*More than 150,000 articles In the
search database

*Learn how almost everything
works

http://www.getpedia.com/
http://www.getpedia.com

Image Processing Toolbox

For Use with MATLAB’

Computation
Visualization

Programming

User’s Guide ‘\The MathWorks

Version 5

X LIp)

How to Contact The MathWorks:

www . mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com

Web
Newsgroup

Technical support
Product enhancement suggestions
Bug reports

doc@mathworks.com
service@mathworks.com
info@mathworks.com

Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Image Processing Toolbox User’s Guide
© COPYRIGHT 1993 - 2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: August 1993
May 1997
April 2001
June 2001
July 2002
May 2003
September 2003
June 2004
August 2004

First printing
Second printing
Third printing
Online only
Online only
Fourth printing
Online only
Online only
Online only

Version 1

Version 2

Revised for Version 3.0

Revised for Version 3.1 (Release 12.1)
Revised for Version 3.2 (Release 13)
Revised for Version 4.0 (Release 13.0.1)
Revised for Version 4.1 (Release 13SP1)
Revised for Version 4.2 (Release 14)
Revised for Version 5.0 (Release 14+)

Contents

Getting Started
1]

What Is the Image Processing Toolbox? 1-2
Configuration Notes i, 1-2
Related Products i 1-3

Example 1 — Some Basic Concepts 14
1. Read and DisplayanImage 14
2. Check How the Image Appears in the Workspace 1-5
3. Improving Image Contrast 1-6
4. Write the ImagetoaDisk File 1-8
5. Check the Contents of the Newly Written File 1-8

Example 2 — Advanced Topics 1-10
1. Read and DisplayanImage 1-10
2. Estimate the Value of Background Pixels 1-11
3. View the Background Approximation as a Surface 1-12
4. Create an Image with a Uniform Background 1-13
5. Adjust the Contrast in the Processed Image 1-14
6. Create a Binary Version of the Image 1-15
7. Determine the Number of Objects in the Image 1-17
8. Examine the Label Matrix 1-17
9. Display the Label Matrix as a Pseudocolor Indexed Image 1-18
10. Measure Object Properties in the Image 1-19

11. Compute Statistical Properties of Objects in the Image .. 1-20

GettingHelp 1-22
OnlineHelp 1-22
Image Processing Demos 1-23
MATLAB NeWSZIoup . ..o vttt i, 1-23

Image Credits 1-24

ii

Introduction

2|

Contents

Images in MATLAB and the Image Processing Toolbox ... 2-2

Image Types in the Toolbox 2-3
BinaryImages 2-4
Indexed Images 2-4
IntensityImages 2-5
Truecolor Images i, 2-6

Converting Between Image Types 2-11
Color Space Conversionsc.oueeeeemnnnnnnn.. 2-12

Converting Between Image Classes 2-13
Losing Information in Conversions 2-13
Converting Indexed Images 2-13

Multiframe Image Arrays 2-14

Reading and Writing ImageData 2-15
Reading a GraphicsImage 2-15
Writing a Graphics Image 2-16
Querying a Graphics File 2-19
Converting Graphics File Formats 2-19

Working with DICOM Files 2-21
Reading Image Data from a DICOM File 2-21
Reading Metadata from a DICOM File 2-22
Writing Image Data or Metadata to a DICOM File 2-23
Example: Creating a New Series 2-25

Image Arithmetic 2-28
Image Arithmetic Saturation Rules 2-28
Nesting Calls to Image Arithmetic Functions 2-29

Coordinate Systems 2-30
Pixel Coordinates 2-30
Spatial Coordinates 2-31

Displaying and Exploring Images

3

OVerVIeW 3-2
Understanding Handle Graphics Object Property Settings ... 3-2

Using imshow to Display Images 34
Specifying the Initial Image Magnification 3-5
Controlling the Appearance of the Figure 3-6

Using the Image Tool to Explore Images 3-8
Opening the Image Tool 3-10
Specifying the Initial Image Magnification 3-11
Specifying the Colormap 3-11
Importing Image Data from the Workspace 3-13
Exporting the Image to the Workspace 3-14
Closing the Image Tool 3-14
Printing the Image in the Image Tool 3-15

Using Image Tool Navigation Aids 3-16
Overview Navigationc0iiiiinno... 3-16
Panning the Image Displayed in the Image Tool 3-19
Zooming In and Out onan Image 3-19
Specifying the Magnification of the Image 3-20

Getting Information about the Pixels in an Image 3-22
Determining the Value of Individual Pixels 3-22
Getting the Display Range of anImage 3-24
Viewing Pixel Values with the Pixel Region Tool 3-25

Getting Information about anImage 3-29

Adjusting the Contrast and Brightness of an Image 3-31
Understanding Contrast Adjustment 3-32
Adjusting Contrast and Brightness 3-34
Using the Window/Level Tool 3-37
Autoscaling e 3-39

Viewing MultipleImages 3-41
Displaying Each Image in a Separate Figure 3-41

iii

Displaying Multiple Images in the Same Figure 3-42

Displaying Different Image Types 3-45
Displaying Indexed Images 3-45
Displaying Intensity Images 3-46
Displaying Binary Images 3-47
Displaying Truecolor Images 3-49

Special Display Techniques 3-51
Addinga Colorbar 3-51
Displaying All Frames of a Multiframe Image at Once 3-52
Converting a Multiframe Image toa Movie 3-54
Texture Mappingc.c.tiiiitinmiiiieeennnnns 3-55

PrintingImages 3-56
Printing and Handle Graphics Object Properties 3-56

Setting Toolbox Display Preferences 3-58
Toolbox Preferences 3-58
Retrieving the Values of Toolbox Preferences 3-59
Setting the Value of Toolbox Preferences 3-59

Building GUIs with Modular Tools

4 |

OVerVIEW 4-2
Using ModularTools 4-6
Displaying the Target Image 4-7
Specifying the Target Image 4-7
Specifying the Parent of a Modular Tool 4-11
Positioning the Modular Toolsina GUI 4-13
Example: Building a Pixel Information GUI 4-15
Adding Navigation Aidstoa GUI 4-17
Making Connections for Interactivity 4-22
Creating Your Own Modular Tools 4-28

iv Contents

Spatial Transformations

5]

Terminology i 5-2
Interpolation 5-3
Interpolation Methods 5-3
Image Typest e e e 5-4
Image Resizing 5-5
Specifying the Size of the Output Image 5-5
Specifying the Interpolation Method 5-6
Using Filters to Prevent Aliasing 5-7
Image Rotation 5-8
Specifying the Interpolation Method 5-8
Specifying the Size of the Output Image 5-9
Image Cropping 5-10
Performing General Spatial Transformations 5-11
Specifying the Transformation Type 5-11
Performing the Transformation 5-13
Advanced Spatial Transformation Techniques 5-13

Image Registration

6|

Terminology i 6-2
RegisteringanImage 6-4
Point Mappingc. i 6-4
Example: Registering to a Digital Orthophoto 6-5
Types of Supported Transformations 6-12

Selecting Control Points 6-14

Using the Control Point Selection Tool 6-14

Starting the Control Point Selection Tool 6-15
ViewingtheImages, 6-17
Specifying Matching Control Point Pairs 6-22
Saving Control Points 6-29
Using Correlation to Improve Control Points 6-31

Linear Filtering and Filter Design

7|

Terminology 7-2
Linear Filtering 7-4
Convolution i 7-4
Correlation i 7-6
Filtering Using imfilter 7-7
Using Predefined Filter Types 7-15
Filter Design 7-17
FIRFilters e 7-17
Frequency Transformation Method 7-18
Frequency Sampling Method 7-19
Windowing Method 7-20
Creating the Desired Frequency Response Matrix 7-22
Computing the Frequency Response of a Filter 7-23
Transforms

Terminology i 8-2
Fourier Transform 8-3
Definition of Fourier Transform 8-3

vi Contents

Discrete Fourier Transform 8-8

Applications of the Fourier Transform 8-11
Discrete Cosine Transform 8-17
The DCT Transform Matrix 8-18
DCT and Image Compressionccou.... 8-19
Radon Transform i, 8-21
Plotting the Radon Transform 8-23
Viewing the Radon Transform as an Image 8-25
Using the Radon Transform to Detect Lines 8-27
Inverse Radon Transform 8-29

Example: Reconstructing an Image from Parallel Projection Data 8-32

Fan-Beam ProjectionData 8-36
Computing Fan-Beam ProjectionData 8-37
Reconstructing an Image from Fan-Beam Projection Data ... 8-39
Working with Fan-Beam Projection Data 8-40

Morphological Operations

9

Terminology i 9-2
Dilation and Erosion 9-4
Understanding Dilation and Erosion 94
Structuring Elements 9-7
DilatinganImage 9-11
ErodinganImaget iiiiiineann.. 9-12
Combining Dilation and Erosion 9-14
Dilation- and Erosion-Based Functions 9-16
Morphological Reconstruction 9-19
Markerand Mask i, 9-19
Pixel Connectivity 9-23
Flood-Fill Operationscciiiiiiino... 9-26
Finding Peaks and Valleys 9-29

vii

viil Contents

Distance Transform 9-37

Objects, Regions, and Feature Measurement 9-40
Connected-Component Labeling 9-40
Selecting Objects in a BinaryImage 9-42
Finding the Area of the Foreground of a Binary Image 9-42
Finding the Euler Number of a Binary Image 9-43

Lookup Table Operations 9-44

Analyzing and Enhancing Images

10 |

Terminology 10-2
Pixel Values and Statistics 10-3
Pixel Selection 10-3
Intensity Profile 10-5
Image Contours iiiiiiiiieinnnennn.. 10-9
Image Histogram 10-10
Summary Statistics 10-12
Region Property Measurement 10-12
Image Analysis 10-13
Edge Detection i, 10-13
Boundary Tracing 0. 10-15
Line Detection Using the Hough Transform 10-19
Quadtree Decomposition 10-24
Texture Analysis 10-26
Texture Filter Functions 10-26
Gray-Level Co-occurrence Matrix (GLCM) 10-29
Intensity Adjustment 10-36
Adjusting Intensity Values to a Specified Range 10-37
Histogram Equalization 10-41
Contrast-Limited Adaptive Histogram Equalization 10-43

Decorrelation Stretching 10-44

NoiseRemoval 10-49
Using Linear Filtering 10-49
Using Median Filtering 10-49
Using Adaptive Filtering 10-52

1]

Terminology 11-2
Specifying a Region of Interest 11-3
Selectinga Polygon 11-3
Other Selection Methods 114
FilteringaRegion 11-6
Example: Filtering a Region in an Image 11-6
Specifying the Filtering Operation 11-7
FillingaRegion 11-9

12

Terminology 12-2
Understanding Deblurring 12-3
Causesof Blurring 12-3
Deblurring Model 12-3
Using the Deblurring Functions 12-6
Deblurring with the Wiener Filter 12-7
Deblurring with a Regularized Filter 12-9

ix

Deblurring with the Lucy-Richardson Algorithm 12-11

Deblurring with the Blind Deconvolution Algorithm 12-16
Creating Your Own Deblurring Functions 12-22
Avoiding Ringing in Deblurred Images 12-23
Color

Terminology i 13-2
Working with Different Screen Bit Depths 13-3
Determining Screen Bit Depth 13-3
Choosing a Screen Bit Depth 134
Reducing the Number of Colors in an Image 13-6
Usingrgb2ind 13-7
Reducing Colors in an Indexed Image 13-12
Dithering 13-13
Converting Color Data Between Color Spaces 13-15
Converting Between Device-Independent Color Spaces 13-15
Performing Profile-Based Conversions 13-19
Converting Between Device-Dependent Color Spaces 13-23

Neighborhood and Block Operations

14

Terminology 14-2
Block Processing Operations 14-3

Types of Block Processing Operations 14-3
Sliding Neighborhood Operations 14-4

Contents

PaddingBorders 14-5

Linear and Nonlinear Filtering 14-5
Distinct Block Operations 14-8
Overlap ... 14-9
Column Processing, 14-11
Sliding Neighborhoods 14-11
Distinct Blocks 14-12

Function Reference

15]

Functions - Categorical List 15-2
Image Input, Output, and Display 15-3
Modular Interactive Tools 15-5
Spatial Transformation and Registration 15-7
Image Analysis and Statistics 15-8
Image Arithmetic 15-9
Image Enhancement and Restoration 15-10
Linear Filtering and Transforms 15-11
Morphological Operations 15-13
Region-Based, Neighborhood, and Block Processing 15-15
Colormap and Color Space Functions 15-16
Miscellaneous Functions 15-18

Functions - Alphabetical List 15-20

Index

Xii Contents

Getting Started

This chapter contains two examples to get you started doing image processing using MATLAB® and
the Image Processing Toolbox. The examples contain cross-references to other sections in the
documentation manual that have in-depth discussions on the concepts presented in the examples.

What Is the Image Processing Toolbox? Introduces the Image Processing Toolbox and its

(p. 1-2) capabilities.
Example 1 — Some Basic Concepts Guides you through an example of some of the basic
(p. 1-4) image processing capabilities of the toolbox, including

reading, writing, and displaying images

Example 2 — Advanced Topics (p. 1-10) Guides you through some advanced image processing
topics, including components labeling, object property
measurement, image arithmetic, morphological image
processing, and contrast enhancement

Getting Help (p. 1-22) Provides pointers to additional sources of information

1 Geri ng Started

What Is the Image Processing Toolbox?

The Image Processing Toolbox is a collection of functions that extend the
capability of the MATLAB numeric computing environment. The toolbox
supports a wide range of image processing operations, including

® Spatial image transformations

® Morphological operations

® Neighborhood and block operations

¢ Linear filtering and filter design

® Transforms

® Image analysis and enhancement

® Image registration

® Deblurring

¢ Region of interest operations

Many of the toolbox functions are MATLAB M-files, a series of MATLAB

statements that implement specialized image processing algorithms. You can
view the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of the Image Processing Toolbox by writing
your own M-files, or by using the toolbox in combination with other toolboxes,
such as the Signal Processing Toolbox and the Wavelet Toolbox.

For a list of the new features in this version, see the Release Notes
documentation.

Configuration Notes

To determine if the Image Processing Toolbox is installed on your system, type
this command at the MATLAB prompt.

ver
When you enter this command, MATLAB displays information about the

version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

What Is the Image Processing Toolbox?

For information about installing the toolbox, see the MATLAB Installation
Guide for your platform.

For the most up-to-date information about system requirements, see the
system requirements page, available in the products area at The MathWorks
Web site (www.mathworks.com).

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with Image Processing Toolbox.

For more information about any of these products, see either

¢ The online documentation for that product if it is installed or if you are
reading the documentation from the CD

¢ The MathWorks Web site, at http: //www.mathworks.com; see the “products”
section

The toolboxes listed below all include functions that extend MATLAB. The
blocksets all include blocks that extend Simulink®.

Product Description

DSP Blockset Design and simulate DSP systems

Image Acquisition Connect to image acquisition hardware and

Toolbox bring frames of image data into the MATLAB
workspace

Mapping Toolbox Analyze and visualize geographically based
information

MATLAB The Language of Technical Computing

Signal Processing Perform signal processing, analysis, and

Toolbox algorithm development

Wavelet Toolbox Analyze, compress, and denoise signals and

images using wavelet techniques

1 Geri ng Started

Example 1 — Some Basic Concepts

This example introduces some basic image processing concepts, including
reading and writing images, performing histogram equalization on an image,
and getting information about an image. The example breaks this process into
the following steps:

Step 1: Read and display an image

Step 2: Check how the image appears in the workspace
Step 3: Improving image contrast

Step 4: Write the image to a disk file

Step 5: Get information about a graphics file

Before beginning with this example, you should already have installed the
Image Processing Toolbox and have started MATLAB. If you are new to
MATLAB, read the MATLAB Getting Started documentation to learn about
basic MATLAB concepts.

1. Read and Display an Image

Clear the MATLAB workspace of any variables and close open figure windows.

clear, close all

To read an image, use the imread command. The example reads one of the
sample images included with the Image Processing Toolbox, pout.tif, and
stores it in an array named I.

I = imread('pout.tif');

imread infers from the file that the graphics file format is Tagged Image File
Format (TIFF). For the list of supported graphics file formats, see the imread
function reference documentation.

Now display the image. The toolbox includes two image display functions:
imshow and imtool. imshow is the toolbox's fundamental image display
function. imtool starts the Image Tool which presents an integrated
environment for displaying images and performing some common image
processing tasks. The Image Tool provides all the image display capabilities of

Example 1 — Some Basic Concepts

imshow but also provides access to several other tools for navigating and
exploring images, such as scroll bars, the Pixel Region tool, Image Information
tool, and the Contrast Adjustment tool. For more information, see Chapter 3,
“Displaying and Exploring Images.”.

You can use either function to display an image. This example uses imshow.

imshow(I)

Intensity Image pout.tif

2. Check How the Image Appears in the Workspace
To see how the imread function stores the image data in the workspace, check
the Workspace browser in the MATLAB desktop. The Workspace browser
displays information about all the variables you create during a MATLAB
session. The imread function returned the image data in the variable I, which
is a 291-by-240 element array of uint8 data. MATLAB can store images as
uint8, uint16, or double arrays.

You can also get information about variables in the workspace by calling the
whos command.

whos
Name Size Bytes Class
I 291x240 69840 uint8 array

Grand total is 69840 elements using 69840 bytes

1-5

1 Cetting Started

1-6

For more information about image storage classes, see “Reading a Graphics
Image” on page 2-15.

3. Improving Image Contrast

As you can see, pout.tif is a somewhat low contrast image. To see the
distribution of intensities in pout.tif, you can create a histogram by calling
the imhist function. (Precede the call to imhist with the figure command so
that the histogram does not overwrite the display of the image I in the current
figure window.)

figure, imhist(I)

1600

1400

1200

1000

800 |

600

400

200

0

0 50 100 150 200 250

Notice how the intensity range is rather narrow. It does not cover the potential
range of [0, 255], and is missing the high and low values that would result in
good contrast.

The toolbox provides several ways to improve the contrast in an image. One
way is to call the histeq function to spread the intensity values over the full
range of the image, a process called histogram equalization.

I2 = histeq(I);

Display the new equalized image, 12, in a new figure window.

Example 1 — Some Basic Concepts

figure, imshow(I2)

Equalized Version of pout.tif

Call imhist again to create a histogram of the equalized image 12. If you
compare the two histograms, the histogram of 12 is more spread out than the
histogram of I1.

figure, imhist(I2)

1600 |

1400 |

1200 |

1000 |

800 |

600 |

400

200

0 50 100 150 200 250

1-7

1 Geri ng Started

1-8

The toolbox includes several other functions that perform contrast adjustment,
including the imadjust and adapthisteq functions. See “Intensity
Adjustment” on page 10-36 for more information. In addiiton, the toolbox
includes an interactive tool, called the Adjust Contrast tool, that you can use to
adjust the contrast and brightness of an image interactively. To start this tool,
call the imcontrast function. For more information, see “Adjusting the
Contrast and Brightness of an Image” on page 3-31.

4. Write the Image to a Disk File

To write the newly adjusted image I2 to a disk file, use the imwrite function.
If you include the filename extension '.png', the imwrite function writes the
image to a file in Portable Network Graphics (PNG) format, but you can specify
other formats.

imwrite (I2, 'pout2.png');

See the imwrite function reference page for a list of file formats it supports. See
also “Writing a Graphics Image” on page 2-16 for a tutorial discussion on
writing images using the Image Processing Toolbox.

5. Check the Contents of the Newly Written File

To see what imwrite wrote to the disk file, use the imfinfo function. This
function returns information about the image in the file, such as its format,
size, width, and height. See “Querying a Graphics File” on page 2-19 for more
information about using imfinfo.

imfinfo('pout2.png')
ans =

Filename: 'pout2.png’
FileModDate: '29-Dec-2003 09:34:39'
FileSize: 36938
Format: 'png'
FormatVersion: []

width: 240
Height: 291
BitDepth: 8

ColorType: 'grayscale'
FormatSignature: [137 80 78 71 13 10 26 10]

Example 1 — Some Basic Concepts

Colormap:
Histogram:
InterlaceType:
Transparency:
SimpleTransparencyData:
BackgroundColor:
RenderingIntent:
Chromaticities:
Gamma:
XResolution:
YResolution:
ResolutionUnit:
XOffset:
YOffset:
OffsetUnit:
SignificantBits:
ImageModTime:
Title:

Author:
Description:
Copyright:
CreationTime:
Software:
Disclaimer:
Warning:

Source:

Comment:
OtherText:

[]
[]

‘none'’
‘none'’
[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]
'29 Dec 2003 14:34:39 +0000'
[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

1-9

1 Geri ng Started

Example 2 — Advanced Topics

This example introduces some advanced image processing concepts. The
example calculates statistics about objects in the image but, before it performs
these calculations, it preprocesses the image to achieve better results. The
preprocessing involves creating a uniform background in the image and
converting the image into a binary image. The example breaks this process into
the following steps:

Step 1: Read and display an image

Step 2: Estimate the approximate value of background pixels
Step 3: View the background approximation as a surface

Step 4: Create an image with a uniform background

Step 5: Adjust the contrast in the uniform image

Step 6: Create a binary version of the image

Step 7: Determine the number of objects in the image

Step 8: Examine the label matrix

Step 9: Display the label matrix as a pseudocolor indexed image

Step 10: Measure properties of objects in the image

Step 11: Compute statistics of objects in the image

1. Read and Display an Image

Clear the MATLAB workspace of any variables, close open figure windows, and
close all open Image Tools.

clear, close all, imtool close all
Read and display the intensity image rice.png.

I = imread('rice.png');
imshow(I)

1-10

Example 2 — Advanced Topics

Intensity Image rice.png

2. Estimate the Value of Background Pixels

In the sample image, the background illumination is brighter in the center of
the image than at the bottom. In this step, the example uses a morphological
opening operation to estimate the background illumination. An opening is an
erosion followed by a dilation, using the same structuring element for both
operations. The morphological opening has the effect of removing objects that
cannot completely contain the structuring element. For more information
about morphological image processing, see Chapter 9, “Morphological
Operations.”

The example calls the imopen function to perform the morphological opening
operation. Note the call to the strel function, which creates a disk-shaped
structuring element with a radius of 15. To remove the rice grains from the
image, the structuring element must be large enough so that it cannot fit
entirely inside a single grain of rice.

background = imopen(I,strel('disk',15));
To see the estimated background image, type

figure, imshow(background)

1-11

1 Geri ng Started

1-12

3. View the Background Approximation as a
Surface

Use the surf command to create a surface display of the background
approximation background. The surf command creates colored parametric
surfaces that enable you to view mathematical functions over a rectangular
region. The surf function requires data of class double, however, so you first
need to convert background using the double command.

figure, surf(double(background(1:8:end,1:8:end))),z1lim([0 255]);
set(gca, 'ydir', 'reverse');

The example uses MATLAB indexing syntax to view only 1 out of 8 pixels in
each direction; otherwise the surface plot would be too dense. The example also
sets the scale of the plot to better match the range of the uint8 data and
reverses the y-axis of the display to provide a better view of the data (the pixels
at the bottom of the image appear at the front of the surface plot).

In the surface display, [0, O] represents the origin, or upper left corner of the
image. The highest part of the curve indicates that the highest pixel values of
background (and consequently rice.png) occur near the middle rows of the
image. The lowest pixel values occur at the bottom of the image and are
represented in the surface plot by the lowest part of the curve.

The surface plot is a Handle Graphics® object. You can use object properties to
fine-tune its appearance. For information on working with MATLAB graphics,
see the MATLAB graphics documentation.

Example 2 — Advanced Topics

850 qume= "0

200

4. Create an Image with a Uniform Background

To create a more uniform background, subtract the background image,
background, from the original image, I.

I2 = imsubtract(I,background);

Because subtraction, like many MATLAB mathematical operations, is only
supported for data of class double, you must use the Image Processing Toolbox
image arithmetic imsubtract function.

Display the image with its more uniform background.

figure, imshow(I2)

1-13

1 Geri ng Started

1-14

Image with Uniform Background

5. Adjust the Contrast in the Processed Image

After subtraction, the image has a uniform background but is now a bit too
dark. Use imadjust to adjust the contrast of the image.

I3 = imadjust(I2);

imadjust increases the contrast of the image by saturating 1% of the data at
both low and high intensities of I2 and by stretching the intensity values to fill
the uint8 dynamic range. See the reference page for imadjust for more
information.

Display the adjusted image I3.

figure, imshow(I3);

Example 2 — Advanced Topics

Image After Intensity Adjustment

6. Create a Binary Version of the Image

Create a binary version of the image by using thresholding. The function
graythresh automatically computes an appropriate threshold to use to convert
the intensity image to binary. The im2bw function performs the conversion.

level = graythresh(I3);
bw = im2bw(I3,level);
figure, imshow(bw)

1-15

1 Geri ng Started

1-16

Binary Version of the Image

The binary image bw returned by im2bw is of class logical, as can be seen in
this call to whos. The Image Processing Toolbox uses logical arrays to represent
binary images. For more information, see “Binary Images” on page 2-4.

whos

MATLAB responds with
Name Size Bytes Class
I 256x256 65536 uint8 array
I2 256x256 65536 uint8 array
I3 256x256 65536 uint8 array
background 256x256 65536 uint8 array
bw 256x256 65536 logical array
level 1x1 8 double array

Grand total is 327681 elements using 327688 bytes

Example 2 — Advanced Topics

7. Determine the Number of Objects in the Image

After converting the image to a binary image, you can use the bwlabel function
to determine the number of grains of rice in the image. The bwlabel function
labels all the components in the binary image bw and returns the number of
components it finds in the image in the output value, numObjects.

[labeled,numObjects] = bwlabel(bw,4);

numObjects
ans =

101
The accuracy of the results depends on a number of factors, including

¢ The size of the objects

® Whether or not any objects are touching (in which case they might be labeled
as one object)

® The accuracy of the approximated background

¢ The connectivity selected. The parameter 4, passed to the bwlabel function,
means that pixels must touch along an edge to be considered connected. For
more information about the connectivity of objects, see “Pixel Connectivity”
on page 9-23.

8. Examine the Label Matrix

To better understand the label matrix returned by the bwlabel function, this
step explores the pixel values in the image. There are several ways to get a
closeup view of pixel values. For example, you can use imcrop to select a small
portion of the image. Another way is to use toolbox Pixel Region tool to examine
pixel values. Display the label matrix, using imshow,

figure, imshow(labeled);
Start the Pixel Region tool.
impixelregion

By default, it automatically associates itself with the image in the current
figure. The Pixel Region tool draws a rectangle, called the pixel region
rectangle, in the center of the visible part of the image. This rectangle defines

1-17

1 Geri ng Started

1-18

which pixels are displayed in the Pixel Region tool. As you move the rectangle,
the Pixel Region tool updates the pixel values displayed in the window. For
more information about using the toolbox modular interactive tools, see
Chapter 4, “Building GUIs with Modular Tools.”.

The following figure shows the Image Viewer with the Pixel Region rectangle
positioned over the edges of two rice grains. Note how all the pixels in the rice
grains have the values assigned by the bwlabel function and the background
pixels have the value 0 (zero).

Pixel Region rectangle

Alol x|

File Edit WYiew Insert Tools Desktop Window Help

Deda| reRadeE 08 =3

Region displayed in Pixel Region Tool

<) Pixel Region (Figure 7) 10l =|
k|

File Edit ‘Window Help
r——
mE?

| 70 | 70 | 7o

| 7o
.........................

| 70|

| 70

Pixel info: (181, 118) 70

Examining the Label Matrix with the Pixel Region Tool

9. Display the Label Matrix as a Pseudocolor
Indexed Image

A good way to view a label matrix is to display it as a pseudocolor indexed
image. In the pseudocolor image, the number that identifies each object in the
label matrix maps to a different color in the associated colormap matrix. The
colors in the image make objects easier to distinguish.

Example 2 — Advanced Topics

To view a label matrix in this way, use the label2rgb function. Using this
function, you can specify the colormap, the background color, and how objects
in the label matrix map to colors in the colormap.

pseudo_color = label2rgb(labeled, @spring, 'c', 'shuffle');
imshow(pseudo_color);

’ “ Y Al 4
\ - > 7
;\\"/\ ’/4
l/' V.
\-‘
',/ Vs

Label Matrix Displayed as Pseudocolor Image

10. Measure Object Properties in the Image

The regionprops command measures object or region properties in an image
and returns them in a structure array. When applied to an image with labeled
components, it creates one structure element for each component.

This example uses regionprops to create a structure array containing some
basic properties for labeled. When you set the properties parameter to
'basic', the regionprops function returns three commonly used
measurements: area, centroid (or center of mass), and bounding box. The
bounding box represents the smallest rectangle that can contain a region, or in
this case, a grain of rice.

graindata = regionprops(labeled, 'basic')
MATLAB responds with

graindata =

101x1 struct array with fields:
Area
Centroid

1-19

1 Geri ng Started

1-20

BoundingBox

To find the area of the 51st labeled component, access the Area field in the 51st
element in the graindata structure array. Note that structure field names are
case sensitive.

graindata(51) .Area
returns the following results
ans =
140

To find the smallest possible bounding box and the centroid (center of mass) for
the same component, use this code:

graindata(51).BoundingBox, graindata(51).Centroid

ans =
107.5000 4.5000 13.0000 20.0000
ans =

114.5000 15.4500

11. Compute Statistical Properties of Objects in the
Image

Now use MATLAB functions to calculate some statistical properties of the
thresholded objects. First use max to find the size of the largest grain. (In this
example, the largest grain is actually two grains of rice that are touching.)

max([graindata.Area])
returns

ans =

404

Use the find command to return the component label of the grain of rice with
this area.

Example 2 — Advanced Topics

biggrain find([graindata.Area]==404)

returns

biggrain

59
Find the mean of all the rice grain sizes.
mean([graindata.Areal)
returns

ans =

175.0396

Make a histogram containing 20 bins that show the distribution of rice grain
sizes. The histogram shows that the most common sizes for rice grains in this
image are in the range of 150 to 250 pixels.

hist([graindata.Area],20)

35

30

25

20

. . .|
0 50 100 150 200 250 300 350 400 450

1-21

1 Geri ng Started

1-22

Getting Help

For more information about the topics covered in these exercises, read the
tutorial chapters that make up the remainder of this documentation. For
reference information about any of the Image Processing Toolbox functions, see
the online “Function Reference”, which complements the M-file help that is
displayed in the MATLAB command window when you type

help functionname

For example,

help imtool

Online Help

The Image Processing Toolbox User’s Guide documentation is available online
in both HTML and PDF formats. To access the HTML help, select Help from
the menu bar of the MATLAB desktop. In the Help Navigator pane, click the
Contents tab and expand the Image Processing Toolbox topic in the list.

To access the PDF help, click Image Processing Toolbox in the Contents tab
of the Help browser and go to the link under “Printable Documentation (PDF).”
(Note that to view the PDF help, you must have Adobe's Acrobat Reader
installed.)

Terminology

At the beginning of each chapter are glossaries of words you need to know to
understand the information in the chapter. These tables clarify how we use
terms that may be used in several different ways in image processing
literature. For example:

¢ In the field of image processing, one word is sometimes used to describe more
than one concept. For example the resolution of an image can describe the
height and width of an image as a quantity of pixels in each direction, or it
can describe the number of pixels per linear measure, such as 100 dots per
inch.

¢ In the field of image processing, the same concepts are sometimes described
by different terminology. For example, a grayscale image can also be called
an intensity image.

Cetting Help

Image Processing Demos

The Image Processing Toolbox is supported by a full complement of demo
applications. These are very useful as templates for your own end-user
applications, or for seeing how to use and combine your toolbox functions for
powerful image analysis and enhancement.

To view all the Image Processing Toolbox demos, call the iptdemos function.
This displays an HTML page in the MATLAB Help browser that lists all the
Image Processing Toolbox demos.

You can also view this page by starting the MATLAB Help browser and clicking
the Demos tab in the Help Navigator pane. From the list of products with
demos, select the Image Processing Toolbox.

The toolbox demos are located under the subdirectory

matlabroot\toolbox\images\imdemos

where matlabroot represents your MATLAB installation directory.

MATLAB Newsgroup

If you read newsgroups on the Internet, you might be interested in the
MATLAB newsgroup (comp.soft-sys.matlab). This newsgroup gives you
access to an active MATLAB user community. It is an excellent way to seek
advice and to share algorithms, sample code, and M-files with other MATLAB
users.

1-23

1 Geri ng Started

1-24

Image Credits

This table lists the copyright owners of the images used in the Image
Processing Toolbox documentation.

Image Source

cameraman Copyright Massachusetts Institute of
Technology. Used with permission.

cell Cancer cell from a rat’s prostate, courtesy of
Alan W. Partin, M.D., Ph.D., Johns Hopkins
University School of Medicine.

circuit Micrograph of 16-bit A/D converter circuit,

concordaerial and
westconcordaerial

concordorthophoto and
westconcordorthophoto

forest

LAN files

liftingbody

m83

courtesy of Steve Decker and Shujaat
Nadeem, MIT, 1993.

Visible color aerial photographs courtesy of
mPower3/Emerge.

Orthoregistered photographs courtesy of
Massachusetts Executive Office of
Environmental Affairs, MassGIS.

Photograph of Carmanah Ancient Forest,
British Columbia, Canada, courtesy of Susan
Cohen.

Permission to use Landsat™ data sets
provided by Space Imaging, LL.C, Denver,
Colorado.

Picture of M2-F1 lifting body in tow, courtesy
of NASA (Image number E-10962).

M83 spiral galaxy astronomical image
courtesy of Anglo-Australian Observatory,
photography by David Malin.

Image Credits

Image Source

moon Copyright Michael Myers. Used with
permission.

saturn Voyager 2 image, 1981-08-24, NASA catalog
#PIA01364.

solarspectra Courtesy of Ann Walker. Used with
permission.

tissue Courtesy of Alan W. Partin, M.D., PhD.,
Johns Hopkins University School of Medicine.

trees Trees with a View, watercolor and ink on

paper, copyright Susan Cohen. Used with
permission.

1-25

1 Geri ng Started

1-26

Introduction

This chapter introduces you to the fundamentals of image processing using MATLAB and the Image

Processing Toolbox.

Images in MATLAB and the Image
Processing Toolbox (p. 2-2)

Image Types in the Toolbox (p. 2-3)

Converting Between Image Types
(p. 2-11)

Converting Between Image Classes
(p. 2-13)

Multiframe Image Arrays (p. 2-14)

Reading and Writing Image Data
(p. 2-15)

Working with DICOM Files (p. 2-21)
Image Arithmetic (p. 2-28)
Coordinate Systems (p. 2-30)

How images are represented in MATLAB and the Image
Processing Toolbox

Fundamental image types supported by the Image
Processing Toolbox

Converting between the image types

Converting image data from one class to another

Working with multiframe data

Reading data into the MATLAB workspace, writing data
to graphics files, and getting information about image
files

Reading and writing DICOM files
Adding, subtracting, multiplying, and dividing images

Pixel versus spatial coordinates

2 Introduction

2-2

Images in MATLAB and the Image Processing Toolbox

The basic data structure in MATLAB is the array, an ordered set of real or
complex elements. This object is naturally suited to the representation of
images, real-valued ordered sets of color or intensity data.

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in
which each element of the matrix corresponds to a single pixel in the displayed
image. (Pixel is derived from picture element and usually denotes a single dot
on a computer display.) For example, an image composed of 200 rows and 300
columns of different colored dots would be stored in MATLAB as a 200-by-300
matrix. Some images, such as truecolor images, require a three-dimensional
array, where the first plane in the third dimension represents the red pixel
intensities, the second plane represents the green pixel intensities, and the
third plane represents the blue pixel intensities.

This convention makes working with images in MATLAB similar to working
with any other type of matrix data, and makes the full power of MATLAB
available for image processing applications. For example, you can select a
single pixel from an image matrix using normal matrix subscripting.

I(2,15)

This command returns the value of the pixel at row 2, column 15 of the image I.

Note MATLAB expresses pixel coordinates by row and column (r,c). This is
the reverse of spatial coordinates that are expressed as width and height (x,y).
In the reference pages for toolbox functions, when the syntax for a function
uses r and c, it refers to the pixel coordinate system. When the syntax uses x
and vy, it refers to the spatial coordinate system.

Image Types in the Toolbox

Image Types in the Toolbox

The Image Processing Toolbox defines four basic types of images, summarized

in the following table. These image types determine the way MATLAB
interprets data matrix elements as pixel colors. The sections that follow
provide more information about each image type. See also “Converting
Between Image Types” on page 2-11.

Image Type

Interpretation

Binary

Indexed

Intensity

Truecolor

Logical array containing only 0’s and 1’s,
interpreted as black and white, respectively. Also
known as a bilevel image.

Array of class logical, uint8, uint16, single, or
double whose pixel values are direct indices into a
colormap. The colormap is an m-by-3 array of class
double. Also known as a pseudocolor image.

Note: For single or double arrays, integer values
range from [1, p]. For logical, uint8, or uint16
arrays, values range from [0, p-1]

Array of class uint8, uint16, int16, single, or
double whose pixel values specify intensity values.
Also known as a grayscale image

Note: For single or double arrays, values range
from [0, 1]. For uint8, values range from [0,255].
For uint16, values range from [0, 65535]. For
int16, values range from [-32768, 32767].

m-by-n-by-3 array of class uint8, uint16, single,
or double whose pixel values specify intensity
values. Also known as an RGB image.

Note: For single or double arrays, values range
from [0, 1]. For uint8, values range from [0, 255].
For uint16, values range from [0, 65535].

2-3

2 Introduction

Binary Images
In a binary image, also known as a bilevel image, each pixel assumes one of
only two discrete values: 1 or 0. A binary image is stored as a logical array.

The following figure shows a binary image with a close-up view of some of the
pixel values.

[ely —

FlRrlRrRrIRrIRRR| R
FlRrRrIRrIRrIRRR R
PR RrlRr R LR R
S o oo |o|o oo B
Bl o o|o|o|o|o o B

" o oclolololo

N o o
~ KBRS

Pixel Values in a Binary Image

Indexed Images

An indexed image consists of an array, called X in this documentation, and a
colormap matrix, called map. The pixel values in the array are direct indices
into a colormap.

The colormap matrix is an m-by-3 array of class double containing
floating-point values in the range [0,1]. Each row of map specifies the red, green,
and blue components of a single color. An indexed image uses direct mapping
of pixel values to colormap values. The color of each image pixel is determined
by using the corresponding value of X as an index into map.

A colormap is often stored with an indexed image and is automatically loaded
with the image when you use the imread function. After you read the image
and the colormap into the MATLAB workspace as separate variables, you must
keep track of the association between the image and colormap. However, you
are not limited to using the default colormap—you can use any colormap that
you choose.

2-4

Image Types in the Toolbox

The relationship between the values in the image matrix and the colormap
depends on the class of the image matrix. If the image matrix is of class single
or double, it normally contains integer values 1 through p, where p is the
length of the colormap. the value 1 points to the first row in the colormap, the
value 2 points to the second row, and so on. If the image matrix is of class
logical, uint8 or uint16, the value 0 points to the first row in the colormap,
the value 1 points to the second row, and so on.

The following figure illustrates the structure of an indexed image. In the
figure, the image matrix is of class double, so the value 5 points to the fifth row
of the colormap.

40

14 17 21 21 53 5)

'5 8C5)8 10 30 15

\ 15 18|31 31 18 1§
— L

A 18|31 31 3

.-._ I.J
4 N)"-“ 0 0 0

W 0.0627 .0627 0.0314
i

o

0.2902 |0.0314 0

0 0 1.0000
<0.2902 0.0627 0.06
0.3882 0.0314 0.0941
0.4510 0.0627 0
0.2588 0

.1608 0.0627

Image Courtesy of Susan Cohen

Pixel Values Index to Colormap Entries in Indexed Images

Intensity Images

An intensity image, also known as a grayscale image, is a data matrix, I, whose
values represent intensities within some range. MATLAB stores an intensity
image as a individual matrix, with each element of the matrix corresponding
to one image pixel. The matrix can be of class uint8, uint16, int16, single, or

2-5

2 Introduction

double.While intensity images are rarely saved with a colormap, MATLAB
uses a colormap to display them.

For a matrix of class single or double, using the default grayscale colormap,
the intensity 0 represents black and the intensity 1 represents white. For a
matrix of type uint8, uint16, or int16, the intensity intmin(class(I))
represents black and the intensity intmax(class(I)) represents white.

The figure below depicts an intensity image of class double.

; 0.2563 0.2826 0.2826 U
.5342 0.2051 0.2157 0.2826 0.3822 0.4391 0.439
0.5342 0.1789 0.1307 0.1789 0.2051 0.3256 0.2483
.4308 0.2483 0.2624 0.3344 0.3344 0.2624 0.25
4 _0.2624 0.3344 0.3344

Pixel Values in an Intensity Image Define Gray Levels

Truecolor Images

A truecolor image, also known as an RGB image, is stored in MATLAB as an
m-by-n-by-3 data array that defines red, green, and blue color components for
each individual pixel. Truecolor images do not use a colormap. The color of each
pixel is determined by the combination of the red, green, and blue intensities
stored in each color plane at the pixel’s location. Graphics file formats store
truecolor images as 24-bit images, where the red, green, and blue components

2-6

Image Types in the Toolbox

are 8 bits each. This yields a potential of 16 million colors. The precision with
which a real-life image can be replicated has led to the commonly used term
truecolor image.

A truecolor array can be of class uint8, uint16, single, or double. In a
truecolor array of class single or double, each color component is a value
between 0 and 1. A pixel whose color components are (0,0,0) is displayed as
black, and a pixel whose color components are (1,1,1) is displayed as white. The
three color components for each pixel are stored along the third dimension of
the data array. For example, the red, green, and blue color components of the
pixel (10,5) are stored in RGB(10,5,1), RGB(10,5,2), and RGB(10,5,3),
respectively.

The following figure depicts a truecolor image of class double.

2-7

2 Introduction

7235 0.1294 Blue
.2902 0.0627 0.2902 0.2902

0.1922 0.2588
0.5176 0.1294 0.1608 0.1294 0.1294 0.2588
0.5176 _0.1608 0.0627 0.1608 0.1922 0.2588
0.2235 0.5490 Red 0.7412 0.7765 0.7765
0.3882 0.5176 0.5804 0.5804 0.7765 0.7765
0.2588 0.2902 0.2588 0.2235 0.4824 0.2235
0.2235 0.1608 0.2588 0.2588 0.1608 0.2588
<2588 0.1608 0.2588 0.2588 0.2588 (Q.9°

oOoooo

The Color Planes of an RGB Image

To determine the color of the pixel at (2,3), you would look at the RGB triplet
stored in (2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains
0.1608, and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

2-8

Image Types in the Toolbox

To further illustrate the concept of the three separate color planes used in an
RGB image, the code sample below creates a simple RGB image containing
uninterrupted areas of red, green, and blue, and then creates one image for
each of its separate color planes (red, green, and blue). It displays each color
plane image separately, and also displays the original image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
R=RGB(:,:,1);

G=RGB(:,:,2);
B=RGB(:,:,3);
imshow(R)

figure, imshow(G)
figure, imshow(B)
figure, imshow(RGB)

Red Plane Green Plane

Blue Plane Original Image

The Separated Color Planes of an RGB Image

2-9

2 Introduction

Notice that each separated color plane in the figure contains an area of white.
The white corresponds to the highest values (purest shades) of each separate
color. For example, in the Red Plane image, the white represents the highest
concentration of pure red values. As red becomes mixed with green or blue,
gray pixels appear. The black region in the image shows pixel values that
contain no red values, i.e., R ==

2-10

Converting Between Image Types

Converting Between Image Types

You might need to convert an image from one type to another. For example, if
you want to filter a color image that is stored as an indexed image, you should
first convert it to truecolor format. When you apply the filter to the truecolor
image, MATLAB filters the intensity values in the image, as is appropriate. If
you attempt to filter the indexed image, MATLAB simply applies the filter to
the indices in the indexed image matrix, and the results might not be
meaningful.

Note When you convert an image from one format to another, the resulting
image might look different from the original. For example, if you convert a
color indexed image to an intensity image, the resulting image is grayscale,
not color.

The following table lists all the image type conversion functions in the Image
Processing Toolbox.

Function Description

dither Create a binary image from a grayscale intensity image
by dithering or create an indexed image from a
truecolor image by dithering

gray2ind Create an indexed image from a grayscale intensity
image

grayslice Create an indexed image from a grayscale intensity
image by thresholding

im2bw Create a binary image from a grayscale intensity

image, indexed image, or truecolor image, based on a
luminance threshold

ind2gray Create a grayscale intensity image from an indexed
image
ind2rgb Create a truecolor image from an indexed image

2-11

2 Introduction

Function Description

mat2gray Create a grayscale intensity image from data in a
matrix, by scaling the data

rgb2gray Create a grayscale intensity image from a truecolor
image
rgb2ind Create an indexed image from a truecolor image

You can also perform certain conversions just using MATLAB syntax. For
example, you can convert an intensity image to truecolor format by
concatenating three copies of the original matrix along the third dimension.

RGB = cat(3,I,I,I);

The resulting truecolor image has identical matrices for the red, green, and
blue planes, so the image displays as shades of gray.

In addition to these standard conversion tools, there are some functions that
return a different image type as part of the operation they perform. For
example, the region-of-interest routines each return a binary image that you
can use to mask an indexed or intensity image for filtering or for other
operations.

Color Space Conversions

The Image Processing Toolbox represents colors as RGB values, either directly
(in a truecolor image) or indirectly (in an indexed image). However, there are
other methods for representing colors. For example, a color can be represented
by its hue, saturation, and value components (HSV). Different methods for
representing colors are called color spaces.

The toolbox provides a set of routines for converting between color spaces. The
image processing functions themselves assume all color data is RGB, but you
can process an image that uses a different color space by first converting it to
RGB, and then converting the processed image back to the original color space.
For more information about color space conversion routines, see Chapter 13,
“Color.”

2-12

Converting Between Image Classes

Converting Between Image Classes

You can convert uint8 and uint16 image data to double using the MATLAB
double function. However, converting between classes changes the way
MATLAB and the toolbox interpret the image data. If you want the resulting
array to be interpreted properly as image data, you need to rescale or offset the
data when you convert it.

For easier conversion of classes, use one of these toolbox functions: im2uints8,
im2uint16, im2int16, im2single, or im2double. These functions automatically
handle the rescaling and offsetting of the original data of any image class. For
example, this command converts a double-precision RGB image with data in
the range [0,1] to a uint8 RGB image with data in the range [0,255].

RGB2 = im2uint8(RGB1);

Losing Information in Conversions

When you convert to a class that uses fewer bits to represent numbers, you
generally lose some of the information in your image. For example, a uint16
intensity image is capable of storing up to 65,536 distinct shades of gray, but a
uint8 intensity image can store only 256 distinct shades of gray. When you
convert a uint16 intensity image to a uint8 intensity image, im2uint8
quantizes the gray shades in the original image. In other words, all values from
0 to 127 in the original image become 0 in the uint8 image, values from 128 to
385 all become 1, and so on.

Converting Indexed Images

It is not always possible to convert an indexed image from one storage class to
another. In an indexed image, the image matrix contains only indices into a
colormap, rather than the color data itself, so no quantization of the color data
is possible during the conversion.

For example, a uint16 or double indexed image with 300 colors cannot be
converted to uint8, because uint8 arrays have only 256 distinct values. If you
want to perform this conversion, you must first reduce the number of the colors
in the image using the imapprox function. This function performs the
quantization on the colors in the colormap, to reduce the number of distinct
colors in the image. See “Reducing Colors in an Indexed Image” on page 13-12
for more information.

2-13

2 Introduction

2-14

Multiframe Image Arrays

For some applications, you might need to work with collections of images
related by time or view, such as magnetic resonance imaging (MRI) slices or
movie frames.

The Image Processing Toolbox provides support for storing multiple images in
the same array. Each separate image is called a frame. If an array holds
multiple frames, they are concatenated along the fourth dimension. For
example, an array with five 480-by-640 truecolor images would be
480-by-640-by-3-by-5. A similar multiframe intensity or indexed image would
be 480-by-640-by-1-by-5.

Use the cat command to store separate images in one multiframe array. For
example, if you have a group of images A1, A2, A3, A4, and A5, you can store
them in a single array using

A = cat(4,A1,A2,A3,A4,A5)

You can also extract frames from a multiframe image. For example, if you have
a multiframe image MULTI, this command extracts the third frame.

FRM3 = MULTI(:,:,:,3)

Note that, in a multiframe image array, each image must be the same size and
have the same number of planes. In a multiframe indexed image, each image
must also use the same colormap.

Multiframe Support Limitations

Many of the functions in the toolbox operate only on the first two or first three
dimensions. You can still use four-dimensional arrays with these functions, but
you must process each frame individually. For example, this call displays the
seventh frame in the array MULTI.

imshow(MULTI(:,:,:,7))

If you pass an array to a function and the array has more dimensions than the
function is designed to operate on, your results can be unpredictable. In some
cases, the function simply processes the first frame of the array, but in other
cases the operation does not produce meaningful results.

See the reference pages for information about how individual functions work
with the dimensions of an image array.

Reading and Writing Image Data

Reading and Writing Image Data

This section describes how to read and write image data. Topics include

¢ Reading data stored in many standard graphics file formats
® Writing data to files in many standard graphics file formats
® Querying graphics image files for information stored in header fields

¢ Converting images between graphics file formats

For information about reading and writing data in Digital Imaging and
Communications in Medicine (DICOM) file format, see “Working with DICOM
Files” on page 2-21.

Reading a Graphics Image

The imread function reads an image from any supported graphics image file
format, in any of the supported bit depths. Most image file formats use 8 bits
to store pixel values. When these are read into memory, MATLAB stores them
as class uint8. For file formats that support 16-bit data, PNG and TIFF,
MATLAB stores the images as class uint16.

Note For indexed images, imread always reads the colormap into a matrix of
class double, even though the image array itself may be of class uint8 or
uintié.

For example, this code reads a truecolor image into the MATLAB workspace as
the variable RGB.

RGB = imread('football.jpg');

This code reads an indexed image with its associated colormap into the
MATLAB workspace in two separate variables.

[X,map] = imread('trees.tif');
In these examples, imread infers the file format to use from the contents of the
file. You can also specify the file format as an argument to imread. MATLAB

supports many common graphics file formats, such as Microsoft Windows
Bitmap (BMP), Graphics Interchange Format (GIF), Joint Photographic

2-15

2 Introduction

Experts Group (JPEG), Portable Network Graphics (PNG), and Tagged Image
File Format (TIFF) formats. For the latest information concerning the bit
depths and/or image formats supported, see the reference page for the imread
and imformats functions.

Reading Multiple Images from a Graphics File

MATLAB supports several graphics file formats, such as HDF and TIFF, that
can contain multiple images. By default, imread imports only the first image
from a file. To import additional images from the file, use the syntax supported
by the file format.

For example, when used with TIFF files, you can use an index value with
imread that identifies the image in the file you want to import. This example
reads a series of 27 images from a TIFF file and stores the images in a
four-dimensional array. You can use imfinfo to determine how many images
are stored in the file.

mri = uint8(zeros(128,128,1,27)); % preallocate 4-D array

for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

When a file contains multiple images that are related in some way, such as a
time sequence, you can store the images in MATLAB as a 4-D array. All the
images must be the same size. For more information, see “Multiframe Image
Arrays” on page 2-14.

Writing a Graphics Image

The function imwrite writes an image to a graphics file in one of the supported
formats. The most basic syntax for imwrite takes the image variable name and
a filename. If you include an extension in the filename, MATLAB infers the
desired file format from it. (For more information, see the reference entry for
the imwrite function.)

This example loads the indexed image X from a MAT-file, clown.mat, that
contains the data matrix and the associated colormap and then writes the
image to a BMP file.

load clown
whos

2-16

Reading and Writing Image Data

Name Size Bytes Class

X 200x320 512000 double array
caption 2x1 4 char array
map 81x3 1944 double array

Grand total is 64245 elements using 513948 bytes
imwrite(X,map, 'clown.bmp')

Specifying Additional Format-Specific Parameters

When using imwrite with some graphics formats, you can specify additional
parameters. For example, with PNG files, you can specify the bit depth as an
additional parameter. This example writes an intensity image I to a 4-bit PNG
file.

imwrite(I,'clown.png', 'BitDepth',4);
This example writes an image A to a JPEG file, using an additional parameter
to specify the compression quality parameter.

imwrite (A, 'myfile.jpg', 'Quality', 100);

For more information about the additional parameters associated with certain
graphics formats, see the reference pages for imwrite.

Reading and Writing Binary Images in 1-Bit Format

In certain file formats, a binary image can be stored in a 1-bit format. If the file
format supports it, MATLAB writes binary images as 1-bit images by default.
When you read in a binary image in 1-bit format, MATLAB represents it in the
workspace as a logical array.

This example reads in a binary image and writes it as a TIFF file. Because the
TIFF format supports 1-bit images, the file is written to disk in 1-bit format.

BW = imread('text.png');
imwrite (BW, 'test.tif');

To verify the bit depth of test.tif, call imfinfo and check the BitDepth field.

info = imfinfo('test.tif');

2-17

2 Introduction

info.BitDepth
ans =

Note When writing binary files, MATLAB sets the ColorType field to
‘grayscale’.

Determining the Storage Class of the Output File

imwrite uses the following rules to determine the storage class used in the
output image.

Storage Class Storage Class of Output Image File
of Image
logical If the output image file format specified supports

1-bit images, imwrite creates a 1-bit image file.

If the output image file format specified does not
support 1-bit images, such as JPEG, imwrite
converts the image to a class uint8 intensity image.

uints If the output image file format specified supports
unsigned 8-bit images, imwrite creates an unsigned
8-bit image file.

uint16 If the output image file format specified support
unsigned 16-bit images (PNG or TIFF), imwrite
creates an unsigned 16-bit image file.

If the output image file format specified does not
support 16-bit images, imwrite scales the image
data to class uint8 and creates an 8-bit image file.

int16 Partially supported; depends on file format.

2-18

Reading and Writing Image Data

Storage Class Storage Class of Output Image File

of Image

single Partially supported; depends on file format.

double MATLAB scales the image data to uint8 and creates
an 8-bit image file, because most image file formats
use 8 bits.

Querying a Graphics File

Note You can also get information interactively about an image displayed in
the Image Tool — see “Getting Information about an Image” on page 3-29.

The imfinfo function enables you to obtain information about graphics files
that are in any of the formats supported by the toolbox. The information you
obtain depends on the type of file, but it always includes at least the following:
® Name of the file

¢ File format

® Version number of the file format

¢ File modification date

¢ File size in bytes

® Image width in pixels

¢ Image height in pixels

® Number of bits per pixel

® Image type: truecolor (RGB), intensity (grayscale), or indexed

See the reference entry for imfinfo for more information.

Converting Graphics File Formats

To change the graphics format of an image, use imread to read in the image and
then save the. image with imwrite, specifying the appropriate format.

2-19

2 Introduction

To illustrate, this example uses the imread function to read an image in bitmap
(BMP) format into the workspace. The example then writes the bitmap image
to a file using Portable Network Graphics (PNG) format.

bitmap = imread('mybitmap.bmp', 'bmp');
imwrite(bitmap, 'mybitmap.png','png');

For the specifics of which bit depths are supported for the different graphics
formats, and for how to specify the format type when writing an image to file,
see the reference entries for imread and imwrite.

2-20

Working with DICOM Files

Working with DICOM Files

The Image Processing Toolbox includes support for working with image data in
Digital Imaging and Communications in Medicine (DICOM) format. Topics
covered include:

® “Reading Image Data from a DICOM File” on page 2-21

¢ “Reading Metadata from a DICOM File” on page 2-22

® “Writing Image Data or Metadata to a DICOM File” on page 2-23, including
information about anonymizing a DICOM file

To see an example that reads both the image data and metadata from a DICOM
file, modifies the image data, and writes the modified data to a new DICOM
file, see “Example: Creating a New Series” on page 2-25. The example shows
how to use the dicomuid function to generate a DICOM unique identifier,
which you need to create a new series.

Reading Image Data from a DICOM File

To read image data from a DICOM file, use the dicomread function. The
dicomread function reads files that comply with the DICOM specification but
can also read certain common noncomplying files.

This example reads an image from a sample DICOM file included with the
toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

To view the image data, use one of the toolbox image display functions, imshow
or imtool. (Because the image data is signed 16-bit data, you must use the
autoscaling syntax with either display function.)

imshow(I, 'DisplayRange',[])

2-21

2 Introduction

Reading Metadata from a DICOM File

To read metadata from a DICOM file, use the dicominfo function.

The metadata in a DICOM files provides information, such as the size,
dimensions, and bit depth of the image. In addition, the DICOM specification
defines numerous other metadata fields that describe many other
characteristics of the data, such as the modality used to create the data, the
equipment settings used to capture the image, and information about the
study.

In this example, dicominfo reads the metadata from a file, returning the
information in a structure where every field in the structure is a specific piece
of DICOM metadata.

info = dicominfo('CT-MONO2-16-ankle.dcm');

info

Filename: [1x47 char]
FileModDate: '24-Dec-2000 19:54:47'
FileSize: 525436
Format: 'DICOM'
FormatVersion: 3
Width: 512

2-22

Working with DICOM Files

Height: 512
BitDepth: 16
ColorType: 'grayscale’
SelectedFrames: []
FileStruct: [1x1 struct]
StartOfPixelData: 1140
MetaElementGroupLength: 192
FileMetaInformationVersion: [2x1 double]
MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
MediaStorageSOPInstanceUID: [1x50 char]
TransferSyntaxUID: '1.2.840.10008.1.2°'
ImplementationClassUID: '1.2.840.113619.6.5'

You can use the metadata structure returned by dicominfo to specify the
DICOM file you want to read using dicomread. For example, you can use this
code to read metadata from the sample DICOM file and then pass the metadata
to dicomread to read the image from the file.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);

Writing Image Data or Metadata to a DICOM File

To write image data or metadata to a file in DICOM format, use the

dicomwrite function. This example writes the image I to the DICOM file
ankle.dcm.

dicomwrite(I,'h:\matlab\tmp\ankle.dcm')

When you write image data to a DICOM file, dicomwrite includes the
minimum set of metadata fields required by the type of DICOM information
object (IOD) you are creating. dicomwrite supports three types of DICOM
I0Ds with full validation and supports many other types (e.g. X-ray,
radiotherapy, nuclear medicine) without validation.

¢ Secondary capture (default)

® Magnetic resonance

® Computed tomography

2-23

2 Introduction

You can also specify the metadata you want to write to the file by passing to
dicomwrite an existing DICOM metadata structure that you retrieved using
dicominfo.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);
dicomwrite (I, 'h:\matlab\tmp\ankle.dcm',info)

In this case, the dicomwrite function writes the relevant information in the
metadata structure info to the new DICOM file.

Note that the metadata written to the file is not identical to the metadata in
the info structure. When writing metadata to a file, there are certain fields
that dicomwrite must update. For example, dicomwrite must update the file
modification date in the new file. To illustrate, compare the instance ID in the
original metadata with the ID in the new file.

info.SOPInstanceUID
ans =

1.2.840.113619.2.1.2411.1031152382.365.1.736169244

Using dicominfo, read the metadata from the newly written file and check the
file modification date.

info2 = dicominfo('h:\matlab\tmp\ankle.dcm');
info2.SOPInstanceUID
ans =

1.2.841.113411.2.1.2411.10311244477.365.1.63874544

Anonymizing a DICOM File

When using a DICOM file as part of a training set, blinded study, or a
presentation, you might want to remove confidential patient information. To do
this, use the dicomanon function.

The dicomanon function creates a new series and study values, changes some
of the metadata, and then writes the file. For example, you could replace steps
4, 5, and 6 in the example in “Example: Creating a New Series” on page 2-25

with a call to the dicomanon function.

2-24

Working with DICOM Files

Example: Creating a New Series

When writing a modified image to a DICOM file, you might want to make the
modified image the start of a new series. In the DICOM standard, images can
be organized into series. When you write an image with metadata to a DICOM
file, dicomwrite puts the image in the same series by default. To create a new
series, you must assign a new DICOM unique identifier to the
SeriesInstanceUID metadata field. This example illustrates this process:

1 Read an image from a DICOM file into the MATLAB workspace.
I = dicomread('CT-MONO2-16-ankle.dcm');
To view the image, use either of the toolbox display functions, imshow or

imtool. Because the DICOM image data is signed 16-bit data, you must use
the autoscaling syntax.

imtool (I, 'DisplayRange’',[])

2 Read the metadata from the same DICOM file.
info = dicominfo('CT-MONO2-16-ankle.dcm');

To identify which series an image belongs to, view the value of the
SeriesInstanceUID field.

2-25

2 Introduction

info.SeriesInstanceUID
ans =
1.2.840.113619.2.1.2411.1031152382.365.736169244

3 You typically only start a new DICOM series when you modify the image in
some way. This example removes all the text from the image.

The example finds the maximum and minimum values of all pixels in the
image. The pixels that form the white text characters are set to the
maximum pixel value.

max(I(:))
ans =

4080
min(I(:))
ans =

32

To remove these text characters, the example sets all pixels with the
maximum value to the minimum value.

Imodified = I;

Imodified(Imodified == 4080) = 32;

View the processed image.

imshow(Imodified)

2-26

Working with DICOM Files

4 Generate a new DICOM unique identifier (UID) using the dicomuid
function. You need a new UID to write the modified image as a new series.

uid dicomuid

uid
1.3.6.1.4.1.9590.100.1.1.56461980611264497732341403390561061497
dicomuid is guaranteed to generate a unique UID.

5 Set the value of the SeriesInstanceUID field in the metadata associated
with the original DICOM file to the generated value.

info.SeriesInstanceUID = uid;
6 Write the modified image to a new DICOM file, specifying the modified

metadata structure, info, as an argument. Because you set the
SeriesInstanceUID value, the image you write is part of a new series.

dicomwrite(Imodified, 'ankle_newseries.dcm',info);

To verify this operation, view the image and the SeriesInstanceUID
metadata field in the new file.

2-27

2 Introduction

2-28

Image Arithmetic

Image arithmetic is the implementation of standard arithmetic operations,
such as addition, subtraction, multiplication, and division, on images. Image
arithmetic has many uses in image processing both as a preliminary step in
more complex operations and by itself. For example, image subtraction can be
used to detect differences between two or more images of the same scene or
object.

You can do image arithmetic using the MATLAB arithmetic operators. The
Image Processing Toolbox also includes a set of functions that implement
arithmetic operations for all numeric, nonsparse data types. The toolbox
arithmetic functions accept any numeric data type, including uint8, uint1e,
and double, and return the result image in the same format. The functions
perform the operations in double precision, on an element-by-element basis,
but do not convert images to double-precision values in the MATLAB
workspace. Overflow is handled automatically. The functions saturate return
values to fit the data type. For details, see “Image Arithmetic Saturation
Rules” on page 2-28.

Note On Intel architecture processors, the image arithmetic functions can
take advantage of the Intel Performance Primitives Library (IPPL), thus
accelerating their execution time. IPPL is only activated, however, when the
data passed to these functions is of specific classes. See the reference pages for
the individual arithmetic functions for more information.

Image Arithmetic Saturation Rules

The results of integer arithmetic can easily overflow the data type allotted for
storage. For example, the maximum value you can store in uint8 data is 255.
Arithmetic operations can also result in fractional values, which cannot be
represented using integer arrays.

MATLAB arithmetic operators and the Image Processing Toolbox arithmetic
functions use these rules for integer arithmetic:

® Values that exceed the range of the integer type are saturated to that range.
¢ Fractional values are rounded.

Image Arithmetic

For example, if the data type is uint8, results greater than 255 (including Inf)
are set to 255. The following table lists some additional examples.

Result Class Truncated Value
300 uint8 255

45 uint8 0

10.5 uint8 11

Nesting Calls to Image Arithmetic Functions

You can use the image arithmetic functions in combination to perform a series
of operations. For example, to calculate the average of two images,

A+B

C:2

You could enter

I = imread('rice.png');
I2 = imread('cameraman.tif');
K = imdivide(imadd(I,I2), 2); % not recommended

When used with uint8 or uint16 data, each arithmetic function rounds and
saturates its result before passing it on to the next operation. This can
significantly reduce the precision of the calculation. A better way to perform
this calculation is to use the imlincomb function. imlincomb performs all the
arithmetic operations in the linear combination in double precision and only
rounds and saturates the final result.

K = imlincomb(.5,I,.5,I2); % recommended

2-29

2 Introduction

2-30

Coordinate Systems

Locations in an image can be expressed in various coordinate systems,
depending on context. This section discusses the two main coordinate systems
used in the Image Processing Toolbox and the relationship between them.
These two coordinate systems are described in

¢ “Pixel Coordinates”
e “Spatial Coordinates” on page 2-31

Pixel Coordinates

Generally, the most convenient method for expressing locations in an image is
to use pixel coordinates. In this coordinate system, the image is treated as a
grid of discrete elements, ordered from top to bottom and left to right, as
illustrated by the following figure.

Y

"y
The Pixel Coordinate System

For pixel coordinates, the first component r (the row) increases downward,
while the second component ¢ (the column) increases to the right. Pixel
coordinates are integer values and range between 1 and the length of the row
or column.

There is a one-to-one correspondence between pixel coordinates and the
coordinates MATLAB uses for matrix subscripting. This correspondence
makes the relationship between an image’s data matrix and the way the image

Coordinate Systems

is displayed easy to understand. For example, the data for the pixel in the fifth
row, second column is stored in the matrix element (5,2).

Spatial Coordinates

In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely
identified by a single coordinate pair, such as (5,2). From this perspective, a
location such as (5.3,2.2) is not meaningful.

At times, however, it is useful to think of a pixel as a square patch. From this
perspective, a location such as (5.3,2.2) is meaningful, and is distinct from (5,2).
In this spatial coordinate system, locations in an image are positions on a
plane, and they are described in terms of x and y (not r and ¢ as in the pixel
coordinate system).

The following figure illustrates the spatial coordinate system used for images.
Notice that y increases downward.

The Spatial Coordinate System

This spatial coordinate system corresponds closely to the pixel coordinate
system in many ways. For example, the spatial coordinates of the center point
of any pixel are identical to the pixel coordinates for that pixel.

There are some important differences, however. In pixel coordinates, the upper
left corner of an image is (1,1), while in spatial coordinates, this location by
default is (0.5,0.5). This difference is due to the pixel coordinate system’s being
discrete, while the spatial coordinate system is continuous. Also, the upper left
corner is always (1,1) in pixel coordinates, but you can specify a nondefault

2-31

2 Introduction

origin for the spatial coordinate system. See “Using a Nondefault Spatial
Coordinate System” on page 2-32 for more information.

Another potentially confusing difference is largely a matter of convention: the
order of the horizontal and vertical components is reversed in the notation for
these two systems. As mentioned earlier, pixel coordinates are expressed as
(r,c), while spatial coordinates are expressed as (x,y). In the reference pages,
when the syntax for a function uses r and c, it refers to the pixel coordinate
system. When the syntax uses x and vy, it refers to the spatial coordinate
system.

Using a Nondefault Spatial Coordinate System

By default, the spatial coordinates of an image correspond with the pixel
coordinates. For example, the center point of the pixel in row 5, column 3 has
spatial coordinates x=3, y=5. (Remember, the order of the coordinates is
reversed.) This correspondence simplifies many of the toolbox functions
considerably. Several functions primarily work with spatial coordinates rather
than pixel coordinates, but as long as you are using the default spatial
coordinate system, you can specify locations in pixel coordinates.

In some situations, however, you might want to use a nondefault spatial
coordinate system. For example, you could specify that the upper left corner of
an image is the point (19.0,7.5), rather than (0.5,0.5). If you call a function that
returns coordinates for this image, the coordinates returned will be values in
this nondefault spatial coordinate system.

To establish a nondefault spatial coordinate system, you can specify the XData
and YData image properties when you display the image. These properties are
two-element vectors that control the range of coordinates spanned by the
image. By default, for an image A, XDatais [1 size(A,2)], and YData is

[1 size(A,1)].

For example, if A is a 100 row by 200 column image, the default XData is

[1 200], and the default YDatais [1 100]. The values in these vectors are
actually the coordinates for the center points of the first and last pixels (not the
pixel edges), so the actual coordinate range spanned is slightly larger; for
instance, if XData is [1 200], the x-axis range spanned by the image is

[0.5 200.5].

2-32

Coordinate Systems

These commands display an image using nondefault XData and YData.

A = magic(5);
X = [19.5 28.5];
y = [8.0 12.0];

image (A, 'XData',x, 'YData',y), axis image, colormap(jet(25))

125 L L L
19 185 20 205 21 215 22 225 23 235 24

For information about the syntax variations that specify nondefault spatial
coordinates, see the reference page for imshow.

2-33

2 Introduction

2-34

Displaying and Exploring

Images

This chapter describes the image display and exploration tools provided by the Image Processing

Toolbox.

Overview (p. 3-2)

Using imshow to Display Images
(p. 3-4)

Using the Image Tool to Explore
Images (p. 3-8)

Using Image Tool Navigation Aids
(p. 3-16)

Getting Information about the Pixels in
an Image (p. 3-22)

Getting Information about an Image
(p. 3-29)

Adjusting the Contrast and Brightness
of an Image (p. 3-31)

Viewing Multiple Images (p. 3-41)

Displaying Different Image Types
(p. 3-45)

Special Display Techniques (p. 3-51)
Printing Images (p. 3-56)

Setting Toolbox Display Preferences
(p. 3-58)

Comparison of toolbox display functions

How to use the imshow display function

How to use the Image Tool integrated display and
exploration environment

Image Tool navigation aids including the Overview tool,

panning, and zooming

Image Tool pixel information tools, including the Pixel

Region tool and the Pixel Information tool

Image Tool’s Image Information tool

Image Tool’s Adjust Contrast tool

Using imshow and imtool to view multiple images

Using imshow and imtool with each image type

Using the colorbar, montage, and warp functions
Print images from imshow and the Image Tool

Setting toolbox preferences

3 Displaying and Exploring Images

3-2

Overview

The Image Processing Toolbox includes two display functions, imshow and
imtool. Both functions work within the Handle Graphics architecture: they
create an image object and display it in an axes object contained in a figure
object. The toolbox functions automatically set the values of certain figure,
axes, and image object properties to control how the image data is displayed —
see “Understanding Handle Graphics Object Property Settings” on page 3-2.

imshow is the toolbox's fundamental image display function. Use imshow when
you want to display any of the different image types supported by the toolbox,
such as intensity (grayscale), truecolor (RGB), binary, and indexed. For more
information, see “Using imshow to Display Images” on page 3-4. The imshow
function is also a key building block for image applications you might want to
create using the toolbox modular tools. For more information, see Chapter 4,
“Building GUIs with Modular Tools.”

The other toolbox display function, imtool, launches the Image Tool which
presents an integrated environment for displaying images and performing
some common image processing tasks. The Image Tool provides all the image
display capabilities of imshow but also provides access to several other tools for
navigating and exploring images, such as scroll bars, the Pixel Region tool,
Image Information tool, and the Adjust Contrast tool. For more information,
see “Using the Image Tool to Explore Images” on page 3-8.

In general, using the toolbox functions to display images is preferable to using
the MATLAB image display functions: image and imagesc. The toolbox
functions are easier to use and are optimized for displaying images.

Understanding Handle Graphics Object Property
Settings

When you display an image, imshow and imtool set the Handle Graphics
properties that control how the image is displayed. The following table lists the
relevant properties and their settings for each image type. The table uses
standard toolbox terminology to refer to the various image types: X represents
an indexed image, I represents an intensity image, BW represents a binary
image, and RGB represents an RGB (or truecolor) image.

Overview

Note Both imshow and imtool can perform automatic scaling of image data.
When called with the syntax imshow(I, 'DisplayRange',[]), and similarly
for imtool, the functions set the axes CLim property to [min(I(:))
max(I(:))].CDataMapping is always scaled for intensity images, so that the
value min(I(:)) is displayed using the first colormap color, and the value
max (I(:)) is displayed using the last colormap color.

Handle Graphics Indexed Intensity Binary Images Truecolor (RGB)
Property Images (Grayscale) Images Images
CData (Image) Set to the Set to the data in I Set to data in BW Set to data in
data in X RGB
CDataMapping Set to Set to 'scaled' Set to 'direct' Ignored when
(Image) ‘direct' CDatais 3-D
CcLim (Axes) Does not double: [0 1] Setto [0 1] Ignored when
apply uint8: [0 255] CDatais 3-D
uint16: [0 65535]
Colormap (Figure) Settodata Set to grayscale Set to a grayscale Ignored when
in map colormap colormap whose CDatais 3-D

values range from
black to white

3-3

3 Displaying and Exploring Images

Using imshow to Display Images

You can use the imshow function to display an image that has already been
imported into the MATLAB workspace or to display an image stored in a
graphics file. For example, this code reads an image into the MATLAB
workspace and then displays it in a MATLAB figure window.

moon = imread('moon.tif');
imshow(moon) ;

The imshow function displays the image in a MATLAB figure window, as shown
in the following figure.

rgret =
k|

File Edit Wiew Insert Tools Desktop Window Help

DdEe haaf® e 0E 80

Image Displayed in a Figure Window by imshow

The imshow filename syntax

imshow('moon.tif');

Using imshow to Display Images

can be useful for scanning through images. Note, however, that when you use
this syntax, the image data is not stored in the MATLAB workspace. If you
want to bring the image into the workspace, you must use the getimage
function, which retrieves the image data from the current Handle Graphics
image object. For example,

moon = getimage;

assigns the image data from moon.tif to the variable moon if the figure window
in which it is displayed is currently active.

For more information about using imshow, see these additional topics.

® “Specifying the Initial Image Magnification” on page 3-5
¢ “Controlling the Appearance of the Figure” on page 3-6

For more information about using imshow to display the various image types

supported by the toolbox, see “Displaying Different Image Types” on page 3-45.

Specifying the Initial Image Magnification

By default, imshow attempts to display an image in its entirety at 100%
magnification (one screen pixel for each image pixel). However, if an image is
too large to fit in a figure window on the screen at 100% magnification, imshow
scales the image to fit onto the screen and issues a warning message.

To override the default initial magnification behavior for a particular call to
imshow, specify the InitialMagnification parameter. For example, to view an
image at 150% magnification, use this code.

pout = imread('pout.tif');
imshow(pout, 'InitialMagnification', 150)

imshow attempts to honor the magnification you specify. However, if the image
does not fit on the screen at the specified magnification, imshow scales the
image to fit and issues a warning message. You can also specify the text string
'fit' as the initial magnification value. In this case, imshow scales the image
to fit the current size of the figure window.

You can also change the default initial magnification behavior of imshow by
setting the ImshowInitialMagnification toolbox preference. To make this
preference persist between sessions, include the command to set the preference

3-5

3 Displaying and Exploring Images

3-6

in your startup.m file. To learn more about toolbox preferences, see “Setting
the Value of Toolbox Preferences” on page 3-59.

When imshow scales an image, it uses interpolation to determine the values for
screen pixels that do not directly correspond to elements in the image matrix.
For more information, see “Interpolation” on page 5-3.

Controlling the Appearance of the Figure

By default, when imshow displays an image in a figure, it surrounds the image
with a gray border and does not include a visible axes box. If you want to
display an image without the gray border or include a visible axes box with tick
labels, you must set toolbox preferences. (For more information about setting
toolbox preferences, see “Setting Toolbox Display Preferences” on page 3-58.)

For example, to display an image without a border, set the ImshowBorder
preference to 'tight'. By default, this preference is set to 'loose', which
causes the border to be included. This code sets the preference to suppress the
border and then displays an image.

iptsetpref ('ImshowBorder', 'tight')
imshow('moon.tif"')

The following figure shows the same image displayed with and without the
border. Note that the image is the same size but the figure window takes up
less space on your screen.

Using imshow to Display Images

RE=TE
File Edit Wiew Insert Tools Desktop Window Help L'l _IEIIZI
0= n é | h | @l Q i“’? @ | \+E | D E | = File Edit View Inserl Tool: Deskto ‘Window Help

2

DEEE K RAN S|

'loose’ ‘tight'

Image Displayed With and Without a Border

3-7

3 Displaying and Exploring Images

Using the Image Tool to Explore Images

The Image Tool is an image display tool that also provides access to several
other related tools, such as, the Pixel Region tool, Image Information tool, and
the Adjust Contrast tool. The Image Tool also provides navigation aids that can
help explore large images, such as, scroll bars, the Overview tool, pan tool, and
zoom buttons. The Image Tool presents an integrated environment for
displaying images and performing common image processing tasks.

For example, this code reads an image into the MATLAB workspace and then
displays it in the Image Tool.

moon = imread('moon.tif');
imtool(moon);

The following figure shows the image displayed in the Image Tool, with all of
the related tools active. For more information about using the Image Tool and
related tools, see the topics in the following list.

¢ “Opening the Image Tool” on page 3-10

® “Specifying the Initial Image Magnification” on page 3-11

® “Closing the Image Tool” on page 3-14

® “Specifying the Colormap” on page 3-11

¢ “Importing Image Data from the Workspace” on page 3-13

¢ “Exporting the Image to the Workspace” on page 3-14

¢ “Closing the Image Tool” on page 3-14

® “Printing the Image in the Image Tool” on page 3-15

¢ “Using Image Tool Navigation Aids” on page 3-16

® “Getting Information about the Pixels in an Image” on page 3-22.

® “Getting Information about an Image” on page 3-29

¢ “Adjusting the Contrast and Brightness of an Image” on page 3-31

® “Displaying Different Image Types” on page 3-45

Using the Image Tool to Explore Images

File Tools ‘Window Help ~

(B0 0 2 ® & Moo

Edit

PN

File:

‘Window Help

<) P
File

Edit

Pixel info: (175, 271) 150

Pixel info: (215, 451) 2

D& E; (=B
File ‘Window Help &
Image details (Image Tool 1 - moon tif
7 Auto Scale... I Reset Image I
Atribute Walue
Minirmurm %alue | 1] .}_'I Winclowy Wicth 255
hdadirmum Valuel 255 f’_’l Winclony Centerl 128
: Ly
B Maditmiurn irtersty
b,
: |
Metadata {moon tif) |
| Fieldname :
|
|
|
_ o A0 100 150 200 250
Adjust the histogram above, or click and drag the mouse over the image,

Image Tool and Related Tools

3 Displaying and Exploring Images

3-10

Opening the Image Tool

To start the Image Tool, use the imtool function. Once started, you can launch
another Image Tool from within an Image Tool by using the New option from
the File menu. The following shows some common imtool syntaxes. For
complete information, see the imtool function reference page.

When called with no arguments,

imtool

imtool opens an empty Image Tool window. You can bring an image into the
Image Tool by using the Import from Workspace option from the File menu
— see “Importing Image Data from the Workspace” on page 3-13.

You can also call imtool specifying the name of the MATLAB workspace
variable that contains image data.

moon = imread('moon.tif');
imtool(moon)

Alternatively, you can specify the name of the graphics file containing the
image.

imtool('moon.tif');

This syntax can be useful for scanning through graphics files. Note, however,
that when you use this syntax, the image data is not stored in a MATLAB
workspace variable. To bring the image displayed in the Image Tool into the
workspace, you must use the getimage function or the Export from
Workspace option from the Image Tool File menu — see “Exporting the Image
to the Workspace” on page 3-14.

Using the Image Tool to Explore Images

Specifying the Initial Image Magnification

Like imshow, the imtool function attempts to display an image in its entirety
at 100% magnification (one screen pixel for each image pixel). Unlike imshow,
imtool always honors the specified numeric magnification, showing only a
portion of the image if it is too big to fit in a figure on the screen and adding
scroll bars to allow navigation to parts of the image that are not currently
visible. If the specified magnification would make the image too large to fit on
the screen, imtool scales the image to fit, without issuing a warning. This is
the default behavior, specified by the imtool 'InitialMagnification'
parameter value 'adaptive'.

To override this default initial magnification behavior for a particular call to
imtool, specify the InitialMagnification parameter. For example, to view an
image at 150% magnification, use this code.

pout = imread('pout.tif');
imtool(pout, 'InitialMagnification', 150)

You can also specify the text string 'fit' as the initial magnification value. In
this case, imtool scales the image to fit the default size of a figure window.

You can also change the default initial magnification behavior of imtool by
setting the ImtoolInitialMagnification toolbox preference. The
magnification value you specify affects every call to imtool for the current
MATLAB session. To make this preference persist between sessions, include
the command to set the preference in your startup.m file. To learn more about
toolbox preferences, see “Setting the Value of Toolbox Preferences” on

page 3-59.

When imtool scales an image, it uses interpolation to determine the values for
screen pixels that do not directly correspond to elements in the image matrix.
For more information, see “Interpolation” on page 5-3.

Specifying the Colormap

A colormap is a matrix that can have any number of rows, but must have three
columns. Each row in the colormap is interpreted as a color, with the first
element specifying the intensity of red, the second green, and the third blue.

To specify the color map used to display an indexed image or an intensity image
in the Image Tool, select the Choose Colormap option on the Tools menu. This
activates the Choose Colormap tool, shown below. Using this tool you can select

3-11

3 Displaying and Exploring Images

one of the MATLAB colormaps or select a colormap variable from the MATLAB
workspace.

When you select a colormap, the Image Tool executes the colormap function you
specified and updates the image displayed. You can edit the colormap
command in the Evaluate Colormap text box; for example, you can change the
number of entries in the colormap (default is 256). You can enter your own
colormap function in this field. Press Enter to execute the command.

When you choose a colormap, the image updates to use the new map. If you
click OK, the Image Tool applies the colormap and closes the Choose Colormap
tool. If you click Cancel, the image reverts to the prevous colormap.

<) Choose Colormap (I -10] =]

Choose from MATLAB Source

(0|ormupS. —— (¥ MATLAE colormap functions
Specify — " Waorkspace varishles
colormap in the

Colarmap functiohs:

workspace.

Evaluatea — Euauste Calormap: |c.;..;.|(255)

colormap function.
QK | Cancel |

Click OK to select the
colormap and close the
dialog box.

Choose Colormap Tool

3-12

Using the Image Tool to Explore Images

Importing Image Data from the Workspace

To import image data from the MATLAB workspace into the Image Tool, use
the Import from Workspace option on the Image Tool File menu. In the dialog
box, shown below, you select the workspace variable that you want to import

into the workspace.

The following figure shows the Import from Workspace dialog box. You can
use the Filter menu to limit the images included in the list to certain image
types, i.e., binary, intensity, RGB, or indexed.

Select
workspace
variable

Import From Workspace

Yarighles:

Filter: IAII EM-bry-H, Wbk |
e
circhir Z80xzTE logical
oo E37x2E8 uintg
peppers I84x51Ex3 uints
[

_o |

Cancel |

X

Import from Workspace Dialog Box

3-13

3 Displaying and Exploring Images

3-14

Exporting the Image to the Workspace

To export the image displayed in the Image Tool to the MATLAB workspace,
you can use the Export to Workspace option on the Image Tool File menu. In
the dialog box, shown below, you specify the name you want to assign to the
variable in the workspace.

. Export Image To Workspace ﬂ
Specify name of

the WOkaPU(e Image varishle name:
variable fi

QK I Cancel |

Export Image to Workspace Dialog Box

You can also use the getimage function to bring image data from the Image
Tool into the MATLAB workspace.

The getimage function retrieves the image data (CData) from the current
Handle Graphics image object. Because, by default, the Image Tool does not
make handles to objects visible, you must use the toolbox function imgca to get
a handle to the image axes displayed in the Image Tool. For example,

moon = getimage(imgca);

assigns the image data from moon. tif to the variable moon if the figure window
in which it is displayed is currently active.

Closing the Image Tool

To close the Image Tool window, use the Close button in the window title bar
or select the Close option from the Image Tool File menu. You can also use the
imtool function to return a handle to the Image Tool and use the handle to
close the Image Tool. When you close the Image Tool, any related tools that are
currently open also close.

Because the Image Tool does not make the handles to its figure objects visible,
the Image Tool does not close when you call the close all command. If you
want to close multiple Image Tools, use the imtool close all syntax or select
Close all from the Image Tool File menu.

Using the Image Tool to Explore Images

Printing the Image in the Image Tool

To print the image displayed in the Image Tool, select the Print to Figure
option from the File menu. The Image Tool opens another figure window and
displays the image. Use the Print option on the File menu of this figure
window to print the image. See “Printing Images” on page 3-56 for more
information.

3-15

3 Displaying and Exploring Images

3-16

Using Image Tool Navigation Aids

If an image is large or viewed at a large magnification, the Image Tool displays
only a portion of the entire image. When this occurs, the Image Tool includes
scroll bars to allow navigation around the image. In some cases, scroll bars
might not be sufficient. To help navigate large images, the Image Tool includes
the following navigation aids:

® Overview tool — Provides a view of the entire image to help you understand
which portion of the image is currently displayed in the Image Tool. See
“Overview Navigation” on page 3-16 for more information.

® Pan tool — Lets you click and grab the image displayed and move it in the
Image Tool. See “Panning the Image Displayed in the Image Tool” on
page 3-19 for more information.

® Zoom tools — Lets you zoom in or out on the image. See “Zooming In and Out
on an Image” on page 3-19 for more information.

¢ Magnification Box — Lets you specify the exact magnification of the image.
See “Specifying the Magnification of the Image” on page 3-20 for more
information.

Overview Navigation

To get an overview of the image displayed in the Image Tool, use the Overview
tool. The Overview tool displays a view of the entire image, scaled to fit, in a
separate window. Superimposed over this view of the image is a rectangle,
called the detail rectangle. The detail rectangle shows which part of the image
is currently visible in the Image Tool window. You can change the portion of
the image visible in the Image Tool by moving the detail rectangle over the
image in the Overview tool.

For example, view an image in the Image Tool.

imtool('moon.tif")

When the Image Tool starts, the Overview tool also starts, by default. You can
also start the Overview tool by clicking the Overview button in the Image
Tool toolbar or by selecting the Overview option from the Tools menu in the

Image Tool. The following figure shows the Image Tool with the Overview tool.
For more information about using the Overview tool, see these topics:

¢ “Using the Overview Tool” on page 3-17

Using Image Tool Navigation Aids

® “Specifying the Color of the Detail Rectangle” on page 3-18
® “Getting the Position and Size of the Detail Rectangle” on page 3-18
¢ “Printing the View of the Image in the Overview Tool” on page 3-18

Overview
navigation
tool button ‘

-} Overview (Imag =100]
File Edit ‘Window Help N
0ve.rV|e.w s o
navigation

tool T

File Tools ‘Window Help a

A0 © 27| & & M o0

Detail
rectangle

A

Pizel info: (329, 407 3 Display range: [0 255]

Image Tool with Overview Tool

Using the Overview Tool

To use the Overview tool to explore an image displayed in the Image Tool,

follow this procedure:

1 Start the Overview tool by clicking the Overview button in the Image
Tool toolbar or by selecting Overview from the Tools menu. The Overview

3-17

3 Displaying and Exploring Images

3-18

tool opens in a separate window containing a view the entire image, scaled
to fit.

The Image Tool opens the Overview tool, by default. If the Overview tool is
already active, clicking the Overview button brings the tool to the front of
the windows open on your screen.

2 Using the mouse, move the cursor into the detail rectangle. The cursor
changes to the fleur shape, «» .

3 Press and hold the mouse button to drag the detail rectangle anywhere on
the image. The Image Tool updates the view of the image to make the
specified region visible.

Specifying the Color of the Detail Rectangle

By default, the color of the detail rectangle in the Overview tool is blue. You
might want to change the color of the rectangle to achieve better contrast with
the predominant color of the underlying image. To do this, right-click anywhere
inside the boundary of the detail rectangle and select a color from the Set
Rectangle Color option on the context menu.

Getting the Position and Size of the Detail Rectangle

To get the current position and size of the detail rectangle, right-click
anywhere inside it and select Copy Position from the context menu. You can
also access this option from the Edit menu of the Overview tool.

This option copies the position information to the clipboard. The position
information is a vector of the form [xmin ymin width height]. To paste this
position vector into the MATLAB workspace or another application, right-click
and select Paste from the context menu.

Printing the View of the Image in the Overview Tool

You can print the view of the image displayed in the Overview tool. Select the
Print to Figure option from the Overview Tool File menu. See “Printing
Images” on page 3-56 for more information.

Using Image Tool Navigation Aids

Panning the Image Displayed in the Image Tool

To change the portion of the image displayed in the Image Tool, you can use the
Drag Image to Pan button to move the image displayed in the window. This is
called panning the image.

To pan an image displayed in the Image Tool,

1 Click the Drag image to pan button| &7 | in the toolbar or select Pan from
the Tools menu.

2 Move the cursor over the image in the Image Tool, using the mouse. The
cursor changes to an open-hand shape, .

3 Press and hold the mouse button and drag the image in the Image Tool.

When you drag the image, the cursor changes to the closed-hand shape & .

4 To leave Pan mode, click the Drag image to pan button again to deselect it.

Note As you pan the image in the Image Tool, the Overview tool updates the
position of the detail rectangle — see “Overview Navigation” on page 3-16.

Zooming In and Out on an Image

To enlarge an image to get a closer look or shrink an image to see the whole
image in context, use the Zoom buttons on the toolbar. (You can also zoom in or
out on an image by changing the magnification — see “Specifying the
Magnification of the Image” on page 3-20.)

To zoom in or zoom out on an image,

1 Click the appropriate magnifying glass button in the Image Tool toolbar or
select the Zoom In or Zoom Out option in the Tools menu.

Zoom in Zoom out

e e

3-19

3 Displaying and Exploring Images

3-20

2 Move the cursor over the image you want to zoom in or out on, using the
mouse. The cursor changes to the appropriate magnifying glass icon. With
each click, the Image Tool changes the magnification of the image, centering
the new view of the image on the spot where you clicked.

When you zoom in or out on an image, the magnification value displayed in
the magnification edit box changes and the Overview window updates the
position of the detail rectangle.

3 To leave zoom mode, click the active zoom button again to deselect it.

Specifying the Magnification of the Image

To enlarge an image to get a closer look or to shrink an image to see the whole
image in context, you can use the magnification edit box, shown in the
following figure. (You can also use the Zoom buttons to enlarge or shrink an
image. See “Zooming In and Out on an Image” on page 3-19 for more
information.)

Magnification edit box Magnification menu
-} Image Tool 1 - moon.tif = IEIILi
File Tools ‘Window Help £

e 0?2 H—@T@\ % 100%

Fit to swinclon 4]

3% '
0%
7%

Lt |

Pixel info: (312, 61) 4 Dizplay range: [0 255]

Image Tool Magnification Edit Box and Menu

Using Image Tool Navigation Aids

To change the magnification of an image,

1 Move the cursor into the magnification edit box. The cursor changes to the
text entry cursor.

2 Type a new value in the magnification edit box and press Enter. The Image
Tool changes the magnification of the image and displays the new view in
the window.

You can also specify a magnification by clicking the menu associated with the
magnification edit box and selecting from a list of preset magnifications. If you
choose the Fit to Window option, the Image Tool scales the image so that the
entire image is visible.

3-21

3 Displaying and Exploring Images

3-22

Getting Information about the Pixels in an Image

Often, you need to get information about the pixels in an image such as their
location and value. The Image Tool provides several ways to get this
information, including:

¢ Pixel Information tool — Displays the location and value of the pixel under
the cursor in the lower left corner of the Image Tool window. See
“Determining the Value of Individual Pixels” on page 3-22 for more
information.

¢ Display Range tool — Displays the display range of the image in the lower
right corner of the Image Tool window. See “Getting the Display Range of an
Image” on page 3-24 for more information.

¢ Pixel Region tool — Displays an extreme close-up view of the pixels in a
specific region of an image. See “Viewing Pixel Values with the Pixel Region
Tool” on page 3-25 for more information.

Determining the Value of Individual Pixels

The Image Tool provides information about the location and value of individual
pixels in an image. This information is displayed in the Pixel Information tool
at the bottom left corner of the Image Tool window. The pixel value and location
information represent the pixel under the current location of the cursor. The
Image Tool updates this information as you move the cursor over the image.

For example, view an image in the Image Tool.
imtool('moon.tif"')
The following figure shows the Image Tool with pixel location and value

displayed in the Pixel Information tool. For more information, see “Saving the
Pixel Value and Location Information” on page 3-23.

Getting Information about the Pixels in an Image

<} Image Tool 1 - moon.tif 1 10| =]

File Tools ‘Window Help A

Pixel
information]
l00| Pizelinfo: (182, 2257 202 Dizplay range: [0 255]

Pixel Information in Image Tool

Saving the Pixel Value and Location Information

To save the pixel location and value information displayed, right-click a pixel
in the image and choose the Copy pixel info option. The Image Tool copies the

x- and y-coordinates and the pixel value to the clipboard.

To paste this position vector into the MATLAB workspace or another
application, right-click and select Paste from the context menu.

3-23

3 Displaying and Exploring Images

3-24

Getting the Display Range of an Image

The Image Tool provides information about the display range of pixels in an
intensity image. The display range is the value of the axes CLim property,
which controls the mapping of image CData to the figure colormap. CLim is a
two-element vector [cmin cmax] specifying the CData value to map to the first
color in the colormap (cmin) and the CData value to map to the last color in the
colormap (cmax). Data values in between are linearly scaled.

The Image Tool displays this information in the Display Range tool at the
bottom right corner of the window. The Image Tool does not show the display
range for indexed, RGB, or binary images.

For example, view an image in the Image Tool.

imtool('moon.tif')

The following figure shows the Image Tool displaying the image with display
range information.

-} Image Tool 1 - moon.tif 10l =]

File Tools window Help w

4

Pixel info: (182, 225) 202 Display range; [0 255] —— DiSP'“Y range tool

Display Range Information in Image Tool

Getting Information about the Pixels in an Image

Viewing Pixel Values with the Pixel Region Tool

To view the values of pixels in a specific region of an image displayed in the
Image Tool, use the Pixel Region tool. The Pixel Region tool superimposes a
rectangle, called the pixel region rectangle, over the image displayed in the
Image Tool. This rectangle defines the group of pixels that are displayed, in
extreme close-up view, in the Pixel Region tool window.

For example, view an image in the Image Tool
imtool('moon.tif")
Start the Pixel Region tool by clicking the Pixel Region button in the

Image Tool toolbar or by selecting the Pixel Region option from the Tools
menu in the Image Tool. The following figure shows the Image Tool with the

Pixel Region tool. For more information about using the Pixel Region tool, see

these additional topics:

® “Selecting a Region” on page 3-26

¢ “Customizing the View” on page 3-27

® “Determining the Location of the Pixel Region Rectangle” on page 3-28
¢ “Printing the View of the Image in the Pixel Region Tool” on page 3-28

3-25

3 Displaying and Exploring Images

3-26

} Image Tool 1 - moontif N (=l S
File Tools ‘Window Help a

Pixel Region

tool
-} Pixel Region (Image Tool o] |
File Edit window Help

‘mE?

Pixel region
rectangle

Pixel info: (176, 2811 149

Image Tool with Pixel Region Tool and Pixel Region Rectangle

Selecting a Region
To examine pixels in specific regions of an image, perform this procedure:

1 Start the Pixel Region tool by clicking the Pixel Region button [¢}s in the
Image Tool toolbar or by selecting the Pixel Region option from the Tools
menu. The Image Tool displays the pixel region rectangle | inthe center
of the target image and opens the Pixel Region tool. =

Note Scrolling the image can move the pixel region rectangle off the part of
the image that is currently displayed. To bring the pixel region rectangle back
to the center of the part of the image that is currently visible, click the Pixel
Region button again. For help finding the Pixel Region tool in large images,
see “Determining the Location of the Pixel Region Rectangle” on page 3-28.

Getting Information about the Pixels in an Image

2 Using the mouse, position the pointer over the pixel region rectangle. The
pointer changes to the fleur shape, «» .

3 Click the left mouse button and drag the pixel region rectangle to any part
of the image. As you move the pixel region rectangle over the image, the
Pixel Region tool updates the pixel values displayed. You can also move the
pixel region rectangle by moving the scroll bars in the Pixel Region tool
window.

Customizing the View

The pixel region rectangle defines the group of pixels that are displayed in the
Pixel Region tool. To view a larger region, grab any side of the Pixel Region tool
figure window and resize it, or use the zoom tools in the Pixel Region toolbar to
zoom in or out on the image.

The Pixel Region tool displays the pixels at high magnification, overlaying each
pixel with its numeric value. For RGB images, this information includes three
numeric values, one for each band of the image. For indexed images, this
information includes the index value and the associated RGB value. If you
would rather not see the numeric values in the display, go to the Pixel Region
tool Edit menu and deselect the Superimpose Pixel Values option.

) Pixel Region {Image Tool 1) i

File |Edit ‘Window Help a

Deselect to

suppress pixel
valve display. — == T e

Pixel Region Tool Edit Menu

3-27

3 Displaying and Exploring Images

3-28

Determining the Location of the Pixel Region Rectangle

To determine the current location of the pixel region in the target image, you
can use the pixel information given at the bottom of the tool. This information
includes the x- and y-coordinates of pixels in the target image coordinate
system.

You can also retrieve the current position of the pixel region rectangle by
selecting the Copy Position option from the Pixel Region tool Edit menu. This
option copies the position information to the clipboard. The position
information is a vector of the form [xmin ymin width height].

To paste this position vector into the MATLAB workspace or another
application, right-click and select Paste from the context menu.

The following figure shows these components of the Pixel Region tool.

) Pixel Region {Image Tool 1) i

Get pixel region File |Edit ‘Window Help a
. + 7|
rectangle position M|

B v Superimpose Pixel values
2 (1028 103|188 120
B S I N

i

197 [206 {214 20
— -

| =

|
3

|
B
|
|

Location of pixel in
the target image

Pixel infa: (140, 272) 194

Pixel Region Rectangle Location Information

Printing the View of the Image in the Pixel Region Tool

You can print the view of the image displayed in the Pixel Region tool. Select
the Print to Figure option from the Pixel Region Tool File menu. See “Printing
Images” on page 3-56 for more information.

Getting Information about an Image

Getting Information about an Image

To get information about the image displayed in the Image Tool, use the Image
Information tool. The Image Information tool can provide two types of
information about an image:

¢ Basic information — Includes width, height, class, and image type. For
intensity (grayscale) and indexed images, this information also includes the
minimum and maximum intensity values.

¢ Image metadata — Displays all the metadata from the graphics file that

contains the image. This is the same information returned by the imfinfo
function or the dicominfo function.

Note The Image Information tool can display image metadata only when you
specify the filename containing the image to Image Tool, e.g.
imtool('moon.tif').

For example, view an image in the Image Tool

imtool('moon.tif")

Start the Image Information tool by clicking the Image information button &
in the Image Tool toolbar or by selecting the Image Information option from
the Tools menu in the Image Tool.

The following figure shows the Image Tool with the Image Information tool. In
the figure, the Image Information tool displays both basic image information
and image metadata.

3-29

3 Displaying and Exploring Images

3-30

Image
information
tool

Basic image —
information

Image
metadata

-ioix

Tools Window Help ~

File:

By @& © %% E & 00m

) Image Information {Image Tool 1}

=lolx|

Image details {Image Toal 1 - moon tify

Aftribute Walue
1 Wictth (columns 358
2 Heighit (rovws) 537
3Class uints
4 Image type intensity
S Miniraum irtensity 0 [~
B Maximum intensity 253 i
Metadata {moon tif)

Fieldname Walue

| 1 |Filename hat1 21R1 4nighthymatiabtoolboximagesimdemosmaon tif -
| 2 |FileModDate 04-Dec-2000 13:57:59 o
| 3 |FileSize 183950
| 4 |Format it
| 5 |Formatversion [l
| B |WWicth 358
| 7 |Height 537 |
| 8 |EitDepth 5
9 |ColorType rayscale
|10/ FormatSignature [F373420]
11| ByteCrder little-endisn
12| NeweSubfileType 1]
|13 BitzPerSample g
|14 Compression PackBits
|15 Phatometriclnterpretation BlacklzZera v|

4

Image Tool with Image Information Tool

Adijusting the Contrast and Brightness of an Image

Adjusting the Contrast and Brightness of an Image

To adjust the contrast or brightness of an image displayed in the Image Tool,
use the Adjust Contrast tool. The Adjust Contrast tool provides an interactive
way to adjust the contrast and brightness of an image by manipulating the
display range of the image.

The Adjust Contrast tool displays a histogram of the image that is overlaid
with a red rectangular box, called a window. The histogram represents the
dynamic range of the image, i.e., the full grayscale resolution possible given the
image storage class. The window represents the display range of the image, i.e.,
the actual range of pixel values in the image. An image where grayscale values
in the display range do not take full advantage of the dynamic range have a
dull, washed out, low-contrast look. By changing the size of the window, you
can make the display range take better advantage of the full dynamic range of
the image. The Adjust Contrast tool also provides a way to adjust contrast and
brightness using the mouse — see “Using the Window/Level Tool” on

page 3-37.

For example, view an image in the Image Tool
imtool('moon.tif')
Start the Adjust Contrast tool by clicking the Adjust Contrast button g in the

Image Tool toolbar, or by selecting the Adjust Contrast option from the Tools
menu in the Image Tool.

The following figure shows the Image Tool with the Adjust Contrast tool. For
more information, see these additional topics:

¢ “Understanding Contrast Adjustment” on page 3-32
¢ “Adjusting Contrast and Brightness” on page 3-34
® “Autoscaling” on page 3-39

3-31

3 Displaying and Exploring Images

3-32

=10l x|

File Tools ‘Window Help

0RO 07 &a s~

Image Tool

Adiust <} Adjust Contrast {Image Tool 1) ol o =] |

(0“"(]5' iOOl File ‘Window Help e
Auto Scale... I Reset Image I

Minirum Yalue | o !il Winclosy Yicth | 255
edirmum Valuel 255 f’_’l Winclony Centerl 125

hd
|
|
|
|
|
|
|
|

0 50 100 150 200 250

Adjust the histogram above, or click ahd drag the mouse over the image.

Image Tool with Adjust Contrast Tool

Understanding Contrast Adjustment

An image lacks contrast when there are no sharp differences between black
and white. Brightness refers to the overall lightness or darkness of an image.

To change the contrast or brightness of an image, the Adjust Contrast tool
performs contrast stretching. In this process, pixel values below a specified
value are mapped to black and pixel values above a specified value are mapped
to white. The result is a linear mapping of a subset of pixel values to the entire
range of display intensities (dynamic range). This produces an image of higher

Adijusting the Contrast and Brightness of an Image

contrast by darkening pixels whose value is below a specified value and
lightening pixels whose value is above a specified value. The Adjust Contrast
tools adjust brightness by moving this window over the display range, without
changing its size. In this way, the pixel values map to lighter or darker
intensities.

The following figure shows this mapping. Note that the lower limit and upper
limit mark the boundaries of the window, displayed graphically as the red box
in the Adjust Contrast tool.

=
= Window
|
|
. |
g |
=
(==
= |
=3
3 |
|
~ |
=
(=) |
Dark Minimum Maximum Light
Value value
Pixel Values

Display Range to Dynamic Range Mapping

The Adjust Contrast tool accomplishes this contrast stretching by modifying
the CLim property of the axes object that contains the image. The CLim property
controls the mapping of image pixel values to display intensities.

By default, the Image Tool sets the CLim property to the entire dynamic range
available to the data type. For example, the dynamic range of an image of class
uint8is from 0 to 255. When you use the Adjust Contrast tool, you change the
contrast in the image by changing this mapping between image pixel values
(display range) and the dynamic range. You create a window over the range
that defines which pixels in the image map to the black in the dynamic range
by shrinking the range from the bottom up.

3-33

3 Displaying and Exploring Images

3-34

Adjusting Contrast and Brightness

The Adjust Contrast tool provides several ways you can change the size of the
window to change the mapping between pixel values and display intensities.
This example illustrates these capabilities.

1 View an image in the Image Tool. This example opens the image pout.tif,
which is a low-contrast image.

imtool('pout.tif')

2 Start the Adjust Contrast tool by clicking the Adjust Contrast button &) in
the Image Tool toolbar, or by selecting Adjust Contrast from the Tools menu
in the Image Tool.

The following figure shows the image displayed in the Image Tool with the
Adjust Contrast tool open in a separate window. In the figure, note how pixel
values in the image histogram are clustered in the middle of the dynamic
range. Note that the display range, shown in the lower right corner of the
Image Tool, is the full dynamic range of the image.

Adijusting the Contrast and Brightness of an Image

-ioix
File Tools ‘Window Help ~
D0 07| ®RATow =

Pixel info: (185, 18) &7 Dizplay range: [0 255]
) Adjust Contrast (Image Tool 1) - |EI|1|
File ‘Window Help ~
Auto Scale... | Reset Image |

Minimurn %'alue I 1] zl Winclosy Wicth I 255
hdadirmum Valuel 255 zl Windowy Center 125

M

0 50 100 150 200 250

Adjust the histogram above, or click and drag the mouse over the image.

Image with Default Pixel Value to Display Intensity Mapping
3 Adjust the contrast by changing the size of the window overlaid on the image

histogram. The Adjust Contrast tool provides several ways to change this
window:

3-35

3 Displaying and Exploring Images

= By grabbing one of the red handles on the right and left edges of the
window and dragging it. If you shrink the window from the left, the image
becomes darker. If you shrink the window from the right, the image

becomes lighter.

= By specifying values in the Minimum value and Maximum value fields

and pressing Enter.

= By clicking the dropper button associated with the minimum or maximum
value fields. When you do this, the cursor becomes an eye dropper shape.
Position this cursor over the pixel in the image you want to be the
minimum (or maximum) value and click the mouse button.

= By specifying values in the Window Width and Window Center fields and
pressing Enter. These values provide another way to specify the size of the

window.

If, while making interactive adjustments to contrast and brightness, you
want to return the image to its original state, click the Reset Image button.
The following figure shows the Adjust Contrast tool with the window
resized. For information about adjusting the contrast using the Auto Scale

button, see “Autoscaling” on page 3-39.

Specify minimum
and maximum
values.

Change the

window size by |

dragging the
handles.

<) Adjust Contrast (Image Tool 1)

File ‘Window Help

=10l x|

Auto Scale... |

Minimurn %'alue I g zl Winclosy Wicth I 157
hdadirmum Valuel 165 zl Winclony Centerl g6

Reset Image |

0 50 100 150 200 250

Adjust the histogram above, or click and drag the mouse over the image.

Adjust Contrast tool with Window Resized

3-36

Adijusting the Contrast and Brightness of an Image

4 Adjust the brightness by moving the window to the left or right, without
changing its size. Move the cursor anywhere in the window, click and drag
the window.

The following figure shows the pout.tif image after contrast adjustment.
Note that the Image Tool updates the display range values displayed in the
lower right corner of the Image Tool window.

) Image Tool 1 - pout.tif 10l =|
k|

File Tools ‘Window Help

By @& © %% E & 00m

Pixel info: (X, ¥ Intensity Dizplay range: [21 160]

Contrast Adjusted Image

Using the Window/Level Tool

The Adjust Contrast tool also enables contrast and brightness adjustment by
clicking and dragging the mouse. In medical applications, this type of
interactivity is often called adjusting the window/level.

When you start the Adjust Contrast tool and move the cursor over the image
displayed in the Image Tool, the cursor changes shape to the Window/Level
cursor !/, . The following table summarizes the mouse motion.

3-37

3 Displaying and Exploring Images

3-38

Mouse Motion

Description

Horizontally to
the left

Horizontally to
the right

Vertically up

Vertically down

Shrinks the window from both sides

Expands the window from both sides

Moves the window to the right over the
histogram, increasing brightness.

Moves the window to the left over the
image histogram, decreasing
brightness.

The following example shows how to use the window/level capability to improve

the contrast of an image.

1 Reads an image from a sample DICOM file included with the toolbox.
I = dicomread('CT-MONO2-16-ankle.dcm');

2 View the image data using the Image Tool. Because the image data is signed
16-bit data, this example uses the autoscaling syntax.

imshow(I, 'DisplayRange',[])

Adijusting the Contrast and Brightness of an Image

3 Start the Adjust Contrast tool by clicking the Adjust Contrast button @i in
the Image Tool toolbar, or by selecting Adjust Contrast from the Tools menu
in the Image Tool.

4 Move the cursor over the image. The cursor changes to the window/level
shape /.

5 Press and hold the left mouse button. As you move the window/level cursor
horizontally to the left or right to adjust the contrast or move the cursor
vertically up or down to change the brightness.

Avutoscaling

You can perform automatic contrast adjustment by setting the axes CLim
values to the minimum and maximum pixel values in the image. By default,
the CLim minimum and maximum values are set to the full dynamic range of
the image. To do this, click the Autoscaling button in the Adjust Contrast tool.

You can also trim outliers at the top and bottom of the image histogram. By
default, the Adjust Contrast tool removes the top 1% and the bottom 1%, but
you can specify other percentages. (You can perform this same operation from
the command line using the stretchlim function.)

3-39

3 Displaying and Exploring Images

«): Auto Scale Window x|

Avtomatically zet windowy width and center
using minimum and maximum intensity values.

[¥ Eliminate outlisrs; | 2 s

QK I Cancel I

3-40

Viewing Multiple Images

Viewing Multiple Images

If you specify a file that contains multiple images, imshow and imtool only
display the first image in the file. To view all the images in the file, import the
images into the MATLAB workspace by calling imread. See “Reading Multiple
Images from a Graphics File” on page 2-16 for more information.

Some applications create collections of images related by time or view, such as
magnetic resonance imaging (MRI) slices or frames of data acquired from a
video stream. The Image Processing Toolbox supports these collections of
images as four-dimensional arrays, where each separate image is called a
frame and the frames are concatenated along the fourth dimension. All the
frames in a multiframe image must be the same size.

Once the images are in the MATLAB workspace, there are two ways to display
them using imshow:

¢ Displaying each image in a separate figure window

¢ Displaying multiple frames in a single figure window

To view all the frames in a multiframe image at once, you can also use the
montage function. See “Displaying All Frames of a Multiframe Image at Once”
on page 3-52 for more information.

Displaying Each Image in a Separate Figure

The simplest way to display multiple images is to display them in separate
figure windows. MATLAB does not place any restrictions on the number of
images you can display simultaneously.

The Image Tool can only display one image frame at a time. Each time you call
imtool, it opens a new figure window. Use standard MATLAB indexing syntax
to specify the frame to display.

imtool(multiframe array(:,:,:,1));

In contrast, imshow always displays an image in the current figure. If you
display two images in succession, the second image replaces the first image. To
view multiple figures with imshow, use the figure command to explicitly create
a new empty figure before calling imshow for the next image. For example, to
view the first three frames in an array of intensity images I,

imshow(I(:,:,:,1))

3-41

3 Displaying and Exploring Images

3-42

figure, imshow(I(:,:,:,2))
figure, imshow(I(:,:,:,3))

The Image Tool can only display one image frame at a time. Use standard

MATLAB indexing syntax to specify the frame to display.

imtool(multiframe_array(:,:,:,1));

Displaying Multiple Images in the Same Figure

You can use the imshow function with the MATLAB subplot function or the
MATLAB subimage function to display multiple images in a single figure
window.

Note imtool does not support this capability.

Dividing a Figure Window into Multiple Display Regions. subplot divides a figure into
multiple display regions. The syntax of subplot is

subplot(m,n,p)

This syntax divides the figure into an m-by-n matrix of display regions and
makes the pth display region active.

Note When you use subplot to display multiple color images in one figure
window, the images must share the colormap of the last image displayed. In
some cases, as illustrated by the following example, the display results can be
unacceptable. As an alternative, you can use the subimage function, described
in “Using the subimage Function to Display Multiple Images” on page 3-43, or
you can map all images to the same colormap as you load them.

For example, you can use this syntax to display two images side by side.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');

subplot(1,2,1), imshow(X1,map1)
subplot(1,2,2), imshow(X2,map2)

Viewing Multiple Images

In the figure, note how the first image displayed, X1, appears dark after the
second image is displayed.

i

File Edit Wiew Insert Tools Desktop Window Help a

DEEES RAOMS® |02 0O

Two Images in Same Figure Using the Same Colormap

Using the subimage Function to Display Multiple Images. subimage converts images to
RGB before displaying them and therefore circumvents the colormap sharing
problem. This example uses subimage to display the forest and the trees images
with better results.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), subimage(X1,map1)
subplot(1,2,2), subimage(X2,map2)

3-43

3 Displaying and Exploring Images

Drowe -ioix

File Edit ‘iew Insert Tools Deskiop Window Help w

DNed&E hRaMe (€ 08 5O

100

200 8

300

100 200 300 400

Two Images in Same Figure Using Separate Colormaps

3-44

Displaying Different Image Types

Displaying Different Image Types

This section describes how to use imshow and imtool with the different types
of images supported by the Image Processing Toolbox.

¢ Indexed images
¢ Intensity (grayscale) images
® Binary images

¢ RGB (truecolor) images

If you need help determining what type of image you are working with, see
“Image Types in the Toolbox” on page 2-3.

Displaying Indexed Images

To display an indexed image, using either imshow or imtool, specify both the
image matrix and the colormap. This documentation uses the variable name X
to represent an indexed image in the workspace, and map to represent the
colormap.

imshow (X, map)

or

imtool (X, map)

For each pixel in X, these functions display the color stored in the corresponding
row of map. If the image matrix data is of class double, the value 1 points to the
first row in the colormap, the value 2 points to the second row, and so on.

However, if the image matrix data is of class uint8 or uint16, the value 0 (zero)
points to the first row in the colormap, the value 1 points to the second row, and
so on. This offset is handled automatically by the imtool and imshow functions.

If the colormap contains a greater number of colors than the image, the
functions ignore the extra colors in the colormap. If the colormap contains
fewer colors than the image requires, the functions set all image pixels over the
limits of the colormap’s capacity to the last color in the colormap. For example,
if an image of class uint8 contains 256 colors, and you display it with a
colormap that contains only 16 colors, all pixels with a value of 15 or higher are
displayed with the last color in the colormap.

3-45

3 Displaying and Exploring Images

3-46

Displaying Intensity Images

To display an intensity (grayscale) image, using either imshow or imtool,
specify the image matrix as an argument. This documentation uses the
variable name I to represent an intensity image in the workspace.

imshow(I)
or
imtool(I)

Both functions display the image by scaling the intensity values to serve as
indices into a grayscale colormap.

If I is double, a pixel value of 0.0 is displayed as black, a pixel value of 1.0 is
displayed as white, and pixel values in between are displayed as shades of gray.
If Iis uint8, then a pixel value of 255 is displayed as white. If I is uint16, then
a pixel value of 65535 is displayed as white.

Intensity images are similar to indexed images in that each uses an m-by-3
RGB colormap, but you normally do not specify a colormap for an intensity
image. MATLAB displays intensity images by using a grayscale system
colormap (where R=G=B). By default, the number of levels of gray in the
colormap is 256 on systems with 24-bit color, and 64 or 32 on other systems.
(See “Working with Different Screen Bit Depths” on page 13-3 for a detailed
explanation.)

Displaying Intensity Images That Have Unconventional Ranges

In some cases, the image data you want to display as an intensity image might
have a display range that is outside the conventional toolbox range (i.e., [0,1]
for single or double arrays, [0,255] for uint8 arrays, [0,65535] for uint16
arrays, or [-32767,32768] for int16 arrays). For example, if you filter an
intensity image, some of the output data might fall outside the range of the
original data.

To display unconventional range data as an image, you can specify the display
range directly, using this syntax for both the imshow and imtool functions.

imshow(I, 'DisplayRange’',[low high])
or

imtool (I, 'DisplayRange’',[low high])

Displaying Different Image Types

If you use an empty matrix ([]) for the display range, these functions scale the
data automatically, setting low and high to the minimum and maximum

values in the array.

The next example filters an intensity image, creating unconventional range
data. The example calls imtool to display the image, using the automatic
scaling option. If you execute this example, note the display range specified in
the lower right corner of the Image Tool window.

I = imread('testpati.png’);
J filter2([1 2;-1 -2],I);
imtool(J, 'DisplayRange',[]);

il
'}

File Tools ‘Window Help

Pizel info: (4, %71 Intensity Display range: [-631 765]

Display range

Displaying Binary Images

In MATLAB, a binary image is of class logical. Binary images contain only 0’s
and 1’s. Pixels with the value 0 are displayed as black; pixels with the value 1
are displayed as white.

3-47

3 Displaying and Exploring Images

3-48

Note For the toolbox to interpret the image as binary, it must be of class
logical. Intensity images that happen to contain only 0’s and 1’s are not
binary images.

To display a binary image, using either imshow or imtool, specify the image
matrix as an argument. For example, this code reads a binary image into the
MATLAB workspace and then displays the image. This documentation uses
the variable name BW to represent a binary image in the workspace

BW = imread('circles.png');
imshow (BW)
or

imtool (BW)

Changing the Display Colors of a Binary Image
You might prefer to invert binary images when you display them, so that 0
values are displayed as white and 1 values are displayed as black. To do this,
use the NOT (~) operator in MATLAB. (In this figure, a box is drawn around
the image to show the image boundary.) For example:

imshow (~BW)
or

imtool (~BW)

Displaying Different Image Types

You can also display a binary image using the indexed image colormap syntax.
For example, the following command specifies a two-row colormap that
displays 0’s as red and 1’s as blue.

imshow(BW,[1 0 O0; 0 0 1])

or

imtool(BW,[1 0 0; 0 0 1])

Displaying Truecolor Images

Truecolor images, also called RGB images, represent color values directly,
rather than through a colormap. A truecolor image is an m-by-n-by-3 array. For
each pixel (r,c) in the image, the color is represented by the triplet (r,c,1:3).

To display a truecolor image, using either imshow or imtool, specify the image
matrix as an argument. For example, this code reads a truecolor image into the

3-49

3 Displaying and Exploring Images

3-50

MATLAB workspace and then displays the image. This documentation uses
the variable name RGB to represent a truecolor image in the workspace

RGB = imread(‘peppers.png');
imshow (RGB)

or

imtool (RGB)

Systems that use 24 bits per screen pixel can display truecolor images directly,
because they allocate 8 bits (256 levels) each to the red, green, and blue color
planes. On systems with fewer colors, imshow displays the image using a
combination of color approximation and dithering. See “Working with Different
Screen Bit Depths” on page 13-3 for more information.

Note Ifyou display a color image and it appears in black and white, check if
the image is an indexed image. With indexed images, you must specify the
colormap associated with the image. For more information, see “Displaying
Indexed Images” on page 3-45.

Special Display Techniques

Special Display Techniques

In addition to imshow and imtool, the toolbox includes functions that perform
specialized display operations, or exercise more direct control over the display
format. These functions, together with the MATLAB graphics functions,
provide a range of image display options.

This section includes the following topics:

¢ “Adding a Colorbar” on page 3-51

¢ “Displaying All Frames of a Multiframe Image at Once” on page 3-52
® “Converting a Multiframe Image to a Movie” on page 3-54

¢ “Texture Mapping” on page 3-55

Adding a Colorbar

To display an image with a colorbar that indicates the range of intensity
values, first use the imshow function to display the image in a MATLAB figure
window and then call the colorbar function to add the colorbar to the image.

When you add a colorbar to an axes object that contains an image object, the
colorbar indicates the data values that the different colors in the image
correspond to.

If you want to add a colorbar to an image displayed in the Image Tool, select
the Print to Figure option from the Image Tool File menu. The Image Tool
displays the image in a separate figure window to which you can add a colorbar.

Seeing the correspondence between data values and the colors displayed by
using a colorbar is especially useful if you are displaying unconventional range
data as an image, as described under “Displaying Intensity Images That Have
Unconventional Ranges” on page 3-46.

In the example below, a grayscale image of class uint8 is filtered, resulting in
data that is no longer in the range [0,255].

RGB = imread('saturn.png');

I rgb2gray (RGB) ;

h [t21; 000; -1 -2 -1];

I2 = filter2(h,I);

imshow(I2, 'DisplayRange',[]), colorbar

3-51

3 Displaying and Exploring Images

3-52

(=]

Original Image Courtesy of NASA

300
200
100
-100
-200
-300
-400
-500

Displaying All Frames of a Multiframe Image at
Once

To view all the frames in a multiframe array at one time, use the montage
function. montage divides a figure window into multiple display regions and
displays each image in a separate region.

The syntax for montage is similar to the imshow syntax. To display a
multiframe intensity image, the syntax is

montage(I)
To display a multiframe indexed image, the syntax is

montage (X, map)

Note All the frames in a multiframe indexed array must use the same
colormap.

Special Display Techniques

This example loads and displays all frames of a multiframe indexed image. The
example initializes an array to hold the 27 frames in the multiframe image file
and then loops, using imread to read a single frame from the image file at each
iteration.

mri = uint8(zeros(128,128,1,27));

for frame=1:27

[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end
montage (mri,map);

All Frames of Multiframe Image Displayed in One Figure

3-53

3 Displaying and Exploring Images

3-54

montage displays the first frame in the first position of the first row, the next
frame in the second position of the first row, and so on. montage arranges the
frames so that they roughly form a square.

Converting a Multiframe Image to a Movie

To create a MATLAB movie from a multiframe image array, use the immovie
function. This example creates a movie from a multiframe indexed image.

mov = immovie(X,map);

In the example, X is a four-dimensional array of images that you want to use
for the movie.

You can play the movie in MATLAB using the movie function.

movie(mov);
This example loads the multiframe image mri. tif and makes a movie out of it.
It won’t do any good to show the results here, so try it out; it’s fun to watch.

mri = uint8(zeros(128,128,1,27));
for frame=1:27

[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

mov = immovie(mri,map);
movie(mov) ;

Note that immovie displays the movie as it is being created, so you actually see
the movie twice. The movie runs much faster the second time (using movie).

Note To view a MATLAB movie, you must have MATLAB installed. To make
a movie that can be run outside MATLAB, use the MATLAB avifile and
addframe functions to create an AVI file. AVI files can be created using
indexed and RGB images of classes uint8 and double, and don’t require a
multiframe image.

Special Display Techniques

Texture Mapping

When you use imshow or imtool to view an image, MATLAB displays the image
in two dimensions. However, it is also possible to map an image onto a
parametric surface, such as a sphere, or below a surface plot. The warp function
creates these displays by texture mapping the image. Texture mapping is a
process that maps an image onto a surface grid using interpolation.

This example texture-maps an image of a test pattern onto a cylinder.

[x,y,z] = cylinder;
I = imread('testpati.png’);
warp(x,y,z,I);

0.8
0.6
0.4

0.2

-0.5

An Image Texture Mapped onto a Cylinder

The image might not map onto the surface in the way that you expect. One way
to modify the way the texture map appears is to change the settings of the Xdir,
Ydir, and Zdir properties. For more information, see “Changing Axis
Direction” in the MATLAB Graphics documentation.

For more information about texture mapping, see the reference entry for the
warp function.

3-55

3 Displaying and Exploring Images

3-56

Printing Images

If you want to output a MATLAB image to use in another application (such as
a word-processing program or graphics editor), use imwrite to create a file in
the appropriate format. See “Writing a Graphics Image” on page 2-16 for
details.

If you want to print an image, use imshow to display the image in a MATLAB
figure window. If you are using the Image Tool, you must use the Print to
Figure option on the Image Tool File menu. When you choose this option, the
Image Tool opens a separate figure window and displays the image in it. You
can access the standard MATLAB printing capabilities in this figure window.
You can also use the Print to Figure option to print the image displayed in the
Overview tool and the Pixel Region tool.

Once the image is displayed in a figure window, you can use either the
MATLAB print command or the Print option from the File menu of the figure
window to print the image. When you print from the figure window, the output
includes nonimage elements such as labels, titles, and other annotations.

Printing and Handle Graphics Object Properties

The output reflects the settings of various properties of Handle Graphic
objects. In some cases, you might need to change the settings of certain
properties to get the results you want. Here are some tips that might be helpful
when you print images:

® Image colors print as shown on the screen. This means that images are not
affected by the figure object’s InvertHardcopy property.

® To ensure that printed images have the proper size and aspect ratio, set the
figure object’s PaperPositionMode property to auto. When
PaperPositionMode is set to auto, the width and height of the printed figure
are determined by the figure’s dimensions on the screen. By default, the
value of PaperPositionMode is manual. If you want the default value of
PaperPositionMode to be auto, you can add this line to your startup.m file.

set (0, 'DefaultFigurePaperPositionMode', 'auto')

For detailed information about printing with File/Print or the print command
(and for information about Handle Graphics), see “Printing and Exporting
Figures with MATLAB” in the MATLAB Graphics documentation. For a

Printing Images

complete list of options for the print command, enter help print at the
MATLAB command-line prompt or see the print command reference page in
the MATLAB documentation.

3-57

3 Displaying and Exploring Images

3-58

Setting Toolbox Display Preferences

You can use Image Processing Toolbox preferences to control certain
characteristics of how imshow and imtool display images on your screen. For
example, using toolbox preferences, you can specify the initial magnification
used by imtool and imshow.

This section

¢ Lists the preferences supported by the toolbox

® Describes how to get the current value of a preference using the iptgetpref
function

® Describes how to set the value of a preference using the iptsetpref function

Toolbox Preferences

The Image Processing Toolbox supports several preferences that affect how
imshow and imtool display images. The following table lists these preferences
with brief descriptions. For detailed information about toolbox preferences and
their values, see the iptsetpref reference page.

Toolbox Preference

Description

ImshowBorder

ImshowAxesVisible

Controls whether imshow displays the figure window as
larger than the image (leaving a border between the image
axes and the edges of the figure), or the same size as the
image (leaving no border).

Controls whether imshow displays images with the axes box
and tick labels.

ImshowInitialMagnification Controls the magnification imshow uses when it initially

displays an image. This preference can be overridden for a
single call to imshow; see “Specifying the Initial Image
Magnification” on page 3-5 for more details.

ImtoolInitialMagnification Controls the magnification the Image Tool uses when it

initially displays an image. This preference can be
overridden for a single call to imtool; see “Specifying the
Initial Image Magnification” on page 3-11 for more details.

Setting Toolbox Display Preferences

Retrieving the Values of Toolbox Preferences

To determine the current value of a preference, use the iptgetpref function.
This example uses iptgetpref to determine the value of the
imtoolInitialMagnification preference.

iptgetpref('ImtoolInitialMagnification')
ans =

100

Preference names are case insensitive and can be abbreviated. For more
information, see the iptgetpref reference page.

Setting the Value of Toolbox Preferences

To specify the value of a toolbox preference, use the iptsetpref function. This
example calls iptsetpref to specify that imshow resize the figure window so
that it fits tightly around displayed images.

iptsetpref('ImshowBorder', 'tight');

For detailed information about toolbox preferences and their values, see the
iptsetpref reference page.

The value you specify lasts for the duration of the current MATLAB session. To
preserve your preference settings from one session to the next, include the
iptsetpref commands in your startup.m file.

3-59

3 Displaying and Exploring Images

3-60

Building GUIs with
Modular Tools

This chapter describes how to use the toolbox modular tools to create custom image processing
applications.

“Overview” on page 4-2 Lists the modular interactive tools
“Using Modular Tools” on page 4-6 Describes how to use the modular tools to create GUIs

“Creating Your Own Modular Tools” on Describes the utility function the toolbox provides to help
page 4-28 you create your own modular tools

4 Building GUIs with Modular Tools

4-2

Overview

The toolbox includes several new modular interactive tools that you can
activate from the command line and use with images displayed in a MATLAB
figure window, called the target image in this documentation. The tools are
modular because they can be used independently or in combination to create
custom graphical user interfaces (GUIs) for image processing applications. The
Image Tool uses these modular tools.

The following table lists the modular tools in alphabetical order. The table
includes an illustration of the tool and the function you use to create them. For
more information about how the tools operate, see “Using the Image Tool to
Explore Images” on page 3-8. For more information about using tools to create
GUIs, see “Using Modular Tools” on page 4-6.

Modular Tool

Example

Description

Adjust Contrast tool

<) Adjust Contrast (Image

File ‘Window Help

=10l x|

[Auto Scale... r Reset Image |

Minimurn %'alue I 1] zl Winclosy Wicth I 255
hdadirmum Valuel 255 zl Windowy Center 125

T
|
|
|
|
|

O A0 100 150 200 250
Adjust the histogram above, or click and drag the mouse

Displays a histogram of the target
image and enables interactive
adjustment of contrast and brightness
by manipulating the display range.

Use the imcontrast function to create
the tool in a separate figure window
and associate it with an image.

Display Range tool

Dizplay range: [0 255]

Displays a text string identifying the
display range values of the associated
image.

Use the imdisplayrange function to
create the tool, associate it with an
image, and embed it in a figure or
uipanel.

Overview

Modular Tool Example

Description

Image Information
tool

Displays basic attributes about the
target image. If the name of the
graphics file containing the image was
specified, the tool includes any
metadata the image file might contain.

Use the imageinfo function to create
the tool in a separate figure window
and associate it with an image.

Magnification box

Creates a text edit box containing the
current magnification of the target
image. Users can change the
magnification of the image by entering
a new magnification value.

Use immagbox to create the tool,
associate it with an image, and embed
it in a figure or uipanel.

Note: The target image must be
contained in a scroll panel.

4-3

4 Building GUIs with Modular Tools

Modular Tool Example

Description

Overview tool

<) Overview (Imag

File Edit ‘Window Help

=10l x|

PN

Displays the target image in its
entirety with the portion currently
visible in the scroll panel outlined by a
rectangle superimposed on the image.
Moving the rectangle changes the
portion of the target image that is
currently visible in the scroll panel.

Use imoverview to create the tool in a
separate figure window and associate it
with an image.

Use imoverviewpanel to create the tool
in a uipanel that can be embedded
within another figure or uipanel.

Note: The target image must be
contained in a scroll panel.

Pixel Information

tool Pixel infa: (X,) Irtersity

Displays information about the pixel
the mouse is over in the target image.

Use impixelinfo to create the tool,
associate it with an image, and display
it in a figure or uipanel.

If you want to display only the pixel
values, without the Pixel info label,
use impixelinfoval.

4-4

Overview

Modular Tool Example Description
Pixel Region tool Display pixel values for a specified
- [0l x| region in the target image.
File Edit ‘Window Help N
mm P Use impixelregion to create the tool in
T T] e P P B PR B e - a separate figure window and associate
it with an image.
Use impixelregionpanel to create the
1 = - tool as a uipanel that can be embedded
?19{?‘1:9:‘3!‘%;;!;1-9-9- »211213Y1QQ ?1:‘3;9?19;{8? within another ﬁgure or uipanel'
K i ;
Pixel infa: (134, 2307 153
Scroll Panel tool Display target image in a scrollable

-Ioix

File Tools Help £

[¥ Pixelinfo: (290 Display range: [0 235]

panel.

Use imscrollpanel to add a scroll
panel to an image displayed in a figure
window.

4-5

4 Building GUIs with Modular Tools

4-6

Using Modular Tools

To use the modular tools to create custom graphical user interfaces (GUIs) for
image processing applications, follow this general procedure:

1 Display the target image in a figure window.

Image processing applications typically include the display of the target
image, i.e., the image being processed. You can use the imshow function as
the foundation for your GUI application. (You can also use the MATLAB
image and imagesc functions.) See “Displaying the Target Image” on

page 4-7 for more information.

Create the modular tool, specifying the target image.

The modular tools operate on an image. When you create a tool, you must
associate it with a target image. Most of the tools associate themselves with
the image in the current axes, by default. But you can specify the handle to
a specific image object, or a handle to a figure, axes, uipanel object that
contains an image. See “Specifying the Target Image” on page 4-7 for more
information.

Depending on how you designed your GUI, you might also want to specify
the parent object of the modular tool. This is optional; by default, the tools
either use the same parent as the target image or open in a separate figure
window. If you want to change this default, you must specify the parent. See
“Specifying the Parent of a Modular Tool” on page 4-11 for more information.

In addition, when you create custom GUIs, you might need to specify the
position of the graphics objects in the GUI, including the modular tools. See
“Positioning the Modular Tools in a GUI” on page 4-13 for more information.

Set up interactivity between the tool and the target image.

This is an optional step. The modular tools all setup their interactive
connection to the target image automatically. However, your GUI might
require some additional connectivity. See “Making Connections for
Interactivity” on page 4-22.

Using Modular Tools

The following sections provide more detail on these steps. For a complete
illustration, see “Example: Building a Pixel Information GUI” on page 4-15.

Displaying the Target Image

As the foundation for any image processing GUI you create, use imshow to
display the target image (or images) in a MATLAB figure window. (You can
also use the MATLAB image or imagesc functions.) Once the image is displayed
in the figure, you can associate any of the modular tools with the image
displayed in the figure.

This example uses imshow to display an image in a figure window.

himage = imshow('pout.tif');

Because some of the modular tools add themselves to the figure window
containing the image, make sure that the Image Processing Toolbox
ImshowBorder preference is set to 'loose’, if you are using the imshow
function. By including a border, you ensure that the modular tools do not
display over the image in the figure. This is the default setting.

Specifying the Target Image

To associate a modular tool with a target image displayed in a MATLAB figure
window, create the tool using the appropriate tool creation function, specifying
a handle to the target image as an argument. The function creates the tool and
automatically sets up the interactivity connection between the tool and the
target image that the tool requires.

This section covers the following topics:

® “Associating Modular Tools with the Default Target Image” on page 4-7
® “Associating Modular Tools with a Particular Image” on page 4-8
¢ “Getting the Handle of the Target Image” on page 4-10

Associating Modular Tools with the Default Target Image

By default, most of the modular tool creation functions support a no-argument
syntax that uses the image in the current figure as the target image. If the
current figure contains multiple images, the tools associate themselves with
the first image in the figure object’s children (the last image created).

4 Building GUIs with Modular Tools

4-8

impixelinfo, impixelinfoval and imdisplayrange canwork with multiple
images in a figure.

For example, to use the Pixel Information tool with a target image, display the
image in a figure window, using imshow, and then call the impixelinfo
function to create the tool. In this example, the image in the current figure is
the target image.

imshow('pout.tif');
impixelinfo

The following figure shows the target image in a figure with the Pixel
Information tool in the lower-left corner of the window. The Pixel Information
tool automatically sets up a connection to the target image: when you move the
cursor over the image, the tool displays the x- and y-coordinates and value of
the pixel under the cursor.

rgwes TP

File Edit Wiew Insert Tools Desktop Window Help N

D& hRame | 08 a0

Target image

Pixel
information tool

Pixel info: (X, ¥ Intensity

Figure Window with Pixel Information Tool

Associating Modular Tools with a Particular Image

You can specify the target image of the modular tool when you create it. Pass
a handle to the target image as an argument to the modular tool creation

Using Modular Tools

function. You can also specify a handle to a figure, axes, or uipanel object that
contains the target image.

Continuing the example in the previous section, you might want to add the
Display Range tool to the figure window that already contains the Pixel
Information tool. To do this, call the imdisplayrange function, specifying the
handle to the target image. You could also have specified the handle of the
figure, axes, or uipanel object containing the target image.

himage = imshow('pout.tif');
hpixelinfopanel = impixelinfo(himage)
hdrangepanel = imdisplayrange(himage)

Note that the example retrieves handles to the uipanel objects created by the
impixelinfo and imdisplayrange functions; both tools are uipanel objects. It
can be helpful to get handles to the tools if you want to change their positioning.
See “Positioning the Modular Tools in a GUI” on page 4-13 for more
information.

The following figure shows the target image in a figure with the Pixel
Information tool in the lower-left corner and the Display Range tool in the
lower-right corner of the window. The Display Range tool automatically sets up
a connection to the target image: when you move the cursor over the image (or
images) in the figure, the Display Range tool shows the display range of the
image.

4-9

4 Building GUIs with Modular Tools

4-10

rgwes TP

File Edit Wiew Insert Tools Desktop Window Help N

D& hRame | 08 a0

Target image

Pixel
Information tool

Pixel info: (X, ¥ Intensity Dizplay range: [0 255]
Il

Display Range |
tool

Figure Window with Pixel Information and Display Range Tools

Getting the Handle of the Target Image

The examples in the previous section use the optional imshow syntax in which
it returns a handle to the image displayed, himage. When creating GUIs with
the modular tools, having a handle to the target image can be useful. You can
get the handle when you first display the image, using this optional imshow
syntax.

You can also get a handle to the target image using the imhandles function.
The imhandles function returns all the image objects that are children of a
specified figure, axes, uipanel, or image object.

For example, imshow returns a handle to the image in this syntax.

hfig = figure;
himage = imshow('moon.tif")
himage =

152.0055

Using Modular Tools

When you call the imhandles function, specifying a handle to the figure (or
axes) containing the image, it returns a handle to the same image.

himage2 = imhandles(hfig)
himage2

152.0055

Specifying the Parent of a Modular Tool

When you create a modular tool, in addition to specifying the target image, you
can optionally specify the object that will be the parent of the tool. By specifying
the parent, you determine where the tool appears on your screen. Using this
syntax of the modular tool creation functions, you can add the tool to the figure
window containing the target image, open the tool in a separate figure window,
or create some other combination.

Specifying the parent is optional; the modular tools all have a default behavior.
Some of the smaller tools, such as the Pixel Information tool, use the parent of
the target image as their parent, inserting themselves in the same figure
window as the target image. Other modular tools, such as the Pixel Region tool
or the Overview tool, open in a separate figure of their own.

Two of the tools, the Pixel Region tool and the Overview tool, provide a separate
creation function to provide this capability. Their primary creation functions,
imoverview and impixelregion, open the tools in a separate figure window. To
specify a different parent, you must use the imoverviewpanel and
impixelregionpanel functions.

Note The Overview tool and the Pixel Region tool provide additional
capabilities when created in their own figure window. For example, both tools
include zoom buttons which are not part of their uipanel versions.

This example shows the default behavior when you create the Pixel Region tool
using the impixelregion function. The tool opens in a separate figure window,
as shown in the following figure.

himage = imshow('pout.tif')
hpixelinfopanel = impixelinfo(himage)
hdrangepanel = imdisplayrange (himage)

4-11

4 Building GUIs with Modular Tools

4-12

Pixel Region
rectangle

hpixreg = impixelregion(himage)

[rgwer it

File Edit Wiew Insert Tools Deskiop Window Help L

Pixel infa: (2, ¥ Intensity Display range: [0 255]

Pixel Region
hed& h|RAM® | 08| » tool
i
File Edit ‘Windomw Help L
w7

Pixel info: (122, 148) 121

Target Image with Pixel Region Tool in Separate Window (Default)

To embed the Pixel Region tool in the same window as the target image, you
must specify the handle of the target image’s parent figure as the parent of the
Pixel Region tool when you create it.

The following example creates a figure and an axes, getting handles to both
objects. The example needs these handles to perform some repositioning of the
objects in the figure to ensure their visibility. See “Positioning the Modular
Tools in a GUI” on page 4-13 for more information. The example then creates
the modular tools, specifying the figure containing the target image as the
parent of the Pixel Region tool. Note the example uses the
impixelregionpanel function to create the tool.

Using Modular Tools

hfig = figure;

hax = axes('units', 'normalized’', 'position',[0 .5 1 .5]);
himage = imshow('pout.tif"')

hpixelinfopanel = impixelinfo(himage)

hdrangepanel = imdisplayrange(himage)

hpixreg = impixelregionpanel(hfig,himage)

set(hpixreg, 'Units', 'normalized', 'Position',[0 .08 1 .4])

The following figure shows the Pixel Region embedded in the same figure as
the target image.

o Figuet R =

File Edit Wiew Insert Tools Deskiop Window Help o

D&k Rade | S| 08| a0

Pixel Region
tool embedded
in figure
window

Pixel info: (106, 4] 59 Dizplay range: [0 253]

Target Image with Embedded Pixel Region Tool
Positioning the Modular Tools in a GUI

When you create the modular tools, they have default positioning behavior. For
example, the impixelinfo function creates the tool as a uipanel object that is

4-13

4 Building GUIs with Modular Tools

4-14

the full width of the figure window, positioned in the lower-left corner of the
target image figure window.

Because the modular tools are constructed from standard Handle Graphics
objects, such as uipanel objects, you can use properties of the objects to change
their default positioning or other characteristics.

For example, in“Specifying the Parent of a Modular Tool” on page 4-11, when
the Pixel Region tool was embedded in the same figure window as the target
image, the example had to reposition both the image object and the Pixel
Region tool uipanel object to make them both visible in the figure window.

To reposition a modular tool or other graphics object, set the value of the
Position property of the object. As the value of this property, you specify a
four-element position vector [left bottom width height], where left and
bottom specify the distance from the lower-left corner of the parent container
object, such as a figure. The width and height specify the dimensions of the
object. You must specify the units of these values. Many graphics object use
normalized units which specify the relative position, not the exact location in
pixels, to allow better resizing behavior. Get the value of the Units property of
the object to determine how the object interprets the position vector.

For example, when you first create an embedded Pixel Region tool in a figure,
it appears to take over the entire figure because, by default, the position vector
issetto [0 0 1 1], in normalized units. This position vector tells the tool to
align itself with the bottom-left corner of its parent and fill the entire object. To
accommodate the image and the Pixel Information tool and Display Range
tools, change the position of the Pixel Region so that it fills the lower half of the
figure, leaving room at the bottom for the Pixel Information and Display Range
tools. Here is the position vector for the Pixel Region tool.

set(hpixreg, 'Units', 'normalized', 'Position',[0 .08 1 .4])

To accommodate the Pixel Region tool, you must reposition the target image so
that it takes the upper half of the window, using the following position vector.
To reposition the image, you must specify the Position property of the axes
object that contains it; image objects do not have a Position property.

set(hax, 'Units', 'normalized', 'Position',[0 0.5 1 0.5])

Using Modular Tools

Example: Building a Pixel Information GUI

This example shows how to use the tools to create a simple GUI. If your work
typically requires information about the pixels in an image, you might want to
create a custom image display function that provides this information. You can
do this by using the three modular tools that provide pixel information:

¢ Pixel Information tool
¢ Display Range tool
¢ Pixel Region tool

This example creates a simple image display function that includes these tools.
In this GUI, the Pixel Region tool is embedded in the same figure window as
the target image. The example suppresses the figure window toolbar and menu
bar because the standard figure zoom tools are not compatible with the toolbox
modular navigation tools — see “Adding Navigation Aids to a GUI” on

page 4-17.

function my_pixinfotool(im)

% Create figure, setting up properties

hfig = figure('Toolbar', 'none',...
'Menubar', 'none',...
"Name', 'My Pixel Info Tool',...
"NumberTitle', 'off',...
'IntegerHandle', 'off');

% Create axes

Reposition the image to accommodate the Pixel Region tool
hax = axes('Units', 'normalized',...
'"Position',[0 .5 1 .5]1);

% Display image, getting handle to image
himage = imshow(im)

% Add Pixel Information tool to image figure window
hpixinfo = impixelinfo(himage)

% Add Display Range tool to image figure window
hdrange = imdisplayrange(himage)

% Add Pixel Region tool as panel in same figure

4-15

4 Building GUIs with Modular Tools

4-16

hpixreg = impixelregionpanel(hfig,himage)

% Reposition the Pixel Region tool to fit in the figure

% window, leaving room for the Pixel Information and

% Display Range tools.

set(hpixreg, 'units', 'normalized', 'position',[0 .08 1 .4])

To use the tool, pass it an image that is already in the MATLAB workspace.

pout = imread('pout.tif');
my_pixinfotool(pout)

The tool opens a figure window, displaying the image in the upper half and the
three pixel information modular tools, the Pixel Information tool, Display
Range tool, and the Pixel Region tool, in the lower half.

=

Pixel infa: (41, 751 105 Display range: [0 255]

Custom Image Display Tool with Pixel Information

Using Modular Tools

Adding Navigation Aids to a GUI

Note The toolbox modular navigation tools are incompatible with standard
MATLAB figure window navigation tools. When using these tools in a GUI,
suppress the toolbar and menu bar in the figure windows to avoid conflicts
between the tools.

The toolbox includes several modular tools that you can use to add navigation
aids to a GUI application:

e Scroll Panel
e Overview tool

e Magnification box tool

The Scroll Panel is the primary navigation tool; it is a prerequisite for the other
navigation tools. When you display an image in a Scroll Panel, the tool displays
only a portion of the image, if it is too big to fit into the figure window. When
only a portion of the image is visible, the Scroll Panel adds horizontal and
vertical scroll bars, to enable viewing of the parts of the image that are not
currently visible.

Once you create a Scroll Panel, you can optionally add the other modular
navigation tools: the Overview tool and the Magnification tool. The Overview
tool displays a view of the entire image, scaled to fit, with a rectangle
superimposed over it that indicates the part of the image that is currently
visible in the scroll panel. The Magnification Box displays the current
magnification of the image and can be used to change the magnification.

The following sections provide more details.

¢ “Understanding Scroll Panels” on page 4-18 — Adding a scroll panel to an
image display changes the relationship of the graphics objects used in the
display. This section provides some essential background.

¢ “Example: Building a Navigation GUI for Large Images” on page 4-20 —
This section shows how to add a scroll panel to an image display.

4-17

4 Building GUIs with Modular Tools

4-18

Understanding Scroll Panels
When you display an image in a scroll panel, it changes the object hierarchy of
your displayed image. This diagram illustrates the typical object hierarchy for
an image displayed in an axes object in a figure object.

hfig = figure;

himage = imshow('concordaerial.png');

The following figure shows this object hierarchy.

Obiject Hierarchy of Image Displayed in a Figure

When you call the imscrollpanel function to put the target image in a
scrollable window, this object hierarchy changes. For example, this code adds
a scroll panel to an image displayed in a figure window, specifying the parent
of the scroll panel and the target image as arguments. The example suppresses
the figure window toolbar and menu bar because they are not compatible with
the scroll panel navigation tools.

hfig = figure('Toolbar', 'none',...
'Menubar', 'none');

himage = imshow('concordaerial.png');

hpanel imscrollpanel(hfig,himage);

The following figure shows the object hierarchy after the call to
imscrollpanel. Note how imscrollpanel inserts new objects (shaded in gray)
into the hierarchy between the figure object and the axes object containing the
image.

Using Modular Tools

Uipanel
(Scroll panel)

Uipanel
(Scrollable)

vicontrol
(Horizontal Slider)

vicontrol
(Vertical Slider)

Object Hierarchy of Image Displayed in Scroll Panel

frame () |

The following figure shows how these graphics objects appear in the scrollable
image as it displayed on the screen.

4-19

4 Building GUIs with Modular Tools

4-20

Scrollable image

Scroll panel

%

Slider

Corner

Slider

Components of a Scroll Panel

Example: Building a Navigation GUI for Large Images

If your work typically requires that you view large images, you might want to
create a custom image display function that includes the modular navigation
tools.

This example creates a tool that accepts an image as an argument and displays
the image in a scroll panel with an Overview tool and a Magnification box.

Note Because the toolbox scrollable navigation is incompatible with
standard MATLAB figure window navigation tools, the example suppresses
the toolbar and menu bar in the figure window.

function my_large image_display(im)

Using Modular Tools

% Create a figure without toolbar and menubar.
hfig = figure('Toolbar', 'none',...
‘Menubar', 'none',...
‘Name', 'My Large Image Display Tool',...
"NumberTitle', 'off',...
"IntegerHandle', 'off');

% Display the image in a figure with imshow.
himage = imshow(im)

% Add the scroll panel.
hpanel = imscrollpanel(hfig,himage)

% Position the scroll panel to accommodate the other tools.
set(hpanel, 'Units', 'normalized', 'Position',[0 .1 1 .9])

% Add the Magnification Box.
hMagBox = immagbox(hfig,himage);

% Position the Magnification Box
pos = get(hMagBox, 'Position');
set (hMagBox, 'Position',[0 O pos(3) pos(4)])

% Add the Overview tool.
hovervw = imoverview(himage)

To use the tool, pass it a large image that is already in the MATLAB
workspace.
big_image = imread('peppers.png');
my_large_image_display(big_image)
The tool opens a figure window, displaying the image in a scroll panel with the

other modular navigation tools: the Overview tool and the Magnification Box
tool.

4-21

4 Building GUIs with Modular Tools

) My Large Image Display Tool

Overview tool
-} Overview A 101 x|
File Edit “Window Help N
8 @

Magnification

box 100%

Custom Image Display Tool with Navigation Aids

Making Connections for Interactivity

When you create a modular tool and associate it with a target image, the tool
automatically makes the necessary connections to the target image to do its
job.

For example, the Pixel Information tool sets up a connection to the target
image so that it can display the location and value of the pixel currently under
the cursor. The Overview tool sets up a two-way connection to the target image:

® Target image to the Overview tool — If the visible portion of the image
changes, by scrolling, panning, or by changing the magnification, the
Overview tool changes the size and location of the detail rectangle to the
indicate the portion of the image that is now visible.

4-22

Using Modular Tools

® Overview tool to the target image — If a user moves the detail rectangle in
the Overview tool, the portion of the target image visible in the scroll panel
updates.

The modular tools accomplish this interactivity by using callback properties of
the graphics objects. For example, the figure object supports a
'WindowButtonMotionFcn' callback that executes whenever the mouse button
is depressed.

In addition, some of the modular tools also support an Application Programmer
Interface (API). This API is a set of functions that let you get information about
the tool as it operates and set up callbacks to get notification of events.

For example, the Magnification Box supports a single API function:
setMagnification. You can use this API function to set the magnification
value displayed in the Magnification Box. The Magnification box automatically
notifies the scroll panel to change the magnification of the image based on the
value. The scroll panel also supports an extensive set of API functions; see the
imscrollpanel reference page for more information.

Example: Building an Image Comparison Tool

To illustrate how to use callbacks to make the connections required for
interactions between tools, this example uses the Scroll Panel API to build a
simple image comparison GUI. This custom tool displays two images
side-by-side in scroll panels that are synchronized in location and
magnification. The custom tool also includes an Overview tool and a
Magnification Box.

function my_image_compare_tool(left_image, right_image)

% Create the figure

hFig = figure('Toolbar','none',...
‘Menubar', 'none’', ...
‘Name', 'My Image Compare Tool',...
‘NumberTitle','off',...
‘IntegerHandle', 'off');

% Display left image
subplot(121)
hImL = imshow(left_image);

4 Building GUIs with Modular Tools

4-24

% Display right image
subplot(122)
hImR = imshow(right_image);

% Create a scroll panel for left image

hSpL = imscrollpanel(hFig,hImL);

set(hSpL, 'Units', 'normalized’,...
'Position',[0 0.1 .5 0.9])

% Create scroll panel for right image

hSpR = imscrollpanel(hFig,hImR);

set (hSpR, 'Units', 'normalized’,...
'Position',[0.5 0.1 .5 0.9])

% Add a Magnification box

hMagBox = immagbox(hFig,hImL);

pos = get(hMagBox, 'Position');

set (hMagBox, 'Position',[0 O pos(3) pos(4)])

%% Add an Overview tool
imoverview(hImL)

%% Get APIs from the scroll panels
apiL = iptgetapi(hSpL);
apiR iptgetapi(hSpR)

%% Synchronize left and right scroll panels
apiL.setMagnification(apiR.getMagnification())
apiL.setVisiblelLocation(apiR.getVisibleLocation())

% When magnification changes on left scroll panel,
% tell right scroll panel
apiL.addNewMagnificationCallback (apiR.setMagnification);

% When magnification changes on right scroll panel,
% tell left scroll panel
apiR.addNewMagnificationCallback (apiL.setMagnification);

% When location changes on left scroll panel,
% tell right scroll panel

Using Modular Tools

apiL.addNewLocationCallback(apiR.setVisibleLocation);

% When location changes on right scroll panel,
% tell left scroll panel
apiR.addNewLocationCallback(apiL.setVisibleLocation);

The tools sets up a complex interaction between the scroll panels with just a
few calls to Scroll Panel API functions. In the code, the tool specifies a callback
function to execute every time the magnification changes. The function
specified is the setMagnification API function of the other scroll panel. Thus,
whenever the magnification changes in one of the scroll panels, the other scroll
panel changes its magnification to match. The tool sets up a similar connection
for position changes.

The following figure is a sequence diagram that shows the interaction between
the two Scroll Panels set up by the comparison tool for both changes in
magnification and location.

4-25

4 Building GUIs with Modular Tools

Left Scroll Panel Right Scroll Panel

Change magnification

Y

call setMagnification()

Change magnification

®
call setMagnification()

A

Change location

®
call setVisibleLocation()

-

Change Location
®

call setVisibleLocation()

A

Scroll Panel Connections in Custom Image Comparison Tool

To use the image comparison tool, pass it two images as arguments.

left_image = imread('peppers.png');
right_image = edge(left_image(:,:,1), " 'canny');

4-26

Using Modular Tools

my_image_compare_tool(left_image,right_image);

The tool opens a figure window, displaying the two images side-by-side, in
separate scroll panels. The custom compare tool also includes an Overview tool
and a Magnification Box. When you move the detail rectangle in the Overview
tool or change the magnification in one image, both images respond.

=} My Image Compare Tool

File Edit window Help u

&A@

100%

Custom Image Comparison Tool with Synchronized Scroll Panels

4-27

4 Building GUIs with Modular Tools

4-28

Creating Your Own Modular Tools

Because the toolbox uses an open architecture for the modular interactive
tools, you can extend the toolbox by creating your own modular interactive
tools, using standard Handle Graphics concepts and techniques. To help you
create tools that integrate well with the existing modular interactive tools, the
toolbox includes many utility functions that perform commonly needed tasks.

The utility functions can help check the input arguments to your tool, add
callback functions to a callback list or remove them from a list, draw a
rectangle over an image, and align figure windows in relation to a fixed
window. The following table lists these utility functions in alphabetical order.
See the function’s reference page for more detailed information.

Utility Function

Description

getimagemodel
getrangefromclass

imagemodel

imattributes

imgca

imgcf

imgetfile
imhandles
impositionrect
iptaddcallback
iptcheckconn

iptcheckhandle

Retrieve imagemodel objects from image handles
Get dynamic range of image based on its class.

Access to properties of an image relevant to its
display

Return information about image attributes

Get handle to most recent current axis containing
an image

Get handle to most recent current figure
containing an image

Displays Open Image dialog box

Get all image handles within a handle
Create draggable position rectangle
Add function handle to a callback list
Check validity of connectivity argument

Check validity of image handle argument

Creating Your Own Modular Tools

Utility Function

Description

iptcheckinput
iptcheckmap
iptchecknargin
iptcheckstrs

iptgetapi

ipticondir

iptnum2ordinal
iptremovecallback

iptwindowalign

Check validity of input argument
Check validity of colormap argument
Check number of input arguments
Check validity of string argument

Get Application Program Interface (API) for a
handle

Return name of directories containing IPT and
MATLAB icons

Convert positive integer to ordinal string
Delete function handle from callback list

Align figure windows

4-29

4 Building GUIs with Modular Tools

4-30

Spatial Transformations

This chapter describes the spatial transformation functions in the Image Processing Toolbox. Spatial
transformations map pixel locations in an input image to new locations in an output image.

Terminology (p. 5-2)

Interpolation (p. 5-3)

Image Resizing (p. 5-5)

Image Rotation (p. 5-8)

Image Cropping (p. 5-10)

Performing General Spatial
Transformations (p. 5-11)

Provides definitions of image processing terms used in
this section

Defines interpolation, the process used to estimate the
value of a pixel in an output image when that pixel does
not appear in the input image

Describes how to use the imresize function to change the
size of an image

Describes how to use the imrotate function to rotate an
image

Describes how to use the imcrop function to extract a
rectangular portion of an image

Describes the general spatial transformation capabilities
of the toolbox

5 Spatial Transformations

5-2

Terminology

An understanding of the following terms will help you to use this chapter.

Term

Definition

aliasing

antialiasing

bicubic interpolation

bilinear interpolation

geometric operation

interpolation

nearest-neighbor
interpolation

Artifacts in an image that can appear as a
result of reducing an image’s size. When the
size of an image is reduced, original pixels
are downsampled to create fewer pixels.
Aliasing that occurs as a result of size
reduction normally appears as “stair-step”
patterns (especially in high contrast images),
or as “moire” (ripple-effect) patterns.

Any method for correcting aliasing (see
above). The method discussed in this chapter
is low-pass filtering (see below).

Output pixel values are calculated from a
weighted average of pixels in the nearest
4-by-4 neighborhood.

Output pixel values are calculated from a
weighted average of pixels in the nearest
2-by-2 neighborhood.

An operation that modifies the spatial
relations between pixels in an image.
Examples include resizing (growing or
shrinking), rotating, and shearing.

The process used to estimate an image value
at a location in between image pixels.

Output pixel values are assigned the value of
the pixel that the point falls within. No other
pixels are considered.

Interpolation

Interpolation

Interpolation is the process used to estimate an image value at a location in
between image pixels. For example, if you resize an image so it contains more
pixels than it did originally, the toolbox uses interpolation to determine the
values for the additional pixels. The imresize and imrotate geometric
functions use two-dimensional interpolation as part of the operations they
perform. The improfile image analysis function also uses interpolation. See
“Intensity Profile” on page 10-5 for information about this function.

Interpolation Methods
The Image Processing Toolbox provides three interpolation methods:

¢ Nearest-neighbor interpolation
¢ Bilinear interpolation

¢ Bicubic interpolation

The interpolation methods all work in a fundamentally similar way. In each
case, to determine the value for an interpolated pixel, they find the point in the
input image that the output pixel corresponds to. They then assign a value to
the output pixel by computing a weighted average of some set of pixels in the
vicinity of the point. The weightings are based on the distance each pixel is
from the point.

The methods differ in the set of pixels that are considered:

¢ For nearest-neighbor interpolation, the output pixel is assigned the value of
the pixel that the point falls within. No other pixels are considered.

¢ For bilinear interpolation, the output pixel value is a weighted average of
pixels in the nearest 2-by-2 neighborhood.

¢ For bicubic interpolation, the output pixel value is a weighted average of
pixels in the nearest 4-by-4 neighborhood.

The number of pixels considered affects the complexity of the computation.
Therefore the bilinear method takes longer than nearest-neighbor
interpolation, and the bicubic method takes longer than bilinear. However, the
greater the number of pixels considered, the more accurate the effect is, so
there is a tradeoff between processing time and quality.

5-3

5 Spatial Transformations

Image Types

The functions that use interpolation take an argument that specifies the
interpolation method. For most of these functions, the default method is
nearest-neighbor interpolation. This method produces acceptable results for all
image types, and is the only method that is appropriate for indexed images. For
intensity and RGB images, however, you should generally specify bilinear or
bicubic interpolation, because these methods produce better results than
nearest-neighbor interpolation.

For RGB images, interpolation is performed on the red, green, and blue image
planes individually.

For binary images, interpolation has effects that you should be aware of. If you
use bilinear or bicubic interpolation, the computed values for the pixels in the
output image will not all be 0 or 1. The effect on the resulting output image
depends on the class of the input image:

¢ Ifthe class of the input image is double, the output image is a grayscale
image of class double. The output image is not binary, because it includes
values other than 0 and 1.

e If the class of the input image is uint8, the output image is a binary image
of class uint8. The interpolated pixel values are rounded off to 0 and 1 so the
output image can be of class uint8.

Note For bicubic interpolation, you might need to clamp doubles to within
the [0 1] range.

If you use nearest-neighbor interpolation, the result is always binary, because
the values of the interpolated pixels are taken directly from pixels in the input
image.

5-4

Image Resizing

Image Resizing

To change the size of an image, use the imresize function. Using imresize, you
can

® Specify the size of the output image

¢ Specify the interpolation method used

¢ Specify the filter to use to prevent aliasing

Specifying the Size of the Output Image

Using imresize, you can specify the size of the output image in two ways:

® By specifying the magnification factor to be used on the image

¢ By specifying the dimensions of the output image

Using the Magnification Factor

To enlarge an image, specify a magnification factor greater than 1. To reduce
an image, specify a magnification factor between 0 and 1. For example, the
command below increases the size of the image I by 1.25 times.

I = imread('circuit.tif');
J = imresize(I,1.25);
imshow(I)

figure, imshow(J)

5-5

5 Spatial Transformations

Image Courtesy of Steve Decker and Shujaat Nadeem

Specifying the Size of the Output Image

You can specify the size of the output image by passing a vector that contains
the number of rows and columns in the output image. The following command
creates an output image, Y, with 100 rows and 150 columns.

Y = imresize(X,[100 150])

Note If the specified size does not produce the same aspect ratio as the input
image, the output image is distorted.

Specifying the Interpolation Method

By default, imresize uses nearest-neighbor interpolation to determine the
values of pixels in the output image, but you can specify other interpolation
methods. This table lists the supported interpolation methods in order of
complexity. See “Interpolation” on page 5-3 for more information about these
methods.

5-6

Image Resizing

Argument Value Interpolation Method

'nearest' Nearest-neighbor interpolation (the default)
'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation

In this example, imresize uses the bilinear interpolation method.

Y = imresize(X,[100 150], 'bilinear')

Using Filters to Prevent Aliasing

Reducing the size of an image can introduce artifacts, such as aliasing, in the
output image because information is always lost when you reduce the size of an
image. Aliasing appears as ripple patterns (called moiré patterns) in the output
image.

When you reduce the size of the image using either bilinear or bicubic
interpolation, imresize automatically applies a lowpass filter to the image
before interpolation, to limit the impact of aliasing on the output image. You
can specify the size of this filter or specify a different filter.

Note Even with lowpass filtering, resizing can introduce artifacts, because
information is always lost when you reduce the size of an image.

The imresize function does not apply a lowpass filter if nearest-neighbor
interpolation is used. Nearest-neighbor interpolation is primarily used for
indexed images, and lowpass filtering is not appropriate for these images.

You can also specify a filter of your own creation. For more information about
specifying a filter, see the reference page for imresize.

5-7

5 Spatial Transformations

Image Rotation

5-8

To rotate an image, use the imrotate function. imrotate accepts two primary
arguments:

® The image to be rotated

¢ The rotation angle

You specify the rotation angle in degrees. If you specify a positive value,
imrotate rotates the image counterclockwise; if you specify a negative value,

imrotate rotates the image clockwise. This example rotates the image I 35
degrees in the counterclockwise direction.

J = imrotate(I,35);
As optional arguments to imrotate, you can also specify

¢ The interpolation method

¢ The size of the output image

Specifying the Interpolation Method

By default, imrotate uses nearest-neighbor interpolation to determine the
value of pixels in the output image, but you can specify other interpolation
methods. This table lists the supported interpolation methods in order of
complexity. See “Interpolation” on page 5-3 for more information about these
methods.

Argument Value Interpolation Method

'nearest’ Nearest-neighbor interpolation (the default)
'bilinear' Bilinear interpolation

'bicubic’ Bicubic interpolation

For example, these commands rotate an image 35° counterclockwise and use
bilinear interpolation.

I = imread('circuit.tif');
J = imrotate(I,35, 'bilinear');
imshow(I)

Image Rotation

figure, imshow(J)

Specifying the Size of the Output Image

By default, imrotate creates an output image large enough to include the
entire original image. Pixels that fall outside the boundaries of the original
image are set to 0 and appear as a black background in the output image. If you
specify the text string ‘crop' as an argument, imrotate crops the output
image to be the same size as the input image. (See the reference page for
imrotate for an example of cropping.)

5-9

5 Spatial Transformations

5-10

Image Cropping

To extract a rectangular portion of an image, use the imcrop function. imcrop
accepts two primary arguments:

® The image to be cropped

¢ The coordinates of a rectangle that defines the crop area

If you call imcrop without specifying the crop rectangle, you can specify the
crop rectangle interactively. In this case, the cursor changes to crosshairs when
it is over the image. Position the crosshairs over a corner of the crop region and
press and hold the left mouse button. When you drag the crosshairs over the
image you specify the rectangular crop region. imcrop draws a rectangle
around the area you are selecting. When you release the mouse button, imcrop
creates a new image from the selected region.

In this example, you display an image and call imcrop. The imcrop function
displays the image in a figure window and waits for you to draw the cropping
rectangle on the image. In the figure, the rectangle you select is shown in red.
The example then calls imshow to view the cropped image.

imshow circuit.tif
I = imcrop;
imshow(I);

Performing General Spatial Transformations

Performing General Spatial Transformations

To perform general two-dimensional (2-D) spatial transformations, use the
imtransform function. (For information about performing advanced
transformations, see “Advanced Spatial Transformation Techniques” on
page 5-13.)

The imtransform function accepts two primary arguments:

® The image to be transformed

¢ A spatial transformation structure, called a TFORM, that specifies the type of
transformation you want to perform

Specifying the Transformation Type

You specify the type of transformation you want to perform in a TFORM
structure. There are two ways to create a TFORM structure:

¢ Using the maketform function

¢ Using the cp2tform function

Using maketform

When you use the maketform function, you can specify the type of
transformation you want to perform. The following table lists the types of
transformations maketform supports in alphabetical order.

Transformation Description

‘affine’ Transformation that can include translation,
rotation, scaling, stretching, and shearing. Straight
lines remain straight, and parallel lines remain
parallel, but rectangles might become
parallelograms.

'box' Special case of an affine transformation where each
dimension is shifted and scaled independently.

'composite'’ Composition of two or more transformations.

5-11

5 Spatial Transformations

5-12

Transformation Description

‘custom' User-defined transformation, providing the forward
and/or inverse functions that are called by
imtransform.

‘projective’ Transformation in which straight lines remain

straight but parallel lines converge toward vanishing
points. (The vanishing points can fall inside or
outside the image — even at infinity.)

The 'custom' and 'composite' capabilities of maketform allow a virtually
limitless variety of spatial transformations to be used with imtransformand/or
tformarray.

Using cp2iform

You use cp2tform to create the TFORM when you want to perform a
transformation that requires fitting of data points, such as a polynomial
transformation. Chapter 6, “Image Registration,” explains how to use the
cp2tform function to fit a 2-D transformation to a set of control points selected
in a pair of images.

Note When used with imtransform, TFORM structures must define a 2-D
spatial transformation. If an image contains more than two dimensions, such
as an RGB image, the same 2-D transformation is automatically applied to all
2-D planes along the higher dimensions. To define an n-dimensional
transformation, use the tformarray function.

Performing General Spatial Transformations

Performing the Transformation
Once you define the transformation in a TFORM struct, you can perform the
transformation by calling imtransform.

For example, this code uses imtransform to perform a projective
transformation of a checkerboard image.

I = checkerboard(20,1,1);
figure; imshow(I)

T = maketform('projective’',[1 1; 41 1; 41 41; 1 41],...
[5 5; 40 5; 35 30; -10 301);

R = makeresampler('cubic', 'circular');

K = imtransform(I,T,R, 'Size',[100 100], 'XYScale',1);

figure, imshow(K)

A8

Original Transformed
image image

The imtransform function options let you control many aspects of the
transformation. For example, note how the transformed image appears to
contain multiple copies of the original image. This is accomplished by using the
'Size' option, to make the output image larger than the input image, and then
specifying a padding method that extends the input image by repeating the
pixels in a circular pattern. The Image Processing Toolbox Image
Transformation demos provide more examples of using the imtransform
function, and related functions, to perform different types of spatial
transformations.

Advanced Spatial Transformation Techniques

The following functions, when used in combination, provide a vast array of
options for defining and working with 2-D, N-D, and mixed-D spatial
transformations:

® maketform
e fliptform

5-13

5 Spatial Transformations

e tformfwd

® tforminv

® findbounds

® makeresampler
® tformarray

® imtransform

The imtransform, findbounds, and tformarray functions use the tformfwd
and tforminv functions internally to encapsulate the forward transformations
needed to determine the extent of an output image or array and/or to map the
output pixels/array locations back to input locations. You can use tformfwd and
tforminv to explore the geometric effects of a transformation by applying them
to points and lines and plotting the results. They support a consistent handling
of both image and pointwise data.

The previous example, “Performing the Transformation” on page 5-13, used
the makeresampler function with a standard interpolation method. You can
also use it to obtain special effects or custom processing. For example, you could
specify your own separable filtering/interpolation kernel, build a custom
resampler around the MATLAB interp2 or interp3 functions, or even
implement an advanced antialiasing technique.

And, as noted, you can use tformarray to work with arbitrary-dimensional
array transformations. The arrays do not even need to have the same
dimensions. The output can have either a lower or higher number of
dimensions than the input.

For example, if you are sampling 3-D data on a 2-D slice or manifold, the input
array might have a lower dimensionality. The output dimensionality might be
higher, for example, if you combine multiple 2-D transformations into a single
2-D to 3-D operation.

5-14

Image Registration

This chapter describes the image registration capabilities of the Image Processing Toolbox. Image
registration is the process of aligning two or more images of the same scene. Image registration is
often used as a preliminary step in other image processing applications.

Terminology (p. 6-2) Provides definitions of image processing terms used in
this section

Registering an Image (p. 6-4) Steps you through an example of the image registration
process

Types of Supported Transformations Lists the types of supported transformations
(p. 6-12)

Selecting Control Points (p. 6-14) Describes how to use the Control Point Selection Tool
(cpselect) to select control points in pairs of images

Using Correlation to Improve Control = Describes how to use the cpcorr function to fine-tune
Points (p. 6-31) your control point selections

6 Image Registration

Terminology

An understanding of the following terms will help you to use this chapter.

Term

Definition

aligned image

base image

control point pairs

distortion

global transformation

input image

Output image after registration has been
performed. The output image is derived by
applying a transformation to the input
image (see below) that brings it into
alignment with the base image (see below).

Image against which you compare the image
to be registered. It is also often called the
reference image.

Matching locations, also referred to as
landmarks, in the input image and the base
image.

Differences in one image as compared to
another of the same subject. These
differences might have occurred as a result
of terrain relief and other changes in
perspective when imaging the same scene
from different viewpoints. Lens and other
internal sensor distortions, or differences
between sensors and sensor types, can also
cause distortion.

Transformation in which a single
mathematical expression applies to an entire
image.

Image that you want to register. It is often
called the observed image.

6-2

Terminology

Term

Definition

local transformation

spatial transformation

Transformation in which different
mathematical expressions (usually differing
in parameters rather than form) apply to
different regions within an image.

Mapping of locations of points in one image
to new locations in another image.

6-3

6 Image Registration

6-4

Registering an Image

Image registration is the process of aligning two or more images of the same
scene. Typically, one image, called the base image, is considered the reference
to which the other images, called input images, are compared. The object of
image registration is to bring the input image into alignment with the base
image by applying a spatial transformation to the input image.

A spatial transformation maps locations in one image to new locations in
another image. (For more details, see Chapter 5, “Spatial Transformations.”)
Determining the parameters of the spatial transformation needed to bring the
images into alignment is key to the image registration process.

Image registration is often used as a preliminary step in other image
processing applications. For example, you can use image registration to align
satellite images of the earth’s surface or images created by different medical
diagnostic modalities (MRI and SPECT). After registration, you can compare
features in the images to see how a river has migrated, how an area is flooded,
or to see if a tumor is visible in an MRI or SPECT image.

Point Mapping

The Image Processing Toolbox provides tools to support point mapping to
determine the parameters of the transformation required to bring an image
into alignment with another image. In point mapping, you pick points in a pair
of images that identify the same feature or landmark in the images. Then, a
spatial mapping is inferred from the positions of these control points.

Note You might need to perform several iterations of this process,
experimenting with different types of transformations, before you achieve a
satisfactory result. In some cases, you might perform successive registrations,
removing gross global distortions first, and then removing smaller local
distortions in subsequent passes.

The following figure provides a graphic illustration of this process. This process
is best understood by looking at an example. See “Example: Registering to a
Digital Orthophoto” on page 6-5 for an extended example.

Registering an Image

Image to be Input Base Image you are
registered — Image Image comparing it fo
Y Y

Specify control points in
input and base images using
cpselect

Y

Fine-tune control points with
cpcorr (optional)

Y

Determine parameters of
spatial fransformation using
cp2tform

tform structure

Y

imtransform

Y
Aligned
image

Overview of Image Registration Process

Example: Registering to a Digital Orthophoto

This example illustrates the steps involved in performing image registration
using point mapping. These steps include:

1 Read the images into the MATLAB workspace.
2 Specify control point pairs n the images.

3 Save the control point pairs.

6-5

6 Image Registration

4 Fine-tune the control points using cross-correlation. (This is an optional
step.)

5 Specify the type of transformation to be used and infer its parameters from
the control point pairs.

6 Transform the unregistered image to bring it into alignment.

To illustrate this process, the example registers a digital aerial photograph to
a digital orthophoto covering the same area. Both images are centered on the
business district of West Concord, Massachusetts.

The aerial image is geometrically uncorrected: it includes camera perspective,
terrain and building relief, and internal (lens) distortions, and it does not have
any particular alignment or registration with respect to the earth.

The orthophoto, supplied by the Massachusetts Geographic Information
System (MassGIS), has been orthorectified to remove camera, perspective, and
relief distortions (via a specialized image transformation process). It is also
georegistered (and geocoded)—the columns and rows of the digital orthophoto
image are aligned to the axes of the Massachusetts State Plane coordinate
system, each pixel center corresponds to a definite geographic location, and
every pixel is 1 meter square in map units.

Step 1: Read the Images into MATLAB

In this example, the base image is westconcordorthophoto.png, the MassGIS
georegistered orthophoto. It is a panchromatic (grayscale) image. The image to
be registered is westconcordaerial.png, a digital aerial photograph supplied
by mPower3/Emerge, and is a visible-color RGB image.

orthophoto = imread('westconcordorthophoto.png');
figure, imshow(orthophoto)

unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

You do not have to read the images into the MATLAB workspace. The
cpselect function accepts file specifications for grayscale images. However, if
you want to use cross-correlation to tune your control point positioning, the
images must be in the workspace.

6-6

Registering an Image

Image Courtesy of mPower3/Emerge Image Courtesy of MassGIS

Aerial Photo Image Orthophoto Image

Step 2: Choose Control Points in the Images

The toolbox provides an interactive tool, called the Control Point Selection
Tool, that you can use to pick pairs of corresponding control points in both
images. Control points are landmarks that you can find in both images, like a
road intersection, or a natural feature.

To start this tool, enter cpselect at the MATLAB prompt, specifying as
arguments the input and base images.

Note The unregistered image is an RGB image. Because the Control Point
Selection Tool only accepts grayscale images, the example passes only one
plane of the color image to cpselect.

cpselect(unregistered(:,:,1),orthophoto)

6-7

6 Image Registration

The cpselect function displays two views of both the input image and the base
image in which you can pick control points by pointing and clicking. For more
information, see “Selecting Control Points” on page 6-14. This figure shows the
Control Point Selection Tool with four pairs of control points selected. The
number of control point pairs you pick is at least partially determined by the
type of transformation you want to perform (specified in Step 5). See “Types of
Supported Transformations” on page 6-12 for information about the minimum
number of points required by each transformation.

<} Control Point Selection Tool =] E3
File Edit “iew Help

r[o oo |a|a || |

= Lackratia_|[100% > Base Detail: arthophoto
e o - TR AR

L”I_ Lock ratia ||61% LI Base Overview: arthophoto
;I - = = Tl 7 ;I
v] >

Step 3: Save the Control Point Pairs to the MATLAB Workspace

In the Control Point Selection Tool, click the File menu and choose the Save
Points to Workspace option. See “Saving Control Points” on page 6-29 for
more information.

6-8

Registering an Image

For example, the Control Point Selection Tool returns the following set of
control points in the input image. These values represent spatial coordinates;
the left column are x-coordinates, the right column are y-coordinates.

input_points =
120.7086 93.9772
319.2222 78.9202
127.9838 291.6312
352.0729 281.1445

Step 4: Fine-Tune the Control Point Pair Placement

This is an optional step that uses cross-correlation to adjust the position of the
control points you selected with cpselect. See “Using Correlation to Improve
Control Points” on page 6-31 for more information.

Note cpcorr can only adjust points for images that are the same scale and
have the same orientation. Because the Concord image is rotated in relation to
the base image, cpcorr cannot tune the control points. When it cannot tune
the points, cpcorr returns the input points unmodified.

input_points_corr = cpcorr(input_points,base_points,...
unregistered(:,:,1),orthophoto)

input_points_corr =
120.7086 93.9772
319.2222 78.9202
127.1046 289.8935
352.0729 281.1445

Step 5: Specify the Type of Transformation and Infer Its Parameters

In this step, you pass the control points to the cp2tform function that
determines the parameters of the transformation needed to bring the image
into alignment. cp2tform is a data-fitting function that determines the
transformation based on the geometric relationship of the control points.
cp2tform returns the parameters in a geometric transformation structure,
called a TFORM structure.

When you use cp2tform, you must specify the type of transformation you want
to perform. The cp2tform function can infer the parameters for five types of

6-9

6 Image Registration

transformations. You must choose which transformation will correct the type
of distortion present in the input image. See “T'ypes of Supported
Transformations” on page 6-12 for more information. Images can contain more
than one type of distortion.

The predominant distortion in the aerial image of West Concord (the input
image) results from the camera perspective. Ignoring terrain relief, which is
minor in this area, image registration can correct for this using a projective
transformation. The projective transformation also rotates the image into
alignment with the map coordinate system underlying the base digital
orthophoto image. (Given sufficient information about the terrain and camera,
you could correct these other distortions at the same time by creating a
composite transformation with maketform. See “Performing General Spatial
Transformations” on page 5-11 for more information.)

mytform = cp2tform(input_points,base_points, 'projective');

Step 6: Transform the Unregistered Image

As the final step in image registration, transform the input image to bring it
into alignment with the base image. You use imtransform to perform the
transformation, passing it the input image and the TFORM structure, which
defines the transformation. imtransform returns the transformed image. For
more information about using imtransform, see Chapter 5, “Spatial
Transformations.”

registered = imtransform(unregistered,mytform)

Note imtransform applies the transformation defined in mytform, which is
based on control points picked in only one plane of the RGB image, to all three
planes of the input image.

6-10

Registering an Image

Compare the transformed image to the base image to see how the registration
came out.

Registered Image

6-11

6 Image Registration

Types of Supported Transformations

The cp2tform function can infer the parameters for six types of
transformations. This table lists the transformations in order of complexity,
with examples of each type of distortion.

The first four transformations, 'linear conformal', 'affine', 'projective’,
and 'polynomial' are global transformations. In these transformations, a
single mathematical expression applies to an entire image. The last two
transformations, 'piecewise linear' and 'lwm' (local weighted mean), are
local transformations. In these transformations, different mathematical
expressions apply to different regions within an image.

When exploring how different transformations affect the images you are
working with, try the global transformations first. If these transformations are
not satisfactory, try the local transformations: the piecewise linear
transformation first and then the local weighted mean transformation.

Transformation Type Description Minimum Example
Control Points

‘linear conformal' Use this transformation when 2 pairs
shapes in the input image are ::a .3‘
unchanged, but the image is
distorted by some combination of
translation, rotation, and scaling.

Straight lines remain straight, and
parallel lines are still parallel.

‘affine' Use this transformation when 3 pairs
shapes in the input image exhibit \$
shearing. Straight lines remain ::a %\
straight, and parallel lines remain
parallel, but rectangles become
parallelograms.

6-12

Types of Supported Transformations

‘projective’

'polynomial’

'piecewise linear'

"lwm'

Use this transformation when the
scene appears tilted. Straight lines
remain straight, but parallel lines
converge toward vanishing points
(which might or might not fall
within the image).

Use this transformation when
objects in the image are curved. The
higher the order of the polynomial,
the better the fit, but the result can
contain more curves than the base
image.

Use this transformation when parts
of the image appear distorted
differently.

Use this transformation (local
weighted mean), when the
distortion varies locally and
piecewise linear is not sufficient.

4 pairs

= %

6 pairs
(order 2)

=

10 pairs
(order 3)

16 pairs
(order 4)

4 pairs

=
=R

6 pairs
(12 pairs
recommended)

6-13

6 Image Registration

6-14

Selecting Control Points

The toolbox includes an interactive tool that enables you to specify control
points in the images you want to register. The tool displays the images side by
side. When you are satisfied with the number and placement of the control
points, you can save the control points.

Using the Control Point Selection Tool

To specify control points in a pair of images you want to register, use the
Control Point Selection Tool, cpselect. The tool displays the image you want
to register, called the input image, next to the image you want to compare it to,
called the base image or reference image.

Specifying control points is a four-step process:
1 Start the tool, specifying the input image and the base image.

2 View the images, looking for visual elements that you can identify in both
images. cpselect provides many ways to navigate around the image,
panning and zooming to view areas of the image in more detail.

3 Specify matching control point pairs in the input image and the base image.

4 Save the control points in the MATLAB workspace.

The following figure shows the default appearance of the tool when you first
start it.

Selecting Control Points

Default Corsr— - & [& ok [& | & [& | |

Specify
magnification

Select Use point ~ Zoom in Move the Lock relative
points prediction and out detail image [magpification of images

<) Control Point Selection Tool

File Edit Yiew Helg

Input Detail: moan_input I14D% LII_ Lock fatio ||168% LI Base Detail: moon_base

=

Detail views — 1

x| _>l_I |

Input Overview: maoon_input ISS% L”I_Lockratio ||42% LI Base Overview: moon_hase
Overview = =
windows
Detail
rectangle

4 v] >

Control Point Selection Tool

Starting the Control Point Selection Tool

To use the Control Point Selection Tool, enter the cpselect command at the
MATLAB prompt. As arguments, specify the image you want to register (the
input image), and the image you want to compare it to (the base image).

To illustrate, this code fragment reads an image into a variable, moon_base, in
the MATLAB workspace. It then creates another version of the image with a

6-15

6 Image Registration

deliberate size distortion, called moon_input. This is the image that needs
registration to remove the size distortion. The code then starts the cpselect
tool, specifying the two images.

moon_base = imread('moon.tif’);
moon_input = imresize(moon_base, 1.2);
cpselect(moon_input, moon_base);

The cpselect command has other optional arguments. For example, you can
restart a control point selection session by including a cpstruct structure as
the third argument. For more information about restarting sessions, see
“Saving Control Points” on page 6-29. For complete details, see the cpselect
reference page.

Default Views of the Images

When the Control Point Selection Tool starts, it contains four image display
windows. The top two windows are called the Detail windows. These windows
show a closeup view of a portion of the images you are working with. The input
image is on the left and the base image is on the right. The two windows at the
bottom of the interface are called the Overview windows. These windows show
the images in their entirety, at the largest scale that fits the window. The input
overview image is on the left and the base overview image is on the right.

Superimposed on the image in the Overview windows is a rectangle, called the
detail rectangle. This rectangle defines the part of the image that is visible in
the Detail window. By default, at startup, the detail rectangle covers one
quarter of the entire image and is positioned over the center of the image.

6-16

Selecting Control Points

Detail
windows

Overview ___ |

windows

Detail
rectangles

Input

Input Detail: moan_input 129% L”LLockratio ||154% LI Base Detail: moon_base

= =

Base

o

Input Overview: maoon_input 32% L”I_ Lock ratia ||39% LI Base Overview: moon_hase

K|

-

Viewing the Images

By default, cpselect displays the entire base and input images in the
Overview windows and displays a closeup view of a portion of these images in
the Detail windows. However, to find visual elements that are common to both
images, you might want to change the section of the image displayed in the
detail view or zoom in on a part of the image to view it in more detail. The
following sections describe the different ways to change your view of the
images:

¢ “Using Scroll Bars to View Other Parts of an Image” on page 6-18

¢ “Using the Detail Rectangle to Change the View” on page 6-18

¢ “Panning the Image Displayed in the Detail Window” on page 6-18

¢ “Zooming In and Out on an Image” on page 6-19

® “Specifying the Magnification of the Images” on page 6-20

6-17

6 Image Registration

® “Locking the Relative Magnification of the Input and Base Images” on
page 6-21

Using Scroll Bars to View Other Parts of an Image

To view parts of an image that are not visible in the Detail or Overview
windows, use the scroll bars provided in each window.

As you scroll the image in the Detail window, note how the detail rectangle
moves over the image in the Overview window. The position of the detail
rectangle always shows the portion of the image in the Detail window.

Using the Detail Rectangle to Change the View

To get a closer view of any part of the image, move the detail rectangle in the
Overview window over that section of the image. cpselect displays that
section of the image in the Detail window at a higher magnification than the
overview window.

To move the detail rectangle,
1 Click the Default Cursor button | » | in the toolbar.

2 Move the pointer into the detail rectangle. The cursor changes to the fleur
shape, & .

3 Press and hold the mouse button to drag the detail rectangle anywhere on
the image.

Note As you move the detail rectangle over the image in the Overview
window, the view of the image displayed in the Detail window changes.

Panning the Image Displayed in the Detail Window

To change the section of the image displayed in the Detail window, use the pan
tool to move the image in the window.

To use the pan tool,

1 Click the Drag Images to Pan button | €7 | in the toolbar.

6-18

Selecting Control Points

2 Move the pointer over the image in the Detail window. The cursor changes
to the fleur shape, ., .

3 Press and hold the mouse button and drag the image in the Detail window.

Note As you move the image in the Detail window, the detail rectangle in the
Overview window moves.

Zooming In and Out on an Image

To enlarge an image to get a closer look or shrink an image to see the whole
image in context, use the Zoom buttons on the button bar. (You can also zoom
in or out on an image by changing the magnification. See “Specifying the
Magnification of the Images” on page 6-20 for more information.)

To zoom in or zoom out on the base or input images,

1 Click the appropriate magnifying glass button.

Zoom in ZLoom out

e

2 Move the pointer over the image you want to zoom in or out on. The cursor
changes to crosshairs, .

You can zoom in or out on either the input or the base images, in either the
Detail or Overview windows. To keep the relative magnifications of the
base and input images synchronized, click the Lock ratio check box. See
“Locking the Relative Magnification of the Input and Base Images” on
page 6-21 for more information.

6-19

6 Image Registration

Note If you zoom in close on the image displayed in the Overview window,
the detail rectangle might no longer be visible.

You can use the zoom tool in two ways:

= Position the cursor over a location in the image and click the mouse. With
each click, cpselect changes the magnification of the image by a preset
amount. (See “Specifying the Magnification of the Images” on page 6-20 for
a list of some of these magnifications.) cpselect centers the new view of
the image on the spot where you clicked.

= Alternatively, you can position the cursor over a location in the image and,
while pressing and holding the mouse button, draw a rectangle defining
the area you want to zoom in or out on. cpselect magnifies the image so
that the chosen section fills the Detail window. cpselect resizes the detail
rectangle in the Overview window as well.

Note When you zoom in or out on an image, notice how the magnification
value changes.

Specifying the Magnification of the Images

To enlarge an image to get a closer look or to shrink an image to see the whole
image in context, use the magnification edit box. (You can also use the Zoom
buttons to enlarge or shrink an image. See “Zooming In and Out on an Image”
on page 6-19 for more information.)

To change the magnification of an image,

1 Move the cursor into the magnification edit box of the window you want to
change. The cursor changes to the text entry cursor.

Note Each Detail window and Overview window has its own magnification
edit box.

6-20

Selecting Control Points

2 Type a new value in the magnification edit box and press Enter, or click the
menu associated with the edit box and choose from a list of preset
magnifications. cpselect changes the magnification of the image and
displays the new view in the appropriate window.

Magnification edit box Magnification menu

Input Detail: moan_input ﬁ | i”l_ Lock ratia ||6?% LI Base Detail: moon_base

Locking the Relative Magnification of the Input and Base Images

To keep the relative magnification of the input and base images automatically
synchronized in the Detail or Overview windows, click the Lock Ratio check
box. The two Detail windows and the two Overview windows each have their
own Lock ratio check boxes.

When the Lock Ratio check box is selected, cpselect changes the
magnification of both the input and base images when you zoom in or out on
either one of the images or specify a magnification value for either of the
images.

Lock magnification ratio check box

100% = | Lock ratia 639 =]

6-21

6 Image Registration

Specifying Matching Control Point Pairs

The primary function of the Control Point Selection Tool is to enable you to pick
control points in the image to be registered, the input image, and the image to
which you are comparing it, the base image. When you start cpselect, the
point selection tool is enabled, by default.

You specify control points by pointing and clicking in the input and base
images, in either the Detail or the Overview windows. Each point you specify
in the input image must have a match in the base image. The following sections
describe the ways you can use the Control Point Selection Tool to choose control
point pairs:

¢ “Picking Control Point Pairs Manually”
® “Using Control Point Prediction” on page 6-24

This section also describes how to move control points after you've created
them and how to delete control points.

Picking Control Point Pairs Manually
To specify a pair of control points in your images,

1 Click the Control Point Selection button & |. Control point selection mode
is active by default.

2 Position the cursor over a feature you have visually selected in any of the
images displayed. The cursor changes to a pointing finger, m .

You can pick control points in either of the Detail windows, input or base, or
in either of the Overview windows, input or base. You also can work in
either direction: input-to-base image, or base-to-input image.

3 Click the mouse button. cpselect places a control point symbol at the
position you specified, in both the Detail window and the Overview window.
(The appearance of the control point symbol indicates its current state.
Initially, control points are in an active, unmatched state. See “Control Point
States” on page 6-26 for more information.

6-22

Selecting Control Points

Note Depending on where in the image you pick control points, the symbol
for the point might be visible in the Overview window, but not in the Detail
window.

4 To create the match for this control point, move the cursor into the
corresponding Detail or Overview window. For example, if you started in
an input window, move the cursor to a base window.

5 Click the mouse button. cpselect places a control point symbol at the
position you specified, in both the Detail and Overview windows. Because
this control point completes a pair, the appearance of this symbol indicates
an active, matched state. Note that the appearance of the first control point
you selected (in step 3) also changes to an active, matched state.

You pick pairs of control points by moving from a view of the input image to a
view of the base image, or vice versa. You can pick several control points in one
view of the image, and then move to the corresponding window to locate their
matches. To match an unmatched control point, select it to make it active, and
then pick a point in the corresponding view window. When you select a match
for a control point, the symbols for both points change to indicate their matched
state. You can move or delete control points after you create them.

The following figure illustrates control points in several states.

6-23

6 Image Registration

<} Control Point Selection Tool
File Edit Wiew Help

rJe e |ala| o] |
=] Lockratio |[120% =]

154 Base Detail: A

Input Detail: moon tit

Active
unmatched

Unmatched

Matched

Using Control Point Prediction

Instead of picking matching control points by moving the cursor between
corresponding Detail or Overview windows, you can let the Control Point
Selection Tool estimate the match for the control points you specify,
automatically. The Control Point Selection Tool determines the position of the
matching control point based on the geometric relationship of the previously
selected control points.

6-24

Selecting Control Points

Note By default, the Control Point Selection Tool does not include predicted
points in the set of valid control points returned in input_points or
base_points. To include predicted points, you must accept them by selecting
the points and fine-tuning their position with the cursor. When you move a
predicted point, the Control Point Selection Tool changes the symbol to
indicate that it has changed to a standard control point. For more information,
see “Moving Control Points” on page 6-27.

To illustrate point prediction, this figure shows four control points selected in
the input image, where the points form the four corners of a square. (The
control points selections in the figure do not attempt to identify any landmarks
in the image.) The figure shows the picking of a fourth point, in the left window,
and the corresponding predicted point in the right window. Note how the
Control Point Selection Tool places the predicted point at the same location
relative to the other control points, forming the bottom right corner of the
square.

=y

Control point selected manually Predicted control point

Note Because the Control Point Selection Tool predicts control point
locations based on the locations of the previous control points, you cannot use
point prediction until you have a minimum of two pairs of matched points.
Until this minimum is met, the Control Point Prediction button is disabled.

6-25

6 Image Registration

6-26

To use control point prediction,
1 Click the Control Point Prediction button| @& [

2 Position the cursor anywhere in any of the images displayed. The cursor

changes to a pointing finger, m .

You can pick control points in either of the Detail windows, input or base, or
in either of the Overview windows, input or base. You also can work in
either direction: input-to-base image or base-to-input image.

3 Click either mouse button. The Control Point Selection Tool places a control

point symbol at the position you specified and places another control point
symbol for a matching point in all the other windows. The symbol for the
predicted point contains the letter “P,” indicating that it’s a predicted control
point.

This figure illustrates predicted points in active unmatched, matched, and
predicted states. For a complete description of all point states, see “Control
Point States” on page 6-26.

Predicted — I— Active predicted

control point control point

Control Point States

The appearance of control point symbols indicates their current state. When
you first pick a control point, its state is active and unmatched. When you pick

Selecting Control Points

the match for a control point, the appearance of both symbols changes to
indicate their matched status.

This table lists all the possible control point states with their symbols.
cpselect displays this list in a separate window called a Legend. The Legend
is visible by default, but you can control its visibility using the Legend option
from the View menu.

Control Point States

Symbol State Description

e Active unmatched The point is currently selected but does
not have a matching point. This is the
initial state of most points.

6B Active matched The point is currently selected and has a
matching point.

Active predicted The point is a predicted point. If you
- move its position, the point changes to
active matched state.

& Unmatched The point is not selected and it is
unmatched. You must select it before you
can create its matching point.

& Matched The point has a matching point.

® Predicted This point was added by cpselect
during point prediction.

Moving Control Points
To move a control point,

1 Click the Control Point Selection button| & | or the Default Cursor button
B

2 Position the cursor over the control point you want to move.

3 Press and hold the mouse button and drag the control point. The state of the
control point changes to active when you move it.

6-27

6 Image Registration

If you move a predicted control point, the state of the control point changes to
a regular (nonpredicted) control point.

Deleting Control Points
To delete a control point, and optionally its matching point,

1 Click the Control Point Selection button| & | or the Default Cursor button

LN
2 Click the control point you want to delete. Its state changes to active. If the
control point has a match, both points become active.

3 Delete the point (or points) using one of these methods:

= Pressing the Backspace key

= Pressing the Delete key

= Choosing one of the delete options from the Edit menu
Using this menu you can delete individual points or pairs of matched
points, in the input or base images.

Undo Delete
Redo Delete

Delete Active Pair
Delete options —|: Delete Active Input Point

Delete Active Base Point

Undoing and Redoing Control Point Selections
You can undo a deletion or series of deletions using the Undo Delete option on
the cpselect Edit menu.

Undo options —{ Jndo pelete
P Redo Delete
Delete Active Pair

Delete Active Input Paint
Delete Active Base Point

After undoing a deletion, you can delete the points again using the Redo
option, also on the Edit menu.

6-28

Selecting Control Points

Saving Control Points

After you specify control point pairs, you must save them in the MATLAB
workspace to make them available for the next step in image registration,
processing by cp2tform.

To save control points to the MATLAB workspace,
1 Select File on the Control Point Selection Tool menu bar.

2 Choose the Save Points to Workspace option. The Control Point Selection
Tool displays this dialog box:

<) Save Points to Workspace []

¥ Input points of valid pairs: |input_p0ints
[+ Base points af valid pairs: |base_p0ints
[Structure with all paints: |cpstruct

Ok | Cancel |

By default, the Control Point Selection Tool saves the x-coordinates and
y-coordinates that specify the locations of the control points you selected in two
arrays named input_points and base_points, although you can specify other
names. These are n-by-2 arrays, where n is the number of valid control point
pairs you selected. For example, this is an example of the input_points array
if you picked four pairs of control points. The values in the left column
represent the x-coordinates; the values in the right column represent the
y-coordinates.

input_points =
215.6667 262.3333
225.7778 311.3333

156.5556 340.1111
270.8889 368.8889

Whenever you exit the Control Point Selection Tool, it asks if you want to save
your control points.

6-29

6 Image Registration

Saving Your Control Point Selection Session

To save the current state of the Control Point Selection Tool, select the
Structure with all points check box in the Save Points to Workspace dialog
box.

<) Save Points to Workspace []

¥ Input points of valid pairs: |input_p0ints
[+ Base points af valid pairs: |base_p0ints

I Sirciure with all pointsi [cpstruct

Cancel |

This option saves the positions of all the control points you specified and their
current states in a cpstruct structure.

cpstruct =

inputPoints: [4x2 double]
basePoints: [4x2 double]
inputBasePairs: [4x2 double]
ids: [4x1 double]
inputIdPairs: [4x2 double]
baseldPairs: [4x2 double]
isInputPredicted: [4x1 double]
isBasePredicted: [4x1 double]

You can use the cpstruct to restart a control point selection session at the
point where you left off.

This option is useful if you are picking many points over a long time and want
to preserve unmatched and predicted points when you resume work. The
Control Point Selection Tool does not include unmatched and predicted points
in the input_points and base_points arrays.

To extract the arrays of valid control point coordinates from a cpstruct, use
the cpstruct2pairs function.

6-30

Using Correlation to Improve Control Points

Using Correlation to Improve Control Points

You might want to fine-tune the control points you selected using cpselect.
Using cross-correlation, you can sometimes improve the points you selected by
eye using the Control Point Selection Tool.

To use cross-correlation, pass sets of control points in the input and base
images, along with the images themselves, to the cpcorr function.

input_pts_adj= cpcorr(input_points, base_points, input, base);

The cpcorr function defines 11-by-11 regions around each control point in the
input image and around the matching control point in the base image, and then
calculates the correlation between the values at each pixel in the region. Next,
the cpcorr function looks for the position with the highest correlation value
and uses this as the optimal position of the control point. The cpcorr function
only moves control points up to 4 pixels based on the results of the
cross-correlation.

Note Features in the two images must be at the same scale and have the
same orientation. They cannot be rotated relative to each other.

If cpcorr cannot correlate some of the control points, it returns their values in
input_points unmodified.

6-31

6 Image Registration

6-32

Linear Filtering and Filter
Design

The Image Processing Toolbox provides a number of functions for designing and implementing
two-dimensional linear filters for image data. This chapter describes these functions and how to use
them effectively.

Terminology (p. 7-2) Provides definitions of image processing terms used in
this section

Linear Filtering (p. 7-4) Provides an explanation of linear filtering and how it is
implemented in the toolbox. This topic describes filtering
in terms of the spatial domain, and is accessible to
anyone doing image processing.

Filter Design (p. 7-17) Discusses designing two-dimensional finite impulse
response (FIR) filters. This section assumes you are
familiar with working in the frequency domain.

7 lneor Filtering and Filter Design

Terminology

An understanding of the following terms will help you to use this chapter. Note
that this table includes brief definitions of terms related to filter design; a
detailed discussion of these terms and the theory behind filter design is outside
the scope of this user’s guide.

Term

Definition

convolution

convolution kernel

correlation

correlation kernel

FIR filter

frequency response

neighborhood operation

Neighborhood operation in which each output pixel is a weighted
sum of neighboring input pixels. The weights are defined by the
convolution kernel. Image processing operations implemented with
convolution include smoothing, sharpening, and edge enhancement.

Matrix of weights used to perform convolution. A convolution kernel
is a correlation kernel that has been rotated 180 degrees.

Neighborhood operation in which each output pixel is a weighted
sum of neighboring input pixels. The weights are defined by the
correlation kernel. Correlation is closely related mathematically to
convolution.

Matrix of weights used to perform correlation. The filter design
functions in the Image Processing Toolbox return correlation
kernels. A correlation kernel is a convolution kernel that has been
rotated 180 degrees.

Filter whose response to a single point, or impulse, has finite extent.
FIR stands for finite impulse response. An FIR filter can be
implemented using convolution. All filter design functions in the
Image Processing Toolbox return FIR filters.

Mathematical function describing the gain of a filter in response to
different input frequencies.

Operation in which each output pixel is computed from a set of
neighboring input pixels. Convolution, dilation, and median
filtering are examples of neighborhood operations.

7-2

Terminology

Term

Definition

ripples

window method

Oscillations around a constant value. The frequency response of a
practical filter often has ripples where the frequency response of an
ideal filter is flat.

Filter design method that multiples the ideal impulse response by a
window function, which tapers the ideal impulse response. The
resulting filter’s frequency response approximates a desired
frequency response.

7-3

7 lneor Filtering and Filter Design

7-4

Linear Filtering

Filtering is a technique for modifying or enhancing an image. For example, you
can filter an image to emphasize certain features or remove other features.

Filtering is a neighborhood operation, in which the value of any given pixel in
the output image is determined by applying some algorithm to the values of the
pixels in the neighborhood of the corresponding input pixel. A pixel’s
neighborhood is some set of pixels, defined by their locations relative to that
pixel. (See Chapter 14, “Neighborhood and Block Operations,” for a general
discussion of neighborhood operations.)

Linear filtering is filtering in which the value of an output pixel is a linear
combination of the values of the pixels in the input pixel’s neighborhood.

This section discusses linear filtering in MATLAB and the Image Processing
Toolbox. It includes

® A description of filtering, using convolution and correlation

¢ A description of how to perform filtering using the imfilter function
e A discussion about using predefined filter types

See “Filter Design” on page 7-17 for information about how to design filters.

Convolution

Linear filtering of an image is accomplished through an operation called
convolution. In convolution, the value of an output pixel is computed as a
weighted sum of neighboring pixels. The matrix of weights is called the
convolution kernel, also known as the filter.

For example, suppose the image is

A= 117 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9]

Linear Filtering

and the convolution kernel is

h =18 1 6
3 5 7
4 9 2]

The following figure shows how to compute the (2,4) output pixel using these
steps:

1 Rotate the convolution kernel 180 degrees about its center element.

2 Slide the center element of the convolution kernel so that it lies on top of the
(2,4) element of A.

3 Multiply each weight in the rotated convolution kernel by the pixel of A
underneath.

4 Sum the individual products from step 3.

Hence the (2,4) output pixel is
1-2+8-9+15-4+7-7+14-5+16-3+13-6+20-1+22-8=575

Values of rotated convolution kernel

Y Y

— 7 | u | | 8]
Image pixel values| 7/]4h 16°

Center of kernel

R

Computing the (2,4) Output of Convolution

7 lneor Filtering and Filter Design

Correlation

The operation called correlation is closely related to convolution. In correlation,
the value of an output pixel is also computed as a weighted sum of neighboring
pixels. The difference is that the matrix of weights, in this case called the
correlation kernel, is not rotated during the computation. The following figure
shows how to compute the (2,4) output pixel of the correlation of A, assuming h
is a correlation kernel instead of a convolution kernel, using these steps:

1 Slide the center element of the correlation kernel so that lies on top of the
(2,4) element of A.

2 Multiply each weight in the correlation kernel by the pixel of A underneath.

3 Sum the individual products from step 3.

The (2,4) output pixel from the correlation is

1-8+8-1+15-6+7-3+14-5+16-7+13-4+20-9+22-2=585

Values of correlation kernel

Image pixel values 23 5 8]

Center of kernel

Computing the (2,4) Output of Correlation

Linear Filtering

Filtering Using imfilter

Filtering of images, either by correlation or convolution, can be performed
using the toolbox function imfilter. This example filters an image with a
5-by-5 filter containing equal weights. Such a filter is often called an averaging
filter.

I = imread('coins.png');

h = ones(5,5) / 25;

I2 = imfilter(I,h);

imshow(I), title('Original Image');

figure, imshow(I2), title('Filtered Image')

Original Image Filtered Image

Data Types

The imfilter function handles data types similarly to the way the image
arithmetic functions do, as described in “Image Arithmetic Saturation Rules”
on page 2-28. The output image has the same data type, or numeric class, as
the input image. The imfilter function computes the value of each output
pixel using double-precision, floating-point arithmetic. If the result exceeds the
range of the data type, the imfilter function truncates the result to that data
type's allowed range. If it is an integer data type, imfilter rounds fractional
values.

Because of the truncation behavior, you might sometimes want to consider
converting your image to a different data type before calling imfilter. In this
example, the output of imfilter has negative values when the input is of class
double.

7-7

7 lneor Filtering and Filter Design

A = magic(5)

A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

h=1-101]

h =
-1 0 1

imfilter(A,h)

ans =
24 -16 -16 14 -8
5 -16 9 9 -14
6 9 14 9 -20
12 9 9 -16 -21
18 14 -16 -16 -2

Notice that the result has negative values. Now suppose A is of class uint8,
instead of double.

A = uint8(magic(5));
imfilter(A,h)

ans =
24 0 0 14 0
5 0 9 9 0
6 9 14 9 0
12 9 9 0 0
18 14 0 0 0

Since the input to imfilter is of class uint8, the output also is of class uints8,
and so the negative values are truncated to 0. In such cases, it might be
appropriate to convert the image to another type, such as a signed integer type,
single, or double, before calling imfilter.

7-8

Linear Filtering

Correlation and Convolution Options

The imfilter function can perform filtering using either correlation or

convolution. It uses correlation by default, because the filter design functions,
described in “Filter Design” on page 7-17, and the fspecial function, described
in “Using Predefined Filter Types” on page 7-15, produce correlation kernels.

However, if you want to perform filtering using convolution instead, you can
pass the string 'conv' as an optional input argument to imfilter. For

example:

A = magic(5);

h=1[-101]

imfilter(A,h)

ans =
24
5
6
12
18

imfilter(A,h,'conv')

ans =

-24
-5
-6

-12

-18

-16
-16
9
9
14

16
16
-9
-9

-14

% filter using correlation

-16 14 -8
9 9 -14
14 9 -20
9 -16 -21
-16 -16 -2

o°

filter using convolution

16 -14 8
-9 -9 14
-14 -9 20
-9 16 21
16 16 2

7-9

7 lneor Filtering and Filter Design

7-10

Boundary Padding Options

When computing an output pixel at the boundary of an image, a portion of the
convolution or correlation kernel is usually off the edge of the image, as
illustrated in the following figure.

What value should these
outside pixels have?

Center of kernel

When the Values of the Kernel Fall Outside the Image

The imfilter function normally fills in these off-the-edge image pixels by

assuming that they are 0. This is called zero padding and is illustrated in the
following figure.

Linear Filtering

Outside pixels are
assumed to be 0.

1
o o' 0
g lul| #8)
\ -
B 5| '] 16
s 6| 3]0 |n
0|12] 9] gl 3
nmlw| s| 2|09

Zero Padding of Outside Pixels

Center of kernel

When you filter an image, zero padding can result in a dark band around the
edge of the image, as shown in this example.

I = imread('eight.tif"');

h = ones(5,5) / 25;
I2 = imfilter(I,h);
imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image with Black Border')

7-11

y g Filtering and Filter Design

Original Image Filtered Image with Black Border

To eliminate the zero-padding artifacts around the edge of the image, imfilter
offers an alternative boundary padding method called border replication. In
border replication, the value of any pixel outside the image is determined by
replicating the value from the nearest border pixel. This is illustrated in the
following figure.

These pixel values are replicated
from boundary pixels.

1 8 15
3 7
17 24 1 é 8?\ 15
N Center of kernel

Replicated Boundary Pixels

7-12

Linear Filtering

To filter using border replication, pass the additional optional argument
'replicate' to imfilter.

I3 = imfilter(I,h, 'replicate’');
figure, imshow(I3);
title('Filtered Image with Border Replication')

Filtered Image with Border Replication

The imfilter function supports other boundary padding options, such as
‘circular' and 'symmetric'. See the reference page for imfilter for details.

Multidimensional Filtering

The imfilter function can handle both multidimensional images and
multidimensional filters. A convenient property of filtering is that filtering a
three-dimensional image with a two-dimensional filter is equivalent to filtering
each plane of the three-dimensional image individually with the same
two-dimensional filter. This example shows how easy it is to filter each color
plane of a truecolor image with the same filter:

1 Read in an RGB image and display it.

rgb = imread('peppers.png');
imshow(rgb);

7-13

y g Filtering and Filter Design

7-14

2 Filter the image and display it.
h = ones(5,5)/25;
rgb2 = imfilter(rgb,h);
figure, imshow(rgb2)

Relationship to Other Filtering Functions

MATLAB has several two-dimensional and multidimensional filtering
functions. The function filter2 performs two-dimensional correlation, conv2
performs two-dimensional convolution, and convn performs multidimensional

Linear Filtering

convolution. Each of these filtering functions always converts the input to
double, and the output is always double. These other filtering functions
always assume the input is zero padded, and they do not support other padding
options.

In contrast, the imfilter function does not convert input images to double.
The imfilter function also offers a flexible set of boundary padding options, as
described in “Boundary Padding Options” on page 7-10.

Using Predefined Filter Types

The fspecial function produces several kinds of predefined filters, in the form
of correlation kernels. After creating a filter with fspecial, you can apply it
directly to your image data using imfilter. This example illustrates applying
an unsharp masking filter to an intensity image. The unsharp masking filter
has the effect of making edges and fine detail in the image more crisp.

I = imread('moon.tif');

h = fspecial('unsharp');

I2 = imfilter(I,h);

imshow(I), title('Original Image')

figure, imshow(I2), title('Filtered Image')

7-15

7 lneor Filtering and Filter Design

Image Courtesy of Michael Myers
Original Image Filtered Image

7-16

Filter Design

Filter Design

This section describes working in the frequency domain to design filters. Topics
discussed include

® Finite impulse response (FIR) filters, the class of linear filter that the toolbox
supports

¢ The frequency transformation method, which transforms a one-dimensional
FIR filter into a two-dimensional FIR filter

® The frequency sampling method, which creates a filter based on a desired
frequency response

¢ The windowing method, which multiplies the ideal impulse response with a
window function to generate the filter

¢ Creating the desired frequency response matrix

* Computing the frequency response of a filter

This section assumes you are familiar with working in the frequency domain.

This topic is discussed in many signal processing and image processing
textbooks.

Note Most of the design methods described in this section work by creating a
two-dimensional filter from a one-dimensional filter or window created using
functions from the Signal Processing Toolbox. Although this toolbox is not
required, you might find it difficult to design filters in the Image Processing
Toolbox if you do not have the Signal Processing Toolbox as well.

FIR Filters

The Image Processing Toolbox supports one class of linear filter, the
two-dimensional finite impulse response (FIR) filter. FIR filters have several
characteristics that make them ideal for image processing in the MATLAB
environment:

¢ F1IR filters are easy to represent as matrices of coefficients.

¢ Two-dimensional FIR filters are natural extensions of one-dimensional FIR
filters.

7-17

7 lneor Filtering and Filter Design

7-18

® There are several well-known, reliable methods for FIR filter design.
¢ FIR filters are easy to implement.

¢ FIR filters can be designed to have linear phase, which helps prevent
distortion.

Another class of filter, the infinite impulse response (IIR) filter, is not as
suitable for image processing applications. It lacks the inherent stability and
ease of design and implementation of the FIR filter. Therefore, this toolbox
does not provide IIR filter support.

Frequency Transformation Method

The frequency transformation method transforms a one-dimensional FIR filter
into a two-dimensional FIR filter. The frequency transformation method
preserves most of the characteristics of the one-dimensional filter, particularly
the transition bandwidth and ripple characteristics. This method uses a
transformation matrix, a set of elements that defines the frequency
transformation.

The toolbox function ftrans2 implements the frequency transformation
method. This function’s default transformation matrix produces filters with
nearly circular symmetry. By defining your own transformation matrix, you
can obtain different symmetries. (See Jae S. Lim, Two-Dimensional Signal and
Image Processing, 1990, for details.)

The frequency transformation method generally produces very good results, as
it is easier to design a one-dimensional filter with particular characteristics
than a corresponding two-dimensional filter. For instance, the next example
designs an optimal equiripple one-dimensional FIR filter and uses it to create
a two-dimensional filter with similar characteristics. The shape of the
one-dimensional frequency response is clearly evident in the two-dimensional
response.

b remez(10,[0 0.4 0.6 1],[1 1 0 0]);
h ftrans2(b);

[H,w] = freqz(b,1,64, 'whole');
colormap(jet(64))
plot(w/pi-1,fftshift(abs(H)))

figure, freqz2(h,[32 32])

Filter Design

SR>
A
leop SN

N

Magnitude

One-Dimensional Frequency Response (left) and Corresponding
Two-Dimensional Frequency Response (right)

Frequency Sampling Method

The frequency sampling method creates a filter based on a desired frequency
response. Given a matrix of points that define the shape of the frequency
response, this method creates a filter whose frequency response passes through
those points. Frequency sampling places no constraints on the behavior of the
frequency response between the given points; usually, the response ripples in
these areas.

The toolbox function fsamp2 implements frequency sampling design for
two-dimensional FIR filters. fsamp2 returns a filter h with a frequency
response that passes through the points in the input matrix Hd. The example
below creates an 11-by-11 filter using fsamp2 and plots the frequency response
of the resulting filter. (The freqz2 function in this example calculates the
two-dimensional frequency response of a filter. See “Computing the Frequency
Response of a Filter” on page 7-23 for more information.)

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = freqspace(11, 'meshgrid');

mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fsamp2(Hd);

7 lneor Filtering and Filter Design

7-20

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Magnitude

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

Notice the ripples in the actual frequency response, compared to the desired
frequency response. These ripples are a fundamental problem with the
frequency sampling design method. They occur wherever there are sharp
transitions in the desired response.

You can reduce the spatial extent of the ripples by using a larger filter.
However, a larger filter does not reduce the height of the ripples, and requires
more computation time for filtering. To achieve a smoother approximation to
the desired frequency response, consider using the frequency transformation
method or the windowing method.

Windowing Method

The windowing method involves multiplying the ideal impulse response with a
window function to generate a corresponding filter. Like the frequency
sampling method, the windowing method produces a filter whose frequency
response approximates a desired frequency response. The windowing method,
however, tends to produce better results than the frequency sampling method.

The toolbox provides two functions for window-based filter design, fwind1 and
fwind2. fwind1 designs a two-dimensional filter by using a two-dimensional

Filter Design

window that it creates from one or two one-dimensional windows that you
specify. fwind2 designs a two-dimensional filter by using a specified
two-dimensional window directly.

fwind1 supports two different methods for making the two-dimensional
windows it uses:

¢ Transforming a single one-dimensional window to create a two-dimensional
window that is nearly circularly symmetric, by using a process similar to
rotation

¢ Creating a rectangular, separable window from two one-dimensional
windows, by computing their outer product

The example below uses fwind1 to create an 11-by-11 filter from the desired
frequency response Hd. Here, the hamming function from the Signal Processing
Toolbox is used to create a one-dimensional window, which fwind1 then
extends to a two-dimensional window.

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = freqspace(11, 'meshgrid');

mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fwind1 (Hd,hamming(11));

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Magnitude

OGN
2 ;,,},‘2‘3}“!

SIS

Frequency Frequency

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

7-21

7 lneor Filtering and Filter Design

Creating the Desired Frequency Response Matrix

The filter design functions fsamp2, fwind2, and fwind2 all create filters based
on a desired frequency response magnitude matrix. You can create an
appropriate desired frequency response matrix using the freqspace function.
fregspace returns correct, evenly spaced frequency values for any size
response. If you create a desired frequency response matrix using frequency
points other than those returned by freqspace, you might get unexpected

results, such as nonlinear phase.

For example, to create a circular ideal lowpass frequency response with cutoff

at 0.5, use

[f1,f2] = freqspace(25, 'meshgrid');

Hd

= zeros(25,25); d =
Hd(d) =

E

mesh (f1,f2,Hd)

0

f
i
i
)
(i

o
1
i
i
i
g0

e
!

DK
M
A
I

(X
g
i
§

0

e

X

0
!

\
A

o
0
&)
i
K
i
(i
(o
X
i

i

i

p

\

sqrt(f1.”2 + f2.72) < 0.5;

“:‘o

X
0
i
!

v
T

i
)
(.

A

fX

i
A "“
X ”

X
i
W

Ideal Circular Lowpass Frequency Response

Note that for this frequency response, the filters produced by fsamp2, fwind1,
and fwind2 are real. This result is desirable for most image processing

applications. To achieve this in general, the desired frequency response should
be symmetric about the frequency origin (f1 = 0, f2 = 0).

7-22

Filter Design

Computing the Frequency Response of a Filter

The freqz2 function computes the frequency response for a two-dimensional
filter. With no output arguments, freqz2 creates a mesh plot of the frequency
response. For example, consider this FIR filter,

h =[0.1667 0.6667 0.1667
0.6667 -3.3333 0.6667
0.1667 0.6667 0.16671];

This command computes and displays the 64-by-64 point frequency response of
h.

freqz2(h)

Magnitude

Frequency Response of a Two-Dimensional Filter
To obtain the frequency response matrix H and the frequency point vectors 1
and f2, use output arguments

[H,f1,f2] = freqz2(h);
freqz2 normalizes the frequencies f1 and f2 so that the value 1.0 corresponds
to half the sampling frequency, or & radians.

For a simple m-by-n response, as shown above, freqz2 uses the
two-dimensional fast Fourier transform function fft2. You can also specify
vectors of arbitrary frequency points, but in this case freqz2 uses a slower
algorithm.

7-23

7 lneor Filtering and Filter Design

See “Fourier Transform” on page 8-3 for more information about the fast
Fourier transform and its application to linear filtering and filter design.

7-24

Transforms

The usual mathematical representation of an image is a function of two spatial variables: f(x, ¥). The
value of the function at a particular location (x, y) represents the intensity of the image at that
point. The term ¢ransform refers to an alternative mathematical representation of an image.

This chapter defines several important transforms and shows examples of their application to image

processing.

Terminology (p. 8-2)

Fourier Transform (p. 8-3)

Discrete Cosine Transform (p. 8-17)

Radon Transform (p. 8-21)

Fan-Beam Projection Data (p. 8-36)

Provides definitions of image processing terms used in
this section

Defines the Fourier transform and some of its
applications in image processing

Describes the discrete cosine transform (DCT) of an
image and its application, particularly in image
compression

Describes how the Image Processing Toolbox radon
function computes projections of an image matrix along
specified directions

Describes how the Image Processing Toolbox radon
function computes projections of an image matrix along
specified directions

8 Transforms

Terminology

An understanding of the following terms will help you to use this chapter. Note
that this table includes brief definitions of terms related to transforms; a
detailed discussion of these terms and the theory behind transforms is outside
the scope of this user’s guide.

Term

Definition

discrete transform

frequency domain

inverse transform

spatial domain

transform

Transform whose input and output values are discrete samples,
making it convenient for computer manipulation. Discrete
transforms implemented by MATLAB and the Image Processing
Toolbox include the discrete Fourier transform (DFT) and the
discrete cosine transform (DCT).

Domain in which an image is represented by a sum of periodic
signals with varying frequency.

Operation that when performed on a transformed image produces
the original image.

Domain in which an image is represented by intensities at given
points in space. This is the most common representation for image
data.

Alternative mathematical representation of an image. For example,
the Fourier transform is a representation of an image as a sum of
complex exponentials of varying magnitudes, frequencies, and
phases. Transforms are useful for a wide range of purposes,
including convolution, enhancement, feature detection, and
compression.

8-2

Fourier Transform

Fourier Transform

The Fourier transform is a representation of an image as a sum of complex
exponentials of varying magnitudes, frequencies, and phases. The Fourier
transform plays a critical role in a broad range of image processing
applications, including enhancement, analysis, restoration, and compression.

This section includes the following subsections:

e “Definition of Fourier Transform”

¢ “Discrete Fourier Transform” on page 8-8, including a discussion of fast
Fourier transform

® “Applications of the Fourier Transform” on page 8-11 (sample applications
using Fourier transforms)

Definition of Fourier Transform

If f(m, n) is a function of two discrete spatial variables m and n, then the
two-dimensional Fourier transform of f(m, n) is defined by the relationship

Flo,09) = Y, 3 flm,n)e /O meon

m=—c0 N =-—oco

The variables ®; and mq are frequency variables; their units are radians per
sample. F(w{, w,) is often called the frequency-domain representation of
f(m,n). F(®{, ®y) is a complex-valued function that is periodic both in w, and
0, , with period 2r. Because of the periodicity, usually only the range

-t < ®y, Wy <7 is displayed. Note that F'(0, 0) is the sum of all the values of
f(m, n). For this reason, F'(0, 0) is often called the constant component or DC
component of the Fourier transform. (DC stands for direct current; it is an
electrical engineering term that refers to a constant-voltage power source, as
opposed to a power source whose voltage varies sinusoidally.)

The inverse two-dimensional Fourier transform is given by

i i . .
f(m,n) = % J J F(wy, 032)ejm1mejm2n dw, doy
Ar’ Yor=-n Jo,=-n

8-3

8 Transforms

Roughly speaking, this equation means that f(m, n) can be represented as a
sum of an infinite number of complex exponentials (sinusoids) with different
frequencies. The magnitude and phase of the contribution at the frequencies
(0, my) are given by F (w4, 0g) .

Visualizing the Fourier Transform

To illustrate, consider a function f(m, n) that equals 1 within a rectangular
region and 0 everywhere else. To simplify the diagram, f(m, n) is shown as a
continuous function, even though the variables m and n are discrete.

n

flm,n)

Rectangular Function

The following figure shows, as a mesh plot, the magnitude of the Fourier
transform, ‘F (04, 032)‘ , of the rectangular function shown in the preceding
figure. The mesh plot of the magnitude is a common way to visualize the
Fourier transform.

8-4

Fourier Transform

\\

\ \\\- i
“‘\“‘\‘\\\\ (5

'

o‘,‘-;i“—"" "
2N 'v
‘.:-:ﬂ‘ \

\ }}“‘\\\\\)

“

Magnitude Image of a Rectangular Function

The peak at the center of the plot is F'(0, 0), which is the sum of all the values
in f(m, n). The plot also shows that F(®;, ®y) has more energy at high
horizontal frequencies than at high vertical frequencies. This reflects the fact
that horizontal cross sections of f(m, n) are narrow pulses, while vertical cross
sections are broad pulses. Narrow pulses have more high-frequency content

than broad pulses.

8-5

8 Transforms

Another common way to visualize the Fourier transform is to display
log‘F(ml, 0)2)‘ as an image, as shown.

Log of the Fourier Transform of a Rectangular Function

Using the logarithm helps to bring out details of the Fourier transform in
regions where F (0, ®y) is very close to 0.

8-6

Fourier Transform

Examples of the Fourier transform for other simple shapes are shown below.

Fourier Transforms of Some Simple Shapes

8-7

8 Transforms

Discrete Fourier Transform

Working with the Fourier transform on a computer usually involves a form of
the transform known as the discrete Fourier transform (DFT). There are two
principal reasons for using this form:

¢ The input and output of the DFT are both discrete, which makes it
convenient for computer manipulations.

® There is a fast algorithm for computing the DFT known as the fast Fourier
transform (FF'T).

The DFT is usually defined for a discrete function f(m, n) that is nonzero only
over the finite region 0<m <M -1 and 0<n <N - 1. The two-dimensional
M-by-N DFT and inverse M-by-N DFT relationships are given by

M-1 N-1
i _ =0,1,...M-1
2 z £(m, n)e J(2n/M)pme j(2n/N)qn p
g=01..,N-1

F(p,q)

m=0 n=0

M-1 N-1

1 j@2r/MYpm j(2n/N)qn m=201.,M-1
) = F(p.
f(m " MNPE—‘O qgo (p q)e ’ n=01 .”’N_l

The values F(p, q) are the DFT coefficients of f(m, n). The zero-frequency
coefficient, F (0, 0), is often called the “DC component.” DC is an electrical
engineering term that stands for direct current. (Note that matrix indices in
MATLAB always start at 1 rather than 0; therefore, the matrix elements
f(1,1) and F(1,1) correspond to the mathematical quantities f(0, 0) and
F(0,0), respectively.)

The MATLAB functions fft, fft2, and fftn implement the fast Fourier
transform algorithm for computing the one-dimensional DFT, two-dimensional
DFT, and N-dimensional DFT, respectively. The functions ifft, ifft2, and
ifftn compute the inverse DFT.

Fourier Transform

Relationship to the Fourier Transform
The DFT coefficients F(p, q) are samples of the Fourier transform F(o;, ®,).

0,1,....M-1
g=01..,N-1

F(p, = F(o;,®
(p:q) (04 2)0) omp/ M

2nq/N

1

()

Example

1 Construct a matrix f that is similar to the function f{m,n) in the example in
“Definition of Fourier Transform” on page 8-3. Remember that f(m,n) is
equal to 1 within the rectangular region and 0 elsewhere. Use a binary
image to represent fim,n).

f = zeros(30,30);
f(5:24,13:17) = 1;
imshow(f, 'notruesize')

2 Compute and visualize the 30-by-30 DFT of f with these commands.

F = fft2(f);
F2 = log(abs(F));
imshow(F2,[-1 5], 'notruesize'); colormap(jet); colorbar

8-9

8 Transforms

Discrete Fourier Transform Computed Without Padding

This plot differs from the Fourier transform displayed in “Visualizing the
Fourier Transform” on page 8-4. First, the sampling of the Fourier
transform is much coarser. Second, the zero-frequency coefficient is
displayed in the upper left corner instead of the traditional location in the
center.

3 To obtain a finer sampling of the Fourier transform, add zero padding to f
when computing its DFT. The zero padding and DFT computation can be
performed in a single step with this command.

F = fft2(f,256,256);

This command zero-pads f to be 256-by-256 before computing the DFT.
imshow(log(abs(F)),[-1 51); colormap(jet); colorbar

8-10

Fourier Transform

Discrete Fourier Transform Computed with Padding

4 The zero-frequency coefficient, however, is still displayed in the upper left
corner rather than the center. You can fix this problem by using the function
fftshift, which swaps the quadrants of F so that the zero-frequency
coefficient is in the center.

F = fft2(f,256,256);
F2 = fftshift(F);
imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

The resulting plot is identical to the one shown in “Visualizing the Fourier
Transform” on page 8-4.

Applications of the Fourier Transform

This section presents a few of the many image processing-related applications
of the Fourier transform.

Frequency Response of Linear Filters

The Fourier transform of the impulse response of a linear filter gives the
frequency response of the filter. The function freqz2 computes and displays a

8-11

8 Transforms

filter’s frequency response. The frequency response of the Gaussian
convolution kernel shows that this filter passes low frequencies and attenuates
high frequencies.

h = fspecial('gaussian');
freqz2(h)

Magnitude
5

Frequency Frequency

Frequency Response of a Gaussian Filter

See “Linear Filtering and Filter Design” on page 7-1 for more information
about linear filtering, filter design, and frequency responses.

Fast Convolution

A key property of the Fourier transform is that the multiplication of two
Fourier transforms corresponds to the convolution of the associated spatial
functions. This property, together with the fast Fourier transform, forms the
basis for a fast convolution algorithm.

Note The FFT-based convolution method is most often used for large inputs.
For small inputs it is generally faster to use imfilter.

8-12

Fourier Transform

To illustrate, this example performs the convolution of A and B, where A is an
M-by-N matrix and B is a P-by-Q matrix:

Create two matrices.

A = magic(3);
B = ones(3);

Zero-pad A and B so that they are at least (M+P-1)-by-(N+Q-1). (Often A and
B are zero-padded to a size that is a power of 2 because fft2 is fastest for
these sizes.) The example pads the matrices to be 8-by-8.

A(8,8) = 0;
B(8,8) = 0;

Compute the two-dimensional DFT of A and B using fft2.
Multiply the two DFTs together.
Compute the inverse two-dimensional DFT of the result using ifft2.

The following code performs steps 3, 4, and 5 in the procedure.

C = ifft2(fft2(A).*fft2(B));

Extract the nonzero portion of the result and remove the imaginary part
caused by roundoff error.

C =C(1:5,1:5);
C = real(C)
C =

8.0000 9.0000 15.0000 7.0000 6.0000
11.0000 17.0000 30.0000 19.0000 13.0000
15.0000 30.0000 45.0000 30.0000 15.0000

7.0000 21.0000 30.0000 23.0000 9.0000

4.0000 13.0000 15.0000 11.0000 2.0000

Locating Image Features

The Fourier transform can also be used to perform correlation, which is closely
related to convolution. Correlation can be used to locate features within an
image; in this context correlation is often called template matching.

8-13

8 Transforms

This example illustrates how to use correlation to locate occurrences of the
letter “a” in an image containing text:
1 Read in the sample image.

bw = imread('text.png');

2 Create a template for matching by extracting the letter “a” from the image.
a = bw(32:45,88:98);
You can also create the template image by using the interactive version of
imcrop, using the pixval function to determine the coordinates of features
in an image.
The following figure shows both the original image and the template.

imshow (bw) ;
figure, imshow(a);

The term watershed
refers to aridge that ...

d
=
o
)
E
b=
P
a
o
@
£
s
|
S

;]
SE o
LT E
o as
=a
Soh
= -
@
Tz
H =

Image (left) and the Template to Correlate (right)

3 Compute the correlation of the template image a with the original image bw
by rotating the template image by 180° and then using the FFT-based
convolution technique described in “Fast Convolution” on page 8-12.
(Convolution is equivalent to correlation if you rotate the convolution kernel
by 180°.) To match the template to the image, use the fft2 and ifft2
functions.

8-14

Fourier Transform

C = real (ifft2(fft2(bw) .* fft2(rot90(a,2),256,256)));

The following image shows the result of the correlation. Bright peaks in the
image correspond to occurrences of the letter.

figure, imshow(C,[]) % Scale image to appropriate display range.

L T e T e [L T

A T A T T TR LT

Correlated Image

4 To view the locations of the template in the image, find the maximum pixel
value and then define a threshold value that is less than this maximum. The
locations of these peaks are indicated by the white spots in the thresholded
correlation image. (To make the locations easier to see in this figure, the
thresholded image has been dilated to enlarge the size of the points.)
max(C(:))
ans =

68.0000

thresh = 60; % Use a threshold that’s a little less than max.

figure, imshow(C > thresh)% Display showing pixels over
threshold.

8-15

8 Transforms

Correlated, Thresholded Image Showing Template Locations

8-16

Discrete Cosine Transform

Discrete Cosine Transform

The discrete cosine transform (DCT) represents an image as a sum of sinusoids
of varying magnitudes and frequencies. The dct2 function in the Image
Processing Toolbox computes the two-dimensional discrete cosine transform
(DCT) of an image. The DCT has the property that, for a typical image, most of
the visually significant information about the image is concentrated in just a
few coefficients of the DCT. For this reason, the DCT is often used in image
compression applications. For example, the DCT is at the heart of the
international standard lossy image compression algorithm known as JPEG.
(The name comes from the working group that developed the standard: the
Joint Photographic Experts Group.)

The two-dimensional DCT of an M-by-N matrix A is defined as follows.

! n2m+1)p wn(2n+1l)q O0<ps<M-1]
qu=(xp0cqz ZAmncos Wi COS =57 0<qg<N-1
m=0n=0
X_{l/m,p=0 a_{l/ﬁv,q=0
P\2/M, 1<p<M-1 7 |J/2/N, 1<qg<N-1

The values B pq are called the DCT coefficients of A. (Note that matrix indices
in MATLAB always start at 1 rather than 0; therefore, the MATLAB matrix
elements A(1,1) and B(1,1) correspond to the mathematical quantities A,
and B, respectively.)

The DCT is an invertible transform, and its inverse is given by

oAt n2m+1)p wi2n+1l)qg O0<m<M-1
Apn = D D 0p0gBgcos =5 cos =55, 0<n<N-1
p=0g¢g=0
x_{l/ﬂ,p:O a_{uﬁ,q:o
P oe/M, 1<p<M-1 7 |/2/N, 1<q<N-1

8-17

8 Transforms

The inverse DCT equation can be interpreted as meaning that any M-by-N
matrix A can be written as a sum of MN functions of the form

n2m+1)p mwn(2n+1l)qg O0<ps<M-1
"% ST T AN 0<q<N-1

These functions are called the basis functions of the DCT. The DCT coefficients
B q’ then, can be regarded as the weights applied to each basis function. For
S-Ey—S matrices, the 64 basis functions are illustrated by this image.

The 64 Basis Functions of an 8-by-8 Matrix

Horizontal frequencies increase from left to right, and vertical frequencies
increase from top to bottom. The constant-valued basis function at the upper
left is often called the DC basis function, and the corresponding DCT coefficient
B is often called the DC coefficient.

The DCT Transform Matrix

The Image Processing Toolbox offers two different ways to compute the DCT.

The first method is to use the function dct2. dct2 uses an FFT-based algorithm
for speedy computation with large inputs. The second method is to use the DCT
transform matrix, which is returned by the function dctmtx and might be more

8-18

Discrete Cosine Transform

efficient for small square inputs, such as 8-by-8 or 16-by-16. The M-by-M
transform matrix T is given by

L p=0, 0<q<M-1

r -1 JM

pbq
0(....—._ 21)} <p<2\4_ |j<q<2\4_
/\IMC S 2M 1 1 1

For an M-by-M matrix A, T*A is an M-by-M matrix whose columns contain the
one-dimensional DCT of the columns of A. The two-dimensional DCT of A can
be computed as B=T*A*T'. Since T is a real orthonormal matrix, its inverse is
the same as its transpose. Therefore, the inverse two-dimensional DCT of B is
given by T' *B*T.

DCT and Image Compression

In the JPEG image compression algorithm, the input image is divided into
8-by-8 or 16-by-16 blocks, and the two-dimensional DCT is computed for each
block. The DCT coefficients are then quantized, coded, and transmitted. The
JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients,
computes the inverse two-dimensional DCT of each block, and then puts the
blocks back together into a single image. For typical images, many of the DCT
coefficients have values close to zero; these coefficients can be discarded
without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks in
the input image, discards (sets to zero) all but 10 of the 64 DCT coefficients in
each block, and then reconstructs the image using the two-dimensional inverse
DCT of each block. The transform matrix computation method is used.

I = imread('cameraman.tif');

I = im2double(I);

T = dctmtx(8);

B = blkproc(I,[8 8], 'P1*x*P2',T,T');

mask = [1 1 1 1 0O 0O o0 o
1 1 1 o o0 o0 o0 ©O
1 1 o o0 o o0 o0 o
1 0O o0 O o o o0 o
0o o0 O o o o o o
0o o0 O o o o o o

8-19

8 Transforms

0 0 0 0 0 0O O 0
0 0 0 0 0 0O O 01;
B2 blkproc(B,[8 8], 'P1.*x',mask);
I2 blkproc(B2,[8 8], 'P1*x*P2',T',T);
imshow(I), figure, imshow(I2)

Image Courtesy of MIT

Although there is some loss of quality in the reconstructed image, it is clearly
recognizable, even though almost 85% of the DCT coefficients were discarded.
To experiment with discarding more or fewer coefficients, and to apply this
technique to other images, try running the demo function dctdemo.

8-20

Radon Transform

Radon Transform

The radon function in the Image Processing Toolbox computes projections of an
image matrix along specified directions. A projection of a two-dimensional
function f(x,y) is a set of line integrals. The radon function computes the line
integrals from multiple sources along parallel paths, or beams, in a certain
direction. The beams are spaced 1 pixel unit apart. To represent an image, the
radon function takes multiple, parallel-beam projections of the image from
different angles by rotating the source around the center of the image. The
following figure shows a single projection at a specified rotation angle.

y

Sensors

Rotation angle theta

flx,y)

Source

Parallel-Beam Projection at Rotation Angle Theta

Note For information about creating projection data from line integrals
along paths that radiate from a single source, called fan-beam projections, see
“Fan-Beam Projection Data” on page 8-36. To convert parallel-beam projection
data to fan-beam projection data, use the para2fan function.

For example, the line integral of f{x,y) in the vertical direction is the projection
of f(x,y) onto the x-axis; the line integral in the horizontal direction is the
projection of f(x,y) onto the y-axis. The following figure shows horizontal and
vertical projections for a simple two-dimensional function.

8-21

8 Transforms

flx,y)

Projection onto the y-axis

Projection onto the x-axis

Horizontal and Vertical Projections of a Simple Function

Projections can be computed along any angle 6. In general, the Radon
transform of f(x,y) is the line integral of f parallel to the y’-axis

Rg(x") = r f(x"cosO —y’sin0, x’ sin® + y’cosO) dy’

where

x’| _ | cos6 sin||x
y’ —sin® cos0| |y

The following figure illustrates the geometry of the Radon transform.

8-22

Radon Transform

Re(x,)

Geomeiry of the Radon Transform

Plotting the Radon Transform
You can compute the Radon transform of an image I for the angles specified in
the vector theta using the radon function with this syntax.

[R,xp] = radon(I,theta);

The columns of R contain the Radon transform for each angle in theta. The
vector xp contains the corresponding coordinates along the x’-axis. The center
pixel of I is defined to be floor ((size(I)+1)/2);thisis the pixel on the x"-axis
corresponding to x” = 0.

8-23

8 Transforms

The commands below compute and plot the Radon transform at 0° and 45° of
an image containing a single square object. xp is the same for all projection
angles.

I = zeros(100,100);
I(25:75, 25:75) = 1;
imshow(I)

[R,xp] = radon(I,[0 45]);
figure; plot(xp,R(:,1)); title('R_{0"0} (x\prime)')

60 T T T T T T T T T

501

40

301

201

-80 -60 -40 -20 O 20 40 60 80
Radon Transform of a Square Function at 0 Degrees

figure; plot(xp,R(:,2)); title('R_{45"0} (x\prime)")

8-24

Radon Transform

80 T T T T T T T T T

70+

60 -

40

20

10

-80 60 -40 20 0O 20 40 60 80

Radon Transform of a Square Function at 45 Degrees

Viewing the Radon Transform as an Image

The Radon transform for a large number of angles is often displayed as an
image. In this example, the Radon transform for the square image is computed
at angles from 0° to 180°, in 1° increments.

theta = 0:180;

[R,xp] = radon(I,theta);
imagesc(theta,xp,R);
title('R_{\theta} (X\prime)');
xlabel('\theta (degrees)');
ylabel('X\prime');

set(gca, 'XTick',0:20:180);
colormap(hot);

colorbar

8-25

8 Transforms

R, (x)

0 20 40 60 80 100 120 140 160 180
0 (degrees)

Radon Transform Using 180 Projections

8-26

Radon Transform

Using the Radon Transform to Detect Lines

The Radon transform is closely related to a common computer vision operation
known as the Hough transform. You can use the radon function to implement
a form of the Hough transform used to detect straight lines. The steps are

1 Compute a binary edge image using the edge function.

I = fitsread('solarspectra.fts');
I = mat2gray(I);
BW = edge(I);

imshow(I), figure, imshow(BW)

Image Courtesy of Ann Walker

Original Image Edge Image

2 Compute the Radon transform of the edge image.
theta = 0:179;
[R,xp] = radon(BW,theta);
figure, imagesc(theta, xp, R); colormap(hot)
xlabel('\theta (degrees)'); ylabel('x\prime'
title('R_{\theta} (x\prime)');
colorbar

);

8-27

8 Transforms

H[] (x")
190
-100
180
170
-50
160

50

100

0 20 40 60 80 100 120 140 160
0 (degrees)

Radon Transform of an Edge Image

3 Find the locations of strong peaks in the Radon transform matrix. The
locations of these peaks correspond to the locations of straight lines in the
original image.

In the following figure, the strongest peaks in R correspond to 6 = 1° and

x” = —80. The line perpendicular to that angle and located at x” = -80 is
shown below, superimposed in red on the original image. The Radon transform
geometry is shown in black. Notice that the other strong lines parallel to the
red line also appear as peaks at 6 = 1° in the transform. Also, the lines
perpendicular to this line appear as peaks at 6 = 91°.

8-28

Radon Transform

theta = 1°

Radon Transform Geometry and the Strongest Peak (Red)

Inverse Radon Transform

The iradon function performs the inverse Radon transform, which is
commonly used in tomography applications. This transform inverts the Radon
transform (which was introduced in the previous section), and can therefore be
used to reconstruct images from projection data.

As described in “Radon Transform” on page 8-21, given an image I and a set of

angles theta, the radon function can be used to calculate the Radon transform.

R = radon(I,theta);

The function iradon can then be called to reconstruct the image I.
IR = iradon(R,theta);

In the example above, projections are calculated from the original image I. In
most application areas, there is no original image from which projections are
formed. For example, in X-ray absorption tomography, projections are formed
by measuring the attenuation of radiation that passes through a physical
specimen at different angles. The original image can be thought of as a cross
section through the specimen, in which intensity values represent the density
of the specimen. Projections are collected using special purpose hardware, and
then an internal image of the specimen is reconstructed by iradon. This allows
for noninvasive imaging of the inside of a living body or another opaque object.

8-29

8 Transforms

iradon reconstructs an image from parallel-beam projections. In parallel-beam
geometry, each projection is formed by combining a set of line integrals through
an image at a specific angle.

The following figure illustrates how parallel-beam geometry is applied in X-ray
absorption tomography. Note that there is an equal number of n emitters and
n sensors. Each sensor measures the radiation emitted from its corresponding
emitter, and the attenuation in the radiation gives a measure of the integrated
density, or mass, of the object. This corresponds to the line integral that is
calculated in the Radon transform.

The parallel-beam geometry used in the figure is the same as the geometry that
was described in “Radon Transform” on page 8-21. f(x,y) denotes the brightness
of the image and Re(x') is the projection at angle theta.

8-30

Radon Transform

Parallel-Beam Projections Through an Object

Another geometry that is commonly used is fan-beam geometry, in which there
is one source and n sensors. For more information, see “Fan-Beam Projection
Data” on page 8-36. To convert parallel-beam projection data into fan-beam
projection data, use the para2fan function.

Improving the Results

iradon uses the filtered backprojection algorithm to compute the inverse Radon
transform. This algorithm forms an approximation of the image I based on the
projections in the columns of R. A more accurate result can be obtained by using

8-31

8 Transforms

more projections in the reconstruction. As the number of projections (the length
of theta) increases, the reconstructed image IR more accurately approximates
the original image I. The vector theta must contain monotonically increasing
angular values with a constant incremental angle A6. When the scalar A6 is
known, it can be passed to iradon instead of the array of theta values. Here is
an example.

IR = iradon(R,Dtheta);

The filtered backprojection algorithm filters the projections in R and then
reconstructs the image using the filtered projections. In some cases, noise can
be present in the projections. To remove high frequency noise, apply a window
to the filter to attenuate the noise. Many such windowed filters are available
in iradon. The example call to iradon below applies a Hamming window to the
filter. See the iradon reference page for more information.

IR = iradon(R,theta, 'Hamming');

iradon also enables you to specify a normalized frequency, D, above which the
filter has zero response. D must be a scalar in the range [0,1]. With this option,
the frequency axis is rescaled so that the whole filter is compressed to fit into
the frequency range [0,D]. This can be useful in cases where the projections
contain little high-frequency information but th