ruler where you want a tab stop to be. A tab stop symbol appears. To remove a tab stop, click on the tab stop symbol, hold the mouse button down, and drag the cursor away from the ruler.

Tip To change the measurement system used in the Paragraph Format dialog box or in the text ruler, choose Ruler from the View menu to show the text ruler if it is not already showing, click on the ruler with the right mouse button, and choose Inches, Centimeters, Points, or Picas from the pop-up menu.

\section*{Text Styles}

Mathcad uses text styles to assign default text and paragraph properties to text regions. Text styles give you an easy way to create a consistent appearance in your worksheets. Rather than choosing particular text and paragraph properties for each individual region, you can apply an available text style, setting a range of text and paragraph properties at once.
Every worksheet has a default "normal" text style with a particular choice of text and paragraph properties. Depending on your worksheet and the template from which the worksheet is derived, you may have other predefined text styles to which you can apply to existing or new text regions. You can also modify existing text styles, create new ones of your own, and delete ones you no longer need.
This section describes the procedures for applying, modifying, creating, and deleting text styles. See the previous section, "Text and Paragraph Properties," for details on the available text and paragraph properties.

\section*{Applying a Text Style to a Paragraph in a Text Region}

When you create a text region in your worksheet, the region is tagged by default with the "Normal" style. You can, however, apply a different style to each paragraph-each stream of characters followed by a hard return-within the text region:
1. Click in the text region on the paragraph where you want to change the style.
2. Choose Style from the Format menu, or click with the right mouse button and choose Style from the pop-up menu, to see a list of the available text styles. Available text styles depend on the worksheet template used.
3. Select one of the available text styles and click "Apply." The default text in your paragraph acquires the text and paragraph properties associ-
 ated with that style.

Tip As an alternative to choosing Style from the Format menu, you can apply a text style to a text paragraph simply by clicking in the paragraph and choosing a style from the left-most dropdown list in the Formatting toolbar. To apply a text style to an entire text region, first select all the text in the region. For information on selecting text, refer to "Selecting Text" on page 56.

\section*{Modifying an Existing Text Style}

You can change the definition of a text style-its text and paragraph properties-at any time.

To modify a text style:
1. Choose Style from the Format menu. Mathcad brings up the Text Styles dialog box showing the currently available text styles.
2. Select the name of the text style you want to modify and click "Modify."
3. The Define Style dialog box displays the definitions of that text style.
4. Click "Font" to modify text formats such as the font, font size, font styling, special effects, and color. Click "Paragraph"
 to modify the indenting and alignment and other properties for paragraphs. See "Text and Paragraph Properties" on page 58 for details about the available text and paragraph formatting options.
5. Click "OK" to save your changes.

Any new text regions to which you apply the modified text style will reflect the new definition for that text style. In addition, any text regions previously created with the text style will be modified accordingly.

\section*{Creating and Deleting Text Styles}

You can modify the list of available text styles in your worksheet by creating new ones and deleting ones you no longer use; any text style changes are saved with your worksheet. You can base a new text style on an existing text style, such that it inherits text or paragraph properties, or you can create an entirely new style. For example, you may want to base a new "Subheading" style on an existing "Heading" style, but choose a smaller font size, keeping other text and paragraph properties the same.

\section*{Creating a text style}

To create a new text style:
1. Choose Style from the Format menu. Mathcad brings up the Text Styles dialog box showing the currently available text styles.
2. Click "New" to bring up the Define Style dialog box.
3. Enter a name for the new style in the "Name" text box. If you want to base the new style on one of the existing styles in the current worksheet or template, select a style from the "Based on" drop-down list.
4. Click the "Font" button to make your choices for text formats for the new style. Click the "Paragraph" button to choose paragraph formats for the new style.
5. Click "OK" when you have finished defining the new style.

Your new style now appears in the Text Styles dialog box and can be applied to any text region as described in "Applying a Text Style to a Paragraph in a Text Region" on page 61. When you save the worksheet, the new text style is saved with it. If you want
to use the new text style in your future worksheets, save your worksheet as a template as described in Chapter 7, "Worksheet Management." You may also copy the text style into another worksheet simply by copying and pasting a styled region into the new worksheet.

Note If you base a new text style on an existing text style, any changes you later make to the original text style will be reflected in the new text style as well.

\section*{Deleting a text style}

You may delete a text style at any time. To do so:
1. Choose Style from the Format menu. Mathcad brings up the Text Styles dialog box showing the currently available text styles.
2. Select one of the available text styles from the list.
3. Click "Delete."

The text style is removed from the list of available text styles. However, any text regions in your worksheet whose text and paragraph properties were defined in terms of that text style will continue to display the properties of that style.

\section*{Equations in Text}

This section describes how to insert equations into your text regions. Equations inserted into text have the same properties as those in the rest of your worksheet. You can edit them using the methods described in Chapter 4, "Working with Math."

\section*{Inserting an Equation into Text}

Place an equation into text either by creating a new equation inside a text region or by pasting an existing equation into a text region.
To add a new equation into a text region or a paragraph, follow these steps:
1. Click in the text region or paragraph to place the insertion point where you want the equation to start.
2. Choose Math Region from the Insert menu. A placeholder appears.
3. Type in the equation just as you would in a math region.
4. When you've finished typing in the equation, click on any text to return to the text region. Mathcad adjusts

> The universal gravitational constant, \(G\), has the value \(\mid\) and can be used to determine the acceleration of a less massive object toward a more massive object.
> The universal gravitational constant, \(G\), has the value \(\mid\) and can be used to determine the acceleration of a less massive object toward a more massive object.

The universal gravitational constant, \(G\), has the value \(\mathrm{G}:=6.67259 \cdot 10^{-11} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}\) and can be used
to determine the acceleration of a less massive object toward a more massive object. the line spacing in the text region to accommodate the embedded math region.

To paste an existing equation into a text region, follow these steps:
1. Select the equation you want to paste into the text.
2. Choose Copy from the Edit menu, or click 閻 on the Standard toolbar.
3. Click in the text region to place the insertion point where you want the equation to start.
4. Choose Paste from the Edit menu, or click on the Standard toolbar.

\section*{Disabling Embedded Equations}

When you first insert an equation into text, it behaves just like an equation in a math region; it affects calculations throughout the worksheet. If you want the equation to be purely cosmetic, you can disable it so that it no longer calculates. To do so:
1. Click on the equation you want to disable.
2. Choose Properties from the Format menu. Click on the Calculation tab.
3. Click the "Disable Evaluation" check box.
4. Click "OK."

Once you have done so, the equation can neither affect nor be affected by other equations in the worksheet. To turn it back on, remove the check next to "Disable Evaluation" in the Properties dialog box.
For a more general discussion of disabling and locking equations, see "Disabling Equations" on page 118.

\section*{Text Tools}

Mathcad has tools for finding and replacing text as well as checking the spelling of text.

\section*{Find and Replace}

Mathcad's Find and Replace commands on the Edit menu are capable of working in both text and math regions. By default, however, Mathcad finds and replaces text in text regions only.

\section*{Searching for text}

To find a sequence of characters:
1. Choose Find from the Edit menu.
 Mathcad brings up the Find dialog box.
2. Enter the sequence of characters you want to find.
3. Click "Find Next" to find the occurrence of the character sequence immediately after the current insertion point location. Use the available options in the dialog box to search upward or downward in the worksheet, to match whole words
only, to match the case exactly of the characters you entered, and to specify whether Mathcad should search in text or math regions or both.

On-line Help The Help topic "Characters You Can Find and Replace" details the characters you can find in math and text regions, including Greek symbols. Many special characters, including punctuation and spaces, can be located only in text or math strings.

\section*{Replacing characters}

To search and replace text:
1. Choose Replace from the Edit menu to bring up the Replace dialog box.
2. Enter the string you want to find (the target string) in the "Find what" box.
3. Enter the string you want to replace it with in the "Replace with" box. Check the appropriate boxes to match whole words only, to match the case exactly
 of the characters you entered, and to specify whether Mathcad should search in text or math regions or both.

You now have the following options:
- Click "Find Next" to find and select the next instance of your target string.
- Click "Replace" to replace the currently selected instance of the string.
- Click "Replace All" to replace all instances of the string.

\section*{Spell-Checking}

After creating text, you can have Mathcad search the text for misspelled words and suggest replacements. You can also add words that you commonly use to your personal dictionary.

Note Mathcad spell-checks text regions only, not math or graphics regions.
To begin spell-checking, specify the portion of the worksheet to spell-check. There are two ways to do this:
- Click at the beginning of wherever you want to spell-check. Mathcad spell-checks starting from this point and continues to the end of the worksheet. You can then either continue the spell-check from the beginning of the worksheet or quit spellchecking.
- Alternatively, select the text you want to spell-check.

Once you've defined a range over which to check spelling:
1. Choose Check Spelling from the Edit menu, or click \(\stackrel{\text { AEC }}{ }\) on the Standard toolbar.
2. When Mathcad finds a misspelled word, it opens the Check Spelling dialog box. The misspelled word is shown along with a suggested replacement or a list of possible replace-
 ments. If Mathcad has no immediate suggestions, it shows only the misspelled word.

Tip To determine whether a word is misspelled, Mathcad compares it with the words in two dictionaries: a general dictionary of common English words supplemented by mathematical terms and a personal dictionary. If there are certain correctly spelled words throughout your worksheet which Mathcad nevertheless shows as being misspelled, you may want to add them to your personal dictionary.

After the Check Spelling dialog box appears, you have several options:
- To change the word to the suggested replacement, or to another word you select from the list of possible replacements, click "Change."
- Click "Suggest" to see additional but less likely replacements. If Mathcad can offer no additional suggestions, "Suggest" is grayed.
- To change the word to one not listed, type the replacement into the "Change to" box and click "Change."
- To leave the word as is, click "Ignore" or "Add." If you click "Ignore," Mathcad leaves the word alone, continues spell-checking, and ignores all future occurrences of the word. If you click "Add," the word is added to your personal dictionary.

Note To choose a dialect associated with the English dictionary, choose Preferences from the View menu, click on the General tab, and choose an option below "Spell Check Dialect."

\title{
Chapter 6 \\ Working with Graphics and Other Objects
}
\(\tau\) Overview
\(\tau\) Inserting Pictures
\(\tau\) Inserting Objects
\(\tau\) Inserting Graphics Computationally Linked to Your Worksheet

\section*{Overview}

To visually explain your Mathcad calculations, it is often useful to add graphs, pictures, or other objects. You can include the following in your Mathcad worksheet:
- 2D graphs, including X-Y and polar plots.
- 3D graphs, including surface plots, contour plots, three-dimensional scatter plots, and others.
- Pictures based on values in a matrix, copied and pasted from another application, or based on a bitmap file
- Objects created by another application (.AVI files, .DOC files, .MDI files, etc.)
- Graphics computationally linked to your calculations

For information on creating two-dimensional graphs, see Chapter 12, "2D Plots." Refer to Chapter 13, "3D Plots," for information on creating three-dimensional graphs.
The remaining sections in this chapter describe how to insert pictures and objects into a Mathcad worksheet and format them. The last section of this chapter introduces the process of inserting a graphic that is computationally linked to your calculations. For a more detailed discussion of computationally linked applications, see Chapter 16, "Advanced Computational Features."

\section*{Inserting Pictures}

This section describes techniques for creating and formatting pictures-static graphic images-in your Mathcad worksheet.

\section*{Creating a Picture}

You can create a picture in a Mathcad worksheet in the following ways:
- By using the picture operator and supplying either the name of a Mathcad matrix or the name of an external bitmap file, or
- By importing an image from another application via the Clipboard.

\section*{Creating a picture from a matrix}

You can view any matrix in Mathcad as a picture by using the picture operator:
1. Click in a blank space in your Mathcad worksheet.
2. Choose Picture from the Insert menu or click 0 違 on the Matrix toolbar.
3. Type the name of a matrix in the placeholder at the bottom of the operator.

Mathcad creates a 256 -shade grayscale representation of the data in the matrix, with each matrix element corresponding to a pixel in the picture.

Note Mathcad's picture operator assumes a 256 -color model with the value 0 represented as black and 255 as white. Numbers outside the range \(0-255\) are reduced modulo 256 , and any noninteger value is treated as if its decimal part has been removed.

Since the matrices used in picture rendering are usually quite large, this technique of creating a picture is most useful when you import graphics files into Mathcad as matrices as described in "File Access Functions" on page 188. For example, you can use the READBMP function to read an external graphics file into a matrix, and then use the picture operator to see the picture in Mathcad.

Tip To display an image in color, you must provide the picture operator with the names of three matrices of the same size containing the red, green, and blue color values of the image. Type the three names, separated by commas, in the placeholder of the picture operator. Otherwise, the image appears in grayscale.

\section*{Creating a picture by reference to a bitmap file}

Mathcad can create a picture directly from an external file in Windows bitmap (BMP) format. To do so, click in a blank space in your worksheet and then:
1. Choose Picture from the Insert menu, or click 80 insert the picture operator.
2. In the placeholder, type a string containing the name of a bitmap file in the current directory, or type a full path to a bitmap file. You create a string in the placeholder by first typing the double-quote (") key.

3. Click outside the picture operator. The bitmap appears in your worksheet.
Each time you open the worksheet or calculate the worksheet, the bitmap file is read into the picture operator.

Note If you modify the source bitmap file, you must recalculate your worksheet to see the modified image. If you move the source bitmap file, Mathcad can no longer display the picture.

\section*{Creating a picture by importing from the Clipboard}

You can copy an image from another application to the Clipboard and paste it into Mathcad in one of the formats put on the Clipboard at the time of copying. This section describes using the Paste Special command on the Edit menu to paste a graphic image into a Mathcad worksheet from the Clipboard in a noneditable format: as a metafile or bitmap. A metafile, which is strictly a Windows graphic format, can be resized in Mathcad without undue loss of resolution, whereas a bitmap is usually viewed best only at its original size. A device-independent bitmap, or DIB, is stored in a bitmap format that is portable to other operating systems.

Note If you use the Paste command on Mathcad's Edit menu to paste in an image from the Clipboard (or use drag-and-drop from another application), you typically paste a linked OLE object into your Mathcad worksheet, as discussed in "Inserting Objects" on page 71. When you doubleclick a linked OLE object, you activate the application that created the object and are able to edit the object in your Mathcad worksheet.

To paste a graphics image from another application into Mathcad, do the following:
1. Open the application and place the graphics image on the Clipboard, usually via a Copy command on the Edit menu. Many Windows applications have this feature.
2. Click the mouse wherever you want the image in your Mathcad worksheet.
3. Choose Paste Special from the Edit menu, and choose "Picture (metafile)" or "Device Independent Bitmap."
4. Click "OK." Mathcad creates a picture region and puts into it the image stored on the clipboard.

Note The format choices in the Paste Special dialog box will vary, depending on the application from which you originally copied a picture.

Mathcad stores the color depth-the number of colors in the image-at the time you paste it into a worksheet. This means that you can safely resave any worksheets that contain color images on systems that have different color displays, either fewer or more colors. The images continue to display at the proper color depth on the systems that created the worksheets.

Note When you import directly from the Clipboard, the picture information is stored as part of the Mathcad worksheet. This makes the file size larger. It also means that when you copy the worksheet, the picture information travels along with it.

Note To avoid making your Mathcad file too large, paste bitmaps that have been saved in as few colors as possible such as 16 or 256 colors.

\section*{Formatting a Picture}

This section describes your options for formatting a picture once you've created it.

\section*{Resizing a picture}

To resize a picture region, do the following:
1. Click the mouse inside the picture region to select it.
2. Move the mouse pointer to one of the handles along the edge of region. The pointer changes to a double-headed arrow.
3. Press and hold down the left mouse button. With the button still held, drag the mouse in the direction you want the picture region to be stretched.

Tip When you change the size of the picture region, the picture inside may be distorted. If you resize the picture by dragging diagonally on the handle in the lower right corner, you preserve the aspect ratio-the ratio of height to width-of the original picture. To restore a picture to its original size, click on the picture and choose Properties from the Format menu. On the display tab of the Properties dialog box, check "Display at Original Size."

\section*{Framing a picture}

Mathcad allows you to place a border all the way around a picture region. To do so:
1. Double-click the picture itself, or choose Properties from the Format menu. This brings up the Properties dialog box.
2. Click "Show Border."
3. Click "OK." Mathcad draws a border around the picture region.

\section*{Controlling color palettes}

If you are using a 256 -color display and have color bitmaps in your Mathcad worksheets, Mathcad by default uses a single 256 -color palette to display all the bitmaps in your worksheets. This is the same default color palette Mathcad uses for displaying the rest of the Mathcad screen, and is suitable for most pictures.
This default color palette, however, may not be the exact one that any color bitmaps in a worksheet were designed to use. To improve the appearance of bitmaps in your worksheet, you can tell Mathcad to optimize its default color palette so that it chooses the best possible 256 colors to display bitmaps in the worksheet. To do so:
1. Choose Color \(\Rightarrow\) Optimize Palette from the Format menu. Mathcad surveys the pictures in the worksheet and generates an optimal 256-color palette to use for all of them.
2. Make sure that Color \(\Rightarrow\) Use Default Palette in the Format menu is checked. Then Mathcad uses the new default palette it generates.

Note If your display driver supports more than 256 colors, the palette-setting options on the Format menu are grayed.

This section describes techniques for inserting and editing objects created by other applications in your Mathcad worksheets. OLE (Object Linking and Embedding) technology in Microsoft Windows makes it possible not only to insert static pictures of such objects into your applications (or of Mathcad objects into other applications), but to insert the objects in such a way that they can be fully edited in their originating applications.

An object can be either embedded in or linked to a Mathcad worksheet. An object that is linked must exist in an external saved file. An object that you embed may be created at the time of insertion. When you edit a linked object, any changes you make to the object also update the original file containing the object. When you edit an embedded object, any changes you make to the object affect it only in the context of the Mathcad worksheet. The original object in the source application, if there is one, is unchanged.

Tip For information about using specialized objects called components to import and export data, as well as establish dynamic connections between Mathcad and other applications, see Chapter 11, "Vectors, Matrices, and Data Arrays," and Chapter 16, "Advanced Computational Features."

\section*{Inserting an Object into a Worksheet}

You insert an object into Mathcad, which is an OLE 2-compatible application, by using the Object command from the Insert menu, by copying and pasting, or by dragging and dropping. The method you choose depends on whether you want to create the object on the fly, whether the object has already been created, or whether you want the object to be an entire file. You can edit objects in a Mathcad worksheet simply by doubleclicking them, causing in-place activation of the originating application in most cases.

Tip In general, you use the same methods to insert a Mathcad object into another application and edit it inside that application as you do to insert objects into a Mathcad worksheet. However, the details depend on the extent to which the application receiving a Mathcad object supports OLE 2. Once you've inserted a Mathcad object into a compatible application, you can edit it by double-clicking it. If the application supports in-place activation, as current releases of Microsoft Office applications do, the menus and toolbars will change to Mathcad's.

\section*{Insert Object command}

When you use the Object command from the Insert menu, you can insert an object that you create at the time you are inserting it, or you can insert an entire file you've already created.

To insert an object or a saved file:
1. First click in your worksheet where you want to insert the object. Make sure you see the crosshair.
2. Choose Object from the Insert menu to bring up the Insert Object dialog box. By default "Create New" is selected:
3. Check "Display As Icon" if you want an icon, rather than the actual object, to appear in your worksheet. The icon is typically the icon of the application that
 created the object.

To create a new object:
1. Select an application from the "Object Type" list. The available object types depend on the applications you have installed on your system.
2. Click "OK."

The source application opens so that you can create the object. When you are finished working to create the object, exit the source application. The object you created is then embedded in your Mathcad worksheet.
If you want to insert a previously created file:
1. Click "Create from File" in the Insert Object dialog box. The dialog box then changes appearance.
2. Type the path to the object file or click "Browse" to locate it.
3. Check "Link" to insert a
 linked object. Otherwise, the object is embedded.
4. Click "OK."

\section*{Pasting an object into a worksheet}

You can copy an object from a source application to the Clipboard and paste it directly into Mathcad. This method is particularly useful when you've already created the object in another application and you don't want to insert an entire file.
To insert an embedded or linked object into a worksheet via the Clipboard:
1. Open the source application containing the object.
2. Copy the object from the source application to the Clipboard. You typically do this by choosing Copy from the Edit menu or by pressing [Ctrl]C.
3. Click in the Mathcad worksheet where you'd like to place the object.

\section*{4. Choose Paste or Paste Special from Mathcad's Edit menu.}

If you choose Paste, the object is pasted in your Mathcad worksheet in a format that depends on what the source application has placed on the Clipboard. The behavior differs depending on whether you have selected a math placeholder or are pasting into a blank space in the worksheet. Mathcad creates one of the following:
- A matrix, if you are pasting numeric data from the clipboard into an empty math placeholder.
- A text region, if you are pasting text that does not contain numeric data exclusively.
- A bitmap or picture (metafile), if the originating application generates graphics.
- An embedded object, if the originating application supports OLE.

If you choose Paste Special, you have the option of pasting the object in one of the available formats placed on the Clipboard. Typically you can choose to paste the object as an embedded or linked OLE object (if the object was stored in a saved file in an OLEcompatible source application), a picture (metafile), or a bitmap. See "Creating a picture by importing from the Clipboard" on page 69 for more information on pasting metafiles and bitmaps.

\section*{Dragging and dropping an object into a worksheet}

A third way to insert an OLE object into a Mathcad worksheet is to drag it from the source application and drop it into the worksheet. This is very similar to copying and pasting, but does not allow you to create a link to an object. To do so, open both Mathcad and the source application and arrange the two windows side by side on the screen. Then select the object in the source application and drag it with the mouse into your Mathcad worksheet. The object appears when you release the mouse button.

\section*{Editing an Object}

To edit an embedded object in a Mathcad worksheet, double-click the object. Mathcad's menus and toolbars change to those of the source application, and a hatched border surrounds the object so that you can edit it. This OLE editing mechanism is called inplace activation. For example, you can use in-place activation to edit objects created by Microsoft Office applications such as Excel and Word inside Mathcad.

If the source application does not support in-place activation inside Mathcad or the object is linked, the behavior is different. In the case of an embedded object, a copy of the object is placed into a window from the other application. If the object is linked, the source application opens the file containing the object.

\section*{Editing a Link}

If you've inserted a linked object into a Mathcad worksheet, you can update the link, eliminate it, or change the source file to which the object is linked. To do so, choose Links from the Edit menu.

Choose the link you Links
? \(x^{x}\) want to edit from the list of links. Then make changes using the available options.

On-line Help
See the on-line Help topic "Links dialog box" for information on each option in the dialog box.

\section*{Inserting Graphics Computationally Linked to Your Worksheet}

If you want to insert a drawing or other kind of graphic that is computationally linked to your Mathcad worksheet, you can insert a component. A component is a specialized OLE object. Unlike other kinds of OLE objects you can insert into a worksheet, as described in "Inserting Objects" on page 71, a component can receive data from Mathcad, return data to Mathcad, or both, linking the object dynamically to your Mathcad computations.

The SmartSketch component, for example, allows you to insert SmartSketch drawings whose dimensions are computationally linked to your Mathcad calculations.

Figure 6-1: The SmartSketch component inserted into a Mathcad worksheet.
An example using the SmartSketch component is shown in Figure 6-1. In addition to the SmartSketch component, Mathcad includes several components for exchanging data with applications such as Excel, Axum, and MATLAB. For more information on these and other components, refer to Chapter 16, "Advanced Computational Features."

\section*{Chapter 7 Worksheet Management}

\author{
\(\tau\) Worksheets and Templates \\ \(\tau\) Rearranging Your Worksheet \\ \(\tau\) Layout \\ \(\tau\) Safeguarding an Area of the Worksheet \\ \(\tau\) Hyperlinks \\ \(\tau\) Creating an Electronic Book \\ \(\tau \quad\) Printing and Mailing
}

\section*{Worksheets and Templates}

As you use Mathcad and save your work for later use, you typically create a worksheet that contains unique text, math, and graphic regions. Mathcad uses .MCD as the default file extension for worksheets.

When you create a new worksheet in Mathcad, you can start with Mathcad's default choices for formats and layout, or you can use a template that contains customized information for laying out and formatting the worksheet. When you create a worksheet based on a template, all of the formatting information and any text, math, and graphic regions from the template are copied to the new worksheet. The new worksheet therefore inherits the appearance and formatting instructions of the template, allowing you to maintain consistency in the appearance of multiple worksheets.

Mathcad comes with a variety of predefined templates for you to use as you create new Mathcad worksheets. You extend the collection of templates by saving any of your Mathcad worksheets as a template. Mathcad uses .MCT as the default file extension for templates.

Other saving options are available in Mathcad. You can save a worksheet in rich-text format (RTF), so that it can be opened by most word processors, or in Hypertext Markup Language (HTML), so that the file can be viewed through a Web browser. You can also save a worksheet in a format that can be read by earlier versions of Mathcad.

\section*{Creating a New Worksheet}

When you first open Mathcad or click \(\square\) on the Standard toolbar, you see an empty worksheet based on the blank worksheet template (normal.mct). You can enter and format equations, graphs, text, and graphics in this space, as well as modifying worksheet attributes such as the page margins, numerical format, headers and footers, and text and math styles. The blank worksheet is only one of the templates Mathcad provides. Other built-in templates are specific to types of worksheets you might be
creating. For example, there is a template for Electronic Books, one for engineering reports, and one for specification sheets.

To create a new worksheet based on a template:
1. Choose New from the File menu. Mathcad displays a list of available worksheet templates. The exact templates available differ depending on the templates you have developed.
2. Choose a template other than "Blank Worksheet." By default Mathcad displays worksheet templates saved in the TEMPLATE folder of the directory you used
 to install Mathcad. Click "Browse" to find a template in another directory or on another drive.
3. Click "OK."

\section*{Saving Your Worksheet}

When you want to save the worksheet, choose either Save or Save As from the File menu and enter a file name with the extension .MCD. After the first time you save the worksheet, simply choose Save from the File menu or click
 on the Standard toolbar to update the saved copy of the worksheet.

Tip To work on a worksheet you saved before, choose Open from the File menu or click
 on the Standard toolbar. Mathcad prompts you for a name by displaying the Open dialog box. You can locate and open a Mathcad worksheet from other directories or drives just as you would in any other Windows application. At the bottom of the File menu, Mathcad maintains a list of the most recently used worksheets, which you can choose directly, if you wish.

\section*{Saving your worksheet in RTF format}

To save a worksheet so you can open it in a word processor capable of reading an RTF file with embedded graphics:
1. Scroll to the bottom of your worksheet to update all calculated results.
2. Choose Save As from the File menu.
3. In the Save As dialog box, choose "Rich Text Format File" from the "Save as type" drop-down list.
4. Enter a file name and then click "Save."

When you open an RTF file with a word processor such as Microsoft Word, you'll find all the Mathcad regions lined up one above the other at the left edge of the document. You may have to move regions in the word processors to make them look like your original Mathcad worksheet. Once the Mathcad regions have been loaded into a word processor, you will be able to edit the text. However, you'll no longer be able to edit math regions and graphs, which have become embedded graphics. To embed Mathcad worksheets or regions in a word processing document in a form that allows
you to continue to edit the original Mathcad worksheets, see "Inserting Objects" on page 71.

Tip Mathcad's text supports Microsoft's "Rich Text Format" (RTF) specification. This means you can easily export text from Mathcad text regions to most word processing programs via the Clipboard. Simply select text in a Mathcad text regions, copy the text to the Clipboard by choosing Copy from the Edit menu or clicking 朢 on the Standard toolbar, and choose Paste from the Edit menu in your word processing application.

\section*{Saving your worksheet in HTML format}

To save a worksheet so that a Web browser can open it:
1. Scroll to the bottom of your worksheet to update all calculated results.
2. Choose Save As from the File menu.
3. In the Save As dialog box, choose "HTML File" from the "Save as type" drop-down list.
4. Enter a file name and then click "Save."

Note When you save a worksheet as HTML, regions other than text regions are saved as individual JPEG files. If your worksheet contains many regions other than text, save the worksheet in a new folder so that all the files will be accessed in a single location.

\section*{Saving your worksheet in an earlier format}

In general, worksheets created in an earlier version of Mathcad open in the current version, but files created in the current version of Mathcad do not open in earlier versions. Mathcad 2000, however, allows you to save a worksheet as a Mathcad 8, 7, or 6 worksheet.

Note Features in your worksheet available only in Mathcad 2000 will not be recognized in earlier versions of Mathcad. Regions or features that won't work in an earlier version are rendered as bitmaps.

To save a worksheet in a form that can be read by an earlier version of Mathcad:
1. Choose Save or Save As from the File menu.
2. In the "Save as type" drop-down list, select "Mathcad 8 Worksheet," "Mathcad 7 Worksheet," or "Mathcad 6 Worksheet" and provide a file name.
3. Click "Save." A message appears warning you that certain features available only in Mathcad 2000 will not work in earlier versions.

\section*{Creating a New Template}

You can extend the collection of templates by creating your own. A template you create can have equations, text, and graphics in places you determine, as well as customized information in the headers and footers (see "Layout" on page 83). The template also specifies:
- Definitions of all math styles (Chapter 4).
- Definitions of all text styles (Chapter 5).
- Margins for printing (see "Layout" on page 83).
- Numerical result formats and values for Mathcad's built-in variables (Chapter 8).
- Names of Mathcad's basic units and the default unit system (Chapter 8).
- The default calculation mode (Chapter 8).
- Ruler visibility and measurement system (see "Aligning Regions" on page 79).

To create a new template, first create a new worksheet having the options listed above set the way you want. The worksheet can also contain any equations, text, and graphics that you want in the template. The next step is to save this worksheet as a template. To do so:
1. Choose Save As from the File menu.
2. Double-click the TEMPLATE folder in the Save As dialog.
3. In the "Save as type" drop-down list, select "Mathcad Templates (*.mct)."
4. Type a name for the template in the "File name" box.
5. Click "Save."

Your template is now added to the list of templates available in the dialog box that appears when you choose New from the File menu. To make a new worksheet based on a template you've created, simply choose New from the File menu and select your template from the list. If you did not save your template to the TEMPLATE folder, you need to browse to find the template.

\section*{Modifying a Template}

To modify an existing worksheet template:
1. Choose Open from the File menu or click on the Standard toolbar.
2. In the "Files of type" drop-down list, select "All Files."
3. Type the name of the template in the "File name" box, or browse to locate it in the dialog box. Worksheet templates are saved by default in the TEMPLATE folder.
4. Click "Open." The template opens in the Mathcad window.

You may now edit the template as you would modify any Mathcad worksheet. To save your changes under the current template name, choose Save from the File menu or click

on the Standard toolbar. If you want to give a new name to the modified template, choose Save As from the File menu and enter a new name for the template.

Tip To modify the default template for a blank worksheet, modify the template file NORMAL.MCT.
Note When you modify a template, your changes affect only new files created from the modified template. The changes do not affect any worksheets created with the template before the template was modified.

This section describes how to rearrange math，graphics，and text in your worksheets． See the section＂Regions＂on page 10 for the basics on selecting，copying，moving，and deleting regions．

Note You can get an overall view of how your worksheet looks by choosing Zoom from the View menu or clicking on the Standard toolbar and choosing a magnification．Choose a magnification less than \(100 \%\) to zoom out of the worksheet，or use a magnification greater than \(100 \%\) to zoom in．Alternatively，use the Print Preview command as described under＂Print Preview＂on page 94.

\section*{Aligning Regions}

Once you＇ve inserted regions into your worksheet，you can align them vertically or horizontally using menu commands or you can align them using the worksheet ruler．

\section*{Using commands}

To align regions horizontally or vertically using commands：
1．Select regions as described on page 10.
2．Choose Align Regions \(\Rightarrow\) Across（to align horizontally）or Align Regions \(\Rightarrow\) Down （to align vertically）from the Format menu．Or choose these commands by clicking and 品 on the Standard toolbar．

When you choose Align Regions \(\Rightarrow\) Down from the pull－right menu or click 吕 on the Standard toolbar，Mathcad does the following：
－Mathcad draws an invisible vertical line halfway between the right edge of the right－ most selected region and the left edge of the left－most selected region．
－All selected regions to the right of this line are moved left until their left edges are aligned with this line．
－All selected regions to the left of this line are moved right until their left edges are aligned with this line．

Choosing Align Regions \(\Rightarrow\) Across or clicking
吅 much the same way．Mathcad draws an invisible horizontal line halfway between the top edge of the uppermost region and the bottom edge of the lowest region．Selected regions below and above this line are moved up and down respectively until the midpoints of their left edges are on this line．

Note Aligning regions may inadvertently cause regions to overlap．Mathcad warns you when this will occur，but you can separate overlapping regions as described in＂Separating Regions＂below．

\section*{Using the worksheet ruler}

When you choose Ruler from the View menu while the cursor is in a blank spot or in a math region，you see the worksheet ruler at the top of the window．You can use
alignment guidelines on the ruler to align regions at particular measurements along the worksheet.

To set an alignment guideline on the ruler:
1. Click on the ruler wherever you want the alignment guideline to appear. A tab stop symbol appears on the ruler.
2. Click on the tab stop symbol with the right mouse button and choose Show Guideline from the pop-up menu. A check appears next to the command.

The alignment guideline appears as a green vertical line. Select and move regions to the guideline. Figure 7-1 shows how you can use an alignment guideline to align math regions.

Figure 7-1: Using an alignment guideline to align regions vertically.

Note The tab stops you insert on the ruler specify where the cursor should move when you press the [TAB] key. To remove a tab stop, click on its symbol, hold the mouse button down, and drag the cursor away from the ruler.

To remove an alignment guideline, click on the ruler with the right mouse button where the guideline is located and choose Show Guideline from the menu to uncheck it.

Tip You can change the measurement system used in the ruler by clicking on the ruler with the right mouse button, and choosing Inches, Centimeters, Points, or Picas from the pop-up menu. To change the ruler measurement for all documents, make this change to normal.mct.

\section*{Inserting or Deleting Blank Lines}

You can easily insert one or more blank lines into your worksheet:
1. Click on the blank line below which you want to insert one or more blank lines. Make sure the cursor looks like a crosshair.
2. Press [Enter] to insert a blank line and move the cursor to the left margin. Do this as many times as you want to insert lines.

To delete one or more blank lines from your worksheet:
1. Click above the blank lines you want to delete. Make sure the cursor looks like a crosshair and that there are no regions to the right or left of the cursor.
2. Press [Delete] as many times as there are lines you want to delete. Mathcad deletes blank lines below your cursor. Alternatively, press [BkSp] as many times as there are lines you want to delete. Mathcad deletes blank lines above your cursor.

If you press either [Delete] or [BkSp] and nothing seems to be happening, check to make sure that the cursor is on a line all by itself. If any region in your worksheet extends into the line you are trying to delete, Mathcad won't be able to delete that line.

Tip To quickly insert or delete a specific number of lines from your worksheet, click in a blank part of the worksheet with the right mouse button, choose Insert Lines or Delete Lines from the popup menu, and enter the number of lines in the dialog box.

\section*{Separating Regions}

As you move and edit the regions in a Mathcad worksheet, they may end up overlapping one another. Overlapping regions don't interfere with each other's calculations, but they may make your worksheet hard to read.

A good way to determine whether regions overlap is to choose Regions from the View menu. As shown at right, Mathcad displays blank space in gray and leaves the regions in your default background color. To turn the blank space back into the default background color, choose Regions from the View menu again.

To separate all overlapping regions, choose
Separate Regions from the Format menu. Wherever regions overlap, this command moves the regions in such a way as to avoid overlaps while preserving the order of the calculations, as shown at right.

Calculate results:

....kinematic viscosity
Use the Moody method to compute a good first approximation to the Reynolds number

\(\operatorname{Re}:=1.43 \cdot \beta^{0.416}\)

Note Be careful with the Separate Regions menu command since not only can it have far-reaching effects, it also cannot be undone. Regions are moved around and the order of calculation can change. As an alternative, you can drag regions individually, add lines by pressing [Enter], or cut and paste the regions so they don't overlap.

\section*{Highlighting Regions}

Mathcad allows you to highlight regions so that they stand out from the rest of the equations and text in your worksheet:

To apply a background highlight color to a region:
1. Click in the region you want to highlight.
2. Choose Properties from the Format menu.
3. Click the Display tab.
4. Check "Highlight Region." Click "Choose Color" to choose a highlight color other than the default choice.
5. Click "OK."

Mathcad fills a box around the equation with either the default background highlight color or the color you chose. This is a purely cosmetic change with no effect on the equation other than making it more conspicuous.

Note The appearance of a highlighted region on printing depends very much on the capabilities of your printer and the choice of highlight color. Some black and white printers render a color as black, obscuring the equation in the process. Others render just the right gray to highlight the equation without obscuring it.

To change the default background color of highlighted regions, do the following:
1. Choose Color from the Format menu.
2. Pull right and choose Highlight to bring up a dialog box containing a palette of colors. Click the appropriate color.
3. Click "OK."

\section*{Changing the worksheet background color}

Mathcad allows you to change the color of the background of your worksheet. To do so:
1. Choose Color from the Format menu.
2. Pull right and choose Background to bring up a dialog box containing a palette of colors. Click the appropriate color.
3. Click "OK."

Before printing a worksheet, you may need to adjust the margins, paper options, page breaks, and headers and footers so that pages of the worksheet are printed appropriately.

\section*{Setting Margins, Paper Size, Source, and Orientation}

Mathcad worksheets have userspecifiable margins at the left, right, top, and bottom of the worksheet. To set these margins, choose Page Setup from the File menu.

Use the four text boxes in the lower right of the Page Setup to specify the distances from the margin to the corresponding edge of the actual sheet of paper on which you are printing.
You can also use settings in the Page Setup dialog box to change the size, source, or orientation of the paper on which you print your worksheet. See "Printing and Mailing" on page 93 for more about printing your Mathcad worksheets.

Tip If you want the margin and other page setup settings in the current worksheet to be used in other worksheets, save the worksheet as a template as described in "Creating a New Template" on page 77.

\section*{Page Breaks}

Mathcad provides two kinds of page breaks:
- Soft page breaks: Mathcad uses your default printer settings and your top and bottom margins to insert these page breaks automatically. These show up as dotted horizontal lines, and you see them as you scroll down in your worksheet. You cannot add or remove soft page breaks.
- Hard page breaks: You can insert a hard page break by placing the cursor at the appropriate place in your worksheet and choosing Page Break from the Insert menu. Hard pagebreaks display as solid horizontal lines in your worksheets.
When Mathcad prints your worksheet, it begins printing on a new page whenever it encounters either a soft or a hard page break.

To delete a hard page break:
1. Drag-select the hard page break as you would select any other region in your Mathcad worksheet. A dashed selection box appears around the page break.
2. Choose Delete from the Edit menu.

Tip Because Mathcad is a WYSIWYG environment, any region that overlaps a soft or hard page break prints by default in pieces on successive pages. To separate a region from a hard page break, choose Separate Regions from the Format menu. However, this command does not separate regions from any overlapping soft page breaks. Choose Repaginate Now from the Format menu to force Mathcad to insert a soft page break above any region that otherwise would print in pieces on successive pages.

\section*{Headers and Footers}

To add a header or a footer to every printed page, to create a different header or footer for the first page of a worksheet, or to modify an existing header or footer, choose Headers/Footers from the Format menu. The Header/Footer dialog box appears:

To add or edit a header or footer:
1. Click the Header or Footer tab to modify the header or footer for the worksheet. To create a different header or footer for the first page of your worksheet, check the "Different header and footer on first page" option and click the Header-Page 1 or Footer-Page 1 tab.
2. Type the header or footer information into one or more of the text boxes. Whatever you type into the Left, Center, and Right text boxes will appear in these positions on the page. Click "Format" in the Tools group to change the header or footer font, font style, size, or alignment. Click "Use full width for each section" if you want text in any of the boxes to extend beyond the width of the text box.
3. Click one or more of the buttons in the Tools group to insert items such as the file name, page number, current date, or time automatically wherever the insertion point is. To insert an image, click "Image" in the Tools group and browse to locate a bitmap (.BMP format) file.

Tip Mathcad by default begins numbering at page 1. You can set a different starting page number in the Options group in the Header/Footer dialog box.

The ease with which you can alter a Mathcad worksheet can present a problem. It is all too easy to alter a worksheet and to change things which are not meant to be changed. For example, if you've developed and thoroughly tested a set of equations, you may want to prevent readers of your worksheet from tampering with them. To avoid unintended edits to your worksheet, you can safeguard an area of your worksheet by locking it such that you can still edit it even though nobody else can.

Pro You can use Mathcad Professional to lock an area of your worksheet. To do so:
1. You create an area in your worksheet to contain the regions to be protected.
2. You place the regions that you want to safeguard into that area.
3. You lock the area. Optionally you can password protect and collapse the area.

Once a region is safely inside a locked area, nobody can edit it. Any math regions inside a locked area continue, however, to affect other equations in the document. For example, if you define a function inside a locked area, you can still use that function anywhere below and to the right of its definition. You cannot, however, change the function's definition itself unless you unlock the area first.

\section*{Inserting an Area}

To insert a lockable area into your worksheet:
1. Choose Area from the Insert menu.

Mathcad inserts a pair of lines into the worksheet. These mark the boundaries of the lockable area.

2. Select either of these boundary lines just as you'd select any region: by dragging the mouse across the line or by clicking the line itself.
3. Once you've selected the boundary line, drag it just as you'd drag any other region to move it.

You should position the boundaries so that there's enough space between them for whatever regions you want to lock. You can have any number of lockable areas in your worksheet. The only restriction is that you cannot have one lockable area inside another.

Tip To name an area in your worksheet, click on an area boundary, choose Properties from the Format menu, and enter a name on the Area tab. The Area tab also lets you modify other display attributes of an area, such as whether a border or icon appears.

\section*{Locking and Collapsing an Area}

Once you've placed whatever regions you want inside an area, you can lock the area. You can choose to lock an area with a password to prevent unauthorized editing of the regions in it. You can also collapse the area, either with or without locking it, so that the regions are hidden from view.

To lock an area:
1. Click in the area.
2. Choose Area \(\Rightarrow\) Lock from the Format menu.
3. In the Lock Area dialog box, enter a password if you want to lock the area with a password. Type any combination of
 letters, numbers, and other characters. You must re-enter the password to confirm it.
4. Check "Collapse when locked" to hide the locked regions from view. Check "Show lock timestamp" to display the date and time the area was last locked above and below the boundary lines.
5. Click "OK."

The area is now locked and by default shows padlocks on the boundaries and a timestamp.
(\({ }^{\text {Mon Apr } 27 \text { 14:40:43 1998 }}\)

BMon Apr 27 14:40:43 1998
Note If you choose to password protect an area, make sure you remember your password. If you forget it, you will find yourself permanently locked out of that area. Keep in mind also that the password is case sensitive.

To collapse an area without locking it first:
1. Click in the area.
2. Choose Area \(\Rightarrow\) Collapse from the Format menu.

A collapsed area appears by default as a single line in your worksheet.

\section*{Unlocking and Expanding an Area}

If you want to make changes to a region inside a locked area, you have to unlock it. If the area is collapsed, you must also expand it.
To unlock a locked area:
1. Click in the area you want to unlock.
2. Choose Area \(\Rightarrow\) Unlock from the Format menu.
3. If a password is required, you are prompted for the password.

To expand a collapsed area:
1. Click on the boundary line.
2. Choose Area \(\Rightarrow\) Expand from the Format menu.

Once an area is unlocked and expanded, you can make whatever changes you want to just as freely as you would elsewhere in your worksheet.

Tip When you lock an area without a password, anyone can unlock it by simply choosing Area \(\Rightarrow\) Unlock from the Format menu.

\section*{Deleting an Area}

You can delete a lockable area just as you would any other region. To do so:
1. Make sure the area is unlocked. You cannot delete a locked area.
2. Select either of the two lines indicating the extent of the locked area by dragging the mouse across it.
3. Choose Cut from the Edit menu or click \(\begin{aligned} & y \\ & d\end{aligned}\) on the Standard toolbar.

\section*{Hyperlinks}

Mathcad allows you to create hyperlinks -that is, to create "hotspots" in your Mathcad worksheets that, when double-clicked, open Mathcad worksheets or other files.

\section*{Creating Hyperlinks Between Worksheets}

You can create a hyperlink from any Mathcad region, such as a text region or a graphic element, to any Mathcad worksheet. When you double-click the hyperlink, Mathcad opens the Mathcad worksheet designated by the hyperlink. In this way you can connect groups of related worksheets in a form similar to Mathcad's Electronic Books, or simply cross-reference a related Mathcad worksheet from within the current worksheet.

You have two options for the appearance of the linked worksheet when you doubleclick the hyperlink:
- The hyperlinked worksheet can open in a full-sized Mathcad worksheet window that overlays the current worksheet window and allows you to edit its contents.
- The hyperlinked worksheet can open in a small pop-up window that displays the contents of the worksheet, but does not allow you to edit its contents. This type of hyperlink is called a Popup.
Mathcad can follow a hyperlink to any worksheet, whether it is stored on a local drive, a network file system, or the World Wide Web.

To create a hyperlink, first specify the hyperlink by:
1. Selecting a piece of text, or
2. Clicking anywhere in an equation or graphics region, or
3. Placing the insertion point anywhere within an entire text region.

Tip In general, either selected text or an embedded graphic works best as a hyperlink to another worksheet.

The next step is to specify the target. To do so:
1. Choose Hyperlink from the Insert menu. Mathcad opens the Insert Hyperlink dialog box.
2. Click "Browse" to locate and select the target worksheet. Alternatively, enter
 the complete path to a worksheet in the empty text box at the top of the dialog box, or enter an Internet address (URL) to create a hyperlink to a file on the World Wide Web.
3. Click "Use relative path for hyperlink" to store the location of the target worksheet relative to the Mathcad worksheet containing the hyperlink. This allows the hyperlink to be valid even if you move the target file and the worksheet containing the hyperlink, but keep the relative directory structure between the two the same.

Note In order for "Use relative path for hyperlink" to be available, you must first save the worksheet in which you are inserting the hyperlink.
4. Check "Display as pop-up document" if you want the target worksheet to open in a small pop-up window.
5. If you want a message to appear on the status line at the bottom of the window when the mouse hovers over the hyperlink, type the message in the text box at the bottom of the dialog box.
6. Click "OK."

When you double-click a hyperlink, Mathcad opens the target worksheet in the kind of window (either pop-up or full) you specified. Close a pop-up window by clicking on the close box in the upper right corner.
To change any aspects of a hyperlink-for example, if you move the target worksheet and still want the hyperlink to work-click the hyperlink and choose Hyperlink from the Insert menu. Make any changes you wish in the Edit Hyperlink dialog box.

To remove a hyperlink, click the hyperlink and choose Hyperlink from the Insert menu. Click "Remove Link" in the dialog box. Mathcad removes all traces of the link.

Note If you launch a hyperlink from selected text, Mathcad underlines the text and makes it bold to indicate the existence of a hyperlink. Mathcad changes the mouse pointer to a "hand" cursor when you hover over any hyperlink, and any message you specified appears on the status line at the bottom of the window when the cursor is over the hyperlink.

\section*{Creating Hyperlinks to Other Files}

The methods described in the previous section can create a hyperlink not only from one Mathcad worksheet to another, but also from a Mathcad worksheet to any other file type, either on a local or network file system or on the World Wide Web. Use this
feature to create Electronic Books, as described in "Creating an Electronic Book," or compound documents that contain not only Mathcad worksheets but word processing files, animation files-any file type that you want.

Note When you double-click a hyperlink to a file other than a Mathcad worksheet, you launch either the application that created the file or an application associated with a file of that type in the Windows Registry. You cannot display such hyperlinked files within a pop-up window.

\section*{Creating an Electronic Book}

As described in Chapter 3, "On-Line Resources," an Electronic Book is a hyperlinked collection of Mathcad worksheets. When you open an Electronic Book in Mathcad, it opens in its own window. The Electronic Book has a table of contents and an index as well as other browsing features which you can access using the buttons on the toolbar in the window. The worksheets in an Electronic Book are live so a reader can experiment directly within the book.

If you have several Mathcad worksheets which you want to collect together and you have Mathcad Professional, you can create your own Electronic Book. The steps to creating an Electronic Book are easy; they include:
1. Creating individual Mathcad files
2. Preparing a Table of Contents
3. Adding hyperlinks between appropriate files
4. Creating an .HBK file to specify the order of the files in the book
5. Developing an index

Each step is explained in more detail below. The process of creating a sample Electronic Book called "Explorations in Algebra" is described. After you've created an Electronic Book, you or others can open it in Mathcad and navigate through it using the toolbar buttons on the Electronic Book window.

\section*{Step 1: Creating Mathcad files}

Create as many Mathcad worksheets as you would like to include in your book. Put all the worksheets into a special folder designated for your Electronic Book.

Tip If you want to include data from a data file in a worksheet, you should insert an input table and import the data into it. This will ensure your book is readable even if it is on a CD or on a Web site. Refer to "Importing Once from a Data File" on page 196 for information on importing data to an input table.

For example, for the Electronic Book titled "Explorations in Algebra," you have created three Mathcad worksheets called FRACTIONS.MCD, PRIMES.MCD, and SQUARE.MCD. Store these files in a folder called ALGEBRA.

To create a consistent look to your worksheets, you can create and use templates and text styles. Refer to "Worksheets and Templates" on page 75 and "Text Styles" on page 61 for more information.

Steps 2 and 3: Preparing a Table of Contents and adding hyperlinks
Prepare a file called CONTENTS.MCD containing a list of the topics that describe the worksheets in your Electronic Book. Then insert hyperlinks from the list of topics to the worksheets. Follow the steps on page 87 for inserting hyperlinks.
For example, the "Explorations in Algebra" book, CONTENTS.MCD could contain the following text:
\begin{tabular}{|c|}
\hline Harcat Ex \({ }^{\text {a }}\), Explorations in Algebra \\
\hline Continued Fractions \\
\hline Searching for Prime Numbers \\
\hline Journey Around the Square \\
\hline
\end{tabular}

You would create hyperlinks from "Continue Fractions," "Searching for Prime Numbers," and from "Journey Around the Square" to the files FRACTIONS.MCD, PRIMES.MCD, and SQUARE.MCD, respectively.
The table of contents allows readers to browse to the sections as they prefer.

\section*{Step 4: Creating an HBK file}

An HBK file for a Mathcad Electronic Book serves the same function as a traditional book binding: it specifies the order for the individual files in the book as the reader browses through it. To create an HBK file:
1. Use any text editor or word processing application.
2. Enter the following four required keywords at the beginning of the HBK file: .version 2000
.title
SPLASH
TOC
Note that SPLASH and TOC must be capitalized. In the second column of these lines, follow .title with the title of the book; follow SPLASH and TOC with the names of .MCD files. See Figure 7-2. Use tabs to separate the columns.
3. Enter a line for each file in the book with three columns. Use tabs to separate columns. In the first column, type the logical name of the file (the filename without the extension). In the second column, type the filename. In the third column, type a colon (:), a space, and the title of the file that should appear in the title bar of the book window. See Figure 7-2.
4. Save the file as a text-only file with an HBK extension and a name that is the same as the name of your folder containing the Mathcad worksheets that are included in the book. For example, if the folder called ALGEBRA contains all the worksheets for the Electronic Book "Explorations in Algebra," save the HBK file as ALGEBRA.HBK.
5. Look for a subfolder called HANDBOOK located under the Mathcad Professional folder. If you do not have a subfolder called HANDBOOK, create one.
6. Place the HBK file and the folder containing your worksheets in the HANDBOOK folder. For example, place ALBEGRA.HBK and the ALGEBRA folder in the HANDBOOK folder.

Tip You can create an HBK file using any text editor or word processing application. Just be sure to save the HBK file as text-only.

Figure 7-2: Sample HBK file.
Tips for creating an HBK file:
- Limit the worksheet filenames to eight characters to avoid problems some networks may have reading long filenames.
- If the titles of your files are very long, abbreviate the title so it is not cut off when it appears at the top of the window. Think of this as the running head or header that appears at the top of book page.
- You may not include any blank lines in the HBK file.
- Files to which hyperlinks popup rather than jump and files linked to from subdirectories do not have to be listed in the HBK file.
- Any lines beginning with a semicolon is ignored.
- If you include a space and the keyword "skip" following the name of a file in the second column of the HBK file, a reader of the book will not be able to browse to that file. This is helpful if you want people to link to a file but not browse to it.

\section*{Step 5 (optional): Developing a searchable index}

You can create a searchable phrase index for your Electronic Book much as the author of a printed book creates an index. To see an example of a searchable index, choose
Resource Center from the Help menu and click on the button.

Note To create an index, use a DOS utility called NEWDICT.EXE located in your Mathcad directory. You should only create a searchable index if you are comfortable working in DOS.

To create a searchable index:
1. Create a text file with any name you wish and the extension .TXT.
2. Type entries into the text file. For example, for the "Explorations in Algebra" book type entries such as those shown in Figure 7-3. Each line consists of an index entry, a region number enclosed in \(\mid\) characters, and a filename.

Figure 7-3: Sample index file.
To find the region number in a Mathcad file, open the file in Mathcad, click inside the region, and press [Ctrl] [Shift] L. You will see a message on the status bar at the bottom of the Mathcad window that says, for example, "Region Label is 3, Region Count is 2 ." The region number, 2 in this example, is the Region Count number.

Tip If you are using unusual terms for a concept, you may want to include standard terms that readers might be looking for. The more entries you add to the index, the more helpful it will be for your users. It is also a good idea to list terms in multiple ways. For example, the topic "Prime Numbers" might be indexed under "numbers, prime" and "prime numbers."
3. Before processing the index file, you need to sort it alphabetically. You can do this manually or use the sort routine from a number a variety of other applications such as Microsoft Word.
4. Place the following files in the HANDBOOK folder:
- NEWDICT.EXE (index utility located in the main Mathcad folder)
- the TXT file
- the HBK file
5. In MSDOS or Command Prompt mode, change to the \(\backslash H A N D B O O K\) folder and type:
newdict index.txt book.hbk.
If there is an error in the index file, NEWDICT.EXE stops its execution and issues a line number on which the error occurs. If an error occurs, check and fix errors in the TXT or HBK file and run NEWDICT.EXE until it executes completely without issuing an error.

Note Errors will occur if there are any blank lines in either the index or the HBK file. Many errors also occur because of discrepancies between filenames in the index file and the HBK file or because filenames are missing.
6. This process will create two files, OUT.DCT and OUT.RFS. Rename them to correspond to the name of the HBK file and folder for your Electronic Book. For example, if you have a folder called ALGEBRA and an HBK file called ALGEBRA.HBK, rename the files to ALGEBRA.DCT and ALGEBRA.RFS.
7. Place the DCT and RFS files inside your Electronic Book folder. For example, put them in the ALGEBRA folder.

Note If you make any changes to the files in the Electronic Book that affect the position or number of regions or if you make any changes to the HBK file, you must re-create the index.

Additional information about creating Electronic Books is available in the Resource Center and on the MathSoft FTP site at ftp://ftp.mathsoft.com/pub/ author.

\section*{Opening your Electronic Book}

To open your Electronic Book:
1. Start Mathcad and choose Open Book from the Help menu.
2. Browse to the location of your .HBK file and click on it.
3. Click "Open."

Your book opens in the Electronic Book window. Use the buttons on the toolbar at the top of the window to navigate. For example, click 盛 to go to the Table of Contents or click \(\$ 4\) to open the searchable index. For more information on Electronic Books and the navigation tools, refer to Chapter 3, "On-Line Resources."

\section*{Printing and Mailing}

To print a Mathcad worksheet, choose Print from the File menu. The Print dialog box lets you control whether to print the entire worksheet, selected pages, or selected regions; what printer to print on; and the number of copies to print. The particular dialog box you see depends on the printer you've selected. A typical dialog box is shown at right.

\section*{Printing Wide Worksheets}

Mathcad worksheets can be wider than a sheet of paper, since you can scroll as far to the right as you like in a Mathcad worksheet and place equations, text, and graphics wherever you like. As you scroll horizontally, however, you see dashed vertical lines appearing to indicate the right margins of successive "pages" corresponding to the settings for your printer. The sections of the worksheet separated by the dashed vertical lines print on separate sheets of paper, yet the page number at the bottom of the Mathcad window does not change as you scroll to the right.

You can think of the worksheet as being divided into vertical strips. Mathcad begins printing at the top of each strip and continues until it reaches the lastregion in this strip. It prints successive strips left to right. Note that certain layouts will produce one or more blank pages.

Tip You can control whether a wide worksheet is printed in its entirety or in a single page width. To do so, choose Page Setup from the File menu to open the Page Setup dialog box. Then, to suppress printing of anything to the right of the right margin, check "Print single page width."

You can ask Mathcad to print a range of pages in the worksheet by using the Print dialog box. The page numbers in the dialog box refer only to horizontal divisions. For example, if your worksheet looks like that shown above, and you ask Mathcad to print page 2, you will see two sheets of paper corresponding to the lower-left and lower-right quadrants.

Tip Mathcad allows you to change the display of some operators including the : \(=\), the bold equals, the derivative operator, and the multiplication operator. Before you print, you can choose Options from the Math menu and click on the Display tab to change the appearance of these operators. This can make your printout clearer to someone unfamiliar with Mathcad notation.

\section*{Print Preview}

To check your worksheet's layout before printing, choose Print Preview from the File menu or click \(\quad \square\) on the Standard toolbar. The Mathcad window shows the current section of your worksheet in miniature, as it will appear when printed, with a strip of buttons across the top of the window:
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Pirin........ & Next Page & Prey Page & Iwo Page & Zoom In & Zoom Qut & Close \\
\hline
\end{tabular}

To print your worksheet from this screen, click "Print." Click "Close" to go back to the main worksheet screen. The remaining buttons give you more control over the preview.

Tip Although you can use the "Zoom In" and "Zoom Out" buttons to magnify the worksheet, you can also magnify the worksheet by moving the cursor onto the previewed page so that the cursor changes to a magnifying glass. Then click the mouse. Click again to magnify your worksheet even more. Once you're at the maximum magnification, clicking on the page de-magnifies it.

Note You cannot edit the current page or change its format in the Print Preview screen. To edit the page or change its format, return to the normal worksheet view by clicking "Close."

\section*{Mailing}

If you're connected to a mail system that's compatible with Microsoft's Mail API (MAPI), you can use Mathcad to direct that system to send an electronic mail message and your current Mathcad worksheet. When you use Mathcad to send a worksheet by electronic mail, the recipient receives the worksheet as a file attached to an ordinary email message, provided that the recipient's mail system uses the same encoding technique as yours.

Tip The settings in your mail system determine how Mathcad worksheets are attached to or encoded in the mail message. We recommend that you use an encoding method such as MIME or UUENCODE, if available, to attach Mathcad worksheets to mail messages.

To send a Mathcad worksheet by electronic mail:
1. Open the worksheet you want to send.
2. Choose Send from the File menu.

Once you do so, your mail system launches and creates a new message with your worksheet as an attachment. You should then enter the text of your mail message, the address of the recipient, and any other information allowed by your mail system.

\section*{Chapter 8 \\ Calculating in Mathcad}
\(\tau\) Defining and Evaluating Variables
\(\tau\) Defining and Evaluating Functions
\(\tau\) Units and Dimensions
\(\tau\) Working with Results
\(\tau\) Controlling Calculation
\(\tau\) Animation
\(\tau\) Error Messages

\section*{Defining and Evaluating Variables}

When you type an expression into a worksheet, you are usually doing one of two things:
- You could be typing a variable or function name and assigning some value to it.
- You could be typing an equation and asking Mathcad to give you the answer.

We introduce these topics in this and the following section. See "Evaluating Expressions Numerically" on page 99 for details on numerical evaluation.

\section*{Defining a Variable}

A variable definition defines the value of a variable everywhere below and to the right of the definition. To define a variable, follow these three steps:
1. Type the variable name to be defined. Chapter 4 , "Working with Math," contains a description of valid variable names.
2. Press the colon (:) key, or click \(:=\) on the Calculator toolbar. The definition symbol (:=) appears with a blank placeholder to the right.
3. Type an expression to complete the definition. This expression can include numbers and any previously defined variables and functions.

KE := -

The left-hand side of a " \(:=\) " can contain any of the following:
- A simple variable name like \(x\).
- A subscripted variable name like \(v_{i}\).
- A matrix whose elements are either of the above. For example, \(\left[\begin{array}{c}x \\ y_{1}\end{array}\right]\).This technique allows you to define several variables at once: each element on the right-hand side is assigned simultaneously to the corresponding element on the left-hand side.
- A function name with an argument list of simple variable names. For example, \(f(x, y, z)\). This is described further in the next section.
- A superscripted variable name like \(\mathbf{M}^{\langle 1\rangle}\).

\section*{Built-in Variables}

Mathcad includes predefined or built-in variables. Predefined variables can have a conventional value, like \(\pi\) and \(e\), or be used as system variables to control how Mathcad works. See "Predefined Variables" on page 311 in the Appendices for a list of built-in variables in Mathcad.

Note In addition to the built-in variables described here, Mathcad treats the names of all built-in units as predefined variables. See "Units and Dimensions" on page 106.

Although Mathcad's predefined variables already have values when you start Mathcad, you can still redefine them. For example, if you want to use a variable called \(e\) with a value other than the one Mathcad provides, enter a new definition, like \(e:=2\). The variable \(e\) takes on the new value everywhere in the worksheet below and to the right of the new definition. Alternatively, create a global definition for the variable as described in "Global Definitions" on page 100.

Note Mathcad's predefined variables are defined for all fonts, sizes, and styles. This means that if you redefine \(e\) as described above, you can still use \(\mathbf{e}\), for example, as the base for natural logarithms. Note, however, that Greek letters are not included.

You can modify many of Mathcad's built-in variables without having to explicitly define them in your worksheet. To do so, choose Options from the Math menu, and click the Built-In Variables tab on the Math Options dialog box.

To set new starting values for any of these variables, enter a new value in the appropriate text box and click "OK." Then choose Calculate Worksheet from the Math menu to ensure that all existing equations take the new values
 into account.

The numbers in brackets to the right of the variable names represent the default values for those variables. To restore these default values for the built-in variables listed in the dialog box, click "Restore Defaults" and then click "OK."

\section*{Evaluating Expressions Numerically}

To evaluate an expression numerically, follow these steps:
1. Type an expression containing any valid combination of numbers, variables, and functions. Any variables or functions in this expression should be defined earlier in the
 worksheet.
2. Press the " \(=\) " key, or click \(=\) on the Calculator toolbar. Mathcad computes the value of the expression and shows
 it after the equal sign.
Figure 8-1 shows some results calculated from preceding variable definitions.
\begin{tabular}{ll}
\hline Motion at Constant Speed & \\
\(\mathrm{t}:=11.5\) & \\
\(\mathrm{~s}:=100\) & \\
\(\mathrm{v}:=\frac{\mathrm{s}}{\mathrm{t}}\) & \(\mathrm{v}=8.696\) \\
\(\mathrm{~m}:=15\) & \(\mathrm{~m} \cdot \mathrm{v}=130.435\) \\
\(\mathrm{KE}:=\frac{1}{2} \cdot \mathrm{~m} \cdot \mathrm{v}^{2}\) & \(\frac{1}{2} \cdot \mathrm{~m} \cdot \mathrm{v}^{2}=567.108\) \\
& KE \(=567.108\)
\end{tabular}

Figure 8-1: Calculations based on simple variable definitions.

Tip Whenever you evaluate an expression, Mathcad shows a final placeholder at the end of the equation. You can use this placeholder for unit conversions, as explained in "Working with Results" on page 110. As soon as you click outside the region, Mathcad hides the placeholder.

\section*{How Mathcad Scans a Worksheet}

Mathcad scans a worksheet the same way you read it: left to right and top to bottom. This means that a variable or function definition involving a ": =" affects everything below and to the right of it.
To see the placement of regions more clearly in your worksheet, choose Regions from the View menu. Mathcad displays blank space in gray and leaves regions in your background color.
Figure 8-2 shows examples of how placement of equations in a worksheet affects the evaluation of results. In the first evaluation, both \(x\) and \(y\) are highlighted (Mathcad shows them in red on screen) to indicate that they are undefined. This is because the definitions for \(x\) and \(y\) lie below where they are used. Because Mathcad scans from top to bottom, when it gets to the first equation, it doesn't know the values of \(x\) and \(y\).

The second evaluation, on the other hand, is below the definitions of \(x\) and \(y\). By the time Mathcad gets to this equation, it has already assigned values to both \(x\) and \(y\).

Figure 8-2: Mathcad evaluates equations from top to bottom in a worksheet. Undefined variables are highlighted.

Note You can define a variable more than once in the same worksheet. Mathcad simply uses the first definition for all expressions below the first definition and above the second. For expressions below the second definition and above the third, Mathcad uses the second definition, and so on.

\section*{Global Definitions}

Global definitions are exactly like local definitions except that they are evaluated before any local definitions. If you define a variable or function with a global definition, that variable or function is available to all local definitions in your worksheet, regardless of whether the local definition appears above or below the global definition.

To type a global definition, follow these steps:
1. Type a variable name or function to be defined.
2. Press the tilde (\(\sim\)) key, or click \(\equiv\) on the Evaluation toolbar.
 The global definition symbol appears.
3. Type an expression. The expression can involve numbers or other globally defined variables and functions.
\(R=0820562\)
You can use global definitions for functions, subscripted variables, and anything else that normally uses the definition symbol ":=".
This is the algorithm that Mathcad uses to evaluate all definitions, global and otherwise:
- First, Mathcad takes one pass through the entire worksheet from top to bottom. During this first pass, Mathcad evaluates global definitions only.
- Mathcad then makes a second pass through the worksheet from top to bottom. This time, Mathcad evaluates all definitions made with " \(:=\) " as well as all equations containing " \(=\) " and " \(\equiv\) ". Note that during this pass, global definitions do not use any local definitions.

Note A global definition of a variable can be overriden by a local definition of the same variable name with the definition symbol " \(:=\) ".

Figure 8-3 shows the results of a global definition for the variable \(R\) which appears at the bottom of the figure.

> Start with these definitions and calculations \(\ldots\)
> \(V:=1000 \quad n:=3 \quad T:=373\)
> \(P:=\frac{\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{V}} \quad \mathrm{P}=0.092\)

Now change the definitions of \(V\) and \(T \ldots\)
\(V:=500 \quad T:=323\)
\(\mathrm{P}:=\frac{\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{V}} \quad \mathrm{P}=0.159\)

Since \(R\) is defined globally, its definition applies everywhere in the document.
\[
\mathrm{R} \equiv .0820562
\]

Figure 8-3: Using the global definition symbol.
Although global definitions are evaluated before any local definitions, Mathcad evaluates global definitions the same way it evaluates local definitions: top to bottom and left to right. This means that whenever you use a variable to the right of a " \(\equiv\) ":
- that variable must also have been defined with a " \(\equiv\)," and
- the variable must have been defined above the place where you are trying to use it.

Otherwise, the variable is marked in red to indicate that it is undefined.
Tip It is good practice to allow only one definition for each global variable. Although you can do things like define a variable with two different global definitions or with one global and one local definition, this may make your worksheet difficult for others to understand.

\section*{Range Variables}

Iterative processes in Mathcad worksheets depend on range variables. Except for the way it is defined, a range variable looks just like a conventional variable. The difference is that a conventional variable takes on only one value. A range variable, on the other hand, takes on a range of values separated by uniform steps. For example, you could define a range variable to go from -4 through 4 in steps of 2 . If you now use this range variable in an expression, Mathcad evaluates that expression five times, once for each value taken by the range variable.
Range variables are crucial to exploiting Mathcad's capabilities to their fullest. This section shows how to define and use range variables to perform iteration. For a
description of more advanced iterative operations made possible by the programming operators in Mathcad Professional, turn to Chapter 15, "Programming."

\section*{Defining and using range variables}

To define a range variable, type the variable name followed by a colon and a range of values. For example, here's how to define the variable \(j\) ranging from 0 to 15 in steps of 1 :
1. Type \(\mathbf{j}\) and then press the colon key (:), or click \(:=\) Calculator toolbar. The empty placeholder indicates that Mathcad expects a definition for \(j\). At this point, Mathcad does not know whether \(j\) is to be a conventional variable or a range variable.
2. Type \(\mathbf{0}\). Then press the semicolon key (;), or click m.-n on the \(\mathrm{i}:=0 . .15\) Calculator toolbar. This tells Mathcad that you are defining a range variable. Mathcad displays the semicolon as two periods ".." to indicate a range. Complete the range variable definition by typing 15 in the remaining placeholder.

This definition indicates that \(j\) now takes on the values \(0,1,2 \ldots 15\). To define a range variable that changes in steps other than 1, see the section "Types of ranges" on page 103.

Once you define a range variable, it takes on its complete range of values every time you use it. If you use a range variable in an equation, for example, Mathcad evaluates that equation once for each value of the range variable.
You must define a range variable exactly as shown above. There must be:
- a variable name on the left,
- either a ": \(=\) " or a " \(\equiv\) " in the middle, and
- a valid range on the right.

Note You cannot define a variable in terms of a range variable. For example, if after having defined \(j\) as shown you now define \(i:=j+1\), Mathcad assumes you are trying to set a scalar variable equal to a range variable and marks the equation with an appropriate error message.

One application of range variables is to fill up the elements of a vector or matrix. You can define vector elements by using a range variable as a subscript. For example, to define \(x_{j}\) for each value of \(j\) :
- Type \(\mathbf{x}\left[\mathbf{j}: \mathbf{j}^{\wedge} \mathbf{2}[\right.\) Space \(]+\mathbf{1}\).

Figure \(8-4\) shows the vector of values computed by this equation. Since \(j\) is a range variable, the entire equation is evaluated once for each value of \(j\). This defines \(x_{j}\) for each value of \(j\) from 0 to 15 .

Figure 8-4: Using a range variable to define the values of a vector.
To understand how Mathcad computes with range variables, keep in mind this fundamental principle:

If you use a range variable in an expression, Mathcad evaluates the expression once for each value of the range variable.

If you use two or more range variables in an equation, Mathcad evaluates the equation once for each value of each range variable.

Tip Mathcad takes longer to compute equations with ranged expressions since there may be many computations for each equation. While Mathcad is computing, the mouse pointer changes its appearance. To learn how to interrupt a calculation in progress, see "Interrupting Calculations" on page 118 .

\section*{Types of ranges}

The definition of \(j\) in the previous section, ranging from 0 to 15 , is an example of the simplest type of range definition. But Mathcad permits range variables with values ranging from any value to any other value, using any constant increment or decrement.
To define a range variable with a step size other than 1, type an equation of this form:
\[
k: 1,1.1 ; 2
\]

This appears in your worksheet window as:
\[
k:=1,1.1 . .2
\]

In this range definition:
- The variable \(k\) is the name of the range variable itself.
- The number 1 is the first value taken by the range variable \(k\).
- The number 1.1 is the second value in the range. Note that this is not the step size. The step size in this example is 0.1 , the difference between 1.1 and 1 . If you omit the comma and the 1.1, Mathcad assumes a step size of one in whatever direction (up or down) is appropriate.
- The number 2 is the last value in the range. In this example, the range values are constantly increasing. If instead you had defined \(k:=10 . .1\), then \(k\) would count down from 10 to 1 . If the third number in the range definition is not an even number of increments from the starting value, the range will not go beyond it. For example, if you define \(k:=10,20 . .65\) then \(k\) takes values \(10,20,30, \ldots, 60\).

Note You can use arbitrary scalar expressions in range definitions. However, these values must always be real numbers. Also note that if you use a fractional increment for a range variable, you will not be able to use that range variable as a subscript because subscripts must be integers.

\section*{Defining and Evaluating Functions}

As described in Chapter 10, "Built-in Functions," Mathcad has an extensive built-in function set. You can augment Mathcad's built-in function set by defining your own functions.

You define a function in much the same way you define a variable. The name goes on the left, a definition symbol goes in the middle, and an expression goes on the right. The main difference is that the name includes an argument list. The example below shows how to define a function called \(\operatorname{dist}(x, y)\) that returns the distance between the point \((x, y)\) and the origin.
To type such a function definition:
1. Type the function name.
2. Type a left parenthesis followed by one or more names separated by commas. Complete this argument list by typing a right parenthesis.
dist
dist (\(x, y\))

Note It makes no difference whether or not the names in the argument list have been defined or used elsewhere in the worksheet. What is important is that these arguments must be names. They cannot be more complicated expressions.
- Press the colon \((:)\) key, or click \(:=\) on the Calculator \(\quad\) dist \((\mathrm{x}, \mathrm{y}):=\mathrm{I}\) toolbar. You see the definition symbol (:=).
- Type an expression to define the function. In this example, the expression involves only the names in
\[
\operatorname{dist}(x, y):=\sqrt{x^{2}+y^{2}}
\] the argument list. In general though, the expression can contain any previously defined functions and variables as well.
Once you have defined a function, you can use it anywhere below and to the right of the definition, just as you would use a variable.

When you evaluate an expression containing a function, as shown in Figure 8-5, Mathcad:
1. evaluates the arguments you place between the parentheses,
2. replaces the dummy arguments in the function definition with the actual arguments you place between the parentheses,
3. performs whatever arithmetic is specified by the function definition,
4. returns the result as the value of the function.
\begin{tabular}{|lll|}
\hline Computing distances between points & \\
\(\mathrm{x} 1:=0\) & \(\mathrm{y} 1:=1.5\) & \\
\(\mathrm{x} 2:=3\) & \(\mathrm{y} 2:=4\) & \\
\(\mathrm{x} 3:=-1\) & \(\mathrm{y} 3:=1\) & dist \((\mathrm{x}, \mathrm{y}):=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}\) \\
Compute distance from origin: & dist \(=\) function \\
\(\operatorname{dist}(\mathrm{x} 1, \mathrm{y} 1)=1.5\) & \\
\(\operatorname{dist}(\mathrm{x} 2, \mathrm{y} 2)=5\) & \\
\(\operatorname{dist}(\mathrm{x} 3, \mathrm{y} 3)=1.414\) & \\
\hline
\end{tabular}

Figure 8-5: A user-defined function to compute the distance to the origin.

Note As shown in Figure 8-5, if you type only the name of a function without its arguments, Mathcad returns the word "function."

The arguments of a user-defined function can represent scalars, vectors, or matrices.
For example, you could define the distance function as \(\operatorname{dist}(v):={\sqrt{v_{0}^{2}+v_{1}^{2}}}^{2}\). This is an example of a function that accepts a vector as an argument and returns a scalar result. See Chapter 11, "Vectors, Matrices, and Data Arrays," for more information.

Note User-defined function names are font and case sensitive. The function \(\mathbf{f}(x)\) is different from the function \(\mathrm{f}(x)\) and \(\operatorname{SIN}(x)\) is different from \(\sin (x)\). Mathcad's built-in functions, however, are defined for all fonts (except the Symbol font), sizes, and styles. This means that \(\sin (x), \sin (x)\), and \(\boldsymbol{\operatorname { s i n }}(x)\) all refer to the same function.

\section*{Variables in User-Defined Functions}

When you define a function, you don't have to define any of the names in the argument list since you are telling Mathcad what to do with the arguments, not what they are. When you define a function, Mathcad doesn't even have to know the types of the arguments-whether the arguments are scalars, vectors, matrices, and so on. It is only when Mathcad evaluates a function that it needs to know the argument types.
However, if in defining a function you use a variable name that is not in the argument list, you must define that variable name above the function definition. The value of that variable at the time you make the function definition then becomes a permanent part of the function. This is illustrated in Figure 8-6.

Using Variables in User Functions:
\[
\begin{aligned}
& a:=2 \\
& f(x):=x^{a}
\end{aligned}
\]

The value of \(f\) depends on its argument
\[
\begin{array}{ll}
f(2)=4 & t:=-4 \\
f(3)=9 & f(t)=16 \\
f(\sqrt{5})=5 &
\end{array}
\]
\begin{tabular}{cc}
...but not on the value of \(a\). & \(f(2)=4\) \\
\(a:=3\) & \(f(2)=4\) \\
\(a:=5\) & \(f(2)=4\)
\end{tabular}

Since \(a\) is not an argument of \(f\), the value of \(f\) depends on the value of a at the point where \(f\) is defined.

Figure 8-6: The value of a user function depends on its arguments.
If you want a function to depend on the value of a variable, you must include that variable as an argument. If not, Mathcad just uses that variable's fixed value at the point in the worksheet where the function is defined.

\section*{Recursive Function Definitions}

Mathcad supports recursive function definitions-you may define the value of a function in terms of a previous value of the function. As shown in Figure 8-7, recursive functions are useful for defining arbitrary periodic functions, as well as elegantly implementing numerical functions like the factorial function
Note that a recursive function definition should always have at least two parts:
- An initial condition that prevents the recursion from going forever.
- A definition of the function in terms of some previous value(s) of the function.

Note If you do not specify an initial condition that stops the recursion, Mathcad generates a "stack overflow" error message when you try to evaluate the function.

Pro The programming operators in Mathcad Professional also support recursion. See the section "Programs Within Programs" in Chapter 15 for examples.

\section*{Units and Dimensions}

When you first start Mathcad, a complete set of units is available for your calculations. You can treat these units just like built-in variables. To assign units to a number or expression, just multiply it by the name of the unit.
Mathcad recognizes most units by their common abbreviations. Lists of all of Mathcad's built-in units in several systems of units are in the Appendices. By default Mathcad uses units from the SI unit system (also known as the International System of

A simple recursive function definition.
\[
\begin{aligned}
& \text { factorial }(n):=\text { if }(n=0,1, n \cdot \text { factorial }(n-1)) \\
& \text { factorial }(5)=120
\end{aligned}
\]

Using recursion to define a periodic sawtooth wave.
\[
F(x):=2 \cdot x \quad \text { period }:=2
\]
\[
G(x):=i f(x<\text { period }, F(x), G(x-\text { period }))
\]
\[
x:=0, .01 \ldots 10
\]

Figure 8-7: Mathcad allows recursive function definitions.
Units) in the results of any calculations, but you may use any supported units you wish in creating your expressions. See "Displaying Units of Results" on page 113 for more information about selecting a unit system for results.
For example, type expressions like the following:
```

mass:75*kg
acc: 100*m/s^2
acc_g:9.8*m/s^2
F:mass* (acc + acc_g)

```

Figure \(8-8\) shows how these equations appear in a worksheet.
\[
\begin{aligned}
& \text { mass }:=75 \cdot \mathrm{~kg} \\
& \text { acc }:=100 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \text { acc_g }:=9.8 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \mathrm{~F}:=\text { mass } \cdot\left(\mathrm{acc}+\mathrm{acc} _\mathrm{g}\right) \\
& \mathrm{F}=8.235 \times 10^{3} \mathrm{~N} \\
& \text { mass }:=75 \mathrm{~kg} \quad \begin{array}{l}
\text { <-Mathcad treats the multiplication as implied when you type } \\
\text { an expression like mass:75kg }
\end{array} \\
& \text { mass }=75 \mathrm{~kg} \quad
\end{aligned}
\]

Figure 8-8: Equations using units.

Tip If you define a variable which consists of a number followed immediately by a unit name, you can omit the multiplication symbol; Mathcad inserts a very small space and treats the multiplication as implied. See the definition of mass at the bottom of Figure 8-8.

You can also use the Insert Unit dialog box to insert one of Mathcad's built-in units into any placeholder. To use the Insert Unit dialog box:
1. Click in the empty placeholder and choose Unit from the Insert menu, or click寝 on the Standard toolbar. Mathcad opens the Insert Unit dialog box.
2. The list at the bottom shows built-in units, along with their Mathcad names, corresponding to whatever physical quantity is selected in the top scrolling list. When "Dimensionless" is selected at the top, a list of all available built-in units shows on the bottom.
3. If necessary, use the top scrolling list to display only those units corresponding to a particular physical quantity. This makes it easier to find a particular unit or to see what choices are appropriate.

4. In the bottom list, double-click the unit you want to insert, or click the unit you want and then click "Insert." Mathcad inserts that unit into the empty placeholder.

Note Mathcad performs some dimensional analysis by trying to match the dimensions of your selected result with one of the common physical quantities in the top scrolling list. If it finds a match, you'll see all the built-in units corresponding to the highlighted physical quantity in the bottom scrolling list. If nothing matches, Mathcad simply lists all available built-in units on the bottom.

\section*{Dimensional Checking}

Whenever you enter an expression involving units, Mathcad checks it for dimensional consistency. If you add or subtract values with incompatible units, or violate other principles of dimensional analysis, Mathcad displays an appropriate error message.

For example, suppose you had defined acc as \(100 \cdot \mathrm{~m} / \mathrm{s}\) instead of \(100 \cdot \mathrm{~m} / \mathrm{s}^{2}\) as shown at right. Since acc is in units of velocity and acc \(_g\) is in units of acceleration, it is inappropriate to add them together. When you attempt to do so, Mathcad displays an error message.
Other unit errors are usually caused by one of the following:
mass := \(75 \cdot \mathrm{~kg}\)
acc \(:=100 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\)
acc_g \(:=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\)
\(F:=\) mass (acc| + acc_g)
 The units in this expression
 do not match.
- An incorrect unit conversion.
- A variable with the wrong units.
- Units in exponents or subscripts (for example \(v_{3 \cdot \text { acre }}\) or \(2^{3 \cdot f t}\)).
- Units as arguments to inappropriate functions (for example, \(\sin (0 \cdot\) henry \()\)).

Tip If you want to temporarily remove units from an argument, \(x\), divide \(x\) by UnitsOf \((x)\). For example, if \(p\) is defined as \(2 f t\) then \(\sin (p)\) gives an error but \(\sin \left(\frac{p}{\operatorname{Units} O f(p)}\right)=0.573\).

\section*{Defining Your Own Units}

Although Mathcad recognizes many common units, you may need to define your own unit if that unit isn't one of Mathcad's built-in units or if you prefer to use your own abbreviation instead of Mathcad's abbreviation.

Note Although absolute temperature units are built into Mathcad, the Fahrenheit and Celsius temperature units are not. See the QuickSheet "Temperature Conversions" in the on-line Resource Center for examples of how to define these temperature scales and to convert between them.

You define your own units in terms of existing units in exactly the same way you would define a variable in terms of an existing variable. Figure 8-9 shows how to define new units as well as how to redefine existing units.
```

\AA:= 10-10}\cdot\textrm{m}\quad\mu\textrm{s}:=1\mp@subsup{0}{}{-6}\cdot\textrm{s
week := 7 day kilo := 1. kg

```

Results are displayed by default in terms of the base units of the current unit system, but you can type other units into the units placeholder to see the result in different units.
\(\AA=1 \times 10^{-10} \mathrm{~m} \quad\) week \(=6.048 \times 10^{5} \mathrm{~s}\)
week \(=0.019 \mathrm{yr}\) \(\mu \mathrm{S}=1.667 \times 10^{-8} \mathrm{~min}\)
kilo \(=1 \mathrm{~kg}\)

Figure 8-9: Defining your own units.

Note Since units behave just like variables, you may run into unexpected conflicts. For example, if you define the variable \(m\) in your worksheet, you won't be able to use the built-in unit \(m\) for meters anywhere below that definition. However, Mathcad automatically displays the unit \(m\) in any results involving meters, as described in "Displaying Units of Results" on page 113.

\section*{Working with Results}

\section*{Formatting Results}

The way that Mathcad displays numbers (the number of decimal places, whether to use \(i\) or \(j\) for imaginary numbers, and so on) is called the result format. You can set the result format for a single calculated result or for an entire worksheet.

\section*{Setting the format of a single result}

When you evaluate expressions numerically in Mathcad, results are formatted in the worksheet according to the worksheet default result format. You can modify the format for a single result as follows:
1. Click anywhere in the equation whose result you want to format.
```

\pi\cdot1\mp@subsup{0}{}{5}=3.142\times1\mp@subsup{0}{}{5}

```
2. Choose Result from the Format menu. Alternatively, double-click the equation itself. The Result Format dialog box appears.
3. Change the desired settings. See below to learn about the various settings in the dialog box. To display a result with six decimal places, you would increase "Number of decimal places" from 3 to 6 .

4. Click "OK." Mathcad redisplays the result using the new format.
\(\pi \cdot 10^{5}=3.141593 \times 10^{5} \quad\).

To redisplay a result using the worksheet default result
format settings, click on the result to enclose the result between the editing lines, delete the equal sign, and press = to replace the equal sign. The result is now restored to the default worksheet settings.

Note When the format of a result is changed, only the appearance of the result changes in the worksheet. Mathcad continues to maintain full precision internally for that result. To see a number as it is stored internally, click on the result, press [Ctrl][Shift]N, and look at the message line at the bottom of the Mathcad window. If you copy a result, however, Mathcad copies the number only to the precision displayed.

\section*{Setting worksheet default format}

To change the default display of numerical results in your worksheet:
1. Click in a blank part of your worksheet.
2. Choose Result from the Format menu.
3. Change the desired settings in the Result Format dialog box.
4. Click "OK."

Mathcad changes the display of all results whose formats have not been explicitly specified.

Alternatively, you can change the worksheet default by clicking on a particular result, choosing Result from the Format menu, changing the settings in the Result Format dialog box, and clicking "Set as Default."

Tip Changing the worksheet default result format affects only the worksheet you are working in when you make the change. Any other worksheets open at the time retain their own default result formats. If you want to re-use your default result formats in other Mathcad worksheets, save your worksheet as a template as described in Chapter 7, "Worksheet Management."

\section*{The Result Format dialog box}

The tabs in the Result Format dialog box lead to pages containing options for formatting various aspects of a result.
The Number Format page lets you control the number of decimal places, trailing zeros, and whether a result is in exponential notation. Depending on the format scheme you choose under the Format section, you see different options.
- Choosing General lets you control the number of digits to the right of the decimal point, trailing zeros, and exponential threshold. A result is displayed in exponential notation when the exponential threshold is exceeded. You can display trailing zeros to the right of the decimal until you exceed 15 digits total.
- Choosing Decimal lets you control the number of digits to the right of the decimal point and never display the results in exponential notation. You can display trailing zeros to the right of the decimal point beyond 15 digits total, but only the first 15 digits are accurate.
- Choosing Scientific or Engineering lets you control the number of digits to the right of the decimal point and always display results in exponential notation. For Engineering, the exponents are displayed in multiples of three. You can use Enotation for the exponents by choosing "Show exponents as \(\pm\) E 000 ." You can display trailing zeros to the right of the decimal point beyond 15 digits total, but only the first 15 digits are accurate.

Note Settings that are grayed can only be changed for the entire worksheet, as described in "Setting worksheet default format" on page 110 .

The Display Options page lets you control whether arrays are displayed as tables or matrices, whether nested arrays are expanded, and whether i or j is used to indicated imaginary. You can also specify another radix such as Binary or Octal.
The Unit Display page gives you options to format units (as fractions) or simplify the units to derived units.
The Tolerance page allows you to specify when to hide a real or imaginary part of a result and how small a number has to be for it to display as zero.

On-line Help For more details and examples of the options available on a particular page in the Result Format dialog box, click the Help button at the bottom of the dialog box.

Figure 8-10 shows some examples of formatting options.
\begin{tabular}{|c|c|}
\hline \(x:=5.2574 \quad y:=\pi \cdot 10^{4}\) & Definitions \\
\hline \(x=5.26\) & General format, Exponential threshold \(=15\), Number of decimal places \(=2\) \\
\hline \(\mathrm{x}=5.2574\) & Decimal format, Number of decimal places \(=4\) \\
\hline \(x=5.25740\) & \begin{tabular}{l}
Decimal format, Number of decimal places \(=5\) \\
Show trailing zeros
\end{tabular} \\
\hline \(\mathrm{y}=3.142 \times 10^{4}\) & Scientific format \\
\hline \(\mathrm{y}=31.416 \times 10^{3}\) & Engineering format \\
\hline \(x=5.257 \mathrm{E}+000\) & Engineering format, Show exponents as \(\mathrm{E} \pm 000\) - \\
\hline
\end{tabular}

Figure 8-10: Several ways to format the same number.

\section*{Complex Results}

Complex numbers can arise in results if you enter an expression that contains a complex number. Even a Mathcad expression that involves only real numbers can have a complex value. For example, if you evaluate \(\sqrt{-1}\), Mathcad returns \(i\). See Figure 8-11 for examples.
```

\sqrt{3}{-1}=-1 \longleftarrow
n := 1,3.. 5
exp(n\cdoti\cdot60\cdotdeg) exp(n\cdoti\cdot60\cdotdeg)}\mp@subsup{}{}{3}\longleftarrow\mathrm{ Just as every number has two
0.5+0.866i - -1 square roots, every number also
-1 -1 Has three cube roots
0.5-0.866i -1 Here, "i" is the imaginary unit.
Type "1i" to enter it.
(-1)}\mp@subsup{)}{}{\frac{1}{3}}=0.5+0.866i\quad\leftarrow\quad\begin{array}{l}{\mathrm{ Returns "principal value" of cube root. the one}}<br>{\mathrm{ corresponding to n=1 in the above list.}}

```

Figure 8-11: Examples of complex results.

Note When complex numbers are available, many functions and operators we think of as returning unique results become multivalued. In general, when a function or operator is multivalued, Mathcad returns the principal value: the value making the smallest positive angle relative to the positive real axis in the complex plane. For example, when it evaluates \((-1)^{1 / 3}\), Mathcad returns \(.5+.866 i\) despite the fact that we commonly think of the cube root of -1 as being -1 . This is because the number \(.5+.866 i\) makes an angle of only 60 degrees from the positive real axis. The number -1 , on the other hand, is 180 degrees from the positive real axis. Mathcad's \(n\)th root operator returns -1 in this case, however.

\section*{Displaying Units of Results}

Mathcad by default displays results in terms of the fundamental units of the unit system you're working with. Mathcad offers the following unit system choices: SI, CGS, MKS, U.S. customary units, or no unit system (see below).

Tip Check "Simplify units when possible" in the Result Format dialog box (see page 110) to see units in a result expressed in terms of derived units rather than in base units. Check "Format units" to see units in a result displayed as a built-up fraction containing terms with positive exponents only rather than as a product of units with positive and negative exponents.

You can have Mathcad redisplay a particular result in terms of any of Mathcad's builtin units. To do so:
1. Click in the result. You'll see an empty placeholder to its right. This is the units placeholder.
2. Click the units placeholder and choose Unit from the Insert menu, or click臬 on the Standard toolbar. Mathcad opens the Insert Unit dialog box. This is described in "Units and Dimensions" on page 106.
3. Double-click the unit in which you want to display the result. Mathcad inserts this unit in the units placeholder.

Note For some engineering units-such as \(h p, c a l, B T U\), and \(H z\)-Mathcad adopts one common definition for the unit name but allows you to insert one of several alternative unit names, corresponding to alternative definitions of that unit, in your results. In the case of horsepower, for example, Mathcad uses the U.K. definition of the unit \(h p\) but gives you several variants, such as water horsepower, metric horsepower, boiler horsepower, and electric horsepower.

Another way to insert a unit is to type its name directly into the units placeholder. This method is more general since it works not only for built-in units but also for units you've defined yourself and for combinations of units.

\section*{Unit systems}

When you start Mathcad, the SI system of units is loaded by default. This means that when you use the equal sign to display a result having units, Mathcad automatically displays the units in the result in terms of base or derived SI units.

You can have Mathcad display results in terms of the units of any of the other built-in unit systems in Mathcad: CGS, US customary, MKS, or no unit system at all. To do so, choose Options from the Math menu and click the Unit System tab.

Select the default unit system in which you want to display results. The SI unit system, widely used by scientists and engineers in many countries, provides two additional base units over the other systems, one for luminosity (candela) and one for substance (mole), and the base SI electrical unit (ampere) differs from the base electrical unit in the other systems (coulomb).

The following table summarizes the base units available in Mathcad's unit systems:

\section*{Unit System}

\section*{SI}

MKS
CGS
U.S.

None

Base Units
\(m, k g, s, A, K, c d\), and mole
\(m, k g, s e c, c o u l\), and \(K\)
cm, gm, sec, coul, and \(K\)
\(f t, l b\), sec, coul, and \(K\)
Displays results in terms of fundamental dimensions of length, mass, time, charge, and absolute temperature. All built-in units are disabled.

The standard SI unit names-such as \(A\) for ampere, \(L\) for liter, \(s\) for second, and \(S\) for siemens - are generally available only in the SI unit system. Many other unit names are available in all the available systems of units. For a listing of which units are available in each system, see the Appendices. Mathcad includes most units common to scientific and engineering practice. Where conventional unit prefixes such as \(m\) - for milli-, \(n\) - for nano-, etc. are not understood by Mathcad, you can easily define custom units such as \(\mu \mathrm{m}\) as described in "Defining Your Own Units" on page 109.

Tip For examples of units with prefixes not already built into Mathcad, see the QuickSheets in the on-line Resource Center.

If you click "None" in the Unit System tab of the Math Options dialog box, Mathcad doesn't understand any built-in units and displays answers in terms of the fundamental dimensions of length, mass, time, charge, and temperature. However, even if you are working in one of Mathcad's built-in unit systems, you can always choose to see results in your worksheet displayed in terms of fundamental dimension names rather than the base units of the unit system. To do so:
1. Choose Options from the Math menu.
2. Click the Dimensions tab.
3. Check "Display dimensions."
4. Click "OK."

\section*{Unit conversions}

There are two ways to convert from one set of units to another:
- By using the Insert Unit dialog box, or
- By typing the new units in the units placeholder itself.

To convert units using the Insert Unit dialog box:
1. Click the unit you want to replace.
2. Choose Unit from the Insert menu, or click 角 on the Standard toolbar.
3. In the scrolling list of units, double-click the unit in which you want to display the result.

As a quick shortcut, or if you want to display the result in terms of a unit not available through the Insert Unit dialog box-for example, a unit you defined yourself or an algebraic combination of units-you can edit the units placeholder directly.

Figure 8-12 shows \(F\) displayed both in terms of fundamental SI units and in terms of several combinations of units.

When you enter an inappropriate unit in the units placeholder, Mathcad inserts a combination of base units that generate the correct units for the displayed result. For example, in the last equation in Figure 8-12, \(k W \cdot \mathrm{~s}\) is not a unit of force. Mathcad therefore inserts \(m^{-1}\) to cancel the extra length dimension.
\[
\begin{aligned}
& \text { mass }:=75 \mathrm{~kg} \quad \text { acc }:=100 \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2} \quad \text { acc_g }:=9.8 \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2} \\
& \text { F := mass (acc+acc_g) } \\
& F=8.235 \times 10^{3} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2} \text { <- } \begin{array}{l}
\text { Default display using fundamental } \\
\text { SI units. Click on result to see the } \\
\text { "units placeholder: }
\end{array} \\
& F=8.235 \times 10^{3} \mathrm{~N} \\
& F=8.235 \times 10^{8} \text { dyne } \\
& F=82.35 \cdot \frac{\mathrm{~J}}{\mathrm{~cm}} \quad \text { <- You can type combinations of } \\
& \mathrm{F}=8.235 \mathrm{~m}^{-1} \mathrm{~kW} \cdot \mathrm{~s} \ll \text { Since } \mathrm{kW} \mathrm{~s} \text { is not a force unit, } \\
& \text { Mathcad inserts an extra } \mathrm{m}^{-1} \text { to } \\
& \text { make the units come out right. }
\end{aligned}
\]

Figure 8-12: A calculated result displayed with different units
Whenever you enter units in the units placeholder, Mathcad divides the value to be displayed by whatever you enter in the units placeholder. This ensures that the complete displayed result - the number times the expression you entered for the placeholderis a correct value for the equation.

Note Conversions involving an offset in addition to a multiplication, for example gauge pressure to absolute pressure, or degrees Fahrenheit to Celsius, cannot be performed directly with Mathcad's unit conversion mechanism. You can, however, perform conversions of this type by defining suitable functions. See the QuickSheet "Temperature Conversions" in the on-line Resource Center for examples of temperature conversion functions.

You can enter any variable, constant, or expression in a units placeholder. Mathcad then redisplays the result in terms of the value contained in the units placeholder. For example, you can use the units placeholder to display a result as a multiple of \(\pi\) or in engineering notation (as a multiple of \(10^{3}, 10^{6}\), etc.).

Tip You can also use the units placeholder for dimensionless units like degrees and radians. Mathcad treats the unit rad as a constant equal to 1 , so if you have a number or an expression in radians, you can type deg into the units placeholder to convert the result from radians to degrees.

\section*{Copying and Pasting Numerical Results}

You can copy a numerical result and paste it either elsewhere in your worksheet or into a new application.
To copy a single number appearing to the right of an equal sign:
4. Click on the result to the right of the equal sign. This puts the result between the editing lines.
5. Choose Copy from the Edit menu, or click 朢 on the Standard toolbar to place the result on the Clipboard.
6. Click wherever you want to paste the result. If you're pasting into another application, choose Paste from that application's Edit menu. If you're pasting into a Mathcad worksheet, choose Paste from Mathcad's Edit menu or click on the Standard toolbar.
When you paste a numerical result into a Mathcad worksheet, it appears as:
- A math region consisting of a number if you paste it into empty space.
- A number if you paste it into a placeholder in a math region.
- A number if you paste it directly into text or into a placeholder in text created using the Math Region command on the Insert menu.
To copy more than one number, follow the steps for copying from an array. See "Displaying Arrays" on page 198 for information on copying and pasting arrays.

Note The Copy command copies the numerical result only to the precision displayed. To copy the result in greater precision, double-click it and increase "Displayed Precision" on the Result Format dialog box. Copy does not copy units and dimensions from a numerical result.

\section*{Controlling Calculation}

When you start Mathcad, you are in automatic mode. This means that Mathcad updates results in the worksheet window automatically. You can tell you're in automatic mode because the word "Auto" appears in the message line at the bottom of the window.
If you don't want to wait for Mathcad to make computations as you edit, you can disable automatic mode by choosing Automatic Calculation from the Math menu. The word "Auto" disappears from the message line and the check beside Automatic Calculation disappears to indicate that automatic mode is now off. You are now in manual mode.

Tip The calculation mode-either manual or automatic-is a property saved in your Mathcad worksheet. As described in Chapter 7, "Worksheet Management," the calculation mode is also a property saved in Mathcad template (MCT) files.

\section*{Calculating in Automatic Mode}

Here is how Mathcad works in automatic mode:
- As soon as you press the equal sign, Mathcad displays a result.
- As soon as you click outside of an equation having a ": \(=\) " or a " \(\equiv\)," Mathcad performs all calculations necessary to make the assignment statement.

When you process a definition in automatic mode by clicking outside the equation region, this is what happens:
- Mathcad evaluates the expression on the right side of the definition and assigns it to the name on the left.
- Mathcad then takes note of all other equations in the worksheet that are in any way affected by the definition you just made.
- Finally, Mathcad updates any of the affected equations that are currently visible in the worksheet window.

Note Although the equation you altered may affect equations throughout your worksheet, Mathcad performs only those calculations necessary to guarantee that whatever you can see in the window is up-to-date. This optimization ensures you don't have to wait for Mathcad to evaluate expressions that are not visible. If you print or move to the end of the worksheet, however, Mathcad automatically updates the whole worksheet.

Whenever Mathcad needs time to complete computations, the mouse pointer changes its appearance and the word "WAIT" appears on the message line. This can occur when you enter or calculate an equation, when you scroll, during printing, or when you enlarge a window to reveal additional equations. In all these cases, Mathcad evaluates pending calculations from earlier changes.

As Mathcad evaluates an expression, it surrounds it with a green rectangle. This makes it easy to follow the progress of a calculation.

To force Mathcad to recalculate all equations throughout the worksheet, choose Calculate Worksheet from the Math menu.

\section*{Calculating in Manual Mode}

In manual mode, Mathcad does not compute equations or display results until you specifically request it to recalculate. This means that you don't have to wait for Mathcad to calculate as you enter equations or scroll around a worksheet.

Mathcad keeps track of pending computations while you're in manual mode. As soon as you make a change that requires computation, the word "Calc" appears on the message line. This is to remind you that the results you see in the window are not up-to-date and that you must recalculate them before you can be sure they are updated.

You can update the screen by choosing Calculate from the Math menu or clicking \(=\) on the Standard toolbar. Mathcad performs whatever computations are necessary to update all results visible in the worksheet window. When you move down to see more of the worksheet, the word "Calc" reappears on the message line to indicate that you must recalculate to see up-to-date results.
To process the whole worksheet, including those portions not visible in the worksheet window, choose Calculate Worksheet from the Math menu.

Note When you print a worksheet in manual calculation mode, the results on the printout are not necessarily up-to-date. In this case, make sure to choose Calculate Worksheet from the Math menu before you print.

\section*{Interrupting Calculations}

To interrupt a computation in progress:
1. Press [Esc]. The dialog box shown at right appears.
2. Click "OK" to stop the calculations or "Cancel" to resume calculations.

If you click "OK," the equation that was being processed when you pressed [Esc] is marked with an error message (see "Error
 Messages" on page 121) indicating that calculation has been interrupted. To resume an interrupted calculation, first click in the equation having the error message, then choose
Calculate from the Math menu or click \(=\) on the Standard toolbar.
Tip If you find yourself frequently interrupting calculations to avoid having to wait for Mathcad to recalculate as you edit your worksheet, you can switch to manual mode as described above.

\section*{Disabling Equations}

You can disable a single equation so that it no longer calculates along with other regions in your worksheet. Disabling an equation does not affect Mathcad's equation editing, formatting, and display capabilities.
To disable calculation for a single equation in your worksheet, follow these steps:
1. Click on the equation you want to disable.
2. Choose Properties from the Format menu, and click the Calculation tab.
3. Under "Calculation Options" check "Disable Evaluation."
4. Mathcad shows a small rectangle after the equation to indicate that it is disabled. An example is shown at right.
\(\mathrm{KE}:=\frac{1}{2} \cdot \mathrm{~m} \cdot \mathrm{v}^{2}\)
Tip An easy shortcut for disabling evaluation is to click with the right mouse button on an equation and select Disable Evaluation from the pop-up menu.

To re-enable calculation for a disabled equation:
1. Click on the equation to select it.
2. Choose Properties from the Format menu, and click the Calculation tab.
3. Remove the check from "Disable Evaluation."

Mathcad removes the small rectangle beside the equation, and calculation is re-enabled.

\section*{Animation}

This section describes how to use Mathcad to create and play short animation clips by using the built-in variable FRAME. Anything that can be made to depend on this variable can be animated. This includes not only plots but numerical results as well. You can play back the animation clips at different speeds or save them for use by other applications.

\section*{Creating an Animation Clip}

Mathcad comes with a predefined constant called FRAME whose sole purpose is to drive animations. The steps in creating any animation are as follows:
1. Create an expression or plot, or a group of expressions, whose appearance ultimately depends on the value of FRAME. This expression need not be a graph. It can be anything at all.
2. Choose Animate from the View menu to bring up the Animate dialog box.
3. Drag-select the portion of your worksheet you want to animate as shown in Figure 8-13. Draw a rectangle around as many regions as you want to appear in the animation.
4. Set the upper and lower limits for FRAME in the dialog box. When you
 record the animation, the FRAME variable increments by one as it proceeds from the lower limit to the upper limit.
5. Enter the playback speed in the Frames/Sec. box.
6. Click "Animate." You'll see a miniature rendition of your selection inside the dialog box. Mathcad redraws this once for each value of FRAME. This won't necessarily match the playback speed since at this point you're just creating the animation.
7. To save your animation clip as a Windows AVI file, suitable for viewing in other Windows applications, click "Save As" in the dialog box.

Figure 8-13: Selecting an area of a worksheet for animation.

Tip Since animation clips can take considerable disk space, Mathcad saves them in compressed format. Before creating the animation, you can choose what compression method to use or whether to compress at all. To do so, click "Options" in the Animate dialog box.

\section*{Playing an Animation Clip}

As soon as you've created an animation clip as described in the previous section, Mathcad opens a Playback window:

The first frame of the animation clip you just created is already in the window. To play back the animation clip, click the arrow at the lower left corner of the window. You can also play back the animation clip on a frame by frame basis, either forward or backward. To do so, drag the slider below the animated picture to the left or right.

Tip You can control the playback speed by clicking the button to the right of the play button, which then opens a pop-up menu. Choose Speed from the menu and adjust the slider control.

\section*{Playing a Previously Saved Animation}

If you have an existing Windows AVI file on your disk, you can play it within Mathcad. To do so:
1. Choose Playback from the View menu to bring up the Playback dialog box. The window is collapsed since no animation clip has
 been opened.
2. Click on the button to the right of the play button and choose Open from the menu. Use the Open File dialog box to locate and open the AVI file you want to play.
Once you've loaded a Windows AVI file, proceed as described in the previous section.

Tip To launch an animation directly from your worksheet, you can insert a hyperlink to an AVI file by choosing Hyperlink from the Insert menu. You can also embed a shortcut to the AVI file in your worksheet by dragging the icon for the AVI file from the Windows Explorer and dropping it into your worksheet. Finally, you can embed or link an OLE animation object in your worksheet (see "Inserting Objects" on page 71).

\section*{Error Messages}

If Mathcad encounters an error when evaluating an expression, it marks the expression with an error message and highlights the offending name or operator in red.
An error message is visible only when you click on the associated expression, as shown to the right.
Mathcad cannot process an expression containing an error. If the expression is a definition, the variable or function it is supposed to define remains undefined. This can cause any expressions that reference that variable to be unde-
 fined as well.

Tip You can get on-line help about some error messages by clicking on them and pressing [F1].

\section*{Finding the Source of an Error}

When a Mathcad worksheet contains an expression that is dependent on one or more definitions made earlier in the worksheet, an error on that expression may originate in an earlier definition.

For example, in the figure above, the error appears on the third region, \(f(0)\). However, \(f(x)\) is based on the definition of \(g(x)\). When x is zero, \(g(x)\) is the first region that exhibits the error.

You can try to find the source of an error yourself simply by examining your worksheet to see where the error began, or you can use Mathcad to trace the error back through your worksheet. To find the source of an error using Mathcad:
1. Click on the region showing the error with the right mouse button and choose Trace Error from the pop-up menu. The Trace Error dialog box appears:
\begin{tabular}{|l|l|l|l|l|}
\hline Trace Error & & X \\
\begin{tabular}{|l|l|l|l|}
\hline K< First & Krevious & Next \(>\) & Last >>1 \\
\hline & || Close \\
\hline
\end{tabular}
\end{tabular}
2. Use the buttons in the dialog box to navigate among the regions associated with the region showing the error.

For example, click Back to step back to the previous dependent region.
\[
\begin{aligned}
& \mathbf{g}(\mathbf{x}):=\frac{\mathbf{3}}{\mathbf{x}} \\
& \mathbf{f (\mathbf { x })}:=\mathbf{g}(\mathbf{x}) \cdot \mathbf{1 0} \\
& \mathbf{f}(\mathbf{0})=\boldsymbol{l} \\
& \begin{array}{l}
\text { Found a singularity while evaluating this } \\
\text { expression. You may be dividing by zero. }
\end{array}
\end{aligned}
\]

Or click First to jump to the first region causing the error.
\[
\begin{aligned}
& \begin{array}{l|l|}
\mathbf{g}(\mathbf{x}):=\frac{\mathbf{3}}{\mathbf{x}} & \begin{array}{l}
\text { Found a singulaity while evaluating this } \\
\text { expression. You may be dividing by zero. }
\end{array} \\
\mathbf{f (x)}:=\mathbf{g}(\mathbf{x}) \cdot 10 \\
\mathbf{f}(\mathbf{0})=\mathbf{n}
\end{array} \\
&
\end{aligned}
\]

Tip If you anticipate time-consuming calculations, switch to manual mode as described in "Controlling Calculation" on page 117. When you are ready to recalculate, choose Calculate from the Math menu or click \(=\) on the Standard toolbar turn. Alternatively, turn on automatic mode again.

\section*{Fixing Errors}

Once you have determined which expression caused the error, edit that expression to fix the error or change the variable definitions that led to the error. When you click in the expression and begin editing, Mathcad removes the error message. When you click outside the equation (or in manual calculation mode, when you recalculate), Mathcad recomputes the expression. Once you have fixed the error, Mathcad then recomputes the other expressions affected by the expression you changed.

Note When you define a function, Mathcad does not try to evaluate it until you subsequently use it in the worksheet. If there is an error, the use of the function is marked in error, even though the real problem may lie in the definition of the function itself, possibly much earlier in the worksheet.

\section*{Chapter 9 Operators}

\author{
\(\tau\) Working with Operators \\ \(\tau\) Arithmetic and Boolean Operators \\ \(\tau\) Vector and Matrix Operators \\ \(\tau\) Summations and Products \\ \(\tau\) Derivatives \\ \(\tau\) Integrals \\ Pro \(\quad \tau\) Customizing Operators
}

\section*{Working with Operators}

\section*{Inserting an Operator}

You insert the common arithmetic operators into math expressions in Mathcad using the standard keystrokes, like * and + , that you use in spreadsheet and other applications. Additionally, all of Mathcad's operators can be inserted into math expressions by clicking buttons in the math toolbars. For example, you insert Mathcad's derivative operator by clicking \(\frac{d}{d x}\) on the Calculus toolbar, or by typing ?. Choose Toolbars from the View menu to see any of the math toolbars. See "Operators" on page 298 in the Appendices for a complete list of operators, their keystrokes, and descriptions.

Note In general, you only insert operators into blank space in your worksheet or when you have already clicked in a math region. To use operators in text, first click in the text and choose Math Region from the Insert menu. This creates a math placeholder in the text into which you can insert operators.

Tip You can find out the keyboard shortcut for inserting an operator by hovering the mouse pointer over an operator button in one of the Math toolbars and reading the tooltip that appears.

As introduced in Chapter 4, "Working with Math," when you insert a Mathcad operator into a blank space in your worksheet, a mathematical symbol with empty placeholders appears in the worksheet. The placeholders are for you to enter expressions that are the operands of the operator. The number of empty placeholders varies with the operator: some operators like the factorial operator have only a single placeholder, while others such as the definite integral have several. You must enter a valid math expression in each placeholder of an operator in order to calculate a result.

Here is a very simple example involving Mathcad's addition operator:
1. Click in a blank space in your worksheet and click + on the \(\quad \pm+\) a
Calculator toolbar, or simply type + . The addition operator with two placeholders appears.
2. Enter \(\mathbf{2}\) in the first placeholder.
3. Click in the second placeholder, or press [Tab] to move the cursor, and enter 6.

4. Press \(=\), or click \(=\) on the Evaluation toolbar, to see the
\(2+6=8\) numerical result.

Tip See Chapter 4, "Working with Math," for a discussion of how to build and edit more complex math expressions, including how to use the editing lines to specify what becomes the operand of the next operator you insert or delete.

\section*{Additional Operators}

This chapter focuses on those Mathcad operators you can use to calculate numerical answers. Additional operators in Mathcad include:
- Symbolic operators, which can only be used to generate other math expressions or exact numerical answers. As described in Chapter 14, "Symbolic Calculation," Mathcad's symbolic processor understands virtually any Mathcad expression, but expressions that include the following operators on the Calculus toolbar can only be evaluated symbolically: indefinite integral \(\sqrt{\int}\), two-sided limit \(\lim _{\substack{ \\\rightarrow \mathrm{a}}}\), limit from
 click \(\rightarrow\) on the Evaluation toolbar.
Pro - Programming operators, which you use to link multiple Mathcad expressions via conditional branching, looping constructs, local scoping of variables, and other attributes of traditional programming languages. These operators, available only in Mathcad Professional (click 枵] on the Math toolbar), are introduced in Chapter 15, "Programming."

\section*{Changing the Display of an Operator}

When you insert an operator into a worksheet, it has a certain default appearance. For example, when you type a colon : or click \(:=\) on the Calculator toolbar, Mathcad shows the colon as the definition symbol \(:=\). This is a special symbol used by Mathcad to indicate a variable or function definition.
There may be times when you want to control the appearance of a special symbol such as the definition symbol. For example you may want the definition symbol to look like an ordinary equal sign, but you still want to use it to define variables and functions in your worksheet. Mathcad therefore allows you to change the appearance of some
operators, such as the definition symbol, so that they appear different but behave the same way.

To change the way an operator is displayed throughout a worksheet:
1. Choose Options from the Math menu.
2. Click the Display tab.
3. Use the drop-down options next to each operator to select a display option.
4. Click "OK."

For information on the options available for each operator, click the Help

2. Choose View Multiplication As... \(\Rightarrow \mathbf{X}\) from the pop-up menu.

\section*{Arithmetic and Boolean Operators}

\section*{Arithmetic Operators}

You can freely combine all types of numbers with arithmetic operators you access on the Calculator toolbar. Figure 9-1 shows examples.

\section*{Boolean Operators}

Mathcad includes logical or Boolean operators on the Boolean toolbar. Unlike other operators, the Boolean operators can return only a zero or a one. Despite this, they can be very useful to perform tests on your expressions.
\[
\begin{aligned}
& \mathbf{a}:=\boldsymbol{\pi} \quad \text { Predefined variable } \\
& \text { b := } 123456789012 \\
& \begin{array}{ll}
c:=5-7 i & \text { Complex number } \\
& \text { (could use } 5-7 \mathrm{j} \text { as well) }
\end{array} \\
& \begin{array}{ll}
c:=5-7 i & \begin{array}{l}
\text { Complex number } \\
\text { (could use 5-7j as well) }
\end{array}
\end{array} \\
& \mathrm{a}=3.142 \\
& c=5-7 i \\
& \mathrm{e}=3.5 \mathrm{~m} \\
& a+4 \cdot 10^{-5}=3.142 \\
& \text { a. } \frac{\mathrm{d}}{\mathrm{e}}=4.81 \times 10^{3} \frac{1}{\mathrm{~m}} \\
& \text { a } d \div e=4.81 \times 10^{3} \frac{1}{m} \\
& \text { b } c=6.173 \times 10^{11}-8.642 i \times 10^{11} \\
& b=1.235 \times 10^{11} \\
& \text { • }
\end{aligned}
\]

Figure 9-1: Combining different types of numbers with arithmetic operators.
The following table lists the Boolean operators available on the Boolean toolbar and their meaning. Note that the "Equal to" operator (bold equal sign) is different from the evaluation equal sign you insert by typing \(=\).
Appearance Button Description Keystroke
\(w=z\)
\(x<y\)
\(x>y\)
\(x \leq y\)
\(x \geq y\)
\(w \neq z\)
\(\neg z\)
\(w \wedge z\)
\(w \vee z\)
\(w \oplus z\)

Equal to; displays as bold equal sign.

Less than

Greater than

Less than or equal to

Greater than or equal to

Not equal to

Not

And
[Ctrl] [Shift] 7
[Ctrl] [Shift] 6
[Ctrl] [Shift] 5

Note The Boolean operators return 1 if the expression is true, 0 otherwise. The four operators \(>,<, \leq\), and \(\geq\) cannot take complex numbers because the concepts of greater than and less than lose their meaning in the complex plane.
\begin{tabular}{|c|c|c|c|}
\hline \(10>0=1\) & \(10<0=0\) & \[
3+5=7 \stackrel{\sqrt{v}}{=}
\] & \begin{tabular}{l}
Evaluation equals \\
Boolean equals
\end{tabular} \\
\hline . \(5=\frac{1}{2}=1\) & 14 \# \(10=1\) & \(12345<12345=0\) & \\
\hline \(\frac{1}{3}<\frac{1}{2}=1\) & \(19^{2} \geq 360=1\) & 2000 \# \(2000=0\) & \\
\hline \(1 \vee 1=1\) & \(1 \wedge 0=0\) & \(\neg 1=0\) & \\
\hline \(1 \oplus 1=0\) & \(2 \wedge 0=0\) & \(\neg(1-1)=1\) & \\
\hline
\end{tabular}

Figure 9-2: Using boolean operators.

Tip The comparative boolean operators such as < and > can also be used to compare strings. Mathcad compares two strings character by character by determining the ASCII codes of the characters. For example, the string "Euler" precedes the string "Mach" in ASCII order and so the expression ("Euler"<"Mach") evaluates to 1. To determine the character ordering Mathcad uses in comparing strings, see "ASCII codes" on page 316 in the Appendices.

\section*{Complex Operators}

Mathcad has the following arithmetic operators for working with complex numbers:
Appearance Button Description
Complex conjugate of \(z\). To apply the conjugate operator to an expression, select the expression, then press the double-quote key ("). The conjugate of the complex number \(a+b \cdot i\) is \(a-b \cdot i\).
\(|z|\)
\(|x|\)
The magnitude of the number \(z\).

Figure 9-3 shows some examples of how to use complex numbers in Mathcad.

\section*{Vector and Matrix Operators}

Most of the operators on the Calculator toolbar also have meaning for vectors and matrices. For example, when you use the addition operator to add two arrays of the same size, Mathcad performs the standard element-by-element addition. Mathcad also uses the conventional arithmetic operators for matrix subtraction, matrix multiplication, integer powers, and determinants, among others.

Some of Mathcad's operators have special meanings for vectors and matrices, and many of these are grouped on the Matrix toolbar (click \([:::]\) on the Math toolbar). For example, the multiplication symbol means multiplication when applied to two numbers, but it means dot product when applied to vectors, and matrix multiplication when applied to matrices.
\[
\mathrm{r}:=2 \quad \theta:=\frac{3 \cdot \pi}{4} \quad \text { Type } q[\mathrm{Ctrl}] \mathrm{G} \text { for } \theta
\]

Define complex variables z1 and z2
\[
\begin{array}{ll}
z 1:=\sqrt{-1} & z 2:=r \cdot e^{(i \cdot \theta)} \quad \text { Type } 1 \mathbf{i} \text { for the complex variable } i \\
z 1=i & z 2=-1.414+1.414 i
\end{array}
\]

Now compute with them
\[
\begin{array}{ll}
z 1+z 2=-1.414+2.414 i & \operatorname{Re}(z 2)=-1.414 \\
z 1 \cdot z 2=-1.414-1.414 i & \operatorname{lm}(z 2)=1.414 \\
\overline{z 2}=-1.414-1.414 i & \sin (z 2)=-2.152+0.302 i \\
\frac{z 2}{z 1}=1.414+1.414 i & \sinh (z 2)=-0.302+2.152 i \\
\ln (z 2)=0.693+2.356 i
\end{array}
\]

Decompose z2 in polar form
\[
|z 2|=2 \quad \arg (z 2)=2.356
\]

Figure 9-3: Complex numbers in Mathcad.
The table below describes Mathcad's vector and matrix operations. Operators not listed in this table do not work for vectors and matrices. You can, however, use the vectorize operator (click \(\overrightarrow{\mathrm{f}(\mathrm{M})}\) on the Matrix toolbar) to perform any scalar operation or function element by element on a vector or matrix. See "Doing Calculations in Parallel" on page 201. Figure \(9-4\) shows some ways to use vector and matrix operators.

Figure 9-4: Vector and matrix operations.

In the following table,
- \(\mathbf{A}\) and \(\mathbf{B}\) represent arrays, either vector or matrix.
- \(\mathbf{u}\) and \(\mathbf{v}\) represent vectors.
- \(\mathbf{M}\) represents a square matrix.
- \(u_{i}\) and \(v_{i}\) represent the individual elements of vectors \(\mathbf{u}\) and \(\mathbf{v}\).
- \(z\) represents a scalar.
- \(\quad m\) and \(n\) represent integers.
\begin{tabular}{|c|c|c|}
\hline Appearance & Button & Description \\
\hline A \(\cdot z\) & \(\stackrel{\rightharpoonup}{\mathrm{k}} \cdot \stackrel{\rightharpoonup}{\mathrm{y}}\) & Scalar multiplication. Multiplies each element of A by the scalar \(z\). \\
\hline \(\mathbf{u} \cdot \mathbf{v}\) & \(\stackrel{\rightharpoonup}{\mathrm{s}} \cdot \stackrel{\rightharpoonup}{\mathrm{r}}\) & Dot product. Returns a scalar: \(\Sigma\left\langle u_{i} \cdot v_{i}\right\rangle\). The vectors must have the same number of elements. \\
\hline A \(\cdot \mathbf{B}\) & \(\stackrel{\rightharpoonup}{\mathrm{x}} \cdot \stackrel{\rightharpoonup}{\mathrm{y}}\) & Matrix multiplication. Returns the matrix product of \(\mathbf{A}\) and \(\mathbf{B}\). The number of columns in \(\mathbf{A}\) must match the number of rows in \(\mathbf{B}\). \\
\hline A \(\cdot \mathbf{v}\) & \(\stackrel{\rightharpoonup}{\mathbf{x}} \cdot \stackrel{\rightharpoonup}{\mathbf{y}}\) & Vector/matrix multiplication. Returns the product of \(\mathbf{A}\) and \(\mathbf{v}\). The number of columns in \(\mathbf{A}\) must match the number of rows in \(\mathbf{v}\). \\
\hline \(\frac{\mathbf{A}}{z}\) & / & Scalar division. Divides each element of the array A by the scalar \(z\). \\
\hline \(A \div z\) & & Scalar division. Divides each element of the array A by the scalar \(z\). Type [Ctrl] / to insert. \\
\hline A + B & + & Vector and matrix addition. Adds corresponding elements of \(\mathbf{A}\) and \(\mathbf{B}\). The arrays \(\mathbf{A}\) and \(\mathbf{B}\) must have the same number of rows and columns. \\
\hline \(\mathbf{A}+z\) & \(+\) & Scalar addition. Adds \(z\) to each element of A. \\
\hline A - B & - & Vector and matrix subtraction. Subtracts corresponding elements of \(\mathbf{A}\) and \(\mathbf{B}\). The arrays \(\mathbf{A}\) and \(\mathbf{B}\) must have the same number of rows and columns. \\
\hline A - z & - & Scalar subtraction. Subtracts \(z\) from each element of \(\mathbf{A}\). \\
\hline - \(\mathbf{A}\) & - & Negative of vector or matrix. Returns an array whose elements are the negatives of the elements of \(\mathbf{A}\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{M}^{n}\) & \(x^{Y}\) & \(n\)th power of square matrix \(\mathbf{M}\) (using matrix multiplication). \(n\) must be an integer. \(\mathbf{M}^{-1}\) represents the inverse of \(\mathbf{M}\). Other negative powers are powers of the inverse. Returns a matrix. \\
\hline \(\mid \mathbf{v}\) | & \(|x|\) & Magnitude of vector. Returns \(\sqrt{\mathbf{v} \cdot \overline{\mathbf{v}}}\) where \(\overline{\mathbf{v}}\) is the complex conjugate of \(\mathbf{v}\). \\
\hline \(|\mathbf{M}|\) & & Determinant. M must be a square matrix. \\
\hline \(\mathbf{A}^{\top}\) & \(M^{\top}\) & Transpose. Interchanges row and columns of \(\mathbf{A}\). \\
\hline \(\mathbf{u} \times \mathbf{v}\) & \(\stackrel{\rightharpoonup}{\mathrm{x}} \times \stackrel{\rightharpoonup}{\mathrm{y}}\) & Cross product. \(\mathbf{u}\) and \(\mathbf{v}\) must be three-element vectors; result is another three-element vector. \\
\hline \(\overline{\mathbf{A}}\) & & Complex conjugate. Takes complex conjugate of each element of \(\mathbf{A}\). Insert in math with the doublequote key ("). \\
\hline \(\Sigma \mathrm{v}\) & \(\Sigma \mathrm{v}\) & Vector sum. Sum elements in \(\mathbf{v}\). \\
\hline \(\overrightarrow{\mathbf{A}}\) & \(\overrightarrow{\mathrm{f}(\mathrm{M})}\) & Vectorize. Treat all operations in A element by element. See "Doing Calculations in Parallel" on page 201 for details. \\
\hline \(\mathbf{A}^{\langle n\rangle}\) & \(\mathrm{m}^{\prime \prime}\) & Array superscript. \(n\)th column of array A. Returns a vector. \\
\hline \(v_{n}\) & \(\times_{n}\) & Vector subscript. \(n\)th element of a vector. \\
\hline \(A_{m, n}\) & \(\times_{n}\) & Matrix subscript. m,nth element of a matrix. \\
\hline
\end{tabular}

Tip Operators and functions that expect vectors always expect column vectors. They do not apply to row vectors. To change a row vector into a column vector, use the transpose operator by clicking
\(\square\) on the Matrix toolbar.

\section*{Summations and Products}

The summation operator sums an expression over all values of an index. The iterated product operator works much the same way. It takes the product of an expression over all values of an index.

To create a summation operator in your worksheet:
1. Click in a blank space. Then click \(\sum_{n=1}^{m}\) on the Calculus toolbar. A summation sign with four placeholders appears.

2. Type a variable name in the placeholder to the left of the equal sign. This variable is the index of summation. It is defined only within the summation operator and therefore has no effect on, and is not influenced by, variable definitions outside the summation operator.
3. Type integers, or any expressions that evaluate to integers, in the placeholders to the right of the equal sign and above the sigma.
4. Type the expression you want to sum in the remaining placeholder. Usually, this expression involves the index of summation. If this expression has several terms, first type an apostrophe (') to create parentheses around the placeholder.

Iterated products are similar to summations. Just click \(\prod_{n=1}^{m}\) on the Calculus toolbar and fill in the placeholders as described earlier.

Tip Use the keyboard shortcut [Ctrl][Shift]4 to enter the iterated sum and the shortcut [Ctrl][Shift]3 to enter the iterated product operator.

Figure 9-5 shows some examples of how to use the summation and product operators.
To evaluate multiple summations, place another summation in the final placeholder of the first summation. An example appears at the bottom of Figure 9-5.
\[
\begin{array}{lc}
\hline i:=0 \ldots 20 & x_{i}:=\sin (0.1 \cdot \pi i) \\
\sum_{n=0}^{20} n=210 & \prod_{n=0}^{20}(n+1)=5.109 \times 10^{19} \\
\sum_{n=0}^{20} x_{n}=0 & \sum_{n=0}^{20} x_{n} \cdot n=-63.138 \\
\sum_{n=0}^{20} \sum_{m=0}^{10} n^{m}=2.554 \times 10^{13}
\end{array}
\]

Figure 9-5: Summations and products.
When you use the summation operator shown in Figure 9-5, the summation must be carried out over subsequent integers and in steps of one. Mathcad provides more general versions of these operators that can use any range variable you define as an index of summation. To use these operators:
1. Define a range variable. For example, type i:1,2;10.
2. Click in a blank space. Then click \(\sum_{n}\) on the Calculus toolbar. A summation sign with two placeholders appears.
3. Click on the bottom placeholder and type the name of a range variable.
4. Click on the placeholder to the right of the summation sign and type an expression involving the range variable. If this expression has several terms, first type an apostrophe (') to create parentheses around the placeholder.
5. Press \(=\), or click \(=\) on the Evaluation toolbar, to get a result. \(\sum_{i} i^{2 \underline{2 l}=385}\)

Tip To enter the expression in the example above using fewer keystrokes and mouse clicks, type i\$i^2.

A generalized version of the iterated product also exists. To use it, click \(\prod_{n}\) on the Calculus toolbar. Then fill in the two placeholders.

Tip The operation of summing the elements of a vector is so common that Mathcad provides a special operator for it. The vector sum operator (click \(\Sigma v\) on the Matrix toolbar) sums the
elements of a vector without needing a range variable.

\section*{Variable Upper Limit of Summation}

Mathcad's range summation operator runs through each value of the range variable you place in the bottom placeholder. It is possible, by judicious use of Boolean expressions, to sum only up to a particular value. In Figure 9-6, the term \(i \leq x\) returns the value 1 whenever it is true and 0 whenever it is false. Although the summation operator still sums over each value of the index of summation, those terms for which \(i>x\) are multiplied by 0 and hence do not contribute to the summation.
You can also use the four-placeholder summation and product operators to compute sums and products with a variable upper limit, but note that the upper limit in these operators must be an integer.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\mathrm{i}:=0 . .10\)} \\
\hline \multicolumn{2}{|l|}{\(f(x):=\sum_{i} \mathrm{i}^{2} \cdot(i \leq x)\)} \\
\hline \multicolumn{2}{|l|}{\(k 1:=-4.5\)} \\
\hline f(k1 & \(f(0)=0\) \\
\hline 0 & \\
\hline 0 & \(f(5)=55\) \\
\hline 0 & \\
\hline 0 & \(f(-4)=0\) \\
\hline 0 & \\
\hline 1 & \\
\hline 5 & \\
\hline 14 & \\
\hline 30 & \\
\hline \multicolumn{2}{|l|}{55} \\
\hline
\end{tabular}
\(g(n):=\sum_{j=1}^{n} \sum_{m=1}^{j} m\)
\(\mathbf{g}(7)=84\)
\(g(20)=1.54 \times 10^{3}\)

Figure 9-6: A variable upper limit of summation

\section*{Derivatives}

You can use Mathcad's derivative operators to evaluate the first or higher order derivatives of a function at a particular point.

As an example, here's how to evaluate the first derivative of \(x^{3}\) with respect to \(x\) at the point \(x=2\) :
1. First define the point at which you want to evaluate the derivative. As a shortcut, type x:2.
```

x:= 2

```
2. Click below the definition of \(x\). Then click \(\frac{d}{d x}\) on the Calculus toolbar. A derivative operator appears with two placeholders.

3. Type \(\mathbf{x}\) in the bottom placeholder. You are differentiating with respect to this variable. In the placeholder to the right of the \(\frac{d}{d x}\), enter \(\mathbf{x}^{\wedge} 3\). This is the expression to be differentiated.
```

d

```
4. Press \(=\), or click \(=\) on the Evaluation toolbar, to get the result.

Figure 9-7 shows examples of differentiation in Mathcad.
With Mathcad's derivative algorithm, you can expect the first derivative to be accurate within 7 or 8 significant digits, provided that the value at which you evaluate the derivative is not too close to a singularity of the function. The accuracy of this algorithm tends to decrease by one significant digit for each increase in the order of the derivative (see "Derivatives of Higher Order" on page 135).
\[
\begin{array}{ll}
x:=2 & y:=10 \\
\mathbf{g}(t):=5 \cdot t^{4} & v:=\left[\begin{array}{c}
2 \\
3 \\
-8
\end{array}\right] \quad t:=0 \\
\text { Derivative } & z:=v_{2}
\end{array}
\]
\[
\begin{aligned}
& \frac{d}{d x} x^{5}=80 \quad \frac{d}{d x} x^{5} \cdot y=800 \quad \frac{d}{d y} x^{5} \cdot y=32 \\
& \frac{d}{d t} x^{5} \cdot y=0 \quad \begin{array}{l}
\text { (Since expression does not } \\
\text { involve } t \text { derivative is zero) }
\end{array} \\
& \frac{d}{d z} z^{5}=2.048 \cdot 10^{4} \quad \begin{array}{l}
\text { (evaluating the derivative } \\
\text { at a vector element) }
\end{array}
\end{aligned}
\]

In the above examples, results may vary depending on settings for Displayed Precision in the Result Format dialog box.

Figure 9-7: Examples of Mathcad differentiation.

Note Keep in mind that the result of numerical differentiation is not a function, but a single number: the computed derivative at the indicated value of the differentiation variable. In the previous example, the derivative of \(x^{3}\) is not the expression \(3 x^{2}\) but \(3 x^{2}\) evaluated at \(x=2\). To evaluate derivatives symbolically, see Chapter 14, "Symbolic Calculation."

Although differentiation returns just one number, you can still define one function as the derivative of another. For example:
\[
f(x):=\frac{d}{d x} g(x)
\]

Evaluating \(f(x)\) returns the numerically computed derivative of \(g(x)\) at \(x\).
You can use this technique to evaluate the derivative of a function at many points. An example of this is shown in Figure 9-8.

There are some important things to remember about differentiation in Mathcad:
- The expression to be differentiated can be either real or complex.
- The differentiation variable must be a single variable name. If you want to evaluate the derivative at several different values stored in a vector, you must evaluate the derivative at each individual vector element (see Figure 9-8).
\[
\begin{aligned}
& g(x):=5 \cdot x^{4} \\
& f(x):=\frac{d}{d x} g(x) \\
& i:=-2 \ldots 6 \\
& g(i)= \\
& \hline 80 \\
& \hline 5 \\
& \hline 0 \\
& \hline 5 \\
& \hline 80 \\
& \hline 405 \\
& \hline 1.28 \cdot 10^{3} \\
& \hline 3.125 \cdot 10^{3} \\
& \hline 6.48 \cdot 10^{3} \\
& \hline
\end{aligned} \quad \begin{aligned}
& \mathrm{f}(\mathrm{i})= \\
& \hline 160 \\
& \hline-20 \\
& \hline 0 \\
& \hline 20 \\
& \hline 160 \\
& \hline 540 \\
& \hline 1.28 \cdot 10^{3} \\
& \hline 2.5 \cdot 10^{3} \\
& \hline 4.32 \cdot 10^{3} \\
& \hline
\end{aligned}
\]

Figure 9-8: Evaluating the derivative of a function at several points

Tip You can change the display of the derivative operator to partial derivative symbols. For example you can make \(\frac{d}{d x}\) look like \(\frac{\partial}{\partial x}\). To change the display of a derivative operator to partial derivative symbols, click on it with the mouse button and choose View Derivative As... \(\Rightarrow\) Partial. Or to change the display of all the derivative operators in a worksheet, choose Options from the Math menu, click on the Display tab, and select "Partial Derivative" next to Derivative. See "Changing the Display of an Operator" on page 124 for additional information.

\section*{Derivatives of Higher Order}

To evaluate a higher order derivative, insert the \(n\)th derivative operator using steps similar to those for inserting the derivative operator described above.

As an example, here's how to evaluate the third derivative of \(x^{9}\) with respect to \(x\) at the point \(x=2\) : After defining \(x\) as 2:
1. Click below the definition of \(x\). Then click \(\frac{d^{n}}{d x^{n}}\) on the Calculus toolbar. A derivative operator appears with four placeholders.
2. Click on the bottom-most placeholder and type \(\mathbf{x}\).
3. Click on the expression above and to the right of the previous placeholder and type 3 . This must be an integer between 0 and 5 inclusive. Note that the placeholder in the
 numerator automatically mirrors whatever you've typed.
4. Click on the placeholder to the right of the \(\frac{d}{d x^{3}}\) and type \(\square\) \(\mathbf{x}^{\wedge} 9\). This is the expression to be differentiated.
5. Press \(=\), or click \(=\) on the Evaluation toolbar, to see the \(\frac{d^{3}}{d x^{3}} x^{9}=3.226 \cdot 10^{4}\)
result.
\(\frac{d^{3}}{d x^{3}} x^{9}\)

Note For \(n=1\), the \(n\)th derivative operator gives the same answer as the first-derivative operator discussed on page 133.

\section*{Integrals}

You can use Mathcad's integral operator to numerically evaluate the definite integral of a function over some interval.

As an example, here's how to evaluate the definite integral of \(\sin ^{2}(x)\) from 0 to \(\pi / 4\).
(In Mathcad you enter \(\sin ^{2}(x)\) as \(\sin (x)^{2}\).) Follow these steps:
1. Click in a blank space and click \(\int_{a}^{b}\) on the Calculus toolbar. An integral symbol appears, with placeholders for
 the integrand, limits of integration, and variable of integration.
2. Click on the bottom placeholder and type \(\mathbf{0}\). Click on the top placeholder and type p[Ctrl]G/4. These are the upper and lower limits of integration.
3. Click on the placeholder between the integral sign and the "d." Then type \(\sin (\mathbf{x})^{\wedge} \mathbf{2}\). This is the expression to be integrated.

4. Click on the remaining placeholder and type \(\mathbf{x}\). This is the variable of integration. Then press \(=\), or click \(\square\) on the Evaluation toolbar, to see the result.

Note Some points to keep in mind when you evaluate integrals in Mathcad: 1) The limits of integration must be real. The expression to be integrated can, however, be either real or complex. 2) Except for the integrating variable, all variables in the integrand must have been defined previously in the worksheet. 3) The integrating variable must be a single variable name. 4) If the integrating variable involves units, the upper and lower limits of integration must have the same units.

\section*{Integration Algorithms and AutoSelect}

Mathcad has a number of numerical integration methods at its disposal to calculate the numerical approximation of an integral. When you evaluate an integral, by default Mathcad uses an AutoSelect procedure to choose the most accurate integration method.

If you have Mathcad Professional, you can override AutoSelect and choose from among the available integration algorithms yourself.
Here are the methods from which Mathcad chooses when you evaluate an integral numerically:

\section*{Romberg}

Applies a Romberg integration method that divides the interval of integration into equally spaced subintervals.

\section*{Adaptive}

Applies an adaptive quadrature algorithm in cases where the integrand varies considerably in magnitude over the interval of integration.

\section*{Infinite Limit}

Applies an algorithm designed for improper integral evaluation in cases where either limit of integration is \(\infty\) or \(-\infty\).

\section*{Singular Endpoint}

Applies a routine that avoids use of the interval endpoints in cases where the integrand is undefined at either limit of integration.

Note Although designed to handle a wide range of problems, Mathcad's integration algorithms-like all numerical methods-can have difficulty with ill-behaved integrands. For example, if the expression to be integrated has singularities or discontinuities the solution may still be inaccurate.

Pro With Mathcad Professional, you can override Mathcad's integration AutoSelect as follows:
1. Evaluate the value of the integral as described on page 136, allowing Mathcad to AutoSelect an integration algorithm.
2. Click with the right mouse button on the integral.
3. Click one of the listed integration methods on the pop-up menu. Mathcad recalculates the integral using the method you selected.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|l|}{ AutoSelect } \\
\hline Romberg \\
\hline\(\checkmark\) Adaptive \\
\hline Infinite Limit \\
Singular Endpoint \\
\hline Cut \\
Copy \\
\hline Paste \\
\hline Properties... \\
\hline Disable Evaluation \\
\hline
\end{tabular}

Tip In some cases, you may be able to find an exact numerical value for your integral by using Mathcad's symbolic integration capability. You can also use this capability to evaluate indefinite integrals. See Chapter 14, "Symbolic Calculation."

\section*{Variable Limits of Integration}

Although the result of an integration is a single number, you can always use an integral with a range variable to obtain results for many numbers at once. You might do this, for example, when you set up a variable limit of integration. Figure 9-9 shows how to do this.
Keep in mind that calculations such as those shown in Figure 9-9 require repeatedly evaluating an integral. This may take considerable time depending on the complexity

Figure 9-9: Variable limits of integration.
of the integrals, the length of the interval, and the value of the tolerance parameter TOL (see below).

\section*{Tolerance for Integrals}

Mathcad's numerical integration algorithms make successive estimates of the value of the integral and return a value when the two most recent estimates differ by less than the value of the built-in variable TOL.

As described in "Built-in Variables" on page 98, you can change the value of the tolerance by including definitions for TOL directly in your worksheet. You can also change the tolerance by using the Built-In Variables tab when you choose Options from the Math menu. To see the effect of changing the tolerance, choose Calculate Document from the Math menu to recalculate all the equations in the worksheet.

If Mathcad's approximation to an integral fails to converge to an answer, Mathcad marks the integral with an error message. Failure to converge can occur when the function has singularities or "spikes" in the interval or when the interval is extremely long.

Note When you change the tolerance, keep in mind the trade-off between accuracy and computation time. If you decrease (tighten) the tolerance, Mathcad computes integrals more accurately, but takes longer to return a result. Conversely, if you increase (loosen) the tolerance, Mathcad computes more quickly, but the answers are less accurate.

\section*{Contour Integrals}

You can use Mathcad to evaluate complex contour integrals. To do so, first parametrize the contour and then integrate over the parameter. If the parameter is something other than arc length, you must also include the derivative of the parametrization as a correction factor. Figure \(9-10\) shows an example. Note that the imaginary unit \(i\) used in specifying the path must be typed as \(\mathbf{1 i}\).
\[
\begin{aligned}
& x(t):=2 \cdot \cos (t) \quad y(t):=2 \cdot \sin (t) \\
& \text { Path: } \quad z(t):=x(t)+i \cdot y(t) \\
& \text { Function to integrate : } \quad f(z):=\frac{1}{z} \\
& \int_{0}^{\pi} f(z(t)) \cdot \frac{d}{d t} z(t) d t=3.142 i
\end{aligned}
\]

Figure 9-10: A complex contour integral in Mathcad.

\section*{Multiple integrals}

You can also use Mathcad to evaluate double or multiple integrals. To set up a double integral, for example, click \(\int_{\mathrm{a}}^{\mathrm{b}}\) on the Calculus toolbar twice. Fill in the integrand, the limits, and the integrating variable for each integral. Figure 9-11 shows an example.

Center of mass of triangle described
by: \(0<x<1 \quad\) and \(\quad 0<y<x\)
by: \(0<x<1\) and \(0<y<x\)
and mass density proportional to the distance from the origin.
\(\delta(x, y):=\sqrt{x^{2}+y^{2}}\)
mass \(:=\int_{0}^{1} \int_{0}^{x} \delta(x, y) d y d x \quad\) mass \(=0.383\)
\(\operatorname{xctr}:=\frac{1}{\operatorname{mass}} \cdot \int_{0}^{1} \int_{0}^{x} x \cdot \delta(x, y) d y d x \quad\) xctr \(=0.75\)
yctr \(:=\frac{1}{\operatorname{mass}} \cdot \int_{0}^{1} \int_{0}^{x} y \cdot \delta(x, y) d y d x \quad y c t r=0.398\)
Figure 9-11: Double integrals.

Note Multiple integrals generally take much longer to converge to an answer than single integrals. Wherever possible, use an equivalent single integral in place of a multiple integral.

\section*{Customizing Operators}

Pro This section describes how you can use Mathcad Professional to define and use your own customized operators.
You can think of operators and functions as being fundamentally very similar. A function takes "arguments" and returns a result. An operator, likewise, takes "operands" and returns a result. The differences are largely notational:
- Functions usually have names you can spell, like tan or spline; operators are generally math symbols like " + " or " \(\times\)."
- Arguments to a function are enclosed by parentheses, they come after the function's name, and they're separated by commas. Operands, on the other hand, can appear elsewhere. For example, you'll often see \(f(x, y)\) but you'll rarely see \(x f y\). Similarly, you'll often find " \(x+y\) " but you rarely find " \(+(x, y)\)."

\section*{Defining a Custom Operator}

You define a custom operator just as if you were defining a function that happens to have an unusual looking name:
1. Type the operator name followed by a pair of parentheses. Enter the operands (two at the most) between the parentheses.
2. Enter the definition symbol :=.
3. Type an expression describing what you want the operator to do with its operands on the other side of the definition symbol.

Tip Mathcad provides a collection of math symbols to define custom operators. To access these symbols, open the QuickSheets from the Resource Center (choose Resource Center on the Help menu) and then click on "Extra Math Symbols." You can drag any of these symbols to your worksheet for use in creating a new operator name.

For example, suppose you want to define a new union operator using the symbol " \(\mathbf{U}\) ".
1. Drag the symbol into your worksheet from the "Extra Math Symbols" QuickSheet.
2. Type a left parenthesis followed by two names separated by a comma. Complete this argument list by typing a right parenthesis.
3. Press the colon (:) key, or click \(:=\) on the Calculator toolbar.

You see the definition symbol followed by a placeholder.
4. Type the function definition in the placeholder.

At this point, you've defined a function which behaves in every
 way like the user-defined functions described in Chapter 8, "Calculating in Mathcad." You could, if you wanted to, type " \(\cup(1,2)=\) " in your worksheet and see the result, a vector with the elements 1 and 2 , on the other side of the equal sign.

Tip Once you've defined the new operator, click on "Personal QuickSheets" in the QuickSheets of the Mathcad Resource Center. Then choose Annotate Book from the Book menu and drag or type the definition into the QuickSheet. Then choose Save Section from the Book menu. When you need to use this operator again, just open your Personal QuickSheet and drag it into a new worksheet.

\section*{Using a Custom Operator}

Once you've defined a new operator, you can use it in your calculations just as you would use any of Mathcad's built-in operators. The procedure for using a custom operator depends on whether the operator has one operand (like " -1 " or " 5 !") or two (like " \(1 \div 2\) ").

To use an operator having two operands:
1. Define any variables you want to use as arguments.
2. Click xfy on the Evaluation toolbar. You'll see three empty placeholders.
3. In the middle placeholder, insert the name of the operator. Alternatively, copy the name from the operator definition and paste it
 into the placeholder.
4. In the remaining two placeholders, enter the two operands.

5. Press \(=\), or click \(=\) on the Evaluation toolbar, to get the result.

Tip An alternative way to display an operator having two operands is to click \(\mathrm{x}^{\mathrm{f}} \mathrm{y}\) on the Evaluation toolbar. If you follow the preceding steps using this operator, you'll see a tree-shaped display.

To insert an operator having only one operand, decide first whether you want the operator to appear before the operand, as in " -1 ," or after the operand as in " 5 !." The former is called a prefix operator; the latter is a postfix operator. The example below shows how to use a postfix operator. The steps for creating a prefix operator are almost identical.

The following example shows how to define and use a new logical Not operator. First define an operator "' \((x)\) ". To do so, follow the steps for defining \(\cup(x, y)\) in the previous section, substituting the symbol " " " for " \(\cup\) " and using only one argument instead of two.

Then, to evaluate with the new operator:
1. Click \(x \mathrm{f}\) on the Evaluation toolbar to make a postfix operator.

Otherwise, click \(f x\). In either case, you see two empty placeholders.
2. If you clicked \(x f\), put the operator name in the second placeholder.
 Otherwise put it in the first placeholder. In either case, you may find it more convenient to copy the name from the operator definition and paste it into the placeholder.
3. In the remaining placeholder, place the operand.
4. Press \(=\), or click \(=\) on the Evaluation toolbar, to see the result.

Tip Just as Mathcad can display a custom operator as if it were a function, you can conversely display a function as if it were an operator. For example, many publishers prefer to omit parentheses around the arguments to certain functions such as trigonometric functions, ie. \(\sin \mathrm{x}\) rather than \(\sin (x)\). To create this notation, you can treat the \(\sin\) function as an operator with one operand.

\section*{Chapter 10 Built-in Functions}
\(\tau\) Inserting Built-in Functions
\(\tau \quad\) Core Mathematical Functions
\(\tau\) Discrete Transform Functions
\(\tau\) Vector and Matrix Functions
\(\tau \quad\) Solving and Optimization Functions
\(\tau\) Statistics, Probability, and Data Analysis Functions
\(\tau\) Finance Functions
Pro \(\quad \tau\) Differential Equation Functions
\(\tau\) Miscellaneous Functions

\section*{Inserting Built-in Functions}

Mathcad's set of built-in functions can change depending on whether you've installed additional Extension Packs or whether you've written your own built-in functions. These functions can come from the following sources:

\section*{Built-in Mathcad functions}

This is the core set of functions that come with Mathcad. These functions are introduced in this chapter.

\section*{Pro Mathcad Extension Packs}

An Extension Pack consists of a collection of advanced functions geared to a particular area of application. Documentation for these functions comes with an Electronic Book accompanying the Extension Pack itself. The list of available Extension Packs currently includes collections for signal processing, image processing, steam tables, numerical analysis, and wavelets. To find out more about these and other Extension Packs, contact MathSoft or your local distributor, or visit MathSoft's Web site at:
http://www.mathsoft.com/
or refer to Mathcad Add-on Products in the on-line Resource Center (choose Resource Center from the Help menu). After you purchase and install an Extension Pack, the additional functions appear in the Insert Function dialog box.

\section*{Pro Built-In functions you write yourself in C}

If you have Mathcad Professional and a supported 32-bit C/C++ compiler, you can write your own built-in functions. For details see the Adobe Acrobat file CREATING A USER DLL.PDF included on your installation CD.

\section*{Insert Function Feature}

To see a list of built-in functions available with your copy of Mathcad, arranged alphabetically or by category, or to insert a function together with placeholders for its arguments, use the Insert Function dialog box:
1. Click in a blank area of your worksheet or on a placeholder.
2. Choose Function from the

Insert menu or click \(f(x)\) on the Standard toolbar. Mathcad opens the Insert Function dialog box.
3. Click a Function Category or click "All" to see all available functions sorted alphabetically.

4. Double-click the name of the function you want to insert from the right-hand scrolling list, or click "Insert." The function and placeholders for its arguments are inserted into the worksheet.
5. Fill in the placeholders.
\(\mathrm{a} \cos (.866)\)
To apply a function to an expression you have already entered, place the expression between the two editing lines and follow the steps given above. See Chapter 4, "Working with Math," for information about using the editing lines.

You can also simply type the name of a built-in function directly into a math placeholder or in a math region.

Tip Although built-in function names are not font sensitive, they are case sensitive. If you do not use the Insert Function dialog box to insert a function name, you must enter the name of a built-in function in a math region exactly as it appears in the tables throughout this chapter: uppercase, lowercase, or mixed, as indicated.

Note Throughout this chapter and in the Insert Function dialog box, brackets, [], around an argument indicate that the argument is optional.

\section*{Assistance for Using Built-in Functions}

Mathcad includes several sources of assistance for using built-in functions:
- The Insert Function dialog box gives you a convenient way to look up a function by category, to see the arguments required, and to see a brief function synopsis. When you click "Help" in the Insert Function dialog box, you immediately open the Help topic associated with the currently selected function.
- The on-line Help system (choose Mathcad Help from the Help menu, or click on the Standard toolbar) provides both overview and detailed help topics on functions and function categories.
- The Resource Center (choose Resource Center from the Help menu, or click on the Standard toolbar) includes a range of Mathcad files to help you use built-in functions to solve problems including Tutorials and QuickSheet examples.
- The Mathcad Reference Manual, which provides details on the syntax, arguments, algorithms, and behavior of all of Mathcad's built-in functions, operators, and keywords. The Reference Manual is provided as an Adobe Acrobat file on all Mathcad installation media. Mathcad Professional includes a printed copy.

\section*{Core Mathematical Functions}

\section*{Trigonometric Functions}
angle \((x, y)\) Returns the angle (in radians) from the positive \(x\)-axis to point \((x, y)\) in the \(x-y\) plane. The result is between 0 and \(2 \pi\).
\(\cos (z) \quad\) Returns the cosine of \(z\). In a right triangle, this is the ratio of the length of the side adjacent to the angle over the length of the hypotenuse.
\(\cot (z) \quad\) Returns \(1 / \tan (z)\), the cotangent of \(z \cdot z\) should not be a multiple of \(\pi\).
\(\csc (z) \quad\) Returns \(1 / \sin (z)\), the cosecant of \(z \cdot z\) should not be a multiple of \(\pi\).
\(\sec (z) \quad\) Returns \(1 / \cos (z)\), the secant of \(z . z\) should not be an odd multiple of \(\pi / 2\).
\(\sin (z) \quad\) Returns the sine of \(z\). In a right triangle, this is the ratio of the length of the side opposite the angle over the length of the hypotenuse.
\(\tan (z) \quad\) Returns \(\sin (z) / \cos (z)\), the tangent of \(z\). In a right triangle, this is the ratio of the length of the side opposite the angle over the length of the side adjacent to the angle. \(z\) should not be an odd multiple of \(\pi / 2\).

Mathcad's trig functions and their inverses accept any scalar argument: real, complex, or imaginary. They also return complex numbers wherever appropriate.

Note Trigonometric functions expect their arguments in radians. To pass an argument in degrees, use the built-in unit \(d e g\). For example, to evaluate the sine of 45 degrees, type \(\boldsymbol{\operatorname { s i n }}(45 * \mathrm{deg})\).

Tip In Mathcad you enter powers of trig functions such \(\sin ^{2}(x)\) as \(\sin (x)^{2}\). Alternatively, you can use the prefix operator in Mathcad Professional, described on "Customizing Operators" on page 140. For example, to type \(\sin ^{2}(x)\). Click f x on the Evaluation toolbar, enter \(\boldsymbol{\operatorname { s i n }}^{2}\) in the left-hand placeholder, enter (\(\mathbf{x}\)) in the right-hand placeholder.
\(\operatorname{acos}(z) \quad\) Returns the angle (in radians) whose cosine is \(z\).
\(\operatorname{acot}(z) \quad\) Returns the angle (in radians) whose cotangent is \(z\).
\(\operatorname{acsc}(z) \quad\) Returns the angle (in radians) whose cosecant is \(z\).
\(\operatorname{asec}(z) \quad\) Returns the angle (in radians) whose secant is \(z\).
\(\operatorname{asin}(z) \quad\) Returns the angle (in radians) whose sine is \(z\).
\(\operatorname{atan}(z) \quad\) Returns the angle (in radians) whose tangent is \(z\).
\(\operatorname{atan} 2(x, y) \quad\) Returns the angle (in radians) from the positive \(x\)-axis to point \((x, y)\) in the \(x-y\) plane.

With the exception of atan 2 and acot, the inverse trigonometric functions can take either a real or complex argument and return an angle in radians between \(-\pi / 2\) and \(\pi / 2\), or the principal value in the case of a complex argument. atan 2 takes only real arguments and returns a result between \(-\pi\) and \(\pi\), acot returns an angle in radians between 0 and \(\pi\) for a real argument or the principal value in the case of a complex argument.

To convert a result into degrees, either divide the result by the built-in unit deg or type deg in the units placeholder as described in "Displaying Units of Results" on page 113.

\section*{Hyperbolic Functions}
\begin{tabular}{ll}
\(\operatorname{acosh}(z)\) & Returns the number whose hyperbolic cosine is \(z\). \\
\(\operatorname{acoth}(z)\) & Returns the number whose hyperbolic cotangent is \(z\). \\
\(\operatorname{acsch}(z)\) & Returns the number whose hyperbolic cosecant is \(z\). \\
\(\operatorname{asech}(z)\) & Returns the number whose hyperbolic secant is \(z\). \\
\(\operatorname{asinh}(z)\) & Returns the number whose hyperbolic sine is \(z\). \\
\(\operatorname{atanh}(z)\) & Returns the number whose hyperbolic tangent is \(z\). \\
\(\cosh (z)\) & Returns the hyperbolic cosine of \(z\). \\
\(\operatorname{coth}(z)\) & Returns \(1 / \tanh (z)\), the hyperbolic cotangent of \(z\). \\
\(\operatorname{csch}(z)\) & Returns \(1 / \sinh (z)\), the hyperbolic cosecant of \(z\). \\
\(\operatorname{sech}(z)\) & Returns \(1 / \cosh (z)\), the hyperbolic secant of \(z\). \\
\(\sinh (z)\) & Returns the hyperbolic sine of \(z\). \\
\(\tanh (z)\) & Returns \(\sinh (z) / \cosh (z)\), the hyperbolic tangent of \(z\).
\end{tabular}

\section*{Log and Exponential Functions}
\(\exp (z) \quad\) Returns \(e\) raised to the power \(z\).
\(\ln (z) \quad\) Returns the natural \(\log\) of \(z \cdot(z \neq 0)\).
\(\log (z, b) \quad\) Returns the base \(b\) logarithm of \(z .(z \neq 0, b \neq 0)\). If \(b\) is omitted, returns the base 10 logarithm.

Mathcad's exponential and logarithmic functions can accept and return complex arguments. In returns the principal branch of the natural log function.

\section*{Bessel Functions}

Pro \(\quad \operatorname{Ai}(x) \quad\) Returns the value of the Airy function of the first kind. \(x\) must be real.
Pro bei \((n, x) \quad\) Returns the value of the imaginary Bessel Kelvin function of order \(n\).
Pro \(\quad \operatorname{ber}(n, x) \quad\) Returns the value of the real Bessel Kelvin function of order \(n\).
Pro \(\quad \operatorname{Bi}(x) \quad\) Returns the value of the Airy function of the second kind. \(x\) must be real.
IO (\(x\)) Returns the value of the zeroth order modified Bessel function of the first kind. \(x\) must be real.

I1 (\(x\)) Returns the value of the first order modified Bessel function of the first kind. \(x\) must be real.
\(\operatorname{In}(m, x) \quad\) Returns the value of the \(m\) th order modified Bessel function of the first kind. \(x\) must be real, \(m\) is an integer, \(0 \leq m \leq 100\).
\(\mathrm{J} 0(x) \quad\) Returns the value of the zeroth order Bessel function of the first kind. \(x\) must be real.

J1 (\(x\)) Returns the value of the first order Bessel function of the first kind. \(x\) must be real.
\(\mathrm{Jn}(m, x) \quad\) Returns the value of the \(m\) th order Bessel function of the first kind. \(x\) real, \(0 \leq m \leq 100\).

Pro
\(\mathrm{js}(n, x)\)
Returns the value of the spherical Bessel function of the first kind, of integer order \(n . x>0, n \geq-200\).
\(\mathrm{K} 0(x) \quad\) Returns the value of the zeroth order modified Bessel function of the second kind. \(x\) real, \(x>0\).

K1 (\(x\)) Returns the value of the first order modified Bessel function of the second kind. \(x\) real, \(x>0\).
\(\mathrm{Kn}(m, x) \quad\) Returns the value of the \(m\) th order modified Bessel function of the second kind. \(x>0, m\) is an integer, \(0 \leq m \leq 100\).
\(\mathrm{Y} 0(x) \quad\) Returns the value of the zeroth order Bessel function of the second kind. \(x\) real, \(x>0\).

Y 1 \((x) \quad\) Returns the value of the first order Bessel function of the second kind. \(x\) real, \(x>0\).
\(\mathrm{Yn}(m, x) \quad\) Returns the value of the \(m\) th order Bessel function of the second kind. \(x>0, m\) is an integer, \(0 \leq m \leq 100\).

Pro \(\quad \mathrm{ys}(n, x) \quad\) Returns the value of the spherical Bessel function of the second kind, of integer order \(n\). \(x\) must be real. \(x>0, n \geq-200\).

\section*{Complex Numbers}
\(\arg (z) \quad\) Returns the angle in complex plane from real axis to \(z\). The result is between \(-\pi\) and \(\pi\) radians.
\(\operatorname{csgn}(z) \quad\) Returns 0 if \(z=0,1\) if \(\operatorname{Re}(z)>0\) or \((\operatorname{Re}(z)=0\) and \(\operatorname{Im}(z)>0)\), -1 otherwise.
\(\operatorname{Im}(z) \quad\) Returns the imaginary part of a number \(z\).
\(\operatorname{Re}(z) \quad\) Returns the real part of a number \(z\).
\(\operatorname{signum}(z) \quad\) Returns 1 if \(z=0, z /|z|\) otherwise.

\section*{Piecew ise Continuous Functions}
\(\operatorname{if}(c o n d, t v l, f v l) \quad\) Returns \(t v l\) if cond is nonzero (true), \(f v l\) if cond is zero (false). cond is usually a Boolean expression.
\(\delta(m, n) \quad\) Kronecker's delta function. Returns 1 if \(m=n, 0\) otherwise. Both arguments must be integers.
\(\varepsilon(i, j, k) \quad\) Completely antisymmetric tensor of rank \(3 . i, j\), and \(k\) must be integers between 0 and 2 inclusive (or between ORIGIN and ORIGIN +2 inclusive if ORIGIN \(\neq 0\)). Result is 0 if any two are the same, 1 for even permutations, -1 for odd permutations.
\(\Phi(x) \quad\) Heaviside step function. Returns 1 if \(x \geq 0,0\) otherwise. \(x\) must be real.
\(\operatorname{sign}(x) \quad\) Returns 0 if \(x=0,1\) if \(x>0\), and -1 otherwise. \(x\) must be real.

Note The if function is generally useful for branching in calculation: choosing one of two values based on a condition. Although the first argument of the if function, cond, can be any expression at all, it is usually a Boolean expression that relates two math expressions with a Boolean operator. See "Arithmetic and Boolean Operators" on page 125.

\section*{Number Theory/ Combinatorics}
\(\operatorname{combin}(n, k) \quad\) Returns the number of combinations: the number of subsets of size \(k\) that can be formed from \(n\) objects. \(n\) and \(k\) integers, \(0 \leq k \leq n\).
\(\operatorname{gcd}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots)\) Returns the greatest common divisor: the largest integer that evenly divides all the elements in arrays or scalars \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\) The elements of \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\) must be non-negative integers.
\(\operatorname{lcm}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots)\) Returns the least common multiple: the smallest positive integer that is a multiple of all the elements in the arrays or scalars \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\) The elements of \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\) must be non-negative integers.
\(\bmod (x, y) \quad\) Remainder on dividing real number \(x\) by \(y(y \neq 0)\). Result has same \(\operatorname{sign}\) as \(x\).
permut \((n, k) \quad\) Returns the number of permutations: the number of ways of ordering \(n\) distinct objects taken \(k\) at a time. \(n\) and \(k\) integers, \(0 \leq k \leq n\).

\section*{Truncation and Round-Off Functions}
\begin{tabular}{ll}
\(\operatorname{ceil}(x)\) & Least integer \(\geq x(x\) real \()\). \\
\(\operatorname{floor}(x)\) & Greatest integer \(\leq x(x\) real). \\
\(\operatorname{round}(x, n)\) & \begin{tabular}{l}
Rounds real number \(x\) to \(n\) decimal places. If \(n<0, x\) is rounded to \\
the left of the decimal point. If \(n\) is omitted, returns \(x\) rounded to the \\
nearest integer.
\end{tabular} \\
\(\operatorname{trunc}(x)\) & \begin{tabular}{l}
Returns the integer part of a real number \(x\) by removing the \\
fractional part.
\end{tabular}
\end{tabular}

\section*{Special Functions}
\[
\begin{aligned}
& \operatorname{erf}(x) \quad \text { Returns the value of the error function at } x . x \text { must be real. } \\
& \operatorname{erfc}(x) \quad \text { Returns the value of the complementary error function at } x \text { : } \\
& 1-\operatorname{erf}(x) . x \text { real. } \\
& \text { Pro fhyper }(a, b, c, x) \text { Returns the value of the Gauss hypergeometric function at the point } \\
& x \text { given parameters } a, b, c .-1<x<1 \text {. } \\
& \Gamma(z) \quad \text { Returns the value of the classical Euler gamma function at } z \text {, a real } \\
& \text { or complex number. Undefined for } z=0,-1,-2, \ldots \\
& \Gamma(x, y) \quad \text { Returns the value of the extended Euler gamma function for real } \\
& \text { numbers } x>0, y \geq 0 \text {. } \\
& \text { Pro } \quad \operatorname{Her}(n, x) \quad \text { Returns the value of the Hermite polynomial of degree } n \text { at } x \text {. } \\
& \text { Pro } \quad \operatorname{ibeta}(a, x, y) \quad \text { Returns the value of the incomplete beta function of } x \text { and } y \text { with } \\
& \text { parameter } a .0 \leq a \leq 1
\end{aligned}
\]

Pro \(\operatorname{Jac}(n, a, b, x) \quad\) Returns the value of the Jacobi polynomial of degree \(n\) at \(x\) with parameters \(a\) and \(b\).

Pro \(\quad \operatorname{Lag}(n, x) \quad\) Returns the value of the Laguerre polynomial of degree \(n\) at \(x\).
Pro \(\quad \operatorname{Leg}(n, x) \quad\) Returns the value of the Legendre polynomial of degree \(n\) at \(x\).
Pro mhyper \((a, b, x)\)
Returns the value of the confluent hypergeometric function at the point \(x\) given parameters \(a\) and \(b\).

Pro \(\operatorname{Tcheb}(n, x) \quad\) Returns the value of the Chebyshev polynomial of degree \(n\), of the first kind, at \(x\).

Pro \(\operatorname{Ucheb}(n, x) \quad\) Returns the value of the Chebyshev polynomial of degree \(n\), of the second kind, at \(x\).

\section*{Discrete Transform Functions}

Mathcad contains a variety of functions for performing discrete transforms. All of these functions require vectors as arguments.

Note When you define a vector \(\mathbf{v}\) for use with Fourier or wavelet transforms, Mathcad indexes the vector beginning at 0 , by default, unless you have set the value of the built-in variable ORIGIN to a value other than 0 (see page 98). If you do not define \(v_{0}\), Mathcad automatically sets it to zero. This can distort the results of the transform functions.

\section*{Fourier Transforms on Real and Complex Data}
\(\operatorname{cfft}(\mathbf{A)} \quad\) Returns the fast Fourier transform of a vector or matrix of complex data representing equally spaced measurements in the time domain. The array returned is the same size as its argument.
\(\operatorname{icfft}(\mathbf{A)} \quad\) Returns the inverse Fourier transform of a vector or matrix of data corresponding to cfft. Returns an array of the same size as its argument.
\(\mathrm{fft}(\mathbf{v}) \quad\) Returns the fast discrete Fourier transform of a \(2^{m}\) element vector of real data representing measurements at regular intervals in the time domain. \(m>2\).
ifft(v) Returns the inverse Fourier transform of a vector of data corresponding to \(f f t\). Takes a vector of size \(1+2^{n-1}\), and returns a real vector of size \(2^{n} . n>2\).

CFFT(A) Returns a transform identical to \(c f f t\), except using a different normalizing factor and sign convention.

ICFFT(A) Returns the inverse Fourier transform of a vector or matrix of data corresponding to CFFT. Returns an array of the same size as its argument.

FFT(v) Returns a transform identical to fft, except using a different normalizing factor and sign convention.

IFFT(v) Returns the inverse Fourier transform of a vector of data corresponding to \(F F T\). Takes a vector of size \(1+2^{n-1}\), and returns a real vector of size \(2^{n}\).

Mathcad comes with two types of Fourier transform pairs: fft / ifft (or the alternative FFT/IFFT) and \(c f f t / i c f f t\) (or the alternative CFFT/ICFFT). These functions are discrete: they apply to and return vectors and matrices only. You cannot use them with other functions.

Use the fft and ifft (or FFT /IFFT) functions if:
- the data values in the time domain are real, and
- the data vector has \(2^{m}\) elements.

Use the \(c f f t\) and icfft (or CFFT / ICFFT) functions in all other cases.
Be sure to use these functions in pairs. For example, if you used CFFT to go from the time domain to the frequency domain, you must use ICFFT to transform back to the time domain. See Figure 10-1 for an example.

Figure 10-1: Use of fast Fourier transforms in Mathcad. Since the random number generator gives different numbers every time, you may not be able to recreate this example exactly as you see it.

Note Different sources use different conventions concerning the initial factor of the Fourier transform and whether to conjugate the results of either the transform or the inverse transform. The functions \(f f t\), ifft, \(c f f t\), and \(i c f f t\) use \(1 / \sqrt{N}\) as a normalizing factor and a positive exponent in going from the time to the frequency domain. The functions FFT, IFFT, CFFT, and ICFFT use \(1 / N\) as a normalizing factor and a negative exponent in going from the time to the frequency domain.

\section*{Wavelet Transforms}

Pro wave(v) Returns the discrete wavelet transform of \(\mathbf{v}\), a \(2^{m}\) element vector containing real data, using the Daubechies four-coefficient wavelet filter. The vector returned is the same size as \(\mathbf{v}\).

Pro iwave(v) Returns the inverse discrete wavelet transform of \(\mathbf{v}\), a \(2^{m}\) element vector containing real data. The vector returned is the same size as \(\mathbf{v}\).

\section*{Vector and Matrix Functions}

Note that functions that expect vectors always expect column vectors rather than row vectors. To change a row vector into a column vector, use the transpose operator (click \(\mathrm{M}^{\top}\) on the Matrix toolbar).

\section*{Size and Scope of an Array}
\(\operatorname{cols}(\mathbf{A}) \quad\) Returns the number of columns in array \(\mathbf{A}\). If \(\mathbf{A}\) is a scalar, returns 0 .
\(\operatorname{last}(\mathbf{v}) \quad\) Returns the index of the last element in vector \(\mathbf{v}\).
length(v) Returns the number of elements in vector \(\mathbf{v}\).
\(\max (\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots)\) Returns the largest of the strings, arrays, or scalars \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\) If any value is complex, returns the largest real part plus \(i\) times the largest imaginary part.
\(\min (\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots)\) Returns the smallest of the strings, arrays, or scalars \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\) If any value is complex, returns the smallest real part plus \(i\) times the smallest imaginary part.
\(\operatorname{rows}(\mathbf{A}) \quad\) Returns the number of rows in array \(\mathbf{A}\). If \(\mathbf{A}\) is a scalar, returns 0.

\section*{Special Types of Matrices}

Pro \(\quad \operatorname{diag}(\mathbf{v}) \quad\) Returns a diagonal matrix containing on its diagonal the elements of \(\mathbf{v}\).

Pro \(\operatorname{geninv(A)\quad Returns~the~left~inverse~matrix~} \mathbf{L}\) of \(\mathbf{A}\), such that \(\mathbf{L} \cdot \mathbf{A}=\mathbf{I}\), where \(\mathbf{I}\) is the identity matrix having the same number of columns as \(\mathbf{A}\). Matrix \(\mathbf{A}\) is an \(m \times n\) real-valued matrix, where \(m \geq n\).
identity \((n) \quad\) Returns an \(n \times n\) matrix of 0's with 1 's on the diagonal.
\(\operatorname{rref}(\mathbf{A}) \quad\) Returns the reduced-row echelon form of \(\mathbf{A}\).
\[
\begin{aligned}
\mathrm{v}:=\left[\begin{array}{l}
2 \\
8 \\
9 \\
7
\end{array}\right] \quad \operatorname{diag}(\mathrm{v})=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 9 & 0 \\
0 & 0 & 0 & 7
\end{array}\right] \quad \begin{array}{l}
\text { <- A diagonal matrix } \\
\text { formed from a vector. } \\
\text { (Mathcad Professional }
\end{array} \\
\mathrm{A}:=\left(\begin{array}{lll}
2 & 4 & 6 \\
4 & 5 & 6 \\
2 & 7 & 12
\end{array}\right) \quad \operatorname{rref}(\mathrm{A})=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) \\
\mathrm{B}:=\left[\begin{array}{c}
\text { - The reduced-row echelon } \\
\text { form of a matrix. }
\end{array}\right. \\
\left.\begin{array}{c}
5+2.54-3 i \\
3+(4+.8) \cdot \mathrm{i}
\end{array}\right] \quad \operatorname{lm}(\mathrm{B})=\left(\begin{array}{c}
2 \\
-3 \\
4.8
\end{array}\right)
\end{aligned}
\]

Figure 10-2: Functions for transforming arrays.

\section*{Special Characteristics of a Matrix}

Pro cond1(M) Returns the condition number of the matrix \(\mathbf{M}\) based on the \(L_{1}\) norm.
Pro cond2(M) Returns the condition number of the matrix \(\mathbf{M}\) based on the \(L_{2}\) norm.
Pro conde \((\mathbf{M}) \quad\) Returns the condition number of the matrix \(\mathbf{M}\) based on the Euclidean norm.

Pro condi(M) Returns the condition number of the matrix \(\mathbf{M}\) based on the infinity norm.

Pro \(\quad \operatorname{norm1}(\mathbf{M}) \quad\) Returns the \(L_{1}\) norm of the matrix \(\mathbf{M}\).
Pro \(\quad\) norm2(M) \(\quad\) Returns the \(L_{2}\) norm of the matrix \(\mathbf{M}\).
Pro norme(M) Returns the Euclidean norm of the matrix \(\mathbf{M}\).
Pro \(\quad\) normi(\(\mathbf{M}\)) Returns the infinity norm of the matrix \(\mathbf{M}\).
\(\operatorname{rank}(\mathbf{A}) \quad\) Returns the rank of the real-valued matrix \(\mathbf{A}\).
\(\operatorname{tr}(\mathbf{M}) \quad\) Returns the sum of the diagonal elements, known as the trace, of \(\mathbf{M}\).

\section*{Forming New Matrices}
\[
\begin{array}{ll}
\text { augment }(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots) \quad & \text { Returns an array formed by placing } \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots \text { left } \\
& \text { to right. } \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots \text { are arrays having the same } \\
& \text { number of rows or they are scalars and single-row } \\
& \text { arrays. }
\end{array}
\]
\begin{tabular}{|c|c|}
\hline CreateMesh(F, [[s0], [sl], [t0], [t1], [sgrid], [tgrid], [fmap]]) & Returns a nested array of three matrices representing the \(x\)-, \(y\)-, and \(z\)-coordinates of a parametric surface defined by the function, F. F is a three-element vector-valued function of two variables. \(s 0, s 1, t 0\), and \(t 1\) are the variable limits, and sgrid and tgrid are the number of gridpoints. All must be real scalars. fmap is a three-element vector-valued mapping function. All arguments but the function argument are optional. \\
\hline \[
\begin{gathered}
\text { CreateSpace }(\mathbf{F},[[t 0],[t]], \\
[\text { tgrid }],[\mathbf{f m a p}]])
\end{gathered}
\] & Returns a nested array of three vectors representing the \(x\)-, \(y\)-, and \(z\)-coordinates of a space curve defined by the function, \(\mathbf{F}\). \(\mathbf{F}\) is a threeelement vector-valued function of one variable. \(t 0\) and \(t l\) are the variable limits, and tgrid is the number of gridpoints. All must be real scalars. fmap is a three-element vector-valued mapping function. All arguments but the function argument are optional. \\
\hline \(\operatorname{matrix}(m, n, f)\) & Creates a matrix in which the \(i, j\) th element contains \(f(i, j)\) where \(i=0,1, \ldots, m-1\) and \(j=0,1, \ldots, n-1\). Function \(f\) must have been defined previously in the worksheet. \\
\hline \(\operatorname{stack}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\). & Returns an array formed by placing \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\) top to bottom. A, B, C, \(\ldots\) are arrays having the same number of columns or they are scalars and vectors. \\
\hline submatrix (\(\mathbf{A}, i r, j r, i c, j c)\) & Returns a submatrix of A consisting of all elements contained in rows ir through \(j r\) and columns ic through \(j c\). Make sure \(i r \leq j r\) and \(i c \leq j c\) or the order of rows or columns will be reversed. \\
\hline
\end{tabular}

Note For the functions CreateMesh and CreateSpace, instead of using a vector-valued function, F, you can use three functions, \(\mathbf{f 1}, \mathbf{f} \mathbf{2}\), and \(\mathbf{f 3}\), representing the \(x\)-, \(y\)-, and \(z\)-coordinates of the parametric surface or space curve. Your call to one of these functions might look something like this: CreateMesh \((f 1, f 2, f 3)\).
Alternatively, for CreateMesh, you can use a single function of two variables such as
\(F(x, y)=\frac{\sin (x)+\cos (y)}{2}\).
Figure 10-3 shows examples of using stack and augment.
\[
M 1:=\operatorname{identity}(3) \quad M 2:=\left[\begin{array}{cc}
1.01 & 2.04 \\
.98 & 1.96 \\
.97 & 2.03
\end{array}\right] \quad M 3:=\left[\begin{array}{ll}
30 & 50 \\
20 & 10 \\
60 & 80
\end{array}\right]
\]

Use "augment" to place one matrix beside another.
\(\operatorname{augment}(\mathrm{M} 1, \mathrm{M} 2)=\left[\begin{array}{lllll}1 & 0 & 0 & 1.01 & 2.04 \\ 0 & 1 & 0 & 0.98 & 1.96 \\ 0 & 0 & 1 & 0.97 & 2.03\end{array}\right]\)
\(\operatorname{stack}(2,5,9,12.3)=\left[\begin{array}{c}2 \\ 5 \\ 9 \\ 12.3\end{array}\right]\)
Figure 10-3: Joining matrices with the augment and stack functions.

\section*{Eigenvalues and Eigenvectors}
eigenvals(M) Returns a vector containing the eigenvalues of the square matrix \(\mathbf{M}\).
eigenvec \((\mathbf{M}, z) \quad\) Returns a vector containing the normalized eigenvector corresponding to the eigenvalue \(z\) of the square matrix \(\mathbf{M}\).

Pro eigenvecs(M) Returns a matrix containing normalized eigenvectors corresponding to the eigenvalues of the square matrix \(\mathbf{M}\). The \(n\)th column of the matrix returned is an eigenvector corresponding to the \(n\)th eigenvalue returned by eigenvals.

Pro genvals(M, N) Returns a vector \(\mathbf{v}\) of computed eigenvalues each of which satisfies the generalized eigenvalue problem \(\mathbf{M} \cdot \mathbf{x}=v_{i} \cdot \mathbf{N} \cdot \mathbf{x}\). Vector \(\mathbf{x}\) is the corresponding eigenvector. \(\mathbf{M}\) and \(\mathbf{N}\) are real square matrices having the same number of columns.

Pro genvecs(\(\mathbf{M}, \mathbf{N}\)) Returns a matrix containing the normalized eigenvectors corresponding to the eigenvalues in \(\mathbf{v}\), the vector returned by genvals. The \(n\)th column of this matrix is the eigenvector \(\mathbf{x}\) satisfying the generalized eigenvalue problem \(\mathbf{M} \cdot \mathbf{x}=v_{n} \cdot \mathbf{N} \cdot \mathbf{x}\). Matrices \(\mathbf{M}\) and \(\mathbf{N}\) are real-valued square matrices having the same number of columns.

Figure 10-4 shows how some of these functions are used.
\[
A:=\left(\begin{array}{ccc}
1 & -2 & 6 \\
3 & 0 & 10 \\
2 & 5 & -1
\end{array}\right) \quad c:=\operatorname{eigenvals}(A) \quad c=\left(\begin{array}{c}
0.105 \\
7.497 \\
-7.602
\end{array}\right)
\]

To find all the corresponding eigenvectors at once:
(Mathcad Professional)
\[
\mathrm{v}:=\text { eigenvecs (A) } \quad \mathrm{v}=\left(\begin{array}{clc}
0.873 & 0.244 & -0.554 \\
-0.408 & 0.81 & -0.574 \\
-0.266 & 0.534 & 0.603
\end{array}\right)
\]

The first column of \(v\) is the eigenvector corresponding to 0.105 , the first element of \(c\). Similarly, the second column of \(v\) is the eigenvector corresponding to 7.497, the second element of \(c\).

Figure 10-4: Eigenvalues and eigenvectors in Mathcad.

\section*{Solving a Linear System of Equations}

Pro lsolve (M, v) Returns a solution vector \(\mathbf{x}\) such that \(\mathbf{M} \cdot \mathbf{x}=\mathbf{v} \cdot \mathbf{v}\) is a vector having the same number of rows as the matrix \(\mathbf{M}\).

With Mathcad Professional, you can use the lsolve function to solve a linear system of equations whose coefficients are arranged in a matrix \(\mathbf{M}\).

Note The argument \(\mathbf{M}\) for lsolve must be a matrix that is neither singular nor nearly singular. An alternative to lsolve is to solve a linear system by using matrix inversion. See "Solving and Optimization Functions" on page 157 for additional solving functions.

\section*{Decomposition}
\begin{tabular}{|c|c|c|}
\hline Pro & cholesky(M) & Returns a lower triangular matrix \(\mathbf{L}\) such that \(\mathbf{L} \cdot \mathbf{L}^{\mathbf{T}}=\mathbf{M}\). This uses only the upper triangular part of \(\mathbf{M}\). The upper triangular of \(\mathbf{M}\), when reflected about the diagonal, must form a positive definite matrix. \\
\hline Pro & \(\operatorname{lu}(\mathbf{M})\) & Returns a single matrix containing the three square matrices \(\mathbf{P}, \mathbf{L}\), and \(\mathbf{U}\), all having the same size as \(\mathbf{M}\) and joined together side by side, in that order. These three matrices satisfy the equation \(\mathbf{P} \cdot \mathbf{M}=\mathbf{L} \cdot \mathbf{U}\), where \(\mathbf{L}\) and \(\mathbf{U}\) are lower and upper triangular respectively. \\
\hline Pro & \(\mathrm{qr}(\mathbf{A})\) & Returns a matrix whose first \(n\) columns contain the square, orthonormal matrix \(\mathbf{Q}\), and whose remaining columns contain the upper triangular matrix, \(\mathbf{R}\). Matrices \(\mathbf{Q}\) and \(\mathbf{R}\) satisfy the equation \(\mathbf{A}=\mathbf{Q} \cdot \mathbf{R}\), where \(\mathbf{A}\) is a real-valued array. \\
\hline
\end{tabular}

Pro \(\operatorname{svd}(\mathbf{A}) \quad\) Returns a single matrix containing two stacked matrices \(\mathbf{U}\) and \(\mathbf{V}\), where \(\mathbf{U}\) is the upper \(m \times n\) submatrix and \(\mathbf{V}\) is the lower \(n \times n\) submatrix. Matrices \(\mathbf{U}\) and \(\mathbf{V}\) satisfy the equation \(\mathbf{A}=\mathbf{U} \cdot \operatorname{diag}(\mathbf{s}) \cdot \mathbf{V}^{\mathbf{T}}\), where \(\mathbf{s}\) is a vector returned by \(\operatorname{svds}(\mathbf{A})\).
\(\mathbf{A}\) is an \(m \times n\) array of real values, where \(m \geq n\).
Pro \(\quad \operatorname{svds}(\mathbf{A}) \quad\) Returns a vector containing the singular values of the \(m \times n\) realvalued array \(\mathbf{A}\), where \(m \geq n\).

\section*{Sorting Functions}
\(\operatorname{csort}(\mathbf{A}, n) \quad\) Returns an array formed by rearranging rows of the matrix \(\mathbf{A}\) such that the elements in column \(n\) are in ascending order. The result has the same size as \(\mathbf{A}\).
reverse(A) Returns an array in which the elements of a vector, or the rows of a matrix, are in reverse order.
\(\operatorname{rsort}(\mathbf{A}, n) \quad\) Returns an array formed by rearranging the columns of the matrix \(\mathbf{A}\) such that the elements in row \(n\) are in ascending order. The result has the same size as \(\mathbf{A}\).
\(\operatorname{sort}(\mathbf{v}) \quad\) Returns the elements of the vector \(\mathbf{v}\) sorted in ascending order.

Tip Unless you change the value of ORIGIN, matrices are numbered by default starting with row zero and column zero. To sort on the first column of a matrix, for example, use \(\operatorname{csort}(\mathbf{A}, 0)\).

\section*{Solving and Optimization Functions}

This section describes how to solve equations ranging from a single equation in one unknown to large systems with multiple unknowns. The techniques described here generate numeric solutions. Chapter 14, "Symbolic Calculation," describes a variety of techniques for solving equations symbolically.

\section*{Finding Roots}
\[
\begin{array}{ll}
\text { polyroots(v) } & \begin{array}{l}
\text { Returns the roots of an } n \text {th degree polynomial whose coefficients } \\
\text { are in } \mathbf{v}, \text { a vector of length } n+1 . \text { Returns a vector of length } n .
\end{array} \\
\operatorname{root}(f(z), z) & \begin{array}{l}
\text { Returns the value of } z \text { which the expression } f(z) \text { is equal to } 0 \text {. The } \\
\text { arguments are a real- or complex-valued expression } f(z) \text { and a real } \\
\text { or complex scalar, } z . \text { Must be preceded in the worksheet by a } \\
\text { guess value for } z \text {. Returns a scalar. }
\end{array} \\
\operatorname{root}(f(z), z, a, b) \quad \begin{array}{l}
\text { Returns the value of } z \text { lying between } a \text { and } b \text { at which the } \\
\text { expression } f(z) \text { is equal to } 0 \text {. The arguments to this function are a } \\
\text { real-valued expression } f(z), \text { a real scalar, } z \text {, and real endpoints } \\
a<b . \text { No guess value for } z \text { is required. Returns a scalar. }
\end{array}
\end{array}
\]

Note When you specify the arguments \(a\) and \(b\) for the root function, Mathcad will only find a root for the function \(f\) if \(f(a)\) is positive and \(f(b)\) is negative or vice versa.

The root function solves a single equation in a single unknown. This function takes an arbitrary expression or function and one of the variables from the expression. root can also take a range in which the solution lies. It then varies that variable until the expression is equal to zero and lies in the specified range. Once this is done, the function returns the value that makes the expression equal zero and lies in the specified range.

Tip root makes successive estimates of the value of the root and returns a value when the two most recent estimates differ by less than the value of the tolerance parameter, TOL. As described in "Built-in Variables" on page 98, you can change the value of the tolerance, and hence the accuracy of the solution, by including definitions for TOL directly in your worksheet. You can also change the tolerance by using the Built-In Variables tab when you choose Options from the Math menu.

To find the roots of a polynomial or an expression having the form:
\[
v_{n} x^{n}+\ldots+v_{2} x^{2}+v_{1} x+v_{0}
\]
you can use polyroots rather than root. polyroots does not require a guess value, and polyroots returns all roots at once, whether real or complex. Figure \(10-5\) shows examples.

Finding roots of a polynomial with root and polyroots
\[
f(x):=x^{3}-10 \cdot x+2
\]

An initial guess for simple use of root function: \(x:=3\)
```

    root(f(x),x)=3.057
    root(f(x),x,-5,0)=-3.258
    ```

The vector v contains the coefficients of the polynomial, beginning with the constant term. Be sure to include all coefficients, even if they are zero.
\[
v:=\left[\begin{array}{c}
2 \\
-10 \\
0 \\
1
\end{array}\right] \text { polyroots }(v)=\left[\begin{array}{c}
-3.258 \\
0.201 \\
3.057
\end{array}\right]
\]

Figure 10-5: Finding roots with root and polyroots.
By default, polyroots uses a LaGuerre method of finding roots. If you want to use the companion matrix method instead, click on the polyroots function with the right mouse button and choose Companion Matrix from the pop-up menu.

Note root and polyroots can solve only one equation in one unknown, and they always return numerical answers. To solve several equations simultaneously, use the techniques described in the next section, "Linear/Nonlinear System Solving and Optimization." To solve an equation symbolically, or to find an exact numerical answer in terms of elementary functions, choose

Solve for Variable from the Symbolic menu or use the solve keyword. See Chapter 14, "Symbolic Calculation."

\section*{Linear/ Nonlinear System Solving and Optimization}

Mathcad includes powerful numerical solving functions that readily solve problems of the following types:
- Linear systems of equations with constraints (equalities or inequalities).
- Nonlinear systems of equations with constraints.
- Optimization (maximization or minimization) of an objective function.
- Optimization (maximization or minimization) of an objective function with constraints.
- Linear programming, in which all constraints are either equalities or inequalities that compare linear functions to constants and the objective function is of the form:
\[
c_{0} x_{0}+c_{1} x_{1}+\ldots+c_{n} x_{n}
\]

Pro - Quadratic programming, in which all constraints are linear but the objective function contains not only linear terms but also quadratic terms. Quadratic programming features are available in the Solving and Optimization Extension Pack (Expert Solver) for Mathcad Professional, available for separate sale from MathSoft or your local distributor or reseller.

Note The size of the problem you can solve depends on your version of Mathcad. Mathcad Standard solves systems of up to 50 variables, while Mathcad Professional solves nonlinear systems of up to 200 variables and linear systems of up to 500 variables. The Solving and Optimization Extension Pack (Expert Solver) for Mathcad Professional solves nonlinear systems of up to 250 variables, linear systems of up to 1000 variables, and quadratic systems of up to 1000 variables.

\section*{Solve Blocks}

The general form for using system solving functions in Mathcad is within the body of a solve block. There are four general steps to creating a solve block. These are:
1. Provide an initial guess (definition) for each of the unknowns you intend to solve for. Mathcad solves equations by making iterative calculations that ultimately converge on a valid solution. The initial guesses you provide give Mathcad a place to start searching for solutions. Guess values are usually required for all systems.
2. Type the word Given in a separate math region below the guess definitions. This tells Mathcad that what follows is a system of constraint equations. Be sure you don't type "Given" in a text region.
3. Now enter the constraints (equalities and inequalities) in any order below the word Given. Make sure you use the bold equal symbol (click \(=\) on the Boolean toolbar or press [Ctrl]=) for any equality. You can separate the left and right sides of an inequality with any of the symbols <, >, \(\leq\), and \(\geq\).
4. Enter any equation that involves one of the functions Find, Maximize, Minimize, or Minerr below the constraints.

Note Solve blocks cannot be nested inside each other-each solve block can have only one Given and one Find (or Maximize, Minimize, or Minerr). You can, however, define a function like \(f(x):=\operatorname{Find}(x)\) at the end of one solve block and refer to this function in another solve block.

\section*{Solve Blocks}
\(\operatorname{Find}(z 0, z 1, \ldots)\)
Returns values of \(z 0, z 1, \ldots\) that satisfy the constraints in a solve block. \(z 0, z 1, \ldots\) are real or complex scalars, vectors, arrays, or individual elements of vectors equal in number to the number of unknowns in the system. Returns a scalar for a single unknown; otherwise returns a vector of solutions.
\(\operatorname{Maximize}(f, z 0, z 1, \ldots)\) Returns values of \(z 0, z 1, \ldots\) that make the function \(f\) take on its largest value. \(z 0, z 1, \ldots\) are real or complex scalars, vectors, arrays, or individual elements of vectors equal in number to the number of unknowns in the system. Returns a scalar for a single unknown; otherwise returns a vector of solutions. Solve block constraints are optional.
\(\operatorname{Minerr}(z 0, z 1, \ldots) \quad\) Returns values of \(z 0, z 1, \ldots\) that come closest to satisfying the constraints in a solve block. \(z 0, z 1, \ldots\) are real or complex scalars, vectors, arrays, or individual elements of vectors equal in number to the number of unknowns in the system. Returns a scalar for a single unknown; otherwise returns a vector of solutions.
\(\operatorname{Minimize}(f, z 0, z 1, \ldots)\) Returns values of \(z 0, z 1, \ldots\) that make the function \(f\) take on its smallest value. \(z 0, z 1, \ldots\) are real or complex scalars, vectors, arrays, or individual elements of vectors equal in number to the number of unknowns in the system. Returns a scalar for a single unknown; otherwise returns a vector of solutions. Solve block constraints are optional.

Tip Unlike most Mathcad functions, the solving functions Find, Maximize, Minerr, and Minimize can be entered in math regions with either an initial lowercase or an initial capital letter.

Figure 10-6 shows a solve block with several kinds of constraints and ending with a call to the Find function. There are two unknowns. As a result, the Find function here takes two arguments, \(x\) and \(y\), and returns a vector with two elements.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Intersection of Circle and line:} \\
\hline \multirow[t]{2}{*}{Guess values:} & \multicolumn{2}{|l|}{\(x:=1\)} \\
\hline & \multicolumn{2}{|l|}{\(y:=1\)} \\
\hline \multirow[t]{5}{*}{Given} & \(x^{2}+y^{2}=6\) & Circle \\
\hline & \(x+y=2\) & Line \\
\hline & \(x \leq 1\) & Inequality \\
\hline & \(y>2\) & constraints \\
\hline & \(\binom{x y a l}{\) yyal }\(:=\) F & \(x, y)\) \\
\hline Results: & \(\mathrm{xyal}=-0.4\) & \\
\hline & \(\mathrm{yval}=2.4\) & \\
\hline \multicolumn{3}{|l|}{Check that point is an actual solution:} \\
\hline \(\mathrm{xyal}^{2}+\mathrm{yval}^{2}=6\) & xyal & \(l=2\) \\
\hline
\end{tabular}

Figure 10-6: A solve block with both equalities and inequalities.

\section*{Constraints}

The table below lists the kinds of constraints that can appear in a solve block between the keyword Given and one of the functions Find, Maximize, Minerr, and Minimize. In the table, \(x\) and \(y\) represent real-valued expressions, and \(z\) and \(w\) represent arbitrary expressions. The Boolean constraints are inserted using buttons on the Boolean toolbar. While constraints are often scalar expressions, they may also be vector or array expressions.
\begin{tabular}{|c|c|c|}
\hline Condition & Button & Description \\
\hline \(w=z\) & = & Constrained to be equal. \\
\hline \(x>y\) & 3 & Greater than. \\
\hline \(x<y\) & \(<\) & Less than. \\
\hline \(x \geq y\) & \(\geq\) & Greater than or equal to. \\
\hline \(x \leq y\) & \(\leq\) & Less than or equal to. \\
\hline \(x \wedge y\) & A & And \\
\hline \(x \vee y\) & V & Or \\
\hline \(x \otimes y\) & V & Xor (Exclusive Or) \\
\hline \(\neg x\) & 乙 & Not \\
\hline
\end{tabular}

Mathcad does not allow the following inside a solve block:
- Constraints with " \(\neq\)."
- Assignment statements (statements like \(\mathbf{x}:=1\)).

You can, however, include compound statements such as \(1 \leq x \leq 3\).
Note Mathcad returns only one solution for a solve block. There may, however, be multiple solutions to a set of equations. To find a different solution, try different guess values or enter an additional inequality constraint that the current solution does not satisfy.

\section*{Tolerances for solving}

Mathcad's numerical solvers make use of two tolerance parameters in calculating solutions in solve blocks:
- Convergence tolerance. The solvers calculate successive estimates of the values of the solutions and return values when the two most recent estimates differ by less than the value of the built-in variable TOL. A smaller value of TOL often results in a more accurate solution, but the solution may take longer to calculate.
- Constraint tolerance. This parameter, determined by the value of the built-in variable CTOL, controls how closely a constraint must be met for a solution to be acceptable. For example, if the constraint tolerance were 0.0001 , a constraint such as \(x<2\) would be considered satisfied if, in fact, the value of \(x\) satisfied \(x<2.0001\).

Procedures for modifying the values of these tolerances are described in "Built-in Variables" on page 98.

Tip If you use Minerr in a solve block, you should always include additional checks on the reasonableness of the results. The built-in variable ERR returns the size of the error vector for the approximate solution returned by Minerr. There is no built-in variable for determining the size of the error for individual solutions to the unknowns.

\section*{Solving algorithms and AutoSelect}

When you solve an equation, by default Mathcad uses an AutoSelect procedure to choose an appropriate solving algorithm. You can override Mathcad's choice of algorithm and select another available algorithm yourself.
Here are the available solving methods:

\section*{Linear}

Applies a linear programming algorithm to the problem. Guess values for the unknowns are not required.

\section*{Nonlinear}

Applies either a conjugate gradient, Levenberg-Marquardt, or quasi-Newton solving routine to the problem. Guess values for all unknowns must precede the solve block. If you use Mathcad Professional, choose Nonlinear \(\Rightarrow\) Advanced Options from the pop-up menu to control settings for the conjugate gradient and quasi-Newton solvers.

Note The Levenberg-Marquardt method is not available for the Maximize and Minimize functions.

\section*{Pro Quadratic}

Applies a quadratic programming algorithm to the problem. The option is available only if the Solving and Optimization Extension Pack (Expert Solver) for Mathcad Professional is installed. Guess values for the unknowns are not required.
You can override Mathcad's default choice of solving algorithm as follows:
5. Create and evaluate a solve block, allowing Mathcad to AutoSelect an algorithm.
6. Click with the right mouse button on the name of the function that terminates the solve block, and remove the check from AutoSelect on the pop-up menu.
7. Check one of the available solving methods on the pop-up menu. Mathcad recalculates
 the solution using the method you selected.

\section*{Pro Reports}

If you have the Solving and Optimization Extension Pack (Expert Solver) for Mathcad Professional installed, you can generate reports for a linear optimization problems. To generate a report, click on a solving function with the right mouse button and choose Report from the pop-up menu. For more information on reports, refer to the on-line Help.

\section*{Pro Mixed integer programming}

If you have Solving and Optimization Extension Pack (Expert Solver) for Mathcad Professional installed, you can perform mixed integer programming. Using mixed integer programming you can force the solution for an unknown variable to be a binary number (1 or 0) or an integer. For more information mixed integer programming, refer to the on-line Help.

\section*{Statistics, Probability, and Data Analysis Functions}

\section*{Statistics}
\(\operatorname{corr}(\mathbf{A}, \mathbf{B}) \quad\) Returns the Pearson's \(r\) correlation coefficient for the \(m \times n\) arrays \(\mathbf{A}\) and \(\mathbf{B}\).
\(\operatorname{cvar}(\mathbf{A}, \mathbf{B}) \quad\) Returns the covariance of the elements in \(m \times n\) arrays \(\mathbf{A}\) and \(\mathbf{B}\).
gmean \((\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\)) Returns the geometric mean of the elements of the arrays or scalars \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\) All elements must be real and greater than 0 .
hist(int, A) Returns a vector representing the frequencies with which values in \(\mathbf{A}\) fall in the intervals represented by int. When int is a vector of intervals in ascending order, the \(i\) th element of the returned vector is the number of points in data falling between the \(i\) th and \((i+1)\) th element of int. When int is a an integer, it is the number of subintervals of equal length. Both int and \(\mathbf{A}\) must be real.
hmean (\(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\)) Returns the harmonic mean of the elements of the arrays or scalars A, B, C, ... All elements must be nonzero.
\(\operatorname{kurt}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots) \quad\) Returns the kurtosis of the elements of the arrays or scalars \(\mathbf{A}, \mathbf{B}\), C, ...
mean \((\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots)\) Returns the arithmetic mean of the elements of the arrays or scalars A, B, C, ...
median \((\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\)) Returns the median of the elements of the arrays or scalars \(\mathbf{A}, \mathbf{B}\), \(\mathbf{C}, \ldots\) the value above and below which there are an equal number of values. If there are an even number of elements, this is the arithmetic mean of the two central values.
\(\operatorname{mode}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots) \quad\) Returns the element from the arrays or scalars \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\) that occurs most often.
\(\operatorname{skew}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots) \quad\) Returns the skewness of the elements of the arrays or scalars \(\mathbf{A}\), B, C, ...
\(\operatorname{stdev}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\)) Returns the population standard deviation (square root of the variance) of the elements of the arrays or scalars \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\)
\(\operatorname{Stdev}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\)) Returns the sample standard deviation (square root of the sample variance) of the elements of the arrays or scalars \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots\)
\(\operatorname{var}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots) \quad\) Returns the population variance of the elements of the arrays or scalars A, B, C, ...
\(\operatorname{Var}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots) \quad\) Returns the sample variance of the elements of the arrays or scalars A, B, C, ...

\section*{Probability Distributions}

Mathcad includes functions for working with several common probability densities. These functions fall into four classes:
- Probability densities. These functions, beginning with the letter "d," give the likelihood that a random variable will take on a particular value.
- Cumulative probability distributions. These functions, beginning with the letter "p," give the probability that a random variable will take on a value less than or equal to a specified value. These are obtained by simply integrating (or summing when appropriate) the corresponding probability density from \(-\infty\) to a specified value.
- Inverse cumulative probability distributions. These functions, beginning with the letter "q," take a probability \(p\) between 0 and 1 as an argument and return a
value such that the probability that a random variable will be less than or equal to that value is \(p\).
- Random number generators. These functions, beginning with the letter " r ," return a vector of \(m\) elements drawn from the corresponding probability distribution. Each time you recalculate an equation containing one of these functions, Mathcad generates new random numbers.

Tip Mathcad's random number generators have a "seed value" associated with them. A given seed value always generates the same sequence of random numbers, and choosing Calculate from the Math menu advances Mathcad along this random number sequence. Changing the seed value, however, advances Mathcad along a different random number sequence. To change the seed value, choose Options from the Math menu and enter a value on the Built-In Variables tab.

Note See comments above about the nomenclature, arguments, and returned values for the probability distribution functions in the following table.

\section*{Probability Distributions}
```

dbeta(x, s1, s2)
pbeta(x, s1, s2)
qbeta( }p,\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
rbeta(m, s, , s2)
dbinom(k,n,p)
pbinom(k, n, p)
qbinom( }p,n,r
rbinom(m,n,p)
dcauchy(x,l,s)
pcauchy(x,l,s)
qcauchy( }p,l,s
rcauchy( }m,l,s
dchisq(x,d)
pchisq(x,d)
qchisq(p,d)
rchisq(m,d)
dexp(x,r)
pexp(x,r)
qexp(p,r)
rexp(m,r)
dF}(x,\mp@subsup{d}{1}{},\mp@subsup{d}{2}{}
pF}(x,\mp@subsup{d}{1}{},\mp@subsup{d}{2}{2}
qF}(p,\mp@subsup{d}{1}{},\mp@subsup{d}{2}{}
rF}(m,\mp@subsup{d}{1}{},\mp@subsup{d}{2}{}
dgamma(x,s)
pgamma(x,s)
qgamma( }p,s
rgamma( }m,s

```

Probability distribution functions for the beta distribution in which (\(s_{1}, s_{2}>0\)) are the shape parameters. \(0<x<1\). \(0 \leq p \leq 1\).

Probability distribution functions for the binomial distribution in which \(n\) and \(k\) are integers satisfying \(0 \leq k \leq n .0 \leq p \leq 1 . r\) is the probability of success on a single trial.

Probability distribution functions for the Cauchy distribution in which \(l\) is a location parameter and \(s>0\) is a scale parameter. \(0<p<1\).

Probability distribution functions for the chi-squared distribution in which \(d>0\) are the degrees of freedom and \(x \geq 0.0 \leq p<1\).

Probability distribution functions for the exponential distribution in which \(r>0\) is the rate and \(x \geq 0.0 \leq p<1\).

Probability distribution functions for the \(F\) distribution in which (\(d_{1}, d_{2}>0\)) are the degrees of freedom and \(x \geq 0.0 \leq p<1\).

Probability distribution functions for the gamma distribution in which \(s>0\) is the shape parameter and \(x \geq 0.0 \leq p<1\).
\(\operatorname{dgeom}(k, p)\)
\(\operatorname{pgeom}(k, p)\)
qgeom \((p, r)\)
\(\operatorname{rgeom}(m, p)\)
dhypergeom \((M, a, b, n)\) phypergeom \((M, a, b, n)\) qhypergeom \((p, a, b, n)\) \(\operatorname{rhypergeom}(M, a, b, n)\)
dlnorm \((x, \mu, \sigma)\) \(\operatorname{plnorm}(x, \mu, \sigma)\)
\(\operatorname{qlnorm}(p, \mu, \sigma)\)
\(\operatorname{rlnorm}(m, \mu, \sigma)\)
dlogis \((x, l, s)\)
\(\operatorname{plogis}(x, l, s)\)
qlogis \((p, l, s)\)
\(\operatorname{rlogis}(m, l, s)\)
dnbinom \((k, n, p)\)
pnbinom \((k, n, p)\)
qnbinom \((p, n, r)\)
\(\operatorname{rnbinom}(m, n, p)\)
\(\operatorname{dnorm}(x, \mu, \sigma)\)
\(\operatorname{pnorm}(x, \mu, \sigma)\)
qnorm \((p, \mu, \sigma)\)
\(\operatorname{rnorm}(m, \mu, \sigma)\)
\(\operatorname{dpois}(k, \lambda)\)
\(\operatorname{ppois}(k, \lambda)\)
qpois \((p, \lambda)\)
\(\operatorname{rpois}(m, \lambda)\)
\(\mathrm{dt}(x, d)\)
\(\operatorname{pt}(x, d)\)
\(\mathrm{qt}(p, d)\)
\(\operatorname{rt}(m, d)\)
\(\operatorname{dunif}(x, a, b)\)
punif \((x, a, b)\)
qunif \((p, a, b)\)
\(\operatorname{runif}(m, a, b)\)
dweibull \((x, s)\)
pweibull \((x, s)\)
qweibull \((p, s)\)
rweibull \((m, s)\)

Probability distribution functions for the geometric distribution in which \(0<p \leq 1\) is the probability of success and \(k\) is a nonnegative integer. \(r\) is the probability of success on a single trial.

Probability distribution functions for the hypergeometric
distribution in which \(M, a, b\), and \(n\) are integers with \(0 \leq M \leq a, 0 \leq n-M \leq b\), and \(0 \leq n \leq a+b .0 \leq p<1\).

Probability distribution functions for the lognormal distribution in which \(\mu\) is the logmean and \(\sigma>0\) is the logdeviation. \(x \geq 0.0 \leq p<1\).

Probability distribution functions for the logistic distribution in which \(l\) is the location parameter and \(s>0\) is the scale parameter. \(0<p<1\).

Probability distribution functions for the negative binomial distribution in which \(0<p \leq 1\) and \(n\) and \(k\) are integers, \(n>0\) and \(k \geq 0\).

Probability distribution functions for the normal distribution in which \(\mu\) and \(\sigma\) are the mean and standard deviation. \(\sigma>0\).

Probability distribution functions for the Poisson distribution in which \(\lambda>0\) and \(k\) is a nonnegative integer. \(0 \leq p \leq 1\).

Probability distribution functions for Student's \(t\) distribution in which \(d>0\) are the degrees of freedom. \(0<p<1\).

Probability distribution functions for the uniform distribution in which \(b\) and \(a\) are the endpoints of the interval with \(a \leq x \leq b .0 \leq p \leq 1\).

Probability distribution functions for the Weibull distribution in which \(s>0\) is the shape parameter and \(x \geq 0.0<p<1\).

Tip Two additional functions that are useful for common probability calculations are \(\operatorname{rnd}(x)\), which is equivalent to \(\operatorname{runif}(1,0, x)\), and \(\operatorname{cnorm}(x)\), which is equivalent to \(\operatorname{pnorm}(x, 0,1)\).

Note Whenever you use arrays in any of the functions described in this section, be sure that every element in the array contains a data value. Mathcad assigns 0 to any elements you have not explicitly assigned.

Pro bspline \((\mathbf{v x}, \mathbf{v y}, \mathbf{u}, n)\) Returns a vector of coefficients of a B-spline of degree \(n\), which is used in the interp function. The knot locations of the spline are specified in vector \(\mathbf{u} . \mathbf{v x}\) and \(\mathbf{v y}\) must be real vectors of the same length. The values in \(\mathbf{v x}\) must be in ascending order.
cspline (\(\mathbf{v x}, \mathbf{v y}\)) Returns a vector of coefficients of a cubic spline with cubic endpoints, which is used in the interp function. \(\mathbf{v x}\) and \(\mathbf{v y}\) must be real vectors of the same length. The values in \(\mathbf{v x}\) must be in ascending order.
\(\operatorname{interp}(\mathbf{v s}, \mathbf{v x}, \mathbf{v y}, x)\) Returns the interpolated \(y\) value corresponding to the argument \(x\). The vector vs is a vector of intermediate results obtained by evaluating bspline, cspline, lspline, or pspline or the regression routine regress or loess using the data vectors \(\mathbf{v x}\) and \(\mathbf{v y}\). vx and \(\mathbf{v y}\) must be real vectors of the same length. The vector \(\mathbf{v x}\) must be in ascending order.
\(\operatorname{linterp}(\mathbf{v x}, \mathbf{v y}, x) \quad\) Uses the data vectors \(\mathbf{v x}\) and \(\mathbf{v y}\) to return a linearly interpolated \(y\) value corresponding to the argument \(x\). \(\mathbf{v x}\) and \(\mathbf{v y}\) must be real vectors of the same length. The vector \(\mathbf{v x}\) must be in ascending order.

1spline (\(\mathbf{v x}, \mathbf{v y}\)) Returns a vector of coefficients of a cubic spline with linear endpoints, which is used in the interp function. \(\mathbf{v x}\) and \(\mathbf{v y}\) must be real vectors of the same length. The values in \(\mathbf{v x}\) must be in ascending order.
predict \((\mathbf{v}, m, n) \quad\) Returns \(n\) predicted values based on \(m\) consecutive values from the data vector \(\mathbf{v}\). Elements in \(\mathbf{v}\) should represent samples taken at equal intervals. \(m\) and \(n\) are integers
pspline \((\mathbf{v x}, \mathbf{v y}) \quad\) Returns a vector of coefficients of a cubic spline with parabolic endpoints, which is used in the interp function. \(\mathbf{v x}\) and \(\mathbf{v y}\) must be real vectors of the same length. The values in \(\mathbf{v x}\) must be in ascending order.

Interpolation involves using existing data points to predict values between these data points. Mathcad allows you to connect the data points either with straight lines (linear interpolation) or with sections of a cubic polynomial (cubic spline interpolation). Unlike the regression functions discussed in the next section, these interpolation functions return a curve which must pass through the points you specify. If your data is noisy, you should consider using regression functions instead (see page 169).
Cubic spline interpolation passes a curve through a set of points in such a way that the first and second derivatives of the curve are continuous across each point. This curve is assembled by taking three adjacent points and constructing a cubic polynomial
passing through those points. These cubic polynomials are then strung together to form the completed curve. In the case of "traditional" cubic splines, the data points to be interpolated define the "knots" where the polynomials are joined, but B-splines (implemented in the function bspline) allow you to join the polynomials at arbitrary points.

Linear prediction involves using existing data values to predict values beyond the existing ones.
The coefficients returned by the spline interpolation functions bspline, cspline, lspline, and pspline and the regression functions regress and loess described in the next section are designed to be passed to Mathcad's interp function. interp returns a single interpolated \(y\) value for a given \(x\) value, but as a practical matter you'll probably be evaluating interp for many different points, as shown in Figure 10-7. It usually makes sense to store the coefficients returned by the spline or regression functions in a vector (such as vs in Figure 10-7) that can be passed to interp for evaluation, plotting, or further calculation.

Figure 10-7: Spline curve for the points stored in vx and vy. Since the random number generator gives different numbers every time, you may not be able to recreate this example exactly as you see it.

Tip For best results with spline interpolation, do not use the interp function on values of \(x\) far from the fitted points. Splines are intended for interpolation, not extrapolation.

Note Mathcad handles two-dimensional cubic spline interpolation in much the same way as the onedimensional case illustrated: in this case the spline function takes two matrix arguments, Mxy and \(\mathbf{M z}\). The first is an \(n \times 2\) matrix specifying the points along the diagonal of a rectangular grid, and the second is an \(n \times n\) matrix of \(z\)-values representing the surface to be interpolated. Mathcad passes a surface through the grid of points. This surface corresponds to a cubic polynomial in \(x\) and \(y\) in which the first and second partial derivatives are continuous in the
corresponding direction across each grid point. For an example see the "Data Analysis" QuickSheets and in the Resource Center (choose Resource Center from the Help menu).

\section*{Regression and Smoothing Functions}

Mathcad includes a number of functions for performing regression. Typically, these functions generate a curve or surface of a specified type in some sense minimizes the error between itself and the data you supply. The functions differ primarily in the type of curve or surface they use to fit the data. Unlike interpolation functions, these functions do not require that the fitted curve or surface pass through points you supply, and they are therefore less sensitive to spurious data.
Smoothing involves taking a set of \(y\) (and possibly \(x\)) values and returning a new set of \(y\) values that is smoother than the original set. Unlike the regression and interpolation functions, smoothing results in a new set of \(y\) values, not a function that can be evaluated between the data points you specify. Thus, if you are interested in \(y\) values between the \(y\) values you specify, you should use a regression or interpolation function.

\section*{Linear regression}
intercept \((\mathbf{v x}, \mathbf{v y})\) Returns a scalar: the \(y\)-intercept of the least-squares regression line for the data points in \(\mathbf{v x}\) and \(\mathbf{v y}\).
slope (\(\mathbf{x x}, \mathbf{v y}\)) Returns a scalar: the slope of the least-squares regression line for the data points in \(\mathbf{v x}\) and \(\mathbf{v y}\).
\(\operatorname{stderr}(\mathbf{v x}, \mathbf{v y}) \quad\) Returns the standard error associated with linear regression of the elements of \(\mathbf{v y}\) on the elements of \(\mathbf{v x}\).
line \((\mathbf{v x}, \mathbf{v y}) \quad\) Returns the \(y\)-intercept and slope of the line that best approximates the data in \(\mathbf{v x}\) and \(\mathbf{v y}\).
medfit \((\mathbf{v x}, \mathbf{v y}) \quad\) Returns the \(y\)-intercept and slope of the line that best approximates the data in \(\mathbf{v x}\) and \(\mathbf{v y}\) using median-median regression.

\section*{Polynomial regression}
regress \((\mathbf{v x}, \mathbf{v y}, n) \quad\) Returns a vector of coefficients for the \(n\)th degree least-squares polynomial fit for the data points specified in vectors \(\mathbf{v x}\) and \(\mathbf{v y}\). This vector becomes the first argument of the interp function.

Pro loess(\(\mathbf{v x}, \mathbf{v y}\), span) Returns a vector specifying a set of second order polynomials that best fit particular neighborhoods of data points specified in vectors \(\mathbf{v x}\) and \(\mathbf{v y}\). This vector becomes the first argument of the interp function. The argument span, span \(>0\), specifies how large a neighborhood loess considers in performing this local regression.

These functions are useful when you have a set of measured \(y\) values corresponding to \(x\) values (or possibly multiple \(x\) values) and you want to fit a polynomial through those \(y\) values.

Use regress when you want to use a single polynomial to fit all your data values. The regress function lets you fit a polynomial of any order. However as a practical matter, you rarely should go beyond \(n=4\).

The loess function, available in Mathcad Professional, performs a more localized regression. Instead of generating a single polynomial the way regress does, loess generates a different second order polynomial depending on where you are on the curve. It does this by examining the data in a small neighborhood of a point you're interested in.

As in the case of Mathcad's spline interpolation functions, the coefficients returned by regress and loess are designed to be passed to Mathcad's interp function. interp returns a single interpolated \(y\) value for a given \(x\) value, but as a practical matter you'll probably be evaluating interp for many different points.

Note Mathcad also allows multivariate polynomial regression with regress or loess to fit \(y\) values corresponding to two or more independent variables. In this case, the regression function's first two arguments are \(\mathbf{M x}\) and \(\mathbf{v y}\) : the first is an \(n \times m\) matrix specifying the \(m\) values of \(n\) predictor variables, and the second is a vector of response data corresponding to the factors in \(\mathbf{M x}\). For an example see the "Data Analysis" QuickSheets in the Resource Center (choose Resource Center from the Help menu). You can add independent variables by simply adding columns to the \(\mathbf{M x}\) array and a corresponding number of rows to the vector you pass to the interp function.

\section*{Specialized regression}
\(\operatorname{expfit}(\mathbf{v x}, \mathbf{v y}, \mathbf{v g})\) Returns the parameter values for the exponential curve
\(a \cdot e^{(b \cdot x)}+c\) that best approximates the data in \(\mathbf{v x}\) and \(\mathbf{v y}\). Vector \(\mathbf{v g}\) specifies guess values for the three unknown parameters \(a, b\), and \(c\). See Figure 10-8 for an example.
\(\operatorname{lgsfit}(\mathbf{v x}, \mathbf{v y}, \mathbf{v g})\) Returns the parameter values for the logistic curve \(a /\left(1+b \cdot e^{(-c \cdot x)}\right)\) that best approximates the data in \(\mathbf{v x}\) and \(\mathbf{v y}\). Vector \(\mathbf{v g}\) specifies guess values for the three unknown parameters \(a, b\), and \(c\).
\(\log f i t(\mathbf{v x}, \mathbf{v y}, \mathbf{v g})\) Returns the parameter values for the logarithmic curve \(a \cdot \ln (x+b)+c\) that best approximates the data in \(\mathbf{v x}\) and \(\mathbf{v y}\). Vector \(\mathbf{v g}\) specifies guess values for the three unknown parameters \(a, b\), and \(c\).
pwrfit(\(\mathbf{v x}, \mathbf{v y}, \mathbf{v g})\) Returns the parameter values for the power curve \(a \cdot x^{b}+c\) that best approximates the data in \(\mathbf{v x}\) and \(\mathbf{v y}\). Vector \(\mathbf{v g}\) specifies guess values for the three unknown parameters \(a, b\), and \(c\).
\(\operatorname{sinfit}(\mathbf{v x}, \mathbf{v y}, \mathbf{v g})\) Returns the parameter values for the sine curve \(a \cdot \sin (x+b)+c\) that best approximates the data in \(\mathbf{v x}\) and \(\mathbf{v y}\). Vector \(\mathbf{v g}\) specifies guess values for the four unknown parameters \(a\), \(b\), and \(c\).

Use these functions when you have a set of measured \(y\) values corresponding to \(x\) values and you want to fit a special type of curve through those \(y\) values. Although you can use the genfit function described on page 171 to perform a curve fit on any function, the functions outlined above are simpler. Use them if they address the particular function curve to which you are fitting your data.

Figure 10-8: Using the specialized regression function expfit.

\section*{Generalized regression}
\(\operatorname{linfit}(\mathbf{v x}, \mathbf{v y}, \mathbf{F}) \quad\) Returns a vector containing the coefficients used to create a linear combination of the functions in \(\mathbf{F}\) that best approximates the data points in vectors \(\mathbf{v x}\) and \(\mathbf{v y}\). \(\mathbf{F}\) is a function which returns a vector consisting of the functions to be linearly combined. Elements of \(\mathbf{v x}\) should be in ascending order.
genfit \((\mathbf{v x}, \mathbf{v y}, \mathbf{v g}, \mathbf{F})\) Returns the parameters for the best fit by the (possibly nonlinear) function defined by \(f\) to the data points in the vectors \(\mathbf{v x}\) and \(\mathbf{v y}\). \(\mathbf{F}\) is a function that returns an \(n+1\) element vector containing \(f\) and its partial derivatives with respect to each of its \(n\) parameters. \(\mathbf{v g}\) is an \(n\)-element vector of guess values for the \(n\) parameters.
linfit is designed to model your data by a linear combination of arbitrary functions:
\[
y=a_{0} \cdot f_{0}(x)+a_{1} \cdot f_{1}(x)+\ldots+a_{n} \cdot f_{n}(x)
\]
genfit is designed to model your data by some arbitrary (possibly nonlinear) function whose parameters must be chosen. For example, if your data is to be modeled by the sum
\[
f(x)=2 \cdot \sin \left(a_{1} x\right)+3 \cdot \tanh \left(a_{2} x\right)
\]
and you wish to solve for the unknown parameters \(a_{1}\) and \(a_{2}\), you would use genfit. An example of using genfit is given in Figure 10-9.
Anything you can do with linfit you can also do, albeit less conveniently, with genfit. The difference between these two functions is the difference between solving a system of linear equations and solving a system of nonlinear equations. The latter generally

Figure 10-9: Using genfit for finding the parameters of a function so that it best fits the data.
must be solved by iteration, which explains why genfit needs a vector of guess values as an argument and linfit does not.

\section*{Smoothing functions}
medsmooth \((\mathbf{v y}, n)\) Returns an \(m\)-element vector created by smoothing \(\mathbf{v y}\) with running medians. vy is an \(m\)-element vector of real numbers. \(n\) is the width of the window over which smoothing occurs. \(n\) must be an odd number less than the number of elements in \(\mathbf{v y}\).
supsmooth \((\mathbf{v x}, \mathbf{v y})\) Returns an \(n\)-element vector created by the piecewise use of a symmetric \(k\)-nearest neighbor linear least-squares fitting procedure in which \(k\) is adaptively chosen. \(\mathbf{v y}\) and \(\mathbf{v x}\) are \(n\)-element vectors of real numbers. The elements of \(\mathbf{v x}\) must be in increasing order.
medsmooth is the most robust of the three smoothing functions since it is least likely to be affected by spurious data points. This function uses a running median smoother, computes the residuals, smooths the residuals the same way, and adds these two smoothed vectors together. Note that medsmooth leaves the first and last (\(n-1\))/2 points unchanged. In practice, the length of the smoothing window, \(n\), should be small compared to the length of the data set.
Pro ksmooth, available in Mathcad Professional, uses a Gaussian kernel to compute local weighted averages of the input vector \(\mathbf{v y}\). This smoother is most useful when your data lies along a band of relatively constant width. If your data lies scattered along a band
whose width fluctuates considerably, you should use an adaptive smoother like supsmooth, also available in Mathcad Professional. supsmooth uses a symmetric \(k\) nearest neighbor linear least-squares fitting procedure to make a series of line segments through your data. Unlike ksmooth which uses a fixed bandwidth for all your data, supsmooth adaptively chooses different bandwidths for different portions of your data.

\section*{Finance Functions}

These personal finance functions perform a variety of calculations for making credit and investment decisions. All finance functions take only real values. Payments you make, such as deposits in a savings account or payments toward a loan, must be entered as negative numbers. Cash you receive, such as dividend checks, must be entered as positive numbers. If you want to specify the timing of a payment, use the optional timing variable, type, which can be equal to 0 for the end of the period and 1 for the beginning. If omitted, type is 0 .

\section*{Rate and period}
\begin{tabular}{|c|c|}
\hline cnper(rate, \(p v, f v\)) & Returns the number of compounding periods required for an investment to yield a future value, \(f v\), given a present value, \(p v\), and an interest rate period, rate. rate \(>-1 . p v>0 . f v>0\). \\
\hline crate (nper, \(p v, f v\)) & Returns the fixed interest rate required for an investment at present value, \(p v\), to yield a future value, \(f v\), over a given number of compounding periods, nper \(n p e r\) is a positive integer. \(p v>0 . f v>0\). \\
\hline \[
\begin{aligned}
& \operatorname{nper}(\text { rate, } p m t, p v,[[f v], \\
& [\text { type }]])
\end{aligned}
\] & Returns the number of compounding periods for an investment or loan based on periodic, constant payments, pmt, using a fixed interest rate, rate, and a present value, \(p v\). If omitted, \(f v=0\) and type \(=0\). If \(p m t\) \(>0\), rate and \(p v\) must be opposite signs. \\
\hline \[
\begin{gathered}
\text { rate(nper, pmt, pv, }[[f v], \\
[\text { type }],[g u e s s]])
\end{gathered}
\] & Returns the interest rate per period of an investment or loan over a number of compounding periods, nper, given a periodic, constant payment, \(p m t\), and a present value, \(p v\). nper is a positive integer. If omitted, \(f v=0\), type \(=0\), and guess \(=0.1(10 \%)\). \\
\hline
\end{tabular}

Tip If rate does not converge to within \(1 \times 10^{-7}\) after 20 iterations, rate returns an error. In such a case, try different values for guess. In most cases, rate converges if guess is between 0 and 1 .

\section*{Cumulative interest and principal}
```

cumint(rate, nper, pv, start, end, [type])

```

Returns the cumulative interest paid on a loan between a starting period, start, and an ending period, end, given a fixed interest rate, rate, the total number of compounding periods, nper, and the present value of the loan, \(p v\). rate \(\geq 0\). nper, start, and end are positive integers. If omitted, type \(=0\).

Returns the cumulative principal paid on a loan between a starting period, start, and an ending period, end, given a fixed interest rate, rate, the total number of compounding periods, nper, and the present value of the loan, pv. rate \(\geq 0\). nper, start, and end are positive integers. If omitted, type \(=0\).

A home mortgage has the following terms:
\begin{tabular}{llll}
Interest rate: & \(\mathbf{9 \%} \quad\) (annually) & Term: & 30 yrs \\
Present value: & \(\$ 125,000\) & &
\end{tabular}

Calculate the total (cumulative) interest paid in the 10th year of payments (payments 121 through 132):
```

rate $:=\frac{9 \%}{12} \quad$ nper $:=30 \cdot 12 \quad p v:=125000$
start $:=120 \quad$ end $:=132$
cumint(rate, nper, pv,start, end) $=\mathbf{- 1 0 8 1 5 . 5 4}$

```

Figure 10-10: Using the cumint function.

\section*{Interest rate}
eff(rate, nper)
nom(rate, nper)

Returns the effective annual interest rate (APR) given the nominal interest rate, rate, and the number of compounding periods per year, nper. nper is positive.

Returns the nominal interest rate given the effective annual interest rate (APR), rate, and the number of compounding periods per year, nper. rate \(>-1\). nper is positive.

Returns the future value of an investment or loan over a number of compounding periods, nper, given a periodic, constant payment, pmt, and a fixed interest rate, rate. nper is a positive integer. If omitted, present value \(p v=0\) and type \(=0\).

Returns the future value of an initial principal, prin, after applying a series of compound interest rates stored in \(\mathbf{v} . \mathbf{v}\) is a vector.

Returns the future value of a list of cash flows occurring at regular intervals, \(\mathbf{v}\), earning an interest rate, rate. \(\mathbf{v}\) is a vector.

Note When using functions that require information about rates and periods, use the same unit of time for each. For example, if you make monthly payments on a four-year loan at an annual interest rate of \(12 \%\), use \(1 \%\) as the interest rate per period (one month) and 48 months as the number of periods.

\section*{Payment}
\(\operatorname{pmt}(\) rate, nper, pv, [[fv], [type]])

Returns the payment for an investment or loan based on periodic constant payments over a given number of compounding periods, nper, using a fixed interest rate, rate, and a present value, \(p v\). nper is a positive integer. If omitted, future value \(f v=0\) and type \(=0\).
\(\operatorname{ipmt}(\) rate, per, nper, pv, [[fv], [type]])

Returns the interest payment of an investment or loan for a given period, per, based on periodic constant
payments over a given number of compounding periods, nper, using a fixed interest rate, rate, and a present value, \(p v\). per and nper are positive integers, per \(\leq\) nper. If omitted, future value \(f v=0\) and type \(=0\).
\(\operatorname{ppmt}(\) rate, per, nper, pv, [[fv], Returns the payment on the principal, of a investment [type]])
or loan, for a given period, per, based on periodic constant payments over a given number of compounding periods, nper, using a fixed interest rate, rate, and a present value, \(p v\). per and nper are positive integers, per \(\leq n p e r\). If omitted, future value \(f v=0\) and type \(=0\).

The monthly payment for a \(\$ 10,000\) loan that accrues interest at an annual rate of 8\% and that you must pay off in \(\mathbf{1 0}\) months:
\[
\text { rate }:=\frac{8 \%}{12} \quad \text { nper }:=10 \quad \text { pv }:=10000 \quad \text { per }:=5
\]
pmt(rate, nper, pv) \(=-1037.03\)
The portion of the 5th payment that is interest:
ipmt (rate, per, nper, pv) \(=-40.53\)
The portion of the 5 th payment that is principal:
ppmt(rate, per, nper, pv) \(=-996.50\)
Figure 10-11: Using the pmt, ipmt, and ppmt functions.
\(\operatorname{irr}(\mathbf{v}\), [guess] \()\)
\(\operatorname{mirr}(\mathbf{v}\), fin_rate, rein_rate)

Returns the internal rate of return for a series of cash flows, \(\mathbf{v}\), occurring at regular intervals. \(\mathbf{v}\) is a vector that must contain at least one positive value and one negative value. If omitted, guess \(=0.1(10 \%)\).

Returns the modified internal rate of return for a series of cash flows occuring at regular intervals, \(\mathbf{v}\), given a finance rate payable on the cash flows you borrow, fin_rate, and a reinvestment rate earned on the cash flows as you reinvest them, rein_rate. \(\mathbf{v}\) is a vector that must contain at least one positive value and one negative value.

Note If irr does not converge to within \(1 \times 10^{-5}\) of a percentage after 20 iterations, irr returns an error. In such a case, try different values for guess. In most cases, irr converges if guess is between 0 and 1 .

\section*{Present value}
\(\mathrm{pv}(\) rate, nper, pmt, [[fv] [type]])
\(n p v(\) rate, \(\mathbf{v})\)

Returns the present value of an investment or loan based on periodic constant payments over a given number of compounding periods, nper, using a fixed interest rate, rate, and a payment, pmt. nper is a positive integer. If omitted, \(f v=0\) and type \(=0\).

Returns the net present value of an investment given a discount rate, rate, and a series of cash flows occurring at regular intervals, \(\mathbf{v} . \mathbf{v}\) is a vector.

Note irr and \(n p v\) are related functions. The internal rate of return (irr) is the rate for which the net present value (\(n p v\)) is zero.

\section*{Differential Equation Functions}

Pro This section describes how you can use Mathcad Professional to solve differential equations.

In a differential equation, you solve for an unknown function rather than just a variable. For ordinary differential equations, the unknown function is a function of one variable. Partial differential equations are differential equations in which the unknown is a function of two or more variables.

The easiest way to solve a single differential equation of any order in Mathcad Professional is to use a solve block and the function Odesolve. To solve systems of equations or to have more control over the solving process, you can use the generalpurpose differential equation solver rkfixed. Alternatively you can choose from additional, more specialized functions for solving differential equations.

\section*{Solving a Differential Equation Using a Solve Block}

Pro Odesolve (\(x, b,[\) step \(]\)) Returns a function of \(x\) which is the solution to a single ordinary differential equation. \(b\) is the terminal point of the integration interval. step (optional) is the number of steps.

To solve a single differential equation of any order, use a solve block and the function Odesolve. A solve block for solving a differential equation is similar to a solve block for solving a system of equations as described on page 159. There are three steps to creating a differential equation solve block:
1. Type the word Given. You can type Given or given in any style, but be sure not to type it in a text region.
2. Type the differential equation and constraints in any order below the word Given.

Use the bold equal sign (click \(=\) on the Boolean toolbar or press [Ctrl]=) for an equality. The independent variable \(x\) must be explicitly indicated throughout. A typical initial value constraint might be \(y(a)=c\) or \(y^{\prime}(a)=d\); Mathcad does not allow more complicated constraints like \(y(a)+y^{\prime}(a)=e\). The differential equation can be written using the derivative operators \(d / d x, d^{2} / d x^{2}, d^{3} / d x^{3}, \ldots\) (press ? or [Ctrl] ? to insert the derivative or \(n\)th derivative operators), or using prime notation \(y^{\prime}(x)\), \(y^{\prime \prime}(x), y^{\prime \prime}(x), \ldots\). (Press [Ctrl] [F7] for the prime symbol.)
3. Finally, type the Odesolve function. The terminal point \(b\) must be larger than the initial point \(a\).

Figure 10-12: Solving a single differential equation.

Tip Prime notation is only allowed inside a solve block. If you use it outside of a solve block, you see an error.

The output of Odesolve is a function of \(x\), interpolated from a table of values computed using the fixed step method employed by the function rkfixed, described below. If you prefer to use an adaptive step method employed by the function Rkadapt:
1. Click on Odesolve with the right mouse button.
2. Choose Adaptive from the pop-up menu.

Note Mathcad is very specific about the types of expressions that can appear between Given and Odesolve. The lower derivative terms can appear nonlinearly in the differential equation (e.g., they can be multiplied together or raised to powers), but the highest derivative term must appear linearly. Inequality constraints are not allowed. There must be \(n\) independent equality constraints for an \(n\)th order differential equation. For an initial value problem, the values for \(y(x)\) and its first \(n-1\) derivatives at a single initial point \(a\) are required. For a boundary value problem, the \(n\) equality constraints should prescribe values for \(y(x)\) and certain derivatives at exactly two points \(a\) and \(b\).

\section*{General Purpose Differential Equation Solver: rkfixed}

To solve systems of equations or to specify a starting point for the interval and the number of points at which to approximate a solution, you can use the differential equation solver rkfixed. Alternatively you can choose from additional, more specialized functions for solving differential equations, described in the following section "Specialized Differential Equation Solvers."

\section*{First order differential equations}

A first order differential equation is one in which the highest order derivative of the unknown function is the first derivative. To solve a first order differential equation in Mathcad, you can use Odesolve as described in "Solving a Differential Equation Using a Solve Block" or you can use rkfixed. rkfixed uses the fourth order Runge-Kutta method to solve a first order differential equation and return a two-column matrix in which:
- The left-hand column contains the points at which the solution to the differential equation is evaluated.
- The right-hand column contains the corresponding values of the solution. \(\operatorname{rkfixed}(\mathbf{y}, x 1, x 2\), npoints, \(\mathbf{D})\)
\(\mathbf{y}=\) A vector of \(n\) initial values where \(n\) is the order of the differential equation or the size of the system of equations you're solving. For a first order differential equation, the vector degenerates to one point, \(y(0)=y(x 1)\).
\(x 1, x 2=\) The endpoints of the interval on which the solution to the differential equations will be evaluated. The initial values in \(\mathbf{y}\) are the values at \(x 1\).
npoints \(=\) The number of points beyond the initial point at which the solution is to be approximated. This controls the number of rows \((1+\) npoints \()\) in the matrix returned by rkfixed.
\(\mathbf{D}(x, \mathbf{y})=\) An \(n\)-element vector-valued function containing the first \(n\) derivatives of the unknown functions.

Figure 10-13 shows how to solve the differential equation \(\frac{d y}{d x}+3 \cdot y=0\) subject to the initial condition \(y(0)=4\).
```

To solve $y^{\prime}+3 y=0$
$y_{0}:=4 \quad$ <- Define initial value. Use the left
bracket "[" to make the subscript.
$D(x, y):=-3 \cdot y_{0} \quad<-$ Define a function for the first derivative.
$y^{\prime}=-3 y$
$Z:=\operatorname{rkfixed}(y, 0,4,100, D)<-$ Evaluate the solution at 100
i := 0 .. rows ( $Z$ ) - 1
$\left(z^{\langle 1\rangle}\right)_{i} 2 \underbrace{2}$
<- Plot the solution. Use Ctrl+6 to
get the superscript.

```

Figure 10-13: Solving a first order differential equation.

Note The most difficult part of solving a differential equation using rkfixed, particularly with nonlinear differential equations, is solving for the first derivative so you can define the function \(\mathbf{D}(x, \mathbf{y})\). In such cases, you can sometimes solve for \(y^{\prime}(x)\) symbolically and paste it into the definition for \(\mathbf{D}(x, \mathbf{y})\). To do so, use the symbolic solving techniques discussed in the section "Examples of Symbolic Calculation" in Chapter 14.

\section*{Second and higher order differential equations}

You can use Odesolve and a solve block, as described on page 177, or you can use rkfixed to solve higher order differential equations. Using rkfixed to solve a second order differential equation is similar to solving a first order differential equation. The key differences are:
- The vector of initial values \(\mathbf{y}\) now has two elements: the value of the function and its first derivative at the starting value, \(x 1\).
- The function \(\mathbf{D}(t, \mathbf{y})\) is now a vector with two elements:
\[
\mathbf{D}(t, \mathbf{y})=\left[\begin{array}{l}
y^{\prime}(t) \\
y^{\prime \prime}(t)
\end{array}\right]
\]
- The solution matrix contains three columns: the left-hand one for the \(t\) values; the middle one for \(y(t)\); and the right-hand one for \(y^{\prime}(t)\).

See Figure 10-14 for an example using rkfixed. See Figure 10-12 for an example using Odesolve.
\[
\begin{aligned}
& \text { Solve } y^{\prime \prime}=-y^{\prime}+2 \cdot y \quad y(0)=1 \quad y^{\prime}(0)=3 \\
& y:=\binom{1}{3} \quad \text { <- Define initial conditions }\binom{y(0)}{y^{\prime}(0)}=\binom{y_{0}}{y_{1}}=\binom{1}{3} \\
& D(t, y):=\binom{y_{1}}{-y_{1}+2 \cdot y_{0}} \quad \begin{array}{l}
<- \text { First derivative } \\
<- \text { Second derivative }
\end{array} \\
& Z:=\text { rkfixed }(y, 0, .5,400, D) \quad \text { - Evaluate solution at } 400 \text { points } \\
& \text { between } 0 \text { and } .5
\end{aligned}
\]

Figure 10-14: Solving a second order differential equation.

Tip The procedure for solving higher order differential equations is an extension of that used for second order differential equations. The main differences are that the vector of initial values \(\mathbf{y}\) now has \(n\) elements for specifying initial conditions of \(y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\), the function \(\mathbf{D}\) is now a vector with \(n\) elements corresponding to the first \(n\) derivatives of the unknown functions, and the solution matrix contains \(n\) columns: the left-hand one for the \(t\) values and the remaining columns for values of \(y(t), y^{\prime}(t), y^{\prime \prime}(t), \ldots, y^{(n-1)}(t)\).

\section*{Systems of differential equations}

Solving a system of differential equations is similar to solving a higher order differential equation using rkfixed. To solve a system of first order differential equations:
1. Define a vector containing the initial values of each unknown function.
2. Define a vector-valued function containing the first derivatives of each of the unknown functions.
3. Decide at which points you want to evaluate the solutions.
4. Pass all this information into rkfixed.
rkfixed returns a matrix whose first column contains the points at which the solutions are evaluated and whose remaining columns contain the solution functions evaluated at the corresponding point. Figure \(10-15\) shows an example solving the equations:
\[
\begin{aligned}
& x_{0}^{\prime}(t)=\mu \cdot x_{0}(t)-x_{1}(t)-\left(x_{0}(t)^{2}+x_{1}(t)^{2}\right) \cdot x_{0}(t) \\
& x_{1}^{\prime}(t)=\mu \cdot x_{1}(t)+x_{0}(t)-\left(x_{0}(t)^{2}+x_{1}(t)^{2}\right) \cdot x_{1}(t)
\end{aligned}
\]
with initial conditions \(x_{0}(0)=0\) and \(x_{1}(0)=1\).

Solving a system of two non-linear first order differential equations.
\[
\begin{aligned}
& \mu \equiv-.2 \quad x \equiv\binom{0}{1} \quad \text { - Initial conditions } \\
& D(t, x):=\left[\begin{array}{l}
\mu \cdot x_{0}-x_{1}-\left[\left(x_{0}\right)^{2}+\left(x_{1}\right)^{2}\right] \cdot x_{0} \\
\mu \cdot x_{1}+x_{0}-\left[\left(x_{0}\right)^{2}+\left(x_{1}\right)^{2}\right] \cdot x_{1}
\end{array}\right] \quad \text { \&-First derivatives } \\
& Z:=\operatorname{rkfixed}(\mathbf{x}, \mathbf{0}, \mathbf{2 0}, \mathbf{1 0 0}, \mathrm{D}) \\
& \text { n : }=0 . .100 \\
& \text { (2) }
\end{aligned}
\]

Figure 10-15: A system of first order linear equations.
Solving a system of \(n\)th order differential equations is similar to solving a system of first order differential equations. The main differences are:
- The vector of initial conditions must contain initial values for the \(n-1\) derivatives of each unknown function in addition to initial values for the functions themselves.
- The vector-valued function must contain expressions for the \(n-1\) derivatives of each unknown function in addition to the \(n\)th derivative.
rkfixed returns a matrix in which the first column contains the values at which the solutions and their derivatives are to be evaluated, and the remaining columns contain the solutions and their derivatives evaluated at the corresponding point in the first column. The order in which the solution and its derivatives appear matches the order in which you put them into the vector of initial conditions.

\section*{Specialized Differential Equation Solvers}

Mathcad Professional includes several, more specialized functions for solving differential equations, and there are cases in which you may want to use these rather than the general-purpose rkfixed. These cases fall into the three categories given below. Each of these functions solves differential equations numerically: you always get back a matrix containing the values of the function evaluated over a set of points.

Tip When solving a differential equation it is a good idea to try more than one differential equation solver because one method might suit your differential equation better than another method.

\section*{Smooth systems}

When you know the solution is smooth, use Bulstoer, which uses the Bulirsch-Stoer method rather than the Runge-Kutta method used by rkfixed.
Pro Bustoer (\(\mathbf{y}, x 1, x 2\), npoints, \(\mathbf{D})\)
The argument list and the matrix returned by Bulstoer are identical to that for rkfixed.

\section*{Slow ly varying solutions}

Given a fixed number of points, you can approximate a function more accurately if you evaluate it frequently wherever it's changing fast and infrequently wherever it's changing more slowly.
Pro \(\operatorname{Rkadapt}(\mathbf{y}, x 1, x 2\), npoints, D)
The argument list and the matrix returned by Rkadapt are identical in form to that for rkfixed.
If you know that the solution has this property, you may be better off using Rkadapt. Unlike rkfixed, Rkadapt examines how fast the solution is changing and adapts its step size accordingly.

Note Although Rkadapt uses nonuniform step sizes internally when it solves the differential equation, it nevertheless returns the solution at equally spaced points.

\section*{Stiff systems}

A system of differential equations expressed in the form \(\mathbf{y}=\mathbf{A} \cdot \mathbf{x}\) is a stiff system if the matrix \(\mathbf{A}\) is nearly singular. Under these conditions, the solution returned by rkfixed may oscillate or be unstable. When solving a stiff system, you should use one of the two differential equation solvers specifically designed for stiff systems, Stiffb and Stiffr, which use the Bulirsch-Stoer method and the Rosenbrock method, respectively. They take the same arguments as rkfixed as well as one additional argument.
Pro \(\quad \operatorname{Stiffb}(\mathbf{y}, x 1, x 2\), npoints, \(\mathbf{D}, \mathbf{J})\)
\(\operatorname{Stiffr}(\mathbf{y}, x 1, x 2\), npoints, D, J)
\(\mathbf{J}(x, \mathbf{y})=\) A function you define that returns the \(n \times(n+1)\) matrix whose first column contains the derivatives \(\partial \mathbf{D} / \partial x\) and whose remaining rows and columns form the Jacobian matrix (\(\partial \mathbf{D} / \partial y_{k}\)) for the system of differential equations. For example, if:
\(\mathbf{D}(x, \mathbf{y})=\left[\begin{array}{c}x \cdot y_{1} \\ -2 \cdot y_{1} \cdot y_{0}\end{array}\right]\) then \(\mathbf{J}(x, \mathbf{y})=\left[\begin{array}{ccc}y_{1} & 0 & x \\ 0 & -2 \cdot y_{1} & -2 \cdot y_{0}\end{array}\right]\)
See rkfixed for a description of other parameters.

\section*{Evaluating Only the Final Value}

If you care about only the value of the solution at the endpoint, \(y(x 2)\), rather than over a number of uniformly spaced \(x\) values in the integration interval bounded by \(x 1\) and \(x 2\), use the functions listed below. Each function corresponds to the capitalized versions already discussed. The properties of each of these functions are identical to those of the corresponding function in the previous sections, except for the arguments given below:

Pro bulstoer(\(\mathbf{y}, x 1, x 2, a c c, \mathbf{D}\), kmax, save)
\(\operatorname{rkadapt}(\mathbf{y}, x 1, x 2, a c c, \mathbf{D}\), kmax, save \()\)
\(\operatorname{stiffb}(\mathbf{y}, x 1, x 2\), acc, D, J, kmax, save)
\(\operatorname{stiffr}(\mathbf{y}, x 1, x 2, a c c, \mathbf{D}, \mathbf{J}\), kmax, save)
acc \(=\) Controls the accuracy of the solution. A small value of acc forces the algorithm to take smaller steps along the trajectory, thereby increasing the accuracy of the solution. Values of acc around 0.001 generally yield accurate solutions.
\(k m a x=\) The maximum number of intermediate points at which the solution will be approximated. The value of kmax places an upper bound on the number of rows of the matrix returned by these functions.
save \(=\) The smallest allowable spacing between the values at which the solutions are to be approximated. This places a lower bound on the difference between any two numbers in the first column of the matrix returned by the function.

\section*{Boundary Value Problems}

The specialized differential equation solvers discussed above are useful for solving initial value problems. In some cases, however, you may know the value taken by the solution at the endpoints of the interval of integration, which is a boundary value problem.
To solve boundary value problems in Mathcad, you can use Odesolve, described in "Solving a Differential Equation Using a Solve Block", or sbval or bvalfit as described here.

\section*{Two-point boundary value problems}

Two-point boundary value problems are one-dimensional systems of differential equations in which the solution is a function of a single variable and the value of the solution is known at two points. You can use sbval in the following case:
- You have an \(n\)th order differential equation.
- You know some, but not all, of the values of the solution and its first \(n-1\) derivatives at the beginning of the interval of integration, \(x 1\), and at the end of the interval of integration, \(x 2\).
- Between what you know about the solution at \(x 1\) and at \(x 2\), you have \(n\) known values.
sbval returns a vector containing those initial values left unspecified at the first endpoint of the interval. Once you know the missing initial values at \(x l\), you have an initial value problem that can be solved using any of the functions discussed earlier in this section.
Pro \(\operatorname{sbval}(\mathbf{v}, x 1, x 2\), D, load, score \()\)
\(\mathbf{v}=\) Vector of guesses for initial values left unspecified at \(x 1\).
\(x 1, x 2=\) The endpoints of the interval on which the solution to the differential equations will be evaluated.
\(\mathbf{D}(x, \mathbf{y})=\) An \(n\)-element vector-valued function containing the first derivatives of the unknown functions.
\(\operatorname{load}(x l, \mathbf{v})=\) A vector-valued function whose \(n\) elements correspond to the values of the \(n\) unknown functions at \(x 1\). Some of these values will be constants specified by your initial conditions. Others will be unknown at the outset but will be found by sbval. If a value is unknown, you should use the corresponding guess value from \(\mathbf{v}\).
\(\operatorname{score}(x 2, \mathbf{y})=\) A vector-valued function having the same number of elements as \(\mathbf{v}\). Each element is the difference between an initial condition at \(x 2\), as originally specified, and the corresponding estimate from the solution. The score vector measures how closely the proposed solution matches the initial conditions at \(x 2\). A value of 0 for any element indicates a perfect match between the corresponding initial condition and that returned by sbval.

Note As shown in Figure 10-16, sbval does not actually return a solution to a differential equation. It merely computes the initial values the solution must have in order for the solution to match the final values you specify. You must then take the initial values returned by sbval and solve the resulting initial value problem using a function such as rkfixed.

It's also possible that you don't have all the information you need to use sbval but you do know something about the solution and its first \(n-1\) derivatives at some intermediate value, \(x f\). bvalfit solves a two-point boundary value problem of this type by shooting from the endpoints and matching the trajectories of the solution and its derivatives at the intermediate point. This method becomes especially useful when the derivative has a discontinuity somewhere in the integration interval.
\[
\begin{aligned}
& \text { Convert to initial value problem: } y^{(5]}+y=0 \quad \text { with } \quad y(0)=0 \quad y^{\prime}(0)=7 \\
& y(1)=1 \quad y^{\prime}(1)=10 \quad y^{\prime \prime}(1)=5 \\
& v:=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \text { - guess value for } \begin{array}{r}
y^{\prime \prime}(0) \\
y^{\prime \prime}(0) \\
y^{\mathrm{iv}}(0)
\end{array} \\
& D(x, y):=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \begin{array}{c}
\left.\operatorname{load}(x 1, v):=\left[\begin{array}{l}
v_{0} \\
v_{1} \\
\text {-D vector for the differential } \\
v_{2}
\end{array}\right] \lll \begin{array}{l}
\text { equation: } y^{(5)}+y=0
\end{array}\right] \begin{array}{c}
\text { Unknown initial } \\
\text { conditions. To be } \\
\text { solved for by sbval. }
\end{array} \\
y_{4}
\end{array} \\
& \begin{array}{l}
{\left[\begin{array}{c}
y_{4} \\
-y_{0}
\end{array}\right] \quad \operatorname{score}(x 2, y):=\left(\begin{array}{c}
y_{0}-1 \\
y_{1}-10 \\
y_{2}-5
\end{array}\right) \begin{array}{l}
\text { \& }
\end{array} \text { - Difference between } \begin{array}{l}
\text { computed and given } \\
\text { values of } y
\end{array}}
\end{array} \\
& S=\left(\begin{array}{c}
-85.014 \\
348.107 \\
-516.257
\end{array}\right) \begin{array}{ll}
<-y^{\prime \prime}(0) \\
<-y^{\prime \prime}(0) & \text { Missing initial conditions. } \\
<-y^{i v}(0)
\end{array} \quad \text { to be used with rkfixed. }
\end{aligned}
\]

Figure 10-16: Using sbval to obtain initial values corresponding to given final values of a solution to a differential equation.

Pro bvalfit(\(\mathbf{v 1}, \mathbf{v} 2, x 1, x 2, x f\), D, load1, load2, score)
\(\mathbf{v 1}, \mathbf{v} \mathbf{2}=\) Vector \(\mathbf{v} \mathbf{1}\) contains guesses for initial values left unspecified at \(x 1\). Vector \(\mathbf{v} 2\) contains guesses for initial values left unspecified at \(x 2\).
\(x 1, x 2=\) The endpoints of the interval on which the solution to the differential equations will be evaluated.
\(x f=\) A point between \(x 1\) and \(x 2\) at which the trajectories of the solutions beginning at \(x 1\) and those beginning at \(x 2\) are constrained to be equal.
\(\mathbf{D}(x, \mathbf{y})=\) An \(n\)-element vector-valued function containing the first derivatives of the unknown functions.
\(\operatorname{load} 1(x l, \mathbf{v 1})=\) A vector-valued function whose \(n\) elements correspond to the values of the \(n\) unknown functions at \(x l\). Some of these values will be constants specified by your initial conditions. If a value is unknown, you should use the corresponding guess value from \(\mathbf{v 1}\).
\(\operatorname{load} 2(x 2, \mathbf{v} 2)=\) Analogous to loadl but for values taken by the \(n\) unknown functions at \(x 2\).
\(\operatorname{score}(x f, \mathbf{y})=\) An \(n\) element vector valued function used to specify how you want the solutions to match at \(x f\). You'll usually want to define \(\operatorname{score}(x f\), \(\mathbf{y}):=\mathbf{y}\) to make the solutions to all unknown functions match up at \(x f\).

\section*{Partial differential equations}

A second type of boundary value problem arises when you are solving a partial differential equation. Rather than being fixed at two points, the solution is fixed at a whole continuum of points representing some boundary.

Two partial differential equations that arise often in the analysis of physical systems are Poisson's equation:
\[
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\rho(x, y)
\]
and its homogeneous form, Laplace's equation.
Tip To type a partial differential equation symbol such as \(\frac{\partial}{\partial x}\), insert the derivative operator \(\frac{d}{d x}\) by typing ? , click on the derivative operator with the right mouse button, and choose View Derivative As \(\Rightarrow\) Partial Derivative from the pop-up menu.

Mathcad has two functions for solving these equations over a square boundary. You should use relax if you know the value taken by the unknown function \(u(x, y)\) on all four sides of a square region.

If \(u(x, y)\) is zero on all four sides of the square, you can use multigrid, which often solves the problem faster than relax. Note that if the boundary condition is the same on all four sides, you can simply transform the equation to an equivalent one in which the value is zero on all four sides.
relax returns a square matrix in which:
- An element's location in the matrix corresponds to its location within the square region, and
- Its value approximates the value of the solution at that point.

This function uses the relaxation method to converge to the solution. Poisson's equation on a square domain is represented by:
\[
a_{j, k} u_{j+1, k}+b_{j, k} u_{j-1, k}+c_{j, k} u_{j, k+1}+d_{j, k} u_{j, k-1}+e_{j, k} u_{j, k}=f_{j, k}
\]
\(\operatorname{relax}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{u}, r j a c)\)
\(\mathbf{a} . . . \mathbf{e}=\) Square matrices all of the same size containing coefficients of the above equation.
\(\mathbf{f}=\) Square matrix containing the source term at each point in the region in which the solution is sought.
\(\mathbf{u}=\) Square matrix containing boundary values along the edges of the region and initial guesses for the solution inside the region.
\(r j a c=\) Spectral radius of the Jacobi iteration. This number between 0 and 1 controls the convergence of the relaxation algorithm. Its optimal value depends on the details of your problem.

Pro
multigrid(\(\mathbf{M}\), ncycle \()\)
\(\mathbf{M}=\left(1+2^{n}\right)\) row square matrix whose elements correspond to the source term at the corresponding point in the square domain.
ncycle \(=\) The number of cycles at each level of the multigrid iteration. A value of 2 generally gives a good approximation of the solution.

\section*{Miscellaneous Functions}

\section*{Expression Type}

Pro IsArray (\(x\)) Returns 1 if \(x\) is a matrix or vector, 0 otherwise.
Pro IsScalar \((x)\) Returns 1 if \(x\) is a real or complex number, 0 otherwise.
Pro \(\operatorname{IsString}(x) \quad\) Returns 1 if \(x\) is a string, 0 otherwise.
Pro UnitsOf \((x) \quad\) Returns the units of \(x, 1\) otherwise.

\section*{String Functions}
\begin{tabular}{|c|c|c|}
\hline Pro & concat(S1, S2, S3, ...) & Returns a string formed by appending string \(S 2\) to the end of string S1, S3 to the end of \(S 2\), and so on. \\
\hline Pro & error \((S)\) & Returns the string \(S\) as an error tip. When Mathcad evaluates the error function, the expression is highlighted in red and further numerical evaluation is suspended. When you click on the expression, the string appears in an error tip. \\
\hline Pro & num \(2 \operatorname{str}(z)\) & Returns a string formed by converting the real or complex number \(z\) into a decimal-valued string. \\
\hline Pro & \(\operatorname{search}(S, S l, m)\) & Returns the starting position of the substring \(S 1\) in string \(S\) beginning from position \(m\), or -1 if no substring is found. \(m\) must be a nonnegative integer. \\
\hline Pro & str2num(S) & Returns a constant formed by converting the characters in string \(S\) to a number. \(S\) must contain only characters which constitute an integer, a floating-point or complex number, or an e-format number such as \(4.51 \mathrm{e}-3\) (for \(4.51 \cdot 10^{-3}\)). Spaces are ignored. \\
\hline Pro & str2vec(S) & Returns a vector of ASCII codes corresponding to the characters in string \(S\). \\
\hline Pro & strlen \((S)\) & Returns the number of characters in string \(S\). \\
\hline
\end{tabular}

Pro \(\quad \operatorname{substr}(S, m, n) \quad\) Returns a substring of \(S\) beginning with the character in the \(m\) th position and having at most \(n\) characters. \(m\) and \(n\) must be nonnegative integers.

Pro vec2str(v)
Returns a string formed by converting a vector \(\mathbf{v}\) of ASCII codes to characters. The elements of \(\mathbf{v}\) must be integers between 0 and 255 .

The strings used and returned by most of these functions are typed in a math placeholder by pressing the double-quote key (") and entering any combination of letters, numbers, or other ASCII characters. Mathcad automatically places double quotes around the string expression and displays quotes around a string returned as a result.

Note When evaluating the functions search and substr, Mathcad assumes that the first character in a string is at position 0 .

\section*{File Access Functions}

The file argument you supply to a Mathcad file access function is a string-or a variable to which a string is assigned-that corresponds either to:
- The name of a data or image file in the folder of the Mathcad worksheet you're currently working on.
- The name of a colormap file (see page 190) in the CMAP subfolder of your Mathcad installation folder.
- A full or relative path to a data, image, or colormap file located elsewhere on a local or network file system.

\section*{Reading and writing ASCII data files}

READPRN(file) Reads a structured data file. Returns a matrix. Each line in the data file becomes a row in the matrix. The number of elements in each row must be the same. Usually used as follows:
A := READPRN(file)
WRITEPRN(file) Writes a matrix into a data file. Each row becomes a line in the file. Must be used in a definition of the form WRITEPRN(file) := A

APPENDPRN(file) Appends a matrix to an existing file. Each row in the matrix becomes a new line in the data file. Must be used in a definition of the form APPENDPRN(file) := A. Existing data must have as many columns as \(\mathbf{A}\).

Files in plain ASCII format consist only of numbers separated by commas, spaces, or carriage returns. The numbers in the data files can be integers like \(\mathbf{3}\) or \(\mathbf{- 1}\), floatingpoint numbers like 2.54 , or E-format numbers like \(\mathbf{4 . 5 1 E - 4}\) (for \(4.51 \cdot 10^{-4}\)).

Tip These ASCII data file access functions are provided mainly for compatibility with worksheets created in earlier versions of Mathcad. The Input Table and File Read/Write component provide more general methods of importing and exporting data in a variety of formats. See Chapter 11, "Vectors, Matrices, and Data Arrays."

\section*{Reading and writing image files}

READBMP(file) Creates a matrix containing a grayscale representation of the image in BMP format file. Each element in the matrix corresponds to a pixel. The value of a matrix element determines the shade of gray associated with the corresponding pixel. Each element is an integer between 0 (black) and 255 (white).
\(\operatorname{READRGB}(\) file \(\quad\) Creates a matrix in which the color information in BMP format file is represented by the appropriate values of red, green, and blue. This matrix consists of three submatrices, each with the same number of columns and rows. Three matrix elements, rather than one, correspond to each pixel. Each element is an integer between 0 and 255 . The three corresponding elements, when taken together, establish the color of the pixel.

WRITEBMP(file)

WRITERGB(file)

Creates a grayscale BMP file from the matrix. Must be used in a definition of the form WRITEBMP(file) := A.

Creates a color BMP file from a matrix in which the image is stored in RGB format. Must be used in a definition of the form WRITERGB(file) := A.

Pro READ_IMAGE(file)

Pro READ_HLS(file)
READ_HSV(file)

Pro READ_RED(file)
READ_GREEN(file)
READ_BLUE(file)

Creates a matrix containing a grayscale representation of the image in BMP, GIF, JPG, PCX, or TGA format file.

Creates a matrix in which the color information in BMP, GIF, JPG, PCX, or TGA format file is represented by the appropriate values of hue, lightness, and saturation (HLS) or hue, saturation, and value (HSV).

Extracts only the red, green, or blue component from a color image in BMP, GIF, JPG, PCX, or TGA format file. The result has one-third the number of columns that the matrix returned by \(R E A D R G B\) would have had.

Pro READ_HLS_HUE(file) Extracts only the hue, lightness, or saturation component READ_HLS_LIGHT(file) from a color image in BMP, GIF, JPG, PCX, or TGA format READ_HLS_SAT(file) file. The result has one-third the number of columns that the matrix returned by \(R E A D _H L S\) would have had.

Pro READ_HSV_HUE(file) Extracts only the hue, saturation, or value component from
READ_HSV_SAT(file) a color image in BMP, GIF, JPG, PCX, or TGA format file.
READ_HSV_VALUE(file) The result has one-third the number of columns that the matrix returned by \(R E A D _H S V\) would have had.

Pro WRITE_HLS(file)
Creates a color BMP file out of a matrix in which the image is stored in HLS format. Must be used in a definition of the form WRITE_HLS(file) := A.

Creates a color BMP file out of a matrix in which the image is stored in HSV format. Must be used in a definition of the form WRITE_HSV(file) := A.

\section*{Functions Related to 3D Graphs} Loading and saving colormaps

Pro LoadColormap(file) Returns an array containing the values in the colormap file.
Pro SaveColormap(file, M)
Creates a colormap file containing the values in the threecolumn array M. Returns the number of rows written to file.

A colormap is a .CMP file containing three columns of values that represent levels of red, green, and blue. You can apply a colormap to a 3D plot as described in "Fill Color" on page 236. Each value in a colormap should be an integer between 0 and 255, inclusive. By default Mathcad saves and loads colormaps from the CMAPS subfolder of the location where you installed Mathcad.

\section*{Graphing 3D polyhedra}

Pro PolyLookup (n) Returns a vector containing the name, the dual name, and the Wythoff symbol for the uniform polyhedron whose number code is \(n . n\) is a positive integer less than 81 , a name typed as a string, or a Wythoff symbol typed as a string.

Pro Polyhedron(S) Generates the uniform polyhedron whose name, number code, or Wythoff symbol is string S.

The uniform polyhedra are regular polyhedra whose vertices are congruent. Each has a name, a number, a dual (the name of another polyhedron), and a Wythoff symbol associated with it. To look up the name, Wythoff symbol, and dual name of a polyhedron, use PolyLookup.
To graph a uniform polyhedron:
1. Click in a blank spot of your worksheet. Choose \(\mathbf{G r a p h} \Rightarrow\) Surface Plot from the Insert menu.
2. In the placeholder, enter the Polyhedron function with an appropriate string argument.

3. Click outside the plot or press [Enter].

\section*{Chapter 11 Vectors, Matrices, and Data Arrays}
\(\tau\) Creating Arrays
\(\tau\) Accessing Array Elements
\(\tau\) Displaying Arrays
\(\tau\) Working with Arrays
\(\tau\) Nested Arrays

\section*{Creating Arrays}

As introduced in "Inserting Math" on page 33, one technique of creating an array is to use the Matrix command on the Insert menu to create an array of empty placeholders and then to enter expressions directly into the placeholders. This technique can only be used for small arrays, but it can be used to create arrays of any kind of Mathcad expression, not just numbers. This section describes this technique and other approaches for creating arrays of arbitrary size:
- Using range variables to fill in the elements. This technique is useful when you have some explicit formula for the array elements in terms of their indices.
- Using the File Read/Write component to import data from external files in a variety of formats.
- Entering numbers manually in a spreadsheet-like input table.

Unlike the Insert Matrix command, however, these procedures can be used only for creating arrays of numbers, as opposed to arbitrary math expressions.

Note The effective array size limit depends on the memory available on your system-usually at least 1 million elements. In no system is it higher than 8 million elements.

\section*{Insert Matrix Command}

To insert a vector or matrix in Mathcad, follow these steps:
1. Click in either a blank space or on a math placeholder.
2. Choose Matrix from the Insert menu, or click
 on the Matrix toolbar. A dialog box appears, as shown at right.
\begin{tabular}{|c|c|}
\hline Insert Matrix & \(x\) \\
\hline Rows: 3 & OK \\
\hline Columns: 3 & Insert \\
\hline & Delete \\
\hline & Cancel \\
\hline
\end{tabular}
3. Enter the appropriate number of elements in the text boxes for "Rows" and "Columns." For example, to create a three-element vector, enter 3 and 1.
4. An array with blank placeholders appears in your worksheet.

Next, fill in the array elements. You can enter any Mathcad expression into the placeholders of an array created in this way. Simply click in a placeholder and type a number or Mathcad expression. Use the [Tab] key to move from placeholder to placeholder.

Note Arrays created using the Matrix command on the Insert menu are limited to 100 elements.

\section*{Changing the size of a vector or matrix}

You can change the size of a matrix by inserting and deleting rows and columns:
1. Click on one of the matrix elements to place it between the editing lines. Mathcad begins inserting or deleting with this element.
2. Choose Matrix from the Insert menu. Type the number of rows and/or columns you want to insert or delete. Then press either "Insert" or "Delete." For example, to delete the
\begin{tabular}{|l|}
\hline\(\left(\begin{array}{ccc}2 & 5 & 17 \\
3.5 & 3.9 & -12.9\end{array}\right)\) \\
\hline\(\left(\begin{array}{cc}5 & 17 \\
3.9 & -12.9\end{array}\right)\) \\
\hline
\end{tabular} column that holds the selected element, type 1 in the box next to "Columns," 0 in the box next to "Rows," and press "Delete."

Note If you insert rows or columns, Mathcad inserts rows below the selected element and inserts columns to the right of the selected element. If you delete rows or columns, Mathcad begins with the row or column occupied by the selected element and deletes rows from that element downward and columns from that element rightward. To insert a row above the top row or a column to the left of the first column, first place the entire matrix between the editing lines.

\section*{Creating Arrays with Range Variables}

As introduced in "Range Variables" on page 101, you can use one or more range variables to fill up the elements of an array. If you use two range variables in an equation, for example, Mathcad runs through each value of each range variable. This is useful for defining matrices. For example, to define a \(5 \times 5\) matrix whose \(i, j\) th element is \(i+j\), enter the equations shown in Figure 11-1.
Recall that you enter the range variable operator by pressing the semicolon key (;) or clicking m..n on the Calculator toolbar. You enter the subscript operator by clicking \(x_{n}\) on the Matrix toolbar.

The \(x_{i, j}\) equation is evaluated for each value of each range variable, for a total of 25 evaluations. The result is the matrix shown at the bottom of Figure 11-1, with 5 rows and 5 columns. The element in the \(i\) th row and \(j\) th column of this matrix is \(i+j\).

Note To be used to define an array element, a range variable can take on only whole-number values.
\(\mathbf{i}:=0 . .4 \quad \mathrm{j}:=0 . .4\)
\(\mathrm{x}_{\mathrm{i}, \mathrm{j}}:=\mathrm{i}+\mathrm{j}\)
\(\mathrm{x}=\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8\end{array}\right)\)

Figure 11-1: Defining a matrix using range variables.

Tip You can also define individual array elements using the subscript operator, as described in "Accessing Array Elements" on page 196.

\section*{Reading a Data File}

Mathcad provides the File Read/Write component to read a data file and store the data in a Mathcad array variable.

Note A component is a specialized OLE object that you insert into a Mathcad worksheet to create a link between the worksheet and either a data source or another application containing data. For more information on components, including specialized components for linking other computational applications dynamically to arrays in a Mathcad worksheet, see Chapter 16, "Advanced Computational Features."

You can read data from files in a variety of formats, including:
- Excel (*.XLS)
- MATLAB (*.MAT)
- Lotus 1-2-3 (*.WK*)
- ASCII editors (*.DAT, *.CSV, *.PRN, *.TXT)

Tip Mathcad also provides a number of built-in functions for importing ASCII data files and image files. See "File Access Functions" on page 188.

To read in data using the File Read/Write component:
1. Click in a blank spot of your worksheet.
2. Choose Component from the Insert menu.
3. Choose File Read or Write from the list and click "Next." This launches the File Read or Write Wizard.
4. Choose "Read from a file" and press "Next" to continue through the Wizard.
5. Specify the type of data file you want to read. Enter the path to the data file or use the "Browse" button to locate it.
6. Press "Finish." You'll see the File Read/Write component icon and the path to the data file. For example, if you specify a data file called data.txt in the
```

|}:=\quad\mathrm{ [0
c:lwindowsidata.tyt

``` C:IWINDOWS folder, you'll see the component at right.

In the placeholder that appears, enter the name of the Mathcad variable to which the data from the file will be assigned. When you click outside the component, the data file is read in and the data is assigned to the Mathcad array variable you entered into the placeholder.

Each time you calculate the worksheet, Mathcad re-reads the data from the file you have specified. Figure 11-2 shows an example of reading in data using the File Read/ Write component. If you want to import data from a file just once into Mathcad, refer to"Importing Once from a Data File" on page 196.

Figure 11-2: Reading in data from a data file. Whenever you calculate the worksheet, the data file is read in.

To read in a different data file or a different type of data file:
1. Click with the right mouse button on the component and select Choose File from the component pop-up menu.
2. In the "Files of type" text box, choose the type of file you'd like to import. Use the dialog box to browse to the data file, select the data file, and click "Open."

Tip By default, Mathcad reads in the entire data file and creates an array with the variable name you provide. To read in only certain rows or columns of a data file, click once on the component to select it, then click with the right mouse button on the component and choose Properties from the pop-up menu. Use the Properties dialog box to specify the row and columns at which to start and stop reading.

\section*{Entering Data into a Table}

To get the convenience of a spreadsheet-like interface for entering data, you can create an array using the Input Table component:
1. Click in a blank spot in your worksheet and choose Component from the Insert menu.
2. Select Input Table from the list and click "Next." The Input Table component is inserted into your worksheet.
3. Enter the name of the Mathcad variable to which the data will be assigned in the placeholder that appears.
4. Click in the component and enter data into the cells. Each row must have the same number of data values. If you do not enter a number into a cell, Mathcad inserts 0 into the cell.

Figure 11-3 shows two input tables. Notice that when you create an input table, you're actually assigning elements to an array that has the name of the variable you entered into the placeholder.

Figure 11-3: Using input tables to create arrays of data.
When you click the table, you can edit the values in it. The scroll bars let you scroll through the table. To resize the table, move the cursor to one of these handles along the sides of the region so that it changes to a double-headed arrow. Then press and hold down the mouse button and drag the cursor to change the table's dimensions.

Tip You can copy data from an input table as follows: first select some data, then click with the right mouse button on the component and choose Copy from the pop-up menu. You can paste a single number from the Clipboard into the table by selecting a cell and choosing Paste from the popup menu. Choosing Paste Table from the pop-up menu overwrites the entire table with values in the Clipboard.

\section*{Importing Once from a Data File}

You can use an input table to import data a single time from a data file. To do so:
1. Insert an input table by following the instructions given above.
2. In the placeholder that appears to the left, enter the name of the Mathcad variable to which this data will be assigned.
3. Click on the table to select it. Then click on it with the right mouse button on the input table so that you see the pop-up menu.

\section*{4. Choose Import.}
5. The Read from File dialog box appears. In the "Files of type" text box, choose the type of file you'd like to import. Use the dialog box to browse to the data file and click "Open."

The data from the data file appears in your worksheet in the input table.
Note Unlike the File Read/Write component, the Import feature of an input table reads the data only when you choose Import, not each time you calculate the worksheet. If you want the data to be imported each time you calculate, use the File Read/Write component as described in "Reading a Data File" on page 193.

\section*{Accessing Array Elements}

You can access all the elements of an array simply by using its variable name, or you can access the elements individually or in groups.

\section*{Subscripts}

You access individual elements of a vector or matrix by using the subscript operator described in "Vector and Matrix Operators" on page 127. Insert the subscript operator by clicking \(\times_{n}\) on the Matrix toolbar or by typing [. To access an element of a vector, enter one number in the subscript. To access a matrix element, enter two numbers separated by a comma. To refer to the \(i\) th element of a vector, type \(\mathbf{v}\) [\(\mathbf{i}\). In general, to refer to the element in the \(i\) th row, \(j\) th column of matrix \(\mathbf{M}\), type \(\mathbf{M}[\mathbf{i}, \mathbf{j}\).
Figure 11-4 shows examples of how to define individual matrix elements and how to view them.

Note When you define vector or matrix elements, you may leave gaps in the vector or matrix. For example, if \(\mathbf{v}\) is undefined and you define \(v_{3}\) as 10 , then \(v_{0}, v_{1}\), and \(v_{2}\) are all undefined. Mathcad fills these gaps with zeros until you enter specific values for them, as shown in Figure 11-4. Be careful of inadvertently creating very large vectors and matrices by doing this. Also note that vector and matrix elements by default are numbered starting with row zero and column zero unless the built-in variable ORIGIN has a value other than zero (see page 197).

You can use this kind of subscript notation in Mathcad to perform parallel calculations on the elements of an array. See "Doing Calculations in Parallel" on page 201.
\begin{tabular}{rlrl}
\(M_{0,0}\) & \(:=1\) & \(M_{0,1}\) & \(:=3\) \\
\(M_{1,0}\) & \(:=2\) & \(M_{1,2}\) & \(:=6\)
\end{tabular}\(\quad M_{0,2}:=5\)

Now show the values of the elements of M...
\(M=\left(\begin{array}{lll}1 & 3 & 5 \\ 2 & 0 & 6\end{array}\right)\)
\(M_{1,2}=6 \quad M_{1,1}=0\)
\(M_{2.2}=\quad\) <- Since the array ORIGIN is zero, there Value of subscript or superscipt is too is a zeroth row and a first row...but no big (or too small) for this array. second row.

Figure 11-4: Defining and viewing matrix elements.

Tip If you want to define or access a group of array elements at once, you can use a range variable in a subscript.

\section*{Accessing Rows and Columns}

Although you can use a range variable to access all the elements in a row or column of an array, Mathcad provides a column operator for quickly accessing all the elements in a column. Click \(M^{〔>}\) on the Matrix toolbar for the column operator. Figure 11-5 shows how to extract the third column of the matrix \(\mathbf{M}\).
\[
\begin{aligned}
& M=\left(\begin{array}{lll}
1 & 3 & 5 \\
2 & 0 & 6
\end{array}\right) \quad M^{\langle 2\rangle}=\binom{5}{6} \quad \begin{array}{l}
\text { Note: the origin is } 0 . \\
\text { Thus, the superscrip of } 2 \\
\text { refers to the third column } \\
\text { of the matrix } M .
\end{array} \\
& M^{\top}=\left(\begin{array}{ll}
1 & 2 \\
3 & 0 \\
5 & 6
\end{array}\right) \quad W:=\left\langle M^{\top}, \quad W=\left(\begin{array}{l}
2 \\
0 \\
6
\end{array}\right)\right.
\end{aligned}
\]

Figure 11-5: Extracting a column from a matrix.
To extract a single row from a matrix, transpose the matrix using the transpose operator (click \(M^{\top}\) on the Matrix toolbar) and then extract a column using the column operator. This is shown on the right-hand side of Figure 11-5.

\section*{Changing the Array Origin}

When you use subscripts to refer to array elements, Mathcad assumes the array begins at the current value of the built-in variable ORIGIN. By default, ORIGIN is 0, but you can change its value. See "Built-in Variables" on page 98 for details.

Figure 11-6 shows a worksheet with the ORIGIN set to 1. If you try to refer to the zeroth element of an array in this case, Mathcad displays an error message.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
ORIGIN \(\equiv\) \\
Matrices:
\end{tabular} & \(M:=\left(\begin{array}{lll}1 & 2 & 7 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right)\) & \\
\hline \begin{tabular}{l}
\[
M_{1,1}=1
\] \\
Vectors:
\end{tabular} & \[
M_{3,3}=9 \quad M_{1,3}=7
\] & \begin{tabular}{l}
\[
M_{0,0}=
\] \\
Value of subscript or superscript is too big (or too small) for this array.
\end{tabular} \\
\hline \[
\begin{aligned}
& v_{1}:=1 \\
& v=\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right)
\end{aligned}
\] & \begin{tabular}{l}
\[
\mathrm{v}_{2}:=3 \quad \mathrm{v}_{3}:=5
\]
\[
\mathrm{v}_{0}=
\] \\
Value of subscript or superscript is too big (or too small) for this array.
\end{tabular} & array ORIGIN is now one, there ger a zeroth row or column. \\
\hline
\end{tabular}

Figure 11-6: Arrays beginning at element one instead of at element zero.

\section*{Displaying Arrays}

As described in "Formatting Results" on page 110, Mathcad automatically displays matrices and vectors having more than nine rows or columns as output tables rather than as matrices or vectors. Smaller arrays are displayed by default in traditional matrix notation. Figure 11-7 shows an example.
\[
\begin{aligned}
& i=0 . .2 \quad j:=0.2 \quad A_{i, j}=\sin (i)+\frac{\pi}{2}-j \\
& \mathrm{~A}=\left(\begin{array}{ccc}
1.571 & 0.571 & -0.429 \\
2.412 & 1.412 & 0.412 \\
2.48 & 1.48 & 0.48
\end{array}\right) \quad \text { <- Array displayed as a matrix. } \\
& \mathbf{A}= \\
& \text { <-- Array displayed as an } \\
& \text { output table. }
\end{aligned}
\]

Figure 11-7: Display results as a matrix or in an output table.

Note An output table displays a portion of an array. To the left of each row and at the top of each column, there is a number indicating the index of the row or column. Click with the right mouse button on the output table and select Properties from the pop-up menu to control whether row and column numbers appear and the font used for values in the table. If your results extend beyond the table, a scroll bar appears along the appropriate edge of the table. You can scroll through the table using these scroll bars just as you would scroll through any window.

To resize an output table:
1. Click the output table. You'll see handles along the sides of the table.
2. Move the cursor to one of these handles so that it changes to a double-headed arrow.
3. Press and hold down the mouse button and drag the cursor in the direction you want the table's dimensions to change.

Tip You can change the alignment of the table with respect to the expression on the left-hand side of the equal sign. Click with the right mouse button on the table, then choose one of the Alignment options from the pop-up menu.

\section*{Changing the Display of Arrays - Table versus Matrix}

Although matrices and vectors having more than nine rows or columns are automatically displayed as scrolling output tables, you can have Mathcad display them as matrices. You can also change matrices to output tables. To do so:
1. Click on the scrolling output table.
2. Choose Result from the Format menu.
3. Click on the Display Options tab.
4. Choose Matrix or Table in the "Matrix display style" drop-down box.
5. Click "OK."

To display all the results in your worksheet as matrices or as tables regardless of their size, click "Set as Default" in the Result Format dialog box rather than "OK."

Note Mathcad cannot display extremely large arrays in matrix form. You should display a large array as a scrolling output table.

\section*{Changing the Format of Displayed Elements}

You format the numbers in the array the same way you format other numerical results, as described in "Formatting Results" on page 110. Just click on the displayed array and choose Result from the Format menu, and modify the settings there. When you click "OK," Mathcad applies the selected format to all the numbers in the table, vector, or matrix. It is not possible to format the numbers individually.

\section*{Copying and Pasting Arrays}

You can copy an array of numbers directly from a spreadsheet or database into Mathcad where you can take advantage of its free-form interface and its advanced mathematical tools. Once you've performed the necessary computations, you can paste the resulting array of numbers back to its source or even into another application.
To copy just one number from a result array, simply click the number and choose Copy
from the Edit menu, or click 舁刍 on the Standard toolbar. Copying multiple numbers from a vector or matrix result differs depending on whether the array is displayed as a matrix or as an output table. See "Formatting Results" on page 110 for more information on how vector and matrix results are displayed.

To copy a result array displayed as a matrix:
1. Drag-select the array to the right of the equal sign to place the entire array between the editing lines.
2. Choose Copy from the Edit menu. This places the entire array on the Clipboard.
3. Click wherever you want to paste the result. If you're pasting into another application, choose Paste from that application's Edit menu. If you're pasting into
a Mathcad worksheet, choose Paste from Mathcad's Edit menu, or click on the Standard toolbar.

Note You may only paste an array into a math placeholder or into a blank space in a Mathcad worksheet.

When you display array results as a table, you can copy some or all of the numbers from the table and use them elsewhere:
1. Click on the first number you want to copy.
2. Drag the mouse in the direction of the other values you want to copy while holding the mouse button down.
3. Click on the selected values with the right mouse button and choose Copy Selection from the pop-up menu.

To copy all the values in a row or column, click on the column or row number shown to the left of the row or at the top of the column. All the values in the row or column are selected. Then choose Copy from the Edit menu.
After you have copied one or more numbers from an output table, you can paste them into another part of your worksheet or into another application. Figure 11-8 shows an example of a new matrix created by copying and pasting numbers from an output table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{14}{*}{\(x=\)} & \multicolumn{13}{|l|}{\(\mathbf{i}:=\mathbf{0} . .9 \quad \mathbf{j}:=\mathbf{0} . .9 \quad \mathbf{x}_{\mathbf{i}, \mathbf{j}}:=(\mathbf{i}+\mathbf{j}) \cdot \mathbf{2}\)} \\
\hline & & f & & 1 & 3 & 3 & fid & 5 & \% & 7 & B & \% & \multirow[t]{9}{*}{<- Column numbers
<- Copy numbers from the table.
by
by
dit} \\
\hline & 1 & 0 & 2 & & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & \multirow[b]{4}{*}{<- Copy numbers from the table.} \\
\hline & 1 & 2 & 4 & & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & \\
\hline & 2 & 4 & 6 & & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & \\
\hline & 4 & 6 & 8 & & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & \\
\hline & 4 & 8 & 10 & 0 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & \\
\hline & 3 & 10 & 12 & 2 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & \\
\hline & 3 & 12 & 14 & 4 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & \\
\hline & 3 & 14 & 16 & 6 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & \\
\hline & 3 & 16 & 18 & 8 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & \\
\hline & 4 & 18 & & 0 & 22 & 24 & 26 & 28 & 30 & 32 & & 36 & \\
\hline & \multicolumn{12}{|l|}{\begin{tabular}{l}
个 \\
Row numbers
\end{tabular}} & \\
\hline & \multicolumn{7}{|r|}{\(y:=\left(\begin{array}{ccc}6 & 8 & 10 \\ 8 & 10 & 12 \\ 10 & 12 & 14\end{array}\right)\)} & \multicolumn{5}{|l|}{<- Type y followed by a colon. Then choose Paste from the Edit menu.} & \\
\hline
\end{tabular}

Figure 11-8: Copying and pasting results from an output table.

\section*{Working with Arrays}

Once you create an array, you can use it in calculations. There are many operators and functions designed for use with vectors and matrices. See "Vector and Matrix Operators" on page 127 and "Vector and Matrix Functions" on page 152 for an overview. This section highlights the vectorize operator, which permits efficient parallel calculations on the elements of arrays. You can also display the values of an array graphically or export them to a data file or another application.

\section*{Doing Calculations in Parallel}

Any calculation Mathcad can perform with single values, it can also perform with vectors or matrices of values. There are two ways to do this:
- Iterate over each element using range variables. See for example "Creating Arrays with Range Variables" on page 192.
- Use the vectorize operator, which allows Mathcad to perform the same operation efficiently on each element of a vector or matrix.

Mathematical notation often shows repeated operations with subscripts. For example, to define a matrix \(\mathbf{P}\) by multiplying corresponding elements of the matrices \(\mathbf{M}\) and \(\mathbf{N}\), you would write:
\[
\mathbf{P}_{i, j}=\mathbf{M}_{i, j} \cdot \mathbf{N}_{i, j}
\]

Note that this is not matrix multiplication, but multiplication element by element. It is possible to perform this operation in Mathcad using subscripts, but it is much faster to perform exactly the same operation with a vectorized equation.

Here's how to apply the vectorize operator to an expression like \(\mathbf{M} \cdot \mathbf{N}\) :
1. Select the whole expression by clicking inside it and pressing [Space] until the right-hand side is surrounded by the editing lines.
2. Click \(\overrightarrow{\mathrm{f}(\mathrm{MI})}\) on the Matrix toolbar to apply the vectorize operator.
 Mathcad puts an arrow over the top of the selected expression.
```

P:=(M}\mathbf{N

```

\section*{Properties of the vectorize operator}
- The vectorize operator changes the meaning of the other operators and functions to which it applies. The vectorize operator tells Mathcad to apply the operators and functions with their scalar meanings, element by element. It does not change the meaning of the actual names and numbers. If you apply the vectorize operator to a single name, it simply draws an arrow over the name. You can use this arrow for cosmetic purposes only if you like.
- Since operations between two arrays are performed element by element, all arrays under a vectorize operator must be the same size. Operations between an array and a scalar are performed by applying the scalar to each element of the array.
- You can use any of the following matrix operations under a vectorize operator: dot product, matrix multiplication, matrix powers, matrix inverse, determinant, or
magnitude of a vector. The vectorize operator transforms these operations into element-by-element scalar multiplication, exponentiation, or absolute value, as appropriate.

Tip A number of Mathcad's built-in functions and operators ordinarily take scalar arguments but implicitly vectorize arguments that are vectors (one-column arrays): they automatically compute a result element by element, whether you apply the vectorize operator or not. Functions that implicitly vectorize vector arguments include the trigonometric, logarithmic, Bessel, and probability distribution functions. Operators that implicitly vectorize vector arguments include the factorial, square and \(n\)th root, and relational operators. You must continue to use the vectorize operator on arrays of other sizes with these functions and operators.

For example, suppose you want to apply the quadratic formula to three vectors containing coefficients \(a, b\), and \(c\). Figure 11-9 shows how to do this with the vectorize operator.

Coefficients as follows ... \(a:=\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 2\end{array}\right) \quad b:=\left(\begin{array}{l}3 \\ 2 \\ 1 \\ 0\end{array}\right) \quad c:=\left(\begin{array}{l}2 \\ 1 \\ 1 \\ 1\end{array}\right)\)
Compute a root...
\(x:=\left(\frac{-b+\sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a}\right)\)
\(x=\left(\begin{array}{l}-1 \\ -1 \\ -0.25+0.661 i \\ 0.707 i\end{array}\right)\)
\(\xrightarrow[\left(a \cdot x^{2}+b \cdot x+c\right)]{(a)}\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right) \quad \ldots\) should be zero
Figure 11-9: Quadratic formula with vectors and the vectorize operator.
The vectorize operator, appearing as an arrow above the quadratic formula in Figure \(11-9\), is essential in this calculation. Without it, Mathcad would interpret \(\mathbf{a} \cdot \mathbf{c}\) as a vector dot product and also flag the square root of a vector as illegal. But with the vectorize operator, both \(\mathbf{a} \cdot \mathbf{c}\) and the square root are performed element by element.

\section*{Graphical Display of Arrays}

In addition to looking at the actual numbers making up an array, you can also see a graphical representation of those same numbers. There are several ways to do this:
- For an arbitrary array, you can use the various three-dimensional plot types discussed in Chapter 13, "3D Plots."
- For an array of integers between 0 and 255 , you can look at a grayscale image by choosing Picture from the Insert menu and entering the array's name in the placeholder.
- For three arrays of integers between 0 and 255 representing the red, green, and blue components of an image, choose Picture from the Insert menu and enter the arrays' names, separated by commas, in the placeholder.
See Chapter 6, "Working with Graphics and Other Objects," for more on viewing a matrix (or three matrices, in the case of a color image) in the picture operator.

\section*{Writing to a Data File}

The File Read/Write component allows you to write the values stored in a Mathcad variable to a data file in a variety of formats, including the following:
- Excel (*.XLS)
- MATLAB (*.MAT)
- Lotus 1-2-3 (*.WK*)
- ASCII editors (*.DAT, *.CSV, *.PRN, *.TXT)

Tip Mathcad also provides a number of built-in functions to export arrays as ASCII data files or image files. See "File Access Functions" on page 188.

To export data using the File Read/Write component:
1. Click in a blank spot in your worksheet.
2. Choose Component from the Insert menu.
3. Select File Read or Write from the list and click "Next." This launches the File Read or Write Wizard.
4. Choose "Write to a file" and press "Next" to continue through the Wizard.
5. Specify the type of data file you want to create. Also enter the path to the data file you want to write or click the "Browse" button to locate it.
6. Press "Finish." You'll see the File Read/Write component icon and the path to the data file. For example, if you specify a data file called data.txt, you'll see the component at right.

In the placeholder, enter the name of the Mathcad variable containing the data to be written to the data file. When you click outside the component, all the values in the array are written to the file you specified. Each time you calculate the worksheet, the data file is rewritten. See Figure 11-10 for an example.
To change the name of the data file being created to or to change the type of file being created:
1. Click once on the component to select it.
2. Click with the right mouse button on the component and select Choose File from the pop-up menu to open the Write to File dialog box.
3. Choose the type of file you'd like to create in the "Files of type" text box. Use the dialog box to browse to the folder in which the data file will be created and click "Open."
\(i:=0 . .4 \quad j:=0 . .4\)
\(v:=\left(\begin{array}{c}6 \\ 7 \\ 6 \\ 45 \\ 4\end{array}\right) \quad A_{i, j}:=i \cdot \sin (j \cdot 3+1)+2\)

The values in \(x\) are written out to the file solved.xls in the c:lwindows directory.

Figure 11-10: Exporting data with the File Read/Write component

Tip When you display an array as an output table, as described in "Displaying Arrays" on page 198, you can export data directly from the table. Click with the right mouse button on the output table, choose Export from the pop-up menu, and enter the name of the file that will receive the data. Unlike the File Read/Write component, the output table writes the data only when you choose Export, not each time you calculate the worksheet.

\section*{Nested Arrays}

An array element need not be a scalar. It's possible to make an array element itself be another array. This allows you to create arrays within arrays.

These arrays behave very much like arrays whose elements are all scalars. However, there are some distinctions, as described below.

Note Most of Mathcad's operators and functions do not work with nested arrays, since there is no universally accepted definition of what constitutes correct behavior in this context. Certain operators and functions are nevertheless useful and appropriate for nested arrays. Functions that enumerate rows or columns, or that partition, augment, and stack matrices, can be applied to nested arrays. The transpose, subscript, and column array operators and the Boolean equal sign likewise support nested arrays.

\section*{Defining a Nested Array}

You define a nested array in much the same way you would define any array. The only difference is that you cannot use the Matrix command from the Insert menu when you've selected a placeholder within an existing array. You can, however, click on a placeholder in an array and type the name of another array. Figure 11-11 shows several ways to define a nested array. Additional methods include using a file access function such as READPRN in the array of placeholders created using the Insert Matrix command, and using the programming operators in Mathcad Professional to build up an array whose elements are themselves arrays.

Three ways to define nested arrays...
Using range variables Using the Matrices command Defining element by element
m := 0 .. 3
n : \(=0 . .3\)
\(\mathrm{u}:=\binom{1}{2}\)
\(B_{0}:=1\)
\(\mathrm{v}:=\left(\begin{array}{ll}2 & 4\end{array}\right)\)
\(\mathrm{B}_{1}:=\operatorname{identity}(2)\)
\(B_{2}:=\left(\begin{array}{lll}B_{0} & 2 & v\end{array}\right)\)
\(M_{m, n}:=\operatorname{identity}(m+1)\)
\(\mathrm{V}:=\binom{\mathbf{u}}{\mathbf{v}}\)
\(\begin{array}{ll}\text { Displaying the elements } \\ M_{0,0}=(1) & V_{0}=\binom{1}{2}\end{array}\)
\(M_{1,1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\)
\(V_{1}=\left(\begin{array}{ll}2 & 4\end{array}\right)\)
\(B_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\)
\(M_{2,2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\)
\(V=\binom{\{2,1\}}{\{1,2\}}\)
\(B=\left(\begin{array}{c}1 \\ \{2,2\} \\ \{1,3\}\end{array}\right)\)
Figure 11-11: Defining nested arrays.

Note The display of a nested array is controlled by Display Styles settings in the Result Format dialog box (see page 110). You can expand a nested array when the array is displayed in matrix form; otherwise, whenever an array element is itself an array, you see bracket notation showing the number of rows and columns rather than the array itself. If the nested array is displayed as an output table, you can see the underlying array temporarily. Click on the array element, then click with the right mouse button and choose Down One Level from the pop-up menu. Choose Up One Level from the pop-up menu to restore the array element to non-expanded form.

\section*{Chapter 12 2D Plots}
\(\tau\) Overview of 2D Plotting
\(\tau\) Graphing Functions and Expressions
\(\tau\) Plotting Vectors of Data
\(\tau\) Formatting a 2D Plot
\(\tau\) Modifying Your 2D Plot's Perspective

\section*{Overview of 2D Plotting}

To visually represent a function or expression of a single variable or \(\mathrm{X}-\mathrm{Y}\) data in Mathcad, you can create a 2D plot. You can create either a Cartesian X-Y plot or a polar plot. A typical X-Y plot shows horizontal \(x\)-values versus vertical \(y\)-values, while a typical polar plot shows angular values, \(\theta\), versus radial values, \(r\). Figure 12-1 shows several examples of 2D plots.

Figure 12-1: Examples of 2D plots.

\section*{Creating an X-Y Plot}

In general, to create an \(\mathrm{X}-\mathrm{Y}\) plot:
1. Click in your worksheet where you want the graph to appear.
2. Choose Graph \(\Rightarrow \mathbf{X}\)-Y Plot from the Insert menu or click on the Graph toolbar. Alternatively, type [Shift] 2 or @. Mathcad inserts a blank XY plot.
3. Fill in both the \(x\)-axis placeholder (bottom center) and the \(y\)-axis placeholder (left center) with a function, expression, or variable.

4. Click outside the plot or press [Enter].

Mathcad automatically chooses axis limits for you. If you want to specify the axis limits yourself, click in the plot and type over the numbers in the placeholders at the ends of the axes.

Mathcad creates the plot over a default range using default limits. See "Formatting a 2D Plot" on page 216 for information on modifying these defaults.

Note If a point is complex, Mathcad does not graph it. To graph the real or imaginary part of a point or expression, use the \(R e\) and \(I m\) functions to extract the real and imaginary parts, respectively.

To resize a plot, click in the plot to select it. Then move the cursor to a handle along the right or bottom edge of the plot until the cursor changes to a double-headed arrow. Hold the mouse button down and drag the mouse in the direction that you want the plot's dimension to change.

Note If some points in a function or expression are valid and others are not, Mathcad plots only the valid ones. If the points are not contiguous, Mathcad does not connect them with a line. You may therefore see a blank plot if none of the points are contiguous. To see the points, format the trace to have symbols. See "Formatting a 2D Plot" on page 216 for information on formatting traces.

\section*{Creating a polar plot}

In general, to create a polar plot:
1. Click in your worksheet where you want the graph to appear.
2. Choose Graph \(\Rightarrow\) Polar Plot from the Insert menu or click on the Graph toolbar.
3. Fill in both the angular-axis placeholder (bottom center) and the radial-axis placeholder (left center) with a function, expression, or variable.

4. Click outside the plot or press [Enter].

Mathcad creates the plot over a default range using default limits. See "Formatting a 2D Plot" on page 216 for information on modifying these defaults.

The remaining sections in this chapter focus on plotting functions, expressions, and data. Although the instructions and figures typically show X-Y plots, the instructions apply to polar plots as well.

\section*{Graphing Functions and Expressions}

\section*{2D QuickPlots}

A 2D QuickPlot is a plot created from an expression or function which represents the \(y\)-coordinates of the plot. With a QuickPlot, there is no need to define the independent or \(x\)-axis variable.

To create an X-Y plot of a single expression or function:
1. Click in your worksheet where you want the graph to appear.
2. Enter the expression or function of a single variable you want to plot. Make sure the editing lines remain in the expression.
\(\sin (x)\)
3. Choose Graph \(\Rightarrow \mathbf{X}\)-Y Plot from the Insert menu or click \(\xrightarrow{\sim}\) on the Graph toolbar.
4. Click outside the graph or press [Enter].

Mathcad automatically produces a plot over a default domain for the independent variable, from -10 to 10 .

To change the default domain for the independent variable in a 2D QuickPlot, change the axis limits on the plot:
1. Click on the plot, and then click on one of the four axis limit placeholders located at the ends of the axes.
2. Type the value of the axis limit you want. There is no restriction on the values you can enter in these placeholders.
3. Click outside the graph or press [Enter] to see the updated graph.

\section*{Defining an independent variable}

If you don't want Mathcad to use a default range for the independent variable, you can define the independent variable as a range variable before creating the plot. For example:
1. Define a range variable, such as \(x\), that takes on the values you
want to graph. The range variable need not be called \(x\); you can
\[
x:=0,0.1 \ldots 2 \pi
\] use any valid name. See "Range Variables" on page 101.
2. Enter an expression or function you want to plot using that variable. Make sure the editing lines remain in the expression.

3. Choose \(\mathbf{G r a p h} \Rightarrow \mathbf{X}\)-Y Plot from the Insert menu or click \(\simeq\) on the Graph toolbar.
4. Type the name of the variable into the x -axis placeholder.
5. Click outside the graph or press [Enter].

Mathcad graphs one point for every value of the range variable, and, unless you specify otherwise, connects each pair of points with a straight line.

Tip To override Mathcad's choices for the axis limits on a plot, click in the plot and type over the limits in the placeholders at the ends of the axes. See "Setting Axis Limits" on page 217 for more information.

\section*{Plotting Multiple 2D Curves}

You can graph several traces on the same X-Y or polar plot. A graph can show several \(y\)-axis (or radial) expressions against the same \(x\)-axis (or angular) expression. See Figure 12-3. Or it can match up several \(y\)-axis (or radial) expressions with the corresponding number of \(x\)-axis (or angular) expressions. See Figure 12-2.
To create a QuickPlot containing more than one trace:
1. Enter the expressions or functions of a single variable you want to plot, separated by commas. Make sure the editing lines remain in the expression.
\[
\sin (x), \sin (2 \cdot x)+2, \frac{x}{4}
\]
2. Choose Graph \(\Rightarrow \mathbf{X}-\mathbf{Y}\) Plot from the Insert menu or click \(\xrightarrow{\sim}\) on the Graph toolbar.
3. Click outside the graph or press [Enter]. Mathcad produces a single graph containing plots of all the expressions or functions, over a default range for the independent variable(s), from -10 to 10 . You can change the axis range by editing the upper and lower limits on the \(x\) -
 axis as described in "Setting Axis Limits" on page 217.

Note In a QuickPlot with multiple traces, you need not use the same independent variable in every \(y\) axis (or radial-axis) expression. Mathcad will provide the appropriate corresponding variable in the \(x\)-axis (or angular-axis) placeholder.

In general, to create a graph containing several independent curves:
1. Choose Graph \(\Rightarrow\) X-Y Plot from the Insert menu or click on the Graph toolbar.
2. Enter two or more expressions separated by commas in the \(y\)-axis placeholder.
3. Enter the same number of expressions separated by commas in the \(x\)-axis placeholder.

Mathcad matches up the expressions in pairs - the first \(x\)-axis expression with first \(y\) axis expression, the second with the second, and so on. It then draws a trace for each pair. Figure 12-2 shows an example.

Figure 12-2: Graph with multiple expressions on both axes.

Figure 12-3: Graph with multiple y-axis expressions.

Note All traces on a graph share the same axis limits. For each axis, all expressions and limits on that axis must have compatible units.

\section*{Creating a parametric plot}

A parametric plot is one in which a function or expression is plotted against another function or expression that uses the same independent variable. You can create either an \(\mathrm{X}-\mathrm{Y}\) or polar parametric plot.

To create an X-Y parametric plot:
1. Click in your worksheet where you want the graph to appear.
2. Choose \(\mathbf{G r a p h} \Rightarrow \mathbf{X}\)-Y Plot from the Insert menu or click \(\leadsto\) on the Graph toolbar. Mathcad inserts a blank X-Y plot with empty placeholders.
3. In both the \(x\)-axis and \(y\)-axis placeholders, enter a function or expression.
4. Click outside the plot or press [Enter].

Mathcad produces a QuickPlot over a default range for the independent variable. Figure 12-1 shows an example of a parametric plot.
If you don't want Mathcad to use a default range for the plot, define the independent variable as a range variable before creating the plot. Mathcad graphs one point for each value of the independent variable and connects each pair of points with a straight line. Figure 12-4 shows two functions of \(\theta\) plotted against each other. The range variable \(\theta\) was previously defined. For more information, see "Range Variables" on page 101.
\[
\begin{array}{ll}
\mathrm{N}:=40 & \theta:=0, \frac{2 \pi}{\mathrm{~N}} .2 \pi \\
\mathrm{r}(\theta):=\cos (\theta)+1 & \begin{array}{l}
\text { For the X.Y plot, the independent } \\
\text { variable, } \theta \text {, is defined as a range } \\
\text { variable. For the polar plot, } \\
\text { Mathcad chooses a range for the } \\
\text { independent variable, a. }
\end{array} \\
\mathrm{x}(\theta):=\mathrm{r}(\theta) \cdot \cos (\theta) & \mathrm{r}(\theta) \cdot \sin (\theta)
\end{array}
\]

Figure 12-4: Graphing one function against another.

\section*{Plotting Vectors of Data}

To graph a vector of data, you can create either an X-Y plot or a polar plot. When creating either type of plot, you need to use the vector subscript (see "Vector and Matrix Operators" on page 127) to specify which elements to plot. Additionally, you can use Axum LE (see "Using Axum to Plot Data" on page 214) to create a 2D plot of your vectors or data. Some graphs of data vectors are shown in Figure 12-5.

\section*{Plotting a single vector of data}

To create an X-Y plot of a single vector of data:
1. Define a range variable, such as \(i\), that references the subscript of each element of the vector you want to plot. For example, for a vector with 10 elements, your subscript range variable would be \(i:=0 . .9\).
2. Click in your worksheet where you want the graph to appear.
3. Choose \(\mathbf{G r a p h} \Rightarrow \mathbf{X}-\mathbf{Y}\) Plot from the Insert menu or click \(\underset{\sim}{\text { on the Graph toolbar. }}\) Mathcad inserts a blank X-Y plot.
4. Enter \(i\) in the bottom placeholder and the vector name with the subscript (\(y_{i}\) for example) in the placeholder on the left. Type [as a shortcut to create the subscript.
5. Click outside the graph or press [Enter].

Note Subscripts must be integers greater than or equal to ORIGIN. This means that the \(x\)-axis or angular variable used in the graphs in Figure 12-5 can run through whole-number values only. If you want to graph fractional or negative values on the \(x\)-axis, graph a function or graph one vector against another, as described in the next section.

Tip If you have a handful of data points, you can use an input table to create a vector as shown in the second graph in Figure 12-5 or in Figure 12-7. For more information, see "Entering Data into a Table" on page 195.
\(\mathrm{i}:=0 . .20\)
\(\mathrm{y}_{\mathrm{i}}:=0.55^{\mathrm{i}} \cdot 0.45^{(20-i)}\)
D :=

Figure 12-5: Graphing a vector.

\section*{Plotting one data vector against another}

To graph all the elements of one data vector against all the elements in another, enter the names of the vectors in the axis placeholders of an X-Y plot or polar plot.

For example, to create an X-Y plot of two data vectors \(x\) and \(y\) :
1. Define the vectors \(x\) and \(y\).
2. Click in your worksheet where you want the graph to appear.
3. Choose Graph \(\Rightarrow\) X-Y Plot from the Insert menu, or click \(\leadsto\) on the Graph toolbar.
4. Enter \(y\) in the \(y\)-axis placeholder and \(x\) in the \(x\)-axis placeholder.
5. Click outside the graph or press [Enter].

Mathcad plots the elements in the vector \(x\) against the elements in the vector \(y\).
\[
\mathbf{i}:=0.50 \quad x_{i}:=1+0.1 \cdot i \quad y_{i}:=\frac{\exp \left(x_{i}\right)}{\left(x_{i}\right)^{2}}
\]

Figure 12-6: Graphing two vectors.

Note If the vectors being plotted are not the same length, Mathcad plots the number of elements in the shorter vector.

If you want to plot only certain vector elements, define a range variable and use it as a subscript on the vector names. In the example above, to plot the fifth through tenth elements of \(x\) and \(y\) against each other:
1. Define a range variable, such as \(k\), going from 4 to 9 in increments of 1 . (Note that the first elements of the vectors \(x\) and \(y\) are \(x_{0}\) and \(y_{0}\) by default.)
2. Enter \(y_{k}\) and \(x_{k}\) in the axis placeholders.

Note If you have a set of data values to graph, create a vector by reading in data from a data file, by pasting in the data from the Clipboard, or by typing data directly into an input table. See Chapter 11, "Vectors, Matrices, and Data Arrays." See Figure 12-7 for an example showing the use of an input table.

\section*{Using Axum to Plot Data}

Included on your Mathcad CD is the application Axum LE. Axum LE is a version of Axum that features numerous 2D plot types, complete control over graph formatting, and a full set of annotation tools. Axum LE gives you fine control over every aspect of your 2D plots, and you can integrate these plots into your Mathcad worksheets.

There are two basic methods for integrating plots from Axum into your Mathcad worksheet. You can create a graph in Axum and insert it into your Mathcad worksheet as an object. Or, you can define data in your Mathcad worksheet, send it to Axum, and create a dynamic Axum graph directly in your Mathcad worksheet. Here are brief instructions for each method.

Figure 12-7: Plotting vectors from input table data.

\section*{Inserting an Axum graph object}

To insert an Axum graph object:
1. Create and save a graph in Axum. For more information about using Axum, see Axum's on line Help.
2. In Mathcad, choose Object from the Insert menu. In the Insert Object dialog box, click Create from File, and browse for your saved Axum graph sheet. Once you have selected your graph sheet, click OK.
3. The Axum graph appears into your Mathcad worksheet. If you check Link in the Insert Object dialog, you may activate the plot from within your Mathcad worksheet, by double-clicking, and make changes to the original Axum graph.

For more information about inserting objects, refer to "Chapter 6: Working with Graphics and Other Objects."

\section*{Inserting a Dynamic Axum graph}

To insert an Axum graph linked to data in your Mathcad worksheet:
1. In Mathcad, define the vector(s) of data you wish to plot.
2. Click in a blank spot in your worksheet. Be sure to click below or to the right of your vector(s) of data.
3. Choose Component from the Insert menu. Select Axum Graph from the list and click Next. Choose a plot type and specify as many input variables as you have data vectors. Click Finish.
4. A blank Axum graph appears in your Mathcad worksheet. Enter the name(s) of your data vector(s) in the placeholders in the bottom left corner of the graph. Click outside the graph or press [Enter].

If you change the vectors of data upon which your Axum graph component is dependent, your graph updates automatically. For more information about using components, refer to "Chapter 16: Advanced Computational Features." Figure 12-8
shows an Axum graph that has been customized with axes labels, a title, and text and graphic annotations.
\(\mathbf{A}:=\)
\begin{tabular}{|c|r|r|r|}
\hline & \multicolumn{1}{|c|}{0} & 1 & 2 \\
\hline 0 & 0 & 5 & 380 \\
\hline 1 & 10 & 15 & 290 \\
\hline 2 & 20 & 25 & 200 \\
\hline 3 & 30 & 45 & 160 \\
\hline 4 & 40 & 65 & 120 \\
\hline 5 & 50 & 95 & 95 \\
\hline 6 & 60 & 120 & 65 \\
\hline 7 & 70 & 160 & 45 \\
\hline 8 & 80 & 200 & 25 \\
\hline 9 & 90 & 290 & 15 \\
\hline 10 & 100 & 380 & 5 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \mathrm{x}:=\mathrm{A}^{\langle 0\rangle} \quad \mathrm{y} 1:=\mathrm{A}^{\langle 1\rangle} \quad \mathrm{y} 2:=\mathrm{A}^{\langle 2\rangle} \\
& \text { (} \mathrm{x} \text { y1 } \mathrm{y} 2 \text {) }
\end{aligned}
\]

Figure 12-8: An Axum graph in a Mathcad worksheet.

Note If you want to create an Axum graph component with multiple independent traces, define \(x\) - and \(y\)-vectors for each plot. Then, choose the plot type "Scatter Plots of XY Pairs" from the Axum Graph dialog, and specify as many input variables as you have vectors of data. Enter the vector names in the placeholders in \(x y\)-pairs, i.e., (x1 y1 x2 y2 etc.)

\section*{Formatting a 2D Plot}

When you create an X-Y plot or a polar plot, Mathcad uses the default settings to format the axes and traces. You can, however, reformat the axes and traces. You can also add titles and labels and control the default settings of the graph.

To format a 2D graph:
1. Double-click the graph. Alternatively, click once on the graph and choose Graph \(\Rightarrow \mathbf{X}\)-Y Plot or Graph \(\Rightarrow\) Polar Plot from the Format menu. You'll see the dialog box for formatting a selected graph.
2. Click the tab for the page you want to work with. Use the Axes tab to determine the appearance of the axes and grid lines. Use the Traces tab to set the color, type, and width of the traces. Use the Labels tab to insert labels on the axes. Use the Defaults tab to specify the default appearance of your
 graphs.
3. Make the appropriate changes in the dialog box.
4. Click Apply to see the effect of your changes without closing the dialog box.
5. Close the dialog by clicking OK.

Note In the Axes page, make sure you turn options on and off in the appropriate axis column. In the Traces page, click on a trace's name in the Legend Label column and change characteristics by clicking on the arrow beside each of the drop-down options.

Tip If you double-click an axis on a graph, you'll see a formatting dialog box for that axis alone.

On-line Help Click Help in the dialog box for details on particular formatting options.

\section*{Setting Axis Limits}

When you create a 2D graph, the Autoscale option is turned on. Use the Axes page of the plot formatting dialog box to turn Autoscale on or off:
- With Autoscale on, Mathcad automatically sets each axis limit to the first major tick mark beyond the end of the data. This is a reasonably round number large enough to display every point being graphed.
- With Autoscale off, Mathcad automatically sets the axis limits exactly at the data limits.

\section*{Specifying Other Limits}

You can override Mathcad's automatic limits by entering limits directly on the graph.
To do so:
1. Click the graph to select it. Mathcad displays four additional numbers, one by each axis limit. These numbers are enclosed within corner symbols, as illustrated in the selected plot in Figure 12-9.
2. Click on one of these numbers and type a number to replace it. Do the same for the other numbers if you want to change more than one limit.
3. Click outside the graph. Mathcad redraws it using the new axis limits you specified. The corner symbols below the limits you changed disappear. Figure 12-9 shows the effect of manually setting limits on a graph.
```

x:= 1, 1.1.. 9.4 f(x):= sin(2\cdotx) + 1.5

```


Y-axis data limits automatically generated by Mathcad: 0.50001 and 2.49854. When the graph is selected, note that the data limits appear enclosed within the corner brackets:

Figure 12-9: Data limits set automatically and manually.

\section*{Setting Default Formats}

Mathcad uses default settings to format the axes and traces of new graphs you create.

\section*{Copying Defaults from an Existing Graph}

One way to create a new set of defaults is to use the format settings of an existing graph. The advantage of this method is that you can actually see how the format settings look as you define them.

To use the format of a particular graph as the default graph format:
1. Double-click the graph, or click in the graph and choose Graph \(\Rightarrow \mathbf{X}-\mathbf{Y}\) Plot (or Graph \(\Rightarrow\) Polar Plot) from the Format menu. Mathcad displays the dialog box for formatting a selected graph.
2. Click the Defaults tab to see the Defaults page.
3. Check Use for Defaults. When you click OK, to close the dialog box, Mathcad saves these settings as your
 default settings.

\section*{Setting Defaults Without Using a Graph}

You can use the Setting Default Formats dialog box to change default plot settings. To set defaults this way:
1. Make sure that you don't have any graphs selected.
2. Choose Graph \(\Rightarrow \mathbf{X}\)-Y Plot (or Graph \(\Rightarrow\) Polar Plot) from the Format menu. You'll see the Setting Default Formats dialog box.
3. Change the appropriate settings on the Axes and Traces pages.
4. Click OK to accept your changes and close the dialog box.

\section*{Adding Custom Titles, Labels, and Other Annotations}

One way to add titles and labels to your 2D graph is to use the options on the Labels tab of the 2D Plot Format dialog box. A second way to add titles and labels, as well as annotations, is to create text or some other object in your worksheet and then move it on top of the graph.

To create an annotation for your 2D graph:
1. Create a text region, or insert a graphic object in your worksheet by pasting it in or by choosing Object from the Insert menu.
2. Drag the text or object onto your 2D graph and position it appropriately.

Figure 12-10 shows a graph containing both a text region ("inflection pt") and a graphic object (an arrow).

Figure 12-10: Mathcad graph with annotations.

Note If you choose Separate Regions from the Format menu, all overlapping regions in your worksheet will separate. In the case of annotated graph, such as the one shown above, all annotations move below the graph when you separate regions.

\section*{Modifying Your 2D Plot's Perspective}

Mathcad provides the following options for manipulating your 2D graph:
- You can zoom in on a portion of the graph.
- You can get the \(x\) - and \(y\)-coordinates for any point that was plotted to construct an individual plot.
- You can get the \(x\) - and \(y\)-coordinates for any location within the graph.

\section*{Zooming in on a Plot}

Mathcad allows you to select a region of a graph and magnify it. To zoom in on a portion of a graph, follow these steps:
1. Click in the graph and choose \(\mathbf{G r a p h} \Rightarrow \mathbf{Z o o m}\) from the Format menu, or click on the Graph toolbar. The Zoom dialog box appears. The X-Y Zoom dialog box is shown to the right.
2. If necessary, reposition the Zoom dialog box so that you can see the entire region of the graph you want
 to zoom.
3. Click the mouse at one corner of the region in the graph you want to magnify.
4. Press and hold down the mouse button and drag the mouse. A dashed selection outline emerges from the anchor point. The coordinates of the selected region are listed in the Min and Max text boxes (or the Radius text box of the Polar Zoom dialog box).
5. When the selection outline just encloses the region you want to magnify, let go of the mouse button. If necessary, click on the selection outline, hold the mouse button down, and move the outline to another part of the graph.
6. Click Zoom to redraw the graph. The axis limits are temporarily set to the coordinates specified in the Zoom dialog box. To make these axis limits permanent, click OK.

Tip If you're working with a graph that has already been zoomed, you can restore the default appearance of the graph. To do so, click Full View in the Zoom dialog box.

Figure 12-11: A zoomed-in region of an \(X\) - \(Y\) plot.

\section*{Getting a Readout of Plot Coordinates}

To see a readout of coordinates of the specific points that make up a trace, follow these steps:
1. Click in the graph and choose Graph \(\Rightarrow\) Trace from
 the Format menu, or click
 on the Graph toolbar. The X-Y Trace dialog box appears as in the example at right. Check Track Data Points if it isn't already checked. If necessary, reposition the Trace dialog box so that you can see the entire graph.
2. Click and drag the mouse along the trace whose coordinates you want to see. A dotted crosshair jumps from one point to the next as you move the pointer along the trace.
3. If you release the mouse button, you can use the left and right arrows to move to the previous and next data points. Use the up and down arrows to select other traces.
4. As the pointer reaches each point on the trace, Mathcad displays the values of that point in the X -Value and Y -Value boxes (or the Radius and Angle boxes in the Polar Trace dialog box).
5. The values of the last point selected are shown in the boxes. The crosshair remains until you click outside the plot.

Tip When Track Data Points is unchecked in the Trace dialog box, you can see a readout of coordinates for any location in a graph, not just the data points that created an individual plot.

Figure 12-12 shows an example of a plot whose coordinates are being read.
\[
f(x):=x \cdot \sin \left(\frac{1}{x}\right) \quad x:=0, .001 . .1
\]

Figure 12-12: Reading coordinates from a graph.
To copy and paste a coordinate using the Clipboard:
1. Click Copy X or Copy Y (or Copy Radius or Copy Angle in the case of a polar plot).
2. You can then paste that value into a math or text region in your Mathcad worksheet, into a spreadsheet, or into any other application that allows pasting from the Clipboard.

\section*{Chapter 13 3D Plots}
\(\tau\) Overview of 3D Plotting
\(\tau\) Creating 3D Plots of Functions
\(\tau\) Creating 3D Plots of Data
\(\tau\) Formatting a 3D Plot
\(\tau \quad\) Rotating and Zooming on 3D Plots

\section*{Overview of 3D Plotting}

To visually represent in three dimensions a function of one or two variables or to plot data in the form of \(x\)-, \(y\)-, and \(z\)-coordinates, you can create a surface plot, a contour plot, a 3D bar plot, a 3D scatter plot, or a vector field plot. Create these different plot types using commands from the Insert menu or the 3D Plot Wizard. You can also place more than one 3D plot on the same graph. Mathcad renders 3D plots with sophisticated, high performance OpenGL graphics.

\section*{Inserting a 3D Plot}

In general, to create a three-dimensional plot:
1. Define a function of two variables or a matrix of data.
2. Click in the worksheet where you want the plot to appear. Then choose Graph from the Insert menu and select a 3D plot. Alternatively, click one of the 3D graph buttons on the Graph toolbar. Mathcad inserts a blank 3D plot with axes and an empty placeholder.
3. Enter the name of the function or matrix in the placeholder.
4. Click outside the plot or press [Enter]. Mathcad creates the plot according to the function or matrix of data.

For example, the surface plot shown below was created in Mathcad from the function:
\[
F(x, y):=\sin (x)+\cos (y)
\]

When you create a 3D plot from a function, it's called a QuickPlot. A QuickPlot uses default ranges and grids for the independent variables. To change these settings, double-click on the graph and use the QuickPlot Data page of the 3D Plot Format dialog. For more information on modifying these and other plot characteristics, see "Formatting a 3D Plot" on page 234.
To learn how to create a plot from a matrix of values, see the shown in Figure 13-2 on page 229.

F

\section*{3 D Plot Wizard}

The 3D Plot Wizard gives you more control over the format settings of the plot as you insert it. To use the Wizard:
1. Click in your worksheet wherever you want the graph to appear.
2. Choose Graph \(\Rightarrow\) 3D Plot Wizard from the Insert menu. The first page of the 3D Plot Wizard appears.
3. Select the type of three-dimensional graph you want to see and click "Next."
4. Make your selections for the appearance and coloring of the plot on subsequent pages of the Wizard. Click "Finish" and a graph region with a blank placeholder appears.
5. Enter appropriate arguments (a function name, data vectors, etc.) for the 3D plot into the placeholder.
6. Click outside the plot or press [Enter].

The plot is created using the settings you specified in the Wizard. For information on modifying the appearance of your plot, see "Formatting a 3D Plot" on page 234.

\section*{Creating 3D Plots of Functions}

This section describes how to create various 3D plots from functions in Mathcad, also known as QuickPlots. Although the instructions focus on using commands on the Insert menu and changing settings through the 3D Plot Format dialog box, you can also use the 3D Plot Wizard, as described on page 224.

Tip To see a variety of two- and three-dimensional functions and data sets visualized in plots, open the "Practical Curves and Surfaces" section of QuickSheets in the Mathcad Resource Center (choose Resource Center from the Help menu and click on "QuickSheets").

\section*{Creating a Surface, Bar, Contour, or Scatter Plot}

You can visualize any function of two variables as a surface, bar, contour, or scatter plot in three dimensions.

\section*{Step 1: Define a function or set of functions}

First, define the function in your worksheet in any one of the following forms:

\(F(x, y)\) is a function of two variables. In this type of function, the \(x\) - and \(y\)-coordinates of the plot vary, by default, from -5 to 5 with a step size of 0.5 . Each \(z\)-coordinate is determined by the function using these \(x\) - and \(y\)-values.
\(G(u, v)\) is a vector-valued function of two variables. In this type of function, the independent variables \(u\) and \(v\) vary, by default, from -5 to 5 with a step size of 0.5 . The \(x\)-, \(y\)-, and \(z\)-coordinates are plotted parametrically according to the definitions in the three elements of the vector using these \(u\) - and \(v\)-values.
\(X(u, v), Y(u, v)\), and \(Z(u, v)\) are functions of two variables. In this type of function triple, the independent variables \(u\) and \(v\) vary, by default, from -5 to 5 with a step size of 0.5 . The \(x\)-, \(y\)-, and \(z\)-coordinates are plotted parametrically according to the three function definitions using these \(u\) - and \(v\)-values.

Note The function descriptions above assume that you are working in Cartesian coordinates. If your function represents spherical or cylindrical, rather than Cartesian, coordinates, you can automatically convert the function to Cartesian coordinates. Double-click on the plot, go to the QuickPlot Data page of the 3D Plot Format dialog box, and click "Spherical" or "Cylindrical" under Coordinate System.

\section*{Step 2:Insert a 3D plot}

After you define a function or set of functions to plot, choose Graph from the Insert menu and select a 3D plot type.
For example, to create a surface plot from the functions X, Y, and Z, defined above:
1. Choose Graph \(\Rightarrow\) Surface Plot from the Insert menu or click \(\& \mathcal{H}\) on the Graph toolbar. Mathcad inserts a blank 3D plot.
2. Enter the name of the functions in the placeholder. When you have more than one function definition for a single surface, separate the function names by commas and enclose the function names in parentheses. For this example, type:
3. Press [Enter] or click outside the plot.

(X,Y,Z)
To change your plot to a different plot type:
1. Double-click on the graph to bring up the 3D Plot Format dialog box.
2. In the Display As section on the General tab, select Bar Plot, Contour Plot, or Data Points from the array of plot types.

\section*{3. Click "OK."}

Figure 13-1 shows a 3D scatter plot created from the function G, and a contour plot created from the function \(F\), both defined above:

Figure 13-1: A scatter plot and a contour plot created from functions of two variables.

Note All 3D QuickPlots are parametric curves or surfaces. In other words, all QuickPlots are created from three vectors or matrices of data representing the \(x\)-, \(y\)-, and \(z\)-coordinates of the plot. In the case of a single function of two variables, Mathcad internally creates two matrices of \(x\) - and \(y\) data over the default range -5 to 5 with a step size of 0.5 , and then generates \(z\)-data using these \(x\) - and \(y\)-coordinates.

To change the default ranges and grids for the independent variables, double-click on the graph and use the QuickPlot Data page of the 3D Plot Format dialog. For more information on modifying these and other plot characteristics, see "Formatting a 3D Plot" on page 234.

\section*{Creating a Space Curve}

You can visualize any parametrically-defined function of one variable as a scatter plot in three dimensions.

\section*{Step 1: Define a function or set of functions}

First, define the function in your worksheet in one of the following forms:
\[
H(\mathbf{u}):=\left(\begin{array}{c}
\sin (\mathbf{u}) \\
\cos (\mathbf{u}) \\
\sin (\mathbf{u}) \cdot \cos (\mathbf{u})
\end{array}\right) \quad \begin{aligned}
& \mathrm{R}(\mathbf{u}):=\mathbf{2} \cdot \mathbf{u} \\
& \mathrm{S}(\mathbf{u}):=\mathbf{u}^{2} \\
& \mathrm{~T}(\mathbf{u}):=\cos (\mathbf{u})
\end{aligned}
\]
\(H(u)\) is a vector-valued function of one variable. In this type of function, the independent variable \(u\) varies, by default, from -5 to 5 with a step size of 0.5 . The \(x\)-, \(y\)-, and \(z\) coordinates of the plot are determined by the functions in each element of the vector using these \(u\)-values.
\(R(u), S(u)\), and \(T(u)\) are functions of one variable. In this type of function triple, the independent variable \(u\) varies, by default, from -5 to 5 with a step size of 0.5 . The \(x\)-, \(y\)-, and \(z\)-coordinates are plotted according to the function definitions using these \(u\) values.

Note A space curve often represents the path of a particle in motion through space where \(u\) is a time parameter.

\section*{Step 2: Insert a 3D scatter plot}

To create a space curve from a single function or set of functions:
1. Choose Graph \(\Rightarrow\) 3D Scatter Plot from the Insert menu or click
 on the Graph toolbar. Mathcad inserts a blank 3D plot.
2. Enter the name of function or functions in the placeholder. When you have more than one function definition, separate the function names by commas and enclose the function names in parentheses. To create a space curve from the functions R, S, and T, defined above, type:
3. Press [Enter] or click outside the plot.

(\(\mathrm{R}, \mathrm{S}, \mathrm{T}\))
For general information on formatting 3D plots, refer to "Formatting a 3D Plot" on page 234. For specific information on formatting a scatter plot, refer to the topic "Scatter Plots" in the on-line Help.

\section*{Creating 3D Plots of Data}

This section describes how to create various 3D plots from data in Mathcad. Although the instructions focus on using commands on the Insert menu and changing settings through the 3D Plot Format dialog, you can also use the 3D Plot Wizard, as described on page 224.

\section*{Creating a Surface, Bar, or Scatter Plot}

Surface, bar, and scatter plots are useful for visualizing two-dimensional data contained in an array as either a connected surface, bars above and below the zero plane, or points in space.
For example, to create a surface plot from data:
1. Create or import a matrix of values to plot. The row and column numbers represent the \(x\) - and \(y\)-coordinate values. The matrix elements themselves are the \(z\)-coordinate values plotted as heights above and below the \(x y\)-plane (at \(z=0\)).
2. Choose Graph \(\Rightarrow\) Surface Plot from the Insert menu or click
 on the Graph toolbar. Mathcad inserts a blank 3D plot.
3. Enter the name of the matrix in the placeholder.
4. Press [Enter] or click outside the plot. Figure 13-2 shows a 3D bar plot created from a matrix, M:
In the default perspective, the first row of the matrix extends from the back left corner of the grid to the right, while the first column extends from the back left corner out toward the viewer. See "Formatting a 3D Plot" on page 234 to learn how to change this default view.

Figure 13-2: Defining a matrix of data and plotting it as a 3D bar plot.

\section*{Creating a Parametric Surface Plot}

A parametric surface plot is created by passing three matrices representing the \(x\)-, \(y\)-, and \(z\)-coordinates of your points in space to the surface plot.
To create a parametric surface plot:
1. Create or import three matrices having the same number of rows and columns.
2. Choose Graph \(\Rightarrow\) Surface Plot from the Insert menu or click \(\square\) on the Graph toolbar. Mathcad inserts a blank 3D plot.
3. Type the names of the three matrices separated by commas and enclosed in parentheses in the placeholder. For example:
\[
(\mathrm{X}, \mathrm{Y}, \mathrm{Z})
\]
4. Press [Enter] or click outside the plot.

Figure 13-3 shows a parametric surface plot created from the matrices, \(\mathrm{X}, \mathrm{Y}\), and Z , defined above the plot.

For general information on formatting 3D plots, refer to "Formatting a 3D Plot" on page 234. For specific information on formatting a parametric surface plot, refer to the topic "Surface Plots" in the on-line Help.

Note The underlying parameter space is a rectangular sheet covered by a uniform mesh. In effect, the three matrices map this sheet into three-dimensional space. For example, the matrices \(\mathbf{X}, \mathbf{Y}\), and \(\mathbf{Z}\) defined in Figure 13-3 carry out a mapping that rolls the sheet into a tube and then joins the ends of the tube to form a torus.

Figure 13-3: Defining data for a parametric surface plot.

\section*{Creating a Three-dimensional Parametric Curve}

A three-dimensional parametric curve is created by passing three vectors representing the \(x\)-, \(y\)-, and \(z\)-coordinates of your points in space to the surface plot.
To create a three-dimensional parametric curve:
1. Create or import three vectors having the same number of rows.
 toolbar. Mathcad inserts a blank 3D plot.
3. Type the names of the three vectors separated by commas and enclosed in parentheses in the placeholder. For example:
\[
(\mathrm{X}, \mathrm{Y}, \mathrm{Z})
\]
4. Press [Enter] or click outside the plot.

Figure 13-4 shows a three-dimensional parametric curve created from the vectors, P , Q, and R, defined above the plot:
For general information on formatting 3D plots, refer to "Formatting a 3D Plot" on page 234. For specific information on formatting a scatter plot, refer to the topic "Scatter Plots" in the on-line Help.
\[
\begin{array}{ll}
i:=-5,-4.9 \ldots 5 & x(i):=i \cdot 10+50 \\
P_{x(i)}:=\cos (i) & Q_{x(i)}:=\sin (2 \cdot i) \quad R_{x(i)}:=\cos (i)+\sin (2 \cdot i)
\end{array}
\]

(\(\mathrm{P}, \mathrm{Q}, \mathrm{R}\))

Figure 13-4: Defining data for a space curve.

\section*{Creating a Contour Plot}

To view three-dimensional data as a two-dimensional contour map, you can create a contour plot:
1. Define or import a matrix of values to plot.
2. Choose Graph \(\Rightarrow\) Contour Plot from the Insert menu or click on the Graph toolbar. Mathcad shows a blank plot with a single placeholder.
3. Type the name of the matrix in the placeholder.
4. Press [Enter] or click outside the plot.

Figure 13-5 shows a contour plot created from the matrix, C, defined above the plot:
The contour plot is a visual representation of the matrix's level curves. Mathcad assumes that the rows and columns represent equally spaced intervals on the axes, and then linearly interpolates the values of this matrix to form level curves or contours. Each level curve is formed such that no two cross. By default, the \(z\)-contours are shown on the \(x-y\) plane. Mathcad plots the matrix such that the element in row 0 and column 0 is in the lower left corner. Thus the rows of the matrix correspond to values on the \(x\) axis, increasing to the right, and the columns correspond to values along the \(y\)-axis, increasing toward the top.
For general information on formatting 3D plots, refer to "Formatting a 3D Plot" on page 234. For specific information on formatting a contour plot, refer to the topic "Contour Plots" in the on-line Help.

Note If you create a contour plot of a function as described above, the positive \(x\)-axis of the plot extends to the right and the positive \(y\)-axis extends toward the top of the plot.
\[
\begin{aligned}
& \mathbf{N}:=15 \quad \mathrm{i}:=\mathbf{0} . . \mathrm{N} \quad \mathrm{j}:=\mathbf{0} . . \mathrm{N} \\
& x_{i}:=\left(\frac{1}{N}\right) \cdot i \quad y_{j}=\left(\frac{1}{N}\right) \cdot j \\
& f(x, y):=0.75 \cdot e^{-\frac{(9 \cdot x-2)^{2}+(9 \cdot y-2)^{2}}{4}}+x \\
& c_{i, j}:=f\left(x_{i}, y_{j}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \text { C }
\end{aligned}
\]

Figure 13-5: Defining data for a contour plot.

\section*{Creating a Vector Field Plot}

In a vector field plot, each point in the \(x-y\) plane is assigned a two-dimensional vector. There are two ways to set up the data needed for a vector field plot:
1. Create a matrix of complex numbers in which the following conditions exist:
- The row and column numbers represent the \(x\) - and \(y\)-coordinates
- The real part of each matrix element is the \(x\)-component of the vector associated with that row and column
- The imaginary part of each element is the \(y\)-component of the vector associated with that row and column.
2. Create two matrices having the same number of rows and columns. The first matrix should have the \(x\)-components of the vectors, the second the \(y\)-components.
Once you have defined your data, as described above, to create a vector field plot:
 Graph toolbar.
2. Type the name(s) of the matrix or matrices in the placeholder. If you have more than one matrix for a vector field plot, separate the matrix names by commas and enclose the matrix name set in parentheses. For example:
\[
(\mathrm{X}, \mathrm{Y})
\]
3. Press [Enter] or click outside the plot.

Figure 13-6 shows a vector field plot created from the matrix, Q , defined above the plot:

Figure 13-6: Defining data for a vector field plot.
For general information on formatting 3D plots, refer to "Formatting a 3D Plot." For specific information on formatting a vector field plot, refer to the topic "Vector field plots" in the on-line Help.

\section*{Graphing Multiple 3D Plots}

Pro Just as you can plot more than one trace on a two-dimensional graph, you can place more than one surface, curve, contour, bar, or scatter plot on a three-dimensional graph.
For example, to create a 3D graph with a contour plot and a surface plot:
1. Define two functions of two variables or any combination of two acceptable argument sets for a 3D plot (two matrices, two sets of three vectors, etc.).
2. Choose Graph \(\Rightarrow\) Contour Plot from the Insert menu or click on the Graph toolbar. Mathcad inserts a blank 3D plot.
3. Enter the name of the function or matrix for the contour plot into the placeholder. Then type, (a comma).
4. Enter the name of the function or matrix for the surface plot.
5. Press [Enter] or click outside the plot. You see two contour plots.
6. Double-click the graph to bring up the 3D Plot Format dialog box. In the Display As section of the General tab, click the tab labeled Plot 2 and select Surface from the array of plot types. Click "OK."

Both the contour plot and the surface plot, with default format settings, appear in a single graph.

Figure 13-7: Two plots, one contour and one surface, shown on the same graph.

Tip As a general rule, you will not want to create a 3D graph with more than two or three plots together since they may obscure each other and make the graph difficult to interpret.

\section*{Formatting a 3D Plot}

A three-dimensional plot's default appearance depends on how you insert it. When you choose Graph \(\Rightarrow\) 3D Plot Wizard from the Insert menu, you make selections in the pages of the Wizard that determine a plot's appearance. When you insert a plot by choosing a plot type from the Insert menu, however, the plot automatically acquires default characteristics.

You can change the appearance of any 3D plot after it is inserted. To do so, you use the many options available in the 3D Plot Format dialog box. For example, you can use the options to change a plot's color, format the axes, add backplanes, and format the lines or points.

To bring up the 3D Plot Format dialog box:
1. Click once on the plot to select it and choose Graph \(\Rightarrow\) 3D Plot from the Format menu. Alternatively, double-click the plot itself. Mathcad brings up the 3D Plot Format dialog box. The General page is shown at right. The remaining tabs take you to additional pages.
2. Click the tab for the page you want to work with.
3. Make the appropriate changes in the dialog box.

4. Click Apply to see the effect of your changes without closing the dialog box.
5. Close the dialog by clicking OK.

\section*{The 3D Plot Format Dialog Box}

The tabs in the 3D Plot Format dialog box bring you to pages containing options for formatting various aspects of a three-dimensional plot. Some options available on certain pages in the dialog box depend on the kind of plot you are formatting. Options on other pages are available for any three-dimensional graph.
- The General page gives you access to basic options that control the overall appearance of the graph. Use these options to control the position of a plot, set the axis style, draw a border or a box, or convert a plot to another type.
- The options on the Axes page allow you to control exactly how each axis looks. You can specify the weight of each axis and whether it has numbers or tick marks. You can also specify the axis limits. Use the tabs at the top of the page to format the \(x\)-, \(y\)-, or \(z\)-axis.
- The Backplanes page has options for specifying whether a backplane is filled with a color, has a border, or has grid lines or tick marks. Use the tabs at the top of the page to format the \(x y\)-, \(y z\)-, or \(x z\)-backplane.

Note Both the Backplanes page and the Axes page have options for setting and formatting grid lines. When you set the grid lines for an axis on the Axes tab, you set them for the two backplanes shared by the axis. When you set the grid lines on the Backplanes tab, you set them for one backplane only.
- Use the options on the Appearance page to format the surfaces, lines, and points that make up a plot. For example, you can apply color directly to a plot's surface, its contours, or its lines and points. The following sections discuss how to control the surfaces, lines, and points of a plot.
- The Lighting page options control both the overall lighting of the plot as well as individual lights directed onto it. See "Lighting" on page 240 for more information on lighting.
- The Title page provides a text box for entering a title for the graph and options for specifying the location of the title on the graph.
- The Special page allows you to control options related to specific kinds of plots. For example, the Bar Plot Layout options let you specify the way the bars are arranged in a 3D bar plot.
- The Advanced page has options used only when you need very fine control over the appearance of a plot, such as the vertical scale.
- The QuickPlot Data page contains the range and grid settings for the independent variables that control a 3D QuickPlot. Additionally, you can specify whether your function(s) are in Cartesian, spherical, or cylindrical coordinates.

On-line Help For details on the options available on a particular page in the 3D Plot Format dialog box, click the Help button at the bottom of the dialog box.

Some options in the 3D Plot Format dialog box work together to control the appearance of a plot. For example, the choices on the Appearance page, the Lighting page, and the Special and Advanced pages together control the color of a plot.

Note When you format a graph containing more than one plot (using Mathcad Professional), as described in "Graphing Multiple 3D Plots" on page 233, some options in the 3D Plot Format dialog box apply to an entire graph while others apply to individual plots. For example, all the options on the Axes, Backplanes, and Lighting pages are for the graph as a whole: each plot on the graph uses common axes, backplanes, and lighting. However, options on the Appearance tab are specific to each plot on the graph. That is, each plot can be filled with its own color, have its own lines drawn, etc. Use the tabs labeled Plot 1, Plot 2, etc. to control the settings for individual plots.

\section*{Fill Color}

The color of a plot is primarily determined by its fill color. This section describes the ways to apply color to a plot by filling its surfaces or contours. A plot's color and shading are also affected by lighting, as described in more detail in page 240.
Mathcad allows you to apply either a solid color or a colormap to the surface or contours of a plot. A solid color is useful when you don't want to overcomplicate a plot with many colors or when you want to use lighting to shade a plot. A colormap applies an array of color to a plot according to its coordinates.

Note Mathcad comes with a variety of colormaps for applying rainbow colors and shades of gray, red, green, and blue. You can also create and load custom colormaps in Mathcad Professional by using the SaveColormap and LoadColormap functions, described on page 190. By default, a colormap is applied in the direction of the \(z\)-values, or according to the height of the plot. You can apply the colormap in the direction of the \(x\)-values or \(y\)-values by clicking the Advanced tab and choosing a direction in the Colormap section. For more information on colormaps, see online Help.

\section*{Filling the Surface}

The options on the Appearance page of the 3D Plot Format dialog box allow you to fill the plot's surface with a solid color or a colormap. For example, to color the bars in a 3D bar plot according to a colormap:
1. Double-click the graph to bring up the 3D Plot Format dialog box.
2. Click the Appearance tab.
3. Click both Fill Surface in Fill Options and Colormap in Color Options.
4. Click Apply to preview the plot. Click OK to close the dialog box.
Figure 13-8 shows an example.

\[
\mathbf{M}(\mathbf{u}, \mathbf{v}):=\sin (\mathbf{u})+\cos (\mathbf{v})
\]

M
\(C(r, s):=\sqrt{1+\left(\frac{1}{5}-\frac{r}{50}\right)^{2}+\left(\frac{1}{5}-\frac{s}{50}\right)^{2}}\)

C

Figure 13-8: Filling the surface or contours of a plot.
The plot is shaded using the default colormap "Rainbow." To choose a different colormap, click the Advanced tab of the 3D Plot Format dialog box and select a colormap from the Choose Colormap drop-down menu.

If you wanted to fill the bars of the plot with a solid color, choose Solid Color instead of Colormap and click the color box next to Solid Color to select a color.

\section*{Filling Contours}

When you format a surface plot, you can choose Fill Contours instead of Fill Surface in the Fill Options section of the Appearance page. If you fill the contours of a surface plot, the plot is filled according to its contours rather than directly by its data. You can
fill according to the \(x\)-, \(y\)-, or \(z\)-contours or two at the same time. For a contour plot, you must choose Fill Contours instead of Fill Surface to fill the contours of the plot.
For example, to fill a contour plot with color:
1. Double-click the graph to bring up the tabbed dialog box.
2. Click the Appearance tab.
3. In the Fill Options section, click Fill Contours.
4. Click Apply to preview the plot. Click OK to close the dialog box.

The plot is shaded using the default colormap Rainbow. To choose a different colormap, click the Advanced tab of the 3D Plot Format dialog box and select a colormap from the Choose Colormap drop-down menu.

Note If you have a contour plot projected on a plane other than the \(x-y\) plane, you can fill the contour using options on the Special page of the 3D Plot Format dialog box. To do so, click the Special tab, then choose a contour direction from the drop-down menu. Click Fill for each contour you want to color. For example, if you have Fill checked for the \(z\)-contours and \(x\)-contours, you will see contour color on both the \(x-y\) backplane and the \(y-z\) backplane.

\section*{Lines}

Mathcad provides many ways to control the appearance of the lines on a threedimensional plot. You can draw the lines so they form a wireframe, or you can draw only the contour lines. You can also control the weight and color of the lines on a plot.

\section*{Drawing a Wireframe}

To control whether lines form a wireframe on a plot, use the options on the Appearance page of the 3D Plot Format dialog box. For example, to remove the wireframe on a surface plot as shown in Figure 13-9:
1. Double-click the graph to bring up the tabbed dialog box.
2. Click the Appearance tab.
3. In the Line Options section, click No Lines.
4. Click Apply to preview the plot. Click OK to close the dialog box.

To turn lines on again later, choose Wireframe on the Appearance page.

\section*{Drawing Contour Lines}

When you format a surface plot, you can choose Contour instead of Wireframe in the Line Options section of the Appearance page. Contour lines are those drawn according to the contours of a surface. You can draw either the \(x\)-, \(y\)-, or \(z\) - contour lines, two of these contours lines, or all three.

Note For contour plots, Mathcad always chooses Contour instead of Wireframe to draw contour lines.
For example, to draw lines showing the \(x\)-contours of a surface plot:
1. Double-click the graph to bring up the tabbed dialog box.
2. Click the Appearance tab.
3. Click Contour in the Line Options section.
4. Click the Special tab.
5. Verify that Z-Contours is selected in the drop-down menu at the bottom of the Contour Options section. Click Draw Lines to remove the check mark. This turns lines off for the \(z\)-contours.
6. Choose Z-Contours from the drop-down menu on the Special page.
7. Check Draw Lines.
8. Click Apply to preview the plot. Click OK to close the dialog box.

The surface plot is drawn with contour lines perpendicular to the \(z\)-axis, as shown in Figure 13-9.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& n:=20 \quad i:=0 . . n \quad j:=0 . . n \\
& x_{i}:=-1.5+.15 \cdot i \quad y_{j}:=-1.5+.15 \cdot j
\end{aligned}
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\[
f(x, y):=\sin \left(x^{2}+y^{2}\right)
\]} \\
\hline \multicolumn{2}{|l|}{\(m_{i, j}:=f\left(x_{i}, y_{j}\right)\)} \\
\hline & \\
\hline m & m \\
\hline
\end{tabular}

Figure 13-9: A wireframe vs. contour lines on a surface plot.

Note When you format a contour plot on a multi-plot graph (see page 224), the options in the dropdown menu on the Special tab determine on which backplane the contour lines are drawn. For example, if you have Draw Lines checked for the \(z\)-contours and \(x\)-contours, you will see contour lines on both the \(x-y\) backplane and the \(y-z\) backplane.

\section*{Line Color}

You can control the color of the lines in a plot using the color options in the Line Options section of the Appearance page. Just as you can fill a plot's surface with a colormap or a solid color, described on page 237, you can also apply a colormap or solid color to the lines in a plot.
For example, to make the lines of a contour plot orange:
1. Double-click the graph to bring up the tabbed dialog box.
2. Click the Appearance tab.
3. In the Line Options section, click Contour to draw contour lines and Solid Color.
4. Click the color box next to Solid Color, click the orange box, and click OK.
5. Click Apply to preview the plot. Click OK to close the dialog box.

\section*{Points}

You can draw and format points on most three-dimensional plots, since all 3D plots are constructed from discrete data points. (The exceptions are vector field plots, contour plots, bar plots, and patch plots.) Points are most useful, however, on a 3D scatter plot in which points are the main focus of the plot. Mathcad allows you to control the symbol used for the points in a plot as well as the color and size of the symbol.
To draw or remove points on a surface plot:
1. Double-click the graph to bring up the 3D Plot Format dialog box.
2. Click the Appearance tab.
3. In the Points Options section, check (or uncheck) Draw Points.
4. Click Apply to preview the plot. Click OK to close the dialog box.

To format the symbol, color, and size of the points on your 3D scatter plot using the Points Options section of the Appearance tab:
- Choose a Symbol from the drop-down list to change the symbol displayed.
- Use the arrows next to Size to increase or decrease the size of the symbol.
- Click the color box next to Solid Color and choose a hue from the color palette, or click Colormap to change the coloring of the symbols.

\section*{Lighting}

The color of a three-dimensional plot is a result of color you use to fill its surface, lines, and points as well as the color of any ambient light or directed lights shining on it. This behavior is identical to the effect of light on object color in the real world. Objects reflect and absorb light depending on their color. For example, a yellow ball reflects mostly yellow light and absorbs others, and it can look grayish under dim lighting, green under blue lighting, and bright yellow in bright lighting.
You can fill a plot's surfaces, contours, lines, and points with either a solid color or a colormap using the options on the Appearance and Advanced pages of the 3D Plot Format dialog box.
Light is controlled using the options on the Lighting page of the 3D Plot Format dialog box. If you are content to fill a plot with a colormap, you may not need to use lighting at all. However, if you want to shade the plot differently, or if you fill the plot with a solid color and want to shade it, you can enable lighting.

Note If your 3D graph contains multiple plots, lighting affects all the plots in a graph, but you can fill individual plots with color independently.

Note If you want lighting to be the sole determinant of the color of a plot, use the Appearance page options in the 3D Plot Format dialog box to fill the plot with solid white.

Figure 13-10: A white surface plot with lighting enabled.
To enable lighting:
1. Double-click the plot to open the tabbed dialog box.
2. Click the Lighting tab.
3. Check Enable Lighting in the Lighting section.
4. Click the options on tabs labeled Light 1, Light 2, etc. to enable a directed light and set its color and location. Mathcad lets you set up to eight directed lights.
5. Click the Ambient Light Color box to set the ambient light color. Note that black corresponds to no ambient light.
6. Click Apply to preview the plot. Click OK to close the dialog box.

On-line Help For details on the options available on the Lighting page, click the Help button at the bottom of the dialog box. For additional information on lighting, see "Advanced Topics" under Overview and Tutorial in the Mathcad Resource Center.

\section*{Changing One 3D Plot to Another}

You can change almost any three-dimensional plot into another kind of threedimensional plot by using the Display As options on the General tab in the 3D Plot Format dialog box. Simply select another available 3D plot type and click Apply or OK to change the plot instantaneously to another type. Figure 13-11 shows the same matrix displayed as three different plot types.

Note Some three-dimensional plots cannot be converted to other forms. For example, you cannot convert a vector field plot into any other kind of plot. If a plot cannot be converted to another kind of plot, that plot type is grayed in the 3D Plot Format dialog box.

\section*{Annotations}

In addition to adding a title to your three-dimensional plot by using options on the Title page of the 3D Plot Format dialog box, you can annotate a three-dimensional plot by

Figure 13-11: The same data displayed in several different 3D plots.
placing text or bitmaps anywhere on it. This allows you to label or highlight any part of the plot that you wish.
To add a text annotation to a three-dimensional plot:
1. Create a text region in your worksheet using the methods described in Chapter 5, "Working with Text."
2. Drag the text region from its location in your worksheet and drop it directly onto the plot. See "Moving and Copying Regions" on page 10 for more on dragging and dropping regions.

You can select the text annotation on your plot to reposition it. To edit a text annotation on a plot, select the text and drag it off the plot to your worksheet. You can now edit the text region. Then drag the text region back onto the plot.

Tip You can drag a bitmap image from your Mathcad worksheet onto a three-dimensional plot just as you drag and drop text annotations. To place a bitmap you created in another application onto a three-dimensional plot, copy the bitmap from the other application to the Clipboard, click on the plot with the right mouse button, and choose Paste Special from the pop-up menu.

\section*{Modifying 3D QuickPlot Data}

When you create a 3D QuickPlot, as described on page 224, you can change the range and step size of each independent variable by using the settings on the QuickPlot Data page of the 3D Plot Format dialog box.

To change the range of either independent variable:
1. Set the start and end values of either range using the text boxes for each range.
2. Click Apply to keep the dialog box open. Click OK to close the dialog box.

To change the step size, the number of grids generated along each variable's axis between the start and end values:
1. Use the arrows next to \# of Grids for each range to increase or decrease the grid value. Alternatively, you can type in a value in the text box.
2. Click Apply to keep the dialog box open. Click OK to close the dialog box.

Note The ranges you set for the independent variables in the QuickPlot Data page do not necessarily control the axis limits of the plot, unless you are plotting a single function of two variables in Cartesian coordinates. In all other cases, the axis limits are determined by the \(x\)-, \(y\)-, and \(z\)-data generated for the QuickPlot by your function(s).

To perform automatic coordinate system conversions on your QuickPlot data:
1. Click the radio button under Coordinate System corresponding the coordinate system of the function you are plotting.
2. Click Apply to keep the dialog box open. Click OK to close the dialog box.

\section*{Rotating and Zooming on 3D Plots}

You can resize a three-dimensional plot using the same methods you use to resize any graph region in Mathcad. Click on it and use the handles that appear along the edges to drag out the edges. Mathcad provides several additional options for manipulating the presentation of your 3D plot:
- You can rotate the plot to see it from a different perspective.
- You can set the plot in motion about an axis of rotation so that it spins continuously.
- You can zoom in or out on a portion of the plot.

Note When you rotate, spin, or zoom a three-dimensional plot, any visible axes move or resize themselves with the plot. Text or graphic annotations you add to the plot (see page 241) remain anchored at their original sizes and positions.

\section*{Rotating a Plot}

You can rotate a plot interactively with the mouse or by specifying parameters in the 3D Plot Format dialog box.

To rotate a three-dimensional plot interactively by using the mouse:
1. Click in the plot, and hold the mouse button down.
2. Drag the mouse in the direction you want the plot to turn.
3. Release the mouse button when the plot is in the desired position.

To rotate a three-dimensional plot by using the 3D Plot Format dialog box:
1. Click once on the plot to select it and choose Graph \(\Rightarrow\) 3D Plot from the Format menu. Alternatively, double-click the plot.
2. Click the General tab.
3. Edit the settings for Rotation, Tilt, and Twist in the View options.
4. Click Apply to preview the plot. Click OK to close the dialog box.

\section*{Spinning a Plot}

You can set a plot in motion so that it spins continuously about an axis of rotation:
1. Click in the plot, and hold the [Shift] key and the mouse button down.
2. Drag the mouse in the direction you want the plot to spin.
3. Release the mouse button to set the plot in motion.

The plot spins continuously until you click again inside the plot.
Note If you make changes to equations that affect a plot, the plot recomputes even when it is spinning!

Tip To create an AVI file of a spinning plot, see the techniques in "Animation" on page 119.

\section*{Zooming a Plot}

You can zoom in or out of a plot interactively or by specifying a zoom factor in the 3D Plot Format dialog box.

To zoom in on a three-dimensional plot by using the mouse:
1. Click in the plot, and hold the [Ctrl] key and the mouse button down.
2. Drag the mouse toward the top of the plot to zoom out, or drag the mouse toward the bottom to zoom in.
3. Release the mouse button when the plot is at the desired zoom factor.

Tip If you use an IntelliMouse-compatible mouse with a center wheel, you can rotate the wheel to zoom in or out of a three-dimensional plot.

To zoom in or out of a three-dimensional plot by using the 3D Plot Format dialog box:
1. Click once on the plot to select it and choose Graph \(\Rightarrow \mathbf{3 D}\) Plot from the Format menu. Alternatively, double-click the plot.
2. Click the General tab.
3. Edit the Zoom setting in the View options.
4. Click Apply to preview the plot. Click OK to close the dialog box.

\section*{Chapter 14 Symbolic Calculation}
\(\tau\) Overview of Symbolic Math
\(\tau\) Live Symbolic Evaluation
\(\tau\) Using the Symbolics Menu
\(\tau\) Examples of Symbolic Calculation
\(\tau\) Symbolic Optimization

\section*{Overview of Symbolic Math}

Elsewhere in this User's Guide, you've seen Mathcad engaging in numeric calculations. This means that whenever you evaluate an expression, Mathcad returns one or more numbers, as shown at the top of Figure 14-1. When Mathcad engages in symbolic mathematics, however, the result of evaluating an expression is generally another expression, as shown in the bottom of Figure 14-1.

A numerical calculation gives nothing but numbers:
\[
\begin{aligned}
& F(x):=\sum_{k=0}^{3} \frac{3!}{k!\cdot(3-k)!} \cdot x^{k} \cdot 2^{3-k} \\
& F(2)=64 \\
& F(-5)=-27
\end{aligned}
\]

But a symbolic transformation can yield insight into the underlying expression:
\[
F(x) \rightarrow 8+12 \cdot x+6 \cdot x^{2}+x^{3}
\]

Figure 14-1: A numeric and symbolic evaluation of the same expression.
There are three ways to perform a symbolic transformation on an expression.
- You can use the symbolic equal sign as described in "Live Symbolic Evaluation" on page 246. This method feels very much as if you're engaging in numeric math. If you need more control over the symbolic transformation, you can use keywords with the symbolic equal sign.
- You can use commands from the Symbolics menu. See "Using the Symbolics Menu" on page 254.
- You can make the numeric and symbolic processors work together, the latter simplifying an expression behind the scenes so that the former can work with it more efficiently. This is discussed in "Symbolic Optimization" on page 265.

Note For a computer, symbolic operations are, in general, much more difficult than the corresponding numeric operations. In fact, many complicated functions and deceptively simple-looking functions have no closed-forms as integrals or roots.

\section*{Live Sym bolic Evaluation}

The symbolic equal sign provides a way to extend Mathcad's live document interface beyond the numeric evaluation of expressions. You can think of it as being analogous to the equal sign " \(=\)." Unlike the equal sign, which always gives a numeric result on the right-hand side, the symbolic equal sign is capable of returning expressions. You can use it to symbolically evaluate expressions, variables, functions, or programs.
To use the symbolic equal sign:
1. Make sure that Automatic Calculation on the Math menu has a check beside it. If it doesn't, choose it from the menu.
2. Enter the expression you want to evaluate.
3. Click \(\rightarrow\) on the Symbolic toolbar or press [Ctrll]. (the Control key followed by a period). Mathcad displays a symbolic equal sign, " \(\rightarrow\)."
4. Click outside the expression. Mathcad displays a simplified version of the original expression. If an expression cannot be simplified further, Mathcad
 simply repeats it to the right of the symbolic equal sign.
The symbolic equal sign is a live operator just like any Mathcad operator. When you make a change anywhere above or to the left of it, Mathcad updates the result. The symbolic equal sign "knows" about previously defined functions and variables and uses them wherever appropriate. You can force the symbolic equal sign to ignore prior definitions of functions and variables by defining them recursively just before you evaluate them, as shown in Figure 14-6 on page 253.
Figure 14-2 shows some examples of how to use the symbolic equal sign, " \(\rightarrow\)."
Note The symbolic equal sign, " \(\rightarrow\)," applies to an entire expression. You cannot use the symbolic equal sign to transform only part of an expression.

Tip Figure 14-2 also illustrates the fact that the symbolic processor treats numbers containing a decimal point differently from numbers without a decimal point. When you send numbers with decimal points to the symbolic processor, any numeric results you get back are decimal approximations to the exact answer. Otherwise, any numeric results you get back are expressed without decimal points whenever possible.

Press [Ctrl][Period] to get the symbolic equal sign.
\[
\int_{a}^{b} x^{2} d x \rightarrow \frac{1}{3} \cdot b^{3}-\frac{1}{3} \cdot a^{3}
\]

The symbolic equal sign uses previous definitions:
\[
\begin{aligned}
& x:=8 \\
& y+2 \cdot x \rightarrow y+16
\end{aligned}
\]

If the expression cannot be simplified further, the symbolic equal sign does nothing.
\[
y^{2} \rightarrow y^{2}
\]

This is analogous to the equal sign you use for numerical evaluation:
\[
2=2
\]

When decimals are used, the symbolic equal sign returns decimal approximation
\[
\sqrt{17} \rightarrow \sqrt{17} \quad \sqrt{17.0} \rightarrow 4.1231056256176605498
\]

Figure 14-2: Using the symbolic equal sign.

\section*{Customizing the Symbolic Equal Sign Using Keywords}

The " \(\rightarrow\) " takes the left-hand side and places a simplified version of it on the right-hand side. Of course, exactly what "simplify" means is a matter of opinion. You can, to a limited extent, control how the " \(\rightarrow\) " transforms the expression by using one of the symbolic keywords. To do so:
1. Enter the expression you want to evaluate.
2. Click \(\bullet \rightarrow\) on the Symbolic toolbar or press [Ctrl]

[Shift]. (Press the Control and Shift keys and type a period.) Mathcad displays a placeholder to the left of the symbolic equal sign, " \(\rightarrow\)."
3. Click on the placeholder to the left of the symbolic equal sign and type any of the keywords from the following table. If the
 keyword requires any additional arguments, separate the arguments from the keyword with commas.
4. Press [Enter] to see the result.
\[
(x+y)^{3} \text { expand } \rightarrow x^{3}+3 \cdot x^{2} \cdot y+3 \cdot x \cdot y^{2}+y^{3}
\]

Tip Another way to use a keyword is to enter the expression you want to evaluate and click on a keyword button from the Symbolic toolbar. This inserts the keyword, placeholders for any additional arguments, and the symbolic equal sign, " \(\rightarrow\)." Just press [Enter] to see the result.
\begin{tabular}{|c|c|}
\hline Keyword & Function \\
\hline complex & Carries out symbolic evaluation in the complex domain. Result is usually in the form \(a+i \cdot b\). \\
\hline float, m & Displays a floating point value with \(m\) places of precision whenever possible. If the argument \(m\), an integer, is omitted, the precision is \(20.1 \leq m \leq 250\) \\
\hline simplify & Simplifies an expression by performing arithmetic, canceling common factors, and using basic trigonometric and inverse function identities. \\
\hline expand, expr & Expands all powers and products of sums in an expression except for the subexpression expr. The argument expr is optional. The entire expression is expanded if the argument expr is omitted. \\
\hline & If the expression is a fraction, expands the numerator and writes the expression as a sum of fractions. Expands sines, cosines, and tangents of sums of variables or integer multiples of variables as far as possible into expressions involving only sines and cosines of single variables. \\
\hline factor, expr & Factors an expression into a product, if the entire expression can be written as a product. Factors with respect to expr, a single radical or a list of radicals separated by commas. The argument expr is optional. \\
\hline & Usually factors a single variable into powers of primes. Otherwise, attempts to convert the expression into a product of simpler functions. Combines a sum of fractions into a single fraction and often simplifies a complex fraction with more than one fraction bar. \\
\hline solve, var & Solves an equation for the variable var or solves a system of equations for the variables in a vector var. \\
\hline \[
\begin{aligned}
& \text { collect, } \\
& \text { var1,..., varn }
\end{aligned}
\] & Collects like terms with respect to the variables or subexpressions varl through varn. \\
\hline coeffs, var & Finds coefficients of an expression when it is rewritten as a polynomial in the variable or subexpression var. \\
\hline substitute, var1=var2 & Replaces all occurrences of a variable varl with an expression or variable var2. Press [Ctrl] = for the bold equal sign. \\
\hline \[
\begin{aligned}
& \text { series, } \\
& \text { var=z, } m
\end{aligned}
\] & Expands an expression in one or more variables, var, around the point \(z\). The order of expansion is \(m\). Arguments \(z\) and \(m\) are optional. By default, the expansion is taken around zero and is a polynomial of order six. By default, finds Taylor series (series in nonnegative powers of the variable) for functions that are analytic at 0 and Laurent series for functions that have a pole of finite order at 0 . \\
\hline
\end{tabular}
```

convert,
parfrac,var

```
fourier, var
invfourier, var
laplace, var
ztrans, var
assume
constraint

Evaluates the inverse Fourier transform of an expression with respect to the variable var. Result is a function of \(t\) given by:
\(\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\omega) e^{i \omega t} d \omega\)
where \(F(\omega)\) is the expression to be transformed.
Evaluates the Laplace transform of an expression with respect to the variable var. Result is a function of \(s\) given by:
\(\int_{0}^{+\infty} f(t) e^{-s t} d t\)
where \(f(t)\) is the expression to be transformed.
invlaplace, var Evaluates the inverse Laplace transform of an expression with respect to the variable var. Result is a function of \(t\) given by:
\(\frac{1}{2 \pi} \int_{\sigma-i \infty}^{\sigma+i \infty} F(s) e^{s t} d t\)
where \(F(s)\) is the expression to be transformed and all singularities of \(F(s)\) are to the left of the line \(\operatorname{Re}(s)=\sigma\).
invztrans, var Evaluates the inverse \(z\)-transform of an expression with respect
Evaluates the inverse \(z\)-transform of an expression with respect
to the variable var. Result is a function of \(n\) given by a contour integral around the origin:
\(\frac{1}{2 \pi i} \int_{C} F(z) z^{n-1} d z\)
where \(F(z)\) is the expression to be transformed and \(C\) is a contour enclosing all singularities of the integrand.
Converts an expression to a partial fraction expansion in var, the variable in the denominator of the expression on which to convert. Usually factors the denominator of the expression into linear or quadratic factors having integer coefficients and expands the expression into a sum of fractions with these factors as denominators.

Evaluates the Fourier transform of an expression with respect to the variable var. Result is a function of \(\omega\) given by:
\(\int_{-\infty}^{+\infty} f(t) e^{-i \omega t} d t\)
where \(f(t)\) is the expression to be transformed.

Evaluates the \(z\)-transform of an expression with respect to the variable var. Result is a function of \(z\) given by:
\(\sum f(n) z^{-n}\)
\(n=0\)
where \(f(n)\) is the expression to be transformed.

Imposes constraints on one or more variables according to the expression constraint.

Many of the keywords take at least one additional argument, typically the name of a variable with respect to which you are performing the symbolic operation. Some of the arguments are optional. See Figure 14-3 and Figure 14-4 for examples.

By itself, the symbolic equal sign simply evaluates the expression to the left of it and places it on the right:
\[
\frac{d}{d x}(x+y)^{3} \rightarrow 3 \cdot(x+y)^{2}
\]

But when preceded by an appropriate keyword, the symbolic equal can change its meaning:
\[
(x+y)^{3} \text { expand } \rightarrow x^{3}+3 \cdot x^{2} \cdot y+3 \cdot x \cdot y^{2}+y^{3}
\]

The keyword "float" makes the result display as a floating point number whenever possible:
\[
x \cdot a \cos (0) \rightarrow \frac{1}{2} \cdot x \cdot \pi \quad x \cdot \operatorname{acos}(0) \text { float, } 4 \rightarrow 1.571 \cdot x
\]

The keyword "laplace" returns the Laplace transform of a function:
\[
\exp (-a \cdot t) \text { laplace }, t \rightarrow \frac{1}{(s+a)}
\]

Figure 14-3: Using keywords with a symbolic evaluation sign.

Figure 14-4: Evaluating expressions symbolically.

Note Keywords are case sensitive and must therefore be typed exactly as shown. Unlike variables, however, they are not font sensitive.

\section*{Keyword modifiers}

Some keywords take additional modifiers that specify the kind of symbolic evaluation even further.
To use a modifier, separate it from its keyword with a comma. For example, to use the "assume=real" modifier with the simplify keyword on an expression:
1. Enter the expression to simplify.
2. Click \(\because \rightarrow\) on the Symbolic toolbar or press [Ctrl] [Shift]. (hold down the Control and Shift keys and type a period). Mathcad displays a placeholder to the left of the symbolic equal sign, " \(\rightarrow\)."
3. Enter simplify, assume=real into the placeholder (press [Ctrl]= for the equal sign).
4. Press [Enter] to see the result.

\section*{Modifiers for "assume"}
var=real Evaluates the expression on the assumption that the variable var is real.

\section*{var=}

RealRange (a,b)

Evaluates on the assumption that all the indeterminates are real and are between \(a\) and \(b\), where \(a\) and \(b\) are real numbers or infinity ([Ctrl][Shift]z).

\section*{Modifiers for "simplify"}
assume=real Simplifies on the assumption that all the indeterminates in the expression are real.
assume=
RealRange \((a, b)\)

Simplifies on the assumption that all the indeterminates are real and are between \(a\) and \(b\), where \(a\) and \(b\) are real numbers or infinity ([Ctrl][Shift]z).
trig Simplifies a trigonometric expression by applying only the following identities:
\(\sin (x)^{2}+\cos (x)^{2}=1\)
\(\cosh (x)^{2}-\sinh (x)^{2}=1\)
It does not simplify the expression by simplifying logs, powers, or radicals.

Figure 14-5 shows some examples using the simplify keyword with and without additional modifiers.

Tip Keyword modifiers can be typed or inserted from the buttons on the Modifier toolbar.

\section*{Using More Than One Keyword}

In some cases, you may want to perform two or more types of symbolic evaluation consecutively on an expression. Mathcad allows you to apply several symbolic keywords to a single expression. There are two ways of applying multiple keywords. The method you choose depends on whether you want to see the results from each keyword or only the final result.
To apply several keywords and see the results from each:
1. Enter the expression you want to evaluate.
\[
\begin{aligned}
& \frac{x^{2}-3 \cdot x-4}{x-4}+2 \cdot x-5 \text { simplify } \rightarrow 3 \cdot x-4 \\
& e^{2 \cdot \ln (a)} \text { simplify } \rightarrow a^{2} \\
& \sin (\ln (a \cdot b))^{2} \text { simplify } \rightarrow 1-\cos (\ln (a \cdot b))^{2} \\
& \left(2^{b}\right)^{c} \text { simplify } \rightarrow\left(2^{b}\right)^{c} \\
& \left(2^{b}\right)^{c} \text { simplify, assume }=\text { real } \rightarrow 2^{(b \cdot c)} \quad \begin{array}{l}
<-. \text { Press }[C \text { eqri] }=\text { for the } \\
\text { equal sign. }
\end{array} \\
& \sqrt{x^{2}} \text { simplify } \rightarrow \text { csgn }(x) \cdot x \\
& \sqrt{x^{2}} \text { simplify, assume }=\text { RearRange }(-10,-5) \rightarrow-x \quad \begin{array}{l}
\text { <-. Press }[C t r l]=\text { for the } \\
\text { equal sign. }
\end{array}
\end{aligned}
\]

Figure 14-5: Modifiers such as "assume =real" allow you to control simplefication.
2. Press \(\bullet \rightarrow\) on the Symbolic toolbar or type \(\square\)
[Ctrl] [Shift] . (Hold down the Control and Shift keys and type a period.) Mathcad displays a placeholder to the left of the symbolic equal sign, " \(\rightarrow\)."
3. Enter the first keyword into the placeholder to the left of the symbolic equal sign, including
 any comma-delimited arguments the keyword takes.
4. Press [Enter] to see the result from the first keyword.
\[
\mathrm{e}^{\mathrm{x}} \text { series, } \mathrm{x}, 3 \rightarrow 1+\mathrm{x}+\frac{1}{2} \cdot \mathrm{x}^{2}
\]
```

ex}\mathrm{ series, x,3 float, 1|

```
[Shift]. again. The first result disappears temporarily. Enter a second keyword and any modifiers into the placeholder.
6. Press [Enter] to see the result from the
\[
\mathrm{e}^{\mathrm{x}} \text { series, } \mathrm{x}, 3 \rightarrow 1+\mathrm{x}+\frac{1}{2} \cdot x^{2} \text { float, } 1 \rightarrow 1 \cdot+x+.5 \cdot x^{2}
\] second keyword.
Continue applying keywords to the intermediate results in this manner.
To apply several keywords and see only the final result:
1. Enter the expression you want to evaluate.
2. Click \(\because \rightarrow\) on the Symbolic toolbar or press

[Ctrl] [Shift]. so that Mathcad displays a placeholder to the left of the symbolic equal sign, " \(\rightarrow\)."
3. Enter the first keyword into the placeholder,
including any comma-delimited arguments it takes.
4. Press [Ctrl] [Shift]. again and enter a second keyword into the placeholder. The second keyword is placed immediately below
\(e^{x}\) series, \(x, 3 \rightarrow\)
```

e
series, x,3
float, 1

``` the first keyword.
5. Continue adding keywords by pressing [Ctrl] [Shift] . after each one. Press [Enter] to see the final result.

\section*{Ignoring Previous Definitions}

When you use the symbolic equal sign to evaluate an expression, Mathcad checks all the variables and functions making up that expression to see if they've been defined earlier in the worksheet. If Mathcad does find a definition, it uses it. Any other variables and functions are evaluated symbolically.
There are two exceptions to this. In evaluating an expression made up of previously defined variables and functions, Mathcad ignores prior definitions:
- When the variable has been defined recursively.
- When the variable has been defined as a range variable.

These exceptions are illustrated in Figure 14-6.
```

x := 3
(x+1)\cdot(z-1) expand -> 4\cdotz-4<< Mathcad substitutes the value of 3 for
X := X <- recursive definition.
(x+1)\cdot(x-1) expand }->\mp@subsup{x}{}{2}-1<< Although "x" is defined to be 3, Mathca
ignores that definition for symbolic
evaluation because of the recursive
definition.
m := 1.. 10
m < < Since "m" is defined as a range variable, Mathcad ignores this
definition.

```

Figure 14-6: Defining a variable in terms of itself makes the symbolic processor ignore previous definitions of that variable.

Note Although Mathcad does not evaluate range variables symbolically, it does symbolically evaluate any vectors or matrices that you define using range variables.

\section*{Using the Symbolics Menu}

One advantage to using the symbolic equal sign, sometimes together with keywords and modifiers as discussed in the last section, is that it is "live," just like the numeric processing in Mathcad. That is, Mathcad checks all the variables and functions making up the expression being evaluated to see if they've been defined earlier in the worksheet. If Mathcad does find a definition, it uses it. Any other variables and functions are evaluated symbolically. Later on, whenever you make a change to the worksheet, the results automatically update. This is useful when the symbolic and numeric equations in the worksheet are tied together.
There may be times, however, when a symbolic calculation is quite separate from the rest of your worksheet and does not need to be tied to any previous definitions. In these cases, you can use commands from the Symbolics menu. These commands are not live: you apply them on a case by case basis to selected expressions, they do not "know" about previous definitions, and they do not automatically update.
The commands on the Symbolics menu perform the same manipulations as many of the keywords listed on page 247. For example, the Symbolics menu command
Polynomial Coefficients evaluates an expression just as the keyword coeffs does. The only differences are that the menu command does not recognize previous definitions and does not automatically update.
The basic steps for using the Symbolics menu are the same for all the menu commands:
1. Place whatever math expression you want to evaluate between the two editing lines. You can drag-select a part of the expression to place it between the editing lines.
2. Choose the appropriate command from the Symbolics menu. Mathcad then places the evaluated expression into your document.
For example, to evaluate an expression symbolically using the Symbolics menu, follow these steps:
1. Enter the expression you want to evaluate.
2. Surround the expression with the editing lines.
3. Choose Evaluate \(\Rightarrow\) Symbolically from the Symbolics menu. Mathcad places the evaluated expression into your worksheet. The
 location of the result in relation to the original expression depends on the Evaluation Style you've selected (see "Displaying Symbolic Results" on page 255).
Some commands on the Symbolics menu require that you click on or select the variable of interest rather than select the entire expression. If a menu command is unavailable, try selecting a single variable rather than an entire expression.

Tip Since the commands on the Symbolics menu operate only on the part of the expression currently selected by the editing lines, they are useful when you want to address parts of an expression. For example, if evaluating or simplifying the entire expression doesn't give the answer you want, try selecting a subexpression and choose a command from the Symbolics menu.

\section*{Long Results}

Symbolic calculations can easily produce results so long that they don't fit conveniently in your window. If you obtain a symbolic result consisting of several terms by using commands on the Symbolics menu, you can reformat such a result by using Mathcad's "Addition with line break" operator (see "Operators" on page 298 in the Appendices).
Sometimes, a symbolic result is so long that you can't conveniently display it in your worksheet. When this happens, Mathcad asks if you want the result placed in the Clipboard. If you click "OK," Mathcad places a string representing the result on the Clipboard. When you examine the contents of the clipboard, you'll see a result written in a Fortran-like syntax. See the topic "Special functions and syntax used in Symbolic results" in the on-line Help for more information on this syntax.

\section*{Displaying Symbolic Results}

If you're using the symbolic equal sign, " \(\rightarrow\)," the result of a symbolic transformation always goes to the right of the " \(\rightarrow\)." However, when you use the Symbolics menu, you can tell Mathcad to place the symbolic results in one of the following ways:
- The symbolic result can go below the original expression.
- The symbolic result can go to the right of the original expression.
- The symbolic result can simply replace the original expression.

In addition, you can choose whether you want Mathcad to generate text describing what had to be done to get from the original expression to the symbolic result. This text goes between the original expression and the symbolic result, creating a narrative for the symbolic evaluation. These text regions are referred to as "evaluation comments."
To control both the placement of the symbolic result and the presence of narrative text, choose Evaluation Style from the Symbolics menu to bring up the "Evaluation Style" dialog box.

\section*{Examples of Symbolic Calculation}

Just as you can carry out a variety of numeric calculations in Mathcad, you can carry out all kinds of symbolic calculations. As a general rule, any expression involving variables, functions, and operators can be evaluated symbolically using either the symbolic equal sign or the menu commands, as described earlier in this chapter.

Tip When deciding whether to use the symbolic equal sign or menu commands from the Symbolics menu, remember that unlike the keyword-modified expressions, expressions modified by commands from the Symbolics menu do not update automatically, as described in the section "Using the Symbolics Menu" on page 254.

This section describes how to symbolically evaluate definite and indefinite integrals, derivatives, and limits. It also covers how to symbolically transpose, invert, and find the determinant of a matrix. Finally, this section describes how to perform symbolic transforms and solve equations symbolically. Keep in mind that these are just a few of the calculations you can perform symbolically.

Note Functions and variables you define yourself are recognized by the symbolic processor when you use the symbolic equal sign. They are not, however, recognized when you use the Symbolics menu commands. Figure \(14-7\) shows the difference.

Mathcad's symbolic processor recognizes many of its built-in math functions and constants....
\[
e^{\ln (x)} \rightarrow x \quad \sin \left(\frac{\pi}{4}\right) \rightarrow \frac{1}{2} \cdot \sqrt{2}
\]
....but not the ones that don't have a commonly accepted meaning.
\[
\operatorname{rnd}(\mathbf{x}) \rightarrow \operatorname{rnd}(\mathbf{x})
\]

Functions and variables you define yourself are recognized when you use the symbolic equal sign...
\[
\begin{array}{ll}
F(x):=\frac{\ln (x)}{2} & a:=3 \\
e^{F(x)} \rightarrow x^{\left(\frac{1}{2}\right)} & a^{2} \cdot \sin (a) \rightarrow 9 \cdot \sin (3)
\end{array}
\]
....but not when you use commands from the Symbolics menu.
\[
\begin{array}{ll}
e^{F(x)} & a^{2} \cdot \sin (a) \\
\text { simplifies to } & \text { simplifies to } \\
\exp (F(x)) & a^{2} \cdot \sin (a)
\end{array}
\]

Figure 14-7: The symbolic processor recognizes certain built-in functions. Functions and variables you define yourself are only recognized when you use the symbolic equal sign.

\section*{Derivatives}

To evaluate a derivative symbolically, you can use Mathcad's derivative operator and the live symbolic equal sign as shown in Figure 14-8:
1. Click \(\frac{\mathrm{d}}{\mathrm{dx}}\) on the Calculus toolbar or type ? to insert the derivative operator. Alternatively, click \(\frac{d^{n}}{d x^{n}}\) on the Calculus toolbar or type [Ctrl]? to insert the \(n\)th order derivative operator.
2. Enter the expression you want to differentiate and the variable with respect to which you are differentiating in the placeholders.
3. Click \(\rightarrow\) on the Symbolic toolbar or press [Ctrl]. (the Control key followed by a period). Mathcad displays a symbolic equal sign, " \(\rightarrow\)."
4. Press [Enter] to see the result.

Some integrals evaluated symbolically using the symbolic equal sign ([Ctrl] + Period)
\[
\begin{aligned}
& \int_{1}^{c} x^{3} d x \rightarrow \frac{1}{4} \cdot c^{4}-\frac{1}{4} \quad \text { <-Press \& for definite integral } \\
& \int_{0}^{\infty} e^{-x^{2} d x \rightarrow \frac{1}{2} \cdot \pi^{\left(\frac{1}{2}\right)} \text { <- Press [Ctrl][Shift]Z for "m" in upper limit }} \\
& \int \begin{array}{ll}
a \cdot x^{2} d x \rightarrow \frac{1}{3} \cdot a \cdot x^{3} & \text { <-Press [CtrI]i for indefinite integral }
\end{array}
\end{aligned}
\]

A second derivative:
\[
\frac{d^{2}}{d z^{2}} z \cdot \operatorname{atan}(z) \rightarrow \frac{2}{\left(1+z^{2}\right)}-2 \cdot \frac{z^{2}}{\left(1+z^{2}\right)^{2}} \quad \begin{aligned}
& \text { <- Press [CtrI]? to } \\
& \begin{array}{l}
\text { get the nth derivative } \\
\text { operator. }
\end{array}
\end{aligned}
\]

Figure 14-8: Evaluating integrals and derivatives symbolically.
Figure 14-9 shows you how to differentiate an expression without using the derivative operator. The Symbolics menu command Variable \(\Rightarrow\) Differentiate differentiates an expression with respect to a selected variable. For example, to differentiate \(2 \cdot x^{2}+y\) with respect to \(x\) :

Click on " \(x\) " and choose Variable \(\Rightarrow\) Differentiate from the Symbolics menu.
\[
\begin{array}{lll}
2 \cdot x^{2}+y & \text { by differentiation, yields } & 4 \cdot x \\
\frac{x}{\cosh (x)} & \Rightarrow \\
\text { by differentiation, yields } & \frac{1}{\cosh (x)}-\frac{x}{\cosh (x)^{2}} \cdot \sinh (x)
\end{array}
\]

Click on " \(x\) " and choose Variable \(\Rightarrow\) Integrate from the Symbolics menu.
\[
x^{2} \cdot e^{x} \text { by integration, yields } \quad x^{2} \cdot \exp (x)-2 \cdot x \cdot \exp (x)+2 \cdot \exp (x)
\]
\[
\frac{x+a}{x^{2}+b} \text { by integration, yields } \frac{1}{2} \cdot \ln \left\langle x^{2}+b\right\rangle+\frac{a}{b^{\left(\frac{1}{2}\right)}} \cdot \operatorname{atan}\left[\frac{x}{b^{\left(\frac{1}{2}\right)}}\right]
\]

Figure 14-9: Differentiating and integrating with menu commands.
1. Enter the expression.
2. Click on or select the \(x\).
3. Choose Variable \(\Rightarrow\) Differentiate from the Symbolics menu. Mathcad displays the derivative, \(4 \cdot x\). Note that y is treated as a constant.

If the expression in which you've selected a variable is one element of an array, Mathcad differentiates only that array element. To differentiate an entire array, differentiate each element individually: select a variable in that element and choose
Variable \(\Rightarrow\) Differentiate from the Symbolics menu.
Tip Be sure to select a variable in an expression before choosing from the Symbolics menu. Otherwise, the Variable \(\Rightarrow\) Differentiate menu command is not available.

\section*{Integrals}

To symbolically evaluate a definite or indefinite integral:
1. Click \(\int_{a}^{b}\) or \(\square\) on the Calculus toolbar to insert the definite or indefinite integral operator.
2. Fill in the placeholder for the integrand and, if applicable, the placeholders for the limits of integration.
3. Place the integration variable in the placeholder next to the " \(d\)." This can be any variable name.
4. Click \(\rightarrow\) on the Symbolic toolbar or press [Ctrl]. (the Control key followed by a period). Mathcad displays a symbolic equal sign, " \(\rightarrow\)."
5. Press [Enter] to see the result.

See Figure 14-8 for examples of integrals evaluated symbolically.
When evaluating a definite integral, the symbolic processor attempts to find an indefinite integral of your integrand before substituting the limits you specified. If the symbolic integration succeeds and the limits of integration are integers, fractions, or exact constants like \(\pi\), you get an exact value for your integral. If the symbolic processor can't find a closed form for the integral, you'll see an appropriate error message.
Another way to integrate an expression indefinitely is to enter the expression and click on the variable of integration. Then choose Variable \(\Rightarrow\) Integrate from the Symbolics menu. See Figure 14-9 for an example. Be sure to select a variable in an expression before choosing from the Symbolics menu. Otherwise, the Variable \(\Rightarrow\) Integrate menu command is unavailable.

Tip When you apply the Variable \(\Rightarrow\) Integrate command on the Symbolics menu, the expression you select should not usually include the integral operator. You should select only an expression to integrate. If you include the integral operator in the selected expression, you are taking a double integral.

Mathcad provides three limit operators. These can only be evaluated symbolically. To use the limit operators:
1. Click \(\lim _{\rightarrow \mathrm{a}}\) on the Calculus toolbar or press [Ctrl]L to insert the limit operator. To insert the operator for a limit from the left or right, click \(\lim _{\rightarrow a_{-}}\)or \(\lim _{\rightarrow a^{+}}\)on the Calculus toolbar or press [Ctrl][Shift]B or [Ctrl][Shift]A.
2. Enter the expression in the placeholder to the right of the "lim."
3. Enter the limiting variable in the left-hand placeholder below the "lim."
4. Enter the limiting value in the right-hand placeholder below the "lim."
5. Click \(\rightarrow\) on the Symbolic toolbar or press [Ctrl]. (the Control key followed by a period). Mathcad displays a symbolic equal sign, " \(\rightarrow\)."
6. Press [Enter] to see the result.

Mathcad returns a result for the limit. If the limit does not exist, Mathcad returns an error message. Figure 14-10 shows some examples of evaluating limits.

Using the limit operators and the live symbolics equal sign ([Ctrl] + Period)
\[
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+2}}{3 \cdot x+6} \rightarrow \frac{1}{3} \quad \text { <-. Press [Ctrl] [Shift] Z for } \infty
\]

A limit from the right:
\[
\lim _{x \rightarrow a^{+}} \frac{3 \cdot x+b}{x^{2}} \rightarrow \frac{(3 \cdot a+b)}{a^{2}}
\]

A limit from the left:
\[
\lim _{x \rightarrow 0^{-}} \frac{\sin (x)}{x} \rightarrow 1
\]

Figure 14-10: Evaluating limits.

\section*{Solving an Equation for a Variable}

To solve an equation symbolically for a variable, use the keyword solve:
1. Type the equation. Make sure you click \(\searrow\) on the Boolean toolbar or type [Ctrl] = to create the bold equal sign.

Note When solving for the root of an expression, there is no need to set the expression equal to zero. See Figure 14-11 for an example.
2. Click \(\bullet \rightarrow\) on the Symbolic toolbar or type [Ctrl] [Shift]. (hold down the Control and Shift keys and type a period). Mathcad displays a placeholder to the left of the symbolic equal sign, " \(\rightarrow\)."
3. Type solve in the placeholder, followed by a comma and the variable for which to solve.
4. Press [Enter] to see the result.

Mathcad solves for the variable and inserts the result to the right of the " \(\rightarrow\)." Note that if the variable was squared in the original equation, you may get two results back when you solve. Mathcad displays these in a vector. Figure 14-11 shows an example.
\[
A 1=\frac{L}{r^{2}}+2 \cdot C \text { solve } r \rightarrow\left[\begin{array}{l}
\frac{1}{(A 1-2 \cdot C)} \cdot[(A 1-2 \cdot C) \cdot L]^{\left(\frac{1}{2}\right)} \\
\frac{-1}{(A 1-2 \cdot C)} \cdot[(A 1-2 \cdot C) \cdot L]^{\left(\frac{1}{2}\right)}
\end{array}\right]
\]
\[
\begin{aligned}
& \text { a:= } 34 \\
& \frac{1}{2} \cdot x+x=-2+\text { a solve, } x \rightarrow \frac{64}{3} \\
& x^{3}-5 \cdot x^{2}-4 \cdot x+20>0 \text { solve }, x \rightarrow\left[\begin{array}{c}
(-2<x) \cdot(x<2) \\
5<x
\end{array}\right] \\
& \left.e^{t}+1 \text { solve }, t \rightarrow i \cdot \pi \quad \begin{array}{l}
\text { Use }[\mathrm{Cr} \\
\text { sign. }
\end{array}\right] \\
& \text { You don't need }=0 \text { when finding }
\end{aligned}
\]

Use [Crtr] = for the equal

Figure 14-11: Solving equations, solving inequalities, and finding roots.

Tip Another way to solve for a variable is to enter the equation, click on the variable you want to solve for in the equation, and choose Variable \(\Rightarrow\) Solve from the Symbolics menu.

\section*{Solving a System of Equations Symbolically: "Solve" Keyword}

One way to symbolically solve a system of equations is to use the same solve keyword used to solve one equation in one unknown. To solve a system of \(n\) equations for \(n\) unknowns:
1. Press [:: \(:\)] on the Matrix toolbar or type [Ctrl]M to insert a vector having \(n\) rows and 1 column.
2. Fill in each placeholder of the vector with one of the \(n\) equations making up the system. Make sure you click \(\qquad\) on the Boolean toolbar or type [Ctrl]= to enter the bold equal sign.
3. Press \(\square\) on the Symbolic toolbar or type [Ctrl] [Shift] . (hold down the Control and Shift keys and type a period). Mathcad displays a placeholder to the left of the symbolic equal sign, " \(\rightarrow\)."
4. Type solve followed by a comma in the placeholder.
5. Type [Ctrl]M or press [:\#:] on the Matrix toolbar to create a vector having \(n\) rows and 1 column. Then enter the variables you are solving for.
6. Press [Enter] to see the result.

Mathcad displays the \(n\) solutions to the system of equations to the right of the symbolic equal sign. Figure 14-12 shows an example.

Using the "solve" keyword (press [Ctri] \(+[\) Shiff \(]+\) Period):
\[
\binom{x+2 \cdot x \cdot y=a}{4 \cdot x+y=b} \text { solve, }\binom{x}{y} \rightarrow\left[\frac{-(-2 \cdot x \cdot b+a)}{(-1+8 \cdot x)} \frac{(4 \cdot a-b)}{(-1+8 \cdot x)}\right]
\]

Using a solve block:

\section*{Given}
\[
\begin{aligned}
& \qquad \begin{array}{l}
x+2 \cdot x \cdot y=a \\
4 \cdot x+y=b
\end{array} \\
& \text { Find }(x, y) \rightarrow\left[\begin{array}{c}
\frac{-(-2 \cdot x \cdot b+a)}{(-1+8 \cdot x)} \\
\frac{(4 \cdot a-b)}{\text { sign. }}[\mathrm{CtrI}]=\text { to type the equal } \\
(-1+8 \cdot x)
\end{array}\right]
\end{aligned}
\]

Figure 14-12: Two methods for solving a system of equations symbolically.

\section*{Solving a System of Equations Symbolically: Solve Block}

Another way to solve a system of equations symbolically is to use a solve block, similar to the numeric solve blocks described in "Solving and Optimization Functions" on page 157:
1. Type the word Given. This tells Mathcad that what follows is a system of equations. You can type Given in any combination of upper- and lowercase letters and in any font. Just be sure you don't type it while in a text region.
2. Now enter the equations in any order below the word Given. Make sure that for every equation you click \(=\) on the Boolean toolbar or type [Ctrl] \(=\) to insert the bold equal sign for each equation.
3. Enter the Find function with arguments appropriate for your system of equations. This function is described in "Linear/Nonlinear System Solving and Optimization" on page 159 .
4. Click \(\rightarrow\) on the Symbolic toolbar or press [Ctrl]. (the Control key followed by a period). Mathcad displays the symbolic equal sign.
5. Click outside the Find function or press [Enter].

Mathcad displays the solutions to the system of equations to the right of the symbolic equal sign. Figure 14-12 shows an example.
Most of the guidelines for solve blocks described in "Linear/Nonlinear System Solving and Optimization" on page 159 apply to the symbolic solution of systems of equations. The main difference is that when you solve equations symbolically, you do not enter guess values for the solutions.

\section*{Symbolic Matrix Manipulation}

You can use Mathcad to find the symbolic transpose, inverse, or determinant of a matrix using a built-in operator and the symbolic equal sign. To find the transpose of a matrix, for example:
1. Place the entire matrix between the two editing lines by clicking [Space] one or more times.
2. Click \(M^{\top}\) on the Matrix toolbar or press [Ctrl] |to insert the matrix transpose operator.
3. Click \(\rightarrow\) on the Symbolic toolbar or press [Ctrl]. (the Control key followed by a period). Mathcad displays the symbolic equal sign, " \(\rightarrow\)."
4. Press [Enter] to see the result.

Mathcad returns the result to the right of the " \(\rightarrow\)." Figure 14-13 shows some examples.
\[
\begin{aligned}
& \text { Transposing a matrix } \\
& \left(\begin{array}{ccc}
x & 1 & a \\
-b & x^{2} & -a \\
1 & b & x^{3}
\end{array}\right)^{\top} \rightarrow\left(\begin{array}{ccc}
x & -b & 1 \\
1 & x^{2} & b \\
a & -a & x^{3}
\end{array} \left\lvert\, \quad \begin{array}{l}
\text { Press [Ctr] M to create a matrix. } \\
\text { Press [Ctrl] . for the arrow. }
\end{array}\right.\right. \\
& \text { Finding the inverse } \\
& \left.\left(\begin{array}{lll}
\lambda & 2 & 1 \\
0 & 1 & -\lambda \\
0 & 0 & -\lambda
\end{array}\right)^{-1} \rightarrow \left\lvert\, \begin{array}{ccc}
\frac{1}{\lambda} & \frac{-2}{\lambda} & \frac{-(\lambda-5)}{\lambda^{2}} \\
0 & 1 & \frac{-2}{\lambda} \\
0 & 0 & \frac{-1}{\lambda}
\end{array}\right.\right] \\
& \text { Finding the determinant } \\
& \left\lvert\,\left(\begin{array}{ccc}
x & 1 & a \\
-b & x^{2} & -a \\
1 & b & x^{3}
\end{array}| | \rightarrow x^{6}+x \cdot a \cdot b+b \cdot x^{3}-a \cdot b^{2}-a-a \cdot x^{2}\right.\right.
\end{aligned}
\]

Figure 14-13: Symbolic matrix operations.

Another way to find the transpose, inverse, or determinant of a matrix is to use the Matrix commands on the Symbolics menu. For example, to find the transpose of a matrix:
1. Place the entire matrix between the two editing lines by pressing [Space] one or more times.
2. Choose Matrix \(\Rightarrow\) Transpose from the Symbolics menu.

Unlike matrices evaluated with the symbolic equal sign, matrices modified by commands from the Symbolics menu do not update automatically, as described in the section "Using the Symbolics Menu" on page 254.

\section*{Transformations}

You can use symbolic keywords to evaluate the Fourier, Laplace, or \(z\) - transform of a expression and to evaluate the inverse transform. For example, to evaluate the Fourier transform of an expression:
1. Enter the expression to be transformed.
2. Click \(\bullet \rightarrow\) on the Symbolic toolbar or type [Ctrl] [Shift]. (hold down the Control and Shift keys and type a period). Mathcad displays a placeholder to the left of the symbolic equal sign, " \(\rightarrow\)."
3. Type fourier in the placeholder, followed by a comma and the name of the transform variable.
4. Press [Enter] to see the result.

Note Mathcad returns a function in a variable commonly used for the transform you perform. If the expression you are transforming already contains this variable, Mathcad avoids ambiguity by returning a function of a double variable. For example, Mathcad returns a function in the variable \(\omega\) when you perform a Fourier transform. If the expression you are transforming already contains an \(\omega\), Mathcad returns a function of the variable \(\omega \omega\) instead.

The Fourier transform result is a function of \(\omega\) given by:
\[
\int_{-\infty}^{+\infty} f(t) e^{-i \omega t} d t
\]

Use the keyword invfourier to return the inverse Fourier transform as a function given by:
\[
\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\omega) e^{i \omega t} d \omega
\]
where \(f(t)\) and \(F(\omega)\) are the expressions to be transformed.
Use the keywords laplace, invlaplace, ztrans, and invztrans to perform a Laplace or \(z\)-transform or their inverses.

The Laplace transform result is a function of \(s\) given by:
\[
\int_{0}^{+\infty} f(t) e^{-s t} d t
\]

Its inverse is given by:
\[
\frac{1}{2 \pi} \int_{\sigma-i \infty}^{\sigma+i \infty} F(s) e^{s t} d t
\]
where \(f(t)\) and \(F(s)\) are the expressions to be transformed. All singularities of \(F(s)\) are to the left of the line \(\operatorname{Re}(s)=\sigma\).

The \(z\)-transform result is a function of \(z\) given by:
\[
\sum_{n=0}^{+\infty} f(n) z^{-n}
\]

Its inverse is given by:
\[
\frac{1}{2 \pi i} \int_{C} F(z) z^{n-1} d z
\]
where \(f(n)\) and \(F(z)\) are the expressions to be transformed and \(C\) is a contour enclosing all singularities of the integrand.

Tip You can substitute a different variable for the one Mathcad returns from a transform or its inverse by using the substitute keyword.

Another way to evaluate the Fourier, Laplace, or \(z\) - transform or their inverses on an expression is to use commands on the Symbolics menu. For example, to find the Laplace transform of an expression:
- Enter the expression.
- Click on the transform variable.
- Choose Transform \(\Rightarrow\) Laplace from the Symbolics menu.

Keep in mind that, unlike keyword-modified expressions, expressions modified by commands from the Symbolics menu do not update automatically, as described in the section "Using the Symbolics Menu" on page 254.

Note Results from symbolic transformations may contain functions that are recognized by Mathcad's symbolic processor but not by its numeric processor. An example is the function Dirac shown in the middle of Figure 14-14. You'll find numeric definitions for this and other such functions in "Symbolic Transformation Functions" on page 301 in the Appendices as well as in the Resource Center QuickSheet titled "Special Functions."
```

Dirac(t) fourier,t }->
\frac{3}{1+\mp@subsup{x}{}{2}}\mathrm{ invfourier,x }->\frac{3}{2}\cdot\operatorname{exp}(-t)\cdot\Phi(t)+\frac{3}{2}\cdot\operatorname{exp}(t)\cdot\Phi(-t)
exp(-a\cdott) laplace,t }->\frac{1}{(s+a)
s s+a}\mathrm{ invlaplace,s }->\Delta(t)-\mathbf{a}\cdot\operatorname{exp(-a\cdott) <- \Delta(t) is an impulse at t=0.
Although not numerically
defined, Mathcad's symbolic
sin(\frac{\pi}{2}\cdott) ztrans,t }->\frac{z}{(1+\mp@subsup{z}{}{2})}\quad\begin{array}{l}{\mathrm{ processor recognizes this }}<br>{\mathrm{ function. }\Delta(t)\mathrm{ is also known as}}<br>{\mathrm{ the Dirac function.}}
sin(\frac{\pi}{2}\cdott) ztrans,t }->\frac{z}{(1+\mp@subsup{z}{}{2})}\quad\begin{array}{l}{\mathrm{ processor recognizes this }}<br>{\mathrm{ function. }\Delta(t)\mathrm{ is also known as}}<br>{\mathrm{ the Dirac function.}}
sin(\frac{\pi}{2}\cdott) ztrans,t }->\frac{z}{(1+\mp@subsup{z}{}{2})}\quad\begin{array}{l}{\mathrm{ processor recognizes this }}<br>{\mathrm{ function. }\Delta(t)\mathrm{ is also known as}}<br>{\mathrm{ the Dirac function.}}
z
Press [Ctrl] [Shiff] . to insert a transform keyword.

```

Figure 14-14: Performing symbolic transforms.

\section*{Symbolic Optimization}

In general, Mathcad's symbolic and numeric processors don't communicate with one another. You can, however, make the numeric processor ask the symbolic processor for advice before starting what could be a needlessly complicated calculation.
For example, if you were to evaluate an expression such as:
\[
\int_{0}^{u} \int_{0}^{v} \int_{0}^{w} x^{2}+y^{2}+z^{2} d x d y d z
\]

Mathcad would undertake the task of evaluating a numeric approximation of the triple integral even though one could arrive at an exact solution by first performing a few elementary calculus operations.
This happens because by itself, Mathcad's numeric processor does not simplify before plunging ahead into the calculation. Although Mathcad's symbolic processor knows all about simplifying complicated expressions, these two processors do not consult with each other, although for certain definitions, it would be helpful. To make these two processors talk to each other for a particular definitionclick on a definition with the right mouse button and choose Optimize from the pop-up menu.
Once you've done this, Mathcad's live symbolic processor simplifies the expression to the right of a " \(:=\) " before the numeric processor begins its calculations. This helps Mathcad's numeric processor evaluate the expression more quickly. It can also avoid any computational issues inherent in the numeric calculation.
If Mathcad finds a simpler form for the expression, it responds by doing the following:
- It marks the region with a red asterisk.
- It internally replaces what you've typed with a simplified form.
- The equivalent expression is evaluated instead of the expression you specified. To see this equivalent expression, double-click the red asterisk beside the region.

If Mathcad is unable to find a simpler form for the expression, it places a blue asterisk next to it.

In the previous example, the symbolic processor would examine the triple integral and return the equivalent, but much simpler expression:
\[
\frac{1}{3}\left(w^{3} v u+w v^{3} u+w v u^{3}\right)
\]

Then it uses any defintions that exist in your worksheet and simplifies the expression further. To see this expression in a pop-up window, click the red asterisk with the right mouse button and choose Show Popup from the pop-up menu (see Figure 14-15).

Lick on an expression with the rignt mouse nution and choose Optimize from the pop-up menu.
\[
\mathbf{u}:=\mathbf{1} \quad \mathbf{v}:=\mathbf{1} \quad \mathbf{w}:=\mathbf{1}
\]

Note how simplifying saves time: there's no longer an integral to evaluate.
\[
A=1
\]

Figure 14-15: A pop-up window showing the equivalent expression that Mathcad actually evaluates.

To enable optimization for an entire worksheet, choose Optimization from the Math menu. To disable optimization for an expression, right-click it and uncheck Optimize on the pop-up menu. Mathcad evaluates the expression exactly as you typed it.
To disable optimization for all expressions, remove the check from Optimization on the Math menu.

\section*{Chapter 15 Programming}

\author{
Pro \\ \(\tau\) Defining a Program \\ \(\tau\) Conditional Statements \\ \(\tau \quad\) Looping \\ \(\tau\) Controlling Program Execution \\ \(\tau \quad\) Error Handling \\ \(\tau\) Programs Within Programs
}

\section*{Defining a Program}

A Mathcad program is a special kind of expression you can create in Mathcad Professional. It's an expression made up of a sequence of statements created using programming operators,
available on the Programming toolbar. Click

\begin{tabular}{|cc|}
\hline Programming & \(\leftarrow\) \\
Add Line & \(\leftarrow\) \\
if & otherwise \\
for & while \\
break & continue \\
return & on error \\
\hline
\end{tabular}

You can think of a program as a compound expression that involves potentially many programming operators. Like any expression, a program returns a value-a scalar, vector, array, nested array, or string-when followed by the equal sign or the symbolic equal sign. Just as you can define a variable or function in terms of an expression, you can also define them in terms of a program.
The following example shows how to make a simple program to define the function:
\[
f(x, w)=\log \left(\frac{x}{w}\right)
\]

Although the example chosen is simple enough not to require programming, it illustrates how to separate the statements that make up a program and how to use the local assignment operator, " \(\leftarrow\)."
1. Type the left side of the function definition, followed by a ": =". Make sure the placeholder is selected.
\[
\mathbf{f}(\mathbf{x}, \mathbf{w}):=\boldsymbol{\square}
\]
2. Click Add Line on the Programming toolbar. Alternatively, press]. You'll see a vertical bar with two placeholders, which will hold the statements that comprise your program.
```

f(x,w):= |

```
3. Click in the top placeholder. Type \(\mathbf{z}\), then click \(\square \leftarrow\) on the Programming toolbar. Alternatively, press \{ to insert a " \(\leftarrow\)," which is also known as the local definition symbol.
4. Type \(\mathbf{x} / \mathbf{w}\) in the placeholder to the right of the local definition symbol. Then press [Tab] to move to the bottom placeholder, or click on the bottom placeholder.
5. Enter the value to be returned by the program in the remaining placeholder. Type \(\log (\mathbf{z})\).

You can now use this function just as you would any other function
 in your worksheet.

Note You cannot use Mathcad's usual assignment operator, ":=," inside a program. You must use the local assignment operator, represented by " \(\leftarrow\)," instead. Variables defined inside a program with the local assignment operator, such as \(z\) in the example above, are local to the program and are undefined elsewhere in the worksheet. However, within a program, you can refer to Mathcad variables and functions defined previously in the worksheet.

Figure 15-1 shows a more complex example involving the quadratic formula. Although you can define the quadratic formula with a single statement as shown in the top half of the figure, you may find it easier to define it with a series of simple statements as shown in the bottom half.
\[
q(a, b, c):=\frac{-b+\sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a}
\]

Although you can define complicated functions all on one line...
\(r(a, b, c):=\left\lvert\, \begin{array}{ll}\text { discr } \leftarrow b^{2}-4 \cdot a \cdot c & \begin{array}{l}\text { it's sometimes easier to break them up } \\ \text { into simpler steps anyway. }\end{array} \\ \text { num } \leftarrow-b+\sqrt{\text { discr }} \\ \text { denom } \leftarrow 2 \cdot a\end{array} \quad \begin{aligned} & \text { num } \\ & \text { denom }\end{aligned} \quad \begin{aligned} & \end{aligned}\right.\)

Figure 15-1: A more complex function defined in terms of both an expression and a program.

Tip A program can have any number of statements. To add a statement, click Add Line on the Programming toolbar or press [. Mathcad inserts a placeholder below whatever statement you've selected. To delete the placeholder, click on it and press [Bksp].

As with any expression, a Mathcad program must have a value. This value is simply the value of the last statement executed by the program. It can be a string expression, a single number, or an array of numbers. It can even be an array of arrays (see "Nested Arrays" on page 204).

You can also write a Mathcad program to return a symbolic expression. When you evaluate a program using the symbolic equal sign, " \(\rightarrow\)," described in Chapter 14, "Symbolic Calculation," Mathcad passes the expression to its symbolic processor and, when possible, returns a simplified symbolic expression. You can use Mathcad's ability to evaluate programs symbolically to generate complicated symbolic expressions, polynomials, and matrices. Figure 15-2 shows a function that, when evaluated symbolically, generates symbolic polynomials.

A function to generate a polynomial.
\(f(n):=\left\lvert\, \begin{array}{ll}a \leftarrow 0 & \\ i \leftarrow 0 & \\ \text { while } \quad i \leq n & \\ \begin{array}{ll}a \leftarrow\left[a+(1+x)^{i}\right] \\ i \leftarrow i+1 & \text { <.. Mathcad can evaluate } \\ a & \begin{array}{l}\text { the program symbolically } \\ \text { even though } x \text { is undefined. }\end{array}\end{array} .\end{array}\right.\)
Evaluate symbolically...
\[
f(3) \text { expand } \rightarrow 4+6 \cdot x+4 \cdot x^{2}+x^{3}
\]
<-- Expand symbolic keyword expands the result. Press [Ctrl][Shift][period] for the symbolic keyword operator.

Figure 15-2: Using a Mathcad program to generate a symbolic expression.

Note Programs that include the return and on error statements, described on page 273 and page 275, cannot be evaluated symbolically since the symbolic processor does not recognize these operators.

On-line Help For programming examples, see the "Programming" section in the Resource Center QuickSheets. The Resource Center also includes a special section, "The Treasury Guide to Programming," which provides detailed examples and applications of Mathcad programs.

\section*{Conditional Statements}

In general, Mathcad evaluates each statement in your program from the top down. There may be times, however, when you want Mathcad to evaluate a statement only when a particular condition is met. You can do this by including an if statement.
For example, suppose you want to define a function that forms a semicircle around the origin but is otherwise constant. To do this:
1. Type the left side of the function definition, followed by a ": \(=\) ". Make sure the placeholder is selected.

2. Click Add Line on the Programming toolbar.

Alternatively, press]. You'll see a vertical bar with two

placeholders. These placeholders will hold the statements making up your program.
3. Click if on the Programming toolbar in the top placeholder. Alternatively, press \}. Do not type "if."
4. Enter a Boolean expression in the right placeholder using one of the relational operators on the Boolean toolbar. In the left placeholder, type the value you want
 the program to return whenever the expression in the right placeholder is true. If necessary, add more placeholders by clicking Add Line
5. Select the remaining placeholder and click otherwise on the Programming toolbar or press [Ctrl] 3.
6. Type the value you want the program to return if the condition in the first statement is false.

Figure 15-3 shows a plot of this function.
\[
f(x):=\left\lvert\, \begin{array}{lll}
0 & \text { if }|x|>2 \\
0 & \text { otherwise }
\end{array}\right.
\]
\[
f(x):=\left\lvert\, \begin{array}{lll}
0 & \text { if } \quad|x|>2 \\
\sqrt{4-x^{2}} & \text { otherwise }
\end{array}\right.
\]

\[
g(x):=i f\left(|x|>2,0, \sqrt{4-x^{2}}\right) \quad \begin{aligned}
& \text { You can also use the "if" function to define this } \\
& \text { function, although what you gain in conciseness, you } \\
& \\
& \text { lose in clarity. }
\end{aligned}
\]

Figure 15-3: Using the if statement to define a piecewise continuous function.

Note The if statement in a Mathcad program is not the same as the if function (see "Piecewise Continuous Functions" on page 148). Although it is not hard to define a simple program using the if function, as shown in Figure 15-3, the if function can become unwieldy as the number of branches exceeds two.

\section*{Looping}

One of the greatest strengths of programmability is the ability to execute a sequence of statements repeatedly in a loop. Mathcad provides two loop structures. The choice of which loop to use depends on how you plan to tell the loop to stop executing.
- If you know exactly how many times you want a loop to execute, use a for loop.
- If you want the loop to stop when a condition has been met, but you don't know how many loops will be required, use a while loop.

Tip See "Controlling Program Execution" on page 272 for methods to interrupt calculation within the body of a loop.

\section*{"For" Loops}

A for loop terminates after a predetermined number of iterations. Iteration is controlled by an iteration variable defined at the top of the loop. The definition of the iteration variable is local to the program.

To create a for loop:
1. Click for on the Programming toolbar or press [Ctrl] ". Do not type the word "for."
2. Type the name of the iteration variable in the placeholder to the
 left of the " \(\in\)."
3. Enter the range of values the iteration variable should take in the placeholder to the right of the " \(\in\)." You usually specify this range the same way you would for a range variable (see page 101).

4. Type the expression you want to evaluate in the remaining placeholder. This expression generally involves the iteration variable. If necessary, add placeholders by clicking Add Line on the
```

for i\in 1..n
s}\leftarrows+

``` Programming toolbar.

The upper half of Figure 15-4 shows this for loop being used to add a sequence of integers.
Note Although the expression to the right of the " \(\in\) " is usually a range, it can also be a vector or a list of scalars, ranges, and vectors separated by commas. The lower half of Figure \(15-4\) shows an example in which the iteration variable is defined as the elements of two vectors.
\[
\begin{aligned}
& \operatorname{sum}(n):=\left\lvert\, \begin{array}{l}
s \leftarrow 0 \\
\text { for } i \in 1 . . n \\
s \leftarrow s+i
\end{array} \quad\right. \text { Equivalent to... } n:=44 \quad \sum_{i=1}^{n} i=990 \\
& \operatorname{sum}(44)=990 \\
& \operatorname{join}(r, s):=\left\lvert\, \begin{array}{l}
m \leftarrow 0 \\
\text { for } x \in r, s \\
\left\lvert\, \begin{array}{l}
v_{m} \leftarrow x \\
m \leftarrow m+1
\end{array}\right. \\
v
\end{array}\right.
\end{aligned}
\]
\[
\begin{aligned}
& r:=\left(\begin{array}{l}
100 \\
101 \\
102
\end{array}\right) \quad s:=\binom{1}{2} \quad \text { join }(r, s)=\left(\begin{array}{c}
1 \\
2 \\
100 \\
101 \\
102
\end{array}\right)
\end{aligned}
\]

Figure 15-4: Using a for loop with two different kinds of iteration variables.

A while loop is driven by the truth of some condition. Because of this, you don't need to know in advance how many times the loop will execute. It is important, however, to have a statement somewhere, either within the loop or elsewhere in the program, that eventually makes the condition false. Otherwise, the loop executes indefinitely.
To create a while loop:
1. Click while on the Programming toolbar or press [Ctrl]]. Do not type the word "while."
2. Click in the top placeholder and type a condition. This is typically a Boolean expression like the one shown.
3. Type the expression you want evaluated in the remaining placeholder. If necessary, add placeholders by clicking Add Line on the Programming toolbar.

Figure 15-5 shows a larger program incorporating the above loop. Upon encountering a while loop, Mathcad checks the condition. If the condition is true, Mathcad executes the body of the loop and checks the condition again. If the condition is false, Mathcad exits the loop.

Finding the first element of a vector that exceeds a specified value.
\(m:=0 . .2500 \longleftarrow\) Create a vector.
\(\mathbf{v}_{\mathrm{m}}:=\mathbf{1}+\boldsymbol{\operatorname { s i n }}(\mathbf{m})\)
\(t(v\), thres \():=\left\lvert\, \begin{array}{ll}j \leftarrow 0 & \longleftarrow \text { Initialize counter. } \\ \text { while } v_{j} \leq \text { thres } \\ j \leftarrow j+1 \\ j & \longleftarrow \text { Return counter. }\end{array}\right.\)
\(t(v, 1.98)=8 \quad\) The first element to exceed 1.98 is the
\(\mathbf{v}_{\mathbf{m}}=\)\begin{tabular}{|r|r|}
\hline & \multicolumn{1}{|c|}{0} \\
\hline 0 & 1 \\
\hline 1 & 1.841 \\
\hline 2 & 1.909 \\
\hline 3 & 1.141 \\
\hline 4 & 0.243 \\
\hline 5 & 0.041 \\
\hline 6 & 0.721 \\
\hline 7 & 1.657 \\
\hline 8 & 1.989 \\
\hline 9 & 1.412 \\
\hline 10 & 0.456 \\
\hline 11 & 9.793 .10 .6 \\
\hline 12 & 0.463 \\
\hline 13 & 1.42 \\
\hline 14 & 1.991 \\
\hline 15 & 1.65 \\
\hline
\end{tabular}

Figure 15-5: Using a while loop to find the first occurrence of a particular number in a matrix.

\section*{Controlling Program Execution}

The Programming toolbar in Mathcad Professional includes three statements for controlling program execution:
- Use the break statement within a for or while loop to interrupt the loop when a condition occurs and move execution to the next statement outside the loop.
- Use the continue statement within a for or while loop to interrupt the current iteration and force program execution to continue with the next iteration of the loop.
- Use the return statement to stop a program and return a particular value from within the program rather than from the last statement evaluated.

\section*{The "Break" Statement}

It is often useful to break out of a loop upon the occurrence of some condition. For example, in Figure 15-6 a break statement is used to stop a loop when a negative number is encountered in an input vector.

To insert a break statement, click on a placeholder inside a loop and click break on the Programming toolbar or press [Ctrl] \{. Do not type the word "break." You typically insert break into the left-hand placeholder of an if statement. The break is evaluated only when the right-hand side of the if is true.

Tip To create the program on the left in Figure 15-6, for example, you would click break first, then click \(\quad\) if .

\section*{The "Continue" Statement}

To ignore an iteration of a loop, use continue. For example, in Figure 15-6 a continue statement is used to ignore nonpositive numbers in an input vector.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{The "continue" and "break" statements control loops differently} \\
\hline This program st first nonpositive & ops the loop on the number ... & . . . while this one merely skips over the nonpositive numbers... \\
\hline \[
\text { PElemb (} \mathbf{v} \text {) := }
\] & & \\
\hline \(\mathrm{v}:=\left[\begin{array}{c}2 \\ 27 \\ -3 \\ 16\end{array}\right]\) & PElemb \((v)=\left[\begin{array}{c}2 \\ 27\end{array}\right]\) & PEleme \((\mathbf{v})=\left[\begin{array}{c}2 \\ 27 \\ 16\end{array}\right]\) \\
\hline
\end{tabular}

Figure 15-6: The break statement halts the loop. Program execution resumes on the next iteration when continue is used.

To insert the continue statement, click on a placeholder inside a loop and click continue on the Programming toolbar or press [Ctrl] [. Do not type the word "continue." As with break, you typically insert continue into the left-hand placeholder of an if
statement. The continue statement is evaluated only when the right-hand side of the if is true.

\section*{The "Return" Statement}

A Mathcad program returns the value of the last expression evaluated in the program. In simple programs, the last expression evaluated is in the last line of the program. As you create more complicated programs, you may need more flexibility. The return statement allows you to interrupt the program and return particular values other than the default value.

A return statement can be used anywhere in a program, even within a deeply nested loop, to force program termination and the return of a scalar, vector, array, or string. As with break and continue, you typically use return on the left-hand side of an if statement, and the return statement is evaluated only when the right-hand side of the if statement is true.

The following program fragment shows how a return statement is used to return a string upon the occurrence of a particular condition:
1. Click \(\square\) if on the Programming toolbar.
2. Now click retum on the Programming toolbar or press [Ctrl]|. Do not type "return."
3. Create a string by typing the double-quote key (") on the placeholder to the right of return. Then type the string to be returned by the program. Mathcad displays the string between a pair of quotes.
4. Type a condition in the placeholder to the right of if. This is typically a Boolean expression like the one
 shown. (Type [Ctrl] = for the bold equal sign.)

In this example, the program returns the string "int" when the expression floor \((x)=x\) is true.

Tip You can add more lines to the expression to the right of return by clicking Add Line on the Programming toolbar.

\section*{Error Handling}

Errors may occur during program execution that cause Mathcad to stop calculating the program. For example, because of a particular input, a program may attempt to divide by 0 in an expression and therefore encounter a singularity error. In these cases Mathcad treats the program as it does any math expression: it marks the offending expression with an error message and highlights the offending name or operator in a different color, as described in Chapter 8, "Calculating in Mathcad."
Mathcad Professional gives you two features to improve error handling in programs:
- The on error statement on the Programming toolbar allows you to trap a numerical error that would otherwise force Mathcad to stop calculating the program.
- The error string function gives you access to Mathcad's error tip mechanism and lets you customize error messages issued by your program.

\section*{"On Error" Statement}

In some cases you may be able to anticipate program inputs that lead to a numerical error (such as a singularity, an overflow, or a failure to converge) that would force Mathcad to stop calculating the program. In more complicated cases, especially when your programs rely heavily on Mathcad's numerical operators or built-in function set, you may not be able to anticipate or enumerate all of the possible numerical errors that can occur in a program. The on error statement is designed as a general-purpose error trap to compute an alternative expression when a numerical error occurs that would otherwise force Mathcad to stop calculating the program.

To use the on error statement, click on error on the Programming toolbar or type [Ctrl] '. Do not type "on error." In the placeholder to the right of on error, create the program statement(s) you ordinarily expect to evaluate but in which you wish to trap any numerical errors. In the placeholder to the left of on error, create the program statement(s) you want to evaluate should the default expression on the right-hand side fail.

Figure 15-7 shows on error operating in a program to find a root of an expression.

Figure 15-7: The on error statement traps numerical errors in a program.

\section*{Issuing Error Messages}

Just as Mathcad automatically stops further evaluation and produces an appropriate "error tip" on an expression that generates an error (see the bottom of Figure 15-7 for an example), you can cause evaluation to stop and make custom error tips appear when your programs or other expressions are used improperly or cannot return answers.

Mathcad Professional's error string function gives you this capability. This function, described in "String Functions" on page 187, suspends further numerical evaluation of an expression and produces an error tip whose text is simply the string it takes as an argument. Typically you use the error string function in the placeholder on the lefthand side of an if or on error programming statement so that an error and appropriate error tip are generated when a particular condition is encountered.
Figure 15-8 shows how custom errors can be used even in a small program.

Figure 15-8: Generating custom errors via the error string function.

Note Some error strings are automatically translated to a Mathcad error message that is similar to the error string. For example "must be real" is translated to "This value must be real. Its imaginary part must be zero."

\section*{Programs Within Programs}

The examples in previous sections have been chosen more for illustrative purposes rather than their power. This section shows examples of more sophisticated programs.

Much of the flexibility inherent in programming arises from the ability to embed programming structures inside one another. In Mathcad, you can do this in the following ways:
- You can make one of the statements in a program be another program, or you can define a program elsewhere and call it from within another program as if it were a subroutine.
- You can define a function recursively.

\section*{Subroutines}

Figure 15-9 shows two examples of programs containing a statement which is itself a program. In principle, there is no limit to how deeply nested a program can be.

Figure 15-9: Programs in which statements are themselves programs.
One way many programmers avoid overly complicated programs is to bury the complexity in subroutines. Figure \(15-10\) shows an example of this technique.

INTEGRATION IN WHICH WIDTHS OF INTERVALS ARE CHOSEN ADAPTIVELY
\[
\begin{aligned}
& \operatorname{intsimp}(f, \mathbf{a}, \mathbf{b}, \mathbf{N}):=\mid \mathbf{s} \leftarrow \mathbf{0} \\
& \begin{array}{l}
w \leftarrow \frac{b-a}{N} \\
\text { for } i \in 1 \ldots N
\end{array} \\
& s \leftarrow s+w \cdot \frac{\left[f(a+(i-1) \cdot w)+4 \cdot f\left(a-\frac{w}{2}+i \cdot w\right)\right]+f(a+i \cdot w)}{6} \\
& \operatorname{adapt}(f, a, b):=\mid x \leftarrow \operatorname{intsimp}(f, a, b, 10) \\
& \begin{array}{l}
x \text { if }|x-\operatorname{intsimp}(f, a, b, 5)| \leq T O L \\
\text { adapt }\left(f, a, \frac{a+b}{2}\right)+\text { adapt }\left(f, \frac{a+b}{2}, b\right) \text { otherwise }
\end{array}
\end{aligned}
\]
\(\operatorname{adapt}\left(\log , 10^{-15}, 1\right)=-0.434958018397141\)
Figure 15-10: Using a subroutine to manage complexity.

Tip Breaking up long programs with subroutines is good programming practice. Long programs and those containing deeply nested statements can become difficult for other users to understand at a glance. They are also more cumbersome to edit and debug.

In Figure 15-10, the function adapt carries out an adaptive quadrature or integration routine by using intsimp to approximate the area in each subinterval. By defining
intsimp elsewhere and using it within adapt, the program used to define adapt becomes considerably simpler.

\section*{Recursion}

Recursion is a powerful programming technique that involves defining a function in terms of itself, as shown in Figure 15-11. See also the definition of adapt in Figure 1510. Recursive function definitions should always have at least two parts:
- A definition of the function in terms of a previous value of the function.
- An initial condition to prevent the recursion from continuing forever.

The idea is similar to mathematical induction: if you can determine \(f(n+1)\) from \(f(n)\), and you know \(f(0)\), then you know all there is to know about \(f\).

Tip Recursive function definitions, despite their elegance and conciseness, are not always computationally efficient. You may find that an equivalent definition using one of the iterative loops described earlier will evaluate more quickly.

\section*{Factorial function}
```

    factorial \((n):=\mid 1\) if \(n=1\)
    n-factorial( \(n-1\) ) otherwise
    factorial(5) \(=120\)
    ```

\section*{Compound interest}
\[
\begin{aligned}
& P(n, i, P o):=\left\lvert\, \begin{array}{ll}
P 0 & \text { if } n=0 \\
P(n-1, i, P o) \cdot(1+i \cdot \%) \text { otherwise }
\end{array}\right. \\
& P(3,12,100)=140.493 \quad \begin{array}{l}
\text { Type Ctrl= to generate the } \\
\text { boolean equals signs used inside the } \\
\text { programs. }
\end{array}
\end{aligned}
\]

Figure 15-11: Defining functions recursively.

\title{
Chapter 16 \\ Advanced Computational Features
}

\author{
\(\tau\) Worksheet References \\ \(\tau\) Exchanging Data with Other Applications \\ \(\tau\) Scripting Custom OLE Automation Objects \\ \(\tau\) Accessing Mathcad from Within Another Application
}

\section*{Worksheet References}

There may be times when you want to use formulas and calculations from one Mathcad worksheet inside another. You may also have calculations and definitions that you reuse frequently in your work. You can, of course, simply use Copy and Paste from the Edit menu to move whatever you need to move, or drag regions from one worksheet and drop them in another. However, when entire worksheets are involved, this method can be cumbersome or may obscure the main computations of your worksheet.

Mathcad therefore allows you to reference one worksheet from another-that is, to access the computations in the other worksheet without opening it or typing its equations or definitions directly in the current worksheet. When you insert a reference to a worksheet, you won't see the formulas of the referenced worksheet, but the current worksheet behaves as if you could.

Tip An alternative described in "Safeguarding an Area of the Worksheet" on page 85 is to create a collapsible area to hide calculations in your worksheet. This method, while it does not let you re-use calculations in the same way as a worksheet reference, does give you the option of password protecting or locking an area of calculations.

To insert a reference to a worksheet:
1. Click the mouse wherever you want to insert the reference. Make sure you click in empty space and not in an existing region. The cursor should look like a crosshair.
2. Choose Reference from the Insert menu.
3. Click "Browse" to locate and select a worksheet. Alternatively, enter the path to a worksheet. You can also enter an In-
 ternet address (URL) to insert a reference to a Mathcad file that is located on the World Wide Web.
4. Click "OK" to insert the reference into your worksheet.

To indicate that a reference has been inserted, Mathcad pastes a small icon wher-
ever you had the crosshair. The path to the referenced worksheet is to the right of the icon. All definitions in the referenced worksheet are available below or to the right of this icon. If you double-click this icon, Mathcad opens the referenced worksheet in its own window for editing. You can move or delete this icon just as you would any other Mathcad region.

Note By default, the location of the referenced file is stored in the worksheet as an absolute system path (or URL). This means that if you move the main worksheet and the referenced worksheet to a different file system with a different directory structure, Mathcad cannot locate the referenced file. If you want the location of the referenced file on a drive to be stored relative to the Mathcad worksheet containing the reference, click "Use relative path for reference" in the Insert Reference dialog box. The reference is then valid even if you move the referenced file and the main worksheet to a different drive but keep the relative directory structure intact. To use a relative path, you must first save the file containing the reference.

If you edit the contents of a referenced file so that any calculations change, you must re-open any worksheets that contain references to that file for calculations to update. The calculations in those worksheets do not update automatically.

\section*{Exchanging Data with Other Applications}

Components are specialized OLE objects that allow you to access the functions of other computational applications (such as MathSoft's Axum and S-PLUS, Microsoft Excel, and MATLAB) within your Mathcad worksheet. Unlike other kinds of OLE objects you insert into a worksheet, as described in the section "Inserting Objects" in Chapter 6, a component can receive data from Mathcad, return data to Mathcad, or do both, dynamically linking the object to your Mathcad computations.

Tip As described in Chapter 11, "Vectors, Matrices, and Data Arrays," Mathcad also provides the File Read/Write component for you to import and export static data files in a variety of formats compatible with other computational programs. For linking dynamically to an object for which Mathcad does not have a dedicated component, see "Scripting Custom OLE Automation Objects" on page 292.

The available components in Mathcad include:
- Axum, for creating highly customizable Axum graphs
- Excel, for accessing cells and formulas in a Microsoft Excel spreadsheet
- SmartSketch, for creating 2D drawings and designs
- S-PLUS Graph component, for creating S-PLUS graphs

Pro - S-PLUS Script component, for accessing the programming environment of S-PLUS
Pro - MATLAB, for accessing the programming environment of MATLAB

Note To use an application component, you must have the application for that component installed, but not necessarily running, on your system.

Tip See the SAMPLES folder of the location where you installed Mathcad for a variety of example files that use components.

\section*{How to Use Components}

Components receive input from one or more Mathcad variables, perform operations on the data you specify, and in most cases return output to other Mathcad variables. An "input variable" is a scalar, vector, or matrix you have already defined in your Mathcad worksheet. It contains the data that is passed into a component. Output from a component (again, either a scalar, vector, or matrix) is then assigned to a Mathcad variable. This variable is referred to as an "output variable."

The basic steps for using a component are as follows:
- Insert the component.
- Specify the input variable(s) and output variable(s).
- Configure the component to handle inputs from and return outputs to Mathcad.

Since some components only take input or only send output, these steps differ slightly for each component. The ideas presented in these steps provide an overview.

Tip Many components support strings as well as scalars, vectors, and matrices for the input and output.

\section*{Step 1: Inserting a component}

To insert a component into a Mathcad worksheet:
1. Click in a blank spot of your Mathcad worksheet where you want the component to appear. Click below or to the right of definitions for any variables that will become inputs to the component.
2. Choose Component from the Insert menu. This launches the Component Wizard.
3. Choose one of the components from the list and click "Next." Depending on the component you choose, you may see an additional dialog box that lets you specify properties of the component before it is inserted. When you click "Finish," the component is inserted into your worksheet.

If you don't see a Wizard when you choose one of the components from the Insert Component dialog box, you'll immediately see the component, with some default properties, inserted into your worksheet.

Each component has its own particular appearance, but all components have one or more placeholders to the left of the \(:=\) and/or at the bottom of the component. For example, the Excel component (with one input and two outputs) looks like this when inserted into your worksheet:

The placeholder(s) at the bottom of the component are for the names of previously defined input variables. The placeholder(s) you see to the left of the := are for the output variables.

After you fill in the placeholders for the input and output variables, you can hide the variables by clicking with the right mouse button on the component and choosing Hide Arguments from the pop-up menu.

Note To add an input or output variable, click with the right mouse button on the component and choose Add Input Variable or Add Output Variable from the pop-up menu. To eliminate an input or output, choose Remove Input Variable or Remove Output Variable from the menu.

\section*{Step 2: Configuring a component}

Once you've inserted a component into a worksheet, you configure its properties so that the component knows how to handle any inputs it receives from Mathcad and what to send as output. To configure the properties for a component:
1. Click on the component once to select it.
2. Click on the component with the right mouse button to see a pop-up menu.
3. Choose Properties from the pop-up menu.

The settings in the Properties dialog box differ for each component. For example, the Properties dialog box for the Excel component lets you specify the starting cells in which the input values are stored and the cell range from which the output is sent.

Tip When you insert an application component, you see a small window on that application’s environment embedded in your Mathcad worksheet. When you double-click the component, the component is activated in place and Mathcad's menus and toolbars change to those of the other application. This gives you access to the features of that application without leaving the Mathcad environment.

\section*{Step 3: Exchanging data}

Once you've configured the component, click outside it. At that point, the data exchange takes place: data passes from the input variable(s) into the component, the component processes the data, and the output variable(s) receive output from the component. This exchange happens whenever you click on the component and press [F9], when the input variables change, or when you choose Calculate Worksheet from the Math menu.

Tip Some components allow you to save the file with which the component exchanges data as a separate file. Click on a component with the right mouse button and choose Save As... from the pop-up menu.

\section*{Axum Component}

Axum is a technical graphing and data analysis application available from MathSoft that gives you access to over 90 two- and three-dimensional graph types with sophisticated formatting options. If you have Axum LE for Mathcad (included in your Mathcad Professional package) or Axum 5.03 or higher installed on your system, the Axum component brings some of this graphing power to your Mathcad worksheet.

\section*{Inserting an Axum graph}

To insert an Axum component into a Mathcad worksheet:
1. Create the array(s) that will provide input to the Axum component and that Axum will display in a graph. For information on the number and type of arrays required for each type of graph, see Axum's on-line help or refer to the Axum User's Guide which is available in PDF format on the Mathcad CD.
2. Click in a blank spot in your worksheet. Be sure to click below or to the right of the array(s).
3. Choose Component from the Insert menu.
4. Select Axum Graph from the list and click "Next." Choose a plot type and specify the appropriate number of input variables. Click "Finish."
5. A blank Axum graph appears in your Mathcad worksheet. Enter the names of your array variables in the placeholders in the bottom left corner of the graph. Click outside the graph or press [Enter].
When you click outside the component, the array data are displayed in the Axum plot type you selected. See Figure 16-1 for an example.

Figure 16-1: Creating an Axum graph via the Axum component.

\section*{Editing an Axum graph}

After inserting an Axum component into a Mathcad worksheet, you can format the graph using Axum's formatting options. To do so:
1. Double-click the Axum graph in the Mathcad worksheet. The menus and toolbars change to Axum's menus and toolbars.
2. Edit the Axum graph using available options in the Axum environment.
3. Click back in the Mathcad worksheet to recalculate the component and to resume working in Mathcad.

For more information about using Axum, refer to the on-line help in Axum. Sample Mathcad files containing Axum components are located in the SAMPLES\AXUM folder of the location where you installed Mathcad.

\section*{Excel Component}

The Excel component allows you to exchange data with and access the features of Microsoft Excel (version 7 or higher), if it is installed on your system.

Tip If you only need to import or export a static data file in Excel format, use the File Read/Write component as described in Chapter 11, "Vectors, Matrices, and Data Arrays."

\section*{Inserting an Excel component}

To insert an Excel component into a Mathcad worksheet:
1. Click in a blank spot in your worksheet. If you want to send values to the component from a Mathcad variable defined in your worksheet, click below or to the right of the variable definition.
2. Choose Component from the Insert menu.
3. Select Excel from the list and click "Next." To create an object based on a file you've already created, choose "Create from file," and type the path name in the text box or use the Browse button to locate the file; then click "Open." Otherwise, choose "Create an empty Excel Worksheet."
4. Click Display as Icon if you want to see an icon in your Mathcad worksheet rather than a portion of the Excel file.

Successive pages of the Wizard allow you to specify:
- The number of input and output variables. Supply multiple input and output variables. The number of input and output variables you can pass between Mathcad and Excel is only limited by the memory and speed of your computer. There is no set limit.
- Input ranges. The cells in which the values of each input variable from Mathcad will be stored. Enter the starting cell, which is the cell that will hold the element in the upper left corner of an input array. For example, for an input variable containing a \(3 \times 3\) matrix of values, you can specify A1 as the starting cell, and the values will be placed in cells A1 through C3.
- Output ranges. The cells whose values will define the output variables in Mathcad. For example, enter C2:L11 to extract the values in cells C2 through L11 and create a \(10 \times 10\) matrix.

Tip You can specify a particular Excel worksheet and cell range using notation such as Sheet2!B2:C2. You can also specify named cells and cell ranges.

When you finish using the Wizard, the Excel component appears in your worksheet with placeholders for the input and output variables. Enter the names of input variables in the bottom placeholders. Enter the names of the output variables into the placeholders to the left of the \(:=\). When you click outside the component, input variables are sent to Excel from Mathcad and a range of cells are returned to Mathcad.
Figure 16-2 shows an example of an Excel component in a Mathcad worksheet.

Figure 16-2: An Excel spreadsheet in a Mathcad worksheet.

Note By default, the Excel component displays only some of the rows and columns of the underlying spreadsheet. To see more or fewer rows and columns, double-click the component so that you see handles along the sides of the component. Then resize the component by dragging a handle.

\section*{Changing the inputs and outputs}

If you add input or output variables, you need to specify which cells in the component will store the new input and which will provide the new output. To do so:
1. Click on the component with the right mouse button and choose Properties from the pop-up menu.
2. Choose the Inputs tab or the Outputs tab and specify a range of cells for each input and each output.

You should also follow these steps if you want to change the cell ranges for inputs and outputs you initially specified in the Setup Wizard.

\section*{Accessing Excel}

After inserting an Excel component into a Mathcad worksheet, you can use the component to perform calculations in Excel. To do so:
1. Double-click the Excel component in the Mathcad worksheet. The Excel component opens and the menus and toolbars change to Excel's menus and toolbars.
2. Edit the Excel component.
3. Click back in the Mathcad worksheet to have the component recalculate and to resume working in Mathcad.

\section*{SmartSketch Component}

SmartSketch is a 2D drawing and design tool developed by Intergraph. The SmartSketch component allows you to create in a Mathcad worksheet SmartSketch drawings whose dimensions are computationally linked to your Mathcad calculations. For example, your Mathcad equations can drive the size of drawing objects.
The SmartSketch component makes Mathcad the ideal platform for creating technical illustrations and specification-driven designs. You can use the SmartSketch component if you have installed SmartSketch LE for Mathcad (included with your Mathcad package), SmartSketch 3 or higher, Imagination Engineer, or Imagineer Technical 2.

\section*{Inserting a SmartSketch drawing}

To insert a drawing that is computationally linked to your Mathcad worksheet:
1. Click in a blank spot in your worksheet. If you want to send values to the drawing from a Mathcad variable defined in your worksheet, click below or to the right of the variable definition.
2. Choose Component from the Insert menu. Select SmartSketch and click "Next." The first page of the SmartSketch component Wizard appears.
3. To insert a SmartSketch drawing you've already created, choose "From Existing File," and type the path name in the text box or use the Browse button to locate the file; then click "Open." Otherwise, choose "New SmartSketch Document." The next page of the Wizard appears.
4. Specify the number of inputs and outputs. If you are using an existing file, also specify the names of the variables, dimensions, or symbols in the drawing to send input to and retrieve output from. Use the drop-down menus in the text boxes next to each input and output.
When you click "Finish," the SmartSketch component appears in your worksheet with placeholders for the input and output variables. Enter the names of Mathcad input variables in the bottom placeholders. Enter the output variables in the placeholders to the left of the :=.

Figure 16-3 shows a SmartSketch drawing inserted into a Mathcad worksheet. The

Figure 16-3: Integrating a SmartSketch drawing into a Mathcad worksheet.
values from the variables RadiusA, RadiusB, and Distance are sent to SmartSketch as input and used to create the drawing. The variables WrapB, BLength, and Betal are output variables.

Note Input values that do not have units attached are passed in SI units. For example, if you send 2.0 as input for a length, it is assumed to be 2.0 meters. SmartSketch, by default, converts this to the display units (inches by default) and creates the drawing.

\section*{Creating a new drawing}

If you choose "New SmartSketch Document" when inserting the SmartSketch component, you need to create a new SmartSketch drawing after the component appears. To do so:
1. Double-click on the component and use SmartSketch's menus and toolbars to create a drawing. Use the Dimensions toolbar to add dimensions to your drawing.
2. Choose Variables from the Tools menu to define variables or edit dimensions. Close the Variable Table before clicking back in the Mathcad worksheet.

Next you need to bind variables, dimensions, or symbols to the inputs or outputs. To do so, click on the component with the right mouse button and choose Properties from the pop-up menu. Use the Properties dialog to specify:
- Input names. The dimension, symbol, or variable names used in the SmartSketch drawing that are controlled by the inputs to the SmartSketch component. Choose a dimension or variable name from the drop-down list.
- Output names. The dimension, symbol, or variable names used in the SmartSketch drawing that define the output variables in Mathcad. Choose a dimension or variable name from the drop-down list.
When you click outside the component, input values are sent to the SmartSketch drawing from Mathcad and values are returned to Mathcad as output.

Tip If the drawing is so large that it extends beyond the component window, click on the component with the right mouse button, choose Properties from the pop-up menu, and click the box next to Automatic Resizing.

Note In order for the dimensions in a drawing to resize relative to any changes to the dimensions, there should be a check next to the Maintain Relationships option under the Tools menu in SmartSketch. To verify this, double-click on the component and choose Tools from the menu bar.

For more information on SmartSketch, refer to the tutorials and documentation available from the Help menu in SmartSketch. Sample Mathcad files containing SmartSketch components are located in the SAMPLESICAD folder of the location where you installed Mathcad.

\section*{S-PLUS Graph Component}

S-PLUS is a sophisticated exploratory data analysis and statistics application available from MathSoft. The S-PLUS Graph component allows you to integrate calculations in your Mathcad worksheet with a wide range of two- and three-dimensional S-PLUS graphs, including Trellis plots. You must have S-PLUS 4.5 or higher installed on your computer to use this component.

\section*{Inserting an S-PLUS graph}

To insert an S-PLUS Graph component into a Mathcad worksheet:
1. Create the array(s) which will provide input to the S-PLUS component. See the documentation that accompanied your copy of S-PLUS for details about the number and type of arrays required for each type of graph.
2. Click in a blank spot in your worksheet. Be sure to click below or to the right of the array(s).
3. Choose Component from the Insert menu.
4. Select S-PLUS Graph from the list and click "Next." Choose a plot type and be sure to specify the appropriate number of input variables. Click "Finish."
5. A blank S-PLUS graph appears in your Mathcad worksheet. Enter the names of your array variables in the placeholders in the bottom left corner of the graph. Click outside the graph or press [Enter].

Tip The only way to send meaningful values to output variables is to set the graph type to "Call Graph Script" (see below) and specify the outputs within the script.

Note By default, the data in the Mathcad input variables are sent into S-PLUS variables named in0, in1, in2, and so on. The S-PLUS variables out0, out1, out2, and so on define the data to be passed to the Mathcad output variables, if any. To change these names, choose Properties from the component's pop-up menu, and enter new names in the Input Variables and Output Variables tabs.

\section*{Types of graphs}

To access the different graph types after you have inserted the component, click with the right mouse button on the component and choose Properties from the pop-up menu. The Graph Type tab in the Properties dialog box allows you to select one of the following:
- Gui Graph. This graph type supports any of the S-PLUS graphs available through the S-PLUS graphical user interface. For this component, the inputs are interpreted as arrays whose data columns are passed to the graph-creation routines. The graph type rendered is specified in the "Axis Type" and "Plot Type" fields. Click "Choose Axis/Plot Type" to open the S-PLUS dialog box for choosing plot types and viewing thumbnail images of the different types.

Note On Gui graphs, particular inputs can be treated as conditioning variables in order to produce Trellis plots (conditioned, multipanel plots). To do this, click the boxes in the Input Variables tab of the Properties dialog box.
- Call Graph Script. This graph type supports any commands that generate "traditional" (version 3.3-style) S-PLUS graphics. To enter commands, open the Script Editor by choosing Edit Script from the component's pop-up menu. The script you enter can contain any S-PLUS code with calls to plot (), points (), etc. to generate one or more graphs. The inputs, outputs, and static variables are specified on the Input Variables and Output Variables tabs of the Properties dialog box, just as they are in the S-PLUS Script component (see below). If the script is totally empty, by default the script is defined as plot (in0). The variable graphsheet . name can be accessed within the script to get the name of the graph sheet. When you are finished editing the script, choose Close \& Return from the Script Editor's File menu.

Note Normally, the plot is cleared before each call to the script to update the graph. If you remove the check from "Clear plot before each call" on the Graph Type page of the Properties dialog box, this is not done. In this way you can collect multiple plots in different pages.

\section*{S-PLUS Script Component}

The S-PLUS Script component allows you to write and execute S-PLUS 4.5 or higher programs and link them to other computations in Mathcad Professional.

\section*{Inserting an S-PLUS script}

To insert an S-PLUS Script component into a Mathcad worksheet:
1. Click in a blank spot in your worksheet. If you want to send values to the component from a Mathcad variable, click below or to the right of the variable definition.
2. Choose Component from the Insert menu.
3. Select S-PLUS Script from the list and click "Next."
4. Type in the script you wish to execute and specify the number of inputs and outputs. Click "Finish." The S-PLUS script component appears showing the script.
5. In the placeholder that appears at the bottom, enter the name of the Mathcad input variable to pass into the component. In the placeholder that appears to the left of the component, enter the name of the Mathcad output variable to be defined.

Note By default, inputs are referred to in your script as variables named in0, in1, in2, and so on, and outputs as out 0, out1, out2, and so on. To change these names, choose Properties from the component's pop-up menu and type in new names in the Input Variables and Output Variables tabs.

\section*{Editing the script}

To edit your S-PLUS code or import a script from a saved S-PLUS script file, open the Script Editor by clicking the right mouse button on the component and choosing Edit Script from the component's pop-up menu.
Your S-PLUS code, which can include multiple statements, is inserted within an automatically created function to run the component. This code can use temporary variables, but any temporary variables are not visible outside of the component (unless assign is called to change the S-PLUS databases). For example, a script could contain out0<-sin (in0) to set the output to the sine of the input.

Note For details on the script syntax, see the documentation and on-line Help accompanying S-PLUS.

Tip To declare static variables, which keep their values between calls to the script, add the variable names (separated by commas) to the Static Variable Names field on the Input Variables tab of the component's Properties dialog box. Remember that all static variables are reset whenever the script itself is changed.

The following variables can be accessed within a script:
- input.var. names and output . var. names are vectors of strings that give the input and output variable names for the component. You can use these variables to write scripts that handle different numbers of inputs and outputs.
- first. call has a value of \(T\) if this is the first time this script has been executed. This variable can be used to initialize static variables.

When you are finished editing the script, choose Close \& Return from the Script Editor's File menu. When you click outside the component, the script is executed. If the text of an S-PLUS program cannot be parsed (for example, if it contains an unmatched parenthesis), or if an error occurs when it is executed, a popup window appears.

Note If "Show Captured Results" on the S-PLUS Script component's pop-up menu is checked, the component displays the text produced by the last execution of the S-PLUS program, including any printing done by the script, as if it had been executed at the S-PLUS command line. Capturing this text can slow down the execution. Error messages are always captured, however, so after an error occurs the display can be switched to see the error message.

\section*{MATLAB Component}

Pro The MATLAB component allows you to exchange data with and access the programming environment of The MathWorks' MATLAB Professional 4.2c or higher, if it is installed on your system.

Tip If you only need to import or export a static data file in MATLAB format, use the File Read/ Write component as described in Chapter 11, "Vectors, Matrices, and Data Arrays."

\section*{Inserting a MATLAB component}

To insert a MATLAB component into a Mathcad worksheet:
1. Click in a blank spot in your worksheet. If you want to send values to the MATLAB component from a Mathcad variable, click below or to the right of the variable definition.
2. Choose Component from the Insert menu.
3. Select MATLAB from the list and click "Next." The MATLAB component is inserted into your worksheet.
4. In the placeholder that appears at the bottom, enter the name of the Mathcad input variable to pass into the MATLAB component. In the placeholder that appears to the left of the component, enter the name of the Mathcad output variable to be defined.

Note By default, the data in the Mathcad input variables are sent into MATLAB variables named in0, in1, in2, and so on. The MATLAB variables out0, out1, out2, and so on define the data to be passed to the Mathcad output variables. To change these names, choose Properties from the component's pop-up menu and type in new names in the Inputs and Outputs tabs.

To use the MATLAB component to perform calculations in MATLAB:
1. Double-click the MATLAB component in the Mathcad worksheet. The MATLAB component opens a text window for entering MATLAB commands.
2. Edit the MATLAB script however you'd like. Be sure to use the appropriate MATLAB variable names to take the input from Mathcad and provide the output.
When you click outside the component, input variables from Mathcad are sent to MATLAB, and arrays from MATLAB are assigned to output variables in Mathcad.

Note Some versions of MATLAB support multidimensional arrays and other complex data structures. While you may use these structures within the MATLAB component, you may pass only scalars, vectors, and two-dimensional arrays from Mathcad to the MATLAB component and vice versa.

\section*{MathConnex}

Pro The components available in Mathcad are used to connect a Mathcad worksheet to other data sources and applications. If you have Mathcad Professional, you can use the MathConnex application to connect these data sources and applications to each other as well as to Mathcad.

In addition to the components available in Mathcad Professional, MathConnex contains a number of other components for manipulating data, such as a Mathcad component
for connecting to a Mathcad worksheet. The MathConnex environment lets you connect any of one of the available components to any other component. MathConnex is therefore a tool for controlling data as it flows from one data source or application to another. You can visually design systems of data flow to analyze projects which involve a variety of applications and data sources.

To run MathConnex, click 品 on the Standard toolbar, or exit Mathcad and run MathConnex as you would any application. For more information about using MathConnex, refer to the MathConnex User's Guide, available as a PDF file on the Mathcad CD.

\section*{Scripting Custom OLE Automation Objects}

Pro As described in the previous section, Mathcad has several specialized components for using the functionality of other technical computing environments within your Mathcad worksheet. However, you can dynamically exchange data between a Mathcad worksheet and any other application that supports OLE Automation, even if Mathcad does not have a specific component to do so. To do so, use the Scriptable Object component. You can create a custom scriptable object from any object you can insert into a Mathcad worksheet as well as any ActiveX controls installed on your computer.

To create a Scriptable Object component, you must:
1. Be proficient in a supported scripting language, such as Microsoft VBScript or JScript, that is installed on your system.
2. Have some knowledge of the way the other application has implemented OLE.
3. Have the other application or control installed on your system.

\section*{Scripting Languages}

To use a Scriptable Object component, you must have a supported scripting language installed on your system. The following two scripting languages are supported: Microsoft VBScript (Visual Basic Scripting Edition) and Microsoft JScript (an implementation of JavaScript). Both of these scripting languages are included with Microsoft Internet Explorer, which can be installed from the Mathcad installation media. These scripting languages can also be downloaded at no charge from Microsoft, Inc. at:

> http://msdn.microsoft.com/scripting

Note VBScript is a strict subset of the Visual Basic for Applications language used in Microsoft Excel, Project, Access, and the Visual Basic development system. VBScript is designed to be a lightweight interpreted language, so it does not use strict types (only Variants). Also, because VBScript is intended to be a safe subset of the language, it does not include file input/output or direct access to the underlying operating system. JScript is a fast, portable, lightweight interpreter for use in applications that use ActiveX controls, OLE automation servers, and Java applets. JScript is directly comparable to VBScript (not Java). Like VBScript, JScript is a pure interpreter that processes source code rather than producing stand-alone applets. The syntax and techniques used in the scripting language you choose are beyond the scope of this User's Guide.

\section*{Inserting a Scriptable Object}

To insert a Scriptable Object component into a Mathcad worksheet:
1. Click in a blank spot in your worksheet. If you want to send values to the object from a Mathcad variable, click below or to the right of the variable definition.
2. Choose Component from the Insert menu.
3. Select Scriptable Object from the list in the Wizard and click "Next."

This launches the Scripting Wizard. The Object to Script scrolling list shows the available server applications on your system. Choose an application that supports the OLE 2 automation interface (consult the documentation for the application for details).
You must specify:
- Whether the component is a new file or whether you will insert an existing file.
- Whether you will see the actual file or an icon in your Mathcad worksheet.

In the remaining pages of the Wizard you specify: the scripting language you are using, the type of object you want to script, the name of the object, and the number of inputs and outputs the object will accept and provide.

A Scriptable Object component appears in your worksheet with placeholders for the input and output variables. Enter the input variables in the bottom placeholders. Enter the output variables into the placeholders to the left of the :=.

\section*{Object Model}

The Scriptable Object component has the following predefined objects, properties, and methods that enable you to configure it to work as a component in Mathcad.

\section*{Collections}
- Inputs and Outputs are predefined collections of DataValue objects (see below) containing the Scriptable Object's inputs and the outputs, respectively.
- The Count property can be used to query the total number of elements in the collection. For example, Outputs. Count returns the number of output variables.
- The Item method is used to specify an individual element in the collection. To refer to a particular input or output, use the notation Inputs. Item (\(n\)) or Outputs. Item (\(n\)), where \(n\) is the index of the input or output. The index \(n\) always starts from 0 . Since Item is the default method, languages such as VBScript and JScript let you drop the method name to imply the default method. For example, Inputs (0) is equivalent to Inputs. Item (0) and references the first input.

\section*{DataValue objects}
- The Value property accesses a DataValue's real part. For example, in VBScript or JScript Inputs (0). Value returns the real part of the first input.
- The IValue property accesses a DataValue's imaginary part. For example, in VBScript or JScript Outputs (1). IValue returns the imaginary part of the second output. If there is no imaginary part, the IValue portion returns "NIL."
- The IsComplex property returns "TRUE" if a DataValue has a valid imaginary part; this property returns "FALSE" otherwise. For example, the expression
(inputs (0).IsComplex) returns "FALSE" if the first input has only a real part.
- The Rows and Cols properties yield the number of rows and columns.

\section*{Global methods}
- The alert function takes a single string parameter that is presented to the user as a standard modal Windows message box with an "OK" button.
- The errmsg function takes a string parameter that appears as an error message from within the script and causes the script to stop execution. A second, optional parameter is a string used to display the source of the error.

Note In JScript, the names of functions, methods, objects, and properties are case sensitive, while in VBScript they are not.

\section*{Scripting the Object}

To script an object, click once on the component to select it. Then click on the component with the right mouse button and choose Edit Script from the pop-up menu. You'll see a Script Editor window containing three subroutine stubs in which you insert your own scripting code.
The script you write will usually contain at a minimum the following three subroutines:
- A starting routine, called once when execution of the component begins. This is a good place to initialize variables, open files for reading and writing, etc.
- An execution routine that by default takes as arguments the collections Inputs and Outputs.
- A stopping routine, called once when execution of the component stops.

The commands in each section are executed in sequence whenever the Mathcad worksheet is calculated. What you include in these subroutines is determined largely by the properties of the OLE object you are scripting; consult the documentation for the server or control.

Choose Close \& Return from the Script Editor's File menu when you have completed your script and want to resume working in the Mathcad worksheet.

Tip See the SAMPLES folder of the location where you installed Mathcad for sample files using the scriptable object component.

\section*{Accessing Mathcad from Within Another Application}

The previous section describes how to script a custom OLE object in Mathcad. Mathcad's OLE automation interface provides a mechanism for the complementary process of using Mathcad as an automation server from within another Windows application. Using Mathcad's OLE automation interface, you can send data dynamically to Mathcad from another application, use Mathcad to perform calculations or other data manipulations, and send results back to the original application.

Note The OLE automation interface is supported in Mathcad 7.02 and higher and supersedes the DDE interface supported in Mathcad 5 and 6. For current information on and examples of the interface, visit the MathSoft Web site at http://www.mathsoft.com/support/. Also refer to TRAJECTORY.XLS in the \SAMPLES\EXCEL folder where you installed Mathcad.

\section*{Mathcad Document Object Model}

To use the OLE automation interface, you must write a program in Visual Basic 5.0 or higher or in an application that can serve as an OLE automation client, such as Microsoft Excel 5.0 and higher. (Check with the application's documentation to find out whether it is an OLE automation client.) You use the program to define and retrieve variables in Mathcad Document objects. The variables being defined in Mathcad must be named in0, in1, in2, etc. The variables being retrieved from Mathcad must be named out0, out1, out2, etc.

\section*{Automation methods}
- GetComplex(Name, RealPart, ImagPart) retrieves complex data (real and imaginary parts) from Mathcad variable Name, where Name is one of out0, out1, out2, etc.
- SetComplex(Name, RealPart, ImagPart) assigns complex data (real and imaginary parts) to Mathcad variable Name, where Name is one of in0, in1, in2, etc.
- Recalculate triggers recalculation of the Mathcad document.
- SaveAs(Name) saves the Mathcad document as a file whose path is given by the string Name.

\section*{Scripting the Object}

The specific procedures required to script a Mathcad OLE automation object differ slightly depending on the application that serves as an OLE automation client, but the main steps are as follows:
1. Provide or create a Mathcad OLE object with which to communicate.
2. Set up the client application with the data to send to Mathcad and/or with locations to put the data retrieved from Mathcad.
3. Write code to specify the data to send to Mathcad and/or the data to retrieve.

The following example shows how to use Microsoft Excel's VBA environment to assign a complex number to the variable in0 in a Mathcad OLE object, trigger a calculation in Mathcad, and return the answer to Excel:
1. Insert a Mathcad object into an Excel worksheet. For details, see Excel's documentation and on-line Help.
2. Set up Excel so that there is data to pass to Mathcad and/or available cells to store data returned from Mathcad.
3. Write a Visual Basic macro module. Refer to Excel's on-line Help for information.
4. Double-click the Mathcad object in the Excel worksheet to activate the linked object. Click outside the object. Then run the Excel macro.

Figure 16-4 shows how data stored in cells G7 through H8 are passed into the Mathcad variable in 0 . Mathcad performs a calculation (in this simple example, it trivially adds 1 to the values), and the results stored in the Mathcad variable out 0 are returned to cells G12 through H13. The VBA macro looks like this:
```

Sub UpdateWorksheet()
Dim MathcadObject As Object
Dim outRe, outIm As Variant
Dim inRe, inIm As Variant
'Get a reference to the Mathcad object
Set MathcadObject = ActiveSheet.OLEObjects(1).Object
' Read in values to be passed from Excel to Mathcad
inRe = ActiveSheet.Range("G7:G8").Value
inIm = ActiveSheet.Range("H7:H8").Value
' Send the values over to Mathcad, assign them to variable in0, and recalculate
Call MathcadObject.SetComplex("inO", inRe, inIm)
Call MathcadObject.Recalculate
' Place the result values into the chosen Excel cells
Call MathcadObject.GetComplex("out0", outRe, outIm)
ActiveSheet.Range("G11:G12").Value = outRe
ActiveSheet.Range("H11:H12").Value = outIm
End Sub

```

Note To pass real data into Mathcad, you should have cell(s) containing zeros for the imaginary part.

Figure 16-4: Mathcad as an OLE automation server within Microsoft Excel.

\section*{Appendices}\(\tau\) Operators\(\tau\) Symbolic Transformation Functions
\(\tau\) SI Units
\(\tau\) CGS units
\(\tau\) U.S. Customary Units
\(\tau\) MKS Units
\(\tau\) Predefined Variables
\(\tau\) Suffixes for Numbers
\(\tau\) Greek Letters
\(\tau\) Arrow and Movement Keys
\(\tau\) Function Keys
\(\tau\) ASCII codes

\section*{Operators}

In this table:
- \(\mathbf{A}\) and \(\mathbf{B}\) represent arrays, either vector or matrix.
- \(\mathbf{u}\) and \(\mathbf{v}\) represent vectors with real or complex elements.
- \(\mathbf{M}\) represents a square matrix.
- \(\quad z\) and \(w\) represent real or complex numbers.
- \(\quad x\) and \(y\) represent real numbers.
- \(\quad m\) and \(n\) represent integers.
- \(\quad i\) represents a range variable.
- \(S\) and any names beginning with \(S\) represent string expressions.
- \(t\) represents any variable name.
- \(f\) represents a function.
- \(\quad X\) and \(Y\) represent variables or expressions of any type.

For information about programming operators in Mathcad Professional, see Chapter 15, "Programming." For information about symbolic operators and keywords, see Chapter 14, "Symbolic Calculation."
\begin{tabular}{|c|c|c|c|}
\hline Operation & Appearance & Keystroke & Description \\
\hline Parentheses & (\(X\)) & ' & Grouping operator. \\
\hline Vector Subscript & \(\mathbf{v}_{n}\) & [& Returns indicated element of a vector. \\
\hline Matrix Subscript & \(\mathbf{A}_{m, n}\) & [& Returns indicated element of a matrix. \\
\hline Superscript & \(\mathbf{A}^{\langle n\rangle}\) & [Ctrl] 6 & Extracts column \(n\) from array A. Returns a vector. \\
\hline Vectorize & \(\vec{X}\) & [Ctrl]- & Forces operations in expression \(X\) to take place element by element. All vectors or matrices in \(X\) must be the same size. \\
\hline Factorial & \(n\) ! & ! & Returns \(n \cdot(n-1) \cdot(n-2) \ldots\) The integer \(n\) cannot be negative. \\
\hline Complex conjugate & \(\bar{X}\) & " & Inverts the sign of the imaginary part of \(X\). This keystroke creates a string expression in a blank placeholder and a text region in a blank area of the worksheet. \\
\hline Transpose & \(A^{\top}\) & [Ctrl]1 & Returns a matrix whose rows are the columns of \(\mathbf{A}\) and whose columns are the rows of \(\mathbf{A}\). A can be a vector or a matrix. \\
\hline Power & \(z^{w}\) & \(\wedge\) & Raises \(z\) to the power \(w\). \\
\hline Powers ofmatrix, matrix inverse & \(\mathbf{M}^{n}\) & \(\wedge\) & \(n\)th power of square matrix \(\mathbf{M}\) (using matrix multiplication). \(n\) must be a whole number. \(\mathbf{M}^{-1}\) is the inverse of \(\mathbf{M}\). Other negative powers are powers of the inverse. Returns a square matrix. \\
\hline Negation & -X & - & Multiplies \(X\) by -1 . \\
\hline Vector sum & \(\Sigma \mathrm{v}\) & [Ctrl] 4 & Sums elements of vector v; returns a scalar. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Square root & \(\sqrt{z}\) & 1 & Returns positive square root for positive \(z\); returns principal value for negative or complex \(z\). \\
\hline nth root & \(\sqrt[n]{z}\) & [Ctrl]\} & Returns \(n\)th root of \(z\); returns a real valued root whenever possible. \(n\) must be a positive integer. \\
\hline Magnitude, Absolute value & \(|z|\) & I & Returns \(\sqrt{\operatorname{Re}(z)^{2}+\operatorname{Im}(z)^{2}}\). \\
\hline Magnitude of vector & |v| & 1 & Returns the magnitude of the vector \(\mathbf{v}: \sqrt{\mathbf{v} \cdot \mathbf{v}}\) if all elements in \(\mathbf{v}\) are real. Returns \(\sqrt{\mathbf{v} \cdot \overline{\mathbf{v}}}\) if any element in \(\mathbf{v}\) is complex. \\
\hline Determinant & \(\mathbf{M}\) & 1 & Returns the determinant of the square matrix M. Result is a scalar. \\
\hline Division & \[
\frac{X}{z}
\] & / & Divides the expression \(X\) by the non-zero scalar \(z\). If \(X\) is an array, divides each element by \(z\). \\
\hline In-line Division & \(X \div z\) & [Ctrl]/ & Divides the expression \(X\) by the non-zero scalar \(z\). If \(X\) is an array, divides each element by \(z\). \\
\hline Multiplication & \(X \cdot Y\) & * & Returns the product of \(X\) and \(Y\) if both \(X\) and \(Y\) are scalars. Multiplies each element of \(Y\) by \(X\) if \(Y\) is an array and \(X\) is a scalar, or vice versa. Returns the dot product (inner product) if \(X\) and \(Y\) are vectors of the same size. Performs matrix multiplication if \(X\) and \(Y\) are conformable matrices. \\
\hline Cross product & \(\mathbf{u} \times \mathbf{v}\) & [Ctrl] 8 & Returns cross-product (vector product) for the three-element vectors \(\mathbf{u}\) and \(\mathbf{v}\). \\
\hline Summation & \[
\sum_{i=m}^{n} X
\] & \[
\begin{aligned}
& {[\text { Ctrl] }} \\
& {[\text { Shift] } 4}
\end{aligned}
\] & Performs summation of \(X\) over \(i=m, m+1, \ldots, n . X\) can be any expression. It need not involve \(i\) but it usually does. \(m\) and \(n\) must be integers. \\
\hline Product & \[
\prod_{i=m}^{n} X
\] & \[
\begin{aligned}
& {[\text { Ctrl] }} \\
& {[\text { Shift] } 3}
\end{aligned}
\] & Performs iterated product of \(X\) for \(i=m, m+1, \ldots, n \cdot X\) can be any expression. It need not involve \(i\) but it usually does. \(m\) and \(n\) must be integers. \\
\hline Range sum & \[
\sum_{i} X
\] & \$ & Returns a summation of \(X\) over the range variable \(i . X\) can be any expression. It need not involve \(i\) but it usually does. \\
\hline Range product & \[
\prod_{i} X
\] & \# & Returns the iterated product of \(X\) over the range variable \(i . X\) can be any expression. It need not involve \(i\) but it usually does. \\
\hline Integral & \[
\int_{a}^{b} f(t) d t
\] & \& & Returns the definite integral of \(f(t)\) over the interval \([a, b] . a\) and \(b\) must be real scalars. All variables in the expression \(f(t)\), except the variable of integration \(t\), must be defined. The integrand, \(f(t)\), cannot return an array. \\
\hline Derivative & \(\frac{d}{d t} f(t)\) & ? & Returns the derivative of \(f(t)\) evaluated at \(t\). All variables in the expression \(f(t)\) must be defined. The variable \(t\) must be a scalar value. The function \(f(t)\) must return a scalar. \\
\hline
\end{tabular}
\(\left.\begin{array}{lcll}\text { nth Derivative } & d^{n} f(t) & \text { [Ctrl] ? } & \begin{array}{l}\text { Returns the } n \text {th derivative of } f(t) \text { evaluated at } t \text {. All variables in } f(t) \\ \text { must be defined. The variable } t \text { must be a scalar value. The } \\ \text { function } f(t) \text { must return a scalar. } n \text { must be an integer between } 0\end{array} \\ \text { and } 5 \text { for numerical evaluation or a positive integer for symbolic } \\ \text { evaluation. }\end{array}\right]\)

\section*{Symbolic Transformation Functions}

Some symbolic transformations (see Chapter 14) are given in terms of functions that aren't among Mathcad's built-in functions. The list below gives definitions for those special functions. Except for Ei, erf, and Zeta, which involve infinite sums, and W, you can use these definitions to calculate numerical values.
You can define many of these functions in Mathcad. See the "Other Special Functions" area in the QuickSheets of the Resource Center for examples of each of these.
\(\gamma\) is Euler's constant, approximately 0.5772156649 .
\[
\begin{aligned}
& \operatorname{Chi}(x)=\gamma+\ln (x)+\int_{0}^{x} \frac{\cosh (t)-1}{t} d t \\
& \operatorname{Ci}(x)=\gamma+\ln (x)+\int_{0}^{x} \frac{\cos (t)-1}{t} d t \\
& \operatorname{dilog}(x)=\int_{1}^{x} \frac{\ln (t)}{1-t} d t \\
& \operatorname{Dirac}(x)=0 \text { if } x \text { is not zero. } \int_{-\infty}^{\infty} \operatorname{Dirac}(x) d x=1 \\
& \operatorname{Ei}(x)=\gamma+\ln (x)+\sum_{n=1}^{\infty} \frac{x^{n}}{n \cdot n!}(x>0)
\end{aligned}
\]
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{n!(2 n+1)} \quad(\text { for complex } z)
\]
\[
\operatorname{FresnelC}(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t
\]
\[
\text { FresnelS }(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
\]
\[
\operatorname{LegendreE}(x, k)=\int_{0}^{x}\left(\frac{1-k^{2} \cdot t^{2}}{1-t^{2}}\right)^{1 / 2} d t
\]
\(\operatorname{LegendreEc}(k)=\operatorname{LegendreE}(1, k)\)
\(\operatorname{LegendreEc} 1(k)=\operatorname{LegendreEc}\left(\sqrt{1-k^{2}}\right)\)
\(\operatorname{LegendreF}(x, k)=\int_{0}^{x} \frac{1}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} \cdot t^{2}\right)}} d t\)
\(\operatorname{LegendreKc}(k)=\operatorname{LegendreF}(1, k)\)
LegendreKcl \(1(k)=\operatorname{LegendreKc}\left(\sqrt{1-k^{2}}\right)\)
\(\operatorname{LegendrePi}(x, n, k)=\int_{0}^{x} \frac{1}{\sqrt{\left(1-n^{2} \cdot t^{2}\right) \sqrt{\left(1-t^{2}\right)\left(1-k^{2} \cdot t^{2}\right)}}} d t\)
\(\operatorname{LegendrePic}(n, k)=\operatorname{LegendrePi}(1, n, k)\)
LegendrePic \(1(k)=\operatorname{LegendrePic}\left(n, \sqrt{1-k^{2}}\right)\)
\(\operatorname{Psi}(n, x)=\frac{d^{n}}{d x^{n}} \operatorname{Psi}(x)\)
\(\operatorname{Psi}(x)=\frac{d}{d x} \ln (\Gamma(x))\)
\(\operatorname{Shi}(x)=\int_{0}^{\lambda} \frac{\sinh (t)}{t} d t\)
\(\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t\)
\(W(x)\) is the principal branch of a function satisfying \(W(x) \cdot \exp (W(x))=x\).
\(W(n, x)\) is the \(n\)th branch of \(W(x)\).
\(\operatorname{Zeta}(s)\left(\sum_{n=1}^{\infty} \frac{1}{n^{s}}\right)(s>1)\)
The functions arcsec, arccsc, arccot, arcsech, arcscsh, arccoth can be calculated by taking reciprocals and using the Mathcad built-in functions acos, asin, etc. For example:
\[
\operatorname{arcsec}(x):=\operatorname{acos}\left(\frac{1}{x}\right)
\]

The Psi function and \(\Gamma\) appear frequently in the results of indefinite sums and products.

\section*{Base Units}
m (meter), length
A (ampere), current
mole or mol, substance
kg (kilogram), mass
K (kelvin), temperature
\(\operatorname{deg}=\frac{\pi}{180} \cdot \operatorname{rad}\)
\(\mathrm{sr}=1 \cdot \mathrm{~s} r\)
\[
\mathrm{rad}=1
\]

\section*{Length}
\[
\begin{aligned}
& \mathrm{cm}=0.01 \cdot \mathrm{~m} \\
& \mathrm{ft}=0.3048 \cdot \mathrm{~m} \\
& \mathrm{mi}=5280 \cdot \mathrm{ft}
\end{aligned}
\]
\[
\mathrm{km}=1000 \cdot \mathrm{~m}
\]
\[
\mathrm{mm}=0.001 \cdot \mathrm{~m}
\]
in \(=2.54 \cdot \mathrm{~cm}\)
\(y d=3 \cdot f t\)

\section*{Mass}
\[
\begin{aligned}
& \mathrm{gm}=10^{-3} \cdot \mathrm{~kg} \\
& \mathrm{mg}=10^{-3} \cdot \mathrm{gm} \\
& \mathrm{oz}=\frac{\mathrm{lb}}{16}
\end{aligned}
\]

\section*{Time}
\[
\begin{aligned}
& \min =60 \cdot \mathrm{~s} \\
& \mathrm{yr}=365.2422 \cdot \text { day } \\
& \text { Volume } \\
& \text { hectare }=10^{4} \cdot \mathrm{~m}^{2} \\
& \mathrm{~mL}=10^{-3} \cdot \mathrm{~L}
\end{aligned}
\]

\section*{Area, Volume}
acre \(=4840 \cdot \mathrm{yd}^{2}\)
\(\mathrm{L}=0.001 \cdot \mathrm{~m}^{3}\)
\(\mathrm{fl} _\mathrm{oz}=29.57353 \cdot \mathrm{~cm}^{3}\)
gal \(=128 \cdot \mathrm{fl} _\)oz

\section*{Velocity, Acceleration}
\[
\mathrm{mph}=\frac{\mathrm{mi}}{\mathrm{hr}}
\]
\(\mathrm{kph}=\frac{\mathrm{km}}{\mathrm{hr}}\)
\(\mathrm{g}=9.80665 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\)
Force, Energy, Power
\[
\begin{aligned}
& \mathrm{N}=\mathrm{kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \mathrm{kgf}=\mathrm{g} \cdot \mathrm{~kg} \\
& \mathrm{cal}=4.1868 \cdot \mathrm{~J} \\
& \mathrm{~W}=\frac{\mathrm{J}}{\mathrm{~s}}
\end{aligned}
\]
dyne \(=10^{-5} \cdot \mathrm{~N}\)
\(\mathrm{J}=\mathrm{N} \cdot \mathrm{m}\)
\(\mathrm{kcal}=1000 \cdot \mathrm{cal}\)
\(\mathrm{kW}=1000 \cdot \mathrm{~W}\)
\[
\mathrm{lbf}=\mathrm{g} \cdot \mathrm{lb}
\]
\[
\mathrm{erg}=10^{-7} \cdot \mathrm{~J}
\]
\[
\mathrm{BTU}=1.05506 \cdot 10^{3} \cdot \mathrm{~J}
\]
\[
\mathrm{hp}=550 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}}
\]

\section*{Pressure, Viscosity}
\[
\begin{array}{lll}
\mathrm{Pa}=\frac{\mathrm{N}}{\mathrm{~m}^{2}} & \mathrm{psi}=\frac{\mathrm{lbf}}{\mathrm{in}^{2}} & \mathrm{~atm}=1.01325 \cdot 10^{5} \cdot \mathrm{~Pa} \\
\text { in_Hg }=3.37686 \cdot 10^{3} \cdot \mathrm{~Pa} & \text { torr }=1.33322 \cdot 10^{2} \cdot \mathrm{~Pa} & \text { stokes }=10^{-4} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
\text { poise }=0.1 \cdot \mathrm{~Pa} \cdot \mathrm{~s} & &
\end{array}
\]

\section*{Electrical}
\[
\begin{array}{lll}
\mathrm{C}=\mathrm{A} \cdot \mathrm{~s} & \mathrm{~V}=\frac{\mathrm{J}}{\mathrm{C}} & \mathrm{mV}=10^{-3} \cdot \mathrm{~V} \\
\mathrm{kV}=10^{3} \cdot \mathrm{~V} & \Omega=\frac{\mathrm{V}}{\mathrm{~A}} & \mathrm{k} \Omega=10^{3} \cdot \Omega \\
\mathrm{M} \Omega=10^{6} \cdot \Omega & \mathrm{~S}=\frac{1}{\Omega} & \mathrm{mho}=\frac{1}{\Omega} \\
\mathrm{H}=\frac{\mathrm{V}}{\mathrm{~A}} \cdot \mathrm{~s} & \mu \mathrm{H}=10^{-6} \cdot \mathrm{H} & \mathrm{mH}=10^{-3} \cdot \mathrm{H} \\
\mu \mathrm{~A}=10^{-6} \cdot \mathrm{~A} & \mathrm{kA}=10^{3} \cdot \mathrm{~A} \\
\mathrm{~F}=\frac{\mathrm{C}}{\mathrm{~V}} & \mathrm{~mA}=10^{-3} \cdot \mathrm{~A} & \mathrm{nF}=10^{-9} \cdot \mathrm{~F} \\
\mu \mathrm{~F}=10^{-6} \cdot \mathrm{~F} & \mathrm{pF}=10^{-12} \cdot \mathrm{~F} & \mathrm{gauss}=10^{-4} \cdot \mathrm{~T} \\
\mathrm{Oe}=\frac{1000}{4} \cdot \pi \cdot \frac{\mathrm{~A}}{\mathrm{~m}} & \mathrm{~Wb}=\mathrm{V} \cdot \mathrm{~s} & \\
\mathrm{ency}, \mathrm{Activity} & \mathrm{~T}=\frac{\mathrm{Wb}}{\mathrm{~m}^{2}} & \mathrm{MHz}=10^{6} \cdot \mathrm{~Hz} \\
\mathrm{~Hz}=\frac{1}{\mathrm{~s}} & \mathrm{kHz}=10^{3} \cdot \mathrm{~Hz} & \mathrm{Hza}=2 \cdot \pi \cdot \mathrm{~Hz} \\
\mathrm{GHz}=10^{9} \cdot \mathrm{~Hz} & \mathrm{~Bq}=\underline{1} &
\end{array}
\]

\section*{Frequency, Activity}
\[
\begin{array}{lll}
\mathrm{Hz}=\frac{1}{\mathrm{~s}} & \mathrm{kHz}=10^{3} \cdot \mathrm{~Hz} & \mathrm{MHz}=10^{6} \cdot \mathrm{~Hz} \\
\mathrm{GHz}=10^{9} \cdot \mathrm{~Hz} & \mathrm{~Bq}=\frac{1}{\mathrm{~s}} & \mathrm{Hza}=2 \cdot \pi \cdot \mathrm{~Hz}
\end{array}
\]

\section*{Temperature}
\[
R=0.556 \cdot K
\]

\section*{Dose}
\(\mathrm{Gy}=\frac{\mathrm{J}}{\mathrm{kg}}\)
\(S v=\frac{J}{\mathrm{~kg}}\)

\section*{Luminous Flux, Illuminance}
\[
\mathrm{lm}=\mathrm{cd} \cdot \mathrm{sr}
\]
\[
\mathrm{lx}=\frac{\mathrm{cd} \cdot \mathrm{st}}{\mathrm{~m}^{2}}
\]

\section*{Base Units}
cm (centimeter), length coul (coulomb), charge

\section*{Angular Measure}
\[
\mathrm{rad}=1
\]

\section*{Length}
\[
\begin{aligned}
& \mathrm{m}=100 \cdot \mathrm{~cm} \\
& \mathrm{ft}=30.48 \cdot \mathrm{~cm} \\
& \mathrm{mi}=5280 \cdot \mathrm{ft}
\end{aligned}
\]

\section*{Mass}
\[
\begin{aligned}
& \mathrm{kg}=1000 \cdot \mathrm{gm} \\
& \mathrm{mg}=10^{-3} \cdot \mathrm{gm} \\
& \mathrm{oz}=\frac{\mathrm{lb}}{16}
\end{aligned}
\]

\section*{Time}
\[
\begin{aligned}
& \min =60 \cdot \mathrm{sec} \\
& \mathrm{yr}=365.2422 \cdot \text { day }
\end{aligned}
\]

\section*{Area, Volume}
\[
\text { hectare }=10^{8} \cdot \mathrm{~cm}^{2}
\]
\[
\mathrm{mL}=\mathrm{cm}^{3}
\]

\section*{Velocity, Acceleration}
\(\mathrm{mph}=\frac{\mathrm{mi}}{\mathrm{hr}}\)
\(\mathrm{c}=2.997925 \cdot 10^{10} \cdot \frac{\mathrm{~cm}}{\mathrm{sec}}\)
\(c_{-}=\mathrm{c} \cdot \frac{\mathrm{Sec}}{\mathrm{m}}\)

\section*{Force, Energy, Power}
\[
\begin{aligned}
& \text { dyne }=\mathrm{gm} \cdot \frac{\mathrm{~cm}}{\mathrm{sec}^{2}} \\
& \mathrm{kgf}=\mathrm{g} \cdot \mathrm{~kg} \\
& \mathrm{cal}=4.1868 \cdot 10^{7} \cdot \mathrm{erg} \\
& \text { watt }=\frac{\text { joule }}{\mathrm{sec}}
\end{aligned}
\]
\(\mathrm{kph}=\frac{\mathrm{km}}{\mathrm{hr}}\)
erg \(=\) dyne \(\cdot \mathrm{cm}\)
\(\mathrm{kW}=1000 \cdot \mathrm{watt}\)
gm (gram), mass
sec (second), time
K (kelvin), temperature
\(\operatorname{deg}=\frac{\pi}{180} \cdot \mathrm{rad}\)
\[
\begin{aligned}
& \mathrm{km}=1000 \cdot \mathrm{~m} \\
& \mathrm{in}=2.54 \cdot \mathrm{~cm}
\end{aligned}
\]
\[
\text { tonne }=1000 \cdot \mathrm{~kg}
\]
\[
\mathrm{lb}=453.59237 \cdot \mathrm{gm}
\]
\[
\operatorname{ton}=2000 \cdot \mathrm{lb}
\]
\[
\text { slug }=32.174 \cdot \mathrm{lb}
\]
\(\mathrm{hr}=3600 \cdot \mathrm{sec}\)
\[
\text { day }=24 \cdot h r
\]
day \(=24 \cdot h r\)
acre \(=4840 \cdot \mathrm{yd}^{2}\)
liter \(=1000 \cdot \mathrm{~cm}^{3}\)
fl_oz \(=29.57353 \cdot \mathrm{~cm}^{3}\)
gal \(=128 \cdot f l_{\text {_oz }}\)
\[
\text { gar = } 120 \cdot 11 _0 z
\]
\(\mathrm{g}=980.665 \cdot \frac{\mathrm{~cm}}{\mathrm{sec}^{2}}\)
newton \(=10^{5} \cdot\) dyne
\(\mathrm{lbf}=\mathrm{g} \cdot \mathrm{lb}\)
joule \(=10^{7} \cdot \mathrm{erg}\)
\(\mathrm{BTU}=1.05506 \cdot 10^{10} \cdot \mathrm{erg}\)
\(\mathrm{kcal}=1000 \cdot \mathrm{cal}\)
\[
\begin{aligned}
& \mathrm{mm}=0.1 \cdot \mathrm{~cm} \\
& \mathrm{yd}=3 \cdot \mathrm{ft}
\end{aligned}
\]

\section*{Pressure, Viscosity}
\[
\begin{array}{lll}
\mathrm{Pa}=10 \cdot \frac{\text { dyne }}{\mathrm{cm}^{2}} & \mathrm{psi}=\frac{\mathrm{lbf}}{\mathrm{in}^{2}} & \text { atm }=1.01325 \\
\text { in_Hg }=3.38638 \cdot 10^{3} \cdot \mathrm{~Pa} & \text { torr }=1.33322 \cdot 10^{2} \cdot \mathrm{~Pa} & \text { stokes }=\frac{\mathrm{cm}^{2}}{\mathrm{sec}} \\
\text { poise }=0.1 \cdot \mathrm{~Pa} \cdot \mathrm{sec} & &
\end{array}
\]

\section*{Electrical}

These are CGS-esu units, based only on mass, length, and time. The "stat" units are defined in terms of dyne, cm, and sec.
\[
\begin{array}{lll}
\text { statamp }=\text { dyne }^{0.5} \cdot \mathrm{~cm} \cdot \mathrm{sec}^{-1} & \text { statcoul }=\text { dyne } 0.5 \cdot \mathrm{~cm} & \text { statvolt }=\text { dyne }^{0.5} \\
\text { statohm }=\mathrm{sec} \cdot \mathrm{~cm}^{-1} & \text { statsiemens }=\mathrm{cm} \cdot \mathrm{sec}^{-1} & \text { statfarad }=\mathrm{cm} \\
\text { statweber }=\text { dyne }^{0.5} \cdot \mathrm{~cm} & \text { stathenry }=\mathrm{sec}^{2} \cdot \mathrm{~cm}^{-1} & \text { stattesla }=\mathrm{dyne}^{0.5} \cdot \mathrm{~cm} \cdot \mathrm{sec}^{-2}
\end{array}
\]

Frequency
\(\mathrm{Hz}=\frac{1}{\sec }\)
\(\mathrm{kHz}=10^{3} \cdot \mathrm{~Hz}\)
\(\mathrm{MHz}=10^{6} \cdot \mathrm{~Hz}\)
\(\mathrm{GHz}=10^{9} \cdot \mathrm{~Hz}\)
\(\mathrm{Hza}=2 \cdot \pi \cdot \mathrm{~Hz}\)

\section*{Temperature}
\[
\mathrm{R}=0.556 \cdot \mathrm{~K}
\]

\section*{Conversions to SI Units}
\(\mathrm{amp}=\frac{\mathrm{c}}{10} \cdot \operatorname{statamp}\)
\(\mathrm{coul}=\mathrm{amp} \cdot \sec\)
volt \(=\frac{\mathrm{watt}}{\mathrm{amp}}\)
farad \(=\frac{\text { coul }}{\text { volt }}\)
ohm \(=\frac{\text { volt }}{\mathrm{amp}}\)
henry \(=\operatorname{volt} \cdot \frac{\mathrm{sec}}{\mathrm{amp}}\)

\section*{U.S. Customary Units}

\section*{Base Units}

\author{
ft (foot), length \\ coul (coulomb), charge
}

\section*{Angular Measure}
\[
\mathrm{rad}=1
\]

\section*{Length}
\[
\begin{aligned}
& \mathrm{in}=\frac{\mathrm{ft}}{12} \\
& \mathrm{~cm}=0.01 \cdot \mathrm{~m} \\
& \mathrm{~mm}=0.001 \cdot \mathrm{~m}
\end{aligned}
\]

\section*{Mass}
\[
\text { slug }=32.174 \cdot \mathrm{lb}
\]
\(\mathrm{oz}=\frac{\mathrm{lb}}{16}\)
\(\mathrm{m}=\frac{\mathrm{ft}}{0.3048}\)
\(\mathrm{yd}=3 \cdot \mathrm{ft}\)
\(\mathrm{mi}=5280 \cdot \mathrm{ft}\)
\(\mathrm{km}=1000 \cdot \mathrm{~m}\)
\[
\mathrm{kg}=\frac{\mathrm{lb}}{0.45359237}
\]
\[
\mathrm{mg}=10^{-3} \cdot \mathrm{gm}
\]

\section*{Time}
\(\min =60 \cdot \mathrm{sec}\)
\(\mathrm{hr}=3600 \cdot \mathrm{sec}\) day \(=24 \cdot h r\)
\(\mathrm{yr}=365.2422 \cdot\) day

\section*{Area, Volume}
acre \(=4840 \cdot \mathrm{yd}^{2}\)
liter \(=0.035 \cdot \mathrm{ft}^{3}\)

\section*{Velocity, Acceleration}
\(\mathrm{mph}=\frac{\mathrm{mi}}{\mathrm{hr}}\)

\section*{Force, Energy, Power}
\(\mathrm{lbf}=\mathrm{g} \cdot \mathrm{lb}\)
\(\mathrm{kgf}=\mathrm{g} \cdot \mathrm{kg}\)
\(\mathrm{cal}=4.1868 \cdot\) joule
watt \(=\frac{\text { joule }}{\text { sec }}\)
hectare \(=10^{4} \cdot \mathrm{~m}^{2}\)
\(\mathrm{mL}=10^{-3} \cdot\) liter
\(\mathrm{kph}=\frac{\mathrm{km}}{\mathrm{hr}}\)
newton \(=\mathrm{kg} \cdot \frac{\mathrm{m}}{\sec ^{2}}\)
joule \(=\) newton \(\cdot m\)
\(\mathrm{kcal}=1000 \cdot \mathrm{cal}\)
\(\mathrm{hp}=550 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{sec}}\)
\[
\begin{aligned}
& \mathrm{fl} _\mathrm{oz}=29.57353 \cdot \mathrm{~cm}^{3} \\
& \mathrm{gal}=128 \cdot \mathrm{fl} _\mathrm{oz}
\end{aligned}
\]
\[
\mathrm{g}=32.174 \cdot \frac{\mathrm{ft}}{\mathrm{sec}^{2}}
\]
dyne \(=10^{-5} \cdot\) newton
\(\operatorname{erg}=10^{-7} \cdot\) joule \(\mathrm{BTU}=1.05506 \cdot 10^{3} \cdot\) joule \(\mathrm{kW}=1000 \cdot \mathrm{watt}\)

\section*{Pressure, Viscosity}
\[
\begin{array}{lll}
\text { psi }=\frac{\mathrm{lbf}}{\mathrm{in}^{2}} & \mathrm{~Pa}=\frac{\text { newton }}{\mathrm{m}^{2}} & \text { atm }=1.01325 \cdot 10^{5} \cdot \mathrm{~Pa} \\
\text { in_Hg }=3.386 \cdot 10^{3} \cdot \mathrm{~Pa} & \text { torr }=1.333 \cdot 10^{2} \cdot \mathrm{~Pa} & \text { stokes }=\frac{\mathrm{cm}^{2}}{\mathrm{sec}} \\
\text { poise }=0.1 \cdot \mathrm{~Pa} \cdot \mathrm{sec} & &
\end{array}
\]

\section*{Electrical}
\[
\begin{array}{lll}
\text { volt }=\frac{\text { watt }}{\mathrm{amp}} & \mathrm{mV}=10^{-3} \cdot \text { volt } & \mathrm{KV}=10^{3} \cdot \text { volt } \\
\text { ohm }=\frac{\mathrm{volt}}{\mathrm{amp}} & \mathrm{mho}=\frac{1}{\mathrm{ohm}} & \text { siemens }=\frac{1}{\mathrm{ohm}} \\
\Omega=\mathrm{ohm} & \mathrm{~K} \Omega=10^{3} \cdot \mathrm{ohm} & \mathrm{M} \Omega=10^{6} \cdot \mathrm{ohm} \\
\text { henry }=\frac{\text { weber }}{\mathrm{amp}} & \mu \mathrm{H}=10^{-6} \cdot \text { henry } & \mathrm{mH}=10^{-3} \cdot \text { henry } \\
\mathrm{amp}=\frac{\text { coul }}{\mathrm{sec}} & \mu \mathrm{~A}=10^{-6} \cdot \mathrm{amp} & \mathrm{~mA}=10^{-3} \cdot \mathrm{amp} \\
\mathrm{KA}=10^{3} \cdot \mathrm{amp} & \mathrm{pF}=10^{-12} \cdot \mathrm{farad} \\
\mathrm{nF}=10^{-9} \cdot \text { farad } & \text { farad }=\frac{\text { coul }}{\mathrm{volt}} & \mathrm{wF}=10^{-6} \cdot \mathrm{farad} \\
\text { oersted }=\frac{1000}{4 \cdot \pi} \cdot \frac{\mathrm{amp}}{\mathrm{~m}} & \text { tesla }=\frac{\mathrm{weber}}{\mathrm{~m}^{2}} & \text { gauss }=10^{-4} \cdot \mathrm{tesla}
\end{array}
\]

\section*{Frequency}
\[
\begin{array}{ll}
\mathrm{Hz}=\frac{1}{\sec } & \mathrm{kHz}=10^{3} \cdot \mathrm{~Hz} \\
\mathrm{GHz}=10^{9} \cdot \mathrm{~Hz} & \mathrm{Hza}=2 \cdot \pi \cdot \mathrm{~Hz}
\end{array}
\]
\[
\mathrm{MHz}=10^{6} \cdot \mathrm{~Hz}
\]

\section*{Temperature}
\[
R=0.556 \cdot K
\]

\section*{MKS Units}

\section*{Base Units}
m (meter), length
coul (coulomb), charge
kg (kilogram), mass
K (kelvin), temperature
sec (second), time
\(\operatorname{deg}=\frac{\pi}{180} \cdot \mathrm{rad}\)
Length
\(\mathrm{cm}=0.01 \cdot \mathrm{~m}\)
\(\mathrm{ft}=0.3048 \cdot \mathrm{~m}\)
\(\mathrm{mi}=5280 \cdot \mathrm{ft}\)
Mass
\[
\begin{aligned}
& \mathrm{gm}=10^{-3} \cdot \mathrm{~kg} \\
& \mathrm{mg}=10^{-3} \cdot \mathrm{gm} \\
& \mathrm{oz}=\frac{\mathrm{lb}}{16}
\end{aligned}
\]

Time
\[
\min =60 \cdot \mathrm{sec}
\]
\(\mathrm{hr}=3600 \cdot \mathrm{sec}\)
day \(=24 \cdot h r\)
\(\mathrm{yr}=365.2422 \cdot\) day

\section*{Area, Volume}
hectare \(=10^{4} \cdot \mathrm{~m}^{2}\)
\(\mathrm{mL}=10^{-3} \cdot\) liter

\section*{Velocity, Acceleration}
\(\mathrm{mph}=\frac{\mathrm{mi}}{\mathrm{hr}}\)
\(\mathrm{kph}=\frac{\mathrm{km}}{\mathrm{hr}}\)
Force, Energy, Power
\[
\begin{array}{ll}
\text { newton }=\mathrm{kg} \cdot \frac{\mathrm{~m}}{\mathrm{sec}^{2}} & \text { dyne }=10^{-5} \cdot \text { newton } \\
\mathrm{kgf}=\mathrm{g} \cdot \mathrm{~kg} & \text { joule }=\text { newton } \cdot \mathrm{m} \\
\mathrm{cal}=4.1868 \cdot \text { joule } & \mathrm{kcal}=1000 \cdot \mathrm{cal} \\
\text { watt }=\frac{\text { joule }}{\text { sec }} & \mathrm{kW}=1000 \cdot \mathrm{watt}
\end{array}
\]
liter \(=(0.1 \cdot m)^{3}\)
gal \(=128 \cdot f l_{-}\)oz
acre \(=4840 \cdot \mathrm{yd}^{2}\)
fl_oz \(=29.57353 \cdot \mathrm{~cm}^{3}\)

\section*{Pressure, Viscosity}
\(\mathrm{Pa}=\frac{\text { newton }}{\mathrm{m}^{2}}\)
\(\mathrm{psi}=\frac{\mathrm{lbf}}{\mathrm{in}^{2}}\)
\(\mathrm{atm}=1.01325 \cdot 10^{5} \cdot \mathrm{~Pa}\)
in_Hg \(=3.38638 \cdot 10^{3} \cdot \mathrm{~Pa}\)
torr \(=1.33322 \cdot 10^{2} \cdot \mathrm{~Pa}\)
stokes \(=10^{-4} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{sec}}\)
poise \(=0.1 \cdot \mathrm{~Pa} \cdot \mathrm{sec}\)

\section*{Electrical}
\[
\begin{array}{lll}
\text { volt }=\frac{\text { watt }}{\mathrm{amp}} & \mathrm{mV}=10^{-3} \cdot \mathrm{volt} & \mathrm{kV}=10^{3} \cdot \mathrm{volt} \\
\text { ohm }=\frac{\mathrm{volt}}{\mathrm{amp}} & \mathrm{mho}=\frac{1}{\mathrm{ohm}} & \text { siemens }=\frac{1}{\mathrm{ohm}} \\
\Omega=\mathrm{ohm} & \mathrm{k} \Omega=10^{3} \cdot \mathrm{ohm} & \mathrm{M} \Omega=10^{6} \cdot \mathrm{ohm} \\
\text { henry }=\frac{\text { weber }}{\mathrm{amp}} & \mu \mathrm{H}=10^{-6} \cdot \mathrm{henry} & \mathrm{mH}=10^{-3} \cdot \mathrm{henry} \\
\mathrm{amp}=\frac{\mathrm{coul}}{\mathrm{sec}} & \mu \mathrm{~A}=10^{-6} \cdot \mathrm{amp} & \mathrm{~mA}=10^{-3} \cdot \mathrm{amp} \\
\mathrm{kA}=10^{3} \cdot \mathrm{amp} & \mathrm{pF}=10^{-12} \cdot \mathrm{farad} \\
\mathrm{nF}=10^{-9} \cdot \mathrm{farad} & \text { farad }=\frac{\mathrm{coul}}{\mathrm{volt}} & \mathrm{mF}=10^{-6} \cdot \mathrm{farad} \\
\text { oersted }=\frac{1000}{4 \cdot \pi} \cdot \frac{\mathrm{amp}}{\mathrm{~m}} & \text { tesla }=\frac{\mathrm{weber}}{\mathrm{~m}^{2}} & \text { weber }=\mathrm{volt} \cdot \mathrm{sec} \\
& \text { gauss }=10^{-4} \cdot \text { tesl }
\end{array}
\]

\section*{Frequency}
\[
\begin{array}{lll}
\mathrm{Hz}=\frac{1}{\sec } & \mathrm{kHz}=10^{3} \cdot \mathrm{~Hz} & \mathrm{MHz}=10^{6} \cdot \mathrm{~Hz} \\
\mathrm{GHz}=10^{9} \cdot \mathrm{~Hz} & \mathrm{Hza}=2 \cdot \pi \cdot \mathrm{~Hz} &
\end{array}
\]

\section*{Temperature}
\[
R=0.556 \cdot K
\]

Mathcad's predefined variables are listed here with their default starting values.
\begin{tabular}{|c|c|c|}
\hline & Constant \(=\) Value & Meaning \\
\hline & \(\pi=3.14159 \ldots\) & Pi. Mathcad uses the value of \(\pi\) to 15 digits. To type \(\pi\), press [Ctrl][Shift]p. \\
\hline & \(e=2.71828 \ldots\) & The base of natural logarithms. Mathcad uses the value of \(e\) to 15 digits. \\
\hline & \(\infty=10^{307}\) & Infinity. This symbol represents values larger than the largest real number representable in Mathcad (about \(10^{307}\)). To type \(\infty\), press [Ctrl][Shift]Z. \\
\hline & \(\%=0.01\) & Percent. Use in expressions like \(\mathbf{1 0 * \%}\) (appears as \(10 \%\)) or as a scaling unit at the end of an equation with an equal sign. \\
\hline & CTOL \(=10^{-3}\) & Constraint tolerance used in solving and optimization functions: how closely a constraint must be met for a solution to be considered acceptable. For more information, see "Solving and Optimization Functions" on page 157. \\
\hline Pro & \[
\begin{aligned}
& \text { CWD }=\text { "[system path]" } \\
& \text { FRAME }=0
\end{aligned}
\] & String corresponding to the working folder of the worksheet. Counter for creating animation clips. \\
\hline Pro & in \(n=0\), out \(n=0\) & Input and output variables (in0, in1, out0, out1, etc.) in a Mathcad component in a MathConnex system. See the MathConnex User's Guide for details. \\
\hline & ORIGIN \(=0\) & Array origin. Specifies the index of the first element in arrays. \\
\hline & PRNCOLWIDTH \(=8\) & Column width used in writing files with WRITEPRN function. \\
\hline & PRNPRECISION = 4 & Number of significant digits used when writing files with the WRITEPRN function. \\
\hline & TOL \(=10^{-3}\) & Tolerance used in numerical approximation algorithms (integrals, equation solving, etc.): how close successive approximations must be for a solution to be returned. For more information, see the sections on the specific operation in question. \\
\hline
\end{tabular}

\section*{Suffixes for Numbers}

The table below shows how Mathcad interprets numbers (sequences of letters beginning with a digit) that end with a letter.

Radix
\begin{tabular}{lll}
Suffix & Example & Meaning \\
b, B & 100001 b & Binary \\
h, H & 8 BCh & Hexadecimal \\
o, O & 1007 o & Octal
\end{tabular}

\section*{Units and other}
\begin{tabular}{lll}
Suffix & Example & Meaning \\
i or j & \(4 \mathrm{i}, 1 \mathrm{j}, 3+1.5 \mathrm{j}\) & Imaginary \\
K & -273 K & Standard absolute temperature unit \\
L & -2.54 L & Standard length unit \\
M & 2.2 M & Standard mass unit \\
Q & -100 Q & Standard charge unit \\
S & 6.97 S & Standard substance unit in SI unit system \\
T & 3600 T & Standard time unit \\
C & 125 C & Standard luminosity unit in SI unit system
\end{tabular}

Note Because Mathcad by default treats most expressions involving a number followed immediately by a letter to mean implied multiplication of a number by a variable name, you will need to backspace over the implied multiplication operator to create expressions like 4.5 M .

To type a Greek letter into an equation or into text, press the Roman equivalent from the table below, followed by [Ctrl]G. Alternatively, use the Greek toolbar.
\begin{tabular}{|c|c|c|c|}
\hline Name & Uppercase & Lowercase & Roman equivalent \\
\hline alpha & A & \(\alpha\) & A \\
\hline beta & B & \(\beta\) & B \\
\hline chi & X & \(\chi\) & C \\
\hline delta & \(\Delta\) & \(\delta\) & D \\
\hline epsilon & E & \(\varepsilon\) & E \\
\hline eta & H & \(\eta\) & H \\
\hline gamma & \(\Gamma\) & \(\gamma\) & G \\
\hline iota & I & 1 & I \\
\hline kappa & K & \(\kappa\) & K \\
\hline lambda & \(\Lambda\) & \(\lambda\) & L \\
\hline mu & M & \(\mu\) & M \\
\hline nu & N & \(v\) & N \\
\hline omega & \(\Omega\) & w & W \\
\hline omicron & O & 0 & O \\
\hline phi & \(\Phi\) & \(\phi\) & F \\
\hline phi (alternate) & & \(\varphi\) & J \\
\hline pi & \(\Pi\) & \(\pi\) & P \\
\hline psi & \(\Psi\) & \(\psi\) & Y \\
\hline rho & P & \(\rho\) & R \\
\hline sigma & \(\Sigma\) & \(\sigma\) & S \\
\hline tau & T & \(\tau\) & T \\
\hline theta & \(\Theta\) & \(\theta\) & Q \\
\hline theta (alternate) & \(\vartheta\) & & J \\
\hline upsilon & Y & \(v\) & U \\
\hline xi & \(\Xi\) & \(\xi\) & X \\
\hline zeta & Z & \(\zeta\) & Z \\
\hline
\end{tabular}

Note The Greek letter \(\pi\) is so commonly used that it has its own keyboard shortcut: [Ctrl][Shift]p.

\section*{Arrow and Movement Keys}
\begin{tabular}{|c|c|}
\hline Keys & Actions \\
\hline [\(\uparrow\) & Move crosshair up. In math: move editing lines up. In text: move insertion point up to previous line. \\
\hline [\(\downarrow\)] & Move crosshair down. In math: move editing lines down. In text: move insertion point down to next line. \\
\hline \([\leftarrow]\) & Move crosshair left. In math: select left operand. In text: move insertion point one character to the left. \\
\hline \([\rightarrow]\) & Move crosshair right. In math: select right operand. In text: move insertion point one character to the right. \\
\hline [PgUp] & Scroll up about one-fourth the height of the window. \\
\hline [PgDn] & Scroll down about one-fourth the height of the window. \\
\hline [Shift][\({ }^{\text {] }}\) & In math: move crosshair outside and above expression. In text: highlight from insertion point up to previous line. \\
\hline [Shift][\(\downarrow\)] & In math: move crosshair outside and below expression. In text: highlight from insertion point down to next line. \\
\hline [Shift] \([\leftarrow]\) & In math: highlight parts of an expression to the left of the insertion point. In text: highlight to left of insertion point, character by character. \\
\hline [Shift] \([\rightarrow]\) & In math: highlight parts of an expression to the right. In text: highlight to right of insertion point, character by character. \\
\hline [Ctrl][\(\uparrow\)] & In text: move insertion point to the beginning of a line. \\
\hline [Ctrl][\(\downarrow\)] & In text: move insertion point to the end of a line. \\
\hline [Ctrl] \([\leftarrow]\) & In text: move insertion point left to the beginning of a word. \\
\hline [Ctrl] \(] \rightarrow\)] & In text: move insertion point to the beginning of next word. \\
\hline [Ctrl][」] & Insert a hard page break. In math: insert addition with line break operator. In text: set the width of the text region. \\
\hline [Ctrl][Shift][个] & In text: highlight from insertion point up to the beginning of a line. \\
\hline [Ctrl][Shift][\(\downarrow\)] & In text: highlight from insertion point to end of the current line. \\
\hline [Ctrl][Shift][\(\leftarrow]\) & In text: highlight left from insertion point to the beginning of a word. \\
\hline [Ctrl][Shift][\(\rightarrow\)] & In text: highlight from insertion point to beginning of the next word. \\
\hline [Space] & In math: cycles through different states of the editing lines. \\
\hline [Tab] & In text: moves the insertion point to the next tab stop. In math or plot: move to next placeholder. \\
\hline [Shift][Tab] & In math or plot: move to previous placeholder. \\
\hline [PgUp] & Move \(80 \%\) up the window. \\
\hline [PgDn] & Move 80\% down the window. \\
\hline [Shift][PgUp] & Move up to previous pagebreak. \\
\hline [Shift][PgDn] & Move down to next pagebreak. \\
\hline
\end{tabular}
\begin{tabular}{ll}
[Home] & \begin{tabular}{l}
Move to beginning of previous region. In text, move to beginning of \\
current line.
\end{tabular} \\
[End] & Move to next region. In text, move to end of current line. \\
[Ctrl] [Home] & \begin{tabular}{l}
Scroll to beginning of worksheet. In text, move insertion point to \\
beginning of text region or paragraph.
\end{tabular} \\
{\([\) Ctrl][End] } & \begin{tabular}{l}
Scroll to end of worksheet. In text, move insertion point to end of text \\
region or paragraph.
\end{tabular} \\
\([\lrcorner]\) & \begin{tabular}{l}
In text: start new line. In equation or plot: move crosshair below \\
region, even with left edge of region.
\end{tabular}
\end{tabular}

\section*{Function Keys}
\begin{tabular}{|c|c|}
\hline Keys & Actions \\
\hline [F1] & Help. \\
\hline [Shift][F1] & Context sensitive help. \\
\hline [F2] & Copy selected region to clipboard. \\
\hline [F3] & Cut selected region to clipboard. \\
\hline [F4] & Paste contents of clipboard. \\
\hline [Ctrl][F4] & Close worksheet or template. \\
\hline [Alt][F4] & Close Mathcad. \\
\hline [F5] & Open a worksheet or template. \\
\hline [Ctrl][F5] & Search for text or math characters. \\
\hline [Shift][F5] & Replace text or math characters. \\
\hline [F6] & Save current worksheet. \\
\hline [Ctrl][F6] & Make next window active. \\
\hline [Ctrl][F7] & Inserts the prime symbol ('). \\
\hline [F7] & Open a new worksheet. \\
\hline [F9] & Recalculate a selected region. \\
\hline [Ctrl][F9] & Inserts blank lines. \\
\hline [Ctrl][F10] & Deletes blank lines. \\
\hline
\end{tabular}

Note These function keys are provided mainly for compatibility with earlier Mathcad versions. Mathcad also supports standard Windows keystrokes for operations such as file opening, [Ctrl] 0], and saving, [Ctrl]S], copying, [Ctrl]C], and pasting, [Ctrl]V]. Choose Preferences from the View menu and check "Use standard Windows shortcut keys" on the General tab to enable all Windows shortcuts.

\section*{ASCII codes}

Decimal ASCII codes from 32 to 255. Nonprinting characters are indicated by " \(n p c\)."
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Code & Character & Code & Character & Code & Character & Code & Character & Code & Character \\
\hline 32 & [space] & 80 & P & 130 & & 182 & If & 230 & æ \\
\hline 33 & , & 81 & Q & 131 & \(f\) & 183 & . & 231 & ç \\
\hline 34 & " & 82 & R & 132 & " & 184 & & 232 & è \\
\hline 35 & \# & 83 & S & 133 & ... & 185 & 1 & 233 & é \\
\hline 36 & \$ & 84 & T & 134 & \(\dagger\) & 186 & - & 234 & ิ \\
\hline 37 & \% & 85 & U & 135 & \(\ddagger\) & 187 & " & 235 & ë \\
\hline 38 & \& & 86 & V & 136 & & 188 & \(1 / 4\) & 236 & ì \\
\hline 39 & , & 87 & W & 137 & \% & 189 & 1/2 & 237 & í \\
\hline 40 & (& 88 & X & 138 & Š & 190 & 3/4 & 238 & 1̂ \\
\hline 41 &) & 89 & Y & 139 & < & 191 & \(i\) & 239 & i \\
\hline 42 & * & 90 & Z & 140 & E & 192 & A & 240 & ð \\
\hline 43 & + & 91 & [& 141-4 & \(n p c\) & 193 & Á & 241 & ก \\
\hline 44 & , & 92 & 1 & 145 & & 194 & A & 242 & ò \\
\hline 45 & - & 93 &] & 146 & , & 195 & Ã & 243 & ó \\
\hline 46 & & 94 & \(\wedge\) & 147 & " & 196 & Ä & 244 & ô \\
\hline 47 & \% & 95 & - & 148 & " & 197 & A & 245 & o \\
\hline 48 & 0 & 96 & & 149 & - & 198 & Æ & 246 & ö \\
\hline 49 & 1 & 97 & a & 150 & - & 199 & Ç & 247 & \(\div\) \\
\hline 50 & 2 & 98 & b & 151 & - & 200 & Ė & 248 & \(\varnothing\) \\
\hline 51 & 3 & 99 & c & 152 & \(\sim\) & 201 & É & 249 & u \\
\hline 52 & 4 & 100 & d & 153 & TM & 202 & Ê & 250 & ú \\
\hline 53 & 5 & 101 & e & 154 & š & 203 & Ë & 251 & û \\
\hline 54 & 6 & 102 & f & 155 & , & 204 & Ì & 252 & u \\
\hline 55 & 7 & 103 & g & 156 & œ & 205 & Í & 253 & y \\
\hline 56 & 8 & 104 & h & 157-8 & \(n p c\) & 206 & Î & 254 & p \\
\hline 57 & 9 & 105 & , & 159 & \(\dot{Y}\) & 207 & Ï & 255 & y \\
\hline 58 & : & 106 & j & 160 & \(n p c\) & 208 & Đ & & \\
\hline 59 & ; & 107 & k & 161 & i & 209 & N & & \\
\hline 60 & \(<\) & 108 & 1 & 162 & ¢ & 210 & Ò & & \\
\hline 61 & \(=\) & 109 & m & 163 & £ & 211 & Ó & & \\
\hline 62 & > & 110 & n & 164 & a & 212 & Ô & & \\
\hline 63 & ? & 111 & o & 165 & ¥ & 213 & O & & \\
\hline 64 & @ & 112 & p & 166 & 1 & 214 & Ö & & \\
\hline 65 & A & 113 & q & 167 & § & 215 & \(\times\) & & \\
\hline 66 & B & 114 & r & 168 & & 216 & \(\emptyset\) & & \\
\hline 67 & C & 115 & s & 169 & © & 217 & Ù & & \\
\hline 68 & D & 116 & t & 170 & a & 218 & Ú & & \\
\hline 69 & E & 117 & u & 171 & « & 219 & U & & \\
\hline 70 & F & 118 & \(v\) & 172 & \(\neg\) & 220 & Ü & & \\
\hline 71 & G & 119 & w & 173 & - & 221 & Ý & & \\
\hline 72 & H & 120 & x & 174 & ® & 222 & P & & \\
\hline 73 & I & 121 & y & 175 & - & 223 & B & & \\
\hline 74 & J & 122 & z & 176 & - & 224 & à & & \\
\hline 75 & K & 123 & 1 & 177 & \(\pm\) & 225 & á & & \\
\hline 76 & L & 124 & | & 178 & 2 & 226 & â & & \\
\hline 77 & M & 125 & & 179 & 3 & 227 & ã & & \\
\hline 78 & N & 126 & \(\sim\) & 180 & & 228 & ä & & \\
\hline 79 & O & 127-9 & \(n p c\) & 181 & \(\mu\) & 229 & å & & \\
\hline
\end{tabular}

\section*{Index}
.\(\quad\) (Enter key) 2
\(\int\) (integral) 136, 299
\(\rightarrow\) (symbolic equal sign) 246
\(\times\) (vector cross product) 130, 299
\(\sum\) (vector sum) 130, 299
\(\rightarrow\) (vectorize operator) 130, 201, 298
\(\sum\) and \(\Pi\) (summation and product) 130, 299
! (factorial) 123, 298
\% 98, 298, 311
() (parentheses) 48
+ (with line break) 300
,,\(+- \cdot\), and / 125, 300
:= (definition) 13, 97
\(<,>, \leq, \geq\) (inequalities) 125,300
= (Boolean equal) 126, 300
\(=\) (evaluating expression) 14,99
\(|\cdot|\) (determinant) 130, 299
\(|\cdot|\) (magnitude/absolute value) 130, 299
\(\infty\) (infinity) 98, 311
\(\neq\) (not equal to) 126,300
\(\sqrt{ }\) (square root) 125,299
3D Plot Format dialog box 234
aborting calculations in progress 118
absolute value 127, 299
accessing Mathcad from other applications 294
acos function 146
acosh function 146
ActiveX 292, 294
adaptive smoothing of data 173
addition 125, 300
\(A i\) and \(B i\) Bessel functions 147
Airy functions 147
algorithms
See numerical methods
aligning
output tables 199
regions 79
text 60
and 125
angle function 145
Animate command 119
animation
compressing AVI files 120
creating 119
playback 120
saving 119
saving with worksheet 121
speed 119-120
antisymmetric tensor function 148
APPEND function 188
APPENDPRN function 188
approximations
Minerr function 160
root of expression 157
area
collapsing 85
deleting 87
inserting 85
locking and unlocking 85
naming 85
password protecting 85
arg function 148
arguments
of functions 104
arrays
calculations by element 201
copying and pasting 199
creating 35,191
defining with range variables 192
displaying in results 198
exporting data from 203
extracting a row or column 197
extracting a subarray 154
functions for 152
graphical display of 202
importing data into 193,196
nested 111, 204
operators for 127
ORIGIN used with 197
See also matrices and vectors
arrow keys, for editing 9, 314
ASCII codes
entering in strings 36
table 316
asin function 146
asinh function 146
assume keyword 249
assume keyword modifier 251
atan function 146
atan2 function 146
atanh function 146
augment function 153, 155
Auto (on status bar) 117
automatic calculation mode 117
autoscaling of axis limits 217
AutoSelect
in numerical integration 136
in solving 162
overriding 137, 163

AVI files
compression 120
creating 119
hyperlinking from worksheet 121
playback 120
Axum component 283
Axum graphs in Mathcad 214
Axum LE 214
background color 82
bar plots (3D)
formatting 234
base 10 logarithm 147
base \(b\) logarithm 147
base of results (decimal/hex/octal/binary) 111
base units 113
bei and ber Bessel functions 147
Bessel functions 147
Bessel Kelvin functions 147
binary numbers 34,111
bitmaps
color palettes 70
copying from the Clipboard 69
creating pictures from 68
functions for reading 189
blank lines, inserting or deleting 80
blank pages in printouts 94
blank space between regions 10
BMP files 68, 84, 189
bookmarks 26
Boolean operators 125, 127, 148, 161
border around a region 10
boundary value problems 183
break statement 273
breaking equations 255,300
bspline function 167
B-splines 167-168
built-in functions
listed by type 143
symbolic only 301
built-in variables 98
bulleted paragraphs 60
business functions 173
bvalfit function 185
CAD drawings 286
Calc on message line 118
calculation 14
controlling 117
disabling for individual equation 118
equations \(14,99,110\)
interrupting 118
locking area 85
order in worksheets 99
restarting after interrupting 118
units in 113
calculator, using Mathcad as 12
calling Mathcad from other applications 294
ceil function 149
Celsius 109, 116
CFFT function 150
cfft function 150
CGS units 114, 305
characters, deleting or inserting in math 43
Chi function 301
cholesky function 156
Ci function 301
Clipboard 49, 255
closing a worksheet 20
closing Mathcad
See exiting Mathcad
CMP (colormap) files 190
cnorm function 166
cnper function 173
coeffs keyword 247-248
Collaboratory 22, 28
collapsing an area 86
collect keyword 248
colon (:) as definition symbol 13, 97
color
Electronic Book annotation 24
equation highlight 82
in equations 52
in text 59
of worksheet background 82
color images
displaying 67
reading 189
color palettes for bitmaps 70
colormap files 190, 236
cols function 152
column vectors
See vectors
combin function 149
combinatorics functions 149
common logarithm 147
complementary error function 149
complex conjugate 127, 298
complex keyword 247-248
complex numbers
conjugate 127
determining angle 127
display of 111
entering 34
imaginary unit symbol 111
magnitude of 127
operators and functions for 127,149
real and imaginary parts 127
vector field plots 232
complex threshold 111
Component Wizard 281
components
inserting 281
overview of 280
compounding periods 173
computing results \(14,99,104\)
concat function 187
cond 1 and cond 2 functions 153
conde and condi functions 153
condition number of matrix 153
conditional
functions 148, 188
statement 269
conjugate (complex) 127, 298
constants
changing the font style of 51
See also numbers and predefined variables
constraint
in solve blocks 161
tolerance 162
context menu
See pop-up menu
continue statement 273
contour integrals 138
contour plots
creating 231
formatting 234
See also plots, 3D
convert keyword 249, 254
Convert to Partial Fraction command 254
converting to partial fractions 249
copy and paste \(10,71,116\)
copying
expressions 49
from Electronic Book 25
regions 10
results 116
corr function 163
cos function 145
cosh function 146
cosine (cos) function 187
cosine integral 301
cot function 145
coth function 146
covariance 163
crate function 173
CreateMesh function 154
CreateSpace function 154
creating
2D plots 207
3D plots 223
contour plots 231
Electronic Books 89
hyperlinks 87
pop-up window 87
surface plots \(225,227-228\)
text regions 55
vector field plots 232
worksheet templates 75
cross product 130, 299
crosshair for insertion 10
csc function 145
csch function 146
csign function 148
csort function 157
cspline function 167
CTOL variable 162, 311
cube root 112, 299
cubic spline interpolation 167
cumint function 174
cumprn function 174
cumulative distribution functions 164
cumulative interest paid 174
cumulative principal paid 174
curve fitting
functions for 169
polynomial 169-170
using cubic splines 167
curves, finding area under 136
custom operators 140
cvar function 163
\(\delta\) function 148
d/dx
See derivatives
dashed selection rectangle 10
data
entering into a table 195
graphing 214
data files
exporting from an array 204
functions for reading and writing 188
importing data from 196
reading data from 193
reading into a matrix 193
writing from an array 203
data input 196
date in header or footer 84
dbeta function 165
dbinom function 165
dcauchy function 165
dchisq function 165
debugging a worksheet 121
decimal places
in displayed results 111
internal precision 110
decimal points
numerical calculation 111
symbolic calculation 247
decomposition
matrix 156
partial fraction 247
singular value 157
default formats
2D plots 218
3D plots 234
numerical results 110
template 75
worksheet layout 75
defining
complex numbers 34
functions 104
global variables 100
local variables in program 268
multiple definitions of variable 100
numbers 33
operators 140
programs 267
range variables 102
See also creating
strings 35
units 109,113
variables 13, 97
definite integral 258
definition symbol (:=) 13, 97
degrees, converting to radians 116,145
deleting
blank lines 80
characters in math 43
equations 11
hard page breaks 83
hyperlinks 88
operators 46
parentheses 49
parts of an expression 50
regions 11
text 55
delta function 148, 301
derivatives 133, 299
higher order 135
symbolic 256
determinant 130, 262, 299
device-independent bitmap 69
dexp function 165
\(d F\) function 165
dgamma function 165
dgeom function 166
dhypergeom function 166
diagonal matrix (diag) function 152
dialects (spell-checker) 66
DIB
See device-independent bitmap
dictionaries (spell-checker) 66
differential equations 176
higher order 177, 179
partial 186
second order 177,179
slowly varying solutions 182
smooth systems 182
stiff systems 182
systems 180
differentiation
See derivatives
differentiation variable 133, 135
digamma function 302
dilog function 301
dilogarithmic integral 301
dimensions 108
Dirac delta function 301
disabling equations 64, 118
display of arrays 198
display of operators 124
displayed precision
See decimal places
distribution functions 164
division 125, 299
dlnorm function 166
dlogis function 166
dnbinom function 166
dnorm function 166
dot product 129
double integrals 139
Down One Level command 205
dpois function 166
drag and drop \(10,25,50,71,73,116,242\)
dragging regions 10
drawings
See pictures
\(d t\) function 166
dunif function 166
dweibull function 166
\(\varepsilon\) function 148
\(e\), base of natural logarithms 98, 311
Edit Go to Page command 9
Edit Links command 73
editing equations
annotated example 42
applying an operator 43
changing a number 43
changing a variable or function name 43
compared to word processors 42
deleting an operator 46
deleting parentheses 49
deleting parts of expression 50
inserting an operator 44
making expression an argument to a function 49
moving parts of an expression 49
moving/rearranging equations 79
editing lines 16,42
eff function 174
effective annual interest rate 174
Ei function 301
eigenvalues 155-156
eigenvectors 155-156
Electronic Book
browsing history 24
copying information from 25
creating 89
moving around in 23,26
searching for information in 24
toolbar 23, 26
Electronic Books 21, 87, 89
Email 28, 95
endpoints for ranges 103
engineering notation 111
Enter key 2
epsilon function 148
equal sign (=)
as Boolean operator 300
in numerical calculations 99
in solve blocks 159
symbolic calculations 246, 259-260
equality constraints 161
equations
as constraints in solve blocks 161
breaking 255, 300
calculating results 14,99
color 52
disabling calculation for 64,118
dragging and dropping 50
effect of range variables in 103
errors in 121
font 51
global definitions 100
in text 63
locking in area 85
order of evaluation 99, 117
processing and calculating 13, 117
properties 64,118
solving for root 157
solving symbolically 259-261
solving with solve blocks 159
styles 51
units in 106
variable definition 97
wrapping 300
erf function 149, 301
erfc function 149
ERR variable and Minerr 162
error (erf) function 149-150, 301
error messages
correcting 122
custom 187
in equations 121
in programs 276
tracing the source of 121
with units 108
error string function 187,276
Euler's constant 301
Evaluate Complex command 254
Evaluate Floating Point command 247, 254
Evaluate in Place option 255
Evaluate Symbolically command 254
Excel
calling Mathcad from 295
Excel component 284
reading an Excel data file 193
writing data to an Excel file 203
exclusive or 125
exiting Mathcad 20
\(\exp\) function 147
Expand command 254
expand in series 248
expand keyword 247-248, 254
expand nested arrays 111
Expand to Series command 247
Expert Solver 159, 163
expfit function 170
exponent 125,298
exponential
function 147
integral 301
notation, entering 34
notation, in displayed results 111
threshold 111
exporting
worksheets as HTML 77
worksheets as RTF 76
exporting data 203
expressions
applying a function to 49
converting to partial fractions 254
correcting errors in 122
deleting parts of 50
error messages in 121
evaluating 99
expanding 247, 254
factoring 247
finding the coefficients of 247
moving parts of 49
on multiple lines 300
selecting several 79
simplifying 254
symbolic evaluation of 246-247
Extending Mathcad in the Resource Center 22
Extension Packs 143
F (function) keys, table of 315
\(\Phi\) function 148
Factor command 254
factor keyword 247-248
factorial (!) 125, 298
Fahrenheit 109, 116
fast Fourier transform 150
FFT function 151
fft function 150
fhyper function 149
file access functions 188
File Read/Write component 193, 203
File Send command 95
files
opening 76
reading data from 188, 193
saving 19
See also data files
See also worksheets
writing data to 188
filters
for exporting data 203
for importing data 193
finance functions 173
Find function 159-160, 261
first order differential equation 178
float keyword 247-248
floor function 149
font
changing in header or footer 84 changing in math 51 changing in text 58
footers 84
for loop 271
Format Header/Footer command 84
Format Properties command 64
Format Style command 61
formatting
2D plots 216
3D plots 234
numbers in matrices 199
operators 124
results 110
symbolic 255
worksheets 83
Formatting toolbar 8
math styles 52
text styles 61
fourier keyword 247, 249, 263
Fourier transforms
numeric functions 150
symbolic 247, 249, 263
FRAME for animation 119
Fresnel cosine integral 301
Fresnel sine integral 301
FTP 28
functions
applying to an expression 49
built-in 143
business 173
colormap 190, 236
combinatorics 149
complex arithmetic 127
defining 16,104
error message 187
file access 188
finance 173
Fourier transform 150
hyperbolic 146
inserting 143
interpolation 167
inverse trigonometric 146
\(\log\) and exponential 147
matrix decomposition 156
number theory 149
optimization 157
piecewise continuous 148, 188
population statistics 163
prediction 167
probability distribution 164
recursive 106
regression 169
See also built-in functions
smoothing 172
solving 157
special 149
statistical 163
string manipulation 187
symbolic calculation 301
tensor 148, 187
that take vector arguments 152
to combine arrays 153-154
to compute angle to a point 148
to create arrays 154
to find roots of expressions 157
to manipulate strings 187
trigonometric 145
uniform polyhedra 190
user-defined 36, 104
vector and matrix 152
future value calculations 174
\(f v\) function 174
fvadj function 174
fvc function 175
gamma (Euler's constant) 301
gamma function 149
Gaussian distribution 166
gcd function 149
generalized
eigenvalues 155
eigenvectors 155
inverse of a matrix 152
regression 171
genfit function 171
geninv function 152
genvals function 155
Given, in solve blocks 159, 261
global definitions 100
gmean function 163
Gopher 28
graphics, inserting 67
graphing
data 212
expressions 211
functions 211, 224
in 2D 207
in 3D 223
uniform polyhedra 190
vector 212
graphs
Axum 283
creating 17, 190, 223
formatting 18
resizing 18
See also plots, 2D or plots, 3D
S-PLUS 288
greater than 125
greater than or equal to 125
greatest common divisor 149
greatest integer function 149
Greek letters
in equations 37
in text 57
table of 313
Greek toolbar 38, 57, 313
guess
for root finding 157
for solve blocks 159
guidelines for aligning regions 80
hard page breaks 83
HBK file for an Electronic Book 90
HBK files 22
headers and footers 84
heaviside step function 148
Help
context-sensitive 26
on-line 26
See also Resource Center and technical support
Her function 149
hexadecimal numbers 34,111
highlighting equations 82
hist function 164
histograms 164
history of browsing in Electronic Book 24
hmean function 164
HTML 25, 77
HTTP 28
hyperbolic cosine integral 301
hyperbolic functions 146
hyperbolic sine integral 302
hyperlinks
and relative paths 88
deleting 88
editing 88
to other file types 89
to worksheets 87
Hypertext Mark-up Language
See HTML
\(i\) (imaginary unit) 34

IO, I1, and In Bessel functions 147
ibeta function 149
ICFFT function 150
icfft function 150
identity function 152
identity matrix 152
if function 148,188
if statement 269
ifft and icfft functions 150
IFFT function 151
Im function 148
image file
BMP format 68, 189
in headers and footers 84
imaginary numbers entering 34
symbol for 34, 111
imaginary value 111
implied multiplication 42, 108, 312
importing data 193, 196
impulse function 148
incompatible units (error message) 108
increments for ranges 103
indefinite integral 258
indented paragraphs 60
index for an Electronic Book 91
index variables
See range variables
inequalities 125,300
as constraints in solve blocks 161
infinity (\(\infty\)) 37, 98, 311
in-line division 129
inner product 129
in-place activation 71, 282
Input Table component 195-196
input to a component 281
Insert Area command 85
Insert Function command 143
Insert Hyperlink command 87
Insert key 44, 56
Insert Link command 87
Insert Math Region command 63
Insert Matrix command
to create array 35,191
to resize array 192
Insert Object command 10, 71, 116
Insert Reference command 87, 279
Insert Unit command 108, 113
inserting
blank lines 80
characters 43
equations in text 63
functions 49
graphic objects 71
graphics computationally linked 74
hyperlinks 87
math region 63
minus sign in front of expression 47
parentheses around expression 48
pictures 67
text 55
units 108
worksheet 279
insertion point 12
installation instructions 5
integral transforms
Fourier 247, 263
Laplace 247, 263
z 247, 263
integrals 136, 299
algorithms 136
AutoSelect 136
contour 138
double 139
indefinite 258
symbolic evaluation of 258
tolerance 138
variable limits 137
integration
adaptive 137
improper endpoints 137
infinite limits 137
Romberg 137
IntelliMouse support 9, 244
intercept function 169
interest rate 174
interest rate calculations 173
internal rate of return 176
International System of units (SI) 114
Internet
access 27
Collaboratory 28
Web browsing 25
Internet Explorer
See Microsoft Internet Explorer
Internet setup 28
interp function 167
interpolation
cubic spline 167
functions 167
linear 167
interrupting calculations in progress 118
inverse
cumulative distributions 164
Fourier transform 247, 249, 263
hyperbolic functions 146
Laplace transform 247, 249, 263
matrix 130, 298
trigonometric functions 146
wavelet transform 152
z-transform 247, 249, 263
invfourier keyword 247, 249, 263
invlaplace keyword 247, 249, 263
invztrans keyword 247, 249, 263
ipmt function 175
irr function 176
IsArray function 187
IsScalar function 187
IsString function 187
iterated product 130, 299
iterated sum 130
iteration
in programs 270
with range variables 15
iwave function 152
\(j\) (imaginary unit) 34
J0, J1, and Jn Bessel functions 147
Jac function 150
Jacobian matrix 182
JavaScript 292
js and ys spherical Bessel functions 147
JScript 292
\(K 0, K 1\), and \(K n\) Bessel functions 147
keywords, symbolic 247-250
Kronecker's delta function 148
ksmooth function 173
kurt function 164
Lag function 150
Lambert's \(W\) function 302
laplace keyword 247, 249, 263
Laplace transforms 247, 249, 263
Laplace's equation 186
last function 152
Laurent series 247
lcm function 149
least common multiple 149
least integer function 149
left inverse of a matrix 152
Leg function 150
length function 152
less than 125
less than or equal to 125
lgsfit function 170
limits, evaluating 124,259
line break
in equation 300
in text 56
line function 169
linear
interpolation 167
prediction 167
programming 159
regression 169
system solver and optimizer 159
systems of differential equations 180
systems of equations 156,159
linfit function 171
link
See also hyperlinks
to objects 71
to other worksheets 87,279
linterp function 167
literal subscripts 39
ln (natural \(\log\)) function 147
LoadColormap function 190, 236
local result format 17
lockable area
See area
locked calculations 85-86
locking and unlocking an area 85
loess function 169
log function 147
logarithms and exponential functions 147
logfit function 170
logical operators
See Boolean operators
long equations 255, 300
looping
for loop 271
while loop 272
lsolve function 156
lspline function 167
lu function 156
magnitude
complex numbers 127,299
vector 130
mailing worksheets 95
manual mode 117
margins 83
Math Optimization command 266
Math Options command 98
math styles
applying 52
Constants 51
editing 51
saving 53
Variables 51
Math toolbar 8, 38
Mathcad
accessing from other applications 294
Mathcad 6, 7, or 877
Mathcad Document object model 295
Mathcad OLE automation objects 294
Mathcad Overview 22
Mathcad Web Libary 22
MathConnex 291
MathSoft
contacting 6
MathSoft home page 25
MATLAB component 291
matrices
adding/deleting rows or columns 192
as array elements 204
calculations by element 201
combining 153-154
condition number 153
creating 35
creating from bitmaps 189
creating with components 281
decomposition functions 156
defining by formula 192
defining with two range variables 192
definition of 35,191
determinant 130, 262, 299
displayed as pictures 67
displayed as scrolling output tables 198
extracting a column 196
extracting a submatrix 154
extracting elements 196
functions for 152
inverting 130, 298
limits on size 191, 199
matrix arithmetic 129
norm 153
norm of 153
numbering elements 197
operators for 127
ORIGIN used with 197
plotting in contour plot 231
plotting in surface plot 228
raising to a power 298
rank 153
See also arrays
singular values 157
sorting by row or column 157
special characteristics 153
start with row and column zero 197
subscripts 196
trace 153
transpose 130, 298
Matrix Determinant command 262-263
Matrix display style 111
matrix function 154
Matrix Invert command 263
matrix subscript 298
Matrix Transpose command 262-263
max function 152
Maximize function 160
MCD file 75
MCT file 75
mean
arithmetic 164
geometric 163
harmonic 164
mean function 164
measurement for the ruler 80
medfit function 169
median function 164
metafile 69
mhyper function 150
Microsoft Internet Explorer 22, 25, 292
Microsoft Office 73, 284
min function 152
Minerr function 160, 162
Minimize function 160
minus sign
for negation 125, 298
inserting in front of expression 47
MIP
See mixed integer programming
mirr function 176
mixed integer programming 163
MKS units 114,309
mod function 149
mode
See automatic mode, manual mode
mode function 164
moving
crosshair 10, 314
editing lines 43,314
insertion point 43, 314
regions 10
multigrid function 187
multiple integrals 139
multiple roots
finding with polyroots 158
finding with solve blocks 162
multiple summations 131
multiplication 42, 299
implied 42, 108, 312
multivalued functions 112
names of variables and functions 36
natural logarithm 147
negating an expression 47, 298
nested arrays
defining 204
displaying 204
expanding 111, 205
new features in Mathcad 4
nom function 174
nominal interest rate 174
nonlinear systems of equations 159
nonscalar value (error message) 102
norm
of matrix 153
of vector 130, 299
norm1 and norm2 functions 153
normal distribution 166
norme and normi functions 153
not 125
not converging (error) 138
not equal to 125
notation in this User's Guide 1
nper function 173
\(n p v\) function 176
\(n\)th order derivative 135
\(n\)th root 125,299
num2str function 187
number format
See result format
number theory functions 149
numbered paragraphs 60
numbers 33
binary 34,111
complex 34
decimal 111
displayed as zero 111
exponential notation for 34,111
format for computed results 110
formatting 16,110
hexadecimal 34, 111
imaginary 34
octal 34,111
radix (base) for results 111
rounding 149
numerical methods
differentiation 133, 135
integration 136
root finding 158
solving and optimization 162
object linking and embedding
See OLE
object model, Mathcad Document 295
objects
embedding 71
linking 71
octal numbers 34,111
odesolve function 177
OLE
automation 292, 294
drag and drop 73
editing links 73
in-place activation 71, 73, 282
scripting objects 293
via components 280
on error statement 275
on-line resources 21
OpenGL 223
opening worksheets 76
operator placeholder 47
operators
Boolean 125
changing the display of 124
customizing 140
defined 39
deleting 46
derivative 133, 256
for complex numbers 127
for vectors and matrices 127
indefinite integral 258
inserting 44
integral 136
iterated product 130
iterated sum 130
logical 125, 148
\(n\)th order derivative 135
replacing 47
symbolic 124
table of 298
toolbars 8, 123
vector sum 132
Optimize Palette command 70
optimizers 159
or 125
or, exclusive 125
order
of derivative 135
of polynomial regression 169
of worksheet evaluation 100
ORIGIN variable 98, 197
output from a component 281
output table 198
alignment 199
resizing 199
versus matrix display style 111
overlapping regions 81
overtyping text 56
overview of Mathcad features 4, 22
page
breaks, inserting and deleting 83
headers and footers 84
length 83
numbering 84
Page Setup dialog box 83, 93
palettes, color, for bitmaps 70
paragraphs 55
bullets 60
hanging indent 60
indenting 60
numbers 60
properties 59
tab stops 60
text alignment in 60
parametric surface plots
creating 229-230
See also plots, 3D
parentheses
deleting from expression 49
inserting into an expression 48
partial differential equations 186
partial fractions 247
password protecting an area 85
Paste command 11, 72
Paste Special command 11, 69, 72
pasting
bitmaps 69
device-independent bitmaps 69
from Clipboard 49, 69
metafiles 69
OLE objects 11, 72
payment calculations 175
pbeta function 165
pbinom function 165
pcauchy function 165
pchisq function 165
Pearson's correlation coefficient 163
pending computations 117-118
percent 98,311
permut function 149
permutations 148
personal
dictionary (spell-checker) 66
QuickSheets 141
\(p F\) function 165
pgamma function 165
pgeom function 166
phypergeom function 166
pi (П, product symbol) 130
pi (3.14159...) 43, 98, 311, 313
picture operator 67, 203
pictures
border on 70
creating from bitmap file 68
creating from matrix 68
creating using SmartSketch 286
formatting 70
importing into an array 189
pasted from Clipboard 69
resizing 70
Piecewise 148
piecewise continuous functions 148
placeholder 12, 33
placeholder for an operator 47
Playback command 120
plnorm function 166
plogis function 166
plots 3D
graphing functions 224
plots, 2D
autoscaling of axis limits 217
changing perspective 220
copying format from existing plot 218
creating 208
default formats 218-219
formatting 216
graphing expressions 209
graphing functions 209
graphing vectors 213
multiple traces on 210
of data 214
QuickPlot 18
read-out of coordinates 221
reference lines in 218
resizing 18
setting axis or data limits 217
setting default formats 219
Show Markers 218
titles and labels 216
traces on 210
tracing coordinates on 221
zooming 220
plots, 3D 223
3D Plot Format dialog box 235
3D Plot Wizard 224
annotations 241
backplanes 235
color 236, 240
colormaps 236-237
contour lines 238
contour plots 231
converting 241
creating 223
examples 224,228
fill color 236
filling contours 237
fog 234
formatting 234
graphic annotations on 241
lighting 240
line color 239
lines 238
multiple plots on 233
OpenGL graphics 223
parametric surface plots 229-230
point color 240
point symbols 240
QuickPlot 224
resizing 18
rotating 243
space curves 227
spinning 244
surface plots 225, 227-228
text on 241
titles 236
uniform polyhedra 190
vector field plots 232
wireframe 238
zooming 243-244
pmt function 175
pnorm function 166
Poisson's equation 186
polar plots
creating 208
formatting 216
See also plots, 2D
polygamma function 302
polyhedra 190
Polyhedron function 190
PolyLookup function 190
polynomial
finding the roots of 158
regression 169-170
Polynomial Coefficients command 247
polyroots function 157-158
population standard deviation 164
population statistics 163
population variance 164
popup hyperlink 87
pop-up menu
3D plots 242
animation playback 120
component 282
Excel component 285
Input Table component 195
integration 137
MATLAB component 291
Scriptable Object component 294
SmartSketch component 286
solving 163
S-PLUS Graph component 289
S-PLUS Script component 290
Web browsing 26
pop-up window, creating 87
power 125, 298
ppmt function 175
ppois function 166
precision, internal 110
predefined variables 98
predict function 167
prediction, linear 167
present value calculations 176
principal branch of function 112
Print Preview command 94
printing 20, 93
and calculation of worksheet 118
and pagination 84
blank pages in 83,94
color 82
print preview 94
wide worksheets 93
PRNCOLWIDTH variable 98, 311
PRNPRECISION variable 98, 311
probability distributions 164
processing equations \(13,117-118\)
results of 117
product 130, 299
cross product 130
dot product 129
iterated 130
programs 267
adding lines 267
break statement 273
continue statement 273
controlling or interrupting 272
defining 267
error handling 274
error messages in 276
for loop 271
generating symbolic results 269
if statement 269
local assignment 267
looping 270
nested 276
on error statement 275
output of 267
recursion 278
return statement 274
statements 267
subroutines 276
symbolic evaluation of 269
while loop 272
properties
of components 282
region 81
proxy server 28
Psi functions 302
pspline function 167
\(p t\) function 166
punif function 166
\(p v\) function 176
pweibull function 166
pwrfit function 170
qbeta function 165
qbinom function 165
qcauchy function 165
qchisq function 165
\(q F\) function 165
qgamma function 165
qgeom function 166
qhypergeom function 166
qlnorm function 166
qlogis function 166
qnorm function 166
qpois function 166
qr function 156
\(q t\) function 166
quadratic equation solving 163
QuickPlot 18, 209, 224
QuickSheets 21
See also Resource Center
storing custom operators 141
qunif function 166
qweibull function 166
radians
converting to degrees 116,145
trig functions 145
radix of displayed results 111
range variables
array calculations with 201
creating arrays with 192
defining 15, 102-103
fundamental principle for 103
how Mathcad evaluates equations with 103
setting endpoints and increments 103
rank function 153
rater function 173
rbeta function 165
rbinom function 165
rcauchy function 165
rchisq function 165
Re function 148
READ_BLUE function 189
READ_GREEN function 189
\(R E A D _H L S\) function 189
READ_HLS_HUE function 189
READ_HLS_LIGHT function 189
\(R E A D_{-} H L S_{-} S A T\) function 189
\(R E A D _H S V\) function 189
READ_HSV_HUE function 189
\(R E A D_{-} H S V_{-} S A T\) function 189
READ_HSV_VALUE function 189
\(R E A D _I M A G E\) function 189
READ_RED function 189
READBMP function 189
reading a data file 193
READPRN function 188
READRGB function 189
recursion 106
reduced-row echelon form 152
reference tables in the Resource Center 22
references
and relative paths 280
to other worksheets 279
regions 10
aligning 79
blank space between 10
copying 10
deleting 11
dragging 10
dragging across documents 11
equation 10
locking 85
moving 10
overlapping 81
putting borders around 10
separating 81
text 55
unlocking 86
viewing 10,81
regress function 169
regression
functions 169
generalized 171
linear 169
localized 170
multivariate 170
polynomial 169-170
using linear combinations of functions 171
relational operators 148
relative paths
for hyperlinks 88
for references 280
relax function 186
Repaginate Now command 84
replacing characters in math or text 65
replacing operators 47
reports
for a solve block 163
resizing
graphs 18
pictures 70
Resource Center 21
accessing worksheets on Web 25
bookmarks 26
Mathcad Web Library 22
Web browsing in 25
resources, on-line 21
result format 110
results
calculating 14
calculating with equations 99,110
complex 112
copying 116
formatting 110
units and dimensions in 113
wrapping 255
return statement 274
reverse function 157
\(r F\) function 165
rgamma function 165
rgeom function 166
rhypergeom function 166
rich text format (RTF) 76
right page margin 83
rkfixed function 178
rlnorm function 166
rlogis function 166
rnd function 166
rnorm function 166
root function 157
roots
finding 157
finding multiple with solve blocks 162
finding symbolically 259
numerical approximations used 158
of polynomials 158
round function 149
rounding numbers 149
row vectors
See vectors
rows function 152
rpois function 166
rreffunction 152
rsort function 157
\(r t\) function 166
RTF file 75
See also rich text format
ruler
for formatting a worksheet 79
for formatting text 60
runif function 166
rweibull function 166
sample standard deviation 164
sample variance 164
Save As dialog box 19
SaveColormap function 190, 236
saving
new file 19
templates 78
worksheets 19,75
sbval function 184
scalar
addition 129
definition of 35, 191
division 129
multiplication 129
scatter plots (3D)
formatting 234
See also plots, 3D
scientific notation 111
Scriptable Object component 292
object model 293
search
Electronic Book 24
in equations 64
in text 64

Search Book command 24
search function 187
sec function 145
sech function 146
second derivatives, calculating 135
second order differential equations 179
selecting
graphs 18
math expression 45
page break 83
regions 10
text 56
selection rectangle 10
semicolon, in range variable definitions 102
Separate Regions command 81, 84
separating overlapping regions 81,84
series 247
series keyword 248
Shi function 302
Show Border option 70
Si function 302
sigma (summation symbol) 130
for vector 130
sign function 148
signum function 148
Simplify command 254
simplify keyword 248,254
simultaneous equations, solving numerically 156,159
\(\sin\) function 145
sine integral 302
sinfit function 170
singular value decomposition 157
sinh function 146
skew function 164
slope function (linear regression) 169
SmartSketch component 74, 286
smooth systems (differential equations) 182
smoothing of data 172
soft page breaks 83
solve blocks 159, 177
constraints in 161
definition of 159
expressions allowed in 161
finding multiple solutions 162
Given in 159
reports for 163
tolerance 162
using to solve differential equations 177
using to solve numerically 159
using to solve symbolically 261
values returned by 160
solve keyword 248, 259-260
Solving and Optimization Extension Pack 159
solving equations 159
AutoSelect of algorithm 162
linear systems 162
nonlinear systems 162
See also solve blocks
with lsolve 156
with root function 157
with solve blocks 159, 261
with Solve for Variable 259
with solve keyword 259
sort function 157
sorting vectors and matrices 157
space curves
creating 227
See also plots, 3D
spaces, inserting or deleting 80
special functions 149
spell-checking 65
spline functions 167-168
S-PLUS Graph component 288
S-PLUS Script component 289
spreadsheets, exchanging data with 280
square root 299
stack function 154-155
stack overflow error 106
standard deviation of a data set 164
standard normal distribution 166
statistics
cubic spline interpolation 167
cumulative distribution functions 164
functions 163
generalized linear regression 171
interpolation 167
inverse cumulative distributions 164
linear interpolation 167
linear prediction 167
linear regression 169
multivariate polynomial regression 170
polynomial regression 169
probability density functions 164
stderr function 169
Stdev and stdev functions 164
step function 148
step size
for differential equation solving 182
for iteration 103
str2num function 187
str2vec function 187
strings
arguments to file access functions 188
as elements of vectors 35
comparing 127
converting to numbers and vectors 187
defining 35
editing 46
evaluating 35
manipulating 187
variables 35
strlen function 187
styles
math 51
text 61
submatrix function 154
subroutines 276
subscripts
in text 59
last element function 152
literal 39
non-numeric 39
ORIGIN used with 197
start with zero 197
vector and matrix 298
Substitute for Variable command 247
substitute keyword 247-248
substr function 188
subtraction 125,300
summation 299
iterated 130
of vector elements 130
variable upper limit 132
superscript
array 130, 298
to get column from matrix 197
supsmooth function 173
surface plots
creating 225, 227-228
formatting 234
parametric 229-230
See also plots, 3D
svd function 157
svds function 157
symbolic
equal sign 246
evaluation 246
evaluation of programs 269
keywords 247
Symbolics menu commands 254
system requirements for Mathcad 5
tab stops in a worksheet 79
table of contents for an Electronic Book 90
tables of data 195
tabs in a paragraph 60
tan function 145
tanh function 146
Taylor series 247
Tcheb function 150
technical support 6
temperature conversions 109, 116
templates 75
creating new 77
modifying 78
See also QuickSheets
used to save calculation mode 117
using to create a worksheet 75
text 55
alignment 60
bullets in 60
changing font 58
color 59
editing 58
entering 14
Greek letters in 57
inserting equations in 63
moving 57
moving insertion point in 56
Occupy Page Width option 58
Push Regions Down As You Type option 59
regions 55
selecting 56
spell-checking 65
styles 61
text box 14,55
text regions 55
changing width 57
creating 14,55
editing 58
how to exit 15,55
text ruler 60
text styles 61
applying 61
creating 62
modifying 61
tilde (\(\sim\)), used in global definitions 100
time in header or footer 84
Tip of the Day 27
TOL variable 98, 311
and integrals 138
and solve blocks 162
tolerance
See TOL variable and CTOL variable toolbars 8, 123
customizing 9
Electronic Book 23, 26
operator 123
programming 267
Web 25
top-to-bottom evaluation 99
tr function 153
traces, on 2D plots 210
tracing the source of an error 121
trailing zeros 111
training 23
transcendental functions 145
transforms
discrete Fourier 150
Fourier (symbolic) 247, 263
Laplace 247, 263
symbolic 247
wavelet 152
z 247, 263
transpose of matrix 130, 262, 298
trig keyword modifier 251
trigonometric functions 145
inserting without parentheses 142
with degrees and radians 116
trunc function 149
truncation functions 149
two-point boundary value problems 183
typing over text 56
U.S. Customary units 114

Ucheb function 150
undefined variables 99, 101
uniform polyhedra 190
Uniform Resource Locator See URL
unit impulse function 148
unit step function 148
units
alternative definitions 113
base units 113
CGS system 114
common sources of error 108
converting calculated results 115
default 107
defining 109, 113
dimensional consistency 108
errors in dimensions 108
in calculated values 113
in equations 106
metric 114
MKS system 114
of variable or expression 187
placeholder 113
prefixes 114
SI 114
simplifying 111
U.S. customary 114

UnitsOf function 109, 187
Up One Level command 205
update
window manually 118
worksheet 118
worksheet window 118
URL
Collaboratory 28
MathSoft home page 25
Use Default Palette command 70
user-defined functions 104
evaluating variables in 105
valid names 36
Var and var functions 164
Variable Differentiate command 256
Variable Integrate command 258
Variable Solve command 260
Variable Substitute command 254
variables
changing the font style of 51
defining 13, 97
global definitions of 100
in red 101,121
matrices 35,191
names 36
predefined 98
range variables 15,101
string 35
substituting for 247
undefined 121
vectors 35,191
variance of a data set 164
VBScript 292
vec2str function 188
vector field plots
creating 232
from complex matrices 232
See also plots, 3D
vector product 299
vector subscript 298
vector sum operator 132
vectorize operator 201, 298
effect of 201
how to type 201
properties of 201
vectors
as array elements 204
calculations by element 201
column vectors 130
combining 154
creating 35, 191
cross product 130
displayed as scrolling output tables 198
dot product 129
functions for 152
graphing 213
limit on size 191
magnitude 130, 299
numbering elements 197
operators for 127
ORIGIN used with 197
row 130
See also arrays
sorting elements 157
start with element zero 197
subscripts 196
sum elements of 130,298
undefined elements filled with zeros 197
vector arithmetic 129
vectorize operator 201
View Animate command 119
View Zoom command 9
Visual Basic in Microsoft Excel 295
Visual Basic Scripting Edition 292
\(W\) function 302
wait message 117
wave function 152
wavelet transforms 152
Web
See World Wide Web
Web Store 23
Web toolbar 25
while loops 272
windows
update results manually 118
working with 9
zooming in and out of 9
Windows keystrokes 9, 315
wireframe, in 3D plots 238
Wizards
for inserting 3D plots 224
for inserting a component 281
worksheet ruler 79
worksheets
closing 20
exporting as HTML 77
exporting as RTF 76
formatting 83
gathering in an Electronic Book 89
hyperlinking 87
in pop-up window 87
including by reference 87
opening 76
opening from Internet 26
order of evaluation 99
printing 20, 93
referencing in another worksheet 279
saving 19,75
saving as templates 78
saving in an earlier format 77
sending by Email 95
World Wide Web
accessing 25
bookmarks for browsing 26
browsing 25, 77
Collaboratory 28
HTML browsing 25, 77
MathSoft home page 25
toolbar 25
wrapping equations 300
WRITE function 188
WRITEBMP function 189
WRITEPRN function 188
WRITERGB function 189-190
writing data to a data file 203
WWW
See World Wide Web
Wythoff symbol for a polyhedron 190
xor 125
X-Y plots
creating 208
formatting 216
QuickPlot 18
See also plots, 2D
\(Y 0, Y 1\), and \(Y n\) Bessel functions 148
y-intercept 169
zero threshold 111
zeros of expressions or functions
See roots
Zeta function 302
zooming
2D plots 220
3D plots 244
windows 9
ztrans keyword 247, 249, 263
z-transforms 247, 249, 263```

