

Alkaloids: Chemical and Biological Perspectives

Related Titles of Interest

Books

GAWLEY & AUBÉ Principles of Asymmetric Synthesis

LEVY & TANG The Chemistry of C-Glycosides

PELLETIER Alkaloids: Chemical & Biological Perspectives Volume 9 Alkaloids: Chemical & Biological Perspectives Volume 10

RILEY & ROSANSKE Development & Validation of Analytical Methods

WONG & WHITESIDES Enzymes in Synthetic Organic Chemistry

Major Reference Works

Comprehensive Heterocyclic Chemistry II

Comprehensive Natural Products Chemistry*

Comprehensive Organic Functional Group Transformations

*In preparation

Journals

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry Letters

Carbohydrate Research

Tetrahedron

Tetrahedron Asymmetry

Tetrahedron Letters

ALKALOIDS: CHEMICAL AND BIOLOGICAL PERSPECTIVES

Volume Eleven

Edited by

S. WILLIAM PELLETIER Institute for Natural Products Research

and

Department of Chemistry The University of Georgia, Athens

PERGAMON

U.K.	Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, U.K.
U.S.A.	Elsevier Science, Inc., 660 White Plains Road, Tarrytown, New York 10591-5153, U.S.A.
JAPAN	Elsevier Science Japan, Tsunashima Building Annex, 3-20-12 Yushima, Bunkyo-ku, Tokyo 113, Japan
	Copyright © 1996 Elsevier Science Ltd
	All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic

tape, mechanical, photocopying, recording or otherwise, without permission in writing from the publishers.

First Edition 1996

Library of Congress Cataloging in Publication Data A catalogue record for this serial is available from the Library of Congress

British Library Cataloging in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 08 0427979

Transferred to digital printing 2005

Dedicated to the memory of

Léo Edmond Marion (1899 – 1979)

Leo Marion, starting from humble beginnings, showed rare ability, courage and determination in obtaining a Ph.D. in organic chemistry. His illustrious natural products career really began with a year of research with the renowned Ernst Späth in Vienna, followed by fruitful collaboration with R.H.F. Manske at the National Research Council, Ottawa. His major research on identification, structure and stereochemistry of the alkaloids of Fumariaceae, Papilionaceae, Lycopodiaceae and Ranunculaceae won him international recognition. But his most pioneering work was on alkaloid biosynthesis, begun in 1948 with S. Kirkwood. This research led to flourishing schools in that discipline (Leete, Spenser). His initiative in recruiting and encouraging M. Pryzybylska gave impetus to the use of X-ray crystallography in determining the structure and stereochemistry of complex alkaloids.

Leo Marion's role as author (in *The Alkaloids*, reviews) was overshadowed by his vital role as editor-in-chief in reorganizing and establishing high standards for the Canadian Journals of Research. This, his functions as administrator at the National Research Council, as a teacher in helping establish chemistry departments at the University of Montreal and Carleton University, and finally as Dean of Science at the University of Ottawa, crowned a most distinguished career.

O. E. Edwards

This Page Intentionally Left Blank

- Giovanni Appendino, Departimento di Scienza e Technologia del Farmaco, Via P. Giuria, 9-I-10125 Torino, Italy
- Naoki Asano, Faculty of Pharmaceutical Sciences, Hokuriku University, 3-Ho, Kanagawa-machi, Kanazawa 920-11, Japan
- Mary D. Menachery, Penn State Altoona, 3000 Ivyside Park, Altoona, Pennsylvania 16601-3760, U.S.A.
- Russell J. Molyneux, Western Regional Research Center, Agricultural Research Service, USDA, 800 Buchanan Street, Albany, California 94710, U.S.A.
- Robert J. Nash, Institute of Grassland & Environmental Research, Plas Gogerddan, Aberystwyth, Dyfed SY23 3EB, United Kingdom
- Paul J. Schiff, Jr., University of Pittsburgh, School of Pharmacy, Department of Pharmaceutical Sciences, 512 Salk Hall, Pittsburgh, Pennsylvania 15261, U.S.A.
- Alison A. Watson, Institute of Grassland & Environmental Research, Plas Gogerddan, Aberystwyth, Dyfed United Kingdom SY23 3EB

This Page Intentionally Left Blank

Volume 11 of this series presents five timely reviews on current research on alkaloids. Chapter 1 by Paul L. Schiff, Jr. is a monumental survey of research that has been carried out over the past decade on the *Thalictrum* alkaloids. Forty-six new alkaloids are described from fifteen species of the genus *Thalictrum*, as well as 116 alkaloids of known structure from thirty-six species and subspecies of this genus. The chapter includes discussions of isolation and structure elucidation, analysis, biosynthesis, cell culture, and pharmacology. Also featured are inclusive compilations of botanical sources, alkaloids by alkaloid types, and calculated molecular weights of the *Thalictrum* Alkaloids.

Chapter 2 by Giovanni Appendino provides a fascinating treatment of Taxine, a collective name referring to a mixture of diterpenoid alkaloids from the yew tree (genus: *Taxus*). Taxine is responsible for the toxic properties of the yew tree that has been documented in historical and fictional literature, from Julius Caesar to Shakespeare, and from Agatha Christie to T. S. Eliot. The chapter treats the history, isolation techniques, structure elucidation, chemistry, and pharmacology of Taxine.

Chapter 3 by Mary D. Menachery surveys the alkaloids of South American Menispermaceae (moonseed family). Many different structural types are included in this family. The alkaloidbearing plants are woody-vines, shrubs, or small trees. Several of these species possess potent curare activity. The chemistry as well as pharmacology of these alkaloids is summarized.

Chapter 4 by Russell J. Molyneux, Robert J. Nash, and Naoki Asano treats the chemistry and biological activity of the calystegines and related *nor*tropane alkaloids. These polyhydroxylated bicyclic alkaloids represent another class of compounds that inhibit glycosidases, producing profound effects in biological systems by disrupting the essential cellular function of glycoprotein processing.

Chapter 5, a related chapter by Robert J. Nash, Naoki Asano, and Alison A. Watson, reviews polyhydroxylated alkaloids that inhibit glycosidases. Topics covered include distribution, ecological significance and toxicity, isolation, synthesis, and biosynthesis.

Each chapter in this volume has been reviewed by at least one expert in the field. The editor thanks these reviewers for the important contributions they have made to this volume. Indexes for both subjects and organisms are provided.

The editor invites prospective contributions to write him about topics for review in future volumes of this series.

S. William Pelletier Athens, Georgia June 13, 1996 This Page Intentionally Left Blank

Vo	lume 1	
1.	The Nature and Definition of an Alkaloid S. William Pelletier	1
2.	Arthropod Alkaloids: Distribution, Functions, and Chemistry Tappey H. Jones and Murray S. Blum	33
3.	Biosynthesis and Metabolism of the Tobacco Alkaloids Edward Leete	85
4.	The Toxicology and Pharmacology of Diterpenoid Alkaloids M. H. Benn and John M. Jacyno	153
5.	A Chemotaxonomic Investigation of the Plant Families of Apocynaceae, Loganiaceae, and Rubiaceae by Their Indole Alkaloid Content M. Volkan Kisabürek, Anthony J.M. Leeuwenberg, and Manfred Hesse	211
Vo	lume 2	
1.	Some Uses of X-ray Diffraction in Alkaloid Chemistry Janet Finer-Moore, Edward Arnold, and Jon Clardy	1
2.	The Imidazole Alkaloids Richark K. Hill	49
3.	Quinolizidine Alkaloids of the Leguminosae: Structural Types, Analyses, Chemotaxonomy, and Biological Properties A. Douglas Kinghorn and Manuel F. Balandrin	105
4.	Chemistry and Pharmacology of Maytansinoid Alkaloids Cecil R. Smith, Jr. and Richard G. Powell	
5.	 ¹³C and Proton NMR Shift Assignments and Physical Constants of C₁₉-Diterpenoid Alkaloids S. William Pelletier, Naresh V. Mody, Balawant S. Joshi, and Lee C. Schramm 	149

Volume	3
--------	---

1.	The Pyridine and Piperidine Alkaloids: Chemistry and Pharmacology Gabor B. Fodor and Brenda Colasanti	1
2.	The Indolosesquiterpene Alkaloids of the Annonaceae Peter G. Waterman	91
3.	Cyclopeptide Alkaloids Madeleine M. Joullie and Ruth F. Nutt	113
4.	Cannabis Alkaloids Mahmoud A. ElSohly	169
5.	Synthesis of Lycopodium Alkaloids Todd A. Blumenkopf and Clayton H. Heathcock	185
6.	The Synthesis of Indolizidine and Quinolizidine Alkaloids of Tylophora, Cryptocarya, Ipomoea, Elaeocarpus, and Related Species R. B. Herbert	241
7.	Recent Advances in the Total Synthesis of Pentacyclic Aspidosperma Alkaloids Larry E. Overman and Michael Sworin	275
Vo	Jume 4	
1.	Amphibian Alkaloids: Chemistry, Pharmacology and Biology John W. Daly and Thomas F. Spande	1
2.	Marine Alkaloids and Related Compounds William Fenical	275
3.	The Dimeric Alkaloids of the Rutaceae Derived by Diels-Alder Addition Peter G. Watermann	331
4.	Teratology of Steroidal Alkaloids Richard F. Keeler	389

Contents of Previous Volumes

Vo	Volume 5				
1.	The Chemistry and Biochemistry of Simple Indolizidine and Related Polyhydroxy Alkaloids Alan D. Elbein and Russell J. Molyneux	1			
2.	Structure and Synthesis of Phenanthroindiolizidine Alkaloids and Some Related Compounds Emery Gellert	55			
3.	The Aporphinoid Alkaloids of the Annonaceae Andre Cave, Michel Leboeuf, Peter G. Waterman	133			
4.	The Thalictrum Alkaloids: Chemistry and Pharmacology Paul L. Schiff, Jr.	271			
5.	Synthesis of Chephalotaxine Alkaloids Tomas Hudlicky, Lawrence D. Kwart, and Josephine W. Reed	639			
Vo	olume 6				
1.	Chemistry, Biology and Therapeutics of the Mitomycins William A. Remers and Robert T. Dorr	1			
2.	Alkaloids of Tabernaemontana Species Teris A. van Beek and Marian A.J.T. van Gessel	75			
3.	Advances in Alkaloid Total Synthesis via Iminium Ions, α-Aminocarbanions and α-Aminoradicals David J. Hart	227			
4.	The Biosynthesis of Protoberberine Alkaloids Christopher W.W. Beecher and William J. Kelleher	297			
5.	Quinoline, Acridone and Quinazoline Alkaloids: Chemistry, Biosynthesis and Biological Properties Michael F. Grundon	339			

Volume	7
--------	---

1.	Homoerythrina and Related Alkaloids I. Ralph C. Bick and Sirichai Panichanum	1
2.	Carbon-13 NMR Spectroscopy of Steroidal Alkaloids Pawan K. Agrawal, Santosh K. Srivastava, and William Gaffield	43
3.	Carbon-13 and Proton NMR Shift Assignments and Physical Constants of Norditerpenoid Alkaloids S. William Pelletier and Balawant S. Joshi	297
Vo	blume 8	
1.	Curare Norman G. Bisset	1
2.	Alkaloid Chemistry and Feeding Specificity of Insect Herbivores James A. Saunders, Nichole R. O'Neill, and John T. Romero	151
3.	Recent Advances in the Synthesis of Yohimbine Alkaloids Ellen W. Baxter and Patrick S. Mariano	197
4.	The Loline Group of Pyrrolizidine Alkaloids Richard G. Powell and Richard J. Petroski	320

Contents of Previous Volumes

Vo	lume 9	
1.	Taxol M. E. Wall and M. C. Wani	1
2.	The Synthesis of Macroline Related Sarpagine Alkaloids Linda K. Hamaker and James M. Cook	23
3.	Erythrina Alkaloids Amrik Singh Chawla and Vijay K. Kapoor	85
4.	Chemistry, Biology and Chemoecology of the Pyrrolizidine Alkaloids Thomas Hartmann and Ludger Witte	155
5.	Alkaloids from Cell Cultures of Aspidosperma Quebracho-Blanco P. Obitz, J. Stöckigt, L. A. Mendonza, N. Aimi and Si. Sakai	235
6.	Fumonisins Richard G. Powell and Ronald D. Plattner	247
Vo	lume 10	
1.	Alkaloids from Australian Flora I. R. C. Bick	1
2.	Pyridine and Piperidine Alkaloids: An Update Marilyn J. Schneider	155
3.	3-Alkylpiperidine Alkaloids Isolated from Marine Sponges in the Order Haplosclerida Raymond J. Andersen, Rob W. M. Van Soest and Fangming Kong	301
4.	β-Carboline and Isoquinoline Alkaloids from Marine Organisms Bill J. Baker	357

This Page Intentionally Left Blank

1.	The Thalictrum Alkaloids: Chemistry and Pharmacology (1985 – 1995) Paul L. Schiff, Jr.	1
2.	Taxine Giovanni Appendino	237
3.	The Alkaloids of South American Menispermaceae Mary D. Menachery	269
4.	The Chemistry and Biological Activity of Calystegines and Related Nortropane Alkaloids Russell J. Molyneux, Robert J. Nash, and Naoki Asano	303
5.	Polyhydroxylated Alkaloids that Inhibit Glycosidases Robert J. Nash, Naoki Asano, and Alison A. Watson	345
Sut	oject Index	373
Org	ganism Index	389

This Page Intentionally Left Blank

The *Thalictrum* Alkaloids: Chemistry and Pharmacology (1985-1995)

Paul L. Schiff, Jr.

Department of Pharmaceutical Sciences School of Pharmacy University of Pittsburgh Pittsburgh, Pennsylvania 15261

CONTENTS

1.	INTI	RODUCT	ION	5
2.	BOC	K CHAP	TERS AND REVIEWS	6
3.	DISS	SERTATIC	ONS ABOUT THALICTRUM ALKALOIDS	14
	3.1	Plant-De	erived Alkaloids	14
	3.2	Cell Cul	ture-Derived Alkaloids	17
4.	PATI	ENTS		17
5.	ALK	ALOIDS	OF ESTABLISHED STRUCTURE THAT HAVE BEEN	
	ISOI	LATED O	R REISOLATED FROM THALICTRUM SPECIES (1985-1995)	17
	5.1.	Monome	eric Alkaloids	18
		5.1.1.	Aporphines	18
		5.1.2.	Dehydroaporphines	19
		5.1.3.	Proaporphines	20
		5.1.4.	Oxoaporphines	20
		5.1.5.	Benzylisoquinolines	20
		5.1.6.	Oxobenzylisoquinolines	20
		5.1.7.	Isopavines	20
		5.1.8	Isoquinolones	20
		5.1.9.	Morphinans	21
		5.1.10.	Pavines	21
		5.1.11.	Phenanthrenes	21
		5.1.12.	Protoberberines	22
		5.1.13	Tetrahydroprotoberberines	23
		5.1.14.	Isohomoprotoberberines	23
		5.1.15.	Protopines	23
		5.1.16.	Diterpenoids	24
		5.1.17.	Betaines	24

	5.2.	Dimeric	Alkaloids	24
		5.2.1.	Aporphine-Benzylisoquinolines	24
		5.2.2.	Dehydroaporphine-Benzylisoquinolines	25
		5.2.3.	Bisbenzylisoquinolines	25
		5.2.4.	Secobisbenzylisoquinolines	28
6.	ALK	ALOIDS	OF REVISED STRUCTURE	28
	6.1.	Thalflavi	ine	28
	6.2.	Thalrugo	osinone	34
	6.3.	Thalpind	lione	38
7.	NEV	ALKAL	OIDS - MONOMERS	39
	7.1.	Aporphi	nes	39
		7.1.1.	(+)-Acutifolidine	40
		7.1.2.	(+)-Leucoxylonine N-Oxide	41
		7.1.3.	(+)-N-Methyldanguyelline	42
		7.1.4.	(+)-Thalbaicalidine	43
		7.1.5	(+)-Thalbaicaline	43
	7.2.	Dehydro	aporphines	45
		7.2.1.	Dehydrothalicsimidine	45
	7.3.	Oxoapor	phines	46
		7.3.1.	Oxobaicaline	46
	7.4	Pavines		47
		7.4.1.	(-)-2-Demethylthalimonine	47
		7.4.2.	(-)-9-Demethylthalimonine	49
		7.4.3	(-)-4-Hydroxyeschscholtzidine	50
		7.4.4.	(-)-Thalimonine	51
		7.4.5.	(-)-Thalimonine N-Oxides A and B	52
	7.5	Phenantl	hrenes	56
		7.5.1.	Northalicthuberine	56
		7.5.2.	Thalihazine	57
	7.6	Diterpen	les	58
		7.6.1.	(+)-Thalicessine	58
		7.6.2.	(-)-Thalicsiline	62
8.	NEV	V ALKAL	OIDS - DIMERS	63
	8.1	Aporphi	ne-Benzylisoquinolines	63
		8.1.1.	(+)-Thalibulamine	63
		8.1.2.	(+)-Thalifaberidine	64
		8.1.3.	(+)-Thalifaboramine	66
		8.1.4.	(+)-Thalifalandine	68
		8.1.5.	(+)-Thalifaramine	70
		8.1.6.	(+)-Thalifarazine	70
		8.1.7.	(+)-Thalifaretine	71
		8.1.8.	(+)-Thalifaricine	72
		8.1.9.	(+)-Thalifaronine	73
		8.1.10.	Aporphine-Benzyltetrahydroisoquinoline Dimeric Thalictrum	
			Alkaloid Subgroups	74
	8.2	Aporphi	ne-Pavines	75

		8.2.1.	EP-10	75
	8.3	Bisbenz	ylisoquinolines	79
		8.3.1.	(+)-Cultithalminine	79
		8.3.2.	(-)-5-Hydroxythalidasine	81
		8.3.3.	(-)-5-Hydroxythalidasine-2α-N-Oxide	82
		8.3.4.	(-)-5-Hydroxythalmine	84
		8.3.5.	(+)-Neothalibrine-2'α-N-Oxide	85
		8.3.6.	(+)-2'-Noroxyacanthine	86
		8.3.7.	Northalibroline	88
		8.3.8.	(+)-2'-Northaliphylline	90
		8.3.9.	(-)-2-Northalmine	91
		8.3.10.	(+)-Thalidasine-2α-N-Oxide	93
		8.3.11.	(+)-Thalifortine	93
		8.3.12.	(-)-Thaligosine- 2α -N-Oxide (Thalisopine- 2α -N-Oxide)	94
		8.3.13.	(+)-Thaliphylline-2' β -N-Oxide	96
		8.3.14.	Thalivarmine	97
		8.3.15.	(+)-Thalmiculatimine	99
		8.3.16.	(-)-Thalmiculimine	101
		8.3.17	(-)-Thalmiculine	101
		8.3.18.	(-)-Thalrugosaminine-2α-N-Oxide	103
		8.3.19.	(+)-Thalsivasine	104
		8.3.20.	Enzymatic Control of Stereochemistry Among the Thalictrum	
			Bisbenzylisoquinoline Alkaloids	105
9.	ALK	ALOIDS	OF UNUSUAL/UNEXPECTED STRUCTURE	108
	9.1.	N-Pheny	/l-2-Naphthylamine	108
10.	ANA	LYSIS O	F THALICTRUM ALKALOIDS	108
	10.1.	Thin-La	yer Chromatographic Densitometry	108
	10.2.	Mass Sp	ectrometry	109
	10.3.	X-Ray C	Crystallographic Diffraction Analysis	110
	10.4.	Addition	al Spectral Data On Previously Reported Alkaloids	110
	10.5.	Glaucine	e, Thalicsimidine, and Oxopurpureine	111
	10.6.	Thalidas	sine	111
11.	BIOS	SYNTHE	SIS	112
12.	CEL	L CULTU	IRE	112
	12.1.	Thalictri	um dipterocarpum	113
	12.2.	Thalictr	um flavum	113
	12.3.	Thalictri	um minus	113
	12.4.	Thalictr	um minus var. hypoleucum	114
	12.5.	Thalictr	um rugosum	115
13.	PHA	RMACO	LOGY	118
	13.1.	Extract S	Screening	118
	13.2.	Individu	al Alkaloids	119
		13.2.1.	Allocryptopine	119
		13.2.2.	Aromoline	119
		13.2.3.	Berbamine	120
		13.2.4.	Berberine	126

13.2.5.	Berberrubine	137
13.2.6.	Columbamine	138
13.2.7.	Coptisine	138
13.2.8.	Corydine	139
13.2.9.	Cryptopine	139
13.2.10.	6a,7-Dehydromethoxyadiantifoline	139
13.2.11.	Dehydrothalifaberine	139
13.2.12.	Domesticine	140
13.2.13.	EP-10	140
13.2.14.	Glaucine	140
13.2.15.	Harmine	141
13.2.16.	Hernandezine	143
13.2.17.	Homoaromoline	144
13.2.18.	Isoboldine	145
13.2.19.	Isocorvdine	146
13.2.20.	Isotetrandrine	147
13.2.21.	Isothalidezine	149
13.2.22.	Jatrorrhizine	150
13.2.23.	Liriodenine	151
13.2.24.	Magnoflorine	153
13.2.25.	Methoxyadiantifoline	154
13.2.26	N-Methylcanadine	154
13.2.27.	N-Methylcoclaurine	154
13.2.28	Nantenine	155
13.2.29	Ohaberine	155
13.2.30.	Obamegine	156
13.2.31.	Oxoglaucine	157
13.2.32.	Oxvacanthine	157
13.2.33.	Oxyberberine	159
13.2.34.	Palmatine	159
13.2.35.	Protopine	160
13.2.36.	Puntarenine	163
13.2.37.	Reticuline	163
13.2.38.	Tetrahydroberberine (Canadine)	164
13.2.39.	Tetrahydrocolumbamine (Isocorypalmine)	165
13.2.40.	Tetrandrine	165
13.2.41.	Thalicarpine	168
13.2.42.	Thalicminine	169
13.2.43.	Thalicsiline	169
13.2.44.	Thalidasine	169
13.2.45.	Thalidezine	170
13.2.46	Thalifabatine	170
13.2.47	Thalifaberidine	170
13.2.48	Thalifaberine	171
13.2.49	Thalifabine	171
13.2.50	Thalifaboramine	171
		- * *

	13.2.51. Thalifalandine	171
	13.2.52. Thalifaramine	172
	13.2.53. Thalifarapine	172
	13.2.54. Thalifarazine	172
	13.2.55. Thalifaricine	172
	13.2.56. Thalifaronine	172
	13.2.57. Thalifasine	173
	13.2.58. Thalifendine	173
	13.2.59. Thaliporphine	173
	13.2.60. Thalrugosine	174
4.	AN INCLUSIVE COMPILATION OF THE BOTANICAL SOURCES OF THE	
	THALICTRUM ALKALOIDS	175
5.	AN INCLUSIVE COMPILATION OF ALKALOIDS THAT HAVE BEEN	
	ISOLATED FROM THALICTRUM SPECIES BY ALKALOID TYPE	200
6.	AN INCLUSIVE COMPILATION OF THE CALCULATED MOLECULAR	
	WEIGHTS OF THE THALICTRUM ALKALOIDS	208
	REFERENCES	220

1. INTRODUCTION*

In the last decade, no less than forty-six new alkaloids have been isolated and identified from some fifteen species of the genus *Thalictrum*. In addition, another 116 alkaloids of known structure have been reisolated from some thirty-six different species and/or subspecies of this same genus. Many of these alkaloids have interesting and important pharmacological properties, and a plethora of studies involving the biological evaluation of these compounds have been undertaken and published. The purpose of this work is to review the research that has been published in the last decade. This review begins in about 1985, at about the time in which the material in the previously published chapter [1] was concluded.

* This chapter is dedicated to two very special people. First, to my dear wife Denise, whose love as wife, mother, and grandmother permeates all those around her; and second, to Professor Raymond W. Doskotch, whose dedication to and love of science has so greatly enriched my life.

2. BOOK CHAPTERS AND REVIEWS

The following are book chapters or reviews that focus on the subject of *Thalictrum* alkaloids, and have been published within the last decade.

2.1. The Alkaloids of Thalictrum cultratum Wall. (1986) [2-4]

This is a review summarizing the isolation and identification of the alkaloids of Thalictrum cultratum Wall. The plant was collected in Azad Kashmir, Pakistan, and extracts of the whole plant proved to be a uniquely prolific source of benzylisoquinoline-derived alkaloids, including monomers of the aporphine, pavine, phenanthrene, and protoberberine groups, and dimers of the bisbenzylisoquinoline, secobisbenzylisoquinoline, and aporphine-benzylisoquinoline groups. Alkaloids of previously established structures that were isolated include the aporphine (+)-thalicsimidine, the benzylisoquinoline (+)-reticuline, the pavine (-)-thalisopavine, the phenanthrenes thaliglucine and thalflavidine, the protoberberine berberine, and the secobisbenzylisoquinoline (-)-revolutinone. Eighteen bisbenzylisoquinoline alkaloids were isolated, with these compounds belonging to the thalisopine, thalicberine, thalidasine, and thalmine series [3]. Bisbenzylisoquinoline alkaloids of previously established structures that were isolated from these extracts include (-)-thalisopine [(-)-thaligosine], (-)-thalrugosaminine, (+)-Omethylthalicberine, (+)-thaliphylline, (-)-thalmine, (-)-O-methylthalmine, (-)-thalictine, (-)thalidasine, (-)-2-northalidasine, (-)-thalrugosidine, and (-)-thalirugosinone. Five of the new bisbenzylisoquinoline alkaloids were members of the thalmine-series including (-)-2-northalmine (1), (-)-5-hydroxythalmine (2), (-)-thalmiculine (3), (-)-thalmiculimine (4), and (+)thalmiculatimine (5), while the remaining two new bisbenzylisoquinolines belonged to the thalidasine and thalicberine families, and included (-)-5-hydroxythalidasine (6), and (+)thasivasine (7), respectively. Twelve alkaloids of the aporphine-benzylisoquinoline group were isolated, with six being of known structures [4]. These included four bases of the thalicarpinetype, namely (+)-adiantifoline, (+)-thalmelatidine, (+)-thalmineline, and (+)-thalilutine, and one alkaloid of the thalifaberine-type, (+)-thalifaberine. In addition, although (+)-thalifaroline was designated as a new alkaloid, it was later found to have been isolated and described two years earlier from extracts of Thalictrum faberi Ulbr., at which time it had been named thalifarapine [128]. Five new alkaloids of the thalifaberine-type were isolated and characterized, and include (+)-thalifaricine (8), (+)-thalifaramine (9), (+)-thalifarazine (10), (+)-thalifaretine (11), and (+)-The final new alkaloid of the aporphine-benzylisoquinoline dimeric group thalifaronine (12). that was isolated was (+)-thalibulamine (13), a member of the istanbulamine series of alkaloids.

CH₃ N OCH₃ HO CH₃O CH₃O CH₃O CH₃ CH₃O CH₃O

2.2. The Alkaloids of Anatolian Thalictrum Species (1986)[5]

This review describes the alkaloids that have been isolated from five Turkish Anatolian taxa of *Thalictrum*, including *T. aquilegifolium*, *T. sultanabadense*, *T. minus* var. *majus*, *T. minus* var. *minus*, and *T. minus* var. *microphyllum*. In the decade of the 1980's, forty isoquinolinederived alkaloids have been isolated from these plants, including ten new alkaloids. Nine species of *Thalictrum* have been described as being found in Turkey, including *T. aquilegifolium* L., *T. flavum* L., *T. foetidum* L., *T. isopyroides* C.A.Meyer, *T. lucidum* L., *T. minus* L. var. *majus* (Crantz) Crepin, *T. minus* L. var. *minus* L., *T. minus* L. var. *minus* resemble each other greatly, and are only distinguished morphologically by the size of the terminal leaflets and the manner of branching.

Thalictrum minus var. microphyllum Boiss. is a plant of the Central Anatolian plateau, and is distinguished from the other two varieties of T. minus by its smaller leaflets. The alkaloids of the roots and rhizomes were isolated from an ethanolic extract via classic partitioning procedures, while the alkaloids of the leaves were isolated from the Mayer's Reagent alkaloid complex precipitate via ion-exchange procedures, followed by acid-base partitioning. Twentyeight alkaloids were isolated from this plant, including twenty-four alkaloids from the roots and rhizomes, and six alkaloids from the leaves. Alkaloids that were isolated from extracts of the leaves included the monomers thalactamine (isoquinoline), takatonine and thalmicrinone (benzylisoquinolines), berberine (protoberberine), magnoflorine (aporphine), and the dimeric bisbenzylisoquinoline thalmethine. The predominance of monomers (5) to dimers (1) in the leaves was noted. As to extracts of the roots and rhizomes, the following monomers were isolated: berberine, jatrorrhizine, and palmatine (protoberberines); thaliglucinone (phenanthrene); and magnoflorine (aporphine). The dimers obtained from extracts of the roots and rhizomes clearly outnumbered the monomers and included eleven bisbenzylisoquinolines and eight aporphine-benzylisoquinolines as follows: bisbenzylisoquinolines - aromoline, homoaromoline. obaberine, obamegine, O-methylthalicberine, thalicberine, thaligosine, thaligrisine, thaliphylline, thalirugine, and thalirugosine; aporphine benzylisoquinolines adiantifoline. thaliadanine, thalmelatidine, bursanine, istanbulamine, iznikine, uskudaramine, and $N(2^{\circ})$ noradiantifoline. Novel alkaloids isolated from these extracts include the benzylisoquinoline thalmicrinone, the bisbenzylisoquinolines thaligrisine and thaliphylline, and the aporphinebenzylisoquinolines bursanine, istanbulamine, iznikine, uskudaramine, and N(2')-noradiantifoline. Berberine and magnoflorine are the only alkaloids isolated from both the underground and aboveground parts of the plant. Administration of an ethanolic extract of the roots and rhizomes to anesthetized Wistar rats in an intravenous dosage of 30 mg/kg produced a decrease in both systolic and diastolic blood pressure, with systolic pressure responses generally recovering more than diastolic pressure increases over the hour following administration. These effects were postulated to be due to either an inhibitory effect on the responses of the sympathetic branch of the autonomic nervous system, or a direct relaxant effect on vascular smooth muscle.

Extraction of the roots and rhizomes of *T. minus* var. *minus* L. with EtOH and workup in the classical manner afforded three aporphine-benzylisoquinoline dimeric alkaloids including thalmelatidine (major alkaloid), thalmineline, and adiantifoline, as well as the monomeric alkaloids thaliglucinone, berberine and magnoflorine. Extraction of the leaves using ion-exchange procedures, followed by workup afforded the bisbenzylisoquinolines thalicberine, *O*methylthalicberine, thaliphylline, thalmethine, *O*-methylthalmethine, thalivarmine and thalsivasine, the latter two being new compounds. In addition, the aporphine-benzylisoquinoline dimer thalmelatidine was isolated. (-)-*N*-methylcanadine (*N*-methyltetrahydroberberine) was determined to be the major alkaloid of the leaves.

Only three alkaloids have been isolated from extracts of T. minus var. majus (Crantz) Crepin including the bisbenzylisoquinolines obaberine (roots and rhizomes) and thalicberine (leaves), and the aporphine-benzylisoquinoline thalmelatidine (roots and rhizomes).

T. sultanabadense Stapf., a small plant that grows under the shade of rocks on the rocky mountain slopes of eastern Turkey, is a source of the dimeric bisbenzylisoquinoline alkaloids thalbadensine, hernandezine, and thalictine, and the monomeric alkaloids thalifoline (isoquinolone), berberine (protoberberine), and magnoflorine (aporphine).

T. aquilegifolium L., a species that grows in western Anatolia, is not a rich source of alkaloids, with only the monomeric aporphines magnoflorine, isoboldine, and isocorydine having been isolated.

2.3. Dimeric Isoquinoline Alkaloids from *Thalictrum minus* Populations of Southern Bulgaria (1986)[6]

This study reports the chromosome numbers and the dimeric alkaloids present in the flowering aerial parts of five additional Bulgarian populations of *T. minus* and attempts to interpret these facts in the light of biosystematics in the aggregate species. Within the hexaploid types bisbenzylisoquinoline alkaloids are predominantly produced, but aporphine-benzylisoquinolines are the major alkaloids generated by the decaploid types. Thalmethine, *O*-methylthalmethine, and oxyacanthine are found in the hexaploids, while within the decaploid cytotype two chemogeographic races (race A and race B) were distinguished according to the presence of aporphine-benzylisoquinoline alkaloids. Three populations from southern Bulgaria were classified as race A, on the basis of their tendency to produce thalmelatine and thalipine, aporphine-benzylisoquinoline dimers with one and two phenolic hydroxy groups, respectively. Race B populations, situated in the Eastern Stara Planina Mountains, principally contain the fully methylated thalicarpine, with a lesser amount of the monophenolic thalmelatine.

Some twenty-seven populations of Bulgarian *T. minus* have been studied for their chromosome number, and dimeric alkaloids have been detected in thirteen of them. It was noted that the hexaploid cytotype is more commonly found in the lowlands, while the decaploids are more typical to the mountains above 1500 meters. In addition, bisbenzylisoquinolines are found only in the hexaploids, while aporphine-benzylisoquinolines occur only in the decaploids. It may be assumed from this research that up to two cytotypes and two chemotypes have been detected in Bulgaria that show an attitudinal pattern of distribution.

2.4. The Thalictrum Alkaloids: Chemistry and Pharmacology (1987) [1]

This is a book chapter that embodies 669 references.

2.5. The Alkaloids of Tangsongcao (Thalictrum genus) (1988) [7]

This is a review published in Chinese that cites eighty-eight references.

2.6. Secretion of Secondary Products by Plant Cell Cultures (1988) [8]

This is a review containing fifty-three references on alkaloid secretion by plant cells, featuring the author's research on the secretion of berberine by cell cultures of *Thalictrum minus*.

2.7. Alkaloids of Wild-Growing Plants. II. Thalictrum minus L. (1991) [9]

This is a review published in Serbo-Croatian that contains ninety-two references.

2.8. Chemical and Cytological Investigation of *Thalictrum minus* from the Vojvodina Region of the former Yugoslavia (1992)[10]

It has been previously demonstrated that morphologically identical populations of T. minus may differ in the composition of their contained alkaloids. In addition, cytological research has demonstrated that T. minus may be diploid, hexaploid, or polyploid. It was assumed that a welldefined correlation existed between levels of polyploidy and the nature of the dimeric alkaloids that were produced by a given plant population, hence the types of dimeric alkaloids were taken as evolutionary markers within this aggregate species [11]. Earlier studies of T. minus from several localities within the Vojvodina region of Yugoslavia revealed that all of the plants were hexaploids and did not contain dimeric alkaloids of the aporphine-benzylisoquinoline group [12,13]. In a more recent study, the presence of dimers of the bisbenzylisoquinoline type (thalmethine, O-methylthalmethine, thalicberine, and O-methylthalicberine) and monomers of the isoquinoline type (thaliglucine, thaliporphine, thalactamine, thalflavine, and berberine) were found in extracts of the above ground portions of T. minus L. collected at two separate localities in Vojvodina. The populations of this species were divided into two chemotypes (one from the region of Fruska Gora and one from the region of Beocin) on the basis of the structure of the major alkaloids, and the plants were determined to be hexaploids. Specifically, thalmethine, Omethylthalmethine, thalicberine, O-methylthalicberine, thaliglucine, thaliporphine, and berberine were isolated from the plant obtained in the region of Fruska Gora, while the monomeric alkaloids thalactamine, thalflavine, and berberine were found in the plant obtained from the region of Beocin. The Beocin population of plants was found to be poor in alkaloids, likely a consequence of low concentrations of microelements and in the enzymic activators responsible for alkaloid biosynthesis [10].

3. DISSERTATIONS ABOUT THALICTRUM ALKALOIDS

3.1 Plant-Derived Alkaloids

3.1.1. Isolation and Identification and Structural Elucidation of Tertiary Alkaloids from the Root of *Thalictrum minus* L. Race C, by MOA ElSheikh, 223 pp., The Ohio State University, 1985 [14]

This dissertation describes the isolation and determination of structures of twenty-seven alkaloids from extracts of the roots of *Thalictrum minus* L. race C. Nine of these twenty-seven alkaloids were of novel structures including three aporphines (6a,7-dehydrothaliadine, 7'-dihydrodehydrothaliadine, and 7'-dihydrothaliadine), one isoquinolone (thalmirine), two oxoaporphines(7'-dihydrooxothaliadine, oxothaliadine), two aporphine-benzylisoquinoline dimers (6a,7-dehydroadiantifoline and 6-noradiantifoline), and one bisbenzylisoquinoline (squarosine). Alkaloids of previously established structure that were isolated and identified included three aporphines (delporphine, isoboldine, and thalisopynine); one benzylisoquinoline [(+)-laudanidine], one isoquinolone(*N*-methylcorydaldine), three aporphine-benzylisoquinoline dimers (adiantifoline, thalicarpine, and thalmineline), and seven bisbenzylisoquinolines (*O*-methylthalibrine, *O*-methylthalicberine, obaberine, thaliracebine, thalistine, thalmirabine, and thalrugosine). In addition, the structures of the aporphine-benzylisoquinoline dimer thalmelatidine and the bisbenzylisoquinolines thalfine and thalfinine were revised.

3.1.2. Chemical and Spectral Studies of *Thalictrum* Alkaloids, by SS Lee, 324 pp., The Ohio State University, 1985 [15]

This dissertation describes the study of the alkaloids of three species of *Thalictrum*, and resulted in the isolation and identification of thirty-seven alkaloids from these plants, including seventeen novel alkaloids.

Fourteen alkaloids were isolated from extracts of the whole plant of *Thalictrum fauriei* Hayata, among which were seven alkaloids of novel structure including three aporphines (3-O-demethyloconovine, faurine, and O-methylfaurine), three aporphine-benzylisoquinoline dimers (fauridine, faurithaline, and 3-methoxyfaurithaline), and one aporphine-pavine dimer (fauripavine). Alkaloids of previously established structure that were isolated and identified included five aporphines (corydine, isocorydine, isoconovine, oconovine, and thalisopynine), and two morphinans (ocobotrine and pallidine).

Seven alkaloids were isolated from extracts of the roots of *Thalictrum foetidum* L. including one new alkaloid, the bismorphinan bisocobotrine. Alkaloids of hitherto established structures that were isolated included one benzylisoquinoline (reticuline), two morphinans (ocobotrine and sinoacutine), and three bisbenzylisoquinolines (thalibrine, thalidasine, and thalirugosidine).

Sixteen alkaloids were isolated from extracts of the roots of *Thalictrum longistylum* DC among which were nine alkaloids of novel structure including four benzylisoquinoline-protoberberines (berberlongine, berberstyline, longiberine, and O-methyllongiberine), and five

bisbenzylisoquinolines (5-O-demethyllongine, 5'-hydroxylongine, 5'-hydroxythalidezine, longine, and N-norhernandezine). There were seven bisbenzylisoquinoline alkaloids of known structures that were isolated, including N-desmethylthalistyline, hernandezine, isothalidezine, Omethylthalibrine, N-northalidezine, thalibrine, and thalidezine. The most significant feature of this research was the discovery of a new class of alkaloids, the dimeric benzylisoquinolineprotoberberines, hitherto unknown in nature.

3.1.3. The Isolation and Identification of Alkaloids from Jordanian *Thalictrum isopyroides* C.A.M. (Ranunculaceae) - Part I. The Synthesis of Thalmicrinone, A Confirmation of Structure - Part II, by SMK Al-Khalil, 243 pp., University of Pittsburgh, 1986 [16]

This dissertation describes the isolation and identification of twelve alkaloids of known structures from an extract of the roots of the Jordanian *Thalictrum isopyroides* C.A.M. including seven aporphines (delporphine, isoboldine, magnoflorine, *N*-methylcassythine, *N*-methyllaurotetanine, preocoteine, and thaliporphine), one oxoaporphine (thalicminine), and two bisbenzylisoquinolines (thaligosinine and thalisopidine). In addition, the oxobenzylisoquinoline alkaloid thalmicrinone was synthesized via the use of a Reissert compound, similar to the method previously used in the synthesis of the oxobenzylisoquinoline alklaoid rugosinone. This synthesis constituted a confirmation of structure for the naturally occurring thalmicrinone. Two publications resulted from this research [17,18].

3.1.4. Isolation and Identification of Quaternary Alkaloids from the Roots of *Thalictrum cultratum* Wall. (Ranunculaceae) - Part I. Isolation and Identification of Alkaloids from the Roots and Stems of *Pycnarrhena manillensis* Vidal. (Menispermaceae) -Part II., by MC Lin, 263 pp., University of Pittsburgh, 1987 [19]

The first part of this dissertation documents the isolation and identification of seven quaternary alkaloids from extracts of the roots of *Thalictrum cultratum* Wall., including six protoberberines (berberine, columbarnine, jatrorrhizine, palmatine, (+)-thalidastine, and thalifendine) and one aporphine (magnoflorine). This research resulted in one publication [20].

3.1.5. Alkaloids of *Thalictrum thalictroides*, by MS Hoard, 151 pp., University of Southern Mississippi, 1992 [21]

This dissertation describes a study of the alkaloidal constituents of *Thalictrum thalictroides*. Magnoflorine and either berberine or epiberberine were isolated and identified, as

The Thalictrum Alkaloids

well as sucrose and myo-inositol. A change in the crystal structure of magnoflorine was postulated to have occurred during grinding with potassium bromide, and on subsequent recrystallization from methanol.

3.2 Cell Culture-Derived Alkaloids

3.2.1. Process Strategies and Bioreactor Operation for Berberine Production in Cell Suspension Cultures of *Thalictrum rugosum*, by DI Kim, 169 pp., Rutgers, The State University, 1990 [22]

Seven publications resulted from this research dissertation [23-29].

3.2.2. Berberine Production in Suspended and Immobilized Cell Culture of *Thalictrum rugosum*: Permeabilization and *In Situ* Product Separation, by JW Choi, 256 pp., Rutgers, The State University, 1990 [30].

Two publications resulted from this research dissertation [31,32].

4. PATENTS

One patent was granted for extraction of alkaloids from *Thalictrum* species. Finelypowdered samples of *Thalictrum* species were first moistened with NH₄OH (10%), and then extracted with a nonpolar chlorinated organic solvent. The extracting solvent was treated with citric acid (0.1-0.5N), and the citric acid basified to pH 9-10 before extraction (2x) with chlorinated solvent. The solvent was removed via distillation, and the residue dissolved in a mixture of polar and nonpolar solvents to afford crystalline alkaloids, such as β -allocryptopine. The alkaloids have antitussive, antimicrobial, anti-inflammatory, anti-arrhythmic, and cholereticcholagogue properties [33].

5. ALKALOIDS OF ESTABLISHED STRUCTURES THAT HAVE BEEN ISOLATED OR REISOLATED FROM THALICTRUM SPECIES (1985-1995)

The following abbreviations are used to indicate the plant part studied: ag = above-ground parts; fr = fruits; l = leaves; r = roots; rh = rhizomes; st = stems; wp = whole plant
5.1. Monomeric Alkaloids

5.1.1. Aporphines

Baicaline - T. baicalense Turcz. (st) [34]

Corydine - T. fauriei Hayata (wp) [15,35]

Delporphine - T. isopyroides C.A.M. (r) [17]; T. minus L. race C (r) [14]

Domesticine - T. minus L. var. adiantifolium Hort. (ag) [36]

Glaucine (O-Methylthalicmidine) - T. baicalense Turcz. (st) [34]; T. collinum Wallr. (ag,r) [37]; T. flavum L. (r) [38]; T. ichengense Lecoy et Oliv. (r) [39,40]; T. longipedunculatum E. Nikit. (r) [41]; T. minus L. [42]; T. minus L. var. adiantifolium Hort. (ag) [36]

Isoboldine (N-Methyllaurelliptine) - T. aquilegifolium L. (r) [43]; T. collinum Wallr. (ag) [37], (ag) [44]; T. minus L. var. adiantifolium Hort. (ag) [36]; T. minus L. race C (r) [14]

Isocorydine - T. aquilegifolium L. (r) [43]; T. delavayi Franch. (wp) [45]; T. fauriei Hayata (wp) [15,35]; T. pedunculatum Edgew. (wp) [46]

Isooconovine - T. fauriei Hayata (wp) [15]

Leucoxylonine - T. delavayi Franch. (wp) [45]; T. simplex L. (ag) [107]

Magnoflorine (Thalictrine) - T. aquilegifolium L. (r) [43]; T. collinum Wallr. (r) [37]; T. cultratum Wall. (r) [20]; T. delavayi Franch. (wp) [45]; T. fauriei Hayata (wp) [35]; T. foetidum L. (ag) [48], (r) [49]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [50]; T. isopyroides C.A.M. (r) [17]; T. longipedunculatum E. Nikit. (r) [41]; T. minus L. var. adiantifolium Hort. (ag) [36]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (ag,r) [51], (r) [52]; T. minus L. var. minus (r,rh) [53]; T. sessile Hayata (r) [54]; T. sultanabadense Stapf. (ag,r) [55]; T. tuberiferum Maximowicz [56]

N-Methylcassythine - T. isopyroides C.A.M. (r) [17]

O-Methylisoboldine - T. minus L. var. adiantifolium Hort. (ag) [36]

N-Methyllaurotetanine - T. hazarica R.R.S. (wp) [57]; T. isopyroides C.A.M. (r) [17]

Nantenine - T. minus L. var. adiantifolium Hort. (ag) [36]

Noroconovine - T. pedunculatum Edgew. (wp) [46]

Oconovine - T. fauriei Hayata (wp) [15,35]; T. pedunculatum Edgew. (wp) [46]

Ocoteine (Thalicmine, N,O-Dimethylcassyfiline) - T. delavayi Franch. (wp) [45]; T. isopyroides C.A.M. (r) [17]; T. longipedunculatum E. Nikit. (r) [41]

Preocoteine - T. isopyroides C.A.M. (r) [17]

Thaliadine (3-Methoxyhernandaline) - T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [58,59]

Thalicsimidine (O-Methylpreocoteine, Purpureine) - T. cultratum Wall. (wp) [2]; T. flavum L. (r) [38]; T. ichengense Lecoy et Oliv. (r) [39,40]; T. kuhistanicum Ovcz. et Koczk. (ag) [60]; T. pedunculatum Edgew. (wp) [46]

Thaliporphine (Thalicmidine, O-Methylisoboldine) - T. buschianum (ag) [44]; T. ichengense Lecoy et Oliv. (r) [39,40]; T. isopyroides C.A.M. (r) [17]; T. longipedunculatum E. Nikit. (r) [41]; T. minus L. (ag) [10]

Thalisopynine (Thalisopinine) - T. fauriei Hayata (wp) [15]; T. minus L. race C (r) [14]

Thalphenine - T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [52]

Trilobinine - T. acutifolium (Hand.-Mazz.) Boivin (r) [61]

5.1.2. Dehydroaporphines

Dehydroglaucine - T. ichengense Lecoy et Oliv. (r) [39,40]

Dehydroocoteine (Dehydrothalicmine) - T. isopyroides C.A.M. (r) [17]

5.1.3. Proaporphines

Pronuciferine - T. pedunculatum Edgew. (wp) [46]

5.1.4. Oxoaporphines

Liriodenine - T. sessile Hayata (ag) [62]

Thalicminine - T. isopyroides C.A.M. (r) [17]

5.1.5. Benzylisoquinolines

Laudanidine - T. minus L. race C (r) [14]

Reticuline - T. cultratum Wall. (wp) [2]; T. foetidum L. (r) [15]; T. pedunculatum Edgew. (wp) [46]

Thalmeline - T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [59]

5.1.6. Oxobenzylisoquinolines

Rugosinone - T. javanicum Bl. (r) [63]

5.1.7. Isopavines

Thalisopavine - T. cultratum Wall. (wp) [2]

5.1.8. Isoquinolones

N-Methylcorydaldine - T. minus L. race C (r) [14]

Noroxyhydrastinine - T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [59]

Thalactamine - T. foetidum L. [64]; T. minus L. [65], (ag) [66], (ag) [10]

Thalflavine - T. foetidum L. (ag) [48]; T. minus L. [42], (ag) [66]; T. minus L. (ag) [10]

Thalifoline - T. sultanabadense Stapf. (r,ag) [55]

5.1.9. Morphinans

Ocobotrine - T. fauriei Hayata (wp) [15,35]; T. foetidum L. (r) [15]

Pallidine - T. fauriei Hayata (wp) [15]

Sinoacutine - T. foetidum L. (r) [15]

5.1.10.Pavines

Argemonine - T. foetidum L. (ag) [49]; T. simplex L. (ag) [67]

Argemonine-N-Oxide - T. foetidum L. [64]

Eschscholtzidine - T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [59]

Isonorargemonine - T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [59]

5.1.11.Phenanthrenes

Thalflavidine - T. cultratum Wall. (wp) [2]

Thalicthuberine - T. delavayi Franch. (wp) [45]; T. hazarica R.R.S. (wp) [57]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [58,59]

Thaliglucine - T. cultratum Wall. (wp) [2]; T. flavum L. (r) [38]; T. minus L. (ag) [10]; T. minus L. var. adiantifolium Hort. (ag) [36] Thaliglucinone - T. longipedunculatum E. Nikit. (ag,r) [41]; T. minus L. var. adiantifolium Hort. (ag) [36]; T. minus L. var. minus (r,rh) [53]

5.1.12.Protoberberines

Berberine - T. baicalense Turcz. (st) [34]; T. collinum Wallr. (r) [37]; T. cultratum Wall. (r) [20], (wp) [2]; T. delavayi Franch. (r) [68]; T. flavum L. (ag) [69], (r) [38]; T. foetidum L. (r) [49,70,71], (ag) [48]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [50]; T. honanense W.T. Wang et S.H. Wang (r) [72]; T. javanicum Bl. (r) [63]; T. lankesteri Standl. (ag) [73]; T. longipedunculatum E. Nikit. (r) [41]; T. minus L. [42], (ag) [66], (ag) [10]; T. minus L. var. adiantifolium Hort. (ag) [36]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (ag,r) [51], (r) [52]; T. minus L. var. minus (r,rh) [53]; T. purpurascens DC (r) [74]; T. sessile Hayata (r) [54]; T. sultanabadense Stapf. (r) [55]

Berberrubine - T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [75]

Columbamine - T. cultratum Wall. (r) [20]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [50]; T. lankesteri Standl. (ag) [73]; T. longipedunculatum E. Nikit. (r) [41]; T. minus L. var. adiantifolium Hort. (ag) [36]

Coptisine - T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [50]

Dehydrodiscretine - T. fauriei Hayata (wp) [35]

Deoxythalidastine - T. uchiyamai Nakai (r) [76]

Groenlandicine - T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [50]

Jatrorrhizine - T. cultratum Wall. (r) [20]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [50]; T. honanense W.T. Wang et S.H. Wang (r) [72]; T. lankesteri Standl. (ag) [73]; T. minus L. var. adiantifolium Hort. (ag) [36]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [52]; T. uchiyamai Nakai (r) [76]

8-Oxocoptisine - T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [75]

Oxyberberine (Berlambine) - T. acutifolium (Hand.-Mazz.) Boivin (r) [61]; T. foetidum L. (r) [71]; T. javanicum Bl. (r) [63]

Palmatine - T. cultratum Wall. (r) [20]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [50]; T. lankesteri Standl. (ag) [73]; T. minus L. (ag) [48]; T. minus L. var. adiantifolium Hort. (ag) [36]

Thalidastine - T. cultratum Wall. (r) [20]

Thalifaurine - T. fauriei Hayata (wp) [35]

Thalifendine - T. cultratum Wall. (r) [20]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [50]; T. honanense W.T. Wang et S.H. Wang (r) [72]; T. javanicum Bl. (r) [63]; T. minus L. var. adiantifolium Hort. (ag) [36]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [52]; T. uchiyamai Nakai (r) [76]

5.1.13. Tetrahydroprotoberberines

N-Methylcanadine (N-Methyltetrahydroberberine) - T. minus L. (ag) [48]; T. minus var. minus L. (ag) [77]

5.1.14.Isohomoprotoberberines

Puntarenine - T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (rh,r) [75]

5.1.15.Protopines

Allocryptopine (Thalictrimine, β -Allocryptopine) - T. minus L. [42]

a-Allocryptopine - T. minus L. (ag) [48]

Cryptopine (Thalisopyrine) - T. delavayi Franch. (r) [68]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (r) [78], (rh,r) [75]

Izmirine - T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (r) [78]

Protopine - T. foetidum L. [64]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (r) [78], (rh,r) [75]

Protothalipine - T. uchiyamai Nakai (r) [76]

Pseudoprotopine - T. delavayi Franch. (r) [68]

5.1.16.Diterpenoids

Spiradine A - T. sessile Hayata (r) [54,79]

Spiredine - T. sessile Hayata (r) [54]

Spirasine I - T. sessile Hayata (r) [54]

Spirasine II - T. sessile Hayata (r) [54]

Spirasine III - T. sessile Hayata (r) [54]

5.1.17.Betaines

Choline - T. minus L. var. adiantifolium Hort. (ag) [36]

5.2. Dimeric Alkaloids

5.2.1. Aporphine-Benzylisoquinolines

Adiantifoline - T. cultratum Wall. (wp) [4]; T. honanense W.T. Wang et S.H. Wang (r) [72]; T. minus L. var. adiantifolium Hort. (ag) [36]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [51,59]; T. minus L. var. minus (r,rh) [53]; T. minus L. race C (r) [14]

O-Desmethyladiantifoline - T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [58,59]

Methoxyadiantifoline - T. foetidum L. (r) [71]

Thalicarpine - T. minus L. (ag) [6]; T. minus L. race C (r) [14]

Thalictrogamine - T. foetidum L. (ag) [49]

Thalifaberine - T. cultratum Wall. (wp) [4]

Thalifarapine (Thalifaroline) - T. cultratum Wall. (wp) [4]

Thalifarazine - T. sessile Hayata (ag) [62], (r) [54]

Thalilutine - T. cultratum Wall. (wp) [4]

Thalipine - T. foetidum L. (ag) [49]; T. minus L. (ag) [6]

Thalmelatidine - T. cultratum Wall. (wp) [4]; T. honanense W.T. Wang et S.H. Wang (r) [72]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [58,51,59]; T. minus L. var. hypoleucum [80]; T. minus var. minus L. (ag) [77], (r,rh) [53]; T. minus L. race C (r) [14]

Thalmelatine - T. foetidum L. (ag) [49]; T. minus L. (ag) [6]

Thalmineline - T. cultratum Wall. (wp) [4]; T. minus L. var. minus (r,rh) [53]; T. minus L. race C (r) [14]

5.2.2. Dehydroaporphine-Benzylisoquinolines

6a,7-Dehydromethoxyadiantifoline - T. foetidum L. (r) [71]

5.2.3. Bisbenzylisoquinolines

Aromoline (Thalicrine) - T. cultratum Wall. (wp) [81]; T. fortunei (wp) [82]

N-Desmethylthalistyline - T. longistylum DC (r) [15]

Hernandezine - T. delavayi Franch. (r) [68], (wp) [45]; T. flavum L. (ag) [69], (r) [38]; T. foetidum L. [64]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (r) [78], (rh,r) [75]; T. lankesteri Standl. (ag) [73]; T. longistylum DC (r) [15]; T. sultanabadense Stapf. (ag) [55] Isothalidezine - T. delavayi Franch. (r) [68]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (r) [78]; T. longistylum DC (r) [15]

O-Methylthalibrine - T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (r) [78]; T. longistylum DC (r) [15]; T. minus L. race C (r) [14]

O-Methylthalicberine (Thalmidine) - T. aquilegifolium L. (wp) [329]; T. buschianum (ag) [44]; T. collinum Wallr. (ag,r) [37], (ag,r) [44]; T. cultratum Wall. (wp) [2,3]; T. flavum L. (ag) [69]; T. foetidum L. [64]; T. kuhistanicum Ovcz. et Koczk. (ag) [60]; T. longipedunculatum E. Nikit. (ag) [41]; T. minus L. (ag) [10,48], [42]; T. minus L. var. hypoleucum [80]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (ag) [51]; T. minus var. minus L. (ag) [77]; T. minus L. race C (r) [14]

O-Methylthalmethine - T. minus L. [42], (ag) [6,10]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (ag) [51]; T. minus var. minus L. (ag) [77]

O-Methylthalmine - T. cultratum Wall. (wp) [84]

Neothalibrine - T. cultratum Wall. (wp) [81]

2-Northalidasine - T. cultratum Wall. (wp) [2,84]

N-Northalidezine - T. longistylum DC (r) [15]

Obaberine - T. cultratum Wall. (wp) [81]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [51]; T. minus L. race C (r) [14]

Oxyacanthine - T. cultratum Wall. (wp) [81]; T. minus L. (ag) [6]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (r) [51]

Talcamine - T. buschianum (ag,r) [44]

Thalabadensine (Thalbadensine) - T. sultanabadense Stapf. (ag,r) [55]

Thalfine (Thalphine) - T. minus L. race C (r) [14]

Thalfinine (Thalphinine) - T. minus L. race C (r) [14]

Thalfoetidine - T. fargesii Fr. ex Fin. et Gagnep. (r) [85,86]; T. flavum L. (ag) [69], (r) [38]; T. longipedunculatum E. Nikit. (ag) [41]; T. minus L. [42]

Thalibrine - T. foetidum L. (r) [15]; T. longistylum DC (r) [15]

Thalicberine - T. longipedunculatum E. Nikit. (ag) [41]; T. minus L. (ag) [48], [42], (ag) [10]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (ag) [51]; T. minus var. minus L. (ag) [77]

Thalictine - T. cultratum Wall. (wp) [3]; T. sultanabadense Stapf. (r) [87], (r,ag) [55]

Thalidasine - T. cultratum Wall. (wp) [84]; T. fargesii Fr. ex Fin. et Gagnep. (r) [85,86]; T. flavum L. (ag) [69]; T. foetidum L. (r) [15,49]; T. longipedunculatum E. Nikit. (ag) [41]; T. squarrosum (r) [88,89]

Thalidezine - T. delavayi Franch. (r) [68]; T. foetidum L. [64]; T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang (r) [78], (rh,r) [75]; T. longistylum DC (r) [15]

Thaligosinine - T. fargesii Fr. ex Fin. et Gagnep. (r) [86]; T. foetidum L. (r) [49]; T. isopyroides C.A.M. (r) [17]

Thaliphylline - T. cultratum Wall. (wp) [2,3]; T. minus var. minus L. (ag) [77]

Thaliracebine - T. minus L. race C (r) [14]

Thalirugine - T. cultratum Wall. (wp) [81]

Thalisopidine - T. fargesii Fr. ex Fin. et Gagnep. (r) [86]; T. isopyroides C.A.M. (r) [17]

Thalisopine (Thaligosine) - T. cultratum Wall. (wp) [3,81]; T. foetidum L. [64]; T. javanicum Bl. (r) [63]; T. minus L. ssp. majus (T. minus L. var. elatum (Jacq.) Stoj. et Stefanov) (ag) [51]

Thalistine - T. minus L. race C (r) [14]

Thalmethine - T. minus L. [42], (ag) [6,10]; T. minus var. minus L. (ag) [77]

Thalmine - T. buschianum (ag) [44]; T. collinum Wallr. (ag) [37], (ag,r) [44]; T. cultratum Wall. (wp) [2,84]; T. kuhistanicum Ovcz. et Koczk. (ag) [60]

Thalmirabine - T. delavayi Franch. (r) [68]; T. minus L. race C (r) [14]

Thalrugosaminine - T. cultratum Wall. (wp) [2,3]; T. foetidum L. (r) [49]; T. javanicum Bl. (r) [63]

Thalrugosidine - T. cultratum Wall. (wp) [2,3]; T. foetidum L. (r) [15]

Thalrugosine (Thaligine, Isofangchinoline) - T. minus L. race C (r) [14]

Thalrugosinone - T. cultratum Wall. (wp) [84]

5.2.4. Secobisbenzylisoquinolines

Revolutinone - T. cultratum Wall. (wp) [2]

6. ALKALOIDS OF REVISED STRUCTURE

6.1. Thalflavine Tabular Review [90, Alkaloid No. 13], UV [90,91], IR [90,91], ¹H NMR [90,91], EIMS [90,91]

In 1970, an alkaloid named thalflavine (mp 132-133° [Me₂CO]) was isolated from Thalictrum flavum L., and assigned as 1-oxo-2-methyl-5-methoxy-6,7-methylenedioxy-1,2,3,4tetrahydroisoquinoline (14) via a consideration of physicochemical and spectral data [92]. Apparent confirmation of the validity of this assignment occurred in 1971 when oxidation (KMnO₄/Me₂CO) of what was then assigned as thalmelatidine (15), an aporphinebenzylisoquinoline dimeric alkaloid isolated from Thalictrum minus L. var. elatum Jacq. in 1970 [93] produced an isoquinolone, mp 137-139° (CHCl₃), identified as thalflavine [94]. In a subsequent study, oxidation (KMnO4/Me2CO) of thalistyline (16), a bisbenzylisoquinoline alkaloid isolated from Thalictrum longistylum DC. [95,96] and Thalictrum podocarpum Humb. [96,97] apparently produced 1-oxo-2-methyl-5-methoxy-6,7-methylenedioxy-1,2,3,4in 1977. tetrahydroisoquinoline as colorless needles, mp 136-137° (MeOH)[95]. This isoquinolone was stated to be identical (UV, ¹HNMR, MS) to that obtained via oxidation of thalmelatidine [94] and to thalflavine [92]. By way of contrast, the structure of thalmelatidine was revised to 17 in 1985 [14] based on extensive ¹HNR studies, particularly double irradiation and nOe experiments, and would thus require the structure of thalflavine to be represented as 1-oxo-2-methyl-5.6methylenedioxy-7-methoxy-1,2,3,4-tetrahydroisoquinoline (18), since the latter is a direct oxidation product of the former.

In order to address these ambiguities, isoquinolones 14 and 18 were synthesized via wellestablished pathways. Treatment of the appropriate aldehyde (either 2-methoxy-3,4methylenedioxybenzaldehyde or 2,3-methylenedioxy-4-methoxybenzaldehyde) with nitromethane and ammonium acetate provided the corresponding β -nitrostyrene which was reduced with LiAlH₄ in THF to afford the β -phenethylamine. N-Formylation of the amine with formic acid provided the N-formyl amide which was subsequently cyclized to the corresponding 3,4with refluxing POCl₃. of dihydroisoquinoline via Oxidation the 3,4dihydroisoquinolinemethiodide salt with alkaline K₃Fe(CN)₆ afforded the appropriate isoquinolone. A comparison of the physicochemical and spectral properties of synthetic isoquinolones 14 and 18 with those assigned to thalflavine strongly supported the revision of structure of thalflavine to 18. Accordingly, it is appropriate to conclude that both the naturally occurring thalflavine [92] and the isoquinolone obtained as an oxidation product of the alkaloids thalmelatidine [94], thalistyline [95], thaliracebine [98], and thalistine [99] is isoguinolone 18. Finally, the revision of structure of thalflavine as isoquinoline 18 would suggest that the structures of the following alkaloids be changed to reflect their 5,6-methylenedioxy-7-methoxy thalmelatidine (15)[94] to 17, thalistyline (16)[95] to 19, Nsubstitution as follows: desmethylthalistyline (20)[95] to 21, N-methylthalistyline (22)[95] to 23, thalirabine (Odesmethylthalistyline)(24)[95] to 25, thaliracebine (26)[98] to 27, and thalistine (28)[99] to 29.

16

ọсн,

Ń

Чн

·CH,

СН3

СН,

22

28

6.2. Thalrugosinone Tabular Review [100, Alkaloid No. 224], UV [84,100], ¹H NMR [84,100], EIMS [84,100], CD [84,100]

Thalrugosinone (30), $C_{38}H_{42}O_8N_2$ (654.2941), $[\alpha]_D^{22}$ -42° (c 0.30, MeOH), was reisolated as an amorphous solid via preparative TLC of fractions obtained from an extract (EtOH) of the whole plant of Pakistani *T. cultratum* Wall. in 1986 [84]. The alkaloid had been first isolated from extracts of *Thalictrum rugosum* in 1980 in very limited quantities, thereby handicapping the structural assignment. That assignment, which was based on ¹H NMR and EIMS data, resulted in the representation of thalrugosinone as 31 [101]. The reisolation of thalrugosinone in larger quantities (79 mg) in 1986 afforded the opportunity to study some of the chemistry of the alkaloid. Although no original and authentic sample of thalrugosinone was available, a comparison of the ¹H NMR and EIMS of the original isolate with that of the later isolate

demonstrated their identity as the same compound. The isolated alkaloid was characterized by a UV spectrum (MeOH) that displayed maxima at 241 nm (sh) (log ε 4.34) and 280 (3.62), while the CD spectrum (MeOH) exhibited extrema at $\Delta \epsilon$ (nm) 0 (300), -3.9 (282), 0 (270), -0.2 (255), 0 (252), +11.8 (239), with a negative tail below 230 nm. The IR spectrum (KBr) showed a carbonyl absorption at 1660 cm⁻¹. Repeated attempts to reduce the alkaloid with NaBH₄ in MeOH were unsuccessful, despite the presence of two ketonic functions in 31. However, treatment of an ethereal solution of the alkaloid with LiAlH₄ readily afforded (-)-thalidasine (32), which was also isolated from T. cultratrum. In addition, acidic hydrolysis (18% aqueous HCl) for 5 hours yielded (-)-2-northalidasine (33), an alkaloid that was also present in T. cultratum. These chemical transformations led to a revision in the structure of thalrugosinone, and its assignment as 2-formyl-2-northalidasine (30). A detailed ¹H NMR spectral analysis of the alkaloid, including the measurement of nOes, was used to support the structural revision. The ¹H NMR chemical shift assignments for the alkaloid were made as follows: $\delta 4.48$ [m, H(1)], 7.50 [s, N(2)CHO], 3.24 [m, H(3a)], 4.61 [m, H(3b)], 6.36 [H(5)], 6.12 [d, 1H, J = 1.9 Hz, H(10)], 6.78 [d, 1H, J = 8.2 Hz, H(13)] and 6.52 [dd, 1H, J = 1.9, 8.2 Hz, H(14)]; δ 3.88 [m, H(1')], 2.65 [s, N(2')Me], 6.47 [s, 1H, H(8')], 6.42 [dd, 1H, J = 2.2, 8.3 Hz, H(10')], 6.58 [dd, 1H, J = 2.2, 8.3 Hz, H(11')], 6.99 [dd, 1H, J = 2.2, 8.3 Hz, H(13')], 7.62 [dd, 1H, J = 2.2, 8.3 Hz, H(14')]; 3.78 [s, C(6)OMe], 3.34 [s, C(7)OMe], 3.90 [s, C(12)OMe], 3.47 [s, C(6')OMe, and 3.88 [s, C(7) OMe]. Reciprocal nOe enhancements between the following were observed: N(2)CHO and H(1), H(1) and H(10), H(α) and H(10), H(5) and C(6)OMe, H(10) and H(10'), H(13) and C(12)OMe, H(1') and N(2')Me, H(8') and C(7')OMe, and H(8') and H(α '). In addition, other nOes were observed from H(5) to H(4a), H(α ') to H(10'), H(α ') to H(14'). Several observations were made by the authors concerning the influence of the N(2)-formyl function on the chemical shifts of the adjacent protons. First, in comparison with ¹H NMR spectrum of 2-northalidasine (33), the H(1) and one of the C(3) protons have undergone a substantial downfield shift. The H(1) has shifted from $\delta 4.05$ in 2-northalidasine (33) to $\delta 4.48$ in thalirugosinone because of its proximity to the neighboring N(2)-formyl group in the latter. In addition, because of the proximity of one of the H(3) protons in thalrugosinone (30) to the oxygen of the N(2)-formyl group in the compound, there is a downfield shift from $\delta 3.36$ to $\delta 4.61$. Second, the chemical shift of the N(2)-formyl proton is shifted upfield from the normal range of 88.5-9.0 to 87.50 because of the conformational shielding effects of the aromatic rings of the alkaloid. With regard to the ¹³C NMR spectrum of the alkaloid, the chemical shift of the carbonyl carbon atom was observed at δ 161.4, and its bonding to a hydrogen atom was further confirmed by a spin echo Fourier transform analysis. There was signal observed around 8199-200, where ketonic absorption is typically evident. Finally, the EIMS provided additional confirming evidence in favor of the structural revision. The molecular ion (74%) was observed at m/z 666.2882 (calcd. for $C_{39}H_{42}O_8N_2$, 666.2940), while the M-1 ion (54%) was observed at m/z 665.2821 (calcd. for $C_{39}H_{41}O_8N_2$, 666.2861). Other diagnostically important fragment ions include those at m/z 635 (100%), 439 (72)(34) [observed 439.1862; calculated for C24H22O6N2, 439.1866], 425 (18)(35) [observed 425.1704; calculated for $C_{23}H_{25}O_6N_2$, 425.1704], 411 (32)(36)

[observed 411.1896; calculated for $C_{23}H_{27}O_5N_2$, 411.1916], 409 (36), 211 (37)[observed 211.0762; calculated for $C_{14}H_{11}O_2$, 411.1916], 204 (49), and 190 (30). The authors observed that thalrugosinone was the first *N*-formyl containing bisbenzylisoquinoline alkaloid in nature, and that its biosynthesis likely proceeds via oxidation of the N(2)-methyl group of thalidasine (32) to a hydroxymethyl group which undergoes further oxidation to the formyl group. The stability of thalrugosinone (30) is consistent with its structure, being both a tertiary amine and an amide. Furthermore, the stability of 30 tends to stand in contrast with the apparent instability of the diaminoketone (31) that was portrayed in its original structural postulation [84].

35

36

37

6.3. Thalpindione

With the structural revision of thalrugosinone to 30 [84], and with the knowledge that the monophenolic alkaloid thalpindione converts to thalrugosinone on methylation (CH_2N_2), revision of the structure of thalpindione from 38 to 39 was reasonable [84].

7. NEW ALKALOIDS - MONOMERS

Some applicable generalizations in the following discussion of new *Thalictrum* alkaloids are: UV and CD spectra were recorded in MeOH; IR spectra were recorded in CHCl₃; and ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃, unless otherwise noted.

7.1. Aporphines

The numbering of the aporphine ring in the following alkaloids (aporphines, dehydroaporphines, oxoaporphines) is according to accepted practice [1,102-106], and is illustrated in the structure of acutifolidine (40).

7.1.1. (+)-Acutifolidine. (UV [61], IR [61], ¹H NMR [61], ¹³C NMR[61], EIMS [61]).

Acutifolidine (40), $C_{21}H_{25}O_5N$ (371.1731), mp 183-184°C, $[\alpha]_D^{27.5}$ +77.4° (c 1.033, MeOH), was isolated as colorless prisms from an extract of the roots of the Chinese T. acutifolium (Hand.-Mazz.) Boivin in 1989 [61]. The alkaloid showed a positive reaction with FeCl₁, and its UV spectrum was characterized by maxima at 280 nm (log ε 4.23), 301 (4.22), and 310 (sh), with a bathochromic shift in alkaline medium to 296 and 322 nm. The IR spectrum displayed absorption bands at 3080, 2830, 2800, 2720, 1608, 1516, 1370, 1260, and 1052 cm⁻¹. The ¹H NMR spectrum revealed the presence of one *N*-methyl group (s, $\delta 2.53$), four methoxy groups (δ 3.71, 3.88, 3.90, and 3.95), and one low-field aromatic proton (s, δ 7.92). A D₂O exchangeable broad singlet at δ 5.50-6.00 was attributable to a phenolic hydroxy group. The high resolution EIMS showed the parent ion at m/z 371.1730 (calcd. 371.1731 for C21H25O5N), with other important fragment ions at m/z 370.1676 (M-1), 356.1489 (M-15), 340.1535 (M-31), 328.1314 (M-43 [M-CH₂=NCH₃]), 313.1071 (M-15-43) and 180.0717. These spectral data were characteristic of a pentaoxygenated aporphine containing four methoxy groups and one phenolic hydroxy group [102-106]. In addition, the presence of a highfield methoxy signal ($\delta 3.71$) was characteristic of a C(1) methoxy group, while that of a lowfield proton absorption (δ 7.92) was characteristic of H(11). NOe experiments revealed that irradiation of the methoxy groups with chemical shifts at δ 3.88, 3.90, and 3.95 produced no discernible effect on the C(1)-methoxy group (δ 3.71) nor on the proton at δ 6.80. However, a 20% enhancement in the H(11) proton signal (δ 7.92) was noted on irradiation of the methoxy signal at δ 3.88. It was concluded that the phenolic hydroxy group must be located at C(2), while the four methoxy groups were placed at C(1), C(8), C(9), and C(10). The structural assignment was supported by the following ¹³C NMR spectral data, with corresponding assignments: 149.3 [C(1)], 130.5 [C(1a)], 129.3 [C(1b)], 149.0 [C(2)], 114.2 [C(3)], 123.5 [C(3a)], 23.4 [C(4)], 52.8 [C(5)], 62.8 [C(6a)], 33.7 [C(7)], 123.0 [C(7a)], 145.5 [C(8)], 145.2 [C(9)], 144.7 [C(10)], 114.2 [C(11)], and 122.8 [C(11a)].

7.1.2. (+)-Leucoxylonine N-Oxide. UV [107], IR [107], ¹H NMR [107], EIMS [107], CIMS [107], CD [107].

Leucoxylonine N-oxide (41), $C_{22}H_{25}O_7N$ (415.1631), $[\alpha]_D^{21}$ +30.9° (c 0.06, MeOH), was isolated via size exclusion chromatography (Sephadex LH-20) of the alkaloid fraction of an extract of the aerial parts of T. simplex L. in 1995 [107]. The UV spectrum exhibited a single maximum at 280 nm (log ε 3.63), while the CD spectrum displayed extrema at ∆ε -2.17 (305), -2.40 (297), -2.40 (295), -3.43 (283), +20.03 (245), -8.63 (222), -6.93 (216)(sh), and -4.34 (209). The IR spectrum was characterized by bands at 3600, 3000, 2930, 2850, 1730, 1630, 1600, 1580, 1495, 1465, 1425, 1400, 1350, 1260, 1140, 1120, 1055, 1000, 949, 920, 850, and 660 cm⁻¹, and was very similar to that of leucoxylonine (42), an aporphine that had been isolated via column chromatography from the same extract. The CIMS showed the (M+H)⁺ ion at m/z 416 (2.5%), while the EIMS typically failed to display a parent ion at m/z 415, but showed an important M-16 fragment ion at m/z 399 (91%) that is characteristic for N-oxides [102-106]. Other fragment ions reported include the following: 398 (100), 385 (11), 384 (22), 368 (13), 356 (18), 325 (6), 298 (4), 169 (3), 139 (10), 97 (20), 91 (12), 83 (51), and 58 (8). The ¹H NMR spectrum was also very similar to that of leucoxylonine (42), with the exception of the chemical shift of the Nmethyl group. This signal was observed as a singlet at $\delta 3.25$ in the N-oxide, rather than the characteristic higher field position ($\delta 2.58$) in the parent leucoxylonine (42), and was thus consistent for an N-oxide [102-106]. Other salient features of the ¹H NMR spectrum included the presence of five singlets and one double doublet, the former being represented by four methoxy groups (δ 3.89, 3.90, 3.92, 4.08) and one aromatic proton [δ 7.40, H(11)], while the latter was assignable to one methylenedioxy group [δ 5.91 and 6.16, 2H, J = 1.2 Hz]. A consideration of these spectral data, as well as the specific rotation, prompted the assignment of this new alkaloid as (+)-leucoxylonine N-oxide (41).

7.1.3. (+)-*N*-Methyldanguyelline. Tabular Review [106, Alkaloid No. 573], UV [46,106], ¹H NMR [46,106], EIMS [46,106].

N-Methyldanguyelline (43), $C_{20}H_{23}O_5N$ (357.1576), $[\alpha]_D$ +96° (c 0.25, CHCl₃), was isolated via preparative TLC of the basic fraction of an ethanolic extract of the whole plant of T. pedunculatum Edgew. in 1989 [46]. The UV spectrum of the alkaloid was characteristic of a 1,2,10,11- or a 1,2,3,10,11-oxygenated aporphine and displayed maxima at 219 nm (log ε 4,40). 277 (4.02), and 312 (sh) (3.72) [102-106]. Upon addition of alkaline solution, the spectrum exhibited a strong bathochromic shift with hyperchromic effect, suggesting the phenolic nature of the alkaloid. The EIMS showed a molecular ion at m/z 357, with the base peak at m/z 342, and other significant fragment ions at m/z 340 (37%), 326 (61), 311 (13), and 310 (313). The ¹H NMR spectrum showed four upfield singlets readily assignable to one N-methyl group ($\delta 2.66$) and three methoxy groups (δ 3.74, 3.92, and 4.00). The aromatic region displayed a two-proton singlet at 86.84, with a phenolic proton appearing as a sharp singlet (D₂O exchangeable) at 88.52. The presence of a two-proton singlet at approximately $\delta 6.8$ was characteristic of a C(10)-C(11) disubstituted phenolic aporphine, with the phenolic group being present at C(11). In order to verify this observation, the ¹H NMR spectrum was determined in DMSO-d₆, followed by DMSO d_c /NaOD. Examination of the first spectrum (neutral medium) revealed that the H(8) and H(9) protons appeared as a pair of doublets at $\delta 6.80$ and 6.83 (J=8.1 Hz), while in alkaline medium the H(8) proton had shifted upfield to $\delta 5.82$, with the H(9) proton being observed at $\delta 6.31$. This upfield shift of approximately 1 ppm is indicative of the para-relationship of the H(8) proton to the C(11) phenolic group [108,109]. The next problem was to unambiguously assign the placement of the methoxy groups. The high field methoxy (δ 3.74) was readily assigned to C(1) based on long precedent [102-106], but nOe studies were undertaken in order to place the other methoxy groups. Irradiation of the H(9) proton at 86.84 produced an enhancement of the C(10) methoxy singlet at δ 3.92, while irradiation of the C(1) methoxy singlet (δ 3.74) enhanced both the phenolic hydroxy singlet at $\delta 8.52$ and the C(2) methoxy singlet at $\delta 4.00$. Reciprocal enhancements were observed to each of these effects. It was therefore concluded that the second phenolic group in N-methyldanguyelline must be placed at C(3), as this is the only remaining position of aromaticity. The authors made the empirical observation that for 1,2,3-trisubstituted aporphines containing a phenolic group at C(3) and methoxy groups at C(1) and C(2), the C(2)methoxy resonance will be found near $\delta 4.00$. On the other hand, if the phenolic group is located at C(2) and the methoxy groups are found at C(1) and C(3), then the C(3) methoxy signal is observed near $\delta 3.92$. With this in hand, the authors postulated a conclusive structural assignment of danguyelline, the noraporphine parent alkaloid that had been isolated from extracts of Xylopia danguyella (Annonaceae) in 1981 [104,110]. This postulation fixed the ring A methoxylation to C(2) and the hydroxylation (phenol) to C(3).

7.1.4. (+)-Thalbaicalidine. Tabular Review [105, Alkaloid No. 417], UV [105,111], ¹H NMR [105,111], EIMS [105,111].

Thalbaicalidine (44), $C_{21}H_{25}O_5N$ (371.1733), mp 191-193°C (EtOAc), $[\alpha]_D$ +73° (MeOH), was isolated from an extract of the epigeal parts of *T. baicalense* Turcz. in 1984 [111]. The alkaloid was characterized by UV maxima (EtOH) at 282, 305, and 315 nm, with a bathochromic shift in alkaline medium to 326 nm. The EIMS displayed a parent ion at m/z 371 and other important fragment ions at m/z 370, 356 (M-Me), 341, and 328 (M-CH₂NCH₃). The ¹H NMR spectrum indicated the presence of one *N*-methyl group at $\delta 2.46$; four methoxy groups at $\delta 3.62$ (3H), 3.83 (6H), and 3.88 (3H); and two aromatic protons as uncoupled singlets at $\delta 6.65$ and 7.77. These data suggested that the alkaloid was a 1,2,3,9,10-pentaoxygenated aporphine [102-106], and comparison with the data for *N*-methylthalbaicaline [obtained by methylation (CH₂O/HCOOH) of thalbaicaline (45)] showed them to be identical. Hence, thalbaicalidine (*N*-methylthalbaicaline) was assigned as 3-hydroxy-1,2,9,10-tetramethoxyaporphine [111].

7.1.5. (+)-Thalbaicaline. Tabular Review [105, Alkaloid No. 416], UV [105,111], ¹H NMR [105,111], EIMS [105,111].

Thalbaicaline (45), $C_{20}H_{23}O_5N$ (357.1576), $[\alpha]_D$ +61° (MeOH), was first isolated from an extract of the epigeal parts of *T. baicalense* Turcz. in 1984 [111], and later from an extract of the stems in 1986 [34]. The alkaloid was characterized by UV maxima (EtOH) at 220, 285, 303, 313 nm, with a bathochromic shift in alkaline medium to 325 nm. The EIMS displayed a parent ion at m/z 357 and other important fragment ions at m/z 356, 342 (M-Me), 340, 328 (M-CH₂NH), 327, and 297. The ¹H NMR spectrum indicated the presence of four methoxy groups at $\delta_3.63$, 3.81, 3.83, and 3.88, and two aromatic protons as uncoupled singlets at $\delta_6.36$ and 7.81. Acetylation (Ac₂O/pyr) of thalbaicaline afforded an *N*,*O*-diacetyl derivative, characterized by two strong IR maxima (KBr) at 1650 (amide) and 1760 cm⁻¹ (phenolic ester). The EIMS displayed the parent ion at m/z 441, with other fragment ions at m/z 382, 381, 340, 339, 327, 310, and 293. The ¹H NMR spectrum showed the presence of one N-acetyl function as two singlets with a total intensity of 3 protons at $\delta 2.09$ and 2.13, one phenolic acetyl function as a singlet at $\delta 2.30$, four methoxy groups as two singlets at δ 3.64 (3H) and 3.84 (9H), and two aromatic protons as two singlets at $\delta 6.67$ and 7.93. These data were consistent with the assignment of thalbaicaline was a new 1,2,3,9,10-pentasubstituted monophenolic noraporphine [102-106]. The position of the phenolic group was established via a consideration of the EIMS of N_{0} -diacetylthalbaicaline (46), N-acetylnorthalicmine (47), and N-acetylbaicaline (48). The EIMS of N,O-diacetylthalbaicaline and N-acetylnorthalicmine displayed peaks of medium intensity at m/z 381 (M-60) and 365 (M-32), respectively, while in the spectrum of N-acetylbaicaline, these peaks were not discernible. On the basis of this difference in these mass spectra, as well as a consideration of the other data, thalbaicaline was assigned as 45 [111].

7.2. Dehydroaporphines

7.2.1. Dehydrothalicsimidine. Tabular Review [106, Alkaloid No. 619], UV [40,106], IR [40,106], ¹H NMR [40,106], ¹³C NMR [40,106], EIMS [40,106], FABMS [40].

Dehydrothalicsimidine (49), C₂₂H₂₅O₅N (383.1733), mp 127-128°C (petrol-EtOAc), was isolated as optically inactive yellow crystals from an extract (EtOH) of the roots of T. ichengense Lecoy et Oliv. in 1989 [40]. The UV spectrum (EtOH) was characteristic of a dehydroaporphine and showed maxima at 220 nm (log ɛ 4.21), 257 (4.55), 270 (4.53), and 335 (3.98) [102-106], while the IR spectrum (KBr) showed strong absorption in the 1540-1620 cm⁻¹ region. The EIMS displayed the molecular ion and base peak at m/z 383, with the FABMS being supportive. The ¹H NMR spectrum exhibited six singlets that were readily assignable to one downfield *N*-methyl group (δ 3.09), five methoxy groups [δ 3.91 (6H) and 4.05 (9H)], and three singlet aromatic protons ($\delta 6.66$, 7.09, and 9.00), the last of which was downfield and characteristic of the H(11) proton in dehydroaporphines [102-106]. The H-4 and H-5 protons were observed as a multiplet at $\delta_{3,21-4,05}$. These data were supportive of a 1,2,3,9,10-pentamethoxylated aporphine [102-106]. The authors assigned the proton resonating at δ 7.09 as H(7), based on a 1964 reference that cites the chemical shift of a proton located ortho- to a methoxy group being found at a higher field (0.4-0.7 ppm) than otherwise $(\delta 7.2-7.4)$ [112]. Subsequent irradiation of the proton at δ 7.09 resulted in a 10% nOe on the proton at δ 6.66, thereby prompting the assignment of the latter proton as H(8). However, the premise proposed in the 1964 reference was made in reference to aporphines, not dehydroaporphines, and was proposed some four years prior to the discovery of dehydrodicentrine, the first naturally occurring dehydroaporphine [113]. There is a considerable amount of evidence that would suggest the assignment of the H(7) and H(8)protons should be reversed, thereby assigning the signal at 6.66 ppm to H(7) and that at 7.09 ppm to H(8) [102-106]. The structural assignment was supported by the following ¹³C NMR spectral data: 146.6 [C(1)], 120.3[C(1a)], 121.3 [C(1b)], 150.7 [C(2)], 147.8 [C(3)], 121.9 [C(3a)], 24.7 [C(4)], 50.0 [C(5)], 40.7 [NCH₃], 141.7 [C(6a)], 102.9 [C(7)], 129.3 [C(7a)], 106.7 [C(8)], 148.8 [C(9)], 146.2 [C(10)], 108.4 [C(11)], and 118.5 [C(11a)].

7.3. Oxoaporphines

7.3.1. Oxobaicaline (7-Oxobaicaline). Tabular Review [105, Alkaloid No. 432], UV [34,105], IR [34,105], ¹H NMR [34,105], EIMS [34,105].

Oxobaicaline (50), $C_{20}H_{15}O_6N$ (365.0899), mp 240°C (dec.)(MeOH), was isolated in the form of large needles from an extract (CHCl₃) of the stems of *T. baicalense* Turcz. in 1986 [34]. The UV spectrum (EtOH) of the alkaloid showed maxima at 250, 289, 380, and 500 nm, with a bathochromic shift in acidic medium but no shift in alkaline medium, while the IR spectrum (KBr) displayed a strong band at 1650 cm⁻¹. These data were characteristic of an oxoaporphine alkaloid [102-106], and were supported by the EIMS that showed the parent ion and base peak at m/z 365, and other significant fragment ions at m/z 350, 349, 336, 320, 307, 279, 223, and 185.5. The ¹H NMR spectrum (TFA) indicated the presence of three methoxy groups as two singlets at δ 3.73 (6H) and 3.80 (3H), and one methylenedioxy group as a singlet at δ 6.18. Two one-proton singlets at δ 7.60 and 8.45 were assigned to the C(8) and C(11) protons, respectively, while the protons at C(4) and C(5) were observed (but not described) in the δ 8.20-8.40 region. Reduction of the alkaloid with Zn/H₂SO₄ afforded (+/-)-baicaline (51), an alkaloid previously isolated from this same plant in 1982 [114], while oxidation of baicaline with CrO₃ and KMnO₄ gave oxobaicaline (50), therefore confirming the structure of this new oxoaporphine [34].

The Thalictrum Alkaloids

7.4. Pavines

The numbering of the pavine ring in the following alkaloids is according to accepted practice [1], and is illustrated in the structure of 2-demethylthalimonine (52).

7.4.1. (-)-2-Demethylthalimonine. UV [67], IR [67], ¹H NMR [67], EIMS [67], CD [67].

2-Demethylthalimonine (52), $C_{20}H_{21}O_5N$ (355.1420), $[\alpha]_D^{22}$ -43.8° (c 0.02, MeOH), was isolated by preparative TLC from the alkaloid fraction of an extract (EtOH) of the aerial parts of T. simplex L. in 1992 [67]. The UV spectrum (EtOH) of the alkaloid displayed a single maximum at 284 nm (log ε 3.61), while the CD spectrum showed extrema at $\Delta \varepsilon$ -0.61 (313 nm). -0.57 (306), -0.43 (289), -0.34 (275), +1.37 (250), -2.37 (235), +4.50 (222), -26.25 (207). The IR spectrum was characterized by bands at 3400, 3025, 2956, 2855, 2815, 2401, 1518, 1465, 1377, 1230, 1215, 812, and 795 cm⁻¹. The EIMS displayed a parent ion at m/z 355 (19%), with other significant fragment ions at m/z 354 (13), 341 (4), 340 (4), 205 (13), 204 (100), and 190 (13). The ¹H NMR spectrum indicated the presence of one N-methyl group at $\delta 2.64$ (s), two methoxy groups as singlets at $\delta 3.79$ and 3.84, one methylenedioxy group as a doublet at $\delta 5.88$ and 5.95 (J=1.0 Hz), three aromatic protons as discrete singlets at $\delta 6.49$, 6.60, and 6.84, and one phenolic hydroxy group at $\delta 4.40-4.50$ (exchangeable with D₂O). These data were characteristic of a monophenolic pavine alkaloid containing two methoxy groups and one methylenedioxy group [115,116]. Treatment of 2-demethylthalimonine with a solution of ethereal CH₂N₂ afforded thalimonine (53), thereby fixing the skeletal structure and positions of oxygenation. Only the position of the phenolic hydroxy group at C(2), C(8), or C(9) remained to be established. The base peak at m/z 204 in the EIMS could be assignable to one of two fragment ions, either fragment ion 54 ($C_{12}H_{14}O_2N$) or fragment ion 55 ($C_{11}H_{10}O_3N$), and without high resolution measurements, this assignment was not possible. A previous study of the high resolution ¹H NMR spectrum (with nOe enhancements) of the parent alkaloid thalimonine (53) had demonstrated that the methoxy group at C(2) was found at δ 3.86, while methoxy groups at the C(8) and C(9) positions were observed at δ 3.84 and 3.78, respectively. On this basis, the methoxy groups of 2-demethylthalimonine were assigned to $C(8)[\delta 3.84]$ and $C(9)[\delta 3.79]$, leaving the placement of the phenolic hydroxy group at C(2), completing the assignment of 2demthylthalimonine (11) as (-)-8,9-dimethoxy-2-hydroxy-3,4-methylenedioxypavinane. There were no nOe studies reported to corroborate these assignments. Additional signals in the ¹H NMR spectrum of 2-demethylthalimonine (52) include the following: $\delta 2.64 [1H,s,H(5)], 2.74$ [1H,s,H(11)], 3.19-3.26 [1H,m,H(5')], 3.43-3.48 [1H,m,H(11')], 4.04-4.10 [2H,t,H(6) and H(12)].

7.4.2. (-)-9-Demethylthalimonine. UV [67], IR [67], ¹H NMR [67], EIMS [67], CD [67].

9-Demethylthalimonine (56), $C_{20}H_{21}O_{5}N$ (355.1420), $[\alpha]_{D}^{22}$ -51.7° (c 0.067, MeOH), was isolated along with 2-demethylthalimonine (52) by preparative TLC of the basic fraction of an extract (EtOH) of the aerial parts of T. simplex L. in 1992 [67]. The UV spectrum (EtOH) of 56 was characterized by a single maximum at 283 nm (log ε 3.68), while the CD spectrum displayed extrema at $\Delta \varepsilon = -0.08$ (309 nm), -0.07 (305,sh), -0.22 (288), +0.41 (276), +0.05 (257,sh), -2.65 (234), +0.77 (220). The IR spectrum was characterized by signals at 3400, 3007, 2958, 2856, 1734, 1651, 1516, 1464, 1375, 1346, 1257, 1188, 1055, and 796 cm⁻¹. The EIMS displayed a parent ion at m/z 355 (46%), with other significant fragment ions at m/z 354 (25), 341 (4), 340 (8), 218 (63), 204 (20), and 190 (100). The ¹H NMR spectrum suggested the presence of one N-methyl group at $\delta 2.59$ (s), two methoxy groups as singlets at $\delta 3.84$ and 3.86. one methylenedioxy group as a double doublet at $\delta 5.88$ and 5.95 (J=1.0 Hz), three aromatic protons as two singlets at $\delta 6.31$ (1H) and 6.59 (2H), and one phenolic hydroxy group at $\delta 4.40$ -4.50 (exchangeable with D_2O). These data were remarkably similar to the data reported for its positional isomer 2-demethylthalimonine (52), and were likewise characteristic of a monophenolic pavine alkaloid containing two methoxy groups and one methylenedioxy group [115,116]. As anticipated, treatment of 9-demethylthalimonine with a solution of ethereal CH₂N₂ gave thalimonine (53), thereby establishing fixing the skeletal structure and positions of oxygenation of 56. Examination of the EIMS fragment ions at m/z 190 and 218, assigned as 57 and 58, respectively, allowed the assignment of one of the methoxy groups of 56 to the ring bearing the methylenedioxy function. Thus, only the assignment of the phenolic hydroxy group to C(8) or C(9) remained to be established. Since one of the two methoxy groups of 56 has the same chemical shift (δ 3.84) as that of the C(8) methoxy group of thalimonine (53), and the other methoxy group has the same chemical shift (δ 3.86) as that of the C(2) of thalimonine (53), the phenolic group of 56 was placed at C(9), and 9-demethylthalimone (56) was characterized as (-)-2,8-dimethoxy-9-hydroxy-3,4-methylenedioxypavinane. As with its positional isomer 2demethylthalimonine, no nOe experiments were undertaken to validify these assignments. Finally, additional signals in the ¹H NMR spectrum of 9-demethylthalimonine (56) include the

following: $\delta 2.65$ [1H,s,H(5)], 2.80 [1H,s,H(11)], 3.21-3.29 [1H,m,H(5')], 3.43-3.49 [1H,m,H(11')], 4.04-4.08 [2H,t,H(6) and H(12)].

56

7.4.3. (-)-4-Hydroxyeschscholtzidine. UV [59], ¹H NMR[59], EIMS[59].

4-Hydroxyeschscholtzidine (59), $C_{20}H_{21}O_5N$ (355.1420), $[\alpha]_D^{25}$ -234° (c 0.09, CHCl₃), was isolated via column chromatography of the alkaloid fraction of an extract (MeOH) of the roots of *T. minus* L. ssp *majus* in 1992 [59]. The UV spectrum (EtOH) exhibited a single maximum at 287 nm. The EIMS showed the parent ion at m/z 355 (55%), with other intense fragment ions at 354 (25), 220 (60), and 188 (100). The ¹H NMR spectrum indicated the presence of one *N*-methyl group at $\delta 2.74$ (3H,s), two methoxy groups at $\delta 3.83$ (3H,s) and 3.84 (3H,s), six aliphatic protons at $\delta 2.50$ -4.50 (m), one methylenedioxy group as a double doublet at $\delta 5.86$ and 5.90, and three aromatic protons as singlets at $\delta 6.24$, 6.46, and 6.61. The mass spectral fragment ions were similar to those of the parent alkaloid eschscholtzidine, and to other related pavine alkaloids, with the fragment ion at m/z 220 corresponding to an *N*-methylisoquinolinium ion bearing two methoxy groups and one hydroxy group, while that at m/z 188 corresponded to a similar ion bearing one methylenedioxy group. In order to determine the site of the hydroxy group, the proton chemical shifts in the aromatic regions of the ¹H NMR spectrum were determined in DMSO-d₆. It was observed that the signal at $\delta 6.61$ was shifted upfield by 0.70 ppm when the spectrum was obtained in DMSO-d₆ and base. The magnitude of

The Thalictrum Alkaloids

this shift is characteristic for an aromatic proton that is para- to a phenolic hydroxy group, and the presence of a positive Gibbs Test (for a phenol with a free para- position) further corroborated the observation. These data suggested the placement of the phenolic group at either C(1) or C(4). The placement of the hydroxy group at C(4) was postulated because of the paucity of benzylisoquinoline precursor alkaloids containing oxygen functional groups at C(8)(the carbon that corresponds to C(1) in the pavine ring). Two alternative biosynthetic pathways were proposed for the genesis of the pentaoxygenated 4-hydroxyeschscholtzidine as follows: benzylisoquinoline (reticuline) -> 5-hydroxyreticuline -> -> -> 4-hydroxyeschscholtzidine; or benzylisoquinoline (reticuline) -> isonorargemonine -> eschscholtzidine 4hydroxyeschscholtzidine [59].

7.4.4. (-)-Thalimonine. UV [117], IR [117], ¹H NMR [117], ¹³C NMR [117], EIMS [117], CD [117].

Thalimonine (53), $C_{21}H_{23}O_5N$ (369.1576), $[\alpha]_D^{22}$ -118° (c 0.20, MeOH), was isolated via preparative TLC of the alkaloid fraction of an extract (EtOH) of the aerial parts of *T. simplex* L. in 1991 [117]. The UV spectrum (EtOH) exhibited a single maximum at 287 nm (log ε 3.84), while the CD spectrum was characterized by extrema at $\Delta\varepsilon$ +0.16 (294), -0.46 (287), +1.94 (274), +0.47 (247), +8.10 (220), and -43.16 (206). The IR spectrum was typified by absorption maxima at 3009, 2962, 2872, 1600, 1517, 1465, 1450, 1373, and 1172 cm⁻¹. The EIMS displayed a parent ion at m/z 369 (67%), with other intense fragment ions at 368 (23), 204 (100), and 218 (63). The ¹H NMR spectrum was characterized by four singlets (3H each) suggesting the presence of one *N*-methyl group (δ 2.53) and three methoxy groups (δ 3.78 [C(9)], 3.84 [C(8)], and 3.86 [C(2)]). In addition, the presence of one methylenedioxy function was indicated by the appearance of a two-proton doublet at δ 5.88 (J=0.98 Hz), as well as three aromatic protons as singlets at δ 6.31 [H(1)], 6.45 [H(10)], and 6.61 [H(7)]. Finally, a series of aliphatic protons appeared as signals from δ 2.56 to δ 4.03 as follows: δ 2.56 (s,1H)[H(11_β)], 2.63 (s,1H)[H(5_β)], 3.20 (dd,1H)[H(5_α)], 3.41 (dd,1H)[H(11_α)], 4.03 (m,2H)[H(6) and H(12)]. These data were similar to those reported for (-)-2,3-methylenedioxy-4,8,9-trimethoxypavinane (**60**), an alkaloid isolated from extracts of Thalictrum strictum Ledeb. in 1976 [118]. The m/z 218 and 204 mass spectral fragment ions of thalimonine (53) were characteristic of pavine alkaloid fragmentation and could be represented by isoquinolinium ions 58 and 55, respectively. In order to establish the positions of the varying groups in thalimonine, a series of nOe experiments were undertaken. Irradiation of the C(2) methoxy group ($\delta 3.86$) or the H(1) proton ($\delta 6.31$) produced a strong nOe between these groups, while irradiation of the aromatic singlet at $\delta 6.45$ [H(10)] effected the C(9) methoxy signal at δ 3.78. In addition, irradiation of the C(8) methoxy group at δ 3.84 produced a nOe on the H(7) aromatic proton singlet at $\delta 6.61$, while irradiation of the H(6)/H(12) multiplet at $\delta 4.03$ effected the H(1) and H(7) proton singlets at $\delta 6.31$ and 6.61, respectively. Irradiation of aromatic proton singlet at $H(7)(\delta 6.61)$ produced a nOe effect on the C(8) methoxy singlet (δ 3.84), as well as the H(6)/H(12) multiplet at δ 4.03, while a similar irradiation of the aromatic proton singlet at $\delta 6.31$ [H(1)] effected the multiplet at $\delta 4.03$ [H(6) and H(12)] and the methoxy singlet at $\delta 3.86$ [C(2)]. As no authentic sample of the earlier isolated alkaloid [118] whose structure was assigned as 60 was available, the authors were not certain as to whether thalimonine was truly a new alkaloid, or simply represented a reisolation and subsequent correction of structure for this previously isolated base. In any event, thalimonine was characterized as a new alkaloid [(-)-3,4-methylenedioxy-2,8,9-trimethoxypavinane] and assigned as 53. The structural assignment was supported by the following ${}^{13}C$ NMR spectral data (CDCl₁), with corresponding assignments: 106.3 [C(1)], 146.3 [C(2)], 142.3 [C(3) and C(4)], 132.5 [C(4a)], 27.6 [C(5)], 56.4 [C(6)], 129.8 [C(6a) and C(12a)], 110.4 [C(7)], 147.8 [C(8)], 148.2 [C(9)], 111.3 [C(10)], 123.9 [C(10a)], 34.2 [C(11)], 56.7 [C(12)], 55.9 [C(2)OMe], 55.4 [C(8)OMe], 55.7 C(9)OMe], 101.3 [OCH₂O], 40.8 [NMe].

7.4.5. (-)-Thalimonine *N*-Oxides A and B. UV [107], IR [107], ¹H NMR [107], ¹³C NMR [107], EIMS [107], CIMS [107], CD [107].

Thalimonine *N*-oxide A (61) $[C_{21}H_{23}O_6N (385.1524), [\alpha]_D^{21} -53.3^\circ (c 0.05, MeOH)]$ was isolated, along with its epimeric *N*-oxide thalimonine *N*-oxide B (62) $[C_{21}H_{23}O_6N (385.1524), [\alpha]_D^{21} -80.0^\circ (c 0.02, MeOH)]$, from a polar column chromatographic fraction of the alkaloid

fraction of a defatted extract (EtOH) of the aerial parts of T. simplex L. in 1995 [107]. Workup of this polar fraction via size-exclusion chromatography, followed by preparative reverse-phase HPLC, resulted in the isolation of two epimeric N-oxides, designated thalimonine N-oxide A (61) and thalimonine N-oxide B (62). The UV spectrum of epimer A displayed maxima at 251 nm (log ε 3.27) and 284 (3.28), while the CD spectrum exhibited extrema at $\Delta \varepsilon$ +0.10 (294), -0.14 (288), +1.61 (276), +0.45 (261)(sh), -8.12 (236), +15.22 (218) and -39.70 (205). The UV spectrum of epimer B was similar, and displayed maxima at 246 nm (log ε 3.34) and 277 (3.34), while the CD spectrum exhibited extrema at $\Delta \epsilon$ +0.05 (294), -0.23 (287), +1.17 (274), +0.32 (262)(sh), -8.86 (237), +11.47 (219) and -36.25 (206). The IR spectra of these epimers were similar in all absorption bands with the exception of a band at 1080 cm⁻¹ in the spectrum of epimer A (61), which appeared in at 1090 cm⁻¹ in the spectrum of epimer B (62). Since both of these absorption bands were absent from the IR spectra of (-)-thalimonine (53), (-)-2demethylthalimonine (52), and (-)-9-demethylthalimonine (56), these two bands were specifically assigned to epimer A and epimer B, respectively. Other absorption bands reported in both the IR spectra of epimer A and epimer B include the following: 3000, 2920, 2845, 1730, 1650, 1610, 1519, 1465, 1345, 1250, 1135, 1055, 1000, 980, 905, 870, 850, and 820 cm⁻¹. The EIMS of both epimers were very similar, with only slight differences in intensity of certain fragment ions, and were characterized by weak parent ions at m/z 385 (2-3%). Other fragment ions resemble those found in the spectrum of thalimonine (53), and include ions at m/z 383 (3-4%)(M-2)(dehydrogenation product), 370 (5-6%), 369 (21), 368 (9-12), 355 (6-7), 354 (8), 218 (48-53), 205 (13), 204 (100), 191 (5-10), 190 (29-32), 188 (6-8), 77 (10-13), 57 (6-11), and 55 (6-11). The CIMS of both epimers showed $M+H^+$ at m/z 386 (1-6%), with other common ions at m/z 371 (7-18%), and 370 (100).

The ¹H NMR spectra of these epimers was likewise very similar to that of the parent thalimonine (53), but there were notable differences that proved to be diagnostic. First, there was an obvious and characteristic downfield shift of the N-methyl absorption in the N-oxides (83.39 [N-oxide A] and $\delta 3.45$ [N-oxide B]) in comparison with the parent base thalimonine ($\delta 2.53$). Second, the two sets of aliphatic AMX spin systems [H(5a), H(5b), H(6), H(11a), H(11b), H(12)] were noticeably shifted, with the different downfield shifts between the H(5b) and H(11b) protons of epimers A and B being used to infer the influence of the neighboring oxide oxygen atom, and allowing the supposition of the relative configuration of the nitrogen atom in these epimers. The following chemical shifts were observed and assigned for those protons that were part of this aliphatic AMX system: $H(5a) - [(\delta 3.33, d, J = 17.2 Hz, N-oxide A) and (\delta 2.87, d, J = 16.3 Hz, b)$ N-oxide B)] as compared with thalimonine [$\delta 2.87$, s]; H(5b) -[($\delta 3.10$, d, J = 5.9 Hz, N-oxide A) and (δ 3.95, dd, J = 5.8, 16.3 Hz, N-oxide B)] as compared with thalimonine [δ 3.20, dd, J = 5.9, 16.5 Hz]; H(6) - [(δ 4.65, d, J = 5.7 Hz, N-oxide A) and (δ 4.97, t, 16.3 Hz, N-oxide B)] as compared with thalimonine [$\delta 4.03$, t]; H(11a) - [($\delta 2.73$, d, J = 16.0 Hz, N-oxide A) and ($\delta 3.19$, d, J = 17.5 Hz, N-oxide B)] as compared with thalimonine $[\delta 2.56, s]$; H(11b) - $[(\delta 4.24, dd, J =$ 5.8, 16.0 Hz, N-oxide A) and (δ 3.61, dd, J = 6.1, 17.5 Hz, N-oxide B)] as compared with thalimonine [δ 3.41, dd, J = 5.9, 16.2 Hz]; H(12) - [(δ 4.54, d, J = 5.7 Hz, N-oxide A) and (δ 4.91,
dd, 6.8, 16.3 Hz, N-oxide B)] as compared with thalimonine [δ 4.03, t]. Other chemical shift assignments for these alkaloids are as follows: H(1) - [(δ 6.37, s, N-oxide A) and (δ 6.34, s, N-oxide B)] as compared with thalimonine [δ 6.32, s]; H(7) - [(δ 6.61, s, N-oxide A) and (δ 6.63, s, N-oxide B)] as compared with thalimonine [δ 6.61, s]; H(10) - [(δ 6.53, s, N-oxide A) and (δ 6.50, s, N-oxide B)] as compared with thalimonine [δ 6.45, s]; C(2)OMe - [(δ 3.90, s, N-oxide A) and (δ 6.50, s, N-oxide B)] as compared with thalimonine [δ 6.45, s]; C(2)OMe - [(δ 3.90, s, N-oxide A) and (δ 3.89, s, N-oxide B)] as compared with thalimonine [δ 3.86, s]; C(8)OMe - [(δ 3.85, s, N-oxide A) and (δ 3.86, s, N-oxide B)] as compared with thalimonine [δ 3.86, s]; C(9)OMe - [(δ 3.80, s, N-oxide A) and (δ 3.81, s, N-oxide B)] as compared with thalimonine [δ 3.78, s]; C(3)+C(4)CH₂O₂ - [(δ 5.95, dd, J = 1.4, 26.7 Hz, N-oxide A) and (δ 5.91, dd, J = 1.4, 13.0 Hz, N-oxide B)] as compared with thalimonine [δ 5.88, dd, J = 1.4, 23.2 Hz].

62

A series of partial nOe experiments were undertaken in order to confirm the assignment of structure of the two oxides. In particular, irradiation of N-methyl group of epimer A produced an enhancement of the H(5b), H(6), and H(12) protons, while irradiation of H(7) affected an enhancement of the adjacent H(5a) and H(6) aliphatic protons. With regard to epimer B, irradiation of the N-methyl group produced an enhancement of the H(6), H(11b), and H(12) protons, while irradiation of H(11a) afforded an enhancement of H(1) and H(10), as well as demonstrating strong coupling with H(11b). By contrast, irradiation of H(12) affected H(1) and the N-methyl group, but produced a reversed nOe on H(11b). The ¹³C NMR spectrum of the epimers demonstrated the anticipated downfield shifts for N-methyl carbon atoms, as a result of the N-O dipole associated with N-oxides. In addition, downfield shifts involving the methine C(6) and C(12) atoms, as well as the C(5) and C(11) methylene atoms were also observed. The complete ¹³C NMR chemical shift data for the oxides and the parent thalimonine (53) were assigned as follows: $C(1) - [(\delta 106.0, N-oxide A); (\delta 106.2, N-oxide B); (\delta 106.3, thalimonine)];$ C(2) - [(146.2, N-oxide A); (146.1, N-oxide B); (146.3, thalimonine)]; C(3) - [(143.4, N-oxide A); (143.2, N-oxide B); (142.3, thalimonine)]; C(4) - [(142.9, N-oxide A); (142.2, N-oxide B); (142.3, thalimonine)]; C(4a) - [(135.0, N-oxide A); (135.5, N-oxide B); (132.5, thalimonine)]; C(5) - [(31.5, N-oxide A); (29.9, N-oxide B); (27.6, thalimonine)]; C(6) - [(69.9, N-oxide A); (70.0, N-oxide B); (56.4, thalimonine)]; C(6a) - $[(\delta 126.0, N-oxide A); (\delta 124.4, N-oxide B);$ (\$129.8, thalimonine)]; C(7) - [(111.1, N-oxide A); (111.0, N-oxide B); (110.4, thalimonine)]; C(8) - [(148.2, N-oxide A); (147.9, N-oxide B); (147.8, thalimonine)]; C(9) - [(148.6, N-oxide A); (148.1, N-oxide B); (148.2, thalimonine)]; C(10) - [(110.0, N-oxide A); (110.0, N-oxide B); (111.3, thalimonine)]; C(10a) - [(121.4, N-oxide A); (121.5, N-oxide B); (123.9, thalimonine)]; C(11) - [(35.0, N-oxide A); (35.7, N-oxide B); (34.2, thalimonine)]; C(12) - [(70.6, N-oxide A); (69.8, N-oxide B); (56.7, thalimonine)]; C(12a) - [(129.6, N-oxide A); (129.6, N-oxide B); (129.8, thalimonine)]; C(2)OMe - [(56.7, N-oxide A); (56.5, N-oxide B); (55.9, thalimonine)]; C(8)OMe -[(56.1, N-oxide A); (56.0, N-oxide B); (55.4, thalimonine)]; C(9)OMe - [(55.8, N-oxide A); (55.8, N-oxide B); (55.7, thalimonine)]; C(3)+C(4)CH₂O₂ - [(101.8, N-oxide A); (101.5, N-oxide B); (101.3, thalimonine)]; NMe - [(76.6, N-oxide A); (77.0, N-oxide B); (40.8, thalimonine)].

Authentic samples of the N-oxides were prepared via treatment of a solution of (-)thalimonine (53) in EtOH with H_2O_2 . The solution was stirred for 48 hours at 4°, treated with K_2CO_3 , and stirred for the next 24 hours at 4°, then for 4 days at 22°. A subsequent experiment varied the conditions by stirring for only 1 hour at 4°, while all subsequent oxidative procedures were performed at 22° over 7 days. It was found that only 66% of the alkaloid was oxidized over a period of week, regardless of temperature, thereby prompting the observation that pavine oxidation at the N-atom is a difficult and time-consuming process, and thus likely excluding the artefactual formation of pavine N-oxides during extraction and workup processes. In this experiment, 16 mg of thalimonine was oxidized, affording 9.6 mg of N-oxides, which were separated via preparative HPLC, and leaving 5.5 mg of unoxidized free base.

7.5. Phenanthrenes

The numbering of the phenanthrene ring in the following alkaloids is according to accepted practice [1,102-106], and is illustrated in the structure of northalicthuberine (63).

7.5.1. Northalicthuberine. IR [119], ¹H NMR [119], EIMS [119].

Northalicthuberine (63), $C_{20}H_{21}O_4N$ (339.1470), was isolated from an extract (EtOH) of the aerial parts of *T. simplex* L. in 1993, along with the known phenanthrene alkaloids thalicthuberine (66) and thalicthuberine-*N*-oxide (65)[119]. The IR spectrum (KBr) of 63 displayed an absorption band at 3418 cm⁻¹ that was characteristic of the stretching of a *N*H group, as well as other bands at 2925, 2853, 1716, 1600, 1508, 1465, 1421, 1384, 1367, 1288, 1272, 1126, 1104, 1065, 1039, 982, 946, 857, 809, 761, 701, and 630 cm⁻¹. The EIMS was very characteristic of phenanthrenes, displaying the parent ion at m/z 339 (92%), and other important fragment ions at m/z 338 (88)(M-H), 324 (100)(M-Me), 308 (31)(M-31)(M-OMe), 295 (75)(M-44)(M-CH₂=NHCH₃), 281 (38)(M-58)(M-CH₂CH₂NHCH₃), 265 (25), 58 (96), and 44 (67)[1,102-106]. The ¹H NMR spectrum resembled thalicthuberine (64), but lacked one of the *N*Me functions, and displayed signals at $\delta 2.45$ (s,3H)[NMe], 2.73 (m,2H)[α CH₂], 3.30 (m,2H)[β CH₂], 3.89 (s,3H)[C(4)OMe], 4.02 (s,3H)[C(3)OMe], 6.10 (s,2H)[C(6)-C(7) CH₂O₂], 7.19 (s,2H)[H(2) and H(8)], 7.51 (d,1H,J=9.2 Hz)[H(9)], 7.75 (d,1H,J=9.2 Hz)[H(10)], and 9.15 (s,1H)[H(5)]. The alkaloid was thus assigned as 63 based on the EIMS and ¹H NMR spectrum. No UV nor ¹³C NMR spectra were reported for this base.

7.5.2. Thalihazine. UV [57], ¹H NMR [57], EIMS [57].

Thalihazine (66), C₂₂H₂₅O₅N (383.1733), was isolated (along with the phenanthrene alkaloid thalicthuberine (64) and the aporphine alkaloid N-methyllaurotetanine) by preparative TLC of fractions obtained by column chromatography of the alkaloid fraction of an extract (EtOH) the whole plant of T. hazarica R.R.S. in 1987 [57]. The UV spectrum of the alkaloid showed maxima at 261 nm (log ε 4.30), 283 (3.77), 315 (3.37), and 344 (2.90) [1,102-106], while the EIMS was characterized by the facile loss of the dimethylaminomethylene ion $(CH_2=N^+(CH_3)_2)(m/z 58)$, and displayed the parent ion at m/z 383 (7%), with other significant fragment ions at m/z 325 (5%)(M-58)(M-CH₂=N(CH₃)₂), 310 (1), 295 (2), 280 (1), 267 (3), and 58 (100). These spectral data were characteristic of phenanthrenes [1,102-106], and prior to the ¹H NMR spectral characterization of thalihazine (66), the authors undertook a complete nOe study on thalicthuberine (64), the companion alkaloid that had been isolated along with thalihazine. Significant and/or strong nOes were detected among various protons, allowing the following unambiguous assignments to be made for thalicthuberine (64): $\delta 2.40$ (s,6H)[N(Me)₂], 2.66 $(m,2H)[\alpha CH_2]$, 3.25 $(m,2H)[\beta CH_2]$, 3.90 (s,3H)[C(4)OMe], 4.03 (s,3H)[C(3)OMe], 6.10 (s,2H)[C(6)-C(7) CH₂O₂], 7.19 (s,1H)[H(2)], 7.51 (d,1H,J=9.1 Hz)[H(9)], 7.76 (d Hz)[H(10)], and 9.16 (s,1H)[H(5)]. The ¹H NMR spectrum of thalihazine (66) was very similar to that of thalicthuberine (64), differing only by the presence of one additional methoxy group and the absence of one aromatic proton. A detailed nOe study permitted the unequivocal assignment of the 'H NMR proton spectrum of thalihazine (66) as follows: δ2.45 $(s,6H)[N(Me)_2]$, 2.59 (m,2H)[α CH₂], 3.31 (m,2H)[β CH₂], 3.96 (s,3H)[C(4)OMe], 4.00 (s,3H)[C(2)OMe], 4.06 (s,3H)[C(3)OMe], 6.10 (s,2H)[C(6)-C(7) CH₂O₂], 7.59 (d,1H,J=9.1

Hz)[H(9)], 7.80 (d,1H,J=9.1 Hz)[H(10)], and 9.06 (s,1H)[H(5)]. Four interesting observations were made by the authors following this study. First, the most downfield methoxy signal in the ¹H NMR spectrum of the two phenanthrene alkaloids cited in this paper corresponded to the C(3) methoxy, that methoxy that lay between the other two. The same was noted for aporphines bearing three methoxy groups in ring A [102-106]. Second, with regard to the ¹H NMR spectra of thalihazine (68) and aporphines, it was noted that whenever a methoxy group was present at the C(3) position of an aporphine, the H(11) proton signal shifts upfield by about 0.1 ppm [4]. In the case of thalihazine (66), the signal for the H(5) proton appears at $\delta 9.06$, some 0.1 ppm higher that the identical proton in thalicthuberine (64) which is observed at $\delta 9.16$. Third, it has been observed that aporphines that are unsubstituted at C(11) are usually more likely to undergo Hofmann β -elimination of their N-metho salt derivatives than are those corresponding aporphine N-metho salts in aporphines unsubstituted at C(11)[120]. A literature examination revealed that the classical phenanthrene-type alkaloids are typically unsubstituted at the C(5) position [the C(11) aporphine position][102-106,120]. The same observation may be made for thalihazine (66), which is unsubstituted at the corresponding C(5) position. Fourth, it was previously noted that the genus *Thalictrum* has a proclivity for the production of trioxygenated ring A aporphinoids [1,121], and the isolation of thalihazine (66) is one a further example of this phenomenon.

7.6. Diterpenes

The numbering of the diterpene ring in the following alkaloids is illustrated in the structure of thalicessine (67).

7.6.1. (+)-Thalicessine. UV [54], IR [54,79], ¹H NMR [54,79], ¹³C NMR [54,79], EIMS [54,79], CD [54].

Thalicessine (67), $C_{22}H_{27}O_4N$ (369.1940), mp 213-216°C (MeOH), $[\alpha]_D^{25}$ +113° (c 0.2, CHCl₃), was isolated as colorless prisms from an extract (EtOH) of the roots of *T. sessile* Hayata in 1987 [54,79]. An empirical formula of $C_{22}H_{27}O_4N$ was determined via a consideration of the EIMS parent ion (m/z 369), as well as the results of elemental analysis. The UV spectrum was characterized by a single maximum at 308 nm (log ε 1.65). A consideration of pertinent IR (nujol), ¹H NMR, and ¹³C NMR spectral data suggested that the alkaloid was a diterpenoid compound containing the following functionality: two ketone carbonyl groups (v 1710 cm⁻¹; δ 207.6 (s) and 208.9 (s) ppm); one lactam carbonyl group (v 1630 cm⁻¹; δ 177.1 (s) ppm); one exocyclic methylene group (v 1620 and 890 cm⁻¹; δ 4.85 (d, 1H, J = 2.40 Hz); δ 111.1 (t) and 141.9 (s) ppm); one methyl group (δ 1.50 (s, 3H); 25.5 (q) ppm); and one hydroxyethyl group attached to nitrogen (v 3350 cm⁻¹; δ 2.85 (t,1H,J=5.12 Hz, lost on addition of D₂O). Other signals were observed at δ 3.45 (1H, ddd, J = 14.16,5.13,3.41 Hz), 3.62

(1H, ddd, J = 14.16, 8.05, 3.41 Hz), 3.78 (1H, m, changed to ddd [J = 11.48, 5.13, 3.41 Hz] onaddition of D_2O , 3.88 (1H, m, changed to ddd (J = 11.48, 8.05, 3.41 Hz) on addition of D_2O ; and δ 49.7 (t) and 60.9 (t). These spectral data, particularly the ¹³C NMR spectrum, were very similar to the diketone 68, a derivative of the diterpene alkaloid spiradine A (69)[122]. The notable differences between the spectra of diketone 68 and thalicessine (67) existed in the presence of the hydroxyethyl and lactam groups in the latter. The placement of one of the carbonyl groups of thalicessine (67) at C(6) was made via a consideration of the nature of the products formed by successive treatment of the alkaloid with NaOD/dioxane to form a trideuterioproduct 70, followed by reduction (NaBH₄/THF) and then acetylation (Ac₂O/pyr) to 71. The trideuterio- compound 71 failed to demonstrate ¹³C NMR spectral signals corresponding to those at $\delta 51.5$ (t)[C(7)] and $\delta 0.0$ (d)[C(5)] in thalicessine (67), and was characterized by a mass spectral parent ion at m/z 372 ($C_{22}H_{24}D_3O_4N$). The reduced acetylated product 71 (M⁺ m/z 458 $[C_{16}H_{10}D_{1}O_{6}N]$ was characterized by a ¹H NMR spectrum that showed a singlet at $\delta 4.18$ [H(6)] in comparison with the ¹H NMR spectrum of the diaceate derivative 72 (prepared in the same manner as 71, but without initial deuteration) that displayed a multiplet at $\delta 4.20$ [H(6)]. These data aided in the placement of one of the two carbonyl groups at C(6). The second carbonyl group was placed at C(11) for at least two reasons [79]. First, thalicessine (67) and spiradine A (69) were both isolated from the same extract, and since spiradine A possessed both an aminoacetal group at C(6) and a carbonyl group at C(11), it was reasoned that this was logical precedent. Second, a compound that is deuterized at C(9) or C(12) could not be obtained and be in accord with Bredt's Rule. In a subsequent paper [54], the authors presented additional arguments for the placement of the carbonyl group at this position via the citation of the occurrence of a single UV spectral maximum at 308 nm (characteristic of that for a β_{γ} unsaturated ketone), as well as the CD spectral Cotton effects at 314 nm ($\Delta\epsilon$ +1.32) and 276 ($\Delta\epsilon$ -0.75). These characteristics were also noted to be common in other diterpenes of the spirasine series [54]. Finally, the proposed structure of thalicessine as 67 was confirmed by ${}^{1}H{}^{-1}H$ and ${}^{1}H{}^{-1}H$ ¹³C correlated spectroscopy (COSY). This paper is particularly significant, in that it represents the first reported isolation of diterpenoid alkaloids from the genus Thalictrum.

Complete ¹³C NMR spectral assignments for the new spiradine-type diterpenoid alkaloid thalicessine (67) and spiradine A-derived ketone 68 follow: Thalicessine (67): $\delta 39.8$ (t)[C(1)], 20.6 (t)[C(2)], 34.2 (t)[C(3)], 46.5 (s)[C(4)], 60.0 (d)[C(5)], 207.6 (s) or 208.9 (s)[C(6)], 51.5 (t)[C(7)], 43.9 (s)[C(8)], 75.6 (d)[C(9)], 42.9 (s)[C(10)], 208.9 (s) or 207.6 (s)[C(11)], 63.7 (d)[C(12)], 33.3 (t)[C(13)], 47.0 (d)[C(14)], 35.1 (t)[C(15)], 141.9 (s)[C(16)], 111.1 (t)[C(17)], 25.5 (q)[C(18)], 177.1 (s)[C(19)], 53.9 (d)[C(20)], 49.7 (t)[NCH₂CH₂OH], 60.9 (t)[NCH₂CH₂OH]; Spiradine A-derived ketone 68: $\delta 40.6$ (t)[C(1)], 18.7 (t)[C(2)], 30.2 (t)[C(3)], 47.0 (s)[C(4)], 60.3 (d)[C(5)], 204.0 (s) or 211.1 (s)[C(6)], 50.7 (t)[C(7)], 43.0 (s)[C(8)], 78.2 (d)[C(19)], 38.1 (s)[C(10)], 211.1 (s) or 204.0 (s)[C(11)], 65.3 (d)[C(12)], 33.6 (t)[C(13)], 45.6 (d)[C(14)], 35.1 (t)[C(15)], 143.5 (s)[C(16)], 110.2 (t)[C(17)], 30.7 (q)[C(18)], 61.0 (t)[C(19)], 53.4 (d)[C(20)], 43.1 (q)[NCH₃].

7.6.2. (-)-Thalicsiline. IR [54,123], ¹H NMR [54,123], ¹³C NMR [54,123], EIMS [54,123], X-RAY [54,123].

Thalicsiline (73), $C_{24}H_{35}O_5N$ (417.2515), mp 183-186°C (MeOH), $[\alpha]_D^{20}$ -11.4° (c 0.1, MeOH), was isolated, along with thalicessine (67) [54,79] and five other spiradine-type alkaloids, as colorless prisms from an extract (EtOH) of the roots of T. sessile Hayata in 1987 [54,123]. The IR spectrum (nujol) exhibited bands at 3540 (-OH), 1720 and 1240 (CH₃CO-), and 1100 (ether) cm⁻¹, while the high resolution EIMS was characterized by a parent ion at m/z 417.2481 (417.2515, calculated for C₂₄H₃₅O₅N). An examination of the ¹³C NMR spectral data and comparison with literature values [124, 125] suggested the presence of an ajaconine-type [C(7)-C(20) carbinolamine ether type linkage) diterpene skeleton. A single-crystal X-ray analysis revealed the complete structure and relative stereochemistry of thalicsiline (73). The ¹H NMR spectrum of the alkaloid was characterized by certain characteristic signals, and was in agreement with the specified structure. The presence of an oxazolidine ring system was demonstrated via the appearance of a five-proton multiplet between $\delta 3.00$ and 4.10, in which the proton at C(19) is observed as an epimeric pair of signals at $\delta 4.11$ (S) and 3.86 (R), existing in a ratio of approximately 1:3. This behavior is also common in the spirasine series of diterpenoids [126]. Additional epimeric pairs of signals (all in a 1:3 ratio) were observed and assigned as follows: $\delta 5.32$ and 5.67 (dd, J = 2.40 Hz)[H(6)], $\delta 4.82$ and 4.58 (s)[H(20)], $\delta 2.05$ and 2.06 (s)[C(6)-COOCH₃), $\delta 1.31$ and 1.30 (s)[H(17)], $\delta 0.94$ and 1.11 (s)[H(18)]. A complete ¹³C NMR spectral assignment (CDCl₁) for the thalicsiline (73) was made as follows: $\delta 40.54$ (t)[C(1)], 22.70 (t)[C(2)], 47.21 (t)[C(3)], 35.16 (s)[C(4)], 52.18 (d)[C(5)], 70.79 (d)[C(6)], 70.91 (d)[C(7)], 36.27 (s)[C(8)], 42.53 (d)[C(9)], 35.28 (s)[C(10)], 29.02 (t)[C(11)], 38.26 (d)[C(12)], 26.68 (t)[C(13)], 23.52 (t)[C(14)], 20.24 (t)[C(15)], 73.83 (s)[C(16)], 30.19 (q)[C(17)], 22.58 (q)[C(18)], 96.40 (d)[C(19)], 85.59 (d)[C(20)], 51.01 (t)[C(21)], 63.30 (t)[C(22)], 169.72 (s)[C(23)], 21.41(q)[C(24)].

Thalicsiline (73) is notable in that it is the first ajaconine-type alkaloid bearing an oxazolidine ring, as well as an oxygen function at C(6), and is only the second ajaconine-type alkaloid found in nature. In addition, thalicsiline is only the second diterpene alkaloid to have been isolated from the genus *Thalictrum*. Thalicsiline was observed to possess anti-inflammatory activity as measured by a 42% reduction in carrageenan-induced inflammation in the hindfoot of Sprague Dawley rats when the alkaloid was administered at an intraperitoneal dosage of 20 mg/kg x 2 [123,127].

The Thalictrum Alkaloids

8. NEW ALKALOIDS - DIMERS

8.1. Aporphine-Benzylisoquinolines

The numbering of the aporphine-benzylisoquinoline ring in the following alkaloids is according to accepted practice [1,128,130,131], and is illustrated in the structure of thalibulamine (13).

8.1.1. (+)-Thalibulamine. Tabular Review [128, Alkaloid No. 67], UV [2,4,128], ¹H NMR [2,4,128], EIMS [2,4,128], CD [2,4,128].

Thalibulamine (13), $C_{40}H_{46}O_8N_2$ (682.3254), $[\alpha]_D$ +63° (c 0.2, MeOH), was isolated along with eleven other aporphine-benzylisoquinoline dimeric alkaloids from an extract (EtOH) of the whole plant of T. cultratum Wall. in 1986 [2,4]. The UV spectrum was typical of that of an aporphine-benzylisoquinoline dimeric alkaloid and displayed maxima at 225 nm (log ε 4.79), 270 (sh)(4.29), 281 (4.42), 301 (4.31), and 314 (4.24), while the CD spectrum exhibited extrema at $\Delta \epsilon$ (nm) 0 (320), -5.6 (300), -8.0 (272), 0 (255), +80 (239), with a negative tail below 230 nm. The EIMS was characterized by the molecular ion at m/z 682 (0.07%), with other fragment ions at m/z 681 (0.2%), 680 (0.3), 476 (1), 475 (2), 206 (74)(100), and 190 (4). The ¹H NMR spectrum was very similar to that of istanbulamine (75), save for the appearance of an extra upfield methoxy signal at δ 3.60, while the EIMS parent ion and base peak were both 14 amu higher than those for istanbulamine, suggesting the likelihood that thalibulamine was the Omethyl ether of istanbulamine. The structure of thalibulamine as 13 became evident upon an examination of the entire ¹H NMR spectrum that displayed signals for two N-methyl groups as singlets at $\delta 2.29 [N(6) \text{ or } N(2')]$ and 2.51 [N(2') or N(6)]; six methoxy groups as singlets at $\delta 3.60$ [C(7')], 3.75 [C(1)], 3.81 [C(6')], 3.89 [C(3)], 3.91 [C(10)], and 3.96 [C(2)]; and seven aromatic protons at $\delta 6.06$ [s, 1H, H(8')], 6.52 [s, 1H, H(5')], 6.74 [dd, 1H, J = 2,8.2 Hz, H(14')], 6.82 [br s, 2H, H(10') and H(8)], and 6.91 (d, 1H, J = 8.2 Hz, H(13')]. The H(1') proton was found as a multiplet at $\delta 3.72$.

8.1.2. (+)-Thalifaberidine. UV [129], ¹H NMR [129], ¹³C NMR [129], EIMS [129].

Thalifaberidine (76), $C_{39}H_{44}O_8N_2$ (668.3097), $[\alpha]_D$ +87° (c 0.01, MeOH), was isolated as a yellow solid from the phenolic alkaloid fraction of an extract (EtOH) of the roots of T. faberi Ulbr. in 1994 [129]. The UV spectrum was characterized by two maxima at 282 nm (log ε 4.10) and 314 (sh)(3.90), while the EIMS displayed the base peak at m/z 192. The high resolution EIMS showed a M⁺-H ion at m/z 667.3012 (667.3020, calculated for $C_{30}H_{43}O_{e}N_{2}$). The structural solution of thalifaberidine proceeded via a detailed ¹H NMR and ¹³C NMR spectral investigation, and included such contemporary techniques as DEPT, COSY, ROESY, HETCOR, FLOCK, and selective INEPT. Features that were immediately apparent included the following: First, magnetic resonance spectra displayed signals that were characteristic of two N-methyl groups, five methoxy groups, two aliphatic methine protons, seven aromatic methine protons, six methylene carbon atoms, and sixteen quaternary carbon atoms, and were thus characteristic of a benzy isoquinoline-aporphine dimer with five methoxy groups and two phenolic hydroxy groups. Second, the presence of a lower field one proton signal at 87.86, as well as an AA'BB' four aromatic proton pattern at $\delta 6.77$ and 6.93, were characteristic for members of the thalifaberine (77) group [1,128,130-132]. Third, the presence of the EIMS base peak at m/z 192 (78) and the high field aromatic proton singlet at $\delta 5.92$ (H-8') suggested that one of the phenolic groups should be located at in the benzylisoquinoline system at $C-(6^{\circ})$, while the other phenolic hydroxy group should be in the aporphine system.

An examination of the ROESY spectrum showed nOe contours between H-11 and both the C(10) and C(1) methoxy groups, as well as between H(8') both the H(1') and H(α 'B) protons. In addition, other spatial relationships were observed between H(1') and NMe(2'), as well as between H(10') and H(1'). Selective INEPT and FLOCK experiments were used to confirm these assignments, and to assign all of the quaternary carbon atoms. The utilization of these and related spectral correlations permitted the assignment of all of the chemical shift values. The ¹H NMR signals were assigned as follows: 2.84 (m, 1H, H(4A) where A is used to designate one of the geminal protons), 2.75 (m, 1H, H(4B) where B is used to designate one of the geminal protons), 2.99 [m, H(5A)], 2.35 [m, H(5B)], 2.28 [s, N(6)Me], 2.81 [m, H(6a)], 3.20 [dd, J = 4.0,14.0 Hz, H(7A)], 2.00 [t, 14.0 Hz, H(7B)], 7.86 [s, H(11)]; 3.63 [m, H(1')], 2.48 [s, N(2')Me], 3.13 [m, H(3'A)], 2.72 [m, H(3'B)], 2.71 [m, H(4'A)], 2.50 [m, H(4'B)], 6.51 [s, H(5')], 5.92 [s, H(8')], 3.08 [dd, J = 4.5, 13.5 Hz, $H(\alpha'A)$], 2.78 [m, $H(\alpha'B)$], 6.93 [d, J = 8.5 Hz, $H(10^{2})$], 6.77 [d, J = 8.5 Hz, $H(11^{2})$], 6.77 [d, J = 8.5 Hz, $H(13^{2})$], 6.93 [d, J = 8.5 Hz, H(14')]; 3.76 [s, C(1)OMe], 3.95 [s, C(2)OMe], 3.86 [s, C(3)OMe], 3.92 [s, C(10)OMe], and 3.50 [s, C(7')OMe]. The ¹³C NMR chemical shift assignments were as follows: 149.14 [C(1)], 122.36 [C(1a)], 130.81 [C(1b)], 145.11 [C(2)], 149.61 [C(3)], 122.03 [C(3a)], 23.41 [C(4)], 52.69 [C(5)], 43.70 [C(6)NMe], 62.33 [C(6a)], 26.38 [C(7)], 122.03 [C(7a)], 138.49 [C(8)], 137.99 [C(9)], 146.37 [C(10)], 107.85 [C(11)], 123.55 [C(12)]; 67.45 [C(1')], 43.03 [N(2')Me], 46.11[C(3')], 24.52 [C(4')], 125.67 [C(4'a)], 114.38 [C(5')], 144.02 [C(6')], 144.25 [C(7')], 110.58 $[C(8')], 127.48 [C(8'a)], 40.19 [C(\alpha')], 133.00 [C(9')], 114.58 [C(10')], 130.84 [C(11')], 156.55$ [C(12')], 130.84 [C(13')], 114.58 [C(14')]; 60.54 [C(1)OMe], 60.90 [C(2)OMe], 60.26 [C(3)OMe], 56.10 [C(10)OMe], 55.38 [C(7')OMe]. Thalifaberidine was thus assigned as 6',9-demethylthalifaberine (76).

75

76

78

8.1.3. (+)-Thalifaboramine. Tabular Review [128, Alkaloid No. 69], UV [128,133], IR [128,133], ¹H NMR [128,133], EIMS [128,133], CD [128,133].

Thalifaboramine (79), $C_{39}H_{44}O_7N_2$ (652.3137), $[\alpha]_D$ +63° (c 0.2, MeOH), was isolated as a yellow amorphous solid after preparative TLC from selected fractions of an extract (EtOH) of the roots of *T. faberi* Ulbr. in 1987 [133]. The UV spectrum showed maxima at 283 nm (log ϵ 4.30) and 313 (sh)(3.98), with a bathochromic shift in alkali to 290 nm (log ϵ 4.14) and 330 (4.14)(hyperchromic shift), suggesting the phenolic nature of the alkaloid. The EIMS displayed a very small parent ion at m/z 652 (about 0.1%), with other important fragment ions at m/z 446 (M⁺ - 206)(5%) and 206 (100%), the latter of which suggests the presence of isoquinolinium ion 74, formed by the facile doubly benzylic cleavage of an benzylisoquinoline. The ¹H NMR spectrum was suggestive of a thalifaberine (76)-type alkaloid [1,128,130-132], and displayed the typical AA'BB' quartet that is characteristic of the H(10'), H(11'), H(13'), H(14') symmetrical protons of the benzyl-ring (ring C) of the benzylisoquinoline-portion of the alkaloid, leaving C(12') as the obvious terminus of the diarylether linkage to the aporphine-half. These data also

The Thalictrum Alkaloids

placed the phenolic group somewhere in the aporphine-portion of the molecule, and the 17 nm bathochromic shift in strong alkali, combined with notable hyperchromism, suggested the placement of the phenol at the C(3) or C(9) position [134]. Obvious significant features of the ¹H NMR spectrum included the presence of two *N*-methyl groups, five methoxy groups, four additional aromatic protons, and one phenolic group (D₂O exchangeable). The structure of thalifaboramine was firmly settled after a nOe difference study was undertaken. Most importantly, it was noted that there was a significant enhancement of the H(3) signal on irradiation of the C(2) methoxy group, serving to prove that the phenolic hydroxy group cannot be located at C(3). In addition, a significant enhancement of the H(11) signal by irradiation of the C(10) methoxy demonstrated that the diaryl ether terminus cannot be placed at C(10), and hence the phenolic group must be located at C(9). Other nOe enhancements included the H(3)onto the C(2) methoxy, the C(1) methoxy onto H(11), the H(5') onto the C(6') methoxy, the C(6') methoxy onto the H(5'), and the C(7') methoxy onto the H(8'). ¹H NMR chemical shift assignments are as follows: $\delta 6.54$ [s, H(3)], 2.26 [s, N(6)Me], 6.95 [s, H(9), D₂O exchanged), 7.97 [s, H(11)]; 2.54 [s, N(2')Me], 6.54 [s, H(5')], 5.89 [s, H(8')], 6.93 [d, 2H, J = 8.9 Hz, H(10') and H(14')], 6.73 [d, 2H, J = 8.9 Hz, H(11') and H(13')]; 3.63 [s, C(1)OMe], 3.84 [s, C(2)OMe], 3.87 [s, C(10)OMe], 3.81 [s, C(6')OMe], 3.41 [s, C(7')OMe. The CD curve of thalifaboramine (79) [$\Delta \epsilon$ -3.29 (305), -3.99 (276), and +51.72 (243)] was very similar to that of thalifaberine (77)(O-methylthalifaboramine), and supported the assignment of the absolute configuration (S,S) for thalifaboramine (79).

Thalifaboramine is but one of over 16 new aporphine-benzylisoquinoline dimeric alkaloids that have been isolated from *Thalictrum faberi* Ulbr., and the crude basic fraction, as well as most of the new alkaloids, including thalifaboramine (**79**), have demonstrated cytotoxic effects against the P-388 carcinoma cell [133].

8.1.4. (+)-Thalifalandine. Tabular Review [128, Alkaloid No. 74], UV [83,128], IR [83,128], ¹H NMR [83,128], EIMS [83,128], CD [83,128].

Thalifalandine (80), C₄₀H₄₆O₈N₂ (682.3254), [α]_D¹⁴ +83.3° (c 0.375, MeOH), was isolated as an amorphous solid from an extract of the roots of T. faberi Ulbr. in 1986 [83]. The alkaloid displayed a UV spectrum with maxima at 205 nm (log ε 4.47), 225 (sh)(4.37), 285 (4.03), and 308 (sh)(3.89), with a bathochromic shift on the addition of strong alkali to 204 nm (log 4.37), 226 (sh)(4.30), 290 (3.83), 313 (3.95), and 325 (3.95). The IR spectrum showed an absorption 3530 cm⁻¹. These data were characteristic of a phenolic aporphineat benzyltetrahydroisoquinoline dimeric alkaloid [1,128,130,131]. The ¹H NMR spectrum was similar to that of a thalifaberine (77)-type alkaloid [1,128,130-132], and displayed the typical AA'BB' quartet that is characteristic of the H(10'), H(11'), H(13'), H(14') symmetrical protons of the benzyl-portion of the benzylisoquinoline half of the alkaloid. The EIMS was characterized by the presence of a very small parent ion at m/z 682 (about 0.1%), and with other important fragment ions at m/z 476 (M⁺ - 206) and 206 (100%). The base peak at m/z 206 (100%) may be represented by the isoquinolinium ion 74, formed by the facile doubly benzylic cleavage of an benzylisoquinoline, and suggests the presence of two methoxy groups in the isoquinoline portion of the dimer. Treatment of thalifalandine with diazomethane afforded thalifaberine (77), thus fixing the skeletal framework of the new alkaloid, and establishing it as an Odemethylthalifaberine derivative. Furthermore, the CD curve of thalifalandine (80) [$\Delta \varepsilon$ -7.50 (304), -8.80 (278), and +74.97 (243.3)] was very similar to that of thalifaberine (77), thus permitting the assignment of an identical absolute configuration (S,S) for thalifalandine (80).

A comparison of thalifalandine (either directly or via spectral data) with thalifarapine (3-O-demethylthalifaberine) (81) demonstrated that the alkaloids were different, thereby eliminating the C(3) position as a potential site for the placement of the single phenolic hydroxy group. The position of this phenol in thalifalandine was established via a consideration of the complete ¹H NMR spectral data, including the results of nOe difference spectroscopy. Reciprocal nOe enhancements were observed between the following: the low field H(11)(δ 7.79) and its neighboring methoxy group at $C(10)(\delta 3.90)$; the high field $H(8')(\delta 5.85)$ and its neighboring methoxy group at $C(7')(\delta 3.49)$; the $H(5')(\delta 6.55)$ and its neighboring methoxy group at C(6')(3.81). There was no significant nOe observed between H(11) and any other methoxy group except that at C(10), suggesting the absence of a methoxy group at C(1), and thus confirming the presence of the single phenolic group at C(1). Hence, thalifalandine was identified as 1-Odemethylthalifaberine, and assigned as 80. The ¹H NMR chemical shift assignments are summarized as follows: $\delta 2.65$ [s, N(6)Me], 7.79 [s, H(11)]; 2.32 [s, N(2')Me], 6.55 [s, H(5')], 5.85 [s, H(8')], 6.95 [d, 2H, J = 8.9 Hz, H(10') and H(14')], 6.76 [d, 2H, J = 8.9 Hz, H(11') and H(13')]; 3.96 [s, C(2)OMe], 3.76 [s, 6H, C(3)OMe + C(9)OMe], 3.90 [s, C(10)OMe], 3.81 [s, C(6')OMe, 3.49 [s, C(7')OMe]. (Note: It is this author's observation that the authors of this paper have likely reversed the assignment of the N(2')- and N(6)- methyl groups, as there is

The Thalictrum Alkaloids

ample precedent for the assignment of the former at the lower field (about $\delta 2.5$ -2.6), while the latter is at the higher field ($\delta 2.3$ -2.4)[1,2,4,128,130-132]).

Thalifalandine was found to possess significant cytotoxicity against P_{388} and L_{1210} leukemic cells, with an IC₅₀ of 0.7-1.8 µg/ml [83]. This same cytotoxic effect against P_{388} cells has been observed in eight other thalifaberine-type dimeric alkaloids that have been isolated from *T. faberi* [83].

8.1.5. (+)-Thalifaramine. Tabular Review [128, Alkaloid No. 68], UV [2,4,128], ¹H NMR [2,4,128], EIMS [2,4,128], CD [2,4,128].

Thalifaramine (9), $C_{39}H_{44}O_7N_2$ (652.3137), $[\alpha]_D$ +76° (c 0.06, MeOH), was isolated along with eleven other aporphine-benzylisoquinoline dimeric alkaloids from an extract (EtOH) of the whole plant of T. cultratum Wall. in 1986 [2,4]. The UV spectrum (MeOH) of this phenolic alkaloid was similar to those of other aporphine-benzylisoquinoline dimers and displayed maxima at 228 nm (log ε 4.75), 270 (sh)(4.35), 280 (4.42), and 308 (4.04), while the CD spectrum exhibited extrema at $\Delta \varepsilon$ (nm) 0 (310), -4 (300), -8 (270), 0 (250), +87 (237), with a negative tail below 234 nm. The EIMS displayed the molecular ion at m/z 652 (0.8%), with other fragment ions at m/z 651 (1%), 637 (0.4), 460 (2), 459 (3), 192 (100), and 178 (8). The base peak at m/z 192 (100%) may be represented by the isoquinolinium ion 78 that is formed by the facile doubly benzylic cleavage of an benzylisoquinoline, and suggested the presence of one methoxy group and one hydroxy group in the isoquinoline portion of the dimer. The ¹H NMR spectrum was indicative of a thalifaberine (77)-type alkaloid [1,128,130-132], displaying the typical AA'BB' quartet that is characteristic of the H(10'), H(11'), H(13'), H(14') symmetrical protons in the benzyl ring (ring C) of the benzylisoquinoline-portion of the alkaloid. In addition, a comparison of the chemical shift values of thalifaramine with those of the nonphenolic thalifaronine (12) showed a remarkable similarity. Since the phenolic thalifaramine displayed a molecular ion and a base peak that were both 14 amu lower than those of thalifaronine (12), and since the ¹H NMR spectrum of thalifaramine lacked the presence of the characteristic high field methoxy singlet at $\delta_{3.53}$, thalifaramine was assigned as 7'-O-demethylthalifaronine (9). The CD curve of thalifaramine (9) was very similar to that of thalifaberine (77), thus permitting the assignment of an identical absolute configuration (S,S) for thalifaramine (9). The assignment of the chemical shifts of thalifaramine (9) were made as follows: $\delta 6.63$ [s, H(3)], 2.35 [s, N(6)Me], 8.05 [s, H(11)]; 2.57 [s, N(2')Me], 6.53 [s, H(5')], 5.93 [s, H(8')], 7.00 [d, 2H, J = 8.5 Hz, H(10') and H(14')], 6.80 [d, 2H, J = 8.5 Hz, H(11') and H(13')]; 3.71 [s, C(1)OMe], 3.89 [s, C(2)OMe], 3.80 [s, C(9)OMe], 3.91 [s, C(10)OMe], and 3.84 [s, C(6')OMe].

Thalifaramine (9) was most recently isolated from an extract of the roots of *T. faberi* Ulbr. in 1994 [129].

8.1.6. (+)-Thalifarazine. Tabular Review [128, Alkaloid No. 72], UV [2,4,128], ¹H NMR [2,4,128], EIMS [2,4,128], CD [2,4,128].

Thalifarazine (10), $C_{40}H_{46}O_8N_2$ (682.3254), $[\alpha]_D +72^\circ$ (c 0.06, MeOH), was isolated along with eleven other aporphine-benzylisoquinoline dimeric alkaloids from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1986 [2,4]. The UV spectrum of this phenolic alkaloid was similar to those of other aporphine-benzylisoquinoline dimers and displayed maxima at 228 nm (log ε 4.70), 270 (sh)(4.29), 283 (4.38), 297 (sh)(4.25), and 310 (sh)(4.02) while the CD spectrum

exhibited extrema at $\Delta \epsilon$ (nm) 0 (315), -4.7 (297), -9.4 (272), 0 (255), +80 (240), with a negative tail below 232 nm. The EIMS displayed the molecular ion at m/z 682 (0.23%), with other fragment ions at m/z 681 (0.27%), 680 (0.41), 490 (2.2), 192 (100), and 177 (7). The base peak at m/z 192 (100%), as represented by the isoquinolinium ion 78 was formed by the facile doubly benzylic cleavage of an benzylisoquinoline, and suggested the presence of one methoxy group and one hydroxy group in the isoquinoline portion of the dimer. The ¹H NMR spectrum was indicative of a thalifaberine (77)-type alkaloid [1,128,130-132], displaying the typical AA'BB' quartet that is characteristic of the H(10'), H(11'), H(13'), H(14') symmetrical protons in the benzyl ring (ring C) of the benzylisoquinoline-portion of the alkaloid. It was observed that thalifarazine (10) had essentially the same EIMS as thalifaretine (11), including the base peak at m/z 192. A comparison of the ¹H NMR spectrum of thalifarazine (10) with that of thalifaretine (11) showed that one of the three methoxy absorptions near δ 3.80 of the latter was missing while a characteristic high field methoxy singlet had appeared at $\delta 3.57$ in the spectrum of the former. Hence, the phenolic function in thalifarazine was placed at C(6'), and thalifarazine was assigned as 10. The assignment was additionally corroborated via a consideration of reciprocal nOe enhancements that were observed between the following: the low field $H(11)(\delta 7.89)$ and its neighboring methoxy group at C(1)(δ 3.80); the low field H(11) and its neighboring methoxy group at $C(10)(\delta 3.93)$; the H(11',13') to the C(9)-methoxy; and the H(8') to the C(7)-methoxy. Other nOe enhancements were the N(2')Me to the H(1') and H(1') to H(8'). A comparison of the CD curve of thalifarazine (10) with that of thalifaberine (77) showed a great similarity, thus permitting the assignment of an identical absolute configuration (S,S) for thalifarazine (10). The assignment of the chemical shifts of thalifarazine (10) was as follows: $\delta 2.33$ [s, N(6)Me], 7.89 [s, H(11)]; 2.54 [s, N(2')Me], 6.60 [s, H(5')], 5.93 [s, H(8')], 6.97 [d, 2H, J = 8.5 Hz, H(10') and H(14')], 6.77 [d, 2H, J = 8.5 Hz, H(11') and H(13')]; 3.80 [s, C(1)OMe], 3.97 [s, C(2)OMe], 3.90 [s, C(3)OMe], 3.80 [s, C(9)OMe], 3.93 [s, C(10)OMe] and 3.57 [s, C(7')OMe].

Thalifarazine (10) was most recently isolated from an extract of the roots of *T. faberi* Ulbr. in 1994 [129].

8.1.7. (+)-Thalifaretine. Tabular Review [128, Alkaloid No. 73], UV [2,4,128], ¹H NMR [2,4,128], EIMS [2,4,128], CD [2,4,128].

Thalifaretine (11), $C_{40}H_{46}O_8N_2$ (682.3254), $[\alpha]_D$ +61° (c 0.1, MeOH), was isolated along with eleven other aporphine-benzylisoquinoline dimeric alkaloids from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1986 [2,4]. The UV spectrum (MeOH) of this phenolic alkaloid was similar to those of other aporphine-benzylisoquinoline dimers and displayed maxima at 222 nm (log ε 4.76), 272 (sh)(4.24), 283 (4.39), 293 (sh)(4.27), and 310 (sh)(4.04) while the CD spectrum exhibited extrema at $\Delta \varepsilon$ (nm) 0 (314), -8.4 (300), -10 (273), 0 (255), +81 (239), with a negative tail below 230 nm. The EIMS displayed the molecular ion at m/z 682 (0.8%), with other fragment ions at m/z 490 (1.2), 192 (100), and 177 (5). The base peak at m/z 192 (100%), as represented by the isoquinolinium ion 78, was formed by the facile doubly benzylic cleavage of an benzylisoquinoline, and suggested the presence of one methoxy group and one hydroxy group in the isoquinoline portion of the dimer. The ¹H NMR spectrum was indicative of a thalifaberine (77)-type alkaloid [1,128,130-132], displaying the typical AA'BB' quartet that is characteristic of the H(10'), H(11'), H(13'), H(14') symmetrical protons in the benzyl ring (ring C) of the benzylisoquinoline-portion of the alkaloid. Both the parent ion and base peak of thalifaretine are 14 amu less than those of thalifaberine (77), suggesting that thalifaretine is either 6'-O-demethylthalifaberine or 7'-O-demethylthalifaberine. Since the high field δ 3.56 methoxy signal representing the C(7)-methoxy group is missing in the spectrum of thalifaretine, it was concluded that thalifaretine was 7'-O-demethylthalifaberine, and the alkaloid was assigned as 11. Additional confirmation for the structural assignment was via the observation of reciprocal nOe enhancements between the following: the low field $H(11)(\delta7.90)$ and its neighboring methoxy group at C(1)(δ 3.80); the low field H(11) and its neighboring methoxy group at C(10)(δ 3.93); the H(11', 13') to the C(9) methoxy; H(5') to the C(6')OMe; H(1') to H(8'); H(10', 14') to H(1'). In addition a nOe was observed from N(2') Me to H(1'). The CD curve of thalifaretine (11) showed an obvious similarity with that of thalifaberine (77), thus directing the assignment of an identical absolute configuration (S,S) for thalifaretine (11). The assignment of the chemical shifts of thalifaretine (11) were follows: $\delta 2.34$ [s, N(6)Me], 7.90 [s, H(11)]; 2.53 [s, N(2')Me], 6.51 [s, H(5')], 6.00 [s, H(8')], 6.98 [d, 2H, J = 8.5 Hz, H(10') and H(14')], 6.78 [d, 2H, J = 8.5 Hz, H(10')]H(11') and H(13')]; 3.80 [s, C(1)OMe], 3.96 [s, C(2)OMe], 3.90 [s, C(3)OMe], 3.83 [s, C(9)OMe], 3.93 [s, C(10)OMe] and 3.80 [s, C(6')OMe].

8.1.8. (+)-Thalifaricine. Tabular Review [128, Alkaloid No. 75], UV [2,4,128], ¹H NMR [2,4,128], EIMS [2,4,128], CD [2,4,128].

Thalifaricine (8), $C_{39}H_{44}O_8N_2$ (668.3097), $[\alpha]_D + 66^\circ$ (c 0.1, MeOH), was isolated along with eleven other aporphine-benzylisoquinoline dimeric alkaloids from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1986 [2,4]. The UV spectrum of this diphenolic alkaloid was like those of other aporphine-benzylisoquinoline dimers and showed maxima at 224 nm (log ε 4.74), 274 (sh)(4.31), 283 (4.40), 295 (sh)(4.31), and 310 (sh)(4.17), with a bathochromic shift in strong alkali to 282 (sh)(log ε 4.19) and 315 (4.29). The CD spectrum exhibited extrema at $\Delta \varepsilon$ (nm) 0 (315), -5.2 (300), -2 (288), -6.6 (275), 0 (255), +73 (240), with a negative tail below 236 nm. The EIMS was characterized by the molecular ion at m/z 668 (0.1%), with other fragment ions at m/z 667 (0.2%), 476 (2.2), 192 (100), and 177 (8). The base peak at m/z 192 (100%), represented by the isoquinolinium ion 78, was formed by the facile doubly benzylic cleavage of an benzylisoquinoline, and suggests the presence of one methoxy group and one hydroxy group in the isoquinoline portion of the alkaloid. The ¹H NMR spectrum was indicative of a thalifaberine (77)-type alkaloid [1,128,130-132], displaying the typical AA'BB' quartet that is characteristic of the H(10'), H(11'), H(13'), H(14') symmetrical protons in the benzyl ring

(ring C) of the benzylisoquinoline-portion of the alkaloid. The placement of one of the phenolic hydroxy groups at C(7') was made because of the absence of the characteristic high field methoxy signal for a C(7') at around $\delta 3.55$. In addition, the presence of a bathochromic shift with hyperchromic effect in strong alkali in the UV spectrum directed that the second phenolic group was present at either C(3) or C(9)[134]. Finally, the presence of a methoxy group at $\delta 3.89$ and the absence of same in the $\delta 3.82$ range dictated that the placement of the second phenolic group should be at C(9), and the structure of thalifaricine was established as 8. Further confirmation for the structural assignment was made via the observation of reciprocal nOe enhancements between the following: the low field H(11)(δ 7.90) and its neighboring methoxy group at C(1)(δ 3.77); the low field H(11) and its neighboring methoxy group at C(10)(δ 3.96); H(5') to the C(6')OMe; N(2')Me to H(1'); H(1') to H(8'). In addition a nOe was observed from H(1') to H(13',14') and from H(4a) to C(3)OMe. The distinct similarity of the CD curve of thalifaricine (8) to that of thalifaberine (77) directed the assignment of an identical absolute configuration (S,S) for thalifaricine (8). The assignment of the chemical shifts of thalifaricine (8) were follows: $\delta 2.32$ [s, N(6)Me], 7.90 [s, H(11)]; 2.54 [s, N(2')Me], 6.52 [s, H(5')], 5.99 [s, H(8')], 6.98 [d, 2H, J = 8.5 Hz, H(10') and H(14')], 6.80 [d, 2H, J = 8.5 Hz, H(11') and H(14')]H(13')]; 3.77 [s, C(1)OMe], 3.96 [s, C(2)OMe], 3.89 [s, C(3)OMe], 3.96 [s, C(10)OMe] and 3.80 [s, C(6')OMe].

Thalifaricine (8) was most recently isolated from an extract of the roots of *T. faberi* Ulbr. in 1994 [129].

8.1.9. (+)-Thalifaronine. Tabular Review [128, Alkaloid No. 70], UV [2,4,128], ¹H NMR [2,4,128], EIMS [2,4,128], CD [2,4,128].

Thalifaronine (12), $C_{40}H_{46}O_7N_2$ (666.3293), $[\alpha]_D$ +68° (c 0.1, MeOH), was isolated along with eleven other aporphine-benzylisoquinoline dimeric alkaloids from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1986 [2,4]. The UV spectrum of this nonphenolic alkaloid was similar to those of other aporphine-benzylisoquinoline dimers and showed maxima at 227 nm (log ε 4.75), 268 (sh)(4.30), 280 (4.38), and 304 (sh)(4.08). The CD spectrum exhibited extrema at $\Delta\varepsilon$ (nm) 0 (310), -4.0 (297), -1.7 (287), -8.1 (270), 0 (255), +74 (236), with a negative tail below 232 nm. The EIMS displayed the molecular ion at m/z 666 (0.3%), with other fragment ions at m/z 665 (0.6%), 664 (0.5), 460 (1), 459 (1), 206 (100), and 190 (4). The base peak at m/z 206 (100%), represented by the isoquinolinium ion 74, was formed by the facile doubly benzylic cleavage of an benzylisoquinoline, and suggested the presence of two methoxy groups in the isoquinoline portion of the alkaloid. The ¹H NMR spectrum was indicative of a thalifaberine (77)-type alkaloid [1,128,130-132], displaying the typical AA'BB' quartet that is characteristic of the H(10'), H(11'), H(13'), H(14') symmetrical protons in the benzyl ring (ring C) of the benzylisoquinoline-portion of the alkaloid. The molecular ion of thalifaronine is some 30 amu less than that of thalifaberine (77), indicating one less methoxy group in the former.

However, since both alkaloids have the same base peak at m/z 206, representing the isoquinoline ring of the dimer, the absence of the one methoxy group in thalifaronine must derive from the aporphine-half of the alkaloid. The major difference in the ¹H NMR spectrum of the two alkaloids is one less downfield methoxy absorption ($\delta 3.89 - 3.96$), indicating that the lacking methoxy must be at one of the three following positions: C(2), C(3), or C(10). A complete nOeds confirmed the absence of the methoxy group from C(3), and allowed the assignment of thalifaronine as 12. Reciprocal nOe enhancements between the following were observed: the low field $H(11)(\delta 8.03)$ and its neighboring methoxy group at C(1); the low field H(11) and its neighboring methoxy group at C(10); H(3) to the C(2)OMe; H(5') to the C(6')OMe; H(8') to C(7')OMe; H(11',13') to C(9)OMe; H(1') to H(8'). In addition a nOe was observed from H(1')to N(2') Me. A comparison of the CD curves of thalifaronine (12) and thalifaberine (77) showed a distinct similarity, and thus the assignment of an identical absolute configuration (S,S) for thalifaronine (12). The assignment of the chemical shifts of thalifaronine (12) were as follows: 82.35 [s, N(6)Me], 8.03 [s, H(11)]; 2.61 [s, N(2')Me], 6.56 [s, H(5')], 5.92 [s, H(8')], 6.98 [d, 2H, J = 8.5 Hz, H(10') and H(14')], 6.78 [d, 2H, J = 8.5 Hz, H(11') and H(13')]; 3.71 [s, C(1)OMe], 3.90 [s, C(2)OMe], 3.80 [s, C(9)OMe], 3.90 [s, C(10)OMe], 3.83 [s, C(6')OMe], and 3.53 [s, C(7')OMe].

Thalifaronine (12) was most recently isolated from an extract of the roots of *T. faberi* Ulbr. in 1994 [129].

8.1.10. Aporphine-Benzyltetrahydroisoquinoline Dimeric Thalictrum Alkaloid Subgroups

Approximately ten years ago, it was observed that the *Thalictrum* aporphinebenzyltetrahydroisoquinoline dimeric alkaloids could be conveniently grouped into three subgroups, and that certain empirical observations could be drawn from these subgroups [1]. The alkaloids were drawn in a uniform fashion, with the benzyltetrahydroisoquinoline half on the left side (numbered 1' to 14' in a standard fashion) and the aporphine half on the right side (numbered 1 to 11 in a standard fashion). The following observations were made at that time:

- a. The aporphine rings of these dimers are oxygenated at C(1), C(2), C(9), and C(10), with C(3) being an additional site in at least half of the alkaloids.
- b. The benzyltetrahydroisoquinoline rings of these dimers are oxygenated at C(6'), C(7'), C(9), and C(12'), with C(5'), C(11'), and C(13') also being involved sites.
- c. These dimers may belong to three different structural subgroups

Subgroup A: C(12') + C(13') oxygenation with a C(10') -> C(9) diphenyl ether bridge Subgroup B:C(11') + C(12') oxygenation with a C(10') -> C(9)
diphenyl ether bridgeSubgroup C:C(12') -> C(8) diphenyl ether bridge

d. All alkaloids of these three dimeric subgroups are of the (S,S) configuration and are dextrorotatory with specific rotations between +18° and +229°. The specific rotations of the various subgroups are:

 Subgroup A
 +18° to +135°

 Subgroup B
 +76° to +229°

 Subgroup C
 +61° to +99°

e. There are only two exceptions to the above guidelines, namely, istanbulamine which is linked via a C(11') -> C(9) diphenyl ether bridge, and uskudaramine, which is the only C(11') -> C(9) biphenyl alkaloid of the series.

Within the last decade, nine new aporphine-benzyltetrahydroisoquinoline dimeric alkaloids have been isolated from extracts of two *Thalictrum* species, *T. cultratum* Wall. (whole plant) [thalibulamine (13), thalifaramine (9), thalifarazine (10), thalifaretine (11), thalifaricine (8), thalifaronine (12)][2,4] and *T. faberi* Ulbr. (roots) [thalifaberidine (76)[129], thalifaboramine (79)[133], thalifalandine (80)[83]. A review of the structures and properties of these alkaloids demonstrates that there was complete concurrence with the observations that were made ten years earlier. In particular, eight of the nine alkaloids were members of Subgroup C [C(12') -> C(8) diphenyl ether bridge], while the ninth alkaloid thalibulamine (13), was the 7'-methylether of istanbulamine (one of the two exceptions described in section e above). All of the new alkaloids were of the (*S,S*) configuration, with specific rotations ranging from +61° to +87°.

8.2. Aporphine-Pavines

8.2.1. EP-10. UV [35], ¹H NMR [35], ¹³C NMR [35], EIMS [35]

EP-10 (82), $C_{39}H_{42}O_8N_2$ (666.2941), mp 205-210°, was isolated from an extract (EtOH) of the whole plant of the Taiwanese *T. fauriei* Hayata in 1986 [35]. The UV spectrum showed absorption maxima at 210, 270, 294, and 300 nm, and was similar to those of the aporphine-pavine alkaloids pennsylpavine (83) and pennsylpavoline (84) that had been isolated from *T. polygamum* Muhl. some twenty years earlier [135]. The specific rotation of the alkaloid was not reported, nor was any CD spectral data provided. The high resolution EIMS showed a parent ion and base peak at m/z 666.2953 (666.2641, calcd. for $C_{39}H_{42}O_8N_2$) with other important fragment

ions at m/z 665 (10%)(M-1), 651 (67)(M-15), 635 (63)(M-31), and 333 (28)(M/2). Fragment ions assignable to the aporphine part of the dimer included those found at m/z 340 (7%) and 296 (9), which were tentatively assigned as 85 and 86, respectively. Fragment ions arising from the pavine portion of the molecule were observed at m/z 341 (15%) and 190 (100%), and were postulated as 87 and 57, respectively. An important ion observed at m/z 529 (37%) was likely formed via the fragmentation of part of the pavine ring, and was represented as 88. The 1 H NMR spectrum indicated the presence of two N-methyl groups as a singlet at $\delta 2.55$ and five methoxy groups as three singlets at $\delta 3.41$, 3.62 (9H) and 3.74. Six aromatic protons were observed as four singlets at δ 5.62, 6.39, 6.62, and 6.68, as well as one AB quartet centered at $\delta 6.75$. The presence of an AB quartet was taken to represent H(8) and H(9), while H(3) was tentatively assigned to the resonance at $\delta 6.68$. The absence of the low field singlet (around $\delta 8.0$) customarily assigned to the H(11) was taken as a sign of the presence of one ether terminus at C(11). The high field signal at $\delta 5.62$ was assigned as H(2'). A pair of double doublets was observed in the aliphatic region (chemical shift unspecified) and were thought to represent H(6') and H(12'), which are bridgehead protons in the pavine portion. Addition of D₂O to the CDCl₃ resulted in a separation of the two N-methyl signals to $\delta 2.51$ and 2.54, with the methoxy groups being observed as four singlets at δ 3.42, 3.61 (6H), 3.65, and 3.74. The aromatic protons were found at almost the same position, being observed at 85.64, 6.39, 6.61, 6.68, and 6.78 (AB_o). The O-methyl ether of EP-10 was prepared, and the following chemical shift data was provided: N-methyl groups [82.54 and 2.60]; methoxy groups [83.41, 3.60 (6H), 3.64, 3.77, and 3.84); aromatic protons [5.63, 6.44, 6.59, 6.68, 6.79 (AB₀)]. The ¹³C NMR spectrum (DEPT) demonstrated the presence of 7 methyl carbon atoms (δ 41.1, 45.2, 58.0, 58.1, 58.6, 59.1, and 63.5), 5 methylene carbon atoms (δ 25.9, 27.3, 30.2, 35.3, and 53.0), 8 methine carbon atoms δ51.6, 55.4, 64.0, 96.9, 111.4, 112.1, 113.3, and 121.9), and 18 quaternary carbon atoms (δ124.7, 125.6, 128.4, 130.3, 130.7, 132.2, 132.4, 132.7, 138.5, 144.6, 147.2, 147.4, 147.7, 149.6, 153.0, 154.2, 156.3, 157.3). Correlation spectroscopy (COSY) was also employed (data not provided) to provide supporting evidence for the pavine bridgehead protons H(5'), H(6'), H(11'), and H(12'), as well as the ABX system involving H(6a) and H(7) in the aporphine ring. The structure of EP-10 was thus assigned as 82, but the authors were careful not to exclude the possibility of alternative structures, thereby finishing the paper with a precautionary note [35].

Preliminary biological testing of EP-10 demonstrated that the alkaloid possessed weak *in vitro* activity, as compared thalicarpine, in the lysis of Hela cells [35].

8.3. Bisbenzylisoquinolines

The numbering of the bisbenzylisoquinoline ring in the following alkaloids is according to accepted practice [1,100], and is illustrated in the structure of cultithalminine (89).

8.3.1. (+)-Cultithalminine. Tabular Review [100, Alkaloid No. 285], ¹H NMR [81,100], EIMS [81,100].

Cultithalminine (89), $C_{36}H_{36}O_7N_2$ (608.2522), $[\alpha]_D + 7^\circ$ (c 0.17, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1987 [81,100]. The alkaloid displayed a parent ion and base peak at m/z 608, with a strong M-1 peak at m/z 607 (94%), and was thus characteristic of the pattern observed for bisbenzylisoquinoline imines [100,136-138]. Other EIMS fragment ions include those found at m/z 593 (10%), 304 (9), 192 (20), 191 (10), 190 (18), and 164 (11). The ¹H NMR spectrum of cultithalminine was very similar to that of the imine thalmiculimine (4), but the former spectrum displayed only one methoxy absorption [δ 3.91 (3H)] near δ 3.9, while the latter spectrum showed two methoxy absorptions [δ 3.92 (6H)]. This observation is consistent with the placement of a phenolic group, rather than a methoxy group, at either C(7') or C(12). Reduction of cultithalminine with NaBH₄/MeOH afforded (-)-2'-norcultithalmine (90), [α]_D -39° (c 0.07, MeOH), whose ¹H NMR spectrum was very similar to that of the known (-)-2'-northalmiculine (91), the latter obtained on similar reduction (NaBH₄/MeOH) of (+)thalmiculimine (4). An examination of the EIMS of (-)-2'-norcultithalmine (90) was critical in the decision to place a methoxy group at C(12) in cultithalminine. The parent ion in the EIMS of (-)-2'-norcultithalmine (90) was observed at m/z 610 (65%), with other significant fragment ions at m/z 609 (47%), 411 (15), 397 (100), 383 (26), 199 (72), 192 (31), 191 (39), 190 (44), and 176 (21). The ion that is the base peak at m/z 397 may be represented as 92, and is wellknown to derive from the upper portion of the dimer [100,136-138], so that both secondary amine 90 and secondary amine 91 have an identical substitution in that portion of the dimer. Hence, it was concluded that the placement of the phenolic group in question must be at C(12), with a methoxy group at C(7') in both 90 and 91, and that cultithalminine may be assigned as 89. The reported ¹H NMR chemical shift assignments for cultithalminine (89) are as follows: $\delta 2.22$ [s, N(2)Me], 5.18 [s, H(8)], 5.79 [d, 1H, J = 1.8 Hz, H(10)], 6.85 [d, 1H, J = 8.1 Hz, H(13)], 6.80 [1H, dd, J = 1.8, 8.1 Hz, H(14)]; 7.05 [s, H(8')], 7.40 [br d, 2H, J = 7.8 Hz, H(10') and H(14')], 7.00 [br d, 2H, J = 7.8 Hz, H(11') and H(13')]; 4.07 [s, C(6)OMe], 3.69 [s, C(6')OMe], and 3.91 [s, C(7')OMe]. In addition, the reported ¹H NMR chemical shifts for (-)-2'-norcultithalmine (90) are as noted: $\delta 2.23$ [s, N(2)Me], 5.46 [s, H(8)], 6.06 [d, 1H, J = 1.8 Hz, H(10)], 6.85 [br s, 2H, H(13) and H(14)]; 6.87 [s, H(8')], 7.41 [br d, 2H, J = 7.7 Hz, H(10') and H(14')], 7.04 [br d, 2H, J = 7.7 Hz, H(11') and H(13')]; 4.05 [s, C(6)OMe], 3.67 [s, C(6')OMe], and 3.94 [s, C(7')OMe].

8.3.2. (-)-5-Hydroxythalidasine. Tabular Review [100, Alkaloid No. 311], UV [3,100], ¹H NMR [3,100], EIMS [3,100], CD [3,100].

5-Hydroxythalidasine (6), $C_{39}H_{44}O_8N_2$ (668.3098), $[\alpha]_D$ -51° (c 0.1, MeOH), was isolated as an amorphous solid along with eleven other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1986 [3,100]. The UV spectrum was characteristic of a benzyltetrahydroisoquinoline-derived alkaloid and showed a single maximum at 282 nm (log ε 3.54), with a shoulder at 237 (4.20) [100,136-138]. The CD spectrum exhibited extrema at $\Delta\varepsilon$ (nm) 0 (300), -6.8 (282), 0 (269), 0 (255), +12.0 (242), with a negative tail below 230 nm. The EIMS showed a molecular ion at m/z 668, with other important fragment ions at m/z 667 (31), 666 (75), 651 (21), 441 (65), 427 (60), 411 (36), 221 (100), 206 (28), 204 (30), and 190 (23), and was similar to that of thalidasine (32), but with singly charged ions being some 16 amu greater than their counterpart ions in the EIMS of thalidasine (32)[84,100,136-138]. The ion found at m/z 441 is logically represented as 93, and is 16 amu greater than its corresponding ion (m/z 425) in the EIMS of thalidasine (32), hence suggesting the placement of the extra

hydroxy group in the top (upper) portion of the dimer. The ¹H NMR spectrum of the new alkaloid was extremely similar to that of thalidasine (32) [84,100,136-138], except for the absence of the H(5) singlet at $\delta 6.30$ in the ¹H NMR spectrum of thalidasine. The position of the hydroxy group in the new alkaloid 6 was determined via a consideration of the results of a ${}^{1}H$ NMR nOeds investigation, in which it was observed that there were no reciprocating nOes between the C(4) or C(4') protons and any of the methoxy signals, except for one of the C(4') protons ($\delta 2.32$) and the C(7) methoxy (δ 3.35). This behavior is characteristic of C(8) to C(5') bridging, and a analogous situation exists with (-)-thalidasine (32). Hence, it was concluded that the new alkaloid bears a phenolic hydroxy group at C(5), and the compound was named (-)-5-hydroxythalidasine (6). Reciprocal nOe enhancements between the following were observed: N(2)Me and H(1), H(1) and H(α a), H(8') and C(7')OMe, H(8') and H(1'), H(8') and H(α 'a), H(1') and H(α 'a), N(2') Me and H(1'), and C(7)OMe and H(4'a). In addition, other nOe were observed from H(1) to H(10), $H(\alpha b)$ to H(14), $H(\alpha b)$ to H(14), and C(7)OMe to C(6)OMe. A comparison of the CD curve of (-)-5-hydroxythalidasine (6) with that of thalidasine (32) showed a great similarity, thus directing the assignment of an identical absolute configuration (S,S) for (-)-5hydroxythalidasine (6). The reported ¹H NMR chemical shifts for 5-hydroxythalidasine (6) are as follows: $\delta 3.81$ [m, H(1)], 2.25 [s, N(2)Me], 2.51 [m, H(4a)], 2.74 [m, H(4b)], 3.04 [m, 1H, H(a)], 2.66 [m, 1H, H(b)], 6.30 [br s, 1H, H(10)], 6.81 [br s, 2H, H(13) and H(14)]; 83.88 [m, H(1')], 2.62 [s, N(2')Me], 2.13 [m, H(4'a)], 2.32 [m, H(4'b)], 6.46 [s, 1H, H(8')], 2.72 [m, 1H, H(a')], 3.22 [m, 1H, H(b')], 6.36 [dd, 1H, J = 2.1, 8.3 Hz, H(10')], 6.56 [dd, 1H, J = 2.5, 8.3 Hz, H(11')], 6.98 [dd, 1H, J = 2.5, 8.3 Hz, H(13')], 7.53 [dd, 1H, J = 2.1, 8.3 Hz, H(14')]; 3.79 [s, C(6)OMe], 3.35 [s, C(7)OMe, 3.52 [s, C(6')OMe, and 3.89 [s, C(7')OMe].

Finally, both the 5-methyl ether and the 5-acetylester of (-)-5-hydroxythalidasine were prepared, and their UV, CD, IR, and ¹H NMR spectra were recorded.

8.3.3. (-)-5-Hydroxythalidasine-2α-N-Oxide. Tabular Review [100, Alkaloid No. 312], ¹H NMR [81,100], EIMS [81,100].

5-Hydroxythalidasine- 2α -N-Oxide (94), C₃₉H₄₄O₉N₂ (684.3046), $[\alpha]_D$ -11° (c 0.4, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from

an extract (EtOH) of the whole plant of T. cultratum Wall. in 1987 [81,100]. The ¹H NMR spectrum was similar to that of the parent alkaloid, 5-hydroxythalidasine (6)[3], except for the presence of a low field NMe singlet at $\delta 3.04$ in the spectrum of the 94, with the corresponding absence of the N(2)Me signal of 5-hydroxythalidasine (6)($\delta 2.25$). The EIMS showed the parent ion at m/z 684 (0.4%), with other fragment ions at m/z 683 (0.6%), 682 (2), 668 (68)(M-16), 667 (27), 653 (23), 457 (2), 411 (86), 227 (58), 222 (57), 221 (100), 206 (22), 204 (34), 198 (35), 190 (35), and 176 (15). A nOe study of the alkaloid (+)-thalidasine- 2α -N-oxide (95) had resulted in the assignment of the N-oxide function to the left portion of 95, with a syn-relationship between the N(2)Me and H(1). In an analogous fashion, the same relationship was proposed to exist in 5-Hydroxythalidasine- 2α -N-Oxide (94). Finally, the absence of the H(5) singlet that appears at $\delta 6.39$ in the spectrum of (+)-thalidasine- 2α -N-oxide (95) directed the assignment of the phenolic hydroxy group in 94 to the C(5)-position. The ¹H NMR chemical shift assignments for 94 were made as follows: $\delta 4.91$ [m, H(1)], 3.04 [s, N(2)Me], 6.58 [d, 1H, J = 1.8 Hz, H(10)], 6.81 [d, 1H, J = 8.1 Hz, H(13)] and 6.69 [dd, 1H, J = 1.8, 8.1 Hz, H(14)]; δ 3.89 [m, H(1'), 2.62 [s, N(2')Me], 6.48 [s, 1H, H(8')], 6.22 [dd, 1H, J = 2.1, 8.2 Hz, H(10')], 6.27 [dd, 1H, J = 2.1, 8.2 Hz, H(11')], 7.06 [dd, 1H, J = 2.1, 8.2 Hz, H(13')], 7.47 [dd, 1H, J = 2.1, 8.2 Hz, H(14')]; 3.77 [s, C(6)OMe], 3.89 [s, C(11)OMe], 3.42 [s, C(6')OMe, and 3.87 [s, C(7')OMe]. The ¹H NMR spectrum of 5-Hydroxythalidasine-2 α -N-Oxide (94) was characteristic of either the 1R,1'R or the 1S,1'S configurations [3,84], but the sign of the specific rotation directed the assignment as 1S,1'S [139].

8.3.4. (-)-**5-Hydroxythalmine.** Tabular Review [100, Alkaloid No. 313], UV [3,100], ¹H NMR [3,100], EIMS [3,100], CD [3,100].

5-Hydroxythalmine (2), $C_{17}H_{40}O_7N_2$ (624.2836), $[\alpha]_D$ -68° (c 0.08, MeOH), was isolated as an amorphous solid along with eleven other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of T. cultratum Wall. in 1986 [2,3,100]. The UV spectrum of the alkaloid exhibited maxima at 236 nm (sh) (log E 4.43) and 281 (3.78), being typical of benzyltetrahydroisoquinoline-derived alkaloid. The CD spectrum (MeOH) showed extrema at $\Delta \epsilon$ (nm) 0 (300), -3.5 (280), 0 (272), +1.6 (262), +1.1 (258), +12.1 (238), with a negative tail below 235 nm. The EIMS displayed the molecular ion at m/z 624 (50%), with other important fragment ions at m/z 623 (41%), 397 (100), 383 (37), 199 (57), 190 (57), and 176 (23). These fragment ions, particularly those at m/z 624 and 397, were consistent with a (-)-thalmiculine (3) analog in which one of the methoxy groups in the top portion of the molecule had been replaced with a phenolic hydroxy group. An inspection of the ¹H NMR spectrum revealed its close similarity to that of thalmiculine (3), but with the exception of a missing methoxy singlet close to $\delta 3.60$, suggesting the presence of a phenolic hydroxy group at C(6'). Methylation (CH₂N₂) of 5-hydroxythalmine afforded (-)-O-methylthalmiculine (96), thereby confirming the structure of 5-hydroxythalmine as 2 [3]. The complete ¹H NMR chemical shift assignments for (-)-5hydroxythalmine are as follows: 83.23 [m, H(1)], 2.19 [s, N(2)Me], 5.54 [s, H(8)], 6.11 [d, 1H, J = 2 Hz, H(10)], 6.80 [d, 1H, J = 8.2 Hz, H(13)] and 6.75 [dd, 1H, J = 2, 8.2 Hz, H(14)]; $\delta 3.63$ [m, H(1')], 2.66 [s, N(2')Me], 6.79 [s, H(8')], 7.35 [br s, 2H, H(10') + H(14')], 6.95 [br s, 2H, H(11') + H(13')]; 4.04 [s, C(6)OMe], 3.93 [s, 6H, C(12)OMe + C(7')OMe].

8.3.5. (+)-Neothalibrine-2'α-N-Oxide. Tabular Review [100, Alkaloid No. 325], ¹H NMR [81,100], EIMS [81,100].

Neothalibrine-2' α -N-Oxide (97), C₃₈H₄₄O₇N₂ (640.3149), [α]_D +74° (c 0.2, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of T. cultratum Wall. in 1987 [81,100]. The EIMS was characteristic of a singly bridged benzyltetrahydroisoquinoline dimer, in that no perceptible parent ion was observed, but the presence of two strong ionic species at m/z 206 (52%) and 192 (52) was apparent. These species represent the upper (head) N-methyltetrahydroisoquinoline portions of the molecule, the former containing two methoxy groups and the latter one methoxy group and The ¹H NMR spectrum of the alkaloid displayed signals that were one hydroxy group. representative of a singly-bridged dimer at the C(11)-C(12') positions, and strongly resembled that of neothalibrine (98). The notable exception was in the presence of a downfield signal at δ3.24 due to a N-methyl containing oxide. The elucidation of structure was completed via a nOe study, one salient feature of which demonstrated that no nOes were observed between H(1')(δ 4.75) and the *N*-oxide methyl (δ 3.24), thereby establishing the *anti*- relationship between these two groups. However, enhancement of H(8') was observed on irradiation of both $H(1')(\delta 4.75)$ and C(7')OMe, while enhancement of H(14') was also observed on irradiation of H(1'). Reciprocal nOe enhancements between the following were observed: N(2)Me and H(1), H(1) and H(10), H(1) and H(8), H(1') and H(8'), H(5) and C(6)OMe, H(5') and C(6')OMe, C(7')OMe and H(8'). In addition, other nOe were observed from H(1') to H(10') and H(14'). The complete ¹H NMR chemical shift assignments for (+)-neothalibrine-2' α -N-Oxide (97) are as follows: $\delta 3.67$ [m, H(1)], 2.51 [s, N(2)Me], 6.48 [s, H(5)], 6.33 [s, H(8)], 6.51 [d, 1H, J = 8.3 Hz, H(10)], 6.88[d, 1H, J = 8.3 Hz, H(13)] and 6.99 [dd, 1H, J = 1.8, 8.3 Hz, H(14)]; $\delta 4.75$ [m, H(1')], 3.24 [s,

N(2')Me, 6.63 [s, H(5')], 6.48 [s, H(8')], 7.25 [d, 2H, J = 8.5 Hz, H(10') + H(14')], 6.81 [d, 2H, J = 8.5 Hz, H(11') + H(13')]; 3.85 [s, C(6)OMe], 3.82 [s, 6H, C(12)OMe], 3.86 [s, C(6')OMe], and 3.62 [s, C(7')OMe].

(+)-2'-Noroxyacanthine (99), $C_{36}H_{38}O_6N_2$ (594.2730), $[\alpha]_D$ +125° (c 0.1, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1987 [81,100]. The EIMS showed a parent ion at m/z 594 (67%), with other significant ions at m/z 593 (55), 382 (26), 381 (100), 367 (21), 192 (30), 191 (76), and 174 (27). The ¹H NMR spectrum revealed the presence of only one *N*-methyl group (82.57). These data were characteristic of a bisbenzyltetrahydroisoquinoline alkaloid of the oxyacanthine (100)-type containing three methoxy groups, one *N*-methyl group, and one secondary amine in the top portion of the molecule (supported by the presence of the EIMS fragment ions at m/z 382, 381, and 192 [100,136-138]), and one phenolic group in the

The Thalictrum Alkaloids

bottom portion of the molecule. A detailed inspection of the ¹H NMR spectrum showed that it was very similar to that of oxyacanthine (100), and the downfield shift of the H(1') multiplet from $\delta 4.19$ in oxyacanthine to $\delta 4.56$ in the new alkaloid demonstrated the presence of the secondary amine on the right-hand side of the alkaloid. Finally, the positive specific rotation of the alkaloid indicated a 1*R*, 1'S chirality, as in the parent (+)-oxyacanthine (100)[136]. The complete ¹H NMR chemical shift assignments for (+)-2'-noroxyacanthine (99) are as follows: $\delta 3.62$ [m, H(1)], 2.57 [s, *N*(2)Me], 6.35 [s, H(5)], 6.61 [s, H(8)], 5.42 [br s, 1H, H(10)], 6.78 [br s, 2H, H(13) + H(14)]; $\delta 4.56$ [m, H(1')], 6.34 [s, H(5')], 6.97 [m, 1H, C(10')], 6.30 [dd, 1H, J = 2.4, 8.4 Hz, H(11')], 6.92 [m, 1H, H(13')], 7.55 [dd, 1H, J = 2.4, 8.4 Hz, H(14')]; 3.66 [s, C(6)OMe], 3.80 [s, C(6')OMe], and 3.19 [s, C(7')OMe].

99

100

8.3.7. Northalibroline. Tabular Review [100, Alkaloid No. 341], UV [53,100], IR [53,100], ¹H NMR [53,100], EIMS [53,100].

Northalibroline (101), $C_{35}H_{38}O_6N_2$ (582.2730), $[\alpha]_D$ - none reported, was isolated from the phenolic alkaloid fraction of an extract (EtOH) of the roots and rhizomes of Turkish T. minus L. var. minus in 1988 [53,100]. The UV spectrum of the dimer displayed a single maximum at 282 nm, while the IR spectrum (KBr) showed bands at 3400, 2924, 1620, 1508, 1450, 1369, 1259, 1220, 1125, and 1021 cm⁻¹. The ¹H NMR spectrum (CDCl₂ + CD₂OD) indicated the presence of one N-methyl group ($\delta 2.49$) and two methoxy groups ($\delta 3.81$ and 3.85) as three singlets, as well as eleven aromatic protons. The EIMS (70 eV) failed to show a detectable parent ion but was characterized by fragment ions at m/z 192 (63%), 191 (14), 190 (90), 179 (12), 178 (100), and 177 (13). However, the EIMS (18 eV) did show a weak parent ion at m/z 582 (< 1%), and other meaningful fragment ions at m/z 404 (3%)(M-178), 192 (100), and 178 (66). This ¹H NMR and EIMS data (no detectable parent ion at 70 eV, plus the presence of two fragment ions of high relative intensity at m/z 192 and 178), was characteristic of a tail-to-tail linked benzyltetrahydroisoquinoline dimeric alkaloid containing two methoxy and two phenolic hydroxy groups in the top portion of the molecule and one phenolic group in the bottom portion of the molecule [100,136-138]. Furthermore, fragment ions at m/z 192 (78) and 178 (102), were indicative of the upper portions of the dimer containing one N-methyl group and one secondary amine function, respectively. Further support for the presence of a secondary amine came from the observation that the signal (dd, 1H) assigned as H(1') was found downfield at $\delta 4.10$ due to deshielding effects produced by the presence of the adjacent secondary amine [140]. Placement of the two methoxy groups at the C(7) and C(7') positions, as well as the two phenolic hydroxy groups at the C(8) and C(8'), positions was made from the observation that in bisbenzyltetrahydrosioquinoline alkaloids that are only tail-to-tail linked via an ether bridge, the H(8) signal is found more downfield than $\delta 6.00$ if there is a phenolic hydroxy group at C(7) [139]. Placement of the H(8) and H(8') protons at $\delta 6.13$ and 6.49, respectively, was affected by the observation that a downfield shift of approximately 0.35 ppm occurs for H(8') when this proton lies on the same side of the dimer as the imine function [139]. Finally, the presence of an EIMS fragment ion at m/z 404, as represented by ion 103, was supportive of the placement of the remaining phenolic hydroxy group at C(12). A comparison of the spectral data for northalibroline (101) with those of northalibrine (104), an alkaloid isolated from Thalictrum rochebrunianum Franch. in 1976 [141], suggested that the former was the 7,12-O-demethylderivative of the latter, and the authors assigned the former the trivial name of northalibroline. (Note: Here it should be noted that the use of the prefix "nor-" traditionally means a Ndemethylated analog, and the implication in this case is that there is a parent alkaloid named thalibroline that has two N-methyl groups and three phenolic hydroxy groups). In addition, the relative stereochemistry was assigned as 15,1'S, in accord with accepted convention [121].

Finally, it was observed that the ¹H NMR values of northalibroline (101) were comparable to those of the diastereoisomeric 2-*N*-methyllindoldhamine, an alkaloid in which the

configurations of the chiral carbon atoms C(1) and C(1') are reversed [140]. The ¹H NMR chemical shift assignments of northalibroline (101) are as follows: $\delta 3.67$ [dd, H(1)], 2.49 [s, N(2)Me], 6.71 [s, H(5)], 6.13 [s, H(8)], 6.87 [s, 1H, J = 7.1 Hz, H(13)], 6.85 (s, 1H, J = 7.1 Hz, H(14)]; $\delta 4.10$ [dd, H(1')], 6.58 [s, H(5')], 6.49 [s, H(8')], 7.12 [d, 2H, J = 8.6 Hz, H(10') + H(14')], 6.82 (d, 2H, J = 8.6 Hz, H(11') + H(13')]; 3.81 [s, C(6)OMe or C(6')OMe], 3.85 [s, C(6')OMe or C(6)OMe]. (Note: Although a doublet proton, J = 7.2 Hz, was cited for H(5), this must be in error. Likely, this is H(10), but the coupling constant should then have been in the order of 2 Hz, for meta-coupling with H(14).

8.3.8. (+)-2'-Northaliphylline. Tabular Review [100, Alkaloid No. 342], UV [3,100], ¹H NMR [3,100], EIMS [3,100], CD [3,100].

2'-Northaliphylline (105), $C_{36}H_{38}O_6N_2$ (594.2730), $[\alpha]_D$ +197° (c 0.15, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of T. cultratum Wall. in 1987 [81,100]. The physicochemical properties and spectral data for this alkaloid had been described earlier [3], when reduction (NaBH₄) of (+)-thalsivasine (7) afforded (+)-2'-northalliphylline (105). The UV spectrum of 105 displayed maxima at 237 nm (sh) (log ε 4.16) and 285 (3.83), while the CD spectrum exhibited extrema at $\Delta \epsilon$ (nm) 0 (300), +7 (285), 0 (270), -1 (250), with a positive tail below 220 nm. The ¹H NMR spectrum indicated the presence of only one *N*-methyl function ($\delta 2.09$), while the EIMS was characterized by a parent ion at m/z 594 (89%), with other important fragment ions at m/z 593 (84%), 592 (25), 367 (100), 353 (10), 208 (31), 192 (22), 191 (39), 190 (20), and 184 (84). These spectral data were characteristic of a head-to-head and tail-to-tail linked bisbenzylisoquinoline alkaloid containing two methoxy groups and one phenolic hydroxy group in the upper portion of the molecule, and one methoxy group in lower portion of the molecule [100,136-138]. Since the natural product was identical to the dihydro-derivative of the iminoalkaloid thalsivasine (7), and since the structure of the latter had been unequivocally established via conversion to (+)-thaliphylline (106), the identity of (+)-2'-northaliphylline (105) was established. The ¹H NMR chemical shift assignments for 105 are as follows: $\delta 2.09$ [s, N(2)Me], 6.55 [s, H(5)], 6.23 [d, 1H, J = 2.2 Hz, H(10)], 6.82 [d, 1H, J = 8.2 Hz, H(13)], 6.68 (dd, 1H, J = 2.2, 8.2 Hz, H(14); $\delta 4.46 [m, H(1')], 6.11 [s, 2H, H(5') + H(8')], 6.69 [dd, 1H, J = 2.1, 8.5]$ Hz, H(10')], 6.94 [dd, 1H, J = 2.5, 8.5 Hz, H(11')], 7.08 [dd, 1H, J = 2.5, 8.1 Hz, H(13')], 7.26 [dd, 1H, J = 2.1, 8.1 Hz, H(14')]; 3.90 [s, 6H, C(6)OMe + C(12)OMe], 3.64 [s, C(6')OMe].

105

106

8.3.9. (-)-2-Northalmine. Tabular Review [100, Alkaloid No. 343], UV [84,100], ¹H NMR [84,100], EIMS [84,100], CD [84,100].

2-Northalmine (1), $C_{36}H_{38}O_6N_2$ (594.2730), $[\alpha]_D^{25}$ -31.8° (c 0.43, MeOH), was isolated as an amorphous solid from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1985 [84,100]. The UV spectrum of the alkaloid exhibited maxima at 234 nm (sh) (log ε 4.45) and 283 (3.97), while the CD spectrum exhibited extrema at $\Delta\varepsilon$ (nm) 0 (300), +7.6 (289), 0 (276), -2.1 (260), 0 (257), +6.3 (238) with a negative tail below 230 nm. The EIMS demonstrated a parent ion at m/z 594 (22%) and the base peak at m/z 367 (100%). These ions were 14 amu lower than corresponding ions in thalmine (107), an alkaloid that had been isolated along with (-)-*O*-methylthalmine (108), from similar fractions of the same extract. In addition, the ¹H NMR spectrum of the isolate was very similar to that of thalmine (107), the latter of which had undergone a complete nOe study, along with *O*-methylthalmine (108). It was readily apparent from the absence of the higher field *N*-methyl signal at approximately δ 2.2 that the new alkaloid was the 2-nor-derivative of thalmine (107), and this was confirmed by methylation $(CH_2O/NaBH_4)$ of 1 to yield thalmine (107). A comparison of the CD curve of (-)-2-northalmine (1) with that of thalmine (107) showed a great similarity, and thus the assignment of an identical absolute configuration (S,S) for (-)-2-northalmine (1). The complete ¹H NMR chemical shift assignments, confirmed by nOes, are as follows: $\delta 3.51$ [m, H(1)], 6.62 [s, H(5)], 5.97 [s, H(8)], 5.93 [d, 1H, J = 1.9 Hz, H(10)], 6.80 [d, 1H, J = 8.0 Hz, H(13)], 6.68 (dd, 1H, J = 1.9, 8.0 Hz, H(14)]; $\delta 3.62$ [m, H(1')], 2.62 [s, N(2')Me], 6.77 [s, H(8')], 7.07 [br s, 1H, H(10')], 6.91 [br s, 2H, H(11') + H(13')], 7.63 [br s, 1H, H(14')]; 3.90 [s, C(6)OMe], 3.93 [s, C(12)OMe], and 3.94 [s, C(7')OMe]. An important nOe observation that was determined was the interconnection of H(1) with both H(8) and H(10). In addition, there was an interconnection between N(2')Me with H(1'), the latter of which was interrelated with H(8'), which was in turn interrelated with C(7')OMe.

107

8.3.10. (+)-Thalidasine-2α-N-Oxide. Tabular Review [100, Alkaloid No. 377], ¹H NMR [81,100], EIMS [81,100].

Thalidasine- 2α -*N*-oxide (95), C₃₉H₄₄O₈N₂ (668.3098), [α]_D +6° (c 0.15, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of T. cultratum Wall. in 1987 [81,100]. The ¹H NMR spectrum was similar to that of the parent alkaloid, thalidasine (32), while the EIMS showed the parent ion at m/z 668 (3%), with other fragment ions at m/z 667 (6%), 666 (12), 652 (70)(M-16), 637 (25), 425 (69), 411 (86), 213 (100), 206 (58), 204 (59), 190 (89), and 176 (18). A nOe study of the alkaloid (+)-thalidasine- 2α -N-oxide (95) had resulted in the assignment of the Noxide function to the left portion of 95, with a syn-relationship between the N(2)Me and H(1). The ¹H NMR chemical shift assignments for the alkaloid were made as follows: $\delta 4.88$ [m, H(1)], 3.05 [s, N(2)Me], 6.39 [s, H(5)], 6.62 [d, 1H, J = 1.8 Hz, H(10)], 6.81 [d, 1H, J = 8.0 Hz, H(13)] and 6.68 [dd, 1H, J = 1.8, 8.0 Hz, H(14)]; δ 3.89 [m, H(1')], 2.62 [s, N(2')Me], 6.44 [s, H(8')], 6.20 [dd, 1H, J = 2.0, 8.2 Hz, H(10')], 6.27 [dd, 1H, J = 2.0, 8.2 Hz, H(11')], 7.04 [dd, 1H, J = 2.0, 8.2 Hz, H(13')], 7.47 [dd, 1H, J = 2.0, 8.2 Hz, H(14')]; 3.76 [s, C(6)OMe], 3.20 [s, C(7)OMe], 3.90 [s, C(11)OMe], 3.41 [s, C(6')OMe, and 3.85 [s, C(7')OMe]. Finally, the ¹H NMR spectrum of thalidasine- 2α -N-Oxide (95) was characteristic of either the 1R.1'R or the 15,1'S configurations [3,84], but the sign of the specific rotation directed the assignment as 15,1'S [139]. Reciprocal nOe enhancements between the following were observed: N(2)Me and H(1), H(1) and H(10), N(2')Me and H(1'), H(1') and H(8'), H(8') and C(7')OMe, H(5) and C(6)OMe, H(13) to C(12)OMe. In addition, other nOe were observed from N(2)Me to H(14), $H(\alpha'_{b})$ to H(10'), and H(4) to H(5).

8.3.11. (+)-Thalifortine. UV [82], IR [82], ¹H NMR [82], ¹³C NMR [82], EIMS [82], CD [82].

Thalifortine (109), $C_{37}H_{40}O_6N_2$ (608.2886), mp 143-145°, $[\alpha]_D^{25.5}$ +271.4° (c 0.37, MeOH), was isolated from an extract of the whole plant of *T. fortunei* S. Moore in 1990 [82]. The UV spectrum showed maxima at 215 nm (log ε 4.61) and 280 (3.91), while the CD spectrum exhibited extrema at $[\Theta]_{284.5}$ +56,300 and $[\Theta]_{212.5}$ +289,300. The IR spectrum (KBr) displayed bands at 3415, 2927, 2815, 1608, 1508, 1450, 1221, and 1169 cm⁻¹. The ¹H NMR spectrum indicated the presence of two *N*-methyl groups, three methoxy groups, and ten aromatic protons. The EIMS of thalifortine exhibited a parent ion at m/z 608 (93%), and other significant fragment ions at m/z 396 (67), 395 (71), 364 (19), 206 (17), 198 (100), 175 (53), 107 (20), and 91 (12). These spectral data were characteristic of a head-to-head and tail-to-tail linked bisbenzylisoquinoline alkaloid containing three methoxy groups in the upper portion of the molecule, and one hydroxy group in lower portion of the molecule [100,136-138]. The assignment of thalifortine as **109**, the (*S*,*R*) diastereoisomer of thalictine (*S*,*S*), was made by a consideration of the ¹H NMR chemical shift data (including nOe analysis), the ¹³C NMR

spectrum, the EIMS fragmentation pattern, and the CD spectrum of thalifortine. The ¹H NMR chemical shift assignments for the alkaloid were made as follows: $\delta 2.08$ [s, N(2)Me], 6.57 [s, H(5)], 6.05 [s, H(8)], 6.31 [d, 1H, J = 1.7 Hz, H(10)], 6.73 [d, 1H, J = 8.9 Hz, H(13)] and 6.62 [dd, 1H, J = 1.7, 8.9 Hz, H(14)]; $\delta 2.55$ [s, N(2')Me], 5.98 [s, H(8')], 7.03 [dd, 1H, J = 2.6, 8.0 Hz, H(10')], 6.66 [dd, 1H, J = 2.6, 8.0 Hz, H(11')], 6.71 [dd, 1H, J = 2.6, 8.2 Hz, H(13')], 7.20 [dd, 1H, J = 2.6, 8.2 Hz, H(14')]; 3.86 [s, C(6)OMe], 3.77 [s, C(6')OMe, and 3.61 [s, C(7')OMe]. Reciprocal nOe enhancements between the following were observed and supported the assignment: H(1) and H(8), H(5) and C(6)OMe, N(2')Me and H(1'), and H(1') and H(8'). The ¹³C NMR chemical shift assignments were as follows: 60.6 [C(1)], 41.7 [N(2)], 47.8 [C(3)], 26.5 [C(4)], 131.2 [C(4a)], 109.7 [C(5)], 141.0 [C(6)], 145.5 [C(7)], 111.5 [C(8)], 129.5 [C(8a)], 39.6 [C(\alpha)], 133.1 [C(9)], 115.1 [C(10)]; 146.0 [C(11)], 152.1 [C(12)], 114.6 [C(13)], 124.0 [C(14)]; 63.4 [C(1')], 43.1 [N(2')], 42.8 [C(3')], 22.0 [C(4')], 131.4 [C(4'a)], 145.5 [C(5')], 145.2 [C(6')], 144.3 [C(7')], 113.8 [C(8')], 129.1 [C(8'a)], 36.9 [C(\alpha')], 135.4 [C(9')], 124.2 [C(10')]; 119.7 [C(13')], 126.7 [C(14')];; 61.2 [C(6)OMe], 56.0 [C(6') or C(7')OMe], 56.1 [C(7') or C(6')OMe][82].

Thaligosine- 2α -*N*-oxide (Thalisopine- 2α -*N*-oxide)(**110**), $C_{38}H_{42}O_8N_2$ (654.2941), $[\alpha]_D$ -59° (c 0.13, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1987 [81,100]. The EIMS of the alkaloid displayed a parent ion at m/z 654 (2%), with other important fragment ions at m/z 653 (8), 652 (18), 651 (21), 638 (47), 637 (39), 624 (13), 623 (21), 425 (5), 411 (100), 397 (79), 206 (57), 192 (54), 191 (15), 190 (21), and 176 (20) and was characteristic of head-to-head and tail-to-tail linked bisbenzylisoquinoline *N*-oxide [100,136-138]. The ¹H NMR spectrum

was found to be very similar to that of thalrugosaminine- 2α -N-oxide (111), another alkaloid isolated from the same extract, and differed from 111 only by lacking one methoxy signal. A comparison of the chemical shift values of the H(1) and H(1') signals in the alkaloid N-oxide 110 with its parent base thaligosine (thalisopine) (112) revealed a strong downfield shift of the H(1) signal (δ 3.50) in the parent base thaligosine (thalisopine) to δ 4.81 in the alkaloid N-oxide, while the H(1') signal (δ 4.23) of thaligosine (thalisopine) shifted only slightly downfield to δ 4.42 in the N-oxide. This observation was consistent with the assignment of the N-oxide function to the left-hand portion of the molecule at N(2). Irradiation of the C(4') methylene protons of the Noxide failed to induce a nOe on either a methoxy or an aromatic proton signal. Furthermore, irradiation of a methoxy signal in the N-oxide produced no enhancement of methylene protons. By contrast, a nOe was observed between the C(4') methylene protons and the C(5')OMe in the related thalrugosaminine- 2α -N-oxide (111). These data furnished conclusive proof that the position of the phenolic hydroxy group in thaligosine- 2α -N-oxide must be at C(5). A detailed nOe analysis was utilized to confirm the placement of the N-oxide at N(2), as well as to establish the relative configuration. The complete ¹H NMR chemical shift assignments for the alkaloid were determined as follows: $\delta 4.81$ [m, H(1)], 3.46 [s, N(2)Me], 6.51 [s, H(5)], 6.36 [s, H(8)], 6.57 [d, 1H, J = 1.8 Hz, H(10)], 6.98 [d, 1H, J = 8.2 Hz, H(13)] and 7.05 [dd, 1H, J = 1.8, 8.2 Hz, H(14)]; $\delta 4.42$ [m, H(1')], 2.61 [s, N(2')Me], 6.83 [br s, 2H, H(10') + H(11')], 7.11 [dd, 1H, J = 2.1, 8.1 Hz, H(13'), 7.50 [dd, 1H, J = 2.1, 8.1 Hz, H(14')]; 3.45 [s, C(6)OMe], 3.96 [s, C(12)OMe], 3.83 [s, C(6')OMe], 3.06 [s, C(7')OMe]. Reciprocal nOe enhancements between the following were observed: N(2)Me and H(1), H(8) and H(10), H(5) and C(6)OMe, H(13) to C(12)OMe. In addition, other nOes were observed from H(1) to H(8), N(2')Me to H(1'), and H(1') to H(14').

110

111

112

Thaliphylline-2' β -N-oxide (113), C₃₇H₄₀O₇N₂ (624.2836), [α]_D +257° (c 0.7, MeOH), was isolated as an amorphous solid along with eight other benzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1987 [81,100]. The EIMS showed the parent ion at m/z 624 (3%), with other significant fragment ions at m/z 623 (9), 622 (22), 608 (43), 607 (31), 594 (6), 381 (87), 367 (20), 192 (24), 191 (100), 190 (33), 176 (28), and 174 (39), and was characteristic of a head-to-head and tail-to-tail linked dimeric benzyltetrahydrosiquinoline alkaloid *N*-oxide [100,136-138]. The ¹H NMR spectrum of the alkaloid was quite like that of thaliphylline (106), but differed in the pronounced downfield shift of one of the *N*-methyl signals.

The chemical shift values of the N-methyl signals in thaliphylline were observed at $\delta 2.07 [N(2')]$ and $\delta 2.57 [N(2)]$, while those of the N-oxide were found at $\delta 2.07$ and $\delta 3.26$. It was obvious that the presence of the N-oxide was on the right-hand portion of the ring at $N(2^{2})$. Further evidence was apparent from the downfield shift of the H(1') signal ($\delta 3.95$) in thaliphylline to $\delta 4.63$ in the N-oxide 113. In addition, upfield shifts of both H(8') and H(10') in the alkaloid N-oxide were observed. A definitive assignment of the chemical shift values, as well as the syn- relationship between H(1') and N(2')Me was made via a detailed nOe study. The ¹H NMR chemical shift assignments for the alkaloid were determined as follows: $\delta 3.20 \text{ [m, H(1)]}, 2.07 \text{ [s, N(2)Me]}, 6.58$ [s, H(5)], 6.58 [d, 1H, J = 1.8 Hz, H(10)], 6.86 [d, 1H, J = 8.2 Hz, H(13)] and 6.77 [dd, 1H, J = 1.8 Hz, H(10)], 6.86 [d, 1H, J == 1.8, 8.2 Hz, H(14)]; $\delta 4.63$ [m, H(1')], 3.26 [s, N(2')Me], 6.21 [s, H(5')], 5.83 [s, H(8')], 6.26 [dd, 1H, J = 2.1, 8.0 Hz, H(10')], 6.64 [dd, 1H, J = 2.1, 8.0 Hz, H(11')], 7.22 [dd, 1H, J = 2.1, 8.0 Hz, H(11')], 7.24 [dd, 2Hz, H(8.0 Hz, H(13')], 7.33 [dd, 1H, J = 2.1, 8.0 Hz, H(14')]; 3.90 [s, C(6)OMe], 3.93 [s, C(12)OMe], and 3.60 [s, C(7')OMe]. Reciprocal nOe enhancements between the following were observed: N(2)Me and H(1), H(1) and H(10), H(1) and H(5'), H(10) and H(α_a), H(α_b) and H(14), H(1') and N(2')Me, H(1') and H(8'), H(8') and C(7')OMe, and H(5) and C(6)OMe. In addition, a nOe was observed from H(4) to H(5).

113

8.3.14. Thalivarmine. Tabular Review [100, Alkaloid No. 380], UV [77,100], ¹H NMR [77,100], EIMS [77,100].

Thalivarmine (114), $C_{36}H_{38}O_6N_2$ (594.2730), was isolated from an aqueous acetic acid extract of the above ground parts of *T. minus* var. *minus* L. of Turkish origin in 1985 [77,100]. The ¹H NMR spectrum of the alkaloid indicated the presence of two *N*-methyl groups and two methoxy groups, while the EIMS was characterized by the parent ion at m/z 594 (15%), with other significant fragment ions at m/z 593 (41%), 592 (23), 382 (23), 381 (87), 191.5 (20), 191 (100), 176 (18), 174 (24), and 168 (13). These spectral data were characteristic of a head-to-head

P. L. Schiff, Jr.

and tail-to-tail linked bisbenzyltetrahydroisoquinoline alkaloid containing two methoxy groups and one hydroxy group in the upper portion of the molecule and one phenolic hydroxy group in the lower portion of the molecule [100,136-138]. A comparison of the chemical shift values of thalivarmine (114) with those of thalicberine (115), O-methylthalicberine (116), and thaliphylline (106), alkaloids of established structure that had been isolated from the same fractions, showed a marked similarity. The major difference lay in the observation that the signals for the C(7) and C(12)-methoxy groups in these alkaloids at approximately δ 3.76 and δ 3.89, respectively, were missing in thalivarmine (114). Treatment of thalivarmine with an ethereal solution of CH_3N_2 afforded O-methylthalicberine (116), confirming the structure of thalivarmine as 7-Odemethylthalicberine (114). The ¹H NMR chemical shift assignments for the alkaloid were proposed as follows: 82.09 [s, N(2)Me], 6.53 [s, H(5)], 6.27 [d, 1H, J = 1.8 Hz, H(10)], 6.80 [d, 1H, J = 8.0 Hz, H(13)] and 6.63 [dd, 1H, J = 1.8, 8.0 Hz, H(14)]; $\delta 2.55$ [s, N(2')Me], 6.11 $[s, H(5')], 6.03 [s, H(8')], 6.68 [dd, 1H, J = 2.0, 8.0 Hz, H(10')], 6.74 [dd, 1H, J = 2.0, 8.0 Hz, 10^{-1}]$ H(11')], 7.02 [dd, 1H, J = 2.0, 8.0 Hz, H(13')], 7.22 [dd, 1H, J = 2.0, 8.0 Hz, H(14')]; 3.89 [s, C(6)OMe and 3.63 [s, C(7')OMe]. It should be noted that the identification of the diazomethane methylation product of thalivarmine as O-methylthalicberine (116) was made solely by a TLC comparison with an authentic sample.

114

8.3.15. (+)-Thalmiculatimine. Tabular Review [100, Alkaloid No. 381], UV [3,100], ¹H NMR [3,100], EIMS [3,100], CD [3,100].

Thalmiculatimine (5), $C_{36}H_{36}O_6N_2$ (592.2573), $[\alpha]_D$ +7.5° (c 0.093, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of T. cultratum Wall. in 1987 [81,100]. The UV spectrum of the alkaloid showed a maximum at 280 nm (log ε 4.02), with a bathochromic shift in acidic media to 237 nm (sh)(log ε 4.38) and 285 (4.01). The CD spectrum exhibited extrema at $\Delta \varepsilon$ (nm) 0 (330), -6.5 (302), 0 (294), +7.5 (278), 0 (271), -10.5 (245), with a positive tail below 238 nm. The EIMS was characterized by an intense parent ion at m/z 592 (72%), a base peak at 591 (100)(M-1), and other significant fragment ions at m/z 397 (5), 296 (11), and 274 (3). The ¹H NMR spectrum revealed the presence of one N-methyl function at $\delta 2.17$, and three methoxy groups at δ 3.76, 3.90, and 3.94. These spectral data were characteristic of an imine-containing, head-to-head and tail-to-tail linked bisbenzylisoquinoline alkaloid containing all three methoxy groups in the upper portion of the molecule [100,136-138]. Furthermore, the high field N-methyl group signal at $\delta 2.17$ was diagnostic of a N(2) function. Reduction of the imine group in the alkaloid with NaBH₄ afforded (-)-2'-northalictine (117) (a new compound) which upon Nmethylation (CH₂O/NaBH₄) gave (-)-thalictine (118), the last being an alkaloid also isolated from the same extract. The complete ¹H NMR chemical shift assignments for thalmiculatimine (5) are as follows: $\delta 3.09$ [m, H(1)], 2.17 [s, N(2)Me], 6.64 [s, H(5)], 5.58 [s, H(8)], 5.81 [d, 1H, J = 2 Hz,H(10)], 6.79 [d, 1H, J = 8.2 Hz, H(13)] and 6.73 [dd, 1H, J = 2, 8.2 Hz, H(14)]; δ 7.02 [s, H(8')], 7.40 [d, 2H, $J_{add} = 8$ Hz, H(10') and H(14')], 7.02 [d, 2H, $J_{add} = 8$ Hz, H(11') and H(13'); 3.94 [s, C(6)OMe], 3.76 [s, C(6')OMe], and 3.90 [s, C(7')OMe]. Notable in the ¹H NMR spectrum of thalmiculatimine (5) are two features: first, the upfield position of the H((8) and H(10) protons at $\delta 5.58$ and 5.81, respectively, in comparison to the corresponding protons

in N-methyldihydrothalmiculatimine (thalictine)(118) which are found at $\delta 5.89$ and 6.05, respectively; and second, the well-defined pair of doublets at $\delta 7.02$ and 7.40 that represent the H(11') + H(13') protons and the H(10') and H(14') protons, respectively.

The following is a summary of the data reported for the new alkaloid (-)-2'-northalictine (dihydrothalmiculatimine)(117): $[\alpha]_D$ -54° (c 0.1, MeOH); UV - λ_{max} 237 nm (sh)(log ε 4.33) and 284 (3.90); CD - $\Delta\varepsilon$ (nm) 0 (300), +2.4 (291), 0 (288), -3.3 (281), 0 (268), 0 (258), +14.5 (240), with a negative tail below 230 nm; EIMS - M⁺ m/z 594 (52%), 593 (77), 592 (78), 591 (100), 395 (17), 381 (47), 365 (24), and 191 (38); ¹H NMR - δ 2.19 [s, *N*(2)Me], 6.63 [s, H(5)], 5.85 [s, H(8)], 6.04 [d, 1H, J = 2 Hz, H(10)], 6.84 [d, 1H, J = 8.2 Hz, H(13)] and 6.74 [dd, 1H, J = 2, 8.2 Hz, H(14)]; δ 6.84 [s, H(8')], 7.37 [d, 2H, J_{app} = 8 Hz, H(10') and H(14')], 6.95 [d, 2H, J_{app} = 8 Hz, H(11') and H(13')]; 3.91 [s, C(6)OMe or C(7')OMe], 3.73 [s, C(6')OMe], and 3.92 [s, C(7')OMe or C(6)OMe].

117

8.3.16. (-)-Thalmiculimine. Tabular Review [100, Alkaloid No. 382], UV [3,100], ¹H NMR [3,100], EIMS [3,100], CD [3,100].

Thalmiculimine (4), $C_{37}H_{38}O_7N_2$ (622.2679), $[\alpha]_D$ -5° (c 0.09, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of T. cultratum Wall. in 1987 [81,100]. The UV spectrum was characterized by a maximum at 274 nm (log ε 3.97), with a bathochromic shift in acidic media to 237 nm (sh)(log ε 4.40) and 284 (3.93), while the CD spectrum exhibited extrema at $\Delta \varepsilon$ (nm) 0 (330), -5.4 (302), 0 (289), +7.4 (278), 0 (269), -12 (245), with a positive tail below 235 nm. Like thalmiculatimine (5), thalmiculimine (4) was also characterized by an EIMS with a very intense parent ion [m/z 622 (86%)], and with the base peak being the M-1 ion [m/z 621 (100%)]. Other fragment ions of significance include those at m/z 607 (44%), 591 (16), 561 (18), 311 (18), and 288 (10). The ¹H NMR spectrum of thalmiculimine was very similar to that of thalmiculatimine and was highlighted by the presence of one high field N-methyl group at $\delta 2.16$ (characteristic of the N(2) group in the thalmine-series) and four methoxy groups. These data were characteristic of an iminobisbenzylisoquinoline alkaloid of the thalmine (107) series [100,136-138]. Reduction of the alkaloid with NaBH₄ afforded (-)-2'-northalmiculine (91)(a new alkaloid), which upon Nmethylation (CH₃O/NaBH₄) gave (-)-thalmiculine (3). The ¹H NMR chemical shift values for thalmiculimine (4) were reported as follows: $\delta 3.04$ [m, H(1)], 2.16 [s, N(2)Me], 5.17 [s, H(8)], 5.84 [d, 1H, J = 2 Hz, H(10)], 6.81 [d, 1H, J = 8.2 Hz, H(13)] and 6.75 [dd, 1H, J = 2, 8.2 Hz, H(14)]; δ 7.06 [s, H(8')], 7.38 [d, 2H, J_{app} = 8 Hz, H(10') and H(14')], 7.04 [d, 2H, J_{app} = 8 Hz, H(11') and H(13')]; 4.07 [s, C(6)OMe], 3.92 (s, C(12)OMe], 3.69 [s, C(6')OMe], and 3.92 [s, C(7')OMe].

The following is a summary of the data reported for the new alkaloid (-)-2'northalmiculine (dihydrothalmiculimine)(91): $[\alpha]_D$ -44° (c 0.1, MeOH); UV - λ_{max} 236 nm (sh)(log ϵ 4.33) and 281 (3.63); CD - $\Delta\epsilon$ (nm) 0 (300), -7 (281), 0 (268), 0 (258), 0 (255), +23.5 (238), with a negative tail below 225 nm; EIMS - M⁺ m/z 624 (72%), 623 (100), 397 (57), 383 (49), 199 (71), and 176 (64); ¹H NMR - δ 3.30 (m, H(1)], 2.26 [s, *N*(2)Me], 5.46 [s, H(8)], 6.12 [d, 1H, J = 2 Hz, H(10)], 6.85 [d, 1H, J = 8.2 Hz, H(13)] and 6.81 [dd, 1H, J = 2, 8.2 Hz, H(14)]; δ 6.90 [s, H(8')], 7.35 [d, 2H, J_{app} = 8 Hz, H(10') and H(14')], 6.99 [d, 2H, J_{app} = 8 Hz, H(11') and H(13')]; 4.05 [s, C(6)OMe], 3.95 [s, C(12)OMe], 3.69 [s, C(6')OMe], and 3.93 [s, C(7')OMe].

8.3.17. (-)-Thalmiculine. Tabular Review [100, Alkaloid No. 383], UV [3,100], ¹H NMR [3,100], EIMS [3,100], CD [3,100].

Thalmiculine (3), $C_{38}H_{42}O_7N_2$ (638.2992), $[\alpha]_D$ -35° (c 2.2, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of *T. cultratum* Wall. in 1987 [81,100]. The UV spectrum displayed maxima

at 235 nm (sh)(log ε 4.28) and 281 (3.58), while the CD spectrum exhibited extrema at $\Delta \varepsilon$ (nm) 0 (300), -3.2 (280), 0.8 (sh)(268), 0 (260), +11.2 (238), with a negative tail below 225 nm. The EIMS showed the parent ion and base peak at m/z 638 (100%), with other significant fragment ions at m/z 637 (62%), 411 (67), 397 (41), 206 (73), and 183 (38), and was characteristic of a head-to-head and tail-to-tail linked bisbenzytetrahydroisoquinoline alkaloid containing two Nmethyl groups, three methoxy groups, and one phenolic hydroxy group in the top portion of the molecule, and one methoxy group in the bottom portion of the molecule [100,136-138]. The ¹H NMR spectrum displayed the N-methyl resonances as two singlets at $\delta 2.18$ and 2.67, this being suggestive of an alkaloids of the thalmine (107) series. In addition, the usually well defined Ring C' aromatic protons were found as a poorly defined hump at $\delta7.30$ [H(10') and H(14') and a broad singlet at $\delta 6.95$ [H(11') and H(13')], both of which were sharpened by heating to 60°. Finally, the absence of a one-proton singlet at approximately $\delta 6.63$ was indicative of substitution at the C(5) position, and this was taken as preliminary evidence for the placement of a phenolic hydroxy group at that position. Methylation (CH_2N_2) of (-)-thalmiculine (3) gave (-)-O-methylthalmiculine (96), and a thorough nOeds study of this compound resulted in a complete assignment of the ¹H NMR chemical shift assignments. Several salient observations were made concerning the certain ¹H NMR chemical shifts of the structurally-related alkaloids (-)-thalmiculine (3), (-)-O-methylthalmiculine (96), and (-)-O-methylthalmine (108). First, while the position of the H(8) proton in (-)-O-methylthalmine is at $\delta 5.88$, this same proton is shifted upfield in the 5-oxygenated derivatives (-)-O-methylthalmiculine (96) and (-)-thalmiculine (3) to 85.45 and 5.70, respectively. Hence, an upfield shift of about 0.2 ppm is characteristic of the 5-methoxylated derivative, while that of approximately 0.4 ppm is characteristic of the C(5)phenol. Second, the chemical shift associated with the C(6)OMe group is likewise indicative of C(5) substitution, as this signal is observed at $\delta 3.92$ in (-)-O-methylthalmine (108), but at $\delta 4.00$ in (-)-O-methylthalmiculine (96) and at $\delta 4.05$ in (-)-thalmiculine (3). The ¹H NMR chemical shift values for thalmiculine (3) were reported as follows: $\delta 3.22$ [m, H(1)], 2.18 [s, N(2)Me], 5.45 [s, H(8)], 6.09 [d, 1H, J = 2 Hz, H(10)], 6.80 [d, 1H, J = 8.2 Hz, H(13)] and 6.75 [dd, 1H, J = 2, 8.2 Hz, H(14)]; $\delta 3.64 (m, H(1')], 2.67 [s, N(2')Me], 6.81 [s, H(8')], 7.30 [2H, H(10') and$ H(14')], 6.95 [br s, 2H, H(11') and H(13')]; 4.05 [s, C(6)OMe], 3.93 (s, C(12)OMe], 3.63 [s, C(6')OMe], and 3.90 [s, C(7')OMe].

The following is a summary of the data reported for the (-)-*O*-methylthalmiculine (96): [α]_D -38° (c 0.2, MeOH); EIMS - M⁺ m/z 652 (91%), 651 (12), 638 (18), 622 (19), 426 (82), 412 (79), 410 (31), 213.5 (100), 206.5 (16), 204 (41), and 190.5 (73); ¹H-NMR - δ 3.27 [m, H(1)], 2.18 [s, *N*(2)Me], 5.70 [s, H(8)], 6.12 [d, 1H, J = 2 Hz,H(10)], 6.79 [d, 1H, J = 8.2 Hz, H(13)] and 6.76 [dd, 1H, J = 2, 8.2 Hz, H(14)]; δ 3.63 (m, H(1')], 2.66 [s, *N*(2')Me], 6.79 [s, H(8')], 7.37 [2H, H(10') and H(14')], 6.93 [br s, 2H, H(11') and H(13')]; 3.93 [s, 6H, C(5)OMe and C(12)OMe], 4.00 [s, C(6)OMe], 3.65 [s, C(6')OMe], and 3.88 [s, C(7')OMe]. Reciprocal nOe enhancements between the following were observed: *N*(2)Me and H(1), H(1) and H(8), H(8') and C(7')OMe, H(8') and H(\alpha'a), H(4a) and C(5)OMe, and H(13) and C(12)OMe. In

addition, other observed nOes include H(αa) to H(10), H(αa) to H(8), H(αb) to H(14), H(11',13') to H(10), and H(1') to N(2')Me.

8.3.18. (-)-Thalrugosaminine-2α-N-Oxide. Tabular Review [100, Alkaloid No. 384], ¹H NMR [81,100], EIMS [81,100].

Thalrugosaminine-2α-N-oxide (111), C₃₉H₄₄O₈N₂ (668.3098), [α]_D -33° (c 0.2, MeOH), was isolated as an amorphous solid along with eight other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of T. cultratum Wall. in 1987 [81,100]. The EIMS of the alkaloid displayed a parent ion at m/z 668 (6%), with other important fragment ions at m/z 667 (10), 666 (22), 652 (82), 651 (60), 637 (35), 608 (18), 607 (19), 441 (1), 425 (63), 412 (26), 411 (92), 397 (15), 213 (100), 212 (13), 206 (51), and 174 (42) and was characteristic of head-tohead and tail-to-tail linked bisbenzylisoquinoline N-oxide [100,136-138]. The ¹H NMR spectrum was found to be very similar to that of thaligosine- 2α -N-oxide (110), another alkaloid isolated from the same extract, and differed only by the presence of one additional methoxy signal. A comparison of the chemical shift values of the H(1) and H(1') signals in the alkaloid N-oxide 111 with its parent base thalrugosaminine (119) demonstrated a strong downfield shift of the H(1)signal ($\delta 3.49$) in the parent base thalrugosaminine to $\delta 4.83$ in the alkaloid N-oxide, while the H(1') signal (δ 4.47) of the N-oxide was shifted only slightly downfield from that of the parent base ($\delta 4.24$). This observation was consistent with the assignment of the N-oxide function to the left-hand portion of the molecule at N(2). A detailed nOe analysis was utilized to confirm the placement of the N-oxide at N(2), as well as to establish the relative configuration. The complete ¹H NMR chemical shift assignments for the alkaloid were determined as follows: $\delta 4.83$ [m, H(1)], 3.45 [s, N(2)Me], 6.50 [s, H(5)], 6.37 [s, H(8)], 6.59 [br s, 1H, H(10)], 6.99 [br s, 2H, H(13) + H(14)]; $\delta 4.47 [m, H(1')]$, 2.58 [s, N(2')Me], 6.82 [br s, 2H, H(10') + H(11')], 7.16 [dd, 1H, J = 2.2, 8.1 Hz, H(13')], 7.51 [dd, 1H, J = 2.2, 8.1 Hz, H(14')]; 3.45 [s, C(6)OMe], 3.96 [s, C(12)OMe], 3.81 [s, C(5')OMe], 3.89 [s, C(6')OMe], 3.05 [s, C(7')OMe]. Reciprocal nOe enhancements between the following were observed: N(2) Me and H(1), H(8) and H(10), H(1')and N(2')Me, H(5) and C(6)OMe, H(13) to C(12)OMe. In addition, other nOes were observed from H(1) to H(14), H(8) to H(α_a), H(1') to H(14'), H(1') to H(α'_b), H(14') to H(α'_a), and C(5')OMe to H(4').

8.3.19. (+)-Thalsivasine. Tabular Review [100, Alkaloid No. 385], UV [77,3,100], ¹H NMR [3,77,100], EIMS [3,77,100], CD [3,100].

Thalsivasine (7), $C_{36}H_{36}O_6N_2$ (592.2573), $[\alpha]_D$ +196° (c 0.2, MeOH), was isolated from an aqueous acetic acid extract of the above ground parts of T. minus var. minus L. of Turkish origin in 1985 [77,100]. It was shortly thereafter isolated as an amorphous solid along with eleven other bisbenzylisoquinoline alkaloids from an extract (EtOH) of the whole plant of the Pakistani T. cultratum Wall. in 1986 [2,3,100]. The alkaloid displayed UV maxima at 234 (sh) (log ɛ 4.39), 281 (4.05), and 313 (3.78), with a bathochromic shift in acidic media to 239 nm (log ɛ 4.36), 285 (3.99), 308 (3.69), and 354 (3.82) [3]. The EIMS was characterized by a parent ion at m/z 592 (39%), a pronounced M-1 peak at 591 amu that was also the base peak, and other important fragment ions at 590 (50), 576 (15), 561 (12), 560 (26), 368 (17), 236 (14), 204 (8), and 183 (7)[77]. These spectral data were characteristic of an imine-containing bisbenzylisoquinoline-derived alkaloid containing two ether bridges, one in the upper portion and one in the lower portion of the molecule [100, 136-138]. Among the unusual features of the ¹H NMR spectrum was the presence of an upfield three-proton singlet at δ 1.96 which was characteristic of the N(2) methyl group in the thalmethine (120) series of alkaloids [100,136-138]. Since both thalmethine (120) and O-methylthalmethine (121) had been isolated from fractions that contained thalsivasine (7), and since thalsivasine possessed spectral properties that were characteristic of this group of compounds, thalsivasine was methylated with an ethereal solution of CH₂N₂ to afford O-methylthalmethine (121), thereby confirming the skeletal framework and positions of oxygenation in thalsivasine (7)[77]. This identification was made solely via a TLC comparison with an authentic sample. The assignment of structure of thalsivasine as 7-Odemethyl-O-methylthalmethine (7)[77] was made via a consideration of the ¹H NMR spectrum which failed to show the presence of the C(7) methoxy signal (at approximately $\delta 3.83$) that is characteristic in the thalmethine-series of alkaloids [100,136-138]. The structure of thalsivasine

as 7 was later confirmed [3] by reduction of the alkaloid to (+)-2'-northaliphylline (105), whose *N*-methylation product was the known alkaloid (+)-thaliphylline (106), that was also present in the same extract [3]. The CD spectrum of thalsivasine (7) exhibited extrema at $\Delta \varepsilon$ (nm) 0 (320), +14 (280), 0 (271), -9.6 (265), -11.0 (255), -14.4 (245), with a negative tail below 225 nm. The ¹H NMR chemical shift assignments for the alkaloid were proposed as follows: $\delta 1.96$ [s, *N*(2)Me], 6.56 [s, H(5)], 5.80 [d, 1H, J = 1.8 Hz, H(10)], 6.79 [d, 1H, J = 8 Hz, H(13)] and 6.63 [dd, 1H, J = 1.8, 8 Hz, H(14)]; $\delta 6.67$ [s, H(5')], 6.28 [s, H(8')], 6.78 [dd, 1H, J = 2, 8.2 Hz, H(10')], 6.81 [dd, 1H, J = 2, 8.2 Hz, H(11')], 7.16 [dd, 1H, J = 2, 8.2 Hz, H(13')], 7.48 [dd, 1H, J = 2, 8.2 Hz, H(14')]; 3.93 [s, C(6)OMe], 3.92 [s, C(12)OMe], and 3.71 [s, C(7')OMe].

121

8.3.20. Enzymatic Control of Stereochemistry Among the *Thalictrum* Bisbenzylisoquinoline Alkaloids

Approximately ten years ago, Guinaudeau et al. proposed four rules that appeared to govern the formation of bisbenzylisoquinoline alkaloids in *Thalictrum* species [1,121]. In order

to interpret these rules correctly, these alkaloids must be drawn uniformly with their two lower aromatic rings (tail portions) in a position such that the phenolic hydroxyl or methoxyl group in ring C at C(12) would be the lower left ring, which then fixed the termini of the diphenyl ether bridge at C(11) and C(12'). These proposed rules were as follows:

1. The dimers were members of any of seven different structural subgroups:

Subgroup A:	$C(11) \rightarrow C(12')$ diphenyl ether bridge
Subgroup B:	$C(8) \rightarrow C(7') + C(11) \rightarrow C(12')$ diphenyl ether bridges
Subgroup C:	$C(7) \rightarrow C(8') + C(11) \rightarrow C(12')$ diphenyl ether bridges
Subgroup D:	$C(8) \rightarrow C(6') + C(11) \rightarrow C(12')$ diphenyl ether bridges
Subgroup E:	$C(8) \rightarrow C(5') + C(11) \rightarrow C(12')$ diphenyl ether bridges
Subgroup F:	$C(7) \rightarrow C(5') + C(11) \rightarrow C(12')$ diphenyl ether bridges
Subgroup G:	$C(5) \rightarrow C(8') + C(11) \rightarrow C(12')$ diphenyl ether bridges

- 2. When a benzylisoquinoline moiety was oxygenated at C(5) or C(5'), it had the (S) configuration
- 3. The right-hand benzylisoquinoline moiety incorporated the (S) configuration at C(1')
- 4. The left-hand benzylisoquinoline moiety incorporated the (S) configuration at C(1), except in Subgroups A, B, and C, where it may be (R)

It was also proposed that when an imine function (either as a single C=N bond or as part of an isoquinoline system) was present in these dimers, the imine was found on the right side of the dimer, whereas the left side was of the (S) configuration.

In a period of approximately ten years following the proposal of these rules, 19 new bisbenzylisoquinoline alkaloids were isolated from *Thalictrum* genera. The following is summary of the "concurrence" of these alkaloids to the proposed rules of Guinaudeau et al. as described above:

1. The new dimers were found to belong to five of the seven possible Subgroups, with Subgroup F having the most (7):

Subgroup A(2):	Neothalibrine-2'a-N-Oxide	(97)[81,100],
	Northalibroline (101)[53,100	0]
Subgroup B(0):	None	

106

Subgroup C(3):	2'-Noroxyacanthine(99)[81,100], Thaligosine-2α-N-
	Oxide (Thalisopine- 2α -N-Oxide)(110)[81,100],
	Thalrugosaminine-2α-N-Oxide (111)[81,100]
Subgroup D(4):	2'-Northaliphylline (105)[81,100], Thaliphylline-
	2^{β} -N-Oxide (113)[81,100], Thalivarmine
	(114)[77,100], Thalsivasine (7)[77,100]
Subgroup E(3):	5-Hydroxythalidasine (6)[3,100], 5-
	Hydroxythalidasine-2α-N-Oxide (94)[81,100],
	Thalidasine-2α-N-Oxide (95)[81,100]
Subgroup F(7):	Cultithalminine (89)[81,100], 5-Hydroxythalmine
	(2)[2,3,100], 2-Northalmine(1)[84,100], Thalifortine
	(109)[82], Thalmiculatimine (5)[81,100],
	Thalmiculimine (4)[81,100], Thalmiculine
	(3)[81,100]
Subgroup G(0):	None

- Eight of the 19 new alkaloids were oxygenated at C(5) or C(5') with all eight of these alkaloids possessing the (S) configuration in that half of the dimer bearing the C(5) or C(5') hydroxylation. These eight alkaloids are: cultithalminine (89) [C(5)], 5-hydroxythalidasine (6) [C(5)], 5-hydroxythalidasine-2α-N-oxide [C(5)] (94), 5-hydroxythalmine (2) [C(5)], thaligosine-2α-N-oxide (thalisopine-2α-N-oxide)(110) [C(5')], thalmiculimine (4) [C(5)], thalmiculine (3) [C(5)], and thalrugosaminine-2α-N-oxide (111) [C(5')].
- 3. Fourteen of the 19 new alkaloids incorporated the (S) configuration at C(1'), while four [cultithalminine (89), thalmiculatimine (5), thalmiculimine (4), and thalsivasine (7)] of the remaining five alkaloids were imines at C(1'). The only exception to the rule was thalifortine (109), which was proposed to have the S,Rconfiguration at C(1)/C(1') [82]. However, there was no CD spectrum provided in this paper, nor was the alkaloid subjected to Na/liquid NH₃ fission (in order to split the compound into its optically active monomeric halves, each of which could be assigned the (S) or (R) configuration based solely on their respective specific rotation). Hence, the proposed configuration of thalifortine was likely equivocal.
- 4. Eighteen of the 19 new alkaloids were characterized by having the (S) configuration at C(1). Only 2'-noroxyacanthine (99) [81,100] was the exception, and this alkaloid is a member of Subgroup C, one of the three subgroups in which the (R) configuration at C(1) is "allowed" by the rule.

It is safe to conclude that the earlier rules proposed by Guinaudeau et al. have stood the test of time over the last decade. It will be interesting to look back after another decade, when we are in the 21st century, and follow the course of these interesting correlations.

9. ALKALOIDS OF UNUSUAL/UNEXPECTED STRUCTURE

9.1. N-Phenyl-2-Naphthylamine. UV [82], IR [82], ¹H NMR [82], EIMS [82].

N-Phenyl-2-naphthylamine (122), $C_{16}H_{13}N$ (219.1048), mp 107.5-108.5°C, was isolated from an extract of the roots of *T. ichengense* Lecoy et Oliv. in 1989 [39]. The UV spectrum (EtOH) was characterized by maxima at 220 nm (log ε 4.59), 273 (4.38), and 310 (4.32), while the IR spectrum (KBr) displayed maxima at 3380, 1620, 1595 and 1490 cm⁻¹. The EIMS displayed a parent ion at m/z 219 (100%), with other reported ions being observed at m/z 127 (55), 93 (9), and 77 (4). The ¹H NMR spectrum displayed a broad one-proton singlet at δ 5.13 (NH) and a complex cluster of aromatic protons at δ 6.79-7.79 (m, 12H). To my knowledge, this is the first reported isolation of this unusual compound from nature.

122

10. ANALYSIS OF THALICTRUM ALKALOIDS

10.1. Thin-Layer Chromatographic Densitometry

Samples of different species of *Thalictrum* were analyzed by TLC densitometry. This involved extraction of the pulverized sample (commonly a root) with methanol, followed by spotting on a silica gel TLC plate. The plate was first developed with C_6H_6 -Me₂CO-NH₄OH (3:3:0.2), with the alkaloids protopine, cryptopine, and hernandezine being scanned at 280 nm. The plate was then developed with C_6H_6 -CHCl₃-EtOAc-MeOH (2:7:1:3), and the alkaloids isotetrandrine, thalidezine, isothalidezine, berbamine, oxyacanthine, allocryptopine, jatrorrhizine,

and coptisine determined at 280 nm. Finally, the plate was developed with $CHCl_3$ -EtOAc-Et₂NH-MeOH-NH₄OH (2:8:0.5:2:0.1), and berberine and palmatine were scanned at 280 nm. The authors report that the method was simple, rapid, and accurate [142].

10.2. Mass Spectrometry

A study of the fast atom bombardment mass spectra and low-energy collision activation tandem mass spectra of a series of monoquaternary and bisquaternary bisbenzylisoquinoline *Thalictrum* alkaloids was undertaken [143]. It was determined that the relative molecular mass of the free base alkaloid and its bisquaternary salt can be obtained from FAB data, but that the monoquaternary ammonium salt derivatives produce only a $(M-X)^+$ ion, thus precluding the determination of the relative molecular mass. For example, the bisquaternary iodide ammonium salts produced ions $(M-I)^+$, $(M-I-HI)^+$, and $(M-I-CH_3I)^+$. The relative molecular mass of the counter anion may be determined with facility, thereby affording the relative molecular mass of the alkaloid. However, with a monoquaternary ammonium salt such as a monochloride, only a $(M-X)^+$ ion is produced, and there is insufficient mass spectral data to determine its counter anion from positive-ion FAB. Negative-ion FAB was unable to be employed to determine absolutely the counter anion of the alkaloid, since chloride anions occur as common background anions.

The single ether-linked alkaloids (Type A - tail-to-tail linkage, with Ring E linked to Ring F])(123) undergo fragmentation principally via benzylic and ether cleavages, and thus the total number of aromatic substituents (hydroxy, methoxy, methylenedioxy groups) may be readily determined for rings A-B, C-D, E and F. This fragmentation was studied using *N*-desmethylthalistyline (bistertiary), thalistyline methochloride (monotertiary-monoquaternary), and thalistyline dimethiodide (bisquaternary). In addition, the aporphine-benzylisoquinoline dimeric alkaloid thalicarpine and its dimethiodide salt were also studied, with parallel results.

The doubly ether-linked alkaloids (Type B - head-to-head and tail-to-tail linkage, with Ring B linked to Ring C and Ring E linked to Ring F)(124) undergo facile and prominent fragmentation via double benzylic cleavages, thus allowing the determination of the total number of aromatic substituents in the upper half of the molecule (Rings A-B + Rings C-D). The following alkaloids were studied, and found to support these findings: homoaromoline and homoaromoline dimethiodide; thalrugosine and thalrugosine dimethiodide; thalrugosidine and thalrugosidine dimethiodide; and thalidasine.

Finally, an alkaloid of undetermined structure was studied to demonstrate the utility of these methods. The FABMS of the alkaloid was first determined, followed by derivitization of the alkaloid to its bismethiodide (MeI/Me₂CO - room temperature), and subsequent determination of the FABMS of the derivative. The unknown alkaloid exhibited fragmentation characteristic of a type A aporphine-benzylisoquinoline alkaloid with one methoxy and one hydroxy group in

Ring B, two methoxy groups in Ring E, and either three methoxy groups or one methylenedioxy group + one hydroxy group + one methoxy group in Rings C + F [143].

123

124

10.3. X-Ray Crystallographic Diffraction Analysis

X-ray crystallographic diffraction analysis was performed on two alkaloids, thalactamine [65] and thalicsiline (73)[123].

10.4. Additional Spectral Data On Previously Reported Alkaloids

The ¹H NMR spectra were obtained for thalisopine (thaligosine) (112)[81] and thalrugosaminine (119)[81].

10.5. Glaucine, Thalicsimidine, and Oxopurpureine

The amount of glaucine, thalicsimidine, and oxopurpureine in an extract of the roots of the Chinese *Thalictrum microgynum* Lecoy. was determined by reverse-phase HPLC, as well as double wavelength TLC. The results (0.18%, 0.04%, and 0.09%, respectively) indicated a consistency in content that was substantiated by nearly the same values for each method [144].

10.6. Thalidasine

The decomposition kinetics of thalidasine in aqueous solution at pH 2.0-7.8 (salt concentration 0-0.132M) and different oxygen concentrations at 50-80° was studied via fluorescence spectrophotometry. Oxidation was found to significantly contribute to the overall decomposition, with the oxidation rate being mainly dependent upon the pH of the medium and the presence of oxygen. In the presence of excess oxygen, the reaction was found to follow pseudo first-order kinetics with respect to alkaloid concentration [145].

The construction and performance characteristics of a new variable-valency thalidasineselective electrode, based on the tetraphenyl borate-thalidasine ion-pair complex as the electroactive material, was evaluated. The electrode response was fast and stable, with the slopes of calibration curves being reproducible. The slopes of electrode response and electrode potentials varied with the pH of the solution. The K_{a1} dissociation constant was 2.5 x 10⁻⁴ at 25°, while K_{a2} was 8.1 x 10⁻⁸ [146].

The encapsulation efficiency of a thalidasine liposome injection was studied using Sephadex G-50 column fluorimetry. The free alkaloid was separated from the liposome particles by the column, with satisfactory recovery of the liposome particles, as well as column reproducibility. The encapsulation efficiency of this particular liposome preparation (139-2) was approximately 93% due to the highly lipophilic property of the alkaloid. The authors concluded that the method was suitable for the quality control of encapsulation efficiency of this polyphase liposome injection [147].

In a separate study, the quantity of thalidasine in a polyphase-liposome injection (139-2) was determined by dilution of the injection with EtOH-0.01N HCl (4:1), followed by spectrofluorometric determination at 235 nm (for excitation) and at 318 nm (for emission). The recovery was > 96% and the coefficient of variation was < 3%. The polyphase-liposome encapsulation rate was also determined by this method after separation via Sephadex column chromatography [148].

The pharmacokinetics of thalidasine in a polyphase liposome preparation and in aqueous solution were determined by HPLC in mice following intravenous injection. The blood drug concentration curve fit a two-compartment open model, with the distribution and elimination half-lives being 3.52 and 23.58 minutes, respectively, for the liposome preparation, and 1.293 and 11.12 minutes, respectively, for the aqueous solution [149].

11. BIOSYNTHESIS

Systematic studies conducted with isotopically labelled precursors and intermediates were used to study the biosynthetic pathway leading to various aporphine-benzylisoquinoline dimeric alkaloids in *Thalictrum minus* L. A high rate of incorporation of isotopically labelled reticuline into thalicarpine was noted, and interpreted to mean that reticuline is a precursor of thalicarpine, and is active in the biosynthesis of both the aporphine and benzylisoquinoline portions of thalicarpine. The presence of isoboldine and its incorporation into the aporphine portion of the dimer was noted, with the particular substitution pattern found in reticuline and isoboldine occurring at the phenethylamine stage of the biosynthesis. Both adiantifoline and thalmelatidine are produced at a later biosynthetic stage, and are formed through the introduction of oxygenbearing substitutents at the aporphine-benzylisoquinoline stage. The following biosynthetic scheme was derived to explain these results: dopamine -> 3-methoxy-4-hydroxyphenethylamine -> reticuline -> thalmelatine -> thalicarpine -> adiantifoline and thalmelatidine [150].

Administration of triply ¹³C-labelled (S)-reticuline to a stable variant non-alkaloid producing cell culture line of Thalictrum tuberosum in cell culture demonstrated a very high incorporation of label into protoberberine alkaloids that were subsequently produced. Since this cell line does not produce reticuline, because the cell line lacks or has insufficient quantities of three methyltransferases that lead to the formation of reticuline, cell cultures that contain this cell line are appropriate for the study of biosynthetic studies. ¹³C NMR spectroscopy and CIMS were utilized to follow the time course of the metabolism, and demonstrated the rapid formation of scoulerine as a primary reaction product, followed by further tetrahydroprotoberberines and dehydroprotoberberines. The apparently reversible formation of dehydroscoulerine in significant amounts was interpreted as evidence for the role of this compound as an alkaloidal storage product from which scoulerine may be regenerated via enzymic reduction. Scoulerine. dehydroscoulerine, columbamine, and (S)-reticuline were detected by ¹³C NMR in the crude extracts, while berberine was detected by HPLC. The biosynthetic pathway of these protoberberines in this variant cell culture were summarized as follows [151]: (S)-reticuline -> scoulerine -> tetrahydrocolumbamine (hypothetical) -> columbamine -> dehydroscoulerine -> candadine -> berberine.

12. CELL CULTURE

There has been an upsurge in the study of alkaloid production in cell suspension cultures in several *Thalictrum* species, notably *T. minus* and *T. rugosum*. These studies, as well as others conducted in the last decade are discussed in the following paragraphs.

12.1. Thalictrum dipterocarpum

A cell suspension culture of T. *dipterocarpum* produced berberine (0.4 g/L) as the major alkaloid. The production of berberine was markedly stimulated by NAA in combination with 6-benzylaminopurine. Berberine was released into the culture medium during the logarithmic growth phase, but afterwards the alkaloid that was produced accumulated in the cells [152].

A group of heavy-metal complexing peptides, designated as phytochelatins, were isolated from about thirteen different plant cell suspension cultures, including *Thalictrum dipterocarpum*. The structure of these phytochelatins was established as (γ -glutamic acid-cysteine)_n-glycine (where n = 3-7), with these peptides appearing upon induction of plant cells with heavy metal ions. Although Cd⁺² was principally utilized in this study, other inducing ions included Cu⁺², Pb⁺², Hg⁺², and Zn⁺². Cell extracts exposed to heavy metal ions did not produce any phytochelatins within the limits of detection. It has been proposed that these peptides may be viewed as linear polymers of the γ -glutamic acid-cysteine portion of glutathione, and perhaps may have been formed from glutathione. The presence of repetitive gamma γ -glutamic acid bonds precludes the possibility that phytochelatins are primary gene products. Most importantly, phytochelatins appear to be the most structurally simple natural products reported to date that are capable of the detoxification and homeostasis of heavy metals via metal-thiolate formation [153].

12.2. Thalictrum flavum

A cell suspension culture of *T. flavum* produced berberine (0.3 g/L) as the major alkaloid. The production of berberine was suppressed by NAA in combination with 6-benzylaminopurine. Berberine and columbamine accumulated in the cells of these cultures without being released into the medium [152].

12.3. Thalictrum minus

A new bioreactor, consisting of a liquid-gas two-phase system, was devised for utilization with berberine-secreting *T. minus* cells immobilized in calcium alginate beads. The cells were alternately soaked in medium, and then exposed to air, and the maximum yield of berberine production was 875 mg/L. The berberine productivity of immobilized cells was as high as that of freely suspended cells under such conditions of batch culture. In addition, the rate of production of berberine by the immobilized cells remained constant at a high value (50 mg/L/day) for 60 days of semicontinuous culture, achieved by the renewal of medium at 10 day intervals [154].

It was determined that the specific rate of consumption of oxygen by berberine-producing cells of a cell suspension culture of T. minus was twice as high as that of non-berberine

producing cells. In addition, the yield of the alkaloid increased with increases in the volumetric oxygen transfer coefficient. An estimate of the optimum conditions of oxygen supply in the suspension cultures and immobilized cells was made according to a known theoretical model assuming oxygen uptake by the cells to be a zero-order reaction, and was in good agreement with the experimental data. The oxygen supply to the immobilized cells was not improved via the reduction of the radius of the beads [155].

The transfer of cultured cells of *T. minus* from culture flasks to a bubble column bioreactor resulted in the production of a small amount of berberine, and with a change of color of these cells to a dark brown, even in the presence of sufficient oxygen. This was attributed to the removal of carbon dioxide from the culture medium via bubbling air, and was reproducible in flask cultures artificially deprived of carbon dioxide. Cell browning was also induced via the exogenous administration of ethylene, suggesting that carbon dioxide likely acts antagonistically against the endogenously generated ethylene. Addition of 2% carbon dioxide to the air of the bioreactor prevented the physiological damage produced by forced aeration [156].

The production of berberine in cell suspension cultures of T. minus was regulated by ethylene via the activation of berberine biosynthesis from (S)-reticuline. However, ethylene promoted the formation of bound polyphenolics that are associated with cell browning when added in the late stage of culture [157].

The addition of the cytokinin 6-benzylaminopurine (BAP) to growing cell suspension cultures of T. minus cells (medium containing 2,4-D) early in the growth cycle induced the production of berberine. The precursor L-tyrosine was rapidly converted into berberine in the presence of BAP, with the alkaloid being released into the medium. However, in the absence of BAP, large amounts of the intermediates tyramine and dopamine accumulated in the non-berberine-producing cells in the same medium. The authors concluded that BAP activates enzymic reactions prior to the formation of the amines in the biosynthesis of berberine [158].

12.4. Thalictrum minus var. hypoleucum

The addition of 6-benzyladenine (5-10 μ M) to cell suspension cultures (Linsmaier and Skoog medium) of *T. minus* var. *hypoleucum* resulted in the production of large amounts of berberine (400-800 mg/L). The alkaloid was continuously released from the cells into the liquid medium, with an excess of the compound crystallizing as its nitrate salt in the medium. Culture of the cells in a modified Linsmaier and Skoog medium containing 20mM KNO₃ and 40mM NH₄Cl in place of 20.6 mM NH₄NO₃ as the nitrogen source, resulted in the crystallization of mainly berberine chloride instead of berberine nitrate. Thalifendine and magnoflorine were produced in small amounts by the culture, and were isolated and identified [159].

The production of berberine was achieved from cells of T. minus var. hypoleucum in gas phases via culturing the cells with spraying liquid media and supplying oxygen or air. The berberine that is produced is separated from the culture media [160].

The production of berberine in cell suspension cultures of *T. minus* var. *hypoleucum* was greatly enhanced via the administration of spermidine. However, the utilization of other polyamines including cadaverine, putrescine, and spermine were not effective. Experimental results indicate that spermidine induces an increase in the production of ethylene, the latter of which is definitively associated with the biosynthesis of berberine [161].

12.5. Thalictrum rugosum

The utilization of a carbohydrate fraction isolated from yeast extract by precipitation with ethanol was used as an elicitor in the induction of berberine biosynthesis (up to four-fold) in cultured cells of *T. rugosum*. These cells were optimally induced in the late exponential or early stationary growth phases, with the response of the cell cultures to elicitor treatment being dependent upon the amount of carbohydrate per unit of biomass and on the physiological state of the cells. Berberine has been classified as a prohibitin, a preinfectional metabolite with antimicrobial activity, and the presence of the alkaloid in the roots of *Cooperia pedunculata*, *Mahonia trifoliata*, and *Sanguinaria canadensis* protects these plants from invasion by the fungus *Phymatotrichum omnivorum*. In conclusion, the carboyhydrate fraction isolated from yeast extract appeared to be effective in the induction of phytoalexin production as well as the enhancement of prohibitin production in plant cell suspension cultures [162].

Treatment of cell suspension cultures of *T. rugosum* with a yeast glucan elicitor induced the production of tyrosine decarboxylase in the late exponential and early stationary growth phases of the cells. Tyrosine decarboxylase has been suggested as the key enzyme between primary and secondary metabolism in the biosynthesis of norlaudanosoline-derived alkaloids, and a good correlation between induced tyrosine decarboxylase activity and berberine biosynthesis has been established [163].

Transferral of growing cells of *T. rugosum* from cell culture media to a fresh medium lacking phosphate caused the release of protoberberine alkaloids into the second medium. Furthermore, cell cultures that have released their alkaloids into the medium continued to grow when the alkaloid-containing medium was replaced by fresh growth medium [164].

Better cell growth and a prevention in the rapid decrease in cell mass after substrate depletion in cell suspension cultures of T. rugosum was provided by light. In addition, continuous illumination enhanced the production of alkaloid in cell culture. Finally, light was found to significantly suppress the secretion of the major alkaloid berberine into the culture [23].

The cultivation of a cell suspension of *T. rugosum* utilizing bubble-free aeration was accomplished via a novel membrane-stirrer reactor. Advantages of this bubble-free aeration process included the absence of any foaming or flotation, and the gentle mixing of the suspension via the tumbling movement of a coil or basket of membranes. Suspensions of cell cultures were grown under these conditions in a 21 liter reactor to a high cell densities of 550 g fresh mass or 50 g of dry mass. Maintenance of a pO_2 of 30% up to 400 g/liter was achieved without air

bubble formation at the gas-exchange membranes. The growth rates and alkaloid production of shake-flask and fermentor-grown cells were similar, provided that the physiological states of the initial suspensions were comparable [165].

The addition of etephon to a cell suspension of a culture of T. rugosum decreased the fresh/dry weight ratio, and increased the yield of berberine by 31% (dry weight). The release of berberine into the culture increased by 8-9% on the addition of etephon, conceivably via an increase in plasmalemma permeabilization [24].

T. rugosum cell suspensions that produce berberine in a growth-associated manner were examined in two-stage cultures. The utilization of growth regulators, particularly IAA in place of 2,4-D was examined at various growth phases. Although enhancement was clear when IAA was used separately, combination of 2,4-D with IAA produced a suppression of growth, and the change of medium from 2,4-D to IAA was detrimental to the formation of products. A decreased production of berberine was noted in this two-stage culture, and was possibly due to the loss of conditional factors associated with medium replacement [25].

Cells of *T. rugosum* were immobilized in calcium alginate, where they remained viable and produced berberine both in shake flasks and in an airlift bioreactor. Most of the berberine that was produced was stored within the cells, and the formation of the alkaloid was growth associative. The rapid hydrolysis of sucrose, and the preference of glucose over fructose was observed during the growth stage of the cells. Berberine production was increased and the dissolution of the alginate beads were decreased in phosphate-deficient media. With respect to growth and the production of berberine, the behavior of the immobilized cells that were grown in the airlift reactor was comparable to those grown in shake-flasks. The rate of cellular growth and the production of berberine was higher in an airlift reactor operation than in a packed-column reactor due to the better transfer of oxygen [31].

Cultured cells of *T. rugosum* were immobilized via a glass fiber substratum and cultured in shake flasks. Under these conditions, the immobilized cells exhibited both a decrease in growth and a decrease in protoberberine alkaloid production in comparison to freely suspended cells. The decreased production rate of alkaloids was a function of the slower growth rate of the cells, as alkaloid production is known to be growth associated in this species. Maximum biomass and protoberberine alkaloid levels were maintained for longer than 14 days in immobilized culture. However, fresh weight, dry weight, and total alkaloid content decreased in suspension cultures following the linear growth phase. The total inoculum biomass of the cultured cells was introduced as a suspension, and was spontaneously immobilized within 8 hours. The growing biomass in the bioreactor was completely retained by the glass fiber substratum during the 28-day culture period, and the increase in specific production of protoberberine alkaloids was initially similar in both the bioreactor- and the shake-flask-cultivated immobilized cells [166].

The production of berberine in cell suspension cultures of *T. rugosum* was stimulated by the addition of $CuSO_4$, with a maximum enhancement in production of the alkaloid effected by adding the salt at final concentrations of 200-500 μ M. The addition of cupric sulfate solution

also permeabilized or lysed cells, with the resulting release of a large amount of berberine into the culture medium [26].

An airlift bioreactor operation was studied for the growth-associated production of the secondary metabolite berberine from *T. rugosum*. A cell scraper used in this particular bioreactor was employed to overcome the problem of large aggregates of high density cells. In addition, the berberine content was increased twofold via the utilization of a mixture of CO_2 and ethylene as gas-stripping agents. It was evident that continuous gas sparging was detrimental to the production of berberine without supplementation with other gases [27].

Depletion of phosphate concentration in cell suspension cultures of T. rugosum enhanced the specific productivity of berberine with a significant release of the alkaloid into the culture. Extracellular berberine was found to account for 19% of the total berberine in culture without phosphate, but was only 2-5% of the total berberine in culture with even small amounts of phosphate being present. In addition, precursor feeding was not effective in enhancing the production of alkaloid, nor did exogenous berberine affect cell growth or the production of alkaloid. The culture cells take up large amounts of berberine, for when 500 mg of berberine/L was added at the beginning of the experiment, \$1% was found in the cells [28].

The enhancement of the production of berberine by cultures of *T. rugosum* was enhanced by several factors, with some of these factors enhancing both cell growth and alkaloid production, while others resulted in a decoupling of growth and product formation with significant enhancement in the level of specific product. Because it is well known that the production of berberine usually follows a growth-associated product formation kinetics, a process strategy was developed utilizing enhancing factors to optimize growth and alkaloid production. Various combinations of positive effectors produced a synergism, with resultant increase in the formation of berberine [29].

Suspended and alginate-entrapped XAD-7 polycarboxyl ester resin was used for the *in situ* separation of berberine that was produced by a plant cell culture of *T. rugosum*. The resin was capable of adsorbing the alkaloid, with the amount of adsorbed alkaloid being dependent on pH. The neutral salt form of the alkaloid was well adsorbed, with the adsorption isotherm displaying a Langmuir-type appearance. The *in situ* removal of berberine from the culture enhanced the production of secondary cell metabolites in cell culture. The most effective enhancement of alkaloid production was achieved when the resin was added at the exponential phase of cell growth of the culture. Chitosan was employed in the cell culture to permeabilize intracellular berberine, and the secretion of berberine was significantly accelerated via the addition of alginate-entrapped resin at the stationary phase of growth, allowing more than 70% of the berberine that was produced to be adsorbed to the alginate-entrapped resin [32].

13. PHARMACOLOGY

13.1. Extract Screening

A 50% ethanol extract $(LD_{50} 681 \text{ mg/kg in mice})$ of the above-ground portions of Indian *T. cultratum* Wall. was screened in a wide battery of *in vivo* and *in vitro* tests, and found to possess a confirmed stimulant activity on the isolated rat uterus, as well as to inhibit the growth of human epidermoid nasopharyngeal carcinoma cells in culture [167]. A similar extract of Indian *T. javanicum* Bl. (whole plant)($LD_{50} > 1000 \text{ mg/kg in mice}$) was also screened in these tests, but failed to demonstrate significant activity [168]; however, a 50% ethanol extract of Indian *T. reniforme* Wall. (whole plant)($LD_{50} > 1000 \text{ mg/kg in mice}$) produced a stimulation of rat ileum that was not confirmed in repeat testing [168].

A methanol extract of the Rwandese medicinal plant *T. rhynochocarpum* Dillon et A. Rich was evaluated in a pharmacological screen. The entire plant has been used for the treatment of snake bite, and the methanolic extract of the root exhibited spasmolytic activity, as measured in the isolated guinea pig uterus. In addition, the methanolic extract of the leaves was shown to be toxic to mice, as measured by the effects produced by an intraperitoneal administration of the extract in an agar solution [169]. Similar methanolic extracts of the leaves, stems, and roots of the same plant were evaluated for antimicrobial activity against the Gram-positive organisms *Staphylococcus aureus* and *Bacillus subtilis*, the Gram-negative bacilli *Pseudomonas aeruginosa* and *Salmonella gallinarum*, the acid-fast bacillus *Mycobacterium smegmatis*, and the fungus *Candida albicans* [170]. Only the root extract showed an inhibition of the growth of any of the organisms, and that only being against one organism, *M. smegmatis* [170]. Finally, a 95% ethanol extract of the roots of the same Rwandese plant failed to demonstrate *in vitro* activity against the three other species of mycobacteria, *Mycobacterium avium*, *M. simiae*, and *M. tuberculosis* [171].

A methanol extract of the crude drug "Thalictri Herba" (unknown composition) was screened, along with forty-six other kinds of crude drugs, for choleretic effects. A significant positive correlation existed between doses and the choleretic effects of sodium dehydrocholate and 1-phenylpropanol [172]. As a result, high choleretic effects were found in seventeen of the forty-seven kinds of crude drugs, but "Thalictri Herba" was not among them [172]. In a separate work, a methanol extract of "Thalictri Herba" was examined, along with sixty-six other crude drug extracts, for its potential protective effects on experimental α -naphthylisothiocyanate-induced hepatic injury in rats. Although nineteen of the extracts were found to suppress the increase in the concentration of serum bilirubin produced by this induced injury, the extract of "Thalictri Herba" was not among them [173].

An ethanol extract of the roots of the Indian *Thalictrum foliolosum* DC. was found to inhibit the *in vitro* growth of several Gram-positive and Gram-negative bacteria. In particular, the extract demonstrated its greatest activity against *Staphylococcus aureus* and *Pseudemons*.

aeruginosa. The extract had no inhibitory effect on the usual superficial and systemic mycoses, including Trichophyton mentagrophytes, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans [174].

13.2. Pharmacology of Individual Alkaloids

13.2.1. Allocryptopine

Allocryptopine was demonstrated to enhance 3 H- γ -aminobutyric acid (GABA) binding to rat brain synaptic membrane receptors. Using this phenomenon as an *in vitro* paradigm, allocryptopine and other protopine alkaloids may be suggested to have benzodiazepine-like activity [175].

13.2.2. Aromoline

Aromoline was screened for antiplasmodial, antiamoebic, and cytotoxic activities via the use of *in vitro* microtests. The alkaloid was characterized by the following: IC_{50} 1.36 μ M against a multidrug-resistant strain of *Plasmodium falciparum* (K1)(standard - chloroquine phosphate, IC_{50} 0.20 μ M); IC_{50} 5.05 μ M against *Entamoeba histolytica* (standard - metronidazole, IC_{50} 1.87 μ M); IC_{50} 105 μ M against nasopharyngeal KB cell line (standard - podophyllotoxin, IC_{50} 0.008 μ M)[176].

Aromoline was screened for *in vitro* antimalarial properties using a multi-drug resistant (K1) strain of *Plasmodium falciparum*. The screen detected the inhibition of incorporation of $[^{3}H]$ -hypoxanthine into *P. falciparum*, and aromoline was characterized by IC 0.67 µg/ml (with 95% confidence intervals of 0.53 - 0.85). The standard antimalarial drug chloroquine diphosphate exhibits IC 0.14 µg/ml (with 95% confidence intervals of 0.12 - 0.16)[177].

Aromoline and ten other bisbenzylisoquinoline alkaloids were evaluated in the *in vitro* histamine release inhibition assay. This assay is one of the basic tests that is used in the evaluation of substances for antiallergic effects. The order of potency of inhibitory effect of those bisbenzylisoquinoline alkaloids that have been isolated from *Thalictrum* species was as follows: homoaromoline > aromoline > isotetrandrine > obaberine > tetrandrine. Berbamine and oxyacanthine were found to have no inhibitory effect [178].

The vasodilator effects of aromoline, berbamine, isotetrandrine, and (+/-)-Nmethylcoclaurine was evaluated in isolated vessels from male Wistar rats. The rats were anesthetized with thiopental (i.p.), and the thoracic aorta was rapidly excised, with the fat with connective tissues being removed. Rings (about 2 mm in length) were cut from the vessel, and fixed in a bath solution. Prior to addition of the alkaloid sample, the arterial rings were contracted with K⁺ (80 mM). Vasodilator effects of the alkaloids were obtained via the addition of sample solutions directly to the bathing media in cumulative concentrations. The potency of the vasodilator effects of the alkaloids on the contracted thoracic aorta in order of decreasing effectiveness was as follows: aromoline (IC₅₀ 0.8 μ M) > berbamine (IC₅₀ 2.4 μ M) > isotetrandrine (IC₅₀ 3.0 μ M) > *N*-methylcoclaurine (IC₅₀ 32 μ M). Because aromoline was the most potent of the group, its vasodilator effects were studied *in vivo*. Vital-microscopic observations of microcirculation through a transparent round chamber installed in a rabbit ear showed that intravenous administration of aromoline (3 mg/kg) provided a remarkable dilator effect on the microcirculatory vessels [179].

The anti-inflammatory and antiallergic effects of aromoline were evaluated via the measurement of antigen-induced histamine release from leukocytes, and it was found that the alkaloid inhibited antigen-induced histamine release [180].

13.2.3. Berbamine

The intraperitoneal administration of berbamine into rats suppressed subcutaneous rat air pouch leukocyte infiltration that was induced by interleukin-1 (IL-1), tumor necrosis factor (TNF), and platelet-activating factor (PAF), at an ED_{50} 20-30 mg/kg/3 days. The utilization of berbamine may be of value in the therapy of chronic inflammatory diseases where IL-1, TNF, and PAF play in role in pathogenesis [177].

Berbamine was screened for antiplasmodial, antiamoebic, and cytotoxic activities via the use of *in vitro* microtests. The alkaloid was characterized by the following: IC_{50} 0.45 μ M against a multidrug-resistant strain of *Plasmodium falciparum* (K1)(standard - chloroquine phosphate, IC_{50} 0.20 μ M); IC_{50} 36.8 μ M against *Entamoeba histolytica* (standard - metronidazole, IC_{50} 1.87 μ M); IC_{50} 17.8 μ M against nasopharyngeal KB cell line (standard - podophyllotoxin, IC_{50} 0.008 μ M)[176].

Kinetic analysis of luminol-dependent chemiluminescence demonstrated that a solution of berbamine (20 μ M) was found to inhibit the generation of various types of reactive oxygens by guinea-pig neutrophils. The results of these and other experiments suggest that berbamine inhibits the active oxygen generation via the stabilization of plasma membrane and the inhibition of phospholipid-dependent protein kinase (PKC) and NADPH oxidase activation [178].

The scavenging effect of berbamine on active oxygen radicals was studied via a spintrapping technique and a chemiluminescence (CL) method in phorbol myristate acetate (PMA) stimulated polymorphonuclear leukocytes (PMN) and in four-cell superoxide (O_2^+) or hydroxyl radical (OH) generating systems. The alkaloid (0.1-0.3 mM) effectively reduced active oxygen radicals in PMA-stimulated PMN, but had no obvious effect on oxygen consumption during the respiratory burst of PMN (as measured with spin probe oxymetry). In addition, berbamine (0.3 mM) inhibited the CL response of PMA-stimulated PMN, and quenched O_2^- in the xanthine/xanthine oxidase and irradiation riboflavin systems, as well as OH in the Fenton

reaction. The scavenging action of the alkaloid on O_2^+ was stronger than that of Vitamin E in the xanthine/xanthine oxidase system but the same as Vitamin E in the riboflavin system. Its action on OH was similar to that of Vitamin E [179].

Berbamine was noted to inhibit antigen- and compound 48/80-induced arachidonic acid liberation, but not diacylglycerol formation or histamine release. The alkaloid had no effect on A23187-induced arachidonic acid liberation, which was prevented by *p*-bromophenacyl bromide, a known phospholipase A₂ inhibitor, and also did not affect phospholipase A₂ activity in a cellfree system including an exogenous phospholipid substrate. Berbamine inhibited guanosine 5'-O-(3-thiotriphosphate)-induced arachidonic acid liberation in saponin-permeabilized mast cells, and by mastoparan or NaF plus AlCl₃ in intact cells. In addition, the alkaloid abolished the inhibitory effect of islet-activating protein on compound 48/80-induced arachidonic acid liberation. These data suggest that berbamine suppresses the receptor-mediated phospholipase A₂ activation through, at least in part, uncoupling of a GTP-binding protein from the enzyme, rather than by affecting the enzyme directly [180].

The interaction of the p-nitrobenzoyl ester of berbamine (compound E_6) and calmodulin (CaM)-dependent myosin light chain kinase (MLCK) was studied. The results indicated that the inhibition of MLCK activity was increased with increasing amounts of compound E_6 and was overcome completely by the addition of excessive CaM. The inhibition of MLCK activity by compound E_6 (K_i 0.95 μ M) was concentration dependent, as shown by the observation that the stimulatory activity of MLCK induced by CaM was gradually inhibited by the increasing concentrations of compound E_6 . Compound E_6 diminished the fluorescence intensity of dansyllabeled CaM, with the intensity being gradually increased by the addition of different amounts of CaM. Compound E_6 had no effect on the activity of MLCK fragments produced by limited trypsinization, and was considered to be a novel and potent calmodulin antagonist [181].

Bisbenzylisoquinoline alkaloids block Ca^{+2} uptake through L-type Ca^{+2} channel and modulate binding of ligands to four distinct sites (dihydropyridine, benzothiazepine, aralkylamine, and (diphenylbutyl)piperidine) in the Ca^{+2} entry blocker receptor complex of the channel. All bisbenzylisoquinoline analogs tested, including berbamine, completely inhibit diltiazem binding, but many only partially inhibit D-600 and fluspirilene binding. For dihyrodpyridine binding, the compounds show either stimulation or inhibition or exhibit no effect. Data from this experiment suggest that berbamine and a variety of bisbenzylisoquinoline congeners act to block the L-type Ca^{+2} channel by binding to the benzothiazepine site on the channel. The novel patterns exhibited by berbamine and other bisbenzylisoquinoline alkaloid analogs in affecting allosteric coupling between the benzothiazepine site and the other receptors of the Ca^{+2} entry blocker receptor complex define a new class of Ca^{+2} entry blocker with binding properties distinct from diltiazem [182].

Berbamine was shown to have a similar but weaker effect than isotetrandrine or tetrandrine on overcoming resistance in the multidrug-resistant subline, Ch^R-24, derived from human KB carcinoma cells to various antineoplastic drugs. Berbamine partially overcomes the resistance of CH^R24 cells to daunomycin [183].

Treatment with berbamine was found to relax K⁺-precontracted rat aortal rings, with an IC_{50} of about 20 µmol/liter. This relaxation was not inhibited by denudation of the endothelium or by premedication of the aortas with indomethacin, methylene blue or propranolol. In addition, the alkaloid inhibited contractions induced by norepinephrine, phenylephrine, and serotonin in a non-competitive manner, as well as competitively blocking calcium-induced contraction in a Ca⁺²-free depolarizing PSS. The blockade of calcium entry appears to be the major mechanism of the dilatory effect of this alkaloid, but its interaction with α -adrenoceptors was not excluded [188].

The effect of berbamine on experimental allergic encephalitis (EAE) was investigated in Lewis rats. Amelioration of the acute-phase of EAE was only minimal, but the incidence of relapsing EAE was reduced by 65% for berbamine at a non-toxic treatment dosage of 60 mg/kg via gavage on alternate days. These results suggest that berbamine, and perhaps other bisbenzylisoquinoline alkaloids, may have a potential role in the therapy of progressive multiple sclerosis [189].

The anti-inflammatory and immunosuppressive properties of berbamine and tetrandrine were compared. These comparative *in vitro* studies demonstrated that tetrandrine had significantly greater suppressive effects on adherence, locomotion and ³H-deoxyglucose uptake of neutrophils, as well as the mitogen-induced lymphocyte responses and mixed lymphocyte reactions. In addition, tetrandrine displayed anti-oxidant activity while berbamine did not. However, berbamine showed a significantly greater capacity for inhibition of NK cell cytotoxicity. These results indicated that tetrandrine was superior to berbamine in most aspects of anti-inflammatory and immunosuppressive activity [190].

A comparison of the effects of berbamine and tetrandrine in mice revealed that both alkaloids were equipotent in terms of enhancement of antibody responses and suppression of delayed-type hypersensitivity (DTH) responses to sheep erythrocyte cell antigens. Both alkaloids were equally active when administered to mice during the induction and expression phases of DTH. Neither alkaloid affected antibody response in brucellosis-infected mice, while both caused equipotent suppression of DTH. Berbamine, however, caused a significant suppression of spleen weight, while tetrandrine did not. Furthermore, berbamine produced a significantly greater enhancement of spleen colony counts of *Brucella abortus* than did tetrandrine. Bioactive dosage failed to induce toxic effects, as determined by short-term toxicology studies [191].

Berbamine and tetrandrine were investigated for their actions on guinea-pig airway microvascular leakage, an animal model of asthma and allergic inflammation. There was significant inhibition of microvascular leakage via tetrandrine with all four allergic mediators, but berbamine was only able to suppress microvascular leakage induced by platelet-activating factor and bradykinin, but not by leukotriene D4 or histamine [192].

Berbamine has been utilized in the Orient (China and Japan) in the therapy of leukopenic complications of cancer. Mice treated with non-toxic doses of the alkaloid displayed a significant enhancement of neutrophil and lymphocyte counts in their circulation, but a decrease in the numbers of bone marrow stem cells in a dose-dependent manner after two weeks. Similar results were observed in cyclophosphamide-treated mice. These results suggest that berbamine acts via

the stimulation of maturation and release of leukocyte progenitors, and may therefore have utility in leukopenic patients [193].

The potential therapeutic effect of berbamine (10, 25, and 50 μ g/ml)(and thirteen other bisbenzylisoquinoline alkaloids) against the protozoan disease leishmaniasis was studied by biological assays on *in vitro* culture forms of three strains of *Leishmania*; *L. brasiliensis brasiliensis* (cutaneous and mucocutaneous leishmaniasis), *L. mexicana amazonensis* (cutaneous), and *L. donovani* (visceral leishmaniasis). Berbamine was found to inhibit the growth of all three types to differing degrees, but was not as active as daphnandrine, gyrocarpine, or obaberine [194].

The potential therapeutic effect of berbamine (10, 25, and 50 μ g/ml) (and thirteen other bisbenzylisoquinoline alkaloids) against the protozoan disease American trypanosomiasis (Chagas' disease) was studied by biological assays on *in vitro* culture forms of three strains of *Trypanosoma cruzi* (Tulahuen, C8C11, and 1979 CL1). As in the case of *Leishmania*, berbamine was found to inhibit the growth of all three types to differing degrees, but was not as active as any daphnandrine, gyrocarpine, or obaberine [195].

Berbamine and tetrandrine were evaluated in terms of their production of inhibitory effects on the production of interleukin-1 and tumor necrosis factor (TNF_{α}) by monocytes and macrophages, and TNF_{β} production by lymphocytes. Tetrandrine was found to be 6-18 times more potent than berbamine in these tests. In addition, tetrandrine was found to significantly suppress phosphoinositide turnover while berbamine did not. Taken together, these findings suggest that tetrandrine may be superior to berbamine for chronic inflammatory diseases where inflammatory mediators and cytokines play a major role in pathogenesis (as in silicosis), while berbamine may be somewhat superior for the treatment of autoimmune disease where immunological mechanisms have a greater role in pathogenesis (as in experimental allergic encephalitis in rats). Comparative data regarding these two alkaloids may provide valuable insights into structure-activity relationships, and the design and development of synthetic analogues and congeners useful in the therapy of chronic inflammatory and autoimmune diseases [196].

Berbamine was found to inhibit arachidonic acid-induced inflammation in mice. Topical application of berbamine (2 μ mol/mouse) markedly suppressed the tumor-promoting effect of 12-O-tetradecanoylphorbol-13-acetate (1 μ g) in mouse skin initiated with 7,12dimethylbenz[a]anthracene (50 μ g), at a grade corresponding to that of another bisbenzylisoquinoline alkaloid, cepharanthine [197].

The effects of berbamine on energy metabolism in isolated rat alveolar type II cells (cells which play a critical role in the maintenance of normal lung function) were studied. Incubation of type II cells with berbamine produced a reduction in cellular ATP content, but there was no effect of the alkaloid on cellular oxygen consumption. Berbamine produced an increase in internal calcium levels of type II cells, and incubation of the cells with calcium ionophore, 4-bromo A-23187, led to increased amounts of cellular calcium and reductions in ATP levels, with no effect on oxygen consumption. Exposure of isolated lung mitochondria to calcium produced a concentration-dependent reduction in ATP synthesis with no effect on mitochondrial oxygen

consumption. Direct exposure of mitochondria to berbamine had no effect on ATP synthesis. These results were consistent with the belief that berbamine produced an increase in type II cell internal calcium levels which, in turn, led to reduced rates of mitochondrial ATP synthesis [198].

The inhibitory effects of berbamine and 150 natural products on the cytotoxic activity of polymorphonuclear leukocytes (PMN) was investigated. The research employed the effects of natural products on the PMN activation by the antitumor immunomodulator TAK (a linear β -1,3-D-glucan from *Alcaligenes faecalis* var. *myxogenes*) using a PMN cytotoxicity assay system. Berbamine was found to inhibit the activation of PMN activation by TAK, showing an ID₅₀ 33 µg/ml. From this, and related studies, it was postulated that berbamine may impair the NADPH oxidase system in the plasma membrane of PMN [199].

Berbamine and ten other bisbenzylisoquinoline alkaloids were evaluated in the *in vitro* histamine release inhibition assay. This assay is one of the basic tests that is used in the evaluation of substances for antiallergic effects. The order of potency of inhibitory effect of those bisbenzylisoquinoline alkaloids that have been isolated from *Thalictrum* species was as follows: homoaromoline > aromoline > isotetrandrine > obaberine > tetrandrine. Berbamine and oxyacanthine were found to have no inhibitory effect [178].

The vasodilator effects of aromoline, berbamine, isotetrandrine, and (+/-)-*N*-methylcoclaurine was evaluated in isolated vessels from male Wistar rats. The rats were anesthetized with thiopental (i.p.), and the thoracic aorta was rapidly excised, with the fat with connective tissues being removed. Rings (about 2 mm in length) were cut from the vessel, and fixed in a bath solution. Prior to addition of the alkaloid sample, the arterial rings were contracted with K⁺ (80 mM). Vasodilator effects of the alkaloids were obtained via the addition of sample solutions directly to the bathing media in cumulative concentrations. The potency of the vasodilator effects of the alkaloids on the contracted thoracic aorta in order of decreasing effectiveness was as follows: aromoline (IC₅₀ 0.8 μ M) > berbamine (IC₅₀ 2.4 μ M) > isotetrandrine (IC₅₀ 3.0 μ M) > *N*-methylcoclaurine (IC₅₀ 32 μ M) [179].

The effects of berbamine, oxyacanthine, and berberine on 5-lipoxygenase lipid peroxidation in phospholipid liposomes induced by 2,2'-azo-(bis-2-amidinopropane)(AAPH), deoxyribose degradation, and their reactivities against the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) were studied. None of the alkaloids showed any appreciable effects in the inhibition of 5-lipoxygenase. Reactivity against DPPH increased in the following order: berberine < oxyacanthine < berbamine. Pro-oxidant effects of the alkaloids were excluded, since deoxyribose degradation was not influenced as determined by the release of malondialdehyde [200].

Berbamine, berberine, and oxyacanthine were evaluated for antiproliferative activity against the growth of HaCaT cells (a rapidly multiplying human keratinocyte cell line). Proliferation of the keratinocytes was determined directly by counting the dispersed cells under a phase-contrast microscope after 48 hours of treatment. The antiproliferative activity of these alkaloids were as follows: berbamine (IC_{50} 11 μ M) > oxyacanthine (IC_{50} 13 μ M) > berberine (IC_{50} 30 μ M). The standard was anthralin (IC_{50} 0.7 μ M). These results indicate that the three

alkaloids tested were all antiproliferative agents when applied to HaCaT cells at micromolar concentrations [201].

The effects of berbamine of the isolated and perfused working heart of the guinea pig was studied. The alkaloid was observed to depress the function of the isolated working heart in a dose-dependent manner. The alkaloid (3 mol/l) decreased the left ventricular pressure, aortic pressure $-dP/dt_{max}$, aortic blood flow and coronary blood flow, and increased left ventricular end-diastolic pressure. At a concentration of 100 mol/l, ventricular asystole was produced, but there was no influence on atrial contraction. Berbamine was also observed to antagonize epinephrine-induced arrhythmias [202].

Berbamine was isolated from an extract of *Berberis poiretii* via bioassay-guided techniques using the ³H-diltiazem receptor binding assay. The alkaloid was found to possess calcium channel blocking activities (IC_{80} 3 x 10⁻⁶ M) and to act as an antiperoxidant as measured by the erythrocyte lipid peroxidation test. These data may provide information about the antimyocardial ischemic and antiarrhythmic effects of the berbamine [203].

The effects of berbamine on KCl- and 5-HT-induced contraction of the basilar artery of pigs were studied *in vitro*. Berbamine was found to markedly relax KCl-induced contraction of the basilar artery (IC_{50} 4.63 μ M), with this effect being antagonized by increasing the concentration of extracellular Ca⁺². The alkaloid inhibited 5-HT-induced contraction of this artery, displaying significant inhibition of sustained tonic contraction (IC_{50} 0.64 μ M), but with the initial fast phasic contraction being relatively unaffected (IC_{50} 19.8 μ M). The 5-HT-induced contraction of this artery was dependent on the concentration of extracellular Ca⁺², especially sustained tonic contraction. The results of Ca⁺² withdrawal and replacement indicated that sustained tonic contraction was due to 5-HT-stimulated Ca⁺² influx, while 5-HT-induced release of intracellular Ca⁺² resulted in fast phasic contraction. The alkaloid (0.8 μ M) produced a markedly inhibitory effect on 5-HT-induced Ca⁺² influx. These effects were similar to those produced by nimodipine. These results suggest that berbamine has an antagonistic effect on the potential sensitive channels and the receptor operated channels [204].

The isolated perfused rat heart model was utilized to observe the protective effects of berbamine on myocardial ischemia/reperfusion injury. The rodent hearts were significantly injured by global ischemia (40 minutes), followed by reperfusion (20 minutes). Berbamine was observed to significantly improve heart function, prevent ventricular fibrillation, reduce creatine phosphokinase release, preserve NaK-ATPase activity, and reduce Na⁺ gain and K⁺ loss during ischemia and Ca⁺² overload during perfusion. Oxygen-centered free radical signals became more intense with the use of low temperature ESR technique in hearts subjected to ischemia (40 minutes) followed by reperfusion (15 seconds). In the presence of berbamine, these free radical signals decreased. These results suggest that the alkaloid may alleviate myocardial ischemia/reperfusion injury. Reasons offered for this suggestion include the following: First, the effect might be due to preserved myocardial Na,K-ATPase activity and inhibition of sodium overload at the end of ischemia, which might further lead to attenuation of reperfusion-induced
calcium overload; and second, the reduction of oxygen free radical generation during reperfusion [205].

The antiinflammatory and antiallergic effects of berbamine were evaluated via the measurement of antigen-induced histamine release from leukocytes, and it was found that the alkaloid did not inhibit antigen-induced histamine release in a dose-dependent manner [180].

The effects of berbamine on the amplitude of contraction, automaticity, effective refractory period (ERP) and intensity duration of guinea-pig atria were studied. The alkaloid markedly inhibited the force of contraction of guinea-pig atria, and prolonged the ERP, attenuated epinephrine-induced automaticity, but had no influence on the intensity duration curve. Berbamine antagonized the actions of isoproterenol in a noncompetitive manner, and shifted the calcium dose-response curve to the right, acting as a noncompetitive antagonist. Finally, berbamine was also observed to shift the dose response curve of histamine to the right, also in a noncompetitive manner [206].

The plant sources, chemistry, pharmacology, and pharmacotherapeutics of berbamine were reviewed. A botanical survey revealed that there were thirty-two species of *Berberis* that contain berbamine in China that were utilized. It was observed that berbamine possessed significant leukogenic effects in rats and dogs that had been pretreated with cyclophosphamide, and clinical observations demonstrated a therapeutic effect in 405 leukopenic patients. The utility of berbamine as a leukogenic drug, and as an adjuvant in cancer chemotherapy and radiotherapy was discussed [334].

Berbamine was evaluated in BALB/c mice infected with Leishmania amazonensis (IFLA/BR/67/PH8 or MHOM/GF/84/CAY-H-142) or L. venezuelensis (VE/74/PM-H3). The treatments were initiated one day after parasitic infection at an alkaloid concentration of 100 mg/kg/day for fourteen days, and the reference compound (meglumine antimonate) at 200 mg/kg/day. Berbamine was found to be less potent than meglumine antimonate against L. amazonensis, and the alkaloid did not show significant activity against L. venezuelensis [334].

13.2.4. Berberine

Berberine sulfate was found to have no effect on the growth of uropathogenic E. coli or on the synthesis of major outer membrane proteins, but it did block adhesion of the organisms to erythrocytes and to epithelial cells. The decreased adhesion was accompanied by a reduction in the synthesis of fimbrial subunits and in the expression of assembled fimbriae, suggesting that the anti-infective activity of the alkaloid in E. coli-induced UTI may be mediated by the selective suppression of the synthesis and assembly of fimbriae by these organisms [207].

Berberine sulfate was reported to be bacteriostatic for streptococci, with sub-minimum inhibitory concentrations of the alkaloid blocking adherence of streptococci to host cells, immobilized fibronectin, and hexadecane. Two distinct mechanisms were advanced to explain the interference of berberine sulfate with the adherence of group A streptococci: first, by

releasing the adhesin lipoteichoic acid from the streptococcal cell surface; and second, by directly preventing or dissolving lipoteichoic acid-fibronectin complexes [208].

Berberine and 8-cyanodihydroberberine were found to exhibit significant activity (> 50% suppression of lesion size) against the lesions of *Leishmania braziliensis panamensis* in golden hamsters. Tetrahydroberberine (canadine) was more potent but less toxic than berberine against *Leishmania donovani*, but not as potent as meglumine antimonate, a standard drug utilized in the therapy of leishmaniasis [209].

Berberine was determined to inhibit rabbit lens aldose reductase (IC₅₀ 5.2 x 10^{-5} M) and to exhibit a competitive inhibition as determined by Lineweaver-Burk plot [210].

The effects of berberine on contractions of the longitudinal muscle of the guinea-pig isolated ileum were studied, and found to be dose dependent. Lower concentrations of the alkaloid (=/ $< 5 \times 10^{-1}$ M) induced a parallel rightward shift of the dose-response curve of acetylcholine, suggesting that the alkaloid is a competitive antagonist of the actions of acetylcholine at the receptors. However, at a higher concentration $(1 \times 10^{-4} M)$, the alkaloid produced a rightward shift of the dose-response curve of acetylcholine with a reduction of maximum response, thus indicating that the interactions of the two drugs changed from competitive to noncompetitive antagonism. Berberine was observed to dose-dependently antagonize the effects of the specific muscarinic receptor agonist muscarine, furnishing evidence that the site of action of the alkaloid is at the muscarinic receptors. The alkaloid had no effect on the contractions of the ileum preparation elicited by histamine, and concentration-dependently reduced electrically induced cholinergic contractions. In addition, berberine had no effects on KCl-elicited contractions (postreceptor sites). The action of the alkaloid was reversible and dependent on the duration of incubation with the preparation, with the longer tissue incubation time corresponding to a slower recovery. These results support the hypothesis that berberine blocks muscarinic receptors, and might thereby offer a partial explanation of the efficacy of the alkaloid in the reduction of intestinal motility and the treatment of diarrhea [211].

Berberine chloride exhibited reverse transcriptase inhibitory properties against both HIV-1RT (p66/p51)(Human immunodeficiency virus type 1 reverse transcriptase)(IC₅₀ 60.9 μ g/ml [163.8 μ M]) and HIV-2RT (p68/p55)(Human immunodeficiency virus type 2 reverse transcriptase)(IC₅₀ 57.8 μ g/ml [155.5 μ M]). The alkaloid is thought to inhibit various RNA and DNA polymerizing enzymes via interaction with nucleic acid template-primers [212].

The interaction of berberine chloride with poly(A) and tRNA has been studied by various spectroscopic techniques. In comparison with DNA or tRNA, berberine has a very high effective binding capacity to poly(A), as determined by binding parameters derived from spectrophotometric and spectrofluorimetric measurements via Scatchard analysis. Circular dichroism studies demonstrate that binding of berberine to poly(A) produces a significant change in the CD spectrum of poly(A) itself, as exhibited by both a decrease of positive and negative bands and the appearance of a conservative type of extrinsic CD spectrum in the 300-400 nm wavelength region, while not causing any significant alteration to the A form structure of tRNA. It was concluded that berberine interacts more strongly with poly(A) than DNA or tRNA [213].

The interaction of berberine chloride with calf thymus DNA was studied by spectrophotometry in buffers of various salt concentrations and temperatures. The salt and temperature dependence of the binding constants were used to estimate thermodynamic parameters involved in the complex formation of berberine with DNA. The binding process was observed to be exothermic over the entire range, with the values of enthalpy and entropy change being strongly dependent on the salt concentration. The negative enthalpy and positive entropy changes compensate one another to produce a relatively small Gibbs free energy change [214].

The methanol extract of the bark of *Phellodendron amurense* was shown to possess strong antifeedant activity against the paper/wood termite pest *Reticulitermes speratus*. Partitioning and chromatography of the extract afforded four active antifeedant compounds, one of which was berberine [215].

In order to study the structure-activity relationships of phenolics as regards xanthine oxidase inhibition, berberine and eleven other naturally occurring phenolics were tested. The IC_{50} of berberine chloride was 170.74 μ M, while that of quercetin (the most potent compound evaluated) was 7.23 μ M [216].

Berberine acted as a feeding deterrent toward the larvae of *Spodoptera littoralis* when incorporated into an artificial diet at concentrations corresponding to its approximate natural concentrations as found in plants. Under ecological conditions, therefore, berberine may have some kind of protective function against generalist herbivores, such as *S. littoralis*, if more palatable food is available to the insects [217].

The electropharmacological effects of berberine on canine cardiac Purkinje fibers and ventricular muscle and atrial muscle, as well as rabbit atrial muscle were studied via conventional microelectrode techniques to obtain intracellular recordings of transmembrane electrical potentials. The results suggest that berberine exerts Class III antiarrhythmic and proarrhythmic actions in canine cardiac muscle *in vitro* [218].

Four hundred adults presenting with acute watery diarrhea were entered into a randomized, placebo controlled, double blind clinical trial of berberine, tetracycline, and tetracycline + berberine to study the antisecretory and vibriostatic effects of the alkaloid. Of 185 patients with cholera, those given tetracycline or tetracycline + berberine had considerably reduced volume and frequency of diarrheal stools, duration of diarrhea, and volumes of required intravenous and oral rehydration fluid. Berberine did not produce an antisecretory effect, but analysis by factorial design equations showed a reduction in diarrheal stools by one liter and a reduction in cyclic AMP concentrations in stools by 77% in the groups given berberine. Many fewer patients given tetracycline or tetracycline + berberine excreted vibrios in their stools after 24 hours in comparison with those given berberine alone. Neither tetracycline nor berberine had any benefit over placebo in 215 patients with noncholera diarrhea [219].

A pluripotent human teratocarcinoma cell clone, NT2/D1, which was derived from the Tera-2 cell line, was induced to differentiate into cells with neuronal cell morphology by treatment with berberine. As early as one day after a 24 hour treatment of cells with berberine at a non-toxic dose of 0.1 mg/ml in culture medium, the cells began to show morphologic

changes, including the development of terminally differentiated neuronal cells with long, interconnecting network-like cellular structures. This process is much faster as compared with that induced by treatment with retinoic acid which took at least several days to develop. In view of the recent discovery of four novel *ras*-like genes expressed in undifferentiated NT2/D1 cells, berberine-induced differentiation may shed light on the differential expression of these genes of *ras* superfamily [220].

Forty-eight derivatives of berberine-type alkaloids were examined for their inhibition activity against the induction of mouse ear edema via application of 12-O-tetradecanoylphorbol-13-acetate (TPA). Berberine chloride (ED_{50} 6.5 µmol/ear; 36% inhibition) and berberine sulfate (ED_{50} 1.2 µmol/ear; 53% inhibition) displayed inhibitory effects at a grade corresponding to quercetin, caffeine, and cepharanthine. Berberine derivatives had stronger inhibitory activity than palmatine derivatives. Since berberine and some of its derivatives are present in Chinese traditional drugs, which are used in combined Kampo prescriptions, it is important to determine if such alkaloids possess carcinogenic inhibiting properties [221].

The interaction of berberine chloride with natural and synthetic DNAs of differing base composition and sequences was followed by various spectroscopic and viscometric studies. The binding of the alkaloid was characterized by hypochromism and bathochromism in the absorption bands, enhancement of fluorescence intensity, stabilization against thermal denaturation, perturbations in the circular dichroism spectrum, increase in the contour length of sonicated rod-like DNA, and induction of unwinding-rewinding process of covalently superhelical DNA, depending on the base composition and sequences of base pairs. Binding parameters determined from absorbance and fluorescence titration by Scatchard analysis indicated a very high specificity of the alkaloid to AT-rich DNAs and alternate polymer. Fluorescence quantum yield was maximum for the complexes with AT-rich DNAs and alternate AT polymer. These results suggest that berberine chloride exhibits considerable specificity towards alternating AT polymer and binds to AT-rich DNAs by a mechanism of classical intercalation [222].

Intraperitoneal administration of berberine at dosages of 0.5, 1, and 5 mg/kg/day to original-type anti-GBM-induced nephritic rats was effective in the the inhibition of urinary protein excretion, elevation of serum cholesterol, and creatinine contents, as well glomerular histopathological changes. Furthermore, oral administration of berberine (20 mg/kg/day) also inhibited urinary protein excretion throughout the experimental periods. The alkaloid inhibited platelet aggregation in both *in vitro* and *in vivo* assays, and inhibited the decline of renal blood flow. Although berberine inhibited an increase in thromboxane B₂ formation, the alkaloid increased the formation of 6-ketoprostaglandin F_{1α} in platelets and isolated glomeruli. These results suggested that the antinephritic effect of berberine may be partly due to antiplatelet action and improved renal hemodynamics, via the alteration of prostanoid synthesis [223].

Berberine chloride was tested for *in vitro* activity against the epimastigotes of the protozoan parasite *Trypanosoma cruzi* (Costa Rican strain). This organism is the causative agent of Chagas' Disease. The alkaloid was found to inhibit the growth of the epimastigotes at concentrations of both 5 μ g/ml and 50 μ g/ml [224].

The effect of berberine chloride on the contraction of guinea pig aortic strips induced by various stimuli was studied. The alkaloid (25-200 μ M) noncompetitively inhibited the response of the strips to both histamine and norepinephrine, but did not decrease the high K⁺-elicited contraction. The alkaloid reduced both the rate and the relative contribution to developed tension of the initial, rapid phase to norepinephrine-induced contraction, whereas the slow, later component was less affected. Berberine inhibited the response of aortic strips incubated in Ca⁺² to norepinephrine, but did not reduce caffeine-induced contraction. The alkaloid inhibited phospholipase C-activated contractile response, and in cultured arterial smooth muscle cells, did not significantly decrease the production of inositol phosphates activated by Arg⁸-vasopressin. This pattern of activity of the alkaloid is not easily reconciled with an involvement of the contractile machinery and suggests that the drug has no effect on the voltage-operated calcium channels. Although an antagonism at the receptors or an increase of cyclic AMP or cyclic GMP was not completely excluded, the authors suggested that at least one component of the berberine inhibitory effect may be due to its action on some step of the chain of events linking receptors to contractile response [225].

Fluorescence data for the interaction with acetylcholinesterase (EC 3.1.1.7, ACHE) from the electric eel *Electrophorus electricus* with some quaternary protoberberine and benzophenanthridine alkaloids was obtained. Berberine and other related compounds were bound to the gamma γ -anionic site of ACHE via a comparison with known inhibitors of acetylcholinesterase, including tetramethylammonium and tacrine. Furthermore, during the interaction, two molecules of the ligand were bound to one molecule of the enzyme [226].

Aldehyde reductase I has been observed to be inhibited by a number of benzylisoquinoline-derived alkaloids. The sensitivity of aldehyde reductase I to test compounds was compared with that of alcohol dehydrogenase and/or aldehyde reductase II, and alcohol dehydrogenase was found to be more selective in binding the alkaloids. The kinetics of the inhibitory action of berberine and other results suggest that the binding site of aldehyde reductase I for alkaloids is relatively large, has a hydrophobic nature, and probably contains a group with a positive charge. In addition, the binding site is likely not identical with the active center of the enzyme [227].

Berberine chloride was evaluated for antimalarial activity against *Plasmodium falciparum in vitro* (two clones of human malaria; *Plasmodium falciparum* D-6 [Sierra Leone clone] and W-2 (Indochina clone) and *Plasmodium berghei in vivo* (mice). The alkaloid exhibited an antimalarial potency equivalent to that of quinine *in vitro*, but was inactive *in vivo*. The results were consistent with those of others who have found berberine to be a potent inhibitor *in vitro* of both nucleic acid and protein biosynthesis in *P. falciparum*, and have demonstrated a strong interaction of berberine with DNA. In addition, the lack of *in vivo* antimalarial activity in mice observed with berberine and other protoberberine alkaloids agrees with clinical reports that have claimed berberine to be inactive as an antimalarial drug [228].

Berberine chloride was evaluated in the human immunodeficiency virus reverse transcriptase assay and found to be moderately active (50 μ g/ml < IC₅₀ < 150 μ g/ml)[229].

Berberine chloride was dissolved in culture medium and evaluated for its activity against two protozoa, *Plasmodium falciparum* (K1, multi-drug resistant strain) and *Entamoeba histolytica* (NIH 200). The alkaloid was toxic to KB cells (IC₅₀ 7.3 μ M), and was active against *P. falciparum* (IC₅₀ 0.97 μ M), but inactive against *E. histolytica* (IC₅₀ 111 μ M). In assessing relative *in vitro* cytotoxicity to antiplasmodial activity, berberine had the least favorable ratio (8), while jatrorrhizine had the most favorable ratio (> 106) of the alkaloids tested. The results were somewhat surprising in that berberine is used in some countries as an amoebicide. However, the results lend some support to the utilization of plants containing protoberberine alkaloids for the treatment of malaria [230].

Berberine chloride was evaluated for *in vitro* activity against *Candida albicans*, *Cryptococcus neoformans*, *Mycobacterium intracellularae*, *Trichophyton mentagrophytes*, and *Saccharomyces cerevasiae*, as well as representative Gram-positive and Gram-negative bacteria. The alkaloid was found to exhibit moderate to good antifungal activity, and the minimum inhibitory concentrations were determined as follows: *Candida albicans* (0.39 μ g/ml); *Cryptococcus neoformans* (1.56 μ g/ml); and *Mycobacterium intracellularae* (1.56 μ g/ml). However, berberine chloride did not exhibit sufficient qualitative activity against bacteria to warrant the determination of minimum inhibitory concentration determinations [231].

Solutions of berberine sulfate were observed to inhibit the growth of various influenza viruses [232].

The cell-killing effect and its possible mechanism of berberine used alone or in combination with argon ion laser treatment on 9L rat glioma cells were studied. The survival fraction of 9L cells after single treatment of berberine was estimated via the LD_{50} which was 60 μ g/ml. After the addition of low energy laser treatment, the LD_{50} markedly decreased to 10 μ g/ml. The inhibitory effect of the alkaloid on the biosynthesis for DNA, RNA, and protein of 9L cells was enhanced via the argon laser. Furthermore, the 9L cells morphologically displayed lysis, encystation, and degeneration after treatment with berberine, with laser-treatment enhancing this cytocidal effect. These experiments validated the cytocidal effect of berberine combined with laser treatment on 9L rat glioma cell line, and introduced the possibility of the alkaloid as a photosensitive agent [233].

The interaction of berberine chloride with human platelet α_2 adrenoreceptor was investigated, and the alkaloid was found to competitively inhibit (IC₅₀ 16.6 µM) the specific binding of [³H]-yohimbine. The displacement curve was parallel to those of clonidine, epinephrine, and norepinephrine, with increasing concentrations of the alkaloid (from 0.1 µM to 10 µM) inhibiting [³H]-yohimbine binding, and produced a shift of the saturation binding curve to the right without decreasing the maximum binding capacity. At concentrations of 0.1 µM to 0.1 mM, solutions of berberine chloride inhibited the platelet cyclic AMP accumulation that was induced by 10 µM prostaglandin E₁ in a dose-dependent manner, acting as an α_2 adrenoceptor agonist. In the presence of L-epinephrine, berberine blocked the inhibitory effect of the pressor, thus behaving as an α_2 adrenoceptor antagonist. These properties are similar to those of clonidine, suggesting that berberine is a partial agonist of platelet α_2 adrenoceptors [234]. The effects of berberine on guinea-pig ileum contractility were studied in both transmurally-stimulated and unstimulated preparations. Transdermal stimulation (80 V, 0.5 ms, 0.05 Hz) of the guinea-pig ileal segments produced a twitch response, with berberine $(10^{-8} \text{ to } 10^{-5} \text{ M})$ enhancing this response dose-dependently, as well as acetylcholine (3 x 10⁻⁹ and 10⁻⁸ M). Atropine (10⁻⁷ M) but not mecamylamine (10⁻⁵ M) abolished the response. Pretreatment with hemicholinium (3 x 10⁻⁵ M) antagonized the effect of berberine but failed to change that of acetylcholine. Berberine (10⁻⁵ M) also antagonized the α_2 -adrenoceptor agonist xylazine (10⁻⁸ M) also produced contractile responses in the unstimulated ileal preparations, with atropine (10⁻⁶ M) but not mecamylamine (10⁻⁴M) abolishing the response. In addition, berberine (10⁻⁶ to 10⁻⁴ M) dose-dependently inhibited the cholinesterase activity of the guinea-pig blood. These results suggest that berberine increases ileal contractility via the following: first, increasing acetylcholine release from the postganglionic parasympathetic nerve terminal; second, increasing acetylcholine retention through an inhibition of cholinesterase activity; and, third, blocking α_2 -adrenoceptors, possibly in the postganglionic parasympathetic nerve [235].

Berberine was evaluated for its effect on the expression of glucocorticoid receptors (GR) and its relation to cell cycle progression of human HepG2 hepatoma cells. Continuous exposure of HepG2 cells to various concentrations (1-50 μ M) of berberine resulted in growth inhibition in a dose dependent manner. The viability of berberine-treated HepG2 cells was greater than 90% in all treatment groups. Flowcytometric analysis of berberine-treated HepG2 cells showed that the S phase fraction was significantly reduced. GR levels were higher in berberine-treated HepG2 cells than in vehicle (DMSO)-treated cells. Furthermore, the secretion of α -fetoprotein by HepG2 cells was inhibited by berberine. Finally, the berberine-induced cell growth arrest was partially reversible in HepG2 cells [236].

The antimicrobial effect of berberine chloride was evaluated on a large number of microorganisms. A marked inhibitory activity was observed on various *Candida* species, and a lesser effect on *Staphylococcus aureus*, *Sarcina lutea*, *Bacillus cereus*, *Klebsiella pneumoniae*, and a diphtherioid [237].

The crude methanol extract of the roots of *Coptis teeta* from Burma was tested for growth inhibitory activity against *Giardia lamblia*, *Trichomonas vagnialis*, and *Entamoeba histolytica*. It was observed that the inhibitory effects of the extract were greater than that of berberine sulfate, one of the contained alkaloids of the extract. It was suggested that this greater inhibitory activity of the crude extract might have been due to the cumulative contributions of its contained protoberberine and other alkaloids, and that perhaps protoberberine alkaloids may be useful chemotherapeutic agents against the three parasites that were evaluated [238].

Berberine was submitted to an *in vitro* antimicrobial screen using eight Gram-positive and eight Gram-negative bacteria, as well as one yeast. The alkaloid was inactive (MIC > 50 mg/l) against virtually all of the organisms, save the acid-fast rod *Mycobacterium phlei* (MIC = 25 mg/l) [239].

The inhibitory effects of berberine and 150 natural products on the cytotoxic activity of polymorphonuclear leukocytes (PMN) was investigated. The research employed the effects of natural products on the PMN activation by the antitumor immunomodulator TAK (a linear β -1,3-D-glucan from *Alcaligenes faecalis* var. *myxogenes*) using a PMN cytotoxicity assay system. Berberine was found to fail to inhibit the activation of PMN activation by TAK, and was not cytotoxic to target cells [199].

Some protoberberine and structurally related alkaloids were tested for inhibitory activity on porcine pancreatic elastase (PPE) and human sputum elastase (HSE). Berberine chloride significantly inhibited the elastolytic activity of both enzymes, but tetrahydroberberine had no effect. It appears that the quaternary nitrogen atom of these alkaloids plays an important role in the inhibition of elastolytic activity. The amidolytic activity of the elastases was not affected by any of the test alkaloids [240].

Berberine chloride, as well as a series of twenty other pharmacologically active agents, was evaluated in a new microplate assay for cytotoxicity using the brine shrimp *Artemia salina*, and shown to furnish comparable results to those previously published in the test-tube method. The assay reliably detected all of the compounds toxic to KB cells in a series of twenty-one pharmacologically active agents, except for two which required metabolic activation in humans [241].

The effects of berbamine, oxyacanthine, and berberine on 5-lipoxygenase lipid peroxidation in phospholipid liposomes induced by 2,2'-azo-(bis-2-amidinopropane)(AAPH), deoxyribose degradation, and their reactivities against the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) were studied. None of the alkaloids showed any appreciable effects in the inhibition of 5-lipoxygenase. Reactivity against DPPH increased in the following order: berberine < oxyacanthine < berbamine. Pro-oxidant effects of the alkaloids were excluded, since deoxyribose degradation was not influenced as determined by the release of malondialdehyde [200].

Berberine, berbamine, and oxyacanthine were evaluated for antiproliferative activity against the growth of HaCaT cells (a rapidly multiplying human keratinocyte cell line). Proliferation of the keratinocytes was determined directly by counting the dispersed cells under a phase-contrast microscope after 48 hours of treatment. The antiproliferative activity of these alkaloids were as follows: berbamine (IC₅₀ 11 μ M) > oxyacanthine (IC₅₀ 13 μ M) > berberine (IC₅₀ 30 μ M). The standard was anthralin (IC₅₀ 0.7 μ M). These results indicate that the three alkaloids tested were all antiproliferative agents when applied to HaCaT cells at micromolar concentrations [201].

Four protoberberine alkaloids and one aporphine alkaloid were evaluated for lipoxygenase inhibition. Oxyberberine and columbamine were the most potent lipoxygenase inhibitors tested, with jatrorrhizine being intermediate, whereas berberine and magnoflorine exhibited only low potencies. A strong linear correlation between lipoxygenase inhibition and lipid antioxidant properties of these alkaloids was observed. These data suggest that the mechanism of lipoxygenase inhibition by these alkaloids may be linked to the inhibition of lipid hydroperoxide substrate accumulation [242].

A series of berberine derivatives were prepared in order to attempt to find orally-active compounds for use in the therapy of human congestive heart failure and various arrhythmias. This research was stimulated by reports that berberine has been found to possess positive inotropic and negative chronotropic effects on the myocardium. However, since berberine is a quaternary compound, its absorption from the intestinal tract is limited. In the screening of inhibition of electrically-induced contraction of isolated guinea pig left atria and spontaneous beating of the guinea pig's right atria, the synthesized compounds were observed to inhibit spontaneous beating of the isolated guinea pig right atria. While berberine was relatively inactive (IC_{50} 204 µmol), the most active compound prepared in this study was 2,3-methylenedioxy-6,12-dimethoxytetrahydroberberine (IC_{50} 4.34 µmol)[243].

The effects of berberine on potassium channel subtypes were investigated via the use of patch-clamp whole cell recording techniques. The results suggested that berberine can prolong action potential duration (APD), decrease I_{K1} and outward I_{tail} , but had no effect on I_K . Furthermore, the alkaloid was shown to antagonized comakalim-induced inhibition of APD and the increase of K_{ATP} . Since berberine is known to be effective in lowering blood glucose levels as well as treating cardiac arrhythmias, these results indicate that berberine can inhibit voltage-dependent and ATP-sensitive potassium channels, with the mechanisms of action of the antiarrhythmic and antidiabetic effects of the alkaloid possibly being due to potassium channel blocking effects [244].

Berberine levels in plasma and in tissues were compared in normal mice after oral administration of berberine (100 mg/kg). The hypoglycemic effect of the alkaloid was also measured in these mice. Measurement of the alkaloid was via a simple and specific high performance TLC and fluor-densitometric method [245].

The cardiac effects of berberine were studied in isolated right and left atrial preparations from guinea pigs. The results suggested that berberine has a unique profile of action in isolated guinea pig atrial tissue, displaying both positive inotropic and negative chronotropic activity. Berberine enhanced both the force-velocity relationship and the duration of active state, thereby producing its positive inotropic effect. The mechanisms for these actions were postulated to include an alteration in trans-sarcolemmal flux of calcium, as well as an inhibition of intracellular calcium sequestration systems [246].

Small intravenous doses of berberine to dogs were noted to excite the myocardium, accelerate heart rate, and slightly increase coronary blood flow and cardiac contractility. Increasing doses were responsible for direct dilation of peripheral blood vessels, inhibition of the myocardium, and weakening cardiac contractility. Myocardial cells were observed to undergo serious damage, and were stopped in diastole [247].

The roots of Allium cepa were subjected to continuous treatment berberine sulfate solutions of differing concentrations. The root growth was completely inhibited at high concentrations $(10^{-5} \text{ and } 10^{-6} \text{ M})$, whereas a variable degree of growth inhibition was observed

at lower concentrations $(10^{-7} \text{ to } 10^{-9} \text{ M})$. Treatment of the roots with 10^{-9} M solutions, followed by irradiation with violet light (420 nm) resulted in complete growth inhibition, indicating the photodynamic activity of the alkaloid [248].

Intravenous administration of berberine (20 mg/kg) to anesthetized rats was observed to increase the cardiac index and stroke volume index. In the isolated guinea pig left atria, berberine (0.1 μ mol/L) shifted the dose-response curve of ouabain to the left with an increase of the maximal effect. The alkaloid (10 μ mol/L and 30 μ mol/L) potentiated the maximal contractile force of ouabain and diminished the dose at which ouabain produced its peak effect. Berberine (30 μ mol/L) elevated the dose in which the toxicity of ouabain occurred. The investigators concluded that berberine might increase the cardiac output and widen the safety margin with ouabain-treatment [249].

Berberine was observed to reduce the amplitude of spontaneous miniature end plate potentials in the frog neuromuscular junction. At low concentrations, berberine diminished the frequency of miniature potentials, but increased it when the concentration exceeded a certain value [250].

Subcutaneous administration of berberine sulfate was observed to significantly decrease the acetic acid-induced writhing frequency in mice at a median effective dosage (ED_{50}) of 3.5 mg/kg. Berberine (8 mg/kg) also showed an analgesic effect in mice, as measured via the hot plate method. Oral or subcutaneous administration markedly inhibited the acetic acid-induced increased vascular permeability in rats. At intraperitoneal dosages of 4 and 8 mg/kg, the alkaloid produced obvious inhibition in the xylene-induced swelling of mouse ear. At subcutaneous dosages pf 20 and 40 mg/kg, the alkaloid inhibited the carrageenin-induced hind paw edema, with this inhibitory effect lasting longer than 7 hours. Both the anti-inflammatory and the analgesic actions of the alkaloid were dose dependent [251].

Berberine (0.50 mol/l) was found to dose-dependently inhibit collagen-, ADP-, and arachidonic acid-induced thromboxane A_2 release from platelets and to inhibit platelet aggregation. Intravenous administration of the alkaloid (25 mg/kg) resulted in a lowered plasma level of prostaglandin I_2 from 0.92 to 0.61 ng/m after one hour. These results suggest that berberine inhibits arachidonic acid metabolism, and that this effect may be an important factor in the antiaggregatory action of the alkaloid [252].

A soap for the therapy of gonorrhea was formulated to contain berberine as its active ingredient. The formulation was compounded via microgranulation processes, followed by heat-pressing to form a soap [253].

Intraperitoneal administration of berberine at a dosage of 0.1 mg/kg inhibited antiglomerular basement membrane nephritis in rats. The LD_{50} of the alkaloid was > 1 g/kg after oral administration. Tablets containing the alkaloid were formulated for oral administration [254].

Berberine was found to significantly inhibit hyperinsulinemia in noninsulin dependent diabetic rats, and to ameliorate abnormalities in glucose tolerance and lipid metabolism. The alkaloid also decreased lipid peroxide content and increased hepatic superoxide dismutase activity. These results suggest that berberine possesses marked antioxidant activity, and thus may inhibit the formation of metabolic disorders that result from oxidative damage [255].

The administration of berberine (1-4 mg/kg, i.v.) to rabbits was observed to significantly and dose-dependently elevate the ventricular fibrillation threshold (VFT) induced by electrical stimulation. Neither reserpine nor vagotomy exerted any influence on the increase of VFT with berberine, which implies that the anti-arrhythmic action is most likely due to a direct activity on the myocardium, without involvement of the autonomic nervous system. The pronounced effect of the alkaloid on action potentials in the rabbit myocardium *in vivo* resulted in the reduction in the maximal velocity of depolarization (V_{max}). At higher dosage, berberine produced a prolongation in action potential duration at both 90 and 100% repolarization, in addition to a more potent decrease in V_{max} . These results may thus contribute to the effectiveness of berberine against myocardial arrhythmias [256].

The effects of a preparation containing berberine and the crude herb *Geranii Herba* on different diarrheal models in mice and the contractions of isolated guinea pig intestinal muscle were studied via comparison with a preparation containing creosote and loperamide. The results suggested that *Geranii Herba* exerted its antidiarrheal effect via the inhibition of intestinal movement, with the mechanism of action possibly differing from creosote and loperamide [257].

Further studies on the antidiarrheal effects of berberine and the crude herb *Geranii Herba* were undertaken, utilizing different diarrhea models of mice, as well as on the contractions of isolated guinea pig intestinal smooth muscle and rat intestinal peristalsis. The results were compared with those obtained after administration of atropine and papaverine. Berberine significantly inhibited both the castor oil- and BaCl₂-induced diarrheas at oral doses higher than 25 mg/kg, but did not inhibit pilocarpine- or serotonin-induced diarrhea even at 250 mg/kg. Berberine inhibited acetylcholine- or BaCl₂-induced contractions of the ileum and colon at a concentration of about 10^{-5} g/ml, and exhibited a noncompetitive inhibition of the contractile response induced by acetylcholine, whereas atropine displayed a competitive inhibition. Finally, berberine inhibited spontaneous intestinal peristalsis [258].

The effects of berberine and some other alkaloids and flavonoids on the lipogenesis in the sebaceous glands of the hamster ear (an excellent model for the human sebaceous gland) were studied. These alkaloids and flavonoids are major ingredients in Japanese-Chinese traditional herbal medicinals that are used in the therapy of acne vulgaris. Lipogenesis was assayed via determination of ¹⁴C incorporation into sebaceous lipids extracted from the sebaceous glands that were preincubated with ¹⁴C-acetate. Berberine (10⁻⁴ M) was shown to suppress the lipogenesis in the hamster sebaceous glands by 63% [259].

The administration of berberine (104 mg/kg, i.v.) was observed to markedly and dosedependently reduce the incidence of ventricular arrhythmia after coronary artery occlusion in rats. At a dosage of 4 mg/kg (i.v.) the alkaloid also depressed the abnormal changes in hemorrheology, such as increased platelet and erythrocyte aggregation, as well as blood viscosity. At 30 μ mol/l, berberine also prevented hypoxia from shortening action potential duration and ERP in the

isolated guinea pig myocardium. Berberine may produce its antagonistic effect on ventricular arrhythmia following myocardial ischemia via these electrophysiological mechanisms [260].

Berberine was observed to exhibit a hypoglycemic effect in normal mice, alloxan diabetic mice, and spontaneously diabetic KK mice. The alkaloid was also able to antagonize the elevation of serum glucose induced by intraperitoneal administration of glucose or epinephrine in normal mice. Administration of the alkaloid for 15 days resulted in an improvement of the glucose tolerance of KK mice. In addition, berberine was found to lower serum cholesterol in mice fed a high cholesterol diet and to inhibit *in vitro* platelet aggregation in rabbits [261].

³H-Labelled berberine was found to bind specifically and reversibly to a microsomal fraction prepared from cultured cells of *Coptis japonica* capable of accumulating the alkaloid in the vacuole. The Scatchard plot of the data suggested the presence of a single [³H]berberinebinding site with a dissociation constant of 1.67 μ M for the alkaloid. The optimum pH for binding was between 9 and 10, with the addition of either coptisine or jatrorrhizine to the mixture significantly decreasing the [³H]berberine binding, indicating that the binding is highly specific for protoberberine alkaloids. An excess amount of inorganic cation, as well as iodoacetate (a SH-blocking reagent) almost totally inhibited the binding. Fractionation of the microsomes via sucrose density-gradient centrifugation suggested that the binding site was not associated with the plasma membrane, endoplasmic reticulum or tonoplast, but with an unidentified membrane (density = 1.08-1.13 g/cm³), that may be involved in berberine transport to the vacuole [335].

Berberine chloride was demonstrated to possess significant cytotoxic activity against cultured P-388 (murine lymphocytic leukemia) cells, in addition to three human cancer cell lines: BC1 (breast cancer) - ED₅₀ 2.7 μ M); HT-1080 (fibrosarcoma) - ED₅₀ 2.4 μ M); and KB (nasopharyngeal carcinoma) - ED₅₀ 8.4 μ M)[336].

13.2.5. Berberrubine

Forty-eight derivatives of berberine-type alkaloids were examined for their inhibition activity against the induction of mouse ear edema via application of 12-O-tetradecanoylphorbol-13-acetate (TPA). Berberrubine chloride displayed inhibitory effects (ED_{50} 1.3 µmol/ear; 52% inhibition). Berberine derivatives had stronger inhibitory activity than palmatine derivatives. Since berberine and some of its derivatives are present in Chinese traditional drugs, which are used in combined Kampo prescriptions, it is important to determine if such alkaloids possess carcinogenic inhibiting properties [221].

Berberrubine was found to inhibit RAV-2 (reverse transcriptase)(IC_{50} 3 µg/ml). The alkaloid was formulated into tablets [262].

Berberrubine chloride was found to exhibit cytotoxic activity against cultured P-388 (murine lymphocytic leukemia) cells $(1.7 \ \mu M)[336]$.

13.2.6. Columbamine

Columbamine iodide was evaluated in the human immunodeficiency virus reverse transcriptase assay and found to be moderately active (50 μ g/ml < IC₅₀ < 150 μ g/ml)[229].

Columbamine chloride was dissolved in culture medium and evaluated for its activity against two protozoa, *Plasmodium falciparum* (K1, multi-drug resistant strain) and *Entamoeba histolytica* (NIH 200). The alkaloid was slightly toxic to KB cells (IC_{50} 78 μ M), and was active against *P. falciparum* (IC_{50} 1.9 μ M), but inactive against *E. histolytica* (IC_{50} 156 μ M). In assessing relative *in vitro* cytotoxicity to antiplasmodial activity, berberine had the least favorable ratio (8), while jatrorrhizine had the most favorable ratio (> 106) of the alkaloids tested. Columbamine had an intermediate value (41). The results lend some support to the utilization of plants containing protoberberine alkaloids for the treatment of malaria [230].

Four protoberberine alkaloids and one aporphine alkaloid were evaluated for lipoxygenase inhibition. Oxyberberine and columbamine were the most potent lipoxygenase inhibitors tested, with jatrorrhizine being intermediate, whereas berberine and magnoflorine exhibited only low potencies. A strong linear correlation between lipoxygenase inhibition and lipid antioxidant properties of these alkaloids was observed. These data suggest that the mechanism of lipoxygenase inhibition by these alkaloids may be linked to the inhibition of lipid hydroperoxide substrate accumulation [242].

13.2.7. Coptisine

Coptisine chloride exhibited reverse transcriptase inhibitory properties against both HIV-1RT (p66/p51)(Human immunodeficiency virus type 1 reverse transcriptase)(IC₅₀ 100.0 μ g/ml [281.1 μ M]) and HIV-2RT (p68/p55)(Human immunodeficiency virus type 2 reverse transcriptase)(IC₅₀ 117.3 μ g/ml [329.7 μ M]). The alkaloid is thought to inhibit various RNA and DNA polymerizing enzymes via interaction with nucleic acid template-primers [212].

Intraperitoneal administration of coptisine at dosages of 0.5, 1, and 5 mg/kg/day to original-type anti-GBM-induced nephritic rats was shown to be effective in the inhibition of urinary protein excretion, elevation of serum cholesterol, and creatinine contents, as well glomerular histopathological changes. The alkaloid inhibited platelet aggregation in both *in vitro* and *in vivo* assays. These results suggest that the antinephritic effect of coptisine may be due partly to antiplatelet action and improved renal hemodynamics, via the alteration of prostanoid synthesis [223].

Coptisine chloride was evaluated in the human immunodeficiency virus reverse transcriptase assay and found to be moderately active (50 μ g/ml < IC₃₀ < 150 μ g/ml)[229].

Some protoberberine and structurally related alkaloids were tested for inhibitory activity on porcine pancreatic elastase (PPE) and human sputum elastase (HSE). Coptisine chloride significantly inhibited the elastolytic activity of both enzymes, but tetrahydroberberine had no

effect. It appears that the quaternary nitrogen atom of these alkaloids plays an important role in the inhibition of elastolytic activity. The amidolytic activity of the elastases was not affected by any of the test alkaloids [240].

Intraperitoneal administration of coptisine at a dosage of 0.1 mg/kg inhibited antiglomerular basement membrane nephritis in rats. The LD_{50} of the alkaloid was > 1 g/kg after oral administration [254].

13.2.8. Corydine

Corydine was evaluated for its *in vitro* antimicrobial activity against a variety of microorganisms. The alkaloid was found to modestly inhibit the growth of *Bacillus subtilis* and *Mycobacterium phlei*. The oxoderivatives of aporphines were more active against Gram-positive bacteria than the reduced aporphines, but the former had a lower activity against yeast and no activity against Gram-negative bacteria [263].

13.2.9. Cryptopine

Cryptopine was demonstrated to enhance 3 H- γ -aminobutyric acid (GABA) binding to rat brain synaptic membrane receptors. Using this phenomenon as an *in vitro* paradigm, cryptopine and other protopine alkaloids may be suggested to have benzodiazepine-like activity [264].

13.2.10. 6a,7-Dehydromethoxyadiantifoline

6a,7-Dehydromethoxyadiantifoline was found to possess calcium channel blocking activity as measured by contraction of the guinea pig duodenum. The IC₅₀ of the alkaloid was determined to be 2.53 x 10⁻⁶M [71].

13.2.11. Dehydrothalifaberine

Dehydrothalifaberine, an alkaloid of the Chinese *Thalictrum faberi* Ulbr., was found to possess significant cytotoxicity as measured against the P-388 cell line [129].

13.2.12. Domesticine

Domesticine was determined to inhibit rabbit lens aldose reductase (IC_{50} 7.6 x 10⁻⁴M) [210].

13.2.13. EP-10

Preliminary biological testing of the new aporphine-pavine alkaloid EP-10, isolated from extracts of the whole plant of the Taiwanese *Thalictrum fauriei* Hayata in 1986, demonstrated that the alkaloid possessed weak *in vitro* activity, as compared with thalicarpine, in the lysis of Hela cells [35].

13.2.14. Glaucine

The effects of glaucine were studied in mice and compared with haloperidol, phenobarbital, and morphine. The administration of glaucine was associated with an inhibition of the exploratory rearing activity, and elicited palpebral ptosis, catalepsy, hypothermia, and prolonged thiopental-induced anesthesia. In addition, the alkaloid reduced nociception, and exhibited anticonvulsive actions against harman and picrotoxin-induced convulsions, but not against those induced by bicuculline and pentetrazol. The alkaloid antagonized apomorphine- and methylphenidate-induced stereotyped gnawing, as well as apomorphine-induced climbing activity. The antinociceptive effect (writhing) was resistant to both naloxone and yohimbine, thus being in contrast to that of morphine. Opioid and adrenergic mechanisms were shown to be unequally involved in the antinociceptive effects of glaucine. In low doses, glaucine and haloperidol antagonized the antinociceptive effect of morphine, and thus these drugs may be considered as partial agonists or partial antagonists, respectively [330].

The scavenging and iron-reducing properties of a series of benzylisoquinoline alkaloids and synthetic benzylisoquinoline compounds was studied. Glaucine was found to act as a scavenger of the hydroxyl radical in the deoxyribose degradation by Fe^{+3} -EDTA + H₂O₂ [265].

Glaucine was shown to exhibit an inhibitory action on blood platelet aggregation induced by collagen, arachidonic acid, and ADP *in vitro* [266].

Glaucine was found to affect synaptic transmission in a fairly complicated manner. The alkaloid reduced the amplitude of spontaneous miniature end plate potentials in the frog neuromuscular junction. At low concentrations, glaucine diminished the frequency of miniature potentials, but increased it when the concentration exceeded a certain value. Glaucine provokes muscle contracture if present at a relatively high concentration [250].

Experiments were undertaken to study the α,β -adrenergic activity of glaucine as a preliminary step toward a study of the dopaminic activity in peripheral dopamine receptors. Experiments in isolated rat vas deferens demonstrated that glaucine failed to produce a direct response, but produced an increase of the maximum contractile effect of norepinephrine. These results suggest the absence of a direct action of glaucine on α -adrenoceptors. In contrast to apomorphine, the EC_{s0} norepinephrine in the vas deferens was increased by glaucine. The potentiation of contractile effect of epinephrine and the fact that glaucine did not increase the EC₅₀ of epinephrine in a dose-dependent manner argued against a competitive type of antagonism between these drugs, and suggested an action of glaucine at sites other than a-adrenergic receptors. Glaucine ((0.1, 1, and 10 µmol/l) did not produce any consistent modification of the contractile force of electrically driven rat atria. Glaucine (10 µmol/l)abolished the contractile effect of isoproterenol that produced a decrease in contractile force of rat atria. These results suggest that glaucine has a mechanism of action different from that of apomorphine. In conclusion, in contrast with apomorphine, it would appear that glaucine does not present a direct action on the α -adrenoceptors in isolated rat vas deferens [284].

13.2.15. Harmine

Harmine and other harmane-related compounds were observed to exhibit concentrationdependent inhibition of lipid peroxidation (measured as thiobarbiturate reactive products) in a hepatic microsomal preparation incubated with either enzymatic dependent (Fe⁺³ADP/NADPH) or non-enzymatic (Fe⁺³ADP/dihydroxyfumarate) oxygen radical producing systems. Alkaloids with hydroxyl substitution and a partially desaturated pyridyl ring were found to have the highest antioxidative potencies. Substitution of a hydroxyl group with a methoxyl group in the carboline ring system resulted in a decrease of greater than ten-fold in antioxidative activities. Of all the β -carbolines studied, harmine showed little if any antioxidative effects in the concentration range tested while harmalol was observed to have the highest antioxidant efficacy. These results suggest that β -carbolines may serve as endogenous antioxidants [333].

Histamine-N-methyltransferase (HNMT), the major enzyme responsible for the metabolism of histamine in rat brain, is strongly inhibited by tacrine (9-amino-1,2,3,4-tetrahydroacridine), although structural fragments of tacrine were less potent inhibitors of HNMT. In this study, a series of tacrine fragments were screened for inhibition of rat brain HNMT to elucidate the structural requirements for this class of HNMT inhibitors. It was found that harmine (IC₅₀ 1.9 μ M) and a number of other β -carbolines, inhibited HNMT with IC values in the range of 1-10 μ M. The degree of saturation of the 3,4-position did not greatly affect the IC₅₀, nor did HNMT distinguish between the 7-hydroxy and 7-methoxy compounds [268].

Harmine was evaluated for its effects on both arachidonic acid metabolism and human platelet aggregation (platelet-activating factor) and found to be inactive [269].

The effects of harmine, harmaline, and other harmala alkaloids on the contractions induced in the vascular smooth muscle of rabbit aorta and intestinal smooth muscle of taenia isolated from guinea-pig caecum were examined. The order of inhibitory potency was 6-methoxyharman = harmine > harmaline = 2-methylharmine = harmane > 6-methoxyharmalan > harmalol = harmol for contractions induced by high K⁺¹ in aorta and taenia and by carbachol in taenia. The order of inhibitory potency for contractions induced by noradrenaline in the aorta were 2methylharmine > 6-methoxyharman > 6-methoxyharmalan = harmol = harmalol = harmane > harmine > harmaline. The results suggest that harmaline inhibits the contractile response of rabbit aorta and guinea-pig taenia via inhibition of different types of Ca⁺² channel. The structureactivity relationship indicates that the potency and selectivity of the inhibitory effects on these channels are varied by modification of the structure within this alkaloid series [270].

The structure inhibitory activity relationships among numerous β -carboline alkaloids was studied. Harmine was found to inhibit the actions of cyclic adenosine monophosphate (cAMP) phosphodiesterase (IC₅₀ 69.3 x 10⁻⁵ M). Among the di- and tri-substituted β -carbolines, the *O*-methylated β -carbolines and the *O*-acetylated β -carbolines had higher inhibitory activity than the corresponding hydroxy β -carbolines, while the dihydro- and tetrahydro-derivatives were not potent inhibitors [271].

The affinity of harmine and six related β -carbolines for serotonin, benzodiazepine, tryptamine, opiate and GABA receptors in rat brain was studied. These seven compounds showed great variability in their affinity spectra, and, on average, most of the alkaloids showed very low binding to GABA receptors (harmine - $IC_{50} > 400 \mu$ M). Harmine was found to have a relatively high affinity to both μ - and δ -opiate receptors (μ -opiate receptor - $IC_{50} 5.6 +/- 3.1 \mu$ M; δ -opiate - 13 +/- 8 μ M). Harmine was intermediate in its binding capacity to 5-HT type 2 receptors ($IC_{50} 5.8 +/- 6.8 \mu$ M), but showed a relatively high affinity for the tryptamine receptor ($IC_{50} 0.10 +/- 0.02 \mu$ M) [272].

The potential cytotoxic activities of forty-six *Strychnos* alkaloids, including harmine, were tested on different cancer or normal cells cultured *in vitro*. At a concentration of 1-10 μ g/ml, harmine showed modest activity against L 1210 cells derived from DB A/2 mouse ascites tumor and cultured HeLa cells derived from human carcinoma. The alkaloid displayed only slight activity against cultured flow 2002 cells derived from normal embryonic human lungs, and was inactive against cultured B16 melanoma cells derived from C57BL mouse melanoma [273].

Harmine and five other plant-derived simple β -carboline alkaloids and eight other plant derivatives were tested for *in vitro* activity against the epimastigotes of the protozoan parasite *Trypanosoma cruzi* (Costa Rican strain). This organism is the causative agent of Chagas' Disease. Harmine (as well as harmol, harmaline, and harman) at a concentration of 50µg/ml significantly reduced the population growth of epimastigotes to less than 50% of the control group within 96 hours. In addition, harmine was effective in the reduction of growth more than 90% at the 50 µg/ml level and showed significant activity at 5 µg/ml. Activity in this screen appears to be associated with the pyridyl ring 1,2 and 3,4 unsaturation, and increases with C(7) substitution [224].

Harmine, harmaline, and related derivatives were screened against a bank of microorganisms *in vitro* including eleven Gram-positive and twelve Gram-negative bacteria, and sixteen species of fungi (including eight dermatophytes, six filamentous fungi, and two species of *Candida*). Harmine (100-500 μ g/ml) was found to have antibacterial activity against both Gram-positive and Gram-negative bacteria. In addition, the alkaloid was effective against all eight of the dermatophytes at a concentration of 100 μ g/ml [274].

The behavior of some β -carboline derivatives, including harmine, as inhibitors of monoamine oxidase was studied in bovine retina. The di- and tetrahydro- β -carbolines behaved as reversible and competitive inhibitors. In contrast, harmine, and other fully unsaturated β -carbolines showed deviation from linearity at high substrate concentrations, and behaved as tightbinding inhibitors. Structure-activity relationships indicated that substitution of a methoxy group at C(7) position of the aromatic ring is determinant for this tight-binding behavior, with a substitution of a methoxy group at C(6) position greatly reducing this inhibition. Since β -carbolines have been reported to be endogenously formed, this suggests that they may have important physiological actions on monoamine oxidase activity *in vivo*. Finally, all the β -carbolines investigated in this study had low potencies as monoamine oxidase B inhibitors [275].

Harmine, a naturally-occurring photosensitizer, was examined for its photoactivity against the bacterial viruses T4 and M13. The kinetic curves of virus inactivation were used to calculate relative phototoxicities. Harmine exhibited activity against both viruses, but was considerably more active against M13 than T4. Harmine and other β -carbolines have been show to interact with nucleic acids in light-independent reactions, although this current study suggests that the photoactivity appears to affect single-stranded nucleic acids more. Harmine may thus conceivably affect viral proteins and other macromolecules [276].

13.2.16. Hernandezine

Hernandezine was observed to lack inhibitory activity (inactive) against both HIV-1RT (p66/p51)(Human immunodeficiency virus type 1 reverse transcriptase) and HIV-2RT (p68/p55)(Human immunodeficiency virus type 2 reverse transcriptase) [212].

Hernandezine was evaluated in the human immunodeficiency virus reverse transcriptase assay and found to be inactive $(IC_{50} > 200 \ \mu g/ml)[229]$.

Hernandezine, which was isolated from *Thalictrum glandulosissimum*, was found to be effective for the treatment of mice bearing P388 leukemia, S180 ascites, and C26 colon cancer. Although the alkaloid inhibited the growth of mouse L1210 cells and human oral cancer KB cells *in vitro*, its inhibitory effect on normal hemopoietic progenitor cells (CFU-GM) in mice was relatively low. Preliminary results showed that hernandezine blocked cell-cycle transfer from G1 to S phase, and its cytocidal action might thus be cell cycle specific [277].

The total alkaloids of the Chinese *Thalictrum glandulosissimum* (Finet et Gagnep.) W.T. Wang et S.H. Wang, and the major alkaloid of the plant, hernandezine, were effectively employed

in the treatment of P388 leukemia, S180 ascites tumor, and C26 colon tumor in mice. Although hernandezine markedly inhibited the *in vitro* growth of mouse L1210 cells and human KB oral cancer cells, the alkaloid was characterized by only a low inhibition on normal hemopoietic progenitor cells (CFU-GM). Preliminary results demonstrated that hernandezine blocked cellcycle transfer from the G_1 to the S phase, suggesting that its action may be cell cycle-specific [278]. It was also demonstrated that two other bisbenzylisoquinoline alkaloids isolated from the same plant, thalidezine and isothalidezine, possessed a similar inhibitory effect on the L1210 cells [277,278].

13.2.17. Homoaromoline

Homoaromoline was screened for antiplasmodial, antiamoebic, and cytotoxic activities via the use of *in vitro* microtests. The alkaloid was characterized by the following: IC_{50} 3.46 μ M against a multidrug-resistant strain of *Plasmodium falciparum* (K1)(standard - chloroquine phosphate, IC_{50} 0.20 μ M); IC_{50} 17.3 μ M against *Entamoeba histolytica* (standard - metronidazole, $IC_{50} > 82.2 \ \mu$ M); IC_{50} 105 μ M against nasopharyngeal KB cell line (standard - podophyllotoxin, IC_{50} 0.008 μ M)[176].

The cytotoxic and antimalarial activities of homoaromoline were determined as follows: Cytotoxic activity $[ED_{50} (\mu g/ml)]$: P-388 (0.31), KB-3 (3.6), KB-V1 (15); Antimalarial activity $[ED_{50} (ng/ml)]$: *Plasmodium falciparum* Strain D-6 (232) and *P. falciparum* Strain W-2 (451)[279].

Homoaromoline was found to inhibit the growth of cultured Plasmodium falciparum strains D-6 and W-2, and to display nonselective cytotoxicity with a battery of cultured mammalian cells. These data were used to calculate a selectivity index (ED₅₀ in cultured mammalian cells/ED₅₀ in cultured Plasmodium falciparum strains). Agents that are useful antimalarial drugs, such as quinine and artemisinin, typically display selectivity indices that are > 1000. The ED₅₀ (ng/ml) of homoaromoline against Plasmodium falciparum strain D-6 was 104.6, while that associated with strain W-2 was 288.3. The following is a summary of the cytotoxic activities (ED₅₀, μ g/ml) of homoaromoline, along with the cytotoxicity/antimalarial activity ratio (selectivity index) with the first number in parentheses being the D-6 strain selectivity index and the second number being the W-2 strain selectivity index: BCA-1 [Human Breast Cancer] - 3.6 (34,13); HT-1080 [Human Fibrosarcoma] - 9.0 (86,31); LUC-1 [Human Lung Cancer] - 9.7 (93,34); MEL-2 [Human Melanoma] - 9.0 (86,31); COL-1 [Human Colon Cancer] - 10.0 (96,35); KB [Human Oral Epidermoid Carcinoma] - 6.3 (60,22); KB-V1 [Vinblastine-resistant KB] - 3.1 (30,11); P-388 [Murine Lymphoid Neoplasm] - 3.7 (35,13); A-431 [Human Epidermoid Carcinoma] - 8.9 (85,31); LNCaP [Hormone Dependent Human Prostate Cancer] - 3.4 (33,12); ZR-75-1 [Hormone Dependent Human Breast Cancer] - 2.0 (19,7). Based on the data that was generated and compared, homoaromoline and other bisbenzylisoquinoline alkaloids do not appear to be promising candidates for antimalarial drug development [280].

The inhibitory effects of homoaromoline and 150 natural products on the cytotoxic activity of polymorphonuclear leukocytes (PMN) was investigated. The research employed the effects of natural products on the PMN activation by the antitumor immunomodulator TAK (a linear β -1,3-D-glucan from *Alcaligenes faecalis* var. *myxogenes*) using a PMN cytotoxicity assay system. Homoaromoline was found to inhibit the activation of PMN activation by TAK, showing an ID₅₀ 10 µg/ml. From this, and related studies, it was postulated that homoaromoline may impair the NADPH oxidase system in the plasma membrane of PMN [199].

Homoaromoline and ten other bisbenzylisoquinoline alkaloids were evaluated in the *in vitro* histamine release inhibition assay. This assay is one of the basic tests that is used in the evaluation of substances for antiallergic effects. The order of potency of inhibitory effect of those bisbenzylisoquinoline alkaloids that have been isolated from *Thalictrum* species was as follows: homoaromoline > aromoline > isotetrandrine > obaberine > tetrandrine. Berbamine and oxyacanthine were found to have no inhibitory effect [178].

7-O-Benzylhomoaromoline was prepared (NaH and benzyl chloride in DMF under Ar at room temperature overnight) and observed to have an IC_{50} 12.2 µg/ml against human colon cancer PRMI 4788 strain. By contrast, homoaromoline was characterized by $IC_{50} > 64.0$ µg/ml against the same cells. 7-O-Benzylhomoaromoline was subsequently formulated into tablets [281].

The anti-inflammatory and antiallergic effects of homoaromoline were evaluated via the measurement of antigen-induced histamine release from leukocytes, and it was found that the alkaloid inhibited antigen-induced histamine release [180].

13.2.18. Isoboldine

The antimicrobial activity of isoboldine against a series of bacteria and fungi was evaluated via *in vitro* screening. The alkaloid failed to demonstrate any inhibitory activity against the growth of the bacteria, but was strongly inhibitory to the growth of the superficial fungus *Trichophyton rubrum*. The alkaloid exhibited only weak inhibition of the growth of the superficial fungus *Microsporum gypseum* [282].

The *in vitro* antimicrobial activity of isoboldine was investigated by agar diffusion and agar dilution methods against various Gram-positive (*Staphylococcus aureus*, *Staphylococcus epidermidis*, *Streptococcus pyogenes*, *Streptococcus faecalis*, *Bacillus subtilis*) and Gram-negative bacteria (*Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Salmonella typhimurium*, *Enterobacter aerogenes*, *Serratia marcescens*, *Serratia sonnei*), as well as the acidfast organism *Mycobacterium phlei*, and the yeast *Candida albicans*. Isoboldine exhibited no significant activity against any of the test organisms [283].

Isoboldine was evaluated for its *in vitro* antimicrobial activity against a variety of microorganisms. The alkaloid was found to be inactive against Gram-positive and Gram-negative bacteria, as well as an acid-fast bacillus and a yeast. The oxoderivatives of aporphines were more

active against Gram-positive bacteria than the reduced aporphines, but the former had a lower activity against yeast and no activity against Gram-negative bacteria [263].

Isoboldine was determined to inhibit rabbit lens aldose reductase (IC₅₀ 2.7 x 10⁻⁴M) [210].

13.2.19. Isocorydine

Isocorydine was observed to significantly decrease the frequency of spontaneous contraction and muscle tension, but not the amplitude of contraction on the isolated isthmus of the oviduct of the rabbit. The tension and frequency of spontaneous contraction was suppressed by the alkaloid at concentrations of 3-300 μ mol/l, but the amplitude of contraction was decreased only at 300 μ mol/l. The alkaloid antagonized the norepinephrine-induced contraction of the oviduct, and the transport of ova through the oviduct was delayed by isocorydine [285].

(+)-Isocorydine was observed to antagonize the contraction of isolated guinea pig or rabbit biliary tracts induced by acetylcholine, histamine, angiotensin II, and K⁺. The relaxant effect of the alkaloid on isolated gallbladder and the Sphincter of Oddi *in vitro* was similar to that observed with verapamil, thus suggesting that Ca^{+2} may be involved in the relaxant effect of isocorydine [286].

Standard microelectrode techniques were used to study the effects of isocorydine on potential characteristics of canine cardiac Purkinje fibers and ventricular myocardium *in vitro*. In the Purkinje fibers, the action potential durations APD_{50} and APD_{90} were prolonged at 3 μ mol/l but shortened at 30 μ mol/l by isocorydine. The action potential amplitude and maximal upstroke velocity were decreased at 100 μ mol/l. In the ventricular myocardium, the action potential characteristics were changed by isocorydine at concentrations above 30 μ mol/l. The APD₅₀ was shortened, the APD₉₀ was prolonged, and the maximal upstroke velocity was decreased at 30 μ mol/l. The effective refractory period was prolonged by the alkaloid in Purkinje fibers and ventricular myocardium. These results indicated that the alkaloid may interfere with K⁺, Na⁺, and Ca⁺² currents in myocardial cell membranes at different concentrations [287].

Isocorydine, a Chinese medicinal calcium antagonist, was found to decrease blood pressure and heart rate in anesthetized rabbits [288].

Intravenous administration of (+)-isocorydine hydrochloride to anesthetized rats at a dosage of 5-20 mg/kg significantly counteracted the arrhythmias induced by intravenously administered barium chloride (3 mg/kg) or aconitine (20 mg/kg), and decreased the incidence of ventricular fibrillation, as well as the mortality rate [332].

Intracellular microelectrodes were used to study the effects of isocorydine on the action potentials of the rabbit sinoatrial node and guinea pig ventricular muscle, in addition to the spontaneous electrical activity induced by barium ion in the ventricular muscle. Exposure of rabbit sinoatrial node cells to a 30 μ M and 300 μ M solutions of isocorydine resulted in a decrease in the APA, SP₀, and SP₄, and slowed the rate of spontaneous impulse initiation by the sinoatrial node. The duration of the action potential (APD₅₀, APD₉₀) and the effective refractory period

(ERP) were both prolonged via exposure to a 3 μ M solution of the alkaloid. A 30 μ M solution was observed to prolong the ERP, without any other significant effects on the other parameters of action potential. An obvious shortening of the duration of the action potential but not the ERP was observed on treatment with a 300 μ M solution of isocorydine. In addition, this concentration also suppressed the spontaneous electrical activity induced by barium ion in the guinea pig ventricular muscle [331].

13.2.20. Isotetrandrine

Isotetrandrine was screened for antiplasmodial and antiamoebic activities via the use of *in vitro* microtests. The alkaloid was characterized by the following: IC_{50} 0.16 μ M against a multidrug-resistant strain of *Plasmodium falciparum* (K1)(standard - chloroquine phosphate, IC_{50} 0.20 μ M); IC_{50} 22.2 μ M against *Entamoeba histolytica* (standard - metronidazole [176].

Kinetic analysis of luminol-dependent chemiluminescence demonstrated that a solution of isotetrandrine (20 μ M) was found to inhibit the generation of various types of reactive oxygens by guinea-pig neutrophils. The results of these and other experiments suggest that isotetrandrine inhibits the active oxygen generation via the stabilization of plasma membrane and the inhibition of phospholipid-dependent protein kinase (PKC) and NADPH oxidase activation [182].

Isotetrandrine was noted to inhibit antigen- and compound 48/80-induced arachidonic acid liberation, but not diacylglycerol formation or histamine release. The alkaloid had no effect on A23187-induced arachidonic acid liberation, which was prevented by *p*-bromophenacyl bromide, a known phospholipase A₂ inhibitor, and also did not affect phospholipase A₂ activity in a cellfree system including an exogenous phospholipid substrate. Isotetrandrine inhibited guanosine 5'-O-(3-thiotriphosphate)-induced arachidonic acid liberation in saponin-permeabilized mast cells, and by mastoparan or NaF plus AlCl₃ in intact cells. In addition, the alkaloid abolished the inhibitory effect of islet-activating protein on compound 48/80-induced arachidonic acid liberation. These data suggest that isotetrandrine suppresses the receptor-mediated phospholipase A₂ activation through, at least in part, uncoupling of a GTP-binding protein from the enzyme, rather than by affecting the enzyme directly [184].

Bisbenzylisoquinoline alkaloids block Ca^{+2} uptake through L-type Ca^{+2} channel and modulate binding of ligands to four distinct sites (dihydropyridine, benzothiazepine, aralkylamine, and (diphenylbutyl)piperidine) in the Ca^{+2} entry blocker receptor complex of the channel. All bisbenzylisoquinoline analogs tested, including isotetrandrine, completely inhibit diltiazem binding, but many only partially inhibit D-600 and fluspirilene binding. For dihyrodpyridine binding, the compounds show either stimulation or inhibition, or exhibit no effect. Data from this experiment suggest that isotetrandrine and a variety of bisbenzylisoquinoline congeners act to block the L-type Ca^{+2} channel by binding to the benzothiazepine site on the channel. The novel patterns exhibited by isotetrandrine and other bisbenzylisoquinoline alkaloid analogs in affecting allosteric coupling between the benzothiazepine site and the other receptors of the Ca^{+2} entry blocker receptor complex define a new class of Ca^{+2} entry blocker with binding properties distinct from diltiazem [186].

Isotetrandrine was shown to overcome resistance in the multidrug-resistant subline, Ch^R-24, derived from human KB carcinoma cells to vincristine, actinomycin D, and daunomycin, and partially overcame resistance to Adriamycin [187].

Isotetrandrine was found to inhibit the growth of cultured Plasmodium falciparum strains D-6 and W-2, and to display nonselective cytotoxicity with a battery of cultured mammalian cells. These data were used to calculate a selectivity index (ED₅₀ in cultured mammalian cells/ED₅₀ in cultured Plasmodium falciparum strains). Agents that are useful antimalarial drugs, such as quinine and artemisinin, typically display selectivity indices that are > 1000. The ED₅₀ (ng/ml) of isotetrandrine against Plasmodium falciparum strain D-6 was 165.1, while that associated with strain W-2 was 54.6. The following is a summary of the cytotoxic activities (ED₅₀, µg/ml) of isotetrandrine, along with the cytotoxicity/antimalarial activity ratio (selectivity index) with the first number in parentheses being the D-6 strain selectivity index and the second number being the W-2 strain selectivity index: BCA-1 [Human Breast Cancer] - 5.4 (33,99); HT-1080 [Human Fibrosarcoma] - 11.0 (67,202); LUC-1 [Human Lung Cancer] - 10.0 (61,183); MEL-2 [Human Melanoma] - 19.5 (118,357); COL-1 [Human Colon Cancer] - 10.5 (64,192); KB [Human Oral Epidermoid Carcinoma] - 8.6 (37,40); KB-V1 [Vinblastine-resistant KB] - 1.5 (9,28); P-388 [Murine Lymphoid Neoplasm] - 5.6 (34,103); A-431 [Human Epidermoid Carcinoma] - 8.4 (51,154); LNCaP [Hormone Dependent Human Prostate Cancer] - 9.4 (57,172); ZR-75-1 [Hormone Dependent Human Breast Cancer] - 5.0 (30,92). Based on the data that was generated and compared, isotetrandrine and other bisbenzylisoquinoline alkaloids do not appear to be promising candidates for antimalarial drug development [280].

Isotetrandrine was screened for *in vitro* antimalarial properties using a multi-drug resistant (K1) strain of *Plasmodium falciparum*. The screen detected the inhibition of incorporation of $[^{3}H]$ -hypoxanthine into *P. falciparum*, and isotetrandrine was characterized by IC 0.07 µg/ml. The standard antimalarial drug chloroquine diphosphate exhibits IC 0.14 µg/ml [289].

Isotetrandrine was found to inhibit arachidonic acid-induced inflammation in mice. Topical application of isotetrandrine (2 μ mol/mouse) markedly suppressed the tumor-promoting effect of 12-O-tetradecanoylphorbol-13-acetate (1 μ g) in mouse skin initiated with 7,12-dimethylbenz[a]anthracene (50 μ g), at a grade corresponding to that of another bisbenzylisoquinoline alkaloid, cepharanthine [197].

The inhibitory effects of isotetrandrine and 150 natural products on the cytotoxic activity of polymorphonuclear leukocytes (PMN) was investigated. The research employed the effects of natural products on the PMN activation by the antitumor immunomodulator TAK (a linear β -1,3-D-glucan from *Alcaligenes faecalis* var. *myxogenes*) using a PMN cytotoxicity assay system. Isotetrandrine was found to inhibit the activation of PMN activation by TAK, showing an ID₅₀ 38 µg/ml. From this, and related studies, it was postulated that isotetrandrine may impair the NADPH oxidase system in the plasma membrane of PMN [199].

Isotetrandrine and ten other bisbenzylisoquinoline alkaloids were evaluated in the *in vitro* histamine release inhibition assay. This assay is one of the basic tests that is used in the evaluation of substances for antiallergic effects. The order of potency of inhibitory effect of those bisbenzylisoquinoline alkaloids that have been isolated from *Thalictrum* species was as follows: homoaromoline > aromoline > isotetrandrine > obaberine > tetrandrine. Berbamine and oxyacanthine were found to have no inhibitory effect [178].

The vasodilator effects of aromoline, berbamine, isotetrandrine, and (+/-)-*N*-methylcoclaurine was evaluated in isolated vessels from male Wistar rats. The rats were anesthetized with thiopental (i.p.), and the thoracic aorta was rapidly excised, with the fat with connective tissues being removed. Rings (about 2 mm in length) were cut from the vessel, and fixed in a bath solution. Prior to addition of the alkaloid sample, the arterial rings were contracted with K⁺ (80 mM). Vasodilator effects of the alkaloids were obtained via the addition of sample solutions directly to the bathing media in cumulative concentrations. The potency of the vasodilator effects of the alkaloids on the contracted thoracic aorta in order of decreasing effectiveness was as follows: aromoline (IC₅₀ 0.8 μ M) > berbamine (IC₅₀ 2.4 μ M) > isotetrandrine (IC₅₀ 3.0 μ M) > *N*-methylcoclaurine (IC₅₀ 32 μ M) [179].

The anti-inflammatory and antiallergic effects of isotetrandrine were evaluated via the measurement of antigen-induced histamine release from leukocytes, and it was found that the alkaloid suppressed antigen-induced histamine release, but this suppression was not dose-dependent [180].

Isotetrandrine was evaluated in BALB/c mice infected with Leishmania amazonensis (IFLA/BR/67/PH8 or MHOM/GF/84/CAY-H-142) or L. venezuelensis (VE/74/PM-H3). The treatments were initiated one day after parasitic infection at an alkaloid concentration of 100 mg/kg/day for fourteen days, and the reference compound (meglumine antimonate) at 200 mg/kg/day. Isotetrandrine was observed to exhibit activity approximately equal to or greater than meglumine antimonate against L. amazonensis (PH8 or H-142), and showed significant activity against L. venezuelensis. Single local treatment on the footpad of mice that had been inoculated with L. amazonensis 2 weeks earlier revealed that isotetrandrine (200 mg/kg) was less active than meglumine antimonate (400 mg/kg) [334].

13.2.21. Isothalidezine

The total alkaloids of the Chinese *Thalictrum glandulosissimum* (Finet et Gagnep.) W.T. Wang et S.H. Wang, and the major alkaloid of the plant, hernandezine, were effectively employed in the treatment of P388 leukemia, S180 ascites tumor, and C26 colon tumor in mice. Although hernandezine markedly inhibited the *in vitro* growth of mouse L1210 cells and human KB oral cancer cells, the alkaloid was characterized by only a low inhibition on normal hemopoietic progenitor cells (CFU-GM). Preliminary results demonstrated that hernandezine blocked cell-cycle transfer from the G_1 to the S phase, suggesting that its action may be cell cycle-specific

[205]. It was also demonstrated that two other bisbenzylisoquinoline alkaloids isolated from the same plant, thalidezine and isothalidezine, possessed a similar inhibitory effect on the L1210 cells [278]. Isothalidezine, which was isolated from *Thalictrum glandulosissimum*, was found to markedly inhibit the growth of mouse L1210 cells *in vitro*, but its inhibitory effect on normal hemopoietic progenitor cells (CFU-GM) in mice was relatively low. Preliminary results showed that isothalidezine blocked cell-cycle transfer from G1 to S phase, and its cytocidal action might thus be cell cycle specific [277].

13.2.22. Jatrorrhizine

Jatrorrhizine chloride exhibited reverse transcriptase inhibitory properties against both HIV-1RT (p66/p51)(Human immunodeficiency virus type 1 reverse transcriptase)(IC_{50} 42.4 µg/ml [113.4 µM]) and HIV-2RT (p68/p55)(Human immunodeficiency virus type 2 reverse transcriptase)(IC_{50} 39.8 µg/ml [106.5 µM]). The alkaloid is thought to inhibit various RNA and DNA polymerizing enzymes via interaction with nucleic acid template-primers [212].

Jatrorrhizine chloride was evaluated for antimalarial activity against *Plasmodium* falciparum in vitro (two clones of human malaria; *Plasmodium falciparum* D-6 [Sierra Leone clone] and W-2 (Indochina clone) and *Plasmodium berghei in vivo* (mice). The alkaloid exhibited an antimalarial potency equivalent to that of quinine *in vitro*, but was inactive *in vivo* [228].

Jatrorrhizine chloride was evaluated in the human immunodeficiency virus reverse transcriptase assay and found to be moderately active (50 μ g/ml < IC₅₀ < 150 μ g/ml)[229].

Jatrorrhizine chloride was dissolved in culture medium and evaluated for its activity against two protozoa, *Plasmodium falciparum* (K1, multi-drug resistant strain) and *Entamoeba histolytica* (NIH 200). The alkaloid was not toxic to KB cells ($IC_{50} > 334 \mu M$), and was active against *P. falciparum* ($IC_{50} 3.1 \mu M$), but inactive against *E. histolytica* ($IC_{50} 83 \mu M$). In assessing relative *in vitro* cytotoxicity to antiplasmodial activity, berberine had the least favorable ratio (8), while jatrorrhizine had the most favorable ratio (> 106) of the alkaloids tested. The results lend some support to the utilization of plants containing protoberberine alkaloids for the treatment of malaria [230].

Jatrorrhizine was found to possess anti-inflammatory activity as measured in the cobra venom factor-induced (CVF) rat paw edema. CVF edema was used to examine jatrorrhizine and other substances in order to detect novel compounds, since it has been shown that joint cyclooxygenase and lipoxygenase inhibitors, as well as immunoreactive drugs, exhibit more pronounced inhibitory effects on CVF in comparison to carrageenin-induced edema. CVF edema is dependent on activation of the complement system which plays an important role in acute and chronic inflammatory reactions, mediating the activity of immune complexes. This test system represents a functionally new type of acute inflammation via activation of the alternative complement pathway [290].

Jatrorrhizine was found to exhibit toxicity to P388 cells (ED_{50} 2.0 µg/ml) and to brine shrimp (LD_{50} 0.2 µg/ml), but was inactive in antibacterial assays against *Escherichia coli*, *Streptococcus aureus*, or *Bacillus subtilis*, at concentrations up to 100 µg/ml)[291].

Four protoberberine alkaloids and one aporphine alkaloid were evaluated for lipoxygenase inhibition. Oxyberberine and columbarnine were the most potent lipoxygenase inhibitors tested, with jatrorrhizine being intermediate, whereas berberine and magnoflorine exhibited only low potencies. A strong linear correlation between lipoxygenase inhibition and lipid antioxidant properties of these alkaloids was observed. These data suggest that the mechanism of lipoxygenase inhibition by these alkaloids may be linked to the inhibition of lipid hydroperoxide substrate accumulation [242].

The antibacterial activity of jatrorrhizine against the Gram-negative bacilli *Pseudomonas* aeruginosa and *Proteus vulgaris* was determined, but unfortunately not described in this abstract [292].

13.2.23. Liriodenine

An investigation of the pharmacological activities of liriodenine demonstrated that the alkaloid was a selective muscarinic receptor antagonist in isolated trachea, ileum and cardiac tissues of guinea-pigs, being more potent in smooth muscle than in cardiac preparations. High concentrations (300 μ M) of liriodenine elicited a blockage of voltage-dependent Ca⁺² [293].

The antimuscarinic properties of liriodenine were compared with methoctramine (cardioselective M_2 antagonist) and 4-diphenylacetoxy-*N*-methylpiperidine (4-DAMP, smooth muscle selective M_3 antagonist) via radioligand binding tests, functional tests and measurements of second messenger generation in canine cultured tracheal smooth muscle cells. The antimuscarinic characteristics of liriodenine were found to be similar to those of 4-DAMP, and the alkaloid may act as a selective M_3 receptor antagonist in canine tracheal smooth muscle [294].

Liriodenine was found to be the mutagenic principle in a methanol extract of the root, root stalk, and stem of *Sinomenium acutum* (Menispermaceae). The alkaloid exhibited potent mutagenic activity towards *Salmonella typhimurium* strains TA98 and TA100 in the presence of liver homogenate (S9 mix)(10.9 and 90.7 revertants/nmol, respectively), and accounted for about 40% of the mutagenicity of the total methanol extract. The mutagenic potency of liriodenine is comparable to that of benzo[a]pyrene [295].

Liriodenine was found to be active in the brine shrimp lethality test (LC_{50} 2.03 µg/ml) but was inactive in the 9PS (a chemically-induced murine lymphocytic leukemia) and 9KB (human nasopharyngeal carcinoma) cytotoxicity tests [296].

Liriodenine was found to exhibit potent cytotoxicity against KB, A-549, HCT-8, P-388, and L-1210 cells with ED₅₀ values of 1.00, 0.72, 0.70, 0.57, and 2.33 µg/ml, respectively [297].

Mechanism-based bioassays involving DNA repair or recombination deficient yeast mutants have been increasingly utilized in attempts to monitor the isolation of natural products with selective anti-cancer activity. Liriodenine was found to exhibit selective toxicity against DNA repair and recombination deficient mutants of the yeast *Saccharomyces cerevisiae*. The following activities were recorded for the alkaloid against selective *S. cerevisiae* strains: IC_{12} 16.7 µg/ml (strain - rad 52); 15.0 mm zone of inhibition at 500 µg/ml (strain - rad 6); IC_{12} 500 µg/ml (strain - rad⁺). The presence of a methylenedioxy group in oxoaporphine alkaloids tends to confer activity in these assays, and certain oxoaporphinoid alkaloids (notably those with methylenedioxy groups), may represent a novel class of DNA topoisomerase inhibitors [298].

The *in vitro* antimicrobial activity of liriodenine was investigated by agar diffusion and agar dilution methods against various Gram-positive (*Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus faecalis, Bacillus subtilis*) and Gram-negative bacteria (*Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium, Enterobacter aerogenes, Serratia marcescens, Serratia sonnei*), as well as the acid-fast organism *Mycobacterium phlei*, and the yeast *Candida albicans*. Liriodenine showed some activity against the Gram-positive organisms, as well as against *Mycobacterium phlei*. There was no activity exhibited against the Gram-negative organisms, and only slight activity against the yeast *Candida albicans* [283].

Liriodenine was evaluated for its *in vitro* antimicrobial activity against a variety of microorganisms. The alkaloid was found to modestly inhibit the growth of *Staphylococcus aureus*, *Bacillus subtilis*, *Mycobacterium phlei*, and *Candida albicans*. The oxoderivatives of aporphines were more active against Gram-positive bacteria than the reduced aporphines, but the former had a lower activity against yeast, and no activity against Gram-negative bacteria [263].

A series of fifty-three isoquinoline alkaloids were tested for cytotoxicity against A-549 (human lung carcinoma), HCT-8 (human colon carcinoma), KB, P-388, and L-1210 cells *in vitro*. Liriodenine showed potent and wide spectrum activity against all five cell lines tested: A-549 (ED_{50} 0.72 µg/ml), HCT-8 (0.70), KB (1.00), P-388 (0.57), and L-121-0 (2.33)[299].

Liriodenine was observed to demonstrate potent cytotoxicity against KB, A-549, P-388, and L-1210 cells with ED_{50} values of 1.00, 0.72, 0.57, and 2.33 µg/ml, respectively [300].

The efficacy of liriodenine and liriodenine methiodide as potential anticandidal agents was determined in a mouse model of disseminated candidiasis. Varying doses of each drug were administered intraperitoneally or intravenously 7 hours postinfection to mice infected with a lethal dose of *Candida albicans* NIH B311. Reductions in the number of colony-forming units (CFU) recovered per milligram of kidney tissue were observed in drug-treated animals as compared with vehicle-treated controls. Intravenous administration of both liriodenine and its *N*-methyl analog (liriodenine methiodide) produced a significant reduction in the number of recovered CFU [301].

An ethanol extract of the above-ground parts of the Taiwanese *Thalictrum sessile* Hayata was found to exhibit significant cytotoxicity against in vitro tissue culture cells in human KB, A-549 lung carcinoma and HCT-8 colon tumor, as well as murine P-388 and L-1210 lymphocytic leukemia [62]. Bioassay-guided fractionation of this extract led to the isolation and identification of two cytotoxic aporphinoid alkaloids; the oxoaporphine liriodenine and the aporphine-benzylisoquinoline dimer (+)-thalifarazine. The following are the activities of liriodenine against

various tumor cell lines, with the LD_{50} values (µg/ml) expressed in parentheses: KB (1.00), A-549 (0.72), HCT-8 (0.70), P-388 (0.57), and L-1210 (2.33) [62].

The minimum inhibitory concentrations (MIC) of liriodenine versus the superficial dermatophytes *Trichophyton mentagrophytes* (ATCC 9972) and *Microsporum gypseum* (ATCC 14683) in a complex medium were 3.12 μ g/ml and 100 μ g/ml, respectively. In a defined medium against the same organisms, the values were 0.78 μ g/ml and 3.12 μ g/ml, respectively [337].

13.2.24. Magnoflorine

Magnoflorine chloride was observed to lack inhibitory activity (inactive) against both HIV-1RT (p66/p51)(Human immunodeficiency virus type 1 reverse transcriptase) and HIV-2RT (p68/p55)(Human immunodeficiency virus type 2 reverse transcriptase)[212].

Magnoflorine was observed to decrease arterial blood pressure in rabbits and to induce hypothermia in mice. In addition, the alkaloid induced contractions in the isolated pregnant rat uterus and stimulated the isolated guinea pig ileum. Experiments with standard agents in these models suggest magnoflorine acts on the muscarinic and serotonergic systems, either directly or indirectly [302].

Magnoflorine chloride was evaluated in the human immunodeficiency virus reverse transcriptase assay and found to be inactive $(IC_{50} > 200 \ \mu g/ml)[229]$.

The antimalarial activity [ED₅₀ (ng/ml)] of magnoflorine was determined as follows: *Plasmodium falciparum* Strain D-6 (>10,000) and *P. falciparum* Strain W-2 (>10,000)[303].

Magnoflorine was observed to suppress the local graft-versus-host reactions when given to mice (5-20 mg/kg for 8 days, i.p.) from the day of spleen cell transfer to induce the reaction. The alkaloid suppressed picryl chloride-induced delayed type hypersensitivity (PC-DTH) when given to mice at 10 and 20 mg/kg for 5 days (i.p.) from the day of sensitization, but did not suppress it when given at the time of challenge. These results suggest that magnoflorine is able to suppress the induction phase but not the effector phase of the cellular immune response, and may have a role as a new type of immunosuppressor [304].

Four protoberberine alkaloids and one aporphine alkaloid were evaluated for lipoxygenase inhibition. Oxyberberine and columbarnine were the most potent lipoxygenase inhibitors tested, with jatrorrhizine being intermediate, whereas berberine and magnoflorine exhibited only low potencies. A strong linear correlation between lipoxygenase inhibition and lipid antioxidant properties of these alkaloids was observed. These data suggest that the mechanism of lipoxygenase inhibition by these alkaloids may be linked to the inhibition of lipid hydroperoxide substrate accumulation [242].

13.2.25. Methoxyadiantifoline

Methoxyadiantifoline exhibited pulmonary antifibrotic properties, with substantial binding affinity for membrane lipids and alveolar macrophages, similar to those of tetrandrine. Experimental data indicated a strong relationship between the antifibrotic potential of the methoxyadiantifoline and its ability to bind alvelolar macrophages and to inhibit particle-induced activation of these macrophages. Methoxyadiantifoline should serve as a useful probe in the evaluation of the role of alveolar macrophages in pulmonary fibrosis [305].

Methoxyadiantifoline was observed to reverse multidrug resistance and to potentiate the effectiveness of a primary drug (antineoplastic, antimalarial, tuberculostatic) against a drug-resistant cell. This action is apparently via the reversal or inhibition of a glycoprotein pump that is present in a multidrug-resistant cell, such that the cell actually accepts a greater concentration of the drug than does a drug-resistant cell [306].

Methoxyadiantifoline was found to exhibit calcium blocker activity (IC_{50} 2.53 x 10⁻⁶ M) as determined by the *in vitro* assay for guinea pig duodenal contraction [71].

13.2.26. N-Methylcanadine

Forty-eight derivatives of berberine-type alkaloids were examined for their inhibition activity against the induction of mouse ear edema via application of 12-O-tetradecanoylphorbol-13-acetate (TPA). N-Methylcanadine chloride was found to possess inhibitory effects (6% inhibition), and berberine derivatives were found to have stronger inhibitory activity than palmatine derivatives. Since berberine and some of its derivatives are present in Chinese traditional drugs that are used in combined Kampo prescriptions, it is important to determine if such alkaloids possess carcinogenic inhibiting properties [221].

N-Methylcanadine was evaluated for antimalarial activity against *Plasmodium falciparum in vitro* (two clones of human malaria; *Plasmodium falciparum* D-6 [Sierra Leone clone] and W-2 (Indochina clone) and *Plasmodium berghei in vivo* (mice). It was found that the alkaloid was inactive in both *in vitro* and *in vivo* tests [228].

N-Methylcanadine chloride (canadine methochloride) was evaluated in the human immunodeficiency virus reverse transcriptase assay and found to be inactive ($IC_{50} > 200 \mu g/ml$)[229].

13.2.27. N-Methylcoclaurine

N-Methylcoclaurine, as well as eleven bisbenzylisoquinoline alkaloids were evaluated in the *in vitro* histamine release inhibition assay. This assay is one of the basic tests that is used in the evaluation of substances for antiallergic effects. The order of potency of inhibitory effect

of those bisbenzylisoquinoline alkaloids that have been isolated from *Thalictrum* species was as follows: homoaromoline > aromoline > isotetrandrine > obaberine > tetrandrine. *N*-Methylcoclaurine was found to exhibit an inhibitory effect almost comparable to that of obaberine. Berbamine and oxyacanthine were found to have no inhibitory effect [178].

The vasodilator effects of aromoline, berbamine, isotetrandrine, and (+/-)-Nmethylcoclaurine were evaluated in isolated vessels from male Wistar rats. The rats were anesthetized with thiopental (i.p.), and the thoracic aorta was rapidly excised, with the fat with connective tissues being removed. Rings (about 2 mm in length) were cut from the vessel, and fixed in a bath solution. Prior to addition of the alkaloid sample, the arterial rings were contracted with K⁺ (80 mM). Vasodilator effects of the alkaloids were obtained via the addition of sample solutions directly to the bathing media in cumulative concentrations. The potency of the vasodilator effects of the alkaloids on the contracted thoracic aorta in order of decreasing effectiveness were as follows: aromoline (IC₅₀ 0.8 μ M) > berbamine (IC₅₀ 2.4 μ M) > isotetrandrine (IC₅₀ 3.0 μ M) > *N*-methylcoclaurine (IC₅₀ 32 μ M) [179].

13.2.28. Nantenine

Nantenine was determined to inhibit rabbit lens aldose reductase (IC₅₀ 4.3×10^{-4} M) [210].

13.2.29. Obaberine

The potential therapeutic effect of obaberine (10, 25, and 50 μ g/ml)(and thirteen other bisbenzylisoquinoline alkaloids) against the protozoan disease leishmaniasis was studied by biological assays on *in vitro* culture forms of three strains of *Leishmania*; *L. brasiliensis brasiliensis* (cutaneous and mucocutaneous leishmaniasis), *L. mexicana amazonensis* (cutaneous), and *L. donovani* (visceral leishmaniasis). Obaberine was found to inhibit the growth of all three types to differing degrees, and was considered among the top three alkaloids screened (daphnandrine and gyrocarpine being the other two) [194].

The potential therapeutic effect of obaberine (10, 25, and 50 μ g/ml)(and thirteen other bisbenzylisoquinoline alkaloids) against the protozoan disease American trypanosomiasis (Chagas' disease) was studied by biological assays on *in vitro* culture forms of three strains of *Trypanosoma cruzi* (Tulahuen, C8C11, and 1979 CL1). As in the case of *Leishmania*, obaberine was found to inhibit the growth of all three types to differing degrees, and was considered among the top three alkaloids screened (daphnandrine and gyrocarpine being the other two) [195].

Obaberine was found to inhibit the growth of cultured *Plasmodium falciparum* strains D-6 and W-2, and to display nonselective cytotoxicity with a battery of cultured mammalian cells. These data were used to calculate a selectivity index (ED_{50} in cultured mammalian cells/ ED_{50} in cultured *Plasmodium falciparum* strains). Agents that are useful antimalarial drugs, such as

quinine and artemisinin, typically display selectivity indices that are > 1000. The ED₅₀ (ng/ml) of obaberine against *Plasmodium falciparum* strain D-6 was 231.0, while that associated with strain W-2 was 216.0. The following is a summary of the cytotoxic activities (ED₅₀, μ g/ml) of obaberine, along with the cytotoxicity/antimalarial activity ratio (selectivity index) with the first number in parentheses being the D-6 strain selectivity index and the second number being the W-2 strain selectivity index: BCA-1 [Human Breast Cancer] - 4.6 (20,21); HT-1080 [Human Fibrosarcoma] - 10.4 (45,48); LUC-1 [Human Lung Cancer] - 9.7 (42,45); MEL-2 [Human Melanoma] - 20.0 (87,93); COL-1 [Human Colon Cancer] - 10.8 (47,50); KB [Human Oral Epidermoid Carcinoma] - 8.6 (37,40); KB-V1 [Vinblastine-resistant KB] - 2.6 (11,12); P-388 [Murine Lymphoid Neoplasm] - 4.1 (18,19); A-431 [Human Epidermoid Carcinoma] - 8.7 (38,40); LNCaP [Hormone Dependent Human Prostate Cancer] - 5.0 (22,23); ZR-75-1 [Hormone Dependent Human Breast Cancer] - 4.0 (17,19). Based on the data that was generated and compared, obaberine and other bisbenzylisoquinoline alkaloids do not appear to be promising candidates for antimalarial drug development [280].

The relaxant activity of obaberine was examined in isolated rat uterus and its inhibitory potency compared with that of tetrandrine. Obaberine was observed to relax KCl-depolarized rat uterus and to totally or partially inhibit oxytocin-induced rhythmic contractions. Obaberine inhibited sustained K⁺-induced contraction with the same potency as tetrandrine when extracellular calcium is present, but the rhythmic contraction induced by oxytocin was diminished to a much lesser extent. This observation indicates that the relaxant mechanism of obaberine may be mainly related to Ca⁺² influx, possibly through voltage-operated channels. In Ca⁺²-free medium, obaberine relaxed oxytocin- and vanadate-induced uterine contractions, while tetrandrine did not. These results suggest that obaberine has an intracellular site of action, and may interact with a stereospecific receptor site within the cell [307].

Obaberine and ten other bisbenzylisoquinoline alkaloids were evaluated in the *in vitro* histamine release inhibition assay. This assay is one of the basic tests that is used in the evaluation of substances for antiallergic effects. The order of potency of the inhibitory effect of those bisbenzylisoquinoline alkaloids that have been isolated from *Thalictrum* species was as follows: homoaromoline > aromoline > isotetrandrine > obaberine > tetrandrine. Berbamine and oxyacanthine were found to have no inhibitory effect [178].

13.2.30. Obamegine

Obamegine was screened for antiplasmodial, antiamoebic, and cytotoxic activities via the use of *in vitro* microtests. The alkaloid was characterized by the following: IC_{50} 0.74 μ M against a multidrug-resistant strain of *Plasmodium falciparum* (K1)(standard - chloroquine phosphate, IC_{50} 0.20 μ M); IC_{50} 30.8 μ M against *Entamoeba histolytica* (standard - metronidazole, IC_{50} 1.87 μ M); IC_{50} 55.4 μ M against nasopharyngeal KB cell line (standard - podophyllotoxin, IC_{50} 0.008 μ M)[176].

Obamegine was screened for *in vitro* antimalarial properties using a multi-drug resistant (K1) strain of *Plasmodium falciparum*. The screen detected the inhibition of incorporation of $[^{3}H]$ -hypoxanthine into *P. falciparum*, and obamegine was characterized by IC 0.51 µg/ml. The standard antimalarial drug chloroquine diphosphate exhibits IC 0.14 µg/ml [289].

13.2.31. Oxoglaucine

The efficacy of oxoglaucine methiodide as a potential anticandidal agent was determined in a mouse model of disseminated candidiasis. Varying doses were administered intraperitoneally or intravenously 7 hours postinfection to mice infected with a lethal dose of *Candida albicans* NIH B311. There was no significant response to treatment with oxoglaucine methiodide [301].

Mechanism-based bioassays involving DNA repair or recombination deficient yeast mutants have been increasingly utilized in attempts to monitor the isolation of natural products with selective anti-cancer activity. Oxoglaucine was evaluated, and found to exhibit selective toxicity against DNA repair and recombination deficient mutants of the yeast *Saccharomyces cerevisiae*. The following activities were recorded for the alkaloid against selective *S. cerevisiae* strains: $IC_{12} >500 \mu g/ml$ (strain - rad 52); $IC_{12} >500 \mu g/ml$ (strain - rad 52. top 1); $IC_{12} >500 \mu g/ml$ (strain - rad 6); $IC_{12} >500 \mu g/ml$ (strain - rad⁺). The presence of a methylenedioxy group in oxoaporphine alkaloids tends to confer activity in these assays, and certain oxoaporphinoid alkaloids (notably those with methylenedioxy groups), may represent a novel class of DNA topoisomerase inhibitors. In this regard, oxoglaucine with its 1,2,9,10-tetramethoxy- substitution, was consistently inactive [298].

A series of fifty-three isoquinoline alkaloids were tested for cytotoxicity against A-549 (human lung carcinoma), HCT-8 (human colon carcinoma), KB, P-388, and L-1210 cells *in vitro*. Oxoglaucine was active against HCT-8 (ED_{50} 1.00 µg/ml) and KB (ED_{50} 2.00 µg/ml)[299].

13.2.32. Oxyacanthine

Oxyacanthine HCl was screened for antiplasmodial, antiamoebic, and cytotoxic activities via the use of *in vitro* microtests. The alkaloid was characterized by the following: IC_{50} 1.06 μ M against a multidrug-resistant strain of *Plasmodium falciparum* (K1)(standard - chloroquine phosphate, IC_{50} 0.20 μ M); IC_{50} 32.3 μ M against *Entamoeba histolytica* (standard - metronidazole, $IC_{50} > 82.2 \mu$ M); IC_{50} 74.4 μ M against nasopharyngeal KB cell line (standard - podophyllotoxin, IC_{50} 0.008 μ M)[176].

Bisbenzylisoquinoline alkaloids block Ca^{+2} uptake through L-type Ca^{+2} channel and modulate binding of ligands to four distinct sites (dihydropyridine, benzothiazepine, aralkylamine, and (diphenylbutyl)piperidine) in the Ca^{+2} entry blocker receptor complex of the channel. All bisbenzylisoquinoline analogs tested, including oxyacanthine, completely inhibit diltiazem binding, but many only partially inhibit D-600 and fluspirilene binding. For dihyrodpyridine binding, the compounds show either stimulation or inhibition of exhibit no effect. Data from this experiment suggest that oxyacanthine and a variety of bisbenzylisoquinoline congeners act to block the L-type Ca^{+2} channel by binding to the benzothiazepine site on the channel. The novel patterns exhibited by oxyacanthine and other bisbenzylisoquinoline alkaloid analogs in affecting allosteric coupling between the benzothiazepine site and the other receptors of the Ca^{+2} entry blocker receptor complex define a new class of Ca^{+2} entry blocker with binding properties distinct from diltiazem [186].

Treatment with oxyacanthine was found to relax K⁺-precontracted rat aortal rings, with an IC₅₀ of about 20 μ mol/liter. This relaxation was not inhibited by denudation of the endothelium or by premedication of the aortas with indomethacin, methylene blue or propranolol. In addition, the alkaloid inhibited contractions induced by norepinephrine, phenylephrine, and serotonin in a non-competitive manner, as well as competitively blocking calcium-induced contraction in a Ca⁺²-free depolarizing PSS. Blockade of calcium entry appears to be the major mechanism of the dilatory effect of this alkaloid, but its interaction with α -adrenoceptors was not excluded [188].

Oxyacanthine was screened for antimalarial activity against *Plasmodium falciparum* K1 strain and found to be active with an $IC_{50} = 0.31 \ \mu g/ml$ [308].

Oxyacanthine and ten other bisbenzylisoquinoline alkaloids were evaluated in the *in vitro* histamine release inhibition assay. This assay is one of the basic tests that is used in the evaluation of substances for antiallergic effects. The order of potency of inhibitory effect of those bisbenzylisoquinoline alkaloids that have been isolated from *Thalictrum* species was as follows: homoaromoline > aromoline > isotetrandrine > obaberine > tetrandrine. Berbamine and oxyacanthine were found to have no inhibitory effect [178].

The effects of berbamine, oxyacanthine, and berberine on 5-lipoxygenase lipid peroxidation in phospholipid liposomes induced by 2,2'-azo-(bis-2-amidinopropane)(AAPH), deoxyribose degradation, and their reactivities against the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) were studied. None of the alkaloids showed any appreciable effects in the inhibition of 5-lipoxygenase. Reactivity against DPPH increased in the following order: berberine < oxyacanthine < berbamine. Pro-oxidant effects of the alkaloids were excluded, since deoxyribose degradation was not influenced, as determined by the release of malondialdehyde [200].

Oxyacanthine, berbamine and berberine were evaluated for antiproliferative activity against the growth of HaCaT cells (a rapidly multiplying human keratinocyte cell line). Proliferation of the keratinocytes was determined directly by counting the dispersed cells under a phase-contrast microscope after 48 hours of treatment. The antiproliferative activity of these alkaloids were as follows: berbamine (IC_{50} 11 μ M) > oxyacanthine (IC_{50} 13 μ M) > berberine (IC_{50} 30 μ M). The standard was anthralin (IC_{50} 0.7 μ M). These results indicate that the three alkaloids tested were all antiproliferative agents when applied to HaCaT cells at micromolar concentrations [201].

13.2.33. Oxyberberine

159

Oxyberberine was evaluated for antimalarial activity against *Plasmodium falciparum in vitro* (two clones of human malaria; *Plasmodium falciparum* D-6 [Sierra Leone clone] and W-2 (Indochina clone) and *Plasmodium berghei in vivo* (mice). The alkaloid was found to be inactive in both *in vitro* and *in vivo* tests [228].

Four protoberberine alkaloids and one aporphine alkaloid were evaluated for lipoxygenase inhibition. Oxyberberine and columbamine were the most potent lipoxygenase inhibitors tested, with jatrorrhizine being intermediate, whereas berberine and magnoflorine exhibited only low potencies. A strong linear correlation between lipoxygenase inhibition and lipid antioxidant properties of these alkaloids was observed. These data suggest that the mechanism of lipoxygenase inhibition by these alkaloids may be linked to the inhibition of lipid hydroperoxide substrate accumulation [242].

13.2.34. Palmatine

The methanol extract of the bark of *Phellodendron amurense* was shown to possess strong antifeedant activity against the paper/wood termite pest *Reticulitermes speratus*. Partitioning and chromatography of the extract afforded four active antifeedant compounds, one of which was palmatine [215].

Forty-eight derivatives of berberine-type alkaloids were examined for their inhibition activity against the induction of mouse ear edema via application of 12-O-tetradecanoylphorbol-13-acetate (TPA). Palmatine chloride was found to possess inhibitory effects (29% inhibition). Berberine derivatives had stronger inhibitory activity than palmatine derivatives. Since berberine and some of its derivatives are present in Chinese traditional drugs, which are used in combined Kampo prescriptions, it is important to determine if such alkaloids possess carcinogenic inhibiting properties [221].

The sedative effect of palmatine on locomotor activity and concentration of monoamine in rats was studied via behavioral and biochemical methods. Palmatine was shown to enhance the hypomotility induced by α -methyl-p-tyrosine, reserpine, and 5-hydroxytryptophan, but reduced the hypermotility produced by L-dopa plus benserazide and p-chlorophenylalanine. In addition, the alkaloid significantly decreased the concentration of dopamine and homovanillic acid in the cortex and the concentration of serotonin in the brain stem, but increased the concentration of 5-HT in the cortex and 5-hydroxyindole acetic acid in the brain stem. These results suggest that the sedative action associated with palmatine may be related to the decrease in catecholamine concentration in the cortex and serotonin in the brain stem, and the increase in the concentration of 5-HT in the cortex and serotonin in the brain stem, and the increase in the concentration of 5-HT in the cortex and serotonin in the brain stem, and the increase in the concentration of 5-HT in the cortex [309].

Palmatine chloride was evaluated for antimalarial activity against *Plasmodium falciparum in vitro* (two clones of human malaria; *Plasmodium falciparum* D-6 [Sierra Leone clone] and W-2 (Indochina clone) and *Plasmodium berghei in vivo* (mice). The alkaloid exhibited an antimalarial potency equivalent to that of quinine *in vitro*, but was inactive *in vivo* [228].

Administration of palmatine hydroxide orally to dogs at a dosage of 30 mg/kg/day for 60 days produced a consistent impairment of primary and secondary spermatocytes and elongated spermatids (Stages IV-VIII). Primary and secondary spermatocytes were reduced by 60 and 68%, respectively, and the elongated spermatids were decreased by 58%. The number of spermatogonia and Sertoli cells remained unaltered. The production of immature and mature Leydig cells decreased by 66% and 27%, respectively, while protein, sialic acid and glycogen content, as well as acid phosphatase activity of testes and epididymides were lowered to varying extents. Testicular cholesterol was elevated significantly, and the weights to the testes and epididymides were significantly reduced. The antispermatogenic action of the alkaloid may be mediated via disturbances in Leydig cell function [310].

Palmatine was submitted to an *in vitro* antimicrobial screen using eight Gram-positive and eight Gram-negative bacteria, as well as one yeast. The alkaloid was inactive (MIC > 50 mg/l) against virtually all of the organisms, save the acid-fast rod *Mycobacterium phlei* (MIC = 25 mg/l) [239].

A series of fifty-three isoquinoline alkaloids were tested for cytotoxicity against A-549 (human lung carcinoma), HCT-8 (human colon carcinoma), KB, P-388, and L-1210 cells *in vitro*. Palmatine iodide was active only against KB (ED_{50} 4.00 µg/ml)[299].

The mechanism of the antiarrhythmic of palmatine was studied in the guinea pig. Palmatine (50 μ mol/l) was observed to markedly prolong the functional refractory period and decrease the epinephrine-induced automaticity in isolated guinea pig papillary muscles. However, it exerted no effect on the excitability and contractility of the muscles. At 10 μ mol/l, the alkaloid prolonged both action potential duration ₂₀ (APD₂₀) and action potential duration₉₀ (APD₉₀) of the guinea pig papillary muscles. The V_{max} was decreased at a concentration of 100 μ mol/l, but the action potential amplitude and resting potential were unaltered. These results indicated that the antiarrhythmic actions of palmatine may be due to the ability of the alkaloid to decrease automaticity and to prolong the functional refractory period and action potential duration of the myocardium [311].

Palmatine was determined to inhibit rabbit lens aldose reductase (IC₅₀ 3.8 x 10⁻⁵M) [210].

13.2.35. Protopine

Protopine was demonstrated to enhance 3 H- γ -aminobutyric acid (GABA) binding to rat brain synaptic membrane receptors. Using this phenomenon as an *in vitro* paradigm, protopine and other protopine alkaloids may be suggested to have benzodiazepine-like activity [264].

The mode of action of protopine on rabbit platelet aggregation was investigated in the metabolic system of adenosine 3',5'-cyclic monophosphate (cyclic AMP) *in vitro* experimental models. The inhibitory activity of the alkaloid on adenosine 5'-diphosphate induced platelet

aggregation was increased in the presence of prostaglandin I_2 or papaverine in platelets. Protopine elevated content of the basal cyclic AMP accumulation in platelets and enhanced activity of crude adenylate cyclase prepared from platelets, but was ineffective on cyclic AMP phosphodiesterase. Protopine has an inhibitory activity on platelet aggregation, activates adenylate cyclase, and increases cyclic AMP content in platelets, in addition to other inhibitory actions in the metabolic system of [312].

The mode of action of protopine on blood platelet aggregation was investigated in the metabolic system of arachidonic acid and in liberation of platelet activating factor using *in vitro* experimental models. The alkaloid inhibited the release of arachidonic acid and of platelet activating factor from platelet membrane phospholipids. Protopine also inhibited the conversion of prostaglandin G_2 to thromboxane A_2 , as well as carboxyheptyl imidazole, a thromboxane synthetase inhibitor. These experimental results indicate that protopine functions both as a phospholipase inhibitor and a thromboxane synthetase inhibitor, and suggest that the alkaloid may be useful as an antiplatelet drug in the therapy of thrombosis [313].

It has been observed that aldehyde reductase I has been inhibited by a number of benzylisoquinoline-derived alkaloids. The sensitivity of aldehyde reductase I to test compounds, including protopine, was compared with that of alcohol dehydrogenase and/or aldehyde reductase II, and alcohol dehydrogenase was shown to be more selective in binding the alkaloids. The kinetics of the inhibitory action of berberine, as well as other results suggest that the binding site of aldehyde reductase I for alkaloids is relatively large, has a hydrophobic nature, and probably contains a group with a positive charge. In addition, the binding site is likely not identical with the active center of the enzyme [227].

Protopine was observed to inhibit norepinephrine-induced tonic contraction in rat thoracic aorta in a concentration-dependent manner (25-100 µg/ml). Norepinephrine-induced phasic contraction was inhibited by only a high concentration (100 µg/ml). The alkaloid caused relaxation at the plateau of norepinephrine-induced tonic contraction. Neither indomethacin (20 µM) nor methylene blue (50 µM) antagonized this relaxing effect, and it still persisted in denuded rat aorta in the presence of nifedipine (2-100 µM). The alkaloid also inhibited high potassium (60 mM)-induced, calcium-dependent (0.03-3 mM) contraction of the rat aorta in a concentrationdependent manner. Neither cAMP nor cGMP level was changed by protopine, nor were the norepinephrine-induced formation of inositol monophosphate or the caffeine-induced contraction. $^{45}Ca^{+2}$ influx induced by either norepinephrine or K⁺ was inhibited by protopine in a concentration-dependent fashion. Protopine relaxed rat thoracic aorta mainly via the suppression of Ca⁺² influx through both voltage- and receptor-operated calcium channels [314].

The anticholinergic and antihistaminic properties of protopine and some derivatives were studied on the isolated guinea-pig ileum. Cumulative dose-response curves for acetylcholine were displaced to the right by protopine in a parallel, and were thus characteristic for competitive antagonism. The effect was qualitatively comparable to atropine, although higher concentrations of protopine (> 10^{-5} M) decreased the maximal contractions of acetylcholine, this effect indicating some noncompetitive antagonism. Atropine was estimated to be about 660 times more potent
than protopine as an anticholinergic agent. Incubation studies using histamine as the agonist indicated that protopine does not have true antihistaminic properties. Protopine was concluded to be only a weak anticholinergic alkaloid [315].

Protopine was shown to be an inhibitor of phosphoinositide breakdown. Thirty minutes after intraperitoneal administration of the alkaloid (up to 200 mg/kg) to mice, tail bleeding was observed to be markedly prolonged in a dose-dependent manner. However, administration of protopine did not prevent acute thromboembolic death in these animals. The antihemostatic effect of protopine and other Chinese herbal medicinals may be explained by their *in vitro* antiplatelet and vasorelaxing actions [316].

Protopine was observed to inhibit the aggregation and ATP release of rabbit platelets induced by ADP, arachidonic acid, PAG, collagen and ionophore A23187. Although the platelet aggregation caused by thrombin was not inhibited by protopine (100 μ g/ml), the release reaction was partially suppressed. Protopine also inhibited the platelet aggregation caused by ADP, arachidonic acid, PAF, and collagen in rabbit platelet-rich plasma. The thromboxane B₂ formation of washed platelets caused by arachidonic acid, collagen, ionophore A23187 and thrombin was suppressed by protopine. The alkaloid also inhibited the intracellular calcium increase caused by arachidonic acid in quin-2/AM loaded rabbit platelets. In the presence of indomethacin, the intracellular calcium increase caused by collagen and PAF was completely suppressed by protopine, and the intracellular calcium increase caused by thrombin was partially inhibited. The phosphoinositides breakdown caused by collagen and PAF was inhibited by the alkaloid, but that by thrombin was not affected significantly. Protopine did not cause the elevation of cyclic AMP level of platelets. The antiplatelet effect of protopine was due to inhibition of thromboxane formation and phosphoinositides breakdown, which then was followed by a decrease in intracellular calcium [317].

Protopine was shown to exhibit an inhibitory action on blood platelet aggregation induced by collagen, arachidonic acid, and ADP *in vitro*. In addition, protopine demonstrated equal or superior inhibitory effects when compared with that of the standard drugs acetylsalicylic acid or dipyridamole [266].

The effects of protopine on blood platelet aggregation were investigated in *in vivo*, *ex vivo*, and *in vitro* models. Protopine (0.25 mM/kg, p.o.) displayed stronger inhibitory effects on endotoxin-induced disseminated intravascular coagulation (DIC) in rats and on pulmonary thromboembolism in mice compared with that of acetylsalicylic acid and dipyridamole (1.0 mM, kg, p.o., respectively), and also inhibited collagen- and ADP-induced rat *ex vivo* blood platelet aggregation. The alkaloid was noted to intensify the inhibitory effect of PGI₂ on platelet aggregation, but there was no effect on PGI₂ generation from rat arterial tissue. Administration of acetylsalicylic acid (0.1 mM/kg, p.o.) strongly inhibited the PGI₂ generation. These results suggest that protopine should serve as an anti-thrombotic agent without inhibitory effects on PGI₂ generation, as observed with acetylsalicylic acid [318].

Protopine was found to dose-dependently inhibit in vitro rabbit platelet aggregation induced by ADP, arachidonic acid (AA), collagen, or aggregoserpentin of *Trimeresurus*

The Thalictrum Alkaloids

mucrosquamatus venom (TMVA). The IC₅₀ values were 25.3, 30.5, 46.9, and 33.4 μ mol/l, respectively. Protopine (10, 20 mg/kg, i.v.) was found to inhibit the platelet aggregation produced by these inducers, with the effects (maximal at 5 minutes) lasting one hour. Via the use of fluorphotometry and RIA procedures, it was observed that protopine suppressed the release of 5-HT from platelets during collagen-, AA-, or TMVA-induced aggregation *in vitro*. Protopine did not block the formation of thromboxane A₂ during AA-induced aggregation, nor did it increase the content of cAMP in rabbit platelets. The alkaloid did, however, increase the content of cGMP in rabbit platelets. The antiplatelet effect of protopine may be related to an increase in cGMP in rabbit platelets, and to the suppression of the release of the active substances from platelets [319].

Protopine (0.5 - 5.0 mcg/ml) exhibited smooth muscle relaxant activity on the isolated ileum of guinea pig, rabbit, and albino rat, and a marked relaxation of the intestine *in situ* (5 mg/kg, i.v.) of the anesthetized dog. It addition, the alkaloid demonstrated hydrocholeretic activity at the same dose in the anesthetized dog (with cystic duct ligated and common bile duct cannulated). Protopine (2000 μ g/ml) also exhibited prominent antifungal activity as assessed against the spore germination of a number of plant pathogenic fungi [338].

13.2.36. Puntarenine

Puntarenine was evaluated for *in vitro* antimicrobial activity against *Candida albicans*, *Cryptococcus neoformans*, *Mycobacterium intracellularae*, *Trichophyton mentagrophytes*, and *Saccharomyces cerevasiae*, as well as representative Gram-positive and Gram-negative bacteria. The alkaloid showed marginal activity against the dermatophyte *Trichophyton mentagrophytes* (25 μ g/ml) and the yeast *Saccharomyces cerevasiae* (50 μ g/ml), but was inactive against all other test organisms [231].

13.2.37. Reticuline

The antimicrobial activity of reticuline against a series of bacteria and fungi was evaluated via *in vitro* screening. The alkaloid failed to demonstrate any inhibitory activity against the growth of the bacteria, but was moderately inhibitory to the growth of the superficial fungus *Trichophyton rubrum*, and only weakly inhibitory to the growth of the superficial fungus *Microsporum gypseum* [282].

The antimalarial activity $[ED_{50} (ng/ml)]$ of reticuline was determined as follows: *Plasmodium falciparum* Strain D-6 (4050) and *P. falciparum* Strain W-2 (4470)[303].

The *in vitro* antimicrobial activity of reticuline was investigated by agar diffusion and agar dilution methods against various Gram-postive (*Staphylococcus aureus*, *Staphylococcus epidermidis*, *Streptococcus pyogenes*, *Streptococcus faecalis*, *Bacillus subtilis*) and Gram-negative

bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium, Enterobacter aerogenes, Serratia marcescens, Serratia sonnei), as well as the acid-fast organism Mycobacterium phlei, and the yeast Candida albicans. Reticuline exhibited no significant activity against any of the test organisms [283].

A study was undertaken in order to understand the effect of reticuline and coclaurine on conflict and learning behavior. The results were not available in the abstract [320].

13.2.38. Tetrahydroberberine (Canadine)

Canadine failed to exhibit reverse transcriptase inhibitory properties against both HIV-1RT (p66/p51)(Human immunodeficiency virus type 1 reverse transcriptase)($IC_{50} > 200 \ \mu g/ml$) and HIV-2RT (p68/p55)(Human immunodeficiency virus type 2 reverse transcriptase)($IC_{50} > 200 \ \mu g/ml$)[212].

Forty-eight derivatives of berberine-type alkaloids were examined for their inhibition activity against the induction of mouse ear edema via application of 12-O-tetradecanoylphorbol-13-acetate (TPA). Canadine was observed to displayed inhibitory effects (43% inhibition). Since berberine and some of its derivatives are present in Chinese traditional drugs, which are used in combined Kampo prescriptions, it is important to determine if such alkaloids possess carcinogenic inhibiting properties [221].

The scavenging and iron-reducing properties of a series of benzylisoquinoline alkaloids and synthetic benzylisoquinoline compounds was studied. Candadine was found to increase deoxyribose degradation by Fe^{+3} -EDTA + H_2O_2 via a mechanism related to generation of superoxide anion [265].

Canadine was evaluated for antimalarial activity against *Plasmodium falciparum in vitro* (two clones of human malaria; *Plasmodium falciparum* D-6 [Sierra Leone clone] and W-2 (Indochina clone) and *Plasmodium berghei in vivo* (mice). The alkaloid was found to be inactive in both *in vitro*, and *in vivo* tests [228].

Canadine was evaluated in the human immunodeficiency virus reverse transcriptase assay and found to be inactive (IC₅₀ > 200 μ g/ml)[229].

(+/-)-Canadine hydrochloride was dissolved in culture medium and evaluated for its activity against two protozoa, *Plasmodium falciparum* (K1, multi-drug resistant strain) and *Entamoeba histolytica* (NIH 200). The alkaloid was not toxic to KB cells (IC₅₀ 730 μ M), nor was it active against *P. falciparum* (IC₅₀ > 147 μ M). In addition, it was inactive against *E. histolytica* (IC₅₀ 126 μ M) [230].

Some protoberberine and structurally related alkaloids were tested for inhibitory activity on porcine pancreatic elastase (PPE) and human sputum elastase (HSE). Berberine chloride significantly inhibited the elastolytic activity of both enzymes, but tetrahydroberberine had no effect. It appears that the quaternary nitrogen atom of these alkaloids plays an important role in

The Thalictrum Alkaloids

the inhibition of elastolytic activity. The amidolytic activity of the elastases was not affected by any of the test alkaloids [240].

Canadine was determined to inhibit rabbit lens aldose reductase (IC₅₀ 4.9 x 10⁻⁴M) [210].

13.2.39. Tetrahydrocolumbamine (Isocorypalmine)

Tetrahydrocolumbamine was shown to exhibit an inhibitory action on blood platelet aggregation induced by collagen, arachidonic acid, and ADP in vitro [266].

13.2.40. Tetrandrine

The intraperitoneal administration of tetrandrine into rats suppressed subcutaneous rat air pouch leukocyte infiltration that was induced by interleukin-1 (IL-1), tumor necrosis factor (TNF), and platelet-activating factor (PAF), at an ED_{50} 20-30 mg/kg/3 days. The utilization of tetrandrine may be of value in the therapy of chronic inflammatory diseases where IL-1, TNF, and PAF play in role in pathogenesis [181].

Tetrandrine was screened for antiplasmodial and antiamoebic activities via the use of *in vitro* microtests. The alkaloid was characterized by the following: IC_{50} 0.57 µM against a multidrug-resistant strain of *Plasmodium falciparum* (K1)(standard - chloroquine phosphate, IC_{50} 0.20 µM); IC_{50} 16.9 µM against *Entamoeba histolytica* (standard - metronidazole [176].

Kinetic analysis of luminol-dependent chemiluminescence demonstrated that a solution of tetrandrine (20 μ M) was found to inhibit the generation of various types of reactive oxygens by guinea-pig neutrophils. The results of these and other experiments suggest that tetrandrine inhibits the active oxygen generation via the stabilization of plasma membrane and the inhibition of phospholipid-dependent protein kinase (PKC) and NADPH oxidase activation [182].

Bisbenzylisoquinoline alkaloids block Ca^{+2} uptake through L-type Ca^{+2} channel and modulate binding of ligands to four distinct sites (dihydropyridine, benzothiazepine, aralkylamine, and (diphenylbutyl)piperidine) in the Ca^{+2} entry blocker receptor complex of the channel. Tetrandrine blocks the L-type Ca^{+2} channel through interaction at the benzothiazepine (diltiazem) site. The novel patterns exhibited by tetrandrine and other bisbenzylisoquinoline alkaloid analogs in affecting allosteric coupling between the benzothiazepine site and the other receptors of the Ca^{+2} entry blocker receptor complex define a new class of Ca^{+2} entry blocker with binding properties distinct from diltiazem [186].

Tetrandrine was shown to overcome resistance in the multidrug-resistant subline, Ch^R-24, derived from human KB carcinoma cells to vincristine, actinomycin D, and daunomycin, and partially overcame resistance to Adriamycin [187].

The effect of tetrandrine on experimental allergic encephalitis (EAE) was investigated in Lewis rats. Amelioration of the acute-phase of EAE was only minimal, but the incidence of relapsing EAE was reduced by 41% for berbamine at a non-toxic treatment dosage of 60 mg/kg via gavage on alternate days. These results suggest that tetrandrine, and perhaps other bisbenzylisoquinoline alkaloids, may have a potential role in the therapy of progressive multiple sclerosis [189].

The anti-inflammatory and immunosuppressive properties of berbamine and tetrandrine were compared. These comparative *in vitro* studies demonstrated that tetrandrine had significantly greater suppressive effects on adherence, locomotion and ³H-deoxyglucose uptake of neutrophils, as well as the mitogen-induced lymphocyte responses and mixed lymphocyte reactions. In addition, tetrandrine displayed anti-oxidant activity while berbamine did not. However, berbamine showed a significantly greater capacity for inhibition of NK cell cytotoxicity. These results indicated that tetrandrine was superior to berbamine in most aspects of anti-inflammatory and immunosuppressive activity [190].

A comparison of the effects of berbamine and tetrandrine in mice revealed that both alkaloids were equipotent in terms of enhancement of antibody responses and suppression of delayed-type hypersensitivity (DTH) responses to sheep erythrocyte cell antigens. Both alkaloids were equally active when administered to mice during the induction and expression phases of DTH. Neither alkaloid affected antibody response in brucellosis-infected mice, while both caused equipotent suppression of DTH. Berbamine, however, caused a significant suppression of spleen weight, while tetrandrine did not. Furthermore, berbamine produced a significantly greater enhancement of spleen colony counts of *Brucella abortus* than did tetrandrine. Bioactive dosage failed to induce toxic effects, as determined by short-term toxicology studies [191].

Berbamine and tetrandrine were investigated for their actions on guinea-pig airway microvascular leakage, an animal model of asthma and allergic inflammation. There was significant inhibition of microvascular leakage via tetrandrine with all four allergic mediators, but berbamine was only able to suppress microvascular leakage induced by platelet-activating factor and bradykinin, but not by leukotriene D4 or histamine. These results indicate that tetrandrine possesses a broad-spectrum inhibitory activity on allergic mediators, and thereby may have value in the pharmacotherapy of diseases in which these mediators are involved in pathogenesis [192].

The cytotoxic and antimalarial activities of tetrandrine were determined as follows: Cytotoxic activity $[ED_{50} (\mu g/ml)]: P-388 (0.40), KB-3 (2.1), KB-V1 (3.7);$ Antimalarial activity $[ED_{50} (ng/ml)]: Plasmodium falciparum$ Strain D-6 (179) and P. falciparum Strain W-2 (160)[279].

The relaxant activity of obaberine was examined in rat isolated uterus and its inhibitory potency compared with that of tetrandrine. Obaberine was observed to relax KCl-depolarized rat uterus and totally or partially inhibit oxytocin-induced rhythmic contractions, and was similar to that produced by tetrandrine. Obaberine inhibits sustained K⁺-induced contraction with the same potency as tetrandrine when extracellular calcium is present, but the rhythmic contraction induced by oxytocin was diminished to a much lesser extent. This observation indicates that the relaxant mechanism of obaberine may be mainly related to Ca⁺² influx, possibly through voltage-operated channels. In Ca⁺²-free medium, obaberine relaxed oxytocin- and vanadate-induced uterine

The Thalictrum Alkaloids

contractions, while tetrandrine did not. These results suggest that obaberine have an intracellular site of action, and may interact with a stereospecific receptor site at the intracellular level [307].

Tetrandrine and berbamine were evaluated in terms of their production of inhibitory effects on the production of interleukin-1 and tumor necrosis factor (TNF_{α}) by monocytes and macrophages, and TNF_{β} production by lymphocytes. Tetrandrine was found to be 6-18 times more potent than berbamine in these tests. In addition, tetrandrine was found to significantly suppress phosphoinositide turnover while berbamine did not. Taken together, these findings suggest that tetrandrine may be superior to berbamine for chronic inflammatory diseases where inflammatory mediators and cytokines play a major role in pathogenesis (as in silicosis), while berbamine may be somewhat superior for the treatment of autoimmune disease where immunological mechanisms have a greater role in pathogenesis (as in experimental allergic encephalitis in rats). Comparative data regarding these two alkaloids may provide valuable insights into structure-activity relationships, and the design and development of synthetic analogues and congeners useful in the therapy of chronic inflammatory and autoimmune diseases [196].

Tetrandrine was shown to be a potent inhibitor of particle-stimulated oxygen consumption, superoxide release, and hydrogen peroxide secretion by alveolar macrophages. The alkaloid also exhibited substantial binding affinity for membrane lipids and alveolar macrophages. The data indicated a strong relationship between the antifibrotic potential of tetrandrine and its ability to bind alvelolar macrophages and to inhibit particle-induced activation of these macrophages. Tetrandrine should serve as a useful probe in the evaluation of the role of alveolar macrophages in pulmonary fibrosis [305].

The effects of tetrandrine on energy metabolism in isolated rat alveolar type II cells (cells which play a critical role in the maintenance of normal lung function) were studied. Incubation of type II cells with tetrandrine produced a reduction in cellular ATP content, but there was no effect of the alkaloid on cellular oxygen consumption. Tetrandrine produced an increase in internal calcium levels of type II cells, and incubation of the cells with calcium ionophore, 4-bromo A-23187, led to increased amounts of cellular calcium and reductions in ATP levels, with no effect on oxygen consumption. Exposure of isolated lung mitochondria to calcium produced a concentration-dependent reduction in ATP synthesis with no effect on ATP synthesis. These results were consistent with the belief that tetrandrine produced an increase in type II cell internal calcium levels which, in turn, led to reduced rates of mitochondrial ATP synthesis [198].

Tetrandrine and ten other bisbenzylisoquinoline alkaloids were evaluated in the *in vitro* histamine release inhibition assay. This assay is one of the basic tests that is used in the evaluation of substances for antiallergic effects. The order of potency of inhibitory effect of those bisbenzylisoquinoline alkaloids that have been isolated from *Thalictrum* species was as follows: homoaromoline > aromoline > isotetrandrine > obaberine > tetrandrine. Berbamine and oxyacanthine were found to have no inhibitory effect [178].

At a dosage of 5 mg/kg (i.v.), tetrandrine was found to inhibit the pressor action of norepinephrine release induced by electrical stimulation of spinal cord T_{11} - L_2 . However, tetrandrine (5 mg/kg, i.a.) did not obviously attenuate the hypertensive responses to norepinephrine (0.51-16.91 µg/kg, i.v.), indicating that the alkaloid did not affect α^1 -adrenoceptor-mediated vasoconstriction. Tetrandrine (5 mg/kg, i.a.) was found to decrease the pressor responses to norepinephrine (0.05 and 0.17 µg/kg, i.v.) and markedly reduce the dose-dependent hypertensive responses to a selective α_2 -adrenoceptor agonist (B-HT₉₂₀, i.v.), suggesting that the alkaloid reduced α_2 -adrenoceptor-mediated vasoconstriction [321].

Tetrandrine was found to not only reverse multidrug resistance, but also to potential the effectiveness of a primary drug (antineoplastic, antimalarial, tuberculostatic) against a drug-resistant cell. This action is apparently via the reversal or inhibition of a glycoprotein pump that is present in a multidrug-resistant cell such that the cell actually accepts a greater concentration of the drug than does a drug-resistant cell. Treatment of athymic nude mice bearing doxorubicin-resistant uterine leiomyosarcoma cells with (S)-(+)-tetrandrine (3 mg over 4 days), followed by treatment two days later with doxorubicin (5.5 mg/kg) resulted in an approximate inhibition of tumor growth by 50%. In addition, tetrandrine was noted to potentiate the antimalarial action of chloroquine in both sensitive and multidrug-resistant *Plasmodium falciparum* [306].

Tetrandrine, a Chinese medicinal calcium antagonist, was found to decrease blood pressure and heart rate in anesthetized rabbits [288].

13.2.41. Thalicarpine

Thalicarpine was observed to lack inhibitory activity (inactive) against both HIV-1RT (p66/p51)(Human immunodeficiency virus type 1 reverse transcriptase) and HIV-2RT (p68/p55)(Human immunodeficiency virus type 2 reverse transcriptase) [212].

The cytotoxicity of thalicarpine (thaliblastine, TBL, NSC-68075) and/or cisplatin (DDP) in DDP-sensitive (O-342) and -resistant (O-342/DDP) rat ovarian tumor cell lines was comparatively determined via the utilization of the MTT assay. The ID₅₀ of DDP was found to be 6.2 μ M in O-342 cells and 23.4 μ M in O-342/DDP cells, while, vice versa, the ID₅₀ of thalicarpine was 39.3 μ M in the sensitive line and 27.3 μ M in the resistant line. In addition, simultaneous exposure of cells to DDP and thalicarpine showed a significant superiority over DDP alone in O-342 cells, as evaluated by variance analysis (P < 0.001). This enhancing effect of thalicarpine on DDP cytotoxicity was not observed in the resistant cells. These results suggest that thalicarpine could be a candidate for the treatment of DDP-resistant ovarian tumors [322].

Thalicarpine (thaliblastine, TBL, NSC-68075) was found to reverse multidrug resistance in doxorubicin (ADR)-resistant murine leukemic P388/R-84 cells by direct interaction with Pglycoprotein, thereby increasing cellular ADR retention [323].

The antiproliferative activity of the nonmyelotoxic antitumor agent thalicarpine (thaliblastine, TBL) on two human glioma cell lines was investigated. The antiproliferative

The Thalictrum Alkaloids

activity was strongly dependent on concentration and time of incubation, and the ID_{50} in T406 and GW27 glioma lines was found to be 5.1 µg/ml and 8.2 µg/ml (7.0 µM and 11.2 µM), respectively. These results suggest that further *in vitro* experiments on the mechanism of TBL should be undertaken and *in vivo* investigations begun on human glioma xenografts in nude mice to address the question of whether the alkaloid might be a candidate for the treatment of brain tumors in human patients [324].

13.2.42. Thalicminine

The effects of thalicminine on guinea-pig isolated ileum, trachea, aorta, and pulmonary artery, as well as blood pressure and heart rate of anesthetized guinea-pigs were studied. Solutions (1-300 μ M) of the alkaloid were observed to produce relaxation of longitudinal ileal segments, with the relaxation produced by the 300 μ M solution being followed by vigorous contraction. Although the alkaloid produced only mild relaxation of the trachea, solutions (0.3-300 μ M) of thalicminine caused a concentration-dependent relaxation of epinephrine-precontracted aorta and main pulmonary artery. Propranolol (1 μ M) failed to reduce the relaxation or to affect the EC₅₀ of thalicminine on the ileum or the pulmonary artery, but quinacrine (10 μ M) potentiated thalicminine-induced relaxation and reduced the EC₅₀ on the aorta and the pulmonary artery. These results suggested that the alkaloid was involved in the interference of the metabolism of arachidonic acid. Intravenous injections (0.37-1.1 mg/kg) of the alkaloid to anesthetized animals produced a transient reduction of both systolic and diastolic blood pressure, as well as heart rate, with both of these signs returning to normal values in about 10 minutes [325].

13.2.43. Thalicsiline

Thalicsiline (73), a new ajaconine-type dipterpene alkaloid isolated from extracts of the roots of *T. sessile* Hayata, was observed to possess anti-inflammatory activity as measured by a 42% reduction in carageenan-induced inflammation in the hindfoot of Sprague Dawley rats when the alkaloid was intraperitoneally administered at a dosage of 20 mg/kg x 2 [123,127].

13.2.44. Thalidasine

Thalidasine, which was isolated from extracts of the root of the Chinese *Thalictrum* fargesii, was found to possess calcium channel antagonistic properties, with actions on both voltage-dependent and receptor-dependent channels [86].

13.2.45. Thalidezine

The total alkaloids of the Chinese *Thalictrum glandulosissimum* (Finet et Gagnep.) W.T. Wang et S.H. Wang, and the major alkaloid of the plant, hernandezine, were effectively employed in the treatment of P388 leukemia, S180 ascites tumor, and C26 colon tumor in mice. Although hernandezine markedly inhibited the *in vitro* growth of mouse L1210 cells and human KB oral cancer cells, the alkaloid was characterized by only a low inhibition on normal hemopoietic progenitor cells (CFU-GM). Preliminary results demonstrated that hernandezine blocked cell-cycle transfer from the G_1 to the S phase, suggesting that its action may be cell cycle-specific [RCH]. It was also demonstrated that two other bisbenzylisoquinoline alkaloids isolated from the same plant, thalidezine and isothalidezine, possessed a similar inhibitory effect on the L1210 cells [277,278].

13.2.46. Thalifabatine

Thalifabatine, an alkaloid of the Chinese *Thalictrum faberi* Ulbr., was found to possess significant cytotoxicity as measured against the P-388 cell line [129].

13.2.47. Thalifaberidine

In 1994, Lin et al. evaluated the phenolic alkaloid fraction of an extract of the Chinese *Thalictrum faberi* Ulbr., as well as three of its contained phenolic alkaloids (thalifaberidine (76), thalifaberine (77), and thalifasine), for cytotoxic, antimalarial, and HIV-reverse transcriptase inhibitory activities. The phenolic alkaloid fraction and the three alkaloids were characterized by significant cytotoxic activities as measured (ED₅₀ about 0.6-20 µg/ml against the following cell lines: BCA-1 (human breast cancer), HT-1080 (human fibrosarcoma), Lu-1 (human lung cancer), Col-2 (human colon cancer), KB (human oral epidermoid carcinoma), KB-V (vinblastine-resistant KB), P-388 (murine lymphoid leukemia), A431 (human epidermoid cancer), LNCaP (hormone-dependent human prostatic cancer), ZR-75-1 (hormone-dependent human breast cancer), and U373 (human glioblastoma). Among the three alkaloids, thalifasine demonstrated the strongest antimalarial activity, as measured against the chloroquine-sensitive (D-6)(ED₅₀ = 238 ng/ml) and chloroquine-resistant (W-2)(ED₅₀ = 49.3 ng/ml) clones of *Plasmodium falciparum*. Although the phenolic alkaloid fraction displayed weak activity (IC₅₀ = 139 µg/ml) in the HIV-reverse transcriptase inhibition assay, the three alkaloids were inactive [129].

13.2.48. Thalifaberine

In 1994, Lin et al. evaluated the phenolic alkaloid fraction of an extract of the Chinese *Thalictrum faberi* Ulbr., as well as three of its contained phenolic alkaloids (thalifaberidine (76), thalifaberine (77), and thalifasine), for cytotoxic, antimalarial, and HIV-reverse transcriptase inhibitory activities. The phenolic alkaloid fraction and the three alkaloids were characterized by significant cytotoxic activities as measured (ED₅₀ about 0.6-20 µg/ml against the following cell lines: BCA-1 (human breast cancer), HT-1080 (human fibrosarcoma), Lu-1 (human lung cancer), Col-2 (human colon cancer), KB (human oral epidermoid carcinona), KB-V (vinblastine-resistant KB), P-388 (murine lymphoid leukemia), A431 (human epidermoid cancer), LNCaP (hormone-dependent human prostatic cancer), ZR-75-1 (hormone-dependent human breast cancer), and U373 (human glioblastoma). Among the three alkaloids, thalifasine demonstrated the strongest antimalarial activity, as measured against the chloroquine-sensitive (D-6)(ED₅₀ = 238 ng/ml) and chloroquine-resistant (W-2)(ED₅₀ = 49.3 ng/ml) clones of *Plasmodium falciparum*. Although the phenolic alkaloid fraction displayed weak activity (IC₅₀ = 139 µg/ml) in the HIV-reverse transcriptase inhibition assay, the three alkaloids were inactive [129].

13.2.49. Thalifabine

Thalifabine, an alkaloid of the Chinese *Thalictrum faberi* Ulbr., was found to possess significant cytotoxicity as measured against the P-388 cell line [129].

13.2.50. Thalifaboramine

Thalifaboramine (79), an alkaloid of the Chinese *Thalictrum faberi* Ulbr., was found to possess significant cytotoxicity as measured against the P-388 cell line [129,133].

13.2.51. Thalifalandine

In 1986, Lin et al. demonstrated the cytotoxicity of eight thalifaberine-type alkaloids that had been obtained from extracts of the Chinese *Thalictrum faberi* Ulbr. against the P388 cell line (murine lymphoid leukemias) [83]. In particular, thalifalandine (80) possessed significant cytotoxicity against P388 and L1210 leukemia cells having an IC₅₀ of 0.7-1.8 μ g/ml [83].

Thalifalandine was found to possess significant cytotoxicity as measured against the P-388 cell line [129].

13.2.52. Thalifaramine

Thalifaramine (9), an alkaloid of the Chinese *Thalictrum faberi* Ulbr., possessed significant cytotoxicity as measured against the P-388 cell line [129].

13.2.53. Thalifarapine

Thalifarapine (81), an alkaloid of the Chinese *Thalictrum faberi* Ulbr., was found to possess significant cytotoxicity as measured against the P-388 cell line [129].

13.2.54. Thalifarazine

Thalifarazine (10), an alkaloid of the Chinese *Thalictrum faberi* Ulbr., was found to possess significant cytotoxicity as measured against the P-388 cell line [129].

An ethanol extract of the above-ground parts of the Taiwanese *Thalictrum sessile* Hayata exhibited significant cytotoxicity against in vitro tissue culture cells in human KB, A-549 lung carcinoma and HCT-8 colon tumor, as well as murine P-388 and L-1210 lymphocytic leukemia [62]. Bioassay-guided fractionation of this extract led to the isolation and identification of two cytotoxic aporphinoid alkaloids; the oxoaporphine liriodenine and the aporphine-benzylisoquinoline dimer (+)-thalifarazine. The following are the activities of thalifarazine against various tumor cell lines, with the LD₅₀ values (μ g/ml) expressed in parentheses: KB (1.50), A-549 (6.53), HCT-8 (4.30), P-388 (3.75), and L-1210 (5.69) [62].

13.2.55. Thalifaricine

Thalifaricine (8), an alkaloid of the Chinese *Thalictrum faberi* Ulbr., possessed significant cytotoxicity as measured against the P-388 cell line [129].

13.2.56. Thalifaronine

Thalifaronine (12), an alkaloid of the Chinese *Thalictrum faberi* Ulbr., possessed significant cytotoxicity as measured against the P-388 cell line [129].

13.2.57. Thalifasine

In 1994, Lin et al. evaluated the phenolic alkaloid fraction of an extract of the Chinese *Thalictrum faberi* Ulbr., as well as three of its contained phenolic alkaloids (thalifaberidine (76), thalifaberine (77), and thalifasine), for cytotoxic, antimalarial, and HIV-reverse transcriptase inhibitory activities. The phenolic alkaloid fraction and the three alkaloids were characterized by significant cytotoxic activities as measured (ED₅₀ about 0.6-20 µg/ml against the following cell lines: BCA-1 (human breast cancer), HT-1080 (human fibrosarcoma), Lu-1 (human lung cancer), Col-2 (human colon cancer), KB (human oral epidermoid carcinona), KB-V (vinblastine-resistant KB), P-388 (murine lymphoid leukemia), A431 (human epidermoid cancer), LNCaP (hormone-dependent human prostatic cancer), ZR-75-1 (hormone-dependent human breast cancer), and U373 (human glioblastoma). Among the three alkaloids, thalifasine demonstrated the strongest antimalarial activity, as measured against the chloroquine-sensitive (D-6)(ED₅₀ = 238 ng/ml) and chloroquine-resistant (W-2)(ED₅₀ = 49.3 ng/ml) clones of *Plasmodium falciparum*. Although the phenolic alkaloid fraction displayed weak activity (IC₅₀ = 139 µg/ml) in the HIV-reverse transcriptase inhibition assay, the three alkaloids were inactive [129].

13.2.58. Thalifendine

Thalifendine chloride was dissolved in culture medium and evaluated for its activity against two protozoa, *Plasmodium falciparum* (K1, multi-drug resistant strain) and *Entamoeba histolytica* (NIH 200). The alkaloid was not toxic to KB cells ($IC_{50} > 698 \mu$ M), and was active against *P. falciparum* (IC_{50} 7.9 μ M), but inactive against *E. histolytica* (IC_{50} 115 μ M). In assessing relative *in vitro* cytotoxicity to antiplasmodial activity, berberine had the least favorable ratio (8), while jatrorrhizine had the most favorable ratio (> 106) of the alkaloids tested. Thalifendine had an intermediate ratio ((> 88). The results lend some support to the utilization of plants containing protoberberine alkaloids for the treatment of malaria [230].

Thalifendine chloride was found to exhibit cytotoxic activity against cultured P-388 (murine lymphocytic leukemia) cells (0.84 μ M)[336].

13.2.59. Thaliporphine

Thaliporphine was observed to inhibit the formation of nitrites/nitrates caused by lipopolysaccharide (LPS) in J774.2 macrophages. This inhibition was similar to that produced by cycloheximide, N^6 -methyl-L-arginine and dexamethasone. The results of these and other studies in this report demonstrated that thaliporphine inhibited LPS induction of NO synthase expression, and that the mechanism of action of the alkaloid was via inhibition of LPS-stimulated interleukin-1 β synthesis in macrophages. Pretreatment of anesthetized rats with thaliporphine

prior to LPS partially restored the fall in mean arterial pressure and the vascular hyporeactivity to norepinephrine 3 hours after LPS injection. Since thaliporphine selectively inhibits expression of inducible NO synthase, the alkaloid may be of potential in the therapy of endotoxemia [326].

Thaliporphine (0.1-100 μ M), a potent vasoconstrictor, was observed to produce contractions in the isolated guinea-pig ileum in a concentration-dependent manner. These contractions were not affected by pretreatment of the ileum with tetrodotoxin, phentolamine, prazosin, propranolol, naloxone, atropine, diphenhydramine, methysergide, indomethacin or staurosporine. However, the contraction was markedly inhibited by nifedipine and verapamil, suggesting that thaliporphine produces intestinal smooth muscle contraction by a direct effect on muscle mediated by an increased Ca⁺² influx through voltage-dependent Ca⁺² channels [327].

The effects of thaliporphine on contractions and electrophysiological properties of cardiac tissues were examined in rat left atrial and right ventricular strips. The results indicated that thaliporphine is a weak Ca^{+2} channel agonist with strong Na^+ and K^+ channel blocking activities. The alkaloid possessed a positive inotropic effect that may be due to an increase in calcium entry mediated via partial activation of calcium channels or by inhibition of K^+ efflux. Inhibition of K^+ efflux would result in prolongation of APD₅₀ and contribute to the negative chronotropic effect of the alkaloid [328].

13.2.60. Thalrugosine

The cytotoxic and antimalarial activities of thalrugosine were determined as follows: Cytotoxic activity $[ED_{50} (\mu g/ml)]$: P-388 (0.36), KB-3 (3.4), KB-V1 (11); Antimalarial activity $[ED_{50} (ng/ml)]$: *Plasmodium falciparum* Strain D-6 (65.1) and *P. falciparum* Strain W-2 (78.0)[279].

Thalrugosine was found to inhibit the growth of cultured *Plasmodium falciparum* strains D-6 and W-2, and to display nonselective cytotoxicity with a battery of cultured mammalian cells. These data were used to calculate a selectivity index $(ED_{50}$ in cultured mammalian cells/ED₅₀ in cultured *Plasmodium falciparum* strains). Agents that are useful antimalarial drugs, such as quinine and artemisinin, typically display selectivity indices that are > 1000. The ED₅₀ (ng/ml) of thalrugosine against *Plasmodium falciparum* strain D-6 was 120.6, while that associated with strain W-2 was 229.7. The following is a summary of the cytotoxic activities (ED₅₀, µg/ml) of thalrugosine, along with the cytotoxicity/antimalarial activity ratio (selectivity index) with the first number in parentheses being the D-6 strain selectivity index and the second number being the W-2 strain selectivity index: BCA-1 [Human Breast Cancer] - 5.0 (42,22); HT-1080 [Human Fibrosarcoma] - 10.0 (83,44); LUC-1 [Human Lung Cancer] - 9.7 (80,42); MEL-2 [Human Melanoma] - 14.9 (124,65); COL-1 [Human Colon Cancer] - 11.1 (92,48); KB [Human Oral Epidermoid Carcinoma] - 6.5 (54,28); KB-V1 [Vinblastine-resistant KB] - 3.7 (31,16); P-388 [Murine Lymphoid Neoplasm] - 7.4 (61,32); A-431 [Human Epidermoid Carcinoma] - 4.9 (41,21); LNCaP [Hormone Dependent Human Prostate Cancer] - 5.9 (49,26); ZR-75-1 [Hormone

The Thalictrum Alkaloids

Dependent Human Breast Cancer] - 2.5 (21,11). Based on the data that was generated and compared, thalrugosine and other bisbenzylisoquinoline alkaloids do not appear to be promising candidates for antimalarial drug development [280].

14. AN INCLUSIVE COMPILATION OF THE BOTANICAL SOURCES OF THE *THALICTRUM* ALKALOIDS

T. acteaefolium Sieb. & Zucc. [1]
Tetrahydroberberine
T. acutifolium (HandMazz.) Boivin [61]
Acutifolidine
Oxyberberine
Trilobinine
T. alpinum L. [1]
Berberine
Columbamine
N-Desmethylthalrugosidine
Hernandezine (Thalicsimine, Thaliximine)
Isoboldine
Jatrorrhizine
Magnoflorine
N-Methyl-6,7-dimethoxy-1,2-dihydroisoquinolin-1-one
Neothalibrine
Noroxyhydrastinine
Oxyberberine (Berlambine)
Palmatine
Thalicarpine
Thalidasine
Thalifendine
Thaliporphine (O-Methylisoboldine)
Thalpindione
Thalrugosaminine
Thalrugosidine
T. amurense Maxim. [1]
β-Allocryptopine
Thalictricine (Thalictrisine)

Table	1
	_

```
T. aquilegifolium L.
       Isoboldine (N-Methyllaurelliptine) [43]
       Isocorydine [1,43]
       Magnoflorine [43]
       O-Methylthalicberine [329]
T. baicalense Turcz.
       Baicalidine [1]
       Baicaline [1,34]
      Berberine [1,34]
      Glaucine [1,34]
       Magnoflorine [1]
       Oxobaicaline (7-Oxobaicaline) [111]
       Thalbaicalidine [111]
       Thalbaicaline [34,111]
T. buschianum [44]
       O-Methylthalicberine
       Talcamine (Likely thalmine)
       Thaliporphine (Thalicmidine)
       Thalmine
T. calabricum Spreng. [1]
       Magnoflorine
T. collinum Wallr.
       Berberine [37]
       Glaucine [37]
       Isoboldine (N-Methyllaurelliptine) [37,44]
       Magnoflorine [37]
       O-Methylthalicberine [37,44]
       Thalmine [37,44]
T. contortum L. [1]
      β-Allocryptopine
T. cultratum Wall.
       Adiantifoline [4]
       Aromoline [81]
       Berberine [2,20]
       Columbamine [20]
       Cultithalminine [81]
```

5-Hydroxythalidasine [2,3] 5-Hydroxythalidasine- 2α -N-oxide [81] 5-Hydroxythalmine [2,3] Jatrorrhizine [20] Magnoflorine [20] O-Methylthalicberine [2,3] O-Methylthalmine [84] Neothalibrine [81] Neothalibrine-2' α -N-oxide [81] 2'-Noroxyacanthine [81] 2-Northalidasine [2,84] 2'-Northaliphylline [81] 2-Northalmine [84] Obaberine [81] Oxyacanthine [81] Palmatine [20] Reticuline [2] Revolutinone [2] Thalflavidine [2] Thalibulamine [2,4] Thalicsimidine [2] Thalictine [3] Thalidasine [84] Thalidasine- 2α -N-oxide [81] Thalidastine [20] Thalifaberine [4] Thalifaramine [2,4,129] Thalifarapine (Thalifaroline) [4] Thalifarazine [2,4,129] Thalifaretine [2,4] Thalifaricine [2,4,129] Thalifaronine [2,4,129] Thalifendine [20] Thaliglucine [2] Thalilutine [4] Thaliphylline [2,3] Thaliphylline-2'β-N-oxide [81]

Thalirugine [81] Thalisopavine [2] Thalisopine (Thaligosine) [3,81] Thalisopine- 2α -N-oxide (Thaligosine- 2α -N-oxide) [81] Thalmelatidine [4] Thalmiculatimine [2,3] Thalmiculimine [2,3] Thalmiculine [2,3] Thalmine [2,3] Thalmineline [4] Thalrugosaminine [2,3] Thalrugosaminine- 2α -N-oxide [81] Thalrugosidine [2,3] Thalrugosinone [84] Thalsivasine [3] T. dasycarpum Fisch. and Lall. [1] Argemonine Bisnorargemonine Corypalline Dehydrothalicarpine Laudanidine Magnoflorine Norargemonine Thalicarpine Thalidasine Thalisopavine T. dasycarpum Fisch. and Lall. var. hypoglaucum (Rydb.) Boivin [1] Berberine Magnoflorine T. delavayi Franch. Berberine [68] Cryptopine [68] Hernandezine [45,68] Isocorydine [45] Isothalidezine [68] Leucoxylonine [45] Magnoflorine [45]

Ocoteine (Thalicmine) [45] Pseudoprotopine [68] Thalicthuberine [45] Thalidezine [68] Thalmirabine [68] T. dioicum L. [1] Berberine Berberrubine Corydine Isocorypalmine (Tetrahydrocolumbamine) Magnoflorine N-Methylcoclaurine **O-Methylcorypalline** N-Methyllaurotetanine Pallidine Pennsylvanine Thalicarpine Thalictrogamine Thalictropine Thalicminine Thalidicine Thalidine Thalidoxine Thalifendine Thalmelatine T. faberi Ulbr. Berberine [1] Dehydrohuangshanine [1] Dehydrothalifaberine [1] N-Desmethylthalidasine [1] Faberidine [1] Faberonine [1] Huangshanine [1] O-Methylthalibrine [1] O-Methylthalicberine [1] Pallidine [1]

Thalfinine [1] Thalidasine [1] Thalifabatine [1] Thalifaberidine [129] Thalifaberine [1] Thalfabine [1] Thalifaboramine [133] Thalifalandine [83] Thalifarapine [1] Thalifasine [1] Thaliracebine [1] Thalisopine (Thaligosine) [1] Thalrugosidine [1] T. fargesii Fr. ex Fin. et Gagnep. Thalfoetidine [85,86] Thalidasine [85,86] Thaligosinine [86] Thalisopidine [86] T. fauriei Hayata Corydine [35,15] Dehydrodiscretine [1,35] 3-O-Demethyloconovine [15] EP-10 [35] Fauridine [15] Faurine [15] Fauripavine [15] Faurithaline [15] Isocorydine [15,35] Isooconovine [15] Magnoflorine [1,35] 3-Methoxyfaurithaline [15] O-Methylfaurine [15] Ocobotrine [15,35] Oconovine [15,35] Pallidine [15] Thalifaurine [1,35] Thalisopynine [15]

T. fendleri Engelm. ex Gray [1]

Berberine Glaucine

Hernandezine

Jatrorrhizine

Magnoflorine

N-Methylcorydaldine

N-Methylthalidaldine

Ocoteine

Preocoteine

Tetrahydrothalifendine

Thaldimerine

Thalicarpine

Thalidastine

Thalidezine

Thalifendine

Thalifendlerine

Thaliporphine

Veronamine

T. filamentosum Maxim. [1]

Glaucine

Thalicsimidine

T. flavum. L.

Berberine (Thalsine) [1,38,69] Cryptopine [1] Glaucine [38] Hernandezine [38,69] Magnoflorine [1] O-Methylthalicberine [69] Thalflavidine [1] Thalflavine [1] Thalfoetidine [38,69] Thalicarpine [1] Thalicflavine [1] Thalicflavine [38] Thalicsimidine [38]

```
Thalidasine [69]
      Thaliglucine [38]
T. foetidum L.
      Argemonine [49]
      Argemonine-N-Oxide [64]
       Berbamine [1]
       Berberine [1,48,49,70,71]
      Bisocobotrine [15]
      Corunnine [1]
      6a,7-Dehydromethoxyadiantifoline [71]
      Fetidine [1]
      Glaucine [1]
       Harmine [1]
       Hernandezine [64]
       Isoboldine [1]
       Isotetrandrine [1]
       Magnoflorine [1,48,49]
       Methoxyadiantifoline [71]
       O-Methylthalicberine [64]
       Ocobotrine [15]
       Oxoglaucine [1]
       Oxyberberine [71]
       Protopine [64]
       Reticuline [15]
       Sinoacutine [15]
       Thalactamine [64]
       Thalfine [1]
       Thalfinine [1]
       Thalflavine [48]
       Thalfoetidine [1]
       Thalibrine [15]
       Thalicarpine [1]
       Thalictrogamine [49]
       Thalidasine [15,49]
       Thalidezine [64]
       Thaligosinine [49]
       Thalipine [49]
```

Thaliporphine (Thalicmidine) [1] Thalisopine (Thaligosine) [64] Thalmelatine [49] Thalrugosaminine [49] Thalrugosidine [15] T. foliolosum DC. [1] Berberine Columbamine Dehydrodiscretamine Jatrorrhizine Magnoflorine (Thalictrine) Noroxyhydrastinine Oxyberberine (Berlambine) Palmatine Reticuline Rugosinone Tembetarine (N-Methylreticuline) Thalicarpine Thalidasine Thalidastine Thalifendine Thalirugidine Thalisopine (Thaligosine) Thalrugosaminine Thalrugosidine N,O,O-Trimethylsparsiflorine Xanthoplanine T. fortunei [82] Aromoline N-Phenyl-2-Naphthylamine Thalifortine T. glandulosissimum (Finet et Gagnep.) W.T. Wang et S.H. Wang Berberine [50] Berberrubine [75] Columbamine [50] Coptisine [50] Cryptopine [75,78]

Groenlandicine [50] Hernandezine [75,78] Isothalidezine [78] Izmirine [78] Jatrorrhizine [50] Magnoflorine [50] O-Methylthalibrine [78] 8-Oxocoptisine [75] Palmatine [50] Protopine [75,78] Puntarenine [75] Thalidezine [75,78] Thalifendine [50] T. glaucum Desf. [1] Berberine Magnoflorine T. hazarica R.R.S. [57] N-Methyllaurotetanine Thalicthuberine Thalihazine T. hernandezii Tausch [1] Hernandezine T. honanense W.T. Wang et S.H. Wang [72] Adiantifoline Berberine Jatrorrhizine Thalifendine Thalmelatidine T. ichengense Lecoy et Oliv. Dehydroglaucine [39,40] Dehydrothalicsimidine [40] Glaucine [39,40] N-Phenyl-2-Naphthylamine [39] Thalicsimidine [39,40] Thaliporphine (Thalicmidine) [39,40]

```
T. isopyroides C.A.M.
       Cabudine [1]
       Cryptopine [1]
       Dehydroocoteine (Dehydrothalicmine) [1,17]
      Delporphine [17]
       Magnoflorine [1,17]
       Ocoteine (Thalicmine) [1,17]
      N-Methylcassythine [17]
      N-Methyl-6,7-dimethoxy-1,2-dihydroisoquinolin-1-one [1]
       N-Methyllaurotetanine [17]
       Preocoteine [17]
       Thalicminine [1,17]
       Thaligosinine [17]
       Thaliporphine (Thalicmidine) [17]
       Thalisopidine [1,17]
       Thalisopine [1]
       Thalisopynine (thalisopinine) [1]
T. javanicum Bl.
       Berberine [1,63]
       Columbamine [1]
       Demethyleneberberine [1]
       Jatrorrhizine [1]
       Magnoflorine [1]
       Oxyberberine [63]
       Palmatine [1]
       Rugosinone [63]
       Thalifendine [63]
       Thalisopine (Thaligosine) [63]
       Thalrugosaminine [63]
T. kuhistanicum Ovcz. [60]
       O-Methylthalicberine
       Thalicsimidine
       Thalmine
T. lankesteri Standl. [73]
       Berberine
       Columbamine
       Hernandezine
```

Jatrorrhizine Palmatine T. longipedunculatum E. Nik. Berberine [1,41] Columbamine [41] Glaucine [41] Magnoflorine [1,41] O-Methylthalicberine [41] Ocoteine (Thalicmine) [41] Thalfoetidine [1,41] Thalicberine [41] Thalicsine (Thalixine) [1] Thalidasine [1,41] Thaliglucinone [41] T. longistylum DC. Berberine [1] Berberlongine [15] Berberstyline [15] Columbamine [1] 5-O-Demethyllongine [15] N-Desmethylthalistyline [1,15] Hernandezine [15] 5'-Hydroxylongine [15] 5'-Hydroxythalidezine [15] Isothalidezine [15] Jatrorrhizine [1] Longiberine [15] Longine [1] Magnoflorine [1] O-Methyllongiberine [15] O-Methylthalibrine [15] N-Methylthalistyline (Thalistyline metho salt, Methothalistyline) [1] N-Norhernandezine [15] N-Northalidezine [15] Oxyberberine (Berlambine) [1] Palmatine [1] Thalibrine [1,15]

Thalidezine [15]	
Thalifendine [1]	
Thaliglucinone [1]	
Thalistyline [1]	
8-Trichloromethyldihydroberberine [1]	
T. lucidum L. [1]	
Aromoline (Thalicrine)	
Berberine	
Columbamine	
Homoaromoline (Homothalicrine, O-Methylaromoline, Thalrugosamine)	
Jatrorrhizine	
Magnoflorine	
O-Methylthalicberine	
Obaberine	
Obamegine	
Oxyacanthine	
Oxyberberine (Berlambine)	
Palmatine	
Thalicberine	
Thalidasine	
Thalifendine	
Thaliglucinone	
Thalrugosine	
8-Trichloromethyldihydroberberine	
T. minus L.	
Adiantifoline [1]	
Allocryptopine [42]	
α-Allocryptopine [48]	
β-Allocryptopine (Thalictrimine) [1]	
Argemonine [1]	
Aromoline (Thalicrine) [1]	
Berberine [1,10,42,66]	
Bursanine [1]	
Corunnine [1]	
O-Desmethyladiantifoline [1]	
Eschscholtzidine [1]	
Glaucine [1,42]	

```
Istanbulamine [1]
       Iznikine [1]
       Jatrorrhizine [1]
       Magnoflorine [1]
       N-Methylargemonine [1]
       N-Methylcanadine [1,48]
       O-Methylthalicberine (Thalmidine) [1,10,42,48]
       O-Methylthalmethine [1,6,10,42]
       Ocoteine (Thalicmine) [1]
       Oxyacanthine [6]
       Palmatine [48]
       Preocoteine N-oxide [1]
       Thalabadensine [1]
       Thalactamine [1,10,65,66]
       Thalflavidine [1]
       Thalicarpine [1,6]
       Thalicberine [1,10,42,48]
       Thalicmidine N-oxide (Thaliporphine N-oxide) [1]
       Thalicminine [1]
       Thalicsimidine [1]
       Thalictrine [1]
       Thalidasine [1]
       Thalifendine [1]
       Thalflavine [42,66]
       Thalfoetidine [42]
       Thaliglucine [10]
       Thalipine [1,6]
       Thalipoline [1]
       Thaliporphine (Thalicmidine) [1,10]
       Thalmelatidine [1]
       Thalmelatine [1,6]
       Thalmethine [1,6,10,42]
       Thalmine [1]
       Thalmineline [1]
T. minus L. var. adiantifolium Hort.
       Adiantifoline [1,36]
       Berberine [1,36]
```

Choline [36] Columbamine [36] Domesticine [36] Glaucine [36] Isoboldine (N-Methyllaurelliptine) [36] Jatrorrhizine [36] Magnoflorine [1,36] O-Methylisoboldine [36] O-Methylthalicberine [1] Nantenine [36] Noroxyhydrastinine [1] Palmatine [36] Thalifendine [1,36] Thalifoline [1] Thaliglucine [36] Thaliglucinone [1,36] T. minus L. var. elatum (Jacq.) Stoj. et Stefanov (T. minus L. ssp. majus)(T. minus var. majus

(Crantz) Crepin)

Adiantifoline [1,51,59] Berberine [1,51,52] Dehydrothalicarpine [1] Dehydrothalmelatine [1] O-Demethyladiantifoline [1,58,59] Eschscholtzidine [59] Hernandaline [1] 4-Hydroxyeschscholtzidine [59] Isonorargemonine [59] Jatrorrhizine [52] Magnoflorine [51,52] O-Methylthalicberine [51] O-Methylthalmethine [51] Noroxyhydrastinine [1,59] Obaberine [51] Oxyacanthine [51] 1-Oxo-6,7-dimethoxy-N-methyltetrahydroisoquinoline [1] Thaliadine [1,58,59] Thalicarpine [1]

Thalicberine [51] Thalicthuberine [1,58,59] Thalifendine [52] Thalisopine (Thaligosine) [51] Thalmelatidine [1,51,58,59] Thalmelatine [1] Thalmeline [1,59] Thalmineline [1] Thalphenine [52] T. minus L. var. hypoleucum [80] O-Methylthalicberine Thalmelatidine T. minus L. var. microphyllum Boiss. [1] Adjantifoline Aromoline (Thalicrine) Berberine Bursanine Homoaromoline (Homothalicrine, O-Methylaromoline, Thalrugosamine) Istanbulamine Iznikine Jatrorrhizine Magnoflorine **O-Methylthalicberine** N(2')-Noradiantifoline Obaberine Obamegine Palmatine Takatonine Thalactamine Thaliadanine Thalicberine Thaliglucinone Thaligrisine Thaliphylline Thalirugine Thalisopine (Thaligosine) Thalmelatidine

Thalmicrinone Thalrugosine 8-Trichloromethyldihydroberberine Uskudaramine T. minus L. var. minus Adiantifoline [53] Berberine [1,53] Magnoflorine [1,53] N-Methylcanadine [77] O-Methylthalicberine [77] O-Methylthalmethine [77] Northalibroline [53] Thalicberine [77] Thaliglucinone [53] Thaliphylline [77] Thalivarmine [77] Thalmelatidine [53,77] Thalmethine [77] Thalmineline [53] Thalsivasine [77] T. minus L. race B [1] Adiantifoline Berberine Columbamine Jatrorrhizine Magnoflorine N-Methylcorydaldine **O-Methylthalibrine** Obaberine Oxyberberine (Berlambine) Palmatine Reticuline Thalfine Thalfinine Thaliadanine Thaliadine Thalidasine

Thalifendine Thaliglucinone

Thalirabine Thaliracebine

Thalistine

Thalmirabine

Thalphenine

Thalrugosaminine

Thalrugosine

T. minus L. race C [14]

Adiantifoline

6a,7-Dehydroadiantifoline

6a,7-Dehydrothaliadine

Delporphine

7'-Dihydrodehydrothaliadine

7'-Dihydrooxothaliadine

7'-Dihydrothaliadine

Isoboldine

Laudanidine

N-Methylcorydaldine

O-Methylthalibrine

O-Methylthalicberine

Obaberine

6-Noradiantifoline

Oxothaliadine

Squarosine

Thalfine

Thalfinine

Thalicarpine

Thaliracebine

Thalisopynine

Thalistine

Thalmelatidine

Thalmineline

Thalmirabine

Thalmirine

Thalrugosine

T. pedunculatum Edgew. Berbamine [1] Berberine [1] Isocorydine [46] N-Methyldanguyelline [46] Noroconovine [46] Oconovine [46] Pronuciferine [46] Reticuline [46] Thalicsimidine [46] T. petaloideum L. [1] Magnoflorine T. podocarpum Humb. [1] Berberine Columbamine N-Desmethylthalidezine N-Desmethylthalistyline Hernandezine Isothalidezine Jatrorrhizine Magnoflorine N-Methylthalistyline (Methothalistyline, Thalistyline metho salt) Oxyberberine (Berlambine) Palmatine Thalidezine Thalifendine Thaliglucinone Thalistyline 8-Trichloromethyldihydroberberine T. polygamum Muhl. [1] Berberine Berberrubine Bisnorthalphenine Deoxythalidastine Magnoflorine N-Methylnantenine N-Methylpalaudinium

N-Methylthaliglucine

N-Methylthaliglucinone

Pennsylpavine Pennsylpavoline

Pennsylvanamine

Pennsylvanine

Thalicarpine

Thalictrogamine

Thalictropine

Thalifendine

Thaliglucinone

Thalphenine

Thalphenine methine

Thalipine

Thalrugosine (Thaligine)

T. purpurascens DC [74]

Berberine

T. revolutum D.C. [1]

β-Allocryptopine

Argemonine

Berberine

Bisnorthalphenine

Choline chloride

Columbamine

N-Desmethylthalphenine

Deoxythalidastine

Eschscholtzidine

Isonorargemonine

Jatrorrhizine

Laudanidine

Magnoflorine

N-Methylargemonine

N-Methylarmepavine

N-Methylcoclaurine

N-Methyl-6,7-Dimethoxyisoquinolinium

N-Methyleschscholtzidine

N-Methyllaurotetanine

Table 1. Continued

O-Methylthalicberine O-Methylthalmethine Neothalibrine N(2')-Northalicarpine Palmatine Pennsylvanine Platycerine Reticuline Revolutinone Revolutopine Thalflavidine Thalicarpine Thalictrogamine Thalidasine Thalifendine Thaliglucinone Thalilutidine Thalilutine Thalipine Thalirevoline Thalirevolutine Thalmelatine Thalphenine Thalrugosaminine T. rochebrunianum Franc. and Sav. [1] Berberine Dihydrothalictrinine Hernandezine Jatrorrhizine Magnoflorine O-Methylthalibrunimine N'-Norhernandezine Northalibrine N'-Northalibrunine Oxothalibrunimine Thalibrine Thalibrunimine

Thalibrunine
Thalictrinine
Thaliglucinone
Thalsimine
T. rugosum Ait. (T. glaucum Desf.) [1]
Aromoline (Thalicrine)
Berberine
Columbamine
Corypalline
Deoxythalidastine
Homoaromoline (Homothalicrine, O-Methylaromoline, Thalrugosamine)
Jatrorrhizine
Magnoflorine
6,7-Methylenedioxy-1,2-dihydroisoquinolin-1-one
Neothalibrine
Noroxyhydrastinine
Obaberine
Obamegine
Oxyberberine (Berlambine)
Protothalipine
Protopine
Rugosine
Rugosinone
Thalicthuberine
Thalidasine
Thalifendine
Thaliglucine
Thaliglucinone
Thaligosidine
Thaligosine
Thaligosinine
Thalirugidine
Thalirugine
Thaliruginine
Thalphenine
Thalrugosaminine
Thalrugosidine

Thalrugosine Thalrugosinone Thalsimine T. sachalinense Lecoyer. [1] Berberine Glaucine Magnoflorine N-Methylnantenine Thalrugosine T. sessile Hayata Berberine [54] Liriodenine [62] Magnoflorine [54] Spiradine A [54,79] Spirasine I [54] Spirasine II [54] Spirasine III [54] Spiredine [54] Thalicessine [79] Thalicsiline [54,123] Thalifarazine [54,62] T. simplex L. β -Allocryptopine [4] Argemonine [67] 2-Demethylthalimonine [67] 9-Demethylthalimonine [67] Hernandezine [1] Leucoxylonine [107] Leucoxylonine N-oxide [107] Magnoflorine [1] N'-Norhernandezine (Thalisamine) [1] Northalicthuberine [119] Ocoteine (thalicmine) [1] Thalfoetidine [1] Thalicminine [1] Thalicsimidine [1] Thalicsine (thalixine) [1]
```
Thalictrisine [1]
      Thalidezine [1]
      Thalimonine [117]
      Thalimonine N-oxide A [107]
      Thalimonine N-oxide B [107]
      Thalsimidine [1]
      Thalsimine [1]
T. squarrosum Steph. ex Willd.
      Magnoflorine [1]
      Thalidasine [88,89]
T. strictum Ledeb. [1]
      Argemonine
      Berberine
      Magnoflorine
      O-Methylcassyfiline (Northalicmine, O-Methylcassythine, Hexahydrothalicminine)
      2,3-Methylenedioxy-4,8,9-trimethoxypavinane
      Ocoteine (Thalicmine)
      Preocoteine
      Thalicminine
      Thalicsimidine
       Thalicthuberine
T. sultanabadense Stapf.
       Berberine [55]
       Hernandezine [1,55]
      Hernandezine N-oxide [1]
       Magnoflorine [55]
       O-Methylthalmine [87]
       Thalabadensine (Thalbadensine) [1,55]
       Thalictine [55,87]
       Thalidezine [1]
       Thalifoline [55]
T. thunbergii DC. (T. minus L. var. hypoleucum) [1]
       Aromoline (Thalicrine)
       Berberine
       Columbamine
       Deoxythalidastine
       Homoaromoline (Homothalicrine, O-Methylaromoline, Thalrugosamine)
```

Table 1. Continued

Jatrorrhizine Magnoflorine O-Methylthalicberine Palmatine Takatonine Thalicberine Thalicthuberine Thalictine Thalidastine Thalifendine T. tuberiferum Maxim. Berberine [1] Magnoflorine [56] T. uchiyamai Nakai Corypalline [1] Deoxythalidastine [76] Jatrorrhizine [76] Protothalipine [76] Thalifendine [76] T. urbaini Hayata [1] Isocorydine Oconovine

15. AN INCLUSIVE COMPILATION OF ALKALOIDS THAT HAVE BEEN ISOLATED FROM *THALICTRUM* SPECIES BY ALKALOID TYPE

Monomeric Alkaloids	
Aporphines	
Acutifolidir	le
Baicalidine	
Baicaline	
Bisnorthalp	henine
Corydine	
Delporphine	•
N-Demethy	Ithalphenine
Domesticin	8
Glaucine (C	2-Methylthalicmidine)
Isoboldine	(N-Methyllaurelliptine)
Isocorydine	
Isooconovii	e
Leucoxylor	ine
Leucoxylor	ine N-Oxide
Magnoflori	ne (Thalictrine)
O-Methylca	ssyfiline (Northalicmine, O-Methylcassythine,
Hex	ahydrothalicminine)
N-Methylca	ssythine
N-Methylda	nguyelline
O-Methylis	oboldine
N-Methylla	urotetanine
N-Methylna	Intenine
Nantenine	
Noroconov	ne
Oconovine	
Ocoteine (]	halicmine, N,O-Dimethylcassyfiline)
Preocoteine	:
Preocoteine	N-Oxide
Thalbaicali	dine
Thalbaicali	ne
Thaliadine	(3-Methoxyhernandaline)
Thalicmidi	ne N-Oxide (Thaliporphine N-Oxide)
Thalicsimic	line (O-Methylpreocoteine, Purpureine)

	Thaliporphine (Thalicmidine, O-Methylisoboldine)
	Thalisopynine (Thalisopinine)
	Thalphenine
	Trilobinine
	N,O,O-Trimethylsparsiflorine
	Xanthoplanine
Deh	ydroaporphines
	Cabudine
	Dehydroglaucine
	Dehydroocoteine (Dehydrothalicmine)
	Dehydrothalicsimidine
Pro	aporphines
	Pronuciferine
Oxo	aporphines
	Corunnine
	Liriodenine
	Oxobaicaline
	Oxoglaucine (O-Methylatheroline)
	Thalicminine
Ben	zylisoquinolines
	Laudanidine
	N-Methylarmepavine
	N-Methylcoclaurine
	N-Methylpalaudinium
	Reticuline
	Takatonine
	Tembetarine (N-Methylreticuline)
	Thalifendlerine
	Thalmeline
	Veronamine
Oxo	benzylisoquinolines
	Rugosinone
	Thalmicrinone
Isop	pavines
-	Thalidicine
	Thalidine

Isoquinolines

Corypalline

O-Methylcorypalline

N-Methyl-6,7-Dimethoxyisosquinolinium

Isoquinolones

N-Methylcorydaldine

N-Methyl-6,7-Dimethoxy-1,2-Dihydroisoquinolin-1-one

6,7-Methylenedioxy-1,2-Dihydroisoquinoline-1-one

N-Methylthalidaldine

Noroxyhydrastinine

Thalactamine

Thalflavine

Thalifoline

Morphinans

Ocobotrine

Pallidine

Sinoacutine

Pavines

Argemonine Argemonine-N-Oxide Bisnorargemonine 2-Demethylthalimonine 9-Demethylthalimonine Eschscholtzidine 4-Hydroxyeschscholtzidine Isonorargemonine N-Methylargemonine N-Methyleschscholtzidine Norargemonine Platycerine 2,3-Methylenedioxy-4,8,9-Trimethoxypavinane Thalimonine Thalimonine N-Oxide A Thalimonine N-Oxide B **Phenanthrenes**

N-Methylthaliglucine (Thaliglucine Metho Salt) N-Methylthaliglucinone (Thaliglucinone Metho Salt)

Northalicthuberine Thalflavidine Thalicsine (Thalixine) Thalicthuberine Thaliglucine Thaliglucinone Thalihazine **Protoberberines** Berberine Berberrubine Columbamine Coptisine Dehydrodiscretamine Dehydrodiscretine Demethyleneberberine Deoxythalidastine Groenlandicine Jatrorrhizine 8-Oxocoptisine Oxyberberine (Berlambine) Palmatine Thalidastine Thalifaurine Thalifendine 8-Trichloromethyldihydroberberine (Berberine-Chloroform) **Tetrahydroprotoberberines** N-Methyltetrahydroberberine (N-Methylcanadine) Tetrahydroberberine (Canadine) Tetrahydrocolumbamine (Isocorypalmine) Tetrahydrothalifendine **Isohomoprotoberberines** Puntarenine **Protopines** Allocryptopine (Thalictrimine, β-Allocryptopine) a-Allocryptopine Cryptopine (Thalisopyrine) Izmirine

Protopine Protothalipine Pseudoprotopine Thalictricine (Thalictrisine) Diterpenes Spiradine A Spirasine I Spirasine II Spirasine III Spiredine Thalicessine Thalicsiline β-Carbolines Harmine **Betaines** Choline Miscellaneous N-Phenyl-2-Naphthylamine **Dimeric Alkaloids** Aporphine-Benzylisoquinolines Adiantifoline Bursanine **O-Desmethyladiantifoline** Faberidine Faberonine Fetidine (Foetidine) Huangshanine Istanbulamine Iznikine Methoxyadiantifoline N(2')-Noradiantifoline N(2')-Northalicarpine Pennsylvanamine Pennsylvanine Revolutopine Thaliadanine Thalibulamine

Thalicarpine Thalictrogamine Thalictropine Thalidoxine Thalifabatine Thalifaberidine Thalifaberine Thalifabine Thalifaboramine Thalifalandine Thalifaramine Thalifarapine (Thalifaroline) Thalifarazine Thalifaretine Thalifaricine Thalifaronine Thalifasine Thalilutidine Thalilutine Thalipine Thalirevoline Thalirevolutine (O-Methylfetidine) Thalmelatidine Thalmelatine Thalmineline Uskudaramine **Dehydroaporphine-Benzylisoquinolines** Dehydrohuangshanine 6a,7-Dehydromethoxyadiantifoline Dehydrothalifaberine Dehydrothalicarpine **Aporphine-Pavines** EP-10 Pennsylpavine Pennsylpavoline

Bisbenzylisoquinolines

Aromoline (Thalicrine)

Berbamine

Cultithalminine

N-Desmethylthalidasine

N-Desmethylthalidezine

N-Desmethylthalistyline

N-Desmethylthalrugosidine

Dihydrothalictrinine

Hernandezine

Hernandezine N-Oxide

Homoaromoline (Homothalicrine, O-Methylaromoline, Thalrugosamine)

5-Hydroxythalidasine

5-Hydroxythalidasine-2a-N-Oxide

5-Hydroxythalmine

Isotetrandrine

Isothalidezine

O-Methylthalibrine

O-Methylthalibrunimine

O-Methylthalicberine (Thalmidine)

N-Methylthalistyline (Methothalistyline, Thalistyline Metho Salt)

O-Methylthalmethine

O-Methylthalmine

Neothalibrine

Neothalibrine-2' α -N-Oxide

N'-Norhernandezine (Thalisamine)

2'-Noroxyacanthine

Northalibrine

Northalibroline

N-Northalibrunine (N(2')-Northalibrunine, 2'-Northalibrunine)

2-Northalidasine

N-Northalidezine

2'-Northaliphylline

2-Northalmine

Obaberine

Obamegine

Oxothalibrunimine

Oxyacanthine Talcamine (Likely Thalmine) Thalabadensine (Thalbadensine) Thalfine (Thalphine) Thalfinine (Thalphinine) Thalfoetidine Thalibrine Thalibrunimine Thalicberine Thalictine Thalictrinine Thalidasine Thalidasine-2a-N-Oxide Thalidezine Thalifortine Thaligosidine Thaligosine- 2α -N-Oxide (Thalisopine- 2α -N-Oxide) Thaligosinine Thaligrisine Thaliphylline Thaliphylline-2'_β-N-Oxide Thalirabine Thaliracebine Thalirugidine Thalirugine Thaliruginine Thalisopidine Thalisopine (Thaligosine) Thalistine Thalistyline Thalivarmine Thalmethine Thalmiculatimine Thalmiculimine Thalmiculine Thalmine Thalmirabine

 Thalpindione

 Thalrugosaminine

 Thalrugosaminine-2α-N-Oxide

 Thalrugosidine

 Thalrugosine (Thaligine, Isofangchinoline)

 Thalrugosinone

 Thalsimidine (Thalcimidine)

 Thalsimine

 Thalsivasine

 Secobisbenzylisoquinolines

 Revolutinone

16. AN INCLUSIVE COMPILATION OF THE CALCULATED MOLECULAR WEIGHTS OF THE *THALICTRUM* ALKALOIDS

Table 3

104.1075	C ₅ H ₁₄ ON
Chol	line
189.0426	C ₁₀ H ₇ O ₃ N
6,7-1	Methylenedioxy-1,2-dihydroisoquinolin-1-one
191.0582	C ₁₀ H ₉ O ₃ N
Nore	oxyhydrastinine
193.1103	$C_{11}H_{15}O_2N$
Cory	palline
204.1024	$C_{12}H_{14}O_2N$
N-M	lethyl-6,7-dimethoxyisoquinolinium
207.0895	C ₁₁ H ₁₃ O ₃ N
Tha	ifoline
207.1259	$C_{12}H_{17}O_2N$
<i>O</i> -M	lethylcorypalline

212.0950	$C_{13}H_{12}ON_2$
Harmine	
219.0895	C ₁₂ H ₁₃ O ₃ N
<i>N</i> -N	Methyl-6,7-dimethoxy-1,2-dihydroisoquinolin-1-one
219.1048	C ₁₆ H ₁₃ N
N-P	henyl-2-Naphthylamine
221.1052	$C_{12}H_{15}O_3N$
N-N	fethylcorydaldine
233.0688	$C_{12}H_{15}O_{3}N$
Tha	Imirine
235.0845	C ₁₂ H ₁₃ O ₄ N
Tha	Iflavine
249.1001	C ₁₃ H ₁₅ O ₄ N
Tha	lactamine
251.1158	C ₁₃ H ₁₇ O ₄ N
N-Methylthalidaldine	
275.0582	C ₁₇ H ₉ O ₃ N
Liri	odenine
299.1521	$C_{18}H_{21}O_{3}N$
<i>N</i> -N	fethylcoclaurine
311.1521	$C_{19}H_{21}O_3N$
Pro	nuciferine
311.1885	$C_{20}H_{25}O_2N$
Spir	radine A
320.0923	C ₁₉ H ₁₄ O ₄ N
Сор	tisine
Deo	xythalidastine
322.10/9 D1	$C_{19}H_{16}O_4N$
Beri	perruoine
I na Thai	
1 na 222 1 1 5 9	
323.1138 Dia	$C_{19}H_{17}O_4N$
DISE	
524.1250 D-L	U ₁₉ H ₁₈ U ₄ N
Demotivitare basis	
Den	neunyieneoeroerine

325.1314	C ₁₉ H ₁₉ O ₄ N
Dome	sticine
Tetrah	ydrothalifendine
325.1677	$C_{20}H_{23}O_{3}N$
N,O,O	-Trimethylsparsiflorine
327.1471	C ₁₉ H ₂₁ O ₄ N
Bisnor	argemonine
Isobol	dine (N-Methyllaurelliptine)
Pallidi	ne
Thalid	icine
Thalid	ine
328.1913	$C_{20}H_{26}O_3N$
N-Met	hylarmepavine
329.1627	C ₁₉ H ₂₃ O ₄ N
Ocobo	trine
Reticu	line
Thalm	eline
335.0794	C ₁₉ H ₁₃ O ₅ N
8-Oxo	coptisine
336.1236	$C_{20}H_{18}O_4N$
Berber	rine
337.1314	C ₂₀ H ₁₉ O ₄ N
Cabud	ine
N-Den	nethylthalphenine
338.1028 Theid	C ₁₉ H ₁₆ O ₅ N
1 nano	
338.1392 Colum	$C_{20}\Pi_{20}O_4N$
Dahud	Iodinatino
Letrom	bigine
220 1471	
557.1471 Escho	C ₂₀ Cl ₂₁ O ₄ IN
Nonte	nine
North	alicthuberine
Tetrah	wdroberberine (Canadine)
340.1547	C.H.O.N
N-Mei	hvinalaudinium
11 110	

341.1627	C ₂₀ H ₂₃ O ₄ N	
Corydine		
Isocorydine		
lsonorargemonine		
O-Methylisoboldine		
<i>N</i> -N	Methyllaurotetanine	
Nor	rargemonine	
Plat	tycerine	
Tet	rahydrocolumbamine (Isocorypalmine)	
Tha	lliporphine (Thalicmidine)	
Tha	lisopavine	
342.1705	C ₂₀ H ₂₄ O ₄ N	
Maj	gnoflorine (Thalictrine)	
Tril	obinine	
343.1783	C ₂₀ H ₂₅ O₄N	
Lau	danidine	
Tha	lifendlerine	
344.1862	C ₂₀ H ₂₆ O ₄ N	
Ten	nbetarine	
351.1107	C ₂₀ H ₁₇ O ₅ N	
Cor	unnine	
Oxo	oglaucine	
Оху	vberberine	
351.1471	$C_{21}H_{21}O_4N$	
Tha	liglucine	
352.1549	$C_{21}H_{22}O_4N$	
Pair		
1 18		
333.0899 Duo		
252 1262		
555.1205 Prot		
Door	udente topine	
The	Imigrinope	
353 1677	C.H.O.N	
333.1027 اعدا	vdroglaucine	
The	licthuberine	
i lla	nematerne	

353.1991 C ₂₁ H ₂₃ O ₄ N	
Spiredine	
354.1705 C ₂₁ H ₂₄ O ₄ N	
N-Methyleschescholtzidine	
N-Methylnantenine	
N-Methyltetrahydroberberine (N-Methylcanadine)	
Takatonine	
355.1420 C ₂₀ H ₂₁ O ₅ N	
Baicaline	
2-Demethylthalimonine	
9-Demethylthalimonine	
4-Hydroxyeschscholtzidine	
Izmirine	
O-Methylcassyfiline (Northalicmine, O-Methylcassythine, Hexahydrothalicminine)	
N-Methylcassythine	
Thalictricine (Thalictrisine)	
355.1783 C ₂₁ H ₂₅ O ₄ N	
Argemonine	
Glaucine (O-Methylthalicmidine)	
355.2147 C ₂₂ H ₂₉ O ₃ N	
Spirasine I	
Spirasine II	
356.1861 C ₂₁ H ₂₆ O ₄ N	
Xanthoplanine	
357.1576 C ₂₀ H ₂₃ O ₃ N	
Delporphine	
3-O-Demethyloconovine	
N-Methyldanguyelline	
Noroconovine	
Thalbaicaline	
Thalicmidine N-oxide (Thaliporphine N-oxide)	
$365.0899 ext{ } C_{20}H_{15}O_6N$	
Oxobaicaline (7-Oxobaicaline)	
Thalicminine	
365.1263 $C_{21}H_{19}O_{3}N$	
Thaliglucinone	
Thalicsine (thalixine)	

366.1705	$C_{22}H_{24}O_4N$
<i>N</i> -N	Aethylthaliglucine (Thaliglucine metho salt)
367.1420	$C_{21}H_{21}O_5N$
Del	ydrothalicmine (Dehydroocoteine)
369.1576	C ₂₁ H ₂₃ O ₅ N
Alle	ocryptopine (β-Allocryptopine, Thalictrimine)
α-Α	Allocryptopine
Bai	calidine
Сгу	ptopine (Thalisopyrine)
2,3-	Methylenedioxy-4,8,9-trimethoxypavinane
Occ	oteine (Thalicmine, N,O-Dimethylcassyfiline)
Tha	limonine
369.1940	C ₂₂ H ₂₇ O ₄ N
Spin	rasine III
Tha	licessine
370.2018	C ₂₂ H ₂₈ O ₄ N
N-N	1ethylargemonine
371.1733	C ₂₁ H ₂₅ O ₅ N
Acu	ttifolidine
Arg	emonine-N-Oxide
Occ	onovine
Pre	ocoteine
Pro	tothalipine
Tha	lbaicalidine
Tha	lisopynine (Thalisopinine)
380.1498	$C_{22}H_{22}O_{5}N$
N-N	fethylthaliglucinone (Thaliglucinone metho salt)
381.1212	$C_{21}H_{19}O_6N$
Pun	tarenine
383.1733	$C_{22}H_{25}O_5N$
Deh	ydrothalicsimidine
Tha	lihazine
385.1524	$C_{21}H_{23}O_6N$
Tha	limonine N-Oxide A
Tha	limonine N-Oxide B
385.1889	$C_{22}H_{27}O_5N$
Tha	licsimidine (O-Methylpreocoteine, Purpureine)

387.1682 $C_{21}H_{25}O_6N$ Preocoteine N-Oxide 395.1369 C22H21O6N Thalflavidine 399.1681 C22H25O6N Leucoxylonine 415.1631 C22H25O2N Leucoxylonine N-Oxide 417.2515 C24H35O5N Thalicsiline 454.4826 C21H18O4NCl3 8-Trichloromethyldihydroberberine 461.2202 C28H31O5N **O-Methylfaurine** 489.2363 C₂₆H₃₅O₂N Veronamine 507.2257 C29H33O7N Faurine 531.1530 C29H25O9N Oxothaliadine 533.1686 C29H27O9N Dihydrooxothaliadine 533.2050 C₃₀H₃₁O₈N 6a,7-Dehydrothaliadine 535.2207 $C_{10}H_{13}O_{4}N$ 7'-Dihydrodehydrothaliadine Thaliadine (3-Methoxyhernandaline) 537.2363 C₃₀H₃₅O₈N 7'-Dihydrothaliadine 582.2730 C₁₅H₁₈O₆N₂ Northalibroline 592.2573 C36H36O6N2 Thalmethine Thalmiculatimine Thalsivasine

594.2730 C₃₆H₃₈O₆N₂ Aromoline (Thalicrine) 2'-Noroxyacanthine 2'-Northaliphylline 2-Northalmine Obamegine Thalabadensine (Thalbadensine) Thalivarmine 606.2730 C₁₇H₁₈O₆N₂ O-Methylthalmethine 608.2522 C₃₆H₃₆O₇N₂ Cultithalminine 608.2886 C17H40O6N2 Berbamine Homoaromoline (Homothalicrine, O-Methylaromoline, Thalrugosamine) Oxyacanthine Thalicberine Thalictine Thalifortine Thaliphylline Thalmine Thalrugosine (Thaligine, Isofangchinoline) 610.3043 C₃₇H₄₂O₆N₂ Northalibrine Thaligrisine 622.2679 C₁₇H₁₈O₇N₂ Thalmiculimine Thalsimidine (Thalcimidine) 622.3043 $C_{18}H_{42}O_6N_2$ Isotetrandrine O-Methylthalicberine (Thalmidine) Obaberine (O-Methyloxyacanthine) 624.2836 $C_{37}H_{40}O_7N_2$ N-Desmethylthalidezine N-Desmethylthalrugosidine 5-Hydroxythalmine Thaligosidine

Thaliphylline-2'β-N-Oxide	
Thalisopidine	
624.3199 $C_{38}H_{44}O_6N_2$	
Neothalibrine	
Thalibrine	
636.2836 $C_{38}H_{40}O_7N_2$	
Longiberine	
Thalsimine	
638.2992 C ₃₈ H ₄₂ O ₇ N ₂	
N-Desmethylthalidasine	
Isothalidezine	
N-2-Norhernandezine	
N'-Norhernandezine (Thalisamine)	
2-Northalidasine	
Thalfoetidine	
Thalidezine	
Thaligosinine	
Thalisopine (Thaligosine)	
Thalmiculine	
Thalrugosidine	
638.3356 $C_{39}H_{46}O_6N_2$	
O-Methylthalibrine	
$640.3149 \qquad C_{38}H_{44}O_7N_2$	
Neothalibrine-2'a-N-Oxide	
Thalirugine	
648.2472 C ₃₈ H ₃₆ O ₈ N ₂	
Thalfine (Thalphine)	
650.2992 $C_{39}H_{42}O_7N_2$	
<i>O</i> -Methyllongiberine	
652.2421 $C_{37}H_{36}O_{9}N_{2}$	
I halpindione	
$652.2785 C_{38}H_{40}U_8N_2$	
Revolutinone	
$032.3147 C_{39}H_{44}U_7N_2$	
Thelideeine	
i hailuasine	

Thalifaramine Thalifaboramine Thaliracebine Thalrugosaminine 654.2941 $C_{12}H_{42}O_{1}N_{2}$ 5'-Hydroxythalidezine N'-Northalibrunine (N-2'-Northalibrunine, 2'-Northalibrunine) Thaligosine- 2α -*N*-Oxide (Thalisopine- 2α -*N*-Oxide) 654.3305 C₁₉H₄₆O₇N₂ 5-O-Demethylongine Thaliruginine 656.3098 $C_{38}H_{44}O_8N_2$ **Bisocobotrine** 664.2421 C38H36O9N2 Thalictrinine 666.2577 C18H38O9N2 Dihydrothalictrinine Oxothalibrunimine Thalrugosinone 666.2941 C39H42O8N2 **EP-10** Fauripavine O-Methylthalibrunimine Pennsylpavoline Squarosine Thalfinine (Thalphinine) 666.3293 C40H46O7N2 Berberlongine Thalifaronine $C_{39}H_{44}O_8N_2$ 668.3097 Faurithaline Hernandezine N-oxide 5-Hydroxythalidasine Istanbulamine Pennsylvanamine Revolutopine Thalibrunine

Thalictrogamine Thalidasine-2a-N-Oxide Thalifaberidine Thalifaricine Thalipine Thalistine Thalmirabine Thalrugosaminine-2a-N-Oxide Uskudaramine 668.3462 C40H48O7N2 Longine 670.3254 C₃₉H₄₆O₈N₂ Thalirugidine 680.3097 $C_{40}H_{44}O_8N_2$ Berberstyline Pennsylpavine 682.3254 $C_{40}H_{46}O_{1}N_{2}$ N-Desmethylthalistyline Faberidine Fauridine Fetidine N(2')-Northalicarpine Pennsylvanine Thalibulamine Thalictropine Thalidoxine Thalifalandine Thalifarapine (Thalifaroline) Thalifarazine Thalifaretine Thalilutidine Thalirevoline Thalmelatine 683.3332 C40H47O8N2 Thalirabine C10H44O9N2 684.3046 5-Hydroxythalidasine-2a-N-Oxide

684.3411	$C_{40}H_{48}O_8N_2$
5'-	Hydroxylongine
694.3254	$C_{41}H_{46}O_8N_2$
De	hydrothalifaberine
De	hydrothalicarpine
696.3410	$C_{41}H_{48}O_8N_2$
Th	alicarpine
Th	alifaberine
Th	alirevolutine
697.3489	$C_{41}H_{49}O_8N_2$
Th	alistyline
698.3200	$C_{40}H_{46}O_9N_2$
Bu	rsanine
lzn	ikine
3-N	Aethoxy faurithaline
Th	alifasine
710.3191	$C_{41}H_{46}O_9N_2$
Th	alifabine
712.3360	$C_{41}H_{48}O_9N_2$
<i>O</i> -l	Desmethyladiantifoline
Fab	peronine
N(2	2')-Noradiantifoline
6-N	loradiantifoline
Tha	aliadanine
Tha	alifabatine
Tha	alilutine
712.3724	$C_{42}H_{52}O_{8}N_{2}$
<i>N</i> -1	Methylthalistyline (Methothalistyline, Thalistyline Metho Salt)
724.3360	$C_{42}H_{48}O_{9}N_{2}$
6a,	7-Dehydroadiantifoline
Del	hydrohuangshanine
726.3516	C ₄₂ H ₅₀ O ₉ N ₂
Adi	antifoline
Hu	angshanine
740.3309	$C_{42}H_{48}O_{10}N_2$

Thalmelatidine

 $\begin{array}{rrrr} 742.3465 & C_{42}H_{50}O_{10}N_2 \\ & Thalmineline \\ 754.3465 & C_{43}H_{50}O_{10}N_2 \\ & 6a,7-Dehydromethoxyadiantifoline \\ 756.3622 & C_{43}H_{52}O_{10}N_2 \\ & Methoxyadiantifoline \end{array}$

Acknowledgments. The author would like to acknowledge the patience and expertise of Ms. Andrea Stofka in assembling this chapter. In addition, the following have been involved in multiple duties, including filing, photocopying, and obtaining many manuscripts from various libraries: Ms. Beth Kitchen, Ms. Geraldine Robinson, Ms. Nancy Urista, Ms. Mary Birr, Ms. Beth Gingrow, Ms. Amanda Schultz, Ms. Cathy Stevenson, and Mr. Greg Griess. The translation of several Chinese manuscripts by Mr. Qingru Hu is likewise acknowledged. Finally, the efforts of Ms. Ruth Quimby and NAPRALERT (Program for Collaborative Research in the Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago) are deeply appreciated.

REFERENCES

- PL Schiff, Jr., in: Alkaloids, Chemical and Biological Perspectives, vol 5, pp. 271, SW Pelletier, Ed., John Wiley and Sons, New York (1987).
- SF Hussain, H Guinaudeau, AJ Freyer, and M Shamma in: Studies in Organic Chemistry, Vol. 26, pp. 155, New Trends in Natural Products Chemistry, Atta-ur-Rahman and PW LeQuesne, Eds., Elsevier Science Publishers BV, Amsterdam 1986.
- 3. SF Hussain, AJ Freyer, H Guinaudeau, and M Shamma, J. Nat. Prod. 49, 488 (1986).
- 4. SF Hussain, AJ Freyer, H Guinaudeau, M Shamma, and MT Siddiqui, J. Nat. Prod. 49, 494 (1986).
- KHC Başer: Studies in Organic Chemistry, Vol. 26, pp. 45, New Trends in Natural Products Chemistry, Atta-ur-Rahman and PW LeQuesne, Eds., Elsevier Science Publishers BV, Amsterdam 1986.
- 6. B Dimov, H Dutschewska, and B Kuzmanov, Compt. Rend. Acad. Bulg. Sci. 42, 61 (1989).

- 7. C Lin, X Wang, and X Jiang, Zhongcaoyao 19, 39 (1988); Chem. Abstr. 108, 183583 (1988).
- 8. M Tabata, Int. Biotechnol. Symp. 8th 1, 167 (1988); Chem. Abstr. 111, 37843 (1989).
- 9. R Djurkovic, O Gasic, and M Popovic, Hem. Pregl. 32, 86 (1991); Chem. Abstr. 118, 22445 (1993).
- M Popovic, R Djurkovic, O Gasic, B Pal, H Dutschewska, and B Kuzmanov, Biochem. Syst. Ecol. 20, 255 (1992).
- 11. B Kuzmanov and H Dutschewska, J. Nat. Prod. 45, 766 (1982).
- R Djurkovic, M Popovic, O Gasic, B Pal, H Dutschewska, and A Georgieva, Fifth International Conference on Chemistry and Biotechnology of Biologically Active Natural Products, Sept. 18-23, Varna, Bulgaria, Conference Proceedings 2, 189 (1989).
- 13. R Djurkovic, M Popovic, O Gasic, B Pal, H Dutschewska, and A Georgieva, Fitoterapia 60, 382 (1989).
- 14. MOA Elsheikh, Diss. Abstr. Int. B 46, 4199 (1986).
- 15. SS Lee, Diss. Abstr. Int. B 46, 4252 (1986).
- 16. SMK Al-Khalil, Diss. Abstr. Int. B 47, 3312 (1987).
- 17. S Al-Khalil and PL Schiff, Jr., Phytochemistry 25, 935 (1986).
- 18. S Al-Khalil and PL Schiff, Jr., J. Nat. Prod. 48, 989 (1985).
- 19. MC Lin, Diss. Abstr. Int. B 49, 1642 (1988).
- 20. C-Y Gao, Z-C Lou, F-T Lin, M-C Lin, and PL Schiff, Jr., Phytochemistry 26, 3003 (1987).
- 21. MS Hoard, Diss. Abstr. Int. B 53, 4110 (1993); Chem. Abstr. 120, 240141 (1994).
- 22. DI Kim, Diss. Abstr. Int. B 50, 5201 (1990).
- 23. DI Kim, H Pedersen, and CK Chin, Biotechnol. Lett. 10, 709 (1988); Chem. Abstr. 110, 6295 (1989).
- 24. GH Cho, DI Kim, H Pedersen, and CK Chin, Biotechnol. Prog. 4, 184 (1988); Chem. Abstr. 110, 22285 (1989).
- 25. D Kim, H Pedersen, and CK Chin, J. Biotechnol. 16, 297 (1990); Chem. Abstr. 114, 4856 (1991).
- 26. DI Kim, H Pedersen, and CK Chin, Biotechnol. Lett. 13, 213 (1991); Chem. Abstr. 114, 205504 (1991).
- 27. DI Kim, H. Pedersen, and CK Chin, Biotechnol. Bioeng. 38, 331 (1991); Chem. Abstr. 115, 112778 (1991).
- 28. DI Kim, J. Microbiol. Biotechnol. 1, 79 (1991); Chem. Abstr. 115, 278122 (1991).

- 29. DI Kim, H Pedersen, and CK Chin, J. Biotechnol. 21, 201 (1991); Chem. Abstr. 116, 5244 (1992).
- 30. JW Choi, Diss. Abstr. Int. B 51, 3475 (1991).
- 31. JW Choi, Korean J. Chem. Eng. 7, 226 (1990); Chem. Abstr. 114, 99921 (1991).
- 32. JW Choi, Korean J. Chem. Eng. 9, 128 (1992); Chem. Abstr. 118, 165153 (1993).
- A Ionescu, E Grigorescu, I Ciulei, O Contz, V Munteanu, I Moldoveanu, V Turcanu, and S Nohai, Rom. RO 90,408, Appl. 114,982 (1986); Chem. Abstr. 107, 205171 (1987).
- 34. SK Maekh, EV Boiko, VM Starchenko, and SY Yunusov, Chem. Nat. Cpds. 22, 238 (1986).
- 35. C-H Chen, Korean J. Pharmacog. 17, 49 (1986).
- 36. ZF Mahmoud, Acta Pharm. Jugosl. 35, 113 (1985); Chem. Abstr. 103, 157363 (1985).
- 37. LG Kintsurashvili and VY Vachnadze, Chem. Nat. Cpds. 24, 644 (1988).
- M Velcheva, K Duchevska, and G Samuelsson, Acta Pharm. Nord. 4, 57 (1992); Chem. Abstr. 117, 23330 (1992).
- Z Wu, T Wu, Z Min, M Mizuo, T Toshiyki, and L Munekazu, Zhongguo Yaoke Daxue Xuebao 19, 239 (1988); Chem. Abstr. 110, 13430 (1989).
- Z-X Wu, T-B Wu, Z-D Min, M Mizuno, T Tanaka, and M linuma, Shoyakugaku Zasshi 43, 195 (1989); Chem. Abstr. 112, 73781 (1990).
- 41. S Mukhamedova, SK Maekh, and SY Yunusov, Chem. Nat. Cpds. 20, 246 (1984).
- 42. O Gasic, R Durkovic, M Popovic, B Pal, H Dutschevska, and A Georgieva, Fitoterapia 60, 382 (1989); Chem. Abstr. 112, 4612 (1989).
- 43. KHC Baser and N Kirimer, Fitoterapia 58, 142 (1987).
- 44. LG Kintsurashvili and VY Vachnadze, Rastit. Resur. 26, 72 (1990); Chem. Abstr. 112, 155306 (1990).
- C-Y Gao, YE Ali, M Sharaf, LK Wong, EW Fu, F-T Lin, FK Duah, and PL Schiff, Jr., Phytochemistry 29, 1895 (1990).
- 46. SF Hussain, MT Siddiqui, H Guinaudeau, and M Shamma, J. Nat. Prod. 52, 428 (1989).
- MP Velcheva, S Danghaaghiin, Z Samdanghiin, Z Yansanghiin, and M Hesse, Phytochemistry 39, 683 (1995).
- 48. DA Murav'eva, ON Tolkachev, and AA Akopov, Chem. Nat. Cpds. 21, 393 (1985).

- 49. KHC Başer and A Ertan, Planta Med. 56, 337 (1990).
- 50. Z-C Lou, C-Y Gao, F-T Lin, M-C Lin, J Zhang, DJ Slatkin, and PL Schiff, Jr., Planta Med. 53, 498 (1987).
- 51. N Kirimer and KHC Baser, Planta Med. 57, 587 (1991).
- 52. J Slavík and L Slavíková, Collect. Czech. Chem. Commun. 57, 573 (1992).
- 53. KHC Başer and N Kirimer, Planta Med. 54, 513 (1988).
- 54. Y-C Wu, T-S Wu, M Niwa, S-T Lu, and Y Hirata, Phytochemistry 27, 3949 (1988).
- 55. KHC Başer, M Ogutveren, and NG Bisset, J. Nat. Prod. 48, 672 (1985).
- 56. IR Lee, BH Her, SA Han, and HW Ahn, Korean J. Pharmacog. 16, 45 (1985).
- 57. WHMW Herath, SF Hussain, H Guinaudeau, and M Shamma, J. Nat. Prod. 50, 757 (1987).
- 58. AK Sidjimov and VS Christov, J. Nat. Prod. 47, 387 (1984).
- 59. A Sidjimov, V Christov, and A Grozeva, Compt. Redn. Acad. Bulg. Sci. 45, 63 (1992).
- M Kurbanov, YM Nuraliev, M Khodzhimatov, and MD Isobaev, Rastit. Resur. 20, 125 (1984); Chem. Abstr. 100, 117850 (1984).
- 61. C Lin, X Wang, F Zhou, X Wu, and S Zhao, Zhiwu Xuebao 31, 449 (1989); Chem. Abstr. 112, 175576 (1990).
- 62. Y-C Wu, S-T Lu, J-J Chang, and K-H Lee, Phytochemistry 27, 1563 (1988).
- M Sahai, SC Sinha, AB Ray, SK Chattopadhyay, S Al-Khalil, DJ Slatkin, and PL Schiff, Jr., J. Nat. Prod. 48, 669 (1985).
- M Velcheva, K Duchevska, B Kuzmanov, S Dangaagiin, Z Samdangiin, and Z Yansangiin, Dokl. Bulg. Akad. Nauk 44, 33 (1991); Chem. Abstr. 116, 80438 (1992).
- 65. O Gasic, B Ribar, R Durkovic, M Popovic, H Dutschewska, and P Engel, Acta Pharm. Jugosl. 41, 155 (1991); Chem. Abstr. 115, 203343 (1991).
- M Popovic, R Djurkovic, O Gasic, P Boza, and H Dutschewska, Zb. Matice Srp. Prir. Nauke 81, 37 (1991); Chem. Abstr. 119, 156301 (1993).
- 67. MP Velcheva, HB Dutschweska, S Danghaaghiin, Z Samdanghiin, and Z Yansanghiin, Planta Med. 59, 262 (1993).
- 68. L Lin, J Zhang, C Xu, and Z Chen, Zhongcaoyao 18, 2 (1987); Chem. Abstr. 107, 93538 (1987).

69.	H Dutschewska, M Velcheva and G Samuelsson, Acta Pharm. Nord. 1, 363 (1989); Chem. Abstr. 112,
	155310 (1990).

- 70. LG Kintsurashvili and VY Vachnadze, Chem. Nat. Cpds. 20, 629 (1984).
- 71. J Pan, S Liu, T Jiang, Y Wang, and G Han, Zhongcaoyao 23, 453 (1992); Chem. Abstr. 118, 98029 (1993).
- 72. Y Yan and PL Schiff, Jr., Zhongguo Zhongyao Zazhi 18, 615 (1993); Chem. Abstr. 120, 50190 (1994).
- 73. JA Lopez, M-C Lin, and PL Schiff, Jr., Phytochemistry 27, 3335 (1988).
- 74. K Chmal-Jagiello and J Sendra, Herba Pol. 34, 163 (1988); Chem. Abstr. 111, 150594 (1909).
- Z-C Lou, C-Y Gao, F-T Lin, J Zhang, M-C Lin, M Sharaf, LK Wong, DJ Slatkin, and PL Schiff, Jr., Planta Med. 58, 114 (1992).
- 76. IR Lee, Yakhak Hoeji 27, 185 (1984).
- 77. KHC Başer and N Kirimer, Planta Med. (5), 448 (1985).
- 78. R Chang, P Zhang, W Chen, and Q Fang, Zhongcaoyao 20, 44 (1989); Chem. Abstr. 112, 42312 (1990).
- 79. Y-C Wu, T-S Wu, M Niwa, S-T Lu, and Y Hirata, Heterocycles 26, 943 (1987).
- Z Wu, T Wu, T Jin, and Y Wang, Zhongguo Yaoke Daxue Xuebao 19, 203 (1988); Chem. Abstr. 109, 208351 (1988).
- 81. WHMW Herath, SF Hussain, AJ Freyer, H Guinaudeau, and M Shamma, J. Nat. Prod. 50, 721 (1987).
- 82. Z-X Wu, G-P Dong, T-B Wu, and Z-D Min, Acta Botanica Sinica 32, 210 (1990)
- 83. L-Z Lin, S-F Li, X He, G-Q Song, and Z-L Chen, Heterocycles 24, 2731 (1986).
- 84. SF Hussain, H Guinaudeau, AJ Freyer, and M Shamma, J. Nat. Prod. 48, 962 (1985).
- Y Zhou, Y, Guo, and X Meng, Shenyang Yaoxueyuan Xuebao 7, 45 (1990); Chem. Abstr. 113, 158513 (1990).
- 86. Z Wu and Y Yi, Zhongguo Yaoke Daxue Xuebao 22, 177 (1991); Chem. Abstr. 115, 275734 (1991).
- 87. S Mukhamedova, SK Maekh, and AY Yunusov, Chem. Nat. Cpds. 20, 377 (1984).
- 88. Z Wang, Y Guo, and X Meng, Zhongcaoyao 19, 161 (1988); Chem. Abstr. 109, 66429 (1988).
- 89. Y Zhou, Y Guo, and X Meng, Zhongcaoyao 21, 397 (1990); Chem. Abstr. 114, 58898 (1991).
- 90. BD Krane and M Shamma, J. Nat. Prod. 45, 377 (1982).

- 91. Y Aly, A Galal, LK Wong, EW Fu, F-T Lin, FK Duah, and PL Schiff, Jr., Phytochemistry 28, 1967 (1989).
- 92. KS Umarov, ZF Ismailov, and SY Yunusov, Chem. Nat. Cpds. 6, 452 (1970).
- 93. NM Mollov, PP Panov, LN Thuan, and LN Panova, Compt. Rend. Acad. Bulg. Sci. 23, 1243 (1970).
- 94. NM Mollov and LN Thuan, Compt. Rend. Acad. Bulg. Sci. 24, 601 (1971).
- 95. W-N Wu, JL Beal, and RW Doskotch, J. Nat. Prod. 40, 281 (1977).
- 96. W-N Wu, JL Beal, and RW Doskotch, Tetrahedron Lett., 3687 (1976).
- 97. W-N Wu, JL Beal, R-P Leu, and RW Doskotch, J. Nat. Prod. 40, 384 (1977).
- 98. W-T Liao, JL Beal, W-N Wu, and RW Doskotch, J. Nat. Prod. 41, 257 (1978).
- 99. W-N Wu, W-T Liao, ZF Mahmoud, JL Beal, and RW Doskotch, J. Nat. Prod. 43, 472 (1980).
- 100. PL Schiff, Jr., J. Nat. Prod. 54, 645 (1991).
- 101. W-N Wu, JL Beal, and RW Doskotch, J. Nat. Prod. 43, 143 (1980).
- 102. H Guinaudeau, M Leboeuf, and A Cavé, Lloydia 38, 275 (1975).
- 103. H Guinaudeau, M Leboeuf, and A Cavé, J. Nat. Prod. 42, 325 (1979).
- 104. H Guinaudeau, M Leboeuf, and A Cavé, J. Nat. Prod. 46, 761 (1983).
- 105. H Guinaudeau, M Leboeuf, and A Cavé, J. Nat. Prod. 51, 389 (1988).
- 106. H Guinaudeau, M Leboeuf, and A Cavé, J. Nat. Prod. 57, 1033 (1994).
- MP Velcheva, S Danghaaghiin, Z Samdanghiin, Z Yansanghiin, and M Hesse, Phytochemistry 39, 683 (1995).
- 108. RJ Highet and PF Highet, J. Org. Chem. 30, 902 (1965).
- 109. KGR Pachler, RR Pachler, and WH Baarscher, Tetrahedron 21, 1259 (1965).
- 110. R Hocquemiller, A Cavé, and A Raharisololalao, J. Nat. Prod. 44, 551 (1981).
- 111. SK Maekh, SY Yunusov, EV Boiko, and VM Starchenko, Chem. Nat. Cpds 20, 511 (1984).
- 112. WH Baarschers, RR Arndt, K Pachler, JA Weisbach, and B Douglas, J. Che. Soc., 4788 (1964).
- 113. MP Cava, Y Watanabe, K Bessho, MJ Mitchell, AI daRocha, B Hwang, B Douglas, and JA Weisbach, Tetrahedron Lett., 2437 (1968).

- 114. SK Maekh, SY Yunusov, EV Boiko, and VM Starchenko, Chem. Nat. Cpds. 18, 208 (1982).
- 115. B Gözler, MS Lantz, and M Shamma, J. Nat. Prod. 46, 293 (1983).
- 116. B Gözler, in: The Alkaloids, vol 31, pp. 317, A. Brossi, Ed., Academic Press, San Diego (1987).
- 117. M Velcheva, R. Petrova, S. Danghaaghiin, and Z Yansanghlin, J. Nat. Prod. 55, 679 (1992).
- 118. SK Maekh, SY Yunusov, and PG Gorovoi, Chem. Nat. Cpds. 12, 110 (1976).
- 119. MP Velcheva, RR Petrova, Z Samdanghiin, S Danghaaghiin, and Z Yansanghiin, Planta Med. 60, 485 (1994).
- 120. M Shamma and M Rahimizadeh, J. Nat. Prod. 49, 398 (1986).
- 121. H Guinaudeau, AJ Freyer, M Shamma, and KHC Başer, Tetrahedron 40, 1975 (1984).
- 122. G Goto, K Sasaki, N Sakabe, and Y Hirata, Tetrahedron Lett., 1639 (1968).
- 123. YC Wu, TS Wu, M Niwa, ST Lu, Y Hirata, DR McPhail, AT McPhail, and K-H Lee, Heterocycles 27, 1813 (1988).
- 124. SW Pelletier, RS Sawhney, and NV Mody, Heterocycles 9, 1241 (1978).
- 125. NV Mody and SW Pelletier, Tetrahedron 34, 2421 (1978).
- 126. F Sun, XT Liang, D Yu, CF Xu, and J Clardy, Tetrahedron Lett. 27, 275 (1986).
- 127. IH Hall, KH Lee, and HC Sykes, Planta Med., 53 153 (1987).
- 128. H Guinaudeau, M Leboeuf, and A Cavé, J. Nat. Prod. 51, 1025 (1988).
- L-Z Lin, S-F Hu, K Zaw, CK Angerhofer, H Chai, JM Pezzuto, GA Cordell, J lin, and D-M Zheng, J. Nat. Prod. 57, 1430 (1994).
- 130. H Guinaudeau, M Leboeuf, and A Cavé, J. Nat. Prod. 42, 133 (1979).
- 131. H Guinaudeau, M Leboeuf, and A Cavé, J. Nat. Prod. 47, 565 (1984).
- 132. L-Z Lin, H. Wagner, and O Seligmann, Planta Med. 49, 55 (1983).
- 133. L-Z Lin, S-F Li, and H Wagner, Phytochemistry 26, 583 (1987).
- 134. H Guinaudeau, AJ Freyer, RD Minard, and M Shamma, J. Org. Chem. 47, 5406 (1982).
- 135. M Shamma and JL Moniot, J. Amer. Chem. Soc. 96, 3338 (1974).

- 136. KP Guha, B Mukherjee, and R Mukherjee, J. Nat. Prod. 42, 1 (1979).
- 137. PL Schiff, Jr., J. Nat. Prod. 46, 1 (1983).
- 138. PL Schiff, Jr., J. Nat. Prod. 50, 529 (1987).
- 139. H Guinaudeau, AJ Freyer, and M Shamma, Nat. Prod. Rep. 3, 477 (1986).
- 140. P Dute, JF Weber, A Fournet, A Cavé, and J Bruneton, Phytochemistry 26, 2136 (1987).
- 141. JM Saa, MJ Mitchell, MP Cava, and JL Beal, Heterocycles 4, 753 (1976).
- 142. M Zhu and P Xiao, Yaowu Fenxi Azahi 10, 72 (1990); Chem. Abstr. 113, 12218 (1990).
- 143. GW Caldwell, JA Masucci, and W-N Wu, Org. Mass. Spec. 29, 220 (1994).
- 144. X Wang and Y Guo, Shenyang Yaoxueyuan Xuebao 9, 22 (1992); Chem. Abstr. 117, 220208 (1992).
- 145. WL Ma, DS Su, and XQ Gu, Yaoxue Xuebao 26, 59 (1991); Chem. Abstr. 114, 192410 (1991).
- 146. WL Ma, XQ Gu, and DS Su, Yaoxue Xuebao 23, 196 (1988); Chem. Abstr. 109, 156051 (1988).
- 147. W Ma, D Su, and X Gu, Shenyang Yaoxueyuan Xuebao 5, 11 (1988); Chem. Abstr. 108, 226735 (1988).
- 148. W Ma, D Su, and X Giu, Yaowu Fenxi Zazhi 8, 288 (1988); Chem. Abstr. 110, 82595 (1989).
- 149. W Ma, H Huang, D Su, Z Ma, and X Gu, Shenyang Yaoxueyuan Xuebao 5, 235 (1988); Chem. Abstr. 110, 121228 (1989).
- 150. N Marekov and A Sidzhimov, Izv. Khim. 21, 246 (1988); Chem. Abstr. 111, 93951 (1989).
- 151. B Schneider and MH Zenk, Phytochemistry 33, 1431 (1993).
- M Suzuki, K Nakagawa, H Fukui, and M Tabata, Plant Cell Rep. 7, 26 (1988); Chem. Abstr. 108, 148834 (1988).
- 153. E Grill, E-L Winnacker, and MH Zenk, Science 230, 674 (1985).
- 154. Y Kobayashi, H Fukui, and M Tabata, Plant Cell Rep. 7, 249 (1988); Chem. Abstr. 109, 108886 (1988).
- 155. Y Kobayashi, H Fukui, and M Tabata, Plant Cell Rep. 8, 255 (1989); Chem. Abstr. 111, 152091 (1989).
- 156. Y Kobayashi, H Fukui, and M Tabata, Plant Cell Rep. 9, 496 (1991); Chem. Abstr. 114, 183838 (1991).
- 157. Y Kobayashi, M Hara, and M Tabata, Phytochemistry 30, 3605 (1991).

- M Hara, T Kitamura, H Fukui, and M Tabata, Plant Cell Rep. 12, 70 (1993); Chem. Abstr. 118, 143563 (1993).
- K Nakagawa, A Konagai, H Fukui, and M Tabata, Plant Cell Rep. 3, 254 (1984); Chem. Abstr. 102, 128813 (1985).
- 160. S Inoue and Y Fukushima, Jpn. Kokai Tokkyo Koho JP 02 57,189; Chem. Abstr. 113, 22279 (1990).
- M Hara, Y Kobayashi, H Fukui, and M Tabata, Plant Cell Rep. 10, 494 (1991); Chem. Abstr. 116, 80542 (1992).
- 162. C Funk, K Gugler, and P Brodelius, Phytochemistry 26, 401 (1987).
- 163. K Guegler, C Funk, and P Brodelius, Eur. J. Biochem. 170, 661 (1988); Chem. Abstr. 108, 3490 (1988).
- 164. J Berlin, C Mollenschott, and V Wray, Biotechnol. Lett. 10, 193 (1988); Chem. Abstr. 108, 203268 (1988).
- 165. GW Piehl, J Berlin, C Mollenschott, and J Lehmann, Appl. Microbiol. Biotechnol. 29, 456 (1988); Chem. Abstr. 110, 6298 (1989).
- 166. PJ Facchini and F DiCosmo, Biotechnol. Bioeng. 37, 397 (1991); Chem. Abstr. 114, 141564 (1991).
- BS Aswal, DS Bhakuni, AK Goel, K Kar, BN Mehrotra, and KC Mukherjee, Indian J. Exp. Biol. 22, 312 (1984).
- Z Abraham, DS Bhakuni, HS Garg, AK Goel, BN Mehrotra, and GK Patnaik, Ind. J. Exp. Biol. 24, 48 (1986).
- 169. M Chagnon, J. Ethnopharmacol. 12, 239 (1984).
- 170. Y Boily and L. van Puyvelde, J. Ethnopharmacol. 16, 1 (1986).
- 171. L VanPuyvelde, JD Ntawukiliyayo, F Portaels, and E Hakizamungu, Phytother. Res. 8, 65 (1994).
- 172. M Miura, S Ohta, A Kamogawa, and M Shinoda, Yakugaku Zasshi 107, 992 (1987).
- 173. N Kumazawa, S Ohta, S-H Tu, A Kamogawa, and M Shinoda, Yakugaku Zasshi 111, 199 (1991).
- 174. AKS Rawat, S Hehrotra, and U Shome, Fitoterapia 63, 545 (1992).
- 175. J Kardos, G. Blasko, and M Simonyi, Arnzeimittel Forsch. 36, 939 (1986).
- 176. SJ Marshall, PF Russell, CW Wright, MM Anderson, JD Phillipson, GC Kirby, DC Warhurst, and PL Schiff, Jr., Antimicrobial Agents and Chemotherapy 38, 96 (1994).
- SJ Partridge, PF Russell, GC Kirby, DC Warhurst, JD Phillipson, MJ O'Neill, and PL Schiff, Jr., J. Pharm. Pharmacol. 40 (Suppl.), 53 (1988).

- 178. K Nakamura, S Tsuchiya, Y Sugimoto, Y Sugimura, and Y Yamada, Planta Med. 58, 505 (1992).
- 179. T Kamiya, Y Sugimoto, and Y Yamada, Planta Med. 59, 475 (1993).
- 180. H Sakashita, E Isono, H Inoue, H Ishida, and Y Murakoshi, Ensho 13, 501 (1993); Chem. Abstr. 120, 45441 (1994).
- 181. C-W Wong, WK Seow, JW O'Callaghan, and Y-H Thong, Agents Actions 36, 112 (1992).
- 182. T Matsuno, K Orita, K Edashige, H Kobuchi, EF Sato, B Ino , M Inoue, and K Utsumi, Biochemical Pharmacol. 39, 1255 (1990).
- 183. J Haisong, L Xiaqjie, Z Baolu, H Zhewu, and X Wenjuan, Biochemical Pharmacol. 39, 1673 (1990).
- 184. S Akiba, E Kato, T Sato, and T Fujii, Biochemical Pharmacol. 44, 45 (1992).
- 185. Z-Y Hu, Y-S Gong, and W-L Huang, Biochemical Pharmacol. 44, 1543 (1992).
- JP Felix, VF King, JL Shevell, ML Garcia, GJ Kaczorowski, IRC Bick, and RS Slaughter, Biochemistry 31, 11793 (1992).
- 187. N Shiraishi, S-I Akiyama, M Nakagawa, M Kobayashi, and M Kuwano, Cancer Research 47, 2413 (1987).
- 188. R Sotnikova, D Kost'alova, and S Vaverkova, Gen. Pharmac. 25, 1405 (1994).
- 189. C-W Wong, WK Seow, and Y-H Thong, Int. Arch. Allergy Immunol. 97, 31 (1992).
- 190. S-Y Li, L-H Ling, B-S Teh, WK Seow, and Y-H Thong, Int. J. Immunopharmac. 11, 395 (1989).
- 191. C-W Wong, WK Seow, T-S Zeng, WJ Halliday, and Y-H Thong, Int. J. Immunopharmac. 13, 579 (1991).
- 192. C-W Wong, Y-H Thong, and WK Seow, Int. J. Immunopharmac. 15, 185 (1993).
- 193. S-Y Li, W Jei, WK Seow, and Y-H Thong, Int. J. Immunopharmac. 16, 245 (1994).
- A Fournet, V Munoz, AM Manjon, A Angelo, R Hocquemiller, D Cortes, A Cavé, and J Bruneton, J. Ethnopharmacol. 24, 327 (1988).
- 195. A Fournet, AM Manjon, V Munoz, A Angelo, J Bruneton, R Hocquemiller, D Cortes and A Cavé, J. Ethnopharmacol. 24, 337 (1988).
- 196. WK Seow, A Ferrante, A Summors, and YH Thong, Life Sciences 50, PL53 (1992).
- 197. K Yasukawa, M Akasu, M Takeuchi, and M Takido, Oncology 50, 137 (1993).
- 198. PR Miles, L Bowman, JKH Ma, and JYC Ma, Toxicol. and Applied Pharmacol. 119, 142 (1993).

- 199. K Kinoshita, K Morikawa, M Fujita, and S Natori, Planta Med. 58, 137 (1992).
- 200. K Muller and K Ziereis, Planta Med. 60, 421 (1994).
- 201. K Muller, K Ziereis, and I Gawlik, Planta Med. 61, 74 (1995).
- 202. B Yang, B Li, X Wu, and W Li, Zhongguo Yaolixue Tongbao 7, 67 (1991); Chem. Abstr. 116, 452 (1992).
- 203. J Pan, F Yin, C Shen, C Lu, and G Han, Tianran Chanwu Yanjiu Yu Kaifa 1, 23 (1989); Chem. Abstr. 116, 15770 (1992).
- 204. B Li, Y Zhang, and W Li, Zhongguo Yaolixue Tongbao 13, 412 (1992); Chem. Abstr. 117, 184573 (1992).
- W Zhang, S Chen, H Ju, S Zhao, C, Zou, J Hao, and Y Liu, Methods Find. Exp. Clin. Pharmacol. 14, 677 (1992); Chem. Abstr. 118, 183098 (1993).
- 206. F-L Li, L-H Bao, and W-H Li, Acta Pharm. Sinica 20, 859 (1985).
- 207. D Sun, SN Abraham, and EH Beachey, Antimicrobial Agents and Chemotherapy 32, 1274 (1988).
- 208. D Sun, HS Courtney, and EH Beachey, Antimicrobial Agents and Chemotherapy 32, 1370 (1988).
- JL Vennerstrom, JK Lovelace, VB Waits, WL Hanson, and DL Klayman, Antimicrobial Agents and Chemotherapy 34, 918 (1990).
- 210. N Nakai, Y Fujii, K Kobashi, and K Nomura, Arch. Biochem. Biophys. 239, 491 (1985).
- 211. CS Tsai and RF Ochillo, Arch. Int. Pharmacodyn. 310, 116 (1991).
- 212. GT Tan, JF Miller, AD Kinghorn, SH Hughes, and JM Pezzuto, Biochem. Biophys. Res. Comm. 185, 370 (1992).
- 213. R Nandi, D Debnath, and M Maiti, Biochem. Biophys. Acta 1049, 339 (1990).
- 214. GS Kumar, D Debnath, A Sen, and M Maiti, Biochemical Pharmacol. 46, 1665 (1993).
- H Kawaguchi, M Kim, M Ishida, Y-J Ahn, T Yamamoto, R Yamaoka, M Kozuka, K Goto, and S Takahashi, Agric. Biol. Chem. 53, 2635 (1989).
- 216. W-S Chang, Y-H Chang, F-J Lu, and H-C Chiang, Anticancer Res. 14, 501 (1994).
- 217. E Krug and P Proksch, Biochem. Syst. and Ecol. 21, 749 (1993).
- 218. FR Neto, Br. J. Pharmac. 108, 534 (1993).
- 219. K-M-U, M-Khin, N-N-Wai, A-Kyaw, and T-U, Brit. Med. J. 291, 1601 (1985).

- 220. KSS Chang, C Gao, and L-C Wang, Cancer Letters 55, 103 (1990).
- 221. K Yasukawa, M Takido, T Ikekawa, F Shimada, M Takeuchi, and S Nakagawa, Chem. Pharm. Bull. 39, 1462 (1991).
- 222. D Debnath, GS Kumar, R Nandi, and M Maiti, Ind. J. Biochem. and Biophys. 26, 201 (1989).
- 223. T Hattori, K Furuta, T Nagao, T Nagamatsu, M Ito, and Y Suzuki, Japan. J. Pharmacol. 59, 159 (1992).
- 224. JC Cavin, SM Krassner, and E Rodriguez, J. Ethnopharmacol. 19, 89 (1987).
- 225. S Bova, R Padrini, WF Goldman, DM Berman, and G Cargnelli, J. Pharmacol. Exp. Ther. 261, 318 (1992).
- 226. J Ulrichova, J Kovar, and V Simanek, Collect. Czech. Chem. Comm. 50, 978 (1985).
- 227. H Paulova, J Kovar, J Plocek, and J Slavík, Collect. Czech. Chem. Comm. 52, 2338 (1987).
- 228. JL Vennerstrom and DL Klayman, J. Med. Chem. 31, 1084 (1988).
- 229. GT Tan, JM Pezzuto, AD Kinghorn, and SH Hughes, J. Nat. Prod. 54, 143 (1991).
- SJ Partridge, PF Russell, MM Anderson, CW Wright, JD Phillipson, GC Kirby, DC Warhurst, and PL Schiff, Jr., J. Pharm. Pharmacol. 42 (Suppl.), 97 (1990).
- 231. AL Okunade, CD Hufford, MD Richardson, JR Peterson, and AM Clark, J. Pharm. Sci. 83, 404 (1994).
- 232. A Lesnau, J Hils, G Pohl, G Beyer, M Janka and LTT Hoa, Pharmazie 45, 638 (1990).
- 233. K-T Chen, D-M Hao, Z-X Liu, Y-C Chen, and Z-S You, Chin. Med. J. 107, 808 (1994).
- 234. K-K Hui, J-L Yu, W-F-A Chan, and E Tse, Life Sciences 49, 315 (1991).
- 235. D-H Shin, H Yu, and W-H Hsu, Life Sciences 53, 1495 (1993).
- 236. C-W Chi, Y-F Chang, T-W Chao, S-H Chiang, F-K P'eng, W-Y Lui, and T-Y Liu, Life Sciences 54, 2099 (19934.
- 237. S Pepeljnjak and J Petricic, Pharmazie 47, 307 (1992).
- 238. Y Kaneda, T Tanaka, and T Saw, Tokai J. Exp. Clin. Med. 15, 417 (1990).
- 239. A Villar, JL Rios, MC Recio, D Cortes, and A Cavé, Planta Med. 52, 556 (1986).
- 240. T Tanaka, K Metori, S Mineo, M Hirotani, T Furuya, and S Kobayashi, Planta Med. 59, 200 (1993).
- 241. PN Solis, CW Wright, MM Anderson, MP Gupta, and JD Phillipson, Planta Med. 59, 250 (1993).

- 242. V Miskk, L Bezakova, L Maledova, and D Kostalova, Planta Med. 61, 372 (1995).
- 243. J-H Qin, M-H Xie, D-Y Wang, and J-R Xi, Acta Pharm. Sinica 25, 780 (1990).
- 244. Z Hua and XL Wang, Acta Pharm. Sinica 29, 576 (1994).
- 245. ZF Shen and MZ Xie, Acta Pharm. Sinica 28, 532 (1993).
- 246. JE Shaffer, J. Cardiovasc. Pharmacol. 7, 307 (1985).
- 247. Q Tang, G Li, J Li, and Y Xu, Yiyao Gongye 16, 130 (1985); Chem. Abstr. 103, 16594 (1985).
- 248. ML Molero, MJ Hazen, and JC Stockert, J. Plant Physiol. 120, 91 (1985).
- 249. J Wang and D Fang, Zhongguo Yaolixue Yu Dulixue Zazhi 5, 1 (1991); Chem. Abstr. 115, 41593 (1991).
- VV Bitkov, ZKM Khashaev, LA Oronevich, VA Nenashev, and SG Batrakov, Neirofiziologiya 23, 131 (1991); Chem. Abstr. 115, 126914 (1991).
- M Zhang, Y Shen, and C Tang, Tianran Chanwu Yanjiu Yu Kaifa 2, 49 (1990); Chem. Abstr. 115, 197979 (1991).
- 252. C Huang, Z Chu, and Z Yang, Zhongguo Yaolixue Tongbao 12, 526 (1991); Chem. Abstr. 116, 498 (1992).
- L Lu and M Liu, Faming Zhuanli Shenquing Gongkai Shuomingshu CN 1,056,120 (1991); Chem. Abstr. 116, 242008 (1992).
- 254. Y Suzuki, Jpn. Kokai Tokkyo Koho JP 04,193,830 [92,193,830] (1992); Chem. Abstr. 117, 220101 (1992).
- J Song, L Mao, J Shi, S Li, H Zheng, and H Chen, Zhongcaoyao 23, 590 (1992); Chem. Abstr. 118, 73481 (1993).
- 256. Y Wang, Y Tan, and B Sheng, Zhongguo Yaolixue Yu Dulixue Zazhi 7, 34 (1993); Chem. Abstr. 118, 225242 (1993).
- K Yamamoto, H Takase, K Abe, Y Saito, and A Suzuki, Nippon Yakurigaku Zasshi 101, 169 (1993); Chem. Abstr. 118, 225328 (1993).
- 258. H Takase, K Yamamoto, K Ito, and E Yumioka, Nippon Yakurigaku Zasshi 102, 101 (1993); Chem. Abstr. 119, 151920 (1993).
- 259. T Seki and M Morohashi, Skin Pharmacol. 6, 56 (1993); Chem. Abstr. 119, 62993 (1993).
- Y Wang, Y Tan, and B Sheng, Zhongguo Yaolixue Yu Dulixue Zazhi 7, 108 (1993); Chem. Abstr. 119, 108644 (1993).
- 261. Q-M Chen and M-Z Xie, Acta Pharm. Sinica 21, 401 (1986).

- 262. H Fukase and H Ooshio, Jpn. Kokai Tokkyo Koho JP 03,95,116 [91,95,116] (1991); Chem. Abstr. 115, 189807 (1991).
- 263. S Simeon, JL Rios, and A Villar, Pharmazie 45, 442 (1990).
- 264. J Kardos, G. Blaskó, and M Simonyi, Arnzeimittel Forsch. 36, 939 (1986).
- 265. A Ubeda, C Montesinos, M Paya, and MJ Alcaraz, Free Radical Biol. and Med. 15, 159 (1993).
- 266. H Matsuda, H Shiomoto, S Naruto, K Namba, and M Kubo, Planta Med. 54, 27 (1988).
- 267. C-X Liu, P-G Xiao, and G-S Liu, Phytotherapy Res. 5, 228 (1991).
- 268. P Cumming and SR Vincent, Biochemical Pharmacol. 44, 989 (1992).
- SA Saeed, RU Simjee, S Farnaz, AH Gilani, S Siddiqui, BS Siddiqui, S Begum, S Faizi, and A Zia, Biochem. Soc. Trans. 21, 461S (1993).
- 270. H Karaki, T Kishimoto, H Ozaki, K Sakata, H Umeno, and N Urakawa, Br. J. Pharmac. 89, 367 (1986).
- 271. T Ohmoto, T Nikaido, K Koike, K Kohda, and U Sankawa, Chem. Pharm. Bull. 36, 4588 (1988).
- 272. J Stromborn, R Jokela, V Saano, and W Rolfsen, Eur. J. Pharmacol. 214, 165 (1992).
- 273. J Leclercq, M-C De Pauw-Gillet, R Bassleer, and L Angenot, J. Ethnopharmacol. 15, 305 (1986).
- 274. A Ahmad, KA Khan, S Sultana, BS Siddiqui, S Begum, S Faizi, and S Siddiqui, J. Ethnopharmacol. 35, 289 (1992).
- 275. AF De Arriba, JM Lizcano, MD Balsa, and M Unzeta, J. Pharm. Pharmacol. 46, 809 (1994).
- 276. JB Hudson, R Fong, M Altamirano, and GHN Towers, Planta Med. 53, 536 (1987).
- 277. C-X Xu, L Lin, R-H Sun, X Liu, and R Han, Acta Pharm. Sinica 25, 330 (1990).
- C-X Xu, L Lin, R-H Sun, X Liu, and R Han, Yaoxue Xuebao 25, 330 (1990); Chem. Abstr. 113, 126166 (1990).
- L-Z Lin, H-L Shieh, CK Angerhofer, JM Pezzuto, GA Cordell, L Xue, ME Johnson, and N Ruangrungsi, J. Nat. Prod. 56, 22 (1993).
- K Likhitwitayawuid, CK Angerhofer, GA Cordell, JM Pezzuto, and N Ruangrungsi, J. Nat. Prod. 56, 30 (1993).
- M Akasu, K Kodama, J Oki, and M Ono, Jpn. Kokai Tokkyo Koho JP 02,134,382 [90,134,382] (1990);
 Chem. Abstr. 113, 158677 (1990).
- 282. M de Q Paulo, JM Barbosa-Filho, EO Lima, RF Maia, R de Cassia BBC Barbosa, and MAC Kaplan, J. Ethnopharmacol. 36, 39 (1992).
- 283. A Villar, M Mares, JL Rios, E Canton, and M Gobernado, Pharmazie 42, 248 (1987).
- 284. B DeLasHeras, JL Rios, I Martinez-Mir, and E Rubio, Pharmazie 45, 443 (1990).
- 285. L Yang, Y-X Xu, and G-S Zhao, Acta Pharm. Sinica 25, 859 (1990).
- 286. Z Chen, Z Zhang, and M Wang, Zhongguo Yaoli Xuebao 6, 45 (1985); Chem. Abstr. 102, 160375(1985).
- 287. Y Zhao, G Li, D Zhang, and G Zhao, Zhongguo Yaoli Xuebao 12, 316 (1991); Chem. Abstr. 115, 85119 (1991).
- 288. X Lian, Y Shi, J Quan, Z Wang, X Zhao, and W He, Xi'an Yike Daxue Xuebao 14, 141 (1993); Chem. Abstr. 119, 173873 (1993).
- SJ Partridge, PF Russell, GC Kirby, DC Warhurst, JD Phillipson, MJ O'Neill, and PL Schiff, Jr., J. Pharm. Pharmacol. 41 (Suppl.), 92 (1989).
- 290. H Arens, H Fischer, S Leyck, A Romer, and B Ulbrich, Planta Med. 51, 52 (1985).
- 291. T Zhao, X Wang, AM Rimando, and C-T Che, Planta Med. 57, 505 (1991).
- 292. M Nakatani, H Asai, K Mochihara, and T Hase, Kagoshima Daigaku Rigakubu Kiyo, Sugaku, Butsurigaku, Kagaku, (23) 153 (1990); Chem. Abstr. 115, 228433 (1991).
- 293. C-H Lin, G-J Chang, M-J Su, Y-C Wu, C-M Teng, and F-N Ko, Br. J. Pharmac. 113, 275 (1994).
- 294. C-H Lin, C-M Yang, F-N Ko, Y-C Wu, and C-M Teng, Br. J. Pharmac. 113, 1464 (1994).
- 295. T Nozaka, I Morimoto, M Ishino, and S Natori, Chem. Pharm. Bull. 36, 2259 (1988).
- Y-H Hui, JK Rupprecht, Y-M Liu, JE Anderson, DL Smith, C-J Chang, and JL McLaughlin, J. Nat. Prod. 52, 463 (1989).
- 297. Y-C Wu, C-Y Duh, S-K Wang, K-S Chen, and T-H Yang, J. Nat. Prod. 53, 1327 (1990).
- 298. GG Harrigan, AAL Gunatilaka, DGI Kingston, GW Chan, and RK Johnson, J. Nat. Prod. 57, 68 (1994).
- 299. Y-C Wu, Y-F Liou, S-T Lu, C-H Chen, J-J Chang, and K-H Lee, Planta Med. 55, 163 (1989).
- Y-C Wu, C-H Chen, T-H Yang, S-T Lu, DR McPhail, AT McPhail, and K-H Lee, Phytochemistry 28, 2191 (1989).
- 301. AM Clark, ES Watson, MK Ashfaq, and CD Hufford, Pharm. Res. 4, 495 (1987).

The Thalictrum Alkaloids

- 302. KEH El Tahir, Int. J. Pharmacognosy 29, 101 (1991).
- K Likhitwitayawuid, CK Angerhofer, H Chai, JM Pezzuto, GA Cordell, and N Ruangrungsi, J. Nat. Prod. 56, 1468 (1993).
- 304. H Mori, M Fuchigami, N Inoue, H Nagai, A Koda, and I Nishioka, Planta Med. 60, 445 (1994).
- V Castranova, J-H Kang, JKH Ma, C-G Mo, CJ Malanga, MD Moore, D Schwegler-Berry, and JYC Ma, Toxicol. and Applied Pharmacol. 108, 242 (1991).
- 306. K VanDyke, PCT Int. Appl. WO 92 18,131; Chem. Abstr. 118, 52417 (1993).
- 307. MC Zafra-Polo, MJ Tormos, D Cortès, and E Anselmi, J. Pharm. Pharmacol. 45, 563 (1993).
- 308. IK Said, A Latiff, SJ Partridge, and JD Phillipson, Planta Med. 57, 389 (1991).
- 309. M-T Hsieh, S-H Su, H-Y Tsai, W-H Peng, C-C Hsieh, and C-F Chen, Japan. J. Pharmacol. 61, 1 (1993).
- 310. RS Gupta and VP Dixit, J. Ethnopharmacol. 25, 151 (1989).
- 311. C Chen and D Fang, Zhongguo Yaolixue Tongbao 7, 138 (1991); Chem. Abstr. 116, 462 (1992).
- 312. H Shiomoto, H Matsuda, and M Kubo, Chem. Pharm. Bull. 38, 2320 (1990).
- 313. H Shiomoto, H Matsuda, and M Kubo, Chem. Pharm. Bull. 39, 474 (1991).
- 314. F-N Ko, T-S Wu, S-T Lu, Y-C Wu, T-F Huang, and C-M Teng, Japan. J. Pharmacol. 58, 1 (1992).
- 315. L Ustunes, GM Laekeman, B Gozler, AJ Vlietinck, A Ozer, and AG Herman, J. Nat. Prod. 51, 1021 (1988).
- 316. C-M Teng, F-N Ko, J-P Wang, C-N Lin, T-S Wu, C-C Chen, and T-F Huang, J. Pharm. Pharmacol. 43, 667 (1990).
- 317. F-N Ko, T-S Wu, S-T Lu, Y-C Wu, T-F Huang, and C-M Teng, Thrombosis Res. 56, 289 (1989).
- 318. H Matsuda, H Shiomoto, S Naruto, K Namba, and M Kubo, Planta Med. 54, 498 (1988).
- 319. G Ma, Z Zhang, and Z Chen, Zhongguo Yaoli Xuebao 15, 367 (1994); Chem. Abstr. 121, 99422 (1994).
- 320. H Watanabe, Ikagaku Oyo Kenkyu Zaidan Kenkyu Hokoku 9, 223 (1990); Chem. Abstr. 117, 124368 (1992).
- C Miao, F Zhang, Q Shu, K Zhang, and D Su, Zhongguo Yaoli Xuebao 12, 352 (1991); Chem. Abstr. 115, 85121 (1991).
- 322. G Chen, DK Todorov, and WJ Zeller, Cancer Letters 62, 173 (1992).

- 323. G Chen, C Ramachandran, and A Krishan, Cancer Research 53, 2544 (1993).
- 324. DK Todorov and WJ Zeller, Cancer Res. Clin. Oncol. 118, 83 (1992).
- 325. S Abdalla, S Al-Khalil, and F Afifi, Gen. Pharmac. 22, 253 (1991).
- 326. M-Y Shen, Biochem. J. 303, 289 (1994).
- 327. S-M Yu, S-S Lee, H Chou, and C-M Teng, Eur. J. Pharmacol. 234, 121 (1993).
- 328. M-J Su, Y-M Chang, J-F Chi, S-S Lee, Eur. J. Pharmacol. 254, 141 (1994).
- 329. H Ina and H lida, Chem. Pharm. Bull. 34, 726 (1986).
- 330. G Zetler, Arch. Int. Pharmacodyn. 296, 255 (1988).
- 331. Y-Q Zhao, G-S Zhao, and X-G Li, Acta Pharm. Sinica 21, 663 (1986).
- 332. D-H Zhao, X-M Yang, and B-H Sheng, Acta Pharm. Sinica 7, 131 (1986).
- 333. S-Y-H Tse, I-T Mak, and BF Dickens, Biochemical Pharmacol. 42, 459 (1991).
- 334. A Fournet, AA Barrios, V Munoz, R Hocquemiller, and A Cavé, Phytotherapy Res. 7, 281 (1993).
- 335. H Sato, T Tanaka, S Tanaka, and M Tabata, Phytochemistry 36, 1363 (1994).
- J-R Dai, H Chai, JM Pezzuto, AD Kinghorn, S Tsauri, and K Padmawinata, Phytotherapy Res. 7, 290 (1993).
- 337. AM Clark, TM Jurgens, and CD Hufford, Phytotherapy Res. 4, 11 (1990).
- 338. VK Tripathi and VB Pandey, Planta Med. 58 (Supp. 1), A651 (1992).

Giovanni Appendino

Dipartimento di Scienza e Tecnologia del Farmaco Via Giuria 9 I-10125 Torino Italy

CONTENTS

1.1.	INTRO	DUCTION	238
1.2.	HISTO	RY	238
1.3.	DISTR	IBUTION AND ISOLATION TECHNIQUES	242
1.4.	CLASS	IFICATION AND BIOGENETIC CONSIDERATIONS	244
1.5.	STRUC	TURAL DETERMINATION	251
	1.5.1.	NMR Spectroscopy	253
	1.5.2.	X-Ray Diffraction	259
	1.5.3.	Other Spectroscopical Techniques and the Assignment of	
		the Absolute Configuration	259
1.6.	REACT	TIONS	260
	1.6.1.	Elimination of Dimethylamine	260
	1.6.2.	Photochemical Reactions	260
1.7.	PHARM	MACOLOGY	260
1.8	CONC	LUSIONS	264
	REFER	ENCES	265

1.1. INTRODUCTION

Over the past few years, no plant has been investigated more thoroughly than the yew tree [1]. Indeed, the commercialization of one of its constituents as an anticancer drug (paclitaxel = $Taxol^{\circ}$ [2-4]) has prompted a flurry of research activity on plants from the genus *Taxus*, resulting in the isolation of hundreds of new metabolites [1]. Curiously, little attention was given to taxine, the oldest and more typical of the yew constituents. Taxine is a collective name, referring to mixtures of diterpene alkaloids obtainable from yew biomass or extracts through an acid/base partition scheme. Paclitaxel-type alkaloids, where the amino-acidic nitrogen is part of an amide bond, lack basic properties and are not among the constituents of taxine. The most recent review on taxine dates back to 1968 [5], at a time when the structure of none of its genuine constituents had been elucidated. Several recent surveys on taxoids (*tax*ane diterpeno*ids*) are instead available [1,6,7]. To avoid duplication of information, only topics specifically related to alkaloidal taxoids will be addressed. The reader is referred to the above mentioned references for a discussion of the general features of taxoids.

Paclitaxel (= Taxol[®])

1.2 HISTORY

Taxine is responsible for the poisonous properties of the yew and its long and legendary history. The toxicity of this tree is well documented in historical and fictional literature, and has fascinated poets and writers [8]. The yew is one of the few poisons known to the ancients which can be identified with certainty today. Thus, Julius Caesar in his *De Bello Gallico* wrote of the suicide of the defeated Gaulish chieftain Catuvolcus, who '*taxo, cuius magna in Gallia (Germaniaque copia est, exanimavit'* (killed himself with the yew, which is abundant in Gaul and Germany) [9]. Homer [10] and Virgil [11] mentioned the yew tree and its poisonous properties, as did Shakespeare [12] and, in more recent times, the novelist Agatha Christie [13] and the

poet T. S. Eliot [14]. Hebenon (hebona in Quartos), the venom used to kill Hamlet's father and possibly the most famous of all literary poisons, might also have been a yew extract [15].

Scientific investigations on the poisonous constituents of the yew date from the early 19th century. The needles were mentioned in several pharmacopoeias as a foxglove substitute, but the yew was better known as a livestock poison. The first chemical investigation of the yew tree seems to have been carried out by Piero Peretti, a professor at Rome University, in 1828 [16]. He isolated a bitter substance from the needles, but failed to recognize its basic properties. The early work was characterized by confusion rather than rigor, and culminated in the isolation of an alkaloid mixture, named taxine, from the needles. This was reported by Lucas in 1856 [17], and the circumstances of the isolation are worth mentioning.

Lucas was a pharmacist in Arnstadt, a town in Thuringia known to music lovers for the years J.S. Bach spent there. One day Lucas read a report by a French veterinarian (Dujardin) on several cases of yew poisoning in domestic animals (horses, pigs, cows, donkeys). This reminded him of a case that had occurred in his own town two decades earlier, when a flock of sheep had been kept in a fenced vard landscaped with a few large yew trees. The following day, five or six sheep were found dead, and a veterinarian was called out. Poisoning from heavy metals was suspected, and Lucas was asked to analyze the stomach of the dead animals. He could not find any evidence for the presence of heavy metals, and suggested that the animals might have ingested a poisonous plant. Indeed, an inspection of the yard where the sheep had been kept revealed that the yews had been stripped of leaves as high as the animals could reach. and Lucas was aware of the poisonous properties of the tree. He did not try to isolate the poisonous principle of yew that time, but only years later, when the report by Dujardin reminded him of his previous experience. By then, the isolation of alkaloids had become a hot topic, and many toxic compounds of this type had been isolated (strychnine, nicotine, coniine). After a laborious procedure, Lucas obtained an amorphous powder giving amorphous salts, which he named taxine. The yield was not high (ca 3 g from 1.5 Kg of dried needles), but 'not optimized' (vermute Ich, daß bei recht sorgfältiger Behandlung und Bearbeitung größerer Messen die Ausbeute reichlicher ausfallen wird).

The poisonous properties of the alkaloidal material obtained from the yew tree were first investigated by Borchers in 1876 [18], but its structural characterization was exceedingly slow, despite intensive work by numerous research groups. The first clue came only in 1923, when Winterstein, the chemist who coined the classical definition of an alkaloid, showed that taxine is the ester of a polyalkol esterified with acetic acid and (L)- β -dimethylamino- β -phenylpropionic acid [19]. This β -aminoacid was then named after Winterstein. The early studies on taxine were

hampered by the amorphous properties of this material and its salts, and by the lack of a purity criterion. The melting point ($82^\circ \rightarrow 124^\circ$ C) and rotatory power ($+35^\circ \rightarrow +96^\circ$) reported for taxine from the European yew varied over a wide range, and the early studies could not dispel the obvious suspicion that the material was a mixture of products.

It was only in 1956, a hundred years after the isolation of taxine, that Graf in Würzburg showed by electrophoresis that taxine is actually a mixture of several compounds [20]. By column chromatography on buffered silica gel he obtained three constituents in a pure state: taxine A (1%), taxine B (30%) and taxine C (traces), the alphabetical designation presumably referring to their order of isolation [20].

Taxine A (R= Ac); Taxine C (R=11)

Taxine B

A different approach was pursued by Lythgoe in England and by Takahashi and Kondo in Japan [5]. They discovered that chemical modification of taxine through acetylation and Hoffmann degradation can afford pure compounds, and the constitutions and stereochemistries of two of these degradation products (triacetylcinnamoyl taxicin I and II) were reported by Lythgoe in 1967 [21]. The corresponding alkaloids were named taxine I and II, and were recently isolated from the seeds of the European yew [22].

	R ₁	R ₂
Triacetylcinnamoyltaxicin I	он	Ph
Triacetytlcinnamoyltaxicin II	н	Ph
Taxine I	ОН	Ph
Taxine II	Н	Ph

The structures of the natural alkaloids isolated by Graf were not clear for a long time, nor were their relationship with taxine I and II. Thus the paradoxical statement by Lythgoe that "those components [of taxine] which have been isolated (taxines A, B and C) have not received structural elucidation, and those whose structures have been determined (taxine I and II) have not been isolated. [5]." Taxine I was presumably related to taxine B, the major constituent of taxine, but the exact number of the acetyl groups and their location remained elusive. The structure of taxine A was solved in 1982 [23], and this compound turned out to have a different terpenoid skeleton from taxine I and II. In 1991 the group in Gif finally reported the structure of taxine B [24], and the relationship between this alkaloid and taxine I became obvious.

In the early seventies, the discovery of the antitumor properties of paclitaxel [25] and the detection of large amounts of ecdysones [26] in yew tissues shifted the attention of the scientific community toward other constituents of the yew, and the number of papers devoted to taxine plummeted. However, interest was revived in the early nineties by the possibility of using taxine

as starting material for the semisynthesis of antitumor taxoids [27], and by the relevance of its detection in medicinal taxoids.

1.3 DISTRIBUTION AND ISOLATION TECHNIQUES

Taxane alkaloids have a very limited distribution within the plant kingdom, and occur only in two genera of the yew family (*Taxus* and *Austrotaxus*). The genus *Austrotaxus* is monotypic (*A. spicata* Compt), but confusion exists on the systematics of the genus *Taxus*, especially as regards the taxonomic status of certain Asian yews. Reference will be given here to the Krüssmann classification (Table 1) [28].

Trivial name	Krüssmann Calssification	Presence of Alkaloids
European yew	Taxus baccata L.	+
Himalayan yew	Taxus wallichiana Zucc.	+
Chinese yew	Taxus celebica (Warburg) Li	+
Japanese yew	Taxus cuspidata Sieb. et Zucc.	+ +
Pacific yew	Taxus brevifolia Nutt.	+ +
Canadian yew	Taxus canadensis Marsh.	?*
Florida yew	Taxus floridana Nutt.	?
Mexican yew	Taxus globosa Schlechtd.	?
	Taxus x media Rehd	+
	Taxus x hunnewelliana Rehd.	?

Table 1: The systematics of the genus Taxus

* The presence of alkaloids has been reported, but no constituent was identified (G. Masson, Rapport Office Recherches Ministère Sci Affaires Munic, Ind Com Provice Québec, 49 (1942). Chem Abstr 36:7238.

Not all species have been investigated for the presence of alkaloids, and some constituents of taxine are unstable in the plant material, being degraded during its drying and storing (see infra). In many investigations the state (dried/fresh) of the plant material was not specified, nor was the time lapse between the collection of the plant material and its analysis. Furthermore, some species were only analyzed for the presence of paclitaxel and paclitaxel-

equivalent compounds. It is thus likely that alkaloids in yew species have a larger distribution than described in Table 1, since they might have escaped detection for one of the abovementioned reasons.

Few data are also available on the concentration of alkaloids in different plant parts. The red aril surrounding the seeds does not contain taxoids, and the alkaloids, at least in the European yew, seem to be concentrated mainly in the needles, where their concentration can be higher than 1% on dry weight basis [29]. The alkaloid contents varies greatly during the course of the year, and is higher in winter [29]. It was recognized early that taxine from different yews is different [5], but the complexity and instability of taxine has so far prevented its full characterization in species different from the European yew. Furthermore, no data on the concentration of taxine in the other species have been reported.

Taxine can be extracted from yew tissues using a conventional acid/base partition scheme. The following procedure has been used in the author's laboratory:

The fresh plant material (1Kg) is extracted with acetone $(3 \times 5 \ l)$ at room temperature; the pooled organic phases are concentrated to ca 150 ml and Et()Ac (11) and 2N HCl(300 ml) are added. The extraction with acid is repeated three times, and the pooled acid phases are extracted with Et()Ac (2 x 200 ml) to remove polar phenolics (lignans, flavonoids). The aqueous phase is then neutralized (pl1 7 -8)* with conc. NH₃, and extracted with Et()Ac (2 x 200 ml). The pooled organic phases are washed with brine, dried (MgSO₄) and evaporated to give taxine as a yellow amorphous powder (yield 2 - 4 g, depending on the plant source and the season).

* In more basic medium, taxine A is partially isomerized and degraded [30]

Early separation methods, based on the selective partition of crude taxine between an organic solvent and water solutions of different pH values [31] have been abandoned, and column chromatography on silica gel using mixtures of CHCl₃-EtOH as eluant is today the method of choice. Further purification can be achieved on TLC or with HPLC. Unlike crude taxine, taxane alkaloids are often crystalline compounds, especially those of the taxine A-type.

Winterstein esters easily undergo β -elimination to *E*-cinnamic acid esters (*Scheme 1*). It is not clear to what extent this conversion is enzymatic or only chemical. The conversion can take place on storage [31] or in mild acidic medium. Prolonged times (months) are required with silica gel [32]. With compounds of the taxine B-type, the reaction can take place fairly easily on plant storage, though the extent of this reaction in the seeds is much less [30]. The degradation of Winterstein esters of the taxine B-type (2a-d) has a dramatic effect on the composition of taxine, since Winterstein esters of the 2'-deacetoxyaustrospicatine-type (4f) and phenylisoserine esters (e,g, taxine A, 1a) are more stable in the plant material. Thus, taxine obtained from fresh needles and from the stored plant material is different, owing to the degradation of alkaloids of the taxine B-type [30].

Scheme 1. Acidic degradation of 2'-deacetoxyaustrospicatine (41) [32].

Winterstein esters corresponding to all taxoids isolated as cinnamates might well exist in yew tissues, but many of them have not yet been isolated, due to enzymatic and/or chemical degradation or to a very low concentration.

1.4 CLASSIFICATION AND BIOGENETIC CONSIDERATIONS

Taxane alkaloids are made up of a terpenoid core and a phenylpropanoid β -amino acid, joined by an ester bond. They can be classified according to the carbon-carbon connectivity of the terpenoid core and the type of the side-chain. Thus, the diterpenoid core can be of the taxane- (Tables 3-8), 11(15 \rightarrow 1)abeotaxane-(Table 10), 2(3 \rightarrow 20)abeotaxane-(Table 2) or 3-11cyclotaxane (Table 9) type, whereas the side chain can be Winterstein's acid [L(R) β dimethylamino- β -phenylpropionic acid] or N,N-dimethylphenylisoserine (2R, 3S (threo) α hydroxy- β -dimethylamino- β -phenylpropionic acid). Further modification occurs in the

oxygenation/acylation pattern of the terpenoid core, and in the N-methylation or ()-acetylation state of the side chain.

A few main subclasses can accommodate most alkaloids, and a system of nomenclature based on names defined in the literature can avoid the confusing use of very similar trivial names that plague the literature on taxoids. Thus, taxine B is a taxane alkaloid [24], whereas taxin B is a non-nitrogenous $2(3 \rightarrow 20)$ abeotaxane [33].

The thirty-seven Taxus alkaloids isolated through July 1995 are reported in Tables 2--10, along with their botanical source [species, plant part (l = leaves; b = bark, r = roots)]. A. spicata Compt is the richest source of taxane alkaloids, in terms of chemical diversity, and 2'deacetoxyaustrospicatine (4f) is the most widespread alkaloid (three Taxus species and A. spicata). The various taxane alkaloids can be divided into the following structural types:

- Taxine A-type (Table 2, 1a-c): the terpenoid core is of the 2(3→20)abeotaxane type, and the side chain is phenylisoserine. Modification occurs in the acetylation pattern of the terpenoid core (acetylation of the 7-hydroxyl, hydrolysis of the 2-acetate)
- Taxine B-type (Table 3, 2a-d): the terpenoid core is normal (taxane) and bears a 13-oxo group, whereas the side chain is Winterstein's acid. Modification occurs by deoxygenation at C(1) and in the acetylation pattern of the terpenoid core.
- Comptonine-type (Table 4, 3a): the terpenoid core is normal (taxane) and bears a 13-oxo group. The side chain however, is phenylisoserine rather than Winterstein's acid as in taxine B-type alkaloids. Comptonine (3a) and spicaledonine (8a) are the only alkaloids with a 13-oxo group where the aminoacyl moiety is not Winterstein's acid.
- Austrospicatine-type (Table 5, 4a-p): the terpenoid core is normal (taxane) and bears a 13acetoxyl group. The side chain can be Winterstein's acid or phenylisoserine. Modification occurs in the oxygenation [C(1), C(2), C(7)] and acetylation pattern of the terpenoid core and by acetylation, deoxygenation and demethylation of the side chain.
- Austrotaxine-type (Table 6, 5a-d): the terpenoid core is normal (taxane) and C-14 is oxygenated.
- Aminoacylnicotaxine-type (Table 7, 6a,b): the terpenoid core is normal (taxane), the 4(20) double bond is epoxidized and there is a 13-oxo group.
- Spicataxine-type (Table 8, 7a-e): the terpenoid core is normal (taxane), the 4(20) double bond is epoxidized and there is an acetoxyl at C(13).
- Spicaledonine-type (Table 9, 8a,b): these alkaloids are the 3,11-cycloderivatives of taxane alkaloids of the 13-oxo-type (taxine B and comptonine types).

Table2: Alkaloids of the Taxine A-type

Compound	Trivial name	R 1	R ₂	Source	Reference
la	Taxine A	Ac	H	T. baccata (l)	23
1b	Taxine C	Н	Н	7. baccata (1)	45,46
1c	7-Acetyltaxine A	Ac	Ac	T. baccata (l)	46

Table 3: Alkaloids of the Taxine B- type

Compound	Trivial name	R ₁	R ₂	R 3	R.	Source	Ref.
2a	Taxine B	ОН	н	н	Ac	T. baccata (1)	24
2b	Isotaxine B	OH	н	Ac	Н	T. baccata (1)	45
2c	Taxine I	он	Ac	Ac	Ac	T. baccata (s)	22
2d	Taxine II	н	Ac	Ac	Ac	T. baccata (s) T. cuspidata (l)	22 47

Table 4: Alkaloids of the Comptonine-type

Compound	Trivial name	Source	Refremce	
3a	Comptonine	A. spicata (l)	32	

Table 6: Alkaloids of the Austrotaxine-type.

Compound	Trivial name	R ₁	R ₂	R 3	Source	Ref.
5a	Austrotaxine	Ac	Ac	OAc	A. spicata (1)	32
5b	2'-deacetylaustrotaxine	Ac	Ac	OH	A. spicata (1)	32
5c	2'-Deacetoxyaustrotaxine	Ac	Ac	н	A. spicata (l)	32
5d	Trideacetylaustrotaxine	Н	Н	ОН	A. spicata (b)	51

Table 5: Alkaloids of the Austrospicatine-type

Compound	Trivial name	R ₁	R ₂	R ₃	R4	Rs	R₀	Source	Ref
4a	Austrospicatine	Η	Н	OAc	Ac	OAc	Me	A. spicata (l)	32
4b	2'-Deacetylaustro- spicatine	Н	Н	OAc	Ac	ОН	Me	A. spicata (l)	32
4c	7-Deacetylaustro- spicatine	Н	Н	ОН	Ac	OAc	Me	A. spicata (l)	32
4d	7,9-Bisdeacetyl- austrospicatine	Н	Н	OH	Н	OAc	Me	A. spicata (1)	32
4e	2',7,9-Trisdeace- tylaustrospicatine	Н	Н	ОН	Н	ОН	Me	A. spicata (l)	32
4f	2'-Deacetoxy- austrospicatine	H	H	OAc	Ac	H	Me	A. spicata (l) T. cuspidata (l) T.wallichiana(b) T. x media (r)	32 49 30 30
4g	2α-Acetoxyaustro- spicatine	Н	OAc	OAc	Ac	OAc	Me	A. spicata (l)	32
4h	2α-Acetoxy-2'-de- acetylaustrospicati- ne	H	OAc	OAc	Ac	ОН	Me	A. spicata (1)	32
4i	2α-Acetoxy-2'-de- acetoxyaustrospica -tine	Н	ОН	OAc	Ac	H	Me	A. spicata (l)	32
41	1, 2α-Dihydroxy- 7,2'-deacetoxy-9- deacetylaustrospi- catine	ОН	ОН	н	Н	н	Ме	T. baccata (l)	48
4m	2α-Hydroxy-7,2'- deacctoxy-9-dea- cetylaustrospica- tine	Н	ОН	H	Н	Н	Ме	T. baccata (l)	48
4n	Nor-2 α -hydroxy- 7,2'-deacetoxy-9- deacetylaustrospi- catine	Н	ОН	н	н	н	H	T. baccata (l)	48
40	7,2'-Bisdeacetoxy- austrospicatine	Н	н	н	Ac	Н	Me	T. wallichiana(b)	50
4p	1-Hydroxy,2α- acetoxy-2'-deace- tylaustrospicatine	ОН	OAc	Öac	Ac	ОН	Me	T. baccata (l)	46

Table 7: Alkaloids of the Aminoacylnicotaxine-type

Compound	Trivial name	R	Source	Reference
6 a	Aminoacylnicotaxine	Me	A. spicata (b)	51
6b	Noraminoacylnicotaxine	Н	A. spicata (b)	51

Table 8: Alkaloids of the Spicataxine-type

Compoud	Trivial name	R1	R 2	R 3	R4	Source	Ref.
7 a	Spicataxine	н	н	Ac	Me	A. spicata (b)	51
7b	9-Acetyl, 10-deacetylspicataxine	н	Ac	н	Me	A. spicata (b)	51
7c	7-Acetoxy-9-acetylspicataxine	OAc	Ac	Ac	Me	T. x media (r)	52
7d	Nicaustrine	н	Nic*	Ac	Me	A. spicata (b)	51
7e	Nornicaustrine	н	Nic*	Ac	н	A. spicata (b)	51

Table 9: Alkaloids of the Spicaledonine-type

Compound	Trivial name	R	Source	Refrernce
8a	Spicaledonine	ОН	51	
8b	b Taxuspine H H		T. cuspidata (l)	53

Table 10: Alkaloids of the Aminoacylbrevifoliol-type

Compound	Trivial name	R	Source	Refrernce
9a	13-Acetyl-5-[(3R)-3-(N, N-dimethyl- amino)-3-phenylpropionyl]brevifoliol	Ме	T. brevifolia (l)	54
9b	13-Acetyl-5-[(3R)-3-(N-methyla- mino)-3-phenylpropionyl]brevifoliol	н	T. brevifolia (l)	54

• Aminoacylbrevifoliol-type (Table 10, 9a,b): the terpenoid core is the rearranged 11(15→1)abeo type. The other features are similar to those of alkaloids of the austrospicatine-type.

The derivation of taxanes from geranylgeranyl diphosphate, first postulated by Lythgoe [34], has been confirmed by feeding experiments [35]. However, the exact details of the biosynthesis are not known. From the biogenetic point of view, taxane alkaloids can be divided into two classes: those derived from a 4(20),7-verticilladiene (taxine A type) and those derived from a 3,7-verticilladiene (all the other structural types) (Scheme 2) [36, 37]. Taxanes and $2(3\rightarrow 20)$ abeotaxanes are thus biogenetically distinct, and taxanes are the precursors of compounds of the $11(15\rightarrow 1)$ abeo- and 3,11-cyclo series (Scheme 2). Taxanes of the 1-hydroxy type are easily converted into their A,B-contracted derivatives [38]. However, the acylation and oxygenation pattern of 1-hydroxytaxanes and $11(15\rightarrow 1)$ abeotaxanes is different [39], and the chemical cyclization generally gives compounds of the $13-0x0-\Delta^{4(20)}$ -type can be converted into 3,11-cyclotaxanes by UV-light [40], reductive deamination to phenylpropionates is also observed under these conditions [41] (see 1.6.2.), but phenylpropionate esters of taxoids are unknown as natural products.

A relationship seems to exist between the functionalization pattern of the terpenoid core and the type of side-chain. Thus, alkaloids of the 13-oxo type are generally esterified with Winterstein's acid, and those of the $2(3\rightarrow 20)$ abeo-type with phenylisoserine, whereas *N*demethylation is observed mainly in alkaloids of the 13-acetoxyl type.

The biogenesis of Winterstein's acid and phenylisoserine has been investigated in detail [42-43]. These β -aminoacids are derived from phenylalanine, probably through a diotopic reaction involving the migration of the amino group from the α - to the β -carbon of the amino acid [44]. Cinnamic acid was not incorporated in the yew β -amino acids [44].

1.5 STRUCTURAL DETERMINATION

The structure elucidation of taxine defied the efforts of generations of natural products chemists. Taxine A was the first native alkaloid to be structurally elucidated in 1982 [23], through a combination of spectroscopic techniques (¹H-and ¹³C-NMR and X-ray spectroscopy). Taxine A is a minor (ca 1%) component of taxine, and is one of the structurally more

challenging of all taxoids, having a rearranged skeleton and being highly functionalized. Its high crystallinity undoubtedly helped its purification and structure elucidation.

Scheme 2: Biogenetic relationship between the skeleta of Taxus alkaloids *: Numbering refers to the structural formula and not to the biogenesis.

Taxoids are a structurally homogeneous class of secondary metabolites and only a few skeletal types have been reported. It is thus relatively easy to infer the gross structure of the

molecule from a routine 1D-NMR analysis, and the most challenging part is the determination of the acylation pattern. Several spectroscopic features of taxoids are very unusual, and their rationalization provides unique challenges to spectroscopists.

1.5.1 NMR Spectroscopy

The ¹H NMR spectra of the most significative taxane alkaloids are reported in Tables 11-14. The general spectroscopic features of the resonances of the terpenoid core have been discussed elsewhere [55], and attention will be given only to the effect of the basic side-chain on the terpenoid core signals. The most relevant feature of the ¹H NMR spectra of several types of alkaloids is the upfield chemical shift of $H(6\alpha)$ or $H(14\alpha)$. These protons are oriented toward the concave α -face of the terpenoid core, and are subjected to anisotropic diamagnetic shielding from the phenyl ring of the aminoacidic side chain. The effects are especially marked in esters of phenylisoserine. Thus, in taxine A (1a), H(6α) resonates upfield of TMS at δ -0.20 [46], and in 2'-deacetylaustrospicatine (4b) at δ 0.47 [32]. The removal of the side-chain moves these signals downfield, to δ 1.78 [37] and 1.95 [46] respectively. In Winterstein's esters, the effect on H(6 α) is less marked, but still detectable [δ H(6 α) 1.25 in 2'-deacetoxyaustrospicatine (41)]. [32], and H(14 α) is the main proton affected (δ 0.96 in 4f) [32]. In phenylisoserine esters, the diamagnetic shielding depends on the side chain conformation, and requires a close proximity between H-6 α and the side chain phenyl. Assuming the usual Z-'hydrogen eclipsed' conformation around the C-O bond of secondary esters [56], this can take place only when the side chain has a conformation of the type A (Scheme 3), with H(2') and H(3') antiperiplanar. A conformation of this type has been found in the X-ray analysis of taxine A [23], and is in accordance with the J values observed in CDCl₃ (J_{2',3'} ca 10 Hz).

All factors changing this arrangement are expected to affect the chemical shift of H(6 α). Thus, acetylation of the 2'-hydroxyl of taxine A moves the signal of H(6 α) downfield (from δ -0.20 to + 1.80), and causes a decrease of J_{2'.3'} (from 10.0 Hz to 4.7 Hz) [46]. Comparison of the ¹H NMR spectra of 2'-deacetylaustrospicatine (4b) and austrospicatine (4a) shows a similar trend (δ H(6 α) = 0.47 and 1.68; J_{2'.3'} = 9 Hz and 4 Hz, respectively) [32]. Similar changes are observed when the spectra are taken in solvents more polar than CDCl₃. Thus, in taxine A H(6 α) resonates at -0.20 in CDCl₃, but at δ + 0.90 in DMSO- d₆, where J_{2'.3'} drops from 10.0 to 6.6 Hz [46].

Ac: 2.29, 1.98 (s). J(Hz): 1,2=2.5; 2,20= 10.0; 3α , 3β =15.5; 5,6 β =6.4; 6α , 6β =15.0; 7, 6α =3.6; 7,6 β =13.6; 13,14 α =3.1; 13,14 β =11.0; 14 α ,14 β =16.5; 14 β ,1=7.5; 2',3'=10.0.

Ac: 170.7, 169.9 (s); 21.4, 21.2 (q).

Table 12: NMR data of taxine B (2a) (CDCl₃)²⁴

Ac: 2.22 (s) J(Hz): 2,3=7.0; 5,6 α = 5,6 β =2.5; 9,10=9.5; 2' α ,3 = 7.0; 2' β ,3 = 7.0; 2' α ,2' β = 16.0,.

Ac:170.2 (s), 21.2 (q).

Table 13: NMR data of taxuspine H (8b) (CDDCl₃)⁵³

Ac: 2.07, 2.06, 2.04 (s). J(Hz): 1,2 =5.3; 5,6 α =5,6 β =4.0; 9,10=9.5; 12,18=7.2; 14 α ,14 β =20.5; 2a,2b=15.0; 2a,3'=6.0; 2b,3'=8.0.

Ac: 169.9, 169.5, 168.8 (s), 21.4, 21.1, 20.9 (q).

Ac: 2.06, 1.87, 1.74 (s): Bz: 7.87 (d, J=7.7 Hz), 7.43 (t, J=7.7 Hz), 7.56 (t, J=7.6 Hz). J(Hz): $2\alpha_{2}\beta_{3}=14.1$; $2\beta_{3}=9.1$; $5,6\alpha_{3}=1.8$; $5,6\beta=4.0$; $7,6\alpha=5.2$; $7,6\beta=11.3$; 9,10=10.5; $13,14\alpha=8.6$; $13,14\beta=7.3$; $14\alpha_{1}4\beta=13.9$; $2^{*}a_{3}=8.2$; $2^{*}a_{2}=13.9$.

Ac:170.9, 169.9, 169.6 (s); 21.4, 20.7, 20.7 (q); Bz: 166.1 (s), 129.1 (s, i), 129.5 (d, o), 128.8 (d, m), 133.4 (d, p).

Scheme 3: Staggered conformations of N,N-dimethylphenylisoserine derivatives around the C(2')-C(3') bond.

These results can be explained by postulating that the amino-acidic side chain of phenylisoserine-type alkaloids is essentially ananchomeric (conformationally locked) in CDCl₃ and apolar solvents, presumably as a result of a strong intramolecular H-bonding between the vicinal hydroxyl and the dimethylamino group and a smaller number of gauche interactions between the substituents Acetylation of the 2'-hydroxyl suppresses the intramolecular hydrogen bonding within the side chain, and in polar solvents intermolecular hydrogen bonding with the solvent competes with intramolecular bonding. Acetylation also decreases the steric requirements of the oxygen at C(2'). As a result, the contribution of conformations B and C, with II-2' and H-3' synclinal and the phenyl away from the taxoid core, becomes more important or even predominant (2'-acetylderivatives) (*Scheme 3*).

Solvent-related conformational changes in the side chain of paclitaxel have been reported [57]. However, in this compound the 'extended' conformation, corresponding to C in *Scheme 3*, prevails in apolar solvents, and the 'globular' conformation, corresponding to A in *Scheme 3*, in polar solvents. These differences are presumably related to the very good hydrogen acceptor properties of the basic dimethylamino group of phenylisoserine esters like taxine A and 2'-deacetylaustrospicatine. In paclitaxel-type compounds, the aminoacidic nitrogen is acylated, and can only act as a weak hydrogen bonding donor.

1.5.2 X-Ray Diffraction

Two taxane alkaloids have been investigated by diffraction techniques: taxine A (1a) [23] and 2'deacetoxyaustrospicatine (4f) [49]. The results gave important information on the orientation of the side chain relatively to the terpenoid core. In both cases the aromatic ring is close to the terpenoid core, but in 4f the phenyl and the carbonyl are antiperiplanar, whereas in taxine A they are synclinal (cf. C and A in Scheme 3). As a result, the protons closer to the phenyl ring are H(6α) in taxine A and H(14α) in 4f. This is in accordance with the results of the ¹H-NMR analysis [46]. In 4f, the conformation with C-1' and the phenyl antiperiplanar is stabilized by hydrophobic interactions with the methyl of the 13-acetate [49]. The X-ray features of the terpenoid core of 4f and taxine A show linear strain at several carbon-carbon bonds, as generally observed in taxoids [55].

1.5.3 Other techniques and the assignment of the absolute configuration

Mass spectrometry is generally useful only to obtain information on the molecular weight and to identify the type and functional groups bound to the terpenoid core. Soft ionization techniques must be employed (FAB, DC1, TSP). The spectra of Winterstein esters are characterized by a prominent peak at m/z 210, and those of the N,N-dimethylphenylisoserine esters at 226, corresponding to the aminoacidic side chain [58].

The absolute configuration of 2'-deacetoxyaustrospicatine (4f) was assigned on the basis of a strong positive Cotton effect at 218 nm [49]. This was assigned to the π - π * transition of the exocyclic methylene at C-4. However, a previous detailed analysis of the CD spectra of several related taxanes led to the assignment of this Cotton effect to the π - π * transition of the endocyclic double bond [59]. It was also observed that the $\Delta^{4(20)}$ -chromophore was responsible for a weak negative Cotton effect of no practical use, being overshadowed by the strong positive effect of the Δ^{11} -chromophore.

The absolute configuration of the terpenoid core of taxine I was deduced by the X-ray analysis of the bromoderivative of a transformation product of its corresponding cinnamate (taxinine) [60]. The L(R) absolute configuration of the dextrorotatory Winterstein acid obtained from the degradation of crude taxine was established by comparison with the rotatory power of the semisynthetic enantiomers prepared from D- and $L\beta$ -phenyl- β -alanine [61].

1.6 REACTIONS

1.6.1. Elimination of dimethylamine

Winterstein esters are easily turned into *E*-cinnamates by the action of acids (H^+ , silica gel) [32]. For preparative purposes the reaction has been carried out using the Hoffmann elimination of the corresponding methylammonium hydroxides [27] or the Cope elimination of the corresponding *N*-oxides [51]. The latter procedure is more convenient, since, if the reaction is carried out in THF, elimination of dimethylhydroxylamine takes place spontaneously at room temperature. If only a moderate excess of peracid is employed, the exocyclic double bond at C-4 is not affected [30]. The transformation of Winterstein esters into cinnamates can be very useful for separation purposes. Thus, whereas taxine B (2a) and isotaxine B (2b) are difficult to separate by HPLC, their corresponding cinnamates can be separated by column chromatography (!) [62].

1.6.2. Photochemical Reactions

Prolonged (ca 3 h) irradiation of Winterstein esters leds to the formation of the corresponding phenylpropionates [41] (Scheme 4) The reaction is typical of Winterstein's acid derivatives and does not involve antenna-like effects from chromophores on the terpenoid moiety. Similar results were obtained in fact with simple aliphatic esters of this β -aminoacid [41]. Under these conditions (irradiation for several hours), alkaloids of the 13-oxo, $\Delta^{4(20),11}$ -taxadiene-type (taxine B and comptonine-type) undergo photocyclization to 3,11-cyclotaxanes [40]. The photocyclization of this type of alkaloids could be accomplished without reductive deamination using shorter (17 min) irradiation times [53].

1.7 PHARMACOLOGY

The most common form of yew poisoning is the accidental swallowing of seeds by children, who are attracted to the colorful and sweet-tasting aril surrounding the seeds [63]. Unless the seeds are broken or chewed, only very mild or no toxic signs at all are observed,

since the seed coat is resistant to the gastric juices [63]. The ingestion of yew needles is a classical way of committing suicide, and most cases of yew poisoning reported in the forensic literature refer to the intentional consumption of plant material by psychiatric patients or by prison inmates [64].

Scheme 4: Photochemical reactions of alkaloids of the taxine B-type.

Taxus poisoning is rare, but nevertheless important because of the widespread availability of the plant material and its general fatal outcome [64, 65]. The diagnosis is usually

botanical (examination of the stomach contents) more than clinical, and on autopsy the anatomical findings are non-specific [64]. The exact fatal dose is not known, but 50-100 fresh needles are considered lethal for a human adult [66]. No clinical treatment for the management of yew poisoning is known. Cardiac pacing, digoxin-specific FAB antibody fragments, high doses of lidocaine and the conventional therapy of arrhythmias were tried, but the general utility of these measurements and their rationale have not been established [64]. The yew tree is also a notorious threat for livestock, and animal poisoning is not uncommon. Spectacular cases in terms of public interest have been reported, like the death of seven precious Brahman-type bulls from a rodeo at the Ohio State Fairground in April 1975 [67].

Taxine is a powerful heart poison, and has traditionally been considered responsible for the toxic properties of the yew [65], although recent work suggests a non-negligible contribution also from certain degradation products of the alkaloid mixture (see infra). Most investigations were carried out using the crude alkaloid mixture from the European yew [65]. The infusion of taxine in different animal species causes multiple rhythm disturbances, including severe bradycardia, atrio-ventricular blocks, enlargement of the QRS complex, ventricular tachycardia and/or fibrillation, complicated by respiratory and neuromuscular disorders [65]. These cardiac alterations are similar to those reported for yew poisoning [65]. The mechanism of action of taxine has not been elucidated at the cellular and molecular level. Preliminary experiments showed that taxine inhibits sodium and calcium currents in isolated ventricular guinea-pigs cells [68], a finding consistent with the observation that taxine reduces the maximum rate of depolarization of the action potential in simple *Xenopus* nerve fibres [69].

Only two studies have been done on the cardiac activity of pure alkaloids. One study compared the activity of taxine A (1a) and taxine B (2a) in different animal species [70]. Only taxine B was toxic, causing the typical symptoms of yew poisoning, whereas the cardiac activity of taxine A was not significant. The other study [71] investigated the effect of four alkaloids and related compounds on two cardiac preparations, the isolated, self-paced heart and the isolated papillary muscle stimulated at constant rate. In this way electrical and mechanical effects could be investigated independently from variations in oxygen supply and beating frequency. In the isolated heart, the Winterstein esters 2a (taxine B), 4f (2'-deacetoxyaustrospicatine) and 4m (2α -hydroxy-7-deacetoxy-9-deacetylaustrospicatine) induced electrical and mechanical effects similar to those reported in *in vivo* experiments with crude taxine (atrio-ventricular blocks, widening of the QRS complex, ventricular tachycardia, fibrillation), but had no effect on the coronary flow. These effects are similar to those of class I antiarrhythmic drugs, and taxine B was the most active compound. The phenylisoserine ester taxine A (1a) had only minimal effect

on the electrical and mechanical activity of the isolated heart. Non-alkaloidal taxoids related to **2a** and **4f** were also investigated. 2-Deacetoxydecinnamoyltaxinine J, corresponding to the terpenoid core of **4f**, showed no activity, nor did Winterstein's acid [70], highlighting the importance of both the terpenoid core and the aminoacidic moiety for cardiac activity. On the other hand, the cinnamates corresponding to the Winterstein esters **2a** and **4f** (10-acetylcinnamoyltaxicin I and 2-deacetoxytaxinine J, respectively) could induce significant changes in cardiac performance on the isolated heart (rise in diastolic pressure, arrhythmia, transient increase followed by profound reduction of the left ventricular systolic pressure), most probably due to a reduction of the coronary flow, since no effect on the papillary muscle could be observed.

	R
2-Deacetoxydecinnamoyltaxinine J	н
2-Deacetoxytaxinine J	O M Ph

10-Acetylcinnamoyltaxicin I

These data suggest that the powerful toxicity of yew alkaloids might be due to the synergic activity of Winterstein esters, which have direct cardiotoxicity, and their corresponding cinnamates, which cause an ischemic state through a reduction of the coronary flow. Winterstein esters and their corresponding cinnamates co-occur in yew tissues [62], where Winterstein

esters prevail. However, a non negligible conversion of these compounds to cinnamates might take place in the acidic stomach medium. The variety of targets and mechanisms involved in the cardiac activity of taxine makes it difficult to develop a specific antidote.

2'-Deacetoxyaustrospicatine (4f) and taxinine II (2d) are the only yew alkaloids which have been tested for an activity different from cardiac toxicity [47]. Both compounds showed a certain cytotoxicity *in vitro* on L1210 murine leukemia cells, significantly lower, however, than that of paclitaxel. On the other hand, 2'-deacetoxyaustrospicatine had a powerful activity, comparable to that of verapamil, as an inhibitor of P-glycoprotein-mediated transport, thus acting as a multidrug resistance (MDR)-reversing agent [47].

1.8 CONCLUSIONS

Taxine is a mixture of diterpenoid alkaloids present in all parts of the yew tree except the red aril surrounding the seed. The composition of taxine depends on the botanical source (yew species and variety) and the plant part. Taxine is unstable in the plant material and part of the degradation is due to the elimination of dimethylamine from Winterstein's acid-type alkaloids. Diversity in yew alkaloids derives from the presence of different terpenoid cores (taxane, 3,11cyclotaxane, $11(15 \rightarrow 1)$ abeotaxane, $2(3 \rightarrow 20)$ abeotaxane) and side chains (Winterstein acid, phenylisoserine and demethylated or acetylated forms of these β -aminoacids). Further modification occurs in the oxygenation pattern of the terpenoid core. Winterstein esters and their corresponding cinnamates are powerful heart poisons and, owing to the widespread availability of the yew tree, Taxus poisoning is relevant in human and veterinarian toxicology. Furthermore, the presence of alkaloid impurities in paclitaxel might be clinically relevant, since this compound already shows a certain cardiotoxicity [72]. Our knowledge on Taxus alkaloids would greatly benefit from the development of analytical methods for the detection and characterization of taxine in plant tissues. Future research on Taxus alkaloids is expected to shed light on the complex post-harvest transformations and the marked seasonal and intraspecific variation of their production, as well as to establish the mechanism of their cardiac toxicity at the molecular level. The therapeutic potential of subclinical doses of paclitaxel to prevent restenosys after angioplasty [73] is expected to spur investigations on the cardiac activity of taxoids. These studies might eventually lead to a better understanding of the activity of taxine at the molecular level.

REFERENCES

- [1] G Appendino, Nat Prod Rep 12:349 (1995).
- [2] G I Georg, T C Chen, I Ojima and D M Vyas, Eds., Taxane Anticancer Agents: Basic Science and Current Status, ACS, Washington DC, 1995.
- [3] V. Farina, Ed., The Chemistry and Pharmacology of Paclitaxel and its Derivatives, Elsevier, Oxford, 1995 (in press).
- [4] M Suffness, Ed., Taxol: Science and Applications, CRC, Boca Raton, 1995 (in press).
- [5] B Lythgoe, in: The Alkaloids, Vol. 10, R H F Manske, Ed., Academic Press, New York, 1968, Chap. 14.
- [6] D G I Kingston, A A Molinero and J M Rimoldi, in: Progress in the Chemistry of Organic Natural Products, Vol.61, W Herz, G W Kirby, R E Moore, W Steglich and Ch Tamm, Eds., Springer, Vienna, 1993.
- [7] S Blechert and D Guénard, in: The Alkaloids, Vol 39, A. Brossi, Ed., Academic Press, New York, 1990, Chap. 6.
- [8] H Hartzell Jr, The Yew Tree: a Thousand Whispers, Hulogosi, Eugene, OR, 1991.
- [9] Julius Caesar, De Bello Gallico, VI, XXXI.
- [10] Homer, Iliad, XIII, 746.
- [11] Virgil, Bucolica, IX, 30-31; Georgica, II, 257; ibidem, IV, 47.
- [12] Shakespeare, Richard II (Act III, Scene 2). Shakespeare refers to the yew as 'doubly fatal', meaning that it is both a poison and a source of a weapon (the longbow).
- [13] A Christie, A Pocket Full of Rye.
- [14] T S Eliot, Ash Wednesday, Section IV, V and VI.
- [15] W A Harrison, Trans New Shakespeare Soc Ser 1:285 (1880). See also R J Huxtable, Persp Biol Med 36:263 (1993).
- [16] P Peretti, Journ Pharm 14:438 (1828).
- [17] H Lucas, Arch Pharm 85:145 (1856).
- [18] G Borchers, Experimentelle Untersuchungen über die Wirkung und Vorkommen des Taxins, Gottingen, 1876.
- [19] E Winterstein and A Guyer, Z Phys Chem 128:175 (1923).
- [20] E Graf, Angew Chem 68:249 (1956). See also: E Graf and H Bertholdt, Pharm Zentralhalle Dtschl 96:385 (1957).
- [21] D H Eyre, J W Harrison and B Lythgoe, J Chem Soc (C), 452 (1967).

- [22] G Appendino, S Tagliapietra, H C Özen, P Gariboldi, B Gabetta and E Bombardelli, J Nat Prod 56:514 (1993).
- [23] E Graf, A Kirfel, G-J Wolff and E Breitmaier, Liebigs Ann Chem, 376 (1982).
- [24] L Ettouati, A Ahond, C Poupat and P Potier, J Nat Prod 54:1455 (1991).
- [25] M C Wani, H L Taylor, M E Wall, P Coggon and A T McPhail, J Am Chem Soc 93:2325 (1971).
- [26] H Hoffmeister, G Heinrich, G B Stall and W J Van Der Burg, Naturwissenschaften 54:471 (1967).
- [27] L Ettouati, A Ahond, C Poupat and P Potier, Tetrahedron 47:9823 (1991).
- [28] G Krüssmann, Handbuch der Nadelgehölze, Paul Parey, Berlin und Hamburg, 1983, pp. 317-333.
- [29] A Kuhn and G Schäfer, Deutsch Apoth Ztg 52:1265 (1937).
- [30] G Appendino, unpublished observation
- [31] E Graf, Chem Ber 291:443 (1958).
- [32] L Ettouati, A Ahond, O Convert, D Laurent, C Poupat and P Potier, Bull Soc Chem Fr 749 (1988).
- [33] Q Yue, Q-C Fang, X-T Liang, C-H He and X-L Jing, Planta Med 61:375 (1995).
- [34] J W Harrison, R M Scrowston and B Lythgoe, J Chem Soc (C), 1933 (1966).
- [35] L O Zamir, M E Nedea and F X Garneau, Tetrahedron Lett, 5235 (1992).
- [36] F Guéritte-Voegelein, D Guénard and P Potier, J Nat Prod 50:9 (1987).
- [37] G Appendino, G. Cravotto, R Enriù, J Jakupovic, P Gariboldi, B Gabetta and E Bombardelli, Phytochemistry 36:407 (1994).
- [38] G Samaranayake, N F Magri, C Jitrangsri and D G I Kingston, J Org Chem 56:5114 (1991).
- [39] G Appendino, L Barboni, P Gariboldi, B Gabetta, E Bombardelli and D Viterbo, J Chem Soc, Chem Commun, 1587 (1993).
- [40] H C Chiang, M C Woods, Y Nakadaira and K Nakanishi, J Chem Soc, Chem Commun, 1201 (1967).
- [41] G Appendino, G Cravotto, P Gariboldi, B Gabetta and E Bombardelli, Gazz Chim Ital, 124:1 (1994).
- [42] E Leete and G B Bodem, Tetrahedron Lett, 3925 (1966).
- [43] R V Platt, C T Opie and E Haslam, Phytochemistry 23:2211 (1984).
- [44] P E Fleming, U Mocek and H G Floss, J Am Chem Soc 115:805 (1993).
- [45] C Poupat, A Ahond and P Potier, J Nat Prod 57:1468 (1994).

- [46] L Barboni, P Gariboldi, G Appendino, R Enriù, B Gabetta and E Bombardelli, Liebigs Ann, 345 (1995).
- [47] J Kobayashi, A Ogiwara, H Hosoyama, H Shigemori, N Yoshida, T Sasaki, Y Li, S Iwasaki, M Naito and T Tsuruo, Tetrahedron 50:7401 (1994).
- [48] G Appendino, H Ç Özen, I Fenoglio, P Gariboldi, B Gabetta and E Bombardelli, Phytochemistry 33:1521 (1993).
- [49] Y Konda, T Sasaki, X-L Sun, X Li, M Onda, H Takayanagi and Y Harigaya, Chem Pharm Bull 42:2621 (1994).
- [50] J Z Zhang, Q C Fang, X T Liang, C H He, Chin Chem Lett 5:497 (1994). Chem Abstr 122:5437v (1995)
- [51] L Ettouati, A Ahond, O Convert, C Poupat and P Potier, Bull Soc Chem Fr, 687 (1989).
- [52] G Appendino, G Cravotto, R Enriù, P Gariboldi, L Barboni, E Torregiani, B Gabetta, G Zini and E Bombardelli, J Nat Prod 57:607 (1994).
- [53] J Kobayashi, A Inubushi, H Hosoyama, N Yoshida, T Sasaki and H Shigemori, Tetrahedron 51:5971 (1995).
- [54] A Chu, M Furlan, L B Davin, J Zajicek, N H Neil Towers, C M Soucy-Breau, S J Rettig, R Croteau and N G Lewis, Phytochemistry 36:975 (1994).
- [55] G Apppendino in The Chemistry and Pharmacology of Paclitaxel and its Derivatives, V Farina, Ed., Elsevier, Oxford (1995) (In press).
- [56] A.McL Mathieson, Tetrahedron Lett, 4137 (1965).
- [57] D G Vander Velde, G I Georg, G L Grunewald, C W Gunn, L A Mitscher, J Am Chem Soc 115:11650 (1993) and references therein.
- [58] A Griffini, F Peterlongo, P De Bellis and R Pace, Fitoterapia 64:53 (1993).
- [59] D P Della Casa de Marcano, T G Halsall, A I Scott and A D Wrixon, Chem Commun, 582 (1970).
- [60] M Shiro and H Koyama, J Chem Soc (B), 1342 (1971).
- [61] E Graf and H Boeddeker, Liebigs Ann 613:111 (1958).
- [62] G Appendino, P Gariboldi, A Pisetta, E Bombardelli and B Gabetta, Phytochemistry 31:4253 (1992).
- [63] D Frohne and H J Pfaender, A Colour Atlas of Poisonous Plants, Wolfe Publishing, London, 1984, pp 223-225.
- [64] G Van Ingen, R Visser, H Peltenburg, A M Van der Ark and M Voortman, For Sci Int 56:81 (1992) and references therein.
- [65] T Bryan-Brown, Q J Pharm Pharmacol 5:205 (1932).

- [66] J F Morton, in: Forensic Medicine, Vol 3, C G Tedeschi, W G Eckert and L G Tedeschi Eds., Vol 3, W Saunders, Philadelphia (1977), p 1544.
- [67] C L Alden, C J Fosnaugh, J B Smith and R Mohan, J Am Vet Med Assoc 170:314 (1977).
- [68] Y Tekol and M Kameyama, Arzeim-Forsch 37:428 (1987).
- [69] J R Smythies, F Benington, R D Morin, G Al-Zahid and G Schoepfle, Experientia 15:337 (1975).
- [70] R Bauereis and W Steiert, Arzneim-Forsch 9:77 (1959).
- [71] G Alloatti, C Penna, M P Gallo, R Levi, G Appendino and I Fenoglio, Life Sci (submitted).
- [72] E C Rowinsky, W P McGuire, T Guarnieri, J S Fisherman, M C Christian and R C Donehower, J Clin Oncol 9:1704 (1991).
- [73] S J Sollot, L Cheng, R R Pauly, G M Jenkins, R E Monticone, M Kuzuya, J P Froehlich, M T Crow and E G Lakatta, J Clin Invest 95:1869 (1995).

The Alkaloids of South American Menispermaceae

Mary D. Menachery

Penn State Altoona Altoona, Pennsylvania 16601-3760

CONTENTS

1.	INTRODUCTION	270
2.	DISTRIBUTION OF SPECIES	271
3.	OCCURRENCE OF ALKALOIDS	274
4.	ALKALOIDS	280
	4.1. Simple Isoquinolines and Benzylisoquinolines	280
	4.2. Aporphines	280
	4.3. Oxoaporphines	281
	4.4. 4.5-Dioxoaporphines	282
	4.5. Miscellaneous Aporphinoids	283
	4.6. Proaporphines	284
	4.7. Protoberberines and Tetrahydroprotoberberines	285
	4.8. Isohomoprotoberberine	285
	4.9. Azafluoranthenes	286
	4.10. Tropoloisoquinolines	287
	4.11. Bisbenzylisoquinolines	290
	4.12. Morphinandienone	294
5.	PHARMACOLOGY	295
	REFERENCES	298
M. D. Menachery

1. INTRODUCTION

Menispermaceae (A. L. Jussieu), the moonseed family, is widely distributed throughout the tropical world. There are about seventy genera identified of which about seventeen are present in the New World. These genera belong to five subfamilies: Anomospermeae, Cocculeae, Hyperbaeneae, Tinosporeae and Triclisieae. The number of species identified is approximately 142. South American Menispermaceae species are woody-vines, shrubs, or small trees. Proper identification of most of these menispermaceous plants is difficult because flowers and fruits are seldom available, and if so, have not been collected at the same time. The flowers of some genera, for example, *Telitoxicum* spp., are very small and delicate. As a result, they break away and drop to the ground separately from the stem when the bush ropes are cut down. Sometimes the collector has to rely on his ability to distinguish the menispermaceous bush-ropes from other lianas by the striking color of fresh cut stems. For example, in *Abuta obovata, Abuta rufescens*, and *Anomospermum reticulatum* the slash is yellow, while in *Anomospermum chloranthum*, it is lavender [1].

Diels's monograph was the first comprehensive monograph on Menispermaceae [2]. The ethnobotany of South American Menispermaceae is well described by Krukoff, Barneby and Moldenke who identified some species [1, 3-5]. A few were re-identified even though in some cases staminate inflorescences, flowers, fruits, and seeds were not available [1, 3-5]. Sometimes species are renamed that were found to be the same as another species identified earlier. For example, *Abuta concolor* has been reclassified under *Abuta grandifolia* by Krukoff and Moldenke [3]. By 1982, it was evident to Krukoff that tropical lowland forests of Venezuela and of Amazonian Bolivia, Ecuador, Peru and Colombia are very rich in Menispermaceae. He expected new species, particularly in the genera *Abuta, Sciadotenia,* and *Anomospermum* [5].

The subfamilies and the genera of the New World Menispermaceae are given in *Table 1*. It is worthwhile to note that *Synandropus* and *Ungulipetalum* are still unknown in fruit and may not be generically distinct from *Odontocarya* and *Sciadotenia*, respectively [6].

ANOMOSPERMEAE	COCCULEAE	HYPERBAENEAE	TINOSPOREAE	TRICLISIEAE
1. Abuta	7. Cissampelos	9. Hyperbaenea	10. Borismene	14. Chondrodendron
2. Anomospermum	8. Cocculus		11. Disciphania	15. Curarea
3. Caryomene			12. Odontocarya	16. Sciadotenia
4. Elephantomene =			13. Synandropus	17. Ungulipetalum
Cionomene				
5. Orthomene				
6. Telitoxicum				

Table I: Subfamilies and genera of New World Menispermaceae

The major contribution of South American Menispermaceae to medicine is the curare activity of several species. Native Indians from Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru and Surinam utilized this principle to make arrow poisons for hunting small animals such as monkeys [7]. The curare activity will be discussed later in the section on pharmacology. Two of the recent reviews dealing with this Amazonian family are "The Healing Forest" by Schultes and Raffauf [8], (which covers 1516 species: 145 families and 594 genera) and "Amazonian Ethnobotanical Dictionary" by Duke and Vasquez [9] (which covers only some 20% of the flora of the area). Both reviews provide a good account of the medicinal and toxic plants used by the natives of the northwest Amazon. Local uses and colloquial names are also given for the flora described; however, neither gives the structures of the compounds present. The aim of this review is to cover all of the species identified from South American Menispermaceae, the compounds isolated from them and their pharmacological activities.

2. DISTRIBUTION OF SPECIES

The species (number in parenthesis) of Menispermaceae identified from South America are in *Table II*. Botanical nomenclature is given in reference to genus name except for more recent reassignment of species which are given in reference to species name.

Table II: Species of South American Menispermaceae

ANOMOSPERMEAE

1. Abuta (27) [1] is the genus with the most rapidly increasing number of species.

1. aristeguietae	10. <i>fluminum</i> [10]	19. panurensis
2. antioquiana	11. grandifolia	20. racemosa
3. barbata	12. grisebachii	21. rufescens = splendida [11]
4. brevifolia	13. imene	22. sandwithiana
5. bullata	14. longa	23. seemanni
6. candollei	15. mycetandra [4]	24. selloana
7. chocoënsis [5]	16. negroensis	25. solimoesensis
8. colombiana	17. obovata	26. vaupesensis
9. convexa [4]	18. pahni [4]	27. velutina

Table II: Species of South American Menispermaceae (Continued...)

ANOMOSPERMEAE (Continued...)

2. Anomospermum (8) [4]

- 1. andersonii [12] 5. matogrossense
- 2. bolivianum 6. solimoesanum
- 3. chloranthum 7. steyermarkii
- 4. grandifolium 8. reticulatum
- 3. Caryomene (5) [4]
- 1. foveolata 4. olivascens
- 2. glaucescens 5. prumnoides
- 3. grandifolia [12]

4. Elephantomene (1) [13] = Cionomene (1) [12,14]

eburnea

javariensis

5.	Orthomene (4) [4]	6. Telitoxicum (8)	[3]	
1.	hirsuta	1. duckei	5.	minutiflorum
2.	prancei	2. glaziovii	6.	negroense [10]
3.	schomburgkii	3. inopinatum	7.	peruvianum
4.	verruculosa	4. krukovii	8.	rodriguesii [15]

COCCULEAE

7. Cissampelos (10) [16]	8. Cocculus (0) [6]
1. andromorpha	6. ovalifolia	No native species of Cocculus have been
2. fasciculata	7. pareira	found in South America, but C.
3. glaberrima	8. sympodialis	laurifolius DC was formerly cultivated
4. grandifolia	9. tropaeolifolia	at Lima, Peru, and mistakenly identified
5. laxiflora	10. verticillata	as an Abuta.

HYPERBAENEAE

9. Hyperbaena (3) [17]

- 1. domingensis
- 2. hassleri
- 3. oblongifolia

Table II: Species of South American Menispermaceae (Continued ...)

TINOSPOREAE

10. Borismene (1) [2]	11. Disciphania (19) [18]	
japurensis	1. cubijensis	8. inversa	15. sagittaria
	2. calocarpa	9. juliflora	16. sarcostephana
	3. convolvulacea	10. <i>killipii</i>	17. smithii

4. cryptobotrya 11. lobata 18. tessmannii

13. peltata

- 5. dioscoreoides [19] 12. modesta 19. tricaudata[19]
- 6. ernstii
- 7. heterophylla [20] 14. remota

12. Odontocarya (29) [18]

1. acuparata	11. hastata
2. arifolia	12. klugii
3. asarifolia	13. krukoviana
4. deminuta	14. macarenae
5. dielsiana	15. magnifolia
6. diplobotrya	16. mallosperma
7. duckei	17. micrantha
8. echinus	18. miersiana
9. emarginata	19. petiolaris
10. <i>floribunda</i>	20. rusbyi

- 21. steyermarkii
- 22. syncretica
- 23. tamoides
- 24. tenacissima
- 25. tripetala
- 26. truncata
- 27. ulei
- 28. wullschlaegelii
- 29. zuliana

13. Synandropus (1) [18]

membranaceus

TRICLISIEAE

14. Chondrodendron (3) [4]

(sometimes spelled Chondodendron)

- 1. microphyllum
- 2. platiphyllum
- 3. tomentosum

15. Curarea (4) [4]

- 1. candicans
- 2. cuatrecasasii
- 3. tecunarum
- 4. toxicofera

Table II: Species of South American Menispermaceae (Continued...)

TRICLISIEAE (Continued...)

• •		
1. acutifolia	7. eichleriana	13. pubistaminea
2. amazonica	8. javariensis	14. ramiflora
3. brachypoda	9. mathiasiana	15. sagotiana
4. campestris [21]	10. nitida [4]	16. solimoesana
5. cayennensis	11. pachnococca [4]	17. sprucei
6. duckei	12. paraënsis	18. toxifera

17. Ungulipetalum (1) [4]

16. Sciadotenia (18) [1]

1. filipendulum

3. OCCURRENCE OF ALKALOIDS

A list of all the alkaloids identified from the species of South American Menispermceae is given by genus in Table III [22]. All the species investigated to date and original reference are included in this list.

Table III: Occurrence of Alkaloids

Genus/Species Name	Alkaloid	References
I. Abuta	***************************************	
1. A. bullata	Palmatine	23
	(+/-)Saulatine	23
	Trichloromethyl-8-dihydropalmatine	23
2. A. concolor	Grandirubrine	24
(A. grandifolia) [•]	Pareirubrine-A	24
3. A. grandifolia	Grandirubrine	25
	Palmatine	26
4. A. grisebachii	(-)-Grisabine	27
	(-)-Magnoline (Grisabutine)	27, 28
	(-)-Macolidine	28
	(-)-Macoline	28

Table III: Occurrence of Alkaloids (Continued...)

Genus/Species Name	Alkaloid	References
4. A. grisebachii (Continued)	(-)-Peinamine	28
	(-)-N-methyl-7-O-demethylpeinamine	28
	(-)-7-O-Demethylpeinamine	28
5. A. imene	Imeluteine	29, 30
	Imenine	30, 31
	Imerubrine	30, 31
	Homomoschatoline	30
	Norrufescine	30
	Rufescine	29, 30
6. A. pahni	(+)- Coclaurine	32
-	(-)- Daurisoline	32
	(-)-2'-N-Nordaurisoline	32
	(-)- Lindoldhamine	32
	(-)- N, N'-Dimethylindoldhamine	32
	(-)-2-N-Methyllindoldhamine	32
	(-)-2'-N-Methyllindoldhamine	32
	(+)-Stepharine	32
	Thalifoline	32
7. A. panurensis	(-)- Norpanurensine	33
	(-)- Panurensine	33
8. A. rufescens/splendida	(+)-Aromaline	34
	(+)-Homoaromaline	34
	Homomoschatoline	3 0
	Imeluteine	29, 30
	Imenine	30
	Imerubrine	30
	Lysicamine	34
	(-)-Krukovine	34
	Norrufescine	30
	Rufescine	29, 30
	Splendidine	35
9. A. sandwithiana	protoberberines	9

II. Anomospermum

None of the species of this genus have been completely investigated except that King has showed that tertiary and quaternary bases are present in the bark of A. grandifolium [36,1,7].

Table III: Occurrence of Alkaloids (Continued...)

Genus/Species Name	Alkaloid	References
III. Caryomene		
1. C. olivascens	(-) -Caryolivine	37
	(+)-Coclaurine	37, 38
	(-)-Coreximine	38
	(+)-1,2-Dehydro-2-norlimacusine	37
	(+)-2-Norlimacusine	37
	(-)-N, N'-Dimethyllindoldhamine	37
	(-)-10-Demethyldiscretine	38
	(-)-Discretine	38
	(-)-N-Formystepharine	37
	(-)-Govadine	38
	(-)-2-Norlimacine	37
	(-)-Pronuciferine	37
	(+)-Pseudopalmatine	37, 38
	(-)-Stepharine	37, 38
	(-)-Xilopinine	38
IV. Chondrodendron		
1. C. limaciifolium	(+)-Isochondrodendrine	39
(Curarea candicans)**		
2. C. microphyllum	(+)-Curine	40
	(+)-Isochondodendrine	40
3. C. platiphyllum	(-)-Chondrofoline	40, 41
	(-)-Curine	40, 41
	(+)-Isochondodendrine	40
4. C. tomentosum	(+)-Chondrocurine	36, 42, 43
	(+)-Chondocurarine	42
	(-)-Curine	36, 43, 44

 Table III: Occurrence of Alkaloids (Continued...)

Genus/Species Name	Alkaloid	References
4. C. tomentosum (Continued)	(-)- Cycleanine	36, 43
	(O,O-dimethylisochondrodendrine)	
	(+)-Isochondrodendrine	36, 42, 43
	(-)-Norcycleanine	43
	N-Benzylphthalimide	43
	(+)-Tomentocurine	36, 43
	(-)-Tomentocurarine	42
	(+)-Tubocurarine	36, 42
	(-)-Tubocurarine	44
5. C. toxicoferum	(-)-Curine	45
(Curarea toxicofera)***	(+)-Isochondodendrine	45
	(-)-Toxicoferine	45
	(1:1 mixture of (-)-Curine	
	and (-)-Tubocurine)	
V. Cissampelos		
1. C. pareira	(-)-Cissampareine	46
	Grandirubrine	47
	Isoimerubrine	47
	Norimeluteine	47
	Norrufescine	47
	Pareirubrine A	47
	Pareirubrine B	47
	Pareitropone	48
2. C. ovalifolia	(-)- Warifteine	49
	(-)- Cissampareine (Methylwarifteine)	49
	(-)- O-Methylcissampareine	49
	(Dimethylwarifteine) and	
	corresponding dihydroderivatives	
3. C. sympodialis	(+)- Milonine	50
_	(-)- Warifteine	50

M. D. Menachery

Genus/Species Name	Alkaloid	References
VI. Curarea	** ***********	·
1. C. candicans	(+)-Candicusine	51
(Chondrodendron limaciifolium)**	(+)-Curine	40
(Chondrodendron candicans)**	(+)-Isochondrodendrine	40
	(-)-Limacine	51
	(+)-Limacusine	51
	(-)-Limacine-2'α-N-oxide	51
	(-)-Limacine-2β-N-oxide	51
	(-)-Limacine-2'β-N-oxide	51
	(-)-Krukovine	51
VII. Sciadotenia		
1. S. eichleriana	(+)-Coclaurine	52
	(-)-Grisabine	52
	(+)-2-Norlimacusine	52
	(+)-Stepharine	52
2. S. cayennensis	(+)-Actinodaphnine	52
	(+)-Launobine	52
3. S. toxifera	(+)-0,0'- Dimethylcurine	53
	Epi-norcycleanine	53
	(-)-Isochondodendrine	53
	(+)-Isochondodendrine	54
	(+)-Sciadenine	54-55
	(+)-Sciadoferine	54
	(+)-Sciadoline	54
VIII. Telitoxicum		
1. T. glaziovii	Imenine	56
	Homomoschatoline	57
	Lysicamine	57
	Ouregidione	56
	Splendidine	56

Table III: Occurrence of Alkaloids (Continued...)

278

1. T. glaziovii (Continued)Telazoline Teladiazoline57 57 57 562. T. krukovii7-Chloronorcephardione B N-Formyldehydroanonaine58 58 58 N-Formylnornuciferine58 58 76 77 76 76 76 76 76 76 76 76 76 77 76 	Genus/Species Name	Alkaloid	References
Teladiazoline57Telitoxine562. T. krukovii7-Chloronorcephardione B58N-Formyldehydroanonaine58Norcepharadione B58Norcepharadione B58N-Formylnomuciferine58N-Demethyl-N-Formyldehydro- nuciferine583. T. peruvianumHomomoschatoline59S. T. peruvianumHomomoschatoline59Operuvianine6059Peruvianine6060Telizoline6060Telizoline6076Telitoxinoe5959Telizoline6076Telitoxinone5959Telisatin A5976Telisatin B5959	1. T. glaziovii (Continued)	Telazoline	57
Telitoxine562. T. krukovii7-Chloronorcephardione B58N-Formyldehydroanonaine58Norcepharadione B58Norcepharadione B58N-Formylnornuciferine58N-Demethyl-N-Formyldehydro-58nuciferine58Telikovinone583. T. peruvianumHomomoschatoline59Lysicamine59, 60Norrufescine60Peruvianine60Subsessiline60Telitoxine60Telitoxine59Telitoxine59Telitoxine59Telitoxine59Telitoxine59Telitoxine59Telitoxine59Telitoxine59Telitoxine59Telitoxine59Telitoxine59Telitoxine59Telitoxine59		Teladiazoline	57
 2. T. krukovii 7-Chloronorcephardione B 58 N-Formyldehydroanonaine 58 Norcepharadione B 58 N-Formylnornuciferine 58 N-Demethyl-N-Formyldehydro- 58 nuciferine Telikovinone 59 Lysicamine 59, 60 Norrufescine 60 Peruvianine 60 Subsessiline 60 Teliazoline 60 Teliazoline 60 Telitoxine 60 Telitoxine 59 Telitoxine 59 Telisatin A 59 		Telitoxine	56
N-Formyldehydroanonaine58Norcepharadione B58N-Formylnornuciferine58N-Demethyl-N-Formyldehydro- nuciferine58Telikovinone593. T. peruvianumHomomoschatoline59USubsessiline60Peruvianine60Subsessiline60Telizotine60Telizotine60Telizotine59Telizotine59Telitoxine59Telisatin A59Telisatin B59	2. T. krukovii	7-Chloronorcephardione B	58
Norcepharadione B58N-Formylnornuciferine58N-Demethyl-N-Formyldehydro- nuciferine58Telikovinone58S. T. peruvianumHomomoschatolineS. T. peruvianum59, 60Norrufescine60Peruvianine60Subsessiline60Telizoline60Telizoline60Telizoline59Telizoline59Telisatin A59Telisatin B59		N-Formyldehydroanonaine	58
N-Formylnornuciferine58N-Demethyl-N-Formyldehydro- nuciferine58Telikovinone583. T. peruvianumHomomoschatoline59J. T. peruvianumHomomoschatoline59J. T. peruvianumNorrufescine60Norrufescine6060Peruvianine6060Telizoline6060Telitoxine6059Telitoxine5959Telitoxine5959Telisatin A5959Telisatin B5959		Norcepharadione B	58
N-Demethyl-N-Formyldehydro- nuciferine Telikovinone583. T. peruvianumHomomoschatoline Lysicamine5960Norrufescine60Peruvianine60Subsessiline60Telizoline60Telizoline60Telizoline5959597Telitoxinone59597Telisatin A5959		N-Formylnornuciferine	58
Telikovinone583. T. peruvianumHomomoschatoline594. Lysicamine59, 60Norrufescine60Peruvianine60Subsessiline60Telazoline60Telitoxine60Telitoxine59Telisatin A59Telisatin B59		N-Demethyl-N-Formyldehydro- nuciferine	58
3. T. peruvianumHomomoschatoline59Lysicamine59, 60Norrufescine60Peruvianine60Subsessiline60Telazoline60Telitoxine60Telitoxine59Telisatin A59Telisatin B59		Telikovinone	58
Lysicamine59, 60Norrufescine60Peruvianine60Subsessiline60Telazoline60Telitoxine60Telitoxinone59Telisatin A59Telisatin B59	3. T. peruvianum	Homomoschatoline	59
Norrufescine60Peruvianine60Subsessiline60Telazoline60Telitoxine60Telitoxinone59Telisatin A59Telisatin B59		Lysicamine	59, 60
Peruvianine60Subsessiline60Telazoline60Telitoxine60Telitoxinone59Telisatin A59Telisatin B59		Norrufescine	60
Subsessiline60Telazoline60Telitoxine60Telitoxinone59Telisatin A59Telisatin B59		Peruvianine	60
Telazoline60Telitoxine60Telitoxinone59Telisatin A59Telisatin B59		Subsessiline	60
Telitoxine60Telitoxinone59Telisatin A59Telisatin B59		Telazoline	60
Telitoxinone59Telisatin A59Telisatin B59		Telitoxine	60
Telisatin A59Telisatin B59		Telitoxinone	59
Telisatin B 59		Telisatin A	59
		Telisatin B	59

Table III: Occurrence of Alkaloids (Continued...)

* Abuta concolor (Poepp & Endl.) = Abuta concolor (Benth) = Abuta grandifolia (Mart.) [3].

" Chondrodendron candicans (Rich.) Sandw. = Chondrodendron limaciifolium (Diels) Mold. = Curarea candicans (Rich.) Barneby & Krukoff [4]

*** Chondrodendron toxicoferum (Wedd.)Kruk. & Mold. = Curarea toxicofera (Wedd.) Barneby & Krukoff [4]

In the seventies, the main thrust of investigation was the isolation of pharmacologically active alkaloids. Recent research has indicated that in some of these species, the weakly basic alkaloids are present in the neutral fractions [56, 59]. A number of species from different genera have given positive tests for alkaloids but have not been investigated completely. These are Abuta velutina, Cissampelos fasciculata, Disciphania lobata, Sciadotenia amazonica, S. duckei, S. paraënsis, S. sagotiana, S. sprucei, and Telitoxicum rodriguesii [61].

The genera from South American Menispermaceae which have given negative test results for alkaloids are *Odontocarya*, *Orthomene* and *Hyperbaena* [61]. The most collected and most wide spread plant, *O. schomburgkii*, gave an alkaloidal fraction [62] thus proving that the test results employed earlier are not completely reliable.

4. ALKALOIDS

The alkaloids of the tropical family, Menispermaceae have been studied throughout the world and reviewed by Tomita in 1952 [63] and Thornber in 1970 [64]. Most of the alkaloids are either 1-benzylisoquinoline or compounds theoretically derived from such precursors. The structures of alkaloids found to date in South American Menispermaceae are classified under general structure types.

4.1. Simple Isoquinolines and Benzyltetrahydroisoquinolines

Simple isoquinolines are not found in the Menispermaceae of South America. The thalifoline (1) identified from Abuta [32]. isoquinolone was pahni Benzyltetrahydroisoquinolines are the biogenetic precursors for aporphines, proaporphines, and oxoaporphines. Yet the only such compound isolated from South American Menispermaceae is (+) coclaurine (2) obtained from Sciadotenia eichleriana [52] and Caryomene olivascens [37-381. The chemistry of simple isoquinolines [65], isoquinolones [66]. and benzyltetrahydroisoquinolines [67] have been reviewed.

4.2. Aporphines

The number of aporphine alkaloids isolated from plants is increasing exponentially. Kametani and Honda covers the chemistry of these compounds in detail [68]. Comprehensive reviews of aporphinoids, their molecular formula, structural formula, and spectral data have been published [69]. Their presence in South American Menispermaceae is represented by (+)- launobine (3) and (+)-actinodaphnine (4) from *Sciadotenia cayennensis* [52], and is also represented by *N*-formyldehydroanonaine (5), *N*-demethyl-*N*-formyldehydronuciferine (6), and *N*-formylnornuciferine (7) from *Telitoxicum krukovii* [58]. Recently, two isatins were isolated from *T. peruvianum* neutrals [59]. Aporphines and dehydroaporphines are thought to be the precursors of oxoaporphines [70,71]. These compounds can react with oxalic acid present in the plant to give isatins which can undergo oxidation to the corresponding oxoaporphines. Oxidation of telisatin A (8) with hydrogen peroxide in the presence of sodium hydroxide gave the oxoaporphine lysicamine (10) [72], while telisatin B (9) will give homomoschatoline (11).

4.3. Oxoaporphines

Although the aporphine reviews [69] give about forty-eight oxoaporphines, only six were isolated from South American Menispermaceae: lysicamine (10) [35, 57, 60, 73], *O*-methylmoschatoline (homomoschatoline) (11) [30, 35, 57, 59], imenine (12) [31, 35, 56, 74], splendidine (13) [35, 56], subsessiline (14) [60, 75], and peruvianine (15) [60, 76]. These

compounds are fully aromatic and highly colored with color ranging from yellow to orange. Imenine and splendidine are the only 4-oxygenated alkaloids of this type and were isolated from *Abuta imene*, *A. rufescens* (= *A. splendida*), and *T. glaziovii*. The structures of these alkaloids have been confirmed by synthesis. So far only some species of the genus *Abuta* and the three *Telitoxicum* species studied have given these colored compounds. Biogenetically, oxoaporphines are considered to be formed from aporphines [70,71].

10. $R_1 = R_2 = R_3 = H$ 11. $R_2 = R_3 = H; R_1 = OCH_3$ 12. $R_3 = H; R_1 = R_2 = OCH_3$ 13. $R_1 = R_3 = H; R_2 = OCH_3$ 14. $R_2 = H; R_1 = OCH_3; R_3 = OH$ 15. $R_1 = R_2 = H; R_3 = OH$

4.4. 4,5-Dioxoaporphines

About eighteen 4,5-dioxoaporphines have been isolated from the plant kingdom [69]. The only three isolated from South American Menispermaceae are norcepharadione B (16) and 7-chloronorcepharadione B(17) from the neutral fraction of *Telitoxicum krukovii* [58] and ouregidione (18) from the neutral fraction of *T. glaziovii* [56]. But 7-chloronorcepharadione-B was considered to be an artifact [69]. Dehydro- and didehydroaporphines are the precursors of these reddish-orange compounds which fluoresce in dichloromethane solution [71].

16. $R_1 = R_2 = H$ **17.** $R_1 = H; R_2 = Cl$ **18.** $R_1 = OCH_3; R_2 = H$

The *Telitoxicum* genus is closely related to some *Abuta* species such as *A. imene* and *A. rufescens* based on the constituents present which are mainly oxoaporphines and azafluoranthenes. It is possible that 4,5-dioxoaporphines may also be present in some of these *Abuta* species.

4.5. Miscellaneous Aporphinoids

A few alkaloids have been isolated with free amino groups on the aporphine nucleus. The isolation procedure employed ammonium hydroxide (1:1) to moisten the powdered plant material before extracting into ethyl acetate/95% ethanol (9:1). Currently, there is no strong evidence to prove whether these compounds are artifacts or not. Telazoline (19) from the nonphenolic fraction of *T. peruvianum* [60], telazoline and teladiazoline (20) from the neutral fraction of *T. glaziovii* [57], telitoxinone (21) from the neutral fraction of *T. peruvianum* [59], and telikovinone (22) from the neutral fraction of *T. krukovii* [58] were isolated.

4.6. Proaporphines

The genus Caryomene was split along with the genus Orthomene from Anomospermum by Krukoff and Barneby in 1971 [4]. The following proaporphines: (-)-stepharine (23); (-)-N-formylstepharine (24) and (-)-pronuciferine (25) were obtained from the stems or fruits of Caryomene olivascens [37, 38]. (+)-Stepharine (26) was isolated from S. eichleriana [52] and Abuta pahni [32]. For reviews of proaporphines, refer to Stuart and Cava [77] and Kyle and Cava [77].

4.7. Protoberberines and Tetrahydroprotoberberines

In the plant kingdom, one of the most widely distributed isoquinoline-type alkaloids is the protoberberines. Bhakuni and Jain, and Hanaoka give reviews dealing with the chemistry and the transformation reactions of these alkaloids [78]. Protoberberines, such as, (+)pseudopalmatine (27) was isolated from *Caryomene olivascens* [38], and palmatine (28) and trichloromethyl-8-dihydropalmatine (29) have been identified from *Abuta bullata* [23]. Compound 29 may be an artifact. Even though palmatine (28) has been stated to have been isolated from *Abuta grandifolia*, the identity of the plant material cannot be verified [26]. Five 2,3,10,11-tetrasubstituted tetrahydroprotoberberines, (-)-coreximine (30), (-)-10demethyldiscretine (31), (-)-discretine (32), (-)-govadine (33), (-)-xilopinine (34), were also found in the fruits of *Caryomene olivascens* [38].

28. R = H; $\Delta^{7(8)}$ N⁺ X⁻ **29**. R = CCl₃

27. $R_1 = R_2 = R_3 = R_4 = OCH_3$, $\Delta^{7(8), 13}$; N⁺ X⁻ **30.** $R_1 = H$; $R_2 = R_3 = R_4 = OCH_3$ **31.** $R_1 = R_4 = OCH_3$; $R_2 = R_3 = H$ **32.** $R_1 = R_3 = R_4 = OCH_3$; $R_2 = H$ **33.** $R_2 = R_4 = OCH_3$; $R_1 = R_3 = H$ **34.** $R_1 = R_2 = R_3 = R_4 = OCH_3$

4.8. Isohomoprotoberberine

(+/-)Saulatine (35) is the only alkaloid of the isohomoprotoberberine type found in one South American Menispermaceae, *Abuta bullata*, collected from Guyana [23]. Homologation of protoberberine is thought to be the biogenetic pathway for the formation of this compound.

4.9. Azafluoranthenes

Indeno [1,2,3-i,j] isoquinoline (2-azafluoarnthene) was first reported in coal tar and its structure was confirmed by degradation to known compounds [79]. It is also a component of cigarette smoke [80] and is considered to be an air pollutant [81]. The natural products of this class were isolated for the first time from *Abuta rufescens* and *A. imene* [29]. Currently, there are six known azafluoranthene alkaloids, all isolated from Menispermaceae species: imeluteine (36) [29, 82], rufescine (37) [29, 82], norrufescine (38) [28, 83, 84], 5,6-dimethoxyindeno [1,2,3-i,j] isoquinoline (39) [85, 86], telitoxine (40) [56, 60, 87], and norimeluteine (41) [47]. Except norimeluteine, the azafluoranthene structures are confirmed by total syntheses. Of these, 39 is the only one isolated from *Triclisia gillettii* (Dewild) Staner [85], however it is not a South American Menispermaceae. Others were obtained from South American *Abuta* [29, 30], *Telitoxicum* [56, 60] and *Cissampelos* [47]. For a comprehensive review of azafluoranthene alkaloids including occurrence, structure, and syntheses refer to Buck [88].

36. $R_1 = R_2 = R_3 = R_4 = R_5 = OCH_3$ 37. $R_1 = R_2 = R_3 = R_4 = OCH_3$; $R_5 = H$ 38. $R_1 = R_2 = R_3 = OCH_3$; $R_4 = OH$; $R_5 = H$ 39. $R_2 = R_3 = OCH_3$; $R_1 = R_4 = R_5 = H$ 40. $R_2 = R_3 = OCH_3$; $R_4 = OH$; $R_1 = R_5 = H$ 41. $R_1 = R_2 = R_3 = R_5 = OCH_3$; $R_4 = OH$

4.10. Tropoloisoquinolines

An isoquinoline system condensed to a tropolone is the skeleton for a tropoloisoquinoline alkaloid. The general structure of the five alkaloids of this type known so far are derivatives of the tautomers of 10-hydroxy-9H-azuleno[1,2,3-i,j]isoquinolin-9-one (42) and 9-hydroxy-10H-azuleno[1,2,3-i,j]isoquinoline-10-one (43) [88]. Recently, the first tropone-isquinoline alkaloid, pareitropone (44) has been isolated from the roots of the South American Menispermaceae, *Cissampelos pareira* [48].

The first two known compounds imerubrine (45) [30] and grandirubrine (46) [25] were isolated in 1972 and 1980, respectively, from A. imene (A. rufescens) and A. grandifolia. The structure of imerubrine was determined by single crystal X-ray analysis [89]. Grandirubrine was the first tropoloisoquinoline alkaloid isolated with a free tropolone system, which on methylation gave imerubrine and isoimerubrine (47), thus proving the existence of the two tautomeric forms 42 and 43 [25]. Isoimerubrine along with the antileukemic pareirubrine A (48) and B (49) were isolated from Cissampelos pareira [47]. In ¹H-NMR spectra, pareirubrines A and B showed a closer resemblance to structure 42 than 43 by comparing the chemical shifts of H(7)and H(8) with those of imerubrine and isoimerubrine [47]. X-ray crystallography of pareirubrines showed that the molecules are almost completely planar and the conjugation extends throughout the molecules except for the substituents, the methoxyl groups. In the crystalline state, pareirubrines exist in only the tautomeric form 43 [47]. In other words, tropoloisoquinoline alkaloids with a free tropolone system are 10-hydroxy-9H-azuleno[1,2,3i,j]isoquinolin-9-one (42) in solution and are 9-hydroxy-10H-azuleno[1,2,3-i,j]isoquinolin-10one (43) in the solid state [47]. Brazilian Abuta concolor (Abuta grandifolia) also gave the antileukemic principles pareirubrine A and grandirubrine [24].

The first total synthesis of imerubrine was accomplished using azafluoranthene as an intermediate [90]. Treatment of the azafluoranthene (50) with thallium (III) nitrate in methanol at -20°C gave the dienone 51 in greater than 95% yield. Cyclopropanation of the dienone was accomplished using dimethylsulfoxonium methylide to give 52 in 38% yield. Reaction of compound 52 with trifluoroacetic acid in chloroform at room temperature gave imerubrine (45) (70%) [90]. Reaction of 52 with 2 M aqueous HCl in THF produced an orange product which was thought to be the diketone 53. When the dienone was heated in refluxing THF for 30 h., an

87% yield of grandirubrine (46) was produced (Scheme 1). Another synthetic approach to these tropoloisoquinolines is reported by Boger and Takahashi [91].

4.11. Bisbenzylisoquinolines

Bisbenzylisoquinolines received importance based on their presence in the pharmacologically active arrow poisons of South American Indians. A recent review gives the chemistry, biogenesis and syntheses [92]. A comprehensive tabular review of over 400 of these phenylalanine-derived alkaloids was published by Guha [93] and Schiff [93].

There are approximately forty-five bisbenzylisoquinolines isolated from South American Menispermaceae. All the genera investigated so far (*Abuta, Sciadotenia, Caryomene, Curarea, Chondrodendron, Cissampelos*) have given these alkaloids except *Telitoxicum (Table III)*. In the case of *Abuta*, a few species give these compounds while a few others give oxoaporphines, azafluoranthenes, or a combination of both (*A. splendida*). The structures of all the bisbenzylisoquinolines are given below based on their structural type and not based on the species from which the compound was isolated. For clarity, the names of the alkaloids are included with the structure instead of giving numerical numbers in the drawing.

- (-)-Daurisoline: $R_1 = R_2 = R_3 = Me$; $R_4 = H$ (1R)
- (-)-Grisabine: $R_1 = R_2 = R_4 = Me$; $R_3 = H(1S)$
- (-)-Lindoldhamine: $R_1 = R_2 = R_3 = R_4 = H(1R)$
- (-)-2-N-Methyllindoldhamine: $R_1 = Me$; $R_2 = R_3 = R_4 = H$ (1R)
- (-)-2'-N-Methyllindoldhamine: $R_2 = Me$; $R_1 = R_3 = R_4 = H(1R)$
- (-)-*N*,*N*'-Dimethyllindoldhamine: $R_1 = R_2 = Me$; $R_3 = R_4 = H(1R)$ (Guattegaumerine)
- (-)-Magnoline (Grisabutine): $R_1 = R_2 = Me$; $R_3 = R_4 = H$ (1S)
- (-)-2'-*N*-Nordaurisoline: $R_1 = R_3 = Me; R_2 = R_4 = H(1R)$

- (+)-Aromaline : $R_1 = H(1R, 1'S)$
- (+)-Candicusine: $R_1 = H(1R, 1'R)$
- (+)-1,2-Dehydro-2-norlimacusine: $R_1 = Me; \Delta^{1(2)}(1'R)$
- (+)-Homoaromaline : $R_1 = Me(1R, 1'S)$
- (+)-Limacusine : $R_1 = Me(1R, 1'R)$
- (-)-Macolidine: $R_1 = H(1S, 1'R)$
- (-)-Macoline: $R_1 = H$, N⁺MeH.X⁻,N⁺⁺Me₂.X⁻ (1S,1'R)
- (+)-2-Norlimacusine: $R_1 = Me; N(2)H, (1R, 1'R)$

- (-)-Caryolivine: $R_1 = Me, \Delta^{1(2),3}$
- (-)-Krukovine: $R_1 = H$
- (-)-Limacine: $R_1 = Me$
- (-)-Limacine 2'- α -N-oxide: $R_1 = Me N'^+ O^-$
- (-)-Limacine 2- β -N-oxide: $R_1 = Me N^+ O^-$
- (-)-Limacine 2'- β -N-oxide: $R_1 = Me N'^+ O^-$
- (-)-2-Norlimacine: $R_1 = Me$, N(2)-H

- (-)-7-O-Demethylpeinamine: $R_1 = R_2 = R_3 = H$
- (-)-Peinamine: $R_1 = R_3 = H; R_2 = Me$
- (-)-N-Methyl-7-O-demethylpeinamine: $R_1 = Me$; $R_2 = R_3 = H$

(-)-Norpanurensine: $R_1 = H$ (-)-Panurensine: $R_1 = Me$

- (-)-Cycleanine: $R_1 = R_2 = R_3 = R_4 = Me(1R)$
- (O,O-Dimethylisochondrodendrine)
- (+)-Isochondodendrine: $R_1 = R_4 = Me$; $R_2 = R_3 = H(1R)$
- (-)-Norcycleanine: $R_1 = R_2 = R_4 = Me; R_3 = H (1R)$
- (+)-Sciadenine: $R_1 = R_3 = R_4 = Me; R_2 = H, (1S)$
- (+)-Sciadoferine: $R_1 = R_3 = R_4 = Me; R_2 = H, \Delta^{1(2)}$
- (+)-Sciadoline: $R_1 = R_3 = R_4 = Me$; $R_2 = H$, $\Delta^{1(2),3}$

(+)-Chondrocurine [(+)-Tubocurine]: $R_1 = R_2 = H (1R, 1'S)$ (+)-Chondrocurarine: $R_1 = R_2 = H$; N⁺Me₂.X⁻, N⁺⁺Me₂.X⁻ (1R,1'S) (-)-Chondrofoline: $R_1 = Me$; $R_2 = H (1S,1'S)$ (-)-Curine [(-)-Bebeerine]: $R_1 = R_2 = H (1R,1'R)$ (+)-Curine [(+)-Bebeerine]: $R_1 = R_2 = H (1S,1'S)$ (+)-O,O'-Dimethylcurine: $R_1 = R_2 = Me (1R,1'R)$ (+)-Tubocurarine: $R_1 = R_2 = H$; N⁺Me₂.X⁻, N⁺⁺MeH.X⁻ (1R,1'S)

(-)-Tubocurarine: $R_1 = R_2 = H$; N⁺Me₂.X⁻, N⁺MeH.X⁻ (1S,1'R)

(-)-Cissampareine (O-methylwarifteine): $R_1 = R_3 = R_4 = Me$; $R_2 = H$ (-)-O-Methylcissampareine: $R_1 = R_2 = R_3 = R_4 = Me$ (O,O-dimethylwarifteine) (-)-Warifteine: $R_1 = Me$, $R_2 = H$; $R_3 = H$, $R_4 = Me$, or vice versa

4.12. Morphinandienone

The one and only morphinandienone, (+)-milonine (8,14-Dihydromorphinandienone) (54), was isolated from the dried leaves of *Cissampelos sympodialis*, a plant used in medicine in northeastern Brazil [50]. Blasko and Cordell reviewed morphinandienone, homomorphinandienone, and other related alkaloids with respect to isolation, structure, elucidation, spectroscopy, and synthesis [94].

54

5. PHARMACOLOGY

Menispermaceae contains many medicinal and toxic plants. Some of the South American Menispermaceae were used by native Indians for their curare activity [7]. The western world was introduced to the muscle relaxants by the Spaniards, who encountered these arrow poisons in 1514 [7, 95]. The main South American Menispermaceae species used to prepare pot/tube curare are *Chondrodendron tomentosum*, and three of the four known curarea genus, *Curarea candicans*, *C. tecunarum and C. toxicofera* [7].

The active principle of tube-curare, (+) tubocurarine chloride, was first isolated in 1935 [96]. Its structure was revised based on nmr results that indicated both nitrogens were not quaternary, as previously thought, but that one is tertiary [97]. X-ray crystallographic analysis also confirmed the above conclusion [98].

Since its discovery, this compound is used as a muscle relaxant in surgical anesthesia [36]. The literature on pharmacology of tubocurarine is vast. An overview of the pharmacological activity of (+)-tubocurarine (chloride) has been reported by Schiff [93]. *Chondrodendron tomentosum* is the only known natural source of (+)-tubocurarine [95]. Pot curare was also investigated and found to comprise alkaloids for about half of its weight, mainly salts of bisbenzylisoquinolines [99]. The two species used in the production of the drug, pareira brava are *Chondrodendron platiphyllum* and *Chondrodendron microphyllum* [40], the first one being the major source of the drug [3].

Other ingredients found in the curare preparation of the natives belong to the genera Abuta, Anomospermum, Cissampelos, Orthomene, Sciadotenia and Telitoxicum [7, 8]. The neuromuscular blocking activity of the extracts of roots of Cissampelos ovalifolia was equivalent to that of Chondrodendron tomentosum [7]. Cissampareine, the cytotoxic bisbenzylisoquinoline alkaloid has been isolated from both C. ovalifolia and C. pareira [49, 46]. Caryomene is not included in the curare preparation of the Indians, but Caryomene foveolata (Barneby & Krukoff) from Brazil is said to be poisonous [4].

It is worthwhile to mention that curarizing arrow/dart poisons have been reported from Central Africa [7, 100], and Western Malaysia [101]. Even though other ingredients from different families are present, the curare activity may come from *Strychnos* (Loganiaceae), which is also a main ingredient from Amazon curare. More information on the wider use of curare plants from both Menispermaceae and Loganiaceae, their geographical distribution, botany, chemistry and pharmacology is given by Bisset [7]. Two other reviews of the Amazon plants have been published by Schultes and Raffauf [8] and by Duke and Vasquez [9]. The active principles are found in stem woods and roots. The genera and the species used as medicine by native Indians are given in Table IV.

Genera	Species				
ABUTA	grandifolia	grisebachii [8,14]	imene	obovata [1,8]	pahni [4,8]
	[8,9]		[1,3,8,9]		-
	rufescens	sandwithiana	selloana [8]	solimosensis [9]	vaupesensis [8]
	(splendida)	[9,14]			-
	[1,4,8,9]				
ANOMOSPERMUM	chioranthum	grandifolium [1]	reticulatum [8]		
	[8,9]				
CHONDRODENDRON	microphyllum	platiphyllum	tomentosum		
	[1]	[1,8]	[1,8,9]		
CISSAMPELOS	andromorpha	fasciculata [8]	ovalifolia [49]	pareira [8,9]	
	[8,9]				
CURAREA	candicans	tecunarum	toxicofera		
	[3,4]	[3,4,8,9]	[3,4,8,9]		
ORTHOMENE	schomburgkii				
	[8,9]				
SCIADOTENIA	duckei [8]	toxifera [1,8]			
ODONT <u>OCARYA</u>	tripetala [8]				
TELITOXICUM	duckei [8]	minutiflorum	peruvianum		
	I	[3,8]	[3,8]		

Table IV. The genera and the species of South American Menispermaceae used as medicine by native Indians.

The National Cancer Institute under the Cancer Chemotherapy National Service Center (CCNSC) has screened plant and animal extracts for anticancer activity since 1955 [102]. A correlation of NCI screening data with several groups of medicinal and poisonous plants found increased activity in plants used as arrow and fish poisons and anthelmintics when compared with plants selected at random [103]. The highest correlation was found to be between poisonous or toxic plants and in vitro cell cytotoxicity. The total bases and neutrals or the ethanolic extracts of *Abuta, Sciadotenia, Telitoxicum, Caryomene, Cissampelos, Odontocarya, Borismene, Orthomene and Chondrodendron* were screened by NCI [104]. A few of the species tested were active but the active principles were not isolated, except the cytotoxic bisbenzylisoquinoline alkaloid, cissampareine, from *Cissampelos pareira* [46]. Although *A. panurensis* is not reported as an ingredient of curare, its alkaloid extract has shown significant activity in KB-nasopharynx cell system [33]. The alkaloids isolated are bisbenzylisoquinolines.

The antimicrobial activity of many of bisbenzyisoquinolines have been reported. Candicusine, cycleanine and aromaline were the most active compounds [105].

Even though the tropoloisoquinoline alkaloids imerubrine (45), from Abuta imene [30] and grandirubrine (46), from Abuta grandifolia [25], were isolated in 1972 and 1980, respectively, the amount of material available prevented their biological testing. Both of these alkaloids are biogenetically and structurally related to the potent antimitotic agent colchicine (55) and are compounds of potential therapeutic interest [106].

Crude extracts of the plants from which imerubrine and grandirubrine have been isolated are the subject of patents as wound-healing agents and neoplasm inhibitors [107]. These compounds were also tested for antitubulin activity, and imerubrine was found to show weak inhibition of polymerization [91]. Along with grandirubrine (46) and isoimerubrine (47), the antileukemic pareirubrines A (48) and B (49), and a cytotoxic azafluoranthene, norimeluteine (41), were identified from the extract of South American Cissampelos pareira [47]. Pareirubrine A and grandirubrine were also isolated from Abuta concolor (Abuta grandifolia) and were found to be antileukemic [24]. Based on cytotoxic bioassay against P-388 leukemia cells, the authors showed that in the tropolo-isoquinoline system, the C(9) carbonyl group (isoimerubrine) shows stronger cytotoxicity than C(10) carbonyl group (imerubrine). This data does not agree with that of colchicine which is more potent than isocolchicine [106]. Pareitropone (44) with a tropone moiety showed more potent cytotoxicity against cultured P-388 cells than four of the five imerubrine, grandirubrine, pareirubrines A and B [48]. tropoloisoquinolines: Also azafluoranthenes are found to be less active than these tropoloisoquinolines.

The antimicrobial activity of aporphine alkaloids in general has been tested and oxoaporphines were the most active [108]. Some of these alkaloids are found to be toxic for mammalian cells in tissue cultures [109]. In another study of antimicrobial activity of fourteen benzylisoquinoline alkaloids, two oxoaporphines isolated from species of South American Menispermaceae, lysicamine (10) and O-methylmoschatoline (homomoschatoline) (11), had activity against cocci and gram positive bacilli, including Mycobacterium phlei [110].

Mutagenecity to Salmonella typhimurium TA 100 and TA 98 in the presence or absence of S9 mix was tested for forty-four isoquinoline alkaloids [111]. Liriodenine was the most active oxoaporphine while lysicamine was the least active. Based on the absence of mutagenicity of 1,2,10-trimethoxy-7-oxoaporphine, the authors concluded that substitution at position 10 of the 7-oxoaporphine system cancelled the mutagenicity.

ACKNOWLEDGMENTS

The author is greatly thankful to Dr. Michael P. Cava, Dr. Philip W. LeQuesne, Dr. M. V. Lakshmikantham, Dr. Robert E. Loeb for helpful discussions, Nicholas DeAntonio for library work and drawing structures, Dr. R. C. Barneby, Dr. Wayt Thomas for botanical information, and Dr. G. M. Cragg for information on NCI testing of plant extracts.

REFERENCES

- 1. BA Krukoff and RC Barneby, Mem NY Bot Gardn 20 (2), 1 (1970).
- 2. L Diels, in: Das Pflanzenreich, Vol. IV, pp.1, A Engler, Ed., W Engelmann, Liepzig (1910).
- 3. BA Krukoff and HN Moldenke, Brittonia 3, 1 (1938).
- 4. RC Barneby and BA Krukoff, Mem NY Bot Gardn 22 (2), 1 (1971).
- 5. BA Krukoff, Phytologia 50, 80 (1982).
- 6. RC Barneby, private communication.
- NG Bisset in: Alkaloids: Chemical and Biological Perspectives, Vol. 8, pp. 1, SW Pelletier, Ed., Springer-Verlag, New York, London (1992).
- RE Schultes and RF Raffauf, The Healing Forest. Medicinal and Toxic Plants of the Northwest Amazonia, Dioscorides Press, Portland, Oregon (1990).
- 9. JA Duke and R Vasquez, Amazonian Ethnobotanical Dictionary, CRC Press, Florida (1994).
- 10. BA Krukoff and RC Barneby, Phytologia 25, 32 (1972).
- 11. BA Krukoff and RC Barneby, Phytologia 39, 283 (1978).
- 12. BA Krukoff, Phytologia 41, 239 (1979).
- 13. BA Krukoff and RC Barneby, Lloydia 37, 23 (1974).
- 14. RC Barneby, Brittonia 45, 235 (1993).
- 15. BA Krukoff, Phytologia 33, 323 (1976).
- 16. DG Rhodes, Phytologia 30, 415 (1975).
- 17. ME Mathias and WL Theobald, Brittonia 33, 81 (1981).
- 18. RC Barneby, Mem NY Bot Gardn 20 (2), 81 (1970).
- 19. RC Barneby, Brittonia 42, 178 (1990).
- 20. RC Barneby, Brittonia 33, 515 (1981).
- 21. RC Barneby, Brittonia 44, 264 (1992).

- J. Buckingham, Exc. Ed., Dictionary of Natural Products, Chapman & Hall Chemical Database, Vol.7, N.Y. 1994.
- R Hocquemiller, A Cavè, and A Fournet, J Nat Prod 47, 539 (1984); DC Kim, WH Yoon, H Choi, and DH Kim, J Heterocyclic Chem 30, 1431 (1993).
- 24. H Itokawa, K Matsumoto, H Morita, and K Takeya, Heterocycles 37, 1025 (1994).
- 25. MD Menachery and MP Cava, Heterocycles 14, 943 (1980).
- 26. Al Da Rocha, K Bessho, and MP Cava, Trab Inst Nac Pesqu Amazonia Ser Quimica no.11, 3 (1967). Isolation of palmatine from this plant has been reported by these authors, but the identity of the plant material cannot be verified since no voucher samples were deposited in any herbarium.
- 27. R Ahmad and MP Cava, J Org Chem 42, 2271 (1977).
- 28. C Galeffi, P Scarpetti, and GB Marini-Bettolo, Farmaco (Sci Ed.) 32, 853 (1977).
- 29. MP Cava, KT Buck, and AI da Rocha, J Am Chem Soc 94, 5931 (1972).
- 30. MP Cava, KT Buck, I Noguchi, M Srinivasan, and MG Rao, Tetrahedron 31, 1667 (1975).
- MD Glick, RE Cook, MP Cava, M Srinivasan, J Kunitomo, and Al Da Rocha, J Chem Soc Chem commun 1217 (1969).
- 32. P Dute, JF Weber, A Fournet, A Cavé, and J Bruneton, Phytochem 26, 2136 (1987).
- 33. MP Cava, JM Saà, MV Lakshmikantham, and MJ Mitchell, J Org Chem 40, 2647 (1975).
- 34. JM Saa, MV Lakshmikantham, MJ Mitchell, and MP Cava, J Org Chem 41, 317 (1976).
- 35. JW Skiles, JM Saà, and MP Cava, Can J Chem 57, 1642 (1979).
- 36. H King, J Chem Soc 1945 (1948).
- 37. M Lavault, A Fournet, H Guinaudeau, and J Bruneton, Chem Pharm Bull 34, 1148 (1986).
- 38. A Fournet, M Lavault, and J Bruneton, Acta Farm Bonacrense 6, 163 (1987).
- 39. JA Barltrop and JAD Jeffreys, J Chem Soc 159 (1954).
- 40. H King, J Chem Soc 737 (1940).
- 41. J Baldas, IRC Bick, QN Porter, and MJ Vernengo, J Chem Soc Chem Commun 132 (1971).
- O Wintersteiner and JD Dutcher, Science 97, 467 (1943); JD Dutcher, J Am Chem Soc 68, 419 (1946); JD Dutcher, J Am Chem Soc 74, 2221 (1952); JD Dutcher, Ann NY Acad Sci 54, 326 (1951).
- 43. IRC Bick and PS Clezy, J Chem Soc 2402 (1960).
- 44. H King, J Chem Soc 936 (1947).
- 45. MP Cava, K Kunitomo, and AI DaRocha, Phytochem 8, 2341 (1969).
- SM Kupchan, AC Patel, and E Fujita, J Pharm Sci 54, 580 (1965); SM Kupchan, S Kubota, E Fujita, S Kaboyashi, JH Block, and SA Telang, J Am Chem Soc 88, 4212 (1966).
- 47. H Morita, K Matsumoto, K Takeya, and H Itokawa, Chem Pharm Bull 41, 1307 (1993); H Morita, K Matsumoto, K Takeya, H Itokawa, and Y Iitaka, Chem Lett 339 (1993); H Morita, K Matsumoto, K Takeya, H Itokawa, and Y Iitaka, Chem Pharm Bull 41, 1418 (1993); H Morita, K Matsumoto, K Takeya, and H Itokawa, Chem Pharm Bull 41, 1478 (1993);
- 48. H Morita, K Takeya, and H Itokawa, Bioorg Med Chem Lett 5, 597 (1995).
- W Snedden, RB Parker, and C Gorinsky, Org Mass Spectrom 4, 607 (1970); C Gorinsky, DK Luscombe, PJ Nicholls, J Pharm Pharmacol 24, (Suppl.) 147 (1972).

- MR De Freitas, JL De Alencar, EVL Da-Cunha, JM Barbosa-Filho, and AI Gray, Phytochem 40, 1553 (1995); S De Cortes, JL De Alencar, G Thomas, and JM Barbosa-Filho, Phytother Res 9, 579 (1995).
- 51. M Lavault, A Fournet, H Guinaudeau, and J Bruneton J Chem Res (S) 248 (1985).
- 52. P Damas, J Bruneton, A Fournet, and H Guinaudeau, J Nat Prod 48, 69 (1985).
- 53. Y Inubushi, in : BA Krukoff and RC Barneby, Phytologia 25, 32 (1972).
- 54. C Galeffi, R La Bua, I Messana, RZ Alcazar, and GB Marini-Bettolo, Gazz Chim Ital 108, 97 (1978).
- K Takahashi and MP Cava, Heterocycles 5, 367 (1976); K Takahashi, MJ Mitchell, and MP Cava, Heterocycles 4, 471 (1976).
- MD Menachery, H Mandell, S Desaw, and A Freyer, International Congress on Natural Products Research, Nova Scotia, August 1994; Unpublished results.
- 57. MD Menachery and DL Edgren, J Nat Prod 51, 1283 (1988).
- 58. MD Menachery, GW Blake, C Beiswenger, and A Freyer, Heterocycles 41, 1425 (1995).
- 59. MD Menachery, GW Blake, RC Gourley, and A Freyer, J Nat Prod 58, 1945 (1995).
- 60. MD Menachery and MP Cava, J Nat Prod 44, 320 (1981).
- 61. AI da Rocha, AIR Luz, and MF da Silva, Acta Amazonia 14, 244 (1984).
- 62. MD Menachery, unpublished results.
- M Tomita, in: Die Alkaloide der Menispermaceae Pflanzen, Fortschritte der Chemie Organischer Naturstoffe, Vol. IX, Springer-Verlag (1952).
- 64. CW Thornber, Phytochem 9, 157 (1970).
- J Lundström, in: The Alkaloids Vol XXI, pp. 255, A. Brossi, Ed., Academic Press, New York, London (1983); MD Menachery, GL Lavanier, ML Wetherly, H Guinaudeau, and M Shamma, J Nat Prod 49, 745 (1986).
- 66. BD Krane and M Shamma, J Nat Prod 45, 377 (1982).
- 67. M Shamma, The Isoquinoline Alkaloids, Academic Press, New York (1972); M Shamma and L Moniot, Isoquinoline Alkaloids Research 1972-1977, Plenum Press, New York (1978); KW Bentley, Nat Prod Rep 12, 419 (1995) and the earlier reviews on β-Phenylethylamines and the Isoquinoline Alkaloids.
- T Kametani and T Honda, in: The Alkaloids Vol XXIV, pp. 153, A Brossi, Ed., Academic Press, New York, London (1985).
- 69. H Guinaudeau, M Leboeuf, and A Cavé, Lloydia 38, 275 (1975); H Guinaudeau, M Leboeuf, and A Cavé, J Nat Prod 42, 325 (1979); H Guinaudeau, M Leboeuf, and A Cavé, J Nat Prod 46, 761 (1983); H Guinaudeau, M Leboeuf, and A Cavé, J Nat Prod 51, 389 (1988); H Guinaudeau, M Leboeuf and A Cavé, J Nat Prod 57, 1033 (1994).
- M Shamma and RL Castenson, in : The Alkaloids Vol. XIV, pp. 225, RHF Manske, Ed., Academic Press, New York (1973).
- 71. M Shamma and H Guinaudeau, Tetrahedron, 40, 4795 (1984).
- 72. L Castedo, C Saà, JM Saà, and R Suau, J Org Chem, 47, 513 (1982).
- N Katsui, K Sato, S Tobinaga, and N Takeuchi, Tet Lett, 6257 (1966); J Kunitomo, Y Murakami and M Akasu, Yakugaku Zasshi (J Pharm Soc Jap), 100, 337 (1980).
- 74. MP Cava and I Noguchi, J Org Chem 38, 60 (1973).

- 75. JW Skiles and MP Cava, J Org Chem 44, 409 (1979).
- 76. KT Buck, DL Edgren, GW Blake, and MD Menachery, Heterocycles, 36, 2489 (1993).
- 77. KL Stuart and MP Cava, Chem Rev, 68, 321 (1968); SE Kyle and MP Cava, Heterocycles, 39, 891 (1994).
- DS Bhakuni and S Jain, in: The Alkaloids Vol. XXVIII, pp. 95, A Brossi, Ed., Academic Press, New York (1985); M Hanaoka, in: The Alkaloids Vol. 33, pp. 141, A Brossi, Ed., Academic Press, New York (1988).
- 79. O Krüber, Chem Ber 82, 199 (1949).
- 80. M Dong, I Schmeltz, E Jacobs and D Hoffmann, J Anal Toxicol, 2, 21 (1978).
- 81. MW Dong, DC Locke and D Hoffmann, Environ Sci Technol 11, 612 (1977).
- DL Boger and CE Brotherton, J Org Chem 49, 4050 (1984); P Molina, S Garcia Zafra, PM Fresneda, Synlett 43 (1995); J-M. Fu, B-P Zhao, MJ Sharp and V Snieckus, Can J Chem 72, 227 (1994).
- 83. MD Klein, KT Buck, MP Cava, and D Voet, J Am Chem Soc 100, 662 (1978).
- 84. MD Menachery, MP Cava, KT Buck, and WJ Prinz, Heterocycles 19, 2255 (1982).
- 85. R Huls, J Gaspers, and R Warin, Bull Soc R Sci Liege 45, 40 (1976).
- 86. MD Menachery and KT Buck, Heterocycles 23, 2677 (1985).
- 87. MD Menachery, CD Muthler, and KT Buck, J Nat Prod 50, 726 (1987).
- 88. KT Buck, in: The Alkaloids Vol. XXIII, pp. 301, A Brossi, Ed., Academic Press, New York (1984).
- 89. JV Silverton, C Kabuto, KT Buck, and MP Cava, J Am Chem Soc 99, 6708 (1977).
- MG Banwell and NK Ireland, J Chem Soc Chem Commun 591 (1994); MG Banwell, E Hamel, NK Ireland, and MF Mackay, Heterocycles 39, 205 (1994).
- 91. DL Boger and K Takahashi, J Am Chem Soc 117, 12452 (1995).
- 92. KT Buck, in: The Alkaloids Vol. 30, pp. 1, A Brossi, Ed., Academic Press, New York (1987).
- KP Guha, M Mukherjee, and R Mukherjee, J Nat Prod 42, 1 (1979); PL Schiff, Jr., J Nat Prod 46, 1 (1983);
 50, 529 (1987) and 54, 645 (1991).
- 94. G Blasko and GA Cordell, Heterocycles 27, 1269 (1988).
- 95. NG Bisset, J Ethnopharm 36, 1 (1992).
- 96. H King, J Chem Soc 1381 (1935).
- AJ Everett, LA Lowe, and S Wilkinson, J Chem Soc Chem Commun 1020 (1970); L Koike, AJ Marsaioli, and F de AM Reis, J Org Chem 46, 2385 (1981).
- PW Codding and MNG James, J Chem Soc Chem Commun 1174 (1972); CD Reynolds, RA Palmer, BA Gorinsky, and C Gorinsky, Biochim Biophys Acta 404, 341 (1975).
- 99. H King, J Chem Soc 1472 (1937).
- 100. L Angenot, A Denoel, and M Goffart, J de Pharmacie de Belgique (n.s.) 25, 73 (1970).
- 101. NG Bisset, KHC Baser, JD Phillipson, L Bohlin, and F Sandberg, Lloydia 40, 546 (1977).
- 102. M Suffness and J Douros, J Nat Prod 45, 1 (1983).
- 103. RW Spjut and RE Perdue Jr., Cancer Treat Rep 60, 979 (1976).
- 104. GM Cragg, private communication.
- 105. GA Cordell, CK Angerhofer, and JM Pezzuto, Pure & Appl Chem 66, 2283 (1994); SJ Marshal, PF Russell, CW Wright, MM Anderson, JD Phillipson, GC Kirby, DC Warhurst and PL Schiff Jr, Antimicrob Agents Chemother, 38, 96 (1994).

- 106. O Boyé and A Brossi, in: The Alkaloids. Vol 41, pp. 125, A Brossi and GA Cordell, Eds., Academic Press, New York, (1992) and references therein.
- WH Lewis, RJ Stonard, B Porras-Reyes, and TA Mustoe, US Patent 5,156,847 (CA: 117, 245630t, (1992); H Itokawa, H Morita, A Saimoto, K Okamoto, H Yokumoto, and T Saino, Japanese Patent 07223957 A2 (CA: 123, 276013, (1995).
- 108. AM Clark and CD Hufford, in: The Alkaloids. Vol 42, pp. 117, GA Cordell, Ed., Academic Press, New York, (1992); CR Chen, JL Beal, RW Doskotch, LA Mitscher, and GH Svoboda, Lloydia 37, 493 (1974).
- 109. PE Sonnet and M Jacobson, J. Pharmac Sci 60, 1254 (1971); Y-C Wu, Y-F Liou, S-T Lu, C-H Chen, J-J Chang, and KH Lee, Plant Med 55, 163 (1989).
- 110. A Villar, M Mares, JL Rios, E Canton, and M Gobernado, Pharmazie 42, 248 (1987).
- T Nozaka, F Watanabe, SI Tadaki, M Ishino, I Morimoto, JI Kunitomo, H Ishii, and S Natori, Mutat Res 240, 267 (1990).

The Chemistry and Biological Activity of Calystegines and Related *Nortropane* Alkaloids

Russell J. Molyneux

Western Regional Research Center Agricultural Research Service, USDA 800 Buchanan Street Albany, CA 94710 U.S.A.

Robert J. Nash AFRC Institute of Grassland and Environmental Research Plas Gogerddan Aberystwyth, Dyfed SY23 3EB U.K.

Naoki Asano

Faculty of Pharmaceutical Sciences, Hokuriku University Kanagawa-machi, Kanazawa 920-11 JAPAN

CONTENTS

1.	INTI	RODUCI	305	
2.	ISOLATION AND STRUCTURAL ELUCIDATION			307
	2.1.	Isolatio	on of Calystegines	309
	2.2.	Structural Elucidation of Calystegines		310
		2.2.1.	Calystegine A ₃	310
		2.2.2.	Calystegine A ₅	312
		2.2.3.	Calystegine A ₆	312
		2.2.4.	Calystegine B ₁	312
		2.2.5.	Calystegine B ₂	313
		2.2.6.	Calystegine B ₃	314
		2.2.7.	Calystegine B ₄	314
		2.2.8.	Calystegine C ₁	315
		2.2.9.	Calystegine N ₁	315

3.	OCCURRENCE		320	
	3.1.	Occurre	ence in Convolvulaceae	320
	3.2.	Occurre	ence in Moraceae	321
	3.3.	Occurre	ence in Solanaceae	321
4.	DET	ECTION	AND ANALYSIS	322
	4.1.	322		
	4.2.	Thin-La	323	
	4.3.	High Pe	323	
	4.4.	Gas Ch	323	
5.	BIOS	326		
6.	SYN	328		
7.	BIOLOGICAL ACTIVITY			333
	7.1.	Glycosi	dase Inhibition	333
	7.2.	Rhizobi	al Interactions	335
	7.3.	Plant In	teractions	336
	7.4. Mammalian Toxicity			336
		7.4.1.	Livestock Poisonings	336
			7.4.1.1. Poisonings by Convolvulaceae	337
			7.4.1.2. Poisonings by Solanaceae	338
		7.4.2.	Human Poisonings	339
CONCLUSIONS		340		
REF	EREN	CES		340

1. INTRODUCTION

Polyhydroxy alkaloids have steadily increased in both numbers and biological significance since the discovery of the first members of the group in the late 1970s. Unlike most classes of alkaloids, which are characterized by a common structural feature, these are conceptually associated by the presence of a high degree of hydroxylation and an ability to inhibit glycosidases, a property which has profound effects upon biological systems as a consequence of disruption of the essential cellular function of glycoprotein processing [1,2].

Until recently, five structural classes were encompassed by these properties: pyrrolidines, e.g. 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine (DMDP) (1); piperidines, e.g. deoxynojirimycin (2); pyrrolizidines, e.g. australine (3) and alexine (4); and indolizidines, e.g. swainsonine (5) and castanospermine (6) [3-8]. An entirely new class has now be added to this group with the discovery of the calystegines¹, bicyclic alkaloids which possess a *nor*tropane structure bearing hydroxyl groups varying in position and stereochemistry [9,10]. Alkaloids of the tropane class are a well-established group with valuable pharmacological properties which have been frequently and comprehensively reviewed [11,12]. The most familiar representative is scopolamine (7) which is widely used as a mydriatic in ophthamology, to suppress motion sickness, as a sedative and preanesthetic, and to prevent muscle spasm. Scopolamine and related alkaloids occur in the plant family Solanaceae and bear a methyl substituent on the nitrogen atom. In contrast, *nor*tropane alkaloids (i.e. those lacking the *N*-methyl group) have rarely been isolated although they occasionally occur as minor constituents in plants containing the familiar tropane alkaloids.

This Chapter is designed to review the chemistry and biological activity of the calystegines, which at the present time are rarely found to occur in association with the correspondingly substituted tropane alkaloids. However, new sources of calystegines are rapidly being discovered and the occurrence of additional polyhydroxy tropane alkaloids cannot be excluded.

¹These compounds were originally named as "calystegins" but the term "calystegines" has subsequently been adopted by certain research groups. In order to conform with the more usual convention for naming of alkaloids and to emphasize their relationship to other polyhydroxy alkaloids, the latter term will be used throughout this Chapter.

2. ISOLATION AND STRUCTURAL ELUCIDATION.

In 1988, Tepfer *et al.* [9] reported the discovery of a group of novel compounds in root exudates of the bindweed or morning glory, *Calystegia sepium* (Convolvulaceae). Their presence was also detected in another bindweed, *Convolvulus arvensis*, as well as in *Atropa belladona* (Solanaceae) but not in 102 other species from twenty-four plant families that were examined. These compounds, named calystegins (in the context of this review, calystegines), were proposed as nutritional mediators for rhizosphere bacteria, establishing and maintaining specific plant-bacterium relationships. Experiments showed that the calystegines provided selective nutrition to *Rhizobium meliloti* 41, which was the only bacterium of forty-two tested that could catabolize and utilize them as a sole source of carbon and nitrogen (Section 7.2).

The structures of these calystegines were subsequently established as a series of closely related polyhydroxy-nortropanes of the general structure (\$, R= -H or -OH) [10], classified into two groups, calystegines A and B, on the basis of their relative mobility on paper electrophoresis. Sufficient quantities for structural elucidation were obtained by genetic transformation with Agrobacterium rhizogenes of C. sepium roots, which were then grown *in vitro* in fermenter cultures to produce kilogram quantities of transformed roots. The calystegine A group was separated by HPLC into four components (A₁, A₂, A₃ and A₄), of which the structure of the major compound, calystegine A₃, was established by a combination of high-resolution mass spectrometry and ¹H and ¹³C NMR spectroscopy [10]. The calystegine B group was separated into two constituents, B₁ and B₂, and the structures of both determined in a similar manner.

The calvstegines isolated from C. sepium possess three structural features in common; a nortropane ring system; two or three hydroxyl group substituents on either the five- or six-membered rings; and a novel aminoketal functionality, which generates a tertiary hydroxyl group at the bicyclic ring bridgehead. The latter had been discovered previously in physoperuvine (9), isolated from Physalis peruviana (Solanaceae), but this compound differs from the calystegines in bearing an Nmethyl group and therefore is classified as a tropane rather than a nortropane alkaloid. The aminoketal grouping in physoperuvine was recognized as existing either as the bridged bicyclic tropane ring system (9), or as the 4-aminocycloheptanone (10), in tautomeric equilibrium [13,14]. Evidence from CD measurements suggested that the bicyclic form predominated by ca. 45:1, and an X-ray crystal structure of the hydrochloride salt established that this also had the tropane structure [14]. Recent syntheses of physoperuvine (9) and norphysoperuvine (11) have enabled ¹³C NMR spectroscopic studies to be performed, with particular reference to the bridgehead quaternary carbon, which showed that at low temperatures (223°K) the bicyclic:monocyclic ratio for (9) and for (11) is 98:2 and ca. 100:0 respectively [15]. At ambient temperatures however, the signals in both the 'H and ¹³C spectra were too broad and complex to be analysable, while at higher temperatures they were indicative of the presence of some of the monocyclic tautomer. The ease with which such tautomerism can occur must be taken into consideration when dealing with the structures and reactivity of the calystegines in solution since the major tautomeric form may be dependent upon the pH and the number, regiochemistry and stereochemistry of substituent hydroxyl groups.

An additional tropane alkaloid having the aminoketal moiety, 1-hydroxytropacocaine (12), has recently been isolated from varieties of *Erythroxylum novogranatense* (Erythroxylaceae) but the NMR evidence indicates that this alkaloid exists entirely in the bicyclic form [16]. Another alkaloid with certain similarities to the calystegines is Bao Gong Teng A (13), a monoacetylated dihydroxy *nor*tropane isolated from the Chinese herb *Erycibe obtusifolia*, which has been shown to be effective for the treatment of glaucoma [17]. However this compound lacks the bridgehead hydroxyl group and therefore cannot tautomerize to an aminocycloheptanone. The structure and absolute configuration have been confirmed by synthesis [18, 19].

2.1 Isolation of Calystegines

Calystegines, in common with other classes of polyhydroxy alkaloids, are highly water-soluble and cannot be isolated by conventional alkaloid separation techniques which employ acid-base partioning methods with non-hydroxylic organic solvents [20]. Ion-exchange chromatography is therefore extensively employed for separation of the alkaloid fraction from neutral and acidic compounds present in the extract [21,22].

Calystegines were originally obtained by Tepfer *et al.* [9] from transformed root cultures of *Calystegia sepium* grown in a nutrient medium, into which they are exuded. The alkaloids are also present in the roots themselves, from which they can be extracted with water. The aqueous solution was fractionated on Dowex 50W-X8 (H⁺ form) to give a mixture of the calystegines and amino acids, from which neutral sugars had been removed. The alkaloids were enriched by treatment with a culture of *Agrobacterium tumefaciens* B6 806 which catabolized the amino acids present, removing most of the compounds showing ninhydrin-positive spots on high-voltage paper electrophoresis. Elution from a GF 05 gel filtration column at pH 7 with the volatile buffer trimethylammonium carbonate separated the calystegines into two major fractions, A and B. Each of these fractions was purified to homogeneity by HPLC on a Zorbax NH₂ column eluted with acetonitrile-water (4:1), the calystegine A and B fractions being separated into four (A₁, A₂, A₃ and A₄) and two (B₁ and B₂) components, respectively.

Using similar techniques, calystegines A_3 and B_2 were subsequently isolated by Nash *et al.* [23] from certain species of the plant family Solanaceae, including several varieties of potatoes, and from moths and butterflies which feed on *Datura* and *Solanum*. A 75% ethanol extract of either plant material or insects was subjected to ion-exchange chromatography on Amberlite CG-50 (H⁺ form). Elution with 0.1M acetic acid permitted the alkaloids to be separated, with calystegine B_2 preceding calystegine A_3 .

Recent investigations by Asano and coworkers have resulted in the isolation and characterization of calystegines from the plant families Moraceae and Solanaceae, including additional members of the A and B classes, a pentahydroxy alkaloid (calystegine C_1), and a calystegine with a bridgehead amino group (calystegine N_1) [24-27]. Purification was achieved by extensive ion-exchange chromatography of the hot water extract of the plant material under examination which was treated with an equivalent volume of methanol to precipitate the less water-soluble components. The filtered solution was then applied to an Amberlite IR-120B (H⁺ form) column and the total alkaloid fraction eluted with 0.5N ammonium hydroxide. Subsequent chromatography on Amberlite CG-50 (NH₄⁺ form) eluted with water, followed by 0.5N ammonium hydroxide, gave a series of four fractions each of which was further fractionated. Typically, each fraction was chromatographed on columns of Dowex 1-X2 (OH form) with water, Dowex 50W-X8 (pyridinium form) eluted with a pH 6 pyridinium acetate buffer, and CM Sephadex C-25 (NH₄⁺ form) eluted with 0.01N ammonium hydroxide. Sephadex LH-20 in the reverse-phase mode was also employed, the alkaloids being eluted

with butanol-acetic acid-water-methanol (10:10:90:15).

By the use of these techniques as many as eighteen alkaloids have been isolated from a single plant, including polyhydroxy-pyrrolidines and -piperidines and their glycoside derivatives, and the calystegines [24,25]. It should be noted that the initial Amberlite CG-50 separation yields the more highly hydroxylated compounds, especially the glycosides, in the first fraction whereas the calystegines occur primarily in the middle two fractions. The final fraction generally contains the simple monocyclic alkaloids such as deoxynojirimycin (2).

Another technique which has been applied is the use of multilayer coil countercurrent chromatography (MLCCC) for separation of the partially purified extract obtained from ion-exchange chromatography into calystegine A and B fractions [28]. A column (120 m X 1.66 mm i.d.) was preequilibrated with a stationary phase of 0.1M ammonia in water, saturated with *n*-butanol and a mobile phase of *n*-butanol, saturated with 0.1M ammonia in water. The sample was applied and the system operated at 800 rpm and a flow rate of 1 mL/minute for 24 hours and fractions collected and monitored by TLC. The calystegine A fraction eluted in the butanol phase after about 20 hours (ca. 1200 mL) while the calystegines B were retained in the aqueous stationary phase. Rechromatography in the same system permitted calystegine A_3 to be isolated, but the technique is too time-consuming for general application.

In situations when analysis is required to establish the presence and identity of calystegines in a plant extract it is not necessary to utilize a complex series of chromatographic separations. The plant material can be extracted with methanol or methanol-water and passage over a Dowex 50W-X8 column with dilute ammonium hydroxide as eluant provides substantial purification, yielding the alkaloid fraction, including other polyhydroxy alkaloids, contaminated only by basic amino acids. The extract can thus be rapidly prepared for analysis [29,30].

2.2 Structural Elucidation of Calystegines

All of the calystegines isolated to date have been obtained as amorphous white solids and melting points have therefore not been reported. Structures have been determined by spectroscopic methods, in particular ¹H and ¹³C NMR spectroscopy and high-resolution mass spectrometry. Additional confirmatory evidence has been obtained from analysis of the alkaloids as trimethylsilyl ether derivatives by gas chromatography - mass spectrometry (Section 4.4). In certain cases the structures and absolute configurations have been confirmed by synthesis (Section 6).

2.2.1 Calystegine A₃(14)

The molecular formula of calystegine A₃ $(1\alpha, 2\beta, 3\alpha$ -trihydroxynortropane) was first established as C₇H₁₃NO₃, 159.0900, by high resolution EI mass spectrometry. Ammonia ion CIMS

gave a value of m/z 160 [M+H]⁺, with a major fragment ion at m/z 142, corresponding to loss of H₂O [10,31]. Subsequent FAB-MS experiments confirmed these values and the specific rotation was recorded as $[\alpha]_D$ -17.3° (c 0.47, H₂O) [27]. The absence of evidence for double bonds in the molecule required a bicyclic structure for the alkaloid, which could best be accommodated by either a pyrrolizidine or *nor*tropane ring system.

¹³C NMR in D_2O solution established the presence of a single quaternary carbon at δ 93.6 ppm, three methine carbons (δ 54.3, 72.8 and 82.5 ppm), and three methylene carbon atoms (δ 29.4, 31.8 and 42.6 ppm) (10,27,31). The relatively low-field shifts of the quaternary and two of the methine carbons were indicative of the presence of oxygen substituents on these atoms and the *nor*tropane system was thus established, since a pyrrolizidine ring would require four methylene carbon resonances. ¹H NMR confirmed this structure, the six methylene protons occurring as a complex pattern ca. δ 1.45-2.12 ppm, and a methine proton (δ 3.46, H(5)) showing coupling to one proton each on two different methylene groups. One of the remaining methine protons (δ 3.40, H(2)) showed long-range coupling (J=1.5Hz) to a proton of a methylene group and was also coupled to the other methine proton at δ 3.70 (H(3)). The value of the coupling (J=8.4Hz) was indicative of a *trans*-diequatorial in disposition.

2.2.2 Calystegine A₅ (15)

The MS of calystegine A_s (1 α , 3 α , 4 β -trihydroxynortropane), [α]_D +68.7° (c 0.60, H₂O) established that this alkaloid is isomeric with calystegine A_s [26]. The chemical shifts in the ¹³C NMR spectrum were quite similar to those in the spectrum of the latter, suggesting that the alkaloid was a stereoisomer or that the two secondary hydroxyl groups occupied different positions on the sixmembered ring of the nortropane system. However, the ¹H NMR showed significant differences, in particular the coupling of the bridgehead proton at C(5) to a downfield methine proton at δ 3.47 ppm (H(4)) and to one proton of a single methylene group, which thus established the presence of a hydroxyl group at C(4). The proton at this position was coupled to another methine proton at δ 3.72 ppm (H(3)), the magnitude of the coupling (J=8.8Hz), indicating a *trans*-diaxial arrangement so that the substituent hydroxyl groups at positions 3 and 4 must also be *trans* and diequatorial to each other.

2.2.3 Calystegine A₆ (16)

The FAB-MS of calystegine A_6 (1 α ,2 β ,7 α -trihydroxynortropane), $[\alpha]_D$ -27.6° (c 0.37, H₂O), showed that this alkaloid was isomeric with the previously identified members of the calystegine A series [27]. Although the quaternary carbon showed a similar chemical shift in all three isomers, significant upfield shifts for one of the methylene carbons and one of the hydroxyl-substituted methines indicated that the two secondary hydroxyl groups do not occupy adjacent positions.

Analysis of the ¹H NMR spectrum, in concert with decoupling and ¹H-¹³C COSY experiments, located the two secondary hydroxyl groups on C(2) and C(7). The coupling constants for H(2) (J=11.4 and 6.2Hz) established an axial orientation for this proton and a significant nOe between H(3ax) and H(7) indicated an *endo* orientation for the latter. A unique feature of calystegine A_6 relative to all other calystegines having a hydroxylated five-membered ring is the location of this substituent adjacent to the bridgehead hydroxyl group rather than at C(6). This was confirmed by the complex multiplet for H(5) at δ 3.45, rather than the simpler pattern to be expected if this proton were adjacent to a methylene and a methine group.

2.2.4 Calystegine B₁ (17)

The presence of an additional oxygen atom in calystegine B₁ $(1\alpha,2\beta,3\alpha,6\alpha-$ tetrahydroxynortropane) relative to the trihydroxylated calystegine A series was established by the high resolution MS molecular formula, C₇H₁₃NO₄, 175.0848, and confirmed by ammonia CI and FAB-MS [10,26,31]. The alkaloid is levorotatory with $[\alpha]_D$ -13.0° (c 0.64, H₂O).

¹³C NMR confirmed the presence of the bridgehead hydroxyl group through the typical quaternary carbon at 893.8 ppm, and an extra secondary hydroxyl group by the presence of four

methine carbons (δ 62.9, 72.7, 76.0 and 81.3 ppm), but only two methylene carbon atoms (δ 38.9 and 43.6 ppm). The large disparity in chemical shifts between the latter suggested that they were located in different rings and in particular that the one most downfield must be between two hydroxyl groups. This conclusion can only be accomodated by a hydroxyl substituent at C(6), with the methylene group at C(7). In the ¹H NMR spectrum the signal assigned to the bridgehead proton H(5) showed no coupling to the H(6) proton, indicating a dihedral angle approaching 90° which requires an *endo* configuration for the latter. Decoupling experiments established the presence of a methylene group at C(4) and the remaining two hydroxyl groups are therefore located at C(2) and C(3), with chemical shifts similar to those observed for calystegine A₃. Coupling constants for the H(2) and H(3) protons, virtually identical to those of the latter alkaloid, indicate that the vicinal hydroxy groups must have the same *trans*-diequatorial configuration.

The structure of a 3-O- β -D-glucopyranoside of calystegine B₁ was determined by the use of 2D NMR spectroscopy [32]. The linkage site was established by a correlation peak in the HMBC spectrum between the anomeric proton and the aglycone C(3) carbon. A downfield shift for the C(3) resonance and upfield shifts for the C(2) and C(4) resonances in the ¹³C NMR spectrum, relative to the aglycone, provided additional confirmation for the structure.

2.2.5 Calystegine B₂ (18)

High resolution MS determinations established calystegine B_2 (1 α ,2 β ,3 α ,4 β -tetrahydroxynortropane), [α]_D +27.2° (c 0.50, H₂O), as an isomer of calystegine B_1 [10,31]. The ammonia CIMS gave a peak at m/z 158 corresponding to loss of water from the parent ion. Treatment of the alkaloid with acetic anhydride in pyridine gave an acetyl derivative, [α]_D -18.8° (c 0.53, CHCl₃), with a molecular ion at m/z 343 in the EIMS. The ¹H NMR spectrum of the latter showed four acetyl signals at δ 2.03, 2.08, 2.09, and 2.24 ppm, revealing the presence of one -NAc and three -OAc groups, while a broad singlet at δ 6.30 which disappeared on exchange with D₂O indicated that the tertiary hydroxyl group remained unacetylated [24].

The ¹³C NMR of the parent compound exhibited two methylene resonances with much closer chemical shifts than those in calystegine B_1 , suggesting that both groups are located in the fivemembered ring moiety. This was confirmed by ¹H-¹H decoupling experiments on the H(5) proton which showed couplings of 1.5 and 7.0 Hz respectively to H(6endo) and H(6exo) [27]. Further analysis of the spectrum indicated equivalent, large (8.4 Hz) coupling constants for the H(2), H(3) and H(4) protons thus establishing an axial configuration for each. The chair conformation of the sixmembered ring, with the secondary hydroxyl substituents in *trans*-equatorial relationships was verified by the nOe between H(2) and H(4), while H(3) showed similar interactions with H(6endo) and H(7endo).

It should be noted that this alkaloid was originally named nortropanoline by Asano and coworkers but its structural identity to the previously discovered calystegine B₂ [10] was

subsequently recognized and the similarity in specific rotations suggested that both alkaloids were of the same absolute configuration [24].

2.2.6 Calystegine B₃ (19)

The FAB-MS of calystegine B₃ $(1\alpha, 2\alpha, 3\alpha, 4\beta$ -tetrahydroxynortropane), $[\alpha]_D + 82.8^{\circ}$ (c 0.50, H₂O), showed that this alkaloid was a third member of the calystegine B group [26]. The resonances in its ¹³C NMR spectra were much closer in chemical shift values to those for calystegine B₂ than for calystegine B₁ suggesting that the alkaloid was an epimer of the former. This supposition was confirmed by complete analysis of the ¹H NMR spectrum which showed a coupling of 3.6Hz between H(2) and H(3), so that the hydroxyl substituent on C(2) must have an axial orientation, whereas the C(3) and C(4) substituents retain the equatorial configuration.

2.2.7 Calystegine B₄ (20)

The fourth member of the tetrahydroxylated group, calystegine B₄ ($1\alpha,2\beta,3\alpha,4\alpha$ -tetrahydroxynortropane), $[\alpha]_D$ -63.0° (c 0.65, H₂O), had a consistent high-resolution FAB-MS value of 176.0923 [M+H]⁺ (C₇H₁₄NO₄ requires 176.0923). The similarity in ¹³ C NMR resonances to those of calystegines B₂ and B₃, rather than calystegine B₁, supported a 1,2,3,4- pattern of hydroxyl

Calystegines and Related Nortropane Alkaloids

substituents.

The ¹H NMR spectrum in D_2O provided little useful information due to overlapping signals for H(2) and H(3). When the spectrum was determined in pyridine-d₂/D₂O (4:1) these signals, and all others, were sufficiently well resolved for the coupling constants to be determined. A large value of 8.8Hz for the coupling between H(2) and H(3) established that these protons were *trans*-diaxial, and H(4) was therefore equatorial. The epimeric nature of the 4-hydroxyl substituent in calystegine B₄, relative to calystegine B₂, was thus confirmed [33]. The addition of pyridine-d₅ to the NMR solution may be a useful technique for other calystegines with poorly resolved proton signals in D₂O.

2.2.8 Calystegine C₁ (21)

The molecular weight of calystegine C_1 (1 α ,2 β ,3 α ,4 β ,6 α -pentahydroxynortropane), [α]_D +23.1° (c 0.80, H₂O), was determined to be 16 amu greater than that of the calystegine B series by FAB-MS. ¹³C NMR showed the presence of only a single methylene group which was located at the 7-position, with the additional hydroxyl group at the C(6), by two-dimensional COSY experiments [25].

In the ¹H NMR spectrum, decoupling experiments showed the J values for H(2), H(3), and H(4) to be large and equivalent (8.8Hz), as in calystegine B_2 . The substituent hydroxyl groups at these positions must therefore all be *trans* and equatorial. The orientation of the hydroxyl group at C(6) was determined to be α through observation of an nOe between H(3ax) and H(6*endo*). Similar effects were observed between H(3ax) and H(7*endo*), and between the H(2ax) and H(4ax) protons [26].

2.2.9 Calystegine N₁ (22)

Calystegine $N_1(1\alpha \text{-amino-}2\beta, 3\alpha, 4\beta \text{-trihydroxynortropane})$, $[\alpha]_D + 59.4^\circ$ (c 0.18, H₂O), was assigned to an entirely new group of calystegines (the N series) because the FAB-MS gave an odd-

numbered $[M+H]^+$ ion of m/z 175, indicative of replacement of a hydroxyl group by an amino group relative to the calystegine B series [27]. Acetylation of the compound with acetic anhydride in pyridine gave a derivative shown to be an N,O-pentaacetate by ¹H and ¹³C NMR, and FAB-MS.

The additional amino group was located on C-1 in the parent alkaloid by the chemical shift of the sole quaternary carbon at δ 78.3 in the ¹³C NMR, in contrast to all other calystegines in which the hydroxyl-substituted quaternary carbon resonance occurs at an essentially invariant value of δ 93-94 ppm. The complete connectivity of the remaining carbon and hydrogen atoms was determined by a combination of homonuclear decoupling experiments and two-dimensional HMBC and HMQC. In general the chemical shifts in the ¹H NMR, with the exception of H(2) and H(7*exo*) which showed upfield shifts, were very similar to those in calystegine B₂. As in the latter, the coupling constants for H(2), H(3), and H(4) were large (8.5Hz), establishing the same relative stereochemistry for the hydroxyl groups at these positions.

It is noteworthy that calystegine N_1 undergoes approximately 40% conversion into calystegine B_2 on storage for six months at 4°C. This suggests that *nor*tropane alkaloids with an amino substituent at the bridgehead position may be quite labile at ambient temperatures, or may undergo facile conversion to the hydroxy derivatives during isolation. Conversely, calystegine N_1 may be an artifact formed from calystegine B_2 during ion-exchange chromatographic purification using ammonium hydroxide as an eluent. Supporting evidence for this alternative may reside in the quantitative formation of 1- β -amino-1-deoxynojirimycin (23) upon dissolving the bisulfite adduct (24) of nojirimycin in ammonia-saturated methanol at room temperature [34].

The NMR data accumulated for the calystegines identified to date is quite comprehensive and should enable novel structures in the class to be elucidated fairly easily by comparison with established structures. The ¹H and ¹³C NMR chemical shifts and coupling constants determined for the above nine alkaloids are tabulated in Table 1 and Table 2, respectively.

Table 1.	¹ H NMR Assignments [†] for Calystegines A ₃ (14), A ₅ (15), A ₆ (16), B ₁ (17), B ₂ (18),
	B_3 (19), B_4 (20), C_1 (21), and N_1 (22).

<u></u>		<u></u>	Calystegine	<u></u>	
	A ₃ (14)	A ₅ (15)	A ₆ (16)	B ₁ (17)	B ₂ (18)
Proton Number			ð, ppm (J, Hz)		
2ax	3.40 (1.5,8.4)	1.68 (11.0,12.3)	3.70 (6.2,11.4)	3.34 (1.8,8.4)	3.42 (1.8,8.4)
2eq	-	2.26 (6.4,12.3)	-	-	-
3ax	3.70 (6.6,8.4,11.0)	3.72	1.28	3.45 (6.6,8.4,11.0)	3.35 (8.4,8.4)
3eq	-	•	1.97	-	-
4ax	1.45-1.57	3.47 (4.0,8.8)	1.56	1.47 (4.0,11.0,13.2)	3.58 (1.5,4.0,8.4)
4eq	1.99 (2.6,6.6,13.2)	-	1.50	2.03 (2.6,6.6,13.2)	-
5eq	3.46 (2.6,3.6,6.6)	3.34 (4.0,7.0)	3.45	3.26	3.32 (1.5,4.0,7.0)
6endo	2.01-2.12	1.76-1.96	2.12 (7.7,14.3)	4.11 (2.6,7.3)	1.76
6exo	1.45-1.57	1.76-1.96	1.87 (1.5,3.3,7.7,14.3)	-	1.95
7endo	1.45-1.57	1.76-1.96	4.08 (3.3,7.7)	2.52 (7.3,14.7)	2.00
7exo	2.01-2.12	1.76-1.96	-	1.40 (1.8,2.6,14.7)	1.54

[†]Data from Asano *et al.* [26,27], spectra obtained in D_2O at 400 MHz using sodium 3-(trimethylsilyl)propionate as an internal standard; c.f. [10, 24, 25, 31].

	Calystegine					
	B ₃ (19)	B ₄ (20) [‡]	C ₁ (21)	N ₁ (22)		
Proton Number	ð, ppm (J, Hz)					
2ax	-	4.32 (1.7,8.8)	3.35 (1.8,8.8)	3.23 (1.5,8.5)		
2eq	3.83 (3.6)	-		-		
3ax	3.61 (3.6,9.5)	4.04 (4.4,8.8)	3.15 (8.8,8.8)	3.28 (8.5,8.5)		
3eq	-	-	-	-		
4ax	3.65 (3.6,9.5)	-	3.54 (4.7,8.8)	3.52 (4.0,8.5)		
4 c q	-	4.02 (2.9,4.4)	-	-		
Seq	3.28 (3.6,6.6)	3.71 (2.9,7.8)	3.20 (1.5,4.7)	3.26 (4.0,7.0)		
6endo	1.74	1.35 (5.1,9.9,13.2)	4.29 (1.5,2.9,7.4)	1.73		
6exo	1.92	2.24 (4.4,7.8,9.9,13.2)	-	1.85		
7endo	1.76-1.81	2.43 (4.4,9.9,13.2)	2.55 (7.4,14.3)	1.91		
7exo	1.76-1.81	1.98 (1.7,5.1,13.2)	1.47 (1.8,2.9,14.3)	1.34		

Table 1. (Continued)

[‡]Data from Asano *et al.* [33], spectrum obtained in pyridine- $d_2/D_2O(4:1)$ at 400 MHz using tetramethylsilane an internal standard.

.....

_

-

	Calystegine								
	A ₃ (14)	A ₅ (15)	A ₆ (16)	B ₁ (17)	B ₂ (18)	B ₃ (19)	B ₄ (20)	C ₁ (21)	N ₁ (22)
Carbon Number					ð (ppm)				
1	93.6	94.1	93.1	93.8	93.2	93.0	92.5	93.6	78.3
2	82.5	47.9	74.5	81.3	80.4	77.2	79.6	79.3	80.7
3	72.8	71.7	28.6	72.7	77.7	73.0	73.8	77.7	77.7
4	42.6	78.2	32.5	38.9	77.6	75.2	74.8	75.4	77.5
5	54.3	59.1	53.7	62.9	58.6	58.3	59.1	67.4	59.5
6	29.4	24.8	40.6	76.0	24.5	23.0	25.1	71.7	25.8
7	31.8	36.6	70.2	43.6	31.5	34.1	29.8	43.6	32.9

Table 2. ¹³C NMR Assignments[†] for Calystegines A_3 (14), A_5 (15), A_6 (16), B_1 (17), B_2 (18), B_3 (19), B_4 (20), C_1 (21), and N_1 (22).

[†]Data from Asano et al. [26,27,33], spectra obtained in D₂O at 100 MHz using sodium 3-(trimethylsilyl)propionate as an internal standard; c.f. [10, 24, 25, 31].

The absolute configuration of the calystegines has not been determined *a priori* although the class as a whole would appear to be susceptible to configurational analysis by the exciton chirality method, which has been applied to a number of polyhydroxylated natural products including methyl α -D-glucopyranoside [35] and the piperidine alkaloid, deoxymannojirimycin [36]. The absolute configuration of calystegine B₂ has been established by stereospecific synthesis of both (+)- and (-)-enantiomers, with specific rotations of +17.1° and -17.5°, respectively [37]. Although a higher value of +27.2° has been reported for naturally occurring calystegine B₂ [26], its identity with the dextrorotatory synthetic compound is established by the fact that both are catabolized by *Rhizobium meliloti* and are potent inhibitors of α -galactosidase and β -glucosidase, whereas synthetic (-)-calystegine B₂ exhibits none of these properties [38]. Calystegine B₂ is thus defined as 1*R*,2*S*,3*R*,4*S*,5*R*-1,2,3,4-tetrahydroxynortropane (18).

3. OCCURRENCE

3.1 Occurrence in Convolvulaceae

Calystegines were first isolated from the bindweed or morning glory, Calystegia sepium, from which they derive their name, in the course of a search for compounds produced by root structures which could possibly act as nutritional mediators of specific plant-bacterium relationships [9]. Of a total of 105 plant species from twenty-four plant families examined, compounds having such potential were detected in two members of the Convolvulaceae, C. sepium and Convolvulus arvensis, and a Solanaceous plant (Atropa belladonna - see Section 3.3). The calystegines were subsequently extracted from root cultures of C. sepium transformed by Agrobacterium rhizogenes, grown in vitro. Three alkaloids were isolated and characterized from this extract: calystegines A_1 (14), B_1 (17), and B_1 (18). The latter comprised 40% and 60% respectively of the B fraction, but calystegine A_1 accounted for only 60% of the A fraction and three additional uncharacterized alkaloids were observed in this group by HPLC. Two new calystegines, A₃ and A₆, have since been isolated from other plant families by Asano and coworkers [26,27] but whether or not either of these correspond to the unidentified calystegines in C. sepium remains in question. Analysis of Convolvulus arvensis growing as an adventitious weed in California has shown calystegine B₂ to be the major constituent of the crude alkaloid fraction, which comprises 1.93% of the dry weight of the roots [39]. Calystepines A, B, and B, are also present, together with some unidentified isomers of the B group.

The only other genus of plants in the Convolvulaceae which has been examined for the presence of calystegines is *Ipomoea*. Seeds of Weir Vine (*Ipomoea* sp. Q6 [aff. calobra]) growing in a very limited area of Queensland, Australia were analyzed by GC-MS and shown to contain calystegine B_2 (18) and possibly also calystegine C_1 (21), co-occurring with the polyhydroxyindolizidine alkaloid swainsonine (5). A related species, *I. polpha*, from the Northern

Territories, contained the same complex of alkaloids [29]. Recent experiments have also identified calystegines and swainsonine in the leaves of *I. carnea* from Mozambique [40]. In contrast, calystegines were not detected in roots, leaves or seeds of *I. tricolor* and only trace amounts in seeds of *I. alba* [40], so that elaboration and accumulation of these alkaloids cannot be regarded as a general feature of the genus.

3.2 Occurrence in Moraceae

The polyhydroxy piperidine alkaloid deoxynojirimycin (2) has long been known to be a constituent of the leaves and roots of certain *Morus* (mulberry) species [41]. A recent very thorough examination of *M. bombycis* and *M. alba* has resulted in the discovery of many additional polyhydroxy-pyrrolidine and -piperidine alkaloids, including glycoside derivatives, and in addition certain calystegines. The only polyhydroxynortropane isolated from *M. bombycis* was calystegine $B_2(18)$ [24] but *M. alba* was found to contain both calystegines B_2 and C_1 (21) [25]. No genera in the Moraceae other than *Morus* have so far been reported to contain calystegines, nor have tropane alkaloids been isolated from this plant family, so their occurrence therein is unique at the present time.

3.3 Occurrence in Solanaceae

The greatest number of plant species in which the calystegines have been detected belong to the family Solanaceae. This may partly be a reflection of the importance which this family holds as a source of foodstuffs and medicinals to human society, so that once the alkaloids were discovered in one member of the family there was an incentive to search for them in other genera.

In the course of their initial screening, Tepfer *et al.* [9] detected calystegines in *Atropa belladorma* but although the paper electrophoretic properties of the extract appeared identical with that of *Calystegia sepium*, the identity of the specific alkaloids present was not determined. Recent studies by Dräger and coworkers have identified calystegines A_3 (14), B_1 (17) and B_2 (18) in this plant, and the same alkaloids were also shown to occur in *Mandragora officinarum* (mandrake), *Scopolia carniolica*, and *Hyoscyamus niger* [30]. All of these species, together with *A. belladonna*, belong to the Atropoideae, a subfamily of the Solanaceae well known for the occurrence of tropane ester alkaloids. Low amounts of calystegines were detected in *Datura stramonium* (Jimson-weed) but none in *Nicotiana* species. The only glycoside isolated so far is the 3-O- β -D-glucoside of calystegine B₁, from *Nicandra physalodes* [32], but additional derivatives of this type will undoubtedly be discovered.

Relatively high levels of calystegine B_2 and somewhat lower levels of A_3 were found in the sprouts of green potato tubers (*Solamum tuberosum*, cultivar not identified) [30]. The same two calystegines had earlier been identified in the skins of the potato cultivar 'Estima', with an $A_3:B_2$ ratio of approximately 1:2, whereas calystegine B_2 alone was found in leaves of the cultivars 'King

Edward', 'Dunluce', 'Desiree', and 'Cara' and calystegines A_3 , B_1 and B_2 were found in S. melongena (eggplant) fruits [23]. In the same study the poisonous plant S. dulcamara (bittersweet) contained predominantly calystegine B_2 in the leaves, and the alkaloid was also detected in leaf fragments from herbarium samples of S. dimidiatum and S. kwebense. A GC-MS analysis of fruits of S. dimidiatum (potatoweed) collected from Texas showed that the alkaloid was also present in this part of the plant [42].

The extract of the whole plant of *Hyoscyamus niger* has now been shown by Asano *et al.* to contain calystegines, namely A_3 (14), A_5 (15), A_6 (16), B_1 (17), B_2 (18), B_3 (19) and N_1 (22); only calystegine C_1 (21) was not found [27]. The same research group has isolated calystegines A_3 , A_5 , B_1 , B_2 and B_3 from *Physalis alkekengi* var. *francheti* (Chinese lantern plant). In addition, the roots of *Scopolia* species which are used as a crude drug, have been shown to contain calystegines A_3 , A_5 , B_1 , B_2 , B_3 and C_1 together with the novel tetrahydroxy alkaloid, calystegine B_4 (20) [33].

The detection of calystegines in so many genera of the Solanaceae suggests that additional investigation of this plant family could prove fruitful, if only to attempt to define the subfamilies and tribes in which these alkaloids occur. However, caution should be exercised in adopting this approach due to the fact that calystegines also occur in the taxonomically disparate families Convolvulaceae and Moraceae.

4. DETECTION AND ANALYSIS

4.1 Paper Electrophoresis

Prior to the structural identification of the calystegines as *nor* tropane alkaloids, plant extracts were screened by the use of high-voltage paper electrophoresis with silver staining for the presence of compounds which could be capable of serving as selective nutritional sources in the rhizosphere [9]. The samples were spotted on Whatman 3MM paper and subjected to 3 kV for 15 minutes in a pH 1.9 buffer comprised of formic acid/acetic acid/water (30:60:910). The dried electrophoretogram was visualized by dipping it in a solution of silver nitrate in aqueous acetone, followed by sodium hydroxide in aqueous ethanol, and finally in photographic paper fixer. This technique was originally devised for detection of sugars on paper chromatograms [43] but fortunately it is equally capable of reacting with the calystegines, which can be regarded as structurally related to aminosugars. While reasonably sensitive, resolution of the individual calystegines cannot be achieved, and the calystegine A and B groups are only just visible as separate spots at low concentrations. At higher concentrations the two groups merge into an elongated spot.

4.2 Thin-Layer Chromatography

Calystegines are not particularly well-suited for analysis by thin-layer chromatography due to their high polarity and strong hydrophilicity. Asano's group has employed high-performance silica gel plates developed with propanol/acetic acid/water (4:1:1) but all of the calystegines have similar, and some identical, R_f values in this solvent system [24-27]. Observed values range from 0.41 to 0.51, rendering discrimination between certain alkaloids difficult, if not impossible. In this solvent system there appears to be no correlation between R_f and degree of hydroxylation.

Dräger has explored the potential of silica gel, polyamide and kieselguhr as stationary phases, developed with various solvent systems, for analysis of calystegines [28]. The less polar substrates gave excessive tailing or diffuse spots but silica gel was suitable when aqueous ammonia was included in the developing solvent. The optimum resolution was obtained with a mobile phase consisting of methanol/0.6M ammonium hydroxide/chloroform (6:2:1) in which calystegine A_3 had an R_f of 0.45 and calystegines B_1 and B_2 had a value of 0.61. However, the latter alkaloids remained unresolved under any of the conditions employed.

As with other polyhydroxy alkaloids [20-22], the calystegines fail to respond to alkaloid detection sprays such as Dragendorff's reagent or iodoplatinate, except at high concentrations. A pink color is generated with ninhydrin but the detection limit is ca. $20\mu g$ and the strong purple color produced by any amino acids present may obscure the response. The silver nitrate method used for paper electrophoresis enables the alkaloids to be visualized at a level of $0.5\mu g$ but suffers from the disadvantage that a two-step treatment is necessary [28]. Chlorine/o-tolidine reagent, a two-part spray consisting of dilute sodium hypochlorite solution, followed by a mixture of o-tolidine in dilute acetic acid and aqueous potassium iodide, has been routinely used by Asano for screening extracts and purified calystegines [24-27]. Blue-black spots are generated with primary or secondary amines but the detection limit of this reagent has not been reported.

4.3 High Performance Liquid Chromatography

HPLC, using a reversed phase system consisting of a Zorbax NH_2 column eluted with acetonitrile/water (4:1), was employed for the preparative separation of the calystegines [10]. The lack of a chromophore renders the use of UV or fluorescence detection impossible without pre- or post-derivatization of the sample and the relatively low sensitivity of refractive index (RI) detection severely limits this technique for routine analysis. However, the rapid evolution of LC-MS methods may lead to their application in the future.

4.4 Gas Chromatography - Mass Spectrometry

The most effective analytical technique for the calystegines employed to date has been gas

chromatography in concert with mass spectrometric (MS) detection. The latter offers a significant advantage over all other methods in that valuable structural information can be acquired for each peak in the sample. For quantitative analysis the higher sensitivity obtainable with a flame ionization detector (FID) or phosphorus-nitrogen detector (PND) is advantageous.

The high polarity of calystegines requires that a volatile derivative be prepared, for which purpose trimethylsilylation has been used exclusively. A wide choice of derivatization reagents is available and Molyneux *et al.* [39] reported the formation of per-trimethylsilylated derivatives in which even the tertiary hydroxyl and the secondary amino groups were derivatized on treatment with *N*-methyl-*N*-(trimethylsilyl)-fluoracetamide (MSTFA). Gas chromatographic separation was performed on a 60 m X 0.32 mm i.d. SE-30 fused silica column, with calystegines A_3 , B_1 and B_2 eluting at 15.55, 16.51 and 18.11 minutes. The mass spectral fragmentation pattern of the per-TMS derivatives was analogous to that observed for tropane alkaloids which bear a methyl substituent on the nitrogen atom [44] and proceeds through a tricyclic ion (25) to ultimately give the dihydropyrrolinium ion (26) base peak, as illustrated in Figure 1. In addition to these fragments the MS also shows an ion corresponding to loss of a -CH₃ group but the molecular ion is observed [39].

In subsequent experiments using the same reagent the per-TMS derivative was not formed, even under forcing conditions, the MS indicating that the -NH group remained underivatized [29]. The reason for this discrepancy is unclear but may be due to trace contaminants in the sample. The GC retention times for these derivatives of calystegines A₂, B₁, B₂, and C₁ on the same SE-30 column were somewhat shorter than for the corresponding per-TMS derivatives, with values of 13.45, 15.23, 16.28 and 17.46 minutes, respectively, and the fragmentation patterns were quite different [29, 40]. In particular, the base peak was usually quite weak and sometimes not even observed, while peaks which are typical of TMS ether derivatives, corresponding to loss of -CH₃ (-15 amu) and TMS-OH (-90 amu), were readily apparent. A strong base peak with m/z 217 was observed for calystegines B_2 and C_1 . This fragment, which commonly occurs in TMS derivatives of sugars, inositols or piperidine alkaloids such as deoxynojirimycin (2), is due to the ion TMSO-CH=CH-CH=*OTMS (27) and thus is characteristic of calystegines having three adjacent secondary hydroxyl groups. The other major fragment arising from the calystegine trimethylsilyl ethers appears to be a 2-substituted pyrrolinium ion (28) resulting from direct cleavage [28] of the six-membered ring, as outlined in Figure 2, instead of a dihydropyrrolinium ion (26) formed from the tricyclic ion generated by the pertrimethylsilyl derivatives (Figure 1).

The same trimethylsilyl ether derivatives are produced on treatment of the alkaloids with a mixture of hexamethyldisilazane and trichlorosilane (10:1) [23,28], but the use of MSTFA may be advantageous in that all byproducts of the reaction are volatile. Gas chromatography on a 30 m X 0.25 mm i.d. DB5 column with simultaneous detection by flame-ionization (FID) and phosphorusnitrogen (PND) gave retention times of 12.01, 15.32 and 17.22 minutes for calystegines A_3 , B_1 and B_2 [28]. The detection limits were ca. 10 pmol with PND, while FID was approximately six times less sensitive. A quantitative GC analysis method has been developed using either octadecane or deoxynojirimycin (2) as an internal standard. The latter has certain advantages in that it is detectable by the more sensitive PND whereas the hydrocarbon is not. The technique has been applied to the

Calystegines and Related Nortropane Alkaloids

determination of individual alkaloids in various plant parts, with quantification in the range of 5- $400\mu g/g$ of tissue [30].

Figure 1: Mass spectrometric fragmentation of per-TMS derivatives of calystegines A₃ (14), B₁ (17) and B₂ (18).

Figure 2: Mass spectrometric fragmentation of O-TMS derivatives of calystegines A₃ (14), B₁ (17) and B₂ (18).

5. **BIOSYNTHESIS**

The biosynthesis of the calystegines has not been elucidated but a reasonable working hypothesis would involve modification of the tropane alkaloid biosynthetic pathway which commences with tropinone (29), derived from L-ornithine and L-arginine. Dräger [28] has proposed that pseudotropine (30), formed from tropinone through reduction by tropinone reductase II, could be the intermediate for generation of all of the calystegines (Figure 3), since a common feature is the

presence of an α -hydroxyl group at the 3-position. Only one of the alkaloids discovered to date is an exception to this rule, namely calystegine A₆ (16), which lacks an hydroxyl group at the 3-position. Reduction of tropinone by tropinone reductase I would give tropine (31), an established precursor of typical tropane ester alkaloids such as hyoscyamine and scopolamine which have a β -substituent at the 3-position.

Figure 3: Hypothetical biosynthetic route to the calystegines from tropinone (29) via reduction to pseudotropine (30) by tropinone reductase II. Reduction by tropinone reductase I yields tropine (31), the precursor of tropane ester alkaloids.

A number of difficulties exist with this postulate. Stermitz' group has shown that fresh aerial parts of field bindweed (*Convolvulus arvensis*) contain pseudotropine as the major alkaloid, together with trace amounts of tropine and tropinone, as well as the pyrrolidine alkaloids hygrine and cuscohygrine [45]. However, no calystegines were detected in this plant sample, despite GC-MS analysis. In contrast to this, tropine reductases I and II have been identified in *Atropa belladonna*, *Datura stramonium*, and *Hyoscamus niger* [46-48], all of which have now been shown to produce both typical tropane alkaloids and the calystegines [28]. A more profound problem is the lack of *N*-methylation in most of the calystegines and the high degree of hydroxylation. In the tropane alkaloid group *N*-methylation occurs at a very early stage of the biosynthetic pathway and appears to be a prerequisite for subsequent transformations. Since *N*-demethylation is an unlikely biosynthetic transformation, it may be that calystegines are derived either by a divergent pathway which has escaped *N*-methylation or else from an entirely different precursor. Consideration of these factors suggests that a more probable precursor might be pipecolic acid, as was found to be the case for swainsonine (5) [49].

The 1β -amino- 2α , 3β , 5β -trihydroxycycloheptane (32), recently isolated from *Physalis* alkekengi var. francheti [50], may be a biosynthetic precursor to the calystegines which occur in this plant. Alternatively, the compound could result from enzymic reduction of the 5-aminocycloheptanone tautomer (33) of calystegine A₅ (15) and thus be a termination point of the biosynthetic process, providing little useful information as to the origin of the alkaloids.

One of the advantages of the ability to isolate calystegines from transformed root cultures is that this should enable experiments to be conducted much more easily than in whole plants and the biosynthetic pathway may therefore be elucidated in the near future.

6. SYNTHESIS

Several enantiospecific and racemic syntheses of calystegines have been reported, as well as those of some non-natural derivatives. All of these have proceeded via the formation of an

Calystegines and Related Nortropane Alkaloids

appropriately substituted 5-aminocycloheptanone intermediate (e.g. 34) which is tautomerized in the later stages of the synthesis into the bicyclic aminoketal structure, e.g. calystegine B_2 (18). Since the novelty of specific approaches resides in the methods used to generate the appropriate aminocycloheptanone, it is not within the purview of this chapter to discuss in detail the individual synthetic routes and only the broad outlines will be presented.

The earliest synthetic report of a calystegine-type ring system by Lallemand *et al.* [51] described the synthesis, by reduction of the key intermediate 2,3-epoxy-4-azidocycloheptanone (35), of racemic 1-hydroxy-7-ketonortropane (36), which existed entirely in the bicyclic ring form, possibly stabilized by hydrogen-bonding between the adjacent hydroxyl and keto groups. No attempt was made to reduce the keto functionality to form a dihydroxycalystegine.

The same group subsequently synthesized racemic calystegine A_3 (14) and three stereoisomers, as well as the *N*-methylated 1-hydroxytropane, physoperuvine (9), by use of the same general approach [52]. The *trans*-compound with diequatorial hydroxyl groups at the 2- and 3positions was shown to be identical with calystegine A_3 by ¹H and ¹³C NMR, so that the other *trans*isomer had to have the same groups diaxial. The *cis*-isomer in which the C(2) and C(3) hydroxyl groups were axial and equatorial, respectively, was distinguished by coupling constants for H(3) of 3.5 and 14.5 Hz; by default the remaining isomer had the opposite configuration for these two substituents. Whereas the former was shown to exist entirely in the bicyclic form the latter showed equilibrium between the mono- and bi-cyclic structures with slow incorporation of deuterium at the 2- and 7-positions when treated with D_2O . An analogous synthetic sequence generated 1,3-dihydroxynortropane isomers with the 3-hydroxyl group in the axial and equatorial configurations. Unfortunately, the glycosidase inhibitory properties were not reported for any of these isomers, other than calystegine A_3 , so that structure-activity relationships for the series are not available.

A derivative of enantiomeric calystegine B_{2s} bearing a hydroxymethyl group at the 7-position (40), has been synthesized stereoselectively through a protected polyhydroxy aminocycloheptanone (38) and the corresponding azide (39) obtained by intramolecular cycloaddition of an olefinic oxime (37) derived from D-glucose [53].

This reaction sequence was subsequently extended, through oxidation of the hydroxymethyl group and deformylation, to the synthesis of both enantiomers of calystegine B_2 (18), which had specific

rotations of +12° and -14°, respectively [54], while the value measured for natural calystegine B_2 was +2.9° [31]; a value of +27.2° has subsequently been recorded [26]. Although the precise identity of the natural compound could therefore not be established by comparison of the specific rotations, the synthetic (+)-enantiomer showed glycosidase inhibitory properties comparable with those of the natural product while the (-)-enantiomer was a non-inhibitor [38].

The same pair of enantiomers was synthesized through ring enlargement of the protected, pseudosymmetric polyhydroxycyclohexanone (41), derived from D-glucose, by introduction of the nitrogen atom at the 1- or 5-position to yield the corresponding azides (42 or 43) [55]. Reduction of each azide and deprotection yielded the desired aminocycloheptanones. The NMR spectrum of these products showed only broad signals, consistent with an equilibrium between the monomer, oligomers, and the aminoketal form [37]. Workup of the reaction under strongly basic conditions (pH 11) however gave either (+)- or (-)-calystegine B₂ exclusively, indicating that protonation of the amine group favors formation of the monocyclic form. The (+)- and (-)-enantiomers of calystegine B₂ had specific rotations of $\pm 17.1^{\circ}$ and $\pm 17.5^{\circ}$, respectively, but only (+)-calystegine B₂ was catabolized by *Rhizobium meliloti* [38], confirming the identity of the natural compound with the latter.

Lallemand's group has also investigated an alternative route to the crucial aminocycloheptanone intermediate (46) via a Diels-Alder addition between an acylnitroso derivative (44) and a protected polyhydroxy-cycloheptadiene (45) [56]. Due to an inability to remove the allyl groups chosen for protection of the hydroxyl functionality, this approach has yielded a propyl ether derivative of calystegine B_2 ; other protecting groups which can be removed with more facility should render the parent alkaloid accessible.

A recent synthesis of both (+)- and (-)-enantiomers of calystegine A_3 has been achieved, commencing from the 6-azido derivative of *meso*-2-cycloheptene-1,4-diol [57]. The amine derived from this compound was protected as the benzyl carbamate (47) and subjected to asymmetrization using *Pseudomonas cepacia* lipase to give the mono-acetate (48). The product of this reaction was elaborated in a series of steps to give the calystegine A_3 enantiomers via the usual polyhydroxy aminocycloheptanone. When treated at pH 11 with sodium hydroxide in D_2O the hydrochloride salts gave ¹H and ¹³C NMR spectra identical with those reported for the natural product, but the free base could not be isolated from this solution without decomposition.

Calystegines and Related Nortropane Alkaloids

The specific rotations for the synthetic calystegine A_3 enantiomer hydrochlorides were +12.4° and -12.2°, respectively. Since the rotation of the hydrochloride salt of calystegine A_3 has not been reported the synthesis does not unequivocally define the absolute configuration of the natural product, but the assumption was made that the alkaloid has the same absolute configuration as calystegine B_2 , i.e. $1R_2S_3R_5R$ as shown in structure (14).

7. BIOLOGICAL ACTIVITY

7.1 Glycosidase Inhibition

The structural similarities of the calystegines to known polyhydroxy alkaloid glycosidase inhibitors suggested that they might also have similar properties. For example, comparison of the stereochemical structures of castanospermine (6) and calystegine B_2 (18) showed a remarkable similarity in the disposition in space of the nitrogen atom and the four hydroxyl groups (Figure 4).

Castanospermine, (6)

Calystegine B₂, (18)

Figure 4: Stereochemical comparison of castanospermine (6) and calystegine B₂(18) indicating similarity in spatial disposition of nitrogen atom and hydroxyl groups.

ion-exchange chromatography, showed significant activity towards β -glucosidase and α galactosidase, but no inhibition of amyloglucosidase, β -galactosidase, α - or β -mannosidase, α fucosidase and β -xylosidase. Further experiments with pure alkaloids isolated from *Calystegia* sepium, confirmed these results, calystegine A_3 being a moderately good inhibitor of β -glucosidase $(K_i = 4.3 \times 10^{-5} \text{ M})$ but only a weak inhibitor of α -galactosidase $(K_i = 1.9 \times 10^{-4} \text{ M})$. A mixture of calystegines B_1 (27%) and B_2 (73%), however, was a potent inhibitor of the same enzymes with K_1 values of 3 X 10⁴ and 7 X 10⁴, respectively [39], values comparable to those measured for australine (3), swainsonine (5), and castanospermine (6) towards other glycosidases [1,5].

These initial results were subsequently confirmed with pure calystegines B₁ and B₂ [23,24], and extended to other members of the series as they were discovered [25-27]. The IC₅₀ and K_i values have been summarized by Asano et al. [26,27]. Comparison of the extent of inhibitory activity with variation in structure or stereochemistry allows certain broad conclusions to be drawn, as follows:

- An increase in degree of hydroxylation of the nortropane ring generally results in enhanced potency of inhibition. Thus, members of the calystegine A group are either non-inhibitory or show only low activity against the enzymes tested. Calystegines B1 and B2 are active in the μ M range with similar activities towards β -glucosidase, but the B₁ isomer is an order of magnitude better as an inhibitor of β -galactosidase. In contrast, calystegine B, is a potent inhibitor of a-galactosidase, whereas B₁ shows no activity towards this enzyme. Calystegine C₁ shows activity towards β -glucosidase and β -galactosidase at 10⁻⁷ and 10⁻⁶M, respectively. but has only a weak effect on α -galactosidase. An exception to the trend for higher activity with increased hydroxylation is calystegine B₃ which is even less effective as an inhibitor than calystegine A₃ [26]. While the tendency holds for the common glycosidases, it fails for porcine kidney trehalase, which is strongly inhibited by calystegines A₃, B₂ and B₄, but only weakly by C₁[33].
- An equatorial hydroxyl substituent at the 2-position appears to be required for optimal activity. Absence of this group, as in calystegine A₅, results in loss of all inhibitory function relative to A₂, whereas epimerization to the axial configuration, as in calystegine B₃, markedly decreases or eliminates activity relative to B_1 or B_2 [26].
- Replacement of the bridgehead hydroxyl group at the 1-position by an amino group, as in calystegine N_i, reduces the inhibitory activity by one or two orders of magnitude in comparison to calystegine B₂ which otherwise has the same substitution pattern and stereochemistry. Moreover the inhibition produced by the latter is of the competitive type, whereas the N analog is a noncompetitive inhibitor [27].

Calystegines and Related Nortropane Alkaloids

As ano *et al.* have rationalized certain of these observations for β -glucosidase inhibition in terms of the generally accepted model for glycosidase activity, which invokes the presence of two carboxylic acid groups at the active site of the enzyme, one responsible for generation, and the other for stabilization, of the glycosyl cation intermediate [26]. They speculate that for calystegines B₁ and C₁, the *exo* hydroxyl group at the 6-position is protonated by the acidic group responsible for catalytic activity within the active site, in an analogous manner to the inhibitor conduritol B epoxide [58]. In contrast, calystegine B₂, which shows a similar level of inhibitory activity towards β -glucosidase is supposed to be bound to the glucosyl cation binding site through the hydroxyl group at the 4-position. The essential requirement of equatorial hydroxyl groups at the 2- and 3-positions is in accord with earlier studies of interaction of other inhibitors with β -glucosidase [59]. Thus the interaction of inhibitory calystegines with glycosidases can be envisioned as binding, to the sites determining specificity and to the catalytic center, through specific hydroxyl groups and through the imino group.

The mechanism of galactosidase inhibitory activity is less apparent. Calystegines B_1 , B_2 and C_1 are potent inhibitors of either α - or β -galactosidase, yet calystegine B_3 , with a much closer configurational similarity to D-galactose than any of the former, has no inhibitory activity against these enzymes. A similar observation has been made in the castanospermine series in which 6-*epi*castanospermine, while having a structural similarity to mannose, does not inhibit either α - or β -mannosidase but rather the same enzyme as castanospermine, namely α -glucosidase [60]. Obviously, a much larger set of natural or synthetic isomers and epimers is needed before a complete understanding of structure-activity relationships can be applied to prediction of inhibitory activity. Some progress in this direction has been made through a comparison of glycosidase inhibition by synthetic analogs and derivatives of (+)-calystegine B_2 . The non-natural (-)-enantiomer showed no glycosidase inhibitory properties, whereas *N*-methylation of natural B_2 suppressed inhibition of β -glucosidase while activity towards α -galactosidase was retained [38].

7.2 Rhizobial Interactions

Calystegines were first isolated as a consequence of a search for plant root constituents which might be biosynthesized and exuded as signals to influence the ecology of the rhizosphere [9]. A particularly well investigated example of such a relationship is the *Rhizobium*-legume symbiosis which results in the initiation and growth of root nodules proficient at fixing nitrogen [61,62]. A number of flavonoids produced by legumes have now been shown to be capable of inducing rhizobial nodulation genes [63].

The precise role of the calystegines has not so far been elucidated but their occurrence in a limited number of plants from several different plant families indicates that they are not involved in a family-specific role such as nodulation. Instead, they might be suspected of providing an exclusive carbon and nitrogen source to soil bacteria that carry genes for the catabolism of calystegines. If so,

the rhizospheres of plants that produce the alkaloids should contain calystegine-catabolizing (Cac⁺) bacteria. Recent experiments have shown that out of fifty-one rhizosphere isolates from *C. sepium* and *C. arvensis*, 22% were Cac⁺. In contrast no Cac⁺ bacteria were found among forty-two isolates from the dicot *Alliaria petiolata* and a monocot, a domesticated lawn grass, two species that do not produce calystegines. Furthermore, the catabolism is uniquely associated with the natural (+)-calystegine B₂ enantiomer which is degraded by the Cac⁺ bacterium *Rhizobium meliloti* 41, while the synthetic (-)-enantiomer is not [38]. These results provide a preliminary insight into the obviously complex role played by calystegines in rhizobial ecology which will only be elucidated by further research.

7.3 Plant Interactions

The ability of calystegines to inhibit enzymes involved in glycoprotein processing suggested that these alkaloids might have potential allelopathic effects upon plants which do not biosynthesize the alkaloids. A precedent exists in the ability of the glucosidase inhibitor castanospermine to significantly suppress root length elongation of seedlings of the dicotyledons lettuce (*Lactuca sativa*) and alfalfa (*Medicago sativa*), and to a lesser extent the monocotyledons red millet (*Panicum miliaceum*) and barnyard grass (*Echinochloa crusgalli*) [64]. The natural (+)-calystegine B₂ enantiomer has been shown to inhibit germination of alfalfa seeds by 50% at a 5mM concentration and to significantly suppress elongation of transformed root cultures of the same species. The synthetic (-)-enantiomer, however, had no effect on seed germination and although exhibiting a modest inhibitory effect on root elongation after 19 hours, ultimately had a slight stimulatory effect after 43 hours of growth [38]. No effects on other plant species have so far been reported and the relationship of these findings to allelopathic properties of calystegine-producing plants under natural conditions remains to be demonstrated.

7.4 Mammalian Toxicity

7.4.1 Livestock Poisonings

A particularly interesting aspect of the biological activity of calystegines is their potential toxicity towards animals or humans which may ingest them. As with other glycosidase inhibitors, phenotypes of specific hysosomal storage diseases may be produced, each depending upon the identity of the glycosidase which is inhibited [65]. In the case of swainsonine (5) from *Astragalus*, *Oxytropis* or *Swainsona* species, the signs of poisoning are analogous to those of genetic mannosidosis, a rare disease in humans but a not uncommon occurrence in Angus cattle [66]. Australine (3) and castanospermine (6), which occur in seeds of the Moreton Bay chestnut (*Castanospermum australe*), are both inhibitors of α -glucosidase and signs of poisoning of livestock and humans are similar to

those observed for Pompé's disease, arising from a genetic deficiency of the same enzyme [42,67]. It would not be unreasonable therefore to predict that the calystegines, having the ability to inhibit β -glucosidase and α -galactosidase, would produce syndromes that mimic the genetic absence or diminution of such activities, namely Gaucher's and Fabry's diseases, respectively [42,65].

7.4.1.1 Poisonings by Convolvulaceae

The bindweeds, *Calystegia sepium* and *Convolvulus arvensis*, in which calystegines were first identified [9,39] have on occasion been reported to be poisonous to livestock, but the toxic principle has never been identified. A recent investigation by Stermitz and coworkers of the cause of weight loss, abdominal pain and intestinal fibrosis of horses grazing pastures in northern Colorado heavily infested with field bindweed (*C. arvensis*) failed to show any calystegines present in the above-ground parts of the plant. However, the tropane alkaloids tropine, pseudotropine, and tropinone and the pyrrolidine alkaloids hygrine and cuscohygrine were identified [45]. The evidence thus suggests that the symptoms observed on consumption of this plant are not due to calystegines.

Certain species belonging to another genus of the Convolvulaceae, Ipomoea, have been associated with poisoning episodes. In parts of Queensland, Australia a poorly defined species growing in a very limited area, Ipomoea sp. Q6 [aff. calobra], known as Weir vine, has been reported to produce nervous derangement in sheep, cattle and horses that consume the plants. Controlled feeding experiments with sheep reproduced the clinical signs reported from field cases and were consistent with a hysosmal storage disease, including muscle-twitching, trembling, and "star-gazing" [68]. Histological examination of brain tissue revealed cytoplasmic vacuolation of neurons similar to lesions seen in locoweed and Swainsona poisoning [66]. Analysis of Weir vine seeds by GC-MS established the presence of calystegine B_2 (18), a second B isomer which is not B_1 , and C_1 (21), and the indolizidine alkaloid, swainsonine (5) [29]. Since Weir vine has sometimes been regarded as a subspecies of *I. polpha*, which grows in other parts of Queensland and the Northern Territory, seeds of the latter were also analyzed and found to contain the same alkaloids although in different proportions [29]. While some of the symptoms of toxicity are very consistent with induced mannosidosis caused by ingestion of swainsonine, those related to epileptiform seizures are not, and may therefore be caused by the glycosidase inhibitory properties of the calystegines. Unfortunately the presence of swainsonine in these plant species confounds the resolution of the problem and a clear-cut association of toxicity with the presence of calystegines is not possible at this time.

The toxicity of *Ipomoea* species to livestock is not confined to the Australian continent. Poisoning of goats by *I. carnea*, an introduced species used as a windbreak around houses and kraals, has recently been reported in Mozambique [69]. Analysis of leaf material from this plant also showed the presence of calystegine B_2 (18), calystegine C_1 (21), and swainsonine (5) at similar levels to those found in the Australian samples [40] and a histopathological examination of brain tissue from affected animals was consistent with a lysosomal storage disease [69].

7.4.1.2 Poisonings by Solanaceae

An entirely different toxic situation known as "Crazy Cow Syndrome" is produced in cattle upon consumption of potato-weed (*Solanum dimidiatum*), a plant endemic to parts of Texas. Poisoned animals exhibit neurological signs characteristic of a cerebellar malfunction, in particular incoordination, staggering gait and epileptiform seizures induced by various stimuli. Histopathological lesions include cellular vacuolation and degeneration of Purkinje cells [70]. All of this evidence is suggestive of an induced lysosomal storage disease, the seizures being characteristic of Gaucher's disease, and the Purkinje cell insult analogous to Fabry's disease, in humans. The involvement of calystegines through their known occurrence in the Solanaceae and ability to inhibit β -glucosidase and α -galactosidase is therefore possible. The presence of calystegines in fragments of leaf from herbarium specimens of *S. dimidiatum* has subsequently been established by GC-MS [23], and extraction of leaves and fruits of fresh plant material collected in Texas gave an alkaloid fraction which was shown to contain calystegine B₂ and related alkaloids when analyzed by the same technique [42]. These results provide circumstantial evidence for the implication of the polyhydroxy *nor*tropane alkaloids in the syndrome.

Similar poisonings have been reported to arise from related plant species, S. kwebense, in South Africa, where the problem is known as "Maldronksiekte" (Crazy-drunk Disease), and S. fastiglatum and S. bonariensis in Brazil and Uruguay [71,72]. Although the presence of calystegines in S. kwebense herbarium samples was established by GC-MS analysis [23], none could be detected in air-dried, freshly collected samples of this species, nor in S. fastigiatum [40]. This discrepancy is not likely to be due to lability of calystegines, since the herbarium samples were many years old, but the recent studies of Dräger et al. show that for other members of the Solanaceae the levels are much higher in the first aerial parts to appear in the spring, or in developing leaves and leaf buds [30]. Possibly therefore plant samples collected at other growth stages may not contain sufficient alkaloid to be detectable, a hypothesis in accord with the often erratic nature of poisoning episodes.

Indirect evidence for the potential toxicity of calystegines is their detection in Lepidoptera which feed upon Solanaceae [23]. Specimens of death's-head hawk-moth (Acherontia atropus), feeding naturally on Datura, were raised in captivity and their caterpillars fed upon Solanum tuberosum. Both pupae and adults were shown by GC-MS to contain glycosidase-inhibiting polyhydroxynortropane alkaloids but not steroidal glycoalkaloids, which also occur in potatoes. Similar analysis of dried specimens of the butterfly, Mechanitis polymnia, which feeds on Solanum species during the larval stage, also identified sequestered calystegines. It seems probable that these alkaloids confer a protective function upon the insects during vulnerable stages of development, possibly by rendering them indigestible to predators.

7.4.2 Human Poisonings

339

The occurrence of calystegines in the leaves, skins and sprouts of potatoes (Solamum tuberosum), in fluits of the egg-plant (S. melongena) and in roots of sweet potato (Ipomoea batatas) [23,30,73], raises concerns regarding the safety of these vegetables in the human diet. Even with due consideration given to the Axiom of Paracelsus: Sola dosis facit venenum (Only the dose makes the poison), situations can be visualized in which ingestion of excessive levels of calystegines could have adverse effects. Thus, individuals with a genetic predisposition to low levels of β -glucosidase or α -galactosidase might suffer adverse effects from inhibition of these residual enzymes. The measurements of Nash et al. showed calystegine levels of 0.01% of the fresh weight of skins of the potato cultivar 'Estima', while the concentration of the rest of the tuber was one-tenth of this amount [23]. Recent analyses have shown levels up to 1mg/g fresh weight in potato skins [73] and although these are not normally eaten to a great extent, they may be consumed quite avidly by some individuals. In comparison, it has been estimated that swainsonine levels in excess of 0.001% of the dry weight are sufficient to produce intoxication in livestock eating the plants containing it [42]. The K_i value for swainsonine inhibiting α -mannosidase is ca. 70nM [2], whereas the values for calystegines B₁, B₂, and C₁ acting upon β -glucosidase are 430, 550, and 290 nM respectively [26]. Preliminary studies [74] have shown that calystegines A₃, B₂ and C₁ are potent inhibitors of human liver β -glucosidase and also good inhibitors of β -xylosidase, while calystegine B, alone is a good inhibitor of α -galactosidase. Based upon extrapolations from the swainsonine situation one could reasonably anticipate that these alkaloids, ingested at the levels detected in potato skins, could certainly cause gastrointestinal problems if not more serious effects. They are also not destroyed by cooking and have been shown to be present in processed potato products [73].

Interestingly, a different class of alkaloids known to occur in potatoes, the steroidal glycoalkaloids, have long been regarded as responsible for infrequent deaths and episodes of severe illness requiring hospitalization in groups of individuals eating potatoes, especially when these are baked in their skins. Documentation of illness in ca. 2000 people with thirty resulting deaths has been provided [75]. A consistent pattern in such episodes is nausea and vomiting, diarrhoea, and severe abdominal pain, with occasional neurological disturbances. However, a recent review of the situation has stated that "the current toxicological status of the glycoalkaloids present in an important dietary item is surprisingly poorly defined" [76], and no evidence has ever been presented that accounts for such glycoalkaloid toxicity. The potato glycoalkaloids α -chaconine and α -solanine are definitely teratogenic in laboratory animals [77] but they are not inhibitors of any of the common glycosidases [40]. In contrast, calystegines, as potent inhibitors of glycosidases essential for proper digestive function, are associated with biochemical mechanisms capable of causing digestive problems. The measurement of glycoalkaloid content in commercial potato varieties and in new cultivars is now a routine procedure. It would appear prudent to require a similar screening procedure for the calystegines since the analytical methodology already available is capable of fulfilling such a task. The

demonstrated presence of calystegines (and swainsonine) in several wild *Ipomoea* species and in the edible sweet potato (*I. batatas*) suggests that varieties and new cultivars of the latter should also be routinely analyzed for such alkaloids. The ultimate proof of involvement of calystegines in poisoning episodes, whether of livestock or humans, will depend upon confirmation by animal feeding experiments with the pure alkaloids.

CONCLUSIONS

In contrast to other classes of glycosidase inhibitors which by now have been extensively investigated, an understanding of the chemistry and biological activity of the calystegine group of alkaloids is only partially developed. The structural intricacies of the *nor*tropane ring system permit a considerable variation in the regio- and stereo-specificity of substituent groups and additional calystegines will undoubtedly be discovered. The occurrence of the known members of the group in three different plant families is suggestive of a wide taxonomic distribution and investigation of other genera in the Convolvulaceae, Moraceae and Solanaceae, as well as other plant families, should prove rewarding. In addition the biosynthesis of this class of compounds remains to be established.

The role of calystegines as nutritional mediators for rhizosphere bacteria may be only a partial explanation of their function in plants and other possibilities for their presence need to be investigated. Almost certainly the alkaloids will be found to be responsible for additional cases of livestock poisonings and their potential for toxicity to humans, particularly where they occur in food plants, mandates thorough investigation. Finally, the glycosidase inhibitors swainsonine and castanospermine have shown considerable potential as therapeutic agents in the treatment of cancer and viral diseases. The possibilities for the existence of equivalent properties among the calystegines should be vigorously explored.

REFERENCES

- AD Elbein and RJ Molyneux, The chemistry and biochemistry of simple indolizidine and related polyhydroxy alkaloids. In *Alkaloids: Chemical and Biological Perspectives*, Vol. 5, SW Pelletier, Ed., John Wiley and Sons, New York, 1987, pp 1-54.
- 2. B Winchester and GWJ Fleet, Glycobiology 2, 199-210 (1992).
- 3. A Welter, J Jadot, G Dardenne, M Marlier, and J Casimir, Phytochemistry 15, 747 (1976).
- 4. S Inouye, T Tsuruoka, T Ito, and T Niida, Tetrahedron 23, 2125 (1968).
- RJ Molyneux, M Benson, RY Wong, JE Tropea, and AD Elbein, J. Nat. Prod. 51, 1198 (1988).
- RJ Nash, LE Fellows, JV Dring, GWJ Fleet, AE Derome, TA Hamor, AM Scofield, and DJ Watkin, *Tetrahedron Lett.* 29, 2487 (1988).
- 7. SM Colegate, PR Dorling, and CR Huxtable, Aust. J. Chem. 32, 2257 (1979).

- 8. LD Hohenschutz, EA Bell, PJ Jewess, DP Leworthy, RJ Pryce, E Arnold, and J Clardy, *Phytochemistry* 20, 811 (1981).
- 9. D Tepfer, A Goldmann, N Pamboukdjian, M Maille, A Lepingle, D Chevalier, J Dénarié, and C Rosenberg, J. Bacteriol. 170, 1153 (1988).
- A Goldmann, M-L Milat, P-H Ducrot, J-Y Lallemand, M Maille, A Lepingle, I Charpin, and D Tepfer, *Phytochemistry* 29, 2125 (1990).
- 11. G Fodor and R Dharanipragada, Nat. Prod. Rep. 12, 443 (1994); and earlier reviews in the series.
- M Lounasmaa, The tropane alkaloids. In *The Alkaloids: Chemistry and Pharmacology*, Vol. 33, A Brossi, Ed., Academic Press, San Diego, 1988, pp 1-79.
- 13. AR Pinder, J. Org. Chem. 47, 3607 (1982).
- 14. AB Ray, Y Oshimo, H Hikimo, and C Kabuto, Heterocycles 19, 1233 (1982).
- 15. DE Justice and JR Malpass, J. Chem. Soc. Perkin Trans. 1 2559 (1994).
- 16. JM Moore, PA Hays, DA Cooper, JF Casale, and J Lydon, Phytochemistry 36, 357 (1994).
- 17. P Wang, T Yao, and Z Chen, Huaxue Xuebao 47, 1002 (1989); Chem. Abstr. 113, 78746u (1990).
- ME Jung, Z Longmei, P Tangsheng, Z Huiyan, L Yan, and S Jingyu, J. Org. Chem. 57, 3528 (1992).
- 19. VC Pham and JL Charlton, J. Org. Chem. 60, 8051 (1995).
- RJ Molyneux, Water-soluble alkaloids: a cryptic class of bioactive natural products. In Bioactive Natural Products: Detection, Isolation and Structural Identification, SM Colegate and RJ Molyneux, Eds., CRC Press, Boca Raton, FL., 1993, pp. 59-74.
- 21. RJ Molyneux, Phytochem. Anal. 4, 193 (1993).
- RJ Molyneux, Polyhydroxy indolizidines and related alkaloids. In Methods in Plant Biochemistry: Volume 8 - Alkaloids and Sulphur Compounds, PG Waterman, Ed., Academic Press, London, 1993, pp. 511-530.
- 23. RJ Nash, M Rothschild, EA Porter, AA Watson, RD Waigh, and PG Waterman, Phytochemistry 34, 1281 (1993).
- 24. N Asano, E Tomioka, H Kizu, and K Matsui, Carbohydr. Res. 253, 235 (1994).
- 25. N Asano, K Oseki, E Tomioka, H Kizu, and K Matsui, Carbohydr. Res. 259, 243 (1994).
- 26. N Asano, A Kato, K Oseki, H Kizu, and K Matsui, Eur. J. Biochem. 229, 369 (1995).
- N Asano, A Kato, Y Yokoyama, M Miyauchi, M Yamamoto, H Kizu, and K Matsui, Carbohydr. Res. 284, 169 (1996).
- 28. B Dräger, Phytochem. Anal. 6, 31 (1995).
- 29. RJ Molyneux, RA McKenzie, BM O'Sullivan, and AD Elbein, J. Nat. Prod. 58, 878 (1995).
- 30. B Dräger, A van Almsick, and G Mrachatz, Planta Med. 61, 577 (1995).
- 31. P-H Ducrot and JY Lallemand, Tetrahedron Lett. 31, 3879 (1990).
- RC Griffiths, AA Watson, H Kizu, N Asano, HJ Sharp, MG Jones, MR Wormald, GWJ Fleet, and RJ Nash, *Tetrahedron Lett.* 37, 3207 (1996).
- 33. N Asano, A Kato, H Kizu, K Matsui, A A Watson, and R J Nash. Unpublished results.
- 34. H Yoon, SB King, and B Ganem, Tetrahedron Lett. 32, 7199 (1991).
- 35. WT Wiesler, JT Vázquez, and K Nakanishi, J. Am. Chem. Soc. 109, 5586 (1987).
- 36. LE Fellows, EA Bell, DG Lynn, F Pilkiewicz, I Miura, and K Nakanishi, J. Chem. Soc., Chem. Commun. 977 (1979).
- 37. FD Boyer and JY Lallemand, Tetrahedron 50, 10443 (1994).
- A Goldmann, DA Tepfer, RJ Molyneux, B Message, O Duclos, F-D Boyer, YT Pan, and AD Elbein. Unpublished results.
- RJ Molyneux, YT Pan, A Goldmann, DA Tepfer, and AD Elbein, Arch. Biochem. Biophys. 304, 81 (1993).
- 40. RJ Molyneux. Unpublished results.
- 41. SV Evans, LE Fellows, TKM Shing, and GWJ Fleet, Phytochemistry 24, 1953 (1985).
- 42. RJ Molyneux, LF James, MH Ralphs, JA Pfister, KE Panter, and RJ Nash, Polyhydroxy alkaloid glycosidase inhibitors from poisonous plants of global distribution: Analysis and identification. In *Poisonous Plants of the World: Agricultural, Phytochemical and Ecological Aspects*, SM Colegate and PR Dorling, Eds., CAB International, Wallingford, U.K., 1994, pp. 107-112.
- 43. WE Trevelyan, DP Proctor, and JS Harrison, Nature (London) 166, 444 (1950).
- 44. EC Blossey, H Budzikiewicz, M Ohashi, G Fodor, and C Djerassi, Tetrahedron 20, 585 (1964).
- 45. FG Todd, FR Stermitz, P Schultheis, AP Knight, and J Traub-Dargatz, *Phytochemistry* 39, 301 (1995).
- 46. B Dräger and A Schaal, Phytochemistry 35, 1441 (1994).
- 47. A Portsteffen, B Dräger and A Nahrstedt, Phytochemistry 31, 1135 (1992).
- 48. T Hashimoto, K Nakajima, G Ongena, and Y Yamada, Plant Physiol. 100, 836 (1992).
- 49. CM Harris, BC Campbell, RJ Molyneux, and TM Harris, Tetrahedron Lett. 29, 4815 (1988).
- 50. N Asano, A Kato, H Kizu, and K Matsui, Phytochemistry. In press.
- 51. P-H Ducrot, J Beauhaire, and JY Lallemand, Tetrahedron Lett. 31, 3883 (1990).
- 52. F-D Boyer, P-H Ducrot, V Henryon, J Soulié, and JY Lallemand, Synlett, 357 (1992).
- 53. O Duclos, A Duréault, and JC Depezay, Tetrahedron Lett. 33, 1059 (1992).
- 54. O Duclos, M Mondange, A Duréault, and JC Depezay, Tetrahedron Lett. 33, 8061 (1992).
- 55. JY Lallemand and F-D Boyer, Synlett. 969 (1992).
- 56. J Soulié, J-F Betzer, B Muller, and JY Lallemand, Tetrahedron Lett. 36, 9485 (1995).
- 57. CR Johnson and SJ Bis, J. Org. Chem. 60, 615 (1995).
- 58. G Legler, Mol. Cell. Biochem. 2, 31 (1973).
- 59. MP Dale, HE Ensley, K Kern, KAR Sastry, and LD Byers, Biochemistry 24, 3530 (1985).
- 60. RJ Molyneux, JN Roitman, G Dunnheim, T Szumilo, and AD Elbein, Arch. Biochem. Biophys. 251, 450 (1986).
- 61. J Dénarié, F Debellé, and C Rosenberg, Annu. Rev. Microbiol. 46, 497 (1992).
- 62. RF Fisher and SR Long, Nature 357, 655 (1992).
- 63. DA Phillips, Flavonoids: Plant signals to soil microbes, In *Phenolic Metabolism in Plants*, HA Stafford and RK Ibrahim, Eds., Plenum Press, New York, 1992, pp. 201-231.
- 64. KL Stevens and RJ Molyneux, J. Chem. Ecol. 14, 1467 (1988).
- 65. PR Dorling, Lysosomal storage diseases in animals, In Lysosomes in Biology and Pathology, JT Dingle, RT Dean, and W Sly, Eds., Elsevier, Amsterdam, 1984, pp. 347-379.
- 66. PR Dorling, CR Huxtable, and P Vogel, Neuropath. Appl. Neurobiol. 4, 285 (1978).
- 67. R Saul, JJ Ghidoni, RJ Molyneux, and AD Elbein, Proc. Natl. Acad. Sci. U.S.A. 82, 93 (1985).
- SL Everist. Poisonous Plants of Australia, Angus and Robertson, Sydney, 1974, pp. 200-202.
- 69. TW Naudé, University of Pretoria, South Africa. Personal communication.

- 70. JS Menzies, CH Bridges, and EM Bailey, SW. Vet. 32, 45 (1979).
- 71. JG Pienaar, TS Kellerman, PA Basson, WL Jenkins, and J Vahrmeijer, Onderstepoort J. Vet. Res. 43, 67 (1976).
- 72. F Riet-Correa, M del C Mendez, AL Schild, BA Summers, and JA Oliveira, Cornell Vet. 73, 240 (1983).
- 73. RJ Nash and AA Watson. Unpublished results.
- 74. N Asano, A Kato, K Matsui, AA Watson, RJ Nash, RJ Molyneux, L Hackett, and B Winchester. Unpublished results.
- 75. SC Morris and TH Lee, Food Technol. Aust. 36, 118 (1984).
- 76. J Hopkins, Fd Chem. Toxic. 33, 323 (1995).
- 77. RF Keeler, DC Baker, and W Gaffield, Teratogenic Solanum species and the responsible teratogens. In Handbook of Natural Toxins: Toxicology of Plant and Fungal Compounds, Vol. 6, RF Keeler and AT Tu, Eds., Dekker, New York, 1991, pp. 83-99.

This Page Intentionally Left Blank

Robert J. Nash, Alison A. Watson

Institute of Grassland and Environmental Research Aberystwyth, Cardiganshire, SY23 3EB U.K.

Naoki Asano

Faculty of Pharmaceutical Sciences Hokuriku University, Kanazawa 920-11 JAPAN

CONTENTS

346
347
352
355
355
358
358
358
360
363
365
367
368
370
371

1.1. Introduction

A remarkable range of monocyclic and bicyclic polyhydroxylated alkaloids that are specific and potent glycosidase inhibitors have been isolated from plants, microbial filtrates, and insects, though the latter have probably sequestered them from their food-plants. They include polyhydroxylated derivatives of pyrrolidine, piperidine, pyrrolizidine, octahydroindolizine (indolizidine) and *nor*tropane ring systems. An increasing number are being found which also occur as glycosides. These alkaloids are very widespread but long remained undetected because they do not react with reagents commonly used for alkaloid detection such as Dragendorff's and iodoplatinate reagents and do not readily dissolve in solvents such as chloroform. The first natural glycosidase-inhibiting alkaloid to be detected was the piperidine alkaloid nojirimycin (1), which was isolated from a *Streptomyces* filtrate in 1966 [1] but most have been discovered since 1983, during which time they have aroused increasing interest as potential anti-viral, anti-cancer and anti-diabetic agents, and as agrochemicals. Due to the potential applications several hundred related alkaloids have been synthesised but only a small proportion are available in the public domain. There are now a vast number of publications on synthesis and this is beyond the scope of this review but will be considered in brief in Section 1.7.

These alkaloids can be considered as analogues of monosaccharides in which the ring oxygen has been replaced by nitrogen. They inhibit glycosidases by mimicking the pyranosyl and furanosyl moiety of the natural substrates, e.g., nojirimycin corresponds to glucose in the pyranose configuration and is an inhibitor of α - and β -glucosidases from various sources. Systematically these alkaloids have been described in the literature as derivatives of the parent heterocyclic compounds or sugars. 1-Deoxynojirimycin (2), prepared by removal of the anomeric hydroxyl of nojirimycin in 1968 [2] but later isolated from microbial and plant sources, is more stable than nojirimycin and has become a model glycosidase-inhibiting alkaloid, giving

rise to a trivial nomenclature for 1-deoxy analogues of other alkaloids of this type. Thus 1deoxynojirimycin (DNJ) is 2S-hydroxymethyl-3R, 4R, 5S-trihydroxypiperidine or 1, 5-dideoxy-1, 5-imino-D-glucitol, and the 1-deoxy piperidine analogue of mannose has been given the trivial name of 1-deoxymannojirimycin (DMJ) (3). The nomenclature used most commonly for particular compounds and common abbreviations will be used here.

A distinction will be made between the glycosidase-inhibiting alkaloids and the amino sugars, amino acids and other miscellaneous compounds which also inhibit glycosidases. These will be considered briefly in Section 1.9.

1.2. Distribution

Table 1.1. shows the micro-organisms, plants and insects reported to contain polyhydroxylated alkaloids which have a structural resemblance to carbohydrates. There is no doubt that many more alkaloids of this type will be found from diverse sources, including plants in many taxa not previously considered to be alkaloid-producers. Some of the alkaloids such as 2R, 5R-dihydroxymethyl-3R, 4R-dihydroxypyrrolidine (DMDP) (9) are being reported from many disparate species of plants and more recently from micro-organisms, which would indicate that this is clearly a common metabolite. Others, such as the octahydroindolizine alkaloid castanospermine (28), have only been found in two closely related legume genera and the polyhydroxylated pyrrolizidine alkaloids also appear to be restricted in distribution. Although such patterns are appearing it is probably too early to discuss the significance of the distribution of most of these alkaloids until wider screens have been conducted.

Table	1.1.	Naturally-(Occurring A	Alkaloid	Analogues of	f Carbohydrates.
-------	------	-------------	-------------	----------	--------------	------------------

Alkaloid	Source and Reference
Pyrrolines	
Nectrisine (FR-900483) (4)	Nectria lucida F-4490 (ATCC 20722) (Ascomycetes) [3]
Pyrrolidines	
2R-Hydroxymethyl-3S-	Castanospermum australe (Leguminosae) seeds/leaves
hydroxypyrrolidine (CYB-3) (5)	[4]
N-(Hydroxyethyi)-2-	Castanospermum australe (Leguminosae) seeds [5]
(hydroxymethyl)-3-	
hydroxypyrrolidine (6)	

Table 1.1. Continued.

Alkaloid	Source and Reference
1,4-Dideoxy-1,4-imino-D-arabinitol	Angylocalyx spp. (Leguminosae) seeds/leaves/bark [6]
(D-AB1) (7)	Arachniodes standishii (Polypodiaceae) leaves [7]
	Eugenia spp. (Myrtaceae) leaves/bark [8]
	Hyacinthoides non-scripta (Hyacinthaceae) bulb/leaves
	[8]
	Morus bombycis (Moraceae) leaves [9]
1,4-Dideoxy-1,4-imino-(2-O-β-D-	Morus alba (Moraceae) roots [10]
glucopyranosyl)-D-arabinitol	Morus bombycis (Moraceae) leaves [9]
1,4-Dideoxy-1,4-imino-D-ribitol (8)	Morus alba (Moraceae) roots [10]
2R,5R-Dihydroxymethyl-3R,4R-	Derris elliptica (Leguminosae) leaves [11]
dihydroxypyrrolidine (DMDP) (9)	Lonchocarpus spp (Leguminosae) seeds/leaves [12]
	Aglaonema spp (Araceae) leaves [13]
	Nephthytis poissoni (Araceae) fruit/leaves [8,13]
	Hyacinthoides non-scripta (Hyacinthaceae) bulb/leaves
	[8]
	Campanula rotundifolia (Campanulaceae) leaves [8]
	Omphalea diandra (Euphorbiaceae) leaves [14]
	Endospermum sp. (Euphorbiaceae) leaves [15]
	Urania fulgens (Lepidoptera) body [14]
	Streptomyces sp. KSC-5791 [16]
Gualamycin (10)	Streptomyces sp. NK11687 [17]
Piperidines	
Nojirimycin (11)	Streptomyces roseochromogenes R-468 [1,2,18]
	Streptomyces lavandulae SF-425 [1,2,18]
	Streptomyces nojiriencis SF-426 [1,2,18]
Nojirimycin B (12)	Streptomyces lavandulae SF-425[19]
(Mannojirimycin)	
Galactostatin (13)	Streptomyces lydicus PA-5726 [20]
1-Deoxynojirimycin (DNJ) (14)	Streptomyces lavandulae subsp. trehalostaticus no.
Į	2882 [21]
	Bacillus amyloliquefaciens, Bacillus polymyxa,
1	Bacillus subtilis [22]
	Morus sp. (Moraceae) roots [10,23]
	Morus bombycis (Moraceae) leaves [9]

Table 1.1. Continued.

Alkaloid	Source and Reference
N-Methyl-1-deoxynojirimycin	Morus alba (Moraceae) roots [10]
1-Deoxynojirimycin-2-O-, 3-O-,	Morus alba (Moraceae) roots [10]
4-O-* α -D-glucopyranosides and	*Streptomyces lavandulae GC-148 [24]
2-O-, 6-O-α-D-galactopyranosides	
and 2-0, 3-0-, 4-0-, 6-0-β-D-	
glucopyranosides	
1-Deoxymannojirimycin (DMJ)	Lonchocarpus sericeus (Leguminosae) seeds/leaves
(15)	[25]
	Angylocalyx spp. (Leguminosae) seeds/leaves/bark [8]
	Omphalea diandra (Euphorbiaceae) leaves [26]
	Streptomyces lavandulae GC-148 [27]
α-Homonojirimycin (16)	Omphalea diandra (Euphorbiaceae) leaves [14]
	Nephthytis poissoni (Araceae) leaves [8]
	Urania fulgens (Lepidoptera) body [14]
α-Homonojirimycin-7- <i>O</i> -β-D-	Omphalea diandra (Euphorbiaceae) leaves (tentative)
glucopyranoside (MDL 25,637)	[14]
-	Nephthytis poissoni (Araceae) leaves [8]
	Lobelia sessilifolia (Campanulaceae) leaves [8]
Fagomine (17)	Fagopyrum esculentum (Fagaceae) seeds [28]
1	Xanthocercis zambesiaca (Leguminosae) seeds [29]
	Morus bombycis (Moraceae) leaves [9]
l	Morus alba (Moraceae) roots [10]
3-Epifagomine (18)	Morus alba (Moraceae) roots [10]
Fagomine-4- <i>O</i> -β-D-	Xanthocercis zambesiaca (Leguminosae) seeds [29]
glucopyranoside	
Pyrrolizidines	
Alexine (19)	Alexa spp. (Leguminosae) seeds/leaves [30]
3,7a-Diepialexine (20)	Castanospermum australe (Leguminosae) seeds/leaves
	[31]
7a-Epialexine (Australine) (21)	Castanospermum australe (Leguminosae) seeds/leaves
	[32]
1,7a-Diepialexine (22)	Alexa spp./C. australe (Leguminosae) seeds/leaves
-	[33]

Table 1.1. Continued.

Alkaloid	Source and Reference
7,7a-Diepralexine (23)	Alexa spp./C. australe (Leguminosae) seeds/leaves
	[33]
7a-Epialexaflorine (24)	Alexa grandiflora (Leguminosae) leaves [34]
Casuarine (25)	Casuarina equisetifolia (Casuarinaceae) bark [35]
	Eugenia jambolana (Myrtaceae) leaves [8]
Casuarine-6- <i>O</i> -α-D-	Casuarina equisetifolia (Casuarinaceae) bark [35]
glucopyranoside	Eugenia jambolana (Myrtaceae) leaves [8]
Octahydroindolizines	
Swainsonine (26)	Swainsona canescens (Leguminosae) leaves [36]
	Astragalus spp. (Leguminosae)
	leaves/stems [37]
	Oxytropis spp. (Leguminosae) leaves/stems [37]
	lpomoea sp. aff. calobra (Convolvulaceae) seeds [38]
	Rhizoctonia leguminicola (Basidiomycetes) [39]
	Metarhizium anisopliae (Deuteromycetes) [40]
Swainsonine N-oxide	Astragalus lentiginosus (Leguminosae) [37]
Lentiginosine (27)	Astragalus lengtiginosus (Leguminosae) leaves [41]
Castanospermine (28)	Castanospermum australe (Leguminosae)
	seeds/leaves/bark [42]
L	Alexa spp. (Leguminosae) seeds/leaves/bark [43]
6-Epicastanospermine (29)	Castanospermum australe (Leguminosae)
	seeds/leaves/bark [44,45]
6,7-Diepicastanospermine (30)	Castanospermum australe (Leguminosae) seeds [5]
7-Deoxy-6-epicastanospermine	Castanospermum australe (Leguminosae) seeds [46]
(31)	
Tropanes	
Calystegine A ₃ (32)/ Calystegine B ₂	Calystegia sepium (Convolvulaceae) leaves/roots
(33)	[47.48]
	Calystegia japonica (Convolvulaceae) roots [8]
	Convolvulus arvensis (Convolvulaceae) leaves/roots
1	[47,49]
	lpomoea sp. aff. calobra (Convolvulaceae) seeds [38]
]	Atropa belladonna (Solanaceae) leaves/roots [47,48]

Table 1.1. Continued.

Alkaloid	Source and Reference
Calystegine A ₃ (32)/ Calystegine B ₂	Solanum spp. (Solanaceae) tubers/leaves [50]
(33) (continued)	Datura wrightii (Solanaceae) leaves [50]
	Physalis alkekengi var. francheti (Solanaceae) roots
	[51]
	Scopolia carniolica (Solanaceae) leaves/roots [52]
	Mandragora officinarum (Solanaceae)
	leaves/roots/fruits [52]
	Hyoscyamus niger (Solanaceae) leaves/roots [52]
Calystegine A ₅ (34)	Physalis alkekengi var. francheti (Solanaceae) [51]
Calystegine B ₁ (35)	Calystegia sepium (Convolvulaceae) leaves/roots [48]
	Convolvulus arvensis (Convolvulaceae) leaves/roots
	[47,49]
	Ipomoea batatus (Convolvulaceae) leaves/roots [8]
	Physalis alkekengi (Solanaceae) roots [51]
	Scopolia carniolica (Solanaceae) leaves/roots [52]
	Mandragora officinarum (Solanaceae)
	leaves/roots/fruits [52]
	Hyoscyamus nuger (Solanaceae) leaves/roots [52]
Calystegine B ₃ (36)	Physalis alkekengi (Solanaceae) roots [51]
Calystegine C ₁ (37)	Morus alba (Moraceae) roots [10]
	Ipomoea batatus (Convolvulaceae) roots [8]
Calystegine B ₁ -3-O-β-D-	Nicandra physalodes (Solanaceae) [8]
glucopyranoside	
Miscellaneous	
Nagstatin (38)	Streptomyces amakusaensis MG846-fF3 [53]
Trehazolin (39)	Micromonospora strain SANK 62390 (Actinomycetes)
	[54]
Kifunensine (40)	Kitasatosporia kifunense 9482 (Actinomycetes) [55]

While there may be phylogenetic reasons for particular distributions of the polyhydroxylated alkaloids in plants and micro-organisms caution should be exercised in using the presence of these compounds as taxonomic markers in plants. One reason is that these alkaloids can be released into the soil by producer plants and micro-organisms from whence some such as DMDP and castanospermine can be readily taken up and accumulated in plant

tissues of completely unrelated neighbouring species (see Section 1.4.). It may also be the case that micro-organisms (*Rhizobium*, other rhizosphere organisms, or endophytes) closely associated with specific plants may also produce polyhydroxylated alkaloids which could then be taken up by the plant. However, in the case of castanospermine and the alexines (australines) in *Castanospermum* and *Alexa* there is a definitive taxonomic relationship which was highlighted by the presence of these compounds [43].

1.3. Glycosidase Inhibition

Most of the polyhydroxylated alkaloids listed in Section 1.2. which have been studied in detail have been shown to inhibit glycosidases in a reversible and competitive manner [56]. Some can be extremely potent and specific inhibitors of glycosidases, e.g., swainsonine which has a K, for human lysosomal α -D-mannosidase of 7×10^{-8} M [57]. The inhibition of certain enzymes can be predicted from the number, position and configuration of the hydroxyl groups but there can be marked differences in the inhibition of isozymes of a glycosidase in different species [58,59] and even within the same cell. For example Golgi α -mannosidase I is preferentially inhibited by polyhydroxylated alkaloids in the pyranose form, e.g., I-deoxymannojirimycin, whereas Golgi α -mannosidase II is more susceptible to analogues in the furanose form, e.g., swainsonine [56]. The inhibition is often pH-dependent and it has been suggested that the alkaloids inhibit by the formation of an ion pair between the protonated inhibitor and an anionic group, probably a carboxylate anion, in the active site [60].

There is now a vast amount of literature on inhibition of glycosidases by particular polyhydroxylated alkaloids and related compounds (both natural and synthetic) and an overview of this area is given in some reviews [56, 60, 61, 62]. A large amount of research has been conducted on the inhibition of *exo*-glycosidases involved in glycoprotein formation and catalysis which has been shown to be important in both the toxicity and anti-viral and anti-cancer activities of these compounds. While not all natural polyhydroxylated alkaloids have been tested on a wide range of glycosidases, Table 1.2. lists some of the glycosidases which the compounds are reported to inhibit. It should be emphasised, however, that the variations in isozymes make it difficult to state, for example, that a potent inhibitor of many α -D-glucosidases will inhibit all very strongly.

Alkaloid	Glycosidases Inhibited
Pyrrolines	
Nectrisine (FR-900483)	α -glucosidase, α -mannosidase [3,63]
Pyrrolidines	
2R-Hydroxymethyl-3S-hydroxypyrrolidine	weak inhibitor of α -glucosidase [64]
(CYB-3)	
1,4-Dideoxy-1,4-imino-D-arabinitol	potent inhibitor of α -glucosidase [64,65] and α -
(D-AB1)	D-arabinosidase [66]
1,4-Dideoxy-1,4-imino-(2- <i>O</i> -β-D-	weak inhibitor of α - and β -glucosidases [10]
glucopyranosyl)-D-arabinitol	
1,4-Dideoxy-1,4-imino-D-ribitol	weak inhibitor of α -glucosidase [62]
2R,5R-Dihydroxymethyl-3R,4R-	invertase [12] and α - and β -glucosidase [58,59],
dihydroxypyrrolidine (DMDP)	trehalase [16], human β-mannosidase [56]
Piperidines	
Nojirimycin	α- and β-glucosidases [67]
Nojirimycin B	α-mannosidases [19]
Galactostatin	β-galactosidases [20]
1-Deoxynojirimycin (DNJ)	trehalase, α - and β -glucosidases, invertase, exo-
	β-1,3-glucanase [21]
N-Methyl-1-deoxynojirimycin	more potent inhibitor of α -glucosidase than DNJ
	[68]
1-Deoxynojirimycin-4-O-α-D-	β-amylase [69]
glucopyranoside	
1-Deoxynojirimycin-2- <i>O</i> -, 3- <i>O</i> -, 4- <i>O</i> -α-	varying levels of inhibition of α -glucosidase [10]
D-glucopyranosides and 2- O -, 6- O - α -D-	
galactopyranosides and 2-O-, 3-O-, 4-O-,	
6-O-β-D-glucopyranosides	
1-Deoxymannojirimycin (DMJ)	α -mannosidases, and α -fucosidase [18], Golgi α -
	mannosidase [70]
α-Homonojirimycin	α-glucosidases [58,59,64]
α-Homonojirimycin-7-0-β-D-	processing α-glucosidase II [71]
glucopyranoside	
Fagomine	weak inhibitor of α -glucosidases [64], moderate
	inhibitor of β -galactosidase [61]

Table 1.2. Inhibition of Glycosidases by Natural Polyhydroxylated Alkaloids.

Table 1.2. Continued.

Alkaloid	Glycosidases Inhibited
3-Epifagomine	β-galactosidase [61]
Fagomine-4-O-β-D-glucopyranoside	weak inhibitor of β -galactosidase [64]
Pyrrolizidines	
Alexine	trehalase and amyloghucosidase [33]
3,7a-Diepialexine	amyloglucosidase [33]
7a-Epialexine (Australine)	amyloglucosidase [32]
1,7a-Diepialexine	α-glucosidase and amyloglucosidase [33]
7,7a-Diepialexine	α-glucosidase and amyloglucosidase [33]
7a-Epialexaflorine	weak inhibitor of amyloglucosidase [34]
Casuarine	α-glucosidases, trehalase, amyloglucosidase [72]
Octahydroindolizines	
Swainsonine	hysosomal and other α -mannosidases [73,74]
Lentiginosine	amyloglucosidase [41]
Castanospermine	α - and β -glucosidases [58,59,75]
6-Epicastanospermine	amyloglucosidase [44], neutral α-mannosidase
	[76]
6,7-Diepicastanospermine	amyloglucosidase and fungal β -glucosidase [5]
7-Deoxy-6-epicastanospermine	amyloglucosidase and yeast α -glucosidase [46]
Tropanes	
Calystegine A ₃	β-glucosidase and trehalase [49,51]
Calystegine A ₅	not inhibitory [51]
Calystegine B ₁	β -glucosidase and β -galactosidase [51]
Calystegine B ₂	β -glucosidase, α -galactosidase and trehalase [51]
Calystegine B ₃	weak inhibitor of β -glucosidase and α -
	galactosidase [51]
Calystegine C ₁	β -glucosidase and β -galactosidase [10,51]
Miscellaneous	
Nagstatin	β-N-acetyl-glucosaminidase [53]
Trehazolin	trehalase [54]
Kifunensine	Golgi α-mannosidase I [55]

In addition to the inhibition of enzymes, it has also been reported that activation of some enzymes can occur in the presence of polyhydroxylated alkaloids, for example, in addition to

inhibiting α - and β -glucosidases, glycoprotein processing α -glucosidase I and lysosomal β mannosidase, DMDP, a β -D-fructofuranose analogue, activates β -galactosidase (220%), α -Larabinosidase (60%) and β -D-xylosidase (70%) from preparations of human fibroblasts and liver [77].

1.4. Ecological Significance and Toxicity

As might be expected for a group of compounds which affect very basic metabolic processes, the polyhydroxylated alkaloids have been reported to have a wide range of effects on other organisms and some cause serious livestock poisonings. In view of their inhibition of glycosidases it may be assumed that, at the least, they would be effective as anti-nutritional compounds in plants and insects, which would deter potential predators who might not only be unable to obtain full nutritional value from eating food containing them, but may also suffer digestive discomfort from inhibition of digestive enzymes. Making oneself indigestible is a good defence strategy and it is becoming increasingly clear that the production of these often highly active glycosidase inhibitors is widespread in plants and micro-organisms.

1.4.1. Effects on Bacteria and Fungi

The production of glycosidase-inhibiting alkaloids by micro-organisms could well have the role of inhibiting the growth of competing micro-organisms. This is supported by the early work on nojirimycin [18], in which it was the anti-microbial activity against a drug-resistant strain of *Shigella flexneri* 2a, and also *Sarcina lutea* and *Xanthomonas oryzae* which led to its isolation. It has been shown that due to this activity nojirimycin is effective in preventing the rice plant disease caused by *X. oryzae* [18]. However, nectrisine (4) showed no anti-microbial activity to bacteria and fungi [3] and castanospermine, 2-hydroxymethyl-3-hydroxypyrrolidine (5), 1,4-dideoxy-1,4-imino-D-arabinitol (7), DMDP and 1-deoxynojirimycin did not inhibit the growth of either *Enterobacter aerogenes* or a range of fungi [78]. Castanospermine and DMDP did slow the vegetative growth of *Pythium ultimum* and *Botrytis cinerea* [78]. It has been suggested [47] that calystegines, which are often accumulated in the roots of the Convolvulaceae and Solanaceae, act as an exclusive carbon and nitrogen source for microorganisms in the rhizosphere possessing a plasmid which encodes for their catabolism. In a screen of forty-two rhizosphere bacteria only *Rhizobium meliloti* 41, which contained the plasmid, was able to utilise them.

11 Nojirimycin

13 Galactostatin

15 1-Deoxymannojirimycin (DMJ)

18 3-*Epi*fagomine

1.4.2. Effects on Plant Growth

Nojirimycin [79] and DMDP [80] are inhibitory to auxin-stimulated cell extension of Avena and Triticum coleoptiles and Pisum sativum stem segments. Rosenfield and Matile [81] suggested that auxin-stimulated modification of cell wall polysaccharides by exo-\beta-glucanases was inhibited. Nojiirimycin has also been shown to inhibit the growth of Pyrus communis pollen tubes. Castanospermine, 2-hydroxymethyl-3-hydroxypyrrolidine, 1,4-dideoxy-1,4-imino-Darabinitol, and 1-deoxynojirimycin inhibit the growth of seedlings of Lactuca sativa and Allium porrum [78]. Castanospermine was the strongest inhibitor followed by 1,4-dideoxy-1,4-imino-D-arabinitol. Castanospermine is absorbed by roots of Triticum aestivum and L. sativa. In the latter plant it reduced growth and was lethal at a concentration of 4×10^{-5} M, but in T, *gestivum* the plant survived this concentration; leaf and root length decreased while the number of leaves increased [78]. Stevens and Molyneux [82] have also shown castanospermine but not swainsonine is phytotoxic to Medicago sativa, Panicum miliaceum and Echinochloa crusgalli, Phloem mobility has been demonstrated for swainsonine [83] and DMDP [84]. The presence of castanospermine in bark and roots of Castanospermum and Alexa, several polyhydroxylated alkaloids in Morus root bark [10] and DMDP in Lonchocarpus root bark, raises the possibility that these compounds may affect the growth of other plants as the result of leaching from bark and leaf litter.

1.4.3. Effects on Nematodes

Castanospermine has a marked effect on population growth of the fungal feeding nematode Aphelenchus avenae but it is not toxic on immersion of nematodes in a 0.1% (w/v) solution [78]. DMDP has been shown to be active against several plant parasitic nematode species (including Globodera pallıda and Meloidogyne spp) in vitro and in vivo. It was effective when applied as a soil drench or seed dressing [84]. Applied as a soil drench at $30\mu g ml^{-1}$ it inhibited virus acquisition and transmission and root galling by Xiphinema diversicaudatum. The mode of action of castanospermine and DMDP is not known, but they lack the rapid in vitro toxic effect characteristic of synthetic nematocides.

1.4.4. Effects on Insects

Castanospermine [83] and DMDP [84] have both been shown to have feeding deterrent activity against aphids and castanospermine reduced the survival rate. However, appreciable levels of swainsonine were detected in the honeydew from a pea aphid (*Acyrthosiphon pisum*) colony opportunistically feeding on *Astrogalus lentiginosus* and it was not a deterrent to this species [83].

21 7a-*Epi*alexine (Australine)

7,7a-Diepialexine

20 3,7a-Diepialexine

22 1,7a-Di*epi*alexine

24 7a-*Epi*alexaflorine

DMDP inhibited feeding of nymphs of Schistocerca gregaria and Locusta migratoria at concentrations below 0.001% w/w but did not appear to be toxic to them when force-fed [85].

Antifeedancy studies using Spodoptera littoralis have shown that swainsonine, castanospermine, DMDP, and 1,4-dideoxy-1,4-imino-D-arabinitol are antifeedant, but that 1-deoxynojirimycin, 1-deoxymannojirimycin, fagomine (17), fagomine-4-O- β -D-glucoside and 2-hydroxymethyl-3-hydroxypyrrolidine were not antifeedants [86]. In contrast to *S. littoralis*, *S. exempta* is more sensitive to many antifeedant compounds and this species was deterred from feeding by 1-deoxynojirimycin and 1-deoxymannojirimycin. After exposure to the fructofuranose analogue DMDP, the ability of a glucose sensitive lateral styloconic sensillum of *S. littoralis* to respond to glucose was observed to be blocked for several hours. Preliminary studies indicated that castanospermine interacted with the glucose receptor in a similar way. The blocking of responses of sensillae by plant alkaloids may serve to render insects unable to detect phagostimulatory sugars.

In view of the effects of DMDP on insects, interestingly the gut α -glucosidase activity of the bruchid beetle Ctenocolum tuberculatum, which has a host range limited to DMDPcontaining genera of the legume subtribe Lonchocarpinae, is 100 times less sensitive to DMDP than the corresponding activity in the gut of larvae of another bruchid beetle, Callosobruchus maculatus, which does not feed on DMDP-containing legumes [78]. In the same study castanospermine was shown to be strongly inhibitory to the development of C. maculatus and Tribolium confusum when incorporated into the diet. As the brightly-coloured day-flying moth Urania fulgens feeds on Omphalea diandra which contains DMDP, α -homonojirimycin (16) and 1-deoxymannojirimycin, and accumulates the two former compounds in its body [14], it must presumably have some means of dealing with the glycosidase inhibition of these compounds. Similarly, the Death's head hawk-moth (Acherontia atropus) can store calystegines from its food plants in the Solanacae [50] but in contrast the Convolvulus hawk-moth (Agrius convolvuli) excretes high concentrations of the calystegines it consumes as a larva and they are not found in the adults [8]. The Lepidoptera which store glycosidase inhibitors may use them as defences against predators such as birds, but perhaps the alkaloids may also serve as defences against diseases (Section 1.5).

Gualamycin (10) has been shown to have acaricidal activity [17].

1.4.5. Toxicity to Mammals

The toxicity to livestock of the legumes Swainsona canescens and Castanospermum australe in Australia led to the isolations of the toxic principles swainsonine [36] and castanospermine [42]. Cattle eating Swainsona species developed a syndrome called "pea struck" which is due to decreased α -mannosidase activity resulting in accumulation of mannoserich oligosaccharides in lysosomes causing neuronal vacuolation, axonal dystrophy, loss of cellular function and death [87]. The disorder "locoism" in the western United States was also found to be due to swainsonine in locoweeds (Astragalus and Oxytropis species). Clinically,

swainsonine poisoning is characterised, amongst other things, by depression, tremors, nervousness, emaciation and gastrointestinal malfunction [88]. Poisoning of animals in China by *Oxytropis ochrocephala* and *O. kansuensis* has also been shown to be due to the presence of swainsonine at concentrations of 0.012% and 0.021% (dry weight), respectively [89]. Such potent glycosidase inhibitors do not need to be present at high concentrations for toxic effects. In the case of swainsonine the low concentration ingested is made more effective by its ability to permeate the plasma membrane freely, but once inside lysosomes it becomes protonated due to the low pH and becomes concentration in the diet which should be of concern could be as low as 0.001% [91].

Castanospermum australe contains the potent α - and β -glucosidase inhibitor castanospermine and this has been shown to induce a deficiency of lysosomal β -glucosidase [92]. Feeding experiments with rodents resulted in glycogen accumulation [93] and in rats it

causes degenerative vacuolation of hepatocytes and skeletal myocytes [88]. This resembles the genetic disorder glycogenosis type II (Pompe's disease), in the same way that swainsonine intoxication resembles the genetic deficiency of lysosomal α -D-mannosidase activity (mannosidosis). Pigs, cattle and horses are reported to be poisoned by *C. australe* with the chief symptom being gastroenteritis [94]. Several cases of human poisoning have occurred [95].

As knowledge on the distribution and activity of polyhydroxylated alkaloids grows it is likely that more cases of livestock problems may be recognised as being due to these compounds. For example, in the U.K. livestock have been reported to suffer abdominal pain, dysentery, lethargy and dullness after grazing *Hyacinthoides non-scripta* (Liliaceae) but the toxic principles remained unknown [96]. We have now found that the plant contains high concentrations of DMDP and related alkaloids which may be the cause [8].

Recently, swainsonine has also been detected in seeds of the Australian plant *lpomoea sp* (aff. *calobra*) (Weir Vine) (Convolvulaceae) [38]. This plant is reported to produce a neurological disorder in livestock with clinical signs similar to those caused by other swainsonine-containing plants. This species also contains the *nor*tropane calystegine B₂ (33) which inhibits β -glucosidase and α -galactosidase and so there may be a combination of toxic effects. The calystegines are common in the Solanaceae and there are several *Solanum* species which produce cases of poisoning very similar to locoism [91]. For example, *S. dimuthatum* causes "Crazy Cow Syndrome" in Texas and *S. kwebense* which causes "Maldronksiekte" in South Africa [97], both characterised by neurological signs of cerebellar disorder, including staggering, incoordination, with severe cellular vacuolation and degeneration of Purkinje cells. Both plants contain calystegine B₂ and other calystegines [50]. It seems likely that these syndromes are lysosomal storage disorders caused by glycosidase inhibition produced by the calystegines. The presence of calystegines in human foods such as potatoes, aubergines and sweet potatoes [50] poses the question of what effect do these compounds have on humans?

Poisoning by polyhydroxylated alkaloids generally takes several weeks of ingestion before it becomes apparent. Although lysosomal function will return to normal after the intoxication ends as the alkaloids are excreted and many of the lesions will disappear, some long term effects may result in reduced animal performance [98]. The selective advantage to the plant of containing glycosidase-inhibiting alkaloids such as swainsonine and castanospermine is not entirely clear because of the relatively long time period required for poisoning to become apparent and also affected animals appear to actively seek out the plants containing them [37,94].

32 Calystegine A₃

34 Calystegine As

36 Calystegine B₃

33 Calystegine B₂

1.5. Potential Therapeutic Activity

The potential pharmaceutical benefits of polyhydroxylated alkaloids as anti-viral and anti-cancer agents appear to largely result from their ability to alter glycoprotein structure by interfering with processing of the oligosaccharide moiety. These effects are also responsible for the neurological damage caused by swainsonine and castanospermine but it has been found that the doses required for beneficial effects may be below those causing damage, or that allowing a period of lysosomal clearance between doses may limit toxicity. Symptoms of gastroenteritis caused by inhibition of gut glycosidases can be limited by chemically modifying the natural products to increase the rate of uptake.

Castanospermine has been shown to have *in vitro* antiviral activity against human immunodeficiency virus (HIV) [99] and human cytomegalovirus (CMV) [100], which is an opportunistic pathogen in AIDS. Alterations in viral coat glycoproteins in the presence of castanospermine are associated with a loss of infectivity. 6-O-acyl derivatives of castanospermine are more potent inhibitors of HIV growth than the natural product with the 6-O-butyryl-derivative (MDL 28,574) currently in clinical trials for AIDS. The lipophilic nature of the acyl derivative improves uptake by cells but the compound appears to be intracellularly converted to castanospermine [101].

1-Deoxynojirimycin also has been shown to have anti-HIV activity and the pharmacokinetic properties of 1-deoxynojirimycin have been improved by producing *N*-substituted derivatives such as *N*-butyl-deoxynojirimycin (SC-48334) which has enhanced anti-HIV activity [102].

Nectrisine also has anti-viral activity and inhibits the retrovirus Friend leukaemia virus *m* vivo in mice and can potentiate the activity of AZT (zidovudine) [103]. Synergistic activity has also been shown when castanospermine and AZT are used in combination therapy *in vitro* [104]. *In vivo* combination studies with *N*-butyl-deoxynojirimycin and AZT in human patients indicated anti-viral activity but caused diarrhoea, abdominal pain and weight loss [105]. Chemical modification of *N*-butyl-deoxynojirimycin to make it better tolerated was suggested.

Castanospermine, swainsonine and nectrisine have been shown to have anti-cancer activity. Castanospermine inhibits experimental metastasis in mice [106]. Nectrisine (FR-900483) has been reported to induce Ia antigen and restore the immune response of immunosuppressed mice and these effects were assumed to be due to α -mannosidase inhibition [107].

Most of the anti-cancer work using these alkaloids has centred around swainsonine which has been shown to enhance the activities of the mouse immune system *in vitro* [40] and *in vivo* [108]. The antimetastatic effect of swainsonine has been shown to be largely due to augmentation of natural antitumour defences such as killer T-cells. Swainsonine has a slow effect after administration, with a peak of activity after 2 to 3 days, the effect being retained 5-7 days after treatment stopped. Swainsonine also increases susceptibility of cancer cells to natural killer cells and lymphokine activated killer cell cytotoxicity [109]. Direct anti-tumour activity is also suggested as transformed human tumour cells revert to normal when treated with swainsonine [110]. A phase I study of swainsonine in patients with advanced malignancies

showed that minimal toxicity was caused when administered intravenously to cancer patients at dosages that inhibit both Golgi α -mannosidase II and lysosomal α -mannosidases [111]. In a preliminary pharmacokinetic evaluation in mice it appeared that central nervous system toxicity may not be a problem at swainsonine levels preventing metastasis [112].

Mannostatin A, a pentasubstituted amino-cyclopentane produced by *Streptoverticillium* verticillus var quintum ME3-AG3 [113], is also a specific inhibitor of α -D-mannosidase and has shown anti-metastatic activity [114].

Research has continued to consider alkaloid glycosidase inhibitors such as 1deoxynojirimycin as potential anti-diabetic agents. N-Hydroxyethyl-deoxynojirimycin (miglitol, BAY m 1099) has improved retention in the small intestine which increases its potential *in vivo* antidiabetic activity, not by hypoglycaemic activity like insulin or sulfonylureas but by reducing postprandial insulin secretion, lessening diabetic glucosuria and reducing carbohydrate-driven synthesis of low density lipoproteins [115]. Fagomine and 2-O- α -D-galactopyranosyldeoxynojirimycin also have potent anti-hyperglycaemic effects in streptozocin-diabetic mice [116].

Castanospermine also has been shown to have anti-inflammatory activity, modifies the expression of adhesion molecules and prolongs allograft survival in a dose dependent manner [117].

1.6. Isolation

Ishida and co-workers in 1967 [18] noted that it was not possible to extract nojirimycin from the culture filtrate of *Streptomyces* using organic solvents. They found that the antibiotic was adsorbed from the filtrate by strong cation exchange resins such Dowex 50 and IR-120 and purification could be achieved by chromatography on these resins. This method has remained the most widely used. Molyneux has reviewed techniques used for the isolation, characterisation and analysis of polyhydroxylated alkaloids [118].

Eighteen polyhydroxylated alkaloids (aglycones and glycosides) have been isolated from hot water extracts of *Morus alba* roots (equivalent volume of MeOH added after cooling) by the use of Celite, Amberlite IR-120 (H⁺ form), Amberlite CG-50 (NH₄⁺ form) and Dowex 1 anion exchange resin (OH form) for the aglycones, and Dowex 50W (pyridine form), Dowex 1 (OH form) and CM Sephadex C-25 (NH₄⁺ form) for the glycosides [10]. The alkaloids were monitored by HPTLC Silica Gel-60F254 (Merck) using the solvent system 4:1:1 (PrOH-AcOH-H₂O), with detection by spraying with chlorine-o-tolidine reagent. Preparative centrifugal tlc has also been used to isolate alkaloids from *Castanospermum australe* and purity checked by tlc on silica gel plates developed with CHCl₃-MeOH-NH₄OH-H₂O (70:26:2:2) and alkaloids detected with Ac₂O followed by Ehrlich's reagent [32].

Nagstatin

Purification of the particularly potent glycosidase inhibitors can be monitored by enzyme assays as used initially for swainsonine isolation from *Swainsona canescens* [36], and this has also been used for microbial compounds such as trehazolin [54] although ion exchange is an important component of these purifications. A combination of screening for trehalase inhibition, preparative HPLC and ion exchange chromatography was used recently for the isolation of DMDP from *Streptomyces* [16]. Ion exchange was also used for the isolation of nagstatin with assays for β -*N*-acetylglucosaminidase inhibition [38]. The screening of micro-organisms for immunoactive compounds by their competitive action against inhibition of mouse spleen cells by immunosuppressive serum led to the isolation of swainsonine from *Metarhizum anisopliae* [40]. This purification involved a combination of column chromatographic separations on activated charcoal, CM-Sephadex and silica gel and fractions were monitored using the above assay

High pressure liquid chromatography with electrochemical detection has been used for castanospermine, 1-deoxynojirimycin, 1-deoxymannojirimycin and swainsonine using a cation exchange column. With this technique it was possible to detect the compounds when added to urine and plant extracts [119].

Gas chromatography of trimethylsilyl-ether derivatives of the alkaloids [120] achieves good separations of all the natural alkaloids, including epimers, by using capillary columns such as BPX5 (SGE), but packed OV-1 columns can also achieve good resolution. A great advantage of GC analysis is that it is highly sensitive and when coupled to a mass spectrometer gives useful structural information [91].

1.7. Synthesis

Interest in glycosidase inhibition has led to many efficient chemical syntheses of the polyhydroxylated alkaloids and their derivatives [121,122]. For example, castanospermine has been synthesised [123], along with a series of epimers and deoxy derivatives [124] and acyl derivatives such as 6-O-butyrylcastanospermine [125]. Burgess and Henderson [126] have reviewed syntheses of castanospermine and analogues, and Furneaux *et al.* have reported the synthesis of australine and analogues from castanospermine [127]. *N*-Butyl-deoxynojirimycin has been synthesised and shows better anti-HIV activity than the natural product [102]. Duclos *et al.* have synthesised a hydroxymethyl analogue of the tropane alkaloid calystegine B₂ [128].

Chemical syntheses have allowed investigations of structure-activity relationships, e.g., for mannosidase inhibitors [129,130]. Some potent new inhibitors have been produced such as 1,4-dideoxy-1,4-imino-D-mannitol (DIM) (41), an azafuranose analogue of mannose [131] which is a good mannosidase inhibitor but unlike 1-deoxymannojirimycin it does not inhibit Golgi α -mannosidase I. 1-Deoxymannojirimycin is a more potent inhibitor of α -L-fucosidase than of α -D-mannosidase [132]. 1-Deoxyfuconojirimycin (1,5-dideoxy-1,5-imino-L-fucitol) (DFJ) (42) is a synthetic potent and specific inhibitor of human liver α -L-fucosidase.

The α -glucosidase inhibitory 7-O- β -D-glucopyranosyl derivative of α -homonojirimycin was designed to be a transition state analogue of sucrose [133] before it and its aglycone were discovered as natural products. The synthesis of more disaccharide analogues containing 1deoxymannojirimycin as endomannosidase inhibitors for chemotherapeutic applications has aroused interest as this group of inhibitors may be more effective at preventing formation of fully mature *N*-linked oligosaccharides [134,135]. The reason for the interest in endoglycosidases is that they are not inhibited by inhibitors of exoglycosidases such as swainsonine, castanospermine, 1-deoxymannojirimycin and 1-deoxynojirimycin. Cells grown in the presence of exoglycosidase inhibitors can form fully matured glycans by using endo- α mannosidases which bypass the early trimming reactions of exoglycosidases.

Recently N-containing analogues of rhamnose have been proposed for treating diseases such as leprosy and tuberculosis caused by mycobacteria which contain rhamnose in the cell wall since rhamnose has no role in mammalian metabolism. Design and synthesis of specific inhibitors of rhamnosidase have been reported [136,137]. Because elevated levels of β -N-acetylglucosaminidases occur in serum of animals with malignant disease and in malignant cells, there is an interest in producing inhibitors of this enzyme as anti-cancer agents [138]. Polyhydroxylated alkaloids have been used as models to produce inhibitors for this purpose. Specific and potent inhibitors of β -N-acetylglucosaminidases such as 6-acetamido-6-deoxy-castanospermine [139] and the piperidine 2-acetamido-1,5-imino-1,2,5-trideoxy-D-glucitol have been synthesised [140].

Clearly glycosides of the polyhydroxylated alkaloids occur widely in nature and it has been possible to produce α - and β -glucosides of 1-deoxynojirimycin by the use of native and immobilised glucosidases from rice and *Rhodotorula lactosa* [141]. Transglucosylation between 1-deoxynojirimycin and soluble starch has also been possible by using bacterial saccharifying amylase. The α -1,4-glucosyl-deoxynojirimycin produced was shown to be a potent inhibitor of β -amylase [69].

Most probably, many of the synthesised inhibitors will be found to be produced by micro-organisms or plants in the future.

1.8. Biosynthesis

Biosynthetic studies have been largely restricted to microbial products. An early study of nojirimycin indicated that it is derived from glucose with head C(1) and tail C(6) inversion, and suggested that an amino group is introduced via 5-ketoglucose [2]. Recently, in *Bacıllus subtilis* var *niger* (ATCC 9372), nojirimycin B (12) and nojirimycin have been suggested as intermediates in the biosynthesis of 1-deoxynojirimycin [142]. 1-Deoxymannojirimycin was also derived from nojirimycin B in *Bacillus subtutilis* (ATCC 27467). Agrobacterium sp strain 19-1 has been shown to be able to epimerise 1-deoxynojirimycin to 1-deoxymannojirimycin [143].

The biosynthesis of swainsonine was studied in the fungus *Rhizoctonia leguminicola*; The piperidine ring was shown to be derived from lysine via pipecolic acid. A noteworthy

feature of the pathway (Scheme 1.1) is that the carboxyl carbon atom of pipecolate is retained in the alkaloid, whereas the normal course of events in the biosynthesis of alkaloids involves loss of the carboxyl group. Two additional carbons are contributed from acetate to the side-chain which cyclises to oxo-octahydroindolizine (43) which gives rise by reduction to (1,8a-trans)-1hydroxyoctahydroindolizine (44) and is then hydroxylated at C(2) to give (1,8a-trans-1,2-cis)-1,2-dihydroxyoctahydroindolizine (45) before being converted to swainsonine [144]. Swainsonine biosynthesis in Astragalus oxyphysus occurs by a very similar pathway [145].

Molyneux *et al.* [5] hypothesize that the N-(hydroxyethyl)-2-(hydroxymethyl)-3hydroxypyrrolidine (6) isolated from Castanospermum australe might be a precursor of the octahydroindolizines (castanospermines) in that plant by insertion of an additional carbon atom between the 2-(hydroxymethyl) group and the terminal carbon atom of the N-(hydroxyethyl) group and of the pyrrolizidines (australines and alexines) by insertion of the extra carbon between the 2-(hydroxmethyl) group and the methylene group adjacent to the nitrogen atom of the N-(hydroxyethyl) group.

The bridgehead hydroxyl of the calystegines is unusual in tropane and *nor*tropane alkaloids and the presence of calystegine C₁ (37) in *Morus alba* [10], a genus not noted for tropane alkaloids, may indicate that at least in this plant there is a different pathway to this *nor*tropane alkaloid. Recently *Physalis alkekengi* var *francheti*, which accumulates several calystegines in its roots, has been found to contain 1β-amino-2 α ,3β,5β-trihydroxycycloheptane (46) and it is suggested that it may be a precursor of calystegine A₅ (Scheme 1.2) [146].

Scheme 1.2

1.9. Other N-containing and Miscellaneous Glycosidase Inhibitors

The polyhydroxylated alkaloids are not the only nitrogen-containing compounds which can inhibit glycosidases and in particular some amino acids and amino sugars also act as analogues of carbohydrates. A few of these analogues will be mentioned here as similar compounds may be encountered in screening material for glycosidase-inhibiting alkaloids.

2S-Carboxy-3R,4R,5S-trihydroxy-piperidine from Baphua racemosa (Leguminosae) seeds is an inhibitor of human β -D-glucuronidase and α -L-iduronidase [147]. The all transdihydroxyproline, (2S,3R,4R)-2-carboxy-3,4-dihydroxypyrrolidine, from Amanita virosa is structurally analogous at C(2), C(3) and C(4) to D-glucuronic acid and it is also a moderate inhibitor of human β -D-glucuronidase [148].

Siastatin B, 2*R*-acetamido-3*R*,4*S*-dihydroxypiperidine-5*S*-carboxylic acid, produced by *Streptomyces verticillus* var. *quintum* MB695-A4, is an inhibitor of neuraminidase [149]. Pyrostatin A (47) and B are specific inhibitors of β -*N*-acetylglucosaminidase isolated from filtrates of *Streptomyces sp.* SA-3501 [150].

Acarbose (Glucobay) and homologs isolated from Actinoplanes strains are inhibitors of α -glucosidases which have been investigated as potential therapeutic agents for treating diabetes [115]. Acarbose is a pseudo-tetrasaccharide comprising the amino-sugar acarviosine and one maltose unit. Validoxylamine A and glucosides (*Streptomyces hygroscopicus* subsp. *limoneus*) are part of the validamycin complex. They inhibit trehalase and also have insecticidal activity [151]. Valiolamine and 5-*epi*valiolamine are also produced by *Streptomyces hygroscopicus* subsp. *limoneus* under aerobic conditions. These compounds, but especially the former, inhibit α -glucosidases [152]. Salbostatin is a trehalase inhibitor produced by *Streptomyces albus* (ATCC 21838). It is a pseudodisaccharide consisting of valienamine linked to 2-amino-1,5-anhydro-2-deoxyglucitol [153]. Pyridindolol, a β -galactosidase inhibitor has been isolated from the Actinomycetes [154]. There are also other classes of microbial products which inhibit glycosidases and these include carbohydrates, polypeptides and glycopeptides [155].

References

- 1 S Inouye, T Tsuruoka, and T Niida, J Antibiot, Ser A, 19:288 (1966)
- 2. S Inouye, T Tsuruoka, T Ito, and T Niida, Tetrahedron 23:2125 (1968)
- 3. T Shibata, O Nakayama, Y Tsurumi, M Okuhara, H Terano, and M Kohsaka, J Antibiot 41:296 (1988)
- 4 RJ Nash, EA Bell, GWJ Fleet, RH Jones, and JM Williams, J Chem Soc, Chem Commun 738 (1985)
- 5 RJ Molyneux, YT Pan, JE Tropea, M Benson, GP Kaushal, and AD Elbein, Biochemistry 30 9981 (1991).
- 6. DWC Jones, RJ Nash, EA Bell, and JM Williams, Tetrahedron Lett 26 3125 (1985)
- 7. J Furukawa, S Okuda, K Saito, and S-I Hatanaka, Phytochemistry 24:593 (1985).
- 8 RJ Nash, N Asano, AAWatson, unpublished.
- 9 N Asano, E Tomioka, H Kızu, K Matsui, Carbohydrate Res 253-235 (1994)
- 10. N Asano, K Oseki, E Tomioka, H Kizu, and K Matsui, Carbohydrate Res 259:243 (1994).
- 11. A Welter, J Jadot, G Dardenne, M Marlier, and J Casimir, Phytochemistry 15:747 (1976).
- 12. SV Evans, LE Fellows, TKM Shing, and GWJ Fleet, Phytochemistry 24:1953 (1985).
- 13. JV Dring, GC Kite, RJ Nash, T Reynolds, Bot J Linn Soc 117:1 (1995).
- GC Kite, JM Horn, JT Romeo, LE Fellows, DC Lees, AM Scofield, and NG Smith, Phytochemistry 29:103 (1990).

R. J. Nash, N. Asano and A. A. Watson

- 15 JM Horn, DC Lees, NG Smith, RJ Nash, LE Fellows, and EA Bell, in: Proc. 6th Int. Symp. Plant-Insect Relationships, V Labeyrie, G Fabres, and D Lachaise, Eds., Dr W Junk, Dordrecht, 394 (1987).
- 16 S Watanabe, H Kato, K Nagayama, and H Abe, Biosci Biotech Biochem 59:936 (1995).
- K Tsuchiya, S Kobayashi, T Harada, T Kurokawa, T Nakagawa, and N Shimada, J Antibiot 48:626 (1995).
- 18. N Ishida, K Kumagai, T Niida, T Tsuruoka, and H Yumoto, J Antibiot, Ser A 20.66 (1967).
- T Niwa, T Tsuruoka, H Goi, Y Kodama, J Itoh, S Inouye, Y Yamada, T Niida, M Nobe, and Y Ogawa, J Antibiot 37: 1579 (1984).
- 20 Y Miyake, and M Ebata, Agric Biol Chem 52:661 (1988).
- 21 S Murao, and S Miyata, Agric Biol Chem 44:219 (1980).
- 22. DD Schmidt, W Frommer, L Müller, and E Truscheit, Naturwiss 66:584 (1979).
- 23. M Yagi, T Kouno, Y Aoyagi, and H Murai. Nippon Nogeikagaku Kaishi 50.571 (1976).
- 24. Y Ezure, Agric Biol Chem 49 2159 (1985).
- LE Fellows, EA Bell, DG Lynn, F Pilkiewicz, I Miura, and K Nakanishi, J Chem Soc, Chem Commun 977 (1979)
- 26. GC Kite, LE Fellows, GWJ Fleet, PS Liu, AM Scofield, and NG Smith Tetrahedron Lett 29:6483 (1988).
- 27 Y Ezure, N Ojima, K Konno, K Miyazaki, N Yamada, and M Sugiyama, J Antibiot 41:1142 (1988).
- 28 M Koyama, and S Sakamura Agric Biol Chem 38:1111 (1974).
- 29 SV Evans, AR Hayman, LE Fellows, TKM Shing, AE Derome, and GWJ Fleet, Tetrahedron Lett 26:1465 (1985)
- RJ Nash, LE Fellows, JV Dring, GWJ Fleet, AE Derome, TA Hamor, AM Scofield, and DJ Watkin, Tetrahedron Lett 29:2487 (1988).
- 31. RJ Nash, LE Fellows, AC Plant, GWJ Fleet, AE Derome, PD Baird, MP Hegarty, and AM Scofield, Tetrahedron 44: 5959 (1988)
- 32 RJ Molyneux, M Benson, RY Wong, JE Tropea, and AD Elbein, J Nat Prod 51:1198 (1988).
- RJ Nash, LE Fellows, JV Dring, GWJ Fleet, A Girdhar, NG Ramsden, JM Peach, MP Hegarty, and AM Scofield, Phytochemistry 29:111 (1990).
- AC de S Pereira, MAC Kaplan, JGS Maia, OR Gottlieb, RJ Nash, GWJ Fleet, L Pearce, DJ Watkin, and AM Scofield, Tetrahedron 47:5637 (1991)
- 35 RJ Nash, Pl Thomas, RD Waigh, GWJ Fleet, MR Wormald, PM de Q Lilley, and DJ Watkin, Tetrahedron Lett 35:7849 (1994)
- 36. SM Colegate, PR Dorling, and CR Huxtable, Aust J Chem 32:2257 (1979)
- 37. RJ Molyneux, and LF James, Science 216:190 (1982).
- 38 RJ Molyneux, RA McKenzie, BM O'Sullivan, and AD Elbein, J Nat Prod 58/878 (1995).
- 39 MJ Schneider, FS Ungemach, HP Broquist, and TM Harris, Tetrahedron 39:29 (1983).
- M Hino, O Nakayama, Y Tsurumi, K Adachi, T Shibata, H Terano, M Kohsaka, H Aoki, and H Imanaka, J Antibiot 38:926 (1985)
- 41. I Pastuszak, RJ Molyneux, LF James, and AD Elbein, Biochemistry 29-1886 (1990).
- LD Hohenschutz, EA Bell, PJ Jewess, DP Leworthy, RJ Pryce, E Arnold, and J Clardy, Phytochemistry 20:811 (1981).
- 43 RJ Nash, LE Fellows, JV Dring, CH Stirton, D Carter, MP Hegarty, and EA Bell, Phytochemistry 27:1403 (1988).

372

- 44. RJ Molyneux, JN Roitman, G Dunnheim, T Szumilo, and AD Elbein, Arch Biochem Biophys 251: 450 (1986).
- 45 RJ Nash, LE Fellows, A Girdhar, GWJ Fleet, JM Peach, DJ Watkin, and MP Hegarty. Phytochemistry 29:1356 (1990).
- 46. RJ Molyneux, JE Tropea, and AD Elbein, J Nat Prod 53:609 (1990).
- D Tepfer, A Goldmann, N Pamboukdjian, M Maille, A Lépingle, D Chevalier, J Dénarié, and C Rosenberg, J Bacteriol 170:1153 (1988).
- 48 A Goldmann, M-L Milat, P-H Ducrot, J-Y Lallemand, M Maille, A Lépingle, I Charpin, and D Tepfer, Phytochemistry 29:2125 (1990).
- RJ Molyneux, YT Pan, A Goldmann, DA Tepfer, and AD Elbein, Arch Biochem Biophys 304:81 (1993)
- RJ Nash, M Rothschild, EA Porter, AA Watson, RD Waigh, and PG Waterman, Phytochemistry 34:1281 (1993).
- 51 N Asano, A Kato, K Oseki, H Kizu, and K Matsui, Eur J Biochem 229:369 (1995).
- 52. B Dräger, A van Almsick, and G Mrachatz, Planta Med 61: 577 (1995).
- T Aoyagi, H Suda, K Uotani, F Kojima, T Aoyama, K Horiguchi, M Hamada, and T Takeuchi, J Antibiot 45 1404 (1992).
- 54 O Ando, H Satake, K Itoi, A Sato, M Nakajima, S Takahashi, H Haruyama, Y Ohkuma, T Kinoshita, and R Enokita, J Antibiot 44:1165 (1991).
- 55. AD Elbein, JE Tropea, M Mitchell, and GP Kaushal, J Biol Chem 265 15599 (1990).
- 56 B Winchester, Biochem Soc Trans 20:699 (1992).
- 57 I Cenci di Bello, G Fleet, JC Son, K-I Tadano, and B Winchester, in Swainsonine and Related Glycosidase Inhibitors, LF James, AD Elbein, RJ Molyneux and CD Warren, Eds., Iowa State University Press, Ames Chap. 27:367 (1989).
- 58. AM Scofield, P Witham, RJ Nash, GC Kite, and LE Fellows, Comp Biochem Physiol 112A 187 (1995).
- 59. AM Scofield, P Witham, RJ Nash, GC Kite, and LE Fellows, Comp Biochem Physiol 112A 197 (1995).
- 60. G Legler, Adv Carbohydr Chem Biochem 48:319 (1990)
- 61. N Asano, K Oseki, H Kızu, and K Matsui, J Med Chem 37:3701 (1994).
- 62 B Winchester, and GWJ Fleet, Glycobiology 2.199 (1992).
- 63 H Kayakiri, K Nakamura, S Takase, H Setoi, I Uchida, H Terano, M Hashimoto, T Tada, and S Koda, Chem Pharm Bull 39:2807 (1991).
- 64. AM Scofield, LE Fellows, RJ Nash, and GWJ Fleet, Life Sci 39:645 (1986).
- 65 GWJ Fleet, SJ Nicholas, PW Smith, SV Evans, LE Fellows, and RJ Nash, Tetrahedron Lett 26:3127 (1985).
- MTH Axamatwaty, GWJ Fleet, KA Hannah, SK Namgoong, and ML Sinnott, Biochem J 266:245 (1990).
- 67. T Niwa, S Inouye, T Tsuruoka, Y Koaze, and T Niida, Agric Biol Chem 34:966 (1970).
- 68. H Hettkamp, G Legler, and E Bause, Eur J Biochem 142: 85 (1984)
- 69. M Arai, M Sumida, K Fukuhara, M Kainosho, and S Murao, Agric Biol Chem 50:639 (1986).
- 70. J Bishoff and R Kornfeld, Biochem Biophys Res Commun 125:324 (1984).
- 71. GP Kaushal, YT Pan, JE Tropea, M Mitchell, P Liu, and AD Elbein, J Biol Chem 263: 17278 (1988).
- 72 AM Scofield, private communication
- 73. PR Dorling, CR Huxtable, and SM Colegate, Biochem J 191:649 (1980).
- 74 DRP Tulsiani, TM Harris, and O Touster, J Biol Chem 257:7936 (1982).

R. J. Nash, N. Asano and A. A. Watson

- 75 R Saul, JP Chambers, RJ Molyneux, and AD Elbein, Arch Biochem Biophys 221 593 (1983)
- B Winchester, C Barker, S Baines, GS Jacob, SK Namgoong, and GWJ Fleet, Biochem J 265:277 (1990).
- I Cenci di Bello, P Dorling, SV Evans, LE Fellows, and B Winchester, Biochem Soc Trans 13:1127 (1985).
- 78. RJ Nash, PhD Thesis, Univ of London (1987)
- 79. DJ Nevins, PI Cell Physiol, Tokyo, 16.347 (1975).
- 80. SV Evans, PhD Thesis, Univ of London, (1983).
- 81. C-L Rosenfield, and Ph Matile, Pl Cell Physiol, Tokyo, 20:605 (1979).
- 82. DL Dreyer, KC Jones, and RJ Molyneux, J Chem Ecol 11 1045 (1985).
- 83 KL Stevens, and RJ Molyneux, J Chem Ecol 14:1467 (1988).
- 84 ANE Birch, WM Robertson, IE Geoghegan, WJ McGavin, TJW Alphey, MS Phillips, LE Fellows, AA Watson, MSJ Simmonds, and EA Porter, Nematologica 39 521 (1993).
- 85. WM Blaney, MSJ Simmonds, SV Evans, and LE Fellows, Entomol Exp Appl 36:209 (1984).
- 86. MSJ Simmonds, WM Blaney, and LE Fellows, J Chem Ecol 16:3167 (1990)
- 87. PR Dorling, CR Huxtable, and P Vogel, Neuropathol & App Neurobiol 4:285 (1978)
- 88. BL Stegelmeier, RJ Molyneux, AD Elbein, and LF James, Vet Pathol 32:289 (1995)
- CR Cao, SJ Li, DX Duan, RJ Molyneux, LF James, K Wang, and C Tong, In. Poisonous Plants, LF James, RF Keeler, EM Bailey, PR Cheeke, MP Hegarty, Eds, Iowa State Univ Press, Ames, 117 (1992).
- 90. K Chotai, C Jennings, B Winchester, and P Dorling, J Cell Biochem 21:107 (1983).
- 91 RJ Molyneux, LF James, MH Ralphs, JA Pfister, KE Panter, and RJ Nash, in: Plant-Associated Toxins, SM Colegate, and PR Dorling, Eds., CAB International, Wallingford, UK (1994), Chap 21.
- I Cenci di Bello, D Mann, R Nash, and B Winchester, in: Lipid Storage Disorders, R Salvayre, L Douste-Blazy, and S Gatt, Eds., Plenum Publishing Corporation, 635 (1988).
- 93. R Saul, JJ Ghidoni, RJ Molyneux, and AD Elbein, Proc Natl Acad Sci USA 82:93 (1985).
- 94 E Hurst, The Poisonous Plants of New South Wales, University of Sydney and N S W Dept of Agric, Sydney, 152 (1942).
- 95. SL Everist, Poisonous Plants of Australia, Angus and Robertson, Sydney, (1974), 403.
- 96. RHC Thursby-Pelham, Vet Rec 80 709 (1967).
- 97. JS Menzies, CH Bridges, and EM Bailey, The Southwestern Vet 32:45 (1979).
- 98 BL Stegelmeier, LF James, KP Panter, and RJ Molyneux, Am J Vet Res 56.149 (1995)
- 99. DL Taylor, P Sunkara, PS Liu, MS Kang, TL Bowlin, and AS Tyms, AIDS 5:693 (1991)
- DL Taylor, LE Fellows, GH Farrar, RJ Nash, D Taylor-Robinson, MA Mobberley, TA Ryder, DJ Jeffries, and AS Tyms, Antiviral Res 10:1 (1988).
- 101. CG Bridges, SP Ahmed, MS Kang, RJ Nash, EA Porter, and AS Tyms, Glycobiology 5.249 (1995).
- GWJ Fleet, A Karpas, RA Dwek, LE Fellows, AS Tyms, S Petursson, SK Namgoong, NG Ramsden, PW Smith, JC Son, F Wilson, DR Witty, GS Jacob, and TW Rademacher, FEBS Lett 237 128 (1988).
- 103 K Tatatsuki, T Hattori, T Kaizu, M Okamoto, Y Yokato, K Nakamura, H Kayakiri, European Patent Application EP O 407 701 A2, (1990).
- VA Johnson, BD Walker, M Barlow, TJ Paradis, T-C Chou, and M Hirsch, Antimicrobial Agents and Chemotherapy 33:53 (1989).
- MA Fischl, L Resnick, R Coombs, AB Kremer, JC Pottage, RJ Fass, KH Fife, WG Powderly, AC Collier, RL Aspinall, SL Smith, KG Kowalski, and C-B Wallemark, J Acq Immun Def Syn 7:139 (1994).

374

- 106 GK Ostrander, NK Scribner, and LR Rohrschneider, Cancer Res 48:1091 (1988).
- 107. H Kayakıri, K Nakamura, S Takase, H Setoi, I Uchida, H Terano, M Hashimoto, T Tada, and S Koda, Chem Pharm Bull 39.2807 (1991).
- 108 MJ Humphries, K Matsumoto, SL White, RJ Molyneux, and K Olden, Clin Exp Metastasis 8.89 (1990).
- 109 C Galustian, S Foulds, JF Dye, and PJ Guillou, Immunopharmacol 27.165 (1994)
- 110. R DeSantis, UV Santer, and MC Glick, Biochem Biophys Res Commun 142.348 (1987).
- 111. PE Goss, J Baptiste, B Fernandes, M Baker, and JW Dennis, Cancer Res 54:1450 (1994).
- 112. D Bowden, J Adır, SL White, CD Bowden, K Matsumoto, and K Olden, Anticancer Res 13:841 (1993).
- 113. T Aoyagi, T Yamamoto, K Kojiri, H Morishima, M Nagai, M Hamada, T Takeuchi, and H Umezawa, J Antibiot 42:883 (1989).
- 114 Y Ochi, S Atsumi, T Aoyagi, and K Umezawa, Anticancer Res 13:1421 (1993).
- 115 M Müller, in Novel Microbial Products for Medicine and Agriculture, AL Demain, GA Somkuti, JC Hunter-Cervera, and HW Rossmoore, Eds., Society for Industrial Microbiology, (1989), Chap 13
- 116. F-J Chen, N Nakashima, J Kimura, M Kimura, N Asano, and S Koya, Biol Pharm Bull 18.1676 (1995)
- PM Grochowicz, YC Smart, KM Bowen, AD Hibberd, DA Clark, WB Cowden, and DO Willenborg, Transplantation Proc 25.2900 (1993).
- 118 RJ Molyneux, Phytochem Anal 4:193 (1993).
- 119 MJ Donaldson, H Broby, MW Adlard, and C Bucke, Phytochem Anal 1.18 (1990)
- 120. RJ Nash, WS Goldstein, SV Evans, and LE Fellows, J Chromatogr 366:431 (1986).
- 121. GWJ Fleet, in. Swainsonine and Related Glycosidase Inhibitors, LF James, AD Elbein, RJ Molyneux, and CD Warren, Eds., Iowa State University Press, Ames Chap. 28.382 (1989)
- 122. GWJ Fleet, LE Fellows, and B Winchester, in: Bioactive Compounds From Plants, Wiley, Chichester, 112 (1990).
- 123 RC Bernotas, and B Ganem, Tetrahedron Lett 25:165 (1984).
- 124 BG Winchester, I Cenci di Bello, AC Richardson, RJ Nash, LE Fellows, NG Ramsden, and GWJ Fleet, Biochem J 269:227 (1990).
- 125 WK Anderson, RA Coburn, A Gopalsamy, and TJ Howe, Tetrahedron Lett 31:169 (1990)
- 126. O Duclos, A Dureault, and JC Depezay, Tetrahedron Lett 33:1059 (1992).
- 127. I Cenci di Bello, G Fleet, SK Namgoong, K-I Tadano, and B Winchester, Biochem J 259:855 (1989)
- 128 B Winchester, SA Daher, NC Carpenter, IC di Bello, SS Choi, AJ Fairbanks, and GWJ Fleet, Biochem J 290:743 (1993).
- 129. K Burgess, and I Henderson, Tetrahedron 48:4045 (1992).
- 130. RH Furneaux, GJ Gainsford, JM Mason, and PC Tyler, Tetrahedron 50:2131 (1994).
- 131 GWJ Fleet, PW Smith, SV Evans, and LE Fellows, J Chem Soc, Chem Commun 1240 (1984).
- 132. B Winchester, C Barker, S Baines, GS Jacob, SK Namgoong, and G Fleet, Biochem J 265 277 (1990)
- 133. PS Liu, J Org Chem 52:4717 (1987).
- H Ardron, TD Butters, FM Platt, MR Wormald, RA Dwek, GWJ Fleet, and GS Jacob, Tetrahedron Asymm 4:2011 (1993).
- 135. Y Suhara, and K Achiwa, Chem Pharm Bull 43:414 (1995)
- JC Estevez, MD Smith, MR Wormald, G Besra, PJ Brennan, RJ Nash, GWJ Fleet, Tetrahedron Asymm 7:391 (1996).
- 137. JC Estevez, J Saunders, GS Besra, PJ Brennan, RJ Nash, GWJ Fleet, Tetrahedron Asymm 7:383 (1996).

- B Woynarowska, H Wikiel, M Sharma, N Carpenter, GWJ Fleet, and RJ Bernacki, Anticancer Res 12:161 (1992).
- 139. PS Liu, MS Kang, and PS Sunkara, Tetrahedron Lett 32:719 (1991).
- 140. GWJ Fleet, PW Smith, RJ Nash, LE Fellows, RB Parekh, and TW Rademacher, Chemistry Lett 1051 (1986)
- 141. N Asano, K Oseki, E Kaneko, and K Matsui, Carbohydrate Res 258:255 (1994).
- 142. DJ Hardwick, and DW Hutchinson, Tetrahedron 49:6707 (1993).
- 143. F Tadashi, N Asano, Y Kameda, and K Matsui, J Antibiot 42 1302 (1989)
- 144 CM Harris, MJ Schneider, FS Ungemach, JE Hill, and TM Harris, J Am Chem Soc 110:940 (1988).
- 145 C Harris, BC Campbell, RJ Molyneux, and TM Harris, Tetrahedron Lett 29.4815 (1988)
- 146. N Asano, A Kato, H Kizu, and K Matsui, Phytochemistry (1996)-in press.
- 147. KS Manning, DG Lynn, M Singh, and BD Schrire, J Chem Soc, Chem Commun 127 (1985)
- 148. CJ Rule, BA Wurzburg, and B Ganem, Tetrahedron Lett 26:5379 (1985)
- 149. Y Nishimura, T Kudo, Y Umezawa, S Kondo, and T Takeuchi, Nat. Prod. Lett 1:33 (1992).
- T Aoyama, F Kojima, C Imada, Y Muraoka, H Naganawa, Y Okami, T Takeuchi, and T Aoyagi, J Enzyme Inhibition 8 223 (1995)
- 151 N Asano, M Takeuchi, Y Kameda, M Katsuhiko, and Y Kono, J Antibiot 43:722 (1990).
- Y Kameda, N Asano, M Yoshikawa, M Takeuchi, T Yamaguchi, K Matsui, S Horii, and H Fukase, J Antibiot 37:1301 (1984).
- 153. L Vertesy, H-W Fehlhaber, and A Schulz, Angew Chem Int Ed Engl 33:1844 (1994)
- 154. T Aoyagi, M Kumagai, T Hazato, M Hamada, T Takeuchi, and H Umezawa J Antibiot 28:555 (1975).
- L Müller, in Biotechnology, Vol. 4, H J Rehm and G Reed, Eds., VCH Verlagsgesellschaft, Weinheim, (1985) Chap 18.

Bold page numbers refer to tables and illustrations

acarbose 371 acaricidal 360 6-acetamido-6-deoxy-castanospermine 368 2-acetamido-1.5-imino-1.2,5-trideoxy-Dglucitol 368 7-acetoxy-9-acetylspicataxine 249 2α -acetoxyaustrospicatine 248 2α -acetoxy-2'deacetoxyaustrospicatine 248 2α -acetoxy-2'-deacetylaustrospicatine 248 13-acetyl-5-aminoacylbrevifoliol 250 N-acetylbaicaline 44 10-acetylcinnamoyltaxicin I 263 9-acetyl, 10-deacetylspicataxine 249 β -N-acetylglucosaminidase 354, 366, 368, 370 N-acetylnorthalicmine 44 7-acetyltaxine A 246 (+)-actinodaphine 278 Actinomycetes 351 acutifolidine 39, 40, 175, 200, 213 6-O-acyl derivatives of castanospermine 364 adiantifoline 6, 12, 15, 24, 112, 176, 187, 188, 189, 190, 191 192, 204, 219 agrochemicals 346 **AIDS 364** ajaconine 62 alexines 306, 349, 350, 354, 359, 369 alexines (australines) 352 allelopathic effects 336 α -allocryptopine 23 allocryptopine 108, 119, 187, 213 α -allocryptopine 187, 203, 213 β-allocryptopine 17, 23, 175, 176, 194, 197, 203, 213 allocryptopine (thalictrimine, β -allocryptopine) 23

allocryptopine (thalictrimine, β -allocryptopine) 203 aminoacylbrevifoliol 251 aminoacylnicotaxine 245, 249 $1-\beta$ -amino-1-deoxynojirimycin 316 1α -amino- 2β , 3α , 4β trihydroxynortropane 315 1β -amino- 2α , 3β , 5β trihydroxycycloheptane 328, 370 β -amylase 353, 368 amyloglucosidase 334, 354 anti-cancer activity 352, 363, 364 anti-cancer agents 346, 363, 368 anti-diabetic agents 346, 365 antifeedancy 360 anti-metastatic activity 365 anti-viral activity 352, 364 anti-viral agents 346, 363 aporphine 6, 133, 138 aporphine-benzylisoquinolines 6, 14, 24, 63 aporphines 18, 39, 269 α -D-arabinosidase 353 Araceae 348, 349 argemonine 21, 178, 182, 187, 194, 197, 198, 202, 212 argemonine-N-oxide 21, 182, 202, 213 aromaline 275 aromoline 12, 25, 119, 120, 124, 145, 149, 155, 156, 167, 176, 183 187, 190, 196, 198, 206, 215 ascomycetes 347 australines 306, 336, 349, 352, 354, 359, 367, 369 austrospicatine 245, 248 austrotaxine 245, 247 azafluoranthenes 269 **AZT 364**

bacteria 355 baicalidine 176, 200, 213
baicaline 18, 46, 176, 200, 212 **Basidiomycetes 350** 7-O-benzylhomoaromoline 145 benzylisoquinoline-protoberberines 16 benzylisoquinolines 20, 140, 269 N-benzylphthalimide 277 berbamine 108, 119-26, 133, 145, 149, 155, 156, 158, 166, 167, 182 193, 206, 215 berberine 6, 11-14, 16, 22, 109, 112-17, 124, 126–37, 150, 151 153, 154, 158, 159, 164, 173, 175, 176, 178, 179, 181-91, 193-9 203, 210 berberine chloride 127, 133 berberine-chloroform 203 berberlongine 15, 186, 217 berberrubine 22, 137, 179, 183, 193, 203, 209 berberrubine chloride 137 berberstyline 15, 186, 218 berlambine 23, 175, 183, 186, 187, 191, 193, 196, 203 betaines 24 biosynthesis 112, 326, 368, 369 bisbenzylisoquinoline alkaloids 6 bisbenzylisoquinolines 6, 25, 79, 121, 122, 124, 147, 157, 158 165, 269 7,2'-bisdeacetoxyaustrospicatine 248 7,9-bisdeacetylaustrospicatine 248 bismorphinan 15 bisnorargemonine 178, 202, 210 bisnorthalphenine 193, 194, 200, 209 bisocobotrine 15, 182, 217 bursanine 12, 187, 190, 204, 219 N-butyl-deoxynojirimycin 364, 367 6-O-butyrylcastanospermine 367 ¹³C NMR assignments 319 cabudine 185, 201, 210 Caesar, Julius 238 calystegines 335, 340, 355, 360, 362, 370 A₁ 310, 350, 351, 354, 363 A₅ 312, 351, 354, 363, 370 A₆ 312 B₁ 312, 351, 354, 363

- B_1 -3-O- β -D-glucopyranoside 351
- B₂ 313, 320, 333, 350, 351, 354, 362, 363, 367

B₃ 314, 351, 354, 363 B₄ 314 C₁ 315, 351, 354, 363, 370 N₁ 315 Campanulaceae 348, 349 canadine 164, 165, 203, 210 canadine methochloride 154 candadine 112 (+)-candicusine 278 β -carbolines 141 (2S,3R,4R)-2-carboxy-3,4dihydroxypyrrolidine 370 2S-carboxy3R,4R,5S-trihydroxypiperidine 370 (-)-caryolivine 276 castanospermine 306, 333, 336, 347, 350, 351, 352, **354**, 355, 358, 360, **361**, 362, 364, 365, 366, 367 Casuarinaceae 350 casuarine 350, 354, 359 casuarine-6-O- α -D-glucopyranoside 350 catabolism of calystegines 335 cation exchange resins 365 Catuvolcus 238 cell culture 112 α -chaconine 339 7-chloronorcephardione B 279 choline 24, 189, 204, 208 choline chloride 194 (+)-chondocurarine 276 (+)-chondrocurine 276 (-)-chondrofoline 276 Christie, A. 238 chromatography 365 cinnamic acid 251 (-)-cissampareine 277 CMV 364 coclaurine 164 (+)-coclaurine 275, 276 columbamine 16, 22, 112, 113, 133, 138, 151, 153, 159, 175, 176 183, 185-7, 189, 191, 193, 194, 196, 198, 203, 210 comptonine 245, 247 Convolvulaceae 350, 351, 362 Cope elimination 260 coptisine 22, 109, 137, 138, 183, 203, 209 (-)-coreximine 276 corunnine 182, 187, 201, 211

corydine 15, 18, 139, 179, 180, 200, 211 corypalline 178, 196, 199, 202, 208 Cotton effect 259 "Crazy Cow Syndrome" 362 cryptopine 23, 108, 139, 178, 181, 183, 185, 203, 213 cualamycin 358 cultithalminine 79, 80, 107, 176, 206, 215 curine 276 8-cyanodihydroberberine 127 (-)-cycleanine 277 daphnandrine 123, 155 (-)-daurisoline 275 2'-deacetoxyaustrospicatine 243, 245, 248, 262, 264 2'-deacetoxyaustrotaxine 247 2-deacetoxydecinnamoyltaxinine J 263 2-deacetoxytaxinine J 263 deacetylaustrospicatines 248, 258, 259 2'-deacetylaustrotaxine 247 De Bello Gallico 238 6a,7-dehydroadiantifoline 15, 192, 219 dehydroaporphine-benzylisoquinolines 25 dehydroaporphines 19, 45 dehydrodiscretamine 183, 203, 209 dehydrodiscretine 22, 180, 203, 210 dehydroglaucine 19, 184, 201, 211 dehydrohuangshanine 179, 205, 219 6a,7-dehydromethoxyadiantifoline 25, 139, **182**, **205**, **220** (+)-1,2-dehydro-2-norlimacusine 276 dehydroocoteine 19, 185, 201, 213 dehydroscoulerine 112 6a,7-dehydrothaliadine 15, 192, 214 dehydrothalicarpine 178, 189, 205, 219 dehydrothalicmine 185, 201, 213 dehydrothalicsimidine 45, 184, 201, 213 dehydrothalifaberine 139, 179, 205, 219 dehydrothalmelatine 189 delporphine 15, 16, 18, 185, 192, 200, 212 O-demethyladiantifoline 189 7,12-O-demethyl-derivative 88 (-)-10-demethyldiscretine 276 demethyleneberberine 203, 209 N-demethyl-Nformyldehydronuciferine 279 5-O-demethyllongine 16, 186

7-O-demethyl-O-methylthalmethine 104 3-O-demethyloconovine 15, 180 5-O-demethylongine 217 (-)-7-O-demethylpeinamine 275 7-O-demethylthalicberine 98 6'.9-demethylthalifaberine 65 7'-O-demethylthalifaronine 70 demethylthalimonine 47, 49, 53, 197, 202, 212 N-demethylthalphenine 200, 210 demthyleneberberine 185 3-O-demthyloconovine 212 demthylthalifaberine 68, 72 7-deoxy-6-epicastanospermine 350, 354, 361 deoxyfuconojirimycin 367, 368 deoxymannojirimycin 320, 346, 349, 351, 360, 366, 368 1-deoxymannojirimycin (DMJ) 347, 349, 352, 353, 357, 360, 366, 367, 368 deoxynojirimycin 306, 321, 346, 348, 349, 353, 355, 356, 357, 358, 360, 364 365-8 1-deoxynojirimycin-4-O- α -Dglucopyranoside 353 deoxythalidastine 22, 193, 194, 196, 198, 199, 203, 209 O-desmethyladiantifoline 24, 187, 219 O-desmethylladiantifoline 204 N-desmethylthalidasine 179, 206, 216 N-desmethylthalidezine 193, 206, 215 N-desmethylthalistyline 16, 25, 29, 109, 186, 193, 206, 218 (O-desmethylthalistyline 29 N-desmethylthalphenine 194 N-desmethylthalrugosidine 175, 206, 215 Deuteromycetes 350 N,O-diacetylthalbaicaline 44 1,4-dideoxy-1,4-imino-D-arabinitol 348, **353**, 355, **356**, 358, 360 1,4-dideoxy-1,4-imino-(2-O-β-Dglucopyranosyl)-D-arabinitol 348, 353 1,4-dideoxy-1,4-imino-D-mannitol 367, 368 1,4-dideoxy-1,4-imino-D-ribitol 348, 353, 356 diepialexine 349, 350, 354, 359 6,7-diepicastanospermine 350, 354, 361

380

7'-dihydrodehydrothaliadine 15, 192, 214 dihydrooxothaliadine 15, 192, 214 7'-dihydrothaliadine 15, 192, 214 dihydrothalictrinine 195, 206, 217 dihydrothalmiculatimine 100 dihydrothalmiculimine) 101 1,2α-dihydroxy-7,2'-deacetoxy-9deacetylaustrospicatine 248 3,4-dihydroxy-5-hydroxymethyl-1pyrroline (nectrisine) 356 2,5-dihydroxymethyl-3,4dihydroxypyrrolidine (DMDP) 306, 347, 348 351, 353, 355, 356, 358, 360, 362, 366 (-)-8,9-dimethoxy-2-hydroxy-3,4methylenedioxypavinane 47 2,8-dimethoxy-9-hydroxy-3,4methylenedioxypavinane 49 5,6-dimethoxyindeno[1,2,3i,j]isoquinoline 286 N-dimethylcassyfiline 200 O-dimethylcassyfiline 200 (+)-O,O'-dimethylcurine 278 (-)-N,N-dimethylindoldhamine 275 (0,0-dimethylisochondrodendrine) 277 N,N-dimethylphenylisoserine 244 dimethylwarifteine 277 4,5-dioxoaporphines 269 (-)-discretine 276 diterpenes 58 diterpenoids 24 domesticine 18, 140, 189, 200, 210 dopamine 112 ecological significance 355 egg-plant 339 Eliot, T.S. 239 endomannosidase 367 EP-10 75, 76, 140, 180, 205, 217 7a-epialexaflorine 350, 354, 359 7a-epialexine 349, 354, 359 epiberberine 16 6-epicastanospermine 350, 354, 361 3-epifagomine 349, 354, 357 epinorcycleanine 278 5-epivaliolamine 371 eschscholtzidine 21, 51, 187, 189, 194, 202, 210

esters 243 euphorbiaceae 348, 349 $exo\beta$ -1,3-glucanase 353 exoglycosidase 367 faberidine 179, 204, 218 faberonine 179, 204, 219 Fabry's disease 337, 338 Fagaceae 349 fagomine 349, 353, 357, 360 fagomine-4-O- β -D-glucopyranoside 349, 354 fagomine-4-O- β -D-glucoside 360 fauridine 15, 180, 218 faurine 15, 180, 214 fauripavine 15, 180, 217 faurithaline 15, 180, 217 feeding deterrent 358 fetidine 182, 218 fetidine (foetidine) 204 N-formyldehydroanonaine 279 N-formylnornuciferine 279 2-formyl-2-northalidasine 35 (-)-N-formystepharine 276 α -fucosidase 334, 353 α -L-fucosidase 367 fungi 355

galactopyranosides 349, 353 galactosidase 334, 353, 354, 362, 371 galactostatin 348, 353, 357 gas chromatography 367 gas chromatography-mass spectrometry 323 gastroenteritis 362, 364 Gaucher's disease 337, 338 genetic mannosidosis 336 glaucine 18, 111, 140, 141, 176, 181, 182, 184, 186, 187, 189, 197 200, 212 glucopyranosides 349, 353 glucosidase 334, 353, 354, 360, 361, 362, 371 α -1,4-glucosyl-deoxynojirimycin 368 β -D-glucuronidase 370 glycoprotein 363 glycosidases 333, 336, 352, 353 (-)-govadine 276 grandirubrine 274

(-)-grisabine 274 grisabutine 274 groenlandicine 22, 184, 203, 209 gualamycin 348, 356, 360 gyrocarpine 123, 155 ¹H NMR assignments 317 harmaline 142, 143 harmalol 142 harman 142 harmane 142 harmine 141-3, 182, 204, 209 harmol 142 Hebenon 239 hernandaline 189 hernandezine 12, 16, 25, 108, 143, 170, 175, 178, 181, 182, 184-6 193, 195, 197, 198, 206, 216 hernandezine N-oxide 198, 206, 217 hexahydrothalicminine 198, 200, 212 high performance liquid chromatography 323 high pressure liquid chromatography 366 HIV 364 Homer 238 homoaromaline 275 homoaromoline 12, 109, 119, 124, 144, 145, 149, 155, 156, 158, 167 187, 190, 196, 198, 206, 215 homoaromoline dimethiodide 109 homomoschatoline 275 α -homonojirimycin 349, 353, 357, 360 α -homonojirimycin-7-O- β -Dglucopyranoside 349, 353 huangshanine 179, 204, 219 human poisonings 339 Hyacinthaceae 348 1-hydroxy,2a-acetoxy-2'deacetylaustrospicatine 248 2a-hydroxy-7,2'-deacetoxy-9deacetylaustrospicatine 248 2a-hydroxy-7-deacetoxy-9deacetylaustrospicatine 262 4-hydroxyeschscholtzidine 50, 51, 189, 202, 212 N-hydroxyethyl-deoxynojirimycin (miglitol) 365

N-hydroxyethyl-2-hydroxymethyl-3hydroxypyrrolidine 347, 356, 369 5'-hydroxylongine 16, 219 2-hydroxymethyl-3hydroxypyrrolidine 347, 353, 355, 356, 358, 360 5-hydroxyreticuline 51 5-hydroxythalidasine 6, 81-3, 107, 177, 206, 217 5-hydroxythalidasine- 2α -N-oxide 82, 83, 107, 177, 206, 218 5'-hydroxythalidezine 16, 217 5-hydroxythalmine 6, 84, 107, 177, 206, 215 1-hydroxytropacocaine 308 hypoglycaemic activity 365 α -L-iduronidase 370 imeluteine 275 imenine 275 imerubrine 275 immune response 364 immunoactivity 366 indolizidine 346 insecticidal activity 371 insects 358

invertase 353 in vitro antiviral activity 364 isoboldine 12, 15, 16, 112, 145, 146, 175, 182, 192 isoboldine (N-methyllaurelliptine) 18, 176, 189, 200, 210 (-)-isochondrodendrine 278 (+)-isochondrodendrine 276 isocorydine 12, 15, 18, 146, 147, 176, 178, 180, 193, 199, 200, 211 isocorypalmine 165, 179, 203, 211 isofangchinoline 194, 208, 215 isohomoprotoberberines 23, 269 isolation 365 isonorargemonine 21, 51, 189, 194, 202, 211 isooconovine 15, 18, 180, 200 isopavines 20 isoquinolines 14 isoquinolones 20 isotaxine B 246

Subject Index

isotetrandrine 108, 119, 120, 124, 145, 147-9, 155, 156, 158, 167 182, 206, 215 isothalidezine 16, 26, 108, 144, 149, 150, 170, 178, 184, 193, 206 216 istanbulamine 12, 63, 75, 188, 190, 204, 217 izmirine 23, 184, 203, 212 iznikine 12, 188, 190, 204, 219 jatrorrhizine 11, 16, 22, 108, 131, 137, 150, 151, 153, 159, 173 175, 177, 181, 183-91, 193-6, 199, 203, 210 jatrorrhizine chloride 150 kifunensine 351, 354, 366 (-)-krukovine 275, 278 laudanidine 15, 20, 178, 192, 194, 201, 211 (+)-launobine 278 Leguminosae 347, 348, 349, 350, 370 lentiginosine 350, 354, 361 Lepidoptera 348, 349, 360 leprosy 367 leucoxylonine 18, 41, 178, 197, 200, 214 leucoxylonine N-oxide 41, 197, 200, 214 Liliaceae 362 (-)-limacine 278 (-)-limacine-2' α -N-oxide 278 (-)-limacine-2' β -N-oxide 278 (-)-limacine- 2β -N-oxide 278 (+)-limacusine 278 (-)-lindoldhamine 275 liriodenine 20, 151-3, 172, 197, 201, 209 liriodenine methiodide 152 livestock 360, 362 livestock poisonings 336 locoism 360 locoweeds 360 longiberine 15, 186, 216 longine 16, 186, 218 lysosomal storage disease 336, 337, 362 lysosomes 360, 361 (-)-macolidine 274 (-)-macoline 274

magnoflorine 11, 12, 16, 18, 114, 151, 153, 159, 175-82, 183, 184-91, 193-9, 200, 211 (-)-magnoline 274 "Maldronksiekte" 362 mammalian toxicity 336 mammals 360 mangoflorine 191 mannojirimycin 348 α -mannosidase 334, 353, 354, 360, 364 β -mannosidase 334, 353 mannostatin A 365 mass spectrometric fragmentation 325, 326 metastasis 364, 365 methothalistyline 186, 193, 206, 219 methoxyadiantifoline 24, 154, 182, 204, 220 3-methoxyfaurithaline 15, 180, 219 6-methoxyharmalan 142 6-methoxyharman 142 3-methoxyhernandaline 19, 200, 214 3-methoxy-4-hydroxyphenethylamine 112 N-methylargemonine 188, 202, 213 N-methylarmepavine 194, 201, 210 O-methylaromoline 187, 190, 196, 198, 206. 215 O-methylatheroline 201 N-methylcanadine 12, 23, 154, 188, 191, 203, 212 O-methylcassyfiline 198, 200, 212 N-methylcassythine 16, 18, 185, 200, 212 O-methylcassythine 198, 200, 212 (-)-O-methylcissampareine 277 N-methylcoclaurine 119, 120, 124, 149, 154, 155, 179, 194, 201, 209 N-methylcorydaldine 15, 20, 181, 191, 192, 202, 209 O-methylcorypalline 179, 202, 208 N-methyldanguyelline 42, 193, 200, 212 (-)-N-methyl-7-O-demthylpeinamine 275 N-methyl-1-deoxynojirimycin 349, 353 N-methyldihydrothalmiculatimine 100 N-methyl-6,7-dimethoxy-1,2dihydroisoquinolin-1-one 175, 185, 202 209 N-methyl-6,7-dimethoxyisoquinolinium 194, 202, 208

6,7-methylenedioxy-1,2dihydroisoquinoline-1-one 196, 202, 208 2,3-methylenedioxy-6,12-dimethoxytetrahydroberberine 134 2,3-methylenedioxy-4,8,9trimethoxypavinane 51, 198, 202, 213 3,4-methylenedioxy-2,8,9trimethoxypavinane 52 N-methyleschescholtzidine 212 N-methyleschscholtzidine 194, 202 O-methylfaurine 15, 180, 214 2-methylharmine 142 O-methylisoboldine 18, 19, 175, 189, 200, 201, 211 N-methyllargemonine 194 N-methyllaurotetanine 16, 19, 57, 179, 185, 194, 200, 211 2-N-methyllindoldhamine 88 (-)-2-N-methyllindoldhamine 275 O-methyllongiberine 15, 186, 216 N-methylnantenine 193, 197, 200, 212 O-methyloxyacanthine 215 N-methylpalaudinium 193, 201, 210 O-methylpreocoteine 19, 200, 213 N-methylreticuline 183, 201 N-methyltetrahydroberberine 12, 23, 203, 212 N-methylthalbaicaline 43 O-methylthalibrine 15, 16, 26, 179, 184, 186, 191, 192, 206, 216 O-methylthalibrunimine 195, 217 O-methylthalicberine 6, 12, 14, 15, 26, 98, 176, 177, 179, 181 182, 185-7, 188, 189, 190-2, 195, 199, 206, 215 O-methylthalicmidine 18, 200, 212 N-methylthalidaldine 181, 202, 209 O-methylthalifaboramine 67 N-methylthaliglucine 194, 202, 213 N-methylthaliglucinone 194, 202, 213 O-methylthalirunimine 206 N-methylthalistyline 186, 193, 206, 219 O-methylthalmethine 12-14, 26, 104, 188, 189, 191, 195, 206, 215 (-)-O-methylthalmiculine 84, 102 O-methylthalmine 6, 26, 91, 102, 177, 198, 206

methylwarifteine 277 micro-organisms 355 (+)-milonine 277 Moraceae 348, 349, 351 morphinandienone 269 morphinans 15, 21 myo-inositol 17 Myrtaceae 348, 350 nagstatin 351, 354, 366 nantenine 19, 155, 189, 200, 210 nectrisine 347, 353, 364 nematocides 358 nematodes 358 neothalibrine 26, 85, 175, 177, 195, 196, 206, 216 neothalibrine-2' α -N-oxide 85, 106, 177, 206, 216 neuraminidase 370 neurological disorder 362 nicaustrine 249 nojirimycin 316, 346, 348, 353, 355, 357, 358, 365, 368 nojirimycin B 348, 353, 357, 368 nor-13-acety-5-aminoacylbrevifoliol 250 6-noradiantifoline 15 N(2')-noradiantifoline 190 6-noradiantifoline 192 N(2')-noradiantifoline 204, 219 6-noradiantifoline 219 N(2')-noradiantifoline 12 noraminoacylnicotaxine 249 norargemonine 178, 202, 211 norcepharadione B 279 (-)-2'-norcultithalmine 79, 80 (-)-norcycleanine 277 (-)-2'-N-nordaurisoline 275 N-norhernandezine 16, 186 N-2-norhernandezine 216 N'-norhernandezine 195, 197, 206, 216 nor-2\alpha-hydroxy7,2'-deacetoxy-9deacetylaustrospicatine 248 norimeluteine 277 (-)-2-norlimacine 276 (+)-2-norlimacusine 276, 278 nornicaustrine 249 noroconovine 19, 193, 200, 212

2'-noroxyacanthine 86, 87, 107, 177, 206, 215 noroxyhydrastinine 20, 175, 183, 189, 196, 202, 208 (-)-norpanurensine 275 norphysoperuvine 307 norrufescine 275 northalibrine 88, 195, 206, 215 northalibroline 88, 89, 106, 191, 214 N'-northalibrunine 195, 217 N-northalibrunine 206 N(2')-northalicarpine 195, 204, 218 northalicmine 198, 200, 212 northalicthuberine 56, 197, 203, 210 (-)-2'-northalictine 99, 100 2-northalidasine 6, 26, 35, 177, 206, 216 N-northalidezine 16, 26, 186, 206 2'-northaliphylline 90, 105, 107, 177, 206, 215 (-)-2'-northalmiculine 79, 101 2-northalmine 6, 91, 92, 107, 177, 206, 215 nortropane 346, 362, 370 nutritional mediators 340 obaberine 12, 15, 26, 119, 123, 124, 145, 149, 155, 156, 158, 166 167, 177, 187, 189-2, 196, 206, 215 obamegine 12, 156, 187, 190, 196, 206, 215 ocobotrine 15, 21, 180, 182, 202, 210 oconovine 15, 19, 180, 193, 199, 200, 213 ocoteine 19, 179, 181, 185, 186, 188, 197, 198, 200 octahydroindolizine 346, 350, 369 ouregidione 278 N-oxide thalimonine N-oxide 52 oxoaporphines 20, 46, 152, 269 oxobaicaline (7-oxobaicaline) 46, 176, 201, 212 oxobenzylisoquinolines 20 8-oxocoptisine 22, 184, 203, 210 1-oxo-6,7-dimethoxy-Nmethyltetrahydroisoquinoline 189 oxoglaucine 157, 182, 201, 211 oxoglaucine methiodide 157 1-oxo-2-methyl-5-methoxy-6,7methylenedioxy-1,2,3,4-

tetrahydroisoquinoline 28 1-oxo-2-methyl-5,6-methylenedioxy-7methoxy-1,2,3,4tetrahydroisoquinoline 28 oxopurpureine 111 oxothaliadine 15, 192, 214 oxothalibrunimine 195, 206, 217 oxyacanthine 13, 26, 86, 87, 108, 124, 145, 149, 155-8, 167, 177 187-9, 207, 215 oxyberberine 23, 133, 138, 151, 153, 159, 175, 182, 183, 185-7 191, 193, 196, 203, 211 oxycanthine 133 paclitaxel 238, 258 pallidine 15, 21, 179, 180, 202, 210 palmatine 11, 16, 23, 109, 159, 160, 175, 177, 183-91, 193, 195 199, 203, 211, 274 (-)-panurensine 275 paper electrophoresis 322 pareirubrine A 274, 277 pareirubrine B 277 pareitropone 277 pavines 6, 21, 47 (-)-peinamine 275 pennsylpavine 75, 194, 205, 218 pennsylpavoline 75, 194, 205, 217 pennsylvanamine 194, 204, 217 pennsylvanine 179, 194, 195, 204 $1\alpha, 2\beta, 3\alpha, 4\beta, 6\alpha$ pentahydroxynortropane 315 peruvianine 279 phenanthrenes 6, 21, 56 phenylisoserine 251 N-phenyl-2-naphthylamine 108, 183, 184, 204, 209 physoperuvine 307 phytochelatins 113 phytotoxic 358 pipecolic acid 369 piperidines 346, 348 plant interactions 336 platycerine 195, 202, 211 poisoning 361 polyhydroxy-nortropanes 307, 338 Polypodiaceae 348 porcine kidney trehalase 334

potatoes 339 preocoteine 16, 19, 181, 185, 198, 200, 213 preocoteine N-oxide 188, 200, 214 proaporphines 20, 269 pronuciferine 20, 193, 201, 209, 276 protoberberine 6, 22, 115, 116, 131-3, 137, 138, 164, 173, 269, 275 protopine 23, 24, 108, 119, 160-3, 182, 184, 196, 204, 211 protothalipine 24, 196, 199, 204, 213 (+)-pseudopalmatine 276 pseudoprotopine 24, 179, 204, 211 puntarenine 23, 163, 184, 203, 213 Purkinje cells 362 purpureine 19, 200, 213 pyridindolol 371 pyrostatin A 370, 371 pyrrolidine 346, 347 pyrrolines 347 pyrrolizidine 346, 349, 369 reticuline 6, 15, 20, 51, 112, 114, 163, 164, 177, 182, 183, 191 193, 195, 201, 210 revolutinone 6, 28, 177, 195, 208, 216 revolutopine 195, 204, 217 rhamnosidase 367 rhizobial interactions 335 rhizosphere 340, 355 rufescine 275 rugosine 196 rugosinone 16, 20, 183, 185, 196, 201, 211 salbostatin 371 (+/-)saulatine 274 (+)-sciadenine 278 (+)-sciadoferine 278 (+)-sciadoline 278 scoulerine 112 secobisbenzylisoquinoline 6, 28 Shakespeare 238 siastatin B 370 simple isoquinolines 269 sinoacutine 15, 21, 182, 202 Solanaceae 350, 351, 362 α -solanine 339 spicaledonine 245, 250 spicataxine 245, 249 spiradine A 24, 59, 197, 204, 209

spirasine I 24, 197, 204, 212 spirasine II 24, 197, 204, 212 spirasine III 24, 197, 204, 213 spiredine 24, 197, 204, 212 splendidine 275 squarosine 15, 192, 217 stepharine 275, 276, 278 steroidal glycoalkaloids 339 styloconic sensillum 360 subsessiline 279 sucrose 17 swainsonine 306, 320, 339, 340, 350, 352, 354, 358-62, 361 364, 365, 366, 368, 369 swainsonine N-oxide 350 sweet potato 339 synthesis 367 takatonine 11, 190, 199, 201, 212 talcamine 26, 176, 207 taxane 244 taxine A 240, 245, 246, 254, 258, 259, 262 taxine B 240, 245, 246, 255, 262 taxine C 240, 246 taxine I 240, 246 taxine II 240, 246 taxinine II 264 taxoids 238 taxonomic relationship 352 taxuspine H 250, 256 teladiazoline 279 telazoline 279 telikovinone 279 telitoxine 279 tembetarine 183, 201, 211 tetrahydroberberine 133, 138, 164, 175, 203, 210 tetrahydro- β -carbolines 143

tetrahydrocolumbamine 112, 165, 203, 211 tetrahydroprotoberberines 23, 269

tetrahydrothalifendine 181, 203, 210 tetrahydroxy*nor*tropane 312-14, 320 tetrandrine 119, 122-4, 145, 149, 155, 156,

158, 165-8 thalabadensine (thalbadensine) 26, 184, 198, 207, 215 thalactamine 11, 14, 21, 110, 182, 188, 190, 202, 209 thalbadensine 12 thalbaicalidine 43, 43, 176, 200, 213 thalbaicaline 43, 44, 176, 200, 212 thalcimidine 208, 215 thaldimerine 181 thalfabine 180 thalfine 15, 182, 191, 192 thalfine (thalphine) 26, 207, 216 thalfinine 15, 180, 182, 191, 192 thalfinine (thalphinine) 26, 207, 217 thalflavidine 6, 21, 177, 181, 188, 195, 203, 214 thalflavine 14, 21, 28, 29, 181, 182, 188, 202, 209 thalfoetidine 26, 180, 181, 182, 186, 188, 197, 207, 216 thaliadanine 12, 190, 191, 204, 219 thaliadine 19, 189, 191, 200, 214 thaliblastine 168 thalibrine 15, 16, 27, 182, 186, 195, 207, 216 thalibrunimine 195, 207, 216 thalibrunine 196, 217 thalibulamine 6, 63, 75, 177, 204, 218 thalicarpine 13, 15, 25, 112, 140, 168, 175, 178, 179, 181-3, 188 189, 192, 194, 195, 205, 219 thalicberine 6, 12, 14, 27, 98, 186-8, 190, 191, 199, 207, 215 thalicessine 58, 59, 62, 197, 204, 213 thalicflavine 181 thalicmidine 19, 176, 183, 184, 185, 188, 201, 211 thalicmidine N-oxide 188, 200, 212 thalicmine 19, 179, 181, 185, 186, 188, 197, 198, 200 thalicminine 16, 20, 169, 179, 185, 188, 197, 198, 201, 212 thalicrine 25, 187, 190, 196, 198, 206, 215 thalicsiline 62, 110, 169, 197, 204, 214 thalicsimidine 6, 19, 111, 177, 181, 184, 185, 188, 193, 197, 198 200, 213 thalicsimine 175 thalicsine 181, 186, 197, 203, 212 thalicthuberine 21, 56, 57, 58, 179, 190,

196, 198, 199, 203, 211

thalictricine 175, 204, 212 thalictrimine 23, 187, 203, 213 thalictrine 183, 188, 200, 211 thalictrinine 196, 207, 217 thalictrisine 175, 198, 204, 212 thalictrogamine 25, 179, 182, 194, 195, 205, 218 thalictropine 179, 194, 205, 218 thalidasine 6, 15, 27, 35, 36, 81, 82, 93, 109, 111, 169, 175, 177 178, 180, 182, 183, 186-8, 191, 195, 196, 198, 207, 216 thalidasine- 2α -*N*-oxide 83, 93, 107, 177, 207, 218 thalidastine 16, 23, 177, 181, 183, 199, 203, 210 thalidezine 16, 27, 108, 144, 150, 170, 179, 181, 182, 184, 187 193, 198, 207, 216 thalidicine 179, 201, 210 thalidine 179, 210 thalidoxine 179, 205, 218 thalifabatine 170, 180, 205, 219 thalifaberidine 64, 65, 75, 170, 171, 173, 180, 205, 218 thalifaberine 6, 25, 64, 67, 68, 70-4, 170, 171, 173, 177, 180 205, 219 thalifabine 171, 205, 219 thalifaboramine 66, 67, 75, 171, 180, 205, 217 thalifalandine 68, 69, 75, 171, 180, 205, 218 thalifaramine 6, 70, 75, 172, 177, 205, 217 thalifarapine 6, 25, 68, 172, 177, 180, 205, 218 thalifarazine 6, 25, 70, 71, 75, 152, 172, 177, 197, 205, 218 thalifaretine 6, 71, 72, 75, 177, 205, 218 thalifaricine 6, 72, 73, 75, 172, 177, 205, 218 thalifaroline 6, 25, 205, 218 thalifaronine 6, 70, 73, 74, 75, 172, 177, 205, 217 thalifasine 170, 171, 173, 180, 205, 219 thalifaurine 23, 180, 203, 209

thalicthuberine-N-oxide 56

199, 215

thalictine 6, 12, 27, 93, 99, 100, 177, 198,

thalifendine 16, 23, 114, 173, 175, 177, 179, 181, 183-5, 187-90 192-6, 199, 203, 209 thalifendlerine 181, 201, 211 thalifoline 12, 21, 189, 198, 202, 208, 275 thalifortine 93, 94, 107, 183, 207, 215 thaligine 194, 208, 215 thaliglucine 6, 14, 21, 177, 182, 188, 189, 196, 203, 211 thaliglucine metho salt 202, 213 thaliglucinone 11, 12, 22, 186, 187, 189-96, 203, 212 thaliglucinone metho salt 202, 213 thaligosidine 196, 207, 215 thaligosine 6, 12, 196 thaligosine (thalisopine) 95 thaligosine- 2α -N-oxide 94, 95, 103, 107, 178, 207, 217 thaligosinine 16, 27, 180, 182, 185, 196, 207, 216 thaligrisine 12, 190, 207, 215 thalihazine 57, 58, 203, 213 thalilutidine 195, 205, 218 thalilutine 6, 25, 177, 195, 205, 219 thalimonine 47, 49, 51, 52, 53, 54, 55, 198, 202, 213 thalimonine N-oxide A 52, 53, 198, 202, 213 thalimonine N-oxide B 52, 53, 198, 202, 213 thaliphylline 6, 12, 27, 90, 97, 98, 105, 177, 190, 191, 207, 215 thaliphylline-2' β -N-oxide 96, 107, 177, 207, 216 thalipine 13, 25, 182, 188, 194, 195, 205, 218 thalipoline 188 thaliporphine 14, 16, 19, 173, 174, 175, 176, 181, 183, 184, 185 188, 201, 211 thaliporphine N-oxide 188, 200, 212 thalirabine 29, 192, 207, 218 thaliracebine 15, 27, 29, 180, 192, 207, 217 thalirevoline 195, 218 thalirevolutine 195, 219 thalirevolutine (O-methylfetidine) 205 thalirugidine 183, 196, 207, 218 thalirugine 12, 27, 178, 190, 196, 207, 216 thaliruginine 196, 207, 217 thalirugosidine 15 thalirugosine 12 thalirugosinone 6 thalisamine 195, 197, 206, 216 thalisopavine 6, 20, 178, 201, 211 thalisopidine 16, 27, 180, 185, 207, 216 thalisopine 6, 185 thalisopine (thaligosine) 27, 110, 178, 180, 183, 185, 190, 207 216 thalisopine-2a-N-oxide 94, 107, 178, 207, 217 thalisopynine (thalisopinine) 15, 19, 180, 185, 192, 201, 213 thalisopyrine 23, 203, 213 thalistine 15, 27, 29, 192, 207, 218 thalistyline 28, 29, 187, 193, 207, 219 thalistyline dimethiodide 109 thalistyline metho salt 186, 193, 206, 219 thalistyline methochloride 109 thalivarmine 12, 97, 98, 107, 191, 207, 215 thaliximine 175 thalixine 181, 186, 197, 203, 212 thalmelatidine 6, 12, 25, 28, 29, 112, 178, 184, 188, 190-2, 205 219 thalmelatine 13, 25, 112, 179, 183, 188, 190, 195, 205, 218 thalmeline 20, 190, 201, 210 thalmethine 11-14, 27, 104, 188, 191, 207, 214 thalmicrinone 11, 12, 16, 191, 201, 211 thalmiculatimine 6, 99, 101, 107, 178, 207, 214 thalmiculimine 6, 79, 101, 107, 178, 207, 215 thalmiculine 6, 84, 101, 102, 107, 178, 207, 216 thalmidine 26, 188, 206, 215 thalmine 6, 27, 91, 92, 101, 102, 176, 178, 185, 188, 207, 215 thalmineline 6, 12, 15, 25, 178, 188, 190, 191, 192, 205, 220 thalmirabine 15, 27, 179, 192, 207, 218 thalmirine 15, 192, 209 thalphenine 19, 190, 192, 194, 195, 196, 201, 211 thalphenine methine 194 thalpindione 38, 175, 208, 216

thalrugosamine 187, 190, 196, 198, 206, 215 thalrugosaminine 6, 28, 103, 110, 175, 178, 183, 185, 192, 195 196, 208, 217 thalrugosaminine- 2α -N-oxide 95, 103, 107, 178, 208, 218 thalrugosidine 28, 109, 175, 178, 180, 183, 196, 208, 216 thalrugosidine dimethiodide 109 thalrugosine 15, 28, 109, 174, 187, 191, 192, 194, 197, 208, 215 thalrugosine dimethiodide 109 thalrugosinone 28, 34, 35, 36, 38, 178, 197, 208, 217 thalsimidine 198, 208, 215 thalsimine 196, 197, 198, 208, 216 thalsivasine 12, 104, 105, 107, 178, 191, 208, 214 thasivasine 6 therapeutic activity 363 thin-layer chromatography 323 thorthalibroline 206 tlc 365 (-)-tomentocurarine 277 (+)-tomentocurine 277 toxicity 352, 355, 360, 362 (--)-toxicoferine 277 trehalase 353, 354, 366, 370, 371 trehazolin 351, 354, 366 8-trichloromethyldihydro-berberine 187, 191, 193, 203, 214 trichloromethyl-8-dihydropalmatine 274 trideacetylaustrotaxine 247

 $1\alpha, 2\beta, 3\alpha$ -trihydroxy*nor*tropane 310 $1\alpha, 3\alpha, 4\beta$ -trihydroxy*nor*tropane 312 $1\alpha, 2\beta, 7\alpha$ -trihydroxy*nor*tropane 312 trilobinine 19, 175, 201, 211 trimethylsilyl-ether 367 N,O,O-trimethylsparsiflorine 183, 201, 210 2',7,9-trisdeacetylaustrospicatine 248 tropanes 350, 370 tropinone reductase I 327 tropinone reductase II 326 tropoloisoquinolines 269 tuberculosis 367 tubocurarine 277 uskudaramine 12, 75, 191, 205, 218 vacuolation 360, 362 validoxylamine A 371 valiolamine 371 veronamine 181, 201, 214 Virgil 238 (-)-warifteine 277 Weir vine 337 Winterstein 243 Winterstein acid 251, 263 xanthoplanine 183, 201, 212 (-)-xilopinine 276 β -xylosidase 334 yew poisoning 260 yohimbine 131

Bold page numbers refer to tables and illustrations

Abuta 271 A. antioquiana 271 A. aristeguietae 271 A. barbata 271 A. brevifolia 271 A. bullata 271, 274 A. candollei 271 A. chocoënsis 271 A. colombiana 271 A. concolor 274 A. convexa 271 A. fluminum 271 A. grandifolia 271, 274 A. grisebachii 271, 274, 275 A. imene 271, 275 A. longa 271 A. mycetandra 271 A. negroensis 271 A. obovata 271 A. pahni 271, 275 A. panurensis 271, 275 A. racemosa 271 A. rufescens 271 A. rufescens/splendida 271, 275 A. sandwithiana 271, 275 A. seemanni 271. A. selloana 271 A. solimoesensis 271 A. splendida 271, 275 A. vaupesensis 271 A. velutina 271 Acherontia atropus 338, 360 Actinomycetes 371 Actinoplanes 371 Acyrthosiphon pisum 358 Aglaonema spp. 348 Agrius convolvuli 360 Agrobacterium 368 A. rhizogenes 307, 320 A. tumefaciens 309 Alaonema spp. 348

Alexa spp. 349, 350, 352, 358 A. grandiflora 349 Amanita virosa 370 Anatolian Thalictrum species 11 Angylocalyx spp. 348, 349 Anomospermum 272 A. andersonii 272 A. bolivianum 272 A. cholranthum 272 A. grandifolium 272 A. matogrossense 272 A. reticulatum 272 A. solimoesanum 272 A. stevermarkii 272 Arachniodes standishii 348 Astragalus spp. 336, 350, 360 A. lentiginosus 350, 358 A. oxyphysus 369 Atropa belladonna 307, 320, 321, 328, 350 Austrotaxus 242 A. spicata 242, 247, 248, 249, 250 **Bacillus amyloliquefaciens** 348 B. polymyxa 348 **B.** subrutilis 368

B. subtilis 348, 368 Baphia racemosa 370 Berberis 126 B. poiretii 125 Borismene 273 B. japurensis 273

Callosobruchus maculatus 360 Calystegia japonica 350 C. foveolata 272 C. glaucescens 272 C. grandifolia 272 C. olivascens 272, 276 C. prumnoides 272 C. sepium 307, 309, 320, 334, 337, 350, 351 Campanula rotundifolia 348 Caryomene 272 Castanospermum 352, 358 C. australe 336, 347, 349, 350, 360, 361, 365, 369 Casuarina equisetifolia 350 Chondrodendron 273 C. candicans 278 C. limaciifolium 276 C. microphyllum 273, 276 C. platiphyllum 273, 276 C. tomentosum 273, 276, 277 C. toxicoferum 277 Cionomene 272 C. javariensis 272 Cissampelos 272 C. andromorpha 272 C. fasciculata 272 C. glaberrima 272 C. grandifolia 272 C. laxiflora 272 C. ovalifolia 272, 277 C. pareira 272, 277 C. sympodialis 272, 277 C. tropaeolifolia 272 C. verticillata 272 Cocculus 272 C. laurifolius 272 Convolvulaceae 320 Convolvulus arvensis 307, 320, 327, 334, 337, 350, 351 Cooperia pedunculata 115 Coptis teeta 132 Ctenocolum tuberculatum 360 Curarea 273 C. candicans 273, 278 C. cuatrecasasii 273 C. tecunarum 273 C. toxicofera 273 Datura stramonium 328 D. wrightii 351 Derris elliptica 348 Disciphania 273 D. calocarpa 273 D. convolvulacea 273 D. cryptobotrya 273 D. cubijensis 273

D. dioscoreoides 273 D. ernstii 273 D. heterophylla 273 D. inversa 273 D. juliflora 273 D. killipii 273 D. lobata 273 D. modesta 273 D. peltata 273 D. remota 273 D. sagittaria 273 D. sarcostephana 273 D. smithii 273 D. tessmannii 273 D. tricaudata 273 Echinochloa crusgalli 336 Elephantomene 272 E. eburnea 272 Endospermum spp. 348 Erycibe obtusifolia 308 Erythroxylum novogranatense 308 Eugenia spp. 348 E. jambolana 350 Fagopyrum esculentum 349 Globodera pallida 358 Hyacinthoides non-scripta 348, 362 Hyoscyamus niger 321, 328, 351 Hyperbaena domingensis 272 H. hassleri 272 H. oblongifolia 272 Ipomoea 337, 362 I. alba 321 I. batatas 339, 351 I. carnea 321, 337 I. polpha 320, 337 I. sp. 350 I. sp. aff. calobra 350 I. sp. Q6 [aff. calobra] 320, 337

Kitasatosporia kifunense 351

Lactuca sativa 336

I. tricolor 321

Lobelia sessilifolia 349 Locusta migratoria 359 Lonchocarpus spp. 348, 358 L. sericeus 349 Mahonia trifoliata 115 Mandragora officinarum 321, 351 Mechanitis polymnia 338 Medicago sativa 336 Meloidogyne 358 Metarhizium anisopliae 350, 366 Micromonospora 351 Moraceae 321 Morus 358 M. alba 321, 348, 349, 351, 365, 370 M. bombycis 348, 349 Mycobacterium phlei 297 Nectria lucida 347 Nephthytis poissoni 348, 349 Nicandra physalodes 321, 351 Nicotiana 321 **Odontocarya** 273 O. acuparata 273 O. arifolia 273 O. asarifolia 273 O. deminuta 273 O. dielsiana 273 O. diplobotrya 273 O. duckei 273 O. echinus 273 O. emarginata 273 O. floribunda 273 O. hastata 273 O. klugii 273 O. krukoviana 273 O, macarenae 273 O. magnifolia 273 O. mallosperma 273 O. micrantha 273 O. miersiana 273 O. petiolaris 273 O. rusbyi 273 O. steyermarkii 273 O. syncretica 273 O. tamoides 273 O. tenacissima 273

O. truncata 273 O. ulei 273 O. wullschlaegelii 273 O. zuliana 273Omphalea diandra 348, 349, 360 Orthomene 272 **O. hirsuta** 272 O. prancei 272 O. Schomburgkii 272 O. verruculosa 272 Oxytropis spp. 336, 350, 360 O. ochrocephala 361 Panicum miliaceum 336 Phellodendron amurense 128, 159 Phymatotrichum omnivorum 115 Physalis alkekengi 351, 370 P. a. var. francheti 322, 328 P. peruviana 307 Pyrus communis 358 Rhizobium 352 R. meliloti 307, 331, 336, 355 Rhizoctonia leguminicola 350, 368 Salmonella typhimurium 298 Sanguinaria canadensis 115 Schistocerca gregaria 359 Sciadotenia 274 S. acutifolia 274 S. amazonica 274 S. brachypoda 274 S. campestris 274 S. cayennensis 274, 278 S. duckei 274 S. eichleriana 274, 278 S. javariensis 274 S. mathiasiana 274 S. nitida 274 S. pachnococca 274 S. paransis 274 S. pubistaminea 274 S. ramiflora 274 S. sagotiana 274 S. solimoesana 274

O. tripetala 273

- S. sprucei 274
- 5. spruce: 214
- S. toxifera 274, 278

Scopolia carniolica 321, 351 Solanaceae 321 Solanum 351, 362 S. bonariensis 338 S. dimidiatum 322, 338, 362 S. dulcamara 322 S. fastigiatum 338 S. kwebense 322, 338, 362 S. melongena 339 S. tuberosum 321, 338, 339 Spodoptera littoralis 360 Streptomyces 346, 348, 365, 366, 370 S. albus 371 S. amakusaensis 351 S. hygroscopicus 371 S. lavandulae 348, 349 S. lydicus 348 S. nojiriencis 348 S. roseochromogenes 348 S. verticillus 370 Streptoverticillium verticillus 365 Swainsona 336 S. canescens 350, 360, 366 Synandropus 273 S. membranaceus 273 Tangsongcao 13 Taxus 242 T. baccata 242, 246, 248 T. brevifolia 242, 250 T. canadensis 242 T. celebica 242 T. cuspidata 242, 246, 248, 250 T. floridana 242 T. globosa 242 T. wallichiana 242, 248 T. x hunnewelliana 242 T. x media 242, 248, 249 Telitoxicum 272 T. duckei 272 T. glaziovii 272, 278, 279 T. inopinatum 272 T. krukovii 272, 279 T. minutiflorum 272 T. negroense 272 T. peruvianum 272, 279 T. rodriguesii 272 Thalictri Herba 118

Thalictrum acteaefolium 175 T. acutifolium 19, 23, 40, 175 T. alpinum 175 T. amurense 175 T. aquilegifolium 11, 12, 18, 26, 176 T. baicalense 18, 22, 43, 46, 176 T. buschianum 19, 26, 27, 176 T. calabricum 176 T. collinum 18, 22, 26, 27, 176 T. contortum 176 T. cultratum 6, 16, 18-28, 34, 35, 63, 70-3, 75, 79, 81, 83-6, 90, 91, 93, 94, 96, 99, 101, 103, 104, 118, 176 T. dasycarpum 178 T. dasycarpum Fisch. and Lall. var. hypoglaucum 178 T. delavayi 18, 19, 21, 22, 23, 24, 25, 26, 27, 178 T. dioicum 179 T. dipterocarpum 113 T. faberi 64, 66-71, 73-5, 139, 170-2, 179 T. fargesii 26, 27, 169, 180 T. fauriei 15, 18, 19, 21-3, 75, 140, 180 T. fendleri 181 T. filamentosum 181 T. flavum 11, 18, 19, 21, 22, 25-8, 113, 181 T. foetidum 11, 15, 18, 20-8, 182 T. foliolosum 118, 183 T. fortunei 25, 93, 183 T. glandulosissimum 18, 22–7, 143, 149, 150, 170, 183 T. glaucum 184, 196 T. hazarica 19, 21, 57, 184 T. hernandezii 184 T. honanense 22-5, 184 T. ichengense 18, 19, 45, 108, 184 T. isopyroides 11, 16, 18-20, 27, 185 T. javanicum 20, 22, 23, 27, 28, 118, 185 T. kuhistanicum 19, 26, 27, 185 T. lankesteri 22, 23, 25, 185 T. longipedunculatum 18, 19, 22, 26, 27, 186 T. longistylum 15, 25-8, 186 T. lucidum 11, 187 T. minus 11, 13, 14, 18-3, 25-7, 112-14, 187

T. m. L. race B 191 T. m. L. race C 15, 18, 19, 24-8, 192 T. m. L. spp. majus (T. minus L. var. elatum) 18-28, 50, 188 T. m. L. ssp. majus 188 T. m. L. var. adiantifolium 18, 19, 21, 22, 23, 24, 188 T. m. L. var. hypoleucum 25, 26, 114, 115, 190, 198 T. m. L. var. majus 11, 12, 188 T. m. L. var. microphyllum 11, 190 T. m. L. var. minus 11, 12, 18, 22-7, 88, 97, 104, 191 T. orientale 11 T. pedunculatum 18-20, 42, 193 T. petaloideum 193 T. podocarpum 28, 193 T. polygamum 75, 193 T. purpurascens 22, 194 T. reniforme 118 T. revolutum 194 T. rhynochocarpum 118 T. rochebrunianum 88, 195 T. rugosum 17, 34, 112, 115-17, 196

T. sessile 18, 20, 22, 24, 25, 58, 62, 152, 169, 172, 173, **197** T. simplex 11, 18, 21, 41, 47, 49, 51, 53, 56, 197 T. squarrosum 27, 198 T. strictum 52, 198 T. sultanabadense 11, 12, 18, 21, 22, 25-7, 198 T. thalictroides 16 T. thunbergii 198 T. tuberiferum 18, 199 T. tuberosum 112 T. uchiyamai 22-4, 199 T. urbaini 199 Triclisia gillettii 286 Ungulipetalum 274 U. filipendulum 274 Urania fulgens 348, 360 Xanthocercis zambesiaca 349 Xiphinema diversicaudatum 358

T. sachalinense 197

115–17, 196 Xylopia danguyella 42

Printed in the United Kingdom by Lightning Source UK Ltd. 116989UKS00001B/53

