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Spatial database systems has been an active area of research over the past 20
years. A large number of research efforts have appeared in literature aimed at
effective modelling of spatial data and efficient processing of spatial queries.
This book investigates several aspects of a spatial database system, and in-
cludes recent research efforts in this field. More specifically, some of the top-
ics covered are: spatial data modelling; indexing of spatial and spatio-temporal
objects; data mining and knowledge discovery in spatial and spatio-temporal
databases; management issues; and query processing for moving objects. There-
fore, the reader will be able to get in touch with several important issues that
the research community is dealing with. Moreover, each chapter is self-con-
tained, and it is easy for the non-specialist to grasp the main issues.

The authors of the book’s chapters are well-known researchers in spatial data-
bases, and have offered significant contributions to spatial database literature.
The chapters of this book provide an in-depth study of current technologies,
techniques and trends in spatial and spatio-temporal database systems research.
Each chapter has been carefully prepared by the contributing authors, in order
to conform with the book’s requirements.

Intended Audience

This book can be used by students, researchers and professionals interested in
the state-of-the-art in spatial and spatio-temporal database systems. More spe-
cifically, the book will be a valuable companion for postgraduate students studying
spatial database issues, and for instructors who can use the book as a refer-
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ence for advanced topics in spatial databases. Researchers in several related
areas will find this book useful, since it covers many important research direc-
tions.

Prerequisites

Each chapter of the book is self-contained, to help the reader focus on the
corresponding issue. Moreover, the division of the chapters into sections is very
convenient for those focusing on different research issues. However, at least a
basic knowledge of indexing, query processing and optimization in traditional
database systems will be very helpful in more easily understanding the issues
covered by each chapter.

Overview of Spatial Database Issues

Spatial database management systems aim at supporting queries that involve
the space characteristics of the underlying data. For example, a spatial data-
base may contain polygons that represent building footprints from a satellite
image, or the representation of lakes, rivers and other natural objects. It is
important to be able to query the database by using predicates related to the
spatial and geometric characteristics of the objects.

To handle such queries, a spatial database system is enhanced by special tools.
These tools include new data types, sophisticated indexing mechanisms and
algorithms for efficient query processing that differ from their counterparts in a
conservative alphanumeric database. The contribution of the research commu-
nity over the past 20 years includes a plethora of significant research results
toward this goal.

An important research direction in spatial databases is the representation and
support of the time dimension. In many cases, objects change their locations
and shape. In order to query past or future characteristics, effective represen-
tation and query processing techniques are required. A spatial database en-
hanced by tools to incorporate time information is called a spatio-temporal
database system. The applications of spatio-temporal databases are very sig-
nificant, since such systems can be used in location-aware services, traffic
monitoring, logistics, analysis and prediction. Indexing techniques for pure spa-
tial datasets cannot be directly applied in a spatio-temporal dataset, because
time must be supported efficiently.
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Apart from supporting queries involving space and time characteristics of the
underlying dataset, similarity of object movement has also been studied in lit-
erature. The target is to determine similar object movement by considering the
trajectories of the moving objects. The similarity between two object trajecto-
ries is a very important tool that can help reveal similar behavior and define
clusters of objects with similar motion patterns.

The research area of data mining studies efficient methods for extracting knowl-
edge from a set of objects, such as association rules, clustering and prediction.
The application of data mining techniques in spatial data yielded the interesting
research field of spatial data mining. Recently, spatio-temporal data mining has
emerged, to take into consideration the time dimension in the knowledge ex-
traction process.

Several of the aforementioned research issues in spatial databases are covered
by this book.

Book Organization

The book is composed of 13 chapters, organized in five major sections accord-
ing to the research issue covered:

I) Modelling and Systems

II) Indexing Techniques

III) Query Processing and Optimization

IV) Moving Objects

V) Data Mining

In the sequel we describe briefly the topics covered in each section, giving the
major issues studied in each chapter.

Section I focuses on modelling and system issues in spatial databases.

Chapter I identifies properties that a spatial data model, dedicated to support
spatial data for cartography, topography, cadastral and relevant applications,
should satisfy. The properties concern the data types, data structures and spa-
tial operations of the model. A survey of various approaches investigates mainly
the satisfaction of these properties. An evaluation of each approach against
these properties also is included.

In Chapter II the authors study the impact of the Web to Geographic Informa-
tion Systems (GIS). With the phenomenal growth of the Web, rich data sources
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on many subjects have become available online. Some of these sources store
daily facts that often involve textual geographic descriptions. These descrip-
tions can be perceived as indirectly georeferenced data – e.g., addresses, tele-
phone numbers, zip codes and place names. This chapter’s focus is on using
the Web as an important source of urban geographic information. Additionally,
proposals to enhance urban GIS using indirectly georeferenced data extracted
from the Web are included. An environment is described that allows the extrac-
tion of geospatial data from Web pages, converts them to XML format and
uploads the converted data into spatial databases for later use in urban GIS.
The effectiveness of this approach is demonstrated by a real urban GIS appli-
cation that uses street addresses as the basis for integrating data from different
Web sources, combining the data with high-resolution imagery.

Section II contains three chapters that study efficient methods for indexing
spatial and spatio-temporal datasets.

Chapter III studies object-relational indexing as an efficient solution to enable
spatial indexing in a database system. Although available extensible indexing
frameworks provide a gateway for seamless integration of spatial access methods
into the standard process of query optimization and execution, they do not fa-
cilitate the actual implementation of the spatial access method. An internal en-
hancement of the database kernel is usually not an option for database develop-
ers. The embedding of a custom block-oriented index structure into concurrency
control, recovery services and buffer management would cause extensive imple-
mentation efforts and maintenance cost, at the risk of weakening the reliability
of the entire system. The authors present the paradigm of object-relational
spatial access methods that perfectly fits with the common relational data model
and is highly compatible with the extensible indexing frameworks of existing
object-relational database systems, allowing the user to define application-spe-
cific access methods.

Chapter IV contains a survey of quadtree uses in the image domain, from im-
age representation to image storage and content-based retrieval. A quadtree is
a spatial data structure built by a recursive decomposition of space into quad-
rants. Applied to images, it allows representing image content, compacting or
compressing image information, and querying images. For 13 years, numerous
image-based approaches have used this structure. In this chapter, the authors
underline the contribution of quadtree in image applications.

With the abundance of low-cost storage devices, a plethora of applications that
store and manage very large multi-dimensional trajectory (or time-series)
datasets have emerged recently. Examples include traffic supervision systems,
video surveillance applications, meteorology and more. Thus, it is becoming
essential to provide a robust trajectory indexing framework designed especially
for performing similarity queries in such applications. In this regard, Chapter V
presents an indexing scheme that can support a wide variety of (user-
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customizable) distance measures, while at the same time guaranteeing retrieval
of similar trajectories with accuracy and efficiency.

Section III studies approximate computation of distanced-based queries and
algorithms, cost models and optimization for spatial joins.

Chapter VI studies the problem of approximate query processing for distance-
based queries. In spatial database applications, the similarity or dissimilarity of
complex objects is examined by performing distance-based queries (DBQs) on
data of high dimensionality (a generalization of spatial data). The R-tree and its
variations are commonly cited as multidimensional access methods that can be
used for answering such queries. Although the related algorithms work well for
low-dimensional data spaces, their performance degrades as the number of
dimensions increases (dimensionality curse). To obtain acceptable response time
in high-dimensional data spaces, algorithms that obtain approximate solutions
can be used. This chapter reviews the most important approximation techniques
for reporting sufficiently good results quickly. The authors focus on the design
choices of efficient approximate DBQ algorithms that minimize response time
and the number of I/O operations over tree-like structures. The chapter con-
cludes with possible future research trends in the approximate computation of
DBQs.

Chapter VII describes algorithms, cost models and optimization techniques for
spatial joins. Joins are among the most common queries in Spatial Database
Management Systems. Due to their importance and high processing cost, a
number of algorithms have been proposed covering all possible cases of in-
dexed and non-indexed inputs. The authors first describe some popular meth-
ods for processing binary spatial joins, and provide models for selectivity and
cost estimation. Then, they study the evaluation of multiway spatial joins by
integrating binary algorithms and synchronous tree traversal. Going one step
further, the authors show how analytical models can be used to combine the
various join operators in optimal evaluation plans.

Section IV deals with moving objects databases, and studies efficient algo-
rithms, management issues and applications.

Chapter VIII presents the applications of Moving Objects Databases (MODs)
and their functionality. Miniaturization of computing devices and advances in
wireless communication and sensor technology are some of the forces propa-
gating computing from the stationary desktop to the mobile outdoors. Some
important classes of new applications that will be enabled by this revolutionary
development include location-based services, tourist services, mobile electronic
commerce and digital battlefield. Some existing application classes that will
benefit from the development include transportation and air traffic control,
weather forecasting, emergency response, mobile resource management and
mobile workforce. Location management, i.e., the management of transient
location information, is an enabling technology for all these applications. Loca-
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tion management also is a fundamental component of other technologies, such
as fly-through visualization, context awareness, augmented reality, cellular com-
munication and dynamic resource discovery. MODs store and manage the lo-
cation as well as other dynamic information about moving objects.

Chapter IX presents several important aspects toward simple and incremental
nearestneighbor searches for spatio-temporal databases. More specifically, the
authors describe the algorithms that already have been proposed for simple and
incremental nearest-neighbor queries, and present a new algorithm. Finally, the
chapter studies the problem of keeping a query consistent in the presence of
insertions, deletions and updates of moving objects. Applications of MODs have
rapidly increased, because mobile computing and wireless technologies nowa-
days are ubiquitous.

Chapter X deals with important issues pertaining to the management of moving
objects datasets in databases. The design of representative benchmarks is closely
related to the formal characterization of the properties (i.e., distribution, speed,
nature of movement) of these datasets; uncertainty is another important aspect
that conditions the accuracy of the representation and therefore the confidence
in query results. Finally, efficient index structures, along with their compatibil-
ity with existing software, is a crucial requirement for spatio-temporal data-
bases, as it is for any other kind of data.

Section V, the final section of the book, contains two chapters that study the
application of data mining techniques to spatio-temporal databases.

Recent interest in spatio-temporal applications has been fueled by the need to
discover and predict complex patterns that occur when we observe the behav-
ior of objects in the three-dimensional space of time and spatial coordinates.
Althoughcomplex and intrinsic relationships among the spatio-temporal data limit
the usefulness of conventional data mining techniques to discover the patterns
in the spatio-temporal databases, they also lead to opportunities for mining new
classes of patterns. Chapter XI provides a survey of the work done for mining
patterns in spatial databases and temporal databases, and the preliminary work
for mining patterns in spatio-temporal databases. The authors highlight the unique
challenges of mining interesting patterns in spatio-temporal databases. Two
special types of spatio-temporal patterns are described: location-sensitive se-
quence patterns and geographical features for location-based service patterns.

The spatio-temporal prediction problem requires that one or more future values
be predicted for time series input data obtained from sensors at multiple physi-
cal locations. Examples of this type of problem include weather prediction,
flood prediction, network traffic flow, etc. Chapter XII provides an overview of
this problem, highlighting the principles and issues that come into play in spatio-
temporal prediction problems. The authors describe recent work in the area of
flood prediction to illustrate the use of sophisticated data mining techniques that



   xiii

have been examined as possible solutions. The authors argue the need for fur-
ther data mining research to attack this difficult problem.

In Chapter XIII, the authors review similarity learning in spatial databases.
Traditional exact-match queries do not conform to the exploratory nature of
GIS datasets. Non-adaptable query methods fail to capture the highly diverse
needs, expertise and understanding of users querying for spatial datasets. Simi-
larity-learning algorithms provide support for user preference and therefore
should be a vital part in the communication process of geospatial information.
More specifically, the authors address machine learning as applied in the opti-
mization of query similarity. Appropriate definitions of similarity are reviewed.
Moreover, the authors position similarity learning within data mining and ma-
chine-learning tasks. Furthermore, prerequisites for similarity-learning techniques
based on the unique characteristics of the GIS domain are discussed.

How to Read This Book

The organization of the book has been carefully selected to help the reader.
However, it is not mandatory to study the topics in their order of appearance. If
the reader wishes to perform an in-depth study of a particular subject then he/
she could focus on the corresponding section.

What Makes This Book Different

The reader of this book will get in touch with significant research directions in
the area of spatial databases. The broad field of topics covered by important
researchers is an important benefit. In addition to pure spatial concepts, spatio-
temporal issues also are covered, allowing the reader to make his/her compari-
sons with respect to the similarities and differences of the two domains (i.e.,
spatial and spatio-temporal databases). Each chapter covers the corresponding
topic to a sufficient degree, giving the reader necessary background knowledge
for further reading.

The book covers important research issues in the field of spatial database sys-
tems. Since each book chapter is self-contained, it is not difficult for the non-
expert to understand the topics covered. Although the book is not a textbook, it
can be used in a graduate or a postgraduate course for advanced database
issues.
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A Closing Remark

The authors have made significant efforts to provide high-quality chapters, de-
spite space restrictions. These authors are well-known researchers in the area
of spatial and spatio-temporal databases, and they have offered significant con-
tributions to the literature. We hope that the reader will gain the most out of this
effort.

Yannis Manolopoulos, PhD

Apostolos N. Papadopoulos, PhD

Michael Vassilakopoulos, PhD

Thessaloniki, Greece

2004
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Chapter I

Survey on
Spatial Data

Modelling Approaches
Jose R. Rios Viqueira, University of A Coruña, Spain

Nikos A. Lorentzos, Agricultural University of Athens, Greece

Nieves R. Brisaboa, University of A Coruña, Spain

Abstract

The chapter identifies properties that a spatial data model, dedicated to
support spatial data for cartography, topography, cadastral and relevant
applications, should satisfy. The properties concern the data types, data
structures and spatial operations of the model. A survey of various
approaches investigates mainly the satisfaction of these properties. An
evaluation of each approach against these properties also is included.
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Introduction

A lot of research has been undertaken in recent years for the management of
spatial data. Initial approaches in the area of GIS exhausted their efforts in the
precise geometric representation of spatial data and in the implementation of
operations between spatial objects. Subsequently, only primitive effort was made
on the association of spatial data with conventional data. As a consequence, the
management of geographic data had to be split into two distinct types of
processing, one for the spatial data and another for the attributes of conventional
data and their association with spatial data. Effort to define a formal and
expressive language for the easy formulation of queries was almost missing and,
therefore, too much programming was required. Finally, even the processing of
spatial data lacked an underlying formalism. On the other hand, efficient
processing of conventional data can only be achieved from within a Database
Management System (DBMS). Besides, due to its complexity, the management
of spatial data is not possible from within a conventional DBMS.

Because of this, a new research effort was undertaken in the area of spatial
databases. Such effort covered various sectors, such as the design of efficient
physical data structures and access methods, the investigation of query process-
ing and optimization techniques, visual interfaces and so forth. All these
approaches inevitably addressed spatial data modelling issues in an indirect
way, in that spatial data modelling was not their primary objective. However, a
direct way can also be identified, in that research has also been undertaken
dedicated solely to the definition of data models.

This chapter surveys and evaluates spatial data modelling approaches in either
of these types. Wherever applicable, the restriction of spatio-temporal models to
the management of spatial data is also reviewed. In particular, properties
concerning the data types considered, the data structures used and the opera-
tions supported by a data model for the management of cartography, topography,
cadastral and relevant applications, are identified in the background section. A
relevant review and evaluation of spatial data modelling approaches, GIS-
centric and DBMS-centric, follow in the next two sections. Future trends are
discussed in the fifth section, and conclusions are drawn in the last section.

Background

Traditional cartography, topography, cadastral and relevant applications require
the processing of data that can geometrically be represented on a 2-d plane as
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a point, line or surface. For the objectives of this chapter, every such piece of
data, and any set of them as well, is termed spatial data or (spatial) object. This
data is distinguished from conventional data, such as a name (for example, of
a city, river, lake), a number (population of a city, supply of a river, depth of a
lake), a date, and so forth. Data modelling requires specifying at minimum data
types, data structures and operations.

The same is true for spatial data. However, spatial data have much individuality.
To provide a few examples, consider spatial data of the three distinct common
types: point, line and surface. Consider also Figure 1, which depicts some
commonly used operations on spatial data (termed in this chapter spatial
operations). It is then noted that the result of an operation between two spatial
objects does not necessarily yield only one such object, but it may consist of two
(Figure 1(a) case (ii), Figure 1(b) cases (ii) and (iv), Figure 1(c) case (ii)), more
than two (Figure 1(c) case (iv)) and perhaps none (Figure 1(c) case (iii)). Also,
the data type of the result objects may not necessarily match that of the input
object(s) (Figure 1(a) case (iv) and Figure 1(c) case (iv)). Finally, the result of
an operation may also contain objects that are combinations of surfaces with
lines termed, for the objectives of this chapter, hybrid surfaces (Figure 1(a)
case (iv), 1(c) case (iv)).

To face this individuality and at the same time define closed spatial operations,
many distinct spatial data modelling approaches have been proposed. Many of
them have the following characteristics: (i) They adopt set-based data types,
such as set of points, set of surfaces, and so forth. (ii) They use either complex
data structures to record spatial data or two types of such structures, one to
record spatial and another to record conventional data. (iii) They define
operations that apply to spatial data of one specific type; for example, Overlay
only between surfaces. Other operations discard part of the result; for example,
the point and line parts produced by the spatial intersection of two surfaces
(Figure 1(c) case (iv)). However, a data model should be simple, and enable a
most accurate mapping of the real world (Tsichritzis & Lochovsky, 1982). As
opposed to the above observations, it is estimated that a spatial model should
satisfy the following properties:

• Spatial Data Types: It should support the point, line and surface types,
since in daily practice people are familiar with the use of these objects.

• Data Structures: They should be simple. As opposed to the First Normal
Form (1NF) relational model, for example, it is noticed that a nested model,
though more powerful, is more difficult to both implement and use.
Similarly, it is penalizing for the user to process two distinct data structures.

• Spatial Operations: They should apply to structures containing any type
of spatial data. Two examples: It is practical to (i) apply Overlay to lines,
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Figure 1. Illustration of operations on spatial data
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and (ii) apply an operation to two spatial objects of a different type, such
as to compute the intersection of a surface with a line. Finally, pieces of data
should not be discarded from the result of an operation.

Relevant to the operations that should be supported, it is estimated that for
topographic, cartographic, cadastral and relevant applications, with which this
chapter is mainly concerned, a spatial data model should support at least those
in Figure 1. Indeed, many researchers have proposed the operations in Figure
1(a)-(d), which also match actual user requirements. Fewer researchers have
proposed the remaining operations, but the authors estimate that they have
general practical interest. Some explanations on these operations are the
following: As opposed to Spatial Union, Fusion (Figure 1(a)) returns the results
indicated only in the case that the pieces of conventional data, with which spatial
data are associated, are identical. The subtraction of a point or line from a
surface should return the surface itself (Figure 1(b) case (iii)). Indeed, it does not
make sense to consider surfaces with missing points or lines. A similar remark
applies to the subtraction of points from lines. Tables are used in the four
Overlay operations to show the association of spatial with conventional data.
Finally, the illustration of Spatial Buffer (Figure 1(e)) considers a distance of
d = 1.

A brief review of various approaches for the management of spatial data, which
follows, focuses mainly on the spatial data types considered, data structures used
and support of the spatial operations shown in Figure 1. Wherever estimated to
be necessary, more operations of a data model are presented. An evaluation of
each approach also is given in Figure 2. The evaluation is based on the following
criteria: (i) Support of point, line and surface types. (ii) Use of simple data
structures, as opposed to the use of complex or more than one type of structure.
(iii) Application of an operation to all types of spatial data, without discarding any
part of the result. In Figure 2, a ‘Y’, ‘N’ or ‘P’ denotes, respectively, that a
property is satisfied, not satisfied or satisfied partially. ‘N/A’ denotes that the
property does not apply to the approach under consideration. Finally, ‘?’ denotes
that satisfaction of the property is not clear from the literature. Note that the
evaluation was a hard task, due to the lack of formalism. To ease discussion, the
approaches have been divided into two major classes, GIS-centric and DBMS-
centric (IBM, 1998), and are reviewed separately in the next two sections.
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GIS-Centric Approaches

GIS-centric approaches are dedicated solely to the management of spatial data
(IBM, 1998). Specialized data structures also are used to associate spatial with
conventional data, but the handling of these structures takes place outside the
GIS.

In one informal approach (Tomlin, 1990), map layers (termed simply maps) and
operations on them are described at a conceptual level. A map m can be seen as
a set of pairs (p, v), where p is a location (a 2-d point in the plane) and v is a
number assigned to p, which indicates a property of p. Distinct maps are used
to record distinct properties of locations, such as height, degree of pollution, and
so forth. The approach enables recording properties of areas that change
gradually from one location to another, termed continuous changes. Spatial
data types are not defined. A zone of m is a set of pairs Z = {(p

1
, v), (p

2
, v),

… , (p
k
, v)} (adjacent or not) with identical values on the second coordinate. An

open-ended set of operations is proposed. They all apply to maps and produce
a new map. The approach classifies operations into four categories: (i) Local:
The value of each location p depends on the value of the same location p in one
or more input maps. (ii) Zonal: The result value of each location p depends on
the values of the locations contained in the zone of p in one or more input maps.
(iii) Focal: The result value of each location p depends on the values of the
locations contained in the neighbourhood of p in one or more input maps. (iv)
Incremental: They extend the set of Focal operations by taking into account the
type of zone at each location. One of the local operations resembles Full
Overlay.

Implementations based on Tomlin (1990) are Grass (2002), Keigan Systems
(2002), Lorup (2000), McCoy and Johnston (2001), and Red Hen Systems
(2001). A map is now modelled as a 2-d raster grid data structure, which
represents a partition of a given rectangular area into a matrix of a finite set of
squares, called cells or pixels. Each cell represents one of Tomlin’s locations
(Figure 3). All these approaches consider only surfaces. Examples of operations
on grids are shown in Figure 3. Note that the functionality of operation Combine
(Figure 3(f)) resembles that of Full Overlay on surfaces.

In Erwig and Schneider (1997), a map (called spatial partition) of a given area
is defined as a set of non-overlapping, adjacent surfaces. Each such surface is
associated with a tuple of conventional data. Surfaces associated with the same
conventional data merge automatically into a single surface. Point and Line
types are not defined. Three primitive operations are defined and, based on them,
a representative functionality for map management is achieved (Figure 4), as
proposed earlier in Scholl and Voisard (1989). One operation is Full Overlay
(Figure 4(a)). A similar approach is the restriction to spatial data management
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Figure 3. Examples of operations on raster grids

 

of the spatio-temporal model (d’Onofrio & Pourabbas, 2001). It considers maps
of surfaces or lines, but it does not achieve the functionality of all the operations
in Figure 4.

Point, simple polyline and polygon data types (Figure 5(a-c)) are proposed in
Hadzilacos and Tryfona (1996). A map (called layer) M is defined as a mapping
from a set of spatial values G to the Cartesian product of a set of conventional
attributes (M: G → C

1
,C

2
,...,C

n
). Hence, a map can be seen as a relation with

just one spatial attribute G. Operations on maps also are defined. Operation
Attribute derivation (Spatial computation) enables the application of conven-
tional (spatial) functions and predicates. Operation Reclassification merges
into one all those tuples of a layer that have identical values in a given attribute
and also are associated to adjacent spatial objects (Figure 4(b)). It can apply only
to layers of type simple polyline or polygon. Operation Overlay (Figure 4(a))
or Full Overlay (Figure 1(d)) applies to two maps L

1
 and L

2
 of any data type.

Its result is the union of three sets, (i) I, consisting of the pieces of spatial objects
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both in L
1
 and L

2
, (ii) L, consisting of the pieces of spatial objects in L

1
 that are

not inside the spatial objects in L
2
, and (iii) R, consisting of the pieces of spatial

objects in L
2
 that are not inside the spatial objects in L

1
. A similar approach is

the restriction to spatial data management of the spatio-temporal model (Kemp
& Kowalczyk, 1994).

Figure 4. Representative operations on maps
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There are some other approaches, similar to the previous one. Differences are
the following: The ESRI (2003) approach considers data types of the form point,
set of points, set of lines and set of surfaces (Figure 5(a-c)) and a large set of
operations. To illustrate operation Overlay, consider layer L

1
, with objects of any

type; layer L
2
, consisting of only surfaces; and the sets I, L and R of the previous

paragraph. Then each of the Overlay operations is associated with one of the
result sets I, I ∪ L, I ∪ R, I ∪ L ∪ R. Operation Erase yields a new map with
the pieces of the spatial objects in L

1
 that are outside all the surfaces in L

2
.

Update yields the Superimposition (Figure 4(d)) of two compatible maps.
Other functionalities are Buffer (Figure 1(c)); Clipping (Figure 4(e)); Cover
(Figure 4(f)), one that yields the Voronoi diagram of a set of points; and operation
Reclassification. In place of the ESRI (2003) point data type, the commercial
GIS described in Intergraph Corp. (2002) supports a type of the form set of
spatial objects. Finally, this is the only one supported in MapInfo Corp. (2002)
and Bentley Systems (2001).

Figure 5. Representation of spatial objects in various approaches

 



Survey on Spatial Data Modelling Approaches  11

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DMBS-Centric Approaches

DBMS-centric approaches form the third generation of spatial management
systems (IBM 1998), in which spatial data is simply another data type within a
DBMS environment. The approaches consider the data structures of some
underlying data model (relational, object-oriented, and so forth) that usually
incorporates spatial data types. This way, they enable the association of spatial
with conventional data and take full advantage of the database technology. At
the same time, they lack the flexibility of GIS-centric approaches for the
management of maps. Operations are usually defined on either spatial objects or
data structures.

The approach in Güting and Schneider (1995) is actually independent of a
specific underlying data model. Hence, it restricts only to the definition of spatial
data types and to operations on them. It considers a vector-based spatial
representation and defines three spatial data types, of the form set of points, set
of lines and set of surfaces (Figure 5(a-c)). Operation Union (Minus) yields
only that part of the spatial union (Figure 1(a)) (spatial difference, Figure 1(b))
of two objects whose type matches that of the input objects. Operations
Intersection and Common_border yield specific parts of the spatial intersection
(Figure 1(c)) of two objects. Contour applies to an element of type set of
surfaces and returns its boundary of a set of lines type (see operation
Boundary, Figure 1(e)). Assuming the existence of an underlying conventional
data model, the following operations apply to data structures that associate
spatial with conventional data: Decompose decomposes a non-connected spatial
object into its connected components. Fusion computes the spatial union of all
the spatial objects that share identical conventional values, and yields a result
similar to that of Fusion in Figure 1(a). Finally, Overlay computes the spatial
intersection of every element of type set of surfaces in one data structure with
every such element in another, and yields a result similar to that of relation IO,
that is, of the result of Inner Overlay that is depicted in Figure 1(d).

Similar approaches are the restriction to spatial data management of the spatio-
temporal approaches in Güting, Böhlen, Erwig, Jensen, Lorentzos, Schneider and
Vazirgiannis, (2000) and Worboys (1994). Spatial data types and operations
similar to Güting and Schneider (1995) are also defined in Güting et al. (2000),
except that now an infinite spatial representation is considered (Figure 5(d)). A
point data type is also supported. Finally, the model defined in Worboys (1994)
considers only one spatial data type whose elements are collections of points,
non-overlapping straight-line segments and non-overlapping triangles. Set op-
erations Union, Difference and Intersection can be applied to spatial objects,
obtaining, respectively, their spatial union, difference and intersection. Finally,
operation Boundary is presented informally.
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Spatial data are recorded in relations that satisfy 1NF in Larue, Pastre and
Viémont (1993), Roussopoulos, Faloutsos and Sellis (1988), Egenhofer (1994),
Scholl and Voisard (1992), Gargano, Nardelli and Talamo (1991), Chen and
Zaniolo (2000), and Böhlen, Jensen and Skjellaug (1998). They either define a
relational algebra or they extend SQL by functions and relational operations.
They are outlined below.

Only one spatial type, GEOMETRY, is supported in Larue et al. (1993). An
element of this type is a set of spatial objects, either points, polylines or polygons
(Figure 5(a-c)). Functions compute the spatial union, difference and intersection
(Figures 1(a-c)). An aggregate function yields the spatial union of a set of spatial
objects. Although Roussopoulos et al. (1988) and Egenhofer (1994) do not
address spatial data modelling issues, they consider point, line and surface data
types and relational SQL extensions. Solid and spatial object types are also
considered in Egenhofer (1994) types. Two functions are also defined in it, called
Complementation and Boundary. The boundary of a line is a set of points. That
of a point is the empty set. Types of the form set of points, set of lines and set
of surfaces are considered in Scholl and Voisard (1992). Four functions enable
computing specific parts of the spatial intersection of two spatial objects of
specific data types. Another function returns the element of type set of lines that
forms the boundary of an object of type set of surfaces. A raster-based spatial
representation is considered in Gargano et al. (1991). If S is the set of all raster
cells (pixels) in a grid, an element of a single data type, GEOMETRY(S), is
defined as a set of sets of elements in S (Figure 5(e)). The empty set and non-
connected surfaces are valid spatial objects. Operation G-Compose merges the
spatial objects in some attribute of a relation R, provided that they are in tuples
with identical values in some other attribute of R. Operation G-Decompose
decomposes each spatial object to so many tuples as the number of cells it
consists of. A last operation is similar to G-Compose, but it also enables applying
aggregate functions to non-spatial attributes.

In Chen and Zaniolo (2000), a spatio-temporal SQL extension is proposed, whose
restriction to spatial data management enables evaluating an SQL statement for
each of the triangles a spatial object is composed of.  Similarly, in the restriction
to spatial data management of the spatio-temporal SQL extension (Böhlen et al.,
1998), two types of spatial attributes, explicit and implicit, are considered,
which enable evaluating an SQL statement for each point of a spatial object.

Data types of the form point, simple polyline and polygon without holes are
considered (Figure 5(a-c)) and many-sorted algebras are defined in Güting
(1988) and Svensson and Huang (1991). In Güting (1988), a data type AREA is
defined as a polygon without holes with one additional restriction – that the
intersection of two polygons, recorded in the same column, may not be another
polygon. Operation Intersection enables obtaining part of the result of the
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spatial intersection of pairs of spatial objects that are recorded in different
relations. If the input relations contain only areas, then the operation is called
Overlay and the result contains only areas. In Svensson and Huang (1991), every
operation on 1NF structures is implicitly followed by the application of operation
Unnest, thus always resulting in a 1NF relation. Operations Union, Difference
and Intersection yield, respectively, specific parts of the spatial union, differ-
ence and intersection of two spatial objects of the same data type, either simple
polyline or polygon without holes. Operation Boundary yields the boundary
lines of elements of a polygon type. Further functionality includes the buffer area
of a spatial object (Figure 1(e)), the split of a polygon with respect to a line, the
split of a line with respect to a point and the Voronoi diagram of a set of points.

Relational approaches with either set-valued or relation-valued attributes are
Chan and Zhu (1996); Grumbach, Rigaux and Segoufin (1998); and Kuper,
Ramaswamy, Shim and Su (1998). Thus, spatial predicates and functions can be
applied to relations, on these attributes. In Chan and Zhu (1996), data types of
the form point (Figure 5(a)), simple polyline (g

4
 in Figure 5(b)), polyline

(Figure 5(b)), polygon without holes (g
7
 in Figure 5(c)) and polygon (Figure

5(c)) are considered. Further, an element of type LINE* is either a point or a
polyline, and an element of type REGION* is either a polygon or a LINE*. Sets
of elements of these types are also valid types. Many primitive operations are
defined. Fusion computes the spatial union of a set of spatial objects of any data
type (Figure 1(a)). The result is a set of spatial objects of the same data type.
Operation Intersection computes the spatial intersection of two spatial objects
of any type (Figure 1(c)). In the general case, the result is a set of spatial objects
of type REGION*. Additional functionality includes Envelope (Figure 1(e)),
Buffer (Figure 1(e)), Split (Svensson & Huang, 1991), Voronoi diagram, the
set of paths that link two points in a network of lines, the holes of surfaces, and
so forth.

Particular cases of nested-relational approaches are the Constraint-Based
Models proposed in Grumbach et al. (1998) and Kuper et al. (1998). At a
conceptual level of abstraction, a spatial object is represented by a (possibly
infinite) relation with attributes that are interpreted as the dimensions of an n-d
space. At a lower level of abstraction, however, such a relation is represented
by a finite set of constraints. Spatial union, difference and intersection are
achieved by the relational operations Union, Except and Intersect. Operation
Unionnest applies the relational operation Union to all the relations of a relation-
valued attribute, provided that these relations belong to tuples whose values for
another set of attributes match. The behaviour of operation Internest is similar
to that of Unionnest, except that Intersection is now applied instead of Union.
Further functionality in both of these approaches includes the Boundary of
surfaces and spatial Complementation.
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Data structures, which are more complex than those of a nested relation, are
used in van Roessel (1994); Scholl and Voisard (1989); and Yeh and de Cambray
(1995). Generally, these structures are defined recursively and spatial operations
are applied to them. The approach in van Roessel (1994) is close to that of
Gargano et al. (1991), discussed earlier. Differences are as follows: Points and
infinite subsets of R2 points are valid data types. Specifically, two distinct set
of point spatial data types are defined, one for connected and another for non-
connected subsets of R2. Operations Fold and Unfold, borrowed from research
on temporal databases (Lorentzos & Johnson, 1988), resemble, respectively, G-
Compose and G-Decompose in Gargano et al. (1991). Based on those and the
four types of Codd’s outer natural join, four types of Overlay operations are
defined whose functionality is similar to those in ESRI (2003). In Scholl and
Voisard (1989), an elementary region is defined as a subset of R2. A region is
either elementary or a set of elementary regions. Functions to compute the
spatial union, difference and intersection of two regions are defined in terms of
the respective set operations. A map is defined as a relation with at least one
attribute of some region data type. Based on predicates, functions and primitive
operations, it is shown how representative operations between maps can be
achieved (Figure 4). Note however that contrary to Figure 4(f), operation
Overlay is supported only between maps of the same cover. Finally, the
characteristics of the restriction to spatial data management of the spatio-
temporal model defined in Yeh and de Cambray (1995) match those of Larue et
al. (1993) discussed above.

Object-relational models inherit the characteristics of the 1NF model but, at the
same time, they incorporate object-oriented capabilities (ISO/IEC, 2002; OpenGIS,
1999; Oracle Corp., 2000; IBM, 2001b,2001a; PostgreSQL, 2001; Vijlbrief &
van Oosterom, 1992; Park et al., 1998; Cheng & Gadia, 1994). They consider
spatial data types and possibly complex data structures and methods. For the
management of various types of complex data, a set of class libraries of the SQL
1999 object types are considered in the SQL Multimedia and Application
Packages (SQL/MM) (ISO/IEC, 2002). The part for spatial data management
includes a hierarchy of classes that enables the manipulation of 2-d spatial objects.
Data type ST_POINT (ST_LINESTRING, ST_POLYGON) consists of vector
points (polylines, polygons) (Figure 5(a-c)). Type ST_MULTIPOINT
(ST_MULTILINESTRING, ST_MULTIPOLYGON, ST_GEOMCOLLECTION)
consists of collections of points (polylines, polygons, spatial objects of any type).
An element of type ST_GEOMETRY is an element of any of these types. The
boundary of an ST_POLYGON is a set of ST_POLYLINES, and the boundary
of an ST_POLYLINE is the (possibly empty) set of its end points. The boundary
of an ST_POINT element is the empty set. Some of the many methods it
considers compute the spatial union, difference and intersection of objects
(Figures 1(a-c)). In the general case, the result is a possibly empty element of
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type ST_GEOMCOLLECTION. Additional functionality includes the buffer of
a spatial object (Figure 1(e)). The Simple Feature Specification for SQL
(OpenGIS, 1999), proposed by the OpenGIS consortium, is a similar approach.
Extensions of commercial DBMS, implementing to some extent the previous
standards, are provided in Oracle (Oracle Corp., 2000), Informix (IBM, 2001b)
and DB2 (IBM, 2001a). Only one spatial data type of the form set of spatial
objects is supported in Oracle Corp. (2000). Heterogeneous collections of
primitive spatial objects are not supported as spatial objects in IBM (2001a,
2001b). This leads to limitations of the functionality of spatial operations. In IBM
(2001b), an aggregate function, st_dissolve, enables computing the spatial union
of a group of spatial objects whose primitive atomic elements are of the same
data type. An Open-Source Object Relational DBMS, whose design has been
based on Postgres, is PostgreSQL (2001). Its primitive data types are of the form
point, infinite straight line, line segment, rectangle, simple polyline (g

4
 in

Figure 5(b)) and polygon without holes. Many functions and predicates are
supported as methods, but their functionality is very primitive. Some example
functions return the intersection point of two line segments, the intersection box
of two boxes and a path defining the boundary of a polygon. Approaches with
similar characteristics are Vijlbrief and van Oosterom (1992) and Park, Lee,
Lee, Ahn, Lee and Kim (1998). Finally, a query language for spatio-temporal
databases is proposed in Cheng and Gadia (1994), in the context of an object
relational model (ORParaDB). In its restriction to spatial data management, the
set R of all spatial objects is a parametric element. Such elements are closed
under the set operations Union, Difference, Intersection and Complementa-
tion. Relational operations Union, Except and Intersection are applied to the
parametric elements of tuples.

In object-oriented approaches, data structures and methods are combined in the
definition of classes. A hierarchy of classes is provided as a general tool for the
design of spatial applications. A spatial data structure is incorporated in the
model as the data structure of a class. Spatial operations (Figure 1) are
incorporated as methods of classes. Application-specific classes, with spatial
capabilities, are defined as subclasses of the hierarchy provided by the system.
One of these approaches is the restriction to spatial data management of the
spatio-temporal approach (Voigtmann, 1997). One hierarchy of classes supports
the representation and management of 2-d and 3-d spatial data. Elementary
features are vector or raster objects. Vector classes represent points (Figure
5(a)), simple polylines (Figure 5(b)) and polygons (Figure 5(c)). Class Solid
represents 3-d polyhedra. Raster elements are represented by classes Profile,
Grid and Lattice. A Feature is elementary or a collection of features. A
GeoObject combines a set of non-spatial properties with a collection of at least
one feature. User classes with spatial functionality are defined as subclasses of
GeoObject. SpatialObject is a feature or a GeoObject. Functions and predi-
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cates for the manipulation of spatial data are defined as methods of classes in this
hierarchy. Operations Touch, Overlap and Cross enable obtaining those parts
of the spatial intersection of two objects for which a relevant predicate evaluates
to true. Their functionality is similar to that of Spatial Intersection (Figure 1(c)).
The boundary of a point is the empty set. The boundary of a polyline is the set
of its end-points. The boundary of a polygon is a set of polylines. Further spatial
functionality includes Buffer (Figure 1(e)). Many other object-oriented models
have also been proposed, some of which are Balovnev, Breunig, and Cremers
(1997), Clementini and Di Felice (1993), Ehrich, Lohmann, Neumann and Ramm
(1998), Günther and Riekert (1993), and Manola and Orenstein (1986).

Based on the fact that none of the previous approaches satisfies all the
requirements for spatial data management that were outlined in the Background
section, another spatial data model has been formalised in Viqueira (2003), that
satisfies them all. Its fundamental characteristics are outlined briefly below, and
relevant examples are shown in Figure 6.

A finite grid of points is initially considered as an underlying discrete 2-d space.
A quantum point, then, is defined as a set of just one point of the grid (any point
in Figure 6). A pure quantum line can be  horizontal (object (i)) or vertical
(object (ii)). It is the smallest line segment that can be considered on the
underlying finite grid. Similarly, a pure quantum surface is the smallest surface
that can be considered (object (iii)). A quantum line is a pure quantum line or
a quantum point. A quantum surface is a pure quantum surface or a quantum
line.

Figure 6. Spatial quanta and spatial data types
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Based on spatial quanta, five spatial data types are formalized. Each of them
consists of all the R2 points of the union of connected spatial quanta. POINT type
consists of all the quantum points (any point in Figure 6). An element of PLINE
(pure line) type is composed of one or more connected pure quantum lines
(objects (i), (ii), (iv) and (v)). An element of PSURFACE (pure surface) type
is composed of one or more connected pure quantum surfaces (objects (iii), (vi),
(vii) and (viii)). Object (vii) is a surface with a hole and object (viii) is a hybrid
surface. An element of LINE (line) type consists of all the elements of either a
POINT or PLINE type. Finally, an element of SURFACE (surface) type
consists of all the elements of either LINE or PSURFACE type. Hence, the
model supports directly the point, line and surface data types. All these types
are set-theoretically closed, that is, lines with missing points and surfaces with
missing lines or points are not valid objects. Hybrid surfaces are also valid
objects. This property enables the modelling of spatial data of practical interest.
The empty set is not a valid spatial object.

The model considers 1NF relations. A relation may have one or more attributes
of a spatial data type. Under such an attribute of a SURFACE type it is possible
to record spatial data whose geometric representation can be either that of a
point or a line or a surface. Codd’s relational algebra has been extended by two
operations, namely, Unfold and Fold. Based on all these operations and on some
spatial predicates, some more relational algebra operations have been defined
that achieve the functionality of the operations in Figure 1. In other words, spatial
operations actually reduce to operations on relations. Subsequently, a map can
be seen as one or more relations that contain spatial data. All the operations are
closed. They apply to any type of spatial data and to any combination of such
types. Finally, every operation yields all the spatial objects and no part of such
an object is missing. For example, spatial intersection yields all the spatial objects
in Figure 1(c) case (iv). Overall, the model provides a clear understanding of the
management of spatial data.

Although the model has been defined for the management of 2-d spatial data, its
extension to n-d data is straightforward. Further, the indication is that it can also
be used for the management of continuous spatial changes (Viqueira, Lorentzos,
& Brisaboa, 2003). The model also enables the uniform management of any type
of data. Indeed, an SQL:1999 extension (Viqueira, 2003), enables the manage-
ment of conventional, temporal, spatial and spatio-temporal data by the same set
of operations. The pseudo-code developed in Viqueira (2003) shows that the
model can be implemented. However, a DBMS should provide data indepen-
dence. Due to this, an efficient implementation may consider a vector-based
approach at the physical level, in spite of the fact that the model is closer to
raster-based approaches.
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Future Trends

As already reported, object-relational models inherit characteristics of the 1NF
model. At the same time, they incorporate object-oriented capabilities in that
spatial data types are defined as abstract data types, which integrate (possibly
complex) data structures and methods. Standards for these models are available
today (ISO/IEC, 2002; OpenGIS, 1999), but they are restricted to the manage-
ment of 2-d spatial data. Hence, standards for at least 3-d spatial data have to
be developed, preceded by relevant research.

Relevant to continuous changes in space, it is noticed that, so far, there are only
informal approaches and implementations. Hence, research work is still required
in the formalization of such a model. The estimation is that the same is also true
for spatio-temporal data models, despite the many models that have been
proposed. It is also noticed that many applications are concerned with the
management of spatial networks. Perhaps it is worth investigating this manage-
ment from within a DBMS.

Finally, the management of spatial data is not yet satisfactorily simple for such
end-users as cartographers and others. Hence, the anticipation is that friendly
graphical user interfaces will have to be developed on top of DBMS that handle
spatial data.

Conclusions

Properties were identified concerning the data types considered, the data
structures used and the operations supported by a spatial data model that is
intended to support spatial data for cartography, topography, cadastral and
relevant applications. A survey of various approaches investigated mainly the
satisfaction of these properties. Each approach was also evaluated against these
properties.
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Chapter II

Integrating Web Data
and Geographic
Knowledge  into

 Spatial Databases

Abstract

With the phenomenal growth of the World Wide Web, rich data sources on
many different subjects have become available online. Some of these
sources store daily facts that often involve textual geographic descriptions.
These descriptions can be perceived as indirectly georeferenced data – for
example, addresses, telephone numbers, zip codes and place names. In this
chapter we focus on using the Web as an important source of urban
geographic information and propose to enhance urban Geographic
Information Systems (GIS) using indirectly georeferenced data extracted
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from the Web. We describe an environment that allows the extraction of
geospatial data from Web pages, converts them to XML format and uploads
the converted data into spatial databases for later use in urban GIS. The
effectiveness of our approach is demonstrated by a real urban GIS
application that uses street addresses as the basis for integrating data from
different Web sources, combining the data with high-resolution imagery.

Introduction

With the popularization of the Web, a huge amount of information has been made
available to a large audience (Abiteboul, Buneman, & Suciu, 2000). In some
cases, the information available in a Web site, such as pages containing
information on restaurants, theaters, movies and shops, concern mostly commu-
nities that dwell in a specific neighborhood (Buyukkokten, Cho, Garcia-Molina,
Gravano, & Shivakumar, 1999). Furthermore, these sites often provide indirectly
georeferenced data such as addresses, telephone numbers, zip codes, place
names and other textual geographic descriptions. By indirectly georeferenced
data we mean spatial data with no associated coordinate (x,y) data. Neverthe-
less, this kind of data can be converted to positional data, using, for example,
address matching functions (Arikawa, Sagara, & Okamura, 2000). Indeed, it can
be observed that indirectly georeferenced data abound on the Web. Thus, under
this perspective, the Web can be seen as a large geospatial database that often
provides up-to-date, regionally relevant information.

In spite of being publicly and readily available, Web data can hardly be properly
queried or manipulated as, for instance, data available in traditional and spatial
databases (Florescu, Levy, & Mendelzon, 1998). Almost all Web data are
unstructured or semistructured (Abiteboul et al., 2000), and cannot be manipu-
lated using traditional database techniques. Web sources are usually constructed
as HTML documents in which data of interest (for example, public facilities) is
implicit. The structure of these documents can only be detected by visual
inspection and is not declared explicitly. In most cases, such data are mixed with
markup tags, other strings and in-line code; the structure of most data on the Web
is only suggested by presentation features. Besides, when looking for specific
information on the Web, users are generally faced with the problem of having to
access various distinct and independent Web sites to obtain scattered comple-
mentary pieces of information. Typically, this occurs in situations where the
required information cannot be found in a single Web source. For example,
suppose many different Web sites provide information about restaurants in a city,
each site with its own informational content. Someone who wants to get
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complete information on all restaurants must access these various sites many
times. This leads to a great need for information integration tools and techniques.
Methods to allow a correct match of related data contents from several distinct
sites are particularly required.

In order to overcome this problem, a possible strategy is to extract data from Web
sources to populate databases for further handling; for instance, by using special
programs called wrappers that identify data of interest and map them to some
suitable format (Florescu et al., 1998; Laender, Ribeiro-Neto, Silva, & Teixeira,
2002b). As shown in this chapter, an analogous strategy can be applied to extract
geographic context from Web pages to populate spatial databases, thus providing
means for supporting new location-based Web services.

Information about cities is currently being accumulated as online digital content
both in urban GIS and in local Web pages. Urban GIS stores physical, political
and socio-economic information about cities, such as the street network,
neighborhood boundaries and demographic information; Web pages store daily
life information that can be relevant to local Web users (Hiramatsu & Ishida,
2001). We argue that it is possible to enhance urban GIS using indirectly
georeferenced data and information extracted from the Web. The resulting data
can be used to build new GIS applications or to update spatial databases.

Data acquisition and updating in urban environments are costly and time-
consuming. In developed countries, especially in the United States, there are
usually governmental nationwide efforts to generate and to maintain information
infrastructure elements, such as address databases. The US Census Bureau, for
instance, maintains and distributes at a very low cost its Topologically Inte-
grated Geographic Encoding and Referencing (TIGER) files (USCB, 2000),
in which street addresses are coded as a set of attributes for segments of street
centerlines. The result is a considerable amount of freely available structured
geospatial data that can be used to locate points of interest in a very straightfor-
ward manner. In emergent countries, on the other hand, the situation is quite the
opposite, because of the associated costs and the lack of policies that enforce the
updating and integrity of geographic databases.

In this chapter, we present a software environment that allows the extraction of
geospatial data from Web pages. The solution also converts extracted data to a
suitable format (in our implementation, XML), and uploads it into spatial
databases for later use in urban GIS. This is achieved by geocoding the data
using addresses and other elements in the urban GIS as locators for each data
item. Before the geocoding process, data extracted from multiple Web sources
must be integrated, eliminating duplicate references to the same urban entities
or phenomena. There are various techniques that look for identities among
objects in order to promote integration of various sources (Cohen, 2000; Garcia-
Molina, Quass, Papakonstantinou, Rajaraman, Savig, Ullman, & Widom, 1997;
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Guha, Jagadish, Koudas, Srivastava, & Yu, 2002; Tejada, Knoblock, & Minton,
2001). We propose an identification approach based on information retrieval
techniques (Baeza-Yates & Ribeiro-Neto, 1999). Our approach focuses specifi-
cally on the integration of data from distinct Web sources, urban GIS and high-
resolution imagery, using street addresses as the basis for integration.

The remainder of this chapter is organized as follows: First we characterize the
background of our research and recent related work. Next we describe our
approach to extract address data from Web sources and to integrate data from
multiple sources. This is followed by an implemented case study, which
integrates Web data and GIS in a real application for the city of Belo Horizonte,
Brazil. Furthermore, we describe a new Web site that provides geographic
information on restaurants, hotels and other locations of community interest, and
that has been created using data extracted from different sources. Finally, we
present our conclusions and future work.

Background

Recently, many research efforts have been conducted on the recognition and use
of geospatial information from Web sites. Kambayashi, Cheng, and Lee (2001)
divide these efforts into three categories. The first category uses maps as a user-
friendly interface for the Web, thus making it possible to handle geographic data
through usual Web browsers. This approach is called map-enhanced Web
applications (Hiramatsu & Ishida, 2001; Jones, Purves, Ruas, Sanderson,
Sester, van Kreveld, & Weibel, 2002; McCurley, 2001). The second category
exploits geographic location information found on Web pages. This information
consists of place names, latitude/longitude pairs, postal addresses and so on, used
to classify and to index Web pages (Arikawa et al., 2000; Buyukkokten et al.,
1999; Ding, Gravano, & Shivakumar, 2000; Jones et al., 2002). The third
category focuses on the integration of Web information and geographic knowl-
edge (Kambayashi et al., 2001).

Some approaches belong to more than one category due to their comprehensive-
ness. Buyukokkten et al. (1999) studied the use of several possible geographic
keys for the purpose of assigning site-level geographic context. They analyzed
records from WHOIS services, combined them with the hyperlink structure of
the Web and were able to infer the geography of the Web at the site level. Ding
et al. (2000) extended this approach by introducing techniques for automatically
computing the geographical scope of Web sources based on the textual content
of the resources, as well as on the geographical distribution of hyperlinks to them.
They have implemented a geographically-aware search engine that downloads
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and indexes the full contents of 436 online newspapers based in the US. In the
Spatial Media Fusion project (Arikawa et al., 2000), map data is used as a basis
for integrating various kinds of multimedia data on the Web using spatial keys,
defined as location data or place names. They use spatial dictionaries to connect
and convert spatial data and to make links between various multimedia contents.

The work of Hiramatsu and Ishida (2001) proposes an augmented Web space
that integrates GIS facilities and Web services to support everyday life in a
metropolitan area. This augmented Web space consists of home pages, hyperlinks
and generic links that represent geographical relations between home pages.
McCurley (2001) investigated different approaches to discovering geographic
context for Web pages, and described a navigational tool for browsing Web
resources by geographic proximity. To use the Web as a geographic knowledge
base for advanced GIS, Kambayashi et al. (2001) focused on two kinds of
factors, namely geowords (place names) and non-geowords, as found on a
Web page. On the basis of these two word domains, they examined co-existence
and association rules by applying data mining methods.

The Building Finder Web service is a demonstration application that has been
developed using a .NET framework as part of a project on composing Web
sources (Thakkar, Knoblock, Ambite, & Shahabi, 2002). It allows a user to input
an area of interest, then provides a satellite image of the area overlapped by
polygons and graphical texts depicting houses and streets. However, its integra-
tion plan is pre-defined and very limited.

These experiments show that discovery and exploitation of geographic informa-
tion in Web pages is quite feasible, and provides a useful new paradigm for the
navigation and retrieval of Web information. SPatially-aware Information
Retrieval on the InTernet(SPIRIT) (Jones et al., 2002) is a European project
that will develop a spatially-aware Web search engine with a geographically-
intelligent user interface. The main goal of this project is to create tools and
techniques to help people find information that relates to specific geographical
locations.

In addition to the initiatives described in this section, there are some commercial
search tools that have recently started offering a geographic search capability,
where it is possible to locate places of interest in the vicinity of a given address
and to navigate on the selected Web sites. Examples includeDotGeo
(www.dotgeo.org); InfoSpace (www.infospace.com); Northern Light GeoSearch
(www.northernlight.com); WhereOnEarth (www.whereonearth.com); and Yahoo
(www.yp.yahoo.com ). However, these search tools have been built to locate
business Web pages that are already stored in their database.

Since Web sources may overlap or contain replicated data, adequate integration
of such sources after the data extraction process contributes to reducing the
geocoding effort. Object identification is a problem of central interest in multiple
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data sources integration, since it is necessary to identify those objects that should
be matched together. Information integration systems like TSIMMIS (Garcia-
Molina et al., 1997), Infomaster (Genesereth, Keller, & Duschk, 1997), Informa-
tion Manifold (Levy, Rajaraman, & Ordille, 1996) and WebView (Arantes,
Laender, Golgher, Silva, 2001) manage objects from multiple information sources,
but do not offer a general method to determine semantically similar objects. A
possible approach to solve this problem in such systems is by using the so-called
Skolem function that creates “logical identifiers” for the objects involved
(Abiteboul et al., 2000).

Information retrieval (IR) techniques have also been used to find objects that
correspond to different descriptions of the same real world object (similar
identities). The vector space model (Baeza-Yates & Ribeiro-Neto, 1999) is the
most used technique, because it has a good performance when we consider
generic object collections. WHIRL (Cohen, 2000) is a database management
system that supports similarity joins among database relations with free text
attribute values. It uses the vector space model to determine the similarity among
text attributes. Active Atlas (Tejada et al., 2001) is an object identification
system that also uses the vector space model to establish the mapping between
objects of two sources. It learns to tailor mapping rules, through limited user
input, to a specific application domain.

There are other approaches that look for similarities among objects (Gravano,
Ipeirotis, Jagadish, Koudas, Muthukrishnan, & Srivastava, 2001; Lujn-Mora &
Palomar, 2001). Golgher, Silva, Laender and Ribeiro-Neto (2001) describe a
strategy that uses a pre-existing repository containing data on a given domain to
automatically generate examples for extracting data from Web sources on the
same domain. This approach uses a number of heuristics to recognize the
intersection among data in the source repository and the target sites. Embley,
Jackman and Xu (2001) present a framework for discovering direct matches
between sets of source and target attributes in an integration process. The
information about potential matches from various facets of metadata is combined
to generate and place confidence values on potential attribute matches. Guha et
al. (2002) study the problem of integrating XML data sources through correla-
tions realized as join operations. This work shows how edit metrics (Navarro,
2001) and other metrics that quantify distance between trees can be incorporated
in a join framework.

The integration approach described in this chapter also adopts similarity tech-
niques taken from the IR field (Carvalho & Silva, 2003). However, while the
approaches proposed by Cohen (2000) and Tejada et al. (2001) can be applied
only to objects with a flat structure, ours provides a more general framework for
object identification that can be applied to more complex objects.
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Another problem of great interest in multiple data sources integration is schema
matching. It consists of establishing a mapping between object attributes from
different sources. A survey on automatic schema matching is presented by
Rahm and Bernstein (2001). Our approach does not address the matching
schema problem. We assume that the mapping between object attributes from
different sources is previously given.

Regarding the recognition and use of geospatial information: Our approach
differs from the ones just mentioned because we use Web data as a source for
the improvement of geographic knowledge on a city, which includes being able
to populate and enrich urban GIS databases using information extracted directly
from the Web. Our main motivation is to take advantage of Web data, a rich
source of local information, as well as to offer an alternative for collecting and
processing new data, since data acquisition costs are a very important issue
(Laurini, 2001).

Obtaining Spatial Information from
Web Sources

Challenges and Procedure

To create an environment for integrating Web pages to spatial location informa-
tion, we had to meet several challenges. The first one is to extract indirectly
georeferenced data in textual form (such as postal addresses) from the contents
of Web pages. We stress that such information, when available, is implicit and
occurs as any other ordinary string mixed with HTML markup tags. In the GIS
literature, the process of recognizing geographic context is referred to as
geoparsing, and the process of assigning geographic coordinates is referred to
as geocoding (McCurley, 2001). This section discusses the efforts to geoparse
and to geocode Web pages. The extracted addresses act as keys to the geocoder,
which in turn must resort to a previously available data set corresponding to the
city’s addressing database in order to obtain coordinates.

Another challenge involves the identification of similar objects from different
Web sources, since objects can exist in different formats and structures.
Establishing ways for transforming the extracted spatial location information –
which is found in the form they are generally understood by the public – to the
form they are stored in a typical GIS is another challenge to be achieved.

The basic procedure in our approach is to (1) crawl Web sites to collect pages
containing data of interest, (2) geoparse the collected pages to extract geo-
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Figure 1. Wrapper overview

 

graphic indication and relevant data, (3) make the data available in a suitable
format (in our case, XML), (4) integrate the Web data that belong to the same
domain, (5) geocode the addresses, thus obtaining coordinate data, (6) update the
GIS database entity data using these coordinates, and (7) integrate information
within the GIS from several geospatial data sources.

The next section describes how steps 2 and 3 can be accomplished by deploying
the Data Extraction By Example (DEByE) approach to automatically extract
semistructured data (Laender, Ribeiro-Neto, & Silva, 2002a). This approach is
more convenient for our application because it lets the user specify a target
structure for the data to be extracted. Furthermore, the user might be interested
in only a subset of the information encoded in the page. Moreover, DEByE does
not require the user to describe the inherent structure of a whole page. In the
following we not only describe steps 2 and 3, but also steps 4 and 5.

The DEByE Tool

DEByE is a tool that has been developed by the UFMG Database Group to
generate wrappers for extracting data from Web pages. The problem of
generating a wrapper for Web data extraction can be stated as follows: Given
a Web page S

0
 containing a set of implicit objects, determine a mapping W that

populates a data repository R with the objects in S
0
. The mapping W must also

be capable of recognizing and extracting data from any other page S
i
 similar to

S
0
. We use the term similar in a very empirical sense, meaning pages provided

by a same site or Web service. In this context, a wrapper is a program that
executes the mapping W (Figure 1).

DEByE is based on a visual paradigm that allows the user to specify a set of
examples for the objects to be extracted. Example objects are taken from a
sample page of the same Web source from which other objects will be extracted.
By examining the structure of the Web page and the HTML text surrounding the
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example data, the tool derives an Object Extraction Pattern (OEP), a set of
regular expressions that includes information on the structure of the objects to
be extracted and also the textual context in which the data appear in the Web
pages. The OEP is then passed to a general-purpose wrapper that uses it to
extract data from new pages in the same Web source, provided that they have
structure and contents similar to the sample page (Laender et al., 2002a).

DEByE provides a user interface based on the paradigm of nested tables used,
which is simple, intuitive and yet powerful enough to describe hierarchical
structures that are very common in data available on the Web. This interface
comprises two main windows (see Figures 2 and 3): the upper window (also
called the source window), where the sample pages are displayed, and the lower
window (also called the table window), which is used to assemble example
objects. The user can select pieces of data of interest from the source window
and “paste” them on the respective columns of the table window. After
specifying the example objects, the user can select the “Generate Wrapper”
button to generate the corresponding OEP, which encompasses structural and
textual information on the objects present in the sample page. Once generated,
this OEP is used by an extractor module that performs the actual data extraction
of new objects and then will output them using an XML-based representation.
DEByE is also capable of dealing with more complex objects by using a bottom-
up assembly strategy, explained in Laender et al.(2002a). Figure 2 shows a
snapshot of a user session. The source window contains data of a pub (Café com
Letras), its name, business hour, address and so on. The corresponding example
object appears in the table window. Figure 3 shows the extracted objects
presented in HTML format in the upper window. The pub Café com Letras is the

Figure 2. Snapshot of an example specification session with the DEByE
interface
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last one in this window. Figure 4 shows a fragment of a resulting XML document
for the same pub and Figure 5 presents an overview of the DEByE approach.

Data Integration Process

Let us consider without loss of generality the integration of two data sources S
p

and S
q
. Each source S

i 
contains a set of objects of type t

i
 = (A

i1
, A

i2
, ..., A

in
),

where A
ij
, 1 ≤ j ≤ n, is either an atomic attribute or a list of atomic attributes A

defined as l{A}. For instance, let Pub_inbh be a data source extracted from the
InBH Web site (www.inbh.com.br) that contains a set of objects of type
source1 = (name, business_hours, address, phone), and Pub_terra be a data
source extracted from the Terra Web site (www.terra.com.br) containing
objects of type source2 = (name, type, address, phone, price). Data sources
such as these can be naturally represented as XML documents. Figure 4 shows
a fragment of an XML document that corresponds to the data source Pub_inbh.
We also consider that, for each data source S

p
 and S

q
, there is a subset of their

attributes, say S
p
’⊆ S

p
 and S

q
’⊆ S

q
, respectively, that are semantically equiva-

lent.

Definition 1. Two attribute sets are semantically equivalent if they carry the
same semantic meaning and if they share similar values from compatible
domains.

Figure 3. Snaphot of the extracted objects shown in HTML format
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For instance, for the above defined data sources, the attribute sets (name,
address, phone) of Pub_inbh and (name, address, phone) of Pub_terra are
semantically equivalent. Thus, to integrate these data sources we need some
strategy to establish the identity of the objects involved, possibly considering their
semantically equivalent attributes. In this example, these attributes have the
same names only for clarity, but in practice this might not be the case.

To find similar identities among objects from two distinct data sources S
p
 and S

q
,

we use a similarity-based approach that works like the join operation in relational
databases. In our approach, a semantic similarity condition takes the place of the
equality condition in the join operation.

Definition 2. Two objects o
p 
∈ S

p
 and o

q 
∈ S

q
 are semantically related if their

similarity degree is greater than a parameter r, called the similarity factor, that
depends on the application domain.

The similarity degree between objects o
p
 and o

q
 can be calculated using IR

methods. The most-used IR method to calculate similarity degree is the vector
space model (Baeza-Yates & Ribeiro-Neto, 1999). In this method objects are

Figure 4. Example of extracted objects described with XML

<Table_XML> 
<Table> 
........ 
    <city> 
      B.Horizonte - MG 
    </city>  
        <phone>  
        Fone : (31) 3271 7031 
    </phone>  
</Table>  
<Table>  
    <name>  
      CAFÉ COM LETRAS 
    </name>  
    <business_hours>  
        Abre de seg. à sex. de 9h às 23h, sáb. de 18h à 1h e dom das 11h às 23h 
    </business_hours>  
    <address>  
        Rua Antônio de Albuquerque, 781    Savassi 
    </address>  
    <city>  
        B.Horizonte - MG 
    </city>  
    <phone>  
        Fone : (31) 3225 9973 
    </phone>  
</Table>  
</Table_XML>  
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represented by vectors in a space of |T| dimensions, where T is a set that contains
all terms of an object collection C. The similarity degree of two objects p and q
is quantified by the cosine of the angle between the vectors that represent them,
that is:

qp

qp
qpsim ��

��

×
•=),( (1)
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where w
i,p

 ≥ 0 and w
i,q

 ≥ 0 are term weights that can be calculated by the Term
Frequency, Inverse Document Frequency (TF-IDF) weighting scheme (Baeza-
Yates & Ribeiro-Neto, 1999). Thus:

ipipi idffw ⋅= ,,

Figure 5. Modules of the DEByE tool and their role in the data extraction
process
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where f
i,p

 is the number of times the term i appears in the object p and

in

N
idf log= ,

where N is the total number of objects in the collection C and n
i
 is the number

of objects in which the term i appears. The term w
i,q

 is calculated analogously.

To determine the similarity degree between the extracted objects, we assume
that the objects o

p 
∈ S

p
 and o

q 
∈ S

q
 can be properly represented as vectors in a

multidimensional space. We also assume that the semantically equivalent
attribute sets are previously determined, for example, by a schema matching
approach (Rahm & Bernstein, 2001).

Let S
p
’ be an attribute subset of S

p
, and S

q
’ an attribute subset of S

q
. We

consider that S
p
’ and S

q
’ are semantically equivalent, according to Definition 1.

For each attribute A
pj 

∈ S
p
’, a vector pjo

�
 is constructed considering a space pjTℜ ,

where T
pj
 is the set of all values of A

pj
. The vector qko

�
 is constructed using the

same pjTℜ  space. The similarity degree is given by:

∑
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=
'' ,
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where f
sim

( pjo
�

, qko
�

) is calculated according to Equation 2 and θ
p
 ≥ 0 reflects the

importance of the corresponding attributes in determining the identity of the
objects (Carvalho & Silva, 2003).

To illustrate our approach, let us consider two objects o
1
 and o

2
 that are

shown in Figure 6. We assume that attribute sets (name, address) of o
1
 and

(name, address) of ο
2
 are semantically equivalent. The similarity degree is

given by:
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where 11o
�

 = {café, letras}, 12o
�

 = {café, letras}, 21o
�

 = {rua, Antonio, Albuquer-

que, 781, Savassi}, and 22o
�

 = {r., Antonio, Albuquerque, 781, Funcionários} and

θ
1
 and θ

2
 reflect, respectively, the importance of each semantically equivalent

attribute in determining the identification of the two objects. For instance,
suppose we consider that pub names provide a stronger evidence than pub
addresses for the identification of the objects. We can capture this knowledge
by making θ

1
 greater than θ

2
. The object obtained by the integration process is

shown in Figure 7. Experimental results presented in Carvalho and Silva (2003)
demonstrate that similarity functions based on the vector space model are
effective to provide the means to integrate objects from distinct data sources.

Figure 7. Resulting object

business_hours

Abre de seg. à
sex. de 9h às
23h, sáb. de
18h à 1h e

dom das 11h
às 23h

result

name type address phone price

Café com
Letras

adulto Rua Antônio de
Albuquerque,
781 Savassi

(031)32259973 $$

Figure 6. Object examples

Pub_inbh

name bussiness_hours address phone

CAFÉ COM LETRAS Abre de seg. à
sex. de 9h às
23h, sáb. de
18h à 1h e

dom das 11h
às 23h

Rua Antônio
de

Albuquerque,
781  Savassi

(31) 3225 9973

Pub_terra

name type address phone price

Café com
Letras

adulto R. Antônio de
Albuquerque,

781 Funcionários

(031)32259973 $$
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Geocoding Process Using Addresses

One obvious source of geospatial information is the postal address, which is
universally used to facilitate the delivery of physical mail to a specific location
around the world (Davis Jr., Fonseca, & Borges, 2003). Though recognition of
addresses is a fairly studied problem, it is complicated by the fact that formatting
standards vary considerably from one country to another (McCurley, 2001).
Furthermore, in the same country it is common to have variations for the
encoding of the same address. The postal address may or may not have fields
for each addressing component, such as thoroughfare type (street, avenue, plaza
and so on), thoroughfare name, building number, neighborhood, city, state,
country, zip code and possibly others.

Addresses in Web pages are typically segmented into comma-delimited fields or
line breaks; sometimes information items, such as the country name, are omitted.
This broad variation in abbreviations, punctuation, line breaks and other features
used to express the same address makes the parsing process quite complex
(Arikawa et al., 2000; McCurley, 2001). Even though our approach takes
advantage of user-provided examples to recognize and to extract addresses, it
is not easy to separate the fields that compose the address correctly. Therefore,
our strategy is to extract the address without necessarily dividing it into fields.
Thus, we postpone the parsing problems that normally arise until we get to the
geocoding step. The most frequent problems include misspellings, format
variations, different names used for the same location and coincidental names for
different thoroughfares. The geocoding process includes three phases: (1)
treatment of the semi-structured alphanumeric addresses that have been ex-
tracted from the Web (parsing), (2) establishment of a correspondence between
the structured address and the addressing database (matching phase), and (3)
actual assignment of coordinates to the identified object (locating phase)
(Figure 8).

Starting from structured addresses, actual geocoding can be performed in
several ways, depending on the available addressing information. In order to
perform the parsing, matching and locating tasks, the geocoding process needs
to have access to a database in which information about the addressing system
is stored. There are two basic categories of information in such a database. The
first is comprised of the actual addressing infrastructure, with objects such as
point-georeferenced individual addresses and street centerlines with address
ranges. The second includes any additional information items that can be used
to resolve ambiguities or serve as a rough geographic reference in case the
address, for any reason, cannot be located in the first category. This includes
elements such as all sorts of spatial reference units (area objects that correspond



38  Laender, Borges, Carvalho, Medeiros, da Silva & Davis

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to artificial borders, such as neighborhood limits, districts, ZIP areas, municipal
divisions and so on), along with a catalog of what we call “reference places,” that
is, popularly known spots in a city that can be referenced by name only, that are
so easily recognized by the population that their location does not require a formal
address. Of course, the addressing database can be rather incomplete, depend-
ing on the available data about a given city or location. Our goal is to
accommodate this by trying to geocode at the most precise level first and, if that
is not possible, successively resorting to less precise geocoding methods until
some location can be established.

Since we do not assume any particular structuring in the incoming address, we
must be able to determine the structure by analyzing the corresponding string of
text. The objective of this process is to create a structured tuple containing every
significant piece of information from the original address string. If necessary,
addressing elements found in the string are normalized or adjusted before
becoming fields in the tuple.

The algorithms that can be used in the parsing of the address are very similar to
the ones used in programming languages in order to assess the syntax of a
language construct. Initially, the string gets divided into tokens, considering
whitespace characters (blanks, commas, points, hyphens and so on) as delimit-
ers. The resulting set of tokens is then analyzed sequentially in an attempt to
determine the function of each one. The analysis of each token uses the
addressing database in order to establish hypotheses as to  the function of each
term (token) in the original address. The token functions we look for are: (1)

Figure 8. General geocoding schema
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thoroughfare type: street, avenue, plaza, boulevard and so on, along with their
usual abbreviations; (2) thoroughfare name: the name popularly associated with
the thoroughfare; thoroughfare names can also have shortened versions, popular
nicknames and older names that need to be taken into consideration; (3) street
number: number that is usually posted at the door of each building, to indicate a
sequence within the thoroughfare; (4) neighborhood: name of any intra-munici-
pal division that is used to identify distinct regions within the city’s limits and (5)
additional data, such as city name, state and postal code.

The result of the parsing is a set of fully structured addresses in which there are
fields for each of the identified components. Once a postal address has been
recognized and parsed it must be geocoded; that is, a coordinate pair must be
found for it in the geographic space. The matching function requires a thorough-
fare code for each address that has been extracted and parsed. All the problems
previously mentioned must be solved in this phase. This is important because
there can be redundant names; for example, more than one street can have the
same name, possibly in different neighborhoods. Also, there is no guarantee that
the thoroughfare names resulting from the parsing process are complete, correct
or even existent. However, there can be situations in which the thoroughfare
name alone cannot determine a single thoroughfare code, like in the case of
homonymous streets. We must then be able to resort to additional information,
such as a postal code or a neighborhood name, in order to establish the correct
thoroughfare code association. We assume that geocoding is being performed in
order to establish a location for real world object or phenomenon – even though
this location can be approximate.

After the geocoding task, data objects extracted from Web sites can be stored
in a spatial database. These objects represent entities in the real world, like
restaurants, hotels and museums. Each object has a set of attributes (such as
name, street, phone, URL) and a position in the geographic space, and thus can
be handled and displayed by a GIS.

An Application Experience: The Case of
Belo Horizonte

We chose to work with a spatial database from the local government of Belo
Horizonte, Brazil’s fourth largest city, with over two million inhabitants. Belo
Horizonte was one of the first Brazilian cities to develop an urban GIS. The
development and implementation of this GIS started in 1989 and has proceeded
significantly to become what is known as the most complete experience of this
kind in Brazil, covering application domains such as education, health, sanitation,
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urban planning and transportation, among others (Borges & Sahay, 2000). The
city’s extensive geographic database includes 400,000 individual addresses and
0.40-meter resolution images. These two factors, plus the vast amount of
information about the city on the Internet, enabled us to develop a prototype
application for Belo Horizonte to validate our proposal. Figure 9 shows the
architecture for this prototype application.

The data integrated by our application comes from six different sources: Belo
Horizonte’s high-resolution imagery (available at www.belohorizonte.com.br),
Belo Horizonte urban GIS data, and four distinct Web sites
(www.passeiolegal.com.br, www.terra.com.br, www.inbh.com.br,
www.comidadibuteco.com.br). The selected sites provide information about
hotels, 11 categories of restaurants, pubs, museums and other cultural attrac-
tions, consulates, advertising agencies, movie theaters, theaters, clothing stores,
libraries and hospitals. A subset of the pages available in each site was collected,
totalling 65 pages and 540 urban objects. Some of these pages belong to the same
domain. In this case, information on the same object was available from different
sources, and thus the collection contained replicated or different data. The
integration of these sources, after the data extraction process, contributed to
decreasing the geocoding efforts, thus improving quality while enhancing perfor-
mance.

We next used the DEByE tool to parse the collected pages, extracting the names
of points of interest and their addresses (Figure 2). The set of extracted data was
then coded in an XML-based format (Figure 4). Before the geocoding process,

Figure 9. Proposed architecture for the application
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extracted data were integrated. After integration, we created a new set of
extracted data in XML format, in which each object incorporates all attributes
obtained from the integrated versions. It consisted in establishing a mapping
between object attributes from different sources. In order to geocode the
extracted addresses, we had to transform them into the format in which they are
stored in the Belo Horizonte’s addressing database. The result is a set of fully
structured addresses containing (1) thoroughfare type (street, avenue, plaza,
boulevard and so on), (2) thoroughfare name, (3) building number and (4)
neighborhood or other types of complementary information. Each postal address
recognized and parsed was next geocoded using an address matching function.
Naturally, the most precise method is the matching of the extracted address to
an object from the Individual Address class in Belo Horizonte’s GIS. If a
matching individual address was not found, it was possible to resort to the
numerically closest address in the same thoroughfare or to match the given
address to a reference point (that is, to a member of the Reference Point class
in the GIS). Finally, all data extracted from the Web pages in which these
addresses were recognized were stored in a spatial database and assigned (x,y)
coordinate points, enabling their cartographic visualization.

As a result, we extended the Belo Horizonte GIS database with 28 new tables,
one for each urban object category we worked with. The attributes of these
tables were: place name, thoroughfare type, thoroughfare name, street number,
neighborhood and individual address-assigned code. Our results are summarized
in Table 1, which includes columns that, respectively, indicate the total of pages
collected, the number of found objects and the number of extracted objects.
Subsequent columns show the number of objects for which an exact location has
been obtained (exact match), the number of those for which the location has
been obtained at the numerically closest address (close match) on the same
street or at an approximate location based on a reference point, and the number
of addresses that have not been located (not found). As we can see, 90% of the
objects were placed at exact locations, 8% were placed at the numerically
closest address or at a reference point, and only 2% were not located, mostly
because their addresses were incomplete or nonexistent.

Table 1. Experimental results

Site Pages Found Objects Extracted Objects Exact 
Match 

Close 
Match 

Not 
 Found 

www.passeiolegal.com.br 12 122 122 120 --- 2 

www.terra.com.br 2 52 52 48 4 --- 
www.inbh.com.br 38 277 277 237 33 7 
www.comidadibuteco.com.br 13 89 89 83 6 --- 
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The new geographic features were superimposed on high-resolution imagery in
the GIS, thus allowing for many kinds of maps to be produced by integrating
points taken from the Web sites to the existing GIS data (Figure 10). This allows,
for instance, browsing all facilities within the same area in an integrated manner.
Alternatively, we can visualize all extracted data as a new geographic page,
providing an opportunity to create a new information space for everyday life.
Figure 11 illustrates a map published using Alov Map (Alov, 2003) that combines
data extracted from the Web to data taken from the spatial database.

Future Trends

The development of the techniques presented in this chapter opens a number of
interesting possibilities for future work on Web-based urban GIS applications.
Among them, there are some initiatives already under development by our group.
For instance, once we have associated Web pages with geographic information,
a natural step would be to query the Web using such information. This would
allow searching for pages within some geographic context (for example, on a
street, near a beach, and so forth). Implementing such a feature requires
aggregating specific data coming from GIS to traditional search engine data
structures. Another example of interesting future development can be achieved
by transforming implicit (textual) relationships among Web pages into explicit

Figure 10. Integration of urban information from Web pages with geographic
databases and high-resolution imagery in a GIS environment
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(GIS) spatial relationships. Then, along with hyperlinks already available on Web
pages, it would be possible to automatically generate “geographic” hyperlinks
among Web pages, allowing navigation through them using paths not originally
identified by page authors.

Additionally, in order to improve the geocoding process, our future work includes
the use of ontology-based tools to automatically recognize the indications of the
urban geographical context of Web pages, including the recognition of addresses,
ZIP codes, reference place names and popular names for urban locations, for
which the user would not have to provide examples as shown here. Still another
line of work involves proposing a way to assign geographic locations to local Web
pages, in which the location of the page’s subject is stored within its HTML code.
This can provide means to index Web pages according to their geographical
location(s). In this approach, coordinates or other forms of geographic reference
can be retrieved from Web pages and included in a spatial index. This spatial
index can be used to improve the retrieval process; users would be able to provide
the usual keywords, along with place references in which their interest lies.
Under this framework, place names can be thought of as being a special kind of
keyword, associated with a different context, related to the geographic location.
This can also have an important effect on the tools and resources that can be used
to update spatial databases, using information available in the Web.

Figure 11. A map showing hotels, typical restaurants and cultural attractions
extracted from Web sources, and schools extracted from the spatial database
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Conclusions

In this work we focus on using the Web as an important source of urban
geographic information and propose to enhance urban GIS using indirectly
georeferenced data extracted from the Web. We describe an environment that
allows the extraction of geospatial data from text in Web pages, converts them
to XML format, integrates the Web data that belong to the same domain and
uploads them into spatial databases for later use in urban GIS. Our proposal is
centered on the integration of urban information from local Web pages with
geographic databases and high-resolution imagery in a GIS environment. All
Web pages that refer to public spaces, including, for instance, restaurants,
schools, hospitals, shopping centers and theaters, can be collected, their data
extracted and associated with a city’s map. Integration with existing GIS data
will allow, for instance, urban planners to have a more realistic view of the city,
with the actual distribution of its services. The effectiveness of our approach is
demonstrated by a real urban GIS application that uses street addresses as the
basis for integrating data from different Web sources, combining them with high-
resolution imagery. Although still preliminary, the results obtained with our
application prototype are encouraging.
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Chapter III

Object-Relational
Spatial Indexing

Abstract

In order to generate efficient execution plans for queries comprising
spatial data types and predicates, the database system has to be equipped
with appropriate index structures, query processing methods and
optimization rules. Although available extensible indexing frameworks
provide a gateway for seamless integration of spatial access methods into
the standard process of query optimization and execution, they do not
facilitate the actual implementation of the spatial access method. An
internal enhancement of the database kernel is usually not an option for
database developers. The embedding of a custom, block-oriented index
structure into concurrency control,  recovery services and buffer
management would cause extensive implementation efforts and maintenance
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cost, at the risk of weakening the reliability of the entire system. The server
stability can be preserved by delegating index operations to an external
process, but this approach induces severe performance bottlenecks due to
context switches and inter-process communication. Therefore, we present
the paradigm of object-relational spatial access methods that perfectly fits
to the common relational data model, and is highly compatible with the
extensible indexing frameworks of existing object-relational database
systems, allowing the user to define application-specific access methods.

Introduction

Users of database systems want to manage data of very different types,
depending on the particular application area. While office applications, for
example, mainly perform simple access and update operations on records of
simple data types, spatial data usually have a complex structure and demand
specialized operations. It is not a choice for vendors of database management
systems to provide data types and management functions for each conceivable
domain. So the design of extensible architectures allowing users to adapt
systems to their special needs represents an important area in database
research.

Traditional relational database systems support very limited extensibility. All
data have to be mapped on rows of flat tables consisting of attributes with such
simple types as numbers, character strings or dates. For the retrieval and
manipulation of data, there exist only generic operations for selecting, inserting,
updating and deleting (parts of) rows within tables. Data of more complex types
cannot be stored directly as a unit in the database but have to be split across
several tables. To restore the data from the system, complex queries with many
joins have to be performed. Alternatively, the data can be coded within a large
object that prevents direct access to single components of the data using the
database language. Operations on complex types have to be implemented within
the application and cannot be used within the database language directly.

Object-oriented database management systems (OODBMS) seem to provide
solutions for most of the cited problems of relational databases. An OODBMS
has an extensible type system that allows the user to define new data types (by
the nested application of type constructors) together with corresponding opera-
tions. The resulting object types then describe the structure as well as the
behavior of the objects based on this type. Furthermore, subtypes (inheriting the
properties of their supertypes) can be derived of existing object types.
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To make object-oriented and extensibility features also available in relational
systems, database researchers and manufacturers proposed and implemented
corresponding enhancements for the relational model during the past few years.
The resulting object-relational database management systems (ORDBMS)
retain all features of the relational model, especially the storage of data within
tables and the powerful declarative query processing with the relational database
language SQL. Beyond that, the object-relational data model introduces abstract
data types into relational database servers. Thereby, object-relational database
systems may be used as a natural basis to design an integrated user-defined
database solution. The ORDBMS already support major aspects of the declara-
tive embedding of user-defined data types and predicates. In order to achieve a
seamless integration of custom object types and predicates within the declarative
data definition language (DDL) and data manipulation language (DML),
ORDBMS provide the database developer with extensibility interfaces. They
enable the declarative embedding of abstract data types within the built-in
optimizer and query processor.

In the following, we categorize possible approaches to incorporate third-party
spatial indexing structures into a relational database system by what we call
Relational Indexing. After an introduction to ORDBMS and their extensible
indexing facilities, we discuss three different implementations of spatial access
methods, including the relational approach, and introduce basic concepts of
object-relational spatial access methods. Then the design of the corresponding
update and query operations is investigated. Afterwards, we identify two generic
schemes for modeling object-relational spatial access methods, which are
discussed with respect to their support of concurrent transactions and recovery.
Finally, some concluding remarks are given.

Indexing Interfaces in Object-Relational
Databases

Extensible frameworks are available for most object-relational database sys-
tems, including Oracle (Oracle, 1999a; Srinivasan, Murthy, Sundara, Agarwal,
& DeFazio, 2000), IBM DB2 (IBM, 1999; Chen, Chow, Fuh, Grandbois, Jou,
Mattos, Tran, Wang, 1999) or Informix IDS/UDO (Informix, 1998; Bliujute,
Saltenis, Slivinskas, & Jensen, 1999). Custom server components using these
built-in services are called data cartridges, database extenders and data
blades in Oracle, DB2 and Informix, respectively. The open-source ORDBMS
PostgreSQL (PostgreSQL, 2002; Stonebraker & Kemnitz, 1991) has the same



52   Kriegel, Pfeifle, Pötke, Seidl & Enderle

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

roots as the commercial database system of Informix and also provides similar
extensibility features.

Declarative Integration

As an example, we create an object type POLYGON to encapsulate the data and
semantics of two-dimensional polygons. Instances of this spatial object type are
stored as elements of relational tuples. Figure 1 depicts some of the required
object-relational DDL statements in pseudo SQL, thus abstracting from techni-
cal details that depend on the chosen product. By using the functional binding of
the user-defined predicate INTERSECTS, object-relational queries can be
expressed in the usual declarative fashion (Figure 2). Provided only with a
functional implementation that evaluates the INTERSECTS predicate in a row-
by-row manner, the built-in optimizer has to include a full-table scan into the
execution plan to perform the spatial selection. In consequence, the resulting
performance will be very poor for highly selective query regions. As a solution,
the extensibility services of the ORDBMS offer a conceptual framework to
supplement the functional evaluation of user-defined predicates with index-
based lookups.

Figure 1. Object-relational DDL statements for polygon data

 // Type declaration 
 
CREATE TYPE POINT AS OBJECT (x NUMBER, y NUMBER); 
CREATE TYPE POINT_TABLE AS TABLE OF POINT; 
CREATE TYPE POLYGON AS OBJECT ( 
 points POINT_TABLE, 
 MEMBER FUNCTION intersects (p POLYGON) RETURN BOOLEAN 
); 
 
// Type implementation 
// … 
 
// Functional predicate binding 
 
CREATE OPERATOR INTERSECTS (a POLYGON, b POLYGON) 
RETURN BOOLEAN 
BEGIN RETURN a.intersects(b); END; 
 
// Table definition 
 
CREATE TABLE polygons ( 
 id NUMBER PRIMARY KEY, 
 geom POLYGON 
); 
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Extensible Indexing

An important requirement for spatial applications is the availability of user-
defined access methods. Extensible indexing frameworks proposed by Stonebraker
(1986) enable developers to register custom secondary access methods at the
database server in addition to the built-in index structures. An object-relational
indextype encapsulates stored functions for creating and dropping a custom
index and for opening and closing index scans. The row-based processing of
selections and update operations follows the iterator pattern (Gamma, Helm,
Johnson, & Vlissides, 1995). Thereby, the indextype complements the functional
implementation of user-defined predicates. Figure 3 shows some basic indextype
methods invoked by extensible indexing frameworks. Additional functions exist
to support query optimization, custom joins and user-defined aggregates. Assum-
ing that we have encapsulated a spatial access method for two-dimensional
polygons within the custom indextype SpatialIndex, we may create an index
polygons_idx on the geom attribute of the polygons table by submitting the usual

Figure 2. Object-relational region query on polygon data for a region
query_region

Figure 3. Methods for extensible index definition and manipulation

Function Task

index_create(), 
index_drop()

Create and drop a custom index.

index_open(), 
index_close()

Open and close a custom index.

index_fetch() Fetch the next record from the index that meets 
the query predicate.

index_insert(),
index_delete(),
index_update()

Add, delete, and update a record of the index.

Figure 3: Methods for extensible index definition and manipulation

// Region query 
 
SELECT id FROM polygons 
WHERE INTERSECTS(geom, :query_region); 
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DDL statement (Figure 4). If the optimizer decides to include this custom index
into the execution plan for a declarative DML statement, the appropriate
indextype functions are called by the built-in query processor of the database
server. Thereby, the maintenance and access of a custom index structure is
completely hidden from the user, and the desired data independence is achieved.
Furthermore, the framework guarantees any redundant index data to remain
consistent with the user data.

Talking to the Optimizer

 Query optimization is the process of choosing the most efficient way to execute
a declarative DML statement (Yu & Meng, 1998). Object-relational database
systems typically support rule-based and cost-based query optimization. The
extensible indexing framework comprises interfaces to tell the built-in optimizer
about the characteristics of a custom indextype (Stonebraker & Brown, 1999).
Figure 5 shows some cost-based functions that can be implemented to provide
the optimizer with feedback on the expected index behavior. The computation of
custom statistics is triggered by the usual administrative SQL statements. With
a cost model registered at the built-in optimizer framework, the cost-based
optimizer is able to rank the potential usage of a custom access method among
alternative access paths. Thus, the system supports the generation of efficient
execution plans for queries comprising user-defined predicates. This approach

Figure 4. Creation of a custom index on polygon data

Figure 5. Methods for extensible query optimization

// Index creation

CREATE INDEX polygons_idx ON polygons(geom)
INDEXTYPE IS SpatialIndex;

Function Task

stats_collect(),
stats_delete()

Collect and delete persistent statistics on the custom index.

predicate_sel() Estimate the selectivity of a user-defined predicate by using 
the persistent statistics.

index_cpu_cost(),
index_io_cost()

Estimate the CPU and I/O cost required to evaluate a user-
defined predicate on the custom index.

Figure 5: Methods for extensible query optimization
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preserves the declarative paradigm of SQL, as it requires no manual query
rewriting.

Implementation of SPATIAL Access
Methods

In the previous section, we outlined how object-relational database systems
support the logical embedding of spatial indextypes into the declarative query
language and into the optimizer framework. The required high-level interfaces
can be found in any commercial ORDBMS and are continuously improved and
extended by the database vendors. Whereas the embedding of a custom
indextype is therefore well supported, its actual implementation within a fully-
fledged database kernel remains an open problem. In the following, we discuss
three basic approaches to implement the low-level functionality of a spatial
access method: the integrating, the generic and the relational approach
(Figure 6).

Figure 6. Approaches to implement custom access methods

  

a) Standard ORDBMS kernel b) Integrating approach 

  

c)  Generic approach d) Relational approach 



56   Kriegel, Pfeifle, Pötke, Seidl & Enderle

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Integrating Approach

By following the integrating approach, a new spatial access method (AM) is
hard-wired into the kernel of an existing database system (Figure 6b). In
consequence, the required support of ACID properties, including concurrency
control and recovery services (CC&R) has to be implemented from scratch and
linked to the corresponding built-in components. Furthermore, a custom gateway
to the built-in storage, buffer and log managers has to be provided by the
developer of the new AM. Most standard primary and secondary storage
structures are hard-wired within the database kernel, including plain table
storage, hash indexes, bitmap indexes and B+-trees. Only a few non-standard
access methods have been implemented into commercial systems in the same
way, including the R-Link-tree in Informix IDS/UDO for spatially extended
objects (Informix, 1999) and the UB-tree in TransBase/HC for multidimensional
point databases (Ramsak, Markl, Fenk, Zirkel, Elhardt, & Bayer, 2000). The
integrating approach comprises the Extending Approach and the Enhancing
Approach.

The Extending Approach

Adding a completely new access method to a database system is quite expensive,
because in addition to the actual index algorithms, all the concurrency, recovery
and page management has to be implemented (R-Link-Tree, Bitmaps, External
Memory Interval Tree). Carey, DeWitt, Graefe, Haight, Richardson, Schuh,
Shekita and Vandenberg (1990) guess that the actual index algorithms only
comprise about 30% of the overall code for the access method, while the other
70% are needed to integrate the access method properly into the database
system.

Several approaches to facilitate the implementation of access methods and other
components for special-purpose database systems have been proposed in
database research. Under the assumption that it is practically impossible to
implement a database management system capable to fulfill the demands of
arbitrary application domains, tools and generic database components have been
developed that should enable domain specialists to implement their required
database system with minimum effort, whether a document management system
or a geographical information system. The resulting systems might have com-
pletely different characteristics; for example, different query languages, access
methods, storage management and transaction mechanisms.

The database system toolkit EXODUS (Carey et al., 1990; Carey M, DeWitt,
Frank, Graefe, Richardson, Shekita, & Muralikrishna, 1991) provides a storage
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manager for objects, a library of access methods, a library of operator methods
for the data model to generate, a rule-based generator for query optimizers, tools
for constructing query languages and a persistent programming language for the
definition of new access methods and query operators. Using these “tools,” the
domain specialist can build an application-specific database system with suitable
access methods. Another system of this category is the database generator
GENESIS (Batory, Barnett, Garza, Smith, Tsukuda, Twichell, Wise, 1990),
which provides a set of composable storage and indexing primitives and a
“database system compiler” for assembling an appropriate storage manager
from a specification.

Figure 7: B-tree routine next_node for different data types

next_node(n:node; key:integer); 
  … 
  while n.son[index].value < key 
    increment(index); 
  next := fetch(n.son[index].address); 
  … 
end; 

a) next_node routine handling keys of type integer 

next_node(n:node; key:real); 
  … 
  while n.son[index].value < key 
    increment(index); 
  next := fetch(n.son[index].address); 
  … 
end; 

b) next_node routine handling keys of type real 

template <keytype> 
next_node(n:node; key:keytype); 
  … 
  while lessthan(n.son[index].value, key) 
    increment(index); 
  next := fetch(n.son[index].address); 
  … 
end; 

c) next_node routine handling arbitrary data types 
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Unfortunately, these universally extensible database systems have essentially
proven to be hard to use in practice. Though these systems support the user with
the implementation of single database components, a lot of expertise is required
to use them. In some ways, they also are a bit too inflexible and incomplete to
implement a fully-fledged database management system. So in practice, few
databases have been implemented using such toolkits or generators.

The Enhancing Approach

In contrast to the extending approach, the enhancing approach is much cheaper,
since already existing access methods are augmented to support a broader range
of data. The code of the access methods to be enhanced has to be adapted so
it gets independent of the indexed data type. As an example, Figure 7a depicts
the pseudocode of a B-tree index routine next_node that determines (for a given
node and a key value) the node that has to be visited next within a B-tree
traversal. This routine only works on key values of type integer, that is, an index
using this routine can only be created on columns of type integer. In order to
create B-tree indexes also on columns of type real, the type of the key parameter
has to be changed accordingly (Figure 7b). In general, to support arbitrary
(ordered) types, the B-tree code has to be modified so it can handle key
parameters of any type. Figure 7c depicts a type-independent version of the
next_node routine. Here, the key type is not determined, but it has to be
instantiated when applying the index. The function lessthan has the same
functionality as the operator ‘<’ for built-in types. If the user defines a new type
and wants to use the enhanced B-tree index for columns of this type, the user has
to provide a corresponding lessthan function that can handle values of the new

Figure 8. User-defined data type FracNum

CREATE TYPE FracNum (num INTEGER; denom INTEGER) 

a) Data type for fraction numbers 

CREATE FUNCTION lessthan (f1 FracNum, f2 FracNum) 
RETURN BOOLEAN 
LANGUAGE SQL DETERMINISTIC 
BEGIN 
  RETURN (f1.num/f1.denom) < (f2.num/f2.denom); 
END 

b) Function lessthan for comparing fraction numbers 
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type. Alternatively, the built-in operator ‘<’ could be overloaded, if the database
system used supports this. As a further example, if the user defines a new type
FracNum for the storage of fraction numbers (consisting of numerator and
denominator) in the database system (Figure 8a), the user has to implement a
special version of the function lessthan that takes two fraction numbers as
parameters (Figure 8b). Whenever the routine next_node is called with a key
parameter of type FracNum, the newly defined version of lessthan is used.

In general, to enhance (generalize) an access method in this way, all type-
specific operations within the code of the access method have to be identified and
isolated so the user can provide overloaded versions of these operations for his
user-defined types. It is necessary to note that not every access method is
appropriate for every data type. B-trees, for example, only can be used for types
with a linear ordering. In contrast, R-trees are designed to support access to
spatially extended and to multi-dimensional data. Depending on the access
method and the predicates to be supported by the index, the user has to implement
corresponding operations for new data types. To use an enhanced B-tree index,
the user must provide implementations of the usual comparison operators ‘<’,
‘≤’, ‘>’, ‘≥’, and ‘=’ for a new data type, whereas an R-tree index requires spatial
operations like ‘overlaps’, ‘contains’, ‘within’, or ‘equals’.

A further possibility to enhance existing access methods is to implement
functional indexes that give quick access to the results of a function defined on
the attributes of a table. The type of the function value has to be supported by
the enhanced index.

In conclusion, we identify the following properties of the integrating approach:

Implementation: The implementation of a new spatial AM becomes very
sophisticated and tedious if writing transactions have to be supported (Brown,
2001). In addition, the code maintenance is a very complex task, as new kernel
functionality has to be implemented for any built-in access method. Moreover,
the tight integration within the existing kernel source produces a highly platform-
dependent solution tailor-made for a specific ORDBMS. The enhancement of
pre-existing access methods to support user-defined data types and functional
indexes is a straightforward task, but does not really augment the functionality
of the database server (in the sense of having new ways for query processing).

• Performance: The integrating approach potentially delivers the maximal
possible performance, if the access method is implemented in a closed
environment, and the number of context switches to other components of
the database kernel is minimized.

• Availability: The implementation requires low-level access to most kernel
components. If the target ORDBMS is not distributed as open-source, the
affected code and documentation will not be accessible to external data-
base developers.
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To sum up, the integrating approach is the method of choice only for a few, well-
selected access methods serving the requirements of general database applica-
tions. It is not feasible for the implementation of rather specialized access
methods.

The Generic Approach

To overcome restrictions of the integrating method, Hellerstein, Naughton and
Pfeffer (1995) proposed a generic approach to implement new access methods
in an ORDBMS. Their Generalized Search Tree (GiST) has to be built only
once into an existing database kernel. The GiST serves as a high-level frame-
work to plug in block-based tree structures with full ACID support (Figure 6c).

As in the previous approaches, the database implementor has to integrate the
extensibility framework into the database server regarding all tedious tasks like
concurrency and recovery. Once implemented, a domain specialist can use the
GiST framework to derive new index types for particular applications. In
contrast to database toolkits or generators, the index implementor does not have
to stop the database server and recompile it every time an index type is added.
It is just necessary to implement (overload) a number of predefined functions that
define the behavior of keys in the tree. This is quite similar to the enhanced index
approach at first glance. However, while enhanced indexes only support new
data types for already existing index structures, it is possible to support
completely new query predicates with the GiST framework. Both B-trees and
R-trees are derivable from the GiST framework, for example. Such derived
index types may not be as performant as directly integrated ones, but they require
much less effort to realize.

Many extensions to the GiST framework have been presented, including generic
support for concurrency and recovery (Kornacker, Mohan & Hellerstein, 1997),
and additional interfaces for nearest-neighbor search, ranking, aggregation and
selectivity estimation (Aoki, 1998). In detail, the GiST approach has the following
characteristics:

• Implementation: Whereas the implementation of block-based spatial
access methods on top of the GiST framework can be done rather easily,
the intruding integration of the framework itself remains a very complex
task. As an advantage, an access method developed for GiST can basically
be employed on any ORDBMS that supports this framework. In contrast
to the generic GiST implementation, the specialized functionality of a new
access method is therefore platform independent.

• Performance: Although the framework induces some overhead, we can
still achieve high performance for GiST-based access methods. Kornacker
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(1999) has shown that they may even outperform built-in index structures
by minimizing calls to user-defined functions.

• Availability: Due to its complex implementation, the GiST framework is
not generally available in present-day systems. To our best knowledge, it
has only been implemented in the open-source system PostgreSQL, but
without concurrent access and write-ahead logging of updates for derived
indexes. It is an open question whether and when a comparable function-
ality with industrial-strength implementation will be a standard component
of major commercial ORDBMS.

The GiST concept basically delivers the desired properties to implement spatial
access methods. It delegates crucial parts of the implementation to database
vendors. Unfortunately, its full functionality is not available in any major
commercial database system at present. Furthermore, database extensions
should generically support many database platforms. Thus, the GiST concept
would have to be implemented not only for one, but for all major ORDBMS.

The Relational Approach

A natural way to avoid the above obstacles is to map the spatial index structure
to a relational schema organized by built-in access methods (Figure 6d). Such
relational access methods are designed to operate on top of a relational query
language. They require no extension or modification of the database kernel; thus,
any off-the-shelf ORDBMS can be employed as it is. We identify the following
advantages for the relational approach:

• Implementation: As no internal modification or extension to the database
server is required, a relational access method can be implemented and
maintained with less effort. Substantial parts of the custom access seman-
tics may be expressed by using the declarative DML. Thereby, the
implementation exploits the existing functionality of the underlying ORDBMS
rather than duplicating basic database services as done in the integrating
and generic approaches. Moreover, if we use a standardized DDL and
DML like SQL:1999 (ANSI, 1999) to implement the low-level interface of
our access method, the resulting code will be platform independent.

• Performance: The major challenge in designing a relational access method
is to achieve both high usability and performance. The capability and
efficiency of the relational approach was proven for interval data (Kriegel,
Pötke, & Seidl, 2000; Kriegel, Pfeifle, Pötke, & Seidl, 2002) and 2D/3D
spatial data (Kriegel, Pötke, & Seidl, 2001; Kriegel, Müller, Pötke, & Seidl,
2001).
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• Availability: By design, a relational access method is supported by any
relational database system. It requires the same functionality as an ordinary
database user or a relational database application.

By following the relational approach to implement spatial access methods, we
obtain a natural distinction between the basic services of all-purpose database
systems and specialized, application-specific extensions. By restricting database
access to the common SQL interface, spatial access methods and query
procedures are well-defined on top of the core server components. In addition,
a relational access method immediately benefits from any improvement of the
ORDBMS infrastructure.

Basics of Object-Relational Spatial
Indexing

The basic idea of relational access methods relies on the exploitation of the built-
in functionality of existing database systems. Rather than extending any internal
component of the database kernel, a relational access method just uses the native
data definition and data manipulation language to process updates and queries on
abstract data types. Without loss of generality, we assume that the underlying
database system implements the standardized Structured Query Language
SQL-92 (ANSI, 1992) with common object-relational enhancements in the sense
of SQL:1999 (ANSI, 1999), including object types and collections.

Paradigms of Access Methods

A relational access method delegates the management of persistent data to an
underlying relational database system by strictly implementing the index defini-
tion and manipulation on top of an SQL interface. Thereby, the SQL layer of the
ORDBMS is employed as a virtual machine, managing persistent data. Its
robust and powerful abstraction from block-based secondary storage to the
object-relational model can then be fully exploited. This concept also perfectly
supports database appliances, that is, dedicated database machines running the
ORDBMS as a specialized operating system (Keim & Prawirohardjo, 1992;
Oracle, 2000). We add the class of relational access methods as a third paradigm
to the known paradigms of access methods for database management systems:
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• Main Memory Access Methods:  Typical applications of these tech-
niques can be found in main memory databases (DeWitt, Katz, Olken,
Shapiro, Stonebraker, Wood, 1985; Garcia-Molina & Salem, 1992) and in
the field of computational geometry (Preparata & Shamos, 1993). A
popular example taken from the latter is the binary Interval Tree
(Edelsbrunner, 1983). It serves as a basic data structure for plane-sweep
algorithms; for example, to process intersection joins on rectangle sets.
Main memory structures are not qualified for indexing persistent data, as
they disregard the block-oriented access to secondary storage. (See Figure
9a.)

• Block Oriented Access Methods:  These structures are designed to
efficiently support the block-oriented I/O from and to external storage and
are well suited to manage large amounts of persistent data. The External
Memory Interval Tree (Arge & Vitter, 1996) is an example for the optimal
externalization of a main memory access method. Its analytic optimality is
achieved by adapting the fanout of the Interval Tree to the disk block size.
In the absence of a generalized search tree framework (Hellerstein,
Naughton, & Pfeffer, 1995), the implementation of such specialized storage
structures into existing database systems, along with custom concurrency
control and recovery services, is very complex. Furthermore, it requires
intrusive modifications of the database kernel (Ramsak, Markl, Fenk,
Zirkel, Elhardt, & Bayer, 2000). (See Figure 9b.)

• Relational Access Methods: In contrast, relational access methods
including the Relational Interval Tree (Kriegel et al., 2000) are designed to

Figure 9. Paradigms and characteristics of access methods: a) main
memory access methods, b) block-oriented access methods, c) relational
access methods

Figure 7: Paradigms and characteristics of access methods: a) main memory access methods,
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operate on relations rather than on dedicated disk blocks. The persistent
storage and block-oriented management of the relations is delegated to the
underlying database server. Therefore, the robust functionality of the
database kernel, including concurrent transactions and recovery, can
potentially be reused. A primary clustering index can be achieved by also
delegating the clustering to the ORDBMS. For this, the payload data has to
be included into the index relations, and the clustering has to be enabled by
organizing these tables in a cluster or as index-organized tables (Srinivasan,
Das, Freiwald, Chong, Jagannath, Yalamanchi, Krishnan, Tran, DeFazio, &
Banerjee, 2000). (See Figure 9c.)

Relational Storage of Index Data

In the following, we will discuss the basic properties of relational access methods
with respect to the storage of index data, query processing and the overhead for
transaction semantics, concurrency control and recovery services. We start with
a basic definition:

Definition 1 (Relational Access Method). An access method is called a
relational access method if any index-related data is exclusively stored in and
retrieved from relational tables. An instance of a relational access method is
called a relational index. The following tables comprise the persistent data of
a relational index:

(i) User table: a single table, storing the original user data being indexed.

(ii) Index tables: n tables, n ≥ 0, storing index data derived from the user table.

(iii) Meta table: a single table for each database and each relational access
method, storing O(1) rows for each instance of an index.

The stored data is called user data, index data and meta data.

To illustrate the concept of relational access methods, Figure 10 presents the
minimum bounding rectangle list (MBR-List), a very simple example for indexing
two-dimensional polygons. The user table is given by the object-relational table
polygons (Figure 10a), comprising attributes for the polygon data type (geom)
and the object identifier (id). Any spatial query can already be evaluated by
sequentially scanning this user table. In order to speed up spatial selections, we
decide to define an MBR-List polygons_idx on the user table. Thereby, an index
table is created and populated (Figure 10b), assigning the minimum bounding
rectangles (mbr) of each polygon to the foreign key id. Thus, the index table
stores information purely derived from the user table. All schema objects
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belonging to the relational index (in particular the name of the index table) and
other index parameters are stored in a global meta table (Figure 10c).

In order to support queries on the index tables, a relational access method can
employ any built-in secondary indexes, including hash indexes, B+-trees and
bitmap indexes. Alternatively, index tables may be clustered by appropriate
primary indexes. Consequently, the relational access method and the database
system cooperate to maintain and retrieve the index data (DeFazio, Daoud,
Smith, & Srinivasan, 1995). This basic approach of relational indexing has
already been applied in many existing solutions, including Linear Quadtrees
(Tropf & Herzog, 1981; Ravada & Sharma, 1999; Freytag, Flasza, & Stillger,
2000) and Relational R-trees (Ravi, Ravada, Sharma, & Banerjee, 1999) for
spatial databases, Relational X-trees (Berchtold, Böhm, Kriegel, & Michel,
1999) for high-dimensional nearest-neighbor search or inverted indexes for
information retrieval on text documents (DeFazio, Daoud, Smith, & Srinivasan,
1995).

Operations on Relational Access
Methods

In the strict sense of the definition, the procedural code of an arbitrary block-
oriented storage structure can be immediately transformed to a relational access

Figure 10. MBR-List, a simple example for a relational access method

polygons

id geom

A
POLYGON((10,10), 
(25,15), …, (10,10))

B
POLYGON((30,15), 
(30,45), …, (30,15))

… …

polygons_mbr

id mbr
A BOX((5,10), (30,15))

B BOX((30,5), (40,50))

… …

mbr_index_metadata

index_name user_table index_table
‘polygons_idx’ ‘polygons’ ‘polygons_mbr’

… … …

a) User table b) Index table

c) Meta table



66   Kriegel, Pfeifle, Pötke, Seidl & Enderle

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

method by replacing each invocation of the underlying block manager by an
SQL-based DML operation. Thus, the original procedural style of an index
operation remains unchanged, whereas its I/O requests are now executed by a
fully-fledged RDBMS. The object-relational database server is thereby reduced
to a plain block manager. In consequence, only a fraction of the existing
functionality of the underlying database server is exploited. In this section, we
define operations on relational access methods that maximize the architecture-
awareness postulated in Jensen and Snodgrass (1999). This can be achieved by
using declarative operations.

Cursor-Bound Operations

In order to guarantee a better exploitation of the database infrastructure, we
have to restrict the possible number of DML operations submitted from a
procedural environment:

Definition 2 (Cursor-Bound Operation). A query or update operation on a
relational access method is termed cursor-bound if the corresponding I/O
requests on the index data can be performed by submitting O(1) DML state-
ments, that is, by sequentially and concurrently opening in total O(1) cursors
provided by the underlying RDBMS.

Cursor-bound operations on relational access methods are largely bound to the
declarative DML engine of the underlying RDBMS rather than to user-defined
opaque code. Thus, the database server gains the responsibility for significant
parts of the query and update semantics. Advantages of this approach include:

• Declarative Semantics: Large parts of a cursor-bound operation are
expressed by using declarative SQL. By minimizing the procedural part and
maximizing the declarative part of an operation, the formal verification of
the semantics is simplified if we can rely on the given implementation of
SQL to be sound and complete.

• Query Optimization: Whereas the database engine optimizes the execu-
tion of single, closed-form DML statements, a joint execution of multiple,
independently submitted queries is very difficult to achieve (Sellis, 1988;
Chen & Dunham, 1998; Braunmüller, Ester, Kriegel, & Sander, 2000). By
using only a constant number of cursors, the RDBMS captures significant
parts of the operational semantics at once. In particular, complex I/O
operations — including external sorting, duplicate elimination or grouping
— should be processed by the database engine and not by a user-defined
procedure.
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• Cursor Minimization: The CPU cost of opening a variable number of
cursors may become very high. For typical applications, the resulting
overhead sums up to 30% of the total processing time (Ramsak et al., 2000).
In some experiments, we even reached barrier-crossing cost of up to 75%
for submitting a variable number of pre-parsed DML statements out of a
stored procedure. For cursor-bound operations, the relatively high cost of
opening and fetching multiple database cursors remains constant with
respect to the complexity of the operation and the database size.

Cursor-Driven Operations

A very interesting case occurs if the potential result of a cursor-bound operation
can be retrieved as the immediate output of a single cursor provided by the
DBMS. Thus, the semantics is revealed to the database server at once in its full
completeness:

Definition 3 (Cursor-Driven Operation). A cursor-bound operation on a
relational access method is called cursor-driven if it can be divided into two
consecutive phases:

(i) Procedural phase: Index parameters are read from the meta tables.
Query specifications are retrieved, and data structures required for the
actual query execution may be prepared by user-defined procedures and
functions. Additional DML operations on user data or index data are not
permitted.

(ii) Declarative phase: In the second phase, only a single DML statement is
submitted to the ORDBMS, yielding a cursor on the final results of the index
scan which requires no post-processing by user-defined procedures or
functions.

Note that any cursor-driven operation is also cursor-bound, while all I/O requests
on the index data are driven by a single declarative DML statement. The major
advantage of cursor-driven operations is their smart integration into larger
execution plans. After the completion of the procedural phase, the single DML
statement can be executed with arbitrary groupings and aggregations, supple-
mented with additional predicates or serve as a row source for joins. Further-
more, the integration into extensible indexing frameworks is facilitated, as the
cursor opened in the declarative phase can be simply pipelined to the index scan
routine. Note that the ability to implement cursor-bound and cursor-driven
operations heavily relies on the expressive power of the underlying SQL
interface, including the availability of recursive queries (Libkin, 2001).
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The single DML statement submitted in the declarative phase may contain user-
defined functions. The CPU cost of cursor-driven operations is significantly
reduced if the number of barrier crossings due to calls to user-defined functions
is minimized (Kornacker, 1999). We can achieve this by preprocessing any
required transformation — for example, of a query specification — in the
procedural phase and by bulk-binding the prepared data to the query statement
with the help of transient collections. If such data structures become very large,
a tradeoff has to be achieved between the minimization of barrier crossings and
the main-memory footprint of concurrent sessions. Splitting a single query into
multiple cursor-driven operations can then be beneficial.

To pick up the MBR-List example of the previous section, Figure 11a shows a
simple window query on the database of two-dimensional polygons, testing the
exact geometry of each stored polygon for intersection with the query rectangle.
In order to use the relational index as primary filter, the query has to be rewritten
into the form of Figure 11b. An efficient execution plan for the rewritten query
may first check the intersection with the stored bounding boxes, and refine the
result by performing the equijoin with the polygons table. Note that the window
query is a cursor-driven operation on the MBR-List, having an empty procedural
phase. Therefore, the index-supported query can be easily embedded into a
larger context, as shown in Figure 11c. Already this small example shows that

SELECT id FROM polygons 
WHERE geom INTERSECTS BOX((0,0),(100,100)); 

a) Window query on the user table. 

SELECT usr.id AS id FROM polygons usr, polygons_mbr idx 
WHERE idx.mbr INTERSECTS BOX((0,0),(100,100)) 
AND idx.id = usr.id 
AND usr.geom INTERSECTS BOX ((0,0),(100,100)); 

b) Window query using the relational index as primary filter. 

SELECT id FROM polygon_type 
WHERE type = ‘LAKE’ 
AND id IN ( 
 SELECT usr.id FROM polygons usr, polygons_mbr idx 
 WHERE idx.mbr INTERSECTS BOX((0,0),(100,100)) 
 AND idx.id = usr.id 
 AND usr.geom INTERSECTS BOX ((0,0),(100,100)) 
); 

c) Index-supported window subquery. 

Figure 11. MBR-List, a simple example for a relational access method
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an object-relational wrapping of relational access methods is essential to control
redundant data in the index tables and to avoid manual query rewriting. The
usage of an extensible indexing framework preserves the physical independence
of DML operations and enables the usual query optimization.

Although similarity queries or nearest neighbor queries (“return the k polygons
closest to a query point wrt. to a given metric”) can also be performed in a
cursor-driven way by using the order-by clause with a top-k-filter, the efficiency
of this approach is rather questionable (Carey & Kossmann, 1997).

Generic Schemes for Object-Relational
Spatial Indexing

As an immediate result of the relational storage of index data and meta data, a
relational index is subject to the built-in transaction semantics, concurrency
control and recovery services of the underlying database system. In this section,
we discuss the effectiveness and performance provided by the built-in services
of the ORDBMS on relational access methods. For that purpose, we identify two
generic schemes for the relational storage of index data, the navigational
scheme and the direct scheme.

Navigational Scheme of Index Tables

Definition 4 (Navigational Scheme).  Let P = (T, R
1
, ..., R

n
) be a relational

access method on a data scheme T and index schemes R
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, ..., R
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i
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i
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, ..., t

m
} ⊆ t and m > 1.

Therefore, a row in an index table of a navigational index may logically represent
many objects stored in the user table. This is typically the case for hierarchical
structures that are mapped to a relational schema. Consequently, an index table
contains data that is recursively traversed at query time in order to determine the
resulting tuples. Examples for the navigational scheme include the Oracle
Spatial R-tree (Ravi Kanth, Ravada, Sharma, & Banerjee, 1999) and the
Relational X-tree (Berchtold, Böhm, Kriegel, & Michel, 1999), which store the
nodes of a tree directory in a flat table. To implement a navigational query as a
cursor-bound operation, a recursive version of SQL, like SQL:1999 (ANSI,
1999; Eisenberg & Melton, 1999), is required.
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Although the navigational scheme offers a straightforward way to simulate any
hierarchical index structure on top of a relational data model, it suffers from the
fact that navigational data is locked like user data. As two-phase locking on index
tables is too restrictive, the possible level of concurrency is unnecessarily
decreased. For example, uncommitted node splits in a hierarchical directory may
lock entire subtrees against concurrent updates. Built-in indexes solve this
problem by committing structural modifications separately from content changes
(Kornacker & Banks, 1995). Unfortunately, this approach is not feasible on the
SQL layer without breaking up the user transaction. A similar overhead exists
with logging, as atomic actions on navigational data — for example, node splits
— are not required to be rolled back in order to keep the index tables consistent
with the data table. Therefore, relational access methods implementing the
navigational scheme are only well suited for read-only or single-user environ-
ments.

Relational R-Trees: Spatial Example for Navigational
Scheme

We illustrate the properties and drawbacks of the navigational scheme by the
example of Relational R-trees like they have been used by Oracle developers
Ravi Kanth, Ravada, Sharma and Banerjee (1999). Figure 12 depicts a hierar-

Figure 12. Relational mapping of an R-tree directory

polygons_rtr ee 
page  id page_lev son_id son_mbr 

ROOT 3 1 BOX((0,0), 
(200,120)) 

1 2 2 BOX((0,0), 
(80,60)) 

1 2 3 BOX((60,20), 
(100,120)) 

1 2 4 BOX((140,20), 
(200,120)) 

2 1 5 … 
2 1 6 … 
5 0 A … 
6 0 B … 
… … … … 

1 2 

3 

4 

5 7 8 9 

… 
A B 

a)  Hierarchical directory b)  Relational index table 

6 
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chical R-tree along with a possible relational mapping (page_id, page_lev,
son_id, son_mbr). The column page_id contains the logical page identifier
while page_lev denotes its level in the tree. Thereby, 0 marks the level of the
data objects and 1 marks the leaf level of the directory. The attribute son_id
contains the page_id of the connected entry, while son_mbr stores its minimum
bounding rectangle. Thus, page_id and son_id together comprise the primary
key. In our example, the logical page 2 represents a partition of the data space
that contains polygons A and B. The corresponding index row (1, 2, 2, …) is
therefore logically associated with the rows (A, …) and (B, …) in the polygons
user table (Figure 10). Thus, the Relational R-tree implements the navigational
scheme of relational access methods.

The severe overhead of the navigational scheme already becomes obvious if a
transaction inserts a new polygon and subsequently enlarges the bounding box
of a node, for example, of the root node. Due to the common two-phase locking,
this transaction will hold an exclusive lock on the row (ROOT, 3, 1, …) until
commit or rollback. During this time, no concurrent transaction can insert
polygons that induce an enlargement of the root region. The database server has
to guarantee non-blocking reads (Oracle, 1999b) to support at least concurrent

Figure 13. Cursor-driven window query on a Relational R-tree

a) Recursive window query on a Relational R-tree using SQL:1999

b) Recursive window query on a Relational R-tree using Oracle SQL

 WITH RECURSIVE tree_traversal (page_lev, son_id, son_mbr) AS ( 
 SELECT page_lev, son_id, son_mbr FROM polygons_rtree 
 WHERE page_id = ROOT 
 UNION ALL 
 SELECT next.page_lev, next.son_id, next.son_mbr 
 FROM tree_traversal prior, polygons_rtree next 
 WHERE prior.page_mbr INTERSECTS BOX((0,0),(100,100)) 
 AND prior.son_id = next.page_id 
)                          //declarative tree traversal 
SELECT son_id AS id 
FROM tree_traversal 
WHERE page_lev = 0;               //select data objects 

 SELECT son_id AS id FROM polygons_rtree 
WHERE page_lev = 0               //select data object 
START WITH page_id = ROOT 
CONNECT BY 
 PRIOR son_mbr INTERSECTS BOX((0,0),(100,100)) 
 AND PRIOR son_id = page_id;         //declarative tree traversal 
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queries on the Relational R-tree index. If the low concurrency of the Relational
R-tree is acceptable, the relational mapping opens up a wide range of potential
improvements (Kriegel, Pfeifle, Pötke, & Seidl, 2003).

To support the navigation through the R-tree table at query time, a built-in index
can be created on the page_id column. Alternatively, the schema can be
transformed to NF2 (non- first normal form), where page_id alone represents
the primary key, and a collection of (son_id, son_mbr) pairs is stored with each
row. In this case, the static storage location of each tuple can be used as
page_id, avoiding the necessity of a built-in index. A cursor-driven primary filter
for a window query using recursive SQL is shown in Figure 13. We expect that
future implementations of the SQL:1999 statement yield a depth-first traversal
that is already hard-wired into the existing CONNECT BY clause of the Oracle
server. The effectiveness of cursor-driven operations is illustrated in that the
depicted statements already comprise the complete, pipelined query processing
on the R-tree index.

Direct Scheme of Index Tables

Definition 5 (Direct Scheme).  Let P = (T, R
1
, ..., R

n
) be a relational access

method on a data scheme T and index schemes R
1
,..., R

n 
. We call P direct ⇔

(∀ t ⊆ T) (r
i
 ⊆ R

i
, 1 ≤ i ≤ n): each r ∈ r

i
 is associated with a single row t ∈ t.

In consequence, for a relational access method of the direct scheme, each row
in the user table is directly mapped to a set of rows in the index tables. Inversely,
each row in an index table exclusively belongs to a single row in the user table.
In order to support queries, the index table is organized by a built-in index, for
example, a B+-tree. Examples for the direct scheme include our MBR-List
(Figure 10), the Linear Quadtree (Samet, 1990), the one-dimensional Rela-
tional Interval Tree (Kriegel et al., 2000) and its optimization for interval
sequences and multidimensional queries (Kriegel, Pötke, et al., 2001).

The drawbacks of the navigational scheme with respect to concurrency control
and recovery are not shared by the direct scheme, as row-based locking and
logging on the index tables can be performed on the granularity of single rows
in the user tables. For example, an update of a single row r in the user table
requires only the synchronization of index rows exclusively assigned to r. As the
acquired locks are restricted to r and its exclusive entries in the index tables, they
do not unnecessarily block concurrent operations on other user rows. In contrast
to navigational indexes, the direct scheme inherits the high concurrency and
efficient recovery of built-in tables and indexes.
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Relational Interval Trees: Example for Direct Scheme

An access method implementing the direct scheme is the Relational Interval
Tree (Kriegel, et al., 2000; Kriegel, Pötke, et al., 2001). Being a relational storage
structure for interval data (lower, upper), it follows the concept of Edelsbrunner’s
main-memory interval tree (Edelsbrunner, 1983; Preparata & Shamos, 1993) by
design and guarantees the optimal complexity for storage space and for I/O
operations when updating or querying large sets of intervals.

The structure of an RI-tree consists of a binary tree of height h which covers the
range [1, 2h-1] of potential interval bounds. It is called the virtual backbone of the
RI-tree since it is not materialized, but only the root value 2h-1 is stored
persistently in a metadata table. Traversals of the virtual backbone are per-
formed purely arithmetically by starting at the root value and proceeding in
positive or negative steps of decreasing length 2h-i, thus reaching any desired
value of the data space in O(h) CPU time and without causing any I/O operation.
For the relational storage of intervals, the node values of the tree are used as
artificial keys: Upon insertion of an interval, the first node that hits the interval
when descending the tree from the root node down to the interval location is
assigned to that interval.

An instance of the RI-tree then consists of two relational indexes which, in an
extensible indexing environment, are preferably managed as index-organized
tables. The indexes obey the relational schema lowerIndex (node, lower, id)
and upperIndex (node, upper, id) and store the artificial key value node, the
bounds lower and upper, and the id of each interval. An interval is represented
by exactly one entry in each of the two indexes, and for inserting or deleting
intervals, the node values are determined arithmetically without any I/O
operation.

The illustration in Figure 14 provides an example for the RI-tree. Let us assume
the intervals (2,13) for Mary, (4,23) for John, (10,21) for Bob and (21,30) for Ann
(Figure 14a). The virtual backbone is rooted at 16 and covers the data space from
1 to 31 (Figure 14b). The intervals are registered at the nodes 8, 16 and 24. The
interval (2,13) for Mary is represented by the entries (8, 2, Mary) in the
lowerIndex and (8, 13, Mary) in the upperIndex since 8 is the registration node,
and 2 and 13 are the lower and upper bound, respectively (Figure 14c).

Again, to minimize barrier crossings between the procedural runtime environ-
ment and the declarative SQL layer, an interval intersection query (lower,
upper) is processed in two steps. The procedural query preparation step
descends the virtual backbone from the root node down to lower and to upper,
respectively. The traversal is performed arithmetically without causing any I/O
operations, and the visited nodes are collected in two main-memory tables, left
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queries and right queries, as follows: nodes to the left of lower may contain
intervals which overlap lower and are inserted into left queries. Analogously,
nodes to the right of upper may contain intervals which overlap upper and are
inserted into right queries. Whereas these nodes are taken from the paths, the
set of all nodes between lower and upper belongs to the so-called inner query,
which is represented by a single range query on the node values. All intervals
registered at nodes from the inner query are guaranteed to intersect the query
and, therefore, will be reported without any further comparison. The query
preparation step is purely based on main memory and requires no I/O operations.

In the subsequent declarative query processing step, the transient tables are
joined with the relational indexes upperIndex and lowerIndex by a single, three-
fold SQL statement (Figure 15). The upper bound of each interval registered at
nodes in left queries is compared to lower, and the lower bounds of intervals
stemming from right queries are compared to upper. The inner query

Figure 14. Example for an RI-tree

a) Four intervals 

 

b) Virtual backbone and registration positions of the intervals 

lowerIndex (node, lower, id) 

 

upperIndex (node, upper, id) 

 

c) Resulting relational indexes lowerIndex and upperIndex 

 8, 2, Mary  16, 4, John  16, 10, Bob  24, 21, Ann 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

2 6 10 14 18 22 26 30 

4 12 20 28 

8 24 

root = 16 

2M 13M 10B 

4J 21B 

23J 21A 30A 

8, 13, Mary  16, 21, Bob  16, 23, John  24, 30, Ann 

John: (4, 23) 
Mary: (2, 13) 

Bob: (10, 21) 
Ann: (21, 30) 
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corresponds to a simple range scan over the intervals with nodes in (lower,
upper).

Recently, a further relational access method implementing the direct scheme
was presented (Arge & Chatham, 2003). Like the Relational Interval Tree, the
Relational Priority Search Tree is a storage structure for handling interval
data.

Kriegel et al. (2003) describe the Linear Quadtree, another access method with
direct scheme implementation.

Conclusions

We presented the concept of object-relational spatial access methods that
employ the infrastructure and functionality of existing object-relational database
systems to provide efficient execution plans for the evaluation of user-defined
predicates. We introduced cursor-bound and cursor-driven operations to maxi-
mize the achievable declarativity, usability and performance of operations. We
identified two generic schemes for the relational mapping of index data, each
having different properties with respect to the built-in locking and logging
mechanisms of the underlying database engine: Whereas the navigational
scheme seems only appropriate for single-user or read-only databases, the
direct scheme fully preserves the effectivity and efficiency of built-in transac-
tions, concurrency control and recovery services. The presented concepts have
been illustrated by four spatial examples: The MBR-List, a trivial relational
access method for demonstration purposes, the Relational R-tree showing the
navigational scheme, along with Relational Interval Tree, an access method
implementing the direct scheme.

Figure 15. SQL statement for an intersection query

SELECT id FROM upperIndex i, :leftQueries q 
 WHERE i.node =q.node AND i.upper >=:lower 
UNION ALL 
SELECT id FROM lowerIndex i, :rightQueries q 
 WHERE i.node = q.node AND i.lower <= :upper 
UNION ALL 
SELECT id FROM lowerIndex          // or upperIndex 
 WHERE node BETWEEN :lower AND :upper; 
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Future research may investigate whether there are generic patterns to develop
a relational indexing scheme for any given index structure. Again, a careful
analysis of the potentials and the overhead of relational data management is a
major point of interest. The development of more powerful extensibility frame-
works supporting features as generic indexing interfaces and user-defined join
algorithms is a challenge for forthcoming years.
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Abstract

This chapter is a survey of quadtree uses in the image domain, from image
representation to image storage and content-based retrieval. A quadtree is
a spatial data structure built by a recursive decomposition of space into
quadrants. Applied to images, it allows representing image content,
compacting or compressing image information, and querying images. For
13 years, numerous image-based approaches have used this structure. In
this chapter, the authors underline the contribution of quadtree in image
applications.
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Introduction

A quadtree (Finkel & Bentley, 1974; Klinger, 1971) is a well-known unbalanced
spatial data structure built by recursive divisions of space in four equal-size
disjoint quadrants. This chapter focuses on image domain. A quadtree has been
used frequently to represent an image or picture in various applications. For
example, Ahmad and Grosky (1997, 2003), Albuz, Kocalar and Khokhar (2000),
Kim and Kim (2000), Lin, Tamer Özsu M, Oria and Ng (2001), Lu, Ooi and Tan
(1994), Malki, Boujemaa, Nastar and Winter (1999) and Rukoz, Manouvrier and
Jomier (2002) exploit it in the purpose of content-based image retrieval. Baligar,
Patnaik and Nagabhushana (2003), Cheng and Li (1996), Jackson, Mahmoud,
Stapleton and Gaughan (1997), Kim and Lee (2002), Li, Knipe and Cheng (1997),
Shusterman and Feder (1994) and Strobach (1991) compress images using
quadtrees. The quadtree is also used in computer graphics by Samet and Webber
(1988); in image processing by Lin (1997a, 1997b), Smith and Chang (1994) and
Yang, Chung and Tsai (2000); in Geographical Information Systems (GIS) by
Aref and Samet (1997) and Shaffer, Samet and Nelson (1990); and in image
databases by Jomier, Manouvrier and Rukoz (2000), Manouvrier, Rukoz and
Jomier (2002), Tzouramanis, Vassilakopoulos and Manolopoulos (1998-2001)
and Vassilakopoulos, Manolopoulos and Economou (1993-1995).

This chapter surveys the different applications of quadtree in the image domain.
In the first part, the principles of quadtree representation are recalled. The
second part presents several approaches minimizing the memory space used by
encoding image quadtrees in a linear form or by compressing images using
quadtrees. The third part gives an overview of the different approaches proposed
for the storage and manipulation of clusters of images. Finally, the last part deals
with the Content-Based Image Retrieval approaches using quadtrees.

Quadtree-Based Image Representation

Different types of data, like curves, surfaces or volumes, can be represented by
quadtrees. A survey of the different quadtree types is presented by Samet (1984,
1990) and online demos are proposed by Brabec and Samet (2003). The most
widely known quadtree, called region quadtree, allows cutting an image in
regions or quadrants according to a given split criterion (for example, color
homogeneity). As explained by Shusterman and Feder (1994), a quadtree allows
representing images at different levels of resolution. This section recalls the
general principles of quadtree and presents approaches using it to store image
feature vectors.
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Image Quadtree

To be represented by a quadtree, an image is recursively divided into four equal-
size quadrants until a stopping condition is met: Each node of the quadtree
represents a quadrant of the image. Examples of split criteria are color or texture
homogeneity of an image quadrant or a maximal number of feature points in each
image quadrant. This process is called quadtree decomposition, or quadtree
segmentation, by De Natale and Granelli (2001). Figure 1, for example, shows
several quadtree decompositions of the Lena image, using different percentages
of color homogeneity.

The root node of a quadtree represents the initial quadrant containing the whole
image. If an image does not conform to the chosen split criterion, then the root
has four descendant nodes representing the four first-level image quadrants. A
node is a leaf when its corresponding image quadrant conforms to the split
criterion; otherwise, the node is internal or non-terminal. In case of binary
images, that is, containing black (B) and white (W) pixels, internal nodes are
characterized as gray (G). To make the explanation clear, we use (in Figure 2)
a special simple case of binary images, where the split criterion, which stops the
subdivision of an image quadrant, is the homogeneity according to the black or
white pixel colors.

Let k be the number of internal nodes in a quadtree. As explained by Cheng and
Li (1996), a non empty quadtree has 4k+1 nodes: k internal nodes and 3k+1 leaf
nodes. A quadtree is called full when all its leaves appear at the same level. A

full balanced quadtree having h levels, with h ≥ 1, contains 
3

14
4

1

1 −=∑
=

−
hh

i

i
 nodes.

Figure 1. (a) The Lena image and its quadtree decomposition, using
different percentages of color homogeneity: (b) 70%, (c) 90% and (d)
100%
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To easily retrieve the quadtree node associated with an image quadrant and vice
versa, a quadtree node and its corresponding image quadrant use the same
identifier. In Abel (1984), Gargantini (1982), Jomier et al. (2000), Samet (1984)
and Tzouramanis et al. (2000), different encoding methods are used to associate
an identifier (also called locational code, quadcode or locational key) with a
quadtree node. In this chapter, we use a Z-ordering, following the NW, NE, SW,
SE directions, as shown in Figure 2. The numeral 0 identifies the initial quadrant
representing the whole image. Numerals 0, 1, 2 or 3, following their parent node
identifier 0, identify the four first-level quadrants. Recursively, sub-quadrants of
an image quadrant n are identified by nx where x∈{0,1,2,3}. Let N be the set
of quadtree node identifiers. Two nodes with the same identifier n (n ∈ N) in two
different quadtrees are called homologous nodes.

A quadtree can be used to handle positional information of image features. For
example, De Natale and Granelli (2001) exploit the quadtree structure for image
color segmentation. Chakrabarti, Ortega-Binderberger, Porkaew, Zuo and
Mehrotra (2000) exploit it for shape, and Ahmad and Grosky (1997, 2003) for
locating object features. In De Natale and Granelli (2001), a quadtree segmen-
tation is used to extract the distribution of dominant colors in an image where
maximum and minimum quadrant sizes are fixed. The authors define the
dominant color of a quadrant as the color with the higher percentage of
occurrences inside the region represented by the quadrant. Each color image is
represented by a quadtree, whose nodes (internal and leaf) store the dominant
color of the corresponding image quadrant. In Ahmad and Grosky (1997, 2003),
images have a symbolic representation and are recursively decomposed into a
spatial arrangement of feature points in a quadtree. In this case, each leaf node
represents an image quadrant containing zero or exactly one feature point and
each internal node contains the number of feature points in their rooted sub-tree.
In Chakrabarti et al.(2000), quadtree decomposition is used to represent two-

Figure 2. Five synthetic binary images and their region quadtree
representation
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dimensional shapes. Each black leaf node in the quadtree represents a part of the
decomposed shape. The resolution chosen to decompose the shape (that is, the
size of the quadrant representing a homogeneous region) can be adapted
depending on the quality of the shape representation.

Quadtree-Based Image Feature Vector

Several approaches use quadtree to store image features. In these approaches,
each image is represented by a quadtree having a fixed number of levels, usually
a full 3-level quadtree, which appeared sufficient in Lin et al. (2001). Each
quadtree node (internal or leaf) represents an image quadrant by storing its
features; for example, a color histogram as in Lu et al. (1994) and Lin et al.
(2001), a shape feature vector as in Kim and Kim (2000) or a combination of
color, shape and texture captured via histograms as in Malki et al. (1999). We
call such a structure a Quadtree-based Feature Vector (QFV). It is used as a
multi-level filtering, as it is suitable to a coarse-to-fine representation.

Figure 3 gives an example of a multi-level histogram: each quadtree node
contains the color histogram of the corresponding image quadrant. For instance,
the histogram labeled 00 corresponds to quadrant 00, given by the first
subdivision of the image. Histograms stored in each child node (labeled 000 to

Figure 3. An example of a quadtree-based feature vector containing color
histograms
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003) of quadtree node 00 correspond to the four sub-quadrants of quadrant 00
(top right in Figure 3).

Image Compression or Compaction
Using Quadtree

Quadtrees can be used to compact or compress images. Compaction means
lossless compression: the exact original image can be recovered. In case of lossy
compression, only a close approximation of the original image can be obtained.
In this chapter, we use the term compaction to denote lossless compression
methods and compression to denote lossy ones. The following subsections
present several approaches for compacting images by linear quadtrees or
compressing images using quadtree.

Linear Quadtrees for Binary Images

As shown by Stewart (1986), the hierarchical implementation of quadtree uses
pointers to nodes and is costly in memory space. To avoid this problem, several
approaches store quadtrees in a linear way. A linear representation of a quadtree
is a list of values that stores the hierarchical tree structure. Node values are
encoded following a pre-order, also called depth-first order, as in Abel (1984);
Gargantini (1982); Kawaguchi and Endo (1980); and Yang, Chung and Tsai
(2000); or following a breadth first order, as in Chang and Chang (1994) and Lin
(1997a). As explained by Chen (2002), the linear quadtree representation of an
image generally requires less storage space than its bit pattern representation.
This compact encoding is generally used for binary images. Table 1 shows the
linear quadtrees of images a, b and e represented in Figure 2 according to the
approaches presented below.

Gargantini (1982) and Abel (1984) represent a binary image quadtree as a list of
its black leaf nodes. Gargantini (1982) encodes each black node by a quaternary
code with digits 0 (for NW), 1 (for NE), 2 (for SW) or 3 (for SE) in base 4, where
each successive digit represents the quadrant subdivision from which it origi-
nates according to a depth-first traversing (following a Z-ordering). All quater-
nary codes have the same number h of digits, where h is the number of levels of
the quadtree (height of the quadtree). If a black node is at level p, p<h, then its
quaternary code contains only (h-p) digits and ends with p symbols X, called
“don’t-care symbol” by Chen (2002). Abel (1984) codes the SW, NW, SE, NE
directions by 1, 2, 3 or 4, following an N-ordering. The identifier values are given
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in base 5 and begin by a 1, symbol 1 representing the root node. The fill character
is a zero: If a black node is at level p, p<h, then the identifier contains p zeros.
Moreover, in Abel (1984), all quadtree node identifiers are stored in a B+-tree.

Kawaguchi and Endo (1980), Chang and Chang (1994), Lin (1997a) and Yang
et al. (2000) code all quadtree nodes by a position code, indicating if the node
is internal or not, and code all leaf nodes by a color code, following a Z-ordering.
The position and color code appellations come from Chen (2002). In all these
approaches, symbol 1 represents the color code of a black leaf node and symbol
0 represents the color code of a white one. The root node is not coded. The
Depth-First Expression of Kawaguchi and Endo (1980) is a linear implemen-
tation, where a left parenthesis represents a gray (internal) node. The quadtree
is coded according to a depth-first ordering. In the Fixed Binary Linear
Quadtree (FBLQ) code of Chang and Chang (1994), internal nodes are coded
by position code 1 and leaf nodes by position code 0, except for leaf nodes at the
bottom level and except if the root node has four leaf nodes. Moreover, each leaf
node is coded by its color code, following its position code if it exists, in a breadth-
first traversal of the quadtree. Thus, a list containing four positional codes is
immediately followed by a list of color codes whose length depends on the
number of zero (leaf nodes) in the previous positional code list. Because each
leaf node has two codes, position and color, the FBLQ code length is qualified
as variant by Chen (2002). In the Constant Bit-length Linear Quadtree
(CBLQ) code of Lin (1997a), the numeral 2 codes an internal node if at least one
of its descendants is internal. Otherwise, if all its descendants are leaves, a 3
codes the internal node. A quadtree is represented by a CBLQ code following
a breadth first order. In the Compact Improved Quadtree or Compact-IQ of
Yang et al. (2000), the entire image is encoded by a list P=<P

1
, P

2
,...,P

k
> where

k is the number of gray nodes in the quadtree of the image. The quadtree is read
using a depth-first order. Each gray node G

u
, u ∈[1,k], is encoded using the node

code (whose value is 0 for white, 1 for black and 2 for internal node) of its four
descendants. More formally, the coding value of a gray node G

u
, noted P

u
, is

given by:

Table 1. Linear quadtrees of images a, b and e of Figure 2

Linear quadtree approach Image a Image b Image e 
Gargantini (1982): {1,2} {1X,2X,31,32} {1XX,300,31X,32X} 

Abel (1984): (11,14) (110,131,134,140) (1310,1322,1340,1400) 
Kawaguchi & Endo (1980): (0110 (011(0110 (010((1000110 

Chang & Chang (1994): 0110 0001 011 0110 0001 010 1000 110 1000 
Lin (1997a): 0110 0113 0110 0102 3110 1000 

Yang et al. (2000): <12> <66,12> <57,14,1> 
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(G

u
) is the code associated with the x-direction child of G

u
, x∈{0,1,2,3}

denoting directions NW, NE, SW and SE. For example, quadtree a in Figure 2
is represented by the list <12>, coding the value of internal node 0, because
0*30+1*31+1*32+0*33=12. Quadtree b in Figure 2 is represented by the list
<66,12> ,  coding the values of internal nodes 0  and 03 ,  because
0*30+1*31+1*32+2*33=66 and 0*30+1*31+1*32+0*33=12. Furthermore,
Yang et al. (2000) use another coding method to reduce the number of bits
required for representing each value P

u
 - for details we refer to (Yang et al.,

2000).

According to Chen (2002), breadth-first linear coding, like FBLQ (Chang &
Chang, 1994) or CBLQ (Lin, 1997a), requires less storage space than depth-first
representation, such as the proposal of Gargantini (1982). However, the opera-
tions performed on breadth-first linear coding are more complex and more time-
consuming than those performed on depth-first representation (for details on
quadtree-based operations, see Samet, 1984; Lin, 1997b; and Manouvrier et al.,
2002). Thus, Chen (2002) proposes algorithms for code transformations between
breadth-first (FLBQ and CLBQ) and depth-first (Gargantini, 1982) linear
quadtrees in order to exploit the advantages of both representations: an image
can be stored or transmitted in its corresponding breadth-first linear quadtree and
can be manipulated in its corresponding depth-first linear quadtree representa-
tion.

Lossless Compression using Linear Quadtree

The approaches presented above compact binary images by linear quadtrees.
Other approaches, as Albuz, Kocalar and Khokhar (2000), and Baligar, Patnaik
and Nagabhushana (2003), extend the linear quadtree to lossless coding of gray-
scale or color images. Baligar et al. (2003) propose a lossless coding for gray-
level images using a predictive coding method. In this approach, an image is
decomposed into a number of fixed-size blocks, and “prediction coefficients” are
determined. Then, the image is represented by an error image, obtained by
subtracting predictive values of pixels from their exact values. Each error image
is compacted by a linear quadtree. The experimental results indicate that the
proposed method is more effective than the Lossless JPEG (JPEG-LS) method
(ISO, 1997) in terms of coding performance.

When images contain only black-and-white pixels or grayscale ones, the
compression is lossless because pixel values are easy to represent (see previous
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subsection). To compact color images, each image must be decomposed into bit
planes or gray-level planes, each one corresponding to a dimension of the color
feature space of the image. In Albuz et al. (2000), for example, each color image
of the database is represented in the CIELAB-based color model and is
segmented in four disjoint color planes, a pixel only belonging to a single color
plane. An image results in four sub-images, each one containing the pixels of one
of the four color planes and being represented by a binary quadtree. Thus, each
image is represented by four binary quadtrees, each one representing the
homogeneous regions of the image according to the corresponding color plane.
The lossless compression consists of coding each quadtree independently by
linear representation.

Quadtree-Based Lossy Compression Methods

Two kinds of approaches use quadtrees to compress images: those completely
based on quadtrees and those using quadtrees to improve existing compression
methods.

In the approaches presented in the previous two sections, quadtrees are used to
compact images: Each leaf node contains the exact value of the corresponding
image quadrant (which can be a pixel). Lossy compression methods, such as
Strobach (1991), Shusterman and Feder (1994), Cheng and Li (1996), Li et al.
(1997) and Kim and Lee (2002), differ from lossless ones in two points. First,
several thresholds, one for each resolution level, are used to decompose an image
quadrant in a quadtree. Second, the number of bits used to represent each
quadtree node value is not the same for different nodes: The value of a node
corresponding to a small image quadrant can be represented by fewer pixels than
a node value representing a bigger image quadrant. According to Li et al. (1997)
and Kim and Lee (2002), the performance of quadtree-based compression
methods is similar or may outperform the JPEG algorithm presented in Pennebaker
and Mitchell (1992).

Quadtrees can also be used to improve existing compression methods. For
example, Ramos and Hemami (1996) adapt the block-based transform coding
method JPEG, described in Pennebaker and Mitchell (1992). In this approach,
image edges are decomposed in a quadtree, and the quadtree decomposition
identifies the image blocks used by the JPEG compression algorithm. In the same
way, Jackson et al. (1997) use a quadtree decomposition to improve a fractal
image compression method.

The approaches presented above compact or compress a single image. The
following section presents approaches for minimizing the space used to store a
cluster of images.
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Quadtree-Based Storage and
Management of Image Clusters

The clustering of images consists of grouping together images with a predefined
relationship. This section presents different quadtree-based approaches focused
on optimizing the storage of image clusters. The goal is to maximize the sharing
of common parts between quadtrees. The first subsection describes several
distances used to evaluate the ratio of common parts between two quadtrees.
The second subsection presents several approaches based on overlapping
mechanisms. The last subsection presents several approaches for storing a
cluster of images in a single quadtree and sharing common parts between
images. A survey of these approaches is presented in Manouvrier et al. (2002).

Sharing Ratio Measurement

To evaluate the sharing of common parts between two image quadtrees, a
distance or a similarity measure between quadtrees can be defined. De Natale
and Granelli (2001), for example, have defined a quadtree structure similarity
computed by a quadtree warping process: The difference between two
quadtrees is evaluated through the number of changes in the structure (leaf split
or leaves merge) that need to be performed to make both quadtree structures
equivalent. For example, to make equivalent quadtrees a and b, represented in
Figure 2, node 03 of quadtree a should be split in four white leaves. More
formally, let N

c
(i,j) be the number of changes in the quadtrees i and j, in the

warping process. The Quadtree Structure Similarity (QSS) between image
quadtrees i and j is defined by:

1),(

1
),(

+
=

jiNc
jiQSS .

For example, the QSS distance between image quadtrees a and b, represented
in Figure 2, is equal to: QSS(a, b)=1/5=0.2 because four leaves are created in
quadtree a. As explained by De Natale and Granelli (2001), in case of perfect
matching between both quadtrees i and j, QSS(i, j)=1.

Rukoz et al. (2002) have defined several distance metrics between quadtrees
(see the Quadtree-Based Distances section), and particularly a distance be-
tween quadtree structures called Q-distance. This distance uses the concept of
node difference: Two homologous nodes are different if they have different
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types (leaf or internal) and/or different values. The Q-distance computes the
ratio of the number of different homologous nodes between two quadtrees to the
total number of nodes in both quadtrees. The Q-distance between two image
quadtrees i and j is zero, Q(i,j)=0, when all leaf nodes are at the same position
and have the same value in both quadtrees. More formally, the Q-distance
between image quadtrees i and j is defined as a sum of d

n
-distances between

quadtree nodes n, normalized by U(i,j), the number of nodes in both quadtrees
i and j:

Q(i,j) = 
),(

),(

jiU

jid
Nn

n∑
∈ .

When homologous nodes n are both internal or are both leaves with the same
value in quadtrees i and j, then d

n
(i,j)=0. Otherwise, when node n is internal in

one quadtree and is a leaf in the other quadtree, or when a node n exists only in
one quadtree and not in the other, then d

n
(i,j)=1. For example, the Q-distance

between image quadtrees a and b, represented in Figure 2, is equal to Q(a,b)=
5/9=0.55. The numerator is 5 because five homologous nodes 03, 030 to 033
have different values in the quadtrees of image a and image b, d

03
(a,b) =

d
030

(a,b) = d
031

(a,b) = d
032

(a,b) = d
033

(a,b) = 1. Nodes 030 to 033 do not exist
in the quadtree of image a. The denominator is 9 because nine nodes 0, 00 to 03
and 030 to 033 appear in the union of node identifiers of both quadtrees.

The following subsections present several approaches for storing similar images
organized in quadtrees. The main goal of these approaches is to reduce the
memory space used by image quadtrees by sharing common parts between them.
The Q-distance can be used in these approaches to organize the images of the
database: The smaller the Q-distance between image quadtrees, the greater the
sharing of node values between their quadtrees. For instance, it is possible to
organize the images in a hierarchy in order to maximize the sharing between a
parent image and a child image. In this case, an image i is inserted into the
hierarchy as a descendant of an image j, if for all image k of the hierarchy,
Q(i,j)≤Q(i,k). See Manouvrier et al. (2002) for more details.

Overlapping Mechanisms

The technique of overlapping trees was initially presented by Burton et al. (1985)
to manage the evolution of text files. The mechanism of overlapping has been
extended to sequences of a given data structure, particularly to the hierarchical
quadtrees by Vassilakopoulos et al. (1993) and linear quadtrees by Lin (1997a).
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Vassilakopoulos et al. (1993) propose a technique of overlapping to represent
sequences of similar binary raster images using hierarchical quadtrees. The
quadtree of image i in the sequence overlaps the quadtree of image (i-1): both
quadtrees share identical parts (that is, homologous nodes with the same value).
The shared nodes are referenced in the quadtree of (i-1) from the quadtree of
i. When a leaf node has different values in two successive quadtrees, all the
nodes appearing in the path, from the root to the non-shared node, are copied in
the quadtree of image i. Each quadtree node has a reference counter that
contains the number of quadtrees currently sharing the node. All nodes with a
reference counter greater than 1, together with all descendants of such nodes,
constitute shared information. As explained by Vassilakopoulos et al. (1993), this
counter allows performing deletion of a particular quadtree from the overlapped
family. An example of overlapped quadtrees is presented in Figure 4. Figure 4(a)
represents the overlapping of quadtrees of Figure 2, using a linear order (from
image a to image e). Figure 4(b) represents the same quadtrees overlapped using
a Q-distance: The smaller the distance between quadtrees, the bigger the
sharing. Thus, quadtrees b and c overlap quadtree a, quadtree d overlaps
quadtree b and is overlapped by quadtree e.

The approach of Vassilakopoulos et al. (1993) has been extended to linear
representations in Tzouramanis et al. (1998-2001). In these extensions, black

Figure 4.  Quadtrees of Figure 2 overlapped using an (a) linear or (b) Q-
distance based order
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node identifiers are stored in a B-tree-based index: Tzouramanis et al. (1998-
1999) use a classical B-tree (Bayer & McCreight, 1972), Tzouramanis et al.
(2000) use a Multiversion B-tree (Becker et al., 1996) and Tzouramanis et al.
(2001) use a Time-Split B-Tree (Lomet & Salzberg, 1989). Moreover, the
overlapping mechanism is applied to the B-tree-based index tree, each index
representing a linear quadtree. Thus, in Tzouramanis et al.(1998-2001), index
trees are subject to the overlapping mechanism similar to the Overlapping
Quadtrees.

Among the linear representations presented in the Linear Quadtrees for Binary
Images section, only Lin (1997a, 1997b) proposes a procedure for coding a
sequence of images by linear quadtrees, called overlapped CBLQ code; that is,
a totally ordered sequence, with the goal of an efficient management of
sequences of video images. In the overlapped CBLQ code, the first and last
images in a sequence are coded using the CBLQ code (see the Linear Quadtrees
for Binary Images section), and all images in the sequence, except the first one,
are coded using an overlapped CBLQ representation. This overlapped represen-
tation encodes the differences between two successive images. The difference
between two successive images i and (i-1) is obtained through a two-step
procedure. Step 1: The first four nodes of quadtree of i and (i-1) are compared.
If a node has the same value in both quadtrees, then it is coded by A in the
overlapped coding of i. If homologous nodes are different, two cases appear: If
one node is gray, then the code is B, otherwise the code is C or D according to
the black or white value of each node (see Table 2). Step 2: A letter A, C or D
codes each descendant of a node coded by B in step 1, according to their
respective values in quadtrees of (i-1) and i (see Table 2). If a node n coded by
a B in step 1 is not subdivided in quadtree (i-1) but is subdivided in quadtree i,
then each value of nodes nx in quadtree i is compared with the value of node n
in the quadtree (i-1).

As an example, the coding of the five images a, b, c, d and e, represented in
Figure 2, is:

     

0110 CBLQ code of image a 
AAAB ADDA CBLQ code of image b encoding the differences between b and a 
AACB ACCA Overlapped CBLQ code of c encoding the differences between c and b 
AAAB ADDA Overlapped CBLQ code of d encoding the differences between d and c 
AAAB CAAA DAAA Overlapped CBLQ code of e encoding the differences between e and d 
0102 3110 1000 CBLQ code of image e 
 

Table 2. Quadtree node coding by the overlapped CBLQ code of Lin
(1997a)

Value of a node in the first quadtree: White White Gray Gray Black Black 
Value of a node in the second quadtree: Gray Black Black White White Gray 

Overlapped code: C D C D C D 
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Inverted Quadtrees

When all images of a cluster are stored in a single quadtree, such a structure is
called an Inverted Quadtree. This section presents three approaches of
Inverted Quadtrees proposed by Cheiney and Touir (1991) and Vassilakopoulos
and Manolopoulos (1995) for binary images, and by Jomier et al. (2000) for
binary, grayscale or color images.

In an inverted representation, a quadtree node is associated with a set of image
identifiers. An inverted quadtree representing the five images of Figure 2
appears in Figure 5. Each node n in the inverted quadtree is associated with either
a set of image identifiers (black nodes in Figure 5), whose quadtree contains a
black node n, or with an empty set (white nodes in Figure 5) if no image quadtree
contains a black node n.

The Fully or FI-Quadtree of Cheiney and Touir (1991) consists of a full
balanced quadtree. Each node holds a bit string of maximum length (the
maximum number of images in the database), each bit designating a separate
image. A black node n of an image quadtree i is identified by a 1 in the ith bit of
the bit string associated with the inverted quadtree node n. This structure is
static: It can hold a predefined number of images. This number can be increased
after a total reorganization of the structure. On the other hand, in the Dynamic
or DI-quadtree of Vassilakopoulos and Manolopoulos (1995), each node of the
inverted quadtree points to a list containing only identifiers of images that have
the corresponding black node in their quadtree. The list is implemented by
chained segments so that the structure is dynamic: Any number of images can
be added.

Figure 5. An inverted quadtree storing image quadtrees of Figure 2
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The Generic Quadtree of Jomier et al. (2000) is an inverted structure that
allows the management of binary, gray-scale or color images. Its nodes are
called generic nodes. For each node appearing in an image quadtree, there is a
generic node with the same identifier. A generic node n represents all nodes n
of the quadtrees of images belonging to the cluster. Each generic node may be
seen as a table with two columns and one or several lines. Each line l of a generic
node n contains a list of image identifiers and a value v of quadtree node: v is the
value of node n in each image quadtree whose identifier i appears in line l. A
generic node can take any value in the following logical OR-sequence: ⊥,
meaning that the node does not exist in the quadtree of images whose identifiers
appear in the corresponding line (see generic node 030 in Figure 6b); OR I,
meaning that the node is internal — it has four descendants (see generic node
0 in Figure 6b); OR black if it is a black leaf, OR white if it is a white leaf, and
so forth.

To reduce the size of generic nodes, a cluster is organized in a tree called Image
Tree (see Figure 6a), where an image j is inserted in the Image Tree as a
descendant of an image i according to the Q-distance (see the Sharing Ratio
Measurement section), and an implicit sharing is defined. The implicit sharing
is based on the following rule: Except if the identifier of an image i is explicitly
associated with another value v, image i shares the value with its parent
image. Applying the sharing rule, all the nodes n of the quadtrees representing
images that descend from image i implicitly share the value v (see generic node

Figure 6. Image tree and generic quadtree of images of Figure 2
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00 in Figure 6b). This implicit sharing is stopped when a descendant image
identifier appears in another line of generic node n, that is, it is associated with
another value v’ (see generic node 02 in Figure 6b — Only image quadtree b
implicitly shares the value black with image quadtree a).

Quadtree-Based Image Retrieval

The quadtree structure is used in several Content-Based Image Retrieval
approaches in order to capture the spatial composition of features in images (for
example, color, texture, shape). This section presents approaches using quadtrees
for content-based image retrieval. The first section presents approaches using
quadtrees to index spatio-temporal databases storing consecutive historical
binary raster images. The second subsection shows how the quadtree can be
used as a multi-level filtering (or a coarse-to-fine) structure, and presents
several approaches using quadtrees to query images using multilevel (or multi-
precision) similarity matching.

Spatio-Temporal Query Processing

Quadtrees allow window query processing. As explained by Aref and Samet
(1997), a window query is analogous to a range query in the spatial domain, where
the result contains all the database objects overlapping a part of a space
represented by a range of coordinates. Using a quadtree, a window query returns
all the quadtree nodes overlapping a rectangular subregion termed a window. In
Figure 7, for example, quadrants 1 to 4 are returned by the query window
represented by the dotted lines. To find the query result, the window is
decomposed into sub-windows; Aref and Samet (1997) have proposed a window
decomposition algorithm. Tzouramanis et al. (1998-2001) apply window queries
to consecutive historical raster binary images represented by overlapping linear
quadtrees (stored in B-tree like index structures; see the Overlapping Mecha-
nisms section). Each linear quadtree is associated with a unique timestamp. As
explained by the authors, the proposed structure allows answering queries as
“find the black regions intersecting, or completely covering a window
query, at each time point within a time interval.”
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Content-Based Image Retrieval

Quadtree-Based Distances

To compare images represented by Quadtree-Based Feature Vectors (QFV –
see the Quadtree-Based Image Feature Vector section), distances between
images represented by quadtrees have been defined by Rukoz et al. (2002) and
are summed up below.

Let δ
n
(i,j) be a normalized metric distance (δ

n
(i,j)∈[0,1]) between feature

vectors contained in homologous nodes n of two QFV, i and j. δ
n
(i,j) can be any

geometric distance of the Minkowski L
p
 family1 and can be a weighted distance.

Let ∆(i,j) be the distance between two images i and j, represented by a quadtree-
based feature vector. ∆-distance is defined as a weighted sum of normalized δ

n
-

distances between feature vectors stored in quadtree nodes n, weighted by
coefficients w

n
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∆-distance is normalized by the denominator ∑
n

nw  (at least one w
n
 must be

different from zero): ∆∈[0,1]. Values of w
n
-coefficients depend on the user

needs.

Particular cases of ∆-distance can be found in Kim and Kim (2000), Lin et al.
(2001), Lu et al. (1994) and Malki et al (1999) (see the following subsection). The
Q-distance, presented in the Sharing Ratio Measurement section, is a particular
case of ∆-distance. Rukoz et al. (2002) defined two other particular cases of ∆-
distance: ∆(p) (i,j) and ∆

r
 (i,j). ∆(p) (i,j) is a distance between image quadtrees i

and j, without taking into account details after a certain quadtree level p: For all
nodes n appearing from root level (level 0) to level p, w

n
>0, and for all nodes n,

appearing in a deeper level d (d>p), w
n
=0. ∆

r
 (i,j) is a distance between image

quadtrees i and j, where w
n
>0 for all nodes n corresponding to the quadrants

selected by the user and representing a region r. w
n
=0 for the other quadtree

nodes. This distance can be used to compute local or pattern search, which
consists of retrieving images having regions similar to the query pattern given by
the user. The user selects one or several quadrants in a grid image (4×4 or 16×16
grid) representing a region r that becomes the query pattern q

r
: An image i is

similar to the query pattern q
r
 if ∆

r
 (i,qr) is below a given threshold α.



98   Manouvrier, Rukoz & Jomier

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Quadtree-Based Feature Vector or Image Retrieval Approaches

The quadtree is used in several Content-Based Image Retrieval approaches, by
De Natale and Granelli (2001), Kim and Kim (2000), Lu et al. (1994), Lin et al.
(2001), Malki et al. (1999) and Ahmad and Grosky (1997, 2003), in order to
capture the spatial distribution of features in images (for example, color, texture,
shape or feature points). Lu et al. (1994) and Lin et al. (2001) represent each
image of the database by a full fixed-depth balanced quadtree. Each node of the
balanced quadtree contains a color histogram that characterizes the colors of the
corresponding quadrant in the image. The authors define a distance between
images based on the distance between the histograms of the sub-regions. They
use a ∆-like distance, where w

n
 is a surface coefficient equal to 4-p and δ

n 
is the

color histogram distance between histograms stored in homologous nodes n
appearing at level p. The top-level histograms are first compared. If they match
within some threshold value, the next level will be searched, and so on. As
explained by Lin et al. (2001), the distance metrics at higher precision levels
provide a better discrimination power.

Malki et al. (1999) also represent each image by a full fixed-depth balanced
quadtree. This approach allows performing region queries. Image signatures are
computed on each sub-image and are stored in nodes of quadtree-based feature
vectors. To perform a region query, the user has to specify the regions of interest
at a chosen level. A bounding box is defined as the smallest sub-image containing
the regions of interest (Figure 8). Each image of the database is compared to the
initial query image and the query images obtained after a translation of the
bounding box containing the regions of interest. The distance defined by the
authors is a normalized linear combination of distances, and is a ∆

r
-like distance.

All chosen regions in the query image have the same size, thus all nodes n
representing the regions selected by the user in the query image have the same
w

n
 coefficient. The w

n
-coefficient values are zero for the other nodes n which

do not represent the selected regions.

Figure 7. A binary image and query window, adapted from Tzouramanis et
al. (2001)
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In Kim and Kim (2000), a shape is divided into four sub-regions by two principal
axes corresponding to the two eigenvectors at the center of the mass of the
shape. Each sub-region is subdivided into four sub-regions in the same way. The
sub-division process is repeated a predetermined number of times. A fixed-
depth, balanced quadtree representation with its nodes corresponding to regions
of the shape is derived from this process. Four parameters, invariant to
translation, rotation and scale, are calculated for the corresponding regions of
each node, while two parameters are extracted from the root node. The shape
descriptor is represented as a vector of all parameters (reading the quadtree
following a breadth first order). The similarity distance used to compare two
shapes is a ∆-like distance where δ

n
 is a city block2 distance (say L

1
 or D

1
)

between quadtree nodes, and where w
n
 is equal for all nodes n.

In De Natale and Granelli (2001), each image of the database is represented by
a quadtree-based color description described by two arrays: a binary array
representing the quadtree structure and a label array representing the dominant
color associated with each node. To be compared, two quadtrees representing
images of the database must have an equivalent structure resulting from a
warping procedure (see the Sharing Ratio Measurement section). When both
quadtree structures are equivalent, a quadtree color similarity is computed, based
on the difference between each dominant color stored in the quadtree nodes. The
similarity between two images is evaluated according to both similarities
(structure and color). The user queries images by selecting an image of the
database or by drawing a sketch of the request color structures (that is, indicating

Figure 8. An example of a query pattern, adapted from Malki et al. (1999)
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the positions and the values of dominant colors in a grid). The distance used is
a combination of the QSS similarity, defined in the Sharing Ratio Measurement
section, and ∆-like distance where w

n
>0 for all leaf nodes and w

n
=0 for all internal

nodes.

In Ahmad and Grosky (1997,2003), each image of the database is represented
by a set of representative feature points, extracted using image processing
techniques. Unbalanced quadtrees are used to determine and represent the
distribution of feature points in the images, the decomposition process stopping
when each feature point is exactly contained in an image quadrant. To compare
images, the authors define a ∆-like distance, where δ

n
  computes the difference

between the proportion of feature points stored in each node n. Like the
approaches presented above, images are filtered at each quadtree level, using a
∆(p) -like distance.

Summary and Future Trends

Originally proposed to index spatial databases, quadtrees are implemented in
several commercial DBMS, such as DB2 (Adler, 2001) or Oracle (Kothuri et al.,
2002). Subsequently, quadtrees have been adapted to represent images, and are
implemented in content-based image retrieval research prototypes, such as
DISIMA (Lin et al., 2001) or IKONA (Malki et al., 1999), and in the Virage
Image Engine (Gupta & Jain, 1997). Quadtrees allow characterizing the spatial
distribution of the information contained in images. This distribution is used to
improve image storage or image retrieval algorithms. This chapter has presented
several approaches that use quadtrees for image representation, image storage,
image compression or content-based image retrieval. Table 3 gives a summary
and classification of the approaches referenced in this chapter.

There is still much to be done in this domain to render quadtrees more efficient
and flexible in image management systems. First, the approaches surveyed tailor
quadtrees to meet the needs of specific applications (storage/compaction/
compression or content-based retrieval). Efforts should be continued to yield
more generic methods. Second, several methods optimize quadtree usage in a
two-step procedure: The first step reduces the search space using another index
method, such as extendible hash in Lin et al. (2001) or k-d-tree in Malki et al.
(1999), and the second step computes distances using quadtrees. The index
methods only use the quadtree from the root downwards. Thus, new approaches
should be developed to allow accessing the quadtree at intermediate levels.
Finally, another promising direction lies in taking advantage of the quadtree
structure to extract image signatures, like in Ahmad and Grosky (2003), Albuz
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et al. (2000) or De Natale and Granelli (2001). Quadtree-based image signatures,
generally of small size, are used in a first level of filtering process, improving the
image retrieval performance by reducing the set of candidate images to be
compared.
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Table 3. Summary of image quadtree-based approaches

Subject description References 
Quadtree definition Brabec & Samet, 2003; Finkel & Bentley, 1974; Klinger et al., 

1971; Samet, 1984, 1990 
Binary image representation Abel, 1984; Chang & Chang, 1994; Cheiney & Touir, 1991; 

Chen, 2002; Gargantini, 1982; Kawaguchi & Endo, 1989; Lin, 
1997a, 1997b; Tzouramanis et al., 1998-2001; Vassilakopoulos 
et al., 1993-1995; Yang et al., 2000 

Color image representation Albuz et al., 2000; De Natale & Granelli, 2001; Lin et al., 
2001; Lu et al., 1994, Malki et al., 1999 

Texture representation Malki et al., 1999; Smith & Chang, 1994 
Shape representation Chakrabarti et al., 2000; Kim & Kim, 2000 
Quadtree-based feature vector Kim & Kim, 2000; Lin et al., 2001; Lu et al., 1994; Malki et 

al., 1999 
Image sequence or image cluster 
representation 

Cheiney & Touir, 1991; Jomier et al., 2000; Lin,1997a; 
Manouvrier et al., 2002; Tzouramanis et al., 1998-2001; 
Vassilakopoulos et al., 1993-1995 

Linear quadtree representation Abel, 1984; Chang & Chang, 1994; Kawaguchi & Endo, 1990; 
Gargantini, 1982; Lin, 1997a;  Tzouramanis et al., 1998-2001; 
Yang et al., 2000 

Image compaction Albuz et al., 2000; Baligar et al., 2003 ; Chang & Chang, 1994; 
Lin, 1997a, 1997b; Yang et al., 2000 

Image compression Jackson et al., 1997; Kim & Lee, 2002; Li et al., 1997 ; 
Strobach, 1991; Shusterman & Feder, 1994 ; Ramos & 
Hemami, 1996 

Image management Jomier et al., 2000; Lin, 1997b; Manouvrier et al., 2002; Yang 
et al., 2000 

Quadtree-based distances Ahmad & Grosky, 1997, 2003; De Natale & Granelli, 2001; 
Jomier et al., 2000; Kim & Kim, 2000; Lu et al., 1994; Lin et 
al., 2001; Malki et al., 1999; Rukoz et al., 2002 

Image retrieval and image 
querying 

Ahmad & Grosky, 1997, 2003; Albuz et al., 2000; Chakrabarti 
et al., 2000; Cheiney & Touir, 1991; De Natale & Granelli, 
2001; Kim & Kim, 2000; Lin et al., 2001, Lu et al., 1994; 
Malki et al., 1999; Smith & Chang, 1994; Tzouramanis et al., 
1998-2001 
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2 The sum of the absolute difference of each parameters stored in homolo-
gous quadtree nodes.
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Chapter V

Indexing
Multi-Dimensional

Trajectories for
Similarity Queries

Abstract

With the abundance of low-cost storage devices, a plethora of applications
that store and manage very large multi-dimensional trajectories (or time-
series) datasets have emerged recently. Examples include traffic supervision
systems, video surveillance applications, meteorology and more. Thus, it is
becoming essential to provide a robust trajectory indexing framework
designed especially for performing similarity queries in such applications.
In this regard, this chapter presents an indexing scheme that can support
a wide variety of (user-customizable) distance measures while, at the same
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time, it guarantees retrieval of similar trajectories with accuracy and
efficiency.

Introduction

Multi-dimensional trajectory data are prevalent in diverse fields of interest, such
as environmental information systems, meteorology, traffic supervision, wireless
telephony, video tracking (Betke, 2002), and so forth. In such applications it is
very common to record multiple measurements concurrently (for example,
spatio-temporal datasets that record the x and y positions of objects over time).
Therefore, any dataset that involves storage of data with multiple attributes can
be considered and treated as a set of multi-dimensional trajectories. An example
of 2-dimensional trajectories appears in Figure 1. Recent advances in wireless
communications, sensor devices and GPS technology have made it possible to
collect large amounts of spatio-temporal data, increasing the interest in perform-
ing data mining tasks (Barbara, 1999; Roddick, 2000). Examples include tracking
animals, recording weather conditions, gathering human motion data generated
by tracking various body joints (Shimada, 2000; Arikan, 2002), tracing the
evolution of migrating particles in biological sciences and more.

Some very important data mining operations for multi-dimensional trajectories
involve the discovery of objects that move similarly or others that follow closely
a given query pattern. An important consideration for these operations is the
similarity/distance measure that will be used for discovering the most appro-
priate trajectories (for example, Euclidean distance). A major difficulty that
affects the choice of a good similarity measure is the presence of noise
(introduced due to electromagnetic anomalies, transceiver problems and so
forth). Another obstacle is that objects may follow similar motion patterns
(spatial domain) but at different rates (temporal domain). Hence, the similarity
models should be robust to noise, and should support elastic and imprecise
matches. For example, in Figure 1 all three trajectories follow similar paths;
quantifying the similarity of these paths depends on the similarity measure that
will be used. In addition, it is clear that existing outliers might distort the
“expected” value of the similarity between the trajectories.

Some of the most widely used similarity measures are functions with large
computational cost that make similarity query evaluation a challenging task.
Consequently, in order to produce query results promptly, it is crucial to speed
up the execution of these functions. For that purpose, low-cost upper/lower-
bounding approximations of the similarity functions can be used initially to help
prune most dissimilar trajectories faster.
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Moreover, for very large datasets, in order to perform similarity retrieval
efficiently, it is vital to organize intelligently the trajectories on secondary storage
using an indexing scheme, in order to avoid the exhaustive linear scan over all the
data. It is also essential, in that respect, to design indexing schemes that can
support a wide variety of similarity measures, thus being adaptive to diverse
application domains and flexible enough to satisfy varying user needs.

The rest of this chapter is organized as follows. First, various similarity measures
for multi-dimensional trajectories, along with possible upper/lower-bounding
techniques, are presented. Then, a multi-dimensional indexing scheme is dis-
cussed. Finally, we present test cases of real applications that utilize the
trajectory indexing schemes for supporting similarity search queries.

Similarity/Distance Measures

As already mentioned, the most desirable properties of similarity/distance
measures are: (i) To be robust to outliers; (ii) To support flexible time-aligned
matches; and (iii) To have low computational cost. Some of these requirements
are conflicting, making it hard to find similarity/distance functions that satisfy all
three. In that regard, this section concentrates on three similarity/distance
models for trajectories, each one satisfying a subset of the above properties.

The first and most widely used distance measure is the L
p
-norm (for example,

Euclidean distance). The second is an extension of Dynamic Time Warping
(DTW) (Berndt, 1994) for higher dimensions. Finally, the third is a modification

Figure 1. Two-dimensional trajectories projected over time
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of the Longest Common Subsequence (LCSS) (Levenshtein, 1966) specially
adapted for continuous values.

The Lp-norm

Let A and B be 2-dimensional trajectories of length n , where A = ((a
x,1

, a
y,1

), ...,
(a

x,n
, a

y,n
)) and B = ((b

x,1
, b

y,1
), ..., (b

x,n
, b

y,n
)) (sets of 2-dimensional points

corresponding to one location per sampled time instant). For simplicity, for the
rest of the chapter we consider only 2-dimensional sequences; extensions to
more dimensions are straightforward.

The L
p
-norm between A and B is defined as:

, , , ,
1

( , ) (( , ), ( , ))
n

p p x i y i x i y i
i

L A B L a a b b
=

= ∑ .

Essentially, the L
p
-norm is the sum of the distances between the corresponding

points in time, which gives a measure of the distance between the two
trajectories. A 1-dimensional example is shown in Figure 2(a).

One shortcoming of this distance measure is that it cannot be defined for
trajectories of different lengths. One can overcome this problem by sliding the
shorter trajectory over the longest one and keeping the minimum computed
distance overall, although, this results in increased computational cost. Another
drawback of this model is that it cannot deal well with outliers (it degrades rapidly
in the presence of noise). Finally, it is very sensitive to small distortions in the time
axis — trajectories that follow very similar patterns but are slightly shifted in time
will never be matched (Vlachos, 2002). However, it should be mentioned that the
advantage of this simple metric is that it can be used to index trajectories, by
utilizing dimensionality reduction techniques in conjunction with metric index
structures (Agrawal, 1993; Faloutsos, 1994; Yi, 2000).

Dynamic Time Warping

Most real-world phenomena can evolve at varying rates. For that reason – even
though the vast majority of research on trajectory/time-series data mining has
focused on the Euclidean distance — for virtually all real-world systems there
is a need for similarity/distance measures that allow time warping (that is, elastic
matching in the time domain). For example, in molecular biology it is well
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understood that functionally related genes will express themselves in similar
ways, but possibly at different rates (Aach, 2001; Bar-Joseph, 2002). For that
reason DTW has been used extensively.

Let A and B be 2-dimensional trajectories of lengths n and m respectively. Also,
let Head(A) = ((a

x,1
,a

y,1
),...,(a

x,n-1
,a

y,n-1
)) be the first n-1 points of A.

The DTW distance between A and B is:

( ( ) ( ))

( ) (( ) ( )) min ( ( ) )

( ( ))
p x n y n x m y m

DTW Head A Head B

DTW A B L a a b b DTW Head A B

DTW A Head B
, , , ,

, 
 , = , , , + , 
 , 

.

The computation of DTW utilizes a dynamic programming technique. If the
possible allowable matching in time is constrained within at most distance δ  (the
warping length) from each point, the computational cost of the algorithm is in the
order of O(δ ⋅ (n+m)). This function gives a measure of the distance between
two trajectories, as well. Figure 2(b) shows an example of DTW between two
1-dimensional trajectories.

The major drawback of this measure is that its efficiency deteriorates for noisy
data. The algorithm matches individually all the points of a trajectory one by one.
Thus, it also matches the outliers distorting the true distance. Another problem
is that it is not suitable for use with most typical indexing techniques, since it
violates the triangular inequality. One additional shortcoming is that it suffers
from excessive computational cost for large warping lengths. Nevertheless,

Figure 2. (a) The Euclidean distance ( L
2
-norm); and (b) the DTW distance

(a) (b)
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restricting the allowed warping length substantially speeds up the computation of
DTW and yields other benefits as well (Vlachos, 2003).

Longest Common Subsequence

An alternative similarity measure is LCSS, which is a variation of the edit
distance (Levenshtein, 1966). The basic idea is to match two trajectories by
allowing them to stretch along the time dimension without rearranging the order
of the elements but allowing some of them to remain unmatched. The length of
the resulting subsequence can be used as the similarity measure (Agrawal, 1995;
Bollobas, 1997; Bozkaya, 1997; Das, 1997). Let A and B be 2-dimensional
trajectories of lengths n and m respectively.

Given integers δ and ε, we define  the LCSS distance between A and B as:

0,

1 ( ( ) ( )),

- -
( )

-

( ( ( ) ), ( ( ))),

x n x m y n y m

if Aor Bis empty

LCSS Head A Head B

if a b and a b
LCSS A B

and n m

max LCSS Head A B LCSS A Head B

otherwise

δ ε

δ ε

δ ε δ ε

ε ε
δ

,

, , , ,
,

, ,


 + ,
 | |< | |<, = 

| |≤
 , ,



.

The warping length δ controls the flexibility of matching in time and constant ε
is the matching threshold in space. Contrary to the other two distance measures
discussed so far, LCSS is a measure of similarity between two trajectories (not
of distance).

This function can be computed efficiently using dynamic programming and has
complexity in the order of O(δ ⋅ (n+m)), if only a matching window δ in time is
allowed (Das, 1997). An instance of the dynamic programming execution
between two trajectories is depicted in Figure 3, where the gray region indicates
the allowed warping length.

The value of LCSS is unbounded and depends on the length of the compared
trajectories. Thus, it needs to be normalized in order to support trajectories of
variable length. The distance derived from the LCSS similarity can be defined as
follows:
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The normalized distance Dδ,ε expressed in terms of the LCSS similarity between
A and B is given by:

( )
( ) 1 -

min( )

LCSS A B
D A B

n m
δ ε

δ ε
,

,

,
, =

, .

Even though LCSS presents similar advantages to DTW, it does not share its
unstable performance in the presence of outliers. Nevertheless, this similarity
measure is non-metric; hence, it cannot be directly utilized with most typical
indexing schemes.

Multi-Dimensional Indexing

If an appropriate similarity/distance measure can be decided based on a specific
application domain, similarity queries can be answered in a straightforward way
using exhaustive search — that is, computing the similarity/distance function

Figure 3. Execution of the dynamic programming algorithm for LCSS (the
warping length is indicated by the gray area (δ=6))
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between the query and every trajectory in the database. However, most
trajectory datasets can reach the scale of Terabytes in size and, in addition, most
popular similarity/distance functions can have a very large computational cost.
Therefore, comparing a query to all the trajectories becomes intractable in such
cases.

It is thus imperative to avoid examining the trajectories that are very distant to
the query. This can be accomplished by discovering a close match as early as
possible during the search, which can be used as a pruning threshold. A fast pre-
filtering step can be employed that eliminates the majority of distant matches so
that the costly, but accurate, similarity functions will be executed only for a small
subset of qualifying trajectories (Keogh, 2002; Yi, 1998).

Various indexing schemes can be used to aid the pre-filtering step. For example,
the trajectories can be approximated using Minimum Bounding Rectangles
(MBRs) and then stored in a multi-dimensional index structure (Hadjieleftheriou,
2002). Alternatively, they can be represented as high-dimensional points and
then stored in an index after using any dimensionality reduction technique
(Agrawal, 1993).

In order to improve query response times even further, much faster upper/lower-
bounding functions of the actual similarity/distance measures should be derived
(these are functions that consistently over/underestimate the true distance). This
step is also necessary since some distance measures do not obey the triangular
inequality; hence upper/lower-bounding functions that are metric are essential.
These functions should guarantee no false dismissals. Intuitively, given an actual
distance D of some trajectory to a query sequence, one should be able to prune
other trajectories for which the less-expensive lower-bounds D

LB
 have already

been computed and it holds that D
LB

 > D. If, in addition, upper-bounds D
UB 

of the
distance functions can be computed, any trajectory having D

LB
 larger than the

minimum computed D
UB

, can also be pruned; its actual distance from the query
is definitely larger than D

UB
. (The inverse is true for similarity functions like

LCSS.)

The next sections present various upper/lower-bounding techniques for the
similarity/distance measures discussed so far. Then we show how these bounds
can be used in combination with various indexing schemes as an efficient pre-
filtering step.

Lower-Bounding the DTW

Most lower-bounding functions for DTW were originally defined only for 1-
dimensional time-series (and are presented for the 1-dimensional case below).
However, their extensions for a multi-dimensional setting are straightforward.
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The lower-bounding function introduced in Kim (2001) (hereafter referred to as
LB-Kim) works by extracting a 4-tuple feature vector from each trajectory that
consists of the first and last points of the trajectory, together with the maximum
and minimum values. The maximum of the squared differences of the corre-
sponding features is reported as the lower-bound. Figure 4(a) illustrates the idea.

The lower-bounding function introduced by Yi (1998) (hereafter referred to as
LB-Yi) takes advantage of the observation that all the points in one trajectory
that are larger (smaller) than the maximum (minimum) of the other trajectory
must contribute at least the squared difference of their value and the maximum
(minimum) value of the other trajectory to the final DTW distance. Figure 4(b)
illustrates the idea. An important observation is that LB-Kim can be used as-is
with any traditional multi-dimensional index structures. In contrast, LB-Yi
cannot; it can be used only in conjunction with FastMap — a technique for
approximate indexing of DTW (Faloutsos, 1995). The idea is to embed the
trajectories into Euclidean space such that the distances between them are
approximately preserved, and then use an index structure. The LB-Yi function
is used to prune some of the inevitable false hits that will be introduced by
FastMap.

A more robust lower-bounding technique was proposed by Keogh (2002)
(hereafter referred to as LB-Keogh). Consider for simplicity a 1-dimensional
time-series A=(a

x,1
, ..., a

x,n
). We would like to perform a very fast DTW match

with warping length δ between trajectory A and query Q=(q
x,1

, ..., q
x,n

). Suppose
that we replicate each point q

x,i 
for δ time instants before and after time i. The

surface that includes all these points defines the area of possible matching in
time, between the trajectory and the query. Everything outside this area should
not be matched. We call the resulting area around query Q the Minimum
Bounding Envelope (MBE) of Q (Figure 5).

Figure 4. (a) Lower-bounding measure introduced by Kim (2001); (b)
lower-bounding measure introduced by Yi (1998)
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The notion of the bounding envelope can be extended for more dimensions; for
example, the MBEδ(Q) for a 2-dimensional query trajectory Q=((q

x,1
, q

y,1
), ...,

(q
x,n

, q
y,n

)) covers the area between the following trajectories:

( )EnvLow MBE Q EnvHighδ≤ ≤

where for dimension d at position i:

( ), -

( ), -
d i d j

d i d j

EnvHigh max q i j

EnvLow min q i j

δ
δ

, ,

, ,

= | |≤

= | |≤ .

LB-Keogh works as follows: First, the MBE(Q) of query Q is constructed. Then,
the distance of MBE(Q) from all other trajectories is evaluated. For trajectories
Q and A (assuming dimensionality D), the distance between A and MBE(Q)  is:

2

2

1 1

( ) , if

( ( ) ) ( ) , if

0, otherwise

d i d i x i d iD n

d i d i x i d i
d i

a EnvHigh a EnvHigh

DTW MBE Q A a EnvLow a EnvLow
, , , ,

, , , ,
= =

 − >
, = − <



∑ ∑ .

This function is the squared sum of the Euclidean distance between any part of
A not falling within the envelope of Q and the nearest (orthogonal) edge of the
envelope of Q, as depicted in Figure 5.

Figure 5. An illustration of LB-Keogh (the original trajectory Q (shown
dotted), is enclosed in the MBE of EnvHigh and EnvLow)
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Since the tightness of the bound is proportional to the number and length of the
gray hatch lines, it is clear that this lower-bound provides a tighter approximation
compared to LB-Kim or LB-Yi. In addition, this measure will always be at least
as tight as LB-Yi, which is a special case arising when the warping length is
allowed to cover the total length of the trajectory.

One can prove that LB-Keogh lower-bounds the actual time warping distance.
A proof for the 1-dimensional case was given by Keogh (2002). This measure
has since been used extensively in literature (Zhu, 2003; Rath, 2002; Vlachos,
2003).

Upper-Bounding the LCSS

We would like to perform a very fast LCSS match with warping length δ and
within space ε between trajectory A and query Q = (q

x,1
, ..., q

x,n
). The query MBE

in this case should be extended within ε  in space, above and below, in order to
incorporate this parameter as well (Figure 6).

The LCSS similarity between the envelope of Q and a trajectory A is defined as:

1

1, if A[i] within envelope
( ( ) )

0, otherwise

n

i

LCSS MBE Q A
=


, = 


∑

Figure 6. MBE within δ in time and ε in space of a trajectory (everything
that lies outside this envelope should not be matched)
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This value represents an upper-bound for the similarity of Q and A. We can use
the MBE (Q) to compute a lower-bound on the distance between trajectories
as well:

Lemma 1.  For any two trajectories Q and A the following holds:

( ( ) ) ( )D MBE Q A D Q Aδ ε δ ε, ,, ≤ ,

Using Upper/Lower-Bounds for Quick Trajectory
Pruning

Previous sections described various ways for upper/lower-bounding the similar-
ity/distance measures between two trajectories. According to the GEMINI
framework (Agrawal, 1993), the approximated distance functions can be used
to create an index that guarantees no false dismissals. However, the described
upper/lower-bounds need to be computed using the raw trajectory data. This
section presents a robust multi-dimensional indexing scheme for trajectories
(which appeared in Vlachos, 2003) that can be used with any similarity/distance
measure discussed so far and that does not need to access the actual trajectory
data but only their compact approximations.

This scheme is based on the following principles. First, the trajectories are
approximated using a number of multi-dimensional MBRs which are then stored
in an R-tree (Guttman, 1984). For a given query Q, MBE(Q) is computed and
decomposed into smaller MBRs. The resulting query MBRs are probed as range
searches in the R-tree to discover which trajectory approximations intersect with
Q and could be potential candidates. Trajectories that are very distant are never
accessed and, thus, they are instantly pruned. Access to the raw trajectory data
is restricted to only a few candidates. This procedure is schematically illustrated
in Figure 7.

This index is very compact since it stores only the substantially reduced in size
trajectory approximations, and its construction time scales well with the trajec-
tory length and the dataset cardinality. Therefore, this method can be utilized for
massive data mining tasks. One of the significant advantages of this approach is
its generality and flexibility. The user is given the ability to pose queries of
variable warping length without the need to reconstruct the index. By adjusting
the width of the bounding envelope on the query, the proposed method can
support L

p
-Norms and constrained or full warping. Also, the user can choose

between faster retrieval with approximate solutions, or exact answers on the
expense of prolonged execution time. Other work on multi-dimensional trajec-
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tories can support only the use of the Euclidean distance (Lee, 2000; Kahveci,
2001).

Generating Efficient Trajectory Approximations

The trajectories are indexed using a multi-dimensional R-tree. Before being
inserted into the index, they need to be approximated using multi-dimensional
MBRs. Approximating each trajectory with only one MBR introduces a lot of
empty space and deteriorates index performance substantially, even though it
reduces to a minimum the required amount of space for building the index
structure. Alternatively, it is much more beneficial to use finer object approxi-
mations by decomposing each trajectory into multiple MBRs (Figure 8). It can
be proven that:

Lemma 2.  Minimizing the volume of the trajectory approximations minimizes
the expected similarity approximation error.

Clearly, the best approximation of a trajectory (or an MBE) using a fixed number
of MBRs is the set of MBRs that completely contains the trajectory and

Figure 7. A query is extended into a bounding envelope and approximated
with MBRs (Overlap between the query and the trajectory MBRs stored in
the index suggests possible matches.)
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minimizes the volume consumption. Various approaches can be considered for
finding the best approximation possible. A detailed analysis appears in
Hadjieleftheriou (2002).

Upper/Lower-Bounds Using MBR Approximations

Suppose that an index with the MBR trajectory approximations has already been
built and the user provides a query Q. The goal is to discover the k closest
trajectories to Q according to the given similarity measure. The pre-filtering step
should compute the upper/lower-bound estimates of the similarity/distance
between the query and the MBRs of the indexed trajectories. Since MBR
approximations are used instead of the raw data, the upper/lower-bounds of
previous sections cannot be directly applied on this indexing scheme; special
upper/lower-bounding functions have to be derived. Based on the geometric
properties of the trajectory MBRs and their intersections, estimates of the L

p
-

norm, DTW and LCSS similarity measures can be obtained.

Lower-Bounds for Lp-Norm

Suppose that each trajectory P is decomposed into a number of MBRs. The i-

th MBR of P consists of the numbers: 1 1{( ) | ( ) ..., ( )}P i D DM tl th l h l h, = , , , ,  (considering

Figure 8. Approximating a trajectory with 8 MBRs

(c)



Indexing Multi-Dimensional Trajectories for Similarity Queries   121

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

D-dimensional trajectories). Given MBRs M
T,i

 and M
R,j

, belonging to objects T
and R respectively, we define:

( )T i R j tt
M M Intersection, ,, =|| ||�

the intersection of the two MBRs in the time dimension.

When any L
p
-norm is used as a similarity measure, first the query is split into a

number of MBRs and then the distances between the query MBRs and the
indexed trajectory MBRs are evaluated. For that purpose function MINDIST
between MBRs M

Q 
and M

P
 is defined:

2

2

( ) ( , )Q P Q R dt
d D

MINDIST M M M M x
≤ ≤

, = ×∑ � , where

max( ) ( ), ( )

( )

( ) ( )
,

( ) ( )

Q d P d Q d Q d Q d P d Q d P d

d P d Q d P d Q d

Q d P d Q d P d

Q d P d Q d P d

h h min l l if h h & l l

x or h h & l l

max h h max l l
max otherwise

min h h min l l

, , , , , , , ,

, , , ,

, , , ,

, , , ,




, − , > >
= > >
 , − ,

 , − ,

The total L
p
-norm distance (Figure 9) is the sum of the MINDISTs between all

query and trajectory MBR boundaries that intersect in time.

Figure 9. Lower-bound of the Euclidean distance when MBR approximations
are used
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Lower-Bounds for DTW

To compute the lower-bound for the DTW, the following steps are required.
First, the query envelope is computed. Then, the envelope is split into multiple
MBRs. Finally, the MINDIST function is used to calculate the distance of the
query MBRs from the trajectory MBRs contained in the index.

The computation is practically the same as for the L
p
-norm. The only difference

is that an envelope is applied on the query first. An example is shown in Figure
10.

Upper-Bounds for LCSS

An upper-bound estimate for the LCSS is the following:

( ) Q m P nt
m n

L P M M, ,= ∑∑ �

where Q is a query and P is trajectory. This estimate computes the intersection
in time of all query MBRs intersecting with any of P’s MBRs.

Using these bounds, one can retrieve good candidates from the index that will
help eliminate most similarity/distance function evaluations.

Figure 10. Lower-bounded DTW distance when the query envelope and a
data trajectory are split into a number of MBRs



Indexing Multi-Dimensional Trajectories for Similarity Queries   123

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Test Cases

This section presents some test cases of real applications for the similarity
indexing techniques discussed in this chapter.

Automatic Transcription of Handwritten Manuscripts

The Library of Congress contains more than 54 million manuscripts, and there
is an imperative need for preserving these historical documents (Figure 11).
Storing these manuscripts in image format is unrealistic, since only the conver-
sion to text would result in more than 20 Terabytes of data.

Therefore, there is an increasing interest to automatically transcribe these
documents. However, optical character recognition techniques (OCR) cannot
be fruitfully utilized in this case due to the handwritten nature of these documents
and the degradations of the paper medium.

Recently, new techniques have been proposed that combine trends from pattern
recognition and time-series similarity in order to achieve this difficult task (Rath,
2002). The basic idea is that one can first identify the different words in a
manuscript, manually annotate a subset of them, and then automatically classify
the remaining words.

The process involves the following steps: (i) From a manuscript image, images
of the different words are extracted (word spotting); (ii) Writing variations
(slant/skew/baseline) are corrected for the extracted words; (iii) Features for

Figure 11. Part of a George Washington manuscript in the Library of
Congress
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each image are extracted. Such features can include the sum of intensity values
per column, or the ink/paper transitions per column etc. (Figure 12); (iv) Manual
annotations of a word subset are produced; and (v) Classification of the
remaining words based on the annotated ones is performed.

Figure 12. Top: the word ‘governor’ extracted from a George Washington
manuscript; bottom: one possible time-series feature extracted from every
column of the image (sum of intensity values)

Figure 13. Manuscript word annotation (3-nearest-neighbor matches
based on the extracted time-series features and utilizing multi-dimensional
DTW as the distance measure)
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The features that are extracted are stored as multi-dimensional time-series. The
annotation process can then use the multi-dimensional extensions of DTW or
LCSS measures. In Figure 13 we see the results of a 3-Nearest-Neighbor search
for a variety of words, produced using the techniques discussed in this chapter.

Similarity Search in Motion-Capture Data

The popularity of motion capture, or mocap, in CG movies and three-dimensional
computer games has motivated the development of many techniques to tackle the
laborious problem of motion search and motion editing. The existence of large
libraries of human motion capture has resulted in a growing demand for content-
based retrieval of motion sequences without using annotations or other metadata.
Using the notions described in this chapter, one can address efficiently the issue
of rapidly retrieving perceptually similar occurrences of a particular motion in a
long mocap sequence or unstructured mocap database for the purpose of
replicating editing operations with minimal user-input. One or more editing
operations on a given motion are made to affect all similar matching motions (for
example, change all walking motions into running motions, and so forth).

The first step of motion-editing consists of a similarity search portion, where
using a query-by-example paradigm the animator first selects a particular
motion by specifying its start and end time, and the system searches for similar
occurrences in a mocap database (Figure 14). For maximum usability, the mocap
matching engine must provide fast response to user queries over extended
unlabeled mocap sequences, whilst allowing for spatial and temporal deviations
in the returned matches.

Figure 14. Matches to the user query motion are returned using an efficient
search index, previously extracted from the motion database
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Using the techniques described in this chapter, each motion is split up in multi-
dimensional MBRs and stored in an index structure (Cardle, 2003). Support for
LCSS and DTW similarity/distance measures caters for noisy motion with
variations in the time axis. Therefore one can find matches independent of the
speed at which the mocap data were recorded.

The animator has the crucial ability to interactively select the body areas utilized
in the matching, so that, for example, all instances of a walking motion are
returned, irrespective of the upper body motion. The results of such a query are
shown in Figure 15. Finally, in the case where many potential matches exist, the
query results can be clustered and presented in a more organized manner,
allowing the animator to rapidly dismiss undesirable classes of matches.

Conclusions

This chapter presented a robust multi-dimensional trajectory indexing scheme
for similarity queries. Pertinent similarity measures were discussed, along with
various upper/lower-bounding techniques for speeding up query evaluation. A
fast pre-filtering step with the use of R-trees, aiming at pruning a large number
of non-qualifying trajectories based on MBR approximations, was elaborated.
Finally, two real applications were discussed as test cases to testify for the utility
and efficiency of the presented techniques.

Figure 15. Some matching results in the motion-capture database for the
query: “Find all walking motions” (The final results can be grouped into
similar motions using a hierarchical clustering algorithm and presented to
the animator in a more meaningful manner.)

Cluster

Cluster

Cluster

Cluster
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Abstract

In spatial database applications the similarity or dissimilarity of complex
objects is examined by performing distance-based queries (DBQs) on data
of high dimensionality (a generalization of spatial data). The R-tree and its
variations are commonly cited as multidimensional access methods that can
be used for answering such queries. Although the related algorithms work
well for low-dimensional data spaces, their performance degrades as the
number of dimensions increases (dimensionality curse). To obtain acceptable
response time in high-dimensional data spaces, algorithms that obtain
approximate solutions can be used. In this chapter, we review the most
important approximation techniques for reporting sufficiently good results
quickly. We focus on the design choices of efficient approximate DBQ
algorithms that minimize the response time and the number of I/O operations
over tree-like structures. The chapter concludes with possible future
research trends in the approximate computation of DBQs.
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Introduction

The term “Spatial Database” refers to a database that stores data for phenomena
on, above or below the earth’s surface, or in general, various kinds of multidimen-
sional entities of modern life, for example, the layout of a Very Large Scale
Integration (VLSI) design. In a computer system, the spatial data are repre-
sented by points, line segments, regions, polygons, volumes and other kinds of
geometric entities and are usually referred to as spatial objects. For example, a
spatial database may contain polygons that represent building footprints from a
satellite image, or points that represent the positions of cities, or line segments
that represent roads.

The key characteristic that makes a spatial database a powerful tool is its ability
to manipulate spatial data, rather than simply storing and representing them. One
of the main targets of such a database is answering queries related to the spatial
properties of data. Some typical spatial queries are the following.

• A “Point Location Query” seeks for the objects that fall on a given point (for
example, the country where a specific city belongs).

• A “Range Query” seeks for the objects that are contained within a given
region, usually expressed as a rectangle or a sphere (for example, the taxis
that are inside the historic center of a city).

• A “Join Query” may take many forms. It involves two or more spatial
datasets and discovers pairs (or tuples in the case of more than two
datasets) of objects that satisfy a given spatial predicate, such as overlap
(for example, the pairs of boats and stormy areas for boats sailing across
a storm).

• Finally, a “Nearest Neighbor Query” seeks for the objects residing more
closely to a given object. In its simplest form, it discovers one such object
(the Nearest Neighbor). Its generalization discovers K such objects (K
Nearest Neighbors), for a given K (for example, the K ambulances closer
to a spot where an accident with K injured persons occurred).

As extensions of the above “fundamental” spatial queries, new query forms have
emerged. For example, to examine the similarity or dissimilarity of large sets of
complex objects, high-dimensional feature vectors are extracted from them and
organized in multidimensional indexes. The most important property of this
feature transformation is that the feature vectors correspond to points in the
multidimensional Euclidean space (a kind of generalized spatial data). Then,
DBQs are applied on the multidimensional points.

The multidimensional access methods belonging to the R-tree family, the R*-tree
(Beckmann, Kriegel, Schneider, & Seeger, 1990) and particularly the X-tree
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(Berchtold, Kiem, & Kriegel, 1996), are considered good choices for indexing
high-dimensional point datasets in order to perform DBQs. This is accomplished
by branch-and-bound algorithms that employ distance functions and pruning
heuristics based on Minimum Bounding Rectangles (MBRs) in order to reduce
the search space. The performance of these algorithms degrades as the number
of dimensions increases (dimensionality curse), and the effects of this curse
are widely analyzed by Berchtold, Böhm and Kriegel (1998). However, it can be
improved if the search space is restricted somehow. For practical purposes, in
many situations approximate results that can be obtained significantly faster than
the precise ones are usually as valuable. Another possible direction for reducing
the cost of DBQs, sacrificing a limited part of accuracy, is to use heuristic search
techniques on R-trees, such as local search, simulated annealing and genetic
algorithms.

In this chapter, we review the most important DBQ-related approximation
techniques that can be applied on R-tree-like structures (widely accepted spatial
access methods). We focus on the design choices of efficient approximate DBQ
algorithms that minimize the response time and the number of I/O operations
while reporting sufficiently good results. The chapter concludes with possible
future research trends in the approximate computation of DBQs.

Distance Based Queries

Distance functions are typically based on a distance metric (satisfying the non-
negativity, identity, symmetry and triangle-inequality properties) defined on
points in space. A general distance metric is called L

t
-distance (L

t
), L

t
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Minkowski distance between two points, p = (p
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For t = 2 we have the Euclidean distance and for t = 1 the Manhattan distance.
These are the most known L

t
-metrics in the spatial database context. Often, the

Euclidean distance is used as the distance function but, depending on the
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application, other distance functions may be more appropriate (Laurini &
Thomson, 1992).

In spatial database applications, distance metrics are used in several kinds of
DBQs. The most representative and known distance-based queries in the spatial
database framework are the following (Hjaltason & Samet, 1998; Corral,
Manolopoulos, Theodoridis, & Vassilakopoulos, 2000; Chan, 2001; Böhm &
Krebs, 2002; Corral et al. 2003; Shou, Mamoulis, Cao, Papadias, & Cheung,
2003):

(1) δ-distance range query. It involves one spatial dataset, a query point and a
distance threshold δ. The answer is a set of spatial objects from the input
dataset that are within distance δ from the query point.

(2) K nearest neighbors query (K-NNQ). It involves one spatial dataset and a
query point. It discovers the K distinct objects from the input dataset that
have the K smallest distances from the query point.

(3) δ-distance range join query (buffer query). It involves two spatial datasets
and a distance threshold δ. The answer is a set of pairs of spatial objects
from the two input datasets that are within distance δ from each other.

(4) Iceberg distance joins. It involves two spatial datasets, a distance threshold
δ and a cardinality threshold K. The answer is a set of pairs of objects from
the two input datasets that are within distance δ from each other, provided
that the first object appears at least K times in the join result.

(5) K closest pairs query (K-CPQ). It involves two spatial datasets and a
cardinality threshold K. It discovers the K distinct pairs of objects from the
two input datasets that have the K smallest distances between them.

(6) K nearest neighbors join. It involves two spatial datasets and a cardinality
threshold K. The answer is a set of pairs from the two datasets that
includes, for each of the objects of the first dataset, the pairs formed with
each of its K nearest neighbors in the second dataset.

(7) K-Multi-way distance join query. A K-Multi-way distance join query
involves n spatial datasets, a query graph (a weighted directed graph that
defines directed itineraries between the n input datasets) and a cardinality
threshold K. The answer is a set of K distinct n-tuples (tuples of n objects
from the n datasets obeying the query graph) with the K smallest D

distance
-

values (the D
distance

 function is a linear function of distances of the n objects
that make up this n-tuple, according to the edges of the query graph).

DBQs are very useful in many applications that use spatial data for decision
making and other demanding data-handling operations. For example, in the case
of K closest pairs query, the first dataset may represent the cultural landmarks
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of the United States, while the second set may contain the most populated places
of North America. The answer of this kind of query will consist of the K closest
pairs of cities and cultural landmarks, providing an order to the authorities for the
efficient scheduling of tourist facilities creation and so forth. The K value could
be dependent on the budget of the authorities allocated for this purpose. In this
chapter, we will focus on K-NNQ and K-CPQ to study the design of approximate
algorithms. For the completeness of presentation, Figure 1 illustrates examples
of the DBQs that we are going to study in this chapter (K-NNQ and K-CPQ).
In the left part of the figure, a set of 2-dimensional points organized according
to an R-tree structure (MBR-based index) is depicted. Suppose that we want to
find the three nearest neighbors (3-NNs) to the query point q. It is easy to
discover that the 3-NNs are (p

11
, p

8
, p

4
). On the other hand, in the right part of

the figure, two different sets of 2-dimensional points (organized according to two
different R-tree structures, one depicted with non-colored MBRs and another
depicted with shaded MBRs) are own. If we want to obtain the three closest
pairs of points (3-CPs) of the two sets, then the result is ((p

8
, q

8
), (p

11
, q

10
), (p

4
,

q
6
)).

R-Tree Background

Branch-and-bound has been the most successful technique for designing algo-
rithms that answer queries on tree structures. Lower and upper bounding
functions are the basis of the computational efficiency of branch-and-bound
algorithms. Numerous branch-and-bound algorithms (incremental and non-

Figure 1. Examples of sets of 2-dimensional points and their MBRs for the
computation of the K-NNQ (left) and the K-CPQ (right)
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incremental) for spatial queries using spatial access methods have been studied
in the literature (Hjaltason & Samet, 1998; Corral et al., 2000). The fundamental
assumption used in the DBQ algorithms is that the spatial datasets are indexed
by structures of the R-tree family. The R-tree and its variants (Gaede & Günther,
1998) are considered excellent choices for indexing various kinds of spatial data
(points, line-segments, rectangles, polygons and so forth) and have already been
adopted in commercial systems, for example, Informix (Brown, 2001) and
Oracle (Oracle Technology Network, 2001).

R-trees are hierarchical, height-balanced multidimensional data structures de-
signed for secondary storage, and they are generalizations of B-trees for
multidimensional data spaces. They are used for the dynamic organization of
d-dimensional objects represented by their Minimum Bounding d-dimensional
hyper-Rectangle (MBR). An MBR is determined by two d-dimensional points
that belong to its faces, one that has the d minimum and one that has the d
maximum coordinates (these are the endpoints of one of the diagonals of the
MBR). Each R-tree node corresponds to the MBR that contains its children. The
tree leaves contain pointers to the objects of the database instead of pointers to
children nodes. The nodes are implemented as disk pages.

Figure 2 depicts some rectangles on the left and the corresponding R-tree on the
right. Dotted lines denote the bounding rectangles of the subtrees that are rooted
in inner nodes.

Like other tree-like index structures, an R-tree index partitions the multidimen-
sional space by grouping objects in a hierarchical manner. A subspace occupied
by a tree node in an R-tree is always contained in the subspace of its parent node,
that is, the MBR enclosure property. According to this property, an MBR of an
R-tree node (at any level except the leaf level) always encloses the MBRs of its
descendent R-tree nodes. This characteristic of spatial containment between
MBRs of R-tree nodes is commonly used by spatial join algorithms, as well as
by distance-based query algorithms. Note that the MBR and the MBR enclosure
property are fundamental approximation mechanisms. At the leaf level, an
MBR approximates the area covered by the objects it encloses, while at internal
levels an MBR approximates the area covered by the subtrees of the correspond-
ing node. Another important property of the R-trees is the MBR face property.
This property says that every face of any MBR of an R-tree node (at any level)
touches at least one point of some spatial object in the spatial database. This
characteristic is used by distance-based query algorithms.

Many variations of R-trees have appeared in the literature. A survey was
authored by Gaede & Günther (1998). One of the most popular and efficient
variations is the R*-tree (Beckmann et al., 1990). The R*-tree added two major
enhancements to the original R-tree, when a node overflow is caused. First,
rather than just considering the area, the node-splitting algorithm in R*-trees also
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minimizes the perimeter and overlap enlargement of the MBRs. Second, an
overflow node is not split immediately, but a portion of entries of the node is
reinserted from the top of the R*-tree (forced reinsertion). On the other hand,
the X-tree (Berchtold et al., 1996) is another variation that avoids splits that could
result in a high degree of overlap of MBRs in the internal R*-tree nodes.
Experiments (Berchtold et al., 1996), showed that X-tree outperforms R*-tree
for point query and nearest neighbor queries in high-dimensional data spaces
(that is, when the space dimensionality is larger than, say, 16).

Corral et al. (2000) presented a generalization of the function that calculates the
minimum distance between points and MBRs (MINMINDIST). Let M(A, B)
represent an MBR in d-dimensional space, where A = (a

1
, a

2
, ..., a

d
) and B = (b

1
,

b
2
, ..., b

d
), such that a

i
≤b

i
, for 1≤i≤d, are the endpoints (d-dimensional points) of

one of its major diagonals. Given two MBRs M
1
(A, B) and M

2
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MINMINDIST(M
1
, M

2
) is defined as follows:

∑
=

=
d

i
iyMMMINMINDIST

1

2
21 ),( ,








>−
>−

=
otherwise

daifda

bcifbc

y iiii

iiii

i

             ,0

      ,

       ,

.

We can apply this distance function to pairs of any kind of elements (MBRs or
points) stored in R-trees during the computation of branch-and-bound algorithms
to reduce the search space (in the pruning process). The most important

Figure 2. An example of an R-tree
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properties of MINMINDIST are the following: (1) If any of the two or if both
MBRs degenerateto a point or to two points, then we obtain the minimum
distance between a point and an MBR or between two points. (2) Lower-bound
property: for each pair (p, q) of multidimensional points enclosed by a pair of
MBRs (M

p
, M

q
), it holds that MINMINDIST(M

p
, M

q
) ≤ MINMINDIST(p, q).

(3) MINMINDIST is monotonically non-decreasing with the R-tree levels.
For a given pair of MBRs (M

p
, M

q
) enclosed by another pair of MBRs (M’

p
, M’

q
),

where M’
p
 covers M

p
 and M’

q
 covers M

q
, it holds that: MINMINDIST(M’

p
, M’

q
)

≤ MINMINDIST(M
p
, M

q
).

The general pruning heuristic for DBQs over R-trees is the following: “if
MINMINDIST(M

1
, M

2
) > z, then the pair of MBRs (M

1
, M

2
) will be

discarded”, where z is the threshold distance value; for example, it is the K-th
nearest neighbor (K-NNQ) or the K-th closest pair (K-CPQ) that have been
found so far.

Approximate Computation Techniques

Approximate solutions are important in the spatial query processing context,
because such solutions can provide good bounds of the optimum result (sacrific-
ing accuracy) and, in practice, they can be obtained by users much faster than
precise techniques. Designing good approximate algorithms is not an easy task,
because these algorithms must fully exploit the inherent properties of the data
structure and yet keep the computation time as short as possible. Most of the
known approximate algorithms can be classified into one of the two following
approximate strategies (Clarkson, 1994; Arya, Mount, Netanyahu, Silverman, &
Wu, 1998; Zezula, Savino, Amato, & Rabitti, 1998, Papadias, Mantzourogiannis,
Kalnis, Mamoulis, & Ahmad, 1999; Ioannidis & Poosala, 1999; Ciaccia &
Patella, 2000; Chakrabarti, Garofalakis, Rastogi, & Shim, 2000; Papadias &
Arkoumanis, 2002; Corral, Cañadas, & Vassilakopoulos, 2002a): search space
reduction and heuristic search techniques.

For the search space reduction, when it is not computationally feasible to
enumerate all the possible cases, we may systematically enumerate only a partial
fraction using different methods. The computational cost of an algorithm can be
reduced if the search space is restricted by some means, at the possible expense
of the accuracy of the result. The heuristic search techniques are methods that
provide good performance (with high probability on the average, as shown by
experimentation) but cannot be guaranteed always to provide the best solution
(for example, local search, simulated annealing or genetic algorithms). In the
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next two sections, we present these two families of strategies and discuss the
resulting approximate techniques.

Search Space Reduction

This section presents the most representative search space approximation
techniques:

• ε-approximate method (Arya et al., 1998; Ciaccia & Patella, 2000). Given
any positive real e (ε ≥ 0) as maximum distance relative error to be
tolerated, the result of a DBQ (K-NNQ or K-CPQ) is (1 + ε)-approximate
if the distance of its i-th item is within relative error e (or a factor (1 + ε))
of the distance of the i-th item (point for K-NNQ or pair of points for K-
CPQ) of the exact result of the same DBQ, 1≤ i ≤ K. For example, an (1+ε)-
approximate answer to the K-CPQ is an ordered sequence (the result is
sorted in ascending order of distance) of K distinct pairs of points ((p

1
’, q

1
’),

(p
2
’, q

2
’), ..., (p

K
’, q

K
’)) ∈ (P×Q)K, such that (p

i
’, q

i
’) is the (1 + ε)-

approximate closest pair of the i-th closest pair (p
i
, q

i
) of the exact result

((p
1
, q

1
), (p

2
, q

2
), ..., (p

K
, q

K
)) ∈ (P×Q)K, that is (dist(p

i
’, q

i
’) – dist(p

i
, q

i
))

/ dist(p
i
, q

i
) ≤ ε, 1≤ i≤ K. When the pruning heuristic is applied on a branch-

and-bound algorithm, an item X (pair of MBRs or points) is discarded if
MINMINDIST(X) > z/(1+ε) ⇔ MINMINDIST(X) + (MINMINDIST(X)*ε)
> z ⇔ MINMINDIST(X) > z – (MINMINDIST(X)*ε). The decrease of z
(distance value of the K-th closest pair found so far during the processing
of the algorithm) depends on the value of MINMINDIST(X) multiplied by
ε (an unbounded positive real). Note that for ε = 0, the approximate
algorithm behaves like the exact version and outputs the precise solution.

• α-allowance method (Corral et al., 2002a). When the pruning heuristic is
applied, an item X is discarded if MINMINDIST(X) + α(z) > z, where z (z
≥ 0) is the current pruning distance value (for example, the distance of the
K-th nearest neighbor found so far, for K-NNQ) and α(z) is an allowance
function. In order to apply this approximate method, α(z) is assumed to
satisfy that α(z) ≥ 0 for all z and z

1
 ≤ z

2
 implies that z

1
 – α(z

1
) ≤ z

2
 – α(z

2
).

Typical forms of α(z) are: α(z) = β (β is a non-negative constant) and α(z)
= z*γ (γ is a constant with 0≤ γ≤ 1). For the second case, MINMINDIST(X)
+ (z*γ) > z ⇔ MINMINDIST(X) > z – (z*γ) ⇔ MINMINDIST(X) > z*(1
– γ). In this case, the decrease of z depends on γ (positive real in the interval
[0, 1]). We obtain the exact algorithm when γ = 0.

•  N-consider method (Corral et al., 2002a). In this case, the approximate
branch-and-bound algorithm only considers a specified portion, or percent-
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age N (0<N≤1) of the total number of items examined by the respective
exact algorithm, when visiting an internal (N

I
) or leaf (N

L
) node for K-

NNQ, or a pair of internal (N
I
) or leaf (N

L
) nodes for K-CPQ. With this

approximate technique, we try not to waste time computing distances that
will not improve the approximate result significantly. The exact version of
the algorithm is obtained when N = 1 (N

I
 = N

L
 = 1).

• Time-consider method (Corral et al., 2002b). With this technique, the
algorithm retrieves the best possible (exact or approximate) result within a
given total processing time threshold (total_time), that is, the algorithm is
stopped at the time total_time, reporting the result found so far. We will
obtain the exact version of the algorithm when total_time = ∞. We are going
to consider this an approximate technique, since the response time is an
important parameter to be controlled in DBQs. Note that this method is not
a native search-space reduction method, since it reduces search space by
side effect: Since the computation is not completed, the space is not
exhaustively searched.

The previous MBR-based distance function, pruning heuristic and approximation
techniques (based on the search space reduction, can be embedded into
approximate branch-and-bound algorithms for DBQs that are applied over
indexes belonging to the R-tree family and obtain sufficiently good approximate
results quickly. In order to design approximate branch-and-bound algorithms for
processing K-NNQs or K-CPQs in a non-incremental way (K must be known in
advance), an extra data structure that holds the K nearest neighbors or closest
pairs, respectively, is necessary. This data structure, called K-heap, is organized
as a maximum binary heap (Corral et al., 2000). It is possible to apply the four
approximation techniques to incremental and non-incremental branch-and-
bound algorithms (iterative or recursive) for DBQs (K-NNQ or K-CPQ) using
tree-like structures belonging to the R-tree family, although we will only apply
them to the non-incremental ones. (The incremental approximation alternatives
for K-NNQ and K-CPQ using R-trees can be obtained in a straightforward
manner by adapting the non-incremental approaches so as to follow Best-First
search.) In the following (due to space limitations), only one such non-incremen-
tal application is presented. More details appear in Corral et al. (2002a) and
Corral, Cañadas, and Vassilakopoulos(2002b).

For the ε-approximate method (ε ≥ 0), we are going to present an iterative
(characterized by I) and non-incremental approximate branch-and-bound algo-
rithm (following a Best-First search) for K-NNQ (KNNI) between a set of points
P stored in an R-tree (R

P
) and a query point q (z is the distance value of the K-

th nearest neighbor found so far and at the beginning z = ∞). For the iterative
approach, we need a minimum binary heap, H, of references to nodes of the R-
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tree <MINMINDIST, Addr
p
>, which are kept ordered by increasing values of

MINMINDIST; the item with the minimum MINMINDIST is visited first. The
algorithm can be described by the following steps:

KNNI1 Start from the root of the R-tree and initialize the minimum binary
heap H.

KNNI2 If you access an internal node, then calculate MINMINDIST for
each possible MBR M

i
. Insert into the minimum binary heap H

those references to nodes of MBRs having MINMINDIST(M
i
, q)

≤ z / (1+ε).

KNNI3 If you access a leaf node, then calculate MINMINDIST(p
i
, q)

between q and each possible point (p
i
) stored in the node. If this

distance is smaller than or equal to z, then remove the root of the K-
heap and insert the new point p

i
, updating this structure and z.

KNNI4 If the minimum binary heap H is empty, then stop.

KNNI5 Get the item on top of the minimum binary heap <MINMINDIST,
Addr

p
>. If this item has MINMINDIST > z / (1 + ε), then stop. Else,

repeat the algorithm from KNNI2 for this item.

The main advantage of the recursive branch-and-bound algorithms is that they
transform the global problem into smaller local ones at each tree level and we can
apply pruning heuristics over every subproblem for reducing the search space.
Moreover, for improving the I/O and CPU cost of the recursive branch-and-
bound algorithm for K-CPQ, two techniques are used. The first improvement
aims at reducing the number of I/O operations, and it consists in a Global LRU
buffer. The second enhancement aims at reducing the CPU cost by using the
distance-based plane-sweep technique (Corral et al., 2000) to avoid processing
all possible combinations of pairs of R-tree items from two internal or leaf nodes.

The performance of the resulting space reduction algorithms, as well as the
trade-off between efficiency of each algorithm and accuracy of the result, have
been studied by Corral et al. (2002a and 2002b). The parameters γ and N (varying
in the range [0, 1]) can act as adjusters of this trade-off. The case of the
parameter ε is different, since it is an unbounded positive real (ε ≥ 0) and the
users cannot directly control the accuracy of the result. The ε-approximate
method could be considered a method that allows controlling of this trade-off,
only if suitable upper bounds are determined for the parameter ε. Such bounds
depend on the distance distribution and the dimensionality. Since the main target
is to be able to control the above trade-off effectively and easily, the α-allowance
technique (as a distance-based approximate method) is used for the development
of the hybrid approximate scheme that follows.
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The main problem of the approximate algorithms for DBQs using R-trees in high-
dimensional data spaces is not to waste time computing distances that will not
significantly improve the result (Ciaccia & Patella, 2000). In this context we
propose to combine the approximation techniques (N-consider, α-allowance and
Time-consider) in a recursive branchand-bound algorithm in order to improve the
balance between the cost and the accuracy of the result. Such a combination
would be interesting, because the N-consider technique (structure-based ap-
proximate method) is appropriate for reducing the response time and the distance
computations, whereas the α-allowance technique (distance-based approximate
method) is recommended for obtaining a good accuracy of the result (Corral et
al., 2002a, 2002b). Moreover, the Time-consider method is suggested for the
users to decide the total time consumed by the algorithm. On the other hand, the
recursive algorithm explores the search space in a Depth-First order, finding
many approximate solutions (although, it may take a very long time to obtain the
best solution if it does not traverse the search path in the right direction) and
improving their qualities along time.

This combination consists of three consecutive filters (refinements in the pruning
process) at internal levels of the R-trees. In the first filter, we use the Time-
consider method to establish the total processing time of the algorithm. For the
second filter, we adopt the N-consider approximation technique (based on the
structure), producing a set of candidates. Each candidate is then examined by the
third filter, using the α-allowance approximation technique (based on distance).
At the leaf level, since we try to avoid distance computations, which will not
significantly improve the result, N-consider and Time-consider are adopted as
approximation techniques. As an example, the recursive (characterized by R)
and non-incremental hybrid (characterized by H) approximate branch-and-
bound algorithm for processing K-CPQ (for K-NNQ, the KNNR algorithm is
similar) between two sets of points (P and Q) indexed in two R-trees (R

P
 and R

Q
)

with the same height can be described by the following steps (z is the distance
value of the K-th closest pair found so far and at the beginning z = ∞):

KCPRH1 Start from the roots of the two R-trees.

KCPRH2 If you access two internal nodes and the consumed time is larger
than total_time, then stop. Else, choose only a portion Total’ =
N

I
*Total of all possible pairs of MBRs (Total) stored in the nodes,

and apply the distance-based plane-sweep technique over
Total’ in order to obtain ENTRIES’, the reduced set of pairs of
candidate entries. Propagate downwards recursively only for
those pairs of MBRs from ENTRIES’ having MINMINDIST(M

i
,

M
j
) ≤ z * (1 – γ).
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KCPRH3 If you access two leaf nodes and the consumed time is larger than
total_time, then stop. Else, choose only a portion Total’ = N

L
*Total

of all possible pairs of points (Total) stored in the nodes, and apply
the distance-based plane-sweep technique over Total’ in order
to obtain ENTRIES’, the reduced set of pairs of candidate entries.
For those pairs of MBRs from ENTRIES’ having MINMINDIST(M

i
,

M
j
) smaller than or equal to z, then remove the root of the K-heap and

insert the new pair of points (p
i
, q

j
), updating this structure and z.

If we want to obtain the exact solution of K-CPQ, we can run the KCPRH
algorithm using N

I
 = N

L
 = 1.0, γ = 0.0 and total_time = ∞. Moreover, applying

the same idea over the previous KCPI algorithm, it would be straightforward to
combine the same approximate techniques (N-consider, α-allowance and Time-
consider) in an iterative branch-and-bound algorithm in order to design a hybrid
iterative approximate algorithm (KCPIH). For K-NNQ (KNNI algorithm) the
combination is similar.

Heuristic Search Techniques

In this section we present heuristic techniques (local search, simulating annealing
and genetic algorithms) that can be combined with tree-based spatial indexing
(R-trees) in order to reach good enough, but not necessarily optimal, solutions for
DBQs quickly.

Local Search

Local search or iterative improvement methods start with a random solution
called seed, and then try to reach a local optimum by performing uphill moves
(that is, by visiting neighbors with higher similarity). When they reach a local
optimum (from which further uphill moves are not possible) they restart the same
process from a different seed until the time threshold is exceeded. Algorithms
based on this general concept have been successfully employed for a variety of
problems (Papadias et al., 1999, 2001; Papadias & Arkoumanis, 2002).

In the approximation context, local search is applied to improve the quality of
initial approximate solutions obtained by some means. The general scheme is to
repeat a search for a better solution in the neighborhood N(x) of a given
approximate solution x. Various algorithms can be designed depending on how
neighborhood N(x) is defined, and N(x) can be specified either explicitly or
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implicitly (that is, by an algorithm to compute the elements in N(x)). The general
scheme is described as the following steps (input: an approximate solution x; and
output: an improved approximate solution x):

LS1 Given an x, test whether there is a feasible solution with a better value
of a cost function in N(x).

LS2 If yes, then set x to represent the improved solution and return to LS1.
Otherwise, output x as an approximate optimal solution and halt.

In Papadias and Arkoumanis (2002), an Indexed Local Search (ILS) was
proposed for approximate processing of multiway spatial joins that uses indexes
(R-trees) to improve solutions. This algorithm can be easily adapted for DBQs
in spatial databases. The general pseudo-code of the ILS algorithm, similar to II
in Ioannidis and Kang (1990), is illustrated as follows:

bestSolution = S∞ /* S∞ is a fictitious state whose cost is ∞ */

while not (Time threshold) {

S = random seed

while not (Local_Minimum(S)) {

determine an R-tree
i

S’ = find_best_solution(Root of R-tree
i
, S)

if cost(S’) < cost(S) then S = S’

} /* end while not Local_Minimum(S) */

if cost(S) < cost(bestSolution) then bestSolution = S

} /* end while not Time threshold */

For example, in the case of the closest pair query, at the beginning of the
algorithm S will be a random pair of points (p

i
, q

j
), and its neighborhood (S’) is

defined by fixing one of the elements of the pair (for example, p
i
). Then an NNQ

(find_best_solution) over the other R-tree (for example, R
Q
) is performed, using

p
i
 as a query point and distances as cost functions. If the result of this query is

q
j
, the condition of Local_Minimum(S) is true and the algorithm exits the inner

loop. The process continues until the time threshold is reached.

There have been many attempts to include some deterministic features in local
searches and achieve a more systematic exploration of the problem space. In the
graph terminology, “memory” mechanisms guarantee that the algorithm will not
find the same nodes repeatedly by keeping a list of visited nodes. These nodes
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become forbidden (tabu) in the graph, forcing the algorithms to move to new
neighborhoods. Guided Indexed Local Search (GILS) (Papadias & Arkoumanis,
2002) combines the above ideas by keeping a memory, not of all the solutions
visited, but of the assignments at local minimums. In particular, the pseudo-code
of GILS is similar to ILS. The difference is that GILS generates one random seed
only during its execution and has some additional code for penalty assignment.

Simulated Annealing

Simulated Annealing (Kirkpatrick, Gelat, & Vecchi, 1983) is a heuristic search
technique based on ideas from physics (derived by analogy to the process of
annealing crystals). The essential idea is not to restrict the search algorithm to
moves in the search space that decrease the cost function (for a cost function
we are trying to minimize), but to also allow (with some probability) moves that
can increase the cost function. In principle, this allows a search algorithm to
escape from a local minimum. The probability of such non-decreasing moves is
set to be quite high early in the process and is gradually decreased as the search
progresses. The decrease in this probability is analogous to the process of
gradually decreasing the temperature in the physical process of annealing a
metal with the goal of obtaining a low-energy state in the metal (hence the name
of the method).

For the search algorithm, higher temperatures correspond to a greater probability
of large moves in the search space, while lower temperatures correspond to
greater probability of only small moves that decrease the cost function. Initially,
the temperature schedule reduces the temperature to zero, so that the algorithm
only moves to candidates that decrease the cost function. Thus, at this stage of
the search, the algorithm will inevitably converge to a point at which no further
decrease is possible. The hope is that the earlier moves have led the algorithm
to the deepest “basin” in the cost function surface. In fact, one of the appeals of
this approach is that it can be mathematically proved that (under fairly general
conditions) this will happen if one is using the appropriate temperature schedule.
In practice, however, there is usually no way to specify the optimal temperature
schedule for any specific problem. Thus, the practical application of simulated
annealing reduces to (yet another) heuristic search method with its own set of
algorithmic parameters that are often chosen in an ad-hoc manner.

In the approximation context, the local search methods described above can be
modified in two important aspects. First, if the neighborhood N(x) of the current
solution x is large, it may not be practical to test all solutions in N(x). Instead, we
may randomly select only a certain number of solutions y in N(x). The second
modification, which can be more important, is to accept the degradation of
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solutions with a certain probability. Namely, the local search can continue from
x to a solution y in N(x), even if y has a worse cost than x. The motivation of this
modification is to avoid the situation of being stuck in a poor local optimal solution.

Let ∆ be the change in the cost value of y from that x. If ∆ ≤ 0 (that is, an
improvement), the current solution is always switched to y (i.e. x = y). On the
other hand, if ∆ > 0, the switch from x to y takes place with probability e– ∆/T, where
T is a given positive parameter called “temperature.” The search then starts
again from the new solution. Parameter T is initially set to a relatively large value
so that the switch from x to y occurs more frequently, and then it is gradually
decreased as the search proceeds. When T becomes sufficiently small and the
solution x does not change for many iterations, T is concluded to be “frozen” and
the best solution available by then is reported as the computed approximate
solution. In order to obtain high performance, it is essential to tune carefully these
parameters according to the problem we want to solve. The general scheme is
described by the following steps (input: an approximate solution x; and output:
an improved approximate solution x), where some details are not specified; for
example, how to determine in SA1 an initial temperature, how to conclude that
the procedure is in equilibrium (SA4) or is frozen (SA5), and how to reduce
temperature T in SA5. Of course, other details, which are problem specific, such
as how to define the cost and neighborhood, need also be provided.

SA1 Determine an initial temperature T

SA2 Given an x, pick randomly a solution y in N(x), and let ∆ be the change
in the cost value of y from that of x

SA3 If ∆ ≤ 0 (that is, improved), then let x = y. Otherwise, let x = y with
probability e– ∆/T

SA4 If it is concluded that a sufficient number of trials have been made with
the current T (that is, in equilibrium), then go to SA5. Otherwise return
to SA2 with the current x

SA5 If the current T is concluded to be sufficiently small (that is, frozen),
then go to SA6. Otherwise reduce the temperature T (for example, T
= f * T, where f is a factor satisfying 0 < f < 1) and return to SA2

SA6 Halt after outputting the best solution obtained so far as the computed
approximate solution x

In Papadias et al. (1999), based on ideas of Ioannidis and Kang (1990), the
Configuration Similarity Simulated Annealing (CSSA) for structural queries
was proposed. These queries belong to a kind of content-based queries where
similarity is not defined on visual properties such as color or texture, but on the
relation of objects in space. Simulated annealing follows a procedure similar to
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local search, but it also accepts uphill moves with some probability. This
probability is gradually decreased with time and finally the algorithm accepts only
downhill moves, leading to a good local minimum. The intuition behind accepting
uphill moves is led by the fact that some local minima may be close to each other,
separated by a small number of uphill moves. If only downhill moves were
accepted (as in local search), the algorithm would stop at the first local minimum
visited, missing a subsequent (and possibly better) one. By using these ideas, we
can adapt the ILS algorithm and obtain the Indexed Simulated Annealing
(ISA). Its pseudo-code is given in the following and it can be easily adapted for
DBQs in spatial databases.

S = S
0
 /* S is initialized to a random solution */

T = T
0

bestSolution = S

while not (Time threshold) {

while not (frozen) { /* stopping criterion */

while not (equilibrium) {

determine an R-tree
i

S’ = find_best_solution(Root of R-tree
i
, S)

∆ = cost(S’) – cost(S)

if ∆ ≤ 0 then S = S’

if ∆ > 0 then S = S’ with probability e– ∆/T

if cost(S) < cost(bestSolution) then bestSolution = S

} /* end while not equilibrium */

T = reduce(T)

} /* end while not frozen */

} /* end while not Time threshold */

The initial temperature T
0
 corresponds to a (usually high) probability of accepting

an uphill move. The algorithm tries a number of moves (inner iterations) for each
temperature value T. T is gradually decreased, allowing the acceptance uphill
moves less frequently. When the temperature is small enough, the probability of
accepting an uphill move converges to zero and the algorithm behaves like local
search. Then, the “system” is in a state of “frozen” and the algorithm terminates.

We must cite an alternative suggested in Ioannidis and Kang (1990) that is a
combination of local search and simulated annealing in the same algorithm
(called Two Phase Optimization, 2PO). 2PO can be divided in two phases: (1)
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the local search algorithm is run for a small period of time (that is, a few local
optimizations are performed). The output of this phase (the best local minimum
found) is the initial state of the next phase; (2) a simulated annealing algorithm
is run with a low initial temperature. Intuitively, the algorithm chooses a local
minimum and then searches the area around it, still being able to move in and out
of local minima, but practically unable to climb up very high hills.

Genetic Algorithms

Genetic Algorithms (genetic search) (Goldberg, 1989), just as simulated anneal-
ing is motivated by ideas from physics, are a general set of heuristic search
techniques based on ideas of evolutionary biology. The essential idea is to
represent candidates as chromosomes (often encoded as binary arrays) and to
“evolve” a population of such chromosomes by selectively pairing chromo-
somes to create new offspring. Chromosomes are paired based on their
“fitting level” (their similarity level) to encourage the better-fitting chromo-
somes to survive from one generation to the next (only a limited number of
chromosomes are allowed to survive from one generation to the next).
There are many variations on this general theme, but the key ideas of
genetic search are:

• Maintenance of a set of chromosomes rather than just a single chromo-
some, allowing the search algorithm to explore different parts of the search
space simultaneously.

• Creating new chromosomes for exploration, based on combinations of
existing ones, allowing, in effect, the algorithm to “jump” to different parts
of the search space.

Genetic search can be viewed as a specific type of heuristic, so it may work well
on some problems and less well on others. It is not always clear that it provides
better performance on specific problems than a simpler method such as local
search with random restarts. A practical drawback of this approach is that there
are usually many algorithmic parameters (such as the number of chromosomes,
specification of how chromosomes are combined, and so forth) that must be
specified and it may not be clear what the ideal settings are for these parameters
for a given problem.

In Papadias and Arkoumanis (2002), the Spatial Evolutionary Algorithm
(SEA) was proposed for approximate processing of multiway spatial joins that
takes advantage of spatial indexes and the problem structure to improve
solutions. This algorithm can be easily adapted to DBQs. In this algorithm, three
genetic operations (selection, crossover and mutation) are used. These opera-
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tions are repeatedly applied in order to obtain a population (that is, a new set of
solutions) with better characteristics, and they are presented in the following.

• Selection mechanism. This operation consists of two parts: evaluation
and offspring allocation. Evaluation is performed by measuring the
similarity of every solution; offspring generation then allocates to each
solution a number of offspring items proportional to its similarity. Tech-
niques for offspring allocation include ranking, proportional selection,
stochastic remainder, tournament, and so forth. For example, in the
tournament technique, each solution S

i
 competes with a set of T random

solutions in the generation. Among the T+1 solutions, the one with the
highest similarity replaces S

i
. After offspring allocation, the population

contains multiple copies of the best solutions, while the worst ones are likely
to disappear.

• Crossover mechanism. It is the driving force of exploration in genetic
algorithms. In the simplest approach, pairs of solutions are selected
randomly from the population. For each pair, a crossover point is defined
randomly, and the solutions beyond it are mutually exchanged with probabil-
ity µ

c
 (crossover rate), producing two new solutions. The rationale is that

after the exchange of genetic materials, the two newly generated solutions
are likely to possess the good characteristics of their parents (building-
block hypothesis)(Goldberg, 1989). For DBQs, randomly swapping assign-
ments will most probably generate multiple condition violations. Especially
for the later generations, where solutions may have reached high similari-
ties, random crossover may lead to the removal of good solutions. In order
to limit the number of violations, a variable crossover point c is proposed,
which is initially 1 and increases every g

c
 generations. When a solution S

i

is chosen for crossover, c terms will retain their current assignments, while
the remaining will get the assignments of another solution.

• Mutation mechanism. Although it is not a primary search operation and
sometimes it is omitted, mutation is very important for SEA and the only
operation that uses the indexes. At each generation, mutation is applied to
every solution in the population with probability µ

m
, called the mutation rate.

The process is similar to ILS, getting a new solution using the procedure
find_best_solution.

In general, the SEA algorithm first computes the similarity of the solutions
(evolution) and then performs offspring allocation (using, for example, the
tournament approach), crossover and mutation (following the methods described
above). During the initial generations, crossover plays an important role in the
formation of new solutions. As time passes, its role gradually diminishes and the
algorithm behaves increasingly like ILS, since mutation becomes the main
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operation that alters solutions. The pseudo-code of SEA is given in the following
and it can be easily adapted for DBQs (Papadias et al., 1999) in spatial databases
as ILS, GILS and ISA.

P = generate initial set of solutions {S
1
, S

2
, …, S

P
}

while not (Time threshold) {

compute crossover point c /* increase c every g
c
 generations */

for each S
i
 in P /*evaluation */

evaluate S
i

if S
i
 is the best solution found so far then keep S

i

for each S
i
 in P /* offspring allocation */

compare S
i
 with T other random solutions in P

replace S
i
 with the best among the T +1 solutions

for each S
i
 in P /*crossover*/

with probability µ
c
 change S

i
 as follows

determine set of c variables to keep their current values

re-instantiate the remaining variables using their values in

another solution S
j
 (S

j
 ∈ P)

for each S
i
 in P /* mutation */

with probability µ
m
 change S

i
 as follows

determine an R-tree
j

S
i
 = find_best_solution(Root of R-tree

j
, S

i
)

} /* end while not Time threshold */

In the SEA algorithm, if the best K solutions are required, the k distinct
chromosomes are extracted (k < K, the algorithm is executed repeatedly with
different initial populations)(Papadias et al., 1999). The main problem of SEA is
that it involves numerous parameters; namely, the number T of solutions
participating in the tournament (offspring allocation), the crossover (µ

c
) and

mutation (µ
m
) rates, the number of generations g

c
 during which the cross-

over point remains constant and the number P of solutions in each
population. Furthermore, these parameters are inter-related in the sense
that the optimal value for one of them depends on the rest. Careful tuning of
these parameters is essential for the good performance of SEA and genetic
algorithms in general.
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Conclusion and Future Trends

This chapter is a review of the most important approximation techniques and the
related algorithms that have appeared in literature for processing DBQs. These
techniques and the resulting algorithms aim at minimizing the response time and
the number of I/O operations over tree-like structures, while reporting suffi-
ciently good results. There are many future research possibilities in this area. A
number of them are summarized in the following.

(1) Recently, in Papadias et al. (2003), an interesting architecture that inte-
grates spatial networks and Euclidean distance, capturing pragmatic con-
straints, has been proposed, and a framework for processing the most
representative spatial queries has been developed. The approximation
techniques presented in this chapter could be applied within this framework
for reporting sufficiently good results quickly.

(2) The tradeoff between cost and accuracy of the search space reduction
techniques presented in that section has been studied by Corral et al.
(2002a, 2002b), using the notion of Average Relative Distance Error
(ARDE). It would be interesting to also examine other measures, such as
Match And Compare (MAC) error (Ioannidis & Poosala, 1999) and Earth
Mover’s Distance (EMD) error (Rubner et al., 1998) and compare the
accuracy, as well as the efficiency of all the techniques presented in this
chapter, by performing extensive experimentation for several
dimensionalities, different DBQs and artificial and real datasets of various
cardinalities.

(3) The application of each approximation technique that we have reviewed in
this chapter to other DBQs (for example, Iceberg distance joins) and
distance functions could be investigated.

(4)  Moving object applications are an example of spatio-temporal applications
that require specialized indexing techniques for supporting efficient pro-
cessing of spatio-temporal queries based on distances (Papadias et al.,
2001; Tao & Papadias, 2003). Within this context, the reviewed approxima-
tion techniques could be employed to obtain good adequate solutions
quickly.

(5)  The idea of approximation as a tool against the curse of dimensionality (the
variance of distances of points becomes very small as the number of
dimensions increases) has been applied for the creation of index structures
that can be used for computing of exact solutions also. The vector
approximation file (VA-file) (Weber, Schek, & Blott, 1998) and the VA+-
file (Ferhatosmanoglu, Tuncel, Agrawal, & El Abbadi, 2000) are two such
structures that store approximations of points. The A-tree (Sakurai,
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Yoshikawa, Uemura, & Kojima, 2000) is another such structure where the
representation of MBRs and data objects is based on relative approxima-
tions of their parent MBRs. These structures have been used for the exact
computation of nearest-neighbor search queries in high-dimensional spaces
outperforming R-tree based techniques. It would be challenging to
examine the use of these and other analogous structures for computing
approximate solutions of DBQs, achieving even higher savings in the
computation cost.

(6) Random Sampling has been used for the approximate computation of
aggregate queries in spatial databases (Olken & Rotem, 1993;
Vassilakopoulos & Manolopoulos, 1997; Lang & Singh, 2001; Nanopoulos,
Theodoridis, & Manolopoulos, 2002), taking advantage of spatial indexes
(Region Quadtrees and R-trees). It would be interesting to extend such
techniques for the approximate computation of DBQs and compare its
performance to the methods presented in this chapter.
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Abstract

This chapter describes algorithms, cost models and optimization techniques
for spatial joins. Joins are among the most common queries in Spatial
Database Management Systems. Due to their importance and high processing
cost, a number of algorithms have been proposed covering all possible
cases of indexed and non-indexed inputs. We first describe some popular
methods for processing binary spatial joins and provide models for
selectivity and cost estimation. Then, we discuss evaluation of multiway
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spatial joins by integrating binary algorithms and synchronous tree
traversal. Going one step further, we show how analytical models can be
used to combine the various join operators in optimal evaluation plans. The
chapter can serve as a comprehensive reference text to the researcher who
wants to learn about this important spatial query operator and to the
developer who wants to include spatial query processing modules in a
Database System.

Introduction

Spatial database systems (Güting, 1994) manage large collections of multidimen-
sional data which, apart from conventional features, include special character-
istics such as position and extent. That there is no total ordering of objects in
space that preserves proximity renders conventional indexes, such as B+-trees,
inapplicable to spatial databases. As a result, a number of spatial access
methods have been proposed (Gaede & Günther, 1998). A very popular method,
used in several commercial systems (for example, Informix and Oracle), is the
R-tree (Guttman, 1994), which can be thought of as an extension of B+-tree in
multi-dimensional space. R-trees index object approximations, usually minimum
bounding rectangles (MBRs), providing a fast filter step that excludes all objects
that cannot satisfy a query. A subsequent refinement step uses the geometry of
the candidate objects (that is, the output of the filter step) to dismiss false hits and
retrieve the actual solutions. The R-tree and its variations have been applied to
efficiently answer several query types, including spatial selections, nearest
neighbors and spatial joins.

As in relational databases, joins play an important role in effective spatial query
processing. A binary (that is, pairwise) spatial join combines two datasets with
respect to a spatial predicate (usually overlap/intersect). A typical example is
“find all pairs of cities and rivers that intersect.” For instance, in Figure 1 the
result of the join between the set of cities {c

1
, c

2
, c

3
, c

4
, c

5
} and rivers {r

1
, r

2
},

is {(r
1
, c

1
), (r

2
, c

2
), (r

2
, c

5
)}.

The query in this example is a spatial intersection join. In the general case, the
join predicate could be a combination of topological, directional and distance
spatial relations. Apart from the intersection join, variants of the distance join
have received considerable attention because they find application in data
analysis tasks (for example, data mining and clustering). Given two sets R and
S of spatial objects (or multidimensional points) and a distance function dist(), the
ε-distance join (or else similarity join) (Koudas & Sevcik, 2000) returns the
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pairs of objects {(r, s): r ∈ R, s ∈ S, dist(r, s) ≤ ε}. A closest pairs query (Corral,
Manolopoulos, Theodoridis, Vassilakopoulos, 2000) returns the set of closest
pairs CP={(r, s): r ∈ R, s ∈ S}, such that dist(r, s) ≤ dist(r′, s′), for all r′ ∈ R, s′
∈ S: (r′, s′) ∉ CP. A similar (non-commutative) operator is the all k-nearest
neighbors query (Böhm & Krebs, 2002), which returns for each object from R
its k nearest neighbors in S. Finally, given two datasets R and S, a real number
ε and an integer t, the iceberg distance join (Shou, Mamoulis, Cao, Papadias,
Cheung, 2003) retrieves all pairs of objects from R and S such that: (i) the pairs
are within distance ε, and (ii) an object of R appears at least t times in the result
(for example, find all regions of R that are within distance 1 km from at least 10
regions of S).

As an example for the spatial join variants, consider Figure 2, which illustrates
a set of hotels {h

1
, h

2
, h

3
} and a set of restaurants {r

1
, r

2
, r

3
, r

4
, r

5
}. The ε-

distance join between these two sets returns seven pairs (h
1
, r

1
), (h

1
, r

2
), (h

2
, r

2
),

(h
2
, r

3
), (h

2
, r

4
), (h

3
, r

4
) and (h

3
, r

5
). The 3-closest pairs are (h

2
, r

3
), (h

3
, r

5
) and

(h
3
, r

4
). The all 1-nearest neighbor operator (for the hotels) returns (h

1
, r

2
), (h

2
,

r
3
) and (h

3
, r

5
). Note that ε is not involved in closest pairs and all k-nearest

neighbors operations. Finally, the iceberg distance join for t=3 returns (h
2
, r

2
), (h

2
,

r
3
) and (h

2
, r

4
). Observe that h

2
 is the only hotel with at least 3 nearby restaurants.

In this chapter, we focus on intersection joins by reviewing evaluation algorithms
and cost models, as well as techniques for optimizing and integrating them in a
spatial database query engine. Other variants of spatial joins can be processed
by (trivially or non-trivially) extending algorithms for intersection joins. The
interested reader should check Koudas and Sevcik (2000), Corral et al. (2000),
Böhm and Krebs (2002) and Shou et al. (2003) for details.

Figure 1. Graphical example of a spatial intersection join
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Binary Spatial Joins

Most early spatial join algorithms apply a transformation of objects in order to
overcome the difficulties raised by their spatial extent and dimensionality. The
first known algorithm (Orenstein, 1986) uses a grid to regularly divide the
multidimensional space into small blocks, called pixels, and employs a space-
filling curve (z-ordering) to order them. Each object is then approximated by the
set of pixels intersected by its MBR, that is, a set of z-values. Since z-values are
1-dimensional, the objects can be dynamically indexed using relational index
structures, like the B+-tree, and the spatial join can be performed in a sort-merge
join fashion. The performance depends on the granularity of the grid; larger grids
can lead to finer object approximations, but also increase the space require-
ments. Rotem (1991) proposes an algorithm based on a spatial join index similar
to the relational join index, which partially pre-computes the join result and
employs grid files to index the objects in space.
The most influential algorithm for joining two datasets indexed by R-trees is the
R-tree join (RJ) (Brinkhoff, Kriegel, Seeger, 1993), due to its efficiency and the
popularity of R-trees. RJ synchronously traverses both trees, according to the
paradigm of Günther (1993), following entry pairs that overlap; non-intersecting
pairs cannot lead to solutions at the lower levels. After RJ, most research efforts
focused on spatial join processing for non-indexed inputs. Non-indexed inputs
are usually intermediate results of a preceding operator. Consider, for instance,
the query “find all cities with population over 5,000 which are crossed by a
river.” If there are only a few large cities and an index on population, it may be
preferable to process the selection part of the query before the spatial join. In
such an execution plan, even if there is a spatial index on cities, it is not employed
by the spatial join algorithm.
The simplest method to process a pairwise join in the presence of one index is
by applying a window query to the existing R-tree for each object in the non-

Figure 2. Example of distance join variants
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indexed dataset (index nested loops). Due to its computational burden, this
method is used only when the joined datasets are relatively small. Another
approach is to build an R-tree for the non-indexed input using bulk loading (Patel
& DeWitt, 1996; Papadopoulos, Rigaux, Scholl, 1999) and then employ RJ to
match the trees (build and match). Lo and Ravishankhar (1994) use the existing
R-tree as a skeleton to build a seeded tree for the non-indexed input. The sort
and match (SaM) algorithm (Papadopoulos et al., 1999) spatially sorts the non-
indexed objects but, instead of building the packed tree, it matches each in-
memory created leaf node with the leaf nodes of the existing tree that intersect
it. Finally, the slot index spatial join (SISJ) (Mamoulis & Papadias, 1999, 2003)
applies hash-join, using the structure of the existing R-tree to determine the
extents of the spatial partitions.

If no indexes exist, both inputs have to be preprocessed in order to facilitate join
evaluation. Arge, Procopiuc, Ramaswamy, Suel and Vitter (1998) propose
scalable sweeping-based spatial join (SSSJ) that employs a combination of
plane sweep (Preparata & Shamos, 1985) and space partitioning to join the
datasets. However, the algorithm cannot avoid external sorting of both datasets,
which may lead to large I/O overhead. Patel and DeWitt (1996) describe
partition based spatial merge join (PBSM) that regularly partitions the space
using a rectangular grid, and hashes both inputs into the partitions. It then joins
groups of partitions that cover the same area using plane-sweep to produce the
join results. Some objects from both sets may be assigned in more than one
partition, so the algorithm needs to sort the results in order to remove the
duplicate pairs. Another algorithm based on regular space decomposition is the
size separation spatial join (S3J) (Koudas & Sevcik, 1997). S3J avoids
replication of objects during the partitioning phase by introducing more than one
partition layer. Each object is assigned in a single partition, but one partition may
be joined with many upper layers. The number of layers is usually small enough
for one partition from each layer to fit in memory; thus, multiple scans during the
join phase are not needed. Spatial hash-join (SHJ) (Lo & Ravishankar, 1996)
avoids duplicate results by performing an irregular decomposition of space based
on the data distribution of the build input.

Table 1 summarizes the existing algorithms of all three classes. In general,
indexing facilitates efficiency in spatial join processing; an algorithm that uses
existing indexes is expected to be more efficient than one that does not consider
them. The relative performance of algorithms in the same class depends on the
problem characteristics. Günther (1993) suggests that spatial join indices per-
form best for low join selectivity, while in other cases RJ is the best choice.
Among the algorithms in the second class (one indexed input), SISJ and SaM
outperform the other methods because they avoid the expensive R-tree con-
struction (Mamoulis & Papadias, 2003). There is no conclusive experimental
evaluation for the algorithms in the third class (non-indexed inputs). S3J is
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preferable when the datasets contain relatively large rectangles and extensive
replication occurs in SHJ and PBSM. SHJ and PBSM have similar performance
when the refinement step is performed exactly after the filter step. In this case,
both algorithms sort their output in order to minimize random I/Os and PBSM
combines the removal of duplicate pairs with sorting. However, in complex
queries (for example, multiway spatial joins) and when the refinement step is
postponed after the filter steps of all operators, PBSM may be more expensive,
because it can produce larger intermediate results (due to the existence of
duplicates). S3J requires sorting of both datasets to be joined, and therefore it
does not favor pipelining and parallelism of spatial joins. On the other hand, the
fact that PBSM uses partitions with fixed extents makes it suitable for processing
multiple joins in parallel. In the following paragraphs, we review in detail one
representative algorithm from each of the three classes, namely the RJ, SHJ and
SISJ.

The R-Tree join

The RJ (Brinkhoff et al., 1993) is based on the enclosure property of R-trees:
if two nodes do not intersect, there can be no MBRs below them that intersect.
Following this observation, RJ starts from the roots of the trees to be joined and
finds pairs of overlapping entries. For each such pair, the algorithm is recursively
called until the leaf levels where overlapping pairs constitute solutions. Figure 3
illustrates the pseudo-code for RJ assuming that the trees are of equal height; the
extension to different heights is straightforward.

Figure 4 illustrates two datasets indexed by R-trees. Initially, RJ receives the two
tree roots as parameters. The qualifying entry pairs at the root level are (A

1
, B

1
)

and (A
2
, B

2
). Notice that since A

1
 does not intersect B

2
, there can be no object

pairs under these entries that intersect. RJ is recursively called for the nodes
pointed by the qualifying entries until the leaf level is reached, where the
intersecting pairs (a

1
, b

1
) and (a

2
, b

2
) are output.

Table 1. Classification of spatial join methods

Both inputs are indexed One input is indexed Neither input is indexed 
• transformation to z-values 

(Orenstein, 1986) 
• spatial join index (Rotem, 

1991) 
• tree matching (Günther, 1993, 

Brinkhoff et al., 1993) 

• index nested loops 
• seeded tree join (Lo & Ravishankar, 

1994) 
• build and match (Patel & DeWitt, 

1996, Papadopoulos et al., 1999) 
• sort and match (Papadopoulos et al., 

1999) 
• slot index spatial join (Mamoulis & 

Papadias, 2003) 

• spatial hash join (Lo & 
Ravishankar, 1996) 

• partition based spatial merge join 
(Patel & DeWitt, 1996) 

• size separation spatial join 
(Koudas & Sevcik, 1997) 

• scalable sweeping-based spatial 
join (Arge et al., 1998) 
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Two optimization techniques can be used to improve the CPU speed of RJ
(Brinkhoff et al., 1993). The first, search space restriction, reduces the
quadratic number of pairs to be evaluated when two nodes ni, nj are joined. If
an entry ei,x ∈ ni does not intersect the MBR of nj (that is, the MBR of all entries
contained in nj), then there can be no entry ej,y ∈ nj, such that ei,x and ej,y overlap.
Using this fact, space restriction performs two linear scans in the entries of both
nodes before RJ and prunes out from each node the entries that do not intersect
the MBR of the other node. The second technique, based on the plane sweep
paradigm, applies sorting in one dimension in order to reduce the cost of
computing overlapping pairs between the nodes to be joined. Plane sweep also
saves I/Os compared to nested loops because consecutive computed pairs
overlap with high probability. Brinkhoff et al. (1994) discuss multi-step process-
ing of RJ using several approximations (instead of conventional MBRs). Huang,
Jing and Rundensteiner (1997a) propose a breadth-first optimized version of RJ
that sorts the output at each level in order to reduce the number of page accesses.

Spatial Hash Join

SHJ (Lo & Ravishankar, 1996) (based on the relational hash-join paradigm)
computes the spatial join of two non-indexed datasets R (build input) and S
(probe input). Set R is partitioned into K buckets, where K is decided by the
system parameters. The initial extents of the buckets are points determined by
sampling. Each object is inserted into the bucket that is enlarged the least. Set
S is hashed into buckets with the same extent as R’s buckets, but with a different
insertion policy: An object is inserted into all buckets that intersect it. Thus, some
objects may be assigned to multiple buckets (replication) and some may not be
inserted at all (filtering). The algorithm does not ensure equal-sized partitions
for R (that is, with the same number of objects in them), as sampling cannot
guarantee the best possible bucket extents. Equal-sized partitions for S cannot

Figure 3. R-tree-based spatial join

RJ(Rtree_Node ni, RTNode nj)  
 for each entry ej,y ∈ nj do { 
  for each entry ei,x ∈ ni with ei,x ∩ ej,y ≠ ∅ do { 
            if ni is a leaf node    /* nj is also a leaf node */ 
   then Output (ei,x, ej,y); 
   else  { /* intermediate nodes */ 
                 ReadPage(ei,x.ref); ReadPage(ej,y.ref); 
                 RJ(ei,x.ref, ej,y.ref); } } 
 } /* end for */ 
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be guaranteed in any case, as the distribution of the objects in the two datasets
may be different.

Figure 5 shows an example of two datasets, partitioned using the SHJ algorithm.
After hashing set S, the two bucket sets are joined; each bucket from R is
matched with only one bucket from S, thus requiring a single scan of both files,
unless for some pair neither bucket fits in memory. In this case, an R-tree is built
for one of them, and the bucket-to-bucket join is executed in an index nested loop
fashion.

Slot Index Spatial Join

SISJ (Mamoulis & Papadias, 2003) is applicable when there is an R-tree for one
of the inputs (R). The algorithm is similar to SHJ, but uses the R-tree on R in order
to determine the bucket extents. If K is the desired number of partitions, SISJ will
find the topmost level of the tree such that the number of entries is larger than
or equal to K. These entries are then grouped into K (possibly overlapping)
partitions called slots. Each slot contains the MBR of the indexed R-tree entries,
along with a list of pointers to these entries. Figure 6 illustrates a 3-level R-tree
(the leaf level is not shown) and a slot index built over it. If K = 9, the root level
contains too few entries to be used as partition buckets. As the number of entries
in the next level is over K, we partition them in 9 slots (for this example). The
grouping policy of SISJ starts with a single empty slot and inserts entries into the
slot that is enlarged the least. When the maximum capacity of a slot is reached
(determined by K and the total number of entries), either some entries are deleted
and reinserted or the slot is split according to the R*-tree splitting policy
(Beckmann, Kriegel, Schneider & Seeger, 1990).

After building the slot index, the second dataset S is hashed into buckets with the
same extents as the slots. If an object from S does not intersect any bucket, it

Figure 4. Two datasets indexed by R-trees
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is filtered; if it intersects more than one bucket, it is replicated. The join phase
of SISJ is also similar to the corresponding phase of SHJ. All data from the R-
tree of R indexed by a slot are loaded and joined with the corresponding hash-
bucket from S using plane sweep. If the data to be joined do not fit in memory,
they can be joined using the algorithm of Arge et al. (1998), which employs
external sorting and then plane sweep. Another alternative is index nested loop
join (using as a root of the R-tree the corresponding slot). These methods can be
expensive when the partitions are much larger than the buffer. In such cases
SISJ is applied recursively, in a similar way to recursive hash-join. During the join
phase of SISJ, when no data from S is inserted into a bucket, the sub-tree data
under the corresponding slot is not loaded (slot filtering).

Selectivity and Cost Estimation for
Spatial Joins

Estimating the cost and the output size of a spatial join is an important and difficult
problem. Accurate cost models are necessary for the query optimizer to identify
a good execution plan that accelerates retrieval and minimizes the usage of
system resources. The output size of a spatial join between datasets R and S
depends on three factors:

• The cardinalities |R| and |S| of the datasets. The join may produce up to
|R|×|S| tuples (that is, the Cartesian product).

• The density of the datasets. The density of a dataset is formally defined as
the sum of areas of all objects in it divided by the area of the workspace1.
In other words, it is the expected number of objects that intersect a random

Figure 5. The partitioning phase of SHJ algorithm
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point in the workspace. Datasets with high density have objects with large
average area, and produce numerous intersections when joined.

• The distribution of the MBRs. Skewed datasets may produce arbitrary
few or many join pairs. Data skew is the most difficult factor to estimate,
since in many cases the distribution is not known, and even if known, its
characteristics are very difficult to capture.

The I/O cost of the refinement step is determined by the selectivity of the filter
step, since for each candidate object (or object pair) a random access that
retrieves its exact geometry is required. However, the selectivity of the
refinement step is hard to estimate because the arbitrary extents of the actual
objects do not allow for the easy computation of quantities like density and
complicate the probabilistic analysis of overlapping regions. Although this
estimate does not affect the cost of the spatial operator, it can be crucial for the
cost estimate of operators that succeed it. For example, for a complex query,
where three datasets are joined, the selectivity of the first join determines the
input size of the second. Estimating the selectivity of a spatial query after the
refinement step is a challenging issue, and to the best of our knowledge, no
previous work sufficiently solves this problem. Existing studies focus on the filter
step, often assuming that the data are uniformly distributed in the workspace
(uniformity assumption). Several of these studies are based on selectivity and
cost estimation formulae for window queries.

Selectivity and Cost Estimation for Window Queries

Given a spatial dataset R consisting of |R| δ-dimensional uniformly distributed
rectangles in a rectangular area u (workspace universe), the number of
rectangles that intersect a window query w (output cardinality - OC) is
estimated by the following formula,

Figure 6. An R-tree and a slot index built over it

   
(a) level 2 (root) entries (b) level 1 entries (c) slot index over level 1 
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where dr is the average length of the projection of a rectangle r ∈ R at dimension

d, and dw , du are the corresponding projections of w, u respectively. The

product in Equation 1, called Minkowski sum, depends on the probability that a
random rectangle from R intersects w. A graphical example is given in Figure 7.
In particular, Figure 7a depicts a dataset R and a window query w. We can think
of w as a point query on a dataset that contains rectangles of average projection

dd wr +  (Figure 7b), in which case the goal is to retrieve all rectangles that

contain the query point. Alternatively, the query can be transformed to a

rectangle with average side dd wr +  on |R| points (Figure 7c), in which case the

goal is to retrieve the data points falling in the query window. The min function

in Equation 1 avoids boundary effects when dd wr +  >1 for some dimension d.

The output size for non-uniform data can be estimated by maintaining a histogram
that partitions the data space into a set of buckets, and assuming that object
distribution in each bucket is (almost) uniform. Specifically, each bucket b
contains the number b.num of objects whose centroids fall in b, and the average
extent b.len of such objects. Figure 8 illustrates an example in the 2D space,
where the gray area corresponds to the intersection between b and the extended
query region, obtained by enlarging each edge of q with distance b.len/2.
Following the analysis on uniform data, the expected number of qualifying
objects in b approximates b.num • I.area/b.area, where I.area and b.area are
the areas of the intersection region and b, respectively (Acharya, Poosala, &
Ramaswamy, 1999). The total number of objects intersecting q is predicted by
summing the results of all buckets. Evidently, satisfactory estimation accuracy
depends on the degree of uniformity of objects’ distributions in the buckets. This
can be maximized using various algorithms (Muralikrishna & DeWitt, 1988;
Poosala & Ioannidis, 1997; Acharya et al., 1999), which differ in the way that
buckets are structured. For example, in Muralikrishna & DeWitt (1988), buckets
have similar sizes (that is, “equi-width”) or cover approximately the same
number of objects (that is, “equi-depth”), while in Poosala and Ioannidis (1997)
and Acharya et al. (1999) bucket extents minimize the so-called “spatial skew.”

When the dataset is not indexed, the cost of a window query (in terms of disk
accesses) is equal to the cost of sequentially scanning the entire dataset (that is,
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it is independent of the selectivity). On the other hand, the existence of an R-tree
can significantly reduce the query cost. The number of R-tree pages accessed
when processing a window query is equal to the expected number of non-leaf
node entries that intersect the query window plus the access of the R-tree root.

Let L be the number of R-tree levels and N
l
 ( ldr , ) be the number of entries

(average entry projection length) at level l and dimension d (0 is the leaf level and
L-1 the root level). The cost of a window query is then given by the following
formula (Kamel & Faloutsos, 1993; Theodoridis & Sellis, 1996):

Cost(R, w) = 1 + ∑ ∏
−

= =

+
⋅

1

1 1

, }),1(min{
L

l d d

dld
l

u

wr
N

δ

(2)

Theodoridis & Sellis (1996) present formulae for the estimation of ldr ,  for each

R-tree level that are based solely on the cardinality of the dataset |R|, the average
object MBR projection length and the page size, which determines the capacity
of the nodes and the height of the tree. The cost for non-uniform datasets can
be computed with the aid of histograms (similar to the selectivity case).

Selectivity and Cost Estimation for Spatial Joins

The output size (and selectivity) of a spatial join can be estimated by extending
Equation 1 (and Equation 2) in a straightforward way. Let R, S be the joined
datasets. The output of the join is the expected number of rectangles retrieved

Figure 7. Output size estimation for window queries
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from R when applying |S| window queries of projection length ds . Conversely,

it is the expected number of rectangles retrieved from S when applying |R|

window queries of projection length dr . In either case the output size is:

∏
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d d

dd
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sr
SRSROC

1

,1min),( (3)

For other data distributions where the uniformity assumption does not hold, one
can use 2D histograms that divide the space into buckets and summarize local
statistics for each bucket (Theodoridis et al., 1998; Mamoulis & Papadias, 1999).
The uniformity assumption can then be applied to each region to accumulate the
estimate for the join output. An et al. (An et al., 2001) extend this method by
maintaining, for each bucket, statistics about the objects’ edges and corners that
intersect it. Parametric approaches for distance joins, based on the observation
that distances between spatial objects follow power laws, were proposed in
(Belussi & Faloutsos, 1998, Faloutsos et al., 2000). Approximating the distribu-
tion (or object distances) in a real spatial dataset using histograms (or functions)
cannot provide worst-case guarantees for query selectivity estimation. As a
result, the effectiveness of most of the above methods is evaluated experimen-
tally. An, Yang and Sivasubramaniam (2001) show by experimentation that their
method is more accurate compared to the techniques used in Theodoridis et al.
(1998)and in Mamoulis and Papadias (1999) for joins between sets of MBRs.
Belussi and Faloutsos (1998) and Faloutsos, Seeger, Traina and Traina (2000)
provide experimental evidence for the accuracy of their models, though they are
incomparable with An et al. (2001), since they are only applicable for distance
joins between point sets.

Figure 8. Estimation using histograms
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Cost of R-Tree Join

Theodoridis et al. (1998) studied the cost of RJ in terms of R-tree node accesses.
Let R and S be two datasets indexed by R-trees and assume that the two R-trees

have (at level l) average entry side ldr , , lds ,  and number of entries N
R,l

, N
S,l

,

respectively. The number of node accesses during their spatial join can be
estimated by the following formula:

Cost
NA

(RJ, R, S) = 2 + ∑ ∏
−

= =

+
⋅⋅⋅

1

1 1

,,
,, }),1(min{2

L

l d d

ldld
lSlR

u

sr
NN

δ

(4)

Equation 4 expresses that every pair of intersecting entries at level l is
responsible for two node accesses at level l-1, if l>0. Therefore, the sum of the
expected number of intersecting entry pairs at the high levels of the trees, plus
the two accesses of the tree roots, give an estimate of the total number of node
accesses. Nevertheless, this quantity can be considered as an upper bound only,
since it does not reflect the actual number of I/Os under the existence of an LRU
buffer. When an intersecting pair of entries needs to be loaded, there is a high
probability that these pages will be in the system buffer if the buffer is large and
if they have been requested before. Huang et al. (1997b) provide an analysis of
RJ based on this observation, according to which, the I/O cost of joining R and
S in the presence of an LRU buffer is given by the following formula:

Cost(RJ, R, S) = T
R
 + T

S
 + (Cost

NA
(RJ, R, S) – T

R
 – T

S
)×Prob(node, M),

(5)

where T
R
, T

S
 are the number of nodes in the R-trees for R and S, respectively,

and Prob(node, M) is the probability that a requested R-tree node will not be in
the buffer (of size M), resulting in a page fault. This probability falls exponentially
with M, and its estimation is based on an empirical analysis.

Cost of Spatial Hash Join

The I/O cost of SHJ depends on the size of the joined datasets and the filtering
and replication that occur in set S. Initially, a small number of pages Cost

sam
 is

loaded to determine the initial hash buckets. Then both sets are read and hashed
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into buckets. Let P
R
, P

S
 be the number of pages of the two datasets (stored in

sequential files) and rep
S
, fil

S
 be the replication and filtering ratios of S. The

partitioning cost of SHJ is given by the following formula:

Cost
part

(SHJ, R, S) = Cost
sam

 + 2 P
R
 + (2 + rep

S  
–  fil

S
)×P

S
(6)

Next, the algorithm will join the contents of the buckets from both sets. In typical
cases, where the buffer is large enough for at least one partition to fit in memory,
the join cost of SHJ is,

Cost
join

(SHJ, R, S) = P
R 

+ (1 + rep
S
 – fil

S
)×P

S
, (7)

considering that the join output is not written to disk. Summing up, from Equations
6 and 7, the total cost of SHJ is:

Cost(SHJ, R, S) = Cost
sam

 + 3 P
R
 + (3 + 2rep

S
 – 2fil

S
)×P

S
(8)

Cost of Slot Index Spatial Join

SISJ joins a dataset R indexed by an R-tree with a non-indexed file S. Let T
R
 be

the number of R-tree nodes of R, and P
S
 the number of pages in S. Initially, the

slots have to be determined from R. This requires loading the top K levels of R’s
R-tree, in order to find the appropriate slot level. Let frac

R
 be the fraction of tree

nodes from the root until K. The slot index is built in memory, without additional
I/Os. Set S is then hashed into the slots requiring P

S
 accesses for reading, and

P
S
 + rep

S
P

S
 – fil

S
P

S
 accesses for writing, where rep

S
, fil

S
 are the replication and

filtering ratios of S. Thus, the cost of SISJ partition phase is:

Cost
part

(SISJ, R, S) = frac
R
 ×T

R
 + (2 + rep

S
 – fil

S
)×P

S
(9)

For the join phase of SISJ, we make the same assumptions as for SHJ; that is,
for each joined pair at least one bucket fits in memory. The pages from set R that
have to be fetched for the join phase are the remaining (1-frac

R
)×T

R
, since the

pointers to the slot entries are kept in the slot index and need not be loaded again
from the top levels of the R-tree. The number of I/O accesses required for the
join phase is:
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Cost
join

(SISJ, R, S) = (1 – frac
R
)×T

R
 + (1 + rep

S
 – fil

S
)×P

S
(10)

Summarizing, the overall cost of SISJ is:

Cost(SISJ, R, S) = T
R
 + (3 + 2rep

S
 – 2fil

S
)×P

S
(11)

We can qualitatively compare the three algorithms from Equations 5, 8 and 11.
Given a large enough memory buffer, the cost of RJ is not much higher than T

R

+ T
S
, since we expect that every requested R-tree node that has been loaded will

remain in the memory buffer with high probability, due to the locality of accessed
pages. This assertion is experimentally verified in several studies (for example,
Huang et al., 1997b; Mamoulis & Papadias, 1999). Given that in typical R-tree
structures nodes have around 67% average utilization (Beckmann et al., 1990),
and that the non-leaf R-tree nodes are very few compared to the leaves (due to
the large fanouts, 100-200 in practice), the I/O cost of RJ is roughly the cost of
reading 150% of the total number of pages occupied by the rectangles (that is,
Cost(SISJ, R, S) ≈ T

R
 + T

S 
 ≈ 1.5(P

R
 + P

S
)). The cost of SISJ is affected by the

filtering and replication ratios, which cannot be easily predicted. From empirical
studies on real datasets (Mamoulis & Papadias, 2003), it has been observed that
in practice, rep

S
 ≈ 0.3 and fil

S 
≈ 0. Considering this and the discussion on average

R-tree node occupancy, we can approximate the cost of SISJ with 1.5P
R
 + 3.6P

S
.

With similar assumptions on the filtering and replication ratios (and assuming a
negligible sampling cost), the cost of SHJ is reduced to 3P

R
 + 3.6P

S
. Based on

these numbers, we can conclude that RJ is more efficient than SISJ, which is
more efficient than SHJ, under usual problem settings. Of course, the application
of RJ (SISJ) presumes the existence of two (one) R-trees.

In the next sections, we discuss how the cost estimation formulae for RJ, SHJ
and SISJ can be used in combination with the selectivity estimation models
discussed earlier to optimize complex queries that include spatial join operators.
The experimental study of Mamoulis and Papadias (2001) suggests that these
estimates are indeed accurate and usually lead to optimal plans.

Multiway Spatial Joins

Multiway spatial joins involve an arbitrary number of spatial inputs. Such
queries are important in several applications, including Geographical Information
Systems (for example, “find all cities adjacent to forests, which are intersected
by a river”) and VLSI (for example, “find all sub-circuits that formulate a
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specific topological configuration”). Formally, a multiway spatial join can be
expressed as follows: Given n datasets R

1
, R

2
, ... R

n
 and a query Q, where Q

ij

is the spatial predicate that should hold between R
i
 and R

j
, retrieve all n-tuples

{(r
1,w

,..,r
i,x

,..,r
j,y

,.., r
n,z

) | ∀ i,j : r
i,x

 ∈ R
i
, r

j,y
 ∈ R

j
 and r

i,x
 Q

ij
 r

j,y
}. The query can

be represented by a graph, where nodes correspond to datasets and edges to join
predicates. Equivalently, the graph can be viewed as a spatial constraint
network, where the nodes correspond to problem variables and edges to binary
spatial constraints. In the sequel we use the terms variable/dataset and con-
straint/join condition interchangeably.

We consider that all datasets are indexed by R-trees (on MBRs) and we deal
with the filter step, assuming that overlap is the default join condition; that is, if
Q

ij
  = True, then the rectangles from the corresponding inputs i,j should overlap.

The loosest query is the one that corresponds to an acyclic (tree) graph (for
example, the one illustrated in Figure 9a), while the most constrained consists of
a complete (clique) graph (for example, the one in Figure 9c). For each type of
query, Figure 9 illustrates a solution; that is, a configuration of rectangles r

i,1
 ∈

R
i
 that satisfies the join conditions. We do not consider non-connected query

graphs, as these can be processed by solving connected sub-graphs and then
computing their Cartesian product.

Patel and DeWitt (1996) apply PBSM in a distributed, multi-processor environ-
ment to process cascading joins. Spatial datasets are regularly partitioned in
space (spatial declustering), and the physical resources (disks, processors) are
distributed according to the partitions. Papadopoulos et al. (1999) perform a two-
join case study to evaluate the performance of four spatial join algorithms.
Mamoulis and Papadias (1999) propose a pairwise joins method (PJM) that
combines binary join algorithms in a processing tree where the leaves are input
relations indexed by R-trees and the intermediate nodes are join operators.

Processing multiway joins by integration of pairwise join algorithms is the
standard approach in relational databases where the join conditions usually relate
different attributes. In spatial joins, however, the conditions refer to a single
spatial attribute for all inputs; that is, all object sets are joined with respect to their
spatial features. Motivated by this fact, synchronous traversal (ST) traverses
top-down2 all the R-trees involved in the query, excluding combinations of
intermediate nodes that do not satisfy the join conditions. The first general
application of ST to an arbitrary number of inputs appeared in Papadias et al.
(1998) for retrieval of database images matching some input configuration. The
employment of the method in multi-way spatial join processing is discussed in
Papadias et al. (1999) and in Mamoulis and Papadias (2001), together with
formulae for selectivity (in uniform datasets) and cost estimation (in terms of node
accesses). Next, we present in detail PJM and ST. Finally, we discuss the
optimization of processing multiway spatial joins based on dynamic programming.
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Integration of Pairwise Join Algorithms for Processing
Multiple Inputs

As in the case of relational joins, multiway spatial joins can be processed by
combining pairwise join algorithms. PJM considers a join order that is expected
to result in the minimum cost (in terms of page accesses). Each join order
corresponds to a single execution plan, where:

(i) RJ is applied when the inputs are leaves; that is, datasets indexed by R-
trees,

(ii) SISJ is employed when only one input is indexed by an R-tree,

(iii) SHJ is used when both inputs are intermediate results.

As an example of PJM, consider the query in Figure 9a and the plans of Figure
10. Figure 10a involves the execution of RJ for determining R

3
R

4
. The

intermediate result, which is not indexed, is joined with R
2
 and finally with R

1
 using

SISJ. On the other hand, the plan of Figure 10b applies RJ for R
1

R
2
 and R

3
R

4
,

and SHJ to join the intermediate results.

Queries with cycles can be executed by transforming them to tree expressions
using the most selective edges of the graph and filtering the results with respect
to the other relations in memory. For instance, consider the cycle (R

1
 overlap R

2
),

(R
2
 overlap R

3
), (R

3
 overlap R

1
) and the query execution plan R

1
(R

2
R

3
).

When joining the tuples of (R
2

R
3
) with R

1
 we can use either the predicate (R

2

overlap R
1
), or (R

3
 overlap R

1
) as the join condition. If (R

2
 overlap R

1
) is the most

selective one (that is, results in the minimum cost), it is applied for the join, and
the qualifying tuples are filtered with respect to (R

3
 overlap R

1
).

PJM uses Equations 5, 8 and 11 to estimate the join cost of the three algorithms.
The expected output size of a pairwise join determines the execution cost of an
upper operator and therefore is crucial for optimization. Selectivity estimation for
a pairwise join has already been discussed. Optimization of multiway spatial joins

Figure 9. Multiway join examples
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requires selectivity estimation for each possible decomposition of the query
graph (that is, for each allowable sub-plan). The generalized formula for the
output size of a query (sub) graph Q with n inputs is:

OC(R
1
,R

2
, …, R

n
, Q) = #(possible tuples)×Prob(a tuple is a solution)

(12)

The first part of the product equals the cardinality of the Cartesian product of the
n domains, while the second part corresponds to multiway join selectivity. In
case of acyclic graphs, the pairwise probabilities of the join edges are indepen-
dent and selectivity is the product of pairwise join selectivities (Papadias et al.,
1999):
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From Equations 12 and 13, the total number of query solutions is:
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When the query graph contains cycles, the pairwise selectivities are no longer
independent and Equation 14 is not accurate. For cliques, it is possible to provide
a formula for multiway join selectivity based on the fact that if a set of rectangles
mutually overlap, then they must share a common area. Given a random n-tuple
of rectangles, the probability that all rectangles mutually overlap is (Papadias et
al., 1999):
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1 1 ,1
,

)1(
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d

r
un

n a solutioa tuple isProb (15)

Thus, in case of clique queries Q the number of solutions is:
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The above formulae are applicable for queries that can be decomposed to acyclic
and clique graphs (for example, Figure 9b). The optimal execution plan can be
computed from the estimated output size and the costs of the algorithms involved.
Selectivity estimation for real datasets can be performed using histograms. Next
we describe ST, an alternative to PJM for processing multiway spatial joins.

Synchronous Traversal

ST processes the indexes of all joined datasets, following combinations of nodes
that satisfy the query constraints. Consider the four R-trees of Figure 11 and the
clique query of Figure 9c. The query asks for the set of 4-tuples (a

w
, b

x
, c

y
, d

z
),

such that the four objects mutually overlap (for example, (a
2
, b

1
, c

2
, d

2
)). ST

starts from the roots of the R-trees, searching for entries that satisfy the join
conditions. In this example, out of the 16 combinations of root entries (that is, (A

1
,

B
1
, C

1
, D

1
), (A

1
, B

1
, C

1
, D

2
), .., (A

2
, B

2
, C

2
, D

2
)), only (A

1
, B

1
, C

1
, D

1
) may lead

to actual solutions. For instance, the combination (A
2
, B

1
, C

1
, D

1
) does not satisfy

the query constraints because A
2
 does not intersect C

1
 (or D

1
); therefore, there

cannot be any pair of overlapping objects (a
w
, c

y
), a

w
 pointed by A

2 
and c

y
 pointed

by C
1
. As in the case of RJ, for each intermediate level solution, the algorithm

is called for the pointed R-tree nodes, recursively, until the leaves, where
solutions are output.

In the worst case, the total number of combinations of data MBRs that have to
be checked for the satisfaction of the join conditions is |R|n, where n is the number

Figure 10. Alternative plans using pairwise join algorithms
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of inputs and |R| the cardinality of the datasets (assumed to be the same). ST
takes advantage of the hierarchical decomposition of space preserved by R-
trees to break the problem in smaller local ones at each tree level. A local
problem has to check Cn combinations in the worst case (C is the R-tree node
capacity), and can be defined by:

• A set of n variables, v
1
, v

2
,.., v

n
, each corresponding to a dataset.

• For each variable v
i
, a domain ∆

i
 consisting of the entries {e

i,1
,.., e

i,Ci
} of

a node n
i
 (in tree R

i
).

• Each pair of variables (v
i
, v

j
) is constrained by overlap, if Q

ij
 is True.

A binary assignment {v
i
 ← e

i,x
, v

j
 ← e

j,y
} is consistent if Q

ij 
= True ⇒ e

i,x

overlaps e
j,y

. A solution of a local problem is a n-tuple t = (e
1,w

,.., e
i,x

,.., e
j,y

,..,e
n,z

)
such that ∀i,j, {v

i
 ← e

i,x
, v

j
 ← e

j,y
} is consistent. The goal is to find all solutions;

that is, assignments of entries to variables such that all constraints are satisfied.
In the previous example (clique query of Figure 9c), there exist four variables
v

1
,..,v

4
, and for each (v

i
,v

j
), i≠j, the constraint is overlap. At level 1 the domains

of the variables are ∆
1
={A

1
,A

2
}, ∆

2
={B

1
,B

2
}, ∆

3
={C

1
,C

2
} and ∆

4
={D

1
,D

2
}. Once

the root level solution (A
1
,B

1
,C

1
,D

1
) is found, ST will recursively search for

qualifying tuples at the lower level, where the domains of v
1
,..,v

4
 consist of the

entries under A
1
,..,D

1
, respectively; that is, ∆

1
={a

1
,a

2
}, ∆

2
={b

1
,b

2
}, ∆

3
={c

1
,c

2
}

and ∆
4
={d

1
,d

2
}. Notice that an intermediate-level solution does not necessarily

lead to an actual one. Since a part of the node area corresponds to “dead space”
(space not covered by object MBRs), many high-level solutions are false hits. The
pseudo-code for ST, assuming R-trees of equal height, is presented in Figure 12.

For each ∆
i
, space-restriction prunes all entries that do not intersect the MBR

of some n
j
, where Q

ij 
= True. Consider the chain query of Figure 9a and the top-

level solution (A
2
, B

1
, C

1
, D

1
). At the next level ST is called with ∆

1
 = {a

3
, a

4
},

∆
2
 = {b

1
, b

2
}, ∆

3
 = {c

1
, c

2
} and ∆

4
 = {d

1
, d

2
}. Although A

2
 intersects B

1
, none of

Figure 11. Example of four R-trees
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Figure 12. Synchronous R-tree traversal

ST(Query Q[][], RTNode n[])  
 for i:=1 to n do {  /*prune domains*/ 
  ∆i := space-restriction(Q, n[], i); 
  if  ∆i = ∅ then return;  /*no qualifying tuples exist for this combination of nodes*/} 
 for each τ ∈ find-combinations(Q, ∆) do { /* for each solution at the current level */  
  if n[] are leaf nodes then /*qualifying tuple is at leaf level*/ 
   Output(τ); 
  else /*qualifying tuple is at intermediate level*/ 
   ST(Q, τ.ref[]); /* recursive call to lower level */} 
 
Domain space-restriction(Query Q[][], RTNode n[], int i)   
 read ni; /* read node from disk */ 
 ∆i := ∅; 
 for each entry ei,x ∈ ni  do { 
  valid := True; /*mark ei,x as valid */  
  for each node nj such that Qij = True do {/*an edge exists between ni and nj*/ 
   if  ei,x ∩ nj.MBR = ∅ then { /* ei,x does not intersect the MBR of node ni */ 
    valid := false; /* ei,x is pruned */ 
    break;} 
       if valid = True then /*ei,x is consistent with all node MBRs*/ 
      ∆i := ∆i ∪ ei,x;  
 } 
 return ∆i; 

entries (a3, a4) do and these entries can be safely eliminated from ∆1. Since ∆1
becomes empty, (A2, B1, C1, D1) cannot lead to an actual solution and the search
is abandoned without loading the nodes pointed by B1, C1 and D1. Find-
combinations is the “heart” of ST; that is, the search algorithm that finds tuples
t ∈ ∆1 × ∆2 × ... × ∆n, that satisfy Q. In order to avoid exhaustive search of all
combinations, several backtracking algorithms applied for constraint satisfaction
problems can be used. The implementation of Mamoulis and Papadias (2001)
uses forward checking (FC) (Haralick & Elliott, 1981), which accelerates
search by progressively assigning values to variables and pruning the domains of
future (non-instantiated) variables. Given a specific order of the problem’s
variables v1,  v2,…, vn, when vi is instantiated, the domains of all future variables
vj, j > i, such that Qij = True, are revised to contain only rectangles that intersect
the current instantiation of vj (check forward). If during this procedure some
domain is eliminated, a new value is tried for vi until the end of Di is reached. Then
FC backtracks to vi-1, trying a new value for this variable.



Spatial Joins   177

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ST Cost Estimation

ST starts from the top level L-1 (where L is the height of the trees), and solves
one local problem in order to find solutions at the roots. Each solution generates
one problem at the next level until it reaches the leaves where solutions are
output. Thus, the total number of local problems is,

N
PROBLEMS

 = 1 + ∑
−

=

1

1

),(#
L

l

lQsolutions , (17)

where #solutions(Q, l) is the number of qualifying entry combinations at level
l. An experimental study in Mamoulis and Papadias (2001) suggests that ST is
CPU bound, due to the huge number of local problems and the fact that tree nodes
are visited with high locality; thus, the LRU buffer serves the majority of I/O
requests. Therefore, it is crucial to estimate the CPU cost of the algorithm. This
depends on the cost of the local problems, all of which have the same
characteristics (that is, number of variables, constraints and domain size);
therefore, it is reasonable to assume that they all have approximately the same
cost (C

PROBLEM
). Consequently, the total CPU cost (Cost

CPU
) equals the number

of local problems times the cost of each problem:

Cost
CPU

(ST, Q)= N
PROBLEMS

 × C
PROBLEM

(18)

N
PROBLEMS

 can be estimated by Equation 17 using Equation 12 for the number of
solutions at each level of the tree. The only difference is that instead of object
MBRs, intermediate nodes are used in Equations 14 and 16. The remaining factor
is the cost C

PROBLEM
. Although in the worst case (for example, extremely large

intermediate nodes) each local problem is exponential (O(Cn)), the average
C

PROBLEM
 for typical situations is much lower (actually, it increases linearly with

n and page size). Unfortunately, the nature of backtracking-based search
algorithms (including forward checking) does not permit theoretical average
case analysis (Kondrak & van Beek, 1997). Therefore, an empirical analysis
was conducted in Mamoulis and Papadias (2001) to isolate this cost. The result
of this analysis is that the CPU-time for each local problem is linear to the
number of variables n and the page size p, independently of the domain
density or the structure of the graph, and we can define:

C
PROBLEM

 = F×n×p , (19)
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Table 2. Iterator functions

Iterator Open Next Close 
ST  
(RJ for two 
inputs) 

− open tree files − return next 
tuple 

− close tree 
files 

SISJ  
(assuming that left 
input is the R-tree 
input) 

− open left tree file;  
− construct slot index;  
− open right (probe) input;  
− call next on right input and hash 

results into slots;  
− close right input 

− perform 
hash-join;  

− return next 
tuple 

− close tree 
file;  

− de-allocate 
slot index;  

− hash buckets 

SHJ  
(assuming that left 
input is the build 
input and right 
input the probe 
input) 

− open left input;  
− call next on left and write the results 

into intermediate file while 
determining extents of hash buckets;  

− close left input;  
− hash results from intermediate file into 

buckets;  
− open right input;  
− call next on right and hash all results 

into right buckets;  
− close right input 

− perform 
hash-join;  

− return next 
tuple 

− de-allocate 
hash buckets 

 

where F is a factor that depends on the algorithm for ST and the CPU speed and
can be estimated by Equations 17, 18, 19 and the actual cost of a multiway join.
The experiments of Mamoulis and Papadias (2001) suggest that this method has
low average error (below 15%) for various multiway joins on synthetic datasets.

Combining ST with Pairwise Join Algorithms

Since ST is essentially a generalization of RJ, it easily can be integrated with
other pairwise join algorithms to effectively process complex spatial queries.
Table 2 shows how ST, SISJ and SHJ can be implemented as iterator functions
(Graefe, 1993) in an execution engine running on a centralized, uni-processor
environment that applies pipelining.

ST (RJ for two inputs) executes the join and passes the results to the upper
operator. SISJ first constructs the slot index, then hashes the results of the probe
(right) input into the corresponding buckets and finally performs the join, passing
the results to the upper operator. SHJ does not have knowledge about the initial
buckets where the results of the left join will be hashed; thus, it cannot avoid
writing the results of its left input to disk. At the same time it performs sampling
to determine the initial extents of the buckets. Then, the intermediate file is read
and hashed to the buckets. The results of the probe input are immediately hashed
to buckets. Notice that in this implementation, the system buffer is shared
between at most two operators and next functions never run concurrently; when
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join is executed at one operator, only hashing is performed at the upper one. Thus,
given a memory buffer of M pages, the operator that is currently performing a
join uses M – K pages and the upper operator, which performs hashing, uses K
pages, where K is the number of slots/buckets. In this way, the utilization of the
memory buffer is maximized.

Optimization of Multiway Spatial Joins

Given a set of binary (for example, SISJ, SHJ) and n-ary (for example, ST) join
operators, and the corresponding selectivity/cost estimation formulae, the spatial
query optimizer aims at finding a fast execution plan. Dynamic programming
(DP), the standard technique for relational query optimization, can also be
applied for multiway spatial joins. The optimal plan for a query is computed in a
bottom-up fashion from its sub-graphs. At step i, for each connected sub-graph
Q

i
 with i nodes, DP (Figure 13) finds the best decomposition of Q

i
 to two

connected components, based on the optimal cost of executing these components
and their sizes. We assume that all join inputs are indexed by R-trees. When a
component consists of a single node, SISJ is considered as the join execution
algorithm, whereas if both parts have at least two nodes, SHJ is used. The output
size is estimated using the size of the plans that formulate the decomposition. DP
compares the cost of the optimal decomposition with the cost of processing the
whole sub-graph using ST, and sets as optimal plan of the sub-graph the best
alternative. Since pairwise algorithms are I/O bound and ST is CPU-bound,
when estimating the cost for a query sub-plan, DP takes under consideration the
dominant factor in each case.

At the end of the algorithm, Q.plan will be the optimal plan, and Q.cost and Q.size
will hold its expected cost and size. The execution cost of dynamic programming
depends on: (i) the number of relations n, (ii) the number of valid node
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Table 3. Number of plans and optimization cost parameters for different
query graphs
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combinations combk (that formulate a connected sub-graph) for each value of n,
and (iii) the number of decompositions decompk of a specific combination. Table
3 illustrates the above parameters for three special cases of join graphs. Note
that combinations of 2 nodes do not have valid decompositions because they can
be processed only by RJ.
The running cost of the optimization algorithm is the number of input combina-
tions for each value of n times the number of valid decompositions plus 1 for the
cost of ST:

CostCPU(DP, Q) = ( )∑
≤≤

+⋅
nk

kk decompcomb
1

1 (20)

Equation 20 suggests that DP can be too expensive for joins with a large (for
example, >10) number of inputs. For such cases, randomized algorithms can find
a good (but sub-optimal) plan within limited time (Mamoulis & Papadias, 2001).

DP(Query Q, int n) /*n = number of inputs*/ 
 for each connected sub-graph Ri-Rj Q2 ∈ Q of size 2 do { 
  Q2.cost := Cost(RJ, Ri, Rj); /*Equation 5*/ 
  Q2.size := OC(Ri, Rj); /*Equation 3*/ } 
 for i:=3 to n do 
  for each connected sub-graph Qi ∈ Q with i nodes do {/*Find optimal plan for Qi*/ 
   Qi.plan := ST; Qi.cost := CostCPU(ST, Qi); /*Equation 18*/ 
   for each decomposition Qi → {Qk, Qi-k}, such that Qk, Qi-k connected do { 
    if (k=1) then /*Qk is a single node; SISJ will be used*/ 
     {Qk, Qi-k}.cost := Qi-k.cost + Cost(SISJ, Qk, Qi-k); /*Equation 11*/ 
    else /*both components are sub-plans; SHJ will be used*/ 
     {Qk, Qi-k}.cost := Qk.cost + Qi-k.cost + Cost(SHJ, Qk, Qi-k); /*Equation8*/ 
    if {Qk,Qi-k}.cost<Qi.cost then { /*better than former optimal*/ 
     Qi.plan := {Qk, Qi-k}; /*mark decomposition. as Qi’s optimal plan*/ 
     Qi.cost := {Qk, Qi-k}.cost; /*mark so far optimal cost of Qi*/} 
   } /*decomposition*/ 
   /*Estimate Qi’s output size from optimal decomposition*/ 
   Qi.size := OC(Qi.plan); 
  }} 

Figure 13. Dynamic programming for optimization of multiway spatial joins
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Summary

In this chapter we review some of the most significant research results related
to spatial join processing. In particular, we describe: (i) binary algorithms that can
be used in different cases, depending on whether the joined inputs are indexed
or not; (ii) selectivity and cost estimation models; and (iii) techniques for the
efficient processing of multiway joins based on integration of binary algorithms
and synchronous traversal. Although we attempted to provide an extensive
coverage of the literature, several issues related to spatial joins — for example,
parallel join processing (Brinkhoff et al., 1996; Luo, Naughton, & Ellman, 2002)
and join variants (Koudas & Sevcik, 2000; Corral et al., 2000; Böhm & Krebs,
2002; Shou et al., 2003) — were omitted due to space constraints.

There are several issues related to spatial joins that still need to be addressed.
First, it is a common belief that intersection join algorithms can be straightfor-
wardly applied for other types, like distance joins. However, practice (for
example, see Corral et al., 2000; Shou et al., 2003) has already shown that direct
extensions (usually of RJ) may be inefficient, and several optimizations can
potentially enhanceperformance. Thus the application and optimization of differ-
ent intersection algorithms to other join variants is an interesting topic of future
work. Furthermore, although current systems only consider the standard “first
filter, then refinement step” strategy, a spatial query processor should allow the
interleaving of filter and refinement steps. For example, consider the query “find
all cities adjacent to forests, which are intersected by a river” and assume that
we know there are only a few rivers that intersect cities, although there are
numerous such MBR pairs. Then, it would be preferable to execute the
refinement step after the first join before we proceed to the next one. However,
this knowledge presumes that we have accurate selectivity formulae for the
refinement step, which is a difficult, open problem for future work.
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1 Given a series of different layers of the same region (for example, rivers,

streets, forests), its workspace is defined as the total area covered by all
layers (not necessarily rectangular) including holes, if any.

2 RJ can be thought of as a special case of ST involving two inputs.
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Section IV

Moving Objects
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Chapter VIII

Applications of Moving
Objects Databases

Ouri Wolfson, University of Illinois, USA

Eduardo Mena, University of Zaragoza, Spain

Abstract

Miniaturization of computing devices and advances in wireless
communication and sensor technology are some of the forces propagating
computing from the stationary desktop to the mobile outdoors. Some
important classes of new applications that will be enabled by this
revolutionary development include location-based services, tourist services,
mobile electronic commerce and digital battlefield. Some existing application
classes that will benefit from the development include transportation and
air traffic control, weather forecasting, emergency response, mobile resource
management and mobile workforce. Location management, that is, the
management of transient location information, is an enabling technology
for all these applications. Location management is also a fundamental
component of other technologies, such as fly-through visualization, context
awareness, augmented reality, cellular communication and dynamic resource
discovery. Moving Objects Databases (MODs) store and manage the
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location as well as other dynamic information about moving objects. In this
chapter we will present the applications of MODs and their functionality.
The target readership is researchers and engineers working in databases
and mobile computing.

Background

In 1996, the Federal Communications Commission (FCC) mandated that all
wireless carriers offer a 911 service with the ability to pinpoint the location of
callers making emergency requests. This requirement is forcing wireless opera-
tors to roll out costly new infrastructure that provides location data about mobile
devices. In part to facilitate the rollout of these services, in May 2000, the U.S.
government stopped jamming the signals from global positioning system (GPS)
satellites for use in civilian applications, dramatically improving the accuracy of
GPS-based location data to 5-50 meters.

As prices of basic enabling equipment like smart cell phones, handheld devices,
wireless modems and GPS devices continue to drop rapidly, the number of
wireless subscribers worldwide will soar. Spurred by the combination of
expensive new location-based infrastructure and an enormous market of mobile
users, companies will roll out new wireless applications to recoup their technol-
ogy investments and increase customer loyalty and switching costs. These
applications are collectively called location-based services.

Emerging commercial location-based services include Mobile Resource Man-
agement (MRM) applications, such as systems for mobile workforce manage-
ment, automatic vehicle location, fleet management, logistics, transportation
management and support (including air traffic control). These systems use
location data combined with route schedules to track and manage service
personnel or transportation systems. Call centers and dispatch operators can use
these applications to notify customers of accurate arrival times, optimize
personnel utilization, handle emergency requests and adjust for external condi-
tions like weather and traffic. Another example of location-based service  is
Location-aware Content Delivery, which uses location data to tailor the informa-
tion delivered to the mobile user in order to increase relevance; for instance,
delivering accurate driving directions, instant coupons to customers nearing a
store or nearest resource information like local restaurants, hospitals, ATM
machines or gas stations.

In addition to commercial systems, management of moving objects in location-
based systems arises in the military in the context of the digital battlefield. In a
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military application one would like to ask queries such as “retrieve the helicopters
that are scheduled to enter region R within the next 10 minutes.”

MODs, which include the management of transient location information, are an
enabling technology for all the above applications. MODs are also a fundamental
component of other technologies, such as fly-through visualization (the visualized
terrain changes continuously with the location of the user), context awareness
(the location of the user determines the content, format or timing of information
delivered), augmented reality (the location of both the viewer and the viewed
object determines the type of information delivered to viewer) and cellular
communication.

Location management has been studied extensively in the cellular architecture
context. The problem is as follows: In order to complete the connection to a
cellular user u, the network has to know the cell id of u. Thus the network
maintains a database of location records (key, cell-id), and it needs to support
two types of operations: (1) Point query, when a cellular user needs to be located
in order to complete a call or send a message, for example, “find the current
location (cell) of the moving object with key 707-476-2276,” and (2) Point update,
when a cellular user moves beyond the boundary of its current cell, for example,
“update the current location (cell) of the moving object with key 707-476-2276.”
The question addressed in the literature is how to distribute, replicate and cache
the database of location records such that the two types of operations are
executed as efficiently as possible. Related questions are how frequently to
update, and how to search the database. Many papers have addressed this
question, and two good surveys of the subject are Bhattacharya and Das (1999)
and Pitoura and Samaras (2001).

However, the location management problem addressed by MODs is much
broader. The main limitations of the cellular work are that the only relevant
operations are point queries and updates that pertain to the current time, and they
are only concerned with cell-resolution locations. For the applications we
discussed, queries are often set oriented, location of a finer resolution is
necessary, queries may pertain to the future or the past, and triggers are often
more important than queries. Some examples of queries and triggers supported
by MODs are: “during the past year, how many times was bus #5 late by more
than 10 minutes at some station” (past query); “show me the taxi cabs within 1
mile of my location” (set oriented present query); “retrieve the estimated location
of truck #56 tomorrow at 8 a.m.” (future query); “retrieve the trucks that will
reach their destination within the next 20 minutes” (set oriented future query);
“send me a message when a helicopter is in a given geographic area” (trigger).

In terms of location-based-services software development, the current approach
is to build a separate, location-independent management component for each
application. However, this results in significant complexity and duplication of
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efforts, in the same sense that data management functionality was duplicated
before the development of Database Management Systems (DBMS). To
continue the analogy, we need to develop location management technology that
addresses the common requirements and serves as a development platform in the
same sense that DBMS technology extracted concurrency control, recovery,
query language and query processing, and serves as a platform for inventory and
personnel application development.

In this chapter we describe the approach in building a general-purpose location
management system, that is, a MOD. Such a database serves as the repository
that stores and manages location as well as other dynamic information about
moving objects. The main topics that will be discussed are: location technologies
and applications, location modeling/management and MOD architecture and
functionality.

MOD Applications

In this section we discuss the kind of applications that can be built on top of MOD
technology.

• Geographic resource discovery: A mobile user provides its (partial)
future trajectory to a service provider, and expects the answer to such
queries/triggers as: “notify me when I am two miles away from a motel (in
my travel direction) that has rooms available for under $100 per night.” The
service provider uses a MOD to store the location information of its
customers and answer their queries/triggers.

• Digital battlefield: The dynamic location and status of the moving objects
(tanks, helicopters, soldiers) in the battlefield is stored in a MOD that must
answer queries and process triggers of various degrees of complexity (for
example, “How many friendly tanks are in region X?”).

• Transportation (taxi, courier, emergency response, municipal trans-
portation, traffic control, supply chain management, logistics): In
these applications the MOD stores the trajectories of the moving objects
and answers such queries as: “which taxi cab is expected to be closest to
320 State Street half an hour from now” (when presumably service is
requested at that address); “When will the bus arrive at the State and Oak
station?” “How many times during the last month was bus #25 late at some
station by more than 10 minutes?”

• Location (or mobile) e-commerce and marketing: In these applica-
tions, coupons and other location-sensitive marketing information are fed to
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a mobile device (that presumably screens it based on the user profile and
displays it selectively).

• Mobile workforce management: Utilities and residential/commercial
service providers track their service engineers and the MOD answers such
queries as: “Which service crew is closest to the emergency at 232 Hill
Street?”

• Context-awareness, augmented-reality, fly-through visualization:
In these applications the service provider feeds, in real time, the relevant
information to the current location of a moving user. For example, a
geologist driving through a terrain can use its handheld device to view the
area she sees with the naked eye, but with additional information superim-
posed. The additional information is fed by the server and may include
seismographic charts, images of the terrain taken at another season or
notes made by other geologists about each landmark in the viewable terrain.

• Air traffic control: Currently commercial flights take “highways in the
sky,” but when free-flight (FAA, 2004) is instituted, a typical trigger to the
air-traffic control MOD may be: “Retrieve the pair of aircraft that are on
a collision course, that is, are expected to be less than a mile apart at some
point.”

• Dynamic allocation of bandwidth in cellular network: Cellular service
providers may track their customers and may dynamically change the
bandwidth allocation to various cells to satisfy changing customer density.

• Querying in mobile environments: A Mobile Ad-hoc Network (MANET)
is a system of mobile computers equipped with wireless broadcast transmit-
ters and receivers used for communicating within the system. Such
networks provide an attractive and inexpensive alternative to the cellular
infrastructures when this infrastructure is unavailable (for example, in
remote and disaster areas), inefficient or too expensive to use (Haas, 1998).
Knowing the location of the destination computer enables better and more
reliable routing of messages. Thus, maintaining the trajectories of mobile
computers in a MOD is an attractive alternative. However, in this case, the
MOD is distributed among the moving objects themselves, since a central-
ized solution defeats the MANET purpose. Currently, commercial MOD
products provide a very limited set of capabilities, and they focus on
transportation, particularly fleet management systems. Companies market-
ing such systems include Mobitrac (MOBITRAC Inc., 2002), Qualcomm
(Qualcomm Inc., 2002) and @Road (At Road Inc., 2004).
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Location Technologies

Location sensing methods fall into three categories: triangulation, proximity and
scene analysis. In triangulation, several signals originating from known sources
are correlated by a processor, to determine the location of this processor. GPS
receivers are the best known implementation of this method (Leick, 2003). Such
a receiver is a special-purpose computer chip that costs less than $100 and is as
small as one cm. It receives and triangulates signals from 24 satellites at 20,000
KM, and computes latitude and longitude with tennis-court-size precision. A
Differential GPS is assisted by ground stations and achieves twp- to three-foot
precision.

The second location sensing method is proximity, where the location of a moving
object is determined to be within a small distance from a sensor. For example,
RFID (AIM, 2004) tags transmit a digital response when contacted by radio
signals from nearby scanning devices. Then the location of the tag is known to
be very close to that of the scanning device.

The last method is scene analysis, where the location of an object with known
dimensions can be determined by analyzing its image produced by a camera with
a known location.

Modeling Based on Point Location
Management

A fundamental capability of location management is modeling of transient
location information, particularly the location of mobile devices such as cell
phones, personal digital assistants, laptops, and so forth. These devices are
carried by people or are mounted on moving objects such as vehicles, aircraft or
vessels. The location information is updated by positioning technologies. In this
section we describe a point location modeling technique; an alternative location
modeling technique based on trajectory management can be found in the next
section.

A straightforward approach used by existing industrial applications such as fleet
management and Automatic Vehicle Location (AVL) is to model the location as
follows. For each moving object, a location-time point of the form (l, t) is
generated periodically, indicating that the object is at location l at time t. l may
be a coordinate pair (x,y) or a cell-id. The point is stored in a database managed
by a DBMS, and SQL is used to retrieve the location information.
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This method is called point-location management, and it has several critical
drawbacks. First, the method does not enable interpolation or extrapolation. For
example, assume that a user needs to know which police officers were within one
mile from the location of an emergency that occurred at 3 p.m. This information
can only be retrieved for the moving objects that happened to generate a location
update at 3 p.m. If an object did not generate an update at 3 p.m., then its
whereabouts at that time are unknown. The problem is even more severe for
extrapolation (that is, if a future location is requested); for example, “which field
service employees will be closest to a customer location at 5 p.m.?” This query
cannot be answered by the point-location method, even though the future location
of the service personnel can be estimated by being based on current work
schedules.

The second problem of the point-location method is that it leads to a critical
precision/resource trade-off. An accurate picture of the precise location of
moving objects would require frequent location updates that consume precious
resources such as bandwidth and processing power.

Finally, a third problem of this method is that it leads to cumbersome and
inefficient software development. Specifically, location based services will
require the development of a vast array of new software applications. Doing so
on top of existing DBMS technology has several drawbacks. First, existing
DBMS’ are not well-equipped to handle continuously changing data, such as the
location of moving objects. The reason for this is that, in databases’ areas, data
are assumed to be constant unless they are explicitly modified. For example, if
the salary field is $30,000, then this salary is assumed to hold (that is, $30,000 is
returned in response to queries) until explicitly updated. This constant-until-
modified assumption does not hold for the location of moving objects, which
changes continuously. The second drawback is that location based services
applications need to manage space and time information, whereas SQL is not
designed and optimized for this type of queries and triggers. For example, the
query “retrieve the vehicles that are inside region R always between 4 p.m. and
5 p.m.” would be very difficult to express in SQL. Finally, the location of a
moving object is inherently imprecise because the database location of the object
(that is, the object-location stored in the database) cannot always be identical to
the actual location of the object. This inherent uncertainty has various implica-
tions for database modeling, querying and indexing. For example, there can be
two different kinds of answers to queries; that is, the set of objects that “may”
satisfy the query, and the set that “must” satisfy the query. SQL semantics
cannot account for this difference.

An interesting observation is that the point location management is used for two
different cases: one in which the route of the moving object is known a priori (for
example, trucking fleet management, municipal transit), and the other in which
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such information is not available. For example, in location-aware advertising
consumers usually cannot be assumed to provide their destination, and this is also
the case for the enemy in digital battlefield applications. In other words, the
information available a priori is not utilized for tracking, and it is not updated as
a result of tracking.

Modeling Based on Trajectory Location
Management

In this section we outline Databases fOr MovINg Objects (DOMINO’s) model
(Wolfson, 1999) of a trajectoryand explain how to construct it and how it solves
the problems associated with point location management. Let us observe that
there exist alternatives to the approach here (see, for example, Guting, Bohlen,
Erwig, Jensen, Lorentzos, Schneider, & Vazirgiannis, 2000) and Sistla, Wolfson,
Chamberlain, & Dao, 1997). If possible, we make use of a priori or inferred
information about the destination of an object. For example, the destination can
be inferred based on a motion pattern (for instance, the person travels to the
office between 8 a.m. and 9 a.m.) or by accessing auxiliary information (for
instance, a calendar may indicate a meeting at a given time and address).

The method proposed is called trajectory location management. In this method
we first obtain or estimate the source and destination of the moving object. For
example, the object starts in New York City at the intersection of 57th Street and
8th Avenue at 7 a.m. and heads for Chicago at the intersection of Oak and State
Streets. Then, by using an electronic map geocoded with distance and travel-time
information for every road section, a trajectory is constructed.

Electronic Maps

Before defining the trajectory, let us define the format of an electronic map. An
electronic map is a relation where each tuple in the relation represents a city
block; that is, the road section between two intersections, with the following
attributes:

• Polyline: the block polyline given by a sequence of 2D x,y coordinates:
(x

1
,y

1
),(x

2
,y

2
),...,(x

n
,y

n
). Usually the block is a straight line segment, that

is, given by two (x,y) coordinates.

• Fid: The block id number.
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The following attributes are used for geocoding; that is, translating between an
(x,y) coordinate and an address such as “1030 North State Street” (let us assume
that the even range of numbers on the block is 1000-1100, and the odd range is
997-1103):

• L_f_add: Left-side-from street number (in the example,1000)

• L_t_add: Left-side-to street number (in the example, 1100)

• R_f_add: Right-side-from street number (in the example, 997)

• R_t_add: Right-side-to street number (in the example, 1103)

• Name: street name

• Type: ST or AVE

• Zipl: Left side Zip code

• Zipr: Right side Zip code

• Speed: speed limit on this city block

• One way: a Boolean One way flag.

The following attributes are used for computing travel time and travel distance.

 • Meters: Length of the block in meters

• Drive Time: Typical drive time from the one end of the block to the other,
in minutes

Such maps are provided by, among others, Geographic Data Technology Co.
(GDT, 2004). An intersection of two streets is the endpoint of the four block-
polylines. Thus, each map is an undirected graph, with the tuples representing
edges of the graph.

Dealing with Trajectories

The route of a moving object O is specified by giving the starting address or (x,y)
coordinate (start_point), the starting time and the ending address or (x,y)
coordinate (end_point). An external routine available in most existing Geo-
graphic Information Systems, and which we assume is given a priori, computes
the shortest cost (distance or travel time) path in the map graph. This path,
denoted P(O), is given as a sequence of blocks (edges); that is, tuples of the map.
Since P(O) is a path in the map graph, the endpoint of one block polyline is the
beginning point of the next block polyline. Thus the whole route represented by
P(O) is a polyline denoted L(O). For the purpose of processing spatiotemporal



Applications of Moving Objects Databases  195

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

range queries, the only relevant attributes of the tuples in P(O) are Polyline and
Drive Time.

Given that the trip has a starting time, for each straight line segment on L(O), we
can compute the time at which the object O will arrive to the point at the beginning
of the segment (using the Drive-Time attribute). This is the certain-trajectory, or
c-trajectory. Intuitively, the c-trajectory gives the route of a moving object, along
with the time at which the object will be at each point on the route. More
formally, a c-trajectory is a sequence of straight-line segments (x

1
, y

1
, t

1
),

(x
2
, y

2
, t

2
), ... ,(x

n
, y

n
, t

n
) in 3-dimensional space. The c-trajectory means that

when the object starts at a location having coordinates (x
1
, y

1
) at time t

1
, it will

move on a straight line at constant speed and will reach location (x
2
, y

2
) at time

t
2
, and then it will move on a straight line at constant speed and will reach location

(x
3
, y

3
) at time t

3
, and so forth. The c-trajectory is an approximation of the

expected motion of the object in space and time. The reason it is only an
approximation is that the object does not move in straight lines at constant speed.
However, given enough straight lines, the approximation can be accurate up to
an arbitrary precision. The number of line segments on the trajectory has an
important implication on the performance and precision of queries and triggers.
Specifically, the performance increases and the precision decreases as the
number of line segments decreases. We adjust and fine-tune the number of line
segments on each trajectory by using a method that has been studied in computer
graphics, namely line simplification (Agarwal & Varadarajan, 2000; Douglas &
Peucker, 1973).

The c-trajectory is stored in the server database and in a computer carried by the
moving object. At any point in time t between t

i
 and t

i+1
 the server can compute

the expected location of the moving object at time t. Observe that this technique
solves the first problem associated with point location management, namely,
trajectory location management enables both location interpolation and extrapo-
lation. The server can compute the expected location of the moving object at any
point in time between the start and end times of the trip. For example, if it is
known that the object is at location (x

5
, y

5
) at 5 p.m. and at location (x

6
, y

6
) at

6 p.m., and it moves in a straight line at constant speed between the two locations,
then the location at 5:16 p.m. can be computed anytime, that is, before 5:16
(extrapolation) or after (interpolation).

Finally, the trajectory (or the uncertain trajectory) is obtained by associating an
uncertainty threshold u

i
 with the ith line segment on the c-trajectory. The line

segment, together with the uncertainty threshold, constitutes an “agreement”
between the moving object and the server. The agreement specifies the
following: The moving object will update the server if and only if it deviates from
its expected location according to the trajectory by u

i
 or more. How does the

moving object compute the deviation at any point in time? Its computer receives
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Figure 1. Moving objects database technology

Figure 1. Moving Objects Database technology 

a GPS update every two seconds, so it knows its actual location at any point in
time. It has the trajectory, so by interpolation it can compute its expected location
at any point in time. The deviation is simply the distance between the actual and
the expected location. More formally, a trajectory is a polyline (x
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) in 4-dimensional space.

At the server, the trajectory is maintained by revising it according to location
updates from the moving object, and according to real-time traffic conditions
obtained from traffic Web sites. We have developed a traffic incident model and
a method of identifying the trajectories affected by a traffic incident. Observe
that determining whether a trajectory is affected by a traffic incident is not a
simple matter, and requires prediction capabilities. For example, suppose that
according to the current information, Joe’s van is scheduled to pass through
highway section x 20 minutes from now, and suppose that a Web site currently
reports a traffic jam on highway section x. Will Joe’s expected arrival time at his
destination be affected by this? Clearly it depends on whether the jam will clear
by the time Joe arrives at highway section x. One can use historical information
and various traffic models to make this prediction.

Observe that the agreement (namely the trajectory plus the uncertainty thresh-
old) between the moving object and the server solves the second problem of point
location management, namely, the tradeoff between resource/bandwidth con-
sumption and precision has been broken. In trajectory location management, the
location of a moving object can be computed with a high degree of precision using
a small number of location updates or no updates at all. In particular, if the moving
object is “on schedule”, that is, it does not deviate from its prescribed trajectory
by more than the uncertainty threshold, then no resources are consumed for
updates.

Finally, let us observe that a trajectory can be constructed by being based on past
motion in which an object used the point location management. Namely, the
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trajectory can be constructed from a set of 3D points (x
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) that were transmitted by a moving object using the point location

management method. One can simply connect the points along the shortest path
on the map, and then associate an uncertainty u

i
 with line segment i. The

uncertainty u
i
 can be bounded given the maximum speed of the object and the

known times of the two GPS points immediately preceding and succeeding the
ith line (Pfoser & Jensen, 2000). Or, the uncertainty u

i 
can represent the

maximum error of the GPS receiver.

MOD Architecture and Functionality

A MOD consists of static geo-spatial and temporal information, some of which is
updated in real time (see Figure 1). The static information includes maps, profile
information about moving objects and motion plans (for example, vehicle v starts
at address a and will make deliveries at addresses b, c and d, in this order).

The real time updates include current location and other information fed in by
sensors. This is a conceptual model. In practice, location data may be incom-
plete; that is, only partial trajectories may be available. Also, the database may
be distributed rather than centralized. Moreover, the distribution may be among
the moving objects themselves, with the extreme case being that each moving
object stores its own location data.

Another generalization includes sensor data associated with the (time, location)
information. For example, fuel level, images of the environment, captured
information from sensors in the instrumented infrastructure (for instance,
availability of a parking slot in the neighborhood broadcast to the immediate
vicinity by the slot), an accident in the vicinity indicated by a deployed air-bag
sensor, and so forth.

MOD Architecture

A MOD stores and manages the location as well as other dynamic information
about moving objects. It can be described as a three-layer architecture, from the
top to the bottom:

1. A software envelope that manages the dynamic aspects of the system

2. A Geographic Information System (GIS) that provides different
functionalities to deal with geo-spatial information

3. A DBMS that actually stores and manages the data
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Thus, we wrap a DBMS and a GIS to build a platform for location-based services
application development.

Location data and other dynamic attribute values flow from moving objects to
where the MOD resides (in general, in proxies or other elements of the wireless
network). In the previous discussion we assumed a centralized architecture.

However, it is not realistic to think of a centralized proxy where the interesting
data is sent from all the moving objects in the scenario (which could be crowded
with moving objects!). In the same way as wireless networks are composed of
a network of elements (proxies) that provide moving objects under its area with
connectivity, we could think about a distributed approach to deal with location
queries that involve moving objects highly distributed geographically. Thus,
queries should be answered in an incremental way (area by area) and the
different answers joined recursively in order to obtain a final answer. Agent
technology (Milojisic et al, 1998) can be a good choice to implement an approach
like the one described here: Mobile agents will carry data (subqueries and their
answers) to the right place, deal with disconnections and network delays, and,
therefore, fit the dynamic nature of wireless networks quite well. Some work
using this technology can be found in Ilarri, Mena and Illarramendi (2002). The
described distributed approach scales well, which is a very important feature in
dynamic environments like wireless and ad hoc networks.

Figure 2. Query result showing all vehicles’ locations at 12:35
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MOD Functionality

Here we demonstrate the query language and user interface for the DOMINO
system (Wolfson, 1999). Figure 2 illustrates the answer to the query “Where are
the vehicles at 12:35?”; the screenshot shows three trajectories on a map of
Chicago, each with the 12:35 location indicated by a circle. The circle is centered
at the expected location of the vehicle, with the radius of the circle being equal
to the uncertainty threshold. The squares of each trajectory indicate the stops of
the trip. The label of each square indicates the time at which the moving object
is (expected to be) at that location, at the time the moving object is stationary at
that location. For example, the leftmost north-south trajectory starts at 12:18,
arrives at the second stop at 12:29 and stays there for three minutes, arrives at
the next stop at 12:39, and stays there for two minutes.

Figure 3 illustrates the query “Which moving object is closest to the star between
12:35 and 12:50?” The trajectories are displayed by the system, and the user
marks the star on the map and enters the time interval in the pull-down menu.

The answer of the query is illustrated in Figure 4. Notice that, although the black
route (left north-south route) runs closer to the given point (the star), the answer
to the query issued in Figure 3 is a vehicle (indicated in Figure 4 as a circle) on
the red route (east-west route). The reason is that although vehicles following

Figure 3. Which vehicle will be closest to the “star” between 12:35 and
12:50?
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Figure 4. Answer: The vehicle (see the circle) on the red route

Figure 5. When will each vehicle enter the specified sector (shown as
shaded area)?

Figure 4. Answer: The vehicle (see the circle) on the red route 
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the black trajectory run closest to the star, they do not do so during the specified
time interval.

In Figure 5 we show another sample location query, this time is a set-oriented
query that requests the time at which the vehicles in the scenario enter a given
area. The screenshot illustrates the query in which the user draws the area
(shaded polygon) on the screen, and the system answers by showing the circles
on each trajectory. Each circle touches the polygon and is labeled with the time
at which the vehicle is at the expected location.

Conclusions

We believe that the pervasive, wireless, mobile computing is a revolutionary
development, and location-based services and mobile resource management are
some of the initial manifestations of this revolution. In this chapter we focused
on location management, which is an enabling technology for a variety of
applications and technologies related to this revolution. We discussed the
research issues that need to be addressed in order to make location management
a plug-in component in these applications and technologies. The first of these
issues is location modeling. We discussed the drawbacks of existing approaches
and proposed the trajectory as a four-dimensional piece-wise linear function that
captures the essential aspects of the moving object location. These aspects are
two-dimensional space, time and uncertainty.

We also discussed MOD architecture and functionality, pointing out the need for
considering a distributed approach for the location query processing. Then, we
demonstrated the query language and user interface for the DOMINO system.

Future Trends

Concerning future work, we believe that MODs will become increasingly
important and that DBMS’ should be made the platform for developing moving
objects applications. For this purpose, much remains to be done in terms of
spatio-temporal query languages, support for rapidly changing real-time data,
indexing, and distributed/mobile query and trigger processing with incomplete/
imprecise location information. More specific open issues are enumerated in the
following:
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A comparison of the existing indexing methods (for moving objects and queries)
should be made in order to choose the most appropriate for each situation. The
use of these index structures for join queries should be studied as well.

• Extend the present work to handle uncertainty for moving objects that do
not report their location; instead, their location could be sensed by possibly
unreliable means. This is the case, for example, for enemy forces in a
battlefield.

• Data mining techniques can be used to extract interesting information (for
instance, trajectories of moving objects) from location data.

• Extensible and visual languages should be defined, because, in this context,
the way in which users query the system and how the corresponding
answers are presented are very important; textual data are not enough, as
both queries and answers refer to data that should be displayed on a map.·
Concerning privacy/security, new methods are needed to assure that
location data are only accessed by granted applications.

• Distributed approaches must be developed to process location queries in
order to fit the natural distribution of mobile scenarios. Scalability becomes
an important issue with the growing number of moving objects and queries.
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Abstract

The efficient processing of nearest-neighbor queries in databases of
moving objects is considered very important for applications such as fleet
management, traffic control, digital battlefields and more. Such applications
have been rapidly spread due to the fact that mobile computing and wireless
technologies nowadays are ubiquitous. This chapter presents important
aspects towards simple and incremental nearest-neighbor search for spatio-
temporal databases. More specifically, we describe the algorithms that
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have already been proposed for simple and incremental nearest neighbor
queries and present a new algorithm regarding that issue. Finally, we study
the problem of keeping a query consistent in the presence of insertions,
deletions and updates of moving objects.

Introduction

Spatio-temporal database systems aim at combining the spatial and temporal
characteristics of data. There are many applications that benefit from efficient
processing of spatio-temporal queries, such as: mobile communication systems,
traffic control systems (for example, air-traffic monitoring), geographical infor-
mation systems and multimedia applications (Wolfson, Xu, Chamberlain & Jiang,
1998; Theodoridis, Sellis, Papadopoulos & Manolopoulos, 1998). A dataset of
moving objects is composed of objects whose positions change with respect to
time (for example, moving vehicles). Examples of basic queries that could be
posed to such a dataset include window queries, nearest-neighbor queries and
join queries.

Queries that must be evaluated for a time interval [t
s
, t

e
] are characterized as

continuous (Tao, Papadias & Shen, 2002). The research conducted in access
methods and query processing techniques for moving object databases are
generally categorized in the following areas:

• Query processing techniques for past positions of objects (Nascimento &
Silva, 1998; Pfoser, Jensen, & Theodoridis, 2000; Tao & Papadias, 2001,
2002).

• Query processing techniques for present and future positions of objects
(Kollios, Gunopoulos & Tsotras, 1999; Agarwal, Arge & Erickson, 2000;
Saltenis, Jensen, Leutenegger & Lopez, 2000; Procopiuc, Agarwal & Har-
Peled, 2002; Lazaridis, Porkaew & Mehrotra, 2002).

We focus on the second category, where it is assumed that the dataset consists
of moving point objects, which are organized by means of a Time-Parameterized
R-tree (TPR-tree) (Saltenis et al., 2000). The TPR-tree is an extension of the
well-known R-tree (Beckmann, Kriegel & Seeger, 1990), designed to handle
object movement.

Among the different types of queries, we focus on the k nearest-neighbor query,
which asks for the k closest neighbors to q during a specific time interval [t

s
, t

e
].

An interesting variation of the problem is to compute the (k +1) nearest neighbor,
given the result of the k-NN query. This approach requires high computation
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costs unless we exploit the result of the k-NN query, which has been evaluated
previously. Another issue is the possibility of the result of a k-NN query to be
invalidated due to the occurrence of insertions, deletions and updates.

The ultimate objective of this chapter is to present a new algorithm for k nearest-
neighbor queries, with the intention of overcoming the essential drawbacks
characterizing the existing methods. The result produced by this algorithm
contains the nearest neighbors ordered according to the increasing distance from
the query.

Additionally, to the best of the authors’ knowledge, incremental algorithms have
not been proposed yet in the context of mobile objects. Therefore, in the sequel
of this chapter we present our ideas toward this goal. Moreover, we study the
problem of the consistency of the query result under the occurrence of insertions,
deletions and updates.

Background

In spatial and spatio-temporal environments, the nearest-neighbor query has
appeared in different forms. These forms depend on whether the query and the
objects under consideration move. They are described thoroughly inconsequent
sections.

Static Nearest-Neighbor Query for Static Objects

Nearest-neighbor queries were first introduced by Roussopoulos, Kelly and
Vincent (1995) for static objects. In this paper the authors suggested methods to
calculate static nearest neighbor queries in an R-tree. They also proposed some
metrics in order to achieve ordering and pruning during the execution of the query
along the R-tree.

An alternative algorithm for nearest-neighbor search was suggested by Berchtold,
Ertl, Keim, Kriegel and Seidl (1990). Their method is capable of calculating static
nearest-neighbor queries for static objects. The fundamental idea on which their
algorithm was based was the use of Voronoi cells.

Moreover, Korn, Sidiropoulos, Faloutsos, Siegel and Protopapas (1996) sug-
gested a multi-step algorithm with a view to answer nearest-neighbor queries for
static objects. Such a multi-step search is performed by scanning the dataset
several times until the desired distance is reached.
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Finally, the previous method was further extended in Siedl and Kriegel (1998).
The experiments performed show that the method they proposed is optimal and
its performance is significantly better than the previous one.

Moving Nearest-Neighbor Query for Static Objects

The first attempt to use the nearest-neighbor search for moving query and static
objects was made by Zheng and Lee (2001). Their idea is applied on an R-tree
and is based on Voronoi diagrams. Furthermore, it does not seem to be applicable
to other values of k and higher dimensions.

Moreover, an alternative idea was proposed by Roussopoulos, Kelly and Vincent
(1995). They introduced an algorithm that was implemented by exploiting the
method of sampling. Nevertheless, because sampling and its performance
depend on the sampling rate, the results were not so satisfactory. More
specifically, a low sampling rate increases the performance but may result in
incorrect results, whereas a high sampling rate creates computational overhead
but decreases the possibility of producing incorrect results.

Tao and Papadias (2002) proposed queries called time parameterized, since their
result was time dependent. More precisely, each result contained three compo-
nents <R,T,C>, where R is the set of objects currently satisfying the query, T is
the time interval after which the result of the query will become invalid and C is
the set of objects that will affect R at T. In order to calculate the result during an
interval [t

s
,t

e
], the algorithm recomputes the result of the query n times, where

n is the number of split points. Such a recomputation induces prohibitive
computational cost.

To avoid the drawbacks of large computational overhead produced by their
method, Tao, Papadias and Shen (2002) proposed a completely different
algorithm. The main difference between this and the previous one is that the
calculation is based on a single query without having to recompute the result
several times. The experiments conducted in this paper have shown that their
newly proposed algorithm does indeed outperform their previous one.

Moving Nearest-Neighbor Query for Moving Objects

Initially, Benetis, Jensen, Karciauskas and Saltenis (2002) addressed this issue.
The queries under consideration were simple, and reverse nearest neighbor.
Nevertheless, the algorithm they proposed was restricted to returning only one
nearest neighbor per query execution.
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A different aspect of moving objects is the use of dual transformation, which was
employed by Kolios et al. (1999). The result returned by this specific method
determines the one object that came closer to the query during a predefined time
interval [t

s
, t

e
]. It does not, however, return the k nearest neighbors of the query

at each point of the time interval.

Incremental Nearest-Neighbor Algorithms

There are cases when after the execution of the k-NN query, the (k+1) neighbor
is requested. In such a case, we can either calculate the result for the k+1
neighbors from the beginning or exploit the previous result and use an incremen-
tal method to determine the new answer. This idea was first addressed in Spatial
Databases by Hjaltason and Samet (1995), whose algorithm could rank the
objects with respect to their distance from a query object. This algorithm was
implemented on a PMR quadtree and used a priority queue. Heinrich (1994)
proposed a similar method that can be applied on a LSD-tree (Henrich, 1998),
but it used two priority queues instead of one. Afterwards, Hjaltason and Samet
(1999) applied the algorithm they presented in 1995 to the R-tree. The authors
extended their initial idea and showed that their algorithm is more general and
applicable not only to the PMR-tree but to the R-tree as well.

Nearest-Neighbor Query Processing

In our methods we make use of the Euclidean distance. This distance (D
q,o

(t)),
between a query q and an object o is given by the following equation:

2
, 1 2 3( )q oD t c t c t c� � � � � (1)

where c
1
,c

2
,c

3 
are constants given by:

c
1  
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x
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x 
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y
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 are the velocities of the object o, uq

x
, uq

y
 are the velocities of the query

q in each dimension and (o
x
,o

y
), (q

x
,q

y
) are the reference points of the object o
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f(t) = a·t2 + b·t + c

Dt

t

and the query q respectively. In the sequel, we assume that the distance is given
by (D

q,o
(t))2. The movement of an object with respect to the query is visualized

by plotting the function (D
q,o

(t))2, as illustrated in Figure 1. Assume that we have
a set of moving objects O and a moving query q.

By inspecting Figure 2, we obtain the k nearest neighbors of the moving query
during the time interval [t

s
, t

e
]. For example, for k = 2 the nearest neighbors of

q for the time interval are contained in the shaded area of Figure 2. The nearest
neighbors of q for various values of k, along with the corresponding time
intervals, are depicted in Figure 3.

The pair of objects above each time point t
x 
declare the objects that have an

intersection at t
x
. These time points when a modification of the result is

performed are called split points. Note that not all intersection points are split
points. For example, in Figure 2, the intersection of objects a and c is not
considered to be a split point for k =2, whereas it is a split point for k=3.

NNS Algorithm

The NNS algorithm consists of two parts:

• NNS-a algorithm: Given a set of moving objects, a moving query and a
time interval, the algorithm returns the k nearest neighbors for the given
interval.

• NNS-b algorithm: Given the k nearest neighbors, the corresponding time
interval and a new moving object, the algorithm computes the new result.

Figure 1. Visualization of the distance between a moving object and a
moving query
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Algorithm NNS-a

We are given a moving query q, a set O of N moving objects and a time interval
[t

s
, t

e
], and the k nearest neighbors of q are requested. The target is to partition

the time interval into one or more subintervals in which the list of nearest
neighbors remains unchanged. Each time subinterval is defined by two time split
points declaring the beginning and the end of the subinterval. During the
calculation, the set O is partitioned into three subsets:

• the set K, which always contains k objects that are currently the nearest
neighbors of q,

• the set C, which contains objects that are possible candidates for subse-
quent time points, and

• the set R, which contains rejected objects whose contribution to the answer
is impossible for the given time interval [t

s
, t

e
].

Initially, K = ∅∅∅∅∅, C = O, and R = ∅∅∅∅∅. The first step is to determine the k nearest
neighbors for time point t

s
. By inspecting Figure 2 for k=2 we get that these

objects are a and b. Therefore, K ={a,b}, C ={c,d,e} and R =∅∅∅∅∅. Next, for each
o ∈  K the intersections with objects in K + C are determined. If there are any
objects in C that do not intersect any objects in K, they are removed from C and
put in R, meaning that they will not be considered again (Proposition 1). In our
example, object e is removed from C and we have K ={a,b}, C ={c,d} and R
={e}. The currently determined intersections are kept in an ordered list in

Figure 2. Relative distance of objects with respect to a moving query

(b) k = 3

  

(a) k = 2



Simple and Incremental Nearest-Neighbor Search in Spatio-Temporal Databases  211

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

increasing time order. Each intersection is represented as (t
x
, {u, v}), where t

x

is the time point of the intersection and {u,v} is the objects that intersect at t
x
.

Proposition 1. Moving objects that do not intersect the k nearest neighbors of
the query at time t

s
 can be rejected.

Each intersection is defined by two objects 1 u and v. The currently determined
intersection points comprise the current list of time split points. According to the
example, the split point list has as follows: (t

1
, {a,b}), (t

2
, {a,d}), (t

x
, {a,c}),

(t
3
,{b,d}), (t

4
,{b,c}). For each intersection we distinguish between two cases:

• u ∈ K and v ∈ K

• u ∈ K and v ∈ C (or u∈ C and v ∈ K)

In the first case, the current set of nearest neighbors does not change. However,
the order of the currently determined objects changes, since two objects in K
intersect, and therefore they exchange their position in the ordered list of nearest
neighbors. Therefore, objects u and v exchange their position. In the second
case, object v is inserted into K and therefore the list of nearest neighbors must
be updated accordingly (Proposition 2).

Proposition 2. Let us consider a split point at time t
x
 at which objects o

1
 and o

2

intersect. If o
1
∈ K and o

2 
∈ C, then at t

x
, o

1
 is the k nearest neighbor of the query.

Figure 3. Nearest neighbors of the moving query for k = 2 (top) and k=3
(bottom)
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According to the currently determined split points, the first split point is t
1
, where

objects a and b intersect. Since both objects are contained in K, no new objects
are inserted into K, and objects a and b simply exchange their position. Up to this
point concerning the subinterval [t

s
, t

1
) the nearest neighbors of q are a and b.

We now are ready to check the next split point, which is t
2
, where objects a and

d intersect. Since a ∈ K and d ∈ C, object a is removed from K and inserted into
C. On the other hand, object d is removed from C and inserted into K, taking the
position of a. Up to this point, another part of the answer has been determined,
since in the subinterval [t

1
, t

2
) the nearest neighbors of q are b and a. Moving to

the next intersection, t
x
, we see that this intersection is caused by objects a and

c. However, neither of these objects is contained in K. Therefore, we ignore t
x

and remove it from the list of time split points. Since a new object d has been
inserted into K, we check for new intersections between d and objects in K and
C. No new intersections are discovered, and therefore we move to the next split
point t

3
. Currently, for the time subinterval [t

2
, t

3
) the nearest neighbors of q are

b and d. At t
3
 objects b and d intersect, and this causes a position exchange. We

move to the next split point t
4
, where objects b and c intersect. Therefore, object

b is removed from K and inserted into C, whereas object c is removed from C
and inserted into K. Since c does not have any other intersections with objects
in K and C, the algorithm terminates. The final result is depicted in Figure 3, along
with the corresponding result for k=3.

Each object o ∈K is responsible for a number of potential time split points defined
by the intersections of o and the objects contained in C. Therefore, each time an
object is inserted into K, intersection checks must be performed with the objects
in C. In order to reduce the number of intersection tests, if an object was
previously inserted into K and now is reinserted, it is not necessary to recompute
the intersections. Moreover, according to Proposition 3, intersections at time
points prior to the currently examined split point can be safely ignored.

Proposition 3. If there is a split point at time t
x
, where o

1
 ∈ K and o

2 
∈ C intersect,

all intersections of o
2
 with the other objects in K that occur at a time before t

x
 are

not considered as split points.

Let the square of the Euclidean distance between q and the objects be described
by the functions (D

u,q
(t))2 = u

1
 .  t2 + u

2
 . t + u

3
 and (D

v,q
(t))2 = v

1
 . t2 + v

  
. t +

v
3
  respectively. In order for the two object to have an intersection in [t

s
, t

e
] there

must be at least one value t
x
, t

s  
<= t

x 
<= t

e
 such that:

(u
1 
-v

1
) . t

x
2 + (u

2 
- v

2
) . t

x
 + (u

3   
- v

3
) = 0.
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If (u
2
-v

2
)2 – 4 . (u

1 
- v

1
). (u

3 
- v

3
) < 0, then there is no intersection between u and v.

If (u
2 
- v

2
)2 – 4 .(u

1
- v

1
) . (u

3
- v

3
) = 0 then the two objects intersect at:

t
x
 =    - (u

2
- v

2
)   /  2 . (u

1
- v

1
).

Otherwise the objects intersect at two points t
x
 and t

y
 given by:

��������������� ������
�

���� ������������ −−−−−+−−=  

��������������� ������
�

���� ������������ −−−−−−−−=  

Algorithm NNS-b

After the execution of NNS-a algorithm, the CNN-list is formulated, which
contains elements of the form: ([t

1
, t

2
], o

1
, o

2
,..., o

k
), where o

1
,..., o

k
 are the

nearest neighbors of q from t
1
 to t

2
, in increasing distance order. Let S be the set

containing the nearest neighbors of q at any given time between t
s
 and t

e
. Clearly,

k < | S | < | O|. Assume now that we have to consider another object w, which
was not known during the execution of NNS-a. We distinguish among the
following cases, which describe the relation of w to the current answer.

• Case 1: w does not intersect any of the objects in S between t
s
 and t

e
, and

it is above the area of relevance. In this case w is ignored, since it cannot
contribute to the nearest neighbors. The number of split points remains
the same.

• Case 2: w does not intersect any of the objects in S between t
s
 and t

e
, and

it is completely inside the area of relevance. In this case w must be taken
into account, since it affects the answer from t

s 
to t

e
 (Proposition 4). The

number of split points may be reduced.

• Case 3: w intersects at least one object v ∈ S at time t
s
 < t

x 
 < t

e
, but at time

t
x
 v is not contained in the set of nearest neighbors. In this case w is ignored,

since this intersection cannot be considered as a split point, because the
answer is not affected. Therefore, no new split points are generated.

• Case 4: w intersects at least one object v ∈ S at time t
s
 <= t

x
 <= t

e
, and object

v is contained in the set of nearest neighbors at time t
x
. In this case w must

be considered because at least one new split point is generated. We note,
however, that some of the old split points may be discarded.
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Proposition 4. Assume that a new object w does not intersect any of the nearest
neighbors from t

s 
to t

e
. If at time t

s
 its position among the k nearest neighbors is

pos
w
, then it maintains this position throughout the query duration.

The aforementioned cases are depicted in Figure 4. Object e corresponds to case
1, since it is above the area of interest. Object f corresponds to case 2, because
it is completely covered by the relevant area. Although object g intersects some
objects, the time of these intersections are irrelevant to the answer, and therefore
the situation corresponds to Case 3. Finally, object h intersects a number of
objects at time points that are critical to the answer and therefore corresponds
to Case 4.

Query Processing with TPR-Trees

Let T be a TPR-tree built to index the underlying data. Starting from the root node
of T the tree is searched in a Depth-First Search manner (DFS)2. The first phase
of the algorithm is completed when m >= k objects have been collected from the
dataset. Tree branches are selected for descendants according to the mindist
metric (Roussopoulos, 1995) (see Definition 1) between the moving query and
bounding rectangles at time t

s
. These m moving objects are used as input to the

NNS-a algorithm in order to determine the result from t
s
 to t

e
. Therefore, up to

now we have a first version of the split-list and the CNN-list. However, other
relevant objects may reside in leaf nodes of T that are not yet examined.

Figure 4. Four different cases that show the relation of a new object to the
current set of nearest neighbors
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Definition 1. Given a point p at (p
1
 p

2
,..., p

n
) and a rectangle r whose lower-

left and upper-right corners are (s
1
 s

2
,..., s

n
) and (t

1
, t

2
,...,t

n
), the distance

mindist(p,r) is defined as follows:

                                                                                                sj,  pj < sj 

mindist(p,r)     =     
�

�∑ =
−�

� �� �	               where rj =        tj,  pj > tj       

                                                                                                pj, otherwise   
 

In the second phase of the algorithm, the DFS continues to search the tree by
selecting possibly relevant tree branches and discarding non-relevant ones.
Every time a possibly relevant moving object is reached, algorithm NNS-b is
called in order to update the split-list and the CNN-list of the result. The
algorithm terminates when there are no relevant branches to examine.

Figure 5 illustrates two possible pruning techniques that can be used to determine
relevant and non-relevant tree branches and moving objects.

Pruning Technique 1 (PT1)

In this technique we keep track of the maximum distance D
max

 between the query
and the current set of nearest neighbors. In Figure 5(a) this distance is defined
between the query and object b at time t

 {start}
. We formulate a moving bounding

rectangle R centered at q with extends D
max 

in each dimension and moving with
the same velocity vector as q. If R intersects a bounding rectangle E in an internal

Figure 5. Pruning techniques

  

(a) one bounding rectangle (b) many bounding rectangles
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node, the corresponding tree branch may contain objects that contribute to the
answer and therefore must be examined further. Otherwise, it can be safely
rejected since it is impossible to contain relevant objects. In the same manner,
if a moving object o

x
 found in a leaf node intersects R, it may contribute to the

answer, otherwise it is rejected.

Pruning Technique 2 (PT2)

Instead of using only one bounding rectangle, a set of bounding rectangles is
defined according to the currently determined split points. Note that it is not
necessary to consider all split points, but only those that are defined by the k
nearest neighbor in each time interval. An example set of moving bounding
rectangles is illustrated in Figure 5(b). Each internal bounding rectangle and
moving object is checked for intersection with the whole set of moving bounding
rectangles, and it is considered relevant only if it intersects at least one of them.

Other pruning techniques can also be determined by grouping split points in order
to keep the balance. It is anticipated that PT1 will be more efficient with respect
to CPU time but less efficient concerning I/O time, because the empty space will
cause unnecessary disk accesses. On the other hand, PT2 seems to incur more
CPU overhead but less I/O time, owing to the detailed pruning performed.
Therefore, we define the NNS-CON algorithm, which can be used with either
of the two pruning techniques. Thorough experimentation has been performed
(Raptopoulou, Papadopoulos & Manolopoulos, 2003) for both the NNS-CON
algorithm enabled by PT1 described in the previous section and the NNS-REP
algorithm, proposed by Tao et al. (2002). The main conclusion was that the
proposed algorithm significantly outperforms the repetitive approach.

Incremental Nearest-Neighbor Algorithms

Figure 6 depicts two nearest-neighbor queries for k=2 and k=3 (left and right
respectively). According to the way split points are defined, there are two types:

• internal split points, which are defined by an intersection of two objects, o
1

and o
2
, both participating in the result, and

• external split points, which are defined by an intersection between the
current k nearest neighbor and another object that is not participating in the
result.
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As an example, split points at t
ab

 and t
bd

 in Figure 6(a) are internal, whereas split-
points at t

ad
 and t

bc
 are external.

The challenge is, given this information, to determine the k +1 nearest neighbor
by avoiding the query re-execution from the beginning. First, we assume that
there is at least one external split-point in the split-list. The case where all split-
points are internal will be discussed later. By observing Figure 6(a), it is evident
that at time t

ad
 + dt (where dt is a sufficiently small time interval), the (k +1)

neighbor is object a. Similarly, at time point t
bc

 + dt the (k +1) neighbor is object
b. Therefore, for the time instances that correspond to external split-points, the
(k +1) neighbor can be determined directly from the split-list. However, this does
not provide an answer for the whole interval [t

s
, t

e
]. For example, the intersection

of objects a and c (Figure 6(a)) has not been recorded in the split-list.

To avoid this, if t
x
 is an external split-point that intersects o

1
 and o

2,
 then we can

assume that the k nearest neighbor at time t
x
 + dt is o

2
 and at time t

x
 – dt is o

1
.

The time interval [t
s
, t

e
] is therefore partitioned into two subintervals, [t

s
, t

x
) and

(t
x
, t

e
]. Note that at t

x
 the (k +1) NN is already known (either o

1
 or o

2
). The method

proceeds as follows:

1. New external split-points are determined for the subinterval [t
s
, t

x
).

2. New external split-points are determined for the subinterval  (t
x
, t

e
].

3. A new split-list is generated by combining the split-points of the k-NN result
with the new set of split-points.

Generating New Split-Points

There are two alternatives for the generation of new split-points. The first one
determines split-points by continuously querying the TPR-tree. The second one

Figure 6. Visualization of a k-NN query result

(a) k = 2 (b) k = 3
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searches the TPR-tree only once, but it is possible to fetch irrelevant objects. We
examine each alternative in detail (Figure 6(a)), assuming that the external split-
point at t

ad 
 is the starting point.

At time t
ad

, objects a and d intersect. According to the first alternative, new split-
points are determined one by one for the two subintervals [t

s
, t

ad
) and (t

ad
, t

e
].

Using object a, the TPR-tree is searched for the next possible intersection
between a and other objects. If no intersection is found, then we deduce that
object a is the (k +1) nearest neighbor during (t

ad
, t

e
]. In our case, an intersection

between a and c is determined at time t
ac

. A new split-point is generated, and the
same method is applied for object c. At time t

cb
, objects c and b intersect, and

therefore another split-point is generated. Finally, object b does not intersect any
other object before t

e
 and thus no more split-points can be generated for the

subinterval (t
2
, t

e
]. The method for the subinterval [t

s
, t

ad
) is the same. There is

only one new split-point for this subinterval at time t
cd

, denoting the intersection
between objects c and d.

In the second alternative, we only issue two queries (one for each subinterval),
and some of the objects may be discarded because they may not contribute to
the result. After searching the TPR-tree for both subintervals, the algorithm
returns the possible candidates for the (k +1) nearest neighbor. In our example,
these objects are b, c and e, and are participating for the (k +1) nearest neighbor.
Using the set of candidates, a new split-list is generated for the (k +1) nearest
neighbor.

Absence of External Split-Points

In the previous section we assumed that there is at least one external split-point
in the split-list of the k-NN query result. However, we must cover the case
where all split-points are internal. An example of this situation is depicted in
Figure 7. In such a case, a starting point for the (k +1) NN investigation cannot
be determined directly from the split-list, since it is empty.

In other words, the set of objects that correspond to the k nearest neighbors at
t

s
 are also the nearest neighbors at t

e
. Therefore, we need at least one object that

does not belong to the set of nearest neighbors. This object is determined by
computing the (k +1) nearest neighbor at any time instance in [t

s
, t

e
]. Then, this

object is used as a candidate and either INCNN-REP or INCNN-2P can be
used to provide the complete answer (Raptopoulou, Papadopoulos & Manolopoulos
2004).
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Managing Insertions, Deletions, and
Updates

When insertions, deletions and updates take place, all the objects participating in
them must be examined to determine if they affect any of the queries. Let w be
a moving object that is inserted, deleted or updated. There are two steps in the
process of query update:

1. determination of the queries that may be affected by w, and

2. update of the query result.

The first step can be handled by applying indexing mechanisms to the queries.
The second step involves the refinement of the set of queries determined and the
update of the query result if this is necessary. In the sequel we focus on the
efficient update of the query results.

Let w be a new moving object inserted in the database, q be a k-NN query and
T a time interval [t

s
, t

e
]. Also, let S be the set of objects that participates in the

result of q. Note that set S must contain at least k objects. The following cases
describe the relation of w to the current answer:

• Case 1: w does not intersect any of the objects in S between t
s
 and t

e
, and

lies above the area of relevance. In this case, w is ignored, since it cannot
contribute to the NNs. The number of split-points remains the same.

• Case 2: w does not intersect any of the objects in S between t
s
 and t

e
, and

lies completely inside the area of relevance. In this case, w must be taken

Figure 7. Query result with no external split-points
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into account, since it affects the answer from t
s
 to t

e
 (Proposition 4). The

number of split-points may be reduced.

• Case 3: w intersects at least one object v ∈ S at time t
s
 <= t

x
 <= t

e
, but at

time t
x
 v is not contained in the set of NNs. In this case, w is ignored, since

its intersection does not affect the answer. Therefore, no new split-points
are generated.

• Case 4: w intersects at least one object v ∈ S at time t
s
 <= t

x
 <= t

e
, and

object v is contained in the set of NNs at time t
x
. In this case, w must be

considered, because at least one new split-point is generated. However,
some of the previous split-points may be discarded.

The aforementioned cases are depicted in Figure 8. Object e corresponds to
Case 1, since it is above the area of interest. Object f corresponds to Case 2,
because it is completely covered by the relevant area. Although object g
intersects some objects, the time of these intersections are irrelevant to the
answer, and therefore the situation corresponds to Case 3. Finally, object h
intersects a number of objects at time points that are critical to the answer, and
therefore corresponds to Case 4.

Let us examine now when an object w is deleted and q is a k-NN query that
contains it. Firstly, the split-list is scanned and object w is removed from the
corresponding time intervals where it participates. Finally, if w is an object that
changes its speed or direction, then we do the following:

1. Object w is deleted and the split-list is updated,

2. The new k NN of the query is computed incrementally, and

3. Object w is inserted and the split-list is updated.

Figure 8. Four different cases that show the relation of a new object to the
current nearest neighbors
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Extensive experimental evaluation has been conducted for both the previously
proposed algorithms INCNN-REP and INCNN-2P, and the algorithm REEXEC
(described in Tao et al., 2002). By observing the results, we can state that,
generally, INCNN-2P algorithm outperforms INCNN-REP and REEXEC.
Experiments conducted for insertions, deletions and updates have shown that the
cost is reduced.

Future Trends

The k-NN algorithm that initially was presented in the first section of this chapter,
may be extended in order to become more efficient, or may be applied to other
data structures. More specifically, future research may focus on:

• Comparing the performance of different pruning techniques,

• Modifying the algorithm to provide the ability for incremental computation
of the NNs, as the work in Hjaltason et al. (1995, 1999) suggests for static
datasets,

• Providing cost estimates concerning the number of node accesses, inter-
section checks and distance computations.

At the second part of the chapter, the previously presented algorithm was
modified to allow incremental computation. Furthermore, insertions, deletions
and updates were studied thoroughly. Future research, as far as this particular
aspect is concerned, may include:

• Using a priority queue in a spatio-temporal context. A problem that may
arise is that objects and tree nodes may become invalid after insertions,
deletions and updates of objects.

• Using algorithm INCNN-2P to exploit all the available external split-
points.

•  sutdying cost estimations for k-NN query processing in spatio-temporal
databases.

Conclusions

Applications that rely on the combination of spatial and temporal characteristics
of objects demand new types of queries and efficient query processing tech-
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niques. An important query type in such a case is the k nearest-neighbor query
for a given time interval [t

s
, t

e
].

At the first part of this chapter, a study on efficient methods for nearest-neighbor
query processing in moving-object databases was performed, and a new
algorithm was proposed. The main conclusion is that the proposed algorithm
significantly outperforms the repetitive approach for different parameter values.

At the second part of the chapter, we altered the preceding algorithm into
incremental. The proposed algorithm INCNN-2P outperforms INCNN-REP.

Finally, we have shown that the incremental computation method can be used if
a deletion or an update affects the query results. For object insertions only, the
available split-list and the new object are needed to compute the new result.
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Endnotes

1 It is assumed that an intersection is defined by two objects. If three or more
objects intersect at the same point t

x
 the conflict is resolved by evaluating

the first derivative for each object at t
x
 and taking the minimum value.

2 The proposed methods can also be combined with a breadth-first search-
based algorithm.
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Chapter X

Management of
Large Moving

Objects Databases:
Indexing, Benchmarking

and Uncertainty in
Movement Representation

Abstract

This chapter deals with several important issues pertaining to the management
of moving objects datasets in databases. The design of representative
benchmarks is closely related to the formal characterization of the properties
(that is, distribution, speed, nature of movement) of these datasets; uncertainty
is another important aspect that conditions the accuracy of the
representation and therefore the confidence in query results; finally,
efficient index structures, along with their compatibility with existing
softwares, is a crucial requirement for spatio-temporal databases, as it is
for any other kind of data.
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Introduction

A lot of emerging applications (traffic control, mobile computing, vehicles
tracking) rely on large datasets of dynamic objects. This proliferation is
encouraged by mature technologies (for example, the Global Positioning System,
or GPS) that provide online information on mobile devices and enable commu-
nication between a centralized system and mobile users. Most of the services
that can be provided by the system to a user are based on the location of the latter
at a given instant (for instance, the case of company searching for the taxi
nearest to a customer calling on his mobile phone, or a tourist in his car looking
for his next hotel). But, apart from these so-called location-based services that
deal with the present or future (expected) positions of objects, we can also
envisage applications that study the past movements within large moving objects
datasets (for data-mining purposes, for instance).

These examples illustrate some new requirements that address the core
functionalities of Database Management Systems (DBMS). Indeed, we must
consider new data models (as any previously proposed model falls short in
representing continuous movements), new query languages and new system-
level support. In this chapter we focus on the latter aspect. More specifically, we
propose a survey of the following issues: benchmarking of operations on large
moving objects datasets, uncertainty in trajectories representation and database
indexing. Let us be more specific by shortly developing each topic.

Benchmarking

In computing, a benchmark is the result of running a set of standard tests on one
component or system to compare its performance and capacity to that of other
components or systems. They are designed to simulate a particular type of
workload, running actual real-world programs on the system “application bench-
marks,” or using specially created programs that impose the workload on the
component “synthetic benchmarks.” Application benchmarks are meant to be
representative of real-world applications and potentially give a better measure
of real-world performance. On the other hand, synthetic benchmarks offer a
sizeable workload of data sets and operations, allowing testing individual
components (such as indexing methods or hard disks) and stressing the strengths
and weaknesses of each one individually. In the spatio-temporal database
context, benchmarks help to experiment with new approaches (for example, new
languages or new indexing structures); they can be used to assess the effective-
ness of a new system; and finally, they contribute to characterizing the properties
of datasets.
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Uncertainty

The representation of objects’ movement is inherently imprecise (Pfoser &
Jensen 1999; Trajcevski, Wolfson, Zhang & Chamberlain, 2002). Imprecision is
introduced by the measurement process in the sampling of positions and by the
sampling approach itself. The accuracy of measurements depends largely on the
instruments and the techniques used (consider the example of the GPS). These
devices are only able to capture the movement of an object by sampling its
position at discrete time points and, consequently, the exact position of an object
between measurements is unknown. This feature, commonly referred to as
uncertainty, gives rise to several problems regarding the representation and
querying of moving objects. We shall discuss in thischapter the factors that
determine the imprecision, and then study (in a database perspective) ways to
handle this imprecision.

Indexing

The existence of efficient access methods is one of the most important features
of modern database systems. Given the huge amount of data stored in such
systems, there is indeed a crucial need for structures that allow filtering of
irrelevant data during query processing. B+-tree and hash-based techniques are
used quite intensively in the traditional relational DBMS context. It is a well-
known fact for database practitioners that a query execution plan, which relies
on an index, is several orders of magnitude faster than a plan that merely scans
the database. It turns out, however, that these structures fall short in supporting
queries over spatial or spatio-temporal data. We shall examine in this chapter the
difficult challenges raised by indexing objects whose location changes continu-
ously, describe some representative attempts to solve the problem and discuss
research perspectives in this area.

The main objectives of this chapter are to provide an up-to-date panorama of the
ongoing research devoted to moving objects management systems, with a strong
emphasis on the aspects that determine the efficiency and reliability of such
systems. We will successively investigate benchmarking, uncertainty and index-
ing, giving for each topic some concrete examples, a discussion on the raised
problems, some general design guidelines commonly adopted to solve the
problem and finally, a presentation of future trends together with the most recent
references.
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Benchmarking

We begin with a short introduction on the general issue of database benchmarking,
and then study some representative benchmarks for spatio-temporal databases.

Background

The two major components of a benchmark are workload specification and
measurement specification.

In database or transaction processing environments, the workload specifies the
data and query sets. The data sets are used to populate the database. They can
be composed of real-world data or produced by a data sets generator according
to specific statistical models. The query sets simulate the activity occurring in the
database, such as operational and decision support transactions, or batch jobs.
A transaction set driver may be used to simulate environments, where a number
of users input and manage queries or transactions via a terminal or desktop
computer connected to a database, with “thinking” and “keying” times inter-
leaved.

A measurement environment must specify a metric and a reporter. By definition,
a metric for a feature is an association of numeric values to feature values in such
a way that the general properties of distances are verified. In a benchmarking
environment, a metric is required to confer significance to the performance
evaluation results. An example of a metric is the number of transactions per
second (TPS). The reporter specifies how to collect all relevant traces and logs
and computes indices pertinent to the specific metrics. It must provide the
detailed information required to make accurate decisions on the performance
capability of a system under test.

All testing processes require a well-designed execution plan. Execution plans
ensure real-world environments duplication during a benchmark. The results
should not depend on foreign factors(such as the hardware and software
configurations) that are not related with the components in evaluation. These
configurations would be barely reproducible in other environments; therefore,
the results obtained would be hardly or not even comparable with the results of
a similar test in different settings.

Another important feature of a benchmark is to provide a model that is
representative of real-world applications with an extensible workload, made of
sizeable data sets and sets of queries with varying complexities. This ensures that
the model is useful and yet verifiable. Portability (it should be easy to implement
on a broad range of DBMS) and simplicity (it must be understandable), also are
important qualities of a benchmark.
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Benchmarks for Moving Objects Databases

Benchmarking spatio-temporal systems is a novel issue; so far, emphasis has
been on the development of spatio-temporal data sets generators. There are now
data sets generators for simulating objects moving freely, with no or few
restrictions in the movement of the objects, and generators for simulating the
movement of objects for which the movement is constrained by a defined
network, such as a road network.

Non-Network-Based Generators

The first spatio-temporal data sets generator for moving objects has been the so-
called Generator of SpatioTemporal Data (GSTD) (Theodoridis, Silva &
Nascimento, 1999a) and later, a new version was proposed introducing some
important new features (Theodoridis et al., 1999b). In its current version, GSTD
is a Web-based application and there also are data sets, in XML format, that can
be downloaded from the Web.

The GSTD allows the generation of data about points and MBRs to be moving
on a rectangular space. The space can be populated by static spatial objects that
obstruct the movement of the objects. The objects, points or rectangles, are
initially distributed in space according to Uniform, Gaussian or Skewed distribu-
tions. The evolution of spatial objects is directed through the definition of a set
of parameters that control the duration of an object instance (which involves
changes of timestamps between consecutive instances), the shift of an object
(which involves changes of spatial location in terms of shift/translation of center
point) and, when generating MBRs, the resizing of an object (changes in object
size).

The combination of possible different distributions for these parameters allows
simulating different scenarios, such as objects moving equally slow or fast and
uniformly on the map, having a relatively large number of slow objects moving
randomly, or having a set of objects that converge to some area of the workspace
or moving to some direction (east, for example). The cardinality of the data sets
is assumed to be constant during the generation process. The generated data sets
are memory-less, that is, future events do not depend on past states. This
framework also defines how to handle objects that fall outside the map. Three
alternatives are proposed: the adjustment approach, where coordinates are
adjusted to fit the workspace; the toroid approach, where the objects that
traverse one edge of the workspace enter back in the opposite edge; and the
radar approach, where coordinates remain unchanged, although fall beyond the
workspace.
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The main goal of previous approaches was to produce data sets that are rich from
the statistical point of view, but a question arises of how to generate datasets
representative of the behavior of real-world objects.

The Oporto framework (Saglio & Moreira, 2001) presents the specification of
a realistic spatio-temporal datasets generator. The motivation for this proposal
is that real-world entities do not have a chaotic behavior. They are guided by
goals and they do not ignore the environment around them; that is, they are
sensitive to agents favoring certain kinds of behavior and to agents inducing them
to avoid other kinds of behavior. So, the generator exploits a scenario with
harbors (static points), spots (regions with fixed center and changing shape,
representing plankton areas or storm areas), fishing ships (moving points) and
shoals of fish (fully moving regions). The fishing ships move in the direction of
the most attractive shoals of fish while trying to avoid storm areas. The shoals
of fish are attracted by plankton areas.

The default generation model parameters are based on information obtained
from a real application for monitoring fishing activities. These parameters are
organized in three classes: sizing parameters, responsible for the size of the data
sets; distribution parameters, responsible for the variations in temporal and
spatial distribution of moving points; and miscellaneous parameters, responsible
for a few realistic features. It is proposed to use a logarithmic scale for sizing the
data sets, simulating 1, 10 and 1,000 weeks of fishing activities, and two different
scenarios – inshore and open-sea fishing – for the spatio-temporal distribution of
data sets.

Network-Based Generators

Previous approaches do not consider applications where moving objects follow
a given network. This issue has been covered by Brinkhoff) (2000a, 2000b). This
generator combines real data (the network) with user-defined properties for
controlling the functionality of selected object classes. Important aspects are the
maximum speed of connections, the influence of other moving objects or external
impacts (for example, weather conditions) on the speed, the adequate determi-
nation of origination and destination of an object and time-scheduled traffic.

The generation of datasets requires three steps: the preparation of the network,
which eventually involves the conversion of files describing the nodes and the
edges of the network into the file formats supported by the generator; the
definition of functions and parameters according to the environment of the
system under test; and the visualization of the generated datasets (they are
stored in a text file) using a tool that allows visualizing the motion of the objects.
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As it is argued that it would be difficult to establish an environment where all
these aspects could be defined by simple user interaction or by predefined
parameters, the framework only supports a few standard parameters, and the
specification of elaborate behavior for moving objects requires user-defined
functions and parameter settings. The implementation of the generator is based
on the Java programming language. The classes are predefined; only their
functionality must be adapted.

Future Trends

Research on benchmarking moving objects databases systems is a recent issue
and, so far, the focus has been on the generation of synthetic data sets. There
are now several applications available on the Web that allow generating free
(Theodoridis et al., 1999b; Saglio et al., 2001) and network-based (Brinkhoff,
2000a) movements, according to a diversity of rules and control parameters. The
generated movement data sets are basically sequences of temporally ordered
observations, each one representing the location of a moving object at a certain
instant. These data sets can be used to populate a database storing the past
movement of objects, or to simulate transactions for updating the last-known location
on systems concerned with present and near-future positions of moving objects.

Works on the specification of query sets is quite limited and deserves attention
in the future. Apart from the benchmark database queries for location-based
services (Theodoridis, 2003), there is no other systematic approach in this area.
The metric that has been used in the experiments published so far was the
number of disk blocks read for the evaluation of some operation. Notice that, as
moving objects database systems are not commercially available yet, the
experiments performed have focused exclusively on evaluation of the perfor-
mance of specific access methods and algorithms for spatio-temporal opera-
tions, usually a spatio-temporal windowing or clipping. Authors use their own
data and query sets and execution plans; hence, it is very difficult or even
impossible to compare the performance of the different methods and techniques
that have been proposed. This important issue should be considered in the near
future by researchers in this area.

Uncertainty

Let us now turn our attention to the uncertainty of moving objects trajectories.
As mentioned in the introduction of this chapter, the history of the objects’
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movement is inherently imprecise (Pfoser et al., 1999; Trajcevski et al., 2002).
Imprecision is introduced by the measurement process in the sampling of
positions and by the sampling approach itself. We begin with a short introductory
part that illustrates the issue with an example and discusses the factors that
determine the imprecision. We then study, in a database perspective, how to
handle this imprecision.

The uncertainty of moving objects trajectories Consider the concrete case of a
port authority dealing with a spread of toxic waste in the sea and querying a
nautical surveillance system to know which ships have crossed the polluted zone
for a specified time interval. Imagine that the ship responsible for the waste has
actually followed the trajectory represented in Figure 1. The dots represent
observations made during the specified time period, the shaded region represents
the polluted area and the hatched line a trajectory that might have been inferred
from the observations.

The hatched line does not cross the shaded region and, thus, an answer to the
query based on this estimation of the trajectory would not include the guilty ship.
On the contrary, an answer may include false candidates whose inferred
trajectory crosses the area even though they have not actually been there.

Uncertainty of Past, Present and Future Positions

The preceding example focuses on the history of objects’ movement. In general,
the focus may be put on the past movement or on the future movement of objects,
depending on the considered application. Different needs were identified, giving
rise to two main approaches.

The first approach (Pfoser et al., 1999), focusing on past movements, addresses
the needs of mining applications of spatio-temporal data: traffic mining, environ-
ment monitoring, and so forth. In this case, uncertainty is determined using the

Figure 1. Indeterminacy of the behavior of an object between consecutive
observations
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observed successive positions of objects and some known constraints on their
velocity.

In the second approach (Sistla, Wolfson, Chamberlain & Dao, 1998; Wolfson,
Sistla, Xu, Zhou, Chamberlain, Yesha & Rishe 1999c; Trajcevski et al., 2002),
the focus is put on the uncertainty about the future movement of objects. This
approach addresses the needs of real-time applications and location-based
services. Uncertainty, fixed in advance, here is used to avoid frequent updates
to the database when the actual object’s trajectory deviates from its represen-
tation in the database. The database is not updated as long as the object’s
movement deviation is less than the permitted uncertainty.

Bounding Uncertainty

There are physical constraints on the movement of objects, allowing limiting
uncertainty of their position. Particularly, the uncertainty interval for an object
moving on a road is a section of the road, whereas it is an area in the considered
space for an object moving freely. When it comes to future movements in a two-
dimensional space, the uncertainty area is a circle centered on the expected
location of the object. Each circle bounds for a given instant the permitted
deviation of an object. Objects are committed to send a location update when the
deviation reaches the bound.

For past movements, since the positions between two consecutive samples are
not measured, the best possibility is to limit the possibilities of where the moving
object could have been (Pfoser & Tryfona, 2001; Pfoser et al., 1999; Moreira,
Saglio & Ribeiro, 1999).

Let us consider a moving object m, a time instant t in an interval (t
1
,t

2
) between

two consecutive observations (p
1
,t

1
) and (p

2
,t

2
) (ee Figure 2). We denote by p

1

and  p
2 
the positions of the moving object at the observation time instants t

1 
 and

t
2
, respectively. At time t, the distance between m and p

1
 is inferior to r

1 
=vv

max

× (t- t
1
) where vv

max
 is a user-defined value standing for the maximum velocity

of moving object m. Distance between between m and p
2
 is inferior to r

2 
=vv

max

× (t
2
- t). So, at t, the moving object might be at any location within the area defined

by the intersection of the two circles of radius r
1
 and r

2
. This is a so-called lens

area (Pfoser et al., 1999) representing the set of all possible locations for a
moving object at a certain time instant.

The set of all locations where a moving object might be between two consecutive
observations corresponds to an ellipsis (Figure 3). This ellipsis covers all the
possible lens areas between the two consecutive observations. Its parameters
a and b may be computed as follows: a= vv

max
 × (t

2
- t

1
)/2, c=( p

2
 -p

1
)/2 and

b2=a2-c2.
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Dealing with uncertainty in ST databases Data collected by sensor systems allow
estimating the location of observed objects at any time instant between obser-
vations, assuming, for example, that the movement is linear and uniform between
two consecutive observations. This semantics is not satisfactory to answer
queries where uncertainty is significant. Hence, considering the uncertainty
areas as described in the previous section, we propose to combine basic
operations on moving objects with different semantics to provide meaningful
operations in this context (Moreira et al., 2000).

Possibly Semantics

When considering the Possibly semantics, we look for the set of all possible
candidates matching a query. In other words, we look for the objects that have
a non-null uncertainty to match the query. This may be indicated to the query
evaluator by adding a prefix “Possibly” to the chosen operation. Answers to such
queries are supersets of the ideal results obtainable in an infinite precision
representation. If the question is, “Which are the objects that have been in Area
C,” the answer includes all objects that actually have been in that area and it may
also include some objects that have not. Similarly, if the question is “Give me the
movement of object O within Area C,” the answer includes all parts of the
movement of object O for which it actually was within Area C and it may also
include some parts for which the object was not there.
The set complement of this result consists in the values that definitely do not
match the query predicate.

Surely Semantics

When considering the Surely semantics, only values that definitively match the
query are returned. The prefix “Surely” is associated to query operations in that

Figure 2. A lens area for a time instant

p1 p2L

r2r1
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case. Answers using such operations are subsets of ideal results. If the question
is, “Which are the objects that have been in Area C,” would be a subset of the
objects that actually have been in Area C.  This means that some objects that
actually have been in the area as well may be omitted by the answer.  Similarly,
the answer to a query like "Give me the movement of object O within Area C,"
would include only some parts of the movement of object O for which it was
actually within Area C.  Some parts for which object O also was within Area C
may be omitted.
The set difference of the result of an operation using the Possibly semantics with
the result of the same basic operation using the Surely semantics returns a set
of values for which it is neither possible to assert that they do match the query
predicate nor that they do not.

Using  Probabilistic Methods

Consider now the use of methods that allow estimating the location for a moving
object at any time instant, specifically, a probabilistic distribution method over the
uncertainty areas. Query expressions evaluation can be augmented with a
probabilistic estimation of the answer. The goal is to be able to answer queries
such as, “Which are the objects that have a probability of 0.6 to be inside Area
C,” or “Which were the ships in a certain area during a given time interval, with
a probably of at least 30%.”
Figure 4 illustrates this query (Pfoser et al., 1999). We consider the case of a
future movement in a two-dimensional space. As described in the uncertainty of
moving objects trajectories section, the lens area bounds the permitted deviation
of the object. If we suppose the probability distribution to be uniform in this lens

Figure 3. Coverage of all possible trajectories between two consecutive
observations
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area, then the object is said within a given area (query window) with a probability
of 30%, if at least 30% of its lens area is concentrated within that area.

In the following query examples, prefix “Proba” is used to return the measured
probability for the evaluated predicate. When a probabilistic method for the
measurement of uncertainty is used, the Possibly and Surely semantics may be
seen as particular cases.

Query Examples

We present here some query examples to illustrate the semantic variants
proposed above. A more detailed description of relevant query operations may
be found in Moreira et al. (2000).

We consider as a case study the MONICAP system for monitoring and control
of fishing activities (CCMP, Inesc). The system has been used since 1992 by the
Portuguese general authority for fishing activities (IGP). It continuously moni-
tors the position of the vessels and records the history of their courses. Vessels
are represented as moving objects. Static objects represent fishing areas,
harbors, and so forth.

Consider the following relations:

• FishingShips(reference:string, name:string, voyages:movement)

• ForbiddenAreas(name:string, geometry:polygon)

Notice that the entire movement of a vessel is represented as an attribute in the
relation FishingShips. The queries correspond to the kinds of questions that IGP

Figure 4. Probability of intersection between a lens area and a query
window
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would like to be able to answer based on their database system. They will be
expressed here using an SQL-like syntax.

Q
1
: Suppose the authorities want to investigate who was responsible for a

spread of waste in the sea and want to know the behavior of all vessels
that could have been in the area.

SELECT x.name, PossiblyIn(x.voyages, :PollutedArea)

FROM FishingShips x

WHERE notEmpty(PossiblyIn(x.voyages, :PollutedArea));

The value PollutedArea is a user-defined polygon representing the area where
the spread of waste has occurred. The expression x.voyages represents the
movement of each fishing ship x. Operation PossiblyIn applied to the couple
(x.voyages, :PollutedArea) returns, for each ship x, the part of its movement
that possibly occurs inside the given area (that is, where lens areas intersect the
PollutedArea). The predicate notEmpty() determines whether this argument is
empty. Here it allows selecting only the fishing ships that have a nonempty
movement inside the PollutedArea. Query Q

1
 returns pairs of values, where the

first is a name of a ship, and the second is the part of its movement that possibly
occurred in the considered area.

Q
2
: Authorities apply penalties when they are able to guarantee that a fishing

ship has been in a forbidden area. The following query returns the name
of the ships that have been in the Blue Coast reservation.

SELECT x.name

FROM FishingShips x, ForbiddenAreas y

WHERE y.name = “Blue Coast reservation”

AND notEmpty(SurelyIn(x.voyages, y.geometry));

Operation SurelyIn returns the parts of the movements for which it is possible
to assure that a fishing ship was inside the forbidden area. Applying the predicate
notEmpty to the result of the previous operation allows selecting the tuples of the
required fishing ships.

In the following, we assume that a probabilistic method for measuring uncer-
tainty is implemented on the MONICAP system. In that case, the previous two
queries may be expressed as follows:
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The ProbaIn operation, applied to its couple of arguments, returns a value
between 0 and 1 corresponding to the measured probability that movement
x.voyages may occur inside the given area.

Q
3
: We search here for the fishing ships that were closer than 0.2 miles from

vessel “P01” on May 28, 2000 with a probability greater than 0.6.

SELECT x.name

FROM FishingShips x, FishingShips y

WHERE x.reference = “P01”

AND y.reference ¹ x.reference

AND 0.6 < ProbaWithinDistance(During(x.voyages,á05/28/2000,05/29/2000),

       During(y.voyages,á05/28/2000,05/29/2000ñ),0.2));

The first condition allows selecting the fishing ship with reference “P01.” The
second avoids comparing the distance of “P01” with itself. Finally, the third
condition restricts the selection to a measured probability greater than 0.6 from
all fishing ships that possibly were at a distance inferior to 0.2 miles from “P01”
during May 28, 2000.

Future Trends

In recent years, uncertainty handling emerged as an important issue in moving
object database research. Several aspects were investigated. Two complemen-
tary models were given: Pfoser et al. (1999) focused on past objects’ movement
when Wolfson et al. (1999c) and Trajcevski et al. (2002) treated future objects’
movement. Wolfson et al. (1999b, 1999a) investigated the communication cost
of uncertainty in the case of a real-time application. Pfoser et al. (2001) added
fuzziness in object location and considered the case of moving objects that may
change their geometry in time.

Q1 : Q2 : 

SELECT x.name, In(x.voyages, :PollutedArea) SELECT x.name 

FROM FishingShips x FROM FishingShips x, ForbiddenAreas y 

WHERE ProbaIn(x.voyages, :PollutedArea)>0 WHERE y.name = "Blue Coast reservation" 

 AND ProbaIn(x.voyages, y.geometry)=1 
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An important issue of the current research activity in this domain is the design
of a probabilistic model of uncertainty. The goal is to handle more realistic (non-
uniform) distributions of probability on the location of moving objects, and to be
able to measure the validity of the query answers. Recent results (Cheng,
Prabhakar & Kalashnikov, 2003b; Cheng, Kalashnikov & Prabhakar, 2003a;
Trajcevski et al., 2003) are going toward this goal, even if they just briefly touch
upon the possibility of a non-uniform distribution.

Indexing

In this section we investigate the shortcomings of traditional structures with
respect to spatio-temporal databases indexing. We present some indexing
techniques that have been recently proposed to overcome these limitations, and
discuss the perspective of ongoing research.

General Issues: Background

Since traditional structures cannot be used for multidimensional data indexing,
during the last two decades there have been a lot of works to design efficient and
reasonably simple spatial indices, like the R-tree, that can be used in existing
DBMSs to support the optimization of spatial queries (see the surveys in Gaede
and Guenther, (1998) and Rigaux, Scholl and Voisard, (2001)). R-trees rely on
a balanced hierarchical structure in which each tree node, whether internal or
leaf, is mapped onto a disk page. The R-tree (and its variants) organize
rectangles (which constitute the bounding boxes of the objects in the indexed
dataset) according to containment properties.

An example of an R-tree is shown in Figure 5. We assume there that a disk page
can store no more than four entries (an entry is a pair composed of a point and
a bounding box, and is used to navigate in the tree). Groups of four or less objects
are then created and assigned to pages in the structure, based on their proximity
relationships. This leads, on our example, to the groups {1,2,3}, {4,5,6,7}, and
so on. Note that grouping objects close in the space aims at minimizing the
overlapping of the groups’ bounding boxes and helps reduce the disk accesses
during search operations. The same grouping process is applied to the bounding
boxes of groups, recursively, until one obtains a single disk page, the root of the
tree.

The R-tree properties are similar to that of the B-tree; that is, the tree is balanced,
its size is logarithmic with the size of the indexed data set and its space complexity
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is linear. It supports point and window queries. A point query, for instance, is
performed by a top-down traversal of the tree, exploring at each level the sub-
trees whose bounding box contains the argument point. R-trees extend B-tree
indexing to multi-dimensional data. It relies, however, on the important assump-
tion that these data remain constant once stored in the database, until explicitly
updated. In the presence of objects moving in the plane, this assumption is no
longer valid, as it would require very continuous updates to the structure.

We chose to focus the rest of this section on a representative proposal, the Time-
Parameterized R-tree (TPR-tree), and describe its design, its properties and the
queries it supports. We use this first presentation as a basis for a more general
discussion devoted to the challenges raised by moving objects indexingand to the
issues that remain to be solved by current and future research.

A Detailed Example: TPR-Tree

The TPR-tree (Saltenis, 2000) is an extension of the R-tree that aims at indexing
current and future positions (but not the past ones) of moving objects. More
precisely, the index handles any object whose position is a tuple of coordinates
(x

1
(t),…,x

d
(t)). Each coordinate xi(t) is itself a linear function of time of the form

xi(t)=xi(t
0
)+v

i
(t-t

0
), where the instant t

0
 defines the reference position of the

indexed object and v
i
 is the speed of the object along the axis i.

Note that using linear function means that we consider only objects with constant
speed, which is a reasonable assumption. In the following we restrict the
discussion to objects moving in the 2D plane (d=2).

Building a TPR-Tree

Given a dataset of objects whose trajectories comply with the above represen-
tation, the TPR-tree is an R-tree-like index, built at time t

0
 and valid for a time

interval U. The basic idea of the structure is to construct an R-tree with time-

Figure 5. R-tree indexing
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evolving bounding boxes. Similar to the classical R-tree, each leaf corresponds
to a bounding box that contains a group of objects {o

1
,…,o

n
}. But unlike the R-

tree, the edges of a bounding box in the TPR-tree “move” so as to enclose as
accurately as possible its associated group of objects during all the lifetime of the
index, [t

0
, t

0
+U].

Figure 6, inspired from Saltenis, Jensen, Leutenegger and Lopez, (2000),
illustrates this intuition. We consider six moving objects and assume that the
capacity of a disk page is two objects. The upper part of the figure shows the
positions at time T

1
, and the lower one, the positions at T

2
 (T

2
>T

1
). An arrow is

associated with each object, showing its direction and speed. Each column
corresponds to a possible solution for indexing these data with bounding boxes.
The left side shows the classical R-tree approach, with three fixed bounding
boxes, r1

 
,r2

 
,r3, determined at time T

1
. It appears clearly that this approach is

not adapted since a bounding box at T
1
 is obsolete at T

2
 (for instance, r

1
 no longer

includes any object at T
2
). This approach requires updating the bounding boxes

so frequently that the maintenance of the index becomes impossible.

Consider now evolving bounding boxes, that is, rectangles whose edges move
along the two axes according to a linear function of time. The choice for
clustering objects in a box should now take into account not only their spatial
proximity at time T

1
 but also their future positions. For instance, the central

column of Figure 6 shows that grouping objects by merely considering their
closeness at time T

1
 gives a good result for r’1, but not for r’2 and r’3. The index

greatly suffers from the increased overlapping.

The rightmost column illustrates a satisfactory grouping of our six objects, which
takes in account their proximity along the whole validity interval of the index. This
leads to grouping together objects that share more or less the same direction and
the same speed. The comparison of the evolving boxes r”1, r”2, r”3 at T

1
 and

T
2
 shows the superiority of this approach over the previous one.

Figure 7 gives an example of the evolution of the bounding box between t
0
 and

some t>t
0
. The position and speed of each object are known at t

0
. To find the

growing speed of B we determine the minimal and maximal speeds on both the
x and y axes. For instancem the right border of the bounding box moves with a
speed that corresponds to the maximal values of the projection on the x axis of
all the objects inside the bounding box, here v

a
x(t

0
), and the speed of the left

border corresponds to the minimal speed, here v
b

x(t
0
). The bounding box B of a

TPR-tree is minimal at time t
0
. Each edge of B moves along each axis x

i
 with a

speed v
i
, which is equal to the maximal speed along x

i
 of the objects contained

in B. It follows that the minimality of the bounding box is not preserved.

In a classical R-tree, the insertion, update and deletion strategies aim at
minimizing the bounding box area, the overlapping of the bounding boxes and the
perimeters. The TPR-tree maintenance uses a similar approach, using the



242   Abdessalem, du Mouza, Moreira & Rigaux

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

integral version of these parameters. Intuitively, the minimization always consid-
ers the (continuous) sum of the parameters’ values over the validity interval of
the tree. Refer to Saltenis et al. (2000) for details.

Queries Supported by the TPR-Tree

The index supports three kinds of queries:

• spatial window queries at a given instant \Delta

• spatial window queries for a time interval [t
beg 

,t
end

]

• moving window queries, with values R
beg

 at t
beg

, and R
end

 at t
end

Figure 8 presents examples for these three kinds of queries in a 1D-space.
Consequently, a spatial window query is here at a given instant a segment (so are

Figure 6. Evolving bounding boxes in the TPR-tree

Figure 7. Managing the evolution of a bounding box
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R
beg

 and R
end

). In this example, o
x
 denotes a moving object and we assume that

U=1 , that is, a new index is built every time unit.

1. Q
0
=([-5,5],0.5) and Q

1
=([15,25],1.5) are queries of the first kind;

however, two cases appear:

a)   either the query is formulated before t
0
 (e.g. Q

0
), that is, before the

update, and the result is consequently {o
1
}, whose future trajectory is

forecasted;

b)   or the answer is the empty set since the new position and speed of o
1

are now considered (for example, Q
1
).

2. Q
2
=([10,30],3.75,5.5) is a query of the second category. If the query is

expressed at a time t<1, the result is the empty set, since the expected
trajectory for o

1
 does not go through the query window, and object o

2
 is

unknown. If Q
2
 is expressed at time 1<t<2, the answer is o

2
 since after the

update the planed trajectory intersects the query window. Object o
2
 is still

ignored. Finally, if Q
2
 is expressed at a time t>2, the query result is the set

{o
1
, o

2
}.

3. Q
3
 belongs to the third category and its result is the object o

4
 at any time.

If we consider the query of the first category, the search with the TPR-tree is
close to that of the R-tree: We select a bounding box B if the query window R
overlaps mbb. For the queries of the second and third categories, defined on a
time interval [t

beg
,t

end
], we have to select the bounding boxes that intersect the

Figure 8. Examples of queries in a 1D-space
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query window between t
beg

 and t
end

. The algorithms rely on the observation that
two moving rectangles intersect if there is an instant t∈[t

beg
, t

end
] such that their

projections on each dimension intersect.

In summary, the index is valid only for a period U, and its performances
deterioriate with time because the bounding boxes grow. A new index must be
created whenever the validity period is over. In other words, it is not a fully
dynamic structure that can be created once and adapts to the evolutions of the
database.

Discussion and Future Trends

Let us now study the characteristics of the TPR-tree and evaluate to what extent
it meets the general needs of spatio-temporal indexing. Throughout the discus-
sion we will mention other techniques and recent proposals that apply to other
areas, or provide an alternative approach.

Indexing Past, Current and Future Positions

The TPR-tree indexes the current and the future positions of moving objects, and
is therefore relevant for the applications that track, in real time, objects equipped
with a positioning system. This structure is the state-of-the-art solution for this
particular situation. Its performances have been analyzed recently in Tao,
Papadias and Sun, (2003), which also describes important improvements to the
construction algorithms. Among the other proposals that address the same
problem, but are somewhat less satisfactory, we can mention Tayeb, Ulusoy and
Wolfson, (1998), which uses PMR-quadtrees to index one-dimensional moving
points – (thus, two indices are needed for 2D points), and several theoretical
studies, such as Kollios, Gunopolos and Tsotras (1999) and Agarwal, Arg and
Erickson (2000), which, unfortunately, do not provide a practical solution.

Another quite relevant area of research concerns the indexing of past locations,
which can be of interest to data-mining applications (for example, an application
that analyzes the movements of a given population in a given area and for a given
period). If we keep the assumption that movements can be decomposed in a finite
number of consecutive time intervals, and that for each interval the speed of an
object is constant, then the problem is to index a polyline in a 3D space, with
“time” as a third dimension.

A straightforward solution is to build a 3D R-tree, as proposed in Theodoridis et
al. (1996). Note that this assumes that the bounding boxes are bounded; that is,
that each time interval associated to the segments of the polyline are closed.
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Otherwise, one of the bounding boxes is of infinite size, and this raises problems.
This can be compared with the TPR-tree, which considers only one segment, and
bounds the time interval of interest [t

0
, t

0
+U]. Another possibility is to rely on

a set of R-trees, each covering a time interval. The approach is first proposed
in Nascimento et al.(1998; 1999), with a structure called the HR-tree that
maintains an R-tree for each timestamp. The trees of the previous timestamps
are never modified. In order to save space, the common branches of consecutive
trees are stored only once. The HR-tree performs well for moving objects that
frequently update their motion, but the performances are poor in range queries.

Several other proposals are worth mentioning – Tao et al. (2001); Pfoser et al.
(2000); Porkaew, Lasaridis and Mehrotta, (2001); Hadjieleftheriou, Kollios,
Tsotras and Gunopoulos (2002); and Saltenis et al. (2002), whose common
approach is to extend R-trees to handle a polyline in a 3D space, with frequent
updates that affect the last segment. In Tao et al. (2001), the authors propose an
index, the MV3R-tree, which basically uses both a multi-version R-tree (Becker,
Gschwind, Ohler, Seeger & Widmayer, 1996) similar to the HR-tree and a 3D
R-tree built on the leaf nodes. The multi-version R-tree is expected to perform
better for timeslice or short interval queries, while the 3D R-tree is more adapted
for long interval queries. Another interesting structure for indexing the past
trajectories of moving objects is described in Pfoser et al. (2000). It still exploits
the structure of the R-tree, but tries to group together the segments from the
same polyline, which allows to support new types of queries, including the so-
called “trajectory queries,” with predicates such “enters,” “leaves,” “crosses,”
and so forth.

Future Trends

As discussed above, so far the proposed index structures fall in one of two
categories: either they index the past position, up to the current time; or they index
the present and future positions, but their relevancy degrades with time. There
is no structure that supports simultaneously both situations, and no fully dynamic
index (that is, no index providing an automatic maintenance policy, avoiding
periodic, costly re-creation). In spite of the difficulty of the problem, new
research efforts are required to address these limitations.

Recently, some specific applications, with constraints that can help to reduce the
complexity of the indexing problem, have attracted the attention of researchers.
Among them is worth mentioning the common situation of objects moving on a
constrained network such as in Pfoser et al. (2003). For instance, the authors
propose to index 3D trajectories with two 2D indices, one that contains the
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network (in the 2D space), and one that contains the transformed trajectories (in
1D for space and 1D for time). Another emerging area of research is the main-
memory indexing of moving objects, particularly in the context of moving objects
servers providing notification services to customer. In Kalashnikov, Prabhakar,
Aref and Hambrusch, (2002), a simple partition of space in cells is used to index
the set S of moving objects and determine, at each instant, and for each query
q submitted by a user, the subset of S that constitutes the answer to q. It is argued
that the capacity of computers permits to keep all the structure in main memory,
and therefore avoids to design complicated mappings of these structures on
disks. More generally, this suggests that emerging Web applications providing
services on moving objects raise particular challenges that do not necessarily
require the traditional database design approaches.

Conclusions

We investigated in this chapter several important issues pertaining to the
management of moving objects datasets in databases. The design of represen-
tative benchmarks is closely related to the formal characterization of the
properties (that is, distribution, speed, nature of movement) of these datasets;
uncertainty is another important aspect that conditions the accuracy of the
representation and therefore the confidence in query results. Finally, efficient
index structures, along with their compatibility with existing software, is a crucial
requirement for spatio-temporal databases, as it is for any other kind of data.

The common properties of all the issues considered in this chapter are their
strong impact on the representation of data and the way they determine the
implementation of both the operations and the data structures that support the
evaluation of queries. Indeed, as suggested by the previous discussion, one can
envisage many possible applications with quite different features. It is more than
likely that the techniques used to manage a database of mobile phone users, a
database of cars moving on a road network or a database of airplanes moving
freely in a 3D space will strongly or partly differ because of the differents speeds,
movement constraints (network-based or not) and behavior. All the aspects
(benchmark, uncertainty, indexing) covered, as well as some others (implemen-
tation and semantics of database operators, for instance), are affected by these
specificities.

We therefore expect in the forthcoming years many other new results, and many
improvements to the state-of-the-art solutions that have been established so far.
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Section V

Data Mining
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Chapter XI

Spatio-Temporal
Prediction Using

Data Mining Tools

Abstract

The spatio-temporal prediction problem requires that one or more future
values be predicted for time series input data obtained from sensors at
multiple physical locations. Examples of this type of problem include
weather prediction, flood prediction, network traffic flow, and so forth. In
this chapter we provide an overview of this problem, highlighting the
principles and issues that come to play in spatio-temporal prediction
problems. We describe some recent work in the area of flood prediction to
illustrate the use of sophisticated data mining techniques that have been
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examined as possible solutions. We argue the need for further data mining
research to attack this difficult problem. This chapter is directed toward
professionals and researchers who may wish to engage in spatio-temporal
prediction.

Introduction

Forecasting future values for systems that contain both spatial and temporal
features (spatio-temporal) is extremely complex. As an example, consider the
problem of predicting precipitation at one location. The amount of previous
rainfall in areas close to the target certainly affects this forecast. However, there
are many other factors (temperature, time of day, wind direction, wind speed,
and so forth) that impact the rainfall prediction. The area of spatio-temporal
prediction has been the focus of much research in recent years (Deutsch, &
Ramos, 1986; Dougherty, Corne, & Openshaw, 1997; Jothityangkoon, Sivapalan,
& Viney, 2000; Kelly, Clapp, & Rodriguez, 1998; Pokrajac, & Obradovic, 2001;
Roddick, Hornsby, & Spiliopoulou, 2000; Singh, Chaplain, & McLachlan, 1999).
Due to the extreme complexity of predicting these future values, common
practice is to utilize domain experts with extensive experience in both forecasting
and the problem domain itself. For example, for flood prediction, the National
Oceanic and Atmospheric Administration (NOAA) actually employs special-
ists whose job is to understand the history and specifics of predicting floods on
one river. A different domain expert may be hired for a different river. Due to
the extensive use of domain experts, spatio-temporal prediction is extremely
expensive, and due to the complexity of the nature of the problems, prediction
accuracy is often low.

In this chapter we argue for more data mining research into the development of
sophisticated modeling, machine learning and prediction tools that can assist
domain experts in solving spatio-temporal prediction problems. The interesting
challenge is to see if these models can use all the data available without the need
of expert intervention. This could be useful, since experts in the particular domain
of interest – flood prediction, networks – often may not be experts in these data
mining tools, which are drawn from statistics, genetic modeling, algorithmic
heuristics and much more. But creating models general enough to be understood
by non-experts has proven to be a difficult balancing act, especially when these
complex models use many parameters and when there are many types of data
to consider.

In this chapter we first introduce the problem and some previous research and
solutions. Finally we summarize and make recommendations for future work.
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Problem Definition

Spatio-temporal prediction is widely used in many diverse applications, such as
environmental protection, flood control, atmosphere surveillance, waste disposal
management, traffic management and so on. The general discrete time spatio-
temporal prediction problem can be defined as:

Given a collection of spatial locations where time series data is collected at
discrete points in time, the spatio-temporal prediction problem is to predict a
future value at one of the locations.

Thus, we can state the spatio-temporal prediction problem as one of predicting
one or more future values of time series data. Although we could examine a
continuous time spatio-temporal prediction, most work has been done looking at
a discrete time system where data is collected at regular intervals. For example,
the Minnesota Department of Transportation collects freeway data at monitor-
ing stations in the Twin Cities metropolitan area every 30 seconds.
(www.dot.state.mn.us/tmc/trafficinfo/data). Example 1 is based on the Tao
Dataset of sea surface temperature readings in the Pacific(http://
i n g r i d . l d g o . c o l u m b i a . e d u / S O U R C E S / . I G O S S / . T O G A - T A O . c d f /
.dataset_documentation.html).

Example 1. There are n temperature sensor stations located at buoys at various
sites in the ocean. Each station measures the temperature on the surface of the
ocean every day at noon. The spatio-temporal prediction problem here would be
to predict the future temperature at noon for one or more of these stations given
the historical time series data of previous temperature readings. Notice that in
this example, a major problem is predicting the flow of the water.

Analysis of spatio-temporal systems is complex, since it consists of a large
amount of irregular outcomes that incorporate space and time factors.  The
challenges of spatio-temporal prediction problems include:

• Scalability: Due to the vast amount of data that exists (infinite), any
solutions must be able to scale well.

• Dynamic Model: The nature of spatio-temporal prediction problems is
that the model used to predict a time series value today may not accurately
predict it in the future.Any solution must adapt to the changing environment.

• Variable Models: Even though one application domain may be modeled
similarly from location to location, the exact model will differ. For example,
a Neural Network used to predict rainfall in Dallas will not work in Houston.
We do not want to create a modeling technique for each specific location.
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Rather, we want to develop generic modeling techniques that can be applied
to any location.

• High Dimensionality: These spatio-temporal prediction problems contain
many different parameters that affect the model.

• Hidden Relationships: Not only are there many parameters, we may not
even know what all of the parameters are.

•  Unknown Spatial Influence: Many spatio-temporal prediction problems
contain unknown spatial relationships. For example, the exact movement of
weather patterns is not known precisely. The further into the future the
prediction is being made, the more problematic the spatial influence
becomes.

We are not arguing that more sophisticated data mining techniques can solve all
these problems, but they can help with some – particularly the dynamic and
hidden relationships issues.

Flood Prediction Example

Flood prediction (forecasting) is an example of a spatio-temporal prediction
problem whose solution can be addressed because the problem is automatically
simplified due to the nature of the problem itself; that is, predicting a flood (or
alternatively, a water level or flow value) at a particular point in a river has a well
defined spatial aspect, namely, the flow of the river and the lay of the land. Figure
1 illustrates this aspect. This figure shows the Serwent Catchmentas provided
by the British National River Flow Archive. The catchment of a river is the
geographic area into which any precipitation will go into the river and upstream
river water will flow into the river downstream. We don’t need to worry about
sensor data obtained for spots outside the catchment. In addition, we know the
general direction in which water will flow within a catchment.

While flood prediction simplifies the spatial influence issue, it does not eliminate
it completely. Looking at Figure 1, we see that sensor readings at location 28043
definitely impact those at 28010, but we do not know what the exact influence
is. Certainly it would be safe to assume that the impact is somewhat less than the
readings at location 28055. But how much? Another issue here is the temporal lag
between the readings. The time lag between the influence of a water level reading
at 28043 is probably greater than that at 28055, but the actual values vary.

There are many common spatio-temporal prediction problems similar to flood
prediction. Traffic engineers examine the flow of traffic on highways to predict
traffic delays and determine where best to spend funds to upgrade roadways.
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Network traffic engineers similarly examine flow of packets between sites to
predict routing delays and prevent network downtime. Similar spatio-temporal
prediction problems include electric flow in electric grids and water usage in
public water systems.

Other spatio-temporal problems may not exactly fit into the flood prediction
paradigm, but may be simplified by adding spatial influence assumptions to help
develop solutions to the more general problem. When looking at predicting ocean
water temperature, the movement of water may be approximated based on
knowledge by experts as to the normal movements of ocean water.

Solving the Spatio-Temporal Prediction
Problem

In this section we briefly review some previous research in the area of spatio-
temporal prediction. We classify the work into counting models, stochastic
models, neural networks and Markov models. This survey is not meant to be
exhaustive, but illustrative.

Counting Models

We view counting models to be algebraic formulations used to capture complex
issues such as spatial influence, temporal lag, high dimensionality and hidden
relationships. This is a common approach with current weather prediction and
flood prediction systems.

Figure 1. Derwent catchment of Upper Derwent River
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Environment studies like flood prediction (Burnash, 1996; Comet, 2000), distri-
bution of ice channels and distribution of hydrological parameters in oceans
(AARI, 2004) can be approximated, and a prediction can be made by creating
a deterministic mathematical counting model. A scientist, based on computation
fluid dynamics equations, can design a model that simplifies the relationship among
hydrological parameters. This work was demonstrated by Kathryn Bean, one of
this chapter’s co-authors, for modeling the distribution of ice channels in the Kara
Sea while employed at the Artic and Antarctic Research Institute in Russia.

By far, the most common approaches to solving the flood prediction problem are
based on the use of counting mathematical models. One model is created for
each flood prediction site, and it attempts to capture all of the unique features of
the catchment at that site. These include such things as river structure upstream,
flow rate and soil absorption. Values collected by sensory input include such
things as water level upstream, temperature, humidity, time of day and rainfall
at various points in the catchment.

The National Weather Service, part of NOAA, uses an approach based on the
Sacramento Soil Moisture Accounting Model(NOAA, 2004). This technique
predicts water levels by measuring rainfall in the catchment and estimating
runoff and soil absorption. To use the model, at least 20 different parameter
values have to be estimated by the domain expert (Comet, 2000). Over time, the
model is adjusted by modifying these parameter estimates.

A recent survey of flood forecasting has summarized some of the current work
in applying counting models to flood forecasting (Julien, Molnar, Johnson, &
Combs, 1998).

Stochastic Models

Stochastic models have also been used to address the spatio-temporal prediction
problem. While studying how to manage livestock’s waste in a watershed, Cressi
and Majure (1997) tried to design a spatio-temporal prediction model mainly
based upon spatial statistics analysis. The whole area was divided into smaller
grid surfaces, and their spatial characteristics were summed. To capture the
temporal characteristics, they used a “three-day area of influence.” In other
words, data collected at an upper stream more than three days ago would not be
considered to affect the lower stream’s data. This model did generate a good
prediction, unfortunately at the price of a “large variation of the predicted values”
with a little modification of the input data. Although this overfitting problem in
their work was attributed to the low sampling density in space and time, it is
rational to suspect that spatial statistics, with the use of a straightforward time-
window assumption, is not sophisticated enough for a reliable spatio-temporal
prediction.
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Deutsch et al. (1986) took a similar approach, but in an opposite direction, to
address spatio-temporal-related hydrological research. For temporal correlation
they constructed a time series model at each concerned location. For the spatial
correlation between each pair of locations, they introduced a very simple
neighboring matrix – if two locations were within a pre-defined threshold
distance, the corresponding entry in the neighboring matrix would be set as 1;
otherwise 0. The role of this matrix was to help merge the spatial correlation and
facilitate the computation. However, a simplification for spatial correlation like
this may miss other important non-distance factors and make the model
incomplete. For instance, the probability of flooding at a certain position along the
river does not only depend on how far away it is from the upper stream location
where there was heavy rain, but also on other factors, like the saturation of the
soil, the forest coverage percentage, the cross-section area, gradient of the river
bed, the turning angle and so on. It is even possible that the flooding is involved
with some hidden reasons that are not thoroughly understandable or are simply
hard to be measured and assessed.

In order to perform prediction for a dynamic spatio-temporal system, a model
needs to be constructed to incorporate both time and space variability.
AutoRegressive Integrated Moving Average (ARIMA) time series modeling is
one of the popular modeling techniques taking temporal aspects into account.
Space variation is usually added statistically to it to reflect the dependence of the
system outcome on relative direction as well as distance between locations (Box,
& Jenkins, 1970). ARIMA is a powerful model for both stationary and
nonstationary time series. The autoregressive portion represents the deviation of
the current value of a stochastic process from its mean at time t with a linear
aggregate of p previous values of the process and a random a drawing from a
fixed distribution, which is assumed to be Normal and having mean zero, so called
“white noise.” Moving average models express the deviation linearly on q
number of previous random a drawing (Box et al., 1970). Both models describe
the stationary process; nonstationary summation is added to model the difference
of the process from stationary (Box et al., 1970, 1994; Wei, 1989).

In the spatio-temporal problem, the space lag also needs to be incorporated into
the model. Space-Time AutoRegressive Integrated Moving Average
(STARIMA) is one popular model of this type. It uses a spatial hierarchical
ordering of the neighbors of each site and a sequence of NXN weighting matrices
for N locations to model the influence that the different locations have on a given
site (Pfeifer, & Deutsch, 1980a). STARIMA has been widely used on various
spatio-temporal problem domains, such as hydrologic modeling (Deutsch et al.,
1986) and crime analysis (Pfeifer et al., 1980b).

Various other statistical approaches have been used to model spatio-temporal
data by extending geostatistics or spatial statistics with temporal effects. Waller,
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Carlin,, Xia and Gelfand (1997) built hierarchical spatio-temporal mapping of the
disease rate on an existing Bayesian spatial model fitting in Markov Chain
Monte Carlo (MCMC) implementation. Stroud, Muller and Sanso (2001)
proposed a Bayesian method for analyzing a dataset that is discrete in time and
continuous in space. The model, which was tested with tropical rainfall levels and
Atlantic ocean temperatures, was to find a “mean function at each time as a
locally weighted mixture of regression surfaces,” and then incorporate the
temporal variability by allowing the regression coefficients to change through
time. Handcock and Wallis (1994) studied northern United States global warm-
ing trends using a Bayesian model of space time Kriging, which is a geostatistical
approach to modeling for predicting unknown values from data observed at
known locations while spatial dependence over time may vary.

By using the ARIMA technique, one can predict the current water level (or
water flow) value as the sum of the products of the historical values multiplied
on some coefficients, plus the products of independent “shock” (random variable
with zero means) multiplied on the same coefficients. The hardest part of this
modeling technique is finding the size of these two sets and choosing suitable
coefficients to adequately predict Mother Nature. It is impossible to consider
several types of time series – rainfall, temperature and other variables –
simultaneously as input parameters for ARIMA (Wei, 1989). A contiguous time
series, free of noise, is the only way to use this technique.

Artificial Neural Networks

Artificial Neural Networks have been used successfully (Dunham, 2003).
Neural Networks (NN) are made up of several layers, including an input layer
and an output layer. As input data is propagated through the layers of the model,
it is mapped to an output. A neural network can “learn” to accurately map a given
input to a given output by self-adjusting the parameters in its layers. Unlike
counting models, neural networks allow forecasters to make predictions without
fully understanding the input-output relationship.

A neural network has several advantages over a stochastic model like ARIMA.
A neural network, after training, allows forecasters to obtain a prediction easily
and quickly. Several types of time series as input parameters can be used
simultaneously (Openshaw, Kneale, Corne, & See, 1998). A neural network can
give adequate predictions while running on noisy datasets.

A neural network approach has some disadvantages, such as possible training/
convergence errors, overfitting, bad interpretability and so on. One of them
relates to the uncertainty of creating an optimal neural architecture. How to
choose the optimal number of input parameters for ARIMA is well known;
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however, based on our research, only empirical methodologies determine the
optimal input domain of a neural network model for spatio-temporal prediction.

Neural networks are attractive for the flood prediction problem because they
reduce the need for a precise understanding of the complex relationship between
the input and the output. A number of researchers have done extensive work to
apply neural networks on flood prediction. Openshaw et al. (1998) provide a
comprehensive report of an effort to compare the performance of different types
of neural networks to conventional and other statistical flood models. They aim
to find the relationship between various time-lagged inputs from this site and an
output at a later time. Their experiments demonstrate that a global approach
using one neural network to model all the input data was not practical because
most of the data was concentrated around low river levels. Instead, they classify
the input into different groups - called hydrograph types - depending on whether
the river levels are rising, falling or flat. With these models, they determine that
neural networks perform better than the statistical and conventional models.

Markov Models and Variants

The Markov chain model is widely used to model spatio-temporal systems, such
as computer I/O requests (Oly, & Reed, 2002), hydrological observations (Yapo,
Sorooshian, & Gupta, 1993), robot behavior (Goldberg, & Mataric, 1999), and so
forth. In this section, the Markov chain model and some of its variations are
discussed in applications of modeling spatio-temporal systems.

A stochastic process is a Markov process when it satisfies the Markov
property. Isaacson (1976) states that “a stochastic process {X

k
}, K = 1,2,… with

state space S = {1, 2, 3…} is said to satisfy the Markov property if for every
n and all states i
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],” where P is the transition probability. Simply speaking,

the Markov property declares that the transition probability from current state i
n-

1
 to next state i

n
 depends only on the current state of the process and has nothing

to do with the earlier states in the history of the process.

A Markov process is called Markov chain if the state space is countable or finite.
A Markov chain model, which we will call Markov model (MM) in the rest of this
chapter, is constructed with states and transitions that can be visualized as a
weighted directgraph with collection of m vertices, S, and directed edges, E:

S = {N
k
 | K = 1,2, … m}, and E = { <N

i
,N

j
> | i ∈ 1, 2, …, m, j ∈ 1, 2, …, m}

With a vertex and an edge in the graph corresponding to a state and a state
transition in MM respectively, the weight on each edge of graph is then the
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transition probability a
ij 
= P(N

j
 | N

i
) of an MM. If we consider MM as a complete

graph, the transition probability distribution can be represented by an m × m
matrix, so called transition matrix. In real life, there are no systems completely
satisfying the Markov property, so this restriction is often loosely defined and
assumed.

Once an MM is chosen to be the model for a system, it is constructed by defining
the appropriate state representations and transition probabilities. The state
representation of an MM is usually chosen by domain experts to well represent
the property of the system modeled. It is expected that the number of states in
an MM is enough to simulate the different states of the system but not so many
that there is no significant difference between MM states. To develop a model
to simulate the daily rainfall amount based on historical observation, Haan, Allen
and Street (1976) used rainfall amount as state representation and grouped
observed rainfall amount into six classes (states), which was found to be a
reasonable choice of clustering to model the given data after experimenting on
several class boundary settings. A statistical method was adopted by Yapo et al.
(1993) to cluster observed streamflows when constructing a flood prediction
model, in which the K-mean clustering algorithm was used to “minimize the total
sum of the square distances from a streamflow value to cluster center” in order
to find the optimal number of intervals and enough streamflow data in each
interval. Once the states in the model are decided, the state transition probabili-
ties are usually decided by the ratio of n

ij
/n

i
, where n

ij
 is the number of times that

state transits from state i to state j, and n
i
 is the number of times the system is

in i.

The model construction methods introduced above are static, which means all
states and transition probabilities are defined in advance based on analyzing the
existing data observations of the system. There also are several dynamic model
construction algorithms that dynamically build the model, starting from one single
state until an optimal model is found to mimic the reality.Cormack and Horspool
(1987) introduced a dynamic Markov model for data compression, in which the
model was dynamically constructed by using a “cloning algorithm,” which
expands a single state MM to a complex model by duplicating states according
to the number of times the candidate state is visited by different predecessor
states. Goldberg et al. (1999) presented the Augmented Markov model (AMM),
in which the observation of robot behavior data was read dynamically as input
to modify the current model, which initiated as a single state Markov model. New
states and transitions were added to the current model in real time when the input
symbol had never been seen before in the model state space. Existing states in
AMM also needed to be split (duplicated) when necessary to eliminate the non-
exist path through that particular state.

We have developed another variation of Markov model, so called Extensible
Markov model (EMM), which also uses dynamic model construction algorithms
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to build the model (Dunham, 2004). An EMM can be viewed as a time-varying
MM where each state in the model represents a cluster of real-world states. At
any snapshot, an EMM is an MM. However, over time, the graphical structure
of the model (number of states in the graph, number of transitions, labeling of the
states and labeling of the transition probabilities) changes. When a real-world
state occurs, it is matched to the most similar state in the current model using an
algorithm technique, EMMSim, which matches input data at time t + 1 to existing
states in the MM at time t. The beauty of EMM is that EMMSim provides a
generic method for matching input data with existing EMM states to make
decisions of whether a new state needs to be added, and another algorithm,
EMMBuild, updates the model structure and transition probability to incorporate
the new input information in EMM.

A Hidden Markov model (HMM) models a system by decoupling the observed
properties or symbols from the states that may produce them. There are two
stochastic processes that occur in an HMM. One process determines what the
next state should be using a transition probability distribution. This is identical to
the stochastic process in a Markov model. The second process determines what
symbol should be observed when the model is in a particular state. This process
is controlled by an observation probability distribution (Rabiner, & Juang,
1986). So in addition to the set of states, S, and the transition probability
distribution, A, an HMM needs a set of observable symbols, V, and an observation
probability distribution, B:

V = { v
i
 } and B = { b

j
(k) | j ∈ 1, 2, …, m, k ∈ 1, 2, …, |V| }

Here b
j
(k) is equal to the probability of observing symbol v

k
 in state N

j
.

Many of the same limitations presented for Markov models also apply to HMMs.
They assume that the current state depends only on the previous state and the
transition probability is independent of time. One additional consideration is that the
observation probability distributions in each state are independent of each other.

Two of the fundamental HMM problems are how to recognize an observation
sequence with a model and how to uncover the state sequence that optimally
matches a given observation sequence. The first problem can be described as the
probability of a specific observation sequence O given a HMM l. Rabiner et al.
(1986) describes a dynamic programming algorithm known as the forward-
backward procedure for solving this problem. To solve the second problem, we
must establish what we mean by “optimal.” Optimality is usually taken to mean
the state sequence that would maximize the probability of the given observation
sequence for the given model. Another dynamic programming approach – the
Viterbi algorithm – is popular in the literature and uses this notion of optimality
when solving this problem.
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A third problem, which must be solved in both applications, is how to train the
HMM, or determine the probability distributions A and B for the system being
modeled. The popular approach to this is to guess the parameters initially and re-
estimate them iteratively, improving the model each time, using various EM
algorithms. A precursor to this is to determine how many states should exist in
the model. Since the states represent some property of the system, this number
can generally be determined based on the application.

Recent Data Mining Techniques Used
for Flood Prediction

We have examined the use of four data mining techniques in predicting floods (or
to be more precise, water level at a target location in a river). They are: HMM,
EMM, combined time-series ARIMA model and Neural Networks (STIFF) and
a more sophisticated approach to neural networks (NN-ACC).We briefly
introduce these techniques and the results found during performance evaluations
of them.

Hidden Markov Models

There have been several approaches to using HMMs in flood prediction. One
approach uses multiple HMMs, each representing a discrete state of the
prediction site. For example, one HMM could represent the occurrence of a
flood, and another could represent an average river condition. In each model, the
upstream measurements are treated as observations, and the time (relative to
a starting time) as states. Then, during prediction, experts choose the model that
best matches or recognizes the given observations using the forward-backward
procedure (Rabiner et al., 1986). We call this a Recognition-Based Model.

The second approach draws an analogy between the components of an HMM
– an observable sequence of symbols and a related but hidden state sequence –
and the components of the flood prediction problem – an observable sequence
of upstream river conditions and a hidden (unknown) sequence of future river
conditions at the target site. Given an observation of the present condition of the
upstream sites, the flood prediction problem is to uncover the best corresponding
state sequence that represents the river conditions at the prediction site. Here it
helps to think of the states as related to rather than causing the occurrence of
the observation symbols. The accuracy of this model might reveal a few things
about the nature of this relationship. We call this a Viterbi-Based Model.
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Our initial experiments examining these two approaches using the water levels
as measurements did not yield very positive results. In particular, the Viterbi-
Based Model had many states, including some that were used too infrequently
during training. Results improved when we considered the change in water level
relative to the first measurement in a fixed time window because this reduced the
variability of the measurements. But the HMMs still did not perform well
compared to some existing NN techniques. Thus, we do not consider the use of
HMMs further in this chapter.

Extensible Markov Models

We also examined the use of the EMM in flood prediction. In our experiments,
the EMMSim algorithm was implemented using four different similarity mea-
sures (Dice, Jaccard, Cosine and Overlap). The threshold of similarity measure-
ment determines whether a new node need to be added to the model; that is, if
the similarity between an input reading and each of the states in current EMM
is below the threshold, a new node is created representing a new state that is
significantly different from current existing states. Our model was built and
tested for flood prediction using data of river sensor readings (Dunham et al.,
2004) obtained from the following Web site: www.ccg.leeds.ac.uk/simon/
nndown.html, which provides real information of water levels at a catchment
(Ouse Catchment) in the United Kingdom. The accuracy of the EMM prediction,
which in this case is the water level at a designated location one hour ahead of
time, was measured using Root Means Square (RMS) and Normalized
Absolute Ratio Error (NARE) as described below:
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Here O(t) is the observed value and P(t) is the predicted value at time t; N is the
total number of test data and t is the time variable.

EMM prediction performance was compared with a Neural Network based
prediction system, River Level Forecasting (RLF) that is an “Artificial Neural
Networks for Flood Forecasting” available on the same Web site (Openshaw et
al., 1998). Experiments showed that the number of states in the EMM grows at
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a sublinear rate and levels off once the model has learned the current river
behavior. If the river behavior changes, the model will begin learning again
(Dunham, 2004). When comparing the performance of EMM to RLF on
prediction accuracy, Table 1 shows the EMM performance is better.

There are several issues about EMM that deserve further investigation. First,
even though the number of states tends to converge when more data are
provided, it did not stop growing. To solve this problem, presumably a preset
maximum number of states could be used to restrict the growth of number of
EMM states, while the learning of links and transition probabilities are still carried
on. Second, the water level data that was used to build and test EMM is pretty
stable. More modifications of the EMM algorithm might be required when it is
applied to data that varies strongly. Possible solutions would be i) choosing more
sophisticated similarity algorithms; ii) including other environmental factors
beyond water level to better represent the status of the system, iii) making
multiple models to match different segments of the varied data, as proposed by
Haan in 1976, where different MM models were built for each month. Third,
algorithms of states merging and splitting could be included in EMM to closely
model the dynamic problem domain.

Integrating Artificial Neural Network and Time Series

Recent work in flood prediction has investigated how combining different
techniques could yield better results. Statistical analysis and artificial neural
networks both have provided powerful tools to address spatio-temporal predic-
tion problems. However, each comes with its drawbacks, which somehow cast
a shadow on their applicability. We introduce our mixed model as follows.

To put it into a simple description, for spatio-temporal prediction, what our model
does is build time series models to capture the temporal patterns, then construct
an artificial neural network to retrieve the spatial correlation and finally “add”
them together via regression. These characteristics led to the model we call
Spatio-temporal Integrated Forecasting Framework (STIFF). In this model,
we first identify how many nearby locations could exert some influence on the
target location. Then we divide the whole prediction area into sub-areas, of
which each sub-area contains only one location we are interested in. Though this
step looks straightforward – for example, for a flooding monitoring system, each
location where one sensor sits can be one individual sub-area – sometimes it
becomes more involved and needs other data mining techniques, such as
clustering, classification, and so forth.

After the division, each location is examined independently. We build a time
series ARIMA model for each location to capture its individual temporal
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characteristics. With time series models completed, we have the necessary
prediction capability at each location. To capture the spatial aspect, we then
construct an NN to capture the spatial correlation from the target location’s
siblings to the target location itself. To make construction simple, normally we
just pick up the traditional three-layer (input, hidden, output) structure. However,
partial connectivity, instead of full connectivity, between different layers is
employed to reflect the spatial structure of the catchment from which NN is
constructed. For example, Figure 2 shows the NN structure for the catchment
shown in Figure 1. The labels of the input nodes indicate the upstream sensor
locations. Each node in the input layer is connected to corresponding nodes in the
hidden layer which represent sensor nodes on which it has a direct spatial
influence. For example, sensor location 28070 (see Figure 1) has a direct
influence on itself as well as 28043 and 28011. The output node represents the
prediction, f, at the target location 28010.

To obtain the flood prediction, prediction (using the time series models) or actual
readings from the upstream sensors are used as input to the NN model. The
actual input value is based on the projected time lag from that upstream sensor
to the target location. The final prediction value for the target location is then
obtained via statistical regression on both the NN prediction and the time series
prediction at the target node. Experiments on data collected from a real
catchment have shown that the STIFF model works very well, with higher
prediction accuracy and balanced behaviors. With a 30-day look-ahead, STIFF
had a NARE value of 0.055 while an NN was 0.167 and time series alone was
0.15. For detailed information, please refer to Li, & Dunham, (2002, 2003a; Li,
Dunham, & Xiao, 2003b).

Improved Neural Network Approach

We have examined an NN approach, the Neural Network with Auto- and
Cross-Correlation Model (NN-ACC), which overcomes some of the problems

Table 1. Comparison of water level prediction of EMM and RLF

 NARE RMS Number of States 
RLF 83 * 10-3 0.422482  

Threshold 0.995 34 * 10-3 0.1733741 92 
Threshold 0.997 26 * 10-3 0.1310777 127 EMM 
Threshold 0.999 156 * 10 -3 0.0774781 238 
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associated with traditional NN modeling in this domain by using cross-correla-
tion/autocorrelation techniques to determine NN input. A cross-correlation
function between the upstream stations’ water level readings and the corre-
sponding data from the target station, and an auto-correlation function between
historical readings and current values at the target, are calculated. In the present
approach, the cross-correlation function between the upstream stations’ water
level readings and the corresponding data from the target station are calculated.In
addition to this, an auto-correlation function between historical readings and
current value at the target are considered. Based upon a chosen threshold, the
precise input values for the NN are determined. The NN-ACC algorithm
contains the following steps:

1. Preprocess Historical Data

2. Determine the Optimal Input Domain based upon the Auto/Cross-Correla-
tion Technique

3. Create Optimal Neural Network structure

4. Determine “Good” Initial Values (Weights and Biases) for Neural Network

5. Use Training (Levenberg-Marquardt Algorithm) and Validation Method

A crucial part of step 3 is to determine the number of input nodes and their
representations for the feedforward NN with two hidden layers. This informa-
tion is defined empirically in many publications. In Openshaw et al. (1998), the
lag for an upstream station is determined based on speed of water. However, this
value could change dramatically during the flood event.

Our research introduces a more deterministic approach to establishing lag. The
lag is defined by calculating correlation functions between historical readings of
this upstream station and historical readings from the target station. Based upon

Figure 2. STIFF ANN for catchment in Figure 1
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the arguments of this function, for which cross-correlation is greater than or
equal to some threshold value, components of a lag window are chosen. A series
of experiments for three-hour-ahead prediction were performed to determine
the optimal threshold for the best network architecture. As the result, the
threshold equal to 0.980 is chosen, corresponding to the five input nodes (|P| =
5). This value consists of four historical water level readings taken from the
target station, and one Boolean value of the day/night at time prediction. The data
from upstream stations do not have significant influence on the prediction of the
neural network value. Cross-correlation function for any upstream station has a
very sharp decline around the maximum value, which is significantly less than the
corresponding parameter for auto-correlation function. The number of nodes in
hidden layers |T| was defined using the methodology described in Baum (1989).
If the desired accuracy level is 90%, the number of weights should be 10 times
less than the size of input vector set {P1,…,Pn}. This rule is mentioned in various
publications as “the rule of thumb” (Bishop, 1994). According to this methodol-
ogy, an optimal number of hidden nodes is equal to ten (|T| = 10 ). A series of
experiments, performed upon the neural network with five input nodes and two
hidden layers for three-hours-ahead prediction, gave approximately the same
value of |T|. The output layer has one node (|Z| = 1): the value of the predicted
water level. The performance of the NN model was tested by predicting the
sensor reading of a water level value at a downstream location of the Ouse
Catchment from January 26, 1995 to February 2,1995 (USGS, 2004). To evaluate
NN-ACC against other RLF and EMM flood prediction techniques, the one-hour
forecast was performed for previously used neural network architecture (5-10-
10-1, where |P| = 5, |T| = 10, |Z| = 1, and |P|-|T|-|T|-|Z|). The result of the
comparison is shown in Table 2 and Figure 3.

NN-ACC gives very good prediction and outperforms the EMM and RLF
models. NN-ACC captures an optimal number of input/hidden nodes and,
because of these characteristics, NN-ACC outperforms EMM and RLF frame-
works. The EMM model fails to predict the increasing observation values around
time unit 100. The RLF NN model yields performance significantly worse than
either EMM or NN-ACC.

Conclusions

The spatio-temporal prediction problem is extremely difficult. Conventional
solutions using counting models are too labor intensive. By simplifying some of
the issues, such as spatial influence, specialized subproblems may be examined.
We have evaluated four data mining techniques to attack the flood prediction
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problem. Using two new error measurement metrics, we have shown that
HMMs do not appear to be better than NNs. However, more sophisticated data
mining modeling techniques (EMM, STIFF, NN-ACC) can yield better results
than previously proposed methods. While the flood prediction problem is a
subproblem of the more general spatio-temporal prediction problem, there are
many real-world applications of this type. Although we cannot generalize our
results to any type of spatio-temporal prediction problem, we feel that they are
promising enough that more research is warranted.

Currently in the real world, it appears that techniques to address spatio-temporal
prediction seem to center around the more simplistic, more understood counting
techniques. There does not appear to be any acceptance in the real world to more
sophisticated, less understood data mining technqiues. However, we feel that in
the future this really should change. Due to the very nature of the problem, and
its applicability to many real-world applications, future study to examine better
data mining solutions is needed. The potential benefits are quite high.

Table 2. Comparison NN-ACC with EMM and RLF flood prediction models

Figure 3. Comparison of NN-ACC, EMM and RLF Models, one-hour
prediction

Model NARE RMS 
EMM 0.065 0.413 
RLF 0.447 2.374 
NN-ACC 0.0239 0.145 
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We propose that future research is needed in the following areas:

• Creation of more sophisticated data mining techniques to model the
complex spatio-temporal problems, or at least subproblems thereof.

• Evaluation of other data mining forecasting techniques to the spatio-
temporal problem.

• Evaluation of combining data mining tools to attack the spatio-temporal
prediction problem.
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Abstract

Recent interest in spatio-temporal applications has been fueled by the need
to discover and predict complex patterns that occur when we observe the
behavior of objects in the three-dimensional space of time and spatial
coordinates. Although the complex and intrinsic relationships among the
spatio-temporal data limit the usefulness of conventional data mining
techniques to discover the patterns in the spatio-temporal databases, they
also lead to opportunities for mining new classes of patterns in spatio-
temporal databases. This chapter provides a survey of the work done for
mining patterns in spatial databases and temporal databases, and the
preliminary work for mining patterns in spatio-temporal databases. We
highlight the unique challenges of mining interesting patterns in spatio-
temporal databases. We also describe two special types of spatio-temporal
patterns: location-sensitive sequence patterns and geographical features
for location-based service patterns.
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Introduction

The globalization of many industries and advances in wireless communication
and global positioning systems have led to the development of spatio-temporal
applications, such as applications dealing with moving objects, involving objects
located in the space (for example, land parcels, whose characteristics may
change in time) and dealing with objects which integrate the above two behaviors
(for example, pollution phenomenon in the environment system). A spatio-
temporal database embodies spatial, temporal and spatio-temporal concepts, and
captures simultaneously the spatial and temporal aspects of data. The complex
interactions among the objects are captured in the form of the past, present and
future states in the modeled environment. With the widespread use of spatio-
temporal databases, there is the increasing need for the discovery of interesting
and previously unknown, but potentially useful, patterns in spatio-temporal
databases.

Currently, spatial data mining and temporal data mining form two separate
streams of research. Efforts are either focused on discovering space-sensitive
patterns in the form of spatial patterns (Chawla, Shekhar, &Wu, 2000; Ester,
Frommelt, Kriegel, & Sander, 2000; Han, Koperski, & Stefanovic, 1997; Shekhar
& Huang, 2001; Wang, Yang, & Muntz, 1999); or time varying patterns in the
form of sequence patterns (Agrawal & Srikant, 1996; Pei, Han, & Asl, 2001;
Zaki, 1998; Yang, Wang, Yu, & Han, 2002; Mannila, Toivonen, & Verkamo,
1995; Garofalakis, Rastogi, & Shim, 1999). However, spatio-temporal databases
contain the complex relationships that cannot be discovered by simply consider-
ing the temporal information or spatial information independently.

For example, it is not sufficient to know that “sales are typically up in the
months of February and December,” or that “sales are high in Asia and
North America.” Instead, it is more important to understand the trends in the
context of spatial locations, such as “sales in the Asia region peak in the month
of February while sales in the North America continent peak in the month
of December.” Further, the pattern “motorists go to gas stations upon exit
from a freeway with 80% likelihood” can only be discovered when the mining
algorithm takes into account the multi-states (that is, the past, present and future
states) of the objects.

Data mining in spatio-temporal databases must consider the multi-states of the
spatio-temporal data. It must integrate the spatial information and temporal
information together to find meaningful spatio-temporal patterns. The knowl-
edge of these spatio-temporal patterns allows one to develop more localized or
customized business analysis and strategies, and have potential benefits for
many applications, such as the Geographic Information System (GIS), environ-
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ment information system, traffic supervision system, mobile phone companies,
and so forth.

This chapter is organized as follows: We first review the work for mining in
spatial databases and temporal databases and the initial work for mining in spatio-
temporal databases. Then, we describe a framework for mining spatio-temporal
databases, and illustrate the various types of interesting spatio-temporal patterns
that can be discovered. We describe two special types of spatio-temporal
patterns in detail; namely, location-sensitive time-sequence patterns, and the
geographical features for location-based service patterns. Finally, we conclude
with possible research directions for mining interesting patterns in spatio-
temporal databases.

Related Work

Mining in temporal databases and in spatial databases presently constitute two
separate streams of research. Research effort has been focused on discovering
patterns either from spatial or temporal databases. This section first reviews the
work done on spatial data mining and temporal data mining before describing
early attempts at spatio-temporal data mining.

Mining in Spatial Mining Databases

Spatial data mining is the process of discovering interesting and useful patterns
from large spatial databases. Mining patterns from spatial datasets is more
difficult than extracting the corresponding patterns from traditional numeric and
categorical data, due to the complexity of spatial data.

Spatial data exhibits a unique property in that “everything is related to
everything else, but nearby things are more related than distant things,”
which is also known as Tobler’s first law of geography (Tobler, 1979). Hence,
the goal of spatial data mining is to discover relationships between spatial data
and non-spatial data by using spatial proximity relationships, such as topological
relationships like intersects, overlap, disjoint; spatial orientation, such as
left_of, east_of; and distance information, such as close_to, far_away.

Spatial data mining covers a wide spectrum of paradigms for knowledge
discovery. The patterns discovered from spatial data includes characteristic and
discriminant rules, spatial association rules, extraction and description of promi-
nent structures or clusters, and so forth. (Han & Kamber, 2001). We will briefly
review the techniques to extract these patterns from the spatial databases.
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Mining of Characteristic and Discriminant Patterns

A spatial characteristic rule is a general description of a set of spatial related
data. For example, the description of general weather patterns in geographic
regions is a spatial characteristic rule. A spatial discriminant rule is the general
description of contrasting or discriminating features of a class of spatial related
data from other classes. For example, the comparison of the weather patterns
in two geographic regions is a spatial discriminant rule.

Lu, Han and Ooi (1993) first developed a generalization-based method to
discover the characteristic and discriminant rules from the spatial data. The
method extracts the general knowledge in two different ways: non-spatial data
dominated generalization and spatial data dominant generalization.

The non-spatial data dominated generalization algorithm creates maps consisting
of regions that share the same high-level non-spatial descriptions. It realizes this
by merging the neighboring areas with the same generalized non-spatial at-
tributes. In contrast, a spatial data dominant generalization algorithm focuses
first on the spatial data. It partitions the regions and merges them based on the
hierarchy of spatial data attributes. In the end, it creates maps consisting of areas
that share the same spatial descriptions.

Although the generalization-based approach could find some interesting patterns
from the spatial databases, the discovery process depends very much on the
availability of the hierarchies of the data. Further, the quality and the interesting-
ness of the discovered patterns are also influenced greatly by the fineness and
appropriateness of the given hierarchies of data.

Mining of Spatial Association Patterns

The spatial characteristic and discriminant rules describe the spatial and
nonspatial relationships at a general concept level, where spatial objects are
expressed as merged spatial regions or clustered spatial points. However, they
do not reflect the relationships of spatial/spatial data or spatial/nonspatial data,
while a spatial association rule does.

A spatial association rule describes the implication of one set of features by
another set of features in spatial databases. A rule such as “large towns in
British Columbia are close to the sea” is a spatial association rule. A spatial
association rule has the form X→Y, where X and Y are sets of predicates and
some of which are spatial predicates. Commonly used spatial predicates include
topological relationships (for example, intersects, overlap); spatial orientation
(left_of, west_of); and distance information (close_to, far_away).
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Koperski and Han (1995) first extended the concept of the association rule to the
spatial databases based on the similar philosophy for mining association rules in
transaction databases (Agrawal & Srikant, 1994). The following spatial associa-
tion rule finds the association relationships between schools and parks that are
80% of schools are close to parks: is_a(x, school) →close_to(x, park) (80%).

One of the drawbacks of the spatial association rule algorithm is that it depends
on the concept of explicit transactions in the databases. However, due to the
continuity of the underlying space, this may not be possible or appropriate in some
spatial databases. For example, if spatial association rules discovery is confined
to some reference feature, for example, city, then transactions can be defined
around the instances of this reference feature. However, for those cases where
no reference feature is specified, the generalization of this concept will be non-
trivial. Moreover, many duplicate counts of association rules may result if we
define transactions around locations of instances of all features. For these
reasons, Shekhar and Huang (2001) propose a new framework to find co-
location patterns by using user-specified neighborhoods to specify groups of
items, instead of transaction.

The co-location pattern discovery process finds the subsets of spatial features
that frequently locate together. The co-location patterns represent relationships
among events happening in different and possibly nearby locations. For example,
the pattern “smoke aerosols alter the likelihood of rainfall in a nearby
Region” is a co-location pattern. A co-location pattern has the form: f

1
→f

2

(cp%), where f
1
 and f

2
 are spatial features, cp% is the conditional probability

indicating that at least cp% objects having the spatial feature of f
1
 are the

neighbors to some objects having the spatial feature of f
2
.

Other Techniques to Discover Patterns in Spatial
Patterns

In addition, various systems and methods have been developed to allow users to
conveniently extract patterns in spatial databases. The GeoMiner system
developed by Han et al. (1997) incorporates various existing techniques to mine
interesting spatial patterns, with provision for the addition of newly developed
methods at a later stage. Following that, Ester et al. (1998, 2000) developed a set
of database primitives for mining in spatial databases. They use graphs to model
the implicit neighborhoods’ relationships and add appropriate operations to
manipulate these graphs.

Wang et al. (1999) introduced an active spatial data mining approach to support
user-defined triggers on dynamically evolving spatial data. They employ a
hierarchical structure and decompose the user-defined trigger into a set of sub-
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triggers associated with cells in the hierarchy. Updates are suspended in the
hierarchy until their cumulative effect causes the trigger to fire.

Data Mining in Temporal Databases

Temporal database mining considers two types of temporal data. They are time-
series data and sequence data. A time-series data is a sequence of real
numbers that vary with time; for example, stock prices, exchange rates,
biomedical measurements data, and so forth. A sequence data is a sequence of
ordered events, with or without concrete notions of time; for example, Web page
traversal sequences.

Temporal data mining aims to discover and infer relationships of contextual and
temporal proximity among the data. Patterns that can be discovered from
temporal data include trends, temporal association patterns and sequential
patterns. This section examines techniques for mining sequence patterns and
temporal association patterns in time-related data.

Mining of Sequence Patterns

Sequence data is an important type of temporal data. It is a list of transactions,
where each transaction is a set of literals, called items. A transaction time is
associated with each transaction. Discovering sequence patterns means finding
correlations among the events in sequence data. A sequence pattern, or
sequence for brevity, is an ordered list of elements, and an element is a set of
items appearing together in a transaction. Elements need not be adjacent in time,
but their ordering in a sequence may not violate the time ordering of the
supporting transactions. An example of such a pattern is that a customer
typically rents “Star Wars,” then “Empire Strikes Back” and then “Return
of the Jedi.”

Note that the problem of discovering sequence patterns is different than the
problem of association rule discovery. Association rules discover the intra-
transaction relationships between various items, while the sequence patterns
discover the inter-transaction relationships between data sequences.

Many approaches have been proposed for finding frequent sequential patterns.
Agrawal and Srikant (1996) first introduced a breadth-first disk-based algorithm.
Subsequently, Han et al. (2000), Pei et al. (2001) and Zaki (1998) investigated
depth-first projection-based methods to mine sequence patterns. The depth-first
approaches generally perform better than the breadth-first approaches if the
data resides in memory. Recently, Yang et al. (2002) presented an algorithm to
mine frequent patterns in the presence of noise. Methods to mine sequences by
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incorporating constraints to reduce the search space have also been developed
(Garofalakis et al., 1999; Mannila et al., 1995; Pei, Han, & Wang, 2002).

Mining of Temporal Association Patterns

Another class of patterns in the temporal databases is the temporal association
rules. The discovery of temporal association rules analyzes the data in finer time
granularity. It may reveal that the association rule exists only in certain time
intervals, and does not occur in the remaining time intervals. For example, the
pattern “coffee and doughnuts have a strong tendency to occur together
with high support during the time interval 7AM - 9AM” is a temporal
association rule.

Many approaches have been proposed for mining the temporal association
patterns, such as cyclic association rules (Özden, Ramaswamy, & Silberschatz,
1998), periodic association rules (Han, Dong, & Yin, 1999) and calendric
association rules (Ramaswamy, Mahahan, & Siberschatz, 1998). Chen and
Petrounias (2000) present a framework for mining temporal association pat-
terns. They define a temporal association rule as a pair <AR, TF>, where AR is
an implication of the association rule and TF is a temporal feature that AR
possesses. Temporal features can be represented by a valid period, periodicity
or a specific calendar. Depending on the interpretation of the temporal feature
TF, a temporal association rule <AR, TF> can be expressed in various forms,
such as a cyclic association rule, an interval association rule, a periodic
association rule or a calendric association rule.

Preliminary Work on Data Mining in Spatio-Temporal
Databases

Next, we examine the early attempts at pattern extraction in spatio-temporal
databases. A system called CONQUEST (Stolorz, Nakamura, Muntz, & Mechoso,
1995; Muntz, Shek, & Mechoso, 1995) was first developed to allow some means
of accessing and interpreting spatio-temporal data. It provides an environment
that enables geophysical scientists to formulate queries on spatio-temporal
patterns on massive data, such as cyclones, hurricanes and fronts.

Following that, researchers (Kumar et al., 2001; Tan, Steinbach, & Kumar, 2001;
Steinbach et al., 2001; Steinbach, Tan, Kumar, Klooster, & Potter, 2002)
attempted to mine interesting spatio-temporal patterns in earth science data.
They applied existing data mining techniques to find clusters, predictive models
and trends, and stated that existing data mining algorithms cannot discover all the
interesting patterns in spatio-temporal data (Tan et al., 2001).
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Abraham and Roddick (1997) introduced the concept of spatio-temporal meta-
rules to describe the changes in rule sets obtained from consecutive spatial
snapshots. For example, a spatial association rule A→B has the confidence and
support (c

1
%, s

1
%) at time t

1
, and (c

1
%, s

2
%) at time t

2
. Hence, the meta-rule can

be expressed as “the rule A’!B that describes the data at t
1 

changes support
between t

1
 and t

2
.”

Tsoukatos and Gunopulos (2001) presented an algorithm to discover frequent
sequences in a depth-first manner over all the locations in spatio-temporal
databases. This is essentially a sequence mining algorithm whereby each
location is treated as a transaction. The algorithm is able to find the common
temporal relationships of events in some locations, but not the relationships of
events among these locations.

Moving object databases have also received considerable attention recently.
Vlachos, Kollios and Gunopulos (2002) proposed a method for finding similar
object trajectories in two- or three-dimensional space by formalizing non-metric
similarity functions. Zhang, Gunopulos, Tsotras and Seeger (2003) examined the
problem of computing temporal and spatio-temporal aggregations over data
streams. The aggregates are maintained using multiple levels of temporal
granularity. Specialized indexing schemes are also designed for maintaining the
aggregates. Tao, Kollios, Considine, Li and Papadias (2004) introduced a method
for solving the distinct counting problem. This problem arises when an object
remains in the query region for several time stamps, which will result in the object
being counted multiple times. They propose to solve this problem by integrating
spatio-temporal indexes with sketches. They also use the same method to mine
the spatio-temporal association rules.

Patterns in Spatio-Temporal Databases

A spatio-temporal database embodies spatial, temporal and spatio-temporal
concepts, and captures simultaneously the spatial and temporal aspects of data.
The availability of both temporal information and spatial information introduces
opportunities and challenges of mining for spatio-temporal patterns that comple-
ment existing time-varying patterns or space-sensitive patterns. This section first
gives some definitions, followed by a discussion on the various types of
interesting patterns that can be extracted in a spatio-temporal database.

Suppose the space S could be divided into a set of locations L = {l
1
, l

2
,..., l

q
}. Each

location has a unique identifier. Let F = {f
1
, f

2
,..., f

u
} be a set of u spatial

features, such as drought, rain. Let R be a neighbour relation over the locations
in L.
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A location-based event or loc-event is a set of spatial features at location l
k

occurring at time t, denoted as e = (f
h
(l

k
), t) or simply e = f

h
(l

k
) when the sequential

context is clear.

Let E = {e
1
, e

2
, ..., e

m
} be a set of loc-event instances that occur at the same time

t, where e
i
 (1 ≤  i ≤  m) is in the form of f

i
(l). For convenience, we write E as <e

1
,

e
2
,..., e

m
>.

    Let W be the sliding window width, which indicates the temporal proximity of
the loc-events in the time dimension. A sequence is a list of E in the same sliding
window sorted by time, which has the same format as in the temporal database
(Agrawal & Srikant, 1996).

We observe four types of patterns in the spatio-temporal database shown in
Figure 1:

1. Co-location patterns.  Co-location patterns in a spatio-temporal database
aim to determine the set of events that frequently occur together; that is,
the locations of these events satisfy the neighbour relation R. For example,
when W = 15 days, <b(l

1
), f(l

5
), a(l

9
), d(l

9
)> is a co-location pattern.

2. Global sequence patterns.  A global sequence, s = {(s
1
→...→s

t
)::(X)},

where s
i
 (1 ≤ i ≤ t) is a set of spatial features (that is, s

i
 = {f

1
,..., f

p
}) and X

is a set of locations and X ⊆ L is a frequently occurring pattern if there are
at least τ different locations containing s. For example, {(d→b→e)::{l

1
,l

5
,l

9
}}

(τ = 2) is a frequent global sequence pattern.

3. Local sequence patterns.  A local sequence is a sequence s = {(s
1

→...→s
t
)::(l

x
)}, where s

i
 (1≤i≤t) is a set of spatial features (that is, s

i
 = {f

1
,

..., f
p
)}) and l

x
∈L. Given a sliding window W, we say that s is frequent if

there are at least τ different windows at location l
x
 containing s.

4. Location-sensitive sequence patterns.  A location-sensitive sequence
pattern is a list of events sorted by time, denoted as a = (E

1
→...→E

t
), where

E
i 
(1≤ i≤t) is an eventset with the format <e

1
, e

2
, ..., e

p
> and e

k 
(1≤k≤p) is

a loc-event. Given a sliding window W, a is said to be frequent if there are
at least sup different windows containing a. For example, the pattern
d(l

9
)→<a(l

9
), f(l

5
)>→b(l

1
) is a location-sensitive sequence pattern.

Figure 1. Framework of spatio-temporal databases
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Existing association rule or sequence mining techniques can be customized to
find co-location patterns and local and global sequence patterns. However, for
location-sensitive sequence patterns, the efficiency of existing methods is limited
by the large search space and large number of patterns. Hence, more efficient
algorithms are needed for mining location-sensitive sequence patterns.

Mining Location-Sensitive Sequence Patterns

One of the challenges in discovering location-sensitive sequence patterns is the
large search space. For example, 100 spatial features (f

1
, ..., f

100
) and 10

locations (l
1
, ..., l

10
) will yield 1000 different loc-items (f

j
|l

k
) (1≤j ≤100, 1 ≤k ≤10).

These 1000 loc-items will potentially generate up to







3

1000
= 166,167,000

location-sensitive sequences of length 3. Many interesting patterns are often
buried in the sea of frequent patterns. In practice, it is impractical to generate the
entire set of frequent spatio-temporal patterns when there are very long patterns
that present in the data. Hence, some smaller alternatives of the set of interesting
patterns that still contain enough information; for example, the set of frequent
closed patterns, the set of maximal frequent patterns, become increasingly
attractive and important. Let us consider the problem of mining the set of
maximal frequent location-sensitive sequence patterns.

A location-sensitive sequence pattern with k location-based events (k= ∑
j 
e

j
) is

called a k-LocSeq. For example, a(l
1
) →<b(l

2
), a(l

3
)> is a 3-LocSeq. A pattern

P = (E
P1

→E
P2

→...→E
Pt

) is a sub-LocSeq of another pattern Q = (E
Q1

→E
Q2

→...
→E

Qs
), denoted as P ⊆ Q, if there exist integers 1≤i

1
 < i

2
 < ... < i

t
 ≤s such that E

Pj

⊆ E
Qij 

for all E
Pj

. If P is a sub-LocSeq of Q, Q is also called the super-LocSeq
of P. A location-sensitive sequence pattern is maximal if it is not a sub-LocSeq
of any pattern.

Given a database D of location sequences, neighbour relation R, minimum
support minsup and sliding window W, the problem of mining location-sensitive
sequence patterns in spatio-temporal databases is equivalent to finding the set of
all maximal frequent location-sensitive time sequence patterns.

Methods to mine frequent sequence patterns are not suitable for mining the
maximal frequent sequence patterns. The Apriori-based sequence mining algo-
rithm (Agrawal & Srikant, 1996) is not efficient for mining maximal frequent
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patterns for two reasons. First, it generates and counts all the 2k subsets of each
k-sequence, and hence, it does not scale for long patterns. Second, it uses the
breadth-first approach which finds all the frequent k-sequences before consid-
ering (k+1) sequences. This approach limits the effectiveness of look-aheads
since useful longer frequent patterns have not yet been discovered.

Tsoukatos and Gunopulos (2001) and Zaki (1998) utilized a depth-first approach
to improve the performance in discovering maximal frequent patterns. While this
approach can find the maximal frequent patterns and prune away the infrequent
sequences, they require the exhaustive enumeration of all the possible k-
sequences to find the frequent (k+1) sequences. When the patterns are long, the
effectiveness of these approaches becomes limited.

On further investigation, we observe that a sequence pattern of length 2 specifies
a temporal relationship between frequent items that must be maintained in the
higher-order sequence patterns. These temporal relationships can be utilized to
drastically reduce the number of candidates generated. Hence, we design a new
candidate generation method that uses the depth-first approach, and develop an
efficient algorithm, called FlowMiner, for mining maximal frequent location-
sensitive sequence patterns (Wang, Hsu, Lee, & Wang, 2004).

The FlowMiner algorithm first scans the database to retrieve all the neighbor-
hoods NL according to some neighbour relation R, such as topological relations,
metric relations or direction relations. We are interested in the locations where
instances of spatial features occur. After obtaining all the neighborhoods NL, the
location-time sequence patterns for each neighborhood L ∈NL can be discov-
ered in three main steps: First, we determine all the frequent 1-LocSeqs. These
frequent 1-LocSeqs are sorted in decreasing order of their frequencies. Next,
we form the candidate 2-LocSeqs by joining two frequent 1-LocSeqs. Finally, we
utilize the temporal constraints specified by the 2-LocSeq to generate the
subsequent k-LocSeqs (k > 2). This is possible because each 2-LocSeq specifies
a temporal relationship that must be maintained by the higher-order LocSeqs.

Use set(d(l
9
) + a(l

9
)) to indicate the set of frequent 2-LocSeqs generated by the

loc-events d(l
9
) and a(l

9
). The original set(d(l

9
) + a(l

9
)) consists of three 2-

LocSeqs {a(l
9
)→d(l

9
), <a(l

9
), d(l

9
)>, d(l

9
)→a(l

9
)}, indicating that the loc-event

a(l
9
) may occur before, at the same time or after the loc-event d(l

9
) respec-

tively. Suppose we have three sets of frequent 2-LocSeqs:

set(d(l
9
) + a(l

9
)) = {d(l

9
)→(l

9
)}

set(d(l
9
) + b(l

1
)) = {d(l

9
)→(l

1
)}

set(d(l
9
) + f(l

5
)) = {d(l

9
)→(l

5
)}
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If we extend a 3-LocSeq <a(l
9
), f(l

5
)>’‡b(l

1
) to a 4-LocSeq using the loc-event

d(l
9
), then an enumeration-based candidate generation method will generate the

following five 4-LocSeqs:

d(l
9
)→<a(l

9
), f(l

5
)>→ b(l

1
)

<a(l
9
), d(l

9
), f(l

5
) >→b(l

1
)

<a(l
9
), f(l

5
)>→d(l

9
)→b(l

1
)

<a(l
9
), f(l

5
)>→< b(l

1
), d(l

9
)>

<a(l
9
), f(l

5
)>→b(l

1
)→d(l

9
)

Note that we only consider it as one position when a loc-event e
k
 is inserted into

an eventset E
i 
since they describe the same fact. For example, suppose the event

is d(l
9
) and the eventset is <a(l

9
), f(l

5
)>. There are three different combinations

by inserting d(l
9
) in <a(l

9
), f(l

5
)>; that is, < d(l

9
), a(l

9
), f(l

5
)>, <a(l

9
), d(l

9
), f(l

5
)>

and <a(l
9
), f(l

5
), d(l

9
)>. All these combinations have the same meaning in that

events d(l
9
), a(l

9
) and f(l

5
) occur at the same time. Here, we assume the events

in an eventset are sorted alphabetically.

With this, it is clear that d(l
9
) can only be inserted into <a(l

9
), f(l

5
)>→ b(l

1
) at the

position before the eventset <a(l
9
), f(l

5
)>. Otherwise, we will violate the temporal

relationships defined by the set of 2-LocSeqs above as shown in Figure 2. Thus,
FlowMiner will only generate a single candidate 4-LocSeq, that is, d(l

9
)→<a(l

9
),

f(l
5
)>→b(l

1
).

The above example demonstrates that the temporal relationships specified by all
the 2-LocSeqs facilitate the elimination of a large number of infrequent candi-
dates from being generated. This leads to a highly efficient candidate generation
algorithm. Details of the algorithm to discover the location-sensitive sequence
patterns can be found in Wang et al. (2004).

We carried out experiments to compare FlowMiner with GSP (Agrawal &
Srikant, 1996), and PrefixSpan (Pei, Han, & Asl, 2001). Figure 3 shows the
results for the synthetic dataset C10T2D10k. Figure 3(a) gives the runtime for

Figure 2. Temporal relationships support of candidates

Candidates 
set(d(l9) + a(l9)) = 
{d(l9) →a(l9)} 

set(d(l9) + b(l1)) = 
{d(l9) →b(l1)} 

set(d(l9) + f(l5)) = 
{d(l9) →f(l5)} 

d(l9)→<a(l9), f(l5)> → b(l1) √ √ √ 
<a(l9), d(l9), f(l5) >→ b(l1) X X √ 
<a(l9), f(l5)> → d(l9) → b(l1) X X √ 
<a(l9), f(l5)> →< b(l1), d(l9)> X X X 
<a(l9), f(l5)> → b(l1) → d(l9) X X X 
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Figure 4. Fire location-sensitive sequence patterns in forest fire dataset

varying minimum support, and Figure 3(b) records the amount of memory used
by the three algorithms. We observe that FlowMiner outperforms GSP. PrefixSpan
outperforms FlowMiner when minimum support is large, but when minimum
support is low, FlowMiner outperforms PrefixSpan. The amount of memory used
by both FlowMiner and GSP are much smaller than PrefixSpan. The results
confirm that FlowMiner is more scalable as compared to PrefixSpan.

We also obtained two years of forest fire satellite images from a remote imaging
centre. These images contain 2,495,097 forest fire occurrences. We divide the
region into grids such that each region is 10 degrees in the longitudinal direction
and 10 degrees in the latitudinal direction. This translates to 49 regions in our

Figure 3. Response time vs. maximum frequent patterns

        
                                          (a)                                                              (b) 

(a) First Trend: From West to East in March and April
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(b) Second Trend: From South to Northwest in April and May

Figure 4. Fire location-sensitive sequence patterns in forest fire dataset
(continued)

database. Figure 4 shows a sample of the location-sensitive sequence patterns
that we have discovered in this dataset. The location-sensitive pattern is shown
at the top of the figure and the corresponding event fire in the patterns is indicated
as F. The temporal relationship is reflected in the change of the color tone from
light to dark while the spatial relationship is reflected in the color region. The fire
spots indicate two distinct spread patterns. The first trend is from West to East
(Figure 4(a)). This occurs mainly in March and early April. The second trend is
from South to Northwest (Figure 4(b)), which happens in April and May. The fire
spread patterns have been confirmed with the weather maps.

Patterns Involving Geographical
Features

A special class of spatio-temporal databases is the moving object databases.
Shekhar and Huang (2001) and Morimoto (2001) devised methods to find service
requests frequently issued near each other in spatial databases. While such
techniques are efficient in identifying the frequently co-located patterns, the
patterns found may be too general for useful analysis.
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Wang et al. (2004) observed that service requests are typically prompted by the
surrounding geographical objects. For instance, when nearing the exit of a
freeway, a driver would usually ask for information on the nearby restaurants
and gas stations. If we are able to identify a set of requests for services that are
always issued together, when certain geographical features present, then the
service provider or area developer can take the opportunity to promote a set of
services that are frequently associated with the same geographical features.
Furthermore, suppose the group of subscribers issuing these co-located service
requests shares some common characteristics. We may be able to discover
useful information regarding the habitual patterns of this group of subscribers.

Consider the following frequently co-located service requests of SARS1 patients
issued a few days prior to them being diagnosed as having contracted the disease
SARS. These service requests do not reveal any hint as to the likely source of
contamination of these SARS patients:

{Restaurant, Entertainment Place, Taxi, Hotel}; {ATM, Taxi, Eating Places};
{Taxi, Hair Salon}

However, if we incorporate the geographical features of these co-located
service requests, then we have the following patterns:

{{Airport}::{Taxi, Hotel}}

{{Supermarket}::{ATM, Taxi, Restaurant}}

{{Supermarket}::{Taxi, Hair Salon}}

which indicate that both the airport and the supermarket have a high concentra-
tion of SARS patients. As a result, a more-detailed screening programme can be
designed for these areas.

Geographical-Based NRS

We refer to the sets of service requests that are frequently located near each
other in the spatial distance as Neighbouring service Request Sets (NRS).
Finding the geographical features of NRSs involves mining patterns across two
types of databases; that is, moving object databases and spatial databases.
Moving object databases capture both the current and historical locations of
moving objects. Geographical features are the objects in the physical world,
such as roads, buildings, bridges, and so forth. In the spatial databases,
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geographical features are indicated by a polygon or a minimum bounding
rectangle (MBR).

Note that it is important to determine the conditions under which we consider two
service requests as being “close” and when the service requests are “close” to
geographical features. This is achieved through the use of two distance
thresholds, denoted as D

n
 and D

g
, respectively. Two service requests, r

1
 and r

2
,

are considered “close” if the Euclidean distance between them satisfies dist(r
1
,

r
2
) ≤ D

n
. Similarly, a geographical feature g is said to be interesting with respect

to a neighbouring service request set S if it is always close to all the points in S,
that is, dist(S, g) ≤ D

g
.

A geographical feature g is frequent if the number of instances exceeds the
minimum support. We call the frequent geographical features of a k-nrs as the
geographical features of k-nrs, denoted as {{g

1
, g

2
, ..., g

n
}::{r

1
, r

2
, ..., r

k
}, f

g
},

where {r
1
, r

2
, ..., r

k
} is a k-nrs, and g

j
 (1≤ j ≤n) are the frequent geographical

features of this k-nrs, and f
g
 is the minimum support.

Mining Geographical Features of NRS

In this section, we describe the process of discovering the geographical features
of the frequent NRS from the two databases. This involves two steps: (a) Finding
the frequent NRS from the moving object database; (b) Linking the geographical
features in the spatial database to the frequent NRS.

Finding Frequent NRS

In order to find all the frequent NRS, we generate the candidate NRS and
introduce an iterative method to count the support of the candidate NRS.

Candidate Generation: We observe that NRS satisfies the Apriori property;
that is, any subpattern of a frequent pattern is also frequent. Hence, we
use the Apriori approach (Agrawal & Srikant, 1994) to generate the candidate
NRS.

The candidate generation process proceeds level-wise. At level k, the k-nrs
(k ≤2) is generated by joining two (k-1)-nrs, T1 = (S.r

1
,… , S.r

k-2
, S.r

k-1
) and T2

= (S.r
1
, … , S.r

k-2
, S.r

k
). Once the candidates are generated, we need to count

the valid instances by performing pairwise distance comparisons of the k
requests to ensure that the instances satisfy the distance threshold D

n
. However,

this is not feasible due to the exponential complexity of this algorithm. To
overcome this, an iterative method called FindNRSSupport is introduced.
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The basic idea behind FindNRSSupport is to make use of the centroid information
to prune away the non-promising instances before performing the expensive
pairwise distance computations.
The algorithm counts the valid k-nrs as follows: It first finds the closest pairs
<T1j.oj,T2i.rk> satisfying the distance threshold Dn, where T1j.oj is the centroid
of the instance T1j. Then, it checks whether the pairwise distance among the k
points in k-nrs satisfies the distance threshold.

Linking the Geographical Features in the Spatial Database to the
Frequent NRS

To find the interesting geographical features of S, we first compute the centroid
for each instance sj of S. Next, we retrieve all the geographical features in the
spatial database that lie within the user specified distance of Dg from the
centroid. This is achieved by constructing a query window whose center is the
centroid and whose radius is equal to Dg. Finally, we update the frequencies of
the retrieved geographical features of S. Note that a geographical feature is only
counted once for S in its one instance search, no matter how many instances of
this geographical feature are close to the S instance.

Figure 5. Algorithm aprioriGSS
--------------------------------------------------------------------------------------------------------------------------------------------- 
Algorithm AprioriGSS 
--------------------------------------------------------------------------------------------------------------------------------------------- 
Input: DB: Moving object DB, Spatial DB; Dist-threshold: Dn, Dg; Minimum support: fn, fg 
Output: Geographical features of all k-nrs 
1. F1 = {frequent 1-nrs with geographical features} 
2. for (k = 2; Fk-1 ≠ Ф; k ++) do 
3.     Ck = CandidateGen(Fk-1) 
4.     for all candidates c ∈Ck do 
5.         c.sup = FindNRSSupport (c, Dn) 
6.     Ck = {c ∈ Ck | c.sup ≥ fn} 
7.     for all candidates c ∈Ck do 
8.         G = FindGeoFeature(c, Dg) 
9.         for all g ∈ c.geofeature and g ∈ G do 
10.           g.sup + + 
11.     Fk = {c ∈Ck | c.geofeature ≠ Ф and ∀g ∈ c.geofeature, g.sup ≥ fg} 
12.  Answer = ∪Fk 

--------------------------------------------------------------------------------------------------------------------------------------------- 
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Algorithm

Based on the above discussion, we designed an algorithm, called AprioriGSS.
Figure 5 gives the details of the AprioriGSS algorithm. Lines 3 to 6 find the
frequent k-nrs. Once the frequent k-nrs are found, Lines 7-10 search the spatial
database to determine the geographical features of these k-nrs. The k-nrs that
do not have any interesting geographical features will be pruned away even
though they are frequent. Only the k-nrs with interesting geographical features
are used to generate the candidates of (k + 1)-nrs (Line 11). This pruning
strategy allows us to reduce the number of candidates generated.

Comparative Study

Finally, we show the usefulness of geographical-feature based NRSs as com-
pared to co-located service requests. We generate service requests according
to some common real-life habits.

We used 100 service request types, each of which occurs with a probability
ranging from 0% to 70%. A correlation coefficient indicates the percentage of
service requests of a given type that are close to a geographical feature. This
coefficient E varies from 0% to 100% and it is treated as a parameter decided
by the user. For each service request type, E% of its requests is generated close
to a geographical feature based on the Gaussian distribution. The locations of

Table 1. Co-located service requests vs. geographical-based NRS

Co-Located Service Requests Support Count 
{ATM, Pharmacy, Entertainment Place} 2761 
{Restaurant, Gas Station, Direction Guide} 1734 
{Taxi, ATM, Shopping Mall, Hairdressing Salon} 1845 
{Client's Office, Direction Guide, Restaurant} 3421 
{ATM, Taxi, Restaurant, Client's Office} 2142 
{Restaurant, Entertainment Place, Taxi, Hotel} 1421 

Geographical-Based NRS Support Count 
{{Clinic}::{ATM, Pharmacy}} 1323 
{{Shopping Complex, Hotel}::{Restaurant, Entertainment Place}} 1123 
{{Freeway Exit}::{Gas Station, Direction Guide}} 2312 
{{Airport}::{Taxi, Hotel}} 889 

(a)

(b)
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these requests are varied according to a deviation parameter V = 50 from the
centroid of the geographical feature. The remaining 1-E% requests are gener-
ated using the uniform distribution. A total of 100,000 requests are generated.

We utilize the Singapore map as our spatial database, which contains 50 types
of geographical features. Table 1 shows some of the interesting patterns we
found and their support counts. When we show both sets of patterns to some
decision makers, they unanimously prefer the geographical-based NRS patterns.

Conclusion and Future Research
Direction

Mining in spatio-temporal databases is still at its infancy. While some may feel
that spatio-temporal databases are nothing more than another type of high-
dimensional database, we have seen the patterns that can be discovered in
spatio-temporal databases go beyond just regarding the objects as points in a
high-dimensional space. It is important to have a clear understanding of the
relationships among events, time and space. Fundamental issues such as
representation schemes, data cleaning, discovery algorithms and interestingness
issues need to be examined in new lights.

Numerous research opportunities exist in the mining of spatio-temporal data-
bases. Traditional data mining techniques do not deal adequately with problems
of high dimensionality, uncertainty and spatial or temporal correlations. Future
research directions in spatio-temporal data mining include:

• Incorporate spatio-temporal autocorrelation into standard data mining
techniques like regression, classification, clustering and association rules.

• Create new similarity models and indexing techniques for higher-dimen-
sional trajectory data; and efficient algorithms that do the trend/sub-
trajectory matching queries.

• Create new measures of quality of rules generated, since traditional
measures of support may not be meaningful here.
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Abstract

In this chapter we review similarity learning in spatial databases. Traditional
exact-match queries do not conform to the exploratory nature of GIS
datasets. Non-adaptable query methods fail to capture the highly diverse
needs, expertise and understanding of users querying for spatial datasets.
Similarity-learning algorithms provide support for user preference and
should therefore be a vital part in the communication process of geospatial
information. More specifically, we address machine learning as applied in
the optimization of query similarity. We review appropriate definitions of
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similarity and we position similarity learning within data mining and
machine learning tasks. Furthermore, we outline prerequisites for similarity
learning techniques based on the unique characteristics of the GIS domain.
A description of specific methodologies follows based on the highly diverse
attributes of GIS datasets (for example, text, images, video), and application
examples are presented. We summarize previously set requirements and
present future trends expected to emerge in the coming years.

Introduction

Databases containing geographic information have been through substantial
changes in the past decade. Improvements in acquisition methods coupled with
increased information dissemination through the Internet have altered substan-
tially their characteristics. Nowadays geospatial databases are increasingly
incorporating temporal information in order to enable novel analysis capabilities
through spatiotemporal modeling. They may also incorporate diverse information
types like video, text and sound, in addition to the traditional raster, vector and
thematic types. All these changes are expanding the applicability of geographic
information systems (GIS), while at the same time increasing the difficulty in
modeling and managing their content.

Problem Description

The increase in geospatial information availability has been matched by an
expansion of the relevant user community, and an increase in the complexity of
demands by such users. Thus, even though there exist increasing volumes of
geospatial information, there are very good chances that a GIS query may not
have an exact match in a corresponding database. To address this problem,
similarity algorithms have been developed. The goal of a similarity algorithm is
to compare each query to the available information in the database and produce
a metric (or ranking). This metric expresses how close (appropriate) each of the
available answers is to the query. For example, when a user requests an aerial
photograph from 1956, the similarity algorithm will compare the request (Time
= 1956) to the temporal footprint of the aerial photographs available in a
database, and will rank these photographs based on their similarity to the user
request. A popular example of such a similarity algorithm is nearest neighbor:
The photograph that is closest (temporally) to 1956 would be the best choice.

Traditional similarity algorithms have been widely accepted because their
simplicity allows fast answers to user queries, accompanied by preference
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indices describing how close an answer is to the query. In constrained environ-
ments where the usage of information does not vary significantly, similarity
algorithms perform well. But what happens when there is a highly variable
“expectation” of results? Geographic databases are a representative example of
this diversity. For example, two users might perform the same query, seeking a
satellite image with 1m ground pixel size (resolution = 1m). However, their
preferences may vary significantly due to different usage/restrictions. For
example, user A may accept a black-and-white aerial image of the same area,
with ground resolution of 0.1m as 100% similar to his/her request, while user B
may object to such an alternative because it does not offer the radiometric
properties (that is, multispectral representation) of the satellite image.

Similarity Learning

To address issues like the above, a similarity learning algorithm is deployed.
Similarity cannot be assessed based on a fixed set of universal metrics, but rather
should make use of adjustable profiles. This way, results can be customized to
take into account particular user needs and/or application requirements. The
learning process in a similarity learning algorithm involves the identification of
such profiles based on a training set provided by the user.

In the context of this chapter, similarity learning is defined as the task of
capturing user/application similarity preference and incorporating this informa-
tion in the query process to support the retrieval of geospatial information.
Similarity learning has been an active research field for more than two decades.
As computational power increases every year, more sophisticated algorithms
are developed. In the field of GIS, one would expect that the recent information
proliferation and the diversification of the user community would be accompa-
nied by more demanding, customized queries that only a learning algorithm could
address efficiently. But in reality, similarity learning, although popular in other
domains, remains at an early stage in GIS applications. There are a few attempts
to address the issue in the literature, but these seem isolated and concentrate on
specific aspects of the problem (for example, addressing only spatial similarity
and ignoring other attributes). On the other hand, there is an extensive collection
of learning techniques in other domains that do not consider the unique charac-
teristics of spatial databases. Transition of these techniques to GIS collections
is feasible but leaves room for improvement. Furthermore, the move towards
multimedia geospatial information (including, for example, sound) is extending
the applicability of geospatial data, but at the same time is increasing the
complexity of user preferences. This mandates advanced similarity-learning
algorithms that can seamlessly merge this multi-type information.
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Outline and Scope of the Chapter

In this chapter we provide an overview of similarity learning in GIS and spatial
databases. More specifically, we begin with appropriate definitions of similarity
as supplied by psychologists and applied in databases. We proceed to position
similarity learning within the broader framework of knowledge discovery and
data mining, with emphasis on issues related to machine learning. In the rest of
the chapter we focus specifically on GIS. We outline prerequisites for similarity
learning techniques based on special characteristics of the GIS domain, and
provide a categorization of similarity attribute types, leading to a description of
specific methodologies based on the highly diverse potential attributes/tasks. We
conclude with a discussion on the applicability of current approaches, summarize
previously set requirements and present future trends.

We should note that the goal of this chapter is to provide a general framework
for the variety of similarity-learning tasks as they surface from the special
characteristics of and the emerging trends in the GIS domain. Considering the
current early stage of research in this area, the chapter serves as a survey that
identifies unique requirements and challenges in addition to discussing explicit
solutions.

Similarity Learning: Multi-Disciplinary
Viewpoints

Before we proceed to examine similarity learning within GIS databases, it is
appropriate to position this task within the broader research web. In this section
we provide a brief overview, essential for a GIS researcher addressing similar-
ity-learning issues though not necessarily an expert in related fields.

Our overview begins with definitions and realizations from psychology, to
provide a more theoretical foundation for this practical task. We continue with
a short description of similarity learning within data mining, and finally, we present
similarity learning in the context of machine learning. A more specific analysis of
the latter is presented in later sections, after the special characteristics of the GIS
domain are established. These three fields (psychology, data mining, machine
learning) reveal a multifaceted, challenging identity for similarity.
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Similarity in the Context of Psychology

The intuitive path towards understanding similarity and the mechanisms that
affect it begins in the field of psychology. Human ability to assess similarity is an
important aspect of human perception, and cognition and plays a central role in
theories of human knowledge representation, behavior and problem solving
(Holt, 2000). One of the most influential works in psychology with respect to
similarity comes from Tversky (1977). He describes similarity as “an organizing
principle by which individuals classify objects, form concepts and make gener-
alizations.” In an earlier work, Quine (1969) proposed that our sense of similarity,
our grouping of kinds, is both innate and accumulative; innate in terms of having
the concept of similarity embedded in our inborn senses but also accumulative
because people learn through maturation and development.

In another interesting work Popper (1972) stated that similarity between two
things is always relative to a certain respect in which they are compared, a
certain perspective or interest. In addition, Chi, Feltovich and Glaser (1981)
showed that the basis for similarity changes with expertise. In their experiments
they noticed that novice users tend to classify on the basis of superficial or
surface features, while experts investigated deeper, underlying principles.
Furthermore, Smith and Heise (1992) argued that the role of perceptual similarity
in conceptual development has been substantially underestimated because of the
tendency to view perceptual similarity as fixed. For in-depth analysis from the
psychology perspective, the reader is referred to Medin, Goldstone and Gentner
(1993).

Considering the particularities of spatial databases, we can recognize that
current typical query processes partially support the above findings. For ex-
ample, traditional exact-match queries do not conform to the exploratory nature
of GIS datasets, while other non-adaptable query methods fail to capture the
highly diverse needs, expertise and understanding of users querying geospatial
datasets. Introducing similarity-learning algorithms in the communication pro-
cess of geospatial information will enhance user capabilities. In the next two
sections of our general literature review, we examine methodologies from the
more practical point of view.

Similarity Learning in Data Mining

The similarity learning task can utilize methods from the wide range of data
mining tasks. Classification is an example; it refers to learning a function that
maps a data item into one of several classes (Hand, 1981). Similarity learning
involves the classification of an input into one of several classes, based on its
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similarity to these predefined classes. Several methodologies can be borrowed
from classification, when the output of the similarity learning algorithm is discrete
(that is, categorical). If the output is continuous, then regression techniques are
more appropriate. These techniques are used to map a data item to a real-valued
prediction value by learning a function that does this mapping. An important trend
in recent years is the incorporation of temporal information in GIS. Time series
analysis examines the value of an attribute as it varies over time; therefore,
useful techniques can be borrowed.

The above tasks explicitly help in a similarity-learning process. In addition to
these, there are others that can optimize the learning process without affecting
the similarity learning per se. Association rules is one such example, where
relationships are uncovered among data. Such analysis can help, for example, to
learn dependencies between successive similarity queries; in other words,
project future queries. Clustering is usually accomplished by determining the
similarity among the data based on predefined attributes. It can be used as a pre-
processing step. Summarization involves methods for finding a compact de-
scription for a subset of data. These techniques are often applied to interactive
exploratory data analysis and automated report generation and can be integrated
with the input/output of a similarity-learning algorithm, but not the learning
process itself. Here we should mention that borderlines along these tasks are not
crisp, since one task might borrow techniques developed for another; nonethe-
less, each of these tasks has its distinct methodologies (Dunham, 2002).

Similarity  Learning in Machine Learning

Machine learning (ML) has proven to be a fruitful area of research, spawning
a number of different problems as well as algorithms to their solutions. These
algorithms vary in their goals, training datasets, learning strategies and represen-
tation of data. Applications of machine learning algorithms have found fertile
ground in the database community for data mining purposes. Similarity learning
is one of many applications of ML in databases. The current evolution of
similarity-learning algorithms is the result of years of influence from different
disciplines that ML encompasses, such as statistics, databases and artificial
intelligence. Consequently, a major trend in the database community is to
combine results from these seemingly different disciplines into one unifying
algorithmic approach. Therefore, a multi-disciplinary approach is an inherited
requirement for similarity learning tasks.

If we relate the problem of learning from data to the general notion of inference
in classical philosophy, we can identify two main phases (Kantardzic, 2002):

• Induction: Learn or estimate unknown dependencies in the system from
a given training set.
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• Deduction: Use these dependencies to predict outputs for future input
values in the system.

Induction can be seen as the progress from particular cases (training data) to a
general mapping or model. On the other hand, deduction starts with a general
model and, using given input values, it progresses to particular cases of output
data. Clearly, similarity learning is an inductive task, since the model is not known
in advance; it is identified through the training process.

There are two types of inductive learning methods, supervised and unsuper-
vised. Supervised learning is used to estimate an unknown dependency from
known input-output samples. A supervised approach learns by example. A
training input should be provided together with some correct answers (outputs).
The term “supervised” is used to emphasize that the output values are known;
in essence, provided by a teacher. Under the unsupervised learning category we
observe only the features and have no measurements of the outcome (that is, no
output values are provided during the learning process). Unsupervised learning
does not require a teacher; the learner forms and evaluates the model alone. The
goal is to describe how the input data are organized (Hastie, Tibshirani, &
Friedman, 2001).

Since most similarity-learning algorithms learn from example, they can be
categorized as a supervised inductive task. The user is required to provide a
similarity evaluation to a presented example, acting as a teacher for the
algorithm. Popular ML methods that could be used include neural networks,
decision trees, instance-learners, genetic algorithms and others.

Specific Prerequisites for Learning in
Spatial Databases

In the previous section we positioned similarity learning with respect to data
mining and ML. In this section we focus on similarity learning within GIS. We
introduce a variety of desired properties that a learning algorithm should
incorporate to address similarity within a geospatial environment as a result of
the unique characteristics of the domain. These characteristics range from
difficulty in formalizing the geographic domain and granularity issues to high data
volume and diverse data types leading to conceptual dimensionality grouping and
high dependencies among dimensions (attributes). An in-depth discussion can be
found in Mountrakis, Agouris and Stefanidis (2004).

Beyond the traditional ML goals, such as scalability (algorithms should scale up
to perform well with massive real-world datasets) and robustness (ability to



Similarity Learning in GIS   301

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

perform well consistently), GIS-specific demands require the following prereq-
uisites:

i) Complex design and integration. The diverse nature of geographic data
types imposes several challenges. For example, widely different techniques
should be used for similarity learning applied to text, images and numeric
database tuples. In other words, specific tools should be incorporated to
address particular data types within this diverse group (specific tools for
specific jobs). Integration of similarity results from all data types into one
final product using a seamlessly unified approach for tools that might be
extensively diverse is an additional concern. These tools might come from
different disciplines, from statistics to artificial intelligence. Integration
techniques should also handle potential dependencies, making this task
even harder.

Another issue that relates to non-linear systems is that as complexity
increases it becomes more difficult to control system behavior. Ideally, a
learning system should be complex enough to model the underlying problem
but simple enough to train and analyze. Especially in geospatial/multimedia
datasets, where the learning task is characterized by such diverse and
complex properties, this so-called transparency (ability to assess the
contribution of each processing element) of the system is essential. System
transparency allows user interpretation and fine-tuning of each processing
element behavior. Also, updating of the algorithm to new behavior could
potentially require less effort. If the design is successful, even non-expert
users can interfere during training, a desirable characteristic in every
learning process.

ii) Training set constraints. A learning algorithm is as good as the given
training set. In the case of similarity learning, the training set is provided by
the user; therefore, user expertise plays an important role in the process.
Novice users might have a vague idea of what they are looking for, while
expert users are more demanding, thus more specific to the sample they
would provide. This can affect the learning algorithm in several ways.

First, the type of training set itself may vary. It can be continuous (for
example, a percentage of similarity) or discrete ( “similar,” “very similar,”
etc). It can include a detailed relationship between different samples (for
example, how much more similar is one from the other) or remain at a
ranking level (sample 1 is more similar than sample 2). These training
choices often dictate or eliminate the possible learning techniques used.

Another important limitation is the available number of training samples; in
other words, the size of the training dataset. It is somewhat cumbersome
to rely on users to provide countless training samples before they start using
the system. That is an inherent problem associated with the complexity of
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the domain and the dimensionality of the input learning space. Potential
solutions include a multi-level training process where the complexity of the
learning algorithm is adjusted based on the complexity of the problem
(Mountrakis & Agouris, 2003), and incorporating domain knowledge in
order to bound the hypothesis space. In the first case, during the training
process the user is initially asked to supply a limited number of training sets.
The learning algorithm should then investigate the underlying complexity
and if necessary refine the training process through an intelligent relevance
feedback technique where only “gray” areas are further processed. The
incorporation of domain knowledge is discussed below.

iii) Incorporation of prior domain knowledge. One of the key elements to
the successful development of a learning algorithm is the addition of explicit
knowledge as expressed through rules, functions and design choices. In our
case, this would translate into knowledge on the nature of similarity
preference the user might communicate. This is not directly associated with
ML, but can affect it in a great respect if ignored. Relevant studies are
performed in the psychology discipline and cognitive scientists. Their
findings are not always easily translatable; therefore, they cannot be
directly incorporated into learning algorithms. Nonetheless, some funda-
mental rules of similarity behavior can be extracted and supported. For
example, Shepard (1987) showed that similarity exponentially decreases
proportionally to the distance of the candidate from the target value. Yet a
large portion of similarity-learning techniques assumes a linear decrease of
interest within each attribute and then attempts to recover from that using
complex non-linear systems to aggregate similarity from each dimension.
An example of incorporation of Shepard’s findings can be found in
Mountrakis and Agouris (2003).

Geospatial information is the subject of numerous diverse applications.
Accordingly, one could recognize multiple user profiles in terms of prefer-
ences. For example, a user queries for an aerial photograph taken in
summer of 2000. In response to this request, the database could have two
aerial photographs, one from winter 1999 and another from summer 1997.
For the majority of users the 1999 photograph would have a better ranking
than the 1997. But for some users (for example, biologists studying
deciduous trees and therefore not interested in winter pictures), the 1997
photograph might be more appropriate. Identifying user groups that share
common profiles and assigning each subsequent user to the correct profile
group is a major challenge when designing learning algorithms. This profile
grouping can be a result of a large number of extracted profiles and/or
domain expert input for expected similarity behavior.

Similarity behavior types should also not be ignored by the training process.
We can identify two types of similarity preference rules based on the
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applicability range, global and local ones. Global rules have influence on
a large range of the input space of the algorithm, while local rules have more
restricted range of application but usually great effect to justify their
existence. Combination of both types may often be necessary to describe
complex user preference.

For example, a user might request imagery to evaluate the parking lot
congestion of a university campus. Naturally the user would expect an
image during working hours (8am-5pm). This temporal similarity prefer-
ence is shown with light gray in Figure 1a (upper part). However, in addition
to this broad preference, another highly localized preference pattern also
exists, whereby lunch break hours (12pm-1pm) should be excluded, as they
do not reflect a typical situation. This negative localized preference is
indicated by the dark function (Figure 1a, lower part). The overall complex
preference is expressed by the aggregation of global and local functions
(Figure 1b).

iv) Uncertainty support. Uncertainty is an issue that the GIS community has
focused on in recent years. As data collection techniques become more
comprehensive, uncertainty measures are included with the observations.
We can recognize two interesting uncertainty-related issues for similarity
learning: uncertainty in training samples and uncertainty of the database
content.

• Uncertainty in training samples. User preferences expressed
during a training sample selection are not deterministic values, and
therefore introduce some uncertainty in subsequent similarity assess-
ment. For example, a user may state during training that a 1999 map

Figure 1. Temporal preference example

  

a) Global and local similarity
functions

b) Their aggregation forming the
final preference
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is 80% or “very similar” to a 1994 requested map, while at the same
time provide a confidence value for the answer (for example, 90%
certain or “almost certain” of this fact). Subsequent similarity-
assessment algorithms have to make use of this information by trying
to fit more accurately samples with higher confidence than others.

• Uncertainty in database content. In this case, uncertainty is
associated with the actual content of the database. Learning algo-
rithms would have to learn how uncertainty affects users preference.
For example, users might want imagery from 1999, but they also want
the accompanied date to be accurate enough (for example, temporal
uncertainty of a day) so that they can get additional data from other
sources and reference them accurately in time with the requested
imagery. To accommodate this, learning for this specific example
should take place in two different dimensions, the temporal dimen-
sion and the temporal uncertainty dimension. Therefore, uncertainty
information associated with the observed values would act as addi-
tional input in the learning process; in other words, as another training
sample that the algorithm should model.

Similarity Learning in GIS

In this section we provide an overview of learning techniques applied to the highly
diverse data types of a geographic database. Each object stored in the database
is described by a set of attributes. The attribute class is a template definition of
the variables for a particular kind of object. Thus, an attribute instance is a
specific value of a class; it contains real values consistent with the class
definition. Similarity assessment can be performed in these two levels, the class
and the instance level. Attribute class-level similarity assessment provides an
evaluation of the degree to which two different classes resemble each other
semantically, and is described below. Attribute instance-similarity assessment
aims at the evaluation of the degree to which two different values of the same
attribute are similar, and is examined in detail in following sections. In these
sections, and in order to assist our analysis of instance-based similarity learning,
we follow a classification of data types which is by no means exhaustive or
unique; it should rather be viewed as a basic organization of the wide variety of
database content from the similarity learning point of view. A detailed discussion
comes afterwards based on the data type organization. We examine each group
of data types, what distinguishes them from others, and the applicability of
corresponding similarity-learning techniques.
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Semantic  Similarity

This similarity assessment addresses the semantic comparison of a database
object class to the corresponding class of the query object. The query formulation
may be using terms/descriptors that differ from the ones in the database
ontology. This is a challenge that has been acknowledged as the identification
and resolution of differences in the definition of geographical concepts (Kavouras
& Kokla, 2002). For example, if a user queries on “Image Scale” and the
database has an attribute class described as “Ground Pixel Size,” the question
to be addressed is whether these two terms are similar, and if so, by how much.
A learning algorithm could make appropriate customization for users. The issue
we examine is often encountered in geospatial applications, due to the aforemen-
tioned trend to integrate heterogeneous repositories of information, with differ-
ent ontological schemata used to describe their content. Within the context of this
chapter, an ontology is defined as a type of knowledge base describing concepts
through definitions that express the semantics of a domain. Its purpose is to
reflect the relevance of data in a query process by providing a declarative
description of semantic information independent of data representation (Goñi,
Mena, & Illarramendi, 1998). Some representative metrics used for this seman-
tic-similarity assessment are synonyms, common features and semantic rela-
tions of entity classes. For a recent application of ontologies in the spatial domain,
along with a more detailed view on ontologies, the reader is referred to Rodriguez
and Egenhofer (2003), Fonseca, Egenhofer, Agouris and Camara (2002), and for
a discussion on spatiotemporal issues, to Grenon and Smith (2004).

Semantic similarity is not constrained to a direct attribute-to-attribute compari-
son at the class level. As mentioned before, attributes can be grouped together
to form conceptual entities. For example, a Satellite Image entity in a spatial
database might represent a number of attributes, such as scale, spatial coverage
and time. The same can be claimed for another entity, Aerial Photograph. Even
though with the proliferation of novel sensors the boundaries between these two
concepts become fuzzy, they still have certain differentiating properties. The
challenge from a similarity learning point of view is to understand the user
perception of similarity between the concepts/entities of Aerial Photographs and
Satellite Images. By using this information, advanced integration of multi-source
retrieval can be achieved (if desired).

Within the GIS domain, semantic similarity has been a fairly active area for the
past few years. Geographic semantic learning, though, has not caught up yet,
mostly due to lack of generally accepted semantic metrics. Even so, we should
mention a couple of initial steps, where semantic similarity is user-specific.
Malerba, Esposito, Lanza and Lisi (2001) present an algorithm for learning
concepts and dependencies among them in topographic maps. Also, Rodriguez
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and Egenhofer (2004) have proposed a semantic matching algorithm (without the
learning part), where the matching process supports contextual considerations;
in other words, user-dependent relative importance in distinguishing semantic
matching features.

Data/Attribute Type Organization

Geospatial datasets have evolved significantly through the years. Initially the
spatial component was added to traditional databases, leading to spatial data-
bases. More recently, advances in sensors and computing capabilities have
enabled the collection and storage of multitemporal instances of spatial objects
leading to spatiotemporal databases. Furthermore, geospatial datasets are
beginning to be enhanced with multimedia capabilities by adding, for example,
sound and annotations to generate prototype multimedia GIS. This evolution of
information content in GIS databases is shown schematically in Figure 2.

As a result of this evolution of information content, GIS databases currently
include a variety of data types, ranging from the traditional thematic, vector and
raster data to dynamic (for example, temporal sequences, video) and multimedia
data types. Different data types render themselves suitable to different similarity
learning algorithms, so the following classification is important:

• Thematic information tends to be alphanumeric, and is not geometric or
positional.

• Vector and raster data are traditionally associated with geospatial data-
bases.

• By considering multitemporal information, we introduce dynamic datasets
in our GIS as ones that capture temporally evolving GIS information.

• Finally, information such as (often unstructured) text annotation or sound
is adding a multimedia dimension to traditional GIS databases. It should be
noted that even though video datasets are often considered multimedia,
under our classification scheme they are treated as dynamic datasets to
differentiate between spatiotemporal and multimedia databases.

Figure 2. Evolution of information content in GIS databases
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Table 1 offers a visualization of the above presented classification scheme of
GIS databases and corresponding data types. Squares’ filling signifies modeling
progression in these data types. Dynamic data have been added the past decade,
and there are some works addressing several spatiotemporal issues, but there is
still a long way to go. Multimedia data have been included recently, so most
research problems are still open. The dotted line between vector and raster type
suggests that often database content supports one of the two types, but not both
simultaneously.

Thematic Type

Thematic type attributes are not restricted to GIS datasets. Due to their extended
applicability in the spatial domain, though, they have been the focus of research
for geographers and cartographers for many decades now. Many taxonomies
have been introduced based on different measurement scales. Such examples
include counts versus measurements, qualitative versus quantitative, and metri-
cal versus categorical measurements (Hand, Mannila, & Smyth, 2001). For our
categorization, we make use of the four scales of measurement as introduced by
Stevens (1946); namely nominal, ordinal, interval and ratio measurement types.

• Nominal. Data that do not have a natural ordering fall in this category.
They can be numbers or text and they are used as labels or names. For
example, the owner names of land parcels.

• Ordinal. These attribute types are ordered but do not express information
about the differences between the ordered values. An example would be
the values of “black,” “gray,” and “white” for color.

• Interval. An interval attribute has numerical distances between any two
levels of the scale. They do not have a measurement origin, though. A
typical example would be a temperature reading (Fahrenheit, Centigrade,
and so forth).

↓Database, Data Type → Thematic Vector Raster Dynamic Multimedia 

Spatial � � �   

Spatiotemporal � � � �  

Multimedia GIS � � � � � 
 

Table 1. State of the art in data type modeling for GIS applications 

Table 1. State of the art in data type modeling for GIS applications

(��= advanced modeling solutions,���= early formalization stage,
��= rudimentary solutions)
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• Ratios. When the attribute values have an origin in addition to being ordinal,
then they belong to the ratio type. An example would be the percentage of
free parking spots.

From the similarity perspective, interval and ratio scales of data require similar
learning techniques. Their only difference relies on having an origin of measure-
ment or not. This can be rectified through appropriate normalization, a common
preprocessing step for data preparation for machine learning algorithms. It is
important to mention that even though the type of data in this category is common
with other non-geographic databases, similarity preference might not be. For
example, the “Ground Pixel Size” thematic attribute can demonstrate diverse
preference based on application usage. Photogrammetrists will probably be less
flexible than oceanographers for larger pixel size, just as non-profit organizations
will be more stringent towards smaller pixel size due to acquisition costs.

Ordinal data do have some relative order, but because this distance between
ordered values is not quantifiable, regression techniques (for example, neural
networks) are not easy to apply. Other methods, such as decision trees, might be
more appropriate. As for the last scale category, the nominal, it is a textual
matching process. Learning involves identification of possible relations between
nominal values (for example, synonyms, same root). A thesaurus is often used,
and learned domain knowledge is incorporated as these relations. Many methods
used in this category overlap similarity learning especially in textual databases
that are examined in more detail later.

Vector Type

Vector models are an essential part of most GIS databases. Spatial objects are
represented as points, lines, polygons or hyper-polygons. We distinguish two
categories of spatial vector matching; the single object similarity, where indi-
vidual objects are compared, and the scene similarity, which is comprised of
similarity assessment between collections of objects.

Single Object Similarity

There are two major issues involved in object matching from the learning
perspective: geometric transformations and shape changes. The first type of
similarity learning involves identification of user preference towards geometric
transformations. By geometric transformations we mean translation, rotation,
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scaling and others. We assume that the query object can match a database object
with application of one or more geometric transformations. Users are presented
with such (query, database) pairs of spatial objects. The goal of a learning
algorithm is to identify how each of these transformations affects similarity
results. For example, when users query for a football stadium, they might be more
tolerant toward rotation and translation but have a more strict preference
towards scale. Note that the geometric transformations should be adjusted to the
vector representation (for example, rotation and scaling do not apply to points,
more than one scale for 2D polygons, and so forth).

In the second case, similarity learning attempts to capture user tolerance to
shape changes that are not described by any known geometric models. In other
words, this category contains algorithms for shape matching. There is substantial
work in the literature addressing this issue. For a recent review of methods, refer
to Veltkamp (2001). A simple example of a vector query is shown in Figure 3.
The goal for a single object matching is to find a one-to-one correspondence
similarity metric; in other words, A→A', B→B' and C→C'.

In general, we distinguish the following vector similarity approaches: ones that
use the vector spatial representation as is, and ones that calculate shape statistics
(descriptors), such as area, circularity, eccentricity, compactness, major axis
orientation, Euler number, concavity tree and shape numbers (Ballard & Brown,
1982; Prokop & Reeves, 1992). In a learning process, relative weights and
dependencies of these descriptors are captured. There are also approaches that
transform the problem in a different similarity space (for example, using Fourier
transformation).

Figure 3. Spatial vector query example

b. Candidate vector responsea. Vector query
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Scene Similarity

In some spatial queries, the user might request a set of objects that are spatially
related to each other. Similarity in this case involves not only a one-to-one match
between each object of the query and the database, but also the presence of some
spatial neighborhood relations within each set of objects in the query and the
database result. Thus, the single object similarity calculation described earlier as
A→A', B→B' and C→C' (Figure 3) is substituted by a scene similarity of (A, B,
C)→(A', B', C'). The examined spatial relations are classified into three basic
types: topological, distance and direction, which can be combined logically to
form more complex neighboring relations (Ester, Kriegel, & Sander, 2001).

i) Topological. Topological relations depend on the boundaries, interiors and
complements of the two objects whose spatial relation is under examina-
tion. These relations are disjoint, meet, overlap, equal, cover, covered
by, contain and inside of and were first formally introduced by Egenhofer
(1991). From the similarity learning point of view, the goal is to model users’
preference towards these relations. Even though these relations are binary,
sometimes users demonstrate a certain degree of tolerance, depending on
the application. For example, the overlap relation might require a minimum
area percentage of the two objects to overlap, otherwise be characterized
as disjoint; the cover relation a percentage of the boundaries to be
common, otherwise it is considered a containment relation; the inside of
relation could be satisfied if a common area threshold is met, and so forth.
We should note that since the learning algorithm would model users’
perceptions of these relations, users’ definitions might contradict the
strictly mathematical ones. An example of learning the meet relation is
shown in Figure 4a. The user is presented three pairs (KA

1
, KA

2
, KA

3
) and

is requested to evaluate whether the meet relation holds true. It would be
also worthy to investigate whether some users might be interested in a
degree of membership to a relation or if it indeed is a binary one.

ii) Distance. Another popular spatial neighborhood relation is based on the
distance between two objects. Depending on the definition of the distance
metric, many distances are used; for example, the closest or the largest
distance, the distance between object centers of gravity and others.
Different users might have different preferences as objects get closer or
further apart in a spatial scene (Figure 4b). This would be the subject of
learning for similarity calculation.

iii) Direction. Directional relationships are frequently used in everyday lives.
Because of their widespread use they are often incorporated as additional
spatial relations. Some examples of such relations include left of, above of,
north of, and so forth. It was soon realized that directional relationships are
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fuzzy concepts, since they depend heavily on human interpretation (Peuquet
& Zhan, 1987; Takahashi, Shima, & Kishino, 1992). A learning approach
would be able to facilitate this subjective nature of the problem. An example
of learning the north of relation based on sample pairs (KC

1
, KC

2
, KC

3
,

KC
4
) is shown in Figure 4c.

A learned characteristic could detect dependence between spatial relations. For
example, the area of acceptance for a given direction increases with distance
(Peuquet & Zhan, 1987). Scale and orientation, independent direction and
distance similarity metrics integrated with standard topological relations can be

Figure 4. Spatial scene relation learning

a) Topological learning     b) Distance learning

c) Directional learning
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found in Stefanidis, Agouris, Georgiadis, Bertolotto and Carswell (2002). These
metrics can be easily adjusted for learning.

Raster Type

In the last two decades, GIS systems have expanded from the traditional vector
format to a raster type of information. Typical raster-type examples include
imagery and digital elevation models. Advances in sensors have brought a variety
of imagery directly available to GIS databases, imagery that can range from a
close-range picture taken with an amateur digital camera to aerial photographs
and satellite imagery.

Similarity search in image databases is a very active field of research with a
considerable amount of published works (see Peng, Bhanu, & Qing, 1999). For
our overview we present the general approaches implemented, and focus on
typical GIS imagery examples. Image search can be performed either using data
description or the data content, leading to description-based and content-based
retrieval systems, respectively (Han & Kamber, 2001). Ideally, a combination of
these two approaches should be incorporated in an image similarity algorithm.

i) Description-based retrieval. These systems perform object retrieval
based on image descriptors, such as keywords, captions, size, time of
creation and others. This information is also known as metadata descrip-
tion. Similarity learning within image metadata follows the same rules and
methods of the thematic-type data, introduced earlier.

ii) Content-based retrieval. In this category the actual content of an image
is analyzed in order to have a similarity result. Unfortunately, there are
many distortions in image data to make this a trivial task; translations,
rotations, non-linear distortions, scale variability, illumination changes and
occlusion problems can significantly affect the image content. Distortion-
invariant methods are currently known only in constrained visual environ-
ments (Hand et al., 2001).

The similarity match can take place using a feature representation of the image
(feature matching) or the original image (template matching). Feature match-
ing facilitates better indexing and storing of images, but transforms human
perception of similarity into a predefined set of features that do not always
completely capture the complexity of human intuition. Examples of features used
include color statistics (for example, mean, variance, centroid and histograms),
texture measures (coarseness/scale, contrast), shape descriptors (area, circu-
larity, eccentricity) and wavelets (captures shape, texture and location in a single
unified framework).
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From the above features, statistics like color and texture (“low-level” properties)
are computationally inexpensive and are often sufficient for general-purpose
databases. GIS imagery, though, represents striking similarity in terms of general
low-level properties (Agouris & Stefanidis, 1998). Therefore, shape features
and also scene configuration metrics should be employed to achieve high
classification accuracy. A learning process could further fine-tune results to user
preference by extrapolation of important features and identification of depen-
dencies among them. A few notable works are that of Cromp and Cambell (1993)
and Ma and Manjunath (1996) for defining some characteristics for exploration
of remotely sensed images and for using wavelets to learn similarity in aerial
photographs, respectively.

The template matching category of content-based retrieval accesses the
images directly, and not some reduced representation of them. Template-
matching methods include correlation, least squares matching and neural net-
work pattern classification (Brown, 1992). Learning in this case is comprised of
relative weights of each pixel’s contribution based on its own and neighboring
gray values. For example, a user might be presented with a range of airplane
images and in return show a degree of similarity to what the user is looking for.
If a neural network is used to model this similarity, a multi-dimensional vector is
created equal to the amount of pixels in the image. An attempt to extract hidden
features takes place, features that represent how users evaluate similarity; in
other words, what potential shape statistics and/or pixel spatial relations might
contribute to the similarity assessment. Alternatively to direct raster learning,
object extraction algorithms can be used so vector-type learning techniques can
then be applied (see the section on vector types).

Dynamic Data Types

With the addition of temporal information to GIS, new query capabilities have
risen. Objects do not show a static behavior, but are observed over a time period,
creating a dynamic representation. We categorize this information as dynamic
data type. It is in essence a temporally enhanced version of the previous data
types; namely thematic, vector and raster. But the addition of time increases
complexity significantly. One of the most important effects is the validity of
information (Tao, Mamoulis, & Papadias, 2003). An object or a user preference
might hold true for one temporal instance but be drastically different for another.
This temporal dependency of information mandates that time is not treated like
another attribute, but rather as a complex one.

If we examine dynamic types from the similarity learning perspective, we can
identify two major categories; the aspatial (that is, thematic) dynamic informa-
tion and the spatial dynamic one (that is, spatiotemporal). Within the context of
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aspatial, temporally evolving attributes are examined. Space is used as a
reference but not as part of the evolved attributes. For example, a query might
be: “Find a school in this area that has the following temporal pattern in their
student enrollment.” This is a subject that has attracted a lot of attention due to
its applications (for example, the stock market). Usually it is found under the term
of time series analysis (Agrawal, Faloutsos, & Swami, 1993; Faloutsos,
Ranganathan, & Manolopoulos, 1994). A popular similarity measure uses the
longest common subsequence as a distance metric (Agrawal, Lin, Sawhney, &
Shim, 1995). Rafiei and Mendelzon (1997) improve this technique by allowing
transformations, including shifting, scaling and moving average, on the time
series before similarity queries. Since methods from this field of research can be
directly implemented for GIS data, we will not analyze them further.

Spatial dynamic information is one of the distinct characteristics of modern
geographic databases. A variety of technological advances in acquisition sys-
tems has significantly increased the spatiotemporal (ST) information availability
(for example, pocket-size GPS sensors and low-cost video cameras). Similarity
assessment in ST datasets is the issue we examine here. In earlier sections we
analyzed some similarity challenges in vector and raster data. The addition of
time permits more complex queries, spatiotemporal pattern-matching ones.

Following the same organization of previous sections, we recognize two ST
matching processes, single object and scene comparisons. We can also distin-
guish three major types of ST evolution: boundary changes, movement or a
combination of both. These three types require observations from at least two
different times, so a comparison can be performed (leading to ST change). There
is also another type of ST queries, looking for a single boundary representation
at a specific temporal instance where no implicit comparison exists. Here we
omit the last kind, since it is indirectly addressed through ST pattern matching.

Spatiotemporal Single Object Similarity

In this category we first examine similarity learning in boundary changes
(deformation), in location changes (movement) and in a combination of both.

Boundary deformation corresponds to object shape variations through time.
For example, a user might be looking for satellite imagery capturing an ocean oil
spill. Assuming that the user knows the spill’s starting time the user can
approximate future states. Also, variable oil concentration might mandate
different spectral bands at different temporal instances. A learning algorithm
would be able to encapsulate this boundary preference and provide the user with
the appropriate feedback; for example, by selecting among different satellite
images or even aerial photographs.
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Another type of ST pattern matching involves that of moving objects. A moving
object is reflected by variations of the location of its center over time. The goal
in this case is to compare object movement to a requested pattern. A fairly large
amount of publications exist (for example, Vlachos, Gunopulos, & Kollios, 2002;
Cotelo Lema, Forlizzi, Güting, Nardelli, & Schneider, 2003) providing different
similarity measures. Learning user preference, though, in such pattern queries
has not been addressed yet, to our knowledge. By doing so we would be able to
adjust dependencies that go beyond distance metrics, like preferences that hold
true for specific ST values. User preference may depend on the actual ST values
requested and not solely on the distance metric between query and candidate
result. For example, two candidate results might have the same ST “variation”
to two queries, but because one query covers a specific ST area user preference
might be different (for example, a moving car downtown during rush hour and a
moving truck in the forest).

In more complicated scenarios, requested ST patterns might exhibit both
boundary deformation and movement (Stefanidis, Eickhorst, Agouris, &
Partsinevelos, 2003). The issue is more complex than a simple combination of the
two individual approaches. For example, a query might request an ST pattern
match of Figure 5. In one case, the users’ goal is to find other days with similar
pollution behavior from an industrial plan at point A. Thus, users are much more
flexible as the ST pattern evolves into the future, but not at its start, as it defines
the source of pollution (point A in Figure 5). Users may also want to enforce
specific starting times for the pattern and/or be more accommodating to how fast
the boundary changes. In another case, though, the same pattern may be
describing the path of a pack of wolves. In that sense, point B may have a higher

Figure 5. Spatiotemporal pattern

 



316   Mountrakis, Agouris & Stefanidis

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

weight in the similarity matching process, as it may represent a meeting point with
another herd by a river. So users will be more (spatio-temporally) flexible on how
the wolf pack behaved before or after the meeting than the ST footprint around
point B. Of interest may be the continuous group behavior of this pack,
examining, for example, whether they still form a compact unit or they scatter
around, whether they move at a constant pace, and so forth. Such complex user
preferences will be part of the learning challenges during the training process.

Spatiotemporal Scene Similarity

In this type of similarity learning, there is a pattern-matching process involving
more than a single object. ST relations between objects can be identified as an
extension of the spatial ones with the addition of the temporal dimension. These
neighboring relations were defined earlier in this chapter as topological, distance
and direction, but they have to be extended (and learned) in the spatiotemporal
domain.

It is interesting to see how time affects these relations. Among others, Pfoser,
Jensen and Theodoridis (2000) presented methods to answer topological and
navigational queries in a database that stores trajectories of moving objects. The
realization that some initial research exists is evident, but the lack of learning
capabilities is a significant constraint. A successful GIS query process should be
able to support different user preferences in ST scene queries, and not have a
fixed-metric approach where all users are considered equal. We see this specific
task as one of the most demanding and emerging ones from the variety of tasks
mentioned in this chapter, due to its uniqueness to GIS databases and its difficulty
to be resolved.

Multimedia Type

Multimedia information is often composed of images, video, text and audio
sources. For our analysis, we distinguished images as a raster type of information
and video as a dynamic type. The inherent spatial reference supported in images
and videos mandates a more detailed examination, especially for GIS databases.
In this section, we focus briefly on the remaining two multimedia types; namely,
text and audio. For example, an audio query might be: “Find an audio that sounds
like this, coming from area A and recorded in time T from provider P.”

Even though audio and especially textual similarity have attracted significant
attention, the incorporation of such types to geographic databases is still an open
issue. Consequently, learning techniques have yet to be developed to operate
within GISs. Possible dependencies between textual and audio similarity results
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with other GIS attributes are an important task in order to tie these non-trivial
data types to a comprehensive GIS similarity-learning algorithm. We see this
task as a significant future trend, as GIS usage expands beyond the traditional
spatial databases to complex multimedia ones.

Conclusion and Future Trends

The objective of this chapter was to provide an overview of similarity learning
within GIS applications. It is evident that the highly diverse expectations of query
results in GIS environments mandates a sophisticated adaptable approach to user
preference. In the previous sections we investigated the application of similarity
learning on geospatial datasets as a means for query return improvement. We
provided similarity definitions and multi-disciplinary overlapping techniques to
the learning process. We highlighted the special characteristics of GIS queries/
objects, and discussed their influence on similarity learning. Characteristics such
as diverse data types, dimensionality dependency and granularity issues, among
others, impose several challenges that a successful similarity-learning algorithm
should address. Along these lines, we presented some prerequisites like uncer-
tainty support and knowledge incorporation.

We then focused on the diverse data types of modern GIS datasets. We
presented complex similarity issues related to each type and showed potential
goals for learning within each one. The realization that these tasks are far from
trivial is evident. Another important challenge in a similarity-learning environ-
ment is the integration of highly diverse similarity types/algorithms into one
unified technique. Issues of dependency between dimensions add to the already
high complexity. A framework should be established for the integration of these
multi-type matching results (for example, image-based, database-based, docu-
ment-based) to provide answers to user requests.

In the coming years we expect a wide range of machine learning applications to
rise in the GIS field. Similarity learning is one task that cannot be overlooked. As
datasets and user numbers continue to grow rapidly, the need for query
“personalization” will grow as well. The new era of “intelligent” geographic
systems should be able to accommodate users with different expertise and
backgrounds. The identification that temporal and spatial data are indeed special
and need to be explicitly accommodated also is important. The goal could not be
achieved with a single-disciplinary approach, but rather, it requires integration
and cooperation of many fields of research. This is the main reason for not having
the issue addressed already, even though the need for solutions is apparent.
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