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Preface

When something can be read without effort,
great effort has gone into its writing.

Enrique Jardiel Poncela

This edition is the most comprehensive revision of Digital Image Processing
since the book first appeared in 1977.As the 1977 and 1987 editions by Gonzalez
and Wintz, and the 1992 edition by Gonzalez and Woods, the present edition was
prepared with students and instructors in mind.Thus, the principal objectives of
the book continue to be to provide an introduction to basic concepts and
methodologies for digital image processing, and to develop a foundation that can
be used as the basis for further study and research in this field.To achieve these
objectives, we again focused on material that we believe is fundamental and
has a scope of application that is not limited to the solution of specialized prob-
lems. The mathematical complexity of the book remains at a level well within
the grasp of college seniors and first-year graduate students who have intro-
ductory preparation in mathematical analysis, vectors, matrices, probability, sta-
tistics, and rudimentary computer programming.

The present edition was influenced significantly by a recent market survey
conducted by Prentice Hall. The major findings of this survey were:

1. A need for more motivation in the introductory chapter regarding the spec-
trum of applications of digital image processing.

2. A simplification and shortening of material in the early chapters in order
to “get to the subject matter” as quickly as possible.

3. A more intuitive presentation in some areas, such as image transforms and
image restoration.

4. Individual chapter coverage of color image processing, wavelets, and image
morphology.

5. An increase in the breadth of problems at the end of each chapter.

The reorganization that resulted in this edition is our attempt at providing a
reasonable degree of balance between rigor in the presentation, the findings of
the market survey, and suggestions made by students, readers, and colleagues
since the last edition of the book. The major changes made in the book are as
follows.

Chapter 1 was rewritten completely.The main focus of the current treatment
is on examples of areas that use digital image processing. While far from ex-
haustive, the examples shown will leave little doubt in the reader’s mind re-
garding the breadth of application of digital image processing methodologies.
Chapter 2 is totally new also.The focus of the presentation in this chapter is on
how digital images are generated, and on the closely related concepts of

xv
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sampling, aliasing, Moiré patterns, and image zooming and shrinking. The new
material and the manner in which these two chapters were reorganized address
directly the first two findings in the market survey mentioned above.

Chapters 3 though 6 in the current edition cover the same concepts as Chap-
ters 3 through 5 in the previous edition, but the scope is expanded and the pre-
sentation is totally different. In the previous edition, Chapter 3 was devoted
exclusively to image transforms. One of the major changes in the book is that
image transforms are now introduced when they are needed.This allowed us to
begin discussion of image processing techniques much earlier than before, fur-
ther addressing the second finding of the market survey. Chapters 3 and 4 in the
current edition deal with image enhancement, as opposed to a single chapter
(Chapter 4) in the previous edition.The new organization of this material does
not imply that image enhancement is more important than other areas. Rather,
we used it as an avenue to introduce spatial methods for image processing
(Chapter 3), as well as the Fourier transform, the frequency domain, and image
filtering (Chapter 4). Our purpose for introducing these concepts in the context
of image enhancement (a subject particularly appealing to beginners) was to in-
crease the level of intuitiveness in the presentation, thus addressing partially
the third major finding in the marketing survey.This organization also gives in-
structors flexibility in the amount of frequency-domain material they wish to
cover.

Chapter 5 also was rewritten completely in a more intuitive manner. The
coverage of this topic in earlier editions of the book was based on matrix theory.
Although unified and elegant, this type of presentation is difficult to follow,
particularly by undergraduates. The new presentation covers essentially the
same ground, but the discussion does not rely on matrix theory and is much
easier to understand, due in part to numerous new examples.The price paid for
this newly gained simplicity is the loss of a unified approach, in the sense that
in the earlier treatment a number of restoration results could be derived from
one basic formulation. On balance, however, we believe that readers (especial-
ly beginners) will find the new treatment much more appealing and easier to fol-
low.Also, as indicated below, the old material is stored in the book Web site for
easy access by individuals preferring to follow a matrix-theory formulation.

Chapter 6 dealing with color image processing is new. Interest in this area has
increased significantly in the past few years as a result of growth in the use of
digital images for Internet applications. Our treatment of this topic represents
a significant expansion of the material from previous editions. Similarly Chap-
ter 7, dealing with wavelets, is new. In addition to a number of signal process-
ing applications, interest in this area is motivated by the need for more
sophisticated methods for image compression, a topic that in turn is motivated
by a increase in the number of images transmitted over the Internet or stored
in Web servers. Chapter 8 dealing with image compression was updated to in-
clude new compression methods and standards, but its fundamental structure
remains the same as in the previous edition. Several image transforms, previously
covered in Chapter 3 and whose principal use is compression, were moved to
this chapter.

xvi � Preface
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Chapter 9, dealing with image morphology, is new. It is based on a signifi-
cant expansion of the material previously included as a section in the chapter
on image representation and description. Chapter 10, dealing with image seg-
mentation, has the same basic structure as before, but numerous new examples
were included and a new section on segmentation by morphological watersheds
was added. Chapter 11, dealing with image representation and description, was
shortened slightly by the removal of the material now included in Chapter 9.
New examples were added and the Hotelling transform (description by princi-
pal components), previously included in Chapter 3, was moved to this chapter.
Chapter 12 dealing with object recognition was shortened by the removal of
topics dealing with knowledge-based image analysis, a topic now covered in
considerable detail in a number of books which we reference in Chapters 1 and
12. Experience since the last edition of Digital Image Processing indicates that
the new, shortened coverage of object recognition is a logical place at which to
conclude the book.

Although the book is totally self-contained, we have established a compan-
ion web site (see inside front cover) designed to provide support to users of the
book. For students following a formal course of study or individuals embarked
on a program of self study, the site contains a number of tutorial reviews on
background material such as probability, statistics, vectors, and matrices, pre-
pared at a basic level and written using the same notation as in the book.
Detailed solutions to many of the exercises in the book also are provided. For
instruction, the site contains suggested teaching outlines, classroom presentation
materials, laboratory experiments, and various image databases (including most
images from the book). In addition, part of the material removed from the pre-
vious edition is stored in the Web site for easy download and classroom use, at
the discretion of the instructor.A downloadable instructor’s manual containing
sample curricula, solutions to sample laboratory experiments, and solutions to
all problems in the book is available to instructors who have adopted the book
for classroom use.

This edition of Digital Image Processing is a reflection of the significant
progress that has been made in this field in just the past decade. As is usual in
a project such as this, progress continues after work on the manuscript stops. One
of the reasons earlier versions of this book have been so well accepted through-
out the world is their emphasis on fundamental concepts, an approach that,
among other things, attempts to provide a measure of constancy in a rapidly-
evolving body of knowledge. We have tried to observe that same principle in
preparing this edition of the book.

R.C.G.
R.E.W.

� Preface xvii
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1

1 Introduction

One picture is worth more than ten thousand words.
Anonymous

Preview
Interest in digital image processing methods stems from two principal applica-
tion areas: improvement of pictorial information for human interpretation; and
processing of image data for storage, transmission, and representation for au-
tonomous machine perception.This chapter has several objectives: (1) to define
the scope of the field that we call image processing; (2) to give a historical per-
spective of the origins of this field; (3) to give an idea of the state of the art in
image processing by examining some of the principal areas in which it is ap-
plied; (4) to discuss briefly the principal approaches used in digital image pro-
cessing; (5) to give an overview of the components contained in a typical,
general-purpose image processing system; and (6) to provide direction to the
books and other literature where image processing work normally is reported.

What Is Digital Image Processing?

An image may be defined as a two-dimensional function, f(x, y), where x and
y are spatial (plane) coordinates, and the amplitude of f at any pair of coordi-
nates (x, y) is called the intensity or gray level of the image at that point.When
x, y, and the amplitude values of f are all finite, discrete quantities, we call the
image a digital image. The field of digital image processing refers to processing
digital images by means of a digital computer. Note that a digital image is com-
posed of a finite number of elements, each of which has a particular location and

1.1
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2 Chapter 1 � Introduction

value. These elements are referred to as picture elements, image elements, pels,
and pixels. Pixel is the term most widely used to denote the elements of a digi-
tal image. We consider these definitions in more formal terms in Chapter 2.

Vision is the most advanced of our senses, so it is not surprising that images
play the single most important role in human perception. However, unlike
humans, who are limited to the visual band of the electromagnetic (EM) spec-
trum, imaging machines cover almost the entire EM spectrum, ranging from
gamma to radio waves. They can operate on images generated by sources that
humans are not accustomed to associating with images. These include ultra-
sound, electron microscopy, and computer-generated images.Thus, digital image
processing encompasses a wide and varied field of applications.

There is no general agreement among authors regarding where image pro-
cessing stops and other related areas, such as image analysis and computer vi-
sion, start. Sometimes a distinction is made by defining image processing as a
discipline in which both the input and output of a process are images.We believe
this to be a limiting and somewhat artificial boundary. For example, under this
definition, even the trivial task of computing the average intensity of an image
(which yields a single number) would not be considered an image processing op-
eration. On the other hand, there are fields such as computer vision whose ul-
timate goal is to use computers to emulate human vision, including learning
and being able to make inferences and take actions based on visual inputs.This
area itself is a branch of artificial intelligence (AI) whose objective is to emu-
late human intelligence.The field of AI is in its earliest stages of infancy in terms
of development, with progress having been much slower than originally antic-
ipated. The area of image analysis (also called image understanding) is in be-
tween image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing
at one end to computer vision at the other. However, one useful paradigm is
to consider three types of computerized processes in this continuum: low-,
mid-, and high-level processes. Low-level processes involve primitive opera-
tions such as image preprocessing to reduce noise, contrast enhancement, and
image sharpening. A low-level process is characterized by the fact that both
its inputs and outputs are images. Mid-level processing on images involves
tasks such as segmentation (partitioning an image into regions or objects),
description of those objects to reduce them to a form suitable for computer
processing, and classification (recognition) of individual objects. A mid-level
process is characterized by the fact that its inputs generally are images, but its
outputs are attributes extracted from those images (e.g., edges, contours, and
the identity of individual objects). Finally, higher-level processing involves
“making sense” of an ensemble of recognized objects, as in image analysis,
and, at the far end of the continuum, performing the cognitive functions nor-
mally associated with vision.

Based on the preceding comments, we see that a logical place of overlap be-
tween image processing and image analysis is the area of recognition of indi-
vidual regions or objects in an image. Thus, what we call in this book digital
image processing encompasses processes whose inputs and outputs are images

GONZ01-001-033.II  29-08-2001  14:42  Page 2



1.2 � The Origins of Digital Image Processing 3

† References in the Bibliography at the end of the book are listed in alphabetical order by authors’ last
names.

and, in addition, encompasses processes that extract attributes from images, up
to and including the recognition of individual objects. As a simple illustration
to clarify these concepts, consider the area of automated analysis of text. The
processes of acquiring an image of the area containing the text, preprocessing
that image, extracting (segmenting) the individual characters, describing the
characters in a form suitable for computer processing, and recognizing those
individual characters are in the scope of what we call digital image processing
in this book. Making sense of the content of the page may be viewed as being
in the domain of image analysis and even computer vision, depending on the
level of complexity implied by the statement “making sense.” As will become
evident shortly, digital image processing, as we have defined it, is used success-
fully in a broad range of areas of exceptional social and economic value.The con-
cepts developed in the following chapters are the foundation for the methods
used in those application areas.

The Origins of Digital Image Processing

One of the first applications of digital images was in the newspaper industry,
when pictures were first sent by submarine cable between London and New
York. Introduction of the Bartlane cable picture transmission system in the
early 1920s reduced the time required to transport a picture across the Atlantic
from more than a week to less than three hours. Specialized printing equipment
coded pictures for cable transmission and then reconstructed them at the re-
ceiving end. Figure 1.1 was transmitted in this way and reproduced on a tele-
graph printer fitted with typefaces simulating a halftone pattern.

Some of the initial problems in improving the visual quality of these early dig-
ital pictures were related to the selection of printing procedures and the distri-
bution of intensity levels. The printing method used to obtain Fig. 1.1 was
abandoned toward the end of 1921 in favor of a technique based on photo-
graphic reproduction made from tapes perforated at the telegraph receiving
terminal. Figure 1.2 shows an image obtained using this method. The improve-
ments over Fig. 1.1 are evident, both in tonal quality and in resolution.

1.2

FIGURE 1.1 A
digital picture
produced in 1921
from a coded tape
by a telegraph
printer with
special type faces.
(McFarlane.†)
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4 Chapter 1 � Introduction

FIGURE 1.3
Unretouched
cable picture of
Generals Pershing
and Foch,
transmitted in
1929 from
London to New
York by 15-tone
equipment.
(McFarlane.)

The early Bartlane systems were capable of coding images in five distinct
levels of gray. This capability was increased to 15 levels in 1929. Figure 1.3 is
typical of the type of images that could be obtained using the 15-tone equipment.
During this period, introduction of a system for developing a film plate via light
beams that were modulated by the coded picture tape improved the reproduc-
tion process considerably.

Although the examples just cited involve digital images, they are not con-
sidered digital image processing results in the context of our definition because
computers were not involved in their creation.Thus, the history of digital image
processing is intimately tied to the development of the digital computer. In fact,
digital images require so much storage and computational power that progress
in the field of digital image processing has been dependent on the development
of digital computers and of supporting technologies that include data storage,
display, and transmission.

The idea of a computer goes back to the invention of the abacus in Asia
Minor, more than 5000 years ago. More recently, there were developments in the
past two centuries that are the foundation of what we call a computer today.
However, the basis for what we call a modern digital computer dates back to only
the 1940s with the introduction by John von Neumann of two key concepts:
(1) a memory to hold a stored program and data, and (2) conditional branch-
ing. These two ideas are the foundation of a central processing unit (CPU),
which is at the heart of computers today. Starting with von Neumann, there were

FIGURE 1.2 A
digital picture
made in 1922
from a tape
punched after the
signals had
crossed the
Atlantic twice.
Some errors are
visible.
(McFarlane.)
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1.2 � The Origins of Digital Image Processing 5

FIGURE 1.4 The
first picture of the
moon by a U.S.
spacecraft.
Ranger 7 took this
image on July 31,
1964 at 9 : 09 A.M.
EDT, about 17
minutes before
impacting the
lunar surface.
(Courtesy of
NASA.)

a series of key advances that led to computers powerful enough to be used for
digital image processing. Briefly, these advances may be summarized as follows:
(1) the invention of the transistor by Bell Laboratories in 1948; (2) the devel-
opment in the 1950s and 1960s of the high-level programming languages
COBOL (Common Business-Oriented Language) and FORTRAN (Formula
Translator); (3) the invention of the integrated circuit (IC) at Texas Instruments
in 1958; (4) the development of operating systems in the early 1960s; (5) the de-
velopment of the microprocessor (a single chip consisting of the central pro-
cessing unit, memory, and input and output controls) by Intel in the early 1970s;
(6) introduction by IBM of the personal computer in 1981; and (7) progressive
miniaturization of components, starting with large scale integration (LI) in the
late 1970s, then very large scale integration (VLSI) in the 1980s, to the present
use of ultra large scale integration (ULSI). Concurrent with these advances
were developments in the areas of mass storage and display systems, both of
which are fundamental requirements for digital image processing.

The first computers powerful enough to carry out meaningful image pro-
cessing tasks appeared in the early 1960s.The birth of what we call digital image
processing today can be traced to the availability of those machines and the
onset of the space program during that period. It took the combination of those
two developments to bring into focus the potential of digital image processing
concepts. Work on using computer techniques for improving images from a
space probe began at the Jet Propulsion Laboratory (Pasadena, California) in
1964 when pictures of the moon transmitted by Ranger 7 were processed by a
computer to correct various types of image distortion inherent in the on-board
television camera. Figure 1.4 shows the first image of the moon taken by
Ranger 7 on July 31, 1964 at 9 : 09 A.M. Eastern Daylight Time (EDT), about 17
minutes before impacting the lunar surface (the markers, called reseau marks,
are used for geometric corrections, as discussed in Chapter 5). This also is the
first image of the moon taken by a U.S. spacecraft.The imaging lessons learned
with Ranger 7 served as the basis for improved methods used to enhance and
restore images from the Surveyor missions to the moon, the Mariner series of
flyby missions to Mars, the Apollo manned flights to the moon, and others.
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6 Chapter 1 � Introduction

In parallel with space applications,digital image processing techniques began in
the late 1960s and early 1970s to be used in medical imaging, remote Earth re-
sources observations, and astronomy.The invention in the early 1970s of comput-
erized axial tomography (CAT), also called computerized tomography (CT) for
short, is one of the most important events in the application of image processing in
medical diagnosis. Computerized axial tomography is a process in which a ring of
detectors encircles an object (or patient) and an X-ray source, concentric with the
detector ring, rotates about the object.The X-rays pass through the object and are
collected at the opposite end by the corresponding detectors in the ring. As the
source rotates, this procedure is repeated.Tomography consists of algorithms that
use the sensed data to construct an image that represents a “slice” through the ob-
ject. Motion of the object in a direction perpendicular to the ring of detectors pro-
duces a set of such slices, which constitute a three-dimensional (3-D) rendition of
the inside of the object. Tomography was invented independently by Sir Godfrey
N. Hounsfield and Professor Allan M. Cormack, who shared the 1979 Nobel Prize
in Medicine for their invention. It is interesting to note that X-rays were discov-
ered in 1895 by Wilhelm Conrad Roentgen, for which he received the 1901 Nobel
Prize for Physics. These two inventions, nearly 100 years apart, led to some of the
most active application areas of image processing today.

From the 1960s until the present, the field of image processing has grown vig-
orously. In addition to applications in medicine and the space program, digital
image processing techniques now are used in a broad range of applications. Com-
puter procedures are used to enhance the contrast or code the intensity levels into
color for easier interpretation of X-rays and other images used in industry, medi-
cine, and the biological sciences. Geographers use the same or similar techniques
to study pollution patterns from aerial and satellite imagery. Image enhancement
and restoration procedures are used to process degraded images of unrecoverable
objects or experimental results too expensive to duplicate. In archeology, image
processing methods have successfully restored blurred pictures that were the only
available records of rare artifacts lost or damaged after being photographed. In
physics and related fields, computer techniques routinely enhance images of ex-
periments in areas such as high-energy plasmas and electron microscopy. Similar-
ly successful applications of image processing concepts can be found in astronomy,
biology, nuclear medicine, law enforcement, defense, and industrial applications.

These examples illustrate processing results intended for human interpreta-
tion.The second major area of application of digital image processing techniques
mentioned at the beginning of this chapter is in solving problems dealing with
machine perception. In this case, interest focuses on procedures for extracting
from an image information in a form suitable for computer processing. Often,
this information bears little resemblance to visual features that humans use in
interpreting the content of an image. Examples of the type of information used
in machine perception are statistical moments, Fourier transform coefficients, and
multidimensional distance measures. Typical problems in machine perception
that routinely utilize image processing techniques are automatic character recog-
nition, industrial machine vision for product assembly and inspection, military
recognizance, automatic processing of fingerprints, screening of X-rays and blood
samples, and machine processing of aerial and satellite imagery for weather
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1.3 � Examples of Fields that Use Digital Image Processing 7

prediction and environmental assessment.The continuing decline in the ratio of
computer price to performance and the expansion of networking and commu-
nication bandwidth via the World Wide Web and the Internet have created un-
precedented opportunities for continued growth of digital image processing.
Some of these application areas are illustrated in the following section.

Examples of Fields that Use Digital Image Processing

Today, there is almost no area of technical endeavor that is not impacted in
some way by digital image processing. We can cover only a few of these appli-
cations in the context and space of the current discussion. However, limited as
it is, the material presented in this section will leave no doubt in the reader’s
mind regarding the breadth and importance of digital image processing. We
show in this section numerous areas of application, each of which routinely uti-
lizes the digital image processing techniques developed in the following chap-
ters. Many of the images shown in this section are used later in one or more of
the examples given in the book. All images shown are digital.

The areas of application of digital image processing are so varied that some
form of organization is desirable in attempting to capture the breadth of this
field. One of the simplest ways to develop a basic understanding of the extent of
image processing applications is to categorize images according to their source
(e.g., visual, X-ray, and so on).The principal energy source for images in use today
is the electromagnetic energy spectrum. Other important sources of energy in-
clude acoustic, ultrasonic, and electronic (in the form of electron beams used in
electron microscopy). Synthetic images, used for modeling and visualization, are
generated by computer. In this section we discuss briefly how images are gener-
ated in these various categories and the areas in which they are applied. Meth-
ods for converting images into digital form are discussed in the next chapter.

Images based on radiation from the EM spectrum are the most familiar, es-
pecially images in the X-ray and visual bands of the spectrum. Electromagnet-
ic waves can be conceptualized as propagating sinusoidal waves of varying
wavelengths, or they can be thought of as a stream of massless particles, each
traveling in a wavelike pattern and moving at the speed of light. Each massless
particle contains a certain amount (or bundle) of energy. Each bundle of ener-
gy is called a photon. If spectral bands are grouped according to energy per
photon, we obtain the spectrum shown in Fig. 1.5, ranging from gamma rays
(highest energy) at one end to radio waves (lowest energy) at the other. The
bands are shown shaded to convey the fact that bands of the EM spectrum are
not distinct but rather transition smoothly from one to the other.

1.3

10–910–810–710–610–510–410–310–210–1 10–1101102103104105106

Energy of one photon (electron volts)

Gamma rays X-rays Ultraviolet Visible Infrared Microwaves Radio waves

FIGURE 1.5 The electromagnetic spectrum arranged according to energy per photon.
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8 Chapter 1 � Introduction

FIGURE 1.6
Examples of
gamma-ray
imaging. (a) Bone
scan. (b) PET
image. (c) Cygnus
Loop. (d) Gamma
radiation (bright
spot) from a
reactor valve.
(Images courtesy
of (a) G.E.
Medical Systems,
(b) Dr. Michael
E. Casey, CTI
PET Systems,
(c) NASA,
(d) Professors
Zhong He and
David K. Wehe,
University of
Michigan.)

1.3.1 Gamma-Ray Imaging
Major uses of imaging based on gamma rays include nuclear medicine and as-
tronomical observations. In nuclear medicine, the approach is to inject a pa-
tient with a radioactive isotope that emits gamma rays as it decays. Images are
produced from the emissions collected by gamma ray detectors. Figure 1.6(a)
shows an image of a complete bone scan obtained by using gamma-ray imag-
ing. Images of this sort are used to locate sites of bone pathology, such as in-
fections or tumors. Figure 1.6(b) shows another major modality of nuclear
imaging called positron emission tomography (PET).The principle is the same

a b
c d
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1.3 � Examples of Fields that Use Digital Image Processing 9

as with X-ray tomography, mentioned briefly in Section 1.2. However, instead
of using an external source of X-ray energy, the patient is given a radioactive iso-
tope that emits positrons as it decays. When a positron meets an electron, both
are annihilated and two gamma rays are given off.These are detected and a to-
mographic image is created using the basic principles of tomography.The image
shown in Fig. 1.6(b) is one sample of a sequence that constitutes a 3-D rendi-
tion of the patient. This image shows a tumor in the brain and one in the lung,
easily visible as small white masses.

A star in the constellation of Cygnus exploded about 15,000 years ago, gen-
erating a superheated stationary gas cloud (known as the Cygnus Loop) that
glows in a spectacular array of colors. Figure 1.6(c) shows the Cygnus Loop im-
aged in the gamma-ray band. Unlike the two examples shown in Figs. 1.6(a)
and (b), this image was obtained using the natural radiation of the object being
imaged. Finally, Fig. 1.6(d) shows an image of gamma radiation from a valve in
a nuclear reactor. An area of strong radiation is seen in the lower, left side of
the image.

1.3.2 X-ray Imaging
X-rays are among the oldest sources of EM radiation used for imaging. The
best known use of X-rays is medical diagnostics, but they also are used exten-
sively in industry and other areas, like astronomy. X-rays for medical and in-
dustrial imaging are generated using an X-ray tube, which is a vacuum tube
with a cathode and anode. The cathode is heated, causing free electrons to be
released. These electrons flow at high speed to the positively charged anode.
When the electrons strike a nucleus, energy is released in the form of X-ray ra-
diation. The energy (penetrating power) of the X-rays is controlled by a volt-
age applied across the anode, and the number of X-rays is controlled by a current
applied to the filament in the cathode. Figure 1.7(a) shows a familiar chest X-ray
generated simply by placing the patient between an X-ray source and a film
sensitive to X-ray energy.The intensity of the X-rays is modified by absorption
as they pass through the patient, and the resulting energy falling on the film de-
velops it, much in the same way that light develops photographic film. In digi-
tal radiography, digital images are obtained by one of two methods: (1) by
digitizing X-ray films; or (2) by having the X-rays that pass through the patient
fall directly onto devices (such as a phosphor screen) that convert X-rays to
light.The light signal in turn is captured by a light-sensitive digitizing system.We
discuss digitization in detail in Chapter 2.

Angiography is another major application in an area called contrast-
enhancement radiography. This procedure is used to obtain images (called
angiograms) of blood vessels. A catheter (a small, flexible, hollow tube) is in-
serted, for example, into an artery or vein in the groin. The catheter is thread-
ed into the blood vessel and guided to the area to be studied.When the catheter
reaches the site under investigation, an X-ray contrast medium is injected
through the catheter. This enhances contrast of the blood vessels and enables
the radiologist to see any irregularities or blockages. Figure 1.7(b) shows an ex-
ample of an aortic angiogram.The catheter can be seen being inserted into the
large blood vessel on the lower left of the picture. Note the high contrast of the
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10 Chapter 1 � Introduction

FIGURE 1.7 Examples of X-ray imaging. (a) Chest X-ray. (b) Aortic angiogram. (c) Head
CT. (d) Circuit boards. (e) Cygnus Loop. (Images courtesy of (a) and (c) Dr. David
R. Pickens, Dept. of Radiology & Radiological Sciences,Vanderbilt University Medical
Center, (b) Dr. Thomas R. Gest, Division of Anatomical Sciences, University of Michi-
gan Medical School, (d) Mr. Joseph E. Pascente, Lixi, Inc., and (e) NASA.)

a
b
c

d

e
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1.3 � Examples of Fields that Use Digital Image Processing 11

large vessel as the contrast medium flows up in the direction of the kidneys,
which are also visible in the image. As discussed in Chapter 3, angiography is a
major area of digital image processing, where image subtraction is used to en-
hance further the blood vessels being studied.

Perhaps the best known of all uses of X-rays in medical imaging is comput-
erized axial tomography. Due to their resolution and 3-D capabilities, CAT
scans revolutionized medicine from the moment they first became available in
the early 1970s.As noted in Section 1.2, each CAT image is a “slice” taken per-
pendicularly through the patient. Numerous slices are generated as the patient
is moved in a longitudinal direction.The ensemble of such images constitutes a
3-D rendition of the inside of the patient, with the longitudinal resolution being
proportional to the number of slice images taken. Figure 1.7(c) shows a typical
head CAT slice image.

Techniques similar to the ones just discussed, but generally involving higher-
energy X-rays, are applicable in industrial processes. Figure 1.7(d) shows an
X-ray image of an electronic circuit board. Such images, representative of lit-
erally hundreds of industrial applications of X-rays, are used to examine circuit
boards for flaws in manufacturing, such as missing components or broken traces.
Industrial CAT scans are useful when the parts can be penetrated by X-rays,
such as in plastic assemblies, and even large bodies, like solid-propellant rock-
et motors. Figure 1.7(e) shows an example of X-ray imaging in astronomy.This
image is the Cygnus Loop of Fig. 1.6(c), but imaged this time in the X-ray band.

1.3.3 Imaging in the Ultraviolet Band
Applications of ultraviolet “light” are varied. They include lithography, indus-
trial inspection, microscopy, lasers, biological imaging, and astronomical obser-
vations.We illustrate imaging in this band with examples from microscopy and
astronomy.

Ultraviolet light is used in fluorescence microscopy, one of the fastest grow-
ing areas of microscopy. Fluorescence is a phenomenon discovered in the mid-
dle of the nineteenth century, when it was first observed that the mineral
fluorspar fluoresces when ultraviolet light is directed upon it. The ultraviolet
light itself is not visible, but when a photon of ultraviolet radiation collides with
an electron in an atom of a fluorescent material, it elevates the electron to a
higher energy level. Subsequently, the excited electron relaxes to a lower level
and emits light in the form of a lower-energy photon in the visible (red) light re-
gion.The basic task of the fluorescence microscope is to use an excitation light
to irradiate a prepared specimen and then to separate the much weaker radi-
ating fluorescent light from the brighter excitation light.Thus, only the emission
light reaches the eye or other detector. The resulting fluorescing areas shine
against a dark background with sufficient contrast to permit detection. The
darker the background of the nonfluorescing material, the more efficient the
instrument.

Fluorescence microscopy is an excellent method for studying materials that
can be made to fluoresce, either in their natural form (primary fluorescence) or
when treated with chemicals capable of fluorescing (secondary fluorescence).
Figures 1.8(a) and (b) show results typical of the capability of fluorescence
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FIGURE 1.8
Examples of
ultraviolet
imaging.
(a) Normal corn.
(b) Smut corn.
(c) Cygnus Loop.
(Images courtesy
of (a) and 
(b) Dr. Michael
W. Davidson,
Florida State
University,
(c) NASA.)

microscopy. Figure 1.8(a) shows a fluorescence microscope image of normal
corn, and Fig. 1.8(b) shows corn infected by “smut,” a disease of cereals, corn,
grasses, onions, and sorghum that can be caused by any of more than 700 species
of parasitic fungi. Corn smut is particularly harmful because corn is one of the
principal food sources in the world. As another illustration, Fig. 1.8(c) shows
the Cygnus Loop imaged in the high-energy region of the ultraviolet band.

1.3.4 Imaging in the Visible and Infrared Bands
Considering that the visual band of the electromagnetic spectrum is the most
familiar in all our activities, it is not surprising that imaging in this band out-
weighs by far all the others in terms of scope of application. The infrared band

a b
c
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FIGURE 1.9 Examples of light microscopy images. (a) Taxol (anticancer agent), magnified
250µ. (b) Cholesterol—40µ. (c) Microprocessor—60µ. (d) Nickel oxide thin film—600
µ. (e) Surface of audio CD—1750µ. (f) Organic superconductor—450µ. (Images cour-
tesy of Dr. Michael W. Davidson, Florida State University.)

often is used in conjunction with visual imaging, so we have grouped the visi-
ble and infrared bands in this section for the purpose of illustration.We consider
in the following discussion applications in light microscopy, astronomy, remote
sensing, industry, and law enforcement.

Figure 1.9 shows several examples of images obtained with a light microscope.
The examples range from pharmaceuticals and microinspection to materials
characterization. Even in just microscopy, the application areas are too numer-
ous to detail here. It is not difficult to conceptualize the types of processes one
might apply to these images, ranging from enhancement to measurements.

a b c
d e f
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FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic
bands in Table 1.1. (Images courtesy of NASA.)

TABLE 1.1
Thematic bands 
in NASA’s
LANDSAT
satellite.

Band No. Name Wavelength (�m) Characteristics and Uses

1 Visible blue 0.45–0.52 Maximum water 
penetration

2 Visible green 0.52–0.60 Good for measuring plant 
vigor

3 Visible red 0.63–0.69 Vegetation discrimination
4 Near infrared 0.76–0.90 Biomass and shoreline 

mapping
5 Middle infrared 1.55–1.75 Moisture content of soil 

and vegetation
6 Thermal infrared 10.4–12.5 Soil moisture; thermal 

mapping
7 Middle infrared 2.08–2.35 Mineral mapping

Another major area of visual processing is remote sensing, which usually
includes several bands in the visual and infrared regions of the spectrum.
Table 1.1 shows the so-called thematic bands in NASA’s LANDSAT satel-
lite. The primary function of LANDSAT is to obtain and transmit images of
the Earth from space, for purposes of monitoring environmental conditions
on the planet. The bands are expressed in terms of wavelength, with 1 �m
being equal to 10–6 m (we discuss the wavelength regions of the electromag-
netic spectrum in more detail in Chapter 2). Note the characteristics and uses
of each band.

In order to develop a basic appreciation for the power of this type of multi-
spectral imaging, consider Fig. 1.10, which shows one image for each of the spec-

1 2 3

4 5 6 7
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FIGURE 1.11
Multispectral
image of
Hurricane
Andrew taken by
NOAA GEOS
(Geostationary
Environmental
Operational
Satellite) sensors.
(Courtesy of
NOAA.)

tral bands in Table 1.1.The area imaged is Washington D.C., which includes fea-
tures such as buildings, roads, vegetation, and a major river (the Potomac) going
though the city. Images of population centers are used routinely (over time) to
assess population growth and shift patterns, pollution, and other factors harm-
ful to the environment.The differences between visual and infrared image fea-
tures are quite noticeable in these images. Observe, for example, how well
defined the river is from its surroundings in Bands 4 and 5.

Weather observation and prediction also are major applications of multi-
spectral imaging from satellites. For example, Fig. 1.11 is an image of a hurricane
taken by a National Oceanographic and Atmospheric Administration (NOAA)
satellite using sensors in the visible and infrared bands.The eye of the hurricane
is clearly visible in this image.

Figures 1.12 and 1.13 show an application of infrared imaging.These images
are part of the Nighttime Lights of the World data set, which provides a glob-
al inventory of human settlements.The images were generated by the infrared
imaging system mounted on a NOAA DMSP (Defense Meteorological Satel-
lite Program) satellite.The infrared imaging system operates in the band 10.0
to 13.4 �m, and has the unique capability to observe faint sources of visible-
near infrared emissions present on the Earth’s surface, including cities, towns,
villages, gas flares, and fires. Even without formal training in image process-
ing, it is not difficult to imagine writing a computer program that would use
these images to estimate the percent of total electrical energy used by various
regions of the world.
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FIGURE 1.12
Infrared satellite
images of the
Americas. The
small gray map is
provided for
reference.
(Courtesy of
NOAA.)

A major area of imaging in the visual spectrum is in automated visual inspec-
tion of manufactured goods. Figure 1.14 shows some examples. Figure 1.14(a) is
a controller board for a CD-ROM drive. A typical image processing task with
products like this is to inspect them for missing parts (the black square on the top,
right quadrant of the image is an example of a missing component). Figure 1.14(b)
is an imaged pill container.The objective here is to have a machine look for miss-
ing pills. Figure 1.14(c) shows an application in which image processing is used to
look for bottles that are not filled up to an acceptable level. Figure 1.14(d) shows
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FIGURE 1.13
Infrared satellite
images of the
remaining
populated part of
the world. The
small gray map is
provided for
reference.
(Courtesy of
NOAA.)

a clear-plastic part with an unacceptable number of air pockets in it. Detecting
anomalies like these is a major theme of industrial inspection that includes other
products such as wood and cloth. Figure 1.14(e) shows a batch of cereal during in-
spection for color and the presence of anomalies such as burned flakes. Finally,
Fig. 1.14(f) shows an image of an intraocular implant (replacement lens for the
human eye).A “structured light” illumination technique was used to highlight for
easier detection flat lens deformations toward the center of the lens.The markings
at 1 o’clock and 5 o’clock are tweezer damage. Most of the other small speckle de-
tail is debris.The objective in this type of inspection is to find damaged or incor-
rectly manufactured implants automatically, prior to packaging.

As a final illustration of image processing in the visual spectrum, consider
Fig. 1.15. Figure 1.15(a) shows a thumb print. Images of fingerprints are routinely
processed by computer, either to enhance them or to find features that aid in
the automated search of a database for potential matches. Figure 1.15(b) shows
an image of paper currency.Applications of digital image processing in this area
include automated counting and, in law enforcement, the reading of the serial
number for the purpose of tracking and identifying bills.The two vehicle images
shown in Figs. 1.15 (c) and (d) are examples of automated license plate reading.
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FIGURE 1.14
Some examples of
manufactured
goods often
checked using
digital image
processing. (a) A
circuit board
controller.
(b) Packaged pills.
(c) Bottles.
(d) Bubbles in
clear-plastic
product.
(e) Cereal.
(f) Image of
intraocular
implant.
(Fig. (f) courtesy
of Mr. Pete Sites,
Perceptics
Corporation.)

The light rectangles indicate the area in which the imaging system detected the
plate. The black rectangles show the results of automated reading of the plate
content by the system. License plate and other applications of character recog-
nition are used extensively for traffic monitoring and surveillance.

1.3.5 Imaging in the Microwave Band
The dominant application of imaging in the microwave band is radar.The unique
feature of imaging radar is its ability to collect data over virtually any region at
any time, regardless of weather or ambient lighting conditions. Some radar

a
c
e

b
d
f
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FIGURE 1.15
Some additional
examples of
imaging in the
visual spectrum.
(a) Thumb print.
(b) Paper
currency. (c) and
(d). Automated
license plate
reading. (Figure
(a) courtesy of the
National Institute
of Standards and
Technology.
Figures (c) and
(d) courtesy of
Dr. Juan Herrera,
Perceptics
Corporation.)

waves can penetrate clouds, and under certain conditions can also see through
vegetation, ice, and extremely dry sand. In many cases, radar is the only way to
explore inaccessible regions of the Earth’s surface.An imaging radar works like
a flash camera in that it provides its own illumination (microwave pulses) to il-
luminate an area on the ground and take a snapshot image. Instead of a cam-
era lens, a radar uses an antenna and digital computer processing to record its
images. In a radar image, one can see only the microwave energy that was re-
flected back toward the radar antenna.

Figure 1.16 shows a spaceborne radar image covering a rugged mountain-
ous area of southeast Tibet, about 90 km east of the city of Lhasa. In the lower
right corner is a wide valley of the Lhasa River, which is populated by Tibetan
farmers and yak herders and includes the village of Menba. Mountains in this
area reach about 5800 m (19,000 ft) above sea level, while the valley floors lie
about 4300 m (14,000 ft) above sea level. Note the clarity and detail of the image,
unencumbered by clouds or other atmospheric conditions that normally inter-
fere with images in the visual band.

a b
c
d
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FIGURE 1.16
Spaceborne radar
image of
mountains in
southeast Tibet.
(Courtesy of
NASA.)

1.3.6 Imaging in the Radio Band
As in the case of imaging at the other end of the spectrum (gamma rays), the
major applications of imaging in the radio band are in medicine and astrono-
my. In medicine radio waves are used in magnetic resonance imaging (MRI).
This technique places a patient in a powerful magnet and passes radio waves
through his or her body in short pulses. Each pulse causes a responding pulse
of radio waves to be emitted by the patient’s tissues. The location from which
these signals originate and their strength are determined by a computer, which
produces a two-dimensional picture of a section of the patient. MRI can produce
pictures in any plane. Figure 1.17 shows MRI images of a human knee and spine.

The last image to the right in Fig. 1.18 shows an image of the Crab Pulsar in
the radio band. Also shown for an interesting comparison are images of the
same region but taken in most of the bands discussed earlier. Note that each
image gives a totally different “view” of the Pulsar.

1.3.7 Examples in which Other Imaging Modalities Are Used
Although imaging in the electromagnetic spectrum is dominant by far, there
are a number of other imaging modalities that also are important. Specifically,
we discuss in this section acoustic imaging, electron microscopy, and synthetic
(computer-generated) imaging.

Imaging using “sound” finds application in geological exploration, industry,
and medicine. Geological applications use sound in the low end of the sound spec-
trum (hundreds of Hertz) while imaging in other areas use ultrasound (millions
of Hertz). The most important commercial applications of image processing in
geology are in mineral and oil exploration. For image acquisition over land, one
of the main approaches is to use a large truck and a large flat steel plate.The plate
is pressed on the ground by the truck, and the truck is vibrated through a fre-
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FIGURE 1.18 Images of the Crab Pulsar (in the center of images) covering the electromagnetic spectrum.
(Courtesy of NASA.)

1.3 � Examples of Fields that Use Digital Image Processing 21

FIGURE 1.17 MRI images of a human (a) knee, and (b) spine. (Image (a) courtesy of
Dr. Thomas R. Gest, Division of Anatomical Sciences, University of Michigan Medical
School, and (b) Dr. David R. Pickens, Department of Radiology and Radiological Sci-
ences, Vanderbilt University Medical Center.)

quency spectrum up to 100 Hz. The strength and speed of the returning sound
waves are determined by the composition of the earth below the surface. These
are analyzed by computer, and images are generated from the resulting analysis.

For marine acquisition, the energy source consists usually of two air guns
towed behind a ship. Returning sound waves are detected by hydrophones
placed in cables that are either towed behind the ship, laid on the bottom of
the ocean, or hung from buoys (vertical cables).The two air guns are alternately
pressurized to ~2000 psi and then set off. The constant motion of the ship pro-
vides a transversal direction of motion that, together with the returning sound
waves, is used to generate a 3-D map of the composition of the Earth below
the bottom of the ocean.

Figure 1.19 shows a cross-sectional image of a well-known 3-D model against
which the performance of seismic imaging algorithms is tested.The arrow points
to a hydrocarbon (oil and/or gas) trap. This target is brighter than the sur-
rounding layers because of the change in density in the target region is larger.

Gamma X-ray Optical Infrared Radio

a b
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FIGURE 1.19
Cross-sectional
image of a seismic
model. The arrow
points to a
hydrocarbon (oil
and/or gas) trap.
(Courtesy of 
Dr. Curtis Ober,
Sandia National
Laboratories.)

Seismic interpreters look for these “bright spots” to find oil and gas.The layers
above also are bright, but their brightness does not vary as strongly across the
layers. Many seismic reconstruction algorithms have difficulty imaging this tar-
get because of the faults above it.

Although ultrasound imaging is used routinely in manufacturing, the best
known applications of this technique are in medicine, especially in obstetrics,
where unborn babies are imaged to determine the health of their development.
A byproduct of this examination is determining the sex of the baby. Ultrasound
images are generated using the following basic procedure:

1. The ultrasound system (a computer, ultrasound probe consisting of a source
and receiver, and a display) transmits high-frequency (1 to 5 MHz) sound
pulses into the body.

2. The sound waves travel into the body and hit a boundary between tissues
(e.g., between fluid and soft tissue, soft tissue and bone). Some of the sound
waves are reflected back to the probe, while some travel on further until
they reach another boundary and get reflected.

3. The reflected waves are picked up by the probe and relayed to the
computer.

4. The machine calculates the distance from the probe to the tissue or organ
boundaries using the speed of sound in tissue (1540 m�s) and the time of
the each echo’s return.

5. The system displays the distances and intensities of the echoes on the screen,
forming a two-dimensional image.

In a typical ultrasound image, millions of pulses and echoes are sent and re-
ceived each second.The probe can be moved along the surface of the body and
angled to obtain various views. Figure 1.20 shows several examples.

We continue the discussion on imaging modalities with some examples of
electron microscopy. Electron microscopes function as their optical counter-
parts, except that they use a focused beam of electrons instead of light to image
a specimen.The operation of electron microscopes involves the following basic
steps: A stream of electrons is produced by an electron source and accelerated
toward the specimen using a positive electrical potential. This stream is con-
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FIGURE 1.20
Examples of
ultrasound
imaging. (a) Baby.
(2) Another view
of baby.
(c) Thyroids.
(d) Muscle layers
showing lesion.
(Courtesy of
Siemens Medical
Systems, Inc.,
Ultrasound
Group.)

fined and focused using metal apertures and magnetic lenses into a thin, fo-
cused, monochromatic beam.This beam is focused onto the sample using a mag-
netic lens. Interactions occur inside the irradiated sample, affecting the electron
beam. These interactions and effects are detected and transformed into an
image, much in the same way that light is reflected from, or absorbed by, objects
in a scene. These basic steps are carried out in all electron microscopes, re-
gardless of type.

A transmission electron microscope (TEM) works much like a slide projec-
tor.A projector shines (transmits) a beam of light through the slide; as the light
passes through the slide, it is affected by the contents of the slide. This trans-
mitted beam is then projected onto the viewing screen, forming an enlarged
image of the slide. TEMs work the same way, except that they shine a beam of
electrons through a specimen (analogous to the slide).The fraction of the beam
transmitted through the specimen is projected onto a phosphor screen.The in-
teraction of the electrons with the phosphor produces light and, therefore, a
viewable image.A scanning electron microscope (SEM), on the other hand, ac-
tually scans the electron beam and records the interaction of beam and sample
at each location.This produces one dot on a phosphor screen.A complete image
is formed by a raster scan of the bean through the sample, much like a TV cam-
era.The electrons interact with a phosphor screen and produce light. SEMs are
suitable for “bulky” samples, while TEMs require very thin samples.

Electron microscopes are capable of very high magnification.While light mi-
croscopy is limited to magnifications on the order 1000 *, electron microscopes

a b
c d
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can achieve magnification of 10,000 * or more. Figure 1.21 shows two SEM im-
ages of specimen failures due to thermal overload.

We conclude the discussion of imaging modalities by looking briefly at im-
ages that are not obtained from physical objects. Instead, they are generated
by computer. Fractals are striking examples of computer-generated images (Lu
[1997]). Basically, a fractal is nothing more than an iterative reproduction of a
basic pattern according to some mathematical rules. For instance, tiling is one
of the simplest ways to generate a fractal image.A square can be subdivided into
four square subregions, each of which can be further subdivided into four small-
er square regions, and so on. Depending on the complexity of the rules for fill-
ing each subsquare, some beautiful tile images can be generated using this
method. Of course, the geometry can be arbitrary. For instance, the fractal image
could be grown radially out of a center point. Figure 1.22(a) shows a fractal
grown in this way.The reader will recognize this image as the theme image used
in the beginning page of each chapter in this book, selected because of its artis-
tic simplicity and abstract analogy to a human eye. Figure 1.22(b) shows an-
other fractal (a “moonscape”) that provides an interesting analogy to the images
of space used as illustrations in some of the preceding sections.

Fractal images tend toward artistic, mathematical formulations of “growth”
of subimage elements according to some rules. They are useful sometimes as
random textures.A more structured approach to image generation by comput-
er lies in 3-D modeling. This is an area that provides an important intersection
between image processing and computer graphics and is the basis for many 3-D
visualization systems (e.g., flight simulators). Figures 1.22(c) and (d) show ex-
amples of computer-generated images. Since the original object is created in
3-D, images can be generated in any perspective from plane projections of
the 3-D volume. Images of this type can be used for medical training and for a
host of other applications, such as criminal forensics and special effects.

a b

FIGURE 1.21 (a) 250 * SEM image of a tungsten filament following thermal failure.
(b) 2500 * SEM image of damaged integrated circuit. The white fibers are oxides re-
sulting from thermal destruction. (Figure (a) courtesy of Mr. Michael Shaffer, Depart-
ment of Geological Sciences, University of Oregon, Eugene; (b) courtesy of Dr.
J. M. Hudak, McMaster University, Hamilton, Ontario, Canada.)
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FIGURE 1.22
(a) and (b) Fractal
images. (c) and
(d) Images
generated from
3-D computer
models of the
objects shown.
(Figures (a) and
(b) courtesy of
Ms. Melissa
D. Binde,
Swarthmore
College, (c) and
(d) courtesy of
NASA.)

Fundamental Steps in Digital Image Processing

It is helpful to divide the material covered in the following chapters into the
two broad categories defined in Section 1.1: methods whose input and output
are images, and methods whose inputs may be images, but whose outputs are at-
tributes extracted from those images. This organization is summarized in
Fig. 1.23.The diagram does not imply that every process is applied to an image.
Rather, the intention is to convey an idea of all the methodologies that can be
applied to images for different purposes and possibly with different objectives.
The discussion in this section may be viewed as a brief overview of the mater-
ial in the remainder of the book.

Image acquisition is the first process shown in Fig. 1.23. The discussion in
Section 1.3 gave some hints regarding the origin of digital images. This topic is
considered in much more detail in Chapter 2, where we also introduce a num-
ber of basic digital image concepts that are used throughout the book. Note
that acquisition could be as simple as being given an image that is already in dig-
ital form. Generally, the image acquisition stage involves preprocessing, such
as scaling.

Image enhancement is among the simplest and most appealing areas of dig-
ital image processing. Basically, the idea behind enhancement techniques is to
bring out detail that is obscured, or simply to highlight certain features of interest
in an image. A familiar example of enhancement is when we increase the con-
trast of an image because “it looks better.” It is important to keep in mind that

1.4
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FIGURE 1.23
Fundamental
steps in digital
image processing.

enhancement is a very subjective area of image processing.Two chapters are de-
voted to enhancement, not because it is more important than the other topics
covered in the book but because we use enhancement as an avenue to introduce
the reader to techniques that are used in other chapters as well. Thus, rather
than having a chapter dedicated to mathematical preliminaries, we introduce a
number of needed mathematical concepts by showing how they apply to en-
hancement.This approach allows the reader to gain familiarity with these con-
cepts in the context of image processing. A good example of this is the Fourier
transform, which is introduced in Chapter 4 but is used also in several of the
other chapters.

Image restoration is an area that also deals with improving the appearance
of an image. However, unlike enhancement, which is subjective, image restora-
tion is objective, in the sense that restoration techniques tend to be based on
mathematical or probabilistic models of image degradation. Enhancement, on
the other hand, is based on human subjective preferences regarding what con-
stitutes a “good” enhancement result.

Color image processing is an area that has been gaining in importance be-
cause of the significant increase in the use of digital images over the Internet.
Chapter 5 covers a number of fundamental concepts in color models and basic
color processing in a digital domain. Color is used also in later chapters as the
basis for extracting features of interest in an image.

Wavelets are the foundation for representing images in various degrees of
resolution. In particular, this material is used in this book for image data com-
pression and for pyramidal representation, in which images are subdivided suc-
cessively into smaller regions.
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Compression, as the name implies, deals with techniques for reducing the
storage required to save an image, or the bandwidth required to transmit it.Al-
though storage technology has improved significantly over the past decade, the
same cannot be said for transmission capacity. This is true particularly in uses
of the Internet, which are characterized by significant pictorial content. Image
compression is familiar (perhaps inadvertently) to most users of computers in
the form of image file extensions, such as the jpg file extension used in the JPEG
(Joint Photographic Experts Group) image compression standard.

Morphological processing deals with tools for extracting image components
that are useful in the representation and description of shape. The material in
this chapter begins a transition from processes that output images to processes
that output image attributes, as indicated in Section 1.1.

Segmentation procedures partition an image into its constituent parts or ob-
jects. In general, autonomous segmentation is one of the most difficult tasks in
digital image processing. A rugged segmentation procedure brings the process
a long way toward successful solution of imaging problems that require objects
to be identified individually. On the other hand, weak or erratic segmentation
algorithms almost always guarantee eventual failure. In general, the more ac-
curate the segmentation, the more likely recognition is to succeed.

Representation and description almost always follow the output of a seg-
mentation stage, which usually is raw pixel data, constituting either the bound-
ary of a region (i.e., the set of pixels separating one image region from another)
or all the points in the region itself. In either case, converting the data to a form
suitable for computer processing is necessary. The first decision that must be
made is whether the data should be represented as a boundary or as a com-
plete region. Boundary representation is appropriate when the focus is on ex-
ternal shape characteristics, such as corners and inflections. Regional
representation is appropriate when the focus is on internal properties, such as
texture or skeletal shape. In some applications, these representations comple-
ment each other. Choosing a representation is only part of the solution for trans-
forming raw data into a form suitable for subsequent computer processing. A
method must also be specified for describing the data so that features of inter-
est are highlighted. Description, also called feature selection, deals with extract-
ing attributes that result in some quantitative information of interest or are
basic for differentiating one class of objects from another.

Recognition is the process that assigns a label (e.g., “vehicle”) to an object
based on its descriptors. As detailed in Section 1.1, we conclude our coverage
of digital image processing with the development of methods for recognition of
individual objects.

So far we have said nothing about the need for prior knowledge or about
the interaction between the knowledge base and the processing modules in
Fig. 1.23. Knowledge about a problem domain is coded into an image process-
ing system in the form of a knowledge database.This knowledge may be as sim-
ple as detailing regions of an image where the information of interest is known
to be located, thus limiting the search that has to be conducted in seeking that
information. The knowledge base also can be quite complex, such as an inter-
related list of all major possible defects in a materials inspection problem or an
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image database containing high-resolution satellite images of a region in con-
nection with change-detection applications. In addition to guiding the operation
of each processing module, the knowledge base also controls the interaction
between modules. This distinction is made in Fig. 1.23 by the use of double-
headed arrows between the processing modules and the knowledge base, as op-
posed to single-headed arrows linking the processing modules.

Although we do not discuss image display explicitly at this point, it is impor-
tant to keep in mind that viewing the results of image processing can take place
at the output of any stage in Fig. 1.23.We also note that not all image processing
applications require the complexity of interactions implied by Fig. 1.23. In fact, not
even all those modules are needed in some cases. For example, image enhance-
ment for human visual interpretation seldom requires use of any of the other
stages in Fig. 1.23. In general, however, as the complexity of an image processing
task increases, so does the number of processes required to solve the problem.

Components of an Image Processing System

As recently as the mid-1980s, numerous models of image processing systems
being sold throughout the world were rather substantial peripheral devices that
attached to equally substantial host computers. Late in the 1980s and early in
the 1990s, the market shifted to image processing hardware in the form of sin-
gle boards designed to be compatible with industry standard buses and to fit into
engineering workstation cabinets and personal computers. In addition to low-
ering costs, this market shift also served as a catalyst for a significant number of
new companies whose specialty is the development of software written specif-
ically for image processing.

Although large-scale image processing systems still are being sold for mas-
sive imaging applications, such as processing of satellite images, the trend con-
tinues toward miniaturizing and blending of general-purpose small computers
with specialized image processing hardware. Figure 1.24 shows the basic com-
ponents comprising a typical general-purpose system used for digital image pro-
cessing.The function of each component is discussed in the following paragraphs,
starting with image sensing.

With reference to sensing, two elements are required to acquire digital im-
ages.The first is a physical device that is sensitive to the energy radiated by the
object we wish to image. The second, called a digitizer, is a device for convert-
ing the output of the physical sensing device into digital form. For instance, in
a digital video camera, the sensors produce an electrical output proportional
to light intensity.The digitizer converts these outputs to digital data.These top-
ics are covered in some detail in Chapter 2.

Specialized image processing hardware usually consists of the digitizer just
mentioned, plus hardware that performs other primitive operations, such as an
arithmetic logic unit (ALU), which performs arithmetic and logical operations
in parallel on entire images. One example of how an ALU is used is in averag-
ing images as quickly as they are digitized, for the purpose of noise reduction.
This type of hardware sometimes is called a front-end subsystem, and its most

1.5
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Image displays Computer Mass storage
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image processing
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Problem
domain

Image processing
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Network FIGURE 1.24
Components of a
general-purpose
image processing
system.

distinguishing characteristic is speed. In other words, this unit performs functions
that require fast data throughputs (e.g., digitizing and averaging video images
at 30 frames�s) that the typical main computer cannot handle.

The computer in an image processing system is a general-purpose computer
and can range from a PC to a supercomputer. In dedicated applications, some-
times specially designed computers are used to achieve a required level of per-
formance, but our interest here is on general-purpose image processing systems.
In these systems, almost any well-equipped PC-type machine is suitable for off-
line image processing tasks.

Software for image processing consists of specialized modules that perform
specific tasks.A well-designed package also includes the capability for the user
to write code that, as a minimum, utilizes the specialized modules. More so-
phisticated software packages allow the integration of those modules and gen-
eral-purpose software commands from at least one computer language.

Mass storage capability is a must in image processing applications.An image
of size 1024*1024 pixels, in which the intensity of each pixel is an 8-bit quan-
tity, requires one megabyte of storage space if the image is not compressed.
When dealing with thousands, or even millions, of images, providing adequate
storage in an image processing system can be a challenge. Digital storage for
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image processing applications falls into three principal categories: (1) short-
term storage for use during processing, (2) on-line storage for relatively fast re-
call, and (3) archival storage, characterized by infrequent access. Storage is
measured in bytes (eight bits), Kbytes (one thousand bytes), Mbytes (one mil-
lion bytes), Gbytes (meaning giga, or one billion, bytes), and Tbytes (meaning
tera, or one trillion, bytes).

One method of providing short-term storage is computer memory. Another
is by specialized boards, called frame buffers, that store one or more images and
can be accessed rapidly, usually at video rates (e.g., at 30 complete images per
second). The latter method allows virtually instantaneous image zoom, as well
as scroll (vertical shifts) and pan (horizontal shifts). Frame buffers usually are
housed in the specialized image processing hardware unit shown in Fig. 1.24. On-
line storage generally takes the form of magnetic disks or optical-media stor-
age.The key factor characterizing on-line storage is frequent access to the stored
data. Finally, archival storage is characterized by massive storage requirements
but infrequent need for access. Magnetic tapes and optical disks housed in
“jukeboxes” are the usual media for archival applications.

Image displays in use today are mainly color (preferably flat screen) TV mon-
itors. Monitors are driven by the outputs of image and graphics display cards that
are an integral part of the computer system. Seldom are there requirements for
image display applications that cannot be met by display cards available com-
mercially as part of the computer system. In some cases, it is necessary to have
stereo displays, and these are implemented in the form of headgear containing
two small displays embedded in goggles worn by the user.

Hardcopy devices for recording images include laser printers, film cam-
eras, heat-sensitive devices, inkjet units, and digital units, such as optical and
CD-ROM disks. Film provides the highest possible resolution, but paper is the
obvious medium of choice for written material. For presentations, images are dis-
played on film transparencies or in a digital medium if image projection equip-
ment is used.The latter approach is gaining acceptance as the standard for image
presentations.

Networking is almost a default function in any computer system in use today.
Because of the large amount of data inherent in image processing applications,
the key consideration in image transmission is bandwidth. In dedicated net-
works, this typically is not a problem, but communications with remote sites via
the Internet are not always as efficient. Fortunately, this situation is improving
quickly as a result of optical fiber and other broadband technologies.

Summary
The main purpose of the material presented in this chapter is to provide a sense of per-
spective about the origins of digital image processing and, more important, about cur-
rent and future areas of application of this technology. Although the coverage of these
topics in this chapter was necessarily incomplete due to space limitations, it should have
left the reader with a clear impression of the breadth and practical scope of digital image
processing.As we proceed in the following chapters with the development of image pro-
cessing theory and applications, numerous examples are provided to keep a clear focus
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on the utility and promise of these techniques. Upon concluding the study of the final
chapter, the reader of this book will have arrived at a level of understanding that is the
foundation for most of the work currently underway in this field.

References and Further Reading
References at the end of later chapters address specific topics discussed in those chap-
ters, and are keyed to the Bibliography at the end of the book. However, in this chapter
we follow a different format in order to summarize in one place a body of journals that
publish material on image processing and related topics.We also provide a list of books
from which the reader can readily develop a historical and current perspective of activ-
ities in this field.Thus, the reference material cited in this chapter is intended as a general-
purpose, easily accessible guide to the published literature on image processing.
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sis and Machine Intelligence; Computer Vision, Graphics, and Image Processing (prior
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Man and Cybernetics; Artificial Intelligence; Pattern Recognition; Pattern Recognition
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Optics—Information Processing; IEEE Transactions on Medical Imaging; Journal of
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The following books, listed in reverse chronological order (with the number of books
being biased toward more recent publications), contain material that complements our
treatment of digital image processing. These books represent an easily accessible
overview of the area for the past 30 years and were selected to provide a variety of treat-
ments.They range from textbooks, which cover foundation material; to handbooks, which
give an overview of techniques; and finally to edited books, which contain material rep-
resentative of current research in the field.
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2 Digital Image
Fundamentals

Those who wish to succeed must ask the right preliminary questions.
Aristotle

Preview
The purpose of this chapter is to introduce several concepts related to digital im-
ages and some of the notation used throughout the book. Section 2.1 briefly
summarizes the mechanics of the human visual system, including image for-
mation in the eye and its capabilities for brightness adaptation and discrimina-
tion. Section 2.2 discusses light, other components of the electromagnetic
spectrum, and their imaging characteristics. Section 2.3 discusses imaging sen-
sors and how they are used to generate digital images. Section 2.4 introduces the
concepts of uniform image sampling and gray-level quantization. Additional
topics discussed in that section include digital image representation, the effects
of varying the number of samples and gray levels in an image, some important
phenomena associated with sampling, and techniques for image zooming and
shrinking. Section 2.5 deals with some basic relationships between pixels that are
used throughout the book. Finally, Section 2.6 defines the conditions for linear
operations. As noted in that section, linear operators play a central role in the
development of image processing techniques.

Elements of Visual Perception

Although the digital image processing field is built on a foundation of mathe-
matical and probabilistic formulations, human intuition and analysis play a cen-
tral role in the choice of one technique versus another, and this choice often is

2.1
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Simplified
diagram of a cross
section of the
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made based on subjective, visual judgments. Hence, developing a basic under-
standing of human visual perception as a first step in our journey through this
book is appropriate. Given the complexity and breadth of this topic, we can
only aspire to cover the most rudimentary aspects of human vision. In particu-
lar, our interest lies in the mechanics and parameters related to how images are
formed in the eye. We are interested in learning the physical limitations of
human vision in terms of factors that also are used in our work with digital im-
ages.Thus, factors such as how human and electronic imaging compare in terms
of resolution and ability to adapt to changes in illumination are not only inter-
esting, they also are important from a practical point of view.

2.1.1 Structure of the Human Eye
Figure 2.1 shows a simplified horizontal cross section of the human eye. The
eye is nearly a sphere, with an average diameter of approximately 20 mm.Three
membranes enclose the eye: the cornea and sclera outer cover; the choroid; and
the retina. The cornea is a tough, transparent tissue that covers the anterior
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surface of the eye. Continuous with the cornea, the sclera is an opaque mem-
brane that encloses the remainder of the optic globe.

The choroid lies directly below the sclera. This membrane contains a net-
work of blood vessels that serve as the major source of nutrition to the eye.
Even superficial injury to the choroid, often not deemed serious, can lead to se-
vere eye damage as a result of inflammation that restricts blood flow. The
choroid coat is heavily pigmented and hence helps to reduce the amount of ex-
traneous light entering the eye and the backscatter within the optical globe.At
its anterior extreme, the choroid is divided into the ciliary body and the iris
diaphragm. The latter contracts or expands to control the amount of light that
enters the eye. The central opening of the iris (the pupil) varies in diameter
from approximately 2 to 8 mm. The front of the iris contains the visible pig-
ment of the eye, whereas the back contains a black pigment.

The lens is made up of concentric layers of fibrous cells and is suspended by
fibers that attach to the ciliary body. It contains 60 to 70% water, about 6% fat, and
more protein than any other tissue in the eye.The lens is colored by a slightly yel-
low pigmentation that increases with age. In extreme cases, excessive clouding of
the lens, caused by the affliction commonly referred to as cataracts, can lead to
poor color discrimination and loss of clear vision.The lens absorbs approximate-
ly 8% of the visible light spectrum, with relatively higher absorption at shorter
wavelengths. Both infrared and ultraviolet light are absorbed appreciably by pro-
teins within the lens structure and, in excessive amounts, can damage the eye.

The innermost membrane of the eye is the retina, which lines the inside of the
wall’s entire posterior portion. When the eye is properly focused, light from an
object outside the eye is imaged on the retina. Pattern vision is afforded by the
distribution of discrete light receptors over the surface of the retina.There are two
classes of receptors: cones and rods. The cones in each eye number between 6
and 7 million. They are located primarily in the central portion of the retina,
called the fovea, and are highly sensitive to color. Humans can resolve fine de-
tails with these cones largely because each one is connected to its own nerve end.
Muscles controlling the eye rotate the eyeball until the image of an object of in-
terest falls on the fovea. Cone vision is called photopic or bright-light vision.

The number of rods is much larger: Some 75 to 150 million are distributed
over the retinal surface. The larger area of distribution and the fact that sever-
al rods are connected to a single nerve end reduce the amount of detail dis-
cernible by these receptors. Rods serve to give a general, overall picture of the
field of view. They are not involved in color vision and are sensitive to low lev-
els of illumination. For example, objects that appear brightly colored in day-
light when seen by moonlight appear as colorless forms because only the rods
are stimulated. This phenomenon is known as scotopic or dim-light vision.

Figure 2.2 shows the density of rods and cones for a cross section of the right
eye passing through the region of emergence of the optic nerve from the eye.
The absence of receptors in this area results in the so-called blind spot (see
Fig. 2.1). Except for this region, the distribution of receptors is radially sym-
metric about the fovea. Receptor density is measured in degrees from the fovea
(that is, in degrees off axis, as measured by the angle formed by the visual axis
and a line passing through the center of the lens and intersecting the retina).
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Note in Fig. 2.2 that cones are most dense in the center of the retina (in the cen-
ter area of the fovea). Note also that rods increase in density from the center
out to approximately 20° off axis and then decrease in density out to the extreme
periphery of the retina.

The fovea itself is a circular indentation in the retina of about 1.5 mm in di-
ameter. However, in terms of future discussions, talking about square or rec-
tangular arrays of sensing elements is more useful.Thus, by taking some liberty
in interpretation, we can view the fovea as a square sensor array of size
1.5 mm*1.5 mm. The density of cones in that area of the retina is approxi-
mately 150,000 elements per mm2. Based on these approximations, the number
of cones in the region of highest acuity in the eye is about 337,000 elements.
Just in terms of raw resolving power, a charge-coupled device (CCD) imaging
chip of medium resolution can have this number of elements in a receptor array
no larger than 5 mm*5 mm. While the ability of humans to integrate intelli-
gence and experience with vision makes this type of comparison dangerous.
Keep in mind for future discussions that the basic ability of the eye to resolve
detail is certainly within the realm of current electronic imaging sensors.

2.1.2 Image Formation in the Eye
The principal difference between the lens of the eye and an ordinary optical
lens is that the former is flexible. As illustrated in Fig. 2.1, the radius of curva-
ture of the anterior surface of the lens is greater than the radius of its posteri-
or surface. The shape of the lens is controlled by tension in the fibers of the
ciliary body. To focus on distant objects, the controlling muscles cause the lens
to be relatively flattened. Similarly, these muscles allow the lens to become
thicker in order to focus on objects near the eye.

The distance between the center of the lens and the retina (called the focal
length) varies from approximately 17 mm to about 14 mm, as the refractive
power of the lens increases from its minimum to its maximum. When the eye
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FIGURE 2.3
Graphical
representation of
the eye looking at
a palm tree. Point
C is the optical
center of the lens.

focuses on an object farther away than about 3 m, the lens exhibits its lowest re-
fractive power.When the eye focuses on a nearby object, the lens is most strong-
ly refractive. This information makes it easy to calculate the size of the retinal
image of any object. In Fig. 2.3, for example, the observer is looking at a tree
15 m high at a distance of 100 m. If h is the height in mm of that object in the
retinal image, the geometry of Fig. 2.3 yields 15/100=h/17 or h=2.55 mm.As
indicated in Section 2.1.1, the retinal image is reflected primarily in the area of
the fovea. Perception then takes place by the relative excitation of light recep-
tors, which transform radiant energy into electrical impulses that are ultimate-
ly decoded by the brain.

2.1.3 Brightness Adaptation and Discrimination
Because digital images are displayed as a discrete set of intensities, the eye’s
ability to discriminate between different intensity levels is an important con-
sideration in presenting image-processing results.The range of light intensity lev-
els to which the human visual system can adapt is enormous—on the order of
1010—from the scotopic threshold to the glare limit. Experimental evidence in-
dicates that subjective brightness (intensity as perceived by the human visual
system) is a logarithmic function of the light intensity incident on the eye. Fig-
ure 2.4, a plot of light intensity versus subjective brightness, illustrates this char-
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acteristic. The long solid curve represents the range of intensities to which the
visual system can adapt. In photopic vision alone, the range is about 106. The
transition from scotopic to photopic vision is gradual over the approximate
range from 0.001 to 0.1 millilambert (–3 to –1 mL in the log scale), as the dou-
ble branches of the adaptation curve in this range show.

The essential point in interpreting the impressive dynamic range depicted
in Fig. 2.4 is that the visual system cannot operate over such a range simultane-
ously. Rather, it accomplishes this large variation by changes in its overall sen-
sitivity, a phenomenon known as brightness adaptation. The total range of
distinct intensity levels it can discriminate simultaneously is rather small when
compared with the total adaptation range. For any given set of conditions, the
current sensitivity level of the visual system is called the brightness adaptation
level, which may correspond, for example, to brightness Ba in Fig. 2.4.The short
intersecting curve represents the range of subjective brightness that the eye can
perceive when adapted to this level. This range is rather restricted, having a
level Bb at and below which all stimuli are perceived as indistinguishable blacks.
The upper (dashed) portion of the curve is not actually restricted but, if ex-
tended too far, loses its meaning because much higher intensities would simply
raise the adaptation level higher than Ba .

The ability of the eye to discriminate between changes in light intensity at any
specific adaptation level is also of considerable interest. A classic experiment
used to determine the capability of the human visual system for brightness dis-
crimination consists of having a subject look at a flat, uniformly illuminated
area large enough to occupy the entire field of view.This area typically is a dif-
fuser, such as opaque glass, that is illuminated from behind by a light source
whose intensity, I, can be varied. To this field is added an increment of illumi-
nation, �I, in the form of a short-duration flash that appears as a circle in the
center of the uniformly illuminated field, as Fig. 2.5 shows.

If �I is not bright enough, the subject says “no,” indicating no perceivable
change.As �I gets stronger, the subject may give a positive response of “yes,” in-
dicating a perceived change. Finally, when �I is strong enough, the subject will
give a response of “yes” all the time.The quantity where is the incre-
ment of illumination discriminable 50% of the time with background illumina-
tion I, is called the Weber ratio. A small value of means that a small
percentage change in intensity is discriminable.This represents “good” brightness
discrimination. Conversely, a large value of means that a large percentage
change in intensity is required.This represents “poor” brightness discrimination.

¢Ic�I,

¢Ic�I,

¢Ic¢Ic�I,

I

I+¢I

FIGURE 2.5 Basic
experimental
setup used to
characterize
brightness
discrimination.
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A plot of as a function of log I has the general shape shown in
Fig. 2.6.This curve shows that brightness discrimination is poor (the Weber ratio
is large) at low levels of illumination, and it improves significantly (the Weber
ratio decreases) as background illumination increases.The two branches in the
curve reflect the fact that at low levels of illumination vision is carried out by
activity of the rods, whereas at high levels (showing better discrimination) vi-
sion is the function of cones.

If the background illumination is held constant and the intensity of the
other source, instead of flashing, is now allowed to vary incrementally from
never being perceived to always being perceived, the typical observer can dis-
cern a total of one to two dozen different intensity changes. Roughly, this re-
sult is related to the number of different intensities a person can see at any one
point in a monochrome image.This result does not mean that an image can be
represented by such a small number of intensity values because, as the eye
roams about the image, the average background changes, thus allowing a
different set of incremental changes to be detected at each new adaptation
level. The net consequence is that the eye is capable of a much broader range
of overall intensity discrimination. In fact, we show in Section 2.4.3 that the eye
is capable of detecting objectionable contouring effects in monochrome im-
ages whose overall intensity is represented by fewer than approximately two
dozen levels.

Two phenomena clearly demonstrate that perceived brightness is not a sim-
ple function of intensity. The first is based on the fact that the visual system
tends to undershoot or overshoot around the boundary of regions of different
intensities. Figure 2.7(a) shows a striking example of this phenomenon. Al-
though the intensity of the stripes is constant, we actually perceive a brightness
pattern that is strongly scalloped, especially near the boundaries [Fig. 2.7(b)].
These seemingly scalloped bands are called Mach bands after Ernst Mach, who
first described the phenomenon in 1865.

The second phenomenon, called simultaneous contrast, is related to the fact
that a region’s perceived brightness does not depend simply on its intensity, as
Fig. 2.8 demonstrates. All the center squares have exactly the same intensity.

log ¢Ic�I,
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Actual illumination

Perceived brightness

However, they appear to the eye to become darker as the background gets
lighter.A more familiar example is a piece of paper that seems white when lying
on a desk, but can appear totally black when used to shield the eyes while look-
ing directly at a bright sky.

FIGURE 2.7
(a) An example
showing that
perceived
brightness is not a
simple function of
intensity. The
relative vertical
positions between
the two profiles in
(b) have no
special
significance; they
were chosen for
clarity.
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b

FIGURE 2.8 Examples of simultaneous contrast.All the inner squares have the same in-
tensity, but they appear progressively darker as the background becomes lighter.
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FIGURE 2.9 Some
well-known
optical illusions.

a b
c d

Other examples of human perception phenomena are optical illusions, in
which the eye fills in nonexisting information or wrongly perceives geometrical
properties of objects. Some examples are shown in Fig. 2.9. In Fig. 2.9(a), the out-
line of a square is seen clearly, in spite of the fact that no lines defining such a
figure are part of the image.The same effect, this time with a circle, can be seen
in Fig. 2.9(b); note how just a few lines are sufficient to give the illusion of a
complete circle. The two horizontal line segments in Fig. 2.9(c) are of the same
length, but one appears shorter than the other. Finally, all lines in Fig. 2.9(d)
that are oriented at 45° are equidistant and parallel. Yet the crosshatching cre-
ates the illusion that those lines are far from being parallel. Optical illusions
are a characteristic of the human visual system that is not fully understood.

Light and the Electromagnetic Spectrum

The electromagnetic spectrum was introduced in Section 1.3. We now consider
this topic in more detail. In 1666, Sir Isaac Newton discovered that when a beam
of sunlight is passed through a glass prism, the emerging beam of light is not

2.2
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FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation,
but note that the visible spectrum is a rather narrow portion of the EM spectrum.

white but consists instead of a continuous spectrum of colors ranging from vio-
let at one end to red at the other. As shown in Fig. 2.10, the range of colors we
perceive in visible light represents a very small portion of the electromagnetic
spectrum. On one end of the spectrum are radio waves with wavelengths billions
of times longer than those of visible light. On the other end of the spectrum are
gamma rays with wavelengths millions of times smaller than those of visible light.
The electromagnetic spectrum can be expressed in terms of wavelength, fre-
quency, or energy.Wavelength (l) and frequency (n) are related by the expression

(2.2-1)

where c is the speed of light (2.998*108 m�s).The energy of the various com-
ponents of the electromagnetic spectrum is given by the expression

E=hn (2.2-2)

where h is Planck’s constant.The units of wavelength are meters, with the terms
microns (denoted �m and equal to 10–6 m) and nanometers (10–9 m) being used
just as frequently. Frequency is measured in Hertz (Hz), with one Hertz being
equal to one cycle of a sinusoidal wave per second.A commonly used unit of en-
ergy is the electron-volt.

l =
c
n
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lFIGURE 2.11
Graphical
representation of
one wavelength.

Electromagnetic waves can be visualized as propagating sinusoidal waves with
wavelength l (Fig. 2.11), or they can be thought of as a stream of massless parti-
cles, each traveling in a wavelike pattern and moving at the speed of light. Each
massless particle contains a certain amount (or bundle) of energy. Each bundle
of energy is called a photon.We see from Eq. (2.2-2) that energy is proportional
to frequency, so the higher-frequency (shorter wavelength) electromagnetic phe-
nomena carry more energy per photon.Thus, radio waves have photons with low
energies, microwaves have more energy than radio waves, infrared still more, then
visible, ultraviolet, X-rays, and finally gamma rays, the most energetic of all.This
is the reason that gamma rays are so dangerous to living organisms.

Light is a particular type of electromagnetic radiation that can be seen and
sensed by the human eye. The visible (color) spectrum is shown expanded in
Fig. 2.10 for the purpose of discussion (we consider color in much more detail in
Chapter 6).The visible band of the electromagnetic spectrum spans the range from
approximately 0.43 �m (violet) to about 0.79 �m (red).For convenience, the color
spectrum is divided into six broad regions: violet, blue, green, yellow, orange, and
red. No color (or other component of the electromagnetic spectrum) ends abrupt-
ly, but rather each range blends smoothly into the next, as shown in Fig. 2.10.

The colors that humans perceive in an object are determined by the nature of
the light reflected from the object. A body that reflects light and is relatively bal-
anced in all visible wavelengths appears white to the observer.However,a body that
favors reflectance in a limited range of the visible spectrum exhibits some shades
of color. For example, green objects reflect light with wavelengths primarily in the
500 to 570 nm range while absorbing most of the energy at other wavelengths.

Light that is void of color is called achromatic or monochromatic light. The
only attribute of such light is its intensity, or amount. The term gray level gen-
erally is used to describe monochromatic intensity because it ranges from black,
to grays, and finally to white. Chromatic light spans the electromagnetic ener-
gy spectrum from approximately 0.43 to 0.79 �m, as noted previously. Three
basic quantities are used to describe the quality of a chromatic light source: ra-
diance; luminance; and brightness. Radiance is the total amount of energy that
flows from the light source, and it is usually measured in watts (W). Luminance,
measured in lumens (lm), gives a measure of the amount of energy an observ-
er perceives from a light source. For example, light emitted from a source op-
erating in the far infrared region of the spectrum could have significant energy
(radiance), but an observer would hardly perceive it; its luminance would be
almost zero. Finally, as discussed in Section 2.1, brightness is a subjective de-
scriptor of light perception that is practically impossible to measure. It embod-
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ies the achromatic notion of intensity and is one of the key factors in describ-
ing color sensation.

Continuing with the discussion of Fig. 2.10, we note that at the short-wave-
length end of the electromagnetic spectrum, we have gamma rays and hard
X-rays.As discussed in Section 1.3.1, gamma radiation is important for medical
and astronomical imaging, and for imaging radiation in nuclear environments.
Hard (high-energy) X-rays are used in industrial applications. Chest X-rays are
in the high end (shorter wavelength) of the soft X-rays region and dental X-rays
are in the lower energy end of that band. The soft X-ray band transitions into
the far ultraviolet light region, which in turn blends with the visible spectrum at
longer wavelengths. Moving still higher in wavelength, we encounter the in-
frared band, which radiates heat, a fact that makes it useful in imaging applica-
tions that rely on “heat signatures.” The part of the infrared band close to the
visible spectrum is called the near-infrared region.The opposite end of this band
is called the far-infrared region. This latter region blends with the microwave
band. This band is well known as the source of energy in microwave ovens, but
it has many other uses, including communication and radar. Finally, the radio
wave band encompasses television as well as AM and FM radio. In the higher
energies, radio signals emanating from certain stellar bodies are useful in as-
tronomical observations. Examples of images in most of the bands just discussed
are given in Section 1.3.

In principle, if a sensor can be developed that is capable of detecting energy
radiated by a band of the electromagnetic spectrum, we can image events of in-
terest in that band. It is important to note, however, that the wavelength of an
electromagnetic wave required to “see” an object must be of the same size as
or smaller than the object. For example, a water molecule has a diameter on
the order of 10–10 m.Thus, to study molecules, we would need a source capable
of emitting in the far ultraviolet or soft X-ray region.This limitation, along with
the physical properties of the sensor material, establishes the fundamental lim-
its on the capability of imaging sensors, such as visible, infrared, and other sen-
sors in use today.

Although imaging is based predominantly on energy radiated by electro-
magnetic waves, this is not the only method for image generation. For example,
as discussed in Section 1.3.7, sound reflected from objects can be used to form
ultrasonic images. Other major sources of digital images are electron beams for
electron microscopy and synthetic images used in graphics and visualization.

Image Sensing and Acquisition

The types of images in which we are interested are generated by the combina-
tion of an “illumination” source and the reflection or absorption of energy from
that source by the elements of the “scene” being imaged. We enclose illumina-
tion and scene in quotes to emphasize the fact that they are considerably more
general than the familiar situation in which a visible light source illuminates a
common everyday 3-D (three-dimensional) scene. For example, the illumination
may originate from a source of electromagnetic energy such as radar, infrared,

2.3
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or X-ray energy. But, as noted earlier, it could originate from less traditional
sources, such as ultrasound or even a computer-generated illumination pattern.
Similarly, the scene elements could be familiar objects, but they can just as eas-
ily be molecules, buried rock formations, or a human brain.We could even image
a source, such as acquiring images of the sun. Depending on the nature of the
source, illumination energy is reflected from, or transmitted through, objects.An
example in the first category is light reflected from a planar surface. An exam-
ple in the second category is when X-rays pass through a patient’s body for the
purpose of generating a diagnostic X-ray film. In some applications, the re-
flected or transmitted energy is focused onto a photoconverter (e.g., a phos-
phor screen), which converts the energy into visible light. Electron microscopy
and some applications of gamma imaging use this approach.

Figure 2.12 shows the three principal sensor arrangements used to transform
illumination energy into digital images. The idea is simple: Incoming energy is

Sensing material

Voltage waveform out

Filter

Energy

Power in

Housing

FIGURE 2.12
(a) Single imaging
sensor.
(b) Line sensor.
(c) Array sensor.
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b
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FIGURE 2.13 Combining a single sensor with motion to generate a 2-D image.

transformed into a voltage by the combination of input electrical power and
sensor material that is responsive to the particular type of energy being de-
tected.The output voltage waveform is the response of the sensor(s), and a dig-
ital quantity is obtained from each sensor by digitizing its response. In this
section, we look at the principal modalities for image sensing and generation.
Image digitizing is discussed in Section 2.4.

2.3.1 Image Acquisition Using a Single Sensor
Figure 2.12(a) shows the components of a single sensor. Perhaps the most fa-
miliar sensor of this type is the photodiode, which is constructed of silicon ma-
terials and whose output voltage waveform is proportional to light. The use of
a filter in front of a sensor improves selectivity. For example, a green (pass) fil-
ter in front of a light sensor favors light in the green band of the color spec-
trum.As a consequence, the sensor output will be stronger for green light than
for other components in the visible spectrum.

In order to generate a 2-D image using a single sensor, there has to be rela-
tive displacements in both the x- and y-directions between the sensor and the
area to be imaged. Figure 2.13 shows an arrangement used in high-precision
scanning, where a film negative is mounted onto a drum whose mechanical ro-
tation provides displacement in one dimension.The single sensor is mounted on
a lead screw that provides motion in the perpendicular direction. Since me-
chanical motion can be controlled with high precision, this method is an inex-
pensive (but slow) way to obtain high-resolution images. Other similar
mechanical arrangements use a flat bed, with the sensor moving in two linear
directions. These types of mechanical digitizers sometimes are referred to as
microdensitometers.

Another example of imaging with a single sensor places a laser source coin-
cident with the sensor. Moving mirrors are used to control the outgoing beam
in a scanning pattern and to direct the reflected laser signal onto the sensor.
This arrangement also can be used to acquire images using strip and array sen-
sors, which are discussed in the following two sections.
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FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

2.3.2 Image Acquisition Using Sensor Strips
A geometry that is used much more frequently than single sensors consists of
an in-line arrangement of sensors in the form of a sensor strip, as Fig. 2.12(b)
shows. The strip provides imaging elements in one direction. Motion perpen-
dicular to the strip provides imaging in the other direction, as shown in
Fig. 2.14(a).This is the type of arrangement used in most flat bed scanners. Sens-
ing devices with 4000 or more in-line sensors are possible. In-line sensors are
used routinely in airborne imaging applications, in which the imaging system is
mounted on an aircraft that flies at a constant altitude and speed over the ge-
ographical area to be imaged. One-dimensional imaging sensor strips that re-
spond to various bands of the electromagnetic spectrum are mounted
perpendicular to the direction of flight. The imaging strip gives one line of an
image at a time, and the motion of the strip completes the other dimension of
a two-dimensional image. Lenses or other focusing schemes are used to pro-
ject the area to be scanned onto the sensors.

Sensor strips mounted in a ring configuration are used in medical and in-
dustrial imaging to obtain cross-sectional (“slice”) images of 3-D objects, as
Fig. 2.14(b) shows. A rotating X-ray source provides illumination and the por-

a b
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tion of the sensors opposite the source collect the X-ray energy that pass through
the object (the sensors obviously have to be sensitive to X-ray energy). This is
the basis for medical and industrial computerized axial tomography (CAT)
imaging as indicated in Sections 1.2 and 1.3.2. It is important to note that the out-
put of the sensors must be processed by reconstruction algorithms whose ob-
jective is to transform the sensed data into meaningful cross-sectional images.
In other words, images are not obtained directly from the sensors by motion
alone; they require extensive processing. A 3-D digital volume consisting of
stacked images is generated as the object is moved in a direction perpendicu-
lar to the sensor ring. Other modalities of imaging based on the CAT principle
include magnetic resonance imaging (MRI) and positron emission tomography
(PET).The illumination sources, sensors, and types of images are different, but
conceptually they are very similar to the basic imaging approach shown in
Fig. 2.14(b).

2.3.3 Image Acquisition Using Sensor Arrays
Figure 2.12(c) shows individual sensors arranged in the form of a 2-D array.
Numerous electromagnetic and some ultrasonic sensing devices frequently are
arranged in an array format. This is also the predominant arrangement found
in digital cameras.A typical sensor for these cameras is a CCD array, which can
be manufactured with a broad range of sensing properties and can be packaged
in rugged arrays of elements or more. CCD sensors are used wide-
ly in digital cameras and other light sensing instruments. The response of each
sensor is proportional to the integral of the light energy projected onto the sur-
face of the sensor, a property that is used in astronomical and other applica-
tions requiring low noise images. Noise reduction is achieved by letting the
sensor integrate the input light signal over minutes or even hours (we discuss
noise reduction by integration in Chapter 3). Since the sensor array shown in
Fig. 2.15(c) is two dimensional, its key advantage is that a complete image can
be obtained by focusing the energy pattern onto the surface of the array. Mo-
tion obviously is not necessary, as is the case with the sensor arrangements dis-
cussed in the preceding two sections.

The principal manner in which array sensors are used is shown in Fig. 2.15.
This figure shows the energy from an illumination source being reflected from
a scene element, but, as mentioned at the beginning of this section, the energy
also could be transmitted through the scene elements. The first function per-
formed by the imaging system shown in Fig. 2.15(c) is to collect the incoming
energy and focus it onto an image plane. If the illumination is light, the front end
of the imaging system is a lens, which projects the viewed scene onto the lens
focal plane, as Fig. 2.15(d) shows.The sensor array, which is coincident with the
focal plane, produces outputs proportional to the integral of the light received
at each sensor. Digital and analog circuitry sweep these outputs and convert
them to a video signal, which is then digitized by another section of the imag-
ing system. The output is a digital image, as shown diagrammatically in
Fig. 2.15(e). Conversion of an image into digital form is the topic of Section 2.4.

4000 * 4000
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Illumination (energy)
source

Imaging system

(Internal) image plane

Output (digitized) image

Scene element

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy (“illumination”) source. (b) An el-
ement of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

2.3.4 A Simple Image Formation Model
As introduced in Section 1.1, we shall denote images by two-dimensional func-
tions of the form f(x, y). The value or amplitude of f at spatial coordinates
(x, y) is a positive scalar quantity whose physical meaning is determined by
the source of the image. Most of the images in which we are interested in this
book are monochromatic images, whose values are said to span the gray scale,
as discussed in Section 2.2. When an image is generated from a physical
process, its values are proportional to energy radiated by a physical source
(e.g., electromagnetic waves).As a consequence, f(x, y) must be nonzero and
finite; that is,

0<f(x, y)<q. (2.3-1)

The function f(x, y) may be characterized by two components: (1) the
amount of source illumination incident on the scene being viewed, and (2) the
amount of illumination reflected by the objects in the scene. Appropriately,
these are called the illumination and reflectance components and are denoted
by i(x, y) and r(x, y), respectively. The two functions combine as a product to
form f(x, y):

a
b

c d e
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f(x, y)=i(x, y)r(x, y) (2.3-2)

where

0<i(x, y)<q (2.3-3)

and

0<r(x, y)<1. (2.3-4)

Equation (2.3-4) indicates that reflectance is bounded by 0 (total absorption)
and 1 (total reflectance).The nature of i(x, y) is determined by the illumination
source, and r(x, y) is determined by the characteristics of the imaged objects.
It is noted that these expressions also are applicable to images formed via trans-
mission of the illumination through a medium, such as a chest X-ray. In this
case, we would deal with a transmissivity instead of a reflectivity function, but the
limits would be the same as in Eq. (2.3-4), and the image function formed would
be modeled as the product in Eq. (2.3-2).

� The values given in Eqs. (2.3-3) and (2.3-4) are theoretical bounds. The fol-
lowing average numerical figures illustrate some typical ranges of i(x, y) for
visible light. On a clear day, the sun may produce in excess of 90,000 lm�m2 of
illumination on the surface of the Earth. This figure decreases to less than
10,000 lm�m2 on a cloudy day. On a clear evening, a full moon yields about
0.1 lm�m2 of illumination.The typical illumination level in a commercial office
is about 1000 lm�m2. Similarly, the following are some typical values of r(x, y):
0.01 for black velvet, 0.65 for stainless steel, 0.80 for flat-white wall paint, 0.90
for silver-plated metal, and 0.93 for snow. �

As noted in Section 2.2, we call the intensity of a monochrome image at any
coordinates Ax0, y0 B the gray level (/) of the image at that point. That is,

(2.3-5)

From Eqs. (2.3-2) through (2.3-4), it is evident that / lies in the range

(2.3-6)

In theory, the only requirement on Lmin is that it be positive, and on Lmax that it
be finite. In practice, Lmin=iminrmin and Lmax=imaxrmax. Using the preceding av-
erage office illumination and range of reflectance values as guidelines, we may
expect Lmin≠10 and Lmax≠1000 to be typical limits for indoor values in the
absence of additional illumination.

The interval is called the gray scale. Common practice is to shift
this interval numerically to the interval [0, L-1], where /=0 is considered
black and /=L-1 is considered white on the gray scale. All intermediate
values are shades of gray varying from black to white.

CLmin , Lmax D

Lmin � / � Lmax

/ = fAx0 , y0B

EXAMPLE 2.1:
Some typical
values of
illumination and
reflectance.
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Image Sampling and Quantization

From the discussion in the preceding section, we see that there are numerous
ways to acquire images, but our objective in all is the same: to generate digital
images from sensed data. The output of most sensors is a continuous voltage
waveform whose amplitude and spatial behavior are related to the physical
phenomenon being sensed. To create a digital image, we need to convert the
continuous sensed data into digital form.This involves two processes: sampling
and quantization.

2.4.1 Basic Concepts in Sampling and Quantization
The basic idea behind sampling and quantization is illustrated in Fig. 2.16. Fig-
ure 2.16(a) shows a continuous image, f(x, y), that we want to convert to digi-
tal form.An image may be continuous with respect to the x- and y-coordinates,
and also in amplitude.To convert it to digital form, we have to sample the func-
tion in both coordinates and in amplitude. Digitizing the coordinate values is
called sampling. Digitizing the amplitude values is called quantization.

The one-dimensional function shown in Fig. 2.16(b) is a plot of amplitude
(gray level) values of the continuous image along the line segment AB in
Fig. 2.16(a).The random variations are due to image noise.To sample this func-
tion, we take equally spaced samples along line AB, as shown in Fig. 2.16(c).The
location of each sample is given by a vertical tick mark in the bottom part of the
figure.The samples are shown as small white squares superimposed on the func-
tion.The set of these discrete locations gives the sampled function. However, the
values of the samples still span (vertically) a continuous range of gray-level val-
ues. In order to form a digital function, the gray-level values also must be con-
verted (quantized) into discrete quantities. The right side of Fig. 2.16(c) shows
the gray-level scale divided into eight discrete levels, ranging from black to
white.The vertical tick marks indicate the specific value assigned to each of the
eight gray levels. The continuous gray levels are quantized simply by assigning
one of the eight discrete gray levels to each sample. The assignment is made
depending on the vertical proximity of a sample to a vertical tick mark. The
digital samples resulting from both sampling and quantization are shown in
Fig. 2.16(d). Starting at the top of the image and carrying out this procedure
line by line produces a two-dimensional digital image.

Sampling in the manner just described assumes that we have a continuous
image in both coordinate directions as well as in amplitude. In practice, the
method of sampling is determined by the sensor arrangement used to generate
the image. When an image is generated by a single sensing element combined
with mechanical motion, as in Fig. 2.13, the output of the sensor is quantized in
the manner described above. However, sampling is accomplished by selecting
the number of individual mechanical increments at which we activate the sen-
sor to collect data. Mechanical motion can be made very exact so, in principle,
there is almost no limit as to how fine we can sample an image. However, prac-
tical limits are established by imperfections in the optics used to focus on the

2.4
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FIGURE 2.16 Generating a digital image. (a) Continuous image. (b)A scan line from A to B in the continuous image,
used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

sensor an illumination spot that is inconsistent with the fine resolution achiev-
able with mechanical displacements.

When a sensing strip is used for image acquisition, the number of sensors in
the strip establishes the sampling limitations in one image direction. Mechanical
motion in the other direction can be controlled more accurately, but it makes
little sense to try to achieve sampling density in one direction that exceeds the

a b
c d
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FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

sampling limits established by the number of sensors in the other. Quantiza-
tion of the sensor outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, there is no motion and
the number of sensors in the array establishes the limits of sampling in both di-
rections. Quantization of the sensor outputs is as before. Figure 2.17 illustrates
this concept. Figure 2.17(a) shows a continuous image projected onto the plane
of an array sensor. Figure 2.17(b) shows the image after sampling and quanti-
zation. Clearly, the quality of a digital image is determined to a large degree by
the number of samples and discrete gray levels used in sampling and quantiza-
tion. However, as shown in Section 2.4.3, image content is an important con-
sideration in choosing these parameters.

2.4.2 Representing Digital Images
The result of sampling and quantization is a matrix of real numbers.We will use
two principal ways in this book to represent digital images.Assume that an image
f(x, y) is sampled so that the resulting digital image has M rows and N columns.
The values of the coordinates (x, y) now become discrete quantities. For nota-
tional clarity and convenience, we shall use integer values for these discrete co-
ordinates. Thus, the values of the coordinates at the origin are (x, y)=(0, 0).
The next coordinate values along the first row of the image are represented as
(x, y)=(0, 1). It is important to keep in mind that the notation (0, 1) is used
to signify the second sample along the first row. It does not mean that these are
the actual values of physical coordinates when the image was sampled. Figure
2.18 shows the coordinate convention used throughout this book.

a b
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FIGURE 2.18
Coordinate
convention used
in this book to
represent digital
images.

The notation introduced in the preceding paragraph allows us to write the
complete M*N digital image in the following compact matrix form:

(2.4-1)

The right side of this equation is by definition a digital image. Each element of
this matrix array is called an image element, picture element, pixel, or pel. The
terms image and pixel will be used throughout the rest of our discussions to de-
note a digital image and its elements.

In some discussions, it is advantageous to use a more traditional matrix no-
tation to denote a digital image and its elements:

(2.4-2)

Clearly, aij=f(x=i, y=j)=f(i, j), so Eqs. (2.4-1) and (2.4-2) are identical
matrices.

Expressing sampling and quantization in more formal mathematical terms
can be useful at times. Let Z and R denote the set of real integers and the set
of real numbers, respectively. The sampling process may be viewed as parti-
tioning the xy plane into a grid, with the coordinates of the center of each grid
being a pair of elements from the Cartesian product Z2, which is the set of all
ordered pairs of elements Azi, zj B , with zi and zj being integers from Z. Hence,
f(x, y) is a digital image if (x, y) are integers from Z2 and f is a function that
assigns a gray-level value (that is, a real number from the set of real numbers,
R) to each distinct pair of coordinates (x, y). This functional assignment
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obviously is the quantization process described earlier. If the gray levels also are
integers (as usually is the case in this and subsequent chapters), Z replaces R,
and a digital image then becomes a 2-D function whose coordinates and am-
plitude values are integers.

This digitization process requires decisions about values for M, N, and for the
number, L, of discrete gray levels allowed for each pixel.There are no require-
ments on M and N, other than that they have to be positive integers. However,
due to processing, storage, and sampling hardware considerations, the number
of gray levels typically is an integer power of 2:

(2.4-3)

We assume that the discrete levels are equally spaced and that they are integers
in the interval [0, L-1]. Sometimes the range of values spanned by the gray
scale is called the dynamic range of an image, and we refer to images whose gray
levels span a significant portion of the gray scale as having a high dynamic range.
When an appreciable number of pixels exhibit this property, the image will have
high contrast. Conversely, an image with low dynamic range tends to have a dull,
washed out gray look. This is discussed in much more detail in Section 3.3.

The number, b, of bits required to store a digitized image is

b=M*N*k. (2.4-4)

When M=N, this equation becomes

(2.4-5)

Table 2.1 shows the number of bits required to store square images with vari-
ous values of N and k. The number of gray levels corresponding to each value
of k is shown in parentheses. When an image can have 2k gray levels, it is com-
mon practice to refer to the image as a “k-bit image.” For example, an image with
256 possible gray-level values is called an 8-bit image. Note that storage re-
quirements for 8-bit images of size 1024*1024 and higher are not insignificant.

b = N2k.

L = 2k.

1 (L � 2) 2 (L � 4) 3 (L � 8) 4 (L � 16) 5 (L � 32) 6 (L � 64) 7 (L � 128) 8 (L � 256)

32 1,024 2,048 3,072 4,096 5,120 6,144 7,168 8,192

64 4,096 8,192 12,288 16,384 20,480 24,576 28,672 32,768

128 16,384 32,768 49,152 65,536 81,920 98,304 114,688 131,072

256 65,536 131,072 196,608 262,144 327,680 393,216 458,752 524,288

512 262,144 524,288 786,432 1,048,576 1,310,720 1,572,864 1,835,008 2,097,152

1024 1,048,576 2,097,152 3,145,728 4,194,304 5,242,880 6,291,456 7,340,032 8,388,608

2048 4,194,304 8,388,608 12,582,912 16,777,216 20,971,520 25,165,824 29,369,128 33,554,432

4096 16,777,216 33,554,432 50,331,648 67,108,864 83,886,080 100,663,296 117,440,512 134,217,728

8192 67,108,864 134,217,728 201,326,592 268,435,456 335,544,320 402,653,184 469,762,048 536,870,912

N /k

TABLE 2.1
Number of storage bits for various values of N and k.
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2.4.3 Spatial and Gray-Level Resolution
Sampling is the principal factor determining the spatial resolution of an image. Ba-
sically, spatial resolution is the smallest discernible detail in an image. Suppose that
we construct a chart with vertical lines of width W,with the space between the lines
also having width W. A line pair consists of one such line and its adjacent space.
Thus, the width of a line pair is 2W, and there are 1/2W line pairs per unit distance.
A widely used definition of resolution is simply the smallest number of discernible
line pairs per unit distance; for example, 100 line pairs per millimeter.

Gray-level resolution similarly refers to the smallest discernible change in
gray level, but, as noted in Section 2.1.3, measuring discernible changes in gray
level is a highly subjective process. We have considerable discretion regarding
the number of samples used to generate a digital image, but this is not true for
the number of gray levels. Due to hardware considerations, the number of gray
levels is usually an integer power of 2, as mentioned in the previous section.
The most common number is 8 bits, with 16 bits being used in some applica-
tions where enhancement of specific gray-level ranges is necessary. Sometimes
we find systems that can digitize the gray levels of an image with 10 or 12 bits
of accuracy, but these are the exception rather than the rule.

When an actual measure of physical resolution relating pixels and the level
of detail they resolve in the original scene are not necessary, it is not uncommon
to refer to an L-level digital image of size M*N as having a spatial resolution
of M*N pixels and a gray-level resolution of L levels.We will use this termi-
nology from time to time in subsequent discussions, making a reference to ac-
tual resolvable detail only when necessary for clarity.

� Figure 2.19 shows an image of size 1024*1024 pixels whose gray levels are
represented by 8 bits. The other images shown in Fig. 2.19 are the results of
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1024
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256

128

64
32

FIGURE 2.19 A 1024*1024, 8-bit image subsampled down to size 32*32 pixels. The number of allowable
gray levels was kept at 256.

EXAMPLE 2.2:
Typical effects of
varying the
number of
samples in a
digital image.
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subsampling the 1024*1024 image. The subsampling was accomplished by
deleting the appropriate number of rows and columns from the original image.
For example, the 512*512 image was obtained by deleting every other row and
column from the 1024*1024 image. The 256*256 image was generated by
deleting every other row and column in the 512*512 image, and so on. The
number of allowed gray levels was kept at 256.

These images show the dimensional proportions between various sampling
densities, but their size differences make it difficult to see the effects resulting
from a reduction in the number of samples.The simplest way to compare these
effects is to bring all the subsampled images up to size 1024*1024 by row and
column pixel replication.The results are shown in Figs. 2.20(b) through (f). Fig-
ure 2.20(a) is the same 1024*1024, 256-level image shown in Fig. 2.19; it is re-
peated to facilitate comparisons.

Compare Fig. 2.20(a) with the 512*512 image in Fig. 2.20(b) and note that
it is virtually impossible to tell these two images apart. The level of detail lost
is simply too fine to be seen on the printed page at the scale in which these im-

FIGURE 2.20 (a) 1024*1024, 8-bit image. (b) 512*512 image resampled into 1024*1024 pixels by row and
column duplication. (c) through (f) 256*256, 128*128, 64*64, and 32*32 images resampled into
1024*1024 pixels.

a b c
d e f
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2.4 � Image Sampling and Quantization 59

ages are shown. Next, the 256*256 image in Fig. 2.20(c) shows a very slight fine
checkerboard pattern in the borders between flower petals and the black back-
ground. A slightly more pronounced graininess throughout the image also is
beginning to appear.These effects are much more visible in the 128*128 image
in Fig. 2.20(d), and they become pronounced in the 64*64 and 32*32 images
in Figs. 2.20(e) and (f), respectively. �

� In this example, we keep the number of samples constant and reduce the num-
ber of gray levels from 256 to 2, in integer powers of 2.Figure 2.21(a) is a 452*374
CAT projection image, displayed with k=8 (256 gray levels). Images such as this
are obtained by fixing the X-ray source in one position, thus producing a 2-D image

EXAMPLE 2.3:
Typical effects of
varying the
number of gray
levels in a digital
image.

FIGURE 2.21
(a) 452*374,
256-level image.
(b)–(d) Image
displayed in 128,
64, and 32 gray
levels, while
keeping the
spatial resolution
constant.

a b
c d
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60 Chapter 2 � Digital Image Fundamentals

in any desired direction. Projection images are used as guides to set up the para-
meters for a CAT scanner, including tilt, number of slices, and range.

Figures 2.21(b) through (h) were obtained by reducing the number of bits
from k=7 to k=1 while keeping the spatial resolution constant at 452*374
pixels. The 256-, 128-, and 64-level images are visually identical for all practical
purposes.The 32-level image shown in Fig. 2.21(d), however, has an almost im-
perceptible set of very fine ridgelike structures in areas of smooth gray levels
(particularly in the skull).This effect, caused by the use of an insufficient num-
ber of gray levels in smooth areas of a digital image, is called false contouring,
so called because the ridges resemble topographic contours in a map. False con-
touring generally is quite visible in images displayed using 16 or less uniform-
ly spaced gray levels, as the images in Figs. 2.21(e) through (h) show.

FIGURE 2.21
(Continued)
(e)–(g) Image
displayed in 16, 8,
4, and 2 gray
levels. (Original
courtesy of
Dr. David
R. Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

e f
g h
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As a very rough rule of thumb, and assuming powers of 2 for convenience,
images of size 256*256 pixels and 64 gray levels are about the smallest images
that can be expected to be reasonably free of objectionable sampling checker-
boards and false contouring. �

The results in Examples 2.2 and 2.3 illustrate the effects produced on image
quality by varying N and k independently. However, these results only partially
answer the question of how varying N and k affect images because we have not
considered yet any relationships that might exist between these two parameters.
An early study by Huang [1965] attempted to quantify experimentally the ef-
fects on image quality produced by varying N and k simultaneously.The exper-
iment consisted of a set of subjective tests. Images similar to those shown in
Fig. 2.22 were used.The woman’s face is representative of an image with relatively
little detail; the picture of the cameraman contains an intermediate amount of
detail; and the crowd picture contains, by comparison, a large amount of detail.

Sets of these three types of images were generated by varying N and k, and
observers were then asked to rank them according to their subjective quality.
Results were summarized in the form of so-called isopreference curves in the
Nk-plane (Fig. 2.23 shows average isopreference curves representative of curves
corresponding to the images shown in Fig. 2.22). Each point in the Nk-plane rep-
resents an image having values of N and k equal to the coordinates of that point.
Points lying on an isopreference curve correspond to images of equal subjective
quality. It was found in the course of the experiments that the isopreference
curves tended to shift right and upward, but their shapes in each of the three
image categories were similar to those shown in Fig. 2.23. This is not unexpect-
ed, since a shift up and right in the curves simply means larger values for N and
k, which implies better picture quality.

The key point of interest in the context of the present discussion is that iso-
preference curves tend to become more vertical as the detail in the image in-
creases. This result suggests that for images with a large amount of detail only

FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a rel-
atively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

a b c
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Face
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FIGURE 2.23
Representative
isopreference
curves for the
three types of
images in
Fig. 2.22.

a few gray levels may be needed. For example, the isopreference curve in
Fig. 2.23 corresponding to the crowd is nearly vertical.This indicates that, for a
fixed value of N, the perceived quality for this type of image is nearly indepen-
dent of the number of gray levels used (for the range of gray levels shown in
Fig. 2.23). It is also of interest to note that perceived quality in the other two
image categories remained the same in some intervals in which the spatial res-
olution was increased, but the number of gray levels actually decreased. The
most likely reason for this result is that a decrease in k tends to increase the ap-
parent contrast of an image, a visual effect that humans often perceive as im-
proved quality in an image.

2.4.4 Aliasing and Moiré Patterns
As discussed in more detail in Chapter 4, functions whose area under the curve
is finite can be represented in terms of sines and cosines of various frequencies.
The sine/cosine component with the highest frequency determines the highest
“frequency content” of the function. Suppose that this highest frequency is fi-
nite and that the function is of unlimited duration (these functions are called
band-limited functions).Then, the Shannon sampling theorem [Bracewell (1995)]
tells us that, if the function is sampled at a rate equal to or greater than twice
its highest frequency, it is possible to recover completely the original function
from its samples. If the function is undersampled, then a phenomenon called
aliasing corrupts the sampled image. The corruption is in the form of addition-
al frequency components being introduced into the sampled function. These
are called aliased frequencies. Note that the sampling rate in images is the num-
ber of samples taken (in both spatial directions) per unit distance.

As it turns out, except for a special case discussed in the following paragraph,
it is impossible to satisfy the sampling theorem in practice.We can only work with
sampled data that are finite in duration. We can model the process of convert-
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ing a function of unlimited duration into a function of finite duration simply by
multiplying the unlimited function by a “gating function” that is valued 1 for
some interval and 0 elsewhere. Unfortunately, this function itself has frequen-
cy components that extend to infinity.Thus, the very act of limiting the duration
of a band-limited function causes it to cease being band limited, which causes
it to violate the key condition of the sampling theorem.The principal approach
for reducing the aliasing effects on an image is to reduce its high-frequency com-
ponents by blurring the image (we discuss blurring in detail in Chapter 4) prior
to sampling. However, aliasing is always present in a sampled image.The effect
of aliased frequencies can be seen under the right conditions in the form of so-
called Moiré patterns†, as discussed next.

There is one special case of significant importance in which a function of in-
finite duration can be sampled over a finite interval without violating the sam-
pling theorem. When a function is periodic, it may be sampled at a rate equal
to or exceeding twice its highest frequency, and it is possible to recover the func-
tion from its samples provided that the sampling captures exactly an integer
number of periods of the function.This special case allows us to illustrate vivid-
ly the Moiré effect. Figure 2.24 shows two identical periodic patterns of equal-
ly spaced vertical bars, rotated in opposite directions and then superimposed on
each other by multiplying the two images.A Moiré pattern, caused by a break-
up of the periodicity, is seen in Fig. 2.24 as a 2-D sinusoidal (aliased) waveform
(which looks like a corrugated tin roof) running in a vertical direction. A simi-
lar pattern can appear when images are digitized (e.g., scanned) from a print-
ed page, which consists of periodic ink dots.

FIGURE 2.24 Illustration of the Moiré pattern effect.

† The word Moiré appears to have originated with weavers and comes from the word mohair, a cloth made
from Angora goat hairs.
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2.4.5 Zooming and Shrinking Digital Images
We conclude the treatment of sampling and quantization with a brief discussion
on how to zoom and shrink a digital image. This topic is related to image sam-
pling and quantization because zooming may be viewed as oversampling, while
shrinking may be viewed as undersampling. The key difference between these
two operations and sampling and quantizing an original continuous image is
that zooming and shrinking are applied to a digital image.

Zooming requires two steps: the creation of new pixel locations, and the
assignment of gray levels to those new locations. Let us start with a simple ex-
ample. Suppose that we have an image of size 500*500 pixels and we want
to enlarge it 1.5 times to 750*750 pixels. Conceptually, one of the easiest
ways to visualize zooming is laying an imaginary 750*750 grid over the orig-
inal image. Obviously, the spacing in the grid would be less than one pixel be-
cause we are fitting it over a smaller image. In order to perform gray-level
assignment for any point in the overlay, we look for the closest pixel in the
original image and assign its gray level to the new pixel in the grid. When we
are done with all points in the overlay grid, we simply expand it to the origi-
nal specified size to obtain the zoomed image. This method of gray-level as-
signment is called nearest neighbor interpolation. (Pixel neighborhoods are
discussed in the next section.)

Pixel replication, the method used to generate Figs. 2.20(b) through (f), is a
special case of nearest neighbor interpolation. Pixel replication is applicable
when we want to increase the size of an image an integer number of times. For
instance, to double the size of an image, we can duplicate each column. This
doubles the image size in the horizontal direction.Then, we duplicate each row
of the enlarged image to double the size in the vertical direction.The same pro-
cedure is used to enlarge the image by any integer number of times (triple,
quadruple, and so on). Duplication is just done the required number of times to
achieve the desired size. The gray-level assignment of each pixel is predeter-
mined by the fact that new locations are exact duplicates of old locations.

Although nearest neighbor interpolation is fast, it has the undesirable feature
that it produces a checkerboard effect that is particularly objectionable at high
factors of magnification. Figures 2.20(e) and (f) are good examples of this. A
slightly more sophisticated way of accomplishing gray-level assignments is
bilinear interpolation using the four nearest neighbors of a point. Let (x¿, y¿)
denote the coordinates of a point in the zoomed image (think of it as a point on
the grid described previously), and let v(x¿, y¿) denote the gray level assigned
to it. For bilinear interpolation, the assigned gray level is given by

(2.4-6)

where the four coefficients are determined from the four equations in four un-
knowns that can be written using the four nearest neighbors of point (x¿, y¿).

Image shrinking is done in a similar manner as just described for zooming.The
equivalent process of pixel replication is row-column deletion.For example,to shrink
an image by one-half,we delete every other row and column.We can use the zoom-
ing grid analogy to visualize the concept of shrinking by a noninteger factor,except

v(x¿, y¿) = ax¿ + by¿ + cx¿y¿ + d
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that we now expand the grid to fit over the original image, do gray-level nearest
neighbor or bilinear interpolation,and then shrink the grid back to its original spec-
ified size.To reduce possible aliasing effects, it is a good idea to blur an image slight-
ly before shrinking it. Blurring of digital images is discussed in Chapters 3 and 4.

It is possible to use more neighbors for interpolation. Using more neighbors
implies fitting the points with a more complex surface, which generally gives
smoother results.This is an exceptionally important consideration in image gen-
eration for 3-D graphics [Watt (1993)] and in medical image processing
[Lehmann et al. (1999)], but the extra computational burden seldom is justifi-
able for general-purpose digital image zooming and shrinking, where bilinear
interpolation generally is the method of choice.

� Figures 2.20(d) through (f) are shown again in the top row of Fig. 2.25. As
noted earlier, these images were zoomed from 128*128, 64*64, and 32*32
to 1024*1024 pixels using nearest neighbor interpolation. The equivalent re-
sults using bilinear interpolation are shown in the second row of Fig. 2.25. The
improvements in overall appearance are clear, especially in the 128*128 and

FIGURE 2.25 Top row: images zoomed from 128*128, 64*64, and 32*32 pixels to 1024*1024 pixels,
using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

a b c
d e f

EXAMPLE 2.4:
Image zooming
using bilinear
interpolation.
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64*64 cases.The 32*32 to 1024*1024 image is blurry, but keep in mind that
this image was zoomed by a factor of 32. In spite of this, the result of bilinear
interpolation shown in Fig. 2.25(f) is a reasonably good rendition of the origi-
nal image shape, something that is lost in Fig. 2.25(c). �

Some Basic Relationships Between Pixels

In this section, we consider several important relationships between pixels in a
digital image.As mentioned before, an image is denoted by f(x, y).When refer-
ring in this section to a particular pixel, we use lowercase letters, such as p and q.

2.5.1 Neighbors of a Pixel
A pixel p at coordinates (x, y) has four horizontal and vertical neighbors whose
coordinates are given by

(x+1, y), (x-1, y), (x, y+1), (x, y-1)

This set of pixels, called the 4-neighbors of p, is denoted by N4(p). Each pixel
is a unit distance from (x, y), and some of the neighbors of p lie outside the
digital image if (x, y) is on the border of the image.

The four diagonal neighbors of p have coordinates

(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)

and are denoted by ND(p). These points, together with the 4-neighbors, are
called the 8-neighbors of p, denoted by N8(p).As before, some of the points in
ND(p) and N8(p) fall outside the image if (x, y) is on the border of the image.

2.5.2 Adjacency, Connectivity, Regions, and Boundaries
Connectivity between pixels is a fundamental concept that simplifies the defini-
tion of numerous digital image concepts, such as regions and boundaries. To es-
tablish if two pixels are connected, it must be determined if they are neighbors and
if their gray levels satisfy a specified criterion of similarity (say, if their gray lev-
els are equal). For instance, in a binary image with values 0 and 1, two pixels may
be 4-neighbors, but they are said to be connected only if they have the same value.

Let V be the set of gray-level values used to define adjacency. In a binary
image, V={1} if we are referring to adjacency of pixels with value 1. In a gray-
scale image, the idea is the same, but set V typically contains more elements. For
example, in the adjacency of pixels with a range of possible gray-level values 0
to 255, set V could be any subset of these 256 values. We consider three types
of adjacency:

(a) 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is
in the set N4(p).

(b) 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is
in the set N8(p).

2.5
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(c) m-adjacency (mixed adjacency).Two pixels p and q with values from V are
m-adjacent if

(i) q is in N4(p), or
(ii) q is in ND(p) and the set has no pixels whose values

are from V.

Mixed adjacency is a modification of 8-adjacency. It is introduced to eliminate
the ambiguities that often arise when 8-adjacency is used. For example, consid-
er the pixel arrangement shown in Fig. 2.26(a) for V={1}.The three pixels at
the top of Fig. 2.26(b) show multiple (ambiguous) 8-adjacency, as indicated by
the dashed lines. This ambiguity is removed by using m-adjacency, as shown in
Fig. 2.26(c). Two image subsets S1 and S2 are adjacent if some pixel in S1 is ad-
jacent to some pixel in S2. It is understood here and in the following definitions
that adjacent means 4-, 8-, or m-adjacent.

A (digital) path (or curve) from pixel p with coordinates (x, y) to pixel q
with coordinates (s, t) is a sequence of distinct pixels with coordinates

where and pixels and are
adjacent for 1 � i � n. In this case, n is the length of the path. If

the path is a closed path.We can define 4-, 8-, or m-paths de-
pending on the type of adjacency specified. For example, the paths shown in
Fig. 2.26(b) between the northeast and southeast points are 8-paths, and the
path in Fig. 2.26(c) is an m-path. Note the absence of ambiguity in the m-path.

Let S represent a subset of pixels in an image.Two pixels p and q are said to
be connected in S if there exists a path between them consisting entirely of pix-
els in S. For any pixel p in S, the set of pixels that are connected to it in S is
called a connected component of S. If it only has one connected component,
then set S is called a connected set.

Let R be a subset of pixels in an image. We call R a region of the image if R
is a connected set. The boundary (also called border or contour) of a region R
is the set of pixels in the region that have one or more neighbors that are not
in R. If R happens to be an entire image (which we recall is a rectangular set of
pixels), then its boundary is defined as the set of pixels in the first and last rows
and columns of the image.This extra definition is required because an image has
no neighbors beyond its border. Normally, when we refer to a region, we are

Ax0 , y0B = (xn , yn),

Axi - 1 , yi - 1BAxi , yiBAxn , ynB = (s, t),Ax0 , y0B = (x, y),

Ax0 , y0B, Ax1 , y1B, p , Axn , ynB

N4(p) ¨ N4(q)

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

FIGURE 2.26 (a) Arrangement of pixels; (b) pixels that are 8-adjacent (shown dashed)
to the center pixel; (c) m-adjacency.

a b c
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68 Chapter 2 � Digital Image Fundamentals

referring to a subset of an image, and any pixels in the boundary of the region
that happen to coincide with the border of the image are included implicitly as
part of the region boundary.

The concept of an edge is found frequently in discussions dealing with re-
gions and boundaries. There is a key difference between these concepts, how-
ever.The boundary of a finite region forms a closed path (Problem 2.14) and is
thus a “global” concept.As discussed in detail in Chapter 10, edges are formed
from pixels with derivative values that exceed a preset threshold.Thus, the idea
of an edge is a “local” concept that is based on a measure of gray-level discon-
tinuity at a point. It is possible to link edge points into edge segments, and some-
times these segments are linked in such a way that correspond to boundaries,
but this is not always the case.The one exception in which edges and boundaries
correspond is in binary images. Depending on the type of connectivity and edge
operators used (we discuss these in Chapter 10), the edge extracted from a bi-
nary region will be the same as the region boundary. This is intuitive. Concep-
tually, until we arrive at Chapter 10, it is helpful to think of edges as intensity
discontinuities and boundaries as closed paths.

2.5.3 Distance Measures
For pixels p, q, and z, with coordinates (x, y), (s, t), and (v, w), respectively, D
is a distance function or metric if

(a) D(p, q) � 0 AD(p, q)=0 iff p=q B ,
(b) D(p, q)=D(q, p), and
(c) D(p, z) � D(p, q)+D(q, z).

The Euclidean distance between p and q is defined as

(2.5-1)

For this distance measure, the pixels having a distance less than or equal to some
value r from (x, y) are the points contained in a disk of radius r centered at (x, y).

The D4 distance (also called city-block distance) between p and q is defined as

(2.5-2)

In this case, the pixels having a D4 distance from (x, y) less than or equal to
some value r form a diamond centered at (x, y). For example, the pixels with
D4 distance �2 from (x, y) (the center point) form the following contours of
constant distance:

The pixels with D4=1 are the 4-neighbors of (x, y).
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The D8 distance (also called chessboard distance) between p and q is defined as

(2.5-3)

In this case, the pixels with D8 distance from (x, y) less than or equal to some value
r form a square centered at (x, y). For example, the pixels with D8 distance �2
from (x, y) (the center point) form the following contours of constant distance:

The pixels with D8=1 are the 8-neighbors of (x, y).
Note that the D4 and D8 distances between p and q are independent of any

paths that might exist between the points because these distances involve only
the coordinates of the points. If we elect to consider m-adjacency, however, the
Dm distance between two points is defined as the shortest m-path between the
points. In this case, the distance between two pixels will depend on the values
of the pixels along the path, as well as the values of their neighbors. For in-
stance, consider the following arrangement of pixels and assume that p, p2 , and
p4 have value 1 and that p1 and p3 can have a value of 0 or 1:

Suppose that we consider adjacency of pixels valued 1 (i.e., V={1}). If p1 and
p3 are 0, the length of the shortest m-path (the Dm distance) between p and p4

is 2. If p1 is 1, then p2 and p will no longer be m-adjacent (see the definition of
m-adjacency) and the length of the shortest m-path becomes 3 (the path goes
through the points ). Similar comments apply if p3 is 1 (and p1 is 0); in
this case, the length of the shortest m-path also is 3. Finally, if both p1 and p3 are
1 the length of the shortest m-path between p and p4 is 4. In this case, the path
goes through the sequence of points 

2.5.4 Image Operations on a Pixel Basis
Numerous references are made in the following chapters to operations between
images, such as dividing one image by another. In Eq. (2.4-2), images were rep-
resented in the form of matrices. As we know, matrix division is not defined.
However, when we refer to an operation like “dividing one image by another,”
we mean specifically that the division is carried out between corresponding pix-
els in the two images.Thus, for example, if f and g are images, the first element
of the image formed by “dividing” f by g is simply the first pixel in f divided
by the first pixel in g; of course, the assumption is that none of the pixels in g
have value 0. Other arithmetic and logic operations are similarly defined be-
tween corresponding pixels in the images involved.

pp1 p2 p3 p4 .
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D8(p, q) = max A∑x - s∑, ∑y - t∑B.
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70 Chapter 2 � Digital Image Fundamentals

Linear and Nonlinear Operations

Let H be an operator whose input and output are images. H is said to be a linear
operator if, for any two images f and g and any two scalars a and b,

(2.6-1)

In other words, the result of applying a linear operator to the sum of two images
(that have been multiplied by the constants shown) is identical to applying the
operator to the images individually, multiplying the results by the appropriate
constants, and then adding those results. For example, an operator whose func-
tion is to compute the sum of K images is a linear operator. An operator that
computes the absolute value of the difference of two images is not. An opera-
tor that fails the test of Eq. (2.6-1) is by definition nonlinear.

Linear operations are exceptionally important in image processing because
they are based on a significant body of well-understood theoretical and practi-
cal results.Although nonlinear operations sometimes offer better performance,
they are not always predictable, and for the most part are not well understood
theoretically.

Summary
The material in this chapter is primarily background information for subsequent dis-
cussions. Our treatment of the human visual system, although brief, provides a basic idea
of the capabilities of the eye in perceiving pictorial information. The discussion of light
and the electromagnetic spectrum is fundamental in understanding the origin of the
many images we use in this book. Similarly, the image model developed in Section 2.3.4
is used in the Chapter 4 as the basis for an image enhancement technique called homo-
morphic filtering, and again in Chapter 10 to explain the effect of illumination on the
shape of image histograms.

The sampling ideas introduced in Section 2.4 are the foundation for many of the dig-
itizing phenomena likely to be encountered in practice. These ideas can be expanded
further once a basic understanding of frequency content is mastered.A detailed discus-
sion of the frequency domain is given in Chapter 4. The concepts of sampling and alias-
ing effects also are of importance in the context of image acquisition.

The concepts introduced in Section 2.5 are the basic building blocks for processing
techniques based on pixel neighborhoods. As shown in the following chapter and in
Chapter 5, neighborhood processing methods are at the core of many image enhance-
ment and restoration procedures.When applicable, neighborhood processing is favored
in commercial applications of image processing due to their operational speed and sim-
plicity of implementation in hardware and/or firmware. Finally, the concept of a linear
operator and the theoretical and conceptual power associated with it will be used ex-
tensively in the following three chapters.

References and Further Reading
Additional reading for the material in Section 2.1 regarding the structure of the human
eye may be found in Atchison and Smith [2000], and Oyster [1999]. For additional read-
ing on visual perception, see Regan [2000] and Gordon [1997].The book by Hubel [1988]
and the now classic book by Cornsweet [1970] also are of interest. Born and Wolf [1999]

H(af + bg) = aH(f) + bH(g).

2.6
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is a basic reference that discusses light in terms of electromagnetic theory. Electromag-
netic energy propagation is covered in some detail by Felsen and Marcuvitz [1994].

The area of image sensing is quite broad and very fast moving. An excellent source
of information on optical and other imaging sensors is the International Society for Op-
tical Engineering (SPIE). The following are representative publications by the SPIE in
this area: Blouke et al. [2001], Hoover and Doty [1996], and Freeman [1987].

The image model presented in Section 2.3.4 is from Oppenheim, Schafer, and Stock-
ham [1968].A reference for the illumination and reflectance values used in that section
is the IES Lighting Handbook [2000]. For additional reading on image sampling and
some of its effects, such as aliasing, see Bracewell [1995]. The early experiments men-
tioned in Section 2.4.3 on perceived image quality as a function of sampling and quati-
zation were reported by Huang [1965].The issue of reducing the number of samples and
gray levels in an image while minimizing the ensuing degradation is still of current in-
terest, as exemplified by Papamarkos and Atsalakis [2000]. For further reading on image
shrinking and zooming, see Sid-Ahmed [1995], Unser et al. [1995], Umbaugh [1998], and
Lehmann et al. [1999]. For further reading on the topics covered in Section 2.5, see
Rosenfeld and Kak [1982], Marchand-Maillet and Sharaiha [2000], and Ritter and Wil-
son [2001].Additional reading on linear systems in the context of image processing may
be found in Castleman [1996].

Problems
2.1 Using the background information provided in Section 2.1, and thinking purely

in geometric terms, estimate the diameter of the smallest printed dot that the eye
can discern if the page on which the dot is printed is 0.2 m away from the eyes.
Assume for simplicity that the visual system ceases to detect the dot when the
image of the dot on the fovea becomes smaller than the diameter of one recep-
tor (cone) in that area of the retina. Assume further that the fovea can be mod-
eled as a square array of dimensions 1.5 mm*1.5 mm, and that the cones and
spaces between the cones are distributed uniformly throughout this array.

2.2 When you enter a dark theater on a bright day, it takes an appreciable interval
of time before you can see well enough to find an empty seat. Which of the visu-
al processes explained in Section 2.1 is at play in this situation?

2.3 Although it is not shown in Fig. 2.10, alternating current certainly is part of the
electromagnetic spectrum. Commercial alternating current in the United States
has a frequency of 60 Hz.What is the wavelength in kilometers of this component
of the spectrum?

2.4 You are hired to design the front end of an imaging system for studying the bound-
ary shapes of cells, bacteria, viruses, and protein.The front end consists, in this case,
of the illumination source(s) and corresponding imaging camera(s). The diame-
ters of circles required to enclose individual specimens in each of these categories
are 50, 1, 0.1, and 0.01 �m, respectively.

(a) Can you solve the imaging aspects of this problem with a single sensor and
camera? If your answer is yes, specify the illumination wavelength band and
the type of camera needed. Identify the camera as being a color camera, far-
infrared camera, or whatever appropriate name corresponds to the illumi-
nation source.

(b) If your answer in (a) is no, what type of illumination sources and corre-
sponding imaging sensors would you recommend? Specify the light sources

Detailed solutions to the
problems marked with a
star can be found in the
book web site. The site
also contains suggested
projects based on the ma-
terial in this chapter.

See inside front cover
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and cameras as requested in part (a). Use the minimum number of illumina-
tion sources and cameras needed to solve the problem.

2.5 A CCD camera chip of dimensions 7*7 mm, and having 1024*1024 elements,
is focused on a square, flat area, located 0.5 m away. How many line pairs per mm
will this camera be able to resolve? The camera is equipped with a 35-mm lens.
(Hint: Model the imaging process as in Fig. 2.3, with the focal length of the cam-
era lens substituting for the focal length of the eye.)

2.6 An automobile manufacturer is automating the placement of certain components
on the bumpers of a limited-edition line of sports cars.The components are color
coordinated, so the robots need to know the color of each car in order to select the
appropriate bumper component. Models come in only four colors: blue, green, red,
and white.You are hired to propose a solution based on imaging. How would you
solve the problem of automatically determining the color of each car, keeping in
mind that cost is the most important consideration in your choice of components?

2.7 Suppose that a flat area with center at is illuminated by a light source with
intensity distribution

Assume for simplicity that the reflectance of the area is constant and equal to
1.0, and let K=255. If the resulting image is digitized with k bits of intensity res-
olution, and the eye can detect an abrupt change of eight shades of intensity be-
tween adjacent pixels, what value of k will cause visible false contouring?

2.8 Sketch the image in Problem 2.7 for k=2.

2.9 A common measure of transmission for digital data is the baud rate, defined as
the number of bits transmitted per second. Generally, transmission is accom-
plished in packets consisting of a start bit, a byte (8 bits) of information, and a stop
bit. Using these facts, answer the following:

(a) How many minutes would it take to transmit a 1024*1024 image with 256
gray levels using a 56K baud modem?

(b) What would the time be at 750K baud, a representative speed of a phone
DSL (digital subscriber line) connection?

2.10 High-definition television (HDTV) generates images with a resolution of 1125
horizontal TV lines interlaced (where every other line is painted on the tube face
in each of two fields, each field being 1�60th of a second in duration).The width-
to-height aspect ratio of the images is 16 :9. The fact that the horizontal lines are
distinct fixes the vertical resolution of the images. A company has designed an
image capture system that generates digital images from HDTV images.The res-
olution of each TV (horizontal) line in their system is in proportion to vertical res-
olution, with the proportion being the width-to-height ratio of the images. Each
pixel in the color image has 24 bits of intensity resolution, 8 pixels each for a red,
a green, and a blue image.These three “primary” images form a color image. How
many bits would it take to store a 2-hour HDTV program?

2.11 Consider the two image subsets, S1 and S2, shown in the following figure. For
V={1}, determine whether these two subsets are (a) 4-adjacent, (b) 8-adjacent,
or (c) m-adjacent.

i(x, y) = Ke-CAx - x0B
2 + Ay - y0B

2
D.

Ax0 , y0B

� 

GONZ02-034-074.II  29-08-2001  13:36  Page 72



� 

� 

� Problems 73

2.12 Develop an algorithm for converting a one-pixel-thick 8-path to a 4-path.

2.13 Develop an algorithm for converting a one-pixel-thick m-path to a 4-path.

2.14 Show that the boundary of the region, as defined in Section 2.5.2, is a closed path.

2.15 Consider the image segment shown.

(a) Let V={0, 1} and compute the lengths of the shortest 4-, 8-, and m-path be-
tween p and q. If a particular path does not exist between these two points,
explain why.

(b) Repeat for V={1, 2}.

2.16 (a) Give the condition(s) under which the D4 distance between two points p and
q is equal to the shortest 4-path between these points.

(b) Is this path unique?

2.17 Repeat Problem 2.16 for the D8 distance.

2.18 In the following chapter, we will deal with operators whose function is to com-
pute the sum of pixel values in a small subimage area, S. Show that these are lin-
ear operators.

2.19 The median, z, of a set of numbers is such that half the values in the set are below
z and the other half are above it. For example, the median of the set of values
{2, 3, 8, 20, 21, 25, 31} is 20. Show that an operator that computes the median of
a subimage area, S, is nonlinear.

2.20 A plant produces a line of translucent miniature polymer squares. Stringent qual-
ity requirements dictate 100% visual inspection, and the plant manager finds the use
of human inspectors increasingly expensive. Inspection is semiautomated.At each
inspection station, a robotic mechanism places each polymer square over a light
located under an optical system that produces a magnified image of the square.
The image completely fills a viewing screen measuring 80*80 mm. Defects appear
as dark circular blobs, and the inspector’s job is to look at the screen and reject any
sample that has one or more such dark blobs with a diameter of 0.8 mm or larger,
as measured on the scale of the screen. The manager believes that, if she can find
a way to automate the process completely, she will increase profits by 50%. She
also believes that success in this project will aid her climb up the corporate ladder.
After much investigation, the manager decides that the way to solve the problem
is to view each inspection screen with a CCD TV camera and feed the output of the

3 1 2 1

2 2 0 2

1 2 1 1

1(p)

(q)

0 1 2

0 0 0 0

0 0 1 0

0 0 1 0

0 1 1 1

0

0
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1
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74 Chapter 2 � Digital Image Fundamentals

camera into an image processing system capable of detecting the blobs, measuring
their diameter, and activating the accept/reject buttons previously operated by an
inspector. She is able to find a system that can do the job, as long as the smallest de-
fect occupies an area of at least 2*2 pixels in the digital image.The manager hires
you to help her specify the camera and lens system, but requires that you use off-
the-shelf components. For the lenses, assume that this constraint means any integer
multiple of 25 mm or 35 mm, up to 200 mm. For the cameras, it means resolutions
of 512*512, 1024*1024, or 2048*2048 pixels.The individual imaging elements
in these cameras are squares measuring 8*8 �m, and the spaces between imag-
ing elements are 2 �m. For this application, the cameras cost much more than the
lenses, so the problem should be solved with the lowest-resolution camera possible,
based on the choice of lenses.As a consultant, you are to provide a written recom-
mendation, showing in reasonable detail the analysis that led to your conclusion.
Use the same imaging geometry suggested in Problem 2.5.
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3 Image Enhancement 
in the Spatial Domain

It makes all the difference whether one sees darkness
through the light or brightness through the shadows.

David Lindsay

Preview
The principal objective of enhancement is to process an image so that the re-
sult is more suitable than the original image for a specific application.The word
specific is important, because it establishes at the outset that the techniques dis-
cussed in this chapter are very much problem oriented. Thus, for example, a
method that is quite useful for enhancing X-ray images may not necessarily be
the best approach for enhancing pictures of Mars transmitted by a space probe.
Regardless of the method used, however, image enhancement is one of the most
interesting and visually appealing areas of image processing.

Image enhancement approaches fall into two broad categories: spatial domain
methods and frequency domain methods.The term spatial domain refers to the
image plane itself, and approaches in this category are based on direct manipu-
lation of pixels in an image. Frequency domain processing techniques are based
on modifying the Fourier transform of an image. Spatial methods are covered in
this chapter, and frequency domain enhancement is discussed in Chapter 4. En-
hancement techniques based on various combinations of methods from these
two categories are not unusual.We note also that many of the fundamental tech-
niques introduced in this chapter in the context of enhancement are used in
subsequent chapters for a variety of other image processing applications.

There is no general theory of image enhancement. When an image is
processed for visual interpretation, the viewer is the ultimate judge of how well
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Origin

x

Image f(x, y)

(x, y)

y
FIGURE 3.1 A
3*3
neighborhood
about a point
(x, y) in an image.

a particular method works. Visual evaluation of image quality is a highly sub-
jective process, thus making the definition of a “good image” an elusive standard
by which to compare algorithm performance.When the problem is one of pro-
cessing images for machine perception, the evaluation task is somewhat easier.
For example, in dealing with a character recognition application, and leaving
aside other issues such as computational requirements, the best image process-
ing method would be the one yielding the best machine recognition results.
However, even in situations when a clear-cut criterion of performance can be
imposed on the problem, a certain amount of trial and error usually is required
before a particular image enhancement approach is selected.

Background

As indicated previously, the term spatial domain refers to the aggregate of
pixels composing an image. Spatial domain methods are procedures that op-
erate directly on these pixels. Spatial domain processes will be denoted by the
expression

(3.1-1)

where f(x, y) is the input image, g(x, y) is the processed image, and T is an
operator on f, defined over some neighborhood of (x, y). In addition, T can op-
erate on a set of input images, such as performing the pixel-by-pixel sum of K
images for noise reduction, as discussed in Section 3.4.2.

The principal approach in defining a neighborhood about a point (x, y) is to
use a square or rectangular subimage area centered at (x, y), as Fig. 3.1 shows.
The center of the subimage is moved from pixel to pixel starting, say, at the top
left corner.The operator T is applied at each location (x, y) to yield the output,
g, at that location. The process utilizes only the pixels in the area of the image
spanned by the neighborhood.Although other neighborhood shapes, such as ap-

g(x, y) = T Cf(x, y) D

3.1
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proximations to a circle, sometimes are used, square and rectangular arrays are
by far the most predominant because of their ease of implementation.

The simplest form of T is when the neighborhood is of size 1*1 (that is, a
single pixel). In this case, g depends only on the value of f at (x, y), and T be-
comes a gray-level (also called an intensity or mapping) transformation func-
tion of the form

(3.1-2)

where, for simplicity in notation, r and s are variables denoting, respectively,
the gray level of f(x, y) and g(x, y) at any point (x, y). For example, if T(r) has
the form shown in Fig. 3.2(a), the effect of this transformation would be to pro-
duce an image of higher contrast than the original by darkening the levels below
m and brightening the levels above m in the original image. In this technique,
known as contrast stretching, the values of r below m are compressed by the
transformation function into a narrow range of s, toward black.The opposite ef-
fect takes place for values of r above m. In the limiting case shown in Fig. 3.2(b),
T(r) produces a two-level (binary) image. A mapping of this form is called a
thresholding function. Some fairly simple, yet powerful, processing approaches
can be formulated with gray-level transformations. Because enhancement at
any point in an image depends only on the gray level at that point, techniques
in this category often are referred to as point processing.

Larger neighborhoods allow considerably more flexibility. The general ap-
proach is to use a function of the values of f in a predefined neighborhood of
(x, y) to determine the value of g at (x, y). One of the principal approaches in
this formulation is based on the use of so-called masks (also referred to as filters,
kernels, templates, or windows). Basically, a mask is a small (say, 3*3) 2-D
array, such as the one shown in Fig. 3.1, in which the values of the mask coeffi-
cients determine the nature of the process, such as image sharpening. En-
hancement techniques based on this type of approach often are referred to as
mask processing or filtering. These concepts are discussed in Section 3.5.

s = T(r)

a b
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78 Chapter 3 � Image Enhancement in the Spatial Domain

Some Basic Gray Level Transformations

We begin the study of image enhancement techniques by discussing gray-level
transformation functions.These are among the simplest of all image enhancement
techniques.The values of pixels, before and after processing, will be denoted by r
and s, respectively. As indicated in the previous section, these values are related
by an expression of the form s=T(r), where T is a transformation that maps a
pixel value r into a pixel value s. Since we are dealing with digital quantities, val-
ues of the transformation function typically are stored in a one-dimensional array
and the mappings from r to s are implemented via table lookups. For an 8-bit en-
vironment, a lookup table containing the values of T will have 256 entries.

As an introduction to gray-level transformations, consider Fig. 3.3, which
shows three basic types of functions used frequently for image enhancement: lin-
ear (negative and identity transformations), logarithmic (log and inverse-log
transformations), and power-law (nth power and nth root transformations).The
identity function is the trivial case in which output intensities are identical to
input intensities. It is included in the graph only for completeness.

3.2.1 Image Negatives
The negative of an image with gray levels in the range [0, L-1] is obtained by using
the negative transformation shown in Fig. 3.3, which is given by the expression

(3.2-1)s = L - 1 - r.

3.2

0

Identity

0
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FIGURE 3.3 Some
basic gray-level
transformation
functions used for
image
enhancement.
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FIGURE 3.4
(a) Original
digital
mammogram.
(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

Reversing the intensity levels of an image in this manner produces the equiva-
lent of a photographic negative. This type of processing is particularly suited
for enhancing white or gray detail embedded in dark regions of an image, es-
pecially when the black areas are dominant in size. An example is shown in
Fig. 3.4. The original image is a digital mammogram showing a small lesion. In
spite of the fact that the visual content is the same in both images, note how
much easier it is to analyze the breast tissue in the negative image in this par-
ticular case.

3.2.2 Log Transformations
The general form of the log transformation shown in Fig. 3.3 is

(3.2-2)

where c is a constant, and it is assumed that r � 0. The shape of the log curve
in Fig. 3.3 shows that this transformation maps a narrow range of low gray-level
values in the input image into a wider range of output levels.The opposite is true
of higher values of input levels. We would use a transformation of this type to
expand the values of dark pixels in an image while compressing the higher-level
values. The opposite is true of the inverse log transformation.

Any curve having the general shape of the log functions shown in Fig. 3.3
would accomplish this spreading/compressing of gray levels in an image. In fact,
the power-law transformations discussed in the next section are much more
versatile for this purpose than the log transformation. However, the log func-
tion has the important characteristic that it compresses the dynamic range of im-
ages with large variations in pixel values.A classic illustration of an application
in which pixel values have a large dynamic range is the Fourier spectrum, which
will be discussed in Chapter 4.At the moment, we are concerned only with the
image characteristics of spectra. It is not unusual to encounter spectrum values

s = c log (1 + r)

a b
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FIGURE 3.5
(a) Fourier
spectrum.
(b) Result of
applying the log
transformation
given in
Eq. (3.2-2) with
c=1.

that range from 0 to or higher.While processing numbers such as these pre-
sents no problems for a computer, image display systems generally will not be
able to reproduce faithfully such a wide range of intensity values.The net effect
is that a significant degree of detail will be lost in the display of a typical Fouri-
er spectrum.

As an illustration of log transformations, Fig. 3.5(a) shows a Fourier spectrum
with values in the range 0 to 1.5*106.When these values are scaled linearly for
display in an 8-bit system, the brightest pixels will dominate the display, at the ex-
pense of lower (and just as important) values of the spectrum.The effect of this
dominance is illustrated vividly by the relatively small area of the image in
Fig. 3.5(a) that is not perceived as black. If, instead of displaying the values in this
manner, we first apply Eq. (3.2-2) (with c=1 in this case) to the spectrum val-
ues, then the range of values of the result become 0 to 6.2, a more manageable
number. Figure 3.5(b) shows the result of scaling this new range linearly and dis-
playing the spectrum in the same 8-bit display.The wealth of detail visible in this
image as compared to a straight display of the spectrum is evident from these pic-
tures. Most of the Fourier spectra seen in image processing publications have
been scaled in just this manner.

3.2.3 Power-Law Transformations
Power-law transformations have the basic form

(3.2-3)

where c and g are positive constants. Sometimes Eq. (3.2-3) is written as
to account for an offset (that is, a measurable output when the

input is zero). However, offsets typically are an issue of display calibration and
as a result they are normally ignored in Eq. (3.2-3). Plots of s versus r for vari-
ous values of g are shown in Fig. 3.6. As in the case of the log transformation,
power-law curves with fractional values of gmap a narrow range of dark input
values into a wider range of output values, with the opposite being true for high-

s = c(r + e)g

s = crg

106

a b
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er values of input levels. Unlike the log function, however, we notice here a
family of possible transformation curves obtained simply by varying g. As ex-
pected, we see in Fig. 3.6 that curves generated with values of g>1 have ex-
actly the opposite effect as those generated with values of g<1. Finally, we
note that Eq. (3.2-3) reduces to the identity transformation when c=g=1.

A variety of devices used for image capture, printing, and display respond ac-
cording to a power law. By convention, the exponent in the power-law equation
is referred to as gamma [hence our use of this symbol in Eq. (3.2-3)].The process
used to correct this power-law response phenomena is called gamma correc-
tion. For example, cathode ray tube (CRT) devices have an intensity-to-volt-
age response that is a power function, with exponents varying from
approximately 1.8 to 2.5.With reference to the curve for g=2.5 in Fig. 3.6, we
see that such display systems would tend to produce images that are darker
than intended. This effect is illustrated in Fig. 3.7. Figure 3.7(a) shows a simple
gray-scale linear wedge input into a CRT monitor. As expected, the output of
the monitor appears darker than the input, as shown in Fig. 3.7(b). Gamma cor-
rection in this case is straightforward.All we need to do is preprocess the input
image before inputting it into the monitor by performing the transformation

The result is shown in Fig. 3.7(c). When input into the same
monitor, this gamma-corrected input produces an output that is close in ap-
pearance to the original image, as shown in Fig. 3.7(d).A similar analysis would

s = r1�2.5 = r0.4.
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Monitor

Monitor

Gamma
correction

Image as viewed on monitor

Image as viewed on monitor

FIGURE 3.7
(a) Linear-wedge
gray-scale image.
(b) Response of
monitor to linear
wedge.
(c) Gamma-
corrected wedge.
(d) Output of
monitor.

apply to other imaging devices such as scanners and printers. The only differ-
ence would be the device-dependent value of gamma (Poynton [1996]).

Gamma correction is important if displaying an image accurately on a com-
puter screen is of concern. Images that are not corrected properly can look ei-
ther bleached out, or, what is more likely, too dark. Trying to reproduce colors
accurately also requires some knowledge of gamma correction because varying
the value of gamma correction changes not only the brightness, but also the ra-
tios of red to green to blue. Gamma correction has become increasingly im-
portant in the past few years, as use of digital images for commercial purposes
over the Internet has increased. It is not unusual that images created for a pop-
ular Web site will be viewed by millions of people, the majority of whom will
have different monitors and/or monitor settings. Some computer systems even
have partial gamma correction built in. Also, current image standards do not
contain the value of gamma with which an image was created, thus complicat-
ing the issue further. Given these constraints, a reasonable approach when stor-
ing images in a Web site is to preprocess the images with a gamma that
represents an “average” of the types of monitors and computer systems that
one expects in the open market at any given point in time.

� In addition to gamma correction, power-law transformations are useful for
general-purpose contrast manipulation. Figure 3.8(a) shows a magnetic reso-
nance (MR) image of an upper thoracic human spine with a fracture dislocation

EXAMPLE 3.1:
Contrast
enhancement
using power-law
transformations.

a b
c d
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FIGURE 3.8
(a) Magnetic
resonance (MR)
image of a
fractured human
spine.
(b)–(d) Results of
applying the
transformation in
Eq. (3.2-3) with
c=1 and
g=0.6, 0.4, and
0.3, respectively.
(Original image
for this example
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

and spinal cord impingement. The fracture is visible near the vertical center of
the spine, approximately one-fourth of the way down from the top of the pic-
ture. Since the given image is predominantly dark, an expansion of gray levels
are desirable. This can be accomplished with a power-law transformation with
a fractional exponent. The other images shown in the Figure were obtained by
processing Fig. 3.8(a) with the power-law transformation function of Eq. (3.2-3).
The values of gamma corresponding to images (b) through (d) are 0.6, 0.4, and
0.3, respectively (the value of c was 1 in all cases). We note that, as gamma de-
creased from 0.6 to 0.4, more detail became visible.A further decrease of gamma

a b
c d
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FIGURE 3.9
(a) Aerial image.
(b)–(d) Results of
applying the
transformation in
Eq. (3.2-3) with
c=1 and
g=3.0, 4.0, and
5.0, respectively.
(Original image
for this example
courtesy of
NASA.)

to 0.3 enhanced a little more detail in the background, but began to reduce con-
trast to the point where the image started to have a very slight “washed-out”
look, especially in the background. By comparing all results, we see that the
best enhancement in terms of contrast and discernable detail was obtained with
g=0.4.A value of g=0.3 is an approximate limit below which contrast in this
particular image would be reduced to an unacceptable level. �

� Figure 3.9(a) shows the opposite problem of Fig. 3.8(a).The image to be en-
hanced now has a washed-out appearance, indicating that a compression of gray
levels is desirable. This can be accomplished with Eq. (3.2-3) using values of g
greater than 1. The results of processing Fig. 3.9(a) with g=3.0, 4.0, and 5.0
are shown in Figs. 3.9(b) through (d). Suitable results were obtained with gamma
values of 3.0 and 4.0, the latter having a slightly more appealing appearance be-
cause it has higher contrast.The result obtained with g=5.0 has areas that are
too dark, in which some detail is lost.The dark region to the left of the main road
in the upper left quadrant is an example of such an area. �

EXAMPLE 3.2:
Another
illustration of
power-law
transformations.

a b
c d
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3.2.4 Piecewise-Linear Transformation Functions
A complementary approach to the methods discussed in the previous three sec-
tions is to use piecewise linear functions. The principal advantage of piecewise
linear functions over the types of functions we have discussed thus far is that the
form of piecewise functions can be arbitrarily complex. In fact, as we will see
shortly, a practical implementation of some important transformations can be
formulated only as piecewise functions. The principal disadvantage of piece-
wise functions is that their specification requires considerably more user input.

Contrast stretching

One of the simplest piecewise linear functions is a contrast-stretching trans-
formation. Low-contrast images can result from poor illumination, lack of dy-
namic range in the imaging sensor, or even wrong setting of a lens aperture
during image acquisition.The idea behind contrast stretching is to increase the
dynamic range of the gray levels in the image being processed.

Figure 3.10(a) shows a typical transformation used for contrast stretching.
The locations of points Ar1, s1B and Ar2, s2B control the shape of the transformation
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FIGURE 3.10
Contrast
stretching.
(a) Form of
transformation
function. (b) A
low-contrast
image. (c) Result
of contrast
stretching.
(d) Result of
thresholding.
(Original image
courtesy of
Dr. Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)

a b
c d
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function. If r1=s1 and r2=s2 , the transformation is a linear function that pro-
duces no changes in gray levels. If r1=r2, s1=0 and s2=L-1, the transfor-
mation becomes a thresholding function that creates a binary image, as illustrated
in Fig. 3.2(b). Intermediate values of Ar1, s1B and Ar2, s2B produce various degrees
of spread in the gray levels of the output image, thus affecting its contrast. In
general, r1 � r2 and s1 � s2 is assumed so that the function is single valued and
monotonically increasing.This condition preserves the order of gray levels, thus
preventing the creation of intensity artifacts in the processed image.

Figure 3.10(b) shows an 8-bit image with low contrast. Fig. 3.10(c) shows the
result of contrast stretching, obtained by setting Ar1 , s1 B= Armin , 0 B and
Ar2, s2 B=Armax, L-1B where rmin and rmax denote the minimum and maximum
gray levels in the image, respectively.Thus, the transformation function stretched
the levels linearly from their original range to the full range [0, L-1]. Final-
ly, Fig. 3.10(d) shows the result of using the thresholding function defined pre-
viously, with r1=r2=m, the mean gray level in the image.The original image
on which these results are based is a scanning electron microscope image of
pollen, magnified approximately 700 times.

Gray-level slicing

Highlighting a specific range of gray levels in an image often is desired. Appli-
cations include enhancing features such as masses of water in satellite imagery
and enhancing flaws in X-ray images.There are several ways of doing level slic-
ing, but most of them are variations of two basic themes. One approach is to dis-
play a high value for all gray levels in the range of interest and a low value for
all other gray levels.This transformation, shown in Fig. 3.11(a), produces a binary
image.The second approach, based on the transformation shown in Fig. 3.11(b),
brightens the desired range of gray levels but preserves the background and
gray-level tonalities in the image. Figure 3.11(c) shows a gray-scale image, and
Fig. 3.11(d) shows the result of using the transformation in Fig. 3.11(a).Variations
of the two transformations shown in Fig. 3.11 are easy to formulate.

Bit-plane slicing

Instead of highlighting gray-level ranges, highlighting the contribution made to
total image appearance by specific bits might be desired. Suppose that each
pixel in an image is represented by 8 bits. Imagine that the image is composed
of eight 1-bit planes, ranging from bit-plane 0 for the least significant bit to bit-
plane 7 for the most significant bit. In terms of 8-bit bytes, plane 0 contains all
the lowest order bits in the bytes comprising the pixels in the image and plane
7 contains all the high-order bits. Figure 3.12 illustrates these ideas, and Fig. 3.14
shows the various bit planes for the image shown in Fig. 3.13. Note that the
higher-order bits (especially the top four) contain the majority of the visually sig-
nificant data.The other bit planes contribute to more subtle details in the image.
Separating a digital image into its bit planes is useful for analyzing the relative
importance played by each bit of the image, a process that aids in determining
the adequacy of the number of bits used to quantize each pixel. Also, this type
of decomposition is useful for image compression, as discussed in Chapter 8.
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FIGURE 3.11
(a) This
transformation
highlights range
[A, B] of gray
levels and reduces
all others to a
constant level.
(b) This
transformation
highlights range
[A, B] but
preserves all
other levels.
(c) An image.
(d) Result of
using the
transformation
in (a).

One 8-bit byte Bit-plane 7
(most significant)

Bit-plane 0
(least significant)

FIGURE 3.12
Bit-plane
representation of
an 8-bit image.

In terms of bit-plane extraction for an 8-bit image, it is not difficult to show
that the (binary) image for bit-plane 7 can be obtained by processing the input
image with a thresholding gray-level transformation function that (1) maps all
levels in the image between 0 and 127 to one level (for example, 0); and (2) maps
all levels between 129 and 255 to another (for example, 255).The binary image
for bit-plane 7 in Fig. 3.14 was obtained in just this manner. It is left as an exer-
cise (Problem 3.3) to obtain the gray-level transformation functions that would
yield the other bit planes.

a b
c d
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88 Chapter 3 � Image Enhancement in the Spatial Domain

Histogram Processing

The histogram of a digital image with gray levels in the range [0, L-1] is a dis-
crete function h Ark B=nk , where rk is the kth gray level and nk is the number
of pixels in the image having gray level rk . It is common practice to normalize
a histogram by dividing each of its values by the total number of pixels in the
image, denoted by n. Thus, a normalized histogram is given by p Ark B=nk�n,
for k=0, 1, p , L-1. Loosely speaking, p Ark B gives an estimate of the prob-
ability of occurrence of gray level rk . Note that the sum of all components of a
normalized histogram is equal to 1.

Histograms are the basis for numerous spatial domain processing techniques.
Histogram manipulation can be used effectively for image enhancement, as
shown in this section. In addition to providing useful image statistics, we shall
see in subsequent chapters that the information inherent in histograms also is
quite useful in other image processing applications, such as image compression
and segmentation. Histograms are simple to calculate in software and also lend
themselves to economic hardware implementations, thus making them a pop-
ular tool for real-time image processing.

As an introduction to the role of histogram processing in image enhance-
ment, consider Fig. 3.15, which is the pollen image of Fig. 3.10 shown in four
basic gray-level characteristics: dark, light, low contrast, and high contrast. The
right side of the figure shows the histograms corresponding to these images.
The horizontal axis of each histogram plot corresponds to gray level values, rk .
The vertical axis corresponds to values of h Ark B=nk or p Ark B=nk�n if the
values are normalized. Thus, as indicated previously, these histogram plots are
simply plots of h Ark B=nk versus rk or p Ark B=nk�n versus rk .

3.3

FIGURE 3.13 An 8-bit fractal image. (A fractal is an image generated from mathematical
expressions). (Courtesy of Ms. Melissa D. Binde, Swarthmore College, Swarthmore, PA.)

Consult the book web site
for a review of basic prob-
ability theory.

See inside front cover
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3.3 � Histogram Processing 89

FIGURE 3.14 The eight bit planes of the image in Fig. 3.13. The number at the bottom,
right of each image identifies the bit plane.

We note in the dark image that the components of the histogram are con-
centrated on the low (dark) side of the gray scale. Similarly, the components of
the histogram of the bright image are biased toward the high side of the gray
scale. An image with low contrast has a histogram that will be narrow and will
be centered toward the middle of the gray scale. For a monochrome image this
implies a dull, washed-out gray look. Finally, we see that the components of the
histogram in the high-contrast image cover a broad range of the gray scale and,
further, that the distribution of pixels is not too far from uniform, with very few
vertical lines being much higher than the others. Intuitively, it is reasonable to
conclude that an image whose pixels tend to occupy the entire range of possi-
ble gray levels and, in addition, tend to be distributed uniformly, will have an ap-
pearance of high contrast and will exhibit a large variety of gray tones.The net
effect will be an image that shows a great deal of gray-level detail and has high
dynamic range. It will be shown shortly that it is possible to develop a trans-
formation function that can automatically achieve this effect, based only on
information available in the histogram of the input image.
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Dark image

Bright image

Low-contrast image

High-contrast image

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their cor-
responding histograms. (Original image courtesy of Dr. Roger Heady, Research School
of Biological Sciences, Australian National University, Canberra, Australia.)

a b
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3.3 � Histogram Processing 91

3.3.1 Histogram Equalization
Consider for a moment continuous functions, and let the variable r represent the
gray levels of the image to be enhanced. In the initial part of our discussion we
assume that r has been normalized to the interval [0, 1], with r=0 represent-
ing black and r=1 representing white. Later, we consider a discrete formula-
tion and allow pixel values to be in the interval [0, L-1].

For any r satisfying the aforementioned conditions, we focus attention on
transformations of the form

s=T(r) 0 � r � 1 (3.3-1)

that produce a level s for every pixel value r in the original image. For reasons
that will become obvious shortly, we assume that the transformation function
T(r) satisfies the following conditions:

(a) T(r) is single-valued and monotonically increasing in the interval
0 � r � 1; and

(b) 0 � T(r) � 1 for 0 � r � 1.

The requirement in (a) that T(r) be single valued is needed to guarantee that the
inverse transformation will exist, and the monotonicity condition preserves
the increasing order from black to white in the output image.A transformation
function that is not monotonically increasing could result in at least a section
of the intensity range being inverted, thus producing some inverted gray levels
in the output image. While this may be a desirable effect in some cases, that is
not what we are after in the present discussion. Finally, condition (b) guarantees
that the output gray levels will be in the same range as the input levels. Fig-
ure 3.16 gives an example of a transformation function that satisfies these two
conditions. The inverse transformation from s back to r is denoted

(3.3-2)

It can be shown by example (Problem 3.8) that even if T(r) satisfies conditions
(a) and (b), it is possible that the corresponding inverse may fail to be sin-
gle valued.

T-1(s)

r = T-1(s)  0 � s � 1.

T(r)

0 rk 1

t

r

s

sk=T(rk)

FIGURE 3.16 A
gray-level
transformation
function that is
both single valued
and
monotonically
increasing.
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92 Chapter 3 � Image Enhancement in the Spatial Domain

The gray levels in an image may be viewed as random variables in the in-
terval [0, 1]. One of the most fundamental descriptors of a random variable is
its probability density function (PDF). Let pr(r) and ps(s) denote the probability
density functions of random variables r and s, respectively, where the subscripts
on p are used to denote that pr and ps are different functions. A basic result
from an elementary probability theory is that, if pr(r) and T(r) are known and

satisfies condition (a), then the probability density function ps(s) of the
transformed variable s can be obtained using a rather simple formula:

(3.3-3)

Thus, the probability density function of the transformed variable, s, is deter-
mined by the gray-level PDF of the input image and by the chosen transfor-
mation function.

A transformation function of particular importance in image processing
has the form

(3.3-4)

where w is a dummy variable of integration.The right side of Eq. (3.3-4) is rec-
ognized as the cumulative distribution function (CDF) of random variable r.
Since probability density functions are always positive, and recalling that the in-
tegral of a function is the area under the function, it follows that this transfor-
mation function is single valued and monotonically increasing, and, therefore,
satisfies condition (a). Similarly, the integral of a probability density function for
variables in the range [0, 1] also is in the range [0, 1], so condition (b) is satis-
fied as well.

Given transformation function T(r), we find ps(s) by applying Eq. (3.3-3).We
know from basic calculus (Leibniz’s rule) that the derivative of a definite inte-
gral with respect to its upper limit is simply the integrand evaluated at that limit.
In other words,

(3.3-5)

Substituting this result for dr�ds into Eq. (3.3-3), and keeping in mind that all
probability values are positive, yields 

(3.3-6)

 = 1  0 � s � 1.

 = pr(r) 2 1
pr(r)
2

 ps(s) = pr(r) 2 dr
ds
2

 = pr(r).

 =
d

dr
 c 3

r

0
pr(w) dw d

 
ds
dr

=
dT(r)

dr

s = T(r) = 3
r

0
pr(w) dw

ps(s) = pr(r) 2 dr
ds
2  .

T-1(s)
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3.3 � Histogram Processing 93

Because ps(s) is a probability density function, it follows that it must be zero out-
side the interval [0, 1] in this case because its integral over all values of s must
equal 1. We recognize the form of ps(s) given in Eq. (3.3-6) as a uniform prob-
ability density function. Simply stated, we have demonstrated that performing
the transformation function given in Eq. (3.3-4) yields a random variable s char-
acterized by a uniform probability density function. It is important to note from
Eq. (3.3-4) that T(r) depends on pr(r), but, as indicated by Eq. (3.3-6), the re-
sulting ps(s) always is uniform, independent of the form of pr(r).

For discrete values we deal with probabilities and summations instead of
probability density functions and integrals. The probability of occurrence of
gray level rk in an image is approximated by

(3.3-7)

where, as noted at the beginning of this section, n is the total number of pixels
in the image, nk is the number of pixels that have gray level rk , and L is the total
number of possible gray levels in the image. The discrete version of the trans-
formation function given in Eq. (3.3-4) is

(3.3-8)

Thus, a processed (output) image is obtained by mapping each pixel with level
rk in the input image into a corresponding pixel with level sk in the output image
via Eq. (3.3-8). As indicated earlier, a plot of pr Ark B versus rk is called a his-
togram. The transformation (mapping) given in Eq. (3.3-8) is called histogram
equalization or histogram linearization. It is not difficult to show (Problem 3.9)
that the transformation in Eq. (3.3-8) satisfies conditions (a) and (b) stated pre-
viously in this section.

Unlike its continuos counterpart, it cannot be proved in general that this dis-
crete transformation will produce the discrete equivalent of a uniform proba-
bility density function, which would be a uniform histogram. However, as will
be seen shortly, use of Eq. (3.3-8) does have the general tendency of spreading
the histogram of the input image so that the levels of the histogram-equalized
image will span a fuller range of the gray scale.

We discussed earlier in this section the many advantages of having gray-level
values that cover the entire gray scale. In addition to producing gray levels that
have this tendency, the method just derived has the additional advantage that
it is fully “automatic.” In other words, given an image, the process of histogram
equalization consists simply of implementing Eq. (3.3-8), which is based on in-
formation that can be extracted directly from the given image, without the need
for further parameter specifications. We note also the simplicity of the compu-
tations that would be required to implement the technique.

The inverse transformation from s back to r is denoted by

(3.3-9)rk = T-1AskB  k = 0, 1, 2, p , L - 1

 = a
k

j = 0
 
nj

n
  k = 0, 1, 2, p , L - 1.

 sk = TArkB = a
k

j = 0
prArjB

pr(rk) =
nk

n
  k = 0, 1, 2, p , L - 1
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94 Chapter 3 � Image Enhancement in the Spatial Domain

It can be shown (Problem 3.9) that the inverse transformation in Eq. (3.3-9)
satisfies conditions (a) and (b) stated previously in this section only if none of
the levels, rk , k=0, 1, 2, p , L-1, are missing from the input image.Although
the inverse transformation is not used in histogram equalization, it plays a cen-
tral role in the histogram-matching scheme developed in the next section. We
also discuss in that section details of how to implement histogram processing
techniques.

� Figure 3.17(a) shows the four images from Fig. 3.15, and Fig. 3.17(b) shows
the result of performing histogram equalization on each of these images.The first
three results (top to bottom) show significant improvement. As expected, his-
togram equalization did not produce a significant visual difference in the fourth
image because the histogram of this image already spans the full spectrum of
the gray scale. The transformation functions used to generate the images in
Fig. 3.17(b) are shown in Fig. 3.18. These functions were generated from the
histograms of the original images [see Fig. 3.15(b)] using Eq. (3.3-8). Note that
transformation (4) has a basic linear shape, again indicating that the gray lev-
els in the fourth input image are nearly uniformly distributed.As was just noted,
we would expect histogram equalization in this case to have negligible effect on
the appearance of the image.

The histograms of the equalized images are shown in Fig. 3.17(c). It is of in-
terest to note that, while all these histograms are different, the histogram-
equalized images themselves are visually very similar. This is not unexpected
because the difference between the images in the left column is simply one of
contrast, not of content. In other words, since the images have the same content,
the increase in contrast resulting from histogram equalization was enough to
render any gray-level differences in the resulting images visually indistinguish-
able. Given the significant contrast differences of the images in the left column,
this example illustrates the power of histogram equalization as an adaptive en-
hancement tool. �

3.3.2 Histogram Matching (Specification)
As indicated in the preceding discussion, histogram equalization automatical-
ly determines a transformation function that seeks to produce an output image
that has a uniform histogram. When automatic enhancement is desired, this is
a good approach because the results from this technique are predictable and the
method is simple to implement. We show in this section that there are applica-
tions in which attempting to base enhancement on a uniform histogram is not
the best approach. In particular, it is useful sometimes to be able to specify the
shape of the histogram that we wish the processed image to have. The method
used to generate a processed image that has a specified histogram is called
histogram matching or histogram specification.

Development of the method

Let us return for a moment to continuous gray levels r and z (considered
continuous random variables), and let pr(r) and pz(z) denote their corre-
sponding continuos probability density functions. In this notation, r and z denote

EXAMPLE 3.3:
Histogram
equalization.
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3.3 � Histogram Processing 95

FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Cor-
responding histograms.

a b c
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FIGURE 3.18
Transformation
functions (1)
through (4) were
obtained from the
histograms of the
images in
Fig.3.17(a), using
Eq. (3.3-8).

the gray levels of the input and output (processed) images, respectively.We can
estimate pr(r) from the given input image, while pz(z) is the specified probability
density function that we wish the output image to have.

Let s be a random variable with the property

(3.3-10)

where w is a dummy variable of integration.We recognize this expression as the
continuos version of histogram equalization given in Eq. (3.3-4). Suppose next
that we define a random variable z with the property

(3.3-11)

where t is a dummy variable of integration. It then follows from these two equa-
tions that G(z)=T(r) and, therefore, that z must satisfy the condition

(3.3-12)

The transformation T(r) can be obtained from Eq. (3.3-10) once pr(r) has been
estimated from the input image. Similarly, the transformation function G(z)
can be obtained using Eq. (3.3-11) because pz(z) is given.

Assuming that G–1 exists and that it satisfies conditions (a) and (b) in the
previous section, Eqs. (3.3-10) through (3.3-12) show that an image with a spec-
ified probability density function can be obtained from an input image by using
the following procedure: (1) Obtain the transformation function T(r) using
Eq. (3.3-10). (2) Use Eq. (3.3-11) to obtain the transformation function G(z).
(3) Obtain the inverse transformation function G–1. (4) Obtain the output image

z = G-1(s) = G-1 CT(r) D .

G(z) = 3
z

0
pz(t) dt = s

s = T(r) = 3
r

0
pr(w) dw
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3.3 � Histogram Processing 97

by applying Eq. (3.3-12) to all the pixels in the input image.The result of this pro-
cedure will be an image whose gray levels, z, have the specified probability den-
sity function pz(z).

Although the procedure just described is straightforward in principle, it is
seldom possible in practice to obtain analytical expressions for T(r) and for
G–1. Fortunately, this problem is simplified considerably in the case of discrete
values.The price we pay is the same as in histogram equalization, where only an
approximation to the desired histogram is achievable. In spite of this, however,
some very useful results can be obtained even with crude approximations.

The discrete formulation of Eq. (3.3-10) is given by Eq. (3.3-8), which we re-
peat here for convenience:

(3.3-13)

where n is the total number of pixels in the image, nj is the number of pixels with
gray level rj , and L is the number of discrete gray levels. Similarly, the discrete
formulation of Eq. (3.3-11) is obtained from the given histogram pz Azi B , i=0,
1, 2, p , L-1, and has the form

(3.3-14)

As in the continuos case, we are seeking values of z that satisfy this equation.
The variable vk was added here for clarity in the discussion that follows. Final-
ly, the discrete version of Eq. (3.3-12) is given by

(3.3-15)

or, from Eq. (3.3-13),

(3.3-16)

Equations (3.3-13) through (3.3-16) are the foundation for implementing
histogram matching for digital images. Equation (3.3-13) is a mapping from the
levels in the original image into corresponding levels sk based on the histogram
of the original image, which we compute from the pixels in the image. Equation
(3.3-14) computes a transformation function G from the given histogram pz(z).
Finally, Eq. (3.3-15) or its equivalent, Eq. (3.3-16), gives us (an approximation
of) the desired levels of the image with that histogram. The first two equations
can be implemented easily because all the quantities are known. Implementa-
tion of Eq. (3.3-16) is straightforward, but requires additional explanation.

Implementation

We start by noting the following: (1) Each set of gray levels ErjF , EsjF , and EzjF ,
j=0, 1, 2, p , L-1, is a one-dimensional array of dimension L*1. (2) All
mappings from r to s and from s to z are simple table lookups between a given

zk = G-1AskB  k = 0, 1, 2, p , L - 1.

zk = G-1 CTArkB D  k = 0, 1, 2, p , L - 1

vk = GAzkB = a
k

i = 0
pzAziB = sk  k = 0, 1, 2, p , L - 1.

 = a
k

j = 0
 
nj

n
  k = 0, 1, 2, p , L - 1

 sk = TArkB =  a      k
         

j = 0
prArjB
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FIGURE 3.19
(a) Graphical
interpretation of
mapping from rk

to sk via T(r).
(b) Mapping of zq

to its
corresponding
value vq via G(z).
(c) Inverse
mapping from sk

to its
corresponding
value of zk .

a b
c

pixel value and these arrays. (3) Each of the elements of these arrays, for ex-
ample, sk , contains two important pieces of information: The subscript k de-
notes the location of the element in the array, and s denotes the value at that
location. (4) We need to be concerned only with integer pixel values. For ex-
ample, in the case of an 8-bit image, L=256 and the elements of each of the
arrays just mentioned are integers between 0 and 255.This implies that we now
work with gray level values in the interval [0, L-1] instead of the normalized
interval [0, 1] that we used before to simplify the development of histogram
processing techniques.

In order to see how histogram matching actually can be implemented, con-
sider Fig. 3.19(a), ignoring for a moment the connection shown between this
figure and Fig. 3.19(c). Figure 3.19(a) shows a hypothetical discrete transfor-
mation function s=T(r) obtained from a given image. The first gray level in
the image, r1 , maps to s1 ; the second gray level, r2 , maps to s2 ; the kth level rk

maps to sk ; and so on (the important point here is the ordered correspondence
between these values). Each value sj in the array is precomputed using
Eq. (3.3-13), so the process of mapping simply uses the actual value of a pixel
as an index in an array to determine the corresponding value of s. This process
is particularly easy because we are dealing with integers. For example, the s
mapping for an 8-bit pixel with value 127 would be found in the 128th position
in array EsjF (recall that we start at 0) out of the possible 256 positions. If we
stopped here and mapped the value of each pixel of an input image by the
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3.3 � Histogram Processing 99

method just described, the output would be a histogram-equalized image, ac-
cording to Eq. (3.3-8).

In order to implement histogram matching we have to go one step further.
Figure 3.19(b) is a hypothetical transformation function G obtained from a
given histogram pz(z) by using Eq. (3.3-14). For any zq , this transformation
function yields a corresponding value vq . This mapping is shown by the arrows
in Fig. 3.19(b). Conversely, given any value vq , we would find the correspond-
ing value zq from G–1. In terms of the figure, all this means graphically is that we
would reverse the direction of the arrows to map vq into its corresponding zq .
However, we know from the definition in Eq. (3.3-14) that v=s for corre-
sponding subscripts, so we can use exactly this process to find the zk corre-
sponding to any value sk that we computed previously from the equation
sk=T Ark B . This idea is shown in Fig. 3.19(c).

Since we really do not have the z’s (recall that finding these values is pre-
cisely the objective of histogram matching), we must resort to some sort of iter-
ative scheme to find z from s. The fact that we are dealing with integers makes
this a particularly simple process. Basically, because vk=sk , we have from
Eq. (3.3-14) that the z’s for which we are looking must satisfy the equation
GAzk B=sk , or AGAzk B-skB=0. Thus, all we have to do to find the value of zk

corresponding to sk is to iterate on values of z such that this equation is satisfied
for k=0, 1, 2, p , L-1. This is the same thing as Eq. (3.3-16), except that we
do not have to find the inverse of G because we are going to iterate on z. Since
we are dealing with integers, the closest we can get to satisfying the equation
AG Azk B-sk B=0 is to let zk= for each value of k, where is the smallest
integer in the interval [0, L-1] such that

(3.3-17)

Given a value sk , all this means conceptually in terms of Fig. 3.19(c) is that we
would start with and increase it in integer steps until Eq. (3.3-17) is sat-
isfied, at which point we let Repeating this process for all values of k
would yield all the required mappings from s to z, which constitutes the im-
plementation of Eq. (3.3-16). In practice, we would not have to start with
each time because the values of sk are known to increase monotonically. Thus,
for k=k+1, we would start with and increment in integer values
from there.

The procedure we have just developed for histogram matching may be sum-
marized as follows:

1. Obtain the histogram of the given image.
2. Use Eq. (3.3-13) to precompute a mapped level sk for each level rk .
3. Obtain the transformation function G from the given pz(z) using

Eq. (3.3-14).
4. Precompute zk for each value of sk using the iterative scheme defined in con-

nection with Eq. (3.3-17).
5. For each pixel in the original image, if the value of that pixel is rk , map this

value to its corresponding level sk ; then map level sk into the final level zk .
Use the precomputed values from Steps (2) and (4) for these mappings.

ẑ = zk

ẑ = 0

zk = ẑ.
ẑ = 0

AG(ẑ) - skB � 0  k = 0, 1, 2, p , L - 1.

ẑẑ
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FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA’s Mars Global
Surveyor. (b) Histogram. (Original image courtesy of NASA.)

Note that Step (5) implements two mappings for each pixel in the image being
processed. The first mapping is nothing more than histogram equalization. If
the histogram-equalized image is not required, it obviously would be beneficial
to combine both transformations into one in order to save an intermediate step.

Finally, we note that, even in the discrete case, we need to be concerned about
G–1 satisfying conditions (a) and (b) of the previous section. It is not difficult to
show (Problem 3.9) that the only way to guarantee that G–1 be single valued and
monotonic is to require that G be strictly monotonic (i.e., always increasing),
which means simply that none of the values of the specified histogram pz Azi B in
Eq. (3.3-14) can be zero.

� Figure 3.20(a) shows an image of the Mars moon, Phobos, taken by NASA’s
Mars Global Surveyor. Figure 3.20(b) shows the histogram of Fig. 3.20(a). The
image is dominated by large, dark areas, resulting in a histogram characterized
by a large concentration of pixels in the dark end of the gray scale. At first
glance, one might conclude that histogram equalization would be a good ap-
proach to enhance this image, so that details in the dark areas become more
visible. It is demonstrated in the following discussion that this is not so.

Figure 3.21(a) shows the histogram equalization transformation [Eq. (3.3-8)
or (3.3-13)] obtained from the histogram shown in Fig. 3.20(b). The most rele-
vant characteristic of this transformation function is how fast it rises from gray
level 0 to a level near 190.This is caused by the large concentration of pixels in
the input histogram having levels very near 0. When this transformation is ap-
plied to the levels of the input image to obtain a histogram-equalized result,
the net effect is to map a very narrow interval of dark pixels into the upper end
of the gray scale of the output image. Because numerous pixels in the input
image have levels precisely in this interval, we would expect the result to be an

EXAMPLE 3.4:
Comparison
between
histogram
equalization and
histogram
matching.

a b
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FIGURE 3.21
(a) Transformation
function for
histogram
equalization.
(b) Histogram-
equalized image
(note the washed-
out appearance).
(c) Histogram 
of (b).

image with a light, washed-out appearance. As shown in Fig. 3.21(b), this is in-
deed the case.The histogram of this image is shown in Fig. 3.21(c). Note how all
the gray levels are biased toward the upper one-half of the gray scale.

Since the problem with the transformation function in Fig. 3.21(a) was caused
by a large concentration of pixels in the original image with levels near 0, a rea-
sonable approach is to modify the histogram of that image so that it does not
have this property. Figure 3.22(a) shows a manually specified function that pre-
serves the general shape of the original histogram, but has a smoother transition
of levels in the dark region of the gray scale. Sampling this function into 256
equally spaced discrete values produced the desired specified histogram. The
transformation function G(z) obtained from this histogram using Eq. (3.3-14) is
labeled transformation (1) in Fig. 3.22(b). Similarly, the inverse transformation
G–1(s) from Eq. (3.3-16) [obtained using the iterative technique discussed in
connection with Eq. (3.3-17)] is labeled transformation (2) in Fig. 3.22(b).The en-
hanced image in Fig. 3.22(c) was obtained by applying transformation (2) to the
pixels of the histogram-equalized image in Fig. 3.21(b).The improvement of the
histogram-specified image over the result obtained by histogram equalization is
evident by comparing these two images. It is of interest to note that a rather
modest change in the original histogram was all that was required to obtain a sig-
nificant improvement in enhancement.The histogram of Fig. 3.22(c) is shown in
Fig. 3.22(d).The most distinguishing feature of this histogram is how its low end
has shifted right toward the lighter region of the gray scale, as desired. �

a b
c
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FIGURE 3.22
(a) Specified
histogram.
(b) Curve (1) is
from Eq. (3.3-14),
using the
histogram in (a);
curve (2) was
obtained using
the iterative
procedure in
Eq. (3.3-17).
(c) Enhanced
image using
mappings from
curve (2).
(d) Histogram 
of (c).

Although it probably is obvious by now, we emphasize before leaving this sec-
tion that histogram specification is, for the most part, a trial-and-error process.
One can use guidelines learned from the problem at hand, just as we did in the
preceding example. At times, there may be cases in which it is possible to for-
mulate what an “average” histogram should look like and use that as the spec-
ified histogram. In cases such as these, histogram specification becomes a
straightforward process. In general, however, there are no rules for specifying
histograms, and one must resort to analysis on a case-by-case basis for any given
enhancement task.

a c
b
d
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3.3.3 Local Enhancement
The histogram processing methods discussed in the previous two sections are
global, in the sense that pixels are modified by a transformation function based
on the gray-level content of an entire image. Although this global approach is
suitable for overall enhancement, there are cases in which it is necessary to en-
hance details over small areas in an image.The number of pixels in these areas
may have negligible influence on the computation of a global transformation
whose shape does not necessarily guarantee the desired local enhancement.
The solution is to devise transformation functions based on the gray-level dis-
tribution—or other properties—in the neighborhood of every pixel in the image.
Although processing methods based on neighborhoods are the topic of Section
3.5, we discuss local histogram processing here for the sake of clarity and con-
tinuity. The reader will have no difficulty in following the discussion.

The histogram processing techniques previously described are easily adapt-
able to local enhancement. The procedure is to define a square or rectangular
neighborhood and move the center of this area from pixel to pixel. At each lo-
cation, the histogram of the points in the neighborhood is computed and either
a histogram equalization or histogram specification transformation function is
obtained. This function is finally used to map the gray level of the pixel cen-
tered in the neighborhood.The center of the neighborhood region is then moved
to an adjacent pixel location and the procedure is repeated. Since only one new
row or column of the neighborhood changes during a pixel-to-pixel translation
of the region, updating the histogram obtained in the previous location with
the new data introduced at each motion step is possible (Problem 3.11).This ap-
proach has obvious advantages over repeatedly computing the histogram over
all pixels in the neighborhood region each time the region is moved one pixel
location.Another approach used some times to reduce computation is to utilize
nonoverlapping regions, but this method usually produces an undesirable
checkerboard effect.

� Figure 3.23(a) shows an image that has been slightly blurred to reduce its
noise content (see Section 3.6.1 regarding blurring). Figure 3.23(b) shows the re-
sult of global histogram equalization. As is often the case when this technique
is applied to smooth, noisy areas, Fig. 3.23(b) shows considerable enhancement
of the noise, with a slight increase in contrast. Note that no new structural de-
tails were brought out by this method. However, local histogram equalization
using a 7*7 neighborhood revealed the presence of small squares inside the
larger dark squares. The small squares were too close in gray level to the larg-
er ones, and their sizes were too small to influence global histogram equaliza-
tion significantly. Note also the finer noise texture in Fig. 3.23(c), a result of
local processing using relatively small neighborhoods. �

3.3.4 Use of Histogram Statistics for Image Enhancement
Instead of using the image histogram directly for enhancement, we can use in-
stead some statistical parameters obtainable directly from the histogram. Let r
denote a discrete random variable representing discrete gray-levels in the range

EXAMPLE 3.5:
Enhancement
using local
histograms.
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104 Chapter 3 � Image Enhancement in the Spatial Domain

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram
equalization using a 7*7 neighborhood about each pixel.

[0, L-1], and let p Ari B denote the normalized histogram component corre-
sponding to the ith value of r. As indicated previously in this section, we may
view p Ari B as an estimate of the probability of occurrence of gray level ri . The
nth moment of r about its mean is defined as 

(3.3-18)

where m is the mean value of r (its average gray level):

(3.3-19)

It follows from Eqs. (3.3-18) and (3.3-19) that m0=1 and m1=0. The second
moment is given by 

(3.3-20)

We recognize this expression as the variance of r, which is denoted conven-
tionally by s2(r).The standard deviation is defined simply as the square root of
the variance. We will revisit moments in Chapter 11 in connection with image
description. In terms of enhancement, however, we are interested primarily in
the mean, which is a measure of average gray level in an image, and the variance
(or standard deviation), which is a measure of average contrast.

We consider two uses of the mean and variance for enhancement purposes.
The global mean and variance are measured over an entire image and are use-
ful primarily for gross adjustments of overall intensity and contrast. A much
more powerful use of these two measures is in local enhancement, where the
local mean and variance are used as the basis for making changes that depend
on image characteristics in a predefined region about each pixel in the image.

m2(r) = a
L - 1

i = 0
Ari - mB2pAriB.

m = a
L - 1

i = 0
ri pAriB.

mn(r) = a
L - 1

i = 0
Ari - mBnpAriB

a b c
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Let (x, y) be the coordinates of a pixel in an image, and let Sxy denote a
neighborhood (subimage) of specified size, centered at (x, y). From Eq. (3.3-19)
the mean value of the pixels in Sxy can be computed using the expression 

(3.3-21)

where rs, t is the gray level at coordinates (s, t) in the neighborhood, and p Ars, t B
is the neighborhood normalized histogram component corresponding to that
value of gray level. Similarly, from Eq. (3.3-20), the gray-level variance of the pix-
els in region Sxy is given by

(3.3-22)

The local mean is a measure of average gray level in neighborhood Sxy , and the
variance (or standard deviation) is a measure of contrast in that neighborhood.

An important aspect of image processing using the local mean and variance
is the flexibility they afford in developing simple, yet powerful enhancement
techniques based on statistical measures that have a close, predictable corre-
spondence with image appearance.We illustrate these characteristics by means
of an example.

� Figure 3.24 shows an SEM (scanning electron microscope) image of a tung-
sten filament wrapped around a support. The filament in the center of the
image and its support are quite clear and easy to study. There is another fila-
ment structure on the right side of the image, but it is much darker and its size
and other features are not as easily discernable. Local enhancement by contrast
manipulation is an ideal approach to try on problems such as this, where part
of the image is acceptable, but other parts may contain hidden features of in-
terest.

In this particular case, the problem is to enhance dark areas while leaving the
light area as unchanged as possible since it does note require enhancement.We
can use the concepts presented in this section to formulate an enhancement
method that can tell the difference between dark and light and, at the same
time, is capable of enhancing only the dark areas.A measure of whether an area
is relatively light or dark at a point (x, y) is to compare the local average gray
level to the average image gray level, called the global mean and denoted
MG . This latter quantity is obtained by letting S encompass the entire image.
Thus, we have the first element of our enhancement scheme: We will consider
the pixel at a point (x, y) as a candidate for processing if where
k0 is a positive constant with value less than 1.0. Since we are interested in en-
hancing areas that have low contrast, we also need a measure to determine
whether the contrast of an area makes it a candidate for enhancement.Thus, we
will consider the pixel at a point (x, y) as a candidate for enhancement if

where DG is the global standard deviation and k2 is a positive con-
stant. The value of this constant will be greater than 1.0 if we are interested in
enhancing light areas and less than 1.0 for dark areas. Finally, we need to restrict

sSxy
� k2 DG ,

mSxy
� k0 MG ,

mSxy

s2
Sxy

= a
 

(s, t)HSxy

Crs, t - mSxy
D 2pArs, tB.

mSxy
= a

 

(s, t)HSxy

rs, t pArs, tB

mSxy

EXAMPLE 3.6:
Enhancement
based on local
statistics.
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106 Chapter 3 � Image Enhancement in the Spatial Domain

the lowest values of contrast we are willing to accept, otherwise the procedure
would attempt to enhance even constant areas, whose standard deviation is
zero. Thus, we also set a lower limit on the local standard deviation by requir-
ing that with k<k2. A pixel at (x, y) that meets all the condi-
tions for local enhancement is processed simply by multiplying it by a specified
constant, E, to increase (or decrease) the value of its gray level relative to the
rest of the image. The values of pixels that do not meet the enhancement con-
ditions are left unchanged.

A summary of the enhancement method is as follows. Let f(x, y) represent
the value of an image pixel at any image coordinates (x, y), and let g(x, y) rep-
resent the corresponding enhanced pixel at those coordinates. Then

where, as indicated previously, E, k0 , k1 , and k2 are specified parameters; MG is
the global mean of the input image; and DG is its global standard deviation.

Normally, making a successful selection of parameters requires a bit of ex-
perimentation to gain familiarity with a given image or class of images. In this
case, the following values were selected: E=4.0, k0=0.4, k1=0.02, and
k2=0.4. The relatively low value of 4.0 for E was chosen so that, when it was
multiplied by the levels in the areas being enhanced (which are dark), the re-
sult would still tend toward the dark end of the scale, and thus preserve the gen-
eral visual balance of the image. The value of k0 was chosen as somewhat less
than half the global mean since it is obvious by looking at the image that the
areas that require enhancement definitely are dark enough to be below half
the global mean. A similar analysis led to the choice of values for k1 and k2 .
Choosing these constants is not a difficult task in general, but their choice

g(x, y) = bE � f(x, y)

f(x, y)

if mSxy
� k0 MG AND k1 DG � sSxy

� k2 DG

otherwise

k1 DG � sSxy
 ,

FIGURE 3.24 SEM
image of a
tungsten filament
and support,
magnified
approximately
130*. (Original
image courtesy of
Mr. Michael
Shaffer,
Department of
Geological
Sciences,
University of
Oregon, Eugene).
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3.3 � Histogram Processing 107

FIGURE 3.25 (a) Image formed from all local means obtained from Fig. 3.24 using Eq. (3.3-21). (b) Image
formed from all local standard deviations obtained from Fig. 3.24 using Eq. (3.3-22). (c) Image formed from
all multiplication constants used to produce the enhanced image shown in Fig. 3.26.

definitely must be guided by a logical analysis of the enhancement problem at
hand. Finally, the choice of size for the local area should be as small as possible
in order to preserve detail and keep the computational burden as low as possi-
ble. We chose a small (3*3) local region.

Figure 3.25(a) shows the values of for all values of (x, y). Since the value
of for each (x, y) is the average of the neighboring pixels in a 3*3 area
centered at (x, y), we expect the result to be similar to the original image, but

mSxy

mSxy

a b c

FIGURE 3.26
Enhanced SEM
image. Compare
with Fig. 3.24. Note
in particular the
enhanced area on
the right, bottom
side of the image.
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108 Chapter 3 � Image Enhancement in the Spatial Domain

slightly blurred. This indeed is the case in Fig. 3.25(a). Figure 3.25(b) shows in
image formed using all the values of Similarly, we can construct an image
out the values that multiply f(x, y) at each coordinate pair (x, y) to form g(x, y).
Since the values are either 1 or E, the image is binary, as shown in Fig. 3.25(c).
The dark areas correspond to 1 and the light areas to E.Thus, any light point in
Fig. 3.25(c) signifies a coordinate pair (x, y) at which the enhancement proce-
dure multiplied f(x, y) by E to produce an enhanced pixel. The dark points
represent coordinates at which the procedure did not to modify the pixel values.

The enhanced image obtained with the method just described is shown in
Fig.3.26. In comparing this image with the original in Fig.3.24,we note the obvious
detail that has been brought out on the right side of the enhanced image.It is worth-
while to point out that the unenhanced portions of the image (the light areas) were
left intact for the most part.We do note the appearance of some small bright dots
in the shadow areas where the coil meets the support stem,and around some of the
borders between the filament and the background.These are undesirable artifacts
created by the enhancement technique.In other words,the points appearing as light
dots met the criteria for enhancement and their values were amplified by factor E.
Introduction of artifacts is a definite drawback of a method such as the one just de-
scribed because of the nonlinear way in which they process an image.The key point
here, however, is that the image was enhanced in a most satisfactory way as far as
bringing out the desired detail. �

It is not difficult to imagine the numerous ways in which the example just
given could be adapted or extended to other situations in which local en-
hancement is applicable.

Enhancement Using Arithmetic/Logic Operations

Arithmetic/logic operations involving images are performed on a pixel-by-pixel
basis between two or more images (this excludes the logic operation NOT, which
is performed on a single image). As an example, subtraction of two images re-
sults in a new image whose pixel at coordinates (x, y) is the difference between
the pixels in that same location in the two images being subtracted. Depending
on the hardware and/or software being used, the actual mechanics of imple-
menting arithmetic/logic operations can be done sequentially, one pixel at a
time, or in parallel, where all operations are performed simultaneously.

Logic operations similarly operate on a pixel-by-pixel basis†. We need only
be concerned with the ability to implement the AND, OR, and NOT logic op-
erators because these three operators are functionally complete. In other words,
any other logic operator can be implemented by using only these three basic
functions.When dealing with logic operations on gray-scale images, pixel values
are processed as strings of binary numbers. For example, performing the NOT
operation on a black, 8-bit pixel (a string of eight 0’s) produces a white pixel

3.4

sSxy
 .

† Recall that, for two binary variables a and b: aANDb yields 1 only when both a and b are 1; otherwise
the result is 0. Similarly, aORb is 0 when both variables are 0; otherwise the result is 1. Finally, if a is 1,
NOT (a) is 0, and vice versa.
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FIGURE 3.27
(a) Original
image. (b) AND
image mask.
(c) Result of the
AND operation
on images (a) and
(b). (d) Original
image. (e) OR
image mask.
(f) Result of
operation OR on
images (d) and
(e).

(a string of eight 1’s). Intermediate values are processed the same way, chang-
ing all 1’s to 0’s and vice versa.Thus, the NOT logic operator performs the same
function as the negative transformation of Eq. (3.2-1). The AND and OR op-
erations are used for masking; that is, for selecting subimages in an image, as il-
lustrated in Fig. 3.27. In the AND and OR image masks, light represents a binary
1 and dark represents a binary 0. Masking sometimes is referred to as region of
interest (ROI) processing. In terms of enhancement, masking is used primarily
to isolate an area for processing. This is done to highlight that area and differ-
entiate it from the rest of the image. Logic operations also are used frequently
in conjunction with morphological operations, as discussed in Chapter 9.

Of the four arithmetic operations, subtraction and addition (in that order) are
the most useful for image enhancement. We consider division of two images
simply as multiplication of one image by the reciprocal of the other.Aside from
the obvious operation of multiplying an image by a constant to increase its av-
erage gray level, image multiplication finds use in enhancement primarily as a
masking operation that is more general than the logical masks discussed in the
previous paragraph. In other words, multiplication of one image by another can
be used to implement gray-level, rather than binary, masks. We give an exam-
ple in Section 3.8 of how such a masking operation can be a useful tool. In the
remainder of this section, we develop and illustrate methods based on subtrac-
tion and addition for image enhancement. Other uses of image multiplication
are discussed in Chapter 5, in the context of image restoration.

a b c
d e f
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FIGURE 3.28
(a) Original
fractal image.
(b) Result of
setting the four
lower-order bit
planes to zero.
(c) Difference
between (a) and
(b).
(d) Histogram-
equalized
difference image.
(Original image
courtesy of Ms.
Melissa D. Binde,
Swarthmore
College,
Swarthmore, PA).

3.4.1 Image Subtraction
The difference between two images f(x, y) and h(x, y), expressed as

(3.4-1)

is obtained by computing the difference between all pairs of corresponding pix-
els from f and h. The key usefulness of subtraction is the enhancement of dif-
ferences between images. We illustrate this concept by returning briefly to the
discussion in Section 3.2.4, where we showed that the higher-order bit planes of
an image carry a significant amount of visually relevant detail, while the lower
planes contribute more to fine (often imperceptible) detail. Figure 3.28(a) shows
the fractal image used earlier to illustrate the concept of bit planes. Figure 3.28(b)
shows the result of discarding (setting to zero) the four least significant bit planes
of the original image. The images are nearly identical visually, with the excep-
tion of a very slight drop in overall contrast due to less variability of the gray-
level values in the image of Fig. 3.28(b). The pixel-by-pixel difference between
these two images is shown in Fig. 3.28(c). The differences in pixel values are so
small that the difference image appears nearly black when displayed on an 8-bit

g(x, y) = f(x, y) - h(x, y),

a b
c d

GONZ03-075-146.II  29-08-2001  13:42  Page 110



3.4 � Enhancement Using Arithmetic/Logic Operations 111

display. In order to bring out more detail, we can perform a contrast stretching
transformation, such as those discussed in Sections 3.2 or 3.3. We chose his-
togram equalization, but an appropriate power-law transformation would have
done the job also.The result is shown in Fig. 3.28(d).This is a very useful image
for evaluating the effect of setting to zero the lower-order planes.

� One of the most commercially successful and beneficial uses of image sub-
traction is in the area of medical imaging called mask mode radiography. In this
case h(x, y), the mask, is an X-ray image of a region of a patient’s body captured
by an intensified TV camera (instead of traditional X-ray film) located oppo-
site an X-ray source.The procedure consists of injecting a contrast medium into
the patient’s bloodstream, taking a series of images of the same anatomical re-
gion as h(x, y), and subtracting this mask from the series of incoming images
after injection of the contrast medium. The net effect of subtracting the mask
from each sample in the incoming stream of TV images is that the areas that are
different between f(x, y) and h(x, y) appear in the output image as enhanced
detail. Because images can be captured at TV rates, this procedure in essence
gives a movie showing how the contrast medium propagates through the vari-
ous arteries in the area being observed.

Figure 3.29(a) shows an X-ray image of the top of a patient’s head prior to
injection of an iodine medium into the bloodstream. The camera yielding this
image was positioned above the patient’s head, looking down. As a reference
point, the bright spot in the lower one-third of the image is the core of the spinal
column. Figure 3.29(b) shows the difference between the mask (Fig. 3.29a) and
an image taken some time after the medium was introduced into the blood-
stream. The bright arterial paths carrying the medium are unmistakably en-
hanced in Fig. 3.29(b). These arteries appear quite bright because they are not
subtracted out (that is, they are not part of the mask image). The overall back-
ground is much darker than that in Fig. 3.29(a) because differences between
areas of little change yield low values, which in turn appear as dark shades of gray
in the difference image. Note, for instance, that the spinal cord, which is bright
in Fig. 3.29(a), appears quite dark in Fig. 3.29(b) as a result of subtraction. �

EXAMPLE 3.7:
Use of image
subtraction in
mask mode
radiography.

FIGURE 3.29
Enhancement by
image subtraction.
(a) Mask image.
(b) An image
(taken after
injection of a
contrast medium
into the
bloodstream) with
mask subtracted
out.

a b
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† Recall that the variance of a random variable x with mean m is defined as E C(x-m)2 D , where EE�F is
the expected value of the argument. The covariance of two random variables xi and xj is defined as
E C Axi-mi B Axj-mj B D . If the variables are uncorrelated, their covariance is 0.

A few comments on implementation are an order before we leave this sec-
tion. In practice, most images are displayed using 8 bits (even 24-bit color im-
ages consists of three separate 8-bit channels). Thus, we expect image values
not to be outside the range from 0 to 255. The values in a difference image can
range from a minimum of –255 to a maximum of 255, so some sort of scaling is
required to display the results.There are two principal ways to scale a difference
image. One method is to add 255 to every pixel and then divide by 2. It is not
guaranteed that the values will cover the entire 8-bit range from 0 to 255, but
all pixel values definitely will be within this range. This method is fast and sim-
ple to implement, but it has the limitations that the full range of the display
may not be utilized and, potentially more serious, the truncation inherent in the
division by 2 will generally cause loss in accuracy.

If more accuracy and full coverage of the 8-bit range are desired, then we can
resort to another approach. First, the value of the minimum difference is ob-
tained and its negative added to all the pixels in the difference image (this will
create a modified difference image whose minimum values is 0). Then, all the
pixels in the image are scaled to the interval [0, 255] by multiplying each pixel
by the quantity 255�Max, where Max is the maximum pixel value in the modi-
fied difference image. It is evident that this approach is considerably more com-
plex and difficult to implement.

Before leaving this section we note also that change detection via image sub-
traction finds another major application in the area of segmentation, which is
the topic of Chapter 10. Basically, segmentation techniques attempt to subdivide
an image into regions based on a specified criterion. Image subtraction for seg-
mentation is used when the criterion is “changes.” For instance, in tracking (seg-
menting) moving vehicles in a sequence of images, subtraction is used to remove
all stationary components in an image. What is left should be the moving ele-
ments in the image, plus noise.

3.4.2 Image Averaging
Consider a noisy image g(x, y) formed by the addition of noise h(x, y) to an
original image f(x, y); that is,

(3.4-2)

where the assumption is that at every pair of coordinates (x, y) the noise is un-
correlated† and has zero average value.The objective of the following procedure
is to reduce the noise content by adding a set of noisy images, Egi(x, y)F .

If the noise satisfies the constraints just stated, it can be shown (Problem
3.15) that if an image is formed by averaging K different noisy images,

(3.4-3)g–(x, y) =
1
K

 a
K

i = 1
gi(x, y)

g–(x, y)

g(x, y) = f(x, y) + h(x, y)
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then it follows that

(3.4-4)

and

(3.4-5)

where is the expected value of and and are the
variances of and h, all at coordinates (x, y). The standard deviation at any
point in the average image is

(3.4-6)

As K increases, Eqs. (3.4-5) and (3.4-6) indicate that the variability (noise) of
the pixel values at each location (x, y) decreases. Because = f(x, y),
this means that approaches f(x, y) as the number of noisy images used
in the averaging process increases. In practice, the images gi(x, y) must be reg-
istered (aligned) in order to avoid the introduction of blurring and other arti-
facts in the output image.

� An important application of image averaging is in the field of astronomy,
where imaging with very low light levels is routine, causing sensor noise fre-
quently to render single images virtually useless for analysis. Figure 3.30(a)
shows an image of a galaxy pair called NGC 3314, taken by NASA’s Hubble
Space Telescope with a wide field planetary camera. NGC 3314 lies about 140
million light-years from Earth, in the direction of the southern-hemisphere con-
stellation Hydra. The bright stars forming a pinwheel shape near the center of
the front galaxy have formed recently from interstellar gas and dust. Fig-
ure 3.30(b) shows the same image, but corrupted by uncorrelated Gaussian
noise with zero mean and a standard deviation of 64 gray levels. This image is
useless for all practical purposes. Figures 3.30(c) through (f) show the results of
averaging 8, 16, 64, and 128 images, respectively.We see that the result obtained
with K=128 is reasonably close to the original in visual appearance.

We can get a better appreciation from Fig. 3.31 for how reduction in the vi-
sual appearance of noise takes place as a function of increasing K. This figure
shows the difference images between the original [Fig. 3.30(a)] and each of the
averaged images in Figs. 3.30(c) through (f). The histograms corresponding to
the difference images are also shown in the figure. As usual, the vertical scale
in the histograms represents number of pixels and is in the range C0, 2.6*104 D .
The horizontal scale represents gray level and is in the range [0, 255]. Notice in
the histograms that the mean and standard deviation of the difference images
decrease as K increases.This is as expected because, according to Eqs. (3.4-3) and
(3.4-4), the average image should approach the original as K increases. We can
also see the effect of a decreasing mean in the difference images on the left col-
umn of Fig. 3.31, which become darker as the K increases.

g–(x, y)
EEg–(x, y)F

sg–(x, y) =
11K

 sh(x, y) .

g–
s2
h– (x, y)s2

g– (x, y)g–,EEg–(x, y)F

s2
g– (x, y) =

1
K

 s2
h(x, y)

EEg–(x, y)F = f(x, y)

EXAMPLE 3.8:
Noise reduction
by image
averaging.
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114 Chapter 3 � Image Enhancement in the Spatial Domain

FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. �

a b
c
e

d
f
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FIGURE 3.31
(a) From top to
bottom:
Difference images
between
Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.
(b) Corresponding
histograms.

As in the case of image subtraction, adding two or more 8-bit images requires
special care when it comes to displaying the result on an 8-bit display.The values in
the sum of K, 8-bit images can range from 0 to 255*K. Scaling back to 8 bits in
this case consists simply of dividing the result by K. Naturally, some accuracy will
be lost in the process,but this is unavoidable if the display has to be limited to 8 bits.

a b
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116 Chapter 3 � Image Enhancement in the Spatial Domain

It is possible in some implementations of image averaging to have negative
values when noise is added to an image. In fact, in the example just given, this
was precisely the case because Gaussian random variables with zero mean and
nonzero variance have negative as well as positive values.The images in the ex-
ample were scaled using the second scaling method discussed at the end of the
previous section. That is, the minimum value in a given average image was ob-
tained and its negative was added to the image. Then all the pixels in the mod-
ified image were scaled to the range [0, 255] by multiplying each pixel in the
modified image by the quantity 255�Max, where Max was the maximum pixel
value in that image.

Basics of Spatial Filtering

As mentioned in Section 3.1, some neighborhood operations work with the val-
ues of the image pixels in the neighborhood and the corresponding values of a
subimage that has the same dimensions as the neighborhood. The subimage is
called a filter, mask, kernel, template, or window, with the first three terms being
the most prevalent terminology. The values in a filter subimage are referred to
as coefficients, rather than pixels.

The concept of filtering has its roots in the use of the Fourier transform for
signal processing in the so-called frequency domain. This topic is discussed in
more detail in Chapter 4. In the present chapter, we are interested in filtering
operations that are performed directly on the pixels of an image. We use the
term spatial filtering to differentiate this type of process from the more tradi-
tional frequency domain filtering.

The mechanics of spatial filtering are illustrated in Fig. 3.32. The process con-
sists simply of moving the filter mask from point to point in an image. At each
point (x, y), the response of the filter at that point is calculated using a prede-
fined relationship. For linear spatial filtering (see Section 2.6 regarding linear-
ity), the response is given by a sum of products of the filter coefficients and the
corresponding image pixels in the area spanned by the filter mask. For the 3*3
mask shown in Fig. 3.32, the result (or response), R, of linear filtering with the
filter mask at a point (x, y) in the image is

which we see is the sum of products of the mask coefficients with the corre-
sponding pixels directly under the mask. Note in particular that the coefficient
w(0, 0) coincides with image value f(x, y), indicating that the mask is centered
at (x, y) when the computation of the sum of products takes place. For a mask
of size m*n, we assume that m=2a+1 and n=2b+1, where a and b are
nonnegative integers. All this says is that our focus in the following discussion
will be on masks of odd sizes, with the smallest meaningful size being 3*3 (we
exclude from our discussion the trivial case of a 1*1 mask).

     + w(0, 0)f(x, y) + p + w(1, 0)f(x + 1, y) + w(1, 1)f(x + 1, y + 1),

 R = w(-1, -1)f(x - 1, y - 1) + w(-1, 0)f(x - 1, y) + p

3.5
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y

x

Image origin

Mask

Image f(x, y)

w(–1, –1)

f(x-1, y-1) f(x-1, y) f(x-1, y+1)

f(x, y-1) f(x, y) f(x, y+1)

f(x+1, y-1) f(x+1, y) f(x+1, y+1)

w(–1, 0) w(–1, 1)

w(0, –1) w(0, 0) w(0, 1)

w(1, –1) w(1, 0) w(1, 1)

Mask coefficients, showing
coordinate arrangement

Pixels of image
section under mask

FIGURE 3.32 The
mechanics of
spatial filtering.
The magnified
drawing shows a
3*3 mask and
the image section
directly under it;
the image section
is shown
displaced out
from under the
mask for ease of
readability.

In general, linear filtering of an image f of size M*N with a filter mask of
size m*n is given by the expression:

(3.5-1)

where, from the previous paragraph, a=(m-1)�2 and b=(n-1)�2. To
generate a complete filtered image this equation must be applied for x=0, 1,
2, p , M-1 and y=0, 1, 2, p , N-1. In this way, we are assured that the

g(x, y) = a
a

s = -a
 a

b

t = -b
w(s, t)f(x + s, y + t)
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118 Chapter 3 � Image Enhancement in the Spatial Domain

mask processes all pixels in the image. It is easily verified when m=n=3 that
this expression reduces to the example given in the previous paragraph.

As discussed in Chapter 4, the process of linear filtering given in Eq. (3.5-1)
is similar to a frequency domain concept called convolution. For this reason,
linear spatial filtering often is referred to as “convolving a mask with an image.”
Similarly, filter masks are sometimes called convolution masks. The term con-
volution kernel also is in common use.

When interest lies on the response, R, of an m*n mask at any point (x, y),
and not on the mechanics of implementing mask convolution, it is common
practice to simplify the notation by using the following expression:

(3.5-2)

where the w’s are mask coefficients, the z’s are the values of the image gray
levels corresponding to those coefficients, and mn is the total number of coef-
ficients in the mask. For the 3*3 general mask shown in Fig. 3.33 the response
at any point (x, y) in the image is given by

(3.5-3)

We make special mention of this simple formula because it is seen frequently
in the published literature on image processing.

Nonlinear spatial filters also operate on neighborhoods, and the mechanics
of sliding a mask past an image are the same as was just outlined. In general,
however, the filtering operation is based conditionally on the values of the pix-
els in the neighborhood under consideration, and they do not explicitly use co-
efficients in the sum-of-products manner described in Eqs. (3.5-1) and (3.5-2).
As shown in Section 3.6.2, for example, noise reduction can be achieved effec-
tively with a nonlinear filter whose basic function is to compute the median
gray-level value in the neighborhood in which the filter is located. Computation
of the median is a nonlinear operation, as is computation of the variance, which
we used in Section 3.3.4.

 = a
9

i = 1
wi zi .

 R = w1 z1 + w2 z2 +     p w9 z9

 = a
mn

i = 1
wi zi

 R = w1 z1 + w2 z2 +     p     + wmn zmn

w1 w2 w3

w4 w5 w6

w7 w8 w9

FIGURE 3.33
Another
representation of
a general 3*3
spatial filter mask.
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An important consideration in implementing neighborhood operations for
spatial filtering is the issue of what happens when the center of the filter ap-
proaches the border of the image. Consider for simplicity a square mask of size
n*n. At least one edge of such a mask will coincide with the border of the
image when the center of the mask is at a distance of (n-1)�2 pixels away
from the border of the image. If the center of the mask moves any closer to the
border, one or more rows or columns of the mask will be located outside the
image plane. There are several ways to handle this situation. The simplest is to
limit the excursions of the center of the mask to be at a distance no less than
(n-1)�2 pixels from the border. The resulting filtered image will be smaller
than the original, but all the pixels in the filtered imaged will have been
processed with the full mask. If the result is required to be the same size as the
original, then the approach typically employed is to filter all pixels only with the
section of the mask that is fully contained in the image. With this approach,
there will be bands of pixels near the border that will have been processed with
a partial filter mask. Other approaches include “padding” the image by adding
rows and columns of 0’s (or other constant gray level), or padding by replicat-
ing rows or columns.The padding is then stripped off at the end of the process.
This keeps the size of the filtered image the same as the original, but the values
of the padding will have an effect near the edges that becomes more prevalent
as the size of the mask increases.The only way to obtain a perfectly filtered re-
sult is to accept a somewhat smaller filtered image by limiting the excursions of
the center of the filter mask to a distance no less than (n-1)�2 pixels from the
border of the original image.

Smoothing Spatial Filters

Smoothing filters are used for blurring and for noise reduction. Blurring is used
in preprocessing steps, such as removal of small details from an image prior to
(large) object extraction, and bridging of small gaps in lines or curves. Noise
reduction can be accomplished by blurring with a linear filter and also by non-
linear filtering.

3.6.1 Smoothing Linear Filters
The output (response) of a smoothing, linear spatial filter is simply the average
of the pixels contained in the neighborhood of the filter mask. These filters
sometimes are called averaging filters. For reasons explained in Chapter 4, they
also are referred to a lowpass filters.

The idea behind smoothing filters is straightforward. By replacing the value
of every pixel in an image by the average of the gray levels in the neighbor-
hood defined by the filter mask, this process results in an image with reduced
“sharp” transitions in gray levels. Because random noise typically consists of
sharp transitions in gray levels, the most obvious application of smoothing is
noise reduction. However, edges (which almost always are desirable features of
an image) also are characterized by sharp transitions in gray levels, so averag-
ing filters have the undesirable side effect that they blur edges. Another appli-
cation of this type of process includes the smoothing of false contours that result

3.6
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1 1 1
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FIGURE 3.34 Two
3*3 smoothing
(averaging) filter
masks. The
constant multipli
er in front of each
mask is equal to
the sum of the
values of its
coefficients, as is
required to
compute an
average.

from using an insufficient number of gray levels, as discussed in Section 2.4.3.
A major use of averaging filters is in the reduction of “irrelevant” detail in an
image. By “irrelevant” we mean pixel regions that are small with respect to the
size of the filter mask. This latter application is illustrated later in this section.

Figure 3.34 shows two 3*3 smoothing filters. Use of the first filter yields the
standard average of the pixels under the mask.This can best be seen by substi-
tuting the coefficients of the mask into Eq. (3.5-3):

which is the average of the gray levels of the pixels in the 3*3 neighborhood
defined by the mask. Note that, instead of being 1�9, the coefficients of the fil-
ter are all 1’s. The idea here is that it is computationally more efficient to have
coefficients valued 1. At the end of the filtering process the entire image is di-
vided by 9.An m*n mask would have a normalizing constant equal to 1�mn.
A spatial averaging filter in which all coefficients are equal is sometimes called
a box filter.

The second mask shown in Fig. 3.34 is a little more interesting. This mask
yields a so-called weighted average, terminology used to indicate that pixels are
multiplied by different coefficients, thus giving more importance (weight) to
some pixels at the expense of others. In the mask shown in Fig. 3.34(b) the pixel
at the center of the mask is multiplied by a higher value than any other, thus giv-
ing this pixel more importance in the calculation of the average.The other pix-
els are inversely weighted as a function of their distance from the center of the
mask. The diagonal terms are further away from the center than the orthogo-
nal neighbors (by a factor of ) and, thus, are weighed less than these imme-
diate neighbors of the center pixel.The basic strategy behind weighing the center
point the highest and then reducing the value of the coefficients as a function
of increasing distance from the origin is simply an attempt to reduce blurring
in the smoothing process.We could have picked other weights to accomplish the
same general objective. However, the sum of all the coefficients in the mask of
Fig. 3.34(b) is equal to 16, an attractive feature for computer implementation be-
cause it has an integer power of 2. In practice, it is difficult in general to see dif-
ferences between images smoothed by using either of the masks in Fig. 3.34, or
similar arrangements, because the area these masks span at any one location in
an image is so small.

12

R =
1
9

 a
9

i = 1
zi ,

a b
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3.6 � Smoothing Spatial Filters 121

With reference to Eq. (3.5-1), the general implementation for filtering an
M*N image with a weighted averaging filter of size m*n (m and n odd) is
given by the expression

(3.6-1)

The parameters in this equation are as defined in Eq. (3.5-1). As before, it is
understood that the complete filtered image is obtained by applying Eq. (3.6-1)
for x=0, 1, 2, p , M-1 and y=0, 1, 2, p , N-1. The denominator in
Eq. (3.6-1) is simply the sum of the mask coefficients and, therefore, it is a con-
stant that needs to be computed only once.Typically, this scale factor is applied
to all the pixels of the output image after the filtering process is completed.

� The effects of smoothing as a function of filter size are illustrated in Fig. 3.35,
which shows an original image and the corresponding smoothed results obtained
using square averaging filters of sizes n=3, 5, 9, 15, and 35 pixels, respectively.
The principal features of these results are as follows: For n=3, we note a gen-
eral slight blurring throughout the entire image but, as expected, details that
are of approximately the same size as the filter mask are affected considerably
more. For example, the 3*3 and 5*5 squares, the small letter “a,” and the fine
grain noise show significant blurring when compared to the rest of the image.A
positive result is that the noise is less pronounced. Note that the jagged borders
of the characters and gray circles have been pleasingly smoothed.

The result for n=5 is somewhat similar, with a slight further increase in
blurring. For n=9 we see considerably more blurring, and the 20% black cir-
cle is not nearly as distinct from the background as in the previous three images,
illustrating the blending effect that blurring has on objects whose gray level
content is close to that of its neighboring pixels. Note the significant further
smoothing of the noisy rectangles. The results for n=15 and 35 are extreme
with respect to the sizes of the objects in the image.This type of excessive blur-
ring is generally used to eliminate small objects from an image. For instance, the
three small squares, two of the circles, and most of the noisy rectangle areas
have been blended into the background of the image in Fig. 3.35(f). Note also
in this figure the pronounced black border. This is a result of padding the bor-
der of the original image with 0’s (black) and then trimming off the padded
area. Some of the black was blended into all filtered images, but became truly
objectionable for the images smoothed with the larger filters. �

As mentioned earlier, an important application of spatial averaging is to blur
an image for the purpose getting a gross representation of objects of interest,
such that the intensity of smaller objects blends with the background and larg-
er objects become “bloblike” and easy to detect. The size of the mask estab-
lishes the relative size of the objects that will be blended with the background.
As an illustration, consider Fig. 3.36(a), which is an image from the Hubble tele-
scope in orbit around the Earth. Figure 3.36(b) shows the result of applying a

g(x, y) =
a

a

s = -a
 a

b

t = -b
w(s, t)f(x + s, y + t)

a
a

s = -a
 a

b

t = -b
w(s, t)

EXAMPLE 3.9:
Image smoothing
with masks of
various sizes.
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122 Chapter 3 � Image Enhancement in the Spatial Domain

FIGURE 3.35 (a) Original image, of size 500*500 pixels. (b)–(f) Results of smoothing
with square averaging filter masks of sizes n=3, 5, 9, 15, and 35, respectively.The black
squares at the top are of sizes 3, 5, 9, 15, 25, 35, 45, and 55 pixels, respectively; their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points.The vertical bars are 5 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart; their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50*120 pixels.

a b
c
e

d
f
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3.6 � Smoothing Spatial Filters 123

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15*15 averaging mask.
(c) Result of thresholding (b). (Original image courtesy of NASA.)

15*15 averaging mask to this image.We see that a number of objects have ei-
ther blended with the background or their intensity has diminished considerably.
It is typical to follow an operation like this with thresholding to eliminate ob-
jects based on their intensity. The result of using the thresholding function of
Fig. 3.2(b) with a threshold value equal to 25% of the highest intensity in the
blurred image is shown in Fig. 3.36(c). Comparing this result with the original
image, we see that it is a reasonable representation of what we would consider
to be the largest, brightest objects in that image.

3.6.2 Order-Statistics Filters
Order-statistics filters are nonlinear spatial filters whose response is based on
ordering (ranking) the pixels contained in the image area encompassed by
the filter, and then replacing the value of the center pixel with the value de-
termined by the ranking result.The best-known example in this category is the
median filter, which, as its name implies, replaces the value of a pixel by the
median of the gray levels in the neighborhood of that pixel (the original value
of the pixel is included in the computation of the median). Median filters are
quite popular because, for certain types of random noise, they provide excel-
lent noise-reduction capabilities, with considerably less blurring than linear
smoothing filters of similar size. Median filters are particularly effective in
the presence of impulse noise, also called salt-and-pepper noise because of its
appearance as white and black dots superimposed on an image.

The median, j, of a set of values is such that half the values in the set are less
than or equal to j, and half are greater than or equal to j. In order to perform
median filtering at a point in an image, we first sort the values of the pixel in
question and its neighbors, determine their median, and assign this value to that
pixel. For example, in a 3*3 neighborhood the median is the 5th largest value,
in a 5*5 neighborhood the 13th largest value, and so on.When several values

a b c
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124 Chapter 3 � Image Enhancement in the Spatial Domain

in a neighborhood are the same, all equal values are grouped. For example, sup-
pose that a 3*3 neighborhood has values (10, 20, 20, 20, 15, 20, 20, 25, 100).
These values are sorted as (10, 15, 20, 20, 20, 20, 20, 25, 100), which results in a
median of 20. Thus, the principal function of median filters is to force points
with distinct gray levels to be more like their neighbors. In fact, isolated clusters
of pixels that are light or dark with respect to their neighbors, and whose area
is less than n2�2 (one-half the filter area), are eliminated by an n*n median
filter. In this case “eliminated” means forced to the median intensity of the
neighbors. Larger clusters are affected considerably less.

Although the median filter is by far the most useful order-statistics filter in
image processing, it is by no means the only one. The median represents the
50th percentile of a ranked set of numbers, but the reader will recall from basic
statistics that ranking lends itself to many other possibilities. For example, using
the 100th percentile results in the so-called max filter, which is useful in finding
the brightest points in an image. The response of a 3*3 max filter is given by
R=max Ezk |k=1, 2, p , 9F .The 0th percentile filter is the min filter, used for
the opposite purpose. Median, max, and mean filters are considered in more
detail in Chapter 5.

� Figure 3.37(a) shows an X-ray image of a circuit board heavily corrupted by
salt-and-pepper noise.To illustrate the point about the superiority of median fil-
tering over average filtering in situations such as this, we show in Fig. 3.37(b) the
result of processing the noisy image with a 3*3 neighborhood averaging mask,
and in Fig. 3.37(c) the result of using a 3*3 median filter.The image processed
with the averaging filter has less visible noise, but the price paid is significant
blurring. The superiority in all respects of median over average filtering in this
case is quite evident. In general, median filtering is much better suited than av-
eraging for the removal of additive salt-and-pepper noise. �

EXAMPLE 3.10:
Use of median
filtering for noise
reduction.

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3*3 averaging mask. (c) Noise reduction with a 3*3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi, Inc.)

a b c
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3.7 � Sharpening Spatial Filters 125

Sharpening Spatial Filters

The principal objective of sharpening is to highlight fine detail in an image or
to enhance detail that has been blurred, either in error or as a natural effect of
a particular method of image acquisition. Uses of image sharpening vary and in-
clude applications ranging from electronic printing and medical imaging to in-
dustrial inspection and autonomous guidance in military systems.

In the last section, we saw that image blurring could be accomplished in the
spatial domain by pixel averaging in a neighborhood. Since averaging is analo-
gous to integration, it is logical to conclude that sharpening could be accom-
plished by spatial differentiation. This, in fact, is the case, and the discussion in
this section deals with various ways of defining and implementing operators for
sharpening by digital differentiation. Fundamentally, the strength of the re-
sponse of a derivative operator is proportional to the degree of discontinuity of
the image at the point at which the operator is applied. Thus, image differenti-
ation enhances edges and other discontinuities (such as noise) and deempha-
sizes areas with slowly varying gray-level values.

3.7.1 Foundation
In the two sections that follow, we consider in some detail sharpening filters that
are based on first- and second-order derivatives, respectively. Before proceeding
with that discussion, however, we stop to look at some of the fundamental prop-
erties of these derivatives in a digital context. To simplify the explanation, we
focus attention on one-dimensional derivatives. In particular, we are interested
in the behavior of these derivatives in areas of constant gray level (flat segments),
at the onset and end of discontinuities (step and ramp discontinuities), and along
gray-level ramps.These types of discontinuities can be used to model noise points,
lines, and edges in an image. The behavior of derivatives during transitions into
and out of these image features also is of interest.

The derivatives of a digital function are defined in terms of differences.There
are various ways to define these differences. However, we require that any de-
finition we use for a first derivative (1) must be zero in flat segments (areas of
constant gray-level values); (2) must be nonzero at the onset of a gray-level
step or ramp; and (3) must be nonzero along ramps. Similarly, any definition of
a second derivative (1) must be zero in flat areas; (2) must be nonzero at the
onset and end of a gray-level step or ramp; and (3) must be zero along ramps
of constant slope. Since we are dealing with digital quantities whose values are
finite, the maximum possible gray-level change also is finite, and the shortest dis-
tance over which that change can occur is between adjacent pixels.

A basic definition of the first-order derivative of a one-dimensional func-
tion f(x) is the difference

We used a partial derivative here in order to keep the notation the same as
when we consider an image function of two variables, f(x, y), at which time we

0f

0x
= f(x + 1) - f(x).

3.7
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FIGURE 3.38
(a) A simple
image. (b) 1-D
horizontal gray-
level profile along
the center of the
image and
including the
isolated noise
point.
(c) Simplified
profile (the points
are joined by
dashed lines to
simplify
interpretation).

will be dealing with partial derivatives along the two spatial axes. Use of a par-
tial derivative in the present discussion does not affect in any way the nature of
what we are trying to accomplish.

Similarly, we define a second-order derivative as the difference

It is easily verified that these two definitions satisfy the conditions stated pre-
viously regarding derivatives of the first and second order.To see this, and also
to highlight the fundamental similarities and differences between first- and sec-
ond-order derivatives in the context of image processing, consider the example
shown in Fig. 3.38.

Figure 3.38(a) shows a simple image that contains various solid objects, a
line, and a single noise point. Figure 3.38(b) shows a horizontal gray-level pro-
file (scan line) of the image along the center and including the noise point.This
profile is the one-dimensional function we will use for illustrations regarding this
figure. Figure 3.38(c) shows a simplification of the profile, with just enough num-

02f

0x2 = f(x + 1) + f(x - 1) - 2f(x).

a b
c
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bers to make it possible for us to analyze how the first- and second-order de-
rivatives behave as they encounter a noise point, a line, and then the edge of an
object. In our simplified diagram the transition in the ramp spans four pixels, the
noise point is a single pixel, the line is three pixels thick, and the transition into
the gray-level step takes place between adjacent pixels.The number of gray lev-
els was simplified to only eight levels.

Let us consider the properties of the first and second derivatives as we tra-
verse the profile from left to right. First, we note that the first-order derivative
is nonzero along the entire ramp, while the second-order derivative is nonzero
only at the onset and end of the ramp. Because edges in an image resemble this
type of transition, we conclude that first-order derivatives produce “thick” edges
and second-order derivatives, much finer ones. Next we encounter the isolated
noise point. Here, the response at and around the point is much stronger for
the second- than for the first-order derivative. Of course, this is not unexpect-
ed. A second-order derivative is much more aggressive than a first-order de-
rivative in enhancing sharp changes. Thus, we can expect a second-order
derivative to enhance fine detail (including noise) much more than a first-order
derivative. The thin line is a fine detail, and we see essentially the same differ-
ence between the two derivatives. If the maximum gray level of the line had
been the same as the isolated point, the response of the second derivative would
have been stronger for the latter. Finally, in this case, the response of the two de-
rivatives is the same at the gray-level step (in most cases when the transition into
a step is not from zero, the second derivative will be weaker).We also note that
the second derivative has a transition from positive back to negative. In an
image, this shows as a thin double line.This “double-edge” effect is an issue that
will be important in Chapter 10, where we use derivatives for edge detection.
It is of interest also to note that if the gray level of the thin line had been the
same as the step, the response of the second derivative would have been stronger
for the line than for the step.

In summary, comparing the response between first- and second-order de-
rivatives, we arrive at the following conclusions. (1) First-order derivatives gen-
erally produce thicker edges in an image. (2) Second-order derivatives have a
stronger response to fine detail, such as thin lines and isolated points. (3) First-
order derivatives generally have a stronger response to a gray-level step. (4) Sec-
ond-order derivatives produce a double response at step changes in gray level.
We also note of second-order derivatives that, for similar changes in gray-level
values in an image, their response is stronger to a line than to a step, and to a
point than to a line.

In most applications, the second derivative is better suited than the first de-
rivative for image enhancement because of the ability of the former to enhance
fine detail. For this, and for reasons of simpler implementation and extensions,
we will focus attention initially on uses of the second derivative for enhance-
ment. First-order derivatives are discussed in Section 3.7.3. Although the prin-
ciple of use of first derivatives in image processing is for edge extraction, they
do have important uses in image enhancement. In fact, we show in Section 3.8
that they can be used in conjunction with the second derivative to obtain some
impressive enhancement results.
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128 Chapter 3 � Image Enhancement in the Spatial Domain

3.7.2 Use of Second Derivatives for Enhancement–The Laplacian
In this section we consider in some detail the use of two-dimensional, second-
order derivatives for image enhancement.The approach basically consists of defin-
ing a discrete formulation of the second-order derivative and then constructing
a filter mask based on that formulation. We are interested in isotropic filters,
whose response is independent of the direction of the discontinuities in the image
to which the filter is applied. In other words, isotropic filters are rotation invari-
ant, in the sense that rotating the image and then applying the filter gives the
same result as applying the filter to the image first and then rotating the result.

Development of the method

It can be shown (Rosenfeld and Kak [1982]) that the simplest isotropic deriv-
ative operator is the Laplacian, which, for a function (image) f(x, y) of two
variables, is defined as

(3.7-1)

Because derivatives of any order are linear operations, the Laplacian is a lin-
ear operator.

In order to be useful for digital image processing, this equation needs to be
expressed in discrete form.There are several ways to define a digital Laplacian
using neighborhoods. Whatever the definition, however, it has to satisfy the
properties of a second derivative outlined in Section 3.7.1.The definition of the
digital second derivative given in that section is one of the most used.Taking into
account that we now have two variables, we use the following notation for the
partial second-order derivative in the x-direction:

(3.7-2)

and, similarly in the y-direction, as

(3.7-3)

The digital implementation of the two-dimensional Laplacian in Eq. (3.7-1) is
obtained by summing these two components:

(3.7-4)

This equation can be implemented using the mask shown in Fig. 3.39(a), which
gives an isotropic result for rotations in increments of 90°. The mechanics of
implementation are given in Eq. (3.5-1) and are illustrated in Section 3.6.1 for
the linear smoothing filters. We simply are using different coefficients here.

The diagonal directions can be incorporated in the definition of the digital
Laplacian by adding two more terms to Eq. (3.7-4), one for each of the two
diagonal directions.The form of each new term is the same as either Eq. (3.7-2)

     - 4f(x, y).

 § 2f = Cf(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1) D

02f

02y2 = f(x, y + 1) + f(x, y - 1) - 2f(x, y)

02f

02x2 = f(x + 1, y) + f(x - 1, y) - 2f(x, y)

§ 2f =
02f

0x2 +
02f

0y2 .
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0 1 0

1 –4 1

0 1 0

1 1 1

1 –8 1

1 1 1

0 –1 0

–1 4 –1

0 –1 0

–1 –1 –1

–1 8 –1

–1 –1 –1

FIGURE 3.39
(a) Filter mask
used to
implement the
digital Laplacian,
as defined in
Eq. (3.7-4).
(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal
neighbors. (c) and
(d) Two other
implementations
of the Laplacian.

or (3.7-3), but the coordinates are along the diagonals. Since each diagonal term
also contains a –2f(x, y) term, the total subtracted from the difference terms
now would be –8f(x, y). The mask used to implement this new definition is
shown in Fig. 3.39(b). This mask yields isotropic results for increments of 45°.
The other two masks shown in Fig. 3.39 also are used frequently in practice.
They are based on a definition of the Laplacian that is the negative of the one
we used here. As such, they yield equivalent results, but the difference in sign
must be kept in mind when combining (by addition or subtraction) a Lapla-
cian-filtered image with another image.

Because the Laplacian is a derivative operator, its use highlights gray-level
discontinuities in an image and deemphasizes regions with slowly varying gray
levels. This will tend to produce images that have grayish edge lines and other
discontinuities, all superimposed on a dark, featureless background. Background
features can be “recovered” while still preserving the sharpening effect of the
Laplacian operation simply by adding the original and Laplacian images. As
noted in the previous paragraph, it is important to keep in mind which defini-
tion of the Laplacian is used. If the definition used has a negative center coef-
ficient, then we subtract, rather than add, the Laplacian image to obtain a
sharpened result. Thus, the basic way in which we use the Laplacian for image
enhancement is as follows:

(3.7-5)

Use of this equation is illustrated next.

g(x, y) = df(x, y) - § 2f(x, y)

f(x, y) + § 2f(x, y)

if the center coefficient of the
Laplacian mask is negative

if the center coefficient of the
Laplacian mask is positive.

a b
c d
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130 Chapter 3 � Image Enhancement in the Spatial Domain

FIGURE 3.40
(a) Image of the
North Pole of the
moon.
(b) Laplacian-
filtered image.
(c) Laplacian
image scaled for
display purposes.
(d) Image
enhanced by
using Eq. (3.7-5).
(Original image
courtesy of
NASA.)

� Figure 3.40(a) shows an image of the North Pole of the moon. Figure 3.40(b)
shows the result of filtering this image with the Laplacian mask in Fig. 3.39(b).
Since the Laplacian image contains both positive and negative values, a typical
way to scale it is to use the approach discussed at the end of Section 3.4.1. Some-
times one encounters the absolute value being used for this purpose, but this re-
ally is not correct because it produces double lines of nearly equal magnitude,
which can be confusing.

The image shown in Fig. 3.40(c) was scaled in the manner just described for
display purposes. Note that the dominant features of the image are edges and
sharp gray-level discontinuities of various gray-level values. The background,
previously near black, is now gray due to the scaling. This grayish appearance
is typical of Laplacian images that have been scaled properly. Finally, Fig. 3.40(d)

EXAMPLE 3.11:
Imaging
sharpening with
the Laplacian.

a b
c d
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3.7 � Sharpening Spatial Filters 131

shows the result obtained using Eq. (3.7-5). The detail in this image is unmis-
takably clearer and sharper than in the original image. Adding the image to
the Laplacian restored the overall gray level variations in the image, with the
Laplacian increasing the contrast at the locations of gray-level discontinuities.
The net result is an image in which small details were enhanced and the back-
ground tonality was perfectly preserved. Results like these have made
Laplacian-based enhancement a fundamental tool used frequently for sharp-
ening digital images. �

Simplifications

In the previous example, we implemented Eq. (3.7-5) by first computing the
Laplacian-filtered image and then subtracting it from the original image. This
was done for instructional purposes to illustrate each step in the procedure. In
practice, Eq. (3.7-5) is usually implemented with one pass of a single mask.The
coefficients of the single mask are easily obtained by substituting Eq. (3.7-4)
for in the first line of Eq. (3.7-5):

(3.7-6)

This equation can be implemented using the mask shown in Fig. 3.41(a). The
mask shown in Fig. 3.41(b) would be used if the diagonal neighbors also were
included in the calculation of the Laplacian. Identical masks would have re-
sulted if we had substituted the negative of Eq. (3.7-4) into the second line of
Eq. (3.7-5).

� The results obtainable with the mask containing the diagonal terms usually
are a little sharper than those obtained with the more basic mask of Fig. 3.41(a).
This property is illustrated by the Laplacian-filtered images shown in
Figs. 3.41(d) and (e), which were obtained by using the masks in Figs. 3.41(a) and
(b), respectively. By comparing the filtered images with the original image shown
in Fig. 3.41(c), we note that both masks produced effective enhancement, but the
result using the mask in Fig. 3.41(b) is visibly sharper. Figure 3.41(c) is a scan-
ning electron microscope (SEM) image of a tungsten filament following ther-
mal failure; the magnification is approximately 250 *.) �

Because the Laplacian is a linear operator, we could have arrived at the same
composite masks in Figs. 3.41(a) and (b) by noting that Eq. (3.7-5) is the dif-
ference between (sum of) two linear processes. That is, f(x, y) be may viewed
as itself processed with a mask that has a unit coefficient in the center and zeros
elsewhere. The second term in the equation is the same image processed with
one of the Laplacian masks of Fig. 3.39. Due to linearity, the result obtained in
Eq. (3.7-5) with the unit-center mask and one of those Laplacian masks would
be the same as the result obtained with a single mask formed by subtracting
(adding) the Laplacian mask from (to) the unity-center mask.

     + f(x, y + 1) + f(x, y - 1) D .
 = 5f(x, y) - Cf(x + 1, y) + f(x - 1, y)

     + f(x, y + 1) + f(x, y - 1) D + 4f(x, y)

 g(x, y) = f(x, y) - Cf(x + 1, y) + f(x - 1, y)

§ 2f(x, y)

EXAMPLE 3.12:
Image
enhancement
using a composite
Laplacian mask.
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0 –1 0

–1 5 –1

0 –1 0
–1 –1 –1

–1 9 –1

–1 –1 –1

FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (c) Scanning
electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b),
respectively.Note how much sharper (e) is than (d). (Original image courtesy of Mr.Michael
Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)

Unsharp masking and high-boost filtering

A process used for many years in the publishing industry to sharpen images
consists of subtracting a blurred version of an image from the image itself.This
process, called unsharp masking, is expressed as

(3.7-7)

where fs(x, y) denotes the sharpened image obtained by unsharp masking, and
is a blurred version of f(x, y).The origin of unsharp masking is in dark-

room photography, where it consists of clamping together a blurred negative to
a corresponding positive film and then developing this combination to produce
a sharper image.

A slight further generalization of unsharp masking is called high-boost
filtering. A high-boost filtered image, fhb, is defined at any point (x, y) as

(3.7-8)fhb(x, y) = Af(x, y) - f
–

(x, y)

f
–

(x, y)

fs(x, y) = f(x, y) - f
–

(x, y)

a b c
d e
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0 –1 0

–1 A+4 –1

0 –1 0

–1 –1 –1

–1 A+8 –1

–1 –1 –1

FIGURE 3.42 The
high-boost filtering
technique can be
implemented with
either one of these
masks, with A � 1.

where A � 1 and, as before, is a blurred version of f. This equation may
be written as

(3.7-9)

By using Eq. (3.7-7), we obtain

(3.7-10)

as the expression for computing a high-boost-filtered image.
Equation (3.7-10) is applicable in general and does not state explicitly how

the sharp image is obtained. If we elect to use the Laplacian, then we know that
fs(x, y) can be obtained using Eq. (3.7-5). In this case, Eq. (3.7-10) becomes

(3.7-11)

High-boost filtering can be implemented with one pass using either of the two
masks shown in Fig. 3.42. Note that, when A=1, high-boost filtering becomes
“standard” Laplacian sharpening. As the value of A increases past 1, the con-
tribution of the sharpening process becomes less and less important. Eventual-
ly, if A is large enough, the high-boost image will be approximately equal to the
original image multiplied by a constant.

� One of the principal applications of boost filtering is when the input image is
darker than desired. By varying the boost coefficient, it generally is possible to
obtain an overall increase in average gray level of the image, thus helping to bright-
en the final result. Figure 3.43 shows such an application. Part (a) of this figure is
a darker version of the image in Fig. 3.41(c). Figure 3.43(b) shows the Laplacian
computed using the mask in Fig. 3.42(b), with A=0. Figure 3.43(c) was obtained
using the mask in Fig. 3.42(b) with A=1. As expected, the image has been
sharpened, but it is still as dark as the original. Finally, Fig. 3.43(d) shows the re-
sult of using A=1.7.This is a much more acceptable result, in which the average
gray level has increased, thus making the image lighter and more natural. �

fhb = dAf(x, y) - § 2f(x, y)

Af(x, y) + § 2f(x, y)

if the center coefficient of the
Laplacian mask is negative

if the center coefficient of the
Laplacian mask is positive.

fhb(x, y) = (A - 1)f(x, y) + fs(x, y)

fhb(x, y) = (A - 1)f(x, y) + f(x, y) - f
–

(x, y).

f
–

EXAMPLE 3.13:
Image
enhancement with
a high-boost filter.

a b
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FIGURE 3.43
(a) Same as
Fig. 3.41(c), but
darker.
(a) Laplacian of
(a) computed with
the mask in
Fig. 3.42(b) using
A=0.
(c) Laplacian
enhanced image
using the mask in
Fig. 3.42(b) with
A=1. (d) Same
as (c), but using
A=1.7.

3.7.3 Use of First Derivatives for Enhancement—The Gradient
First derivatives in image processing are implemented using the magnitude of
the gradient. For a function f(x, y), the gradient of f at coordinates (x, y) is de-
fined as the two-dimensional column vector

(3.7-12)

The magnitude of this vector is given by

(3.7-13)

The components of the gradient vector itself are linear operators, but the mag-
nitude of this vector obviously is not because of the squaring and square root

 = B a 0f

0x
b

2

+ a
0f

0y
b

2R 1�2

.

 = CG2
x + G2

y D
1�2

 §f = mag (§f)

§f = BGx

Gy
R = D 0f

0x
0f

0y

T  .

a b
c d
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operations. On the other hand, the partial derivatives in Eq. (3.7-12) are not ro-
tation invariant (isotropic), but the magnitude of the gradient vector is. Al-
though it is not strictly correct, the magnitude of the gradient vector often is
referred to as the gradient. In keeping with tradition, we will use this term in the
following discussions, explicitly referring to the vector or its magnitude only in
cases where confusion is likely.

The computational burden of implementing Eq. (3.7-13) over an entire image
is not trivial, and it is common practice to approximate the magnitude of the gra-
dient by using absolute values instead of squares and square roots:

(3.7-14)

This equation is simpler to compute and it still preserves relative changes in
gray levels, but the isotropic feature property is lost in general. However, as in
the case of the Laplacian, the isotropic properties of the digital gradient de-
fined in the following paragraph are preserved only for a limited number of ro-
tational increments that depend on the masks used to approximate the
derivatives. As it turns out, the most popular masks used to approximate the
gradient give the same result only for vertical and horizontal edges and thus
the isotropic properties of the gradient are preserved only for multiples of 90°.
These results are independent of whether Eq. (3.7-13) or (3.7-14) is used, so
nothing of significance is lost in using the simpler of the two equations.

As in the case of the Laplacian, we now define digital approximations to the
preceding equations, and from there formulate the appropriate filter masks. In
order to simplify the discussion that follows, we will use the notation in
Fig. 3.44(a) to denote image points in a 3*3 region. For example, the center
point, z5 , denotes f(x, y), z1 denotes f(x-1, y-1), and so on. As indicated
in Section 3.7.1, the simplest approximations to a first-order derivative that sat-
isfy the conditions stated in that section are Gx=Az8-z5B and Gy=Az6-z5B .
Two other definitions proposed by Roberts [1965] in the early development of
digital image processing use cross differences:

(3.7-15)

If we elect to use Eq. (3.7-13), then we compute the gradient as 

(3.7-16)

If we use absolute values, then substituting the quantities in Eq. (3.7-15) into
Eq. (3.7-14) gives us the following approximation to the gradient:

(3.7-17)

This equation can be implemented with the two masks shown in Figs. 3.44(b) and
(c). These masks are referred to as the Roberts cross-gradient operators.

Masks of even size are awkward to implement. The smallest filter mask in
which we are interested is of size 3*3. An approximation using absolute val-
ues, still at point z5 , but using a 3*3 mask, is 

(3.7-18)     + @ Az3 + 2z6 + z9B - Az1 + 2z4 + z7B @ .
 §f L @ Az7 + 2z8 + z9B - Az1 + 2z2 + z3B @

§f L @z9 - z5 @ + @z8 - z6 @ .

§f = C Az9 - z5B
2 + Az8 - z6B

2 D 1�2

Gx = Az9 - z5B  and  Gy = Az8 - z6B.

§f L @Gx @ + @Gy @ .
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–1 0

0 1

0 –1

1 0

–1 –2 –1

0 0 0

1 2 1

–1 0 1

–2 0 2

–1 0 1

z1 z2 z3

z4 z5 z6

z7 z8 z9

FIGURE 3.44
A 3*3 region of
an image (the z’s
are gray-level
values) and masks
used to compute
the gradient at
point labeled z5 .
All masks
coefficients sum
to zero, as
expected of a
derivative
operator.

The difference between the third and first rows of the 3*3 image region ap-
proximates the derivative in the x-direction, and the difference between the
third and first columns approximates the derivative in the y-direction.The masks
shown in Figs. 3.44(d) and (e), called the Sobel operators, can be used to im-
plement Eq. (3.7-18) via the mechanics given in Eq. (3.5-1). The idea behind
using a weight value of 2 is to achieve some smoothing by giving more impor-
tance to the center point (we discuss this in more detail in Chapter 10). Note that
the coefficients in all the masks shown in Fig. 3.44 sum to 0, indicating that they
would give a response of 0 in an area of constant gray level, as expected of a de-
rivative operator.

� The gradient is used frequently in industrial inspection, either to aid hu-
mans in the detection of defects or, what is more common, as a preprocessing
step in automated inspection. We will have more to say about this in Chapters
10 and 11. However, it will be instructive at this point to consider a simple ex-
ample to show how the gradient can be used to enhance defects and eliminate
slowly changing background features. In this particular example, the enhance-
ment is used as a preprocessing step for automated inspection, rather than for
human analysis.

Figure 3.45(a) shows an optical image of a contact lens, illuminated by a light-
ing arrangement designed to highlight imperfections, such as the two edge

EXAMPLE 3.14:
Use of the
gradient for edge
enhancement.

b c
d e

a
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FIGURE 3.45
Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o’clock).
(b) Sobel
gradient.
(Original image
courtesy of
Mr. Pete Sites,
Perceptics
Corporation.)

a b

defects in the lens boundary seen at 4 and 5 o’clock. Figure 3.45(b) shows the
gradient obtained using Eq. (3.7-14) with the two Sobel masks in Figs. 3.44(d)
and (e).The edge defects also are quite visible in this image, but with the added
advantage that constant or slowly varying shades of gray have been eliminat-
ed, thus simplifying considerably the computational task required for auto-
mated inspection. Note also that the gradient process highlighted small specs
that are not readily visible in the gray-scale image (specs like these can be for-
eign matter, air pockets in a supporting solution, or miniscule imperfections in
the lens). The ability to enhance small discontinuities in an otherwise flat gray
field is another important feature of the gradient. �

Combining Spatial Enhancement Methods

With a few exceptions, like combining blurring with thresholding in Section 3.6.1,
we have focused attention thus far on individual enhancement approaches. Fre-
quently, a given enhancement task will require application of several comple-
mentary enhancement techniques in order to achieve an acceptable result. In
this section we illustrate by means of an example how to combine several of the
approaches developed in this chapter to address a difficult enhancement task.

The image shown in Fig. 3.46(a) is a nuclear whole body bone scan, used to
detect diseases such as bone infection and tumors. Our objective is to enhance
this image by sharpening it and by bringing out more of the skeletal detail.The
narrow dynamic range of the gray levels and high noise content make this image
difficult to enhance. The strategy we will follow is to utilize the Laplacian to
highlight fine detail, and the gradient to enhance prominent edges. For reasons
that will be explained shortly, a smoothed version of the gradient image will be
used to mask the Laplacian image (see Section 3.4 regarding masking). Final-
ly, we will attempt to increase the dynamic range of the gray levels by using a
gray-level transformation.

Figure 3.46 (b) shows the Laplacian of the original image, obtained using
the mask in Fig. 3.39(d). This image was scaled (for display only) using the
same technique as in Fig. 3.40. We can obtain a sharpened image at this point

3.8
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FIGURE 3.46
(a) Image of
whole body bone
scan.
(b) Laplacian of
(a). (c) Sharpened
image obtained
by adding (a) and
(b). (d) Sobel of
(a).

a b
c d
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3.8 � Combining Spatial Enhancement Methods 139

FIGURE 3.46
(Continued)
(e) Sobel image
smoothed with a
5*5 averaging
filter. (f) Mask
image formed by
the product of (c)
and (e).
(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a 
power-law
transformation to
(g). Compare (g)
and (h) with (a).
(Original image
courtesy of G.E.
Medical Systems.)

e f
g h
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140 Chapter 3 � Image Enhancement in the Spatial Domain

simply by adding Figs. 3.46(a) and (b), which are an implementation of the
second line in Eq. (3.7-5) (we used a mask with a positive center coefficient).
Just by looking at the noise level in (b), we would expect a rather noisy sharp-
ened image if we added Figs. 3.46(a) and (b), a fact that is confirmed by the
result shown in Fig. 3.46(c). One way that comes immediately to mind to re-
duce the noise is to use a median filter. However, median filtering is a non-
linear process capable of removing image features. This is unacceptable in
medical image processing.

An alternate approach is to use a mask formed from a smoothed version of
the gradient of the original image. The motivation behind this is straightfor-
ward and is based on the properties of first- and second-order derivatives ex-
plained in Section 3.7.1.The Laplacian, being a second-order derivative operator,
has the definite advantage that it is superior in enhancing fine detail. Howev-
er, this causes it to produce noisier results than the gradient. This noise is most
objectionable in smooth areas, where it tends to be more visible. The gradient
has a stronger response in areas of significant gray-level transitions (gray-level
ramps and steps) than does the Laplacian.The response of the gradient to noise
and fine detail is lower than the Laplacian’s and can be lowered further by
smoothing the gradient with an averaging filter.The idea, then, is to smooth the
gradient and multiply it by the Laplacian image. In this context, we may view
the smoothed gradient as a mask image. The product will preserve details in
the strong areas while reducing noise in the relatively flat areas.This process can
be viewed roughly as combining the best features of the Laplacian and the gra-
dient.The result is added to the original to obtain a final sharpened image, and
could even be used in boost filtering.

Figure 3.46(d) shows the Sobel gradient of the original image, computed
using Eq. (3.7-14). Components Gx and Gy were obtained using the masks in
Figs. 3.44(d) and (e), respectively. As expected from our discussion in Section
3.7.1, edges are much more dominant in this image than in the Laplacian image.
The smoothed gradient image shown in Fig. 3.46(e) was obtained by using an
averaging filter of size 5*5. The two gradient images were scaled for display
in the same manner as the two Laplacian images. Because the smallest possible
value of a gradient image is 0, the background is black in the scaled gradient im-
ages, rather than gray as in the scaled Laplacian.The fact that Figs. 3.46(d) and
(e) are much brighter than Fig. 3.46(b) is again evidence that the gradient of an
image with significant edge content has values that are higher in general than
in a Laplacian image.

The product of the Laplacian and smoothed-gradient image is shown in
Fig. 3.46(f). Note the dominance of the strong edges and the relative lack of vis-
ible noise, which is the key objective behind masking the Laplacian with a
smoothed gradient image.Adding the product image to the original resulted in
the sharpened image shown in Fig. 3.46(g). The significant increase in sharp-
ness of detail in this image over the original is evident in most parts of the image,
including the ribs, spinal chord, pelvis, and skull.This type of improvement would
not have been possible by using the Laplacian or gradient alone.

The sharpening procedure just discussed does not affect in an appreciable
way the dynamic range of the gray levels in an image.Thus, the final step in our
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enhancement task is to increase the dynamic range of the sharpened image.As
we discussed in some detail in Sections 3.2 and 3.3, there are a number of gray-
level transformation functions that can accomplish this objective. We do know
from the results in Section 3.3.2 that histogram equalization is not likely to work
well on images that have dark gray-level distributions like our images have
here. Histogram specification could be a solution, but the dark characteristics
of the images with which we are dealing lend themselves much better to a power-
law transformation. Since we wish to spread the gray levels, the value of g in
Eq. (3.2-3) has to be less than 1.After a few trials with this equation we arrived
at the result shown in Fig. 3.46(h), obtained with g=0.5 and c=1. Compar-
ing this image with Fig. 3.46(g), we see that significant new detail is visible in
Fig. 3.46(h). The areas around the wrists, hands, ankles, and feet are good ex-
amples of this. The skeletal bone structure also is much more pronounced, in-
cluding the arm and leg bones. Note also the faint definition of the outline of
the body, and of body tissue. Bringing out detail of this nature by expanding
the dynamic range of the gray levels also enhanced noise, but Fig. 3.46(h) rep-
resents a significant visual improvement over the original image.

The approach just discussed is representative of the types of processes that
can be linked in order to achieve results that are not possible with a single
technique. The way in which the results are used depends on the application.
The final user of the type of images shown in this section is likely to be a ra-
diologist. For a number of reasons that are beyond the scope of our discussion,
physicians are unlikely to rely on enhanced results to arrive at a diagnosis.
However, enhanced images are quite useful in highlighting details that can
serve as clues for further analysis in the original image or sequence of images.
In other areas, the enhanced result may indeed be the final product. Examples
are found in the printing industry, in image-based product inspection, in foren-
sics, in microscopy, in surveillance, and in a host of other areas where the prin-
cipal objective of enhancement is to obtain an image with a higher content of
visual detail.

Summary
The material presented in this chapter is representative of spatial domain techniques
commonly used in practice for image enhancement. This area of image processing is
a dynamic field, and new techniques and applications are reported routinely in pro-
fessional literature and in new product announcements. For this reason, the topics in-
cluded in this chapter were selected for their value as fundamental material that
would serve as a foundation for understanding the state of the art in enhancement
techniques, as well as for further study in this field. In addition to enhancement, this
chapter served the purpose of introducing a number of concepts, such as filtering with
spatial masks, that will be used in numerous occasions throughout the remainder of
the book. In the following chapter, we deal with enhancement from a complemen-
tary viewpoint in the frequency domain. Between these two chapters, the reader will
have developed a solid foundation for the terminology and some of the most funda-
mental tools used in image processing.The fact that these tools were introduced in the
context of image enhancement is likely to aid in the understanding of how they op-
erate on digital images.
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References and Further Reading
The material in Section 3.1 is from Gonzalez [1986]. Additional reading for the materi-
al in Section 3.2 may be found in Schowengerdt [1983], Poyton [1996], and Russ [1999].
See also the paper by Tsujii et al. [1998] regarding the optimization of image displays.
Early references on histogram processing are Hummel [1974], Gonzalez and Fittes [1977],
and Woods and Gonzalez [1981]. Stark [2000] gives some interesting generalizations of
histogram equalization for adaptive contrast enhancement. Other approaches for con-
trast enhancement are exemplified by Centeno and Haertel [1997] and Cheng and Xu
[2000]. For enhancement based on an ideal image model, see Highnam and Brady [1997].
For extensions of the local histogram equalization method, see Caselles et al. [1999], and
Zhu et al. [1999]. See Narendra and Fitch [1981] on the use and implementation of local
statistics for image enhancement. Kim et al. [1997] present an interesting approach com-
bining the gradient with local statistics for image enhancement.

Image subtraction (Section 3.4.1) is a generic image processing tool widely used for
change detection. As noted in that section, one of the principal applications of digital
image subtraction is in mask mode radiography, where patient motion is a problem be-
cause motion smears the results. The problem of motion during image subtraction has
received significant attention over the years, as exemplified in the survey article by Mei-
jering et al. [1999].The method of noise reduction by image averaging (Section 3.4.2) was
first proposed by Kohler and Howell [1963]. See Peebles [1993] regarding the expected
value of the mean and variance of a sum of random variables.

For additional reading on linear spatial filters and their implementation, see Um-
baugh [1998], Jain [1989], and Rosenfeld and Kak [1982]. Rank-order filters are dis-
cussed in these references as well.Wilburn [1998] discusses generalizations of rank-order
filters.The book by Pitas and Venetsanopoulos [1990] also deals with median and other
nonlinear spatial filters.A special issue of IEEE Transactions in Image Processing [1996]
is dedicated to the topic of nonlinear image processing. The material on high-boost fil-
tering is from Schowengerdt [1983]. We will encounter again many of the spatial filters
introduced in this chapter in discussions dealing with image restoration (Chapter 5) and
edge detection (Chapter 10).

Problems
3.1 Exponentials of the form with a a positive constant, are useful for con-

structing smooth gray-level transformation functions. Start with this basic func-
tion and construct transformation functions having the general shapes shown in
the following figures. The constants shown are input parameters, and your pro-
posed transformations must include them in their specification. (For simplicity in
your answers, L0 is not a required parameter in the third curve.)

(a) (b) (c)

L0

A

r

s=T(r)

A/2

L0

B

r

s=T(r)

B/2

0

D

C
r

s=T(r)

e-ar2

,

Detailed solutions to the
problems marked with a
star can be found in the
book web site. The site
also contains suggested
projects based on the ma-
terial in this chapter.

See inside front cover
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3.2 (a) Give a continuous function for implementing the contrast stretching trans-
formation shown in Fig. 3.2(a). In addition to m, your function must include a
parameter,E, for controlling the slope of the function as it transitions from low
to high gray-level values.Your function should be normalized so that its min-
imum and maximum values are 0 and 1, respectively.

(b) Sketch a family of transformations as a function of parameter E, for a fixed
value m=L�2, where L is the number of gray levels in the image.

(c) What is the smallest value of s that will make your function effectively per-
form as the function in Fig. 3.2(b)? In other words, your function does not
have to be identical to Fig. 3.2(b). It just has to yield the same result of pro-
ducing a binary image. Assume that you are working with 8-bit images, and
let m=128.Also, let C be the smallest positive number representable in the
computer you are using.

3.3 Propose a set of gray-level-slicing transformations capable of producing all the in-
dividual bit planes of an 8-bit monochrome image. (For example, a transforma-
tion function with the property T(r)=0 for r in the range [0, 127], and
T(r)=255 for r in the range [128, 255] produces an image of the 7th bit plane
in an 8-bit image.)

3.4 (a) What effect would setting to zero the lower-order bit planes have on the his-
togram of an image in general? 

(b) What would be the effect on the histogram if we set to zero the higher-
order bit planes instead?

3.5 Explain why the discrete histogram equalization technique does not, in general,
yield a flat histogram.

3.6 Suppose that a digital image is subjected to histogram equalization. Show that a
second pass of histogram equalization will produce exactly the same result as the
first pass.

3.7 In some applications it is useful to model the histogram of input images as Gauss-
ian probability density functions of the form

where m and s are the mean and standard deviation of the Gaussian PDF. The
approach is to let m and s be measures of average gray level and contrast of a
given image. What is the transformation function you would use for histogram
equalization?

3.8 Assuming continuous values, show by example that it is possible to have a case
in which the transformation function given in Eq. (3.3-4) satisfies Conditions (a)
and (b) in Section 3.3.1, but its inverse may fail to be single valued.

3.9 (a) Show that the discrete transformation function given in Eq. (3.3-8) for his-
togram equalization satisfies conditions (a) and (b) in Section 3.3.1.

(b) Show by example that this does not hold in general for the inverse discrete
transformation function given in Eq. (3.3-9).

(c) Show that the inverse discrete transformation in Eq. (3.3-9) satisfies Conditions
(a) and (b) in Section 3.3.1 if none of the gray levels rk , k=0, 1, p , L-1,
are missing.

pr(r) =
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3.10 An image has the gray level PDF pr(r) shown in the following diagram. It is de-
sired to transform the gray levels of this image so that they will have the speci-
fied pz(z) shown. Assume continuous quantities and find the transformation (in
terms of r and z) that will accomplish this.

3.11 Propose a method for updating the local histogram for use in the local enhance-
ment technique discussed in Section 3.3.3.

3.12 Two images, f(x, y) and g(x, y), have histograms hf and hg . Give the conditions
under which you can determine the histograms of
(a) f(x, y)+g(x, y)

(b) f(x, y)-g(x, y)

(c) f(x, y)*g(x, y)

(d) f(x, y) , g(x, y)

in terms of hf and hg. Explain how to obtain the histogram in each case.
3.13 Consider two 8-bit images whose gray levels span the full range from 0 to 255.

(a) Discuss the limiting effect of repeatedly subtracting image (b) from image (a).
(b) Would reversing the order of the images yield a different result?

3.14 Image subtraction is used often in industrial applications for detecting missing
components in product assembly. The approach is to store a “golden” image
that corresponds to a correct assembly; this image is then subtracted from in-
coming images of the same product. Ideally, the differences would be zero if
the new products are assembled correctly. Difference images for products with
missing components would be nonzero in the area where they differ from the
golden image. What conditions do you think have to be met in practice for this
method to work?

3.15 Prove the validity of Eqs. (3.4-4) and (3.4-5).
3.16 In an industrial application, X-ray imaging is to be used to inspect the inside of

certain composite castings.The objective is to look for voids in the castings, which
typically appear as small blobs in the image. However, due to properties in of the
casting material and X-ray energy used, high noise content often makes inspec-
tion difficult, so the decision is made to use image averaging to reduce the noise
and thus improve visible contrast. In computing the average, it is important to
keep the number of images as small as possible to reduce the time the parts have
to remain stationary during imaging. After numerous experiments, it is conclud-
ed that decreasing the noise variance by a factor of 10 is sufficient. If the imag-
ing device can produce 30 frames�s, how long would the castings have to remain
stationary during imaging to achieve the desired decrease in variance? Assume
that the noise is uncorrelated and has zero mean.

2

1

2

1

pr(r) pz(z)

r z
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�
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3.17 The implementation of linear spatial filters requires moving the center of a mask
throughout an image and, at each location, computing the sum of products of the
mask coefficients with the corresponding pixels at that location (see Section 3.5).
In the case of lowpass filtering, all coefficients are 1, allowing use of a so-called
box-filter or moving-average algorithm, which consists of updating only the part
of the computation that changes from one location to the next.

(a) Formulate such an algorithm for an n*n filter, showing the nature of the
computations involved and the scanning sequence used for moving the mask
around the image.

(b) The ratio of the number of computations performed by a brute-force imple-
mentation to the number of computations performed by the box-filter algo-
rithm is called the computational advantage. Obtain the computational
advantage in this case and plot it as a function of n for n>1.The 1�n2 scaling
factor is common to both approaches, so you need not consider it in obtaining
the computational advantage. Assume that the image has an outer border of
zeros that is thick enough to allow you to ignore border effects in your analysis.

3.18 Discuss the limiting effect of repeatedly applying a 3*3 lowpass spatial filter to
a digital image. You may ignore border effects.

3.19 (a) It was stated in Section 3.6.2 that isolated clusters of dark or light (with respect
to the background) pixels whose area is less than one-half the area of a medi-
an filter are eliminated (forced to the median value of the neighbors) by the fil-
ter.Assume a filter of size n*n, with n odd, and explain why this is so.

(b) Consider an image having various sets of pixel clusters.Assume that all points
in a cluster are lighter or darker than the background (but not both simulta-
neously in the same cluster), and that the area of each cluster is less than or
equal to n2�2. In terms of n, under what condition would one or more of these
clusters cease to be isolated in the sense described in part (a)?

3.20 (a) Develop a procedure for computing the median of an n*n neighborhood.

(b) Propose a technique for updating the median as the center of the neighbor-
hood is moved from pixel to pixel.

3.21 (a) In a character recognition application, text pages are reduced to binary form
using a thresholding transformation function of the form shown in Fig. 3.2(b).
This is followed by a procedure that thins the characters until they become
strings of binary 1’s on a background of 0’s. Due to noise, the binarization
and thinning processes result in broken strings of characters with gaps rang-
ing from 1 to 3 pixels. One way to “repair” the gaps is to run an averaging
mask over the binary image to blur it, and thus create bridges of nonzero pix-
els between gaps. Give the (odd) size of the smallest averaging mask capable
of performing this task.

(b) After bridging the gaps, it is desired to threshold the image in order to con-
vert it back to binary form. For your answer in (a), what is the minimum value
of the threshold required to accomplish this, without causing the segments to
break up again?

3.22 The three images shown were blurred using square averaging masks of sizes
n=23, 25, and 45, respectively.The vertical bars on the left lower part of (a) and
(c) are blurred, but a clear separation exists between them. However, the bars
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have merged in image (b), in spite of the fact that the mask that produced this
image is significantly smaller than the mask that produced image (c). Explain this.

3.23 Consider an application such as the one shown in Fig. 3.36, in which it is desired
to eliminate objects smaller than those enclosed in a square of size q*q pixels.
Suppose that we want to reduce the average gray level of those objects to one-tenth
of their original average gray level. In this way, those objects will be closer to the
gray level of the background and they can then be eliminated by thresholding.
Give the (odd) size of the smallest averaging mask that will accomplish the desired
reduction in average gray level in only one pass of the mask over the image.

3.24 In a given application an averaging mask is applied to input images to reduce
noise, and then a Laplacian mask is applied to enhance small details. Would the
result be the same if the order of these operations were reversed?

3.25 Show that the Laplacian operation defined in Eq. (3.7-1) is isotropic (invariant to
rotation).You will need the following equations relating coordinates after axis ro-
tation by an angle u:

x=x¿ cos u-y¿ sin u

y=x¿ sin u+y¿ cos u

where (x, y) are the unrotated and (x¿, y¿) are the rotated coordinates.

3.26 Give a 3*3 mask for performing unsharp masking in a single pass through an
image.

3.27 Show that subtracting the Laplacian from an image is proportional to unsharp
masking. Use the definition for the Laplacian given in Eq. (3.7-4).

3.28 (a) Show that the magnitude of the gradient given in Eq. (3.7-13) is an isotrop-
ic operation. (See Problem 3.25.)

(b) Show that the isotropic property is lost in general if the gradient is comput-
ed using Eq. (3.7-14).

3.29 A CCD TV camera is used to perform a long-term study by observing the same area
24 hours a day, for 30 days. Digital images are captured and transmitted to a cen-
tral location every 5 minutes. The illumination of the scene changes from natural
daylight to artificial lighting.At no time is the scene without illumination, so it is al-
ways possible to obtain an image. Because the range of illumination is such that it
is always in the linear operating range of the camera, it is decided not to employ any
compensating mechanisms on the camera itself. Rather, it is decided to use digital
techniques to postprocess, and thus normalize, the images to the equivalent of con-
stant illumination. Propose a method to do this.You are at liberty to use any method
you wish, but state clearly all the assumptions you made in arriving at your design.

(a) (b) (c)

� 

� 
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a discussion of issues related to implementing the Fourier transform in the con- 
text of image processing. 

Background ". 
The French mathematician Jean Baptiste Joseph Fourier was born in 1768 in the 
town of Auxerre, about midway between Paris and Dijon.The contribution for 
which he is most remembered was outlined in a memoir in 1807 and published 
i n  1822 in his book, La Thkorie Analitique de la Chaleur (The Analytic Theory 
of Heat).This book was translated into English 55 years later by Freeman (see 
Freeman (18781). Basically, Fourier's contribution in this particular field states 
that any function that periodically repeats itself can be expressed as the sum of 
sines andlor cosines of different frequencies, each multiplied by a different co- 
efficient (we now call this sum a Fourier series). It does not matter how com- 
plicated the function is; as long as it is periodic and meets some mild 
mathematical conditions,it can be represented by such a sum.This is now taken 
for granted, but at the time it first appeared it was a revolutionary concept to 
which it took mathematicians all over the world over a century to "adjust." At 
that time, regularity in functions was a mainstay of mathematical thinking. With 
this type of cultural mindset, the concept that complicated functions could be 
represented as a sum of simple sines and cosines was not at all intuitive (Fig. 4.1), 
so it is not surprising that Fourier's ideas in this regard were met with skepticism. 

Even functions that are not periodic (but whose area under the curve is fi- 
nite) can be expressed as the integral of sines andior cosines multiplied by a 
weighing function.The formulation in this case is the Fourier fransform, and its 
utility is even greater than the Fourier series in most practical problems. Both 
representations share the important characteristic that a function, expressed in 
either a Fourier series or transform, can be reconstructed (recovered) com- 
pletely via an inverse process, with no loss of information. This is one of the 
most important characteristics of these representations because they allow us 
to work in the "Fourier domain" and then return to the original domain of the 
function without losing any information. 

Ultimately, it was the utility of the Fourier series and transform in solving 
practical problems that made them widely used and studied as fundamental 
tools. The application of Fourier initial ideas was in the field of heat diffusion, 
where they allowed the formulation of differential equations representing heat 
flow in such a way that solutions could be obtained for the first time. During the 
past century, and especially in the past 50 years, entire industries and academ- 
ic disciplines have flourished as a result of Fourier's ideas. The advent of digi- 
tal computation and the "disc~very" of a fast Fourier transform (FFT) algorithm 
in the late 1950s (more about this later) revolutionized the field of signal pro- 
cessing. These two core technologies allowed for the first time pract~cal pro- 
cessing and meaningful interpretation of a host of signals of exceptional human 
and industrial importance, from medical monitors and scanners to modern elec- 
tronic communications. 

We will be dealing only with functions (images) of finite duration, so the 
Fourier transform iS the tool in which we are interested.The material in the fol- 
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FIGURE 4.1 The function at the bottom is the sum of the four functions above it. 
Fourier's idea in 1807 that periodic functions could he represented as a weighted sum 
of sines and cosines was met with skepticism. 

- - ~ . . .~~~ ~ ~ .... . ,. ~- ..~ . ~ 

lowing section introduces the Fourier transform and the frequency domain. It 
is shown that Fourier techniques provide a meaningful and practical way to 
study and implement a host of image enhancement approaches. In some cases, 
these approaches are similar to the ones we developed in Chapter 3. In others, 
they are complementary. 

Introduction to the Fourier Transform 
and the Frequency Domain 

This section introduces the Fourier transform in one and two dimensions. The 
focus is mostly on a discrete formulation of the continuous transform and some 
of its properties. 
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4.2.1 The One-Dimensional Fourier Transform and its Inverse 
The Fourier transform, F ( u ) ,  of a single variable, continuous function, f (x), is 
defined by the equation 

where j = R. Conversely, given F(u) ,  we can obtain f ( x )  by means of the 
inverse Fourier transform 

These two equations comprise the Fourier transform pair. They indicate the 
important fact mentioned in the previous section that a function can be re- 
covered from its transform. These equations are easily extended to two vari- 
ables, u and v: 

and, similarly for the inverse transform, 

Our interest is in discrete functions so we will not dwell on these equations 
here. However, in some cases, the reader may find them easier to manipulate 
than their discrete equivalents in proving the validity of properties of the 2-D 
Fourier transform. 

The Fourier transform of a discrete function of one variable, f ( x ) ,  x = 0,1, 
2,. . . , M - 1, is given by the equation 

1 M-I 
-jZlruxlM for u = 0,1,2, ... , M - 1. (4.2-5) 

x = o  

This discrete Fourier transform (DFT) is the foundation for most of the work in 
this chapter. Similarly, given F ( u ) ,  we can obtain the original function back 
using the inverse DFT: 

M - I  

f ( x )  = 2 ~ ( u ) e l ~ " ' ~ I ~  for x = 0,1,2, ... , M - 1. (4.2-6) 
rr=O 

The 1 / M  multiplier in front of the Fourier transform sometimes is placed in 
front of the inverse instead. Other times (not as often) both equations are mul- 
tiplied by l/V%. The location of the multiplier does not matter. If two multi- 
pliers are used, the only requirement is that their product be equal to 1/M. 
Considering their importance, these equations really are very simple. 

In order to compute F ( u )  in Eq. (4.2-5) we start by substituting u = 0 in the 
exponential term and then summing for all values of x. We then substitute u = 1 
in the exponential and repeat the summation over all values of x. We repeat 
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this process for all M values sf u in order to obtain the compIete Fourier trans- 
form. It takes approximately M~ summations and multiplications to compute the 
discrete Fourier transform (reduction of this number is an important topic of dis- 
cussion in Section 4.6). Like f ( x ) ,  the transform is a discrete quantity, and it  
has the same number of components as f ( x ) .  Similar comments apply to the 
computation of the inverse Fourier transform. 

An important property of the discrete transform pair is that, unlike the con- 
tinuos case, we need not be concerned about the existence of the DFT or its in- 
verse. The discrete Fourier transform and its inverse always exist. This can be 
shown by substituting either of Eqs. (4.2-5) or (4.2-6) into the other and mak- 
ing use of the orthogonality of the exponential terms (Problem 4.1). We will get 
an identity, indicating the existence of the two functions. OF course, there is al- 
ways the question of what happens iff (x) has infinite values, but we deal strict- 
ly with finite quantities in this book. These comments are directly applicable to 
two-dimensional (and higher) functions. Thus, for digital image processing, ex- 
istence of either the discrete transform OP its inverse is not an issue. 

The concept of the frequency domain, mentioned numerous times in this 
chapter and in Chapter 3, foilows directly from Euler's formula: 

ele = cos 8 + j sin 0. (4.2-7) 

Substituting this expression into Eq. (4,2-5), and using the fact that 
cos (-8) = cos 0, gives US 

1 M - 1  

F ( u )  = - f ( x )  [cos Z T U X / M  - j sin 2auxl M ]  (4.2-8) 
M x-0  

for u = 0, I, 2,. . . , M - 1. Thus, we see that each term of the Fourier transform 
[that is, the value of F(u)  for each value of u] is composed of the sum of all val- 
ues of the function f (x).The values of f  (x), in turn, are multiplied by sines and 
cosines of various frequencies. The domain (values of u )  over which the values 
of F ( u )  range is appropriately called the frequency domain, because u deter- 
mines the frequency of the components of the transform. (The x's also affect the 
frequencies, but they are summed out and they all make the same contribu- 
tions for each value of u.) Each of the M terms of F (LI) is called a frequency com- 
ponent of the transform. Use of the terms frequency domain and frequency 
components is really no different from the terms time domain and time com- 
ponents, which we would use to express the domain and values off ( x )  if x were 
a time variable. 

A useful analogy is to compare the Fourier transform to a glass prism. The 
prism is a physical device that separates light into various color components; 
each depending an its wavelength (or frequency) content. The Fourier trans- 
form may be viewed as a "mathematical prisrn7?that separates a function into 
various components, also based on frequency content. When we consider light, 
we talk about its spectral or frequency content. Similariy, the Fourier transform 
lets us characterize a func t i~n  by its frequency content. This is a powerful con- 
cept that Iies at the heart of linear filtering. 
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In general, we see from Eqs. (4.2-5) or (4.2-8) that the components of the 
Fourier transform are complex quantities. As in the analysis of complex num- 
bers, we find it convenient sometimes to express F ( u )  in polar coordinates: 

F(u)  = lF(u)le -14(~1) (4.2-9) 

where 

IF(LI)J = [ R ~ ( u )  + I*(u) ] ' /~  (4.2-10) 

i i  called the magnitude or spectrum of the Fourier transform, and 

is called the phase angle or phase spectrum of the transform. In Eqs. (4.2-10) 
and (4.2-11). R(u) and I (u )  are the real and imaginary parts of F(u),  respec- 
tively. In terms of image enhancement we are concerned primarily with prop- 
erties of the spectrum. Another quantity that is used later in this chapter is the 
power spectrum, defined as the square of the Fourier spectrum: 

p ( u )  = I ~ ( u ) l ~  (4.2-12) 
= R'(u) + 12(u). 

The term spectral density also is used to refer to the power spectrum. 

EXAMPLE 4.1: ;-if: Before proceeding, it will be helpful to consider a simple one-dimensional 
Fourier spectra of example of the Dm. Figure 4.2(a) shows a function and Fig. 4.2(b) shows its 
two simp'e Fourier spectrum. Both f (x)  and F ( u )  are discrete quantities, but the points in functions. 

the plots are linked to make them easier to follow visually. In this example, 
M = 1024, A = I ,  and K is only 8 points. Also note that the spectrum is centered 
at cr = 0. As shown in the following section, this is accomplished by multiply- 
ing f (x)  by (-1)' before taking the transform.The next two figures depict ba- 
sically the same thing, but with K = 16 points.The important features to note 
are that (1) the height of the spectrum doubled as the area under the curve in 
the x-domain doubled, and (2) the number of zeros in the spectrum in the same 
interval doubled as the length of the function doubled.This "reciprocal" nature 
of the Fourier transform pair is most useful in interpreting results of image pro- 
cessing in the frequency domain. a 

In the discrete transform of Eq. (4.2-5). the function f (x)  for x = 0,1,2, .  . . , 
M - 1, represents M samples from its continuous counterpart. It is important to 
keep in mind that these samples are not necessarily always taken at integer val- 
ues of x in the interval [O. M - l].They are taken at equally spaced, but other- 
wise arbitrary, points. This is usually represented by letting xo denote the first 
(arbitrarily located) point in the sequence.The first value of the sampled func- 
tion is then f(xo). The next sample has taken a fixed interval Ax units away to 
give f (x,, + Ax). The kth sample gives us f (xu + kAx), and the final sample is 
f (x, ,  + [M - l]Ax).Thus, in the discrete case, when we write f (k) ,  it is under- 
stood that we are utilizing shorthand notation that really means f (x, + k ~ x ) .  In 
terms of the notation we have used thus far, f (x)  is then understood to mean 
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f ( x )  . a  b 
c 

FIGURE 4.2 (a) A 
discrete function 
of M points, and 
(b) its Fourier 
spectrum. (c) A 
discrete function 
with twice the 

M points number of 

lF(u)l  
and (d) iis Fourier 

2 A K  A spectrum. 
- 

M 7 

I (*) 

2K points 
A L M points x :I 

-Mpoints- C U  

when dealing with discrete variables.7he variable u  has a similar interpretation, 
but the sequence always starts at true zero frequency.Thus the sequence for the 
values of u is 0, Au, ZAu, . . . , [ M  - l ]Au .  Then, F ( u )  is understood to mean 

for u = 0,1,2,. . . , M - 1. This type of shorthand notation simplifies equations 
considerably and is much easier to follow. 

Given the inverse relationship between a function and its transform illus- 
trated in Fig. 4.2, it is not surprising that Ax and Au are inversely related by 
the expression 

This relationship is useful when measurements are an issue in the images being 
processed. For instance, in an application of electron microscopy the image sam- 
ples may be spaced 1 micron apart, and certain characteristics in the frequen- 
cy domain (like periodicity components) may have implications regarding the 
structure of the physical sample. For the most part in subsequent discussions in 
this book we use the variables x and u  without making reference to  specific 
sampling or other measurement considerations. 
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4 . 2  The Two-Dimensional DFT and Its Inverse 
Extension of the one-dimensional discrete Fourier transform and its inverse to 
two dimensions is straightforward.The discrete Fourier transform of a function 
(image) f (r, ) I )  of size M x N is given by the equation 

As in the 1-D case, this expression must be computed for values of rc = 0, 1, 
2,. . . , M - 1, and also for v = 0,1,2,. . . . N - 1. Similarly. given F ( u ,  u ) ,  we ob- 
tain f ( x ,  y )  via the inverse Fourier transform, given by the expression 

M - I  N-1 

f(". y )  = C F ( ~ ( ,  v ) e j 2 ~ ( l l - ~ / M - i - l : ? l N )  

i r = o  ~ = n  

for x = 0,  1, 2 ,... , M - 1 and y = 0, 1,2, . . .  , N - 1. Equations (4.2-16) and 
(4.2-17) comprise the two-dimensional, rliscrefe Fourier tr~rnsforn7 (DFT) pnir. 
The variables u and v are the transfornz or frequency vnr~ohles. and x and y are 
the spatial or iniage vnriablees. As in the one-dimensional case. the location of ihe 
1 / M N  constant is not important. Sometimes it is located in front oC the inverse - 
transform. Other times it is found split into two equal ternis of 1 I V M N  mulli- 
plying the transform and its inverse. 

We define the Fourier spectrum, phase angle. and power spectrum as in the 
previous section: 

F ( U .  = [ R ~ ( u ,  T I )  + I ~ ( U ,  u ) ] ' / ~  (4.2-1 8 )  

4(1t. v )  = tan-' [Z:, :] 
and 

where R(LL, v )  and I (u ,  v) are the real and imaginary parts of F ( u ,  v ) ,  respectively. 
It is common practice to multiply the input image function by (-1 )It'' prlor 

to computing the Fourier transform. Due to the properties of exponentials, it is 
not difficult to show (see Section 4.6) that 

where 3 [ .  ] denotes the Fourier transform of the argument. This equation states 
that the origin of the Fourier transform off ( x ,  y ) ( - l )X ty  [that is, F(O, O)] is locat- 
ed at u = M/2 and v = N/2 .  In other words,multiplyiilg f ( x ,  y)  by (-I)'+? shifts 
the origin of F(u ,  v )  to frequency coordinates ( M / 2 ,  N/2), which is the center of 
the M X N area occupied by the 2-D DFT. We refer to this area of the frequency 
domain as the frequency rectangle. It extends from 11 = 0 to u = M - 1, and from 
v = 0 to v = N - 1 (keep in mind that u and v are integers). In order to guaran- 
tee that these shifted coordinates are integers. we require that M and N be even 
numbers. When implementing the Fourier transform in a computer, the linlits of 



4.2 E htroduction to the Fourier Transform and the Frequency Domain 155 

summations are from u = 1 to M and v = 1 to N= The actual center of the trans- 
form will then be at u = ( M / 2 )  + 1 and u = ( W / 2 )  + 1. 

The value of the transform at (u, v )  = (0,O) is, from Eq. (4,2-161, 

which we see is the average off ( x ,  y ) .  In other words, iff ( x ,  y )  is an image, the 
value of the Fourier transform at the origin is equal to the average gray level of 
the image. Because both frequencies are zero at the origin, F (0,O) sometimes 
is called the dc component of the spectrum. This terminology is from electrical 
engineering, where "dc" signifies direct current (i.e., current of zero frequency). 

Iff  ( x ,  y )  is real, its Fourier transform is conjugate symmetric; that is, 

F(u, v) = F*(-u, -v) (4.2-23) 

where "*" indicates the standard conjugate operation an a complex number. 
From this, it follows that 

which says that the spectrum of the Fourier transform is symmetric, Conjugate 
symmetry and the centering property discussed previously truly sirnphfy the 
specification of circularly symmetric filters in the frequency domain, as shown 
in the following section. 

Finally, as in the 1-D case, we have the following relationships between sam- 
ples in the spatial and frequency domains: 

and 

The significance of these variables is identical in meaning to the explanation 
given in Section 4.2.1 for 1-D variables. 

Figure 4,3(a) shows a white rectangle of size 20 X 40 pixels superimposed EXAMPLE 4.2 
on a black background of size 512 x 512 pixels. This image was multiplied by Centered 

(-1 )"'Y prior to computing the Fourier transform in order to center the spec- spectrum of a 
simple 2-D trum, which is shown in Fig. 4.3(b). (Note the location, labels, and origin of the function, 

axes in both figures. We follow this convention throughout all discussions of 
images and their corresponding Fourier spectra.) In Fig. 4,3(b), the separation 
of spectrum zeros in the u-direction is exactly twice the separation of zeros in 
the v direction. ?'his corresponds inversely to the 1-to-2 size ratio of the rec- 
tangle in the image. The spectrum was processed prior to displaying by using 
the log transformation in Eq. (3.2-2) to enhance gray-level detail. A value of 
c = 0.5 was used in the transformation in order to decrease overall intensity. 
Most Fourier spectra shown in this chapter are similarly processed by a log 
transformation. rn 
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a b 

FIGURE 4.3 
(a)  Image of a 
20 X 40 white 
rectangle on a 
black backgrou~ 
of size 5 12 X 51 
pixels. 
(b) Centered 
Fourier spcctro~ 
shown after 
application 
of the log 
transformation 
given i n  
k4. (3.2-2). 
Comparc wilh 
Fig. 4.2. 

. ', Fi l te r ing  in the Frequency Domain 

As noted in the past two sections, the frequency domain is nothing more than 
the space defined by values of the Fourier transform and its frequency vari- 
ables ( 1 1 ,  v) .  In this section, we attach "meaning" to the frequency domain, as it 
relates to image processing. 

S o m e  basic propert ies of the f requency d o m a i n  

We start by observing in Eq. (4.2-16) that each tel-m of F(m, .u) contains 011 val- 
ues o f f  (x, y), modified by the values of the exponential terms.Thus, with the 
exception of tl-ivial cases, it usually is i~npossible to make direct associations be- 
tween specific components of an image and its transform. However. somc gen- 
eral statements can be made about the relationship between the frequency 
components of the Fourier transform and spatial characteristics of an image. 
For instance, since frequency is directly related to  rate of change, i t  is not diffi- 
cult intuitively to associate frequencies in the Fourier transform with patterns 
of intensity variations in an image. We showed in the previous section that the 
slowest varying frequency component (11 = v = 0) corresponds to the average 
gray level of an image. As we move away from the origin of the transform, the 
low frequencies correspond to the slowly varying co~nponents of an image. In 
an image of a rool i l , fo~ example, these might col-respond to wlooth gray-lev4 
variations on the walls and f1oor.A~ we move further away from the origin, the 
higher- frequencies begin to correspond to faster and faster gray level changes 
in the image.These are the edges of objects and other components of an image 
characterized by abrupt changes in gray level, such as noise. 
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:' An illustration will help fix these ideas. The image shown in Fig. 4.4(a) is a 
scanning electron miscroscope image of an integrated circuit, magnified ap- 
proximately 2500 times. Aside from the interesting construction of the device 
~tself, we note two principal features: strong edges that run approximately at 
+4S0, and the two white oxide protrusio~ls resulting from thermally induced 
failure.The Fourier spectrum in Fig. 4.4(b) shows prominent components along 
the +45" directions that correspond to the edges just mentioned. Looking care- 
fully along the vertical axis, we see a vertical component that is off-axis slight- 
ly to the leCL.This component was caused by the edges of the oxide protrusions. 
Note how the off-axis angle of the frequency component corresponds to the in- 
clination off horizontal of the long white element, and note also the zeros in 
the vertical frequency component, correspolldillg to the narrow vertical span of 
the oxide protrusions. 

This example is typical of the types of associations that can be made in gen- 
eral between the frequency and spatial domains. As we show throughout this 
chapter, even these types of gross associations, along with the relationships men- 
tioned previously between frequency content and rate of change of gray levels 
in an image; can lead to some very useful enhancement results. ~j 
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EXAMPLE 4.3: 
An image and its 
Fourier spectrum, 
showing some 
important 
features. 

a 
b 
FIGURE 4.4 
(a )  SEM image of 
a damaged 
integrated circuit. 
(b) Fouriel. 
spectrum of (a). 
(Original image 
courtesy of Dr. J. 
M. Hudak. 
Brockhouse 
Institute for 
Materials 
Research, 
McMaster 
University. 
Hamilton, 
Ontario, Canada.) 
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Basics of filtering in the frequency domain 
Filtering in the frequency domain is straightforward. It consists of the fol- 
lowing steps: 

1. Multiply the input image by (-1)"'y to center the transform, as indicated 
in Eq. (4.2-21). 

2. Compute F(u,  v), the DFT of the image from (1). 
3. Multiply F (u, v) by a filter function H (u, v). 
4. Compute the inverse DFT of the result in (3). 
5. Obtain the real part of the result in (4). 
6. Multiply the result in (5) by (-l )"+y.  

The reason that N(u, v) is called afilter (the tern filter transferfinction also is 
used commonly) is because it suppresses certain frequencies in the transform 
while leaving others unchanged. The analogy from everyday life is a screen fil- 
ter that passes certain objects and suppresses others, based strictly on their size. 

In equation form, let f ( x ,  y) represent the input image in Step 1 and F ( u ,  v) 
its Fourier transfom.Then the Fourier transform of the output image is given by 

G(u, V)  = H ( u ,  v ) F  (u,  v). (4.2-27) 

The multiplication of H and F involves two-dimensional functions and is de- 
fined on an element-by-element basis.That is, the first element of H multiplies 
the first element of F, the second element of H multiplies the second element 
of F, and so on. In general, the components of F are complex quantities, but the 
filters with which we deal in this book typically are real. In this case, each com- 
ponent of H multiplies both the real and imaginary parts of the corresponding 
component in F. Such filters are called zero-phase-shift filters. As their name 
implies, these filters do not change the phase of the transform, a fact that can 
be seen in Eq. (4.2-19) by noting that the multiplier of the real and imaginary 
parts would cancel out because they have the same value. 

The filtered image is obtained simply by taking the inverse Fourier trans- 
form of G(u, v): 

Filtered Image = ~ - ' [ G ( u ,  v)]. (4.2-28) 

The final image is obtained by taking the real part of this result and rnultiply- 
ing it by to cancel the multiplication of the input image by this quanti- 
ty. The inverse Fourier transform is, in general, complex. However, when the 
input image and the filter function are real, the imaginary components of the in- 
verse transform should all be zero. In practice, the inverse DFT generally has 
parasitic imaginary components due to computational round-off errors. These 
components are ignored. 

The filtering procedure just outlined is summarized in Fig. 4.5 in a slightly 
more general form that includes pre- and postprocessing stages. In addition to 
the (-l)'+J' examples of other processes might include cropping of the 
input image to its closest even dimensions (required for proper transform cen- 
tering), gray-level scaling, conversion to floating point on input, and conver- 
sion to an 8-bit integer format on the output. Multiple filtering stages and other 
pre- and postprocessing functions are There are numerous variations 
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Frequency domain filtering operation 

L 

Filter Inverse 
t Fourier function 

transform 

1 - 
IJ(14, v )  

- 
f : ( t d ,  H ( u ,  v)F(u,  a )  

Post- 
processing processing 

Input 
image 

Enhanced 
image 

FIGURE 4.5 Basic steps for filtering in the frequency domain. 
. - 

of this basic theme. The important point to keep in mind is that the filtering 
process is based on modifying the transform of an irnage in some way via a fil- 
ter function. and then taking the inverse of the result to obtain the processed 
output image. 

Some basic filters and their properties 

At this point we have established the foundation for filtering in the frequency 
dornain.The next logical step is to look at some specific fiIters and see how they 
affect images. The earlier discussion of Eq. (4.2-22) gives us a perfect Iead into 
an introductory example of filtering. Suppose that we wish to force the average 
value of an image to zero. According to Eq. (4,2-22), the average value of an 
image is given by F ( 0 , Q ) .  If we set this term to zero in the frequency domain 
and take the inverse transform, then the average value of the resulting image 
will be zero. Assuming that the transform has been centered as discussed in 
Eq. (4.2-21), we can do this operation by multiplying all values of F ( u ,  v) by the 
filter function: 

0 if (21, v) = ( M / 2 ,  N / 2 )  
H(Lc ,  v )  = 

1 otherwise. 

All this filter would do is set F ( 0 , O )  to zero and leave all other frequency com- 
ponents of the Fourier transform untouched, as desired. The processed image 
(with zero average value) can then be obtained by taking the inverse Fourier 
transform of H ( u ,  v)F(u ,  v), as indicated in Eq. (4.2-28). As stated earlier, 
both the real and imaginary parts of F ( u ,  2)) are multiplied by the filter func- 
tion H (u,  v). 

The filter just discussed is called a notch filter because it is a constant func- 
tion with a hole (notch) at the origin. The result of processing the irnage in 
Fig. 4.4(a) with this filter is shown in Fig. 4,S. Note the drop in overall average 
gray level resulting from forcing the average value to zero; note also the 
"byproduct" result of making prominent edges stand out. (In reality the aver- ' 

age of the displayed image cannot be zero because the image has to have 
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FIGURE 4.6 
Result oT filtering 
tlie image in 
Fig. 1.4(n) with a 
notch filter that 
sct to O tlie 
F(O.0)  tel-m in 
the Fourrer 
tsansfol-m. 

negative values for its average gray level to be zero and displays cannot handle 
negative quantilies. Figure 4.6 was displayed in the "standard" way, which is to 
display the most negative value as 0 ,  or black, with all other values scaled up 
from that.) As shown in Section 5.4.3,notch filters are exceptionally useful tools 
when it is possible to identify spatial image effects caused by specific,localized 
frequency domain components. 

Low frequencies in the Fourier transform are responsible for the general 
gray-level appearance of an image over smooth areas. while high frequencies are 
responsible for detail, such as edges and noise.These ideas are discussed in more 
detail in the sections that follow, but it will be instructive to complement our i l -  
lustration of the notch filter with an  example of filters in these other two cate- 
gories. A filter that attenuates high frequencies while "passing" low frequencies 
is called a lowpass ,filter. A filter that has the opposite characteristic is appro- 
priately called a highpass filter. We would expect a lowpass-filtered image to 
have less shara detail than the o r i ~ n a l  because the high frequencies have been - - 
attenuated. Similarly, a highpass-filtered image would have less gray level vari- 
ations in smooth areas and emphasized transitional (e.g., edge) gray-level de- 
tail. Such an image will appear sharper. 

Figure 4.7 illustrates the effects of lowpass and highpass filtering the image 
in Fig. 4.4(a).The left part of the figure shows the filters and the right part shows 
the results of filtering using the procedure sunimarized in  Fig. 4.5. The filters, 
H ( u ,  v), shown are both circularly symmetric. After shifting their origin to the 
center of the frequency rectangle occupied by F ( u ,  v), they were multiplied by 
the centered transform, as outlined in our discussion of Eqs. (4.2-27), (4.2-28), 
and Fig. 4.5.Taking the real part of each result and multiplying it by (-l),r+v 
yielded the images on the rig11t.A~ expected, the image in Fig. 4.7(b) is blurred, 
and the image in Fig.4.7(d) is sharp, with little smooth gray-level detail because 
the F(0,O)  term has been set to zero.This is typical of highpassed results, and 
a procedure often followed is to add a constant to the filter so that it will not 
completely eliminate F ( 0 ,  0). The result of using this procedure is shown in 
Fig. 4.8. The improvement over Fig, 4.7(d) is evident. 
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FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b) Kesult of lowpass filtering the image in Fig. 4.4(a). 
(c) A two-dimensional highpass Rlter function. (d) Result of hjglipass filtering the image in Fig. 4.4(a). 

1.2.4 Correspondence between Filtering in the Spatial 
and Frequency Domains 

In the previous chapter we arrived a t  forms for various spatial filters using in- 
tuition andlor a mathematical formulation, such as the Laplacian. In this section 
we establish a direct link between some af those spatial filters and their fre- 
quency domain counterparts. 

The most fundamental relationship between the spatial and frequency do- 
mains is established by a well-known result called the convolution theorrm.The 
reader is already faniiliar with the basic concepts and mechanics of convolu- 
tion in the spatial domain,which were introduced and illustra(ed in Section 3.5. . 
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FIGURE 4.8 
Result of highpass 
filtering the image 
in Fig. 4.4(a) with 
the filter in 
Fig. 4.7(c), 
modified by 
adding a constant 
of one-half the 
filter height to the 
filter function. 
Compare with 
Fig. 4.4(a). 
. .. . 

The process by which we move a mask from pixel to pixel in an image, and com- 
pute a predefined quantity at each pixel, is the foundation of the convolution 
process. Formally, the discrete convolution of two functions f ( x ,  y)  and h(x, y) 
of size M X N is denoted by f (x, y )  * h(x, y)  and is defined by the expression 

1 M-1 N - 1  

f ( x ,  y )  * h(x, y )  = - f (m, n ) h ( x  - m. y - n). (4.2-30) 
M N  ,=, n=O 

With the exception of the leading constant, the minus signs, and the limits of the 
summation, this expression is similar in form to Eq. (3.5-1). The minus signs, in 
particular, simply mean that function h is mirrored about the origin. This is in- 
herent in the definition of convolution. Equation (4.2-30) is really nothing more 
than an implementation for (1) flipping one function about the origin; (2) shifi- 
ing that function with respect to the the other by changing the values of ( x ,  y ) ;  
and (3) computing a sum of products over all values of m and n, for each dis- 
placement ( x ,  y ) .  The displacenlents ( x ,  y)  are integer increments that stop 
when the functions no longer overlap. 

Letting F(u, u )  and H ( u ,  v) denote the Fourier transforms o f f  ( x .  y) and 
h(x, y),  respectively, one-half of the convolution theorem simply states that 
f (x, y )  * h(x,  y) and F(u ,  v ) H ( u ,  v) constitute a Fourier transform pair. T h i s  
result is formally stated as 

The double arrow is used to indicate that the expression on the left (spatial con- 
volution) can be obtained by taking the inverse Fourier transform of the expression 
on the right [the product F(u, v)H(u,  v) in the frequency domain]. Conversely. the 
expression on the right can be obtained by taking the forward Fourier transform of 
the expression on the left-An analogous result is that convolution in the frequen- 
cy domain reduces to multiplication in the spatial domain, and vice versa; that is, 

These two results comprise the convolution theorem. It is important to keep in 
mind that there is nothing complicated about what has just been stated. We already 
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know what the convolution operation is all about. The other part of the process, 
multiplication, is simply the element-by-element product of the two functions. 

We need one more concept befdre completing the tie between the spatial 
and frequency domains. An impzibe finetion of strength A, located at coordinates 
(x,, , is denoted by AS(X - xo, y - yo) and is de f i ed  by the expression 

In words, this equation states that the summation of a function s(x ,  y ) multiplied 
by an impulse is simply the value of the function at the location of the impulse, 
multiplied by the strength of the impulse. It is understood that the limits of the 
summation are the same as the limits spanned by the function. We point out 
that ~ 8 ( r  - x,, y - yo)  also is an image of size M x N .  It is composed of all 
zeros, except at coordinates (x,, Y o ) ,  where the value of the image is A.  

By letting either f or h in Eq. (4.2-30) be an impulse function, and using the 
definition in Eq. (4.2-33), we would conclude after a little manipulation that 
convolution of a function with an impulse "copies" the value of that function at 
the location of the impulse.This characteristic is called the sifiing property of the 
impulse function. Of particular importance at the moment is the case of a unit 
impulse located a t  the origin, which is denoted as S ( x ,  y ). In this case, 

Armed with these simple tools, we are now in a position to establish a most in- 
teresting and useful tie between filtering in the spatial and frequency domains. From 
Eq. (4.2-161, we can compute the Fourier transform of a unit impulse at the origin, 

where the second step follows from Eq. (4.2-34). Thus, we see that the Fourier 
transform of an impulse at the origin of the spatial domain is a real constant 
(this means that the phase angle is zero). If the impulse were located elsewhere, 
the transform would have complex components. The magnitude would be the 
same, with the translation of the impulse being reflected in a nonzero phase 
angIe in the transform. 

Now suppose that we let f ( x ,  y )  = S ( x ,  y }  and carry out the convoIution 
defined in Eq. (4.2-30). Using Eq. (4.2-34) again gives us 

1 M-1 N-1 

f ( x ,  y )  * h(x ,  y )  = - 2 2 6(m7 n ) h ( x  - m, Y - n) 
M N  m=O n = O  

1 (4.2-36) 

where the last step follows from Eq. (4.2-34) by noting that the variables in h e  
summation are m and n. By combining the results of Eqs. (4.2-35) and (4.2-36) 
with Eq. (4.2-31), we obtain 
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f (x, y }  * h ( x ,  y )  * FCu, v)ff (u,  
s ( x ,  y )  * h ( x ,  y )  * 3 [ 6 ( 1 ,  Y ) ] H ( ~ $  v) (4.2-37) 

h(x,  y) N ( u ,  v). 

Using only the properties of the impulse function and the convolution theo- 
rem, we have established that filters in the spatial and frequency domains con- 
stitute a Fourier transform pair. Thus, given a filter in the frequency domain, 
we can obtain the corresponding filter in the spatial domain by taking the in- 
verse Fourier transform of the former. The reverse also is true. 

Note that all functions in the preceding development are of the same size, 
M x N .  Therefore, in practice, specifying a filter in the frequency domain and 
then taking the inverse transform to compute an equivalent spatial domain fil- 
ter of the same size does not really help matters from a computational point of 
view. As discussed in Section 4.6, if both filters are of the same size, i t  general- 
ly is more efficient computationally to do the filtering in the frequency domain. 
But we use much smaller filters in the spatial domain. This is precisely the con- 
nection in which we are interested. Filtering often is more intuitive in the fre- 
quency domain. However, whenever possible, it makes more sense to filter in 
the spatial domain using small filter masks. Equation (4.2-37) telIs us that we can 
specify filters in the frequency domain, take their inverse transform, and then 
use the resulting filter in the spatial domain as a guide for constructing smaller 
spatiaI filter masks (more formal approaches are discussed in Section 4.6.7). 
This is illustrated next. Keep in mind during the folEowing discussion that the 
Fourier transform and its inverse are linear processes (Problem 4.2), so the dis- 
cussion i s  by definition limited to linear filtering. 

Filters based on Gaussian functions are of particular importance because 
their shapes are easily specified and because both the forward and inverse Fouri- 
er transforms of a Gaussian function are real Gaussian functions. We will limit 
the discussion here to one variable to simplify the notation. Two-dimensional 
functions are discussed Eater in this chapter. 

Let H ( u )  denote a frequency domain, Gaussian filter function given by 
the equation 

~ ( ~ 1  = Ae-t~2/~u? (4.2-38) 

where a is the standard deviation of the Gaussian curve. It can be shown (Prob- 
lem 4.4) that the corresponding filter in the spatial. domain is 

h (x) = G ~ A  e-2qiwi~r2. (4.2-39) 

These two equations represent an importar~t result far two reasons: (1) They 
constitute a Fourier transform pair, both components of which are Gaussian 
and xeal.Tl~is facilitates analysis considerably because we do not have to be con- 
cerned with complex numbers. In addition. Gaussian curves are intuitive and 
easy to manipulate. (2 )~hese  functions behave reciprocally with respect to one 
another. In  other words, when H ( u )  has a broad profile (large value of g), h ( x )  
has a narl*ow profile, and vice versa. In fact, when a approaches infinity, H ( u )  
tends toward a constant function and h(.x) tends toward an impulse.This is ex- 
actly the type of reciprocal behavior we saw in Section 4.2, in connection with 
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a b 
c d 
FIGURE 4.9 
(a) Gaussian 
frequency domain 
lowpass filter. 
(b) Gaussian 
frequency domain 
highpass filter. 
(c) Corresponding 
lowpass spatial 
filler. - 11 (d) Corresponding 
highpass spatial 
filter.The masks 

I l ( x )  h ( x )  shown are used in 
A A Chapter 3 for 

Figs. 4.2 and 4.3. These two properties help considerably in developing a solid 
understanding of the properties of filtering in both the spatial and frequency 
domains because they lend themselves to  familiar analytical interpretations. 

A plot of a Gaussian filter in the frequency domain is shown in Fig. 4.9(a). The 
reader will recognize this shape of H ( u )  as a lowpass filter.The corresponding low- 
pass filter in the spatial domain is shown in Fig. 4.9(c). Our interest is in the gen- 
eral shape of h ( x ) ,  which we generally want to use as a guide to specify the 
coefficients of a smaller filter in the spatial d0main.A glaring similarity between 
the two filters is that all the values are positive in both domains.Thus, we arrive 
at the conclusion that we can implement lowpass filtering in the spatial domain 
by using a mask with all positive coefficients, just as we did in Section 3.6.1.Two 
of the masks from that section are shownin Fig.4.9(c) for reference.Another im- 
portant characteristic is the reciprocal relationship discussed in the previous para- 
graph.'The narrower the frequency domain filter, the more it will attenuate the low 
frequencies, resulting in increased blurring. In the spatial domain this means a 
wider filter, which in turn implies a larger mask, as illustrated in Example 3.9. 

More complex filters can be constructed from the basic Gaussian function of' 
Eq. (4.2-38). For instance, we can construct a highpass filter as a difference of 
Gaussians, as follows: 

H ( u )  = Ae- tr'l20: - Be-~1'/2n: (4.2-40) 
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with A 2 B and uI > u2.The corresponding filter in the spatial domain is 

Plots of these two functions are shown in Figs. 4.9(b) and (d), respectively. We 
note again the reciprocity in width, but the most important feature here is that 
the spatial filter has both negative and positive values. In fact, it is interesting 
to note that once the values turn negative, they never turn positive again.Two 
of the masks we used in Chapter 3 for highpass filtering are shown in Fig. 4.9(d). 
The similarity in form between the spatial curve and the filters is unmistakable. 

In Chapter 3, we specified the shapes of lowpass and highpass filters based 
strictly on spatial domain considerations. It is important to note that we could 
have arrived at the basic shapes of all the small spatial filter masks shown in 
Fig. 4.9 by following the alternate path provided by the frequency domain analy- 
sis we have just completed. Although we have gone through significant effort to 
get here, the reader is assured that it is impossible to truly understand filtering 
in the frequency domain without the foundation we have just established. 

A question that often arises a t  this point in the development of frequency do- 
main techniques is the issue of computational complexity. Why do in the fre- 
quency domain what could be done (at least partially) in the spatial domain 
using small spatial masks? The basic answer is twofold. First, as we have seen, 
the frequency domain carries with it a significant degree of intuitiveness re- 
garding how to specify filters. The second part of the answer depends on the 
size of the spatial masks and is usually answered with respect to comparable 
implementations. 

A benchmark used frequently for this purpose is implementation of convo- 
lution in the spatial and frequency domains. Spatial convolution is given in 
Eq. (4.2-30), and we know from the convolution theorem that we can obtain 
the same result via the frequency domain by taking the inverse transform of 
the product of the transforms of the two functions. Suppose that we imple- 
mented both approaches in software on the same machine [using the fast Fouri- 
er  transform (FFT) algorithm discussed in Section 4.6.6 for frequency domain 
computations]. We would find that the frequency domain implementation runs 
faster for surprisingly small values of M and N. For instance, a comparison by 
Brigham [I9881 showed that, for the 1-D case, the FFT approach is faster if the 
number of points is greater than 32. Although this number is somewhat de- 
pendent on other factors, such as the machine and algorithms used, it certainly 
is well below the values that we encounter in image processing. 

The frequency domain may be viewed as a "laboratory" in which we take 
advantage of the correspondence between frequency content and image ap- 
pearance. As is demonstrated numerous times later in this chapter, some en- 
hancement tasks that would be exceptionally difficult or impossible to formulate 
directly in the spatial domain become almost trivial in the frequency domain. 
Once we have selected a specific filter via experimentation in the frequency 
domain, the actual implementation of the method usually is done in the spatial 
domain. One approachis to specify small spatial masks that attempt to capture 
the "essence" of the full filter function in the spatial domain, as was explained 
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in Fig. 4.9. A more formal approach is to design a 2-D digital filter by using ap- 
proximations based on mathematical or statistical criteria. We touch on this 
point again in Section 4.6.7. 

Smoothing Frequency-Domain Filters 
As indicated in Section 4.2.3, edges and other sharp transitions (such as noise) 
in the gray levels of an image contribute significantly to the high-frequency con- 
tent of its Fourier transform. Hence smoothing (blurring) is achieved in the fre- 
quency domain by attenuating a specified range of high-frequency components 
in the transform of a given image. 

Our basic "model" for filtering in the frequency domain is given by 
Eq. (4.2-27), which we repeat here for convenience: 

where F(u,  v) is the Fourier transform of the image to be smoothed. The ob- 
jective is to select a filter transfer function H(u,  v )  that yields G(u, v )  by at- 
tenuating the high-frequency components of F(u, v ) .  All filtering done in this 
section is based on the procedure outlined in Section 4.2.3, including the use of 
zero-phase-shift filters. 

We consider three types of lowpass filters:ideal,Butterworth, and Gaussian 
filters.These three filters cover the range from very sharp (ideal) to very smooth 
(Gaussian) filter functions.The Butterworth filter has a parameter, called the fil- 
ter order. For high values of this parameter the Butterworth filter approaches 
the form of the ideal filter. For lower-order values, the Butteworth filter has a 
smooth form similar to the Gaussian filter.Thus, the Butterworth filter may be 
viewed as a transition between two "extremes." 

4.3.1 Ideal Lowpass Filters 
'The simplest lowpass filter we can envision is a filter that "cuts off" all high- 
frequency components of the Fourier transform that are at a distance greater 
than a specified distance D, from the origin of the (centered) transform. Such 
a filter is called a two-dimensional (2-D) ideal lowpms filter (ILPF) and has the 
transfer function 

where Do is a specified nonnegative quantity, and D(u, v )  is the distance from 
point (u, v )  to the center of the frequency rectangle. If the image in question is 
of size M X N, we know that its transform also is of this size, so the center of 
the frequency rectangle is at (u, v )  = ( M / 2 ,  N/2) due to the fact that the trans- 
form has been centered, as discussed in connection with Eq. (4.2-21). In this 
case, the distance from any point (u, v )  to the center (origin) of the Fourier 
transform is given by 

2 112 D(u, v )  = [(u - M/2)2 + ( V  - N/2) ] . (4.3-3) 
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a b c  

FIGURE 4.10 (a) Perspective plot of an  ideal lowpass filter transfer function. (b) Fillel- displayetl as an 
image. (c) Filler radial cross section. 

Figure 4.10(a) shows a 3-D perspective plot of H(z1: .u) as a function of 11 and 
v. and Fig. 4.10(b) shows I - ~ ( L L ,  L I )  displayed as an image.The name ideal filter 
indicates that cll l  frequencies inside a circle of radius D,, are passed with no at- 
tenuation, whereas all frequencies outside this circle are completely attenuat- 
ed.The lowpass filters considcred in this chapter are radially synlmetric about 
rhe origin.Tbis means that a cross section extending as a [unction of distance 
from the origin along a radial line is sufficient to specify the filter, as Fig.4.10(c) 
shows. The cornplete filtcr transfer function can be visualized by rotating tlie 
cross section 360" about the origin. 

For an ideal lowpass filter cross section, the point of transition between 
H ( u ,  v )  - 1 and i I ( ~ r ,  v) = 0 is called the cl~roff  f r rqut .17~)~.  In the case of 
Fig. 4.10, for example, thc cutoff frequency is D,,. ?'he sharp cutoff frequencies 
ol  an ideal lowpass filter cannot be realized with electronic components, al- 
though they can certainly be implemented in a computer. The effects of using 
these "nonphysical" filters on a digilal image are discussed later i n  this section. 

The lowpass filters introduced in this section are compared by studying their 
behavior as a function of the same cutoff fi-equencies. One way to establish a set 
of standard cutoff frequency loci is to compute circles that enclose specilied 
amounts of total image power P1..Thisquantity is obtained by summing the coni- 
ponents of the powcr spectrum at each point ( 1 1 :  v), for 11  = 0, 1,2.. . . . M - 1 
a r i d v = 0 , 1 , 2  ,..., A'- l l tha t i s ,  

h l -1  N - I  

4 = C C ~ ( u .  v) 
,r=1l 1 ' - 0  

wherc P(u,  v )  is given in Eq. (4.2-20). If the transform has been centered, a cir- 
cle of radius v with origin at the center of the frequency reclangle encloses n per- 
cent of the power, where 

and the summation is taken over the values of ( u .  v )  that lie inside the circle or 
on its boundary. 
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FIGURE 4.1 l (a) An  image of size 500 X 500 pixels and (b) its Fourier spectrum. The 
superi~nposed circles have radii values of 5 ,  1.5, 30, 80, and 230, which enclose 02.0, 
94.6,96.4,98.0, and 99.5% of the image power, respectively. 

Figure4.11(a) shows the test pattern we used in Fig. 3.35 to illustrate spatial EXAMPLE 4.4: 
blurring.The Fourier spectrum of tllis image is shown in Fig.4.ll(b).'The circles 1mage Power as a 

superimposed on the spectrum have I-adii of 5> 15,30,80, and 230 pixels (the function of 
distance from the 

circle of radius 5 is not easily visible). These circles enclose a percent of the of DFT, 
image power, for o = 92.0,94.6,96.4,98, and 99.5%,respectively.The spectrum 
Calls off rapidly,with 92% of the total power being enclosed by a relatively small 
circle of radius 5. 

Figure 4.12 shows the results of applying ideal lowpass filters with cutoff 
fl-equencies a t  the radii shown in Fig. 4.11(b). Egure  4.12(b) is useless for all 
practical purposes, unless the objective of blurring in this case is to eliminate 
all detail in the image, except the 'zblobs" representing the largest objects.Tne 
severe blurring in this image is a cleal- indication that most of the sharp detail 
information in the picture is contained in the 8% power removed by the filter. 
As the filter radius increases, less and less power is removed, resulting in less 
severe blurring. Note that the images in Figs. 4.12(c) through (e) are charac- 
terized by "ringing," which becomes finer in texture as the amount of high- 
frequency content removed decreases. Ringing is evident even in the image in 
which only 2%) of the total power was removed.This ringing behavior is a char- 
acteristicvf ideal filters, as will bc explained shortly. Finally, close observation 
of the result for cu = 99.5 shows very slight blurring in the noisy squares but, 
for the mosl part, this image is quite close to the original.This indicates that lit- 
tle edge information is contained in the upper 0.5% of the spectrum power in 
this particular case. 

It is clear from this example that ideal lowpass filtering is not very practical. 
However. because ideal filters can be implemented in a computer, it is useful to 
study their behavior as part of our development of filtering concepts.Also. as 
shown in the discussion that follows, some interesting in sigh^ is gained by at- 
tempting to explain the ringing property of ILPFs in the spatial domain. e 
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a b FIGURE 4.12 (a) Original image. (b)-(f) Results of idcal lowpass filtering with cutoff 
c d frequencies set a t  radii values of 5, 15,30,80, and 230, as shown in Fjg. 4.11(b). The 
e f power removed by these filters was 8,5.4,3.6,2, and 0.5% of the total, respectively. 
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The blurring and ringing properties of the ILPF can be explained by refer- 
ence to the canvalution theorem discussed in Section 4.2.4. The Fourier trans- 
forms of the original image f (x, y )  and the blurred image g ( x ,  y )  axe related 
in the frequency domain by the equation 

where, as before, N(u, u)  is the filter function and F and G are the Fourier trans- 
forms of the two images just mentioned. The convolution theorem tells us that 
the corresponding process in the spatial domain is 

where h(x, y) is the inverse Fourier transform of the filter transfer function H (u, v). 
The key to understanding blurring as a convolution process in the spatial 

domain lies in the nature of h(x ,  y). For instance, the ILPF of radius 5 that 
caused so much blurring in the preceding example is shown in Fig. 4.13(a). This 
is the function H ( u ,  v )  in the frequency domain, The spatial fiIter function 
h(x ,  y )  was obtained in the standard way: (1) H(u ,  v) was multiplied by (-1)"'" 
for centering; (2) this was followed by the inverse Dm, and (3) the real part of 
the inverse DFT was multiplied by I -1)""Y. Figure 4.13(b) shows the result of 
this process. 

We see that the filter h(x,  y )  has two major distinctive characteristics: a dom- 
inant component at the origin, and concentric, circular components about the 
center component. The center component is primarily responsible for blurring. 
The concentric components are responsible primarily for the ringing charac- 
teristic of ideal filters, Both the radius of the center component and the num- 
ber of circles per unit distance from the origin are inversely proportional to the 
value of the cutoff frequency of the ideal filter. The insert at the top is a gray- 
level profile of a horizontal scan line through the center of the spatial filter.The 
axis shown indicates zero amplitude, so we see that the spatial filter has nega- 
tive values. This normally is not a serious problem because the larger center 
component dominates the convolution result. However, the filtered image can 
have negative values, so scaling normally is required. 

Suppose next that f ( x ,  y ) is a simple image composed of five bright pixels 
on a black background, as Fig. 4.131~) shows.These bright points may be viewed 
as approximations to impulses, whose strength depends on the intensity of the 
points.Tnen the convolution of h ( x ,  y) and f ( x ,  y )  is simply a process of "copy- 
ing" h(x ,  y ) at the location of each impulse, as noted in Section 4.2.4. The result 
of this operation, shown in Fig. 4.13(d), explains how the original points are 
blurred as a consequence of convolving f ( x ,  y )  with the blurring filter function 
h ( x ,  y). Note also that ringing was introduced during the same process. In fact, 
the ringing is so severe in this case that distortion is caused by their interference 
with one another. These concepts are extended conceptually to more complex 
images by conside~-ing each pixel as an impulse whose strength is proportional 
to the gray IeveI of the pixel. The insert at the bottom of Fig. 4.13 shows the 
gray-level profile of a diagonal scan line through the center of the filtered image. 
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FIGURE 4.13 (a) A frequency-domain ILPF of radius 5 .  (b) Corresponding spatial 
filter (note thc ringing). (c) Fivc impulses in the spatial domain, simulating [he values 
of five pixels. (d) Convolution of (b) and (c) in the spatial domain. 

The reciprocal nature between H (u ,  v)  and h ( x ,  y). along with the convolu- 
tion process just discussed, explains mathematically why the blurring and ring- 
ing are more severe the narrower the filter in the frequency dornain.This type 
of reciprocal behavior should be routine to  the reader by now. In  the next two 
sections we show that it'is possible to achieve blurring wit11 little or no ringing, 
which is our main objective. 



FIGURE 4.14 (a )  Perspective plot O F  a Butterworth lowpass filte~. trrinsfcr function. (b)  Filter. displayed as a n  
image. (c) Filtel- ]radial cross sections of 01-ders I through 4. 

2 Butteworth Lowpass Filters 
The transfer function of a Butterworth lowpass filter (BLPF) of order n ,  and 
with cutoff frequency at a distance D,, from the origin, is defined as 

where D ( u ,  v)  is given by Eq. (4.3-3).A perspective plot,imagc display.and ra- 
dial cross sections of the BLPF function are shown in Fig. 4.14. 

Unlike the ILPF, the BLPF transfer function does not have a sharp discon- 
tinuity that establishes a clear cutoff between passed and filtered frequencies. 
For filters with smooth tl-ansfer [unctions, defining a cutoff frequency locus at 
points for which H ( n ,  v)  is down to a certain fraction o l  its tnaximurn value is 
customary. In thc case of Eq.  (4.3-6). H ( u ,  v )  = 0.5 (down 50% from its milxi- 

.mum value of 2 )  when D ( I L .  v) = D,. 

F Figure 4.15 sliows the results of applying the BLPF of Eq. (4.3-6) to EXi\MPLE 4.5: 
Fig. 4.15(a), with n = 2 and Do equal to the five radii shown in Fig. 4.1 1(b). Un- Butlel-wortll 
like the results shown in Fig. 4.12 for the ILPF, we note here a smooth transi- lowpass filLering. 

tion in blurring as a function ol'increasing cutoff frequency. Moreover, no ringing 
is visible in any of the images processed with this particular BLPF, a fact at- 
tributed to (hc filter's smooth transition bctween low and high frcqucncics. ;', 

A Butterworth filter of order I has no ringing. Ringing genel.ally is imper- 
ceptible in filters of order 2, but can become a significant factor in filters of 
higher order. Figure 4.16 shows an interesting con~parison between the s/~or in l  . 
representation of BLPFs of various orders (with cutoff frequency of 5 pixels). 
Shown also is the gray-level prorile along a horizontal scan line through tlie 
center of each fi1ter.These Iilters were obtained and displayed by using the same 
procedure we used to generate Fig. 4.13(b). In  order to facilitate compa~.isons, 
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a b FIGURE 4.15 (a) Original imagc. (b)-(f) Results of filtering with BLPFs of order 2, 
c d with cutoff frequencies at radii of 5 ,  15, 30, 80, and 230, as shown in Fig. 4.1 1(b). 
e f Compare with Fig. 4.12. . 
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a b c d  
FIGURE 4.1 6 (a)-(d) Spatial representation of BLPFs of order 1.2.5. and 20, and corresponding gray-lcvcl 
profiles through the centel- of the fillers (all filters have a cutoff frequency of 5). Note that r j ~ ~ g i n g  increases 

as a function of filter order. 

additional enhancing with a gamma transformation [see Eq. (3.2-3)J was applied 
to the images of Fig. 4. I6 to accentuate even more the components further away 
from the origin.The BLPF of order 1 [Fig. 4. [6(a)] has nei~her ringing nor neg- 
ative values.The filter of order 2 does show mild ringing and small negative val- 
ues, but they certainly are less pronounced than in the ILPF, As the remaining 
images show, ringing in the BLPF becomes significant for higher-order filters, 
A Butterworth filter of order 20 already exhibits the characteristics of the 1LPE 
which can be seen by comparing Figs. 4.16(d) and 4.13(b). In  the limit, both fil- 
ters are identical. In general, BLPFs of order 2 are a good compromise between 
effective lowpass filtering and acceptable ringing characteristics, 

4.3.3 Gaussian Lowpass Filters 
Gaussian lowpass filters (GLPFs) of one dimension were introduced in Section 
4.2.4 as an aid in exploring some important relationships between the spatial and 
frequency domains.The Iorm of these filters in two dimensions is given by 

where, as in Eq. (4.3-3), D(u,  v )  is the distance from the origin of the ~ o u h e r  
transform, which we assume has been shilled to the center of the frequeilcy rec- 
tangle using the procedure outlined in Section 4.2.3. We did not use a constant 
in front of the filter as in Section 4.2.4 to  be consistent with all the other filters 
discussed in the present section, which have a value of 1 at the origin. As before, 
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N(r i ,  v )  H (u ,  7)) 

a b c  
FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter 
radial cross sections for various values of Do. 

u is a measure of the spread of the Gaussian curve. By letting o = D,,, we can 
express the filter in a more familiar form in terms of the notation in this section: 

H ( ~ ~ ,  v) = e-D'(".t')/2D6 (4.3-8) 

where D, is the cutoff frequency. When D(u. v )  = D,,the filter is down to 0.607 
of its maximum value. 

As discussed in Section 4.2.4, the inverse Fourier transform of the Gaussian 
lowpass filter also is Gaussian.Uk already saw in that section the advantages of 
this property as an analysis tool. In terms of our current interest, this also means 
that a spatial Gaussian filter, obtained by computing the inverse Fourier trans- 
form of Eq. (4.3-7) or (4.3-8),will have no ringing.A perspective plot, image dis- 
play, and radial cross sections of a GLPF function are shown in Fig. 4.17. 

EXAMPLE4.6: P! Figure 4.18 shows the results of applying the GLPF of Eq. (4.3-8) to 
Gaussian lowpass Fig. 4.1S(a), with 0, equal to the five radii shown in Fig. 4.11 (b). As in the case 
filtering. of the BLPF (Fig. 4.15), we note a smooth transition in blurring as a function of 

increasing cutoff frequency. The GLPF did not achieve as much smoothing as 
the BLPF of order 2 for the same value of cutoff frequency, as can be seen, lor 
example, by comparing Figs. 4.15(c) and 4.18(c).This is expected, because the 
profile of the GLPF is not as "tight" as the profile of the BLPF of order 2. Aow- 
ever, the results are quite comparable in general, and we are assured of 110 ring- 
ing in the case of the GLPF. This is an important characteristic in practice, - 
especially in situations where any type of artifact (e.g., in medical imaging) is not 
acceptable. In cases where tight control of the transition between low and high - - 
frequencies about the cutoff frequency are needed, then the BLPF presents a 
more suitable choice.The price of this additional control over the filter profile 
is the possibility of ringing. ia 
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FIGURE 4.18 (a) Original image. (b)-(f) Results of filtering with Gaussian lowpass a b 
fil[ers with cu~off frequenc~es set a t  radii vali~es of 5.15,30. SO. and 230, as shown in c d 
Fig.4.1 1(b). Compare with Figs. 4.12 and 4.15 e f 
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~~ . 

FIGURE 4.1 9 
(a) Sample text of 
poor resolution 
(note broken 
characters i n  
magnified view). 
(b) Result of 
filtering with a 
GLPF (broken 
character 
segments were 
joined). 

I i istorical iy, certain computer 
programs were written using 
ohly two digits ra ther  than  
four to  define the  applicable 
year. Accordingly, t h e  
company's software may 

recognite a d a t e  using "00" 
a s  1900 ra ther  

2000. 

!iislorically, certain computer 

programs were ulritterl using 
only kwo dtgits rather than 
four to  define the appl~cable 

year.  Accord~ngiy, t he  
company's software may 
recognize a d a t e  uslng "00"  

as 1900 

2000.  

4.3.4 Additional Examples of Lowpass Filtering 
The lowpass filtering results given thus far have been with images of good qual- 
ity in order to illustrate and compare filter effects. In the following discussion 
we show a few practical applications of lowpass filtering. The first example is 
from the field of machine perception, with application to character recognition; 
the second is from the printing and publishing industry; and the third is related 
to processing satellite and aerial images. 

Figure 4.19 shows a sample of text of poor resolution. One encounters text 
like this, for example, in fax transmissions, duplicated material. and historical 
rec0rds.A~ poor text goes, this particular sample is free of additional difficul- 
ties like smudges, creases, and torn sections.The magnified section in Fig. 4.19(a) 
shows that the characters in this particular document have distorted shapes 
due to lack of resolution, and many of the characters are broken. Although hu- 
mans fill these gaps visually without difficulty, a machine recognition system 
has real difficulties reading broken characters. The approach used most often 
to handle this problem is to bridge small gaps in the input image by blurring it. 
Figure 4.19(b) shows how well characters can be "repaired" by this simple 
process using a Gaussian lowpass filter with Do = 80. The images are of size 
444 X 508 pixels. 

Lowpass filtering is a staple in the printing and publishing industry, where it 
is used for numerous preprocessing functions, including unsharp masking, as 
discussed in Section 3.7.2. "Cosmetic" processing is another use of lowpass fil- 
tering prior to printing. Figure 4.20 shows an application of lowpass filtering to 
produce a smoother, softer-looking result from a sharp original. For human 
faces, the typical objecthe is to reduce the sharpness of fine skin lines and small 
blemishes.The magnified sections in Figs. 4.20(b) and (c) clearly show a signif- 
icant reduction in fine skin lines around the eyes in this particular case. In fact, 
the smoothed images look quite soft and pleasing. 
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a b c  

FIGURE 4.20 (a )  Original image (1028 X 732 pixels). (b) Result of filtering with a GLPF with DI, = 100. 
(c) Result of filtering with a GLPF with Do = 80. Note reduction in skin fine lines in the magnified sections 
of ( b )  and (c). 

Figure 4.21 shows two applications of lowpass filtering on the same image, 
but with totally different objectives. Figure 4.21(a) is a 588 X 600 very high 
resolution radiometer (VHRR) image showing part of the Gulf of Mexico 
(dark) and Florida (light), taken from a NOAA satellite (note horizontal sen- 
sor scan lines).The boundaries between water bodies were caused by loop cur- 
rents. This image is illustrative of remoteIy sensed images in which sensors (for 
a number of reasons beyond the present discussion) have the tendency to pro- 
duce pronounced scan lines dong  the direction in which the scene is being 
scanned. Lowpass filtering is a crude but simple way to reduce the effect of 
these lines, as Fig. 4.21(b) shows (we consider more effective approaches in 
Chapter 5 ) .  This image was obtained using a Gaussian lowpass filter with 
D, = 30. The resulting reduction in the effect of the scan lines can simplify the 
detection of features like the interface boundaries between ocean currents. Fig- 
ure 4.21(c) shows the result of considerably more aggressive Gaussian lowpass 
filtering (D, = 10). Here the objective is to blur out as much detail as possible 
while leaving large features recognizable. For instance, this type of filterin2 
would be part of a preprocessing stage for an image analysis system that was 



180 Chapter 4 fi# Image Enhancement in the Frequency Domain 

a b c  
FIGURE 4.21 (a) Image showing prominent scan lines. (b) Result of using a GLPF with Do = 30. (c) Result 
of using a GLPF with Do = '10. (Original image courtesy of NOAA.) 

looking for features in an image bank. An example of such features could be 
lakes of a given size [such as Lake Okeechobee in the lower eastern region of 
Florida, shown as a nearly round dark region in Fig. 4.21(c)]. Lowpass filtering 
helps simplify the analysis by averaging out features smaller than the ones of 
interest. 

Sharpening Frequency Domain Filters 
In the previous section we showed that an image can be blurred by attenuating 
the high-frequency components of its Fourier transform. Because edges and 
other abrupt changes in gray levels are associated with high-frequency cornpo- 
nents, image sharpening can be achieved in the frequency domain by a high- 
pass filtering process, which attenuates the low-frequency components without 
disturbing high-frequency information in the Fourier transform. As in Section 
4.3, we consider only zero-phase-shift filters that are radially symmetric. All fil- 
tering in this section is based on the procedure outlined in Section 4.2.3. 

Because the intended function of the filters in this section is to perform pre- 
cisely the reverse operation of the ideal lowpass filters discussed in the previ- 
ous section, the transfer function of the highpass filters discussed in this section 
can be obtained using the relation 

where H,,(u, v) is the transfer function of the corresponding lowpass filter.That 
is, when the lowpass filter attenuates frequencies, the highpass filter passes them, 
and vice versa. 

In this section we consider ideal, Butterworth, and Gaussian highpass filters. 
As in the previous section, *we illustrate the characteristics of these filters in 
both the frequency and spatial domains. Figure 4.22 shows typical 3-D plots, 
image representations, and cross sections for these fi1ters.A~ before, we see that 
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a b c  
d e f  
g h i  

FIGURE 4.22 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass 
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters. 

. . ,. . , .. . . . . . . . , 

the Butterworth filter represents a transition between the sharpness of the ideal 
filter and the total smoothness of the Gaussian filter.Figure 4.23 illustrates what 
these filters look like in the spatial domain. Recall that a spatial representation 
of a frequency domain filter is obtained by (1) multiplying H(u,  v) by (-1)"" 
for centering; (2) computing the inverse DFT; and (3) multiplying the real part 
of the inverse DFT by Important characteristics of these figures are 
discussed in the sections that follow. 
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a b c  
FIGURE 4.23 Spatial reprcscntatinns of typical (a) ideal. (b) Bu~re~u-orth. and (c) Gaussian frequency 
clo~i iain highpass filters, and corl.esponding gmy-level profiles. 

,. ' Ideal Highpass Filters 
A 2-D ideal highpass filter (IHPF) is defined as 

0 if D(u. U )  5 Do 
H ( u ,  U )  = 

1 if D(u. .u) > D,, 

where D, is the cutoff dislance measured from the origin of the frequency rec- 
tangle,and D(lr, v) is given in Eq. (4.3-3).This expression follows directly from 
Eqs. (4.4-1) and (4.4-2). As intended, this filler is the opposite of the ideal low- 
pass lilter in the sense that it sets to zero all frequencies inside a circle of radius 
D,, while passing, without attenuation, all frequencies outside the circle. As in 
the case of the ideal lowpass filter, the IHPF is not physically realizable with elec- 
tronic components. However, since it can be implemented in a computer, we 
consider it for completeness.?'he discussion will be brief. 

Because of the way they are related [Eq. (4.4-I)], we can expect IHPFs to have 
the same ringing properties as ILPFs [see Fig. 4.23(a)j.This is demonstrated clear- 
ly in Fig. 4.24, which consists of various IHPF results using the original image in 
Fig. 4.11(a) with Do set to 15, 30. and 80 pixels, respectively. The ringing in 
Fig. 4.24(a) is so  severe that it produced dislorted, thickened object boundaries 
(e.g., look a t  the large letter"a2'). Edges of the top three circles do  not show well 
because they are not as strong as the other edges in the image (the gray level of 
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a b c  
FIGURE 4.24 Rcsults of ideal highpass filtering the image in Fig. 4.11(a) with D,, = 15. 30, and SO. 
respectively. Problelns with ringing are quite evident in (a) and (b). 

these three objects is much closer to the background gray level, giving disconti- 
nuities of smaller magnitude). Looking at the "spot" size of the spatial represen- 
tation of the IHPF in Fig. 4.23(a) and keeping in mind that filtering in the spatial 
domain is convolution of the filter with the image helps explain why the smaller 
objects and lines appear aln~ost solid white. Look in partici~lar at the three small 
squares in the top row and the thin, vertical bal-s.The situation improved some- 
what with D,, = 30. Edge distortion still is quite evident, but now we begin to see 
iiltcring on the smaller objects. Due to the now familiar inverse relationship be- 
tween the frequency and spatial domains, we know that the spot size of this filter 
is smaller than the spot of the filter with Do = 5.The result for D,, = 80 is more 
of what a highpass-filtered image should look like. Here, the edges are much 
cleaner and less distorted, and the smaller objects have been filtered properly. 

k.3.1 Butterworth Highpass Filters 
The transfer function of the Butterworth highpass filter (BHPF) of order 12 and 
with cutoff frequency locus at a distance Do from the origin is given by 

where D(1.1, v)  is given in Eq. (4.3-3). Equation (4.4-3) follows directly from 
Eqs. (4.4-1) and (4.3-6). The middle row of Fig. 4.22 shows an image and cross 
section of a BHPF function. 

As in the case of lowpass filters, we can expect Butterworth highpass filters 
to behave smoother than IHPFs. The performance of a BHPF, of order 2 and 
with D, set to the same values as in Fig. 4.24, is shown in Fig. 4.25. The boupd- 
aries are much less distorted than in Fig.4.24, even for the smallest value of cut- 
off frequency. Since the center spot sizes of the IHPF and the BHPF are  similar 
[see Figs. 4.23(a) and (b)], the performance of the two filters in terms of filter- 
ing the smaller objects is comparable.The transition into higher values of cut- 
off frequencies is much smoother with the BHPF. 
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a b c  

FIGURE 4.25 Resulls of highpnss t'illcring the image in Fig. 4.1 I(:)) using a BHPF ol' ordcr 2 with D,, = 15, 
30. arid SO, respecti\:ely.Thcse results are much smoother ihan those obtained with iln ILPE 

Gaussian Highpass Filters 
The tr-anskl- function of t he  Gaussian highpass filter (GHPF) with cutoff frc- 
qucncv locus a t  a distance D,, from the origin is given by 

H(r1, v) = 1 - e- I>~[,,, , P ) / ~ I I ; ,  (4.4-4) 

where L)(u,  v)  i s  given in Eq. (4.3-3). This equation follows directly from 
Eqs. (4.4-1) and (4.3-8).nle third row in Fig. 4.22 shows a per-spective plot, image, 
and cross section of Lhe GHPF function. Following the same format as  for the 
BHPF. we show in fig. 4.26 conipal-able results using GHPFs. As  expected, the 
~.csults obtained are smoother than with the previous two filters. Even the filtel-ing 
or  thc smallel- objects and thin bars is cleaner with the Gaussian filler. 

FIGURE 4.26 Results of highpass filtering the image O F  Fig. 4.11(a) usins a GHPF oC order 2 wit11 D,] = 15. 
30. anil SO, rcspccrivcly. Cornpal-c with Figs. 4.24 and 4.25. 
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As discussed in Section 4.2.4, it is possible to construct highpass filters as the 
difference of ~ a u s s i a n  lowpass filters.Tnese difference filters have nlore para- 
meters and, therefore, allow more control over the filter shape. However, the 
simple filter of Eq. (4.4-4) usually is quite adequate in practice, and it is an eas- 
ier formulation for experimenting. 

L.5,: The Laplacian in the Frequency Domain 
It can be shown that 

From this simple expression, it follows that 

[ d 2 f y  + a 2 f ( x '  ''1 = (ju) 'F(u,  V )  + ( j ~ ) ~ F ( u ,  v )  
a'2 (4.4-6) 

= -(u2 + v 2 ) ~ ( u ,  v ) .  

The expression inside the brackets on the left side of Eq. (4.4-6) is recognized 
as the Laplacian o f f  ( x ,  y ) ,  defined in Eq. (3.7-1). Thus, we have the impor- 
tant result 

T [ V 2 f  ( x ,  y ) ]  = -(u' + v 2 ) ~ ( u ,  v ) ,  (4.4-7) 

which simply says that the Laplacian can be implemented in the frequency 
domain by using the filter 

As in all filtering operations in this chapter, the assumption is that the origin of 
F ( L I ,  v )  has been centered by performing the operation f ( x ,  ~ ) ( - 1 ) ~ + ~  prior to 
tak~ng the transform of the image. As discussed earlier, i f f  (and F)  are of size 
M X N, this operation shifts the center transform so that (11,71) = (0 ,  0 )  is at 
point ( M / 2 ,  N / 2 )  in the frequency rectang1e.A~ before, the center of the filter 
function also needs to be shifted: 

The Laplacian-filtered image in the spatial domain is obtained by computing the 
Inverse Fourier transform of H(LL,  ~ ) F ( L L ,  v ) :  

02f (x, y )  = XI{-[(LL - ~ 1 2 ) ~  + ( v  - N / z ) * ] F ( z L ,  v ) } .  (4.4-10) 

Conversely, computing the Laplacian in the spatial domain using Eq. (3.7-1) 
and computing the Fourier transform of the result is equivalent to multiplying 
F(u.  v )  by H ( u ,  v ) .  We express this dual relationship in the familiar Fourier- 
transform-pair notation 

V 2 f ( x ,  y )  + - [ ( u  - M/2)' + ( v  - N / ~ ) ' ] F ( I A ,  v ) .  (4.4-11) 

The spatial domain Laplacian filter function obtained by taking the inverse 
Fourier transform of Eq. (4.4-9) has some interesting properties, as Fig. 4.27 
shows. Figure 4.27(a) is a 3-D perspective plot of Eq. (4.4-9). The function is 
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FIGURE 4.27 (a) 3-D plot of Laplacian in the frequency domain. (b) Image representation of (a). 
(c) Laplacian in the spatial domain obtained from the inverse DFT of (b). (d) Zoomed section of the origin 
of (c). (e) Gray-level profile through the center of (d). (f) Laplacian mask used in Section 3.7. 

" ., . . . . , ., . ,  . . . .  

centered at ( M / 2 .  N / 2 ) ,  and its value at the top of the dome is zero. All other 
values are negative-Figure 4.27(b) shows H(u, v) as an image, also centered. Fig- 
ure 4.27(c) is the Laplacian in the spatial domain, obtained by multiplying by 
H(u ,  2)) by (-I)"+", taking the inverse Fourier transform, and multiplying the 
real part of the result by (-1)"+Y. Figure 4.27(d) is a zoomed section at about 
the origin of Fig. 4,27(c): Figure 4.27(e) is a horizontal gray-level profiIe pass- 
ing through the center of the zoomed section. Finally, Fig. 4.27(f) shows the 
mask we used in Section 3.7 to implement the definition of the discrete 
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Laplacian in the spatial domain,given in Eq. (3.7-4).A horizontal profile through 
the center of this mask has the same basic shape as the profile in Fig. 4.27(e) 
(that is, a negative value between two smaller positive values). It is of interest 
to note that, had we started in the frequency domain, we would have been led 
to a spatial mask similar in form to Fig. 3.39(a). 

As in Eq. (3.7-9, we form an enhanced image g(x, y)  by subtracting the 
Laplacian from the original image: 

The Laplacian is subtracted from (rather than added to) the original because of 
the negative sign in Eq. (4.4-8).This is consistent with the formulation in the spa- 
tial domain given in Eq. (3.7-5). We would have arrived at the same conclusion 
by noting that the center spike in Fig. 4.27(e) is negative, with its immediate 
neighbors being positive. 

As in the spatial domain, where we obtained the enhanced image with a sin- 
gle mask, it is possible to perform the entire operation in the frequency domain 
with only one filter, given by H(u, v) = [l + [(u - ~ 1 2 ) '  + (v - ~ / 2 ) ' ] ] .  In 
this case the enhanced image is obtained with a single inverse transform operation: 

g(x, y )  = %'{[I + ((u - ~ / 2 ) ~  '+ (v - N/~)')]F(U,V)}. (4.4-13) 

In order to obtain the proper result with this implementation, care must be ex- 
ercised in scaling the filter because the squared filter variables can be several 
orders of magnitude greater than 1. 

I Figure 4.28(a) is the same as Fig. 3.40(a). Figure 4.28(b) shows the result of EXAMPLE 4.7: 
filtering this image in the frequency domain using Eq. (4.4-10). As is typical of Illustration Of the 

Laplacian in the Laplacian-filtered images, which contain both positive and negative values of frequency 
comparable magnitudes, scaling is necessary here. Figure 4.28(c) shows the 
image scaled (for display purposes only) so that its most negative value is scaled 
to zero and the maximum positive value is scaled to the maximum displayable 
gray level (255 in this case). Finally, Fig. 4.28(d) shows the enhanced result ob- 
tained by using Eq. (4.4-12).The increase in sharpness of small feature detail is 
unmistakable, as expected of results obtained by using the Laplacian.The se- 
quence of images just presented should be compared with Fig. 3.40, which shows 
exactly the same sequence of steps, but computed using only spatial domain 
techniques. The results are identical for all practical purposes. IA 

4.4.5 Unsharp Masking, High-Boost Filtering, and High-Frequency 
Emphasis Filtering 

All the filtered images in Sections 4.4.1 through 4.4.3 have one thing in common: 
Their average background intensity has been reduced to near black.This is due 
to the fact that the highpass filters we applied to those images eliminate the 
zero-frequency component of their ~ o u r i e r  transforms (see the discussion in 
Section 4.2.3 regarding this phenomenon). As discussed in Section 3.7.2, the so- 
lution to this problem consists of adding a portion of the image back to the fil- 
tered result. In fact, enhancement using the Laplacian does precisely this, by 
adding back the entire image to the filtered result. Sometimes it is advantageous 



188 Chapter 4 m Image Enhancement in the Frequency Domain 

a b  
c d 

FIGURE 4.28 
(a) Image of the 
North Pole of the 
moon. 
(b) L.aplacian 
filtered irnay. 
(c) Laplacian 
Image scaled. 
(d)  Image 
enhanced by 
using Eq. (4.4-12) 
(Original image 
caurlesy of 
NASA.) 

to incl-ease the contribution made by the original image to the overall filtered 
result. This approach, called high-boost,filtering, is a generalizalion of 1~tz.vharp 
mnsking.These concepts were inlroduced in Section 3.7.2.1Ve rcpeat them here 
using frequency domain concepts and notation. 

Unsharp masking consists simply of generating a sharp image by subtracting 
from an image a blurred version of itself. Using frequency domain terminolo- 
gy, this means obtaining a highpass-filtered image by subtracting from the image 
a lowpass-filtered version of itself. That is, 

High-boost filtering generalizes this by multiplying f ( x ,  y) by a constant A 2 I: 
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Thus, high-boost filtering gives us the flexibility to increase the contribution 
made by the image to the overall enhanced result.This equation may be writ- 
ten as :? 

f h b ( ~ ,  Y) = ( A  - l ) f ( ~ ,  Y )  + f ( x ,  Y )  - f i p ( ~ ,  Y ) .  (4.4-16) 

Then, using Eq. (4.4-14), we obtain 

This result is based on a highpass rather than a lowpass image. When A = 1, 
high-boost filtering reduces to regular highpass filtering. As A increases past 1, 
the contribution made by the image itself becomes more dominant. 

From Eq. (4.4-34), Fhp(u, v )  = F(LI, v )  - fip(u, v ) .  But, qp(u ,  v) = 

H,,(u, v )  F(u, v ) ,  where H,,  is the transfer function of a lowpass filter.Therefore, 
unsharp masking can be implemented directly in the frequency domain by using 
the composite filter 

Note that this result agrees with Eq. (4.4-1). Similarly, high-boost filtering can 
be implemented with the composite filter 

with A 2 1. The process consists of multiplying this filter by the (centered) 
transform of the input image and then taking the inverse transform of the prod- 
uct. Multiplication of the real part of this result by (-l)"+Y gives us the high- 
boost filtered image fhb(x, y) in the spatial domain. 

Figure 4.29 shows the same sequence as in Fig. 3.43, but using frequency do- EXAMPLE 4.8: 
main computations. Figure 4.29(a) is the input image, and Fig. 4.29(b) is the High boost 
highpass-filtered image. In order to  compare the results in this example with filtering in the 

frequency 
those in Fig. 3.43, we used the Laplacian as the highpass filter,computed using domain, 
Eq. (4.4-10). We elected not to use a composite filter to make scaling of the 
Laplacian easier. 

The image in Fig. 4.29(c) was obtained using Eq. (4.4-17) with A = 2. As in 
Fig. 3.43(c), this image is sharper, but it still is too dark. Figure 4.29(d) was ob- 
tained with A = 2.7, which in effect means that the input image was multiplied 
by 1.7 before the Laplacian was subtracted from it. As in Fig. 3.43, this is an im- 
proved result. However, Fig. 4.29(d) is not as sharp as Fig. 4.43(d). The reason 
for this is that a frequency domain representation of the Laplacian is closer to 
the mask that excludes the diagonal neighbors [see Fig. 4.27(f)]. We know from 
the example in Fig. 3.41 that a mask that includes the diagonal neighbors pro- 
duces slightly sharper results.The differences are not generally noticeable when 
the details are small (as in the moon example), but they do become evident for 
images with larger features. k 

Sometimes it is advantageous to accentuate the contributibn to  enhance- 
ment made by the high-frequency components of an image. In this case, we sim- 
ply multiply a highpass filter function by a constant and add an offset so that the 
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a b 
c d 

FIGURE 4.29 
Satne as Fig. 3.43, 
but using 
frequency domain 
filtering. (a) Input 
image. 
(b) Laplacian of 
(a). (c) Image 
obtained i~si~lg 
Eq. (4.4-17) with 
A = 2. (d) Samc 
as (c), but with 
A = 2.7. (Original 
image courtesy oi 
Mr. Michael 
SI1alfet.l-, 
Department of 
Geological 
Sciences, 
Ut~iversity of 
Oregon, Eugene.) 

zero frequency term is nor eliminated by [he iilter. This process, called high- 
fueqz~erzcy enzphnsi.~. has a filler transfer function given by 

where n 2 0 and b > o.Typical values of a are in the range 0.25 lo 0.5 and typ- 
ical values of b are in the range 1.5 to 2.0. With reference to Eq. (4.4-17), we see 
that high-frequency emphasis reduces to high-boost filtering when n = ( A  - I )  
and b = 1. When b > 1, the high frequencies are emphasized, thus giving this 
procedure its name. 

EXAMPLE 4.9: "4 Figure 4.30(a) shows a chest X-ray with a narrow range of gray levels. Our 
~~igll-frequency main objcctive is to sharpen the image. X-rays cannot be focused in the same 
emphasis filtering. manner that lenses are focused, and the resulting images generally tend to be 

slightly blurred. Since the gray levels in this particular image are biased toward 
the dark end of the gray scale. we also take the opportunity here to give an ex- 
ample of how spatial domain processing can be used to complemenl frequency 
domain filtering. 

Figure 4.30(b) shows the result of highpass filtering using a Butterworth 
filtel- of order 2 and a value of D, equal to 5% of the image vertical dimension. 
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FIGURE 4.30 
(a) A chest X-ray 
Image. (b) Result 
of Butterworth 
highpass filtering. 
(c )  Result of high- 
frequency 
enlphasis filtering. 
(d) Result of 
performing 
histogram 
equal~zation on 
(c). (Original 
inaagc courtesy 
Dr. 'Tl~omas 
R. Gest, Division 
of Anatolnical 
Sciences, 
University of 
Michigan Medical 

Highpass filtering is not overly sensitive to this parameter, as lorlg as the radius 
of the EiIter is not so small that frequencies near the origin of the transform are 
passed. As expected, the filtered result is rather featureless, but it shows faint- 
ly the principal edges in thc image. The advantage of high-emphasis filtering 
(with ci = 0.5 and b = 2.0 in this case) is shown in the image of Fig. 4.30(c).Al- 
though the image is still dark, the gray-level tonality due to the low frequency 
components was not lost. 

As indicated in Section 3.3, an image characterized by gray levels in a nar- 
row range of the gray scaIe is an ideal candidate for histogram equalization. As 
shown in Fig. 4.30(d), this indeed was an appropriate method to furthcr en- 
hance the image. Note the clarity of the bone structure and other details that 
simply are not visible in any of the other three images.The final, enhanced image 
is a little noisy, but this is typical of X-ray images when their gray scale is ex- 
panded. The result obtained using a combination of high-frequency emphasis 
and histogram equalization is superior to the result that would be obtained by 
using either method alone. I 

Homomorphic Filtering 
The illumination-reflectance model illtroduced in Section 2.3.4 can be used to 
develop a frequency domain procedure lor improving the appearance of an 
image by sirnultar~eous gray-level range compression and contrast enhance- 
ment. From the discussion in Section 2.3.4, an image f (x, y)  can be expressed 
as the product of illumination and reflectance components: 
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Equation (4.5-1) cannot be used directly to operate separately on the frequen- 
cy components of illumination and reflectance because the Fourier transform 
of the product of two functions is not separable; in other words, 

S{?(X. Y)} # 3{i(*, Y ) I % ~ ( X >  Y ) } -  

suppo;e, however, that we define 

Then 

where 4 ( u ,  v) and F,(u, v) are the Fourier transforms of In i(x, y ) and In r(x, y ), 
respectively. 

If we process Z ( u ,  v) by means of a filter function H ( u ,  v )  then, from 
Eq. (4.2-27), 

where S(u ,  v )  is the Fourier transform of the result. In the spatial domain, 

S(X, y )  = ~-'{S(U, V )  1 (4.5-6) 
= ~ - I { H ( ~ ,  v)c(u,  v)} + 3 ' { H ( u ,  v)e,(u, v)}. 

By letting 

and 

it(x, y )  = 3 - ' { ~ ( u ,  v)&(u, v)} 

Eq. (4.5-6) can be expressed in the form 

FinalIy, as z(x, y) was formed by taking the logarithm of the original image 
f ( x ,  y), the inverse (exponential) operation yields the desired enhanced image, 
denoted by g(x, y); that is, 

where 
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FIGURE 4,31 
Humomorphic 

S(xl Y )  4InHDFTFFHZHTP .(.v, Y )  fi,tming 
for image 
enhancement. 

and 

are the illumination and reflectance components of the output image. 
The enhancement approach using the foregoing concepts is summarized in 

Fig. 4.31. This method is based en a special case of a class of systems known as 
hornomorphic systems. In this particular application, the key to the approach is 
the separation of the illumination and reflectance components achieved in the 
form shown in Eq. (4.54). The honzornorphicfilterfi~nction H (u ,  v) can then op- 
erate on these components separately, as indicated in Eq. (4.5-5). 

The illumination component of an image generally is characterized by slow spa- 
tial variations, while the reflectance component tends to vary abruptly, particular- 
ly at the junctions of dissimilar objects. These characteristics lead to associating 
the low Irequencies of the Fourier transform of the logaritlm of an image with il- 
lumination and the high frequencies with reflectance. A1 though these associations 
are rough approximations, they can be used to advantage in image enhancement. 

A good deal of control can be gained over the illumination and reflectance 
components with a homomorphic filter-This control requires specification of a 
filter function N ( u ,  v )  that affects the low- and high-frequency components of 
the Fourier transform in different ways. Figure 4.32 shows a cross section of 
such a filter. If the parameters y, and y~ are chosen so that y, < 1 and y ,  > 1 ,  
the filter function shown in Fig. 4.32 tends to decrease the contribution made 
by the low frequencies (illumination) and amplify the contribution made by 
high frequencies (reflectance). The net result is simultaneous dynamic range 
compression and contrast enhancement. 

FIGURE 4.32 
Cross sect~on of a 
circularly 
symmetric filter 
Fu~lction. D(u,  2)) 

is the distance 
from the origin of 
the centered 
transform. 
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a b  
FIGURE 4.33 
(a) Original 
image. (b) Image 
psocessed by 
homomorphic 
riltering (nole 
details inside 
shelter). 
(Stockham.) 

The curve shape shown in Fig. 4.32 can be approximated using the basic form 
of any of the ideal highpass filters discussed in the previous section. Fot- exam- 
ple. using a slightly modified form of the Gaussian highpass filter gives us 

H ( ~ ~ ,  v )  = j y ,  - y,:l[l - e-~("2(u.~:)/":l ] + Y L  (4.5-13) 

where ~ ' ( u .  v )  is given in Eq. (4.3-3) and the constant c has becn introduced 
to control the sharpness of the slope of the filter function as it transitions be- 
tween y, and y,.This type of filter is similar to  the high-frequency emphasis fil- 
ter we discussed at the end of Section 4.4. 

EXAMPLE 4.10: :;*-~ Figure 4.33 is typical of the results that can be obtained with the homomor- 
Enhancement by phic filtering function in Fig. 4.32. In the original image shown in Fig.4.33(a) the 
homomorphic details inside the shelter are obscured by the glare hom the outside walls. Fig- 
filtering. 

ure 4.33(b) shows the result of processing this image by homomorphic filteringl 
with y, = 0.5 and y, = 2.0 in the filter function of Fig.4.32.A reduction ofdy- 
nan~ic  range in the brightness, together with an increase in contrast, brought 
out the details of objects inside the shelter and balanced the gray lcvels of the 
outside wall.The enhanced image also is sharper. (d 

~ ,.*, -. . ,. . .. 
:,Y 2l .. 
... .: t--,-..~ , . . Implementation 
In  this section we discuss details basic to implementing the Fourier transform. 
We begin with a summary of some additional properties of the 2-D Fourier 
transform and conclude with a brief review of the fast Fourier transform (FFT). 

. .  , 
8 :  i Some Additional Properties of the 2-D Fourier Transform 

Translation 
The Fourier transform pair has the following translation properties: 
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and 
'7 (rixo/M +oym/N) f (x - x,) , y - h) @ F (u, v) e-I" 1 (4.6-2) 

where, as introduced in Eq. (4.2-31), the double arrow is used to  designate a 
Fourier transform pair. When uo = M / 2  and vo = N/2, it follows that: 

j2?r(o,~.r/1M+~~~~v/N) = j p ( x + g )  e 

= (-l)X+Y. 

In this case, Eq. (4.6-1) becomes 

f (x, y)(-l)"+' u F(LL - M/2, v - N / 2 )  (4.6-3) 

and, similarly, 

We see that Eq. (4.6-3) is the same as Eq. (4.2-21), which we used for centering 
the transform-These results are based on the variables u and v having values in 
the range [0, M - 11 and [O, N - I], respectively. In a computer implernenta- 
tion these variables will run from u = 1 to M and v = 1 to N, in which case the 
actual center of the transform will be at u = (M/2) + 1 and v = ( N / 2 )  + 1. 

Distributivity and scaling 

From the definition of the Fourier transform it follows that 

and, in general, that 

In other words, the Fourier transform is distributive over addition, but not over 
multiplication. Identical comments apply to the inverse Fourier transform. Sim- 
ilarly, for two scalars a and b, 

qf ( x ,  y) * @ F ( L ~  v) (4.6-7) 

and 

1 
,f (ax, b y )  * - F (LL/U, v/b). (4.6-8) 

lbbl 

Rotation 

If we introduce the polar coordinates 

then f ( x ,  y)  and F ( L L ,  v) become f (r, 8 )  and F ( w ,  cp), respectively. Direct qub- 
stitution into the definition of the Fourier transform yields 

f(l, + 00) * F ( M ,  V + 00). (4.6-9) 

This expression indicates that rotating f (x, y)  by an angle O0 rotates F (u ,  u) by 
the same angle. Similarly, rotating F ( u ,  11) rotates f (x, y) by the same angle. 
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Periodicity and conjugate symmetry 

The discrete Fourier transform has the following periodicity properties: 

F(LL,  v )  = F(LI  + M ,  V )  = F(u. v f N )  = F ( u  + M ,  v + N ) .  (4.6-10) 

The inverse transform also is periodic: 

The idea of conjugate symmetry was introduced in Section 4.2, and is repeated 
here for convenience: 

from which it follows that the spectrum also is symmetric about the origin: 

The validity of these equations is easily established from Eqs. (4.2-16) and (4.2-17). 
The importance of the periodicity property is illustrated in Fig. 4.34(a), which 

shows the spectrum for a one-dimensional transform F ( L I )  [see Eqs. (4.2-5) and 
(4.2-lo)] .  From Eq. (4 .6- lo) ,  F ( u )  = F(LL + M ) ,  from which it follows that 
1 F ( U )  = I ~ ( r r  + M ) I .  Also, because of Eq. (4.6-l3), I F ( L L ) (  = IF(-u)( .  The pe- 
riodicity property indicates that F ( L L )  has a period of length M 1  and the symme- 
try property indicates that the spectrum is centered on the origin, as Fig. 4.34(a) 
shows. This figure and the preceding comments demonstrate that the magni- 
tudes of the transform values from ( M / 2 )  + 1 to M  - 1 are reflections of the 
values in the half period to the left of the origin. Because the discrete Fourier 
transform has been formulated for values of u in the interval [O, M - I], the 
~.esult of this formillation yields two back-to-back half periods in this interval.To 

a b 
c d 

FIGURE 4.34 
(a) Fourier 
spectrum showing 
back-lo-back 
half periods in 
the interval 
[0, M - 11. 
(b) Shifted 
spectrum showing 
a h~ll period in the 
same interval. 
(c) Fourier 
spectrum of an 
image, showing the 
same hack-to-back 
propel-ties as (a), 
but in two 
dimensions. 
(d) Centered 
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display one full period, all that is necessary is to move the origin of the transform 
to the point u = M/2, as Fig. 4.34(b) shows. To do so, we simply multiply f (x) 
by (-1)" prior to taking the transform, as indicated in Eq. (4.6-3). 

Two-dimensional spectra are analyzed in a similar manner. Figures 4.34(c) and 
(d) show what a typical spectrum looks like before and after centering (only one 
period is shown).The center of the transform in this case is at the top, left corner 
of the picture, and four 2-D periodic components extend "back to back" from the 
four corners of the image toward its center, which contains the hghest-frequency 
component. By contrast, the centered transform, obtained using Eq. (4.6-3), has 
the origin (zero frequency components) at the center of Fig. 4.34(d), and its com- 
ponents extend outward from there with conjugate symmetry. Figure 4.34(d) 
clearly shows that centering the transform not only helps with visualization but, 
as mentioned several times already in this chapter, it also simplifies filtering. 

Separability 

The discrete Fourier transform in Eq. (4.2-16) can be expressed in the sep- 
arable form 

where 

For each value of x, and for values of v = 0,1,2,. . . , N - 1, this equation is a 
complete 1-D Fourier transform. In other words, F ( x ,  v )  is the Fourier transform 
along one row off (x, y). By varying x from 0 to  M - I, we compute the Fouri- 
er transform along all rows o f f  ( x ,  y). Thus far, the frequency variable u has 
remained constant.To complete the 2-D transform we have to vary u from 0 to 
M - 1 in Eq. (4.6-14). After a little thought, it becomes evident that this in- 
volves computing the 1-D transform along each column of F ( x ,  v).This is an im- 
portant result. It tells us that we can compute the 2-D transform by first 
computing a 1-D transform along each row of the input image, and then com- 
puting a 1-D transform along each column of this intermediate result.The same 
comments hold if we reverse the order of computation: columns first, followed 
by rows. The procedure is summarized in Fig. 4.35. 

FIGURE 4.35 
Computation of 

f ( x 3 y )  F ( x ,  v) F(u,  v) t the 2-D Fourier 
transform as a 
series of 1-D 
transforms. 

I -D 1-D 
row column 

transforms transforms 
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A similar development applies to computing the 2-D inverse Fourier trans- 
form. We first compute 1-D inverse transforms along each row of F ( u .  v) and 
then compute inverse 1-D transforms along each column of the intermediate re- 
sult. As shown in the following section, it is possible to implement the inverse 
transform using a 1-D ,forward Fourier transform algorithm. 

4 . 2  Computing the Inverse Fourier Transform Using 
a Forward Transform Algorithm 

As noted in the previous section, 2-D Fourier transforms can be computed via 
the application of 1-D transforms.The 1-D Fourier transform pair was defined 
in Section 4.2.1. We repeat the two equations here for convenience: 

1 M - I  
F ( ~ )  = - f (x)e-j2=".rl" 

M .v=,(, 

M - I  
f ( x )  = 

u = U  

for x = 0,1,2,. . . , M - 1.Taking the complex conjugate of Eq. (4.6-17) and di- 
viding both sides by M yields 

Comparing this result with Eq. (4.6-16) shows that the right side of Eq. (4.6-18) 
is in the form of the forward Fourier transform.Therefore, inputting F * ( L L )  into 
an algorithm designed to compute the forward transform gives the quantity 
fX(x)/M.Taking the con~plex conjugate and multiplying by M yields the desired 
inverse f ( x ) .  A similar analysis for two variables yields: 

which is in the form of a 2-D lorward Fourier transform. I f f  ( x )  01- f (r, y )  are 
real functions (e.g., an image), then the complex conjugate on the left of Eq. 
(4.6- 19) is unnecessar-y; we simply take the I-eal part of the result, ignoring the par- 
asitic complex terms that are typical in most Fourier transform computations. 

Computation of the 2-D transform by successive passes of the 1-D transform 
is a frequent source of confusion when the technique we have just developed 
is used to obtain the inverse. Keep in mind the procedure outlined in the pre- 
vious section, and avoid being misled by Eq. (4.6-18). In other words, when a 1-D 
algorithm is used to compute the 2-D inverse, we do not cot~ipute the complex 
conjugate after processing each row or column. Instead, the function F*(u,  v) 
is treated as if it were f ( x ,  y )  in the forward, 2-D transform procedure sum- 
marized in Fig. 4.35. The complex conjugate (or real part, if applicable) of the 
result, multiplied by MN, yields the proper inverse f ( x ,  y ) .  We emphasize that 
the preceding comments regarding the constants M and N are based on the 
definition of the discrete Fourier transform that has all constants associated 
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with the forward transform.As indicated in Sections 4.2.1 and 4.2.2, it is not un- 
usual to encounter the constants distributed in a different way between the for- 
ward and inverse transforms.Therefore, in order to.avoid being of[ by a scale 
factor, care must be exerc~sed in the placement of the constants when comput- 
ing the inverse transformif these constants are distributed differently from the 
way that we do in this book. 

G.b.3 More on Periodicity: the Need for Padding 
I t  was explained in Section 4.2.4 that, based on the convolution theorem, mul- 
tiplication in the frequency domain is equivalent to convolution in the spatial 
domain, and vice versa. When working with discrete variables and the Fourier 
transform, we need to keep in mind the periodicity of the various functions in- 
volved (Section 4.6.1). Although it may not be  intuitive, this periodicity is a 
mathematical byproduct of the way in which the discrete Fourier transform pair 
is defined. Periodicity is part of the process, and it cannot be ignored. 

Figure 4.36 illustrates the significance of periodicity.The left column of this 
ligure shows convolution computed using the I-D version of Eq.  (4.2-30): 

We also take the opportl~nity hel-e to explain convolution in a little more detail. 
To sinlplify the notation, simple numbers instead of general symbols are used for 
the height and length of the functions. Figures 4.36(a) and (b)  show the two 
functions we wish to convolve. Each function consists of 400 points. The first 
step in convolution is to mirror (flip) one of the functions about the origin. In 
this case this was done to  the second function. which is shown as h(-HZ)  in  
Fig.4.36(c).The next step is to "slide" h(-m) past f (m) .This  is done by adding 
a  constant,^, to h(-m); that is, we form h(x  - m), as shown i n  Fig. 4.36(d). Note 
that this is only one displacement value.This simple step is a frequent source of 
confusion when first encountered. It helps to remember that this is precisely 
what convolution is all about. In other words! to perform convolution we flip 
one o i  the functions and slide it past the other.At each displacement (each valuc 
ofx) the entire summation in Eq. (4.6-20) is carried out.This summation is noth- 
ing more than the sum of products off and h a t  a given displacement.The dis- 
placement x ranges over all values required to completely slide h past f. Figure 
4.36(e) shows the result of completely sliding h past f and computing Eq. (4.6-20) 
at each value of x .  In this case x had to range for 0 to 799 ihr h ( x  - m )  to slide 
completely past f.This figure is the convolutio~i of the two functions. Keep clear- 
ly in mind that the variable in convolution is x. 

We know from the convolution theorem introduced in Section 4.2 [see 
Eq. (4.2-31)] that we can obtain exactly the same result given in Eq. (4.6-20) by tak- 
ing the inverse Fourier transfornl of the product F ( L I ) H ( u ) .  However, we also know 
from the discussion on periodicity earlier in this section that the discrete Fourier 
transform automatically takes the input functions as pel-iodic. In other words,using 
the DFT allows us to perform convolution in the frequency domain, but the func- 
tions are treated as periodic, with a period equal to the length of the functions. 
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o h  
d i 
e j 

FIGURE 4.36 Left: 
convolution of 
two discrete 
functions. Right: 
convolution of the 
same functions, 
taking into 
account the 
implied 
periodicity of the 
D R .  Note in Cj) 
how data from 
adjacent periods 
corrupt the result 
of convolution. 

h ( x  - n i )  
4 

I : : : :  ' X  
o Iwmmam 

Range of 1- 
Fourier transform 

compulalion 

We can examine the implications of this periodicity with the aid of the right 
column of Fig. 4.36. Figure 4.36(f) is the same as Fig. 4.36(a), but with periods 
of the same function extending infinitely in both directions (extended sections 
are shown dashed). The same applies to Figs. 4.36(g) through (i). We now per- 
form convolution by sliding h(x - m) past f (m). Tne sliding is accomplished 
by varying x,  as before. However, now the periodic extensions of h(x - m) in- 
troduce values that were not there in our computations on the left side of 
Fig. 4.36. For example, whenx = 0 in Fig. 4.36(i), we see that part of the first ex- 
tended period to theright of h(x - m) lies inside the part off (m) in Fig. 4.36(f) 
that starts at the origin (shown solid). As h(x - m) slides to the right, the sec- 
tion that was inside f (m) starts to move out to the right, but it is replaced by an 
identical section from the left side of h(x - m).This causes the convolution to 
have a constant value, as shown in the segment [O, 1001 in Fig. 4.36(j).The seg- 
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ment from 100 through 400 is correct, but periodicity starts again, thus causing 
part of the tail of the convolution function to be lost, as can be seen by com- 
paring the solid lines in Figs. 4.36(j) and 4.36(e). 

In the frequency domain the procedure woild be to compute the Fourier 
transfornls of the functions in Figs. 4.36(a) and (b). According to the convolu- 
tion theorem, the two transforms would then be multiplied and the inverse 
Fourier transform taken.The result would be the 400 points comprising the con- 
volution shown in solid in Fig.4.36(j).This simple illustration shows that failure 
to handle the periodicity issue properly will give incorrect results if the convo- 
lution function is obtained using the Fourier transform.The result will have er- 
roncous data a t  the beginning and have missing data a t  the end. 

The solution to this problem is straightforward. Assume that f and h consist 
of A and B points, respectively. We append zeros to both functions so that rhey 
have identical periods, denoted by P.This procedure yields extended, or padded, 
functions given by 

and 

It can be shown (Brigham [1988]) that, unless we choose P A + B - 1, the 
individual periods of the convolution will overlap. We already saw in Fig. 4.36 
the result of this phenomenon, which is commonly referred to as ivraparo~~nrl 
error. If P = A + B - 1. the periods will be adjacent. If P > A + B - 1,the 
periods will be separated, with the degree of separation being equal to the dif- 
ference between P and A + B - 1. 

The results oblained after extending the functions in Fig. 4.36(a) and (b) are 
shown in Figs.4.37(a) and (b). In this case we chose P = A + B - 1 (799),so we 
know that the periods of the convolution will be adjacent. Following a procedure 
identical to the previous explanation, we arrive at the convolution function shown 
in Fig. 4.37(e). One period of this result is identical to Fig. 4.36(e), which we know 
to be correct. Thus, if we wanted to compute the convolution in the frequency 
domain, we would (1) obtain the Fourier transform of the two extended sequences 
(each of which is 800 points long); (2) multiply the two transforms; and (3) com- 
pute the inverse Fourier transform. The result would be the correct 800-point 
convolution funct io~~ shown in the period highlighted in Fig. 4.37(e). 

Extension of these concepts to 2-D functions follows the same line of rea- 
soning. Suppose that we have two images f ( x ,  y)  and h(x .  y )  of sizes A X Band 
C X D, 1.espectively. As in the 1 -D case, these arrays must be assumed period- 
ic with some period P in the x-direction and Q in the y-direction. Wraparound 
error in 2-D convolution is avoided by choosing 

and 
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)c Range of Fourier transform -1 
computation 
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FIGURE 4.37 
Result of 
performing 
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The periodic sequences are f6rrned by extending f ( x ,  y )  and h(x ,  y )  as follows: 

f ( x , y )  O S x l A  - 1 and O s y r  B - 1 
A s x s P  or R l y s Q  

(4.6-23) 

and 

h ( x , y )  Ozx S C  - 1 and 0 s y 5  D - l 
h , ( x ,  y )  = (4.6-26) C S x l P  or D l y S Q  

The issue of padding is central to filtering. When we implement any of the fre- 
quency domain filters discussed in this chapter, we do it by multiplying the fil- 
ter transfer function by the transform of the image we wish to process. By the 
convolution theorem, we know that this is the same as convolving the spatial rep- 
resentation of the filter with the image. Thus, unless proper padding is irnple- 
mented, the results will be erroneous.'rhis is illustrated inFig. 4.38. For the sake 
of simplicity in  the figure, we assume that f and h are square and that they are 

- 

1 

- 

Resulr or filtering i n  the frcque~lcv domain without 
propcrly (xbdding the mpuc images 
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original images 

Zero padding I 
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FIGURE 4.38 
Illustration of the 
need for function 
padding. 
(a) Result of 
performing 2-D 
convolution 
without padding. 
(b) Proper 
function padding. 
(c) Correct 
convolution 
result. 

Result of lillcring in the frequency domain with 
properly paclded inpul images. 
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both of the same size? where h is the inverse DIT of the filter f l ( r ~ ,  .v). Fjgure 
4.38(a) shows what the result of filtering would be if the  images were n o t  
padded.This is the generic result we would obtain if we  cornputed the Fourier 
transforni of an input image that was not padded, rn~iltiplied it by a filter Cunc- 
tion of the same size (also not padded) and computed the inverse tr.ansform.The 
result wouId be of size A X B, the same as the input image, as shown in the top, 
left quadrant in Fig. 4.38(a). As in the 1-D case. the leading edges of the image 
would contain erroneous data induced by periodicity (shown shaded), and there 
would be missing data at the trailing edges. By pl-uperly padding the input- image 
and the filter function as shown in Fig. 4.3S(b), the result would be a correctly 
filtered image of size P x Q, as shown in Fig. 4.38(c).This image is twice the size 
of the original in both directions, and thus has four times as many pixels. How- 
ever. as will be shown shortly, the area of interest- typically is cropped out of 
this larger image. 

It is important to note that the approach just described calls for the frequency 
domain filter function to be multiplied by (-I)"+"', inverse transformed, padded 
with O's, and then forward transformed. All other aspects of filtering are as de- 
scribed iiz Section 4.2.3. Note also that the inverse Fourier transform of the fil- 
ter has both real and imagnary parts. Although the  imaginary components of 
the filters with which we deal in this book typically are tnany orders of magni- 
tude smaller than the real components, it  is not good practice in general to ig- 
nore imaginary components in intermediate Fourier computations. Thus, both 
real and imaginary components are padded prior to generating thc padded frc- 
quency domain filter via computation of the for-ward transform. 

Figure 4.39 shows the padded spatial representation (only the real part is 
shown) of the ideal lowpass filter used to generate Fig. 3.1.2(c).The padded area 
of 0's is shown in black. An ideal lowpass filter was selected for illustration be- 
cause i t  has the most visible "structure"in the spatial dornain.'Tlie padding used 

FIGURE 4.39 Padded lowpass filter i n  the spatial donlain (only the real part is shown). 



FIGURE 4.40 Result of filtering with padding. The image is usually cropped to its 
original size since there is little valuable information past the image boundaries. 

was the minimum size required, which, when images and filters are squares of 
the same size, simply doubles the size in both dimensions. 

Figure 4.40 shows the result of filtering with padded functions using the ap- 
proach just discussed. It is easy to visualize how convolving the filter in Fig. 4.39 
with a padded version of Fig. 4.12(a) would generate Fig. 4.40. It also is evident 
in this case that three-quarters of the result contain no valuable information, so 
cropping back to the original image gives the desired filtered result. We are as- 
sured by using padding that the cropped image is free of wraparound error. 

4.6,4 The Convolution and Correlation Theorems 
Convolution was introduced in Section 4.2.4 and its implementation was dis- 
cussed in additional detail in Section 4.6.3. We repeat it briefly here to facilitate 
comparison with a similar process called correlation. The discrete convolution 
of two functions f(x, y )  and h ( x ,  y )  of size M x N is denoted by 
f ( x ,  y )  * h(x .  y )  and is defined by the expression 

I 
f ( x ,  y )  * h(x ,  y )  = -- f (m ,  n ) h ( x  - rn, y - n) .  (4.6-27) 

M N  I , Z = ~  1,=o 

From the discussion in Section 4.2.4, we know that the convolution theorem 
consists of the following relationships between the two functions and their Fouri- 
er transforms: 

and 
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The correlation of two functions f ( x ,  y) and h(x7 y )  is defined as 

1 

f ( x ,  y )  0 h ( x ,  y )  = - z f  *(m, n ) h ( x  + m, y + n )  (4.6-30) 
M N  ,,,=o t,=o 

where f * denotes the complex conjugate off .  We normally deal with real func- 
tions (images), in which case f * = f .  The correlation function has exactly the 
same form as the convolution function given in Eq. (4.6-27), with the exception 
of the complex conjugate and the fact that the second-term in the summation 
has positive instead of negative signs. This means that h is not mirrored about 
the origin. Everything else in the implementation of correlation is identical to 
convolution, including the need for padding. 

Given the similarity of convolution and correlation, it is not surprising that 
there is a correlation theorem, analogous to the convolution theorem. Let F(u, v) 
and H(LL,  v )  denote the Fourier transforms off ( x ,  y) and h ( x ,  y), respectively. 
One-half of the correlation theorem states that spatial correlation, 
f ( x ,  y) 0 h(xy y ) ,  and the frequency domain product, F * ( L ~ ,  v)H(r t ,  v), consti- 
tute a Fourier transform pair. This result, formally stated as 

indicates that correlation in the spatial domain can be obtained by taking the 
inverse Fourier transform of the product F*(u, v)H(u ,  v), where F* is the corn- 
plex conjugate of F. An analogous result is that correlation in the frequency 
domain reduces to multiplication in the spatial domain: that is, 

f " ( x ,  y ) h ( x ,  y )  + F(u, v) o H ( u ,  v ) .  (4.6-32) 

These two results comprise the correlation theorem. It is assumed that all func- 
tions have been properly extended by padding. 

As we know by now, convolution is the tie between filtering in the spatial 
and frequency domains. The principal use of correlation i s  for matching. In 
matchirtg, f ( x ,  y) is an image containing objects or regions. If we want to de- 
termine whether f contains a particular object or region in which we are inter- 
ested, we let h(x, y) be that object or region (we normally call this image a 
template). Then, if there is a match, the correlation of the two functions will be 
maximum at the location where h finds a correspondence in f. Preprocessing, like 
scaling and alignment, is necessary in most practical applications, but the bulk 
of the process is performing the correlation. 

Finally, we point out that the term cross correlation often is used in place of the 
term correlation to clarify that the images being correlated are different. This is 
as opposed to at~tocorrelntion, in which both images are identical. In the latter 
case, we have the autocorrelation theorem, which foUows directly from Eq. (4.6-31): 

On the right side, we used the fact that the product of a complex quantity and 
its compIex conjugate is the magnitude of the complex quantity squared. In 
words, this result states that the Fourier transform of the spatial autocorrelation 
is the power spectrum defined in Eq. (4.2-20). Similarly, 
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FIGURE 4.41 
(a) Irnase. 
(b) Template. 
(c) and 
(d)  Padded 
I rtlages. 
( e )  Correlation 
function displayed 
as an image. 
(C) Horizontal 
profile line 
tlil-ottg11 rile 
highest value in 
(e) ,  showing the 

I point a t  which the 
best match Look 
place. 

'" Figure 4.41 shows a sinlple illustration of image padding and correlation. EXAMPLE 4.11: 
Figure 4.41(a) is the image and Fig. 4.4 1 (b) is the tempiate.The image and tern- Ij"agc ~ ~ 1 - c l a t i o n .  

plate are of size 256 x 256 and 38 X 42 pixels, respectively. In this case, 
A = B = 256, C = 38, and D = 42.This gives the minimum values for the  ex- 
tended functions: P = A + C - 1 = 293 and Q = B -I- D - I = 297. We 
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chose equal padding dimensions of 298 X 298. The padded images are shown 
in Figs. 4.41(c) and (d). The spatial correlation of the two padded images is dis- 
played as an image in Fig. 4.41(e). As indicated in Eq. (4.6-31), the correlation 
function was obtained by computing the transforms of the padded images, tak- 
ing the complex conjugate of one of them (we chose the template), multiplying 
the two transforms, and computing the inverse DFT. It is left as an exercise for 
the reader (Problem 4.23) to discuss what Fig.4.41(e) would look like if we had 
taken the complex conjugate of the other transform instead. 

As expected, we see in Fig. 4.41(e) that the highest value of the correlation func- 
tion occurs at the point where the template is exactly on top of the "T" in the 
image. As in convolution, it is important to keep in mind that the variables in the 
correlation function in the spatial domain are displacements. For example, the top, 
left corner of Fig. 4.41(e) corresponds to zero displacement of one function with 
respect to the other. The value of each pixel in Fig. 4.41 (e) is the value of the cor- 
relation function at one location of displacement; that is, for one specific value of 
the pair ( x ,  y)  in Eq. (4.6-30). Also, we note that the correlation function has the 
same dimensions as the padded images. Finally, Fig. 4.41(f) shows a horizontal 
gray-level profile passing through the hghest value in Fig. 4.41(e).This figure s i m -  
ply confirms that the highest peak in the correlation function is located at the point 
where the best match of the template and the image occurs. t 

4.6-5 Summary of Properties of the 2-D Fourier Transform 
All the properties of the Fourier transform discussed in this chapter are sum- 
marized inTable 4.1.A footnote identifies the items requiring that functions be 
padded in order to avoid incorrect results. As before, the double arrows are 
used to denote that the expressions form a Fourier transform pair. That is, the 
expression on the right of the double arrows is obtained by taking the forward 
Fourier transform of the expression on the left; the expression on the left is ob- 
tained by taking the inverse Fourier transform of the expression on the right. 

4,tla.b The Fast Fourier Transform 
As indicated in Section 4.1, one of the main reasons that the DFT has become an 
essential tool in signal processing was the development of the fast Fourier trans- 
form (FFT). Computing the I-D Fourier transform of M points using Eq. (4.2-5) 
directly requires on the order of ~hultiplicationiaddition operations.The FFT 
accomplishes the same task on the order of M log, M operations. If, for example, 
M = 1024, the brute-force method will require approximately lo6 operations, 
while the FFT will require approximately lo4 operations.This is a computation- 
al advantage of I00 to 1. If this advantage does not seem signrficant, imagine being 
able to complete a given project in one year as opposed to 100.This is the differ- 
ence between possible and practically impossible. And the story gets better. The 
bigger the problem, the greater the computational advantage. If, for instance, 
M = 8192 (213), the computational advantage grows to 600 to 1.These types of 
numbers are great motivators for wanting to learn more about how an FFT al- 
gorithm works. In this section we take a look at the derivation of a fundamental 
decomposition of the DFT that leads to the FFT.The focus is on the FFT of one 
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variable. As indicated in Section 4.6.1, the 2-D Fourier transform can be obtained 
by successive passes of a 1-D transform algorithm. 

The FFT algorithm developed in this section is based on the so-called suc- 
cessive doubling method. For notational convenience we express Eq. (4.2-5) 
in the form 

where 

and M is assumed to be of the form 

with n being a positive integer. Hence, M can be expressed as 

with K also being a positive integer. Substitution of Eq. (4.6-38) into 
Eq. (4.6-35) yields 

However, it can be shown using Eq. (4.6-36) that w$ik = W"," so Eq. (4.6-39) 
can be expressed as 

Defining 
1 K-I 

foru = 0,1,2 ,..., K - 1,and 

for u = 0,1,2 ,... , K - 1,reduces Eq. (4.6-40) to 

Also, because w",+~ = W D n d  w;'LM = -WiM, Eqs. (4.6-4.1) through 
(4.6-43) give 
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TABLE 4.1 
Summary of some 
important 
properties of the 
2-D Fourier 
transform. 

Property Expression(s) 

I .. 
Fourier transform F(u ,  v) = -- 2 2 f (x, y)e-j2"("'/M+v~/N) 

M N  .s=o y-0 

Inverse Fourier M-1  N-1 

f (x, y) = F ( u ,  v)e12"( ~r.r/M + t y / N )  

traniform r r = O  .u=O 

Polar F (u ,  v) =  IF(^, v)le -j+(r[. U )  

representation 

Spectrum IF(&', 8 ) )  = [ R ~ ( u ,  v) + f2 (u ,  v)]"~,  R = Real(F) and 
I = Imag(F) 

Phase angle 4(u ,  v) = tan-' [El 
Power spectrum P(u ,  V) = IF(u, v)I2 

M- l  N - I  
1 " ' " "  

Average value ~ ( x , Y )  = F(O,O) = - 2 z f ( x , y )  
M N  .v=o y=O 

Translation f (x> Y )e j2rr(rms/M +voy/N) + ~ ( u  - 1lo,v - vO) 

f ( x  - xo, Y - yo) - F(u,  v)e - j2~r i . r I , /M +? :y , l /~ )  

When xo = uo = M / 2  and yo = vo = N/2, then 
f ( ~ , y ) ( - l ) ' + ~  * F ( u  - M / ~ , v  - N / 2 )  

f (x  - M / 2 ,  y - N/2) * F(u,  v)(-l)"+" 

Conjugate F(LI,  v) = F*(-U, -v) 
symmetry p ( u ,  v)l = / ~ ( - l l ,  -v)( 

Differentiation 

Laplacian v2f (x,  y) e- -(u2 + v2)F(u, V)  

Distributivity 3 [ f i (x ,  y) + f2(x, Y ) ]  = 3 [ f , ( x ,  Y)]  + 5[f i (x?  Y ) ]  
3[f,(x,  y)  f2(x1 y)]  f 3 [ f , ( x ,  Y ) I  - 3 [ f 2 ( ~ >  Y)I 

1 
Scaling af (x, y) H aF(u ,  v), f (ax, by) * - F(la/a ,  v/b) 

lab1 

Rotation x = r c o s $  y = r s i n 9  u = w c o s p  v = w s i n c p  

f ( r ,  0 + 00) * F(@, cp + 80 )  

Periodicity F (u ,  v) = F(LL + M, a )  = F(u,  v + N )  = F ( L L  + M, v + N )  
f ( x , y )  = f ( x  + M , y )  = f ( x , y  + N )  = f ( x  -t M , Y  + N )  

Separability See Eqs (4.6-14) and (4.6-15). Separability implies that we can 
compute the 2-D transform of an image by first computing 1-D 
transfdrms along each row of the image, and then computing a 
1-D transform along each column of this intermediate result. 
The reverse, columns and then rows, yields the same result. 
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Property Expression(s) 
I 

Convolution' f (x, y )  * h(x, Y) = f ( m .  n)h(x - m. Y - n) 
M N  , = o  .=" 

TABLE 4.1 
(continued) 

Computation 1 I M-I  N - I  
- f *(X, y) = - C C FX(U, V ) ~ - I ~ ~ I ~ X I M + U Y I N )  

of the inverse M N  M N  ,,=o D = o  
Fourier This equation indicates that inputting the function F*(u, v )  
transform using into an algorithm designed to compute the forward transform 
a forward (right side of the preceding equation) yields f *(x, y)/ M N. 
transform Taking the complex conjugate and multiplying this result by 
algorithm MN gives the desired inverse. 

1 M-I  N - l  

Correlation" f ( x , ~ )  " h ( x , y )  = - 2 X f * ( m , n ) h ( x  + m , y  + n) 
M N  m = O  ,t=O 

Summary of some 
important 
properties of the 
2-D Fourier 
transform. 

Convolution f (x, y) * h(x, y) * F ( u ,  v ) H ( u ,  v); 
theorem f (x, y)h(x ,  y) 6 F ( u ,  v) * H(u ,  v )  

Correlation f (x, y) o h(x,  y) * F*(u,  v )H(u ,  v); 
theoremi f * ( x ,  y)h(x,  y) * F ( L L ,  v) " H(u ,  v )  

Some useful FT pairs: 

Impulse S(X, Y) * 1 

Gaussian A2?To~e-2.ir'o'(.r2 t YZ) * Ae-(u'+ u2)/2u2 

Rectangle rect[a, b] -+ ab 
sin (nun)  sin (nub)  e-jn(',u + "/,I 

( m a )  (nvb)  

Cosine cos(2.rruox + 2.rrvoy) * 
1 
- [6(u -t Muo, v + Nv,) + S(u - Muo, v - NV")] 
2 

'Assumes that functions have been extended by zero padding. 

Careful analysis of Eqs. (4.6-41) through (4.6-44) reveals some interesting 
properties of these expressions. An M-point transform can be computed by di- 
viding the original expression into two parts, as indicated in Eqs. (4.6-43) and 
(4.6-44). Computing the first half of F ( u )  requires evaluation of the two (M/2)- 
point transforms given in Eqs. (4.6-41) and (4.6-42). The resulting values of 
Feven(u) and Fodd(u) are .then substituted into Eq. (4.6-43) to obtain F ( u )  for 

u = 0,1,2, .  . . , (MI2 - 1). The other half then follows di- 
rectly from Eq. (4.6-44) without additional transform evaluations. 

In order to examine the. computational implications of this procedure, let 
m(n )  and a(n) represent the number of complex multiplications and additions, 
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respectively, required to implement it. As before, the number of samples is 2", 
where n is a positive integer. Suppose first that n = 1. A two-point transform 
requires the evaluation of F(0);  then F(1) follows from Eq. (4.6-44).To obtain 
F ( 0 )  first requires computing and Fev,,(0) and FOdd(O). In this case K = 1 and 
Eqs. (4.6-41) and (4.6-42) are one-point transforms. Because the Fourier trans- 
form of a single point is the sample itself, however, no multiplications or addi- 
tions are required to obtain F,,,,(O) and Fodd(0). One multiplication of Fodd(0) 
by W: and one addition yield F(0)  from Eq. (4.6-43). Then F (1 )  follows from 
(4.6-44) with one more addition (subtraction is considered to be the same as ad- 
dition). As ~ ~ ~ ~ ( 0 )  W! had already been computed, the total number of opera- 
tions required for a two-point transform consists of m(1) = 1 multiplication 
and a(1) = 2 additions. 

The next allowed value for n is 2. According to the preceding development, 
a four-point transform can be divided into two parts. The first half of F(u) re- 
quires evaluation of two two-point transforms, as given in Eqs. (4.6-41) and 
(4.6-42) for K = 2. A two-point transform requires m(1) multiplications and 
a(1) additions, so evaluation of these two equations requires a total of 2m( l )  
multiplications and 2a ( l )  additions. Two further multiplications and additions 
are necessary to obtain F(0)  and F(1)  from Eq. (4.6-43). Because FOdd(u)WyK 
already had been computed for u = (0, I ) ,  two more additions give F(2)  and 
F(3).The total is then m(2) = 2mC1) + 2 and a(2) = 2 a ( l )  + 4. 

When n is equal to 3, two four-point transforms are considered in the eval- 
uation of Fev,,(u) and FOdd(u). They require 2m(2) multiplications and 2a(2) 
additions. Four more multiplications and eight more additions yield the complete 
transform.The total then is m(3) = 2m(2) + 4 and a(3) = 2a(2) + 8. 

Continuing this argument for any positive integer value of n leads to recur- 
sive expressions for the number of multiplications and additions required to 
implement the FFT: 

and 

where m(0) = 0 and a(0) = 0 because the transform of a single point does not 
require any additions or multiplications. 

Implementation of Eqs. (4.6-41) through (4.6-44) constitutes the successive 
doubling FFT algorithm. This name comes from the method of computing a 
two-point transform from two one-point transforms, a four-point transform 
from two two-point transforms, and so on, for any M equal to an integer power 
of 2. It is left as an exercise (Problem 4.25) to show that 

1 
m(n)  = - M log, M 

2 

and 

a(n) = M log, M. 
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The computational. advantage of the FFT over a direct implementation of the 
1-D DFT is defined as 

IM 
C ( M )  = -- 

M log* M 

Because it is assumed that M = 2", we can express Eq. (4.6-49) in terms of n: 

A plot of this function is shown in Fig. 4.42. As noted earlier, the advantage in- 
creases rapidly as a function of n. For instance, when n = 15 (32,768 points), 
the FFT has nearly a 2200 to 1 advantage over the DFT. Thus, we would expect 
that the FFT can be computed nearly 2200 times faster than the DFT on the 
same machine. 

There are so many excellent sources that cover details of the FFT that we will 
not dwell on this topic further (see, for example, Brigham [1988]). Virtually all 
comprehensive signal and image processing software packages have generalized 
implementations of the FFT that also handle cases in which the number of 
points is not an integer power of 2 (at the expense of computational efficiency). 
Free FFT programs also are readily available, principally over the Internet. 

3 , k 7  Some Comments on Filter Design 
All the filters discussed In this chapter are specified in equation form. In order 
to use the filters, we simply sample the equations for the desired values of (u, v). 
This process results in the filter function H ( u ,  v ) .  In all our examples, this func- 
tion was multiplied by the (centered) DFT of the input image, and the inverse 
DFT was computed. All forward and inverse Fourier transforms in this chapter 
were computed with an FFT algorithm, using the procedure summarized in 
Fig. 4.35 and Section 4.6.2. 

FIGURE 4.42 
Computa tio~lal 
advantage of the 
FFT over a direct 
implements tion 
of the 1.-D DFT. 
Note that the 
advantage 
increases rapidly 
as a function of n. 
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'The approach to  filtering discussed in this chapter is focused strictly on fun- 
damentals, the focus being specifically to explain the effects of filtering in the 
frequency domain as clearly as possible. We know of no better way to d o  that 
than to  treat filtering the way we did here. One car1 view this development as  
the basis for "prototyping" a filter. In other  words, given a problem for which 
we tvant to find a filter, the frequency domain approach is an ideal tool for ex- 
perimenting, quickly and with full control over filter parameters. 

Once a filter for a specific application has been found, it often is of interest 
t o  implement the filter directly in the spatial domain, using firmware and/or 
hardware. Petrou and  Bosdogian~ii  [I9991 present a nice tie between two-di- 
mensional frequency domain filters and the corresponding digital filters. On 
the design of 2-D digital filters see Lu and Antoniou [1.992]. 

Summary 
T l ~ e  material presented in this chapter, combined with the development in Chapter 3, is 
a comprehensive foundation for image enhancement. Undoubtedly, it is clear to the 
reader by now that the area of image enhancement really is a collectjon of tools that 
have been found i n  practice to produce acceptable results in given applications. Most of 
the tooh themselves are well grounded in mathematical and statistical concepts, bul 
their use is strictly problem oriented. In other words,image enhancemen1 is more an art 
than a science, and the definition of a "properly enhanced'' irnage is highly subjective. 
In Chapter 5 we extend some of the mathematical concepts developed in this and the last 
chapter to the area of image restoration. Unlike enhancement, restoration techniques for 
" j  nl proving" irnages tend to be based on objective, rather than subjective, criteria. As 
such, restoration techniques are considerably inore structured than the methods we have 
covered thus far. 

Another rnajor objective oC this chapter was the development of the Fourier trans- 
form, Although this was done in the context of image enhancement, the  neth hods de- 
veloped are perfectly general, as will be see11 by the various applicatjons of the DFT in 
subsequent chapters. 

References 
For additional reading on the material in Section 4.1 see Hubbard [1998].The books by 
Bracewell. [2000] and Bracewell 119951 are a good introduction to the continuous Fouri- 
er transforrtl and its extensions to two dimensions for image processing. These two books, 
in addition to Lim [1990], Castleman [1996], Petrou and Bosdogianni [1999j, and Brigham 
[1588], provide comprehensive background for inost of the discussion i n  Section 4.2. 

For additional reading on the material in Sections 4.3 and 4.4, see Castlenian [1996], 
Pratt [.1991], and Hall [1979]. Effective handling of issues on filter implernenlation (like 
ringing) still is a topic of interest, as exemplified by Bakir and Reeves [2000]. Fur unsharp 
masking and high-boost filtering, see Schowengerdt [1983].The material on homomor- 
phic filtering (Section 4.5) is based on a paper by Stockham 119721; see also the books 
by Oppenheim and Schafer [I9751 and Pitas and Venetsanopoulos [1990]. Brinkman el 
al. [I9981 combine unsharp masking and homomorphic filtering for the enhancement of 
magnetic resonance images. For the generation of digital filters (Section 4.6.7) based on 
the frequency domain formulations discussed in this chapter, see Lu and Antoniou 19'321 
and Petrou and Bosdogianni [1999]. 
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As noted in Section 4.1,"discovery"of the fast Fourier transform (Section 4.6.6) was 
a major milestone in the popularization of the DFT as a fundamental signal, processing 
tool. Our presentation of the F R  in Section 4.6.6 is based on a paper by Cooley and Tuck- 
ey p965] and on the book by Brigham [1988], who alsodiscusses several implementa- 
tions of the FFT, including bases other than 2. Formulation of the fast Fourier transform 
is often credited to Cooley and7Jhkey [1965].The F'FT, however, has an interesting his- 
tory worth sketching here. In response to the Cooley-Tukey paper, Rudnick [I9661 re- 
ported that he was using a similar technique, whose number of operations also was 
proportional to M log, M and which was based on a method published by Danielson 
and Lanczos [1942].These authors, in turn, referenced Runge [1903,1905] as the source 
of their technique. The latter two papers, together with the lectu~e notes of Runge and 
Kiinig [1924], contain the essential computational advantages of present FFT algorithms. 
Similar techniques also were published by Yates [1937], Sturnpff [1939], Good [1958], 
and ' l l~omas  [1963]. A paper by Cooley, Lewis, and Welch [1967a] presents a historical 
summary and an interesting comparison of results prior to the 1965 Cooley-Tukey paper. 

Problems 
k 4.1 Show that F(u) and f ( x )  in Eqs. (4.2-5) and (4.2-6) are a Fourier tiansform pair, 

You can do this by substituting Eq. (4.2-6) for f (x)  into Eq. (4.2-5) and showing 
that thc left and right sides are equal. Repeat the process by substituting 
Eq. (4.2-5) for F ( L I )  into Eq. (4.2-6). You will need the following orthogonality 
property of exponentials: Scc rnstdc fronl a v e r  

M-1 Detailed solutions to the 
C ej2rrr.1/bl -j2.rric.r/M = prnblenls marked with a 

e 
otherwise. star can be found in l h e  

x=U book web site ' b e  site 

4.2 Show that the Fourier transform and its inverse are linear processes (see Section a'So SUggeSied 
projects based on rile ma- 

2.6 regarding linearity). terial in this chaprer. 

4.3 Let F(u ,  v )  denote the DFT of an image f (x, y ) .  We know from the discussion 
in Section 4.2.3 that multiplying F ( u ,  v)  by a filter function H ( u ,  v) and taking 
the inverse Fourier transform will alter the appearance of the image, depending 
on rhe nature of the filter. Suppose that H ( L L ,  v) = A,a positive constant.The net 
effect of filtering will be to multiply the image by the same constant. Using the 
convolution theorem, explain mathematically why the pixels in the spatial do- 
main representation are multiplied by the same constant. 

*4.4 A Gaussian lowpass filter in the frequency domain has the transfer function 
H ( u ,  v) = Ae-(u't (11/2~2 

Show that the corresponding filter in the spatial domain has the form 
2 -2.;r2n2(r2 + 2, h(x ,  y )  = A 2 ~ a  e 

(Hint: Treat the variables as continuous to simplify manipulation.) 

4.5 As shown in Eq. (4.4-I), a highpass filter has the transfer function 

Hhp(u, v )  = I - Hlp(u, v )  

where H,,(u,  v )  is the transfer function of the corresponding lowpass filte;. Using 
the result in Problem 4.4, what is the form of the spatial domain Gaussian high- 
pass filter? 

4.6 * (a) Prove the validity of Eq. (4.2-21). 

(b) Prove the validity of Eqs. (4.6-1) and (4.6-2). 
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4.7 What is the  source of nearly periodic bright points in the horizonIal axis of the 
specrrum in Fig. 4.1 1 (b)? 

k4.8 Each of the spatial filters shown in Fig. 4.23 has a strong spike at the origin. Ex- 
plain the soul-cc of these spikes. 

4.9 Consider the images shown. The image on the right was oblai~led by (a) multi- 
plying the i~nagc o n  the left by (-I.).'+:; (h) computing the DFT; (c) taking the 
corllplex conjt~gate of the tl-ansform; (d) computing the inverse Dm. and (e) mul- 
liplying the real part of the result by (-I)'''!. Explain (mathernatjcally) why rhe 
image on the right appears as i t  does. 

4.10 Show that  if a filter transfer furlction H(rl, .u) is real and symn~etr-ic, then [he cor- 
resporiding spatial doniain filter' h ( x ,  ) J )  also is real and syn~n~etr-ic. 

* 4 1  Prove the validity oC the cor~volution [heorern. For simplicity, limit your devel- 
opment to conrilluos functions of one variable. 

4.12 Consider the i n~nges  shown.The image on the riglit was obtained by lowpass fil- 
tering the image on the lefl with a Gaussian lou~pass FilLcr, and then highpass fil- 
tering the result with a Gaussian bigllpass filter.The dir~lension of the images is 
420 x 344, and D,, = 25 was used for both filter-s. 

(a) Consider the  figure on the right. Explain why t h e  centel par? of t l ~ c  ring ap- 
pears so bright and solid, when the dominant cha~.acIesistic of [he filtered 
inlase consists ol' edges on the outel' boundary ol objects (e.g., fingel-s, wrist 
bones) with a clar.ker area in between. In other words, would you not expect 
the highpass filter to render tlic constant area inside the ring dark, since a 
highpnss filter eliminates the dc lerm? 

(h) Do you  think the  result would have been ~[ i f fcre~i t  if the order of thc filtey- 
ing pl-ocess had  beell reversed? 

Original image courtesy of Dr.Thomas R. Gest, Division 
o f  Analoinical Sciences. University of Michigan Medical 
School. 



I Problems 217 

4.13 Given an image of size M X N, you are asked to perform an experiment that 
consists of repeatedly lowpass filtering the image using a Gaussian lowpass filter 
with a given cutoff D,. You ]nay ignore computational round-off errors. Let k,,,,, 
denote the smallest positive number representable in the machine in which the 
proposed experiment will be conducted. 

* (a) Let K denote the  number of applications of the filter. Can you predict, with- 
out doing the experiment what the result (image) will be for a sufficiently 
large value of K ?  I f  so. what is that  result? 

(b) Derive an expression for the rttinimsu~? value of K that will guarantee the re- 
sult that you predicted. 

4.14 Suppose that you form a lowpass spatin/ filter that averages the four immediate 
neighbors of a point (x. y)  but excludes the point itself. 
(a) Find the equivalent filter H ( L L ,  v) in the frequency domain. 

(b) Show that your result is a lowpass filter. 
k4.15 The basic approach used to approximate a discrete derivative (Section 3.7) in- 

volves taking differences of the form f ( x  + 1, y )  - f (x, y ) .  
(a) Obtain the filter transfer function, H ( u ,  v), for performing the equivalent 

process in the frequency domain. 
(b) Show that H(LL,  1;) is a highyass filter. 

4.16 Consider the  sequence of images shown.The image on the left is a segment of an 
X-ray image of a commercial printed circuit board. The images following it are, 
respectively. the results of subjecting the image to 1,10, and 100 passes of a Gauss- 
ian highpass filter with Do = 30. The images are of size 330 x 334 pixels. with 
ekich pixel bej ng represented by S bits of gray. They have been scaled for display, 
but this has no effect on the problem statement. 
(a) There is a hint in these results t h a t  indicates that the image will ce-ase to 

change after some finite number of passes. Show whether or not this in fact 
is the case. You niay ignore computational round-off errors. Let k,,,, denote 
the smallest positive number representable in the machine in which the pro- 
posed experiment will be conducted. 

(b) I f  you determined in (a) that changes would cease after a finite number of i t -  
erations. determine the minimum value of that number. 

Original image courtesy of Mr. Joseph E. Pascente, Li.ui. Inc. 

4.17 As sl~own in Fig. 4.30, combining high-frequency emphasis and  histogram 
ecl~~alization is an effective method for achieving edge sharpening and con- 
Irast enhancement. 
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(a) Show whether or not it matters which process is applied I'irst. 
(b) Tf tlle order does mattel-,give a rationale for using one or the other methocl first. 

It4.18 Can you think of a way to use the Fourier transform to compute (or partially 
cornpure) the magnitude of t h e  gradient for use in image differentlation (see 
Section 3.7.3)? If your answer is yes, give a method to do it.  If your  answers is no, 
explai13 why. 

4.19 In Section 4.4.4 we started with the definition of the Laplacian and derived a fil- 
ter for performing the equivalent operation via the frequency domain. Starr with 
the mask approximation shown in Fig.4.27(1) and find the frequency domain fil- 
ter that wou1.d implement t h a t  approximation. 

4.20 Use t l~e  transfer function of a Butterworth highpass filter of order vz to construct 
a homomorphic filter. Your filter must exhibit the characteristic shape s l~own  in 
Fig. 4.32 and must include the parameters shown i n  that figure. 

* 4.21 The need for image padding when filtering in the frequency domain was discussed 
in some detad in Section 4.6.3. We showed in that section that  images needed to 
be padded by appending zeros to the ends of rows and columrls in the image (see 
the following image on the left). Do you think i t  would make a difference if we 
centered the image and sul.rounded it by a border of zeros instead (see image on 
t11e right), but without changing the lotal number of zeros used? Explain. 

0i.iginal image courtesy of NASA 

4.22 The two Fourier spectra sho~rn are of the same irnage.Tlle spectrum on the left 
corresponds to the original image, ancl the spectrum on the right was obtained 
after the image was padded with zeros. 
(a) Explain the difference in overall contrast. 
(b) Explain the signjficant increase in signal strength along the vertical and hor- 

izontal axes of the spectrum shown on the right. 
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4.23 The correlation function shown in Fig. 4,41(e) was cornputed via the frequency do- 
main, according to Eq. (4.6-31).The complex conjugate of the transform of the tem- 
plate in Fig. 4.41 (d) was used in the computation. Sketch what Fig. 4.41(e) would 
look like if, instead, we had used the conjugate of the transform of the image. 

4.24 Wirh reference to Fig. 4.41, sketch what the correlation function [Fig. 4.41 (e)] 
would look like if the letters UTK were only one pixel away from 

* (a) The left border of the image 

* (b) The right border of the image 

(c) The top of the image 

(d) The bottom of the image 

In (a)  and (b), assume that the letters are centered with respect to an jmaginary 
horizontal line passing through the center of a11 the letters and also through che 
center of the image. In (c) and (d) they are centered with respect to a vertical line 
passing through the center of the letter T and also through the center of the image. 

k4.25 Show the validity of Eqs. (4.6-47) and (4.6-48). (Hint: Use proof by induction.) 

4.26 Suppose that you are given a set of images generated by an experiment dealing 
with the analysis of stellar events. Each image contains a set of bright, widely 
scattered dots corresponding to stars in a sparsely occupied section of the universe. 
The problem is that the stars are barely visible, due to superimposed illumination 
resulting from atmospheric dispersion. If these images are modeled as the prod- 
uct of a constant illumination component with a set of impulses, give a n  en- 
hancement procedure based on homomorphic filtering designed to bring out the 
image components due to the stars themselves. 

4.27 A skilled medical technician is charged with the job of inspecting a certain class 
of images generated by an electron microscope. In order to simplify the inspec- 
tion task, the technician decides to use digital image enhancement and, to this 
end, examines a set of representative images and finds the following problems: 
( I )  bright,isolated dots that are of no  interest; (2) lack of sharpness; (3) not enough 
contrast in some images; and (4) shi€ts in the average gray-level value, when this 
value should be V to perform correctly certain intensity measurements.The tech- 
nician wants to correct these problems and then display in white all gray levels in  
the band between I, and 12, while keeping normal tonality in the remaining gray 
levels. Propose a sequence of processing steps that the technician can follow to 
achieve the desired goal. You may use techniques from both Chapters 3 and 4. 



Things which we see are not by themselves what we see. .. . 
11 remains completely unknown to us what the objects may be by 
themselves and apart from the receptivity of our senses. We know 

nothing but our manner of perceiving them. 

lmmanuel Kant 

Preview 
As in image enhancement, tbe ultimate goal of restoration techniques is lo im- 
prove an image in some predefined sense. Althougll there are areas of overlap, 
image enhancement is largely a subjective process, while image restoration is for 
the most part an objective process. Restoration attempts to reconstruct or re- 
cover an image that bas been degraded by using a priori knowledge of the dsgra- 
dation pllenomenon.Thus restoration techniques are oriented toward modeling 
the degradation and applying the inverse process in order to recover [he orig- 
inal image. 

Tllis approach usually involves formulating a criterion of goodness that- will 
yield an optimal estimate of the desired result. By contrast, enhancement tech- 
niques basically are heuristic procedures designed to manipulate an image in 
order to take advantage of the psychophysical aspects of rhe human visual sys- 
tem. For example, contrast stretching is considered an enhancement technique 
because it is based primarily on the pleasing aspects it might present to the 
viewer, whereas removal of image blur by applying a deblurring function is con- 
sidered a restoration technique. 

The material developed in this chapter is stnctly introductory. We consider the 
restoration only from the point where a degraded, digital image is given: 
thus we consider topics dealing with sensor, digitizer, and display degradations only 
superficially. These subjects, although of importance in t h e  overall treatment of 
image restoration applications, are beyond the scope of thc present discussion. 
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As in Chapters 3 and 4, some restoration techniques are best formulated in  
the spatial domain, while others are better suited for the frequency domain. For 
example, spatial processing is applicable when the only degradation is addi- 
tive noise. O n  the orher hand, degradations such as image blur are difficult to 
approach in the spatial domain using small masks. In this case, frequency do- 
main filters based on various criteria of oplimality are the approaches of choice. 
These filters also take into account the presence of noise.As in Chapter 4 (see 
comments in Section 4.6.7), a restoration filter that  solves a given application 
in the frequency domain often is used as the basis for generating a digital f i l -  
ter that will be more suitable for routine operation using a hardwarelfirmware 
implementation. 

A Model of the Image Degradatio~estoration Process 
.i - 

As Fig. 5.1 shows. the degradation process is modeled in thjs chapter as a degra- 
dation function that,  together with an additive noise term, operates on an input 
jmage f (x, y) to produce a degraded image g ( x ,  y). Given g ( x ,  y), some knowl- 
edge about  the degradation function H, and some knowledge about the addi- 
tive noise term q ( x ,  y ) ,  the objective of restoration is to obtain an estimate 
[(r, y)  of the original image. We want the estimate to be as close as possible 
to the original input image and,  in general, the more we know about H and q, 
the closer j(.r. y)  will be to f (x, y ) .  The approach used throughout most of this 
chapter is based on various types of image restoration filters. 

I t  is shown in Section 5.5 that if H is a linear, position-invariant process, then 
the degraded image is given in the spatial domnin by 

where h ( x ,  ) I )  is the spatial representation of t h e  degradation function and, as 
in Chapter 4, the  symbol "a" indicates convolution. We know from the discus- 
sion in Sections 4.2.4 and 4.6.4 that convolution in the spatial domain i s  equal 
to multiplication in the frequency domain, so we may write the model in 
Eq. (5.1-1) in an equivalent frequency domain representation; 

where  the terms in capital letters are the  Fourier transforms of the corre- 
sponding terms in Eq. (5.1- 1). These two equations are the bases for most of 
ihe material in this chapter. 

Restoration ., (x. y )  f i j i y ~ ~ ~ ~ ~  filter(s) 

I ?(xu Y 

FIGURE 5.1 A 
model of the 
image 
degradation1 
restoration 
process. 

I DEGRADATION ] RESTORATlON I 
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In the following threc sections, we assume that H is the idenlicy operator, 
and we deal only with degradations due lo noise. Beginning in Section 5.6 we 
consider a number of important image degradations functions and look at sev- 
eral methods for image restoration in the presence-of both H a n d  7). 

5-y- 
& .  Noise Models 

' l 'he principal sources of noise in digital images arise during image accluisitjon 
(digit ization) and/or transmission. The performance of imaging sensots is af- 
fected by a variety of lactors,such as environrnental conditions during image ac- 
quisition, and by the quality of the sensing elements themselves. For instance, in 
acquiring images wit11 a CCD camera, light levels and sensol temperature are 
major factors affect~ilg the  amount of noisc jn the resulting irnage. Images are coy- 
rupied during transmission principallgdue to interference in the channel used for 
transmission. For example, a n  image transmitted using a wireless network might 
be corrupted as a result of lightning o r  other atmosphel-ic disturbance. 

>.?.: Spatial and Frequency Properties of Noise 
Relevant to our  discussion are parameters that define the spalial characteristics 
of noise, and whether the noise is coruelared with the imagc. Frequerlcy proper- 
ties refer to the frequency content of noise in the Fourier sense (i.e., as opposed 
to the electromagnetic spectrum). For example, when the Fourier spectrum ol  
nose is constant, tbe noise ustially is called whire no~.ve.Tllis terminojogy is a car-ry 
over from the physical properties of white liglrt, which contains nearly all fre- 
quencies in the  visible spectrum in equal proportions. From the discussion in 
Chapter 4, i t  is ljor difficult to show tha t  the Fourier spectrum of a functiotl con- 
taining all frcquencies in equal proportions is a constant. 

With che exceptiou of spatially periodic noise (Section 5.2.3), we assume in this 
chapter that noise is independen1 of spatial cool-dinates,and rhal it is uncori-elated 
with respecr to t h e  image itselt (that is, there is no  correlation between pixel val- 
ues and the va!ues of noisc components). Although [hese assumptions are at least 
partially Invalid in some applications (quantum-linlited imaging, such as in X-ray 
and nuclear-medicine imaging. IS a good example), the complexities of dealing with 
spatially dependent and correlated noise are beyond the scope of our discussjori. 

:; !-,I 7 ,.. . Some Important Noise Probability Density Functions 

Based on the assumplions i n  the previous section. the spnrial noise descriptor with 
which we shall be concerned is the statistical behavior of the gray-level values in 

I$ the noise con~ponent of [he rnodel in Fig. 5.1. These may be considered random 
variables, chal-acterized by a probability density function (PDF). 'lhs following 

.QL. ,8huJc Ih#8u c,x.cq 

Co~isull ~Lic hccrk ~veh site 
are among the most common PDFs found in image processing applications. 

Inr :r l i r icf rc\,icw of proh- 
;)i>ility theory, Gaussian noise 

Because ol its rnatbcmatjcaJ tractability i n  both the spatid and frequency do- 
mains. Gaussian (also called noumol) noise models at-e used frequently jn prac- 
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tice. In fact, this tractability is so convenient that i t  often results in Gaussian 
models being used in situations in which they are marginally applicable at best. 

The PDF of a Gaussian random variable, z, isgiven by 

where z represents gray level, p IS the mean of average value of z, and u is its stan- 
dard  dcviation.Thc standard deviation squared, cr2, is called the variance of z .  A 
plot of this function is shown in Fig. 5.2(a). When z is described by Eq. (5.2-I), 
approximately 70% of its values will be in the range [ ( p  - o), (p + o)], and 
about 95% will be in the range [ ( p  - k), ( p  + 2 u ) ] .  

Rayleigh noise 

The PDF of Rayleigh noise is given by 

(0 for z < a. 

The mean and variance of this density are given by 

and 

Figure 5.2(b) shows a plot of the Rayleigh densitjr. Note the displacement from 
the origin and the fact that the basic shape of this density is skewed to the right. 
The Rayleigh density can be quite useful for approximating skewed histograms. 

Erlang (Gamma) noise 

The PDF of Erlang noise is given by 

e-nz for z L 0 

( 0  for z < o 
where the parameters are such that a > 0, 2, is a positive integer, and "!" indi- 
cates factorial. The mean and variance of this density are given by 

and 
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FIGURE 5.2 Some important probability density functions. 
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Figure 5.21~) shows a pi01 of this density. Although Eq. (5.2-5) often is referred 
to as the gclmnza density, strictly speaking this is correct only when the denom- 
inator is the gamma function, T(b) .  When the denominator is as shown, the den- 
sity i s  more appropriately called the Erlang density. 

Exponential noise 

The PDF ol' exponential noise is given by 

for z 2 0 

for z < 0 

where a > O.The mean and variance of this density functioii are 

and 

Note that this PDF is a special case ol the Erlailg PDF, with 6 = I .  Figul-e 5,2(d) 
shows a plot of this density function. 

Uniform noise 

The PDF of uniform noise is given by 

( 0  otherwise. 

The mcan of this density function is given by 

and its variance by 

Figure 5.2(e) shows a pl.ot of the uniform density. 

Impulse (salt-and-pepper) noise 

The PDF of (bipokrr) irnpt~lse noise is giver1 by 

P,, for z = 0 

p ( z )  = for z = b 

[o 
(5.2-14) 

otherwise 
If b > a, gray-level b will appear as a light dot in the image. Conversely, level a 
will appear like a dark dot. If either P,, or P,, is zero, the iinpulse noise is called 
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 mip polar. If ileither probability is zero, and especially if they are approximate- 
ly equal, impulse noise values will resemble salt-and-pepper granules random- 
ly distributed over the image. For this reason. bipolar impulse noise also is called 
srrlt-and-pepper noise. Shot and spike noise also are terms used to refer to this 
type of noise. I n  our dlscussio~~ we will use the terms it~zpulse or salt-n/ad-pc,pper. 
noise interchangeably. 

Noise impulses can be negative or positive. Scaling usually i s  part of the 
image digitizing process. Because impulse cori-uptton usually is large compared 
with the strength of the image signal, impulse noisc gerlel-ally is digitized as 
extreme (pure black or while) values in an irnage.l'l~us, the assumption usual- 
ly is that n and  b are"saturated" values, in the sense that they are equal l o  the 
minimum and maximum allowed values in the digitized image-As a result: neg- 
ative impulses appear as black (pepper) points in a n  image. For the same rea- 
son, positive impulses appear white (salt) noise. Foi- an 8-bit image this means 
tha t  a = 0 (black) and b = 255 (white). Figure 5.2(f) sl~ows the PDF of im- 
pulse rloise. 

As a gl-oup, the preceding PDFs provide useful tools for modeling a broad 
range of noise corruption situations found in practice. For example, Gaussian 
noise. arises in an image due to factors such 21s electronic circuit noise and sen- 
sol- noise due LO poor illumination and/or high ternpexature.The Rayleigh den- 
sity is helpful in characterizing noise phei~o~nena in range imaging. The 
exponen tiaI and gamnl a densities find applicalion in laser imaging. Impulse 
noise is found in situati0n.s where quick transients,such as faulty switching, take 
place during imaging, a s  mentioned in the previous paragraph. The uniform 
density is perhaps the least descriptive of  practical siluations. However, the uni- 
form density is quite useful as the basis for numerous random number gencra- 
tors that are used in simulations (Peebles [1993]). 

EXAMPLE 5.1: ?:' Figure 5.3 shows a test pattern well-suited for illustrating the noise models 
Sample noisy just discussed.This is a suitable pattern to use because i t  is composed of simple, 
imndes and  their constant areas that  span the gray scale from black to near whitc in only thi-ee 
l~istograrns. increments. This facilitates visual analysis of the charactel-istics of the various 

noise components added to the image. 
Figure 5.4 shows the test pattern after addition of the six types of noise dis- 

cussed t h u s  far in this section. Shown below each image is tile histogram com- 
puted directly from that image. The parameters oC the noise were chosen in 
each case so t h a t  the histogram correspo~~ding to the three gray lcvels in the test 
pattern would s tar t  to merge. This made the noise quite visible, without ob- 
scuring the basic structure of the underlying image. 

We see a close correspondence in comparing the histograms in Fig. 5.4 with 
the PDFs in Fig. 5.2. The histogram for the salt-and-peppel- e x a m p k  has an 
extra peak at the white end of the spectrum because the noise components were 
pure black and white, and the lightest component of the test pattern (the. ciucle) 
is light gray. With the exception of slightly different overall intensity, it is diffi- 
cult to differentiate visually between the first five images in Fig. 5.4, even though 
their histograms are significantly different.The salt-and-pepper appearance oC 



FIGURE 5.3 Test 
pattern used to 
j) lustrnte [he 
chal-actel-istics oT 
the noise PDFs 
sl lown i r i  Fig. 5.2. 

the image corrupted by inipulse noise is t h e  only one that is visually indicative 
of the type ol noise causing (he  degradation. - 

Periodic Noise 

Periodic noise in an image irises typically from electrical o r  electromechanical 
interference during image accluisition. This is the only type of spatially depen- 
dent  noise that  will be considered in this  chapter. As discussed in Section, 5.4, 
periodic noise can be reduced significantly via frequency domain filtei.il\g. For 
exatnple. considcr [he image showil ill  Fig. 5.5(a). This image is severely cot-- 
rupted by (spatial) sinusoidal noise of various frecluencies.Thc Fouriel- tl-ansfom 
oc'a pure sir~usoicl is a pair of conjugate impulses located a t  the conjugate fre- 
quencies of thc sine wave (Table 4.1). Thus, i f  the amplitude of a sine wave in 
the spatial domain is strong enough, we would expect to sce in the spectrunl of 
t11c image a pail of impulses for each sine wave in the image. As shown in  
Fig. 5.5(b), th i s  is indeed the case. with [he impulses appearing in an approximate 
circle because the irecluency values in this particular case a r c  so arranged. We 
will have much more to say in Section 5.4 about this and other examples of pe- 
I-iodic 11oise. 

Estimation of Noise Parameters 
Ttle para1ncrel.s of periodic ~ioise lypically a re  estimated by inspection of t h c  
Fourier spectrurn of the image. As notecl in the previous scction. periodic i~oisc  
lcnds lo  produce frequency spikes that often call be detected even by visual 
analysis. Anottiel- app1.oac11 is to aiternpt to infer ihe periodicity ol  noise corn- 
panelits directly from the image, but th i s  is possible onlv in simplistic cases.' 
Aucornated analysis is possjblc in situations in  which 1-he noise spikes are either 
e,xc.eptionally p~.onounced, or when some knowledge i s  available about tlle 
general location of Ihc frequency con~ponen t s  of the interlerence. 

'I'he paramelers of noise PDFs may be known partially fro111 sensor specifi- 
ciktions. but il is often necessary to estimate them for a particular imaging 



228 Chapter 5 Imdge Restoration 

Gaussian Raylcigli 

a b c  
d e f  

FIGURE 5.4 Iniages r\ncl hisrogra,ns resultitly h . o l ~  adding Gaussi;t~\, R:ryleigh. and ga1111nit noise lo rJle image 
i l l  Fis. 5.3. 

arrangement. If 1 1 1 ~  imaging system is available, one simple way to study the 
charnctsristics of system noise js to captui-e set of images of "flat" environ- 
ments. Foi- exanlple, jn the case of a n  optical sensor, cliis i s  as simple as imaging 
a solid yray board that is illuniinaled unifornlly. The resulting images typically 
are good indicators of system noise. 

When only  images already generated by the sensor are available, fi-equent- 
ly i t  is possible to estimate the parameters of the 13DF Iron1 sn~aII patches of ren- 
sonably constarit gray level. For example, the vertical strips (01'150 x 20 pixels) 
sbawn ul Fig. 5.6 were cropped fi-om the Gaussian. Rayleigh, and un~forrn images 
in Fig. 5.4.The histograms shown wert: calculated using image data from tl~ese 
srn;~ll strips. The histograms in Fig. 5.4 t h a t  correspo~ld to the histog]-ams in 
Fig. 5.6 are the oncr in the middle of (he group of tlli-ee in Figs. 5.4(d), (e), and 
(k). We sce that  the shapes ot' these hjsfogran~s correspond quite closely to the 
shapes of thc hiscograms in Fig. 5.6. Their heights are different due Lo scaling, 
bu( the shape,$ are uninjstakahly similar. 
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Exponential Uniform Salt & Peppel 

g h i  
j k l  

FIGURE 5.4 (Con.tinr~edi lrnagcs and  histograins resulting from adding expo~lenlial. unifolm~. and impulse 
noisc Lo r he image in Fig. 5.3. 

The simplest way to use the data from the irnage strips is for calculating the 
nleiln and variance of the gray Icvels. Co~~sider a strip (subimage) denoted by 
S. We can use the following sample approximations from basic statistics: 

where the z,'s a,-e the graylevel values of the pixels in S, and p ( ~ i j  are t h e  cor- 
responditlg normalized histogram values. 

l'he shape  of the histogram identifies the closest PDF match. I f  the shape is 
approximalely Gaussian, then the mean and variance is all we need because 
the Gaussian PDF is completely specified by these two parameters. For the 
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a 
b 
FIGURE 5.5 
(a)  Image 
corrupted by 
sinusoidal noise. 
(b) Spectrum 
(each pair of 
conjugate 
impulses 
corresponds 10 
one sine wave). 
(Original image 
courtesy of 
NASA.) 

ot l~er  shapes discussed in Seclion 5.2.2, we use [he rnean and  variance to solve 
for the parameters a and b. Inlpulse noise is handled differently because the 
estimate needed is of the actual probability of occurrence of white and black 

.. pixels. Obtaining this estimate requires t h a t  both black and white pixels be 
visible.so a midgray, relalively co~lstant area i s  needed i n  the image in  order to 
be able to compute a histogram. The heights of the peaks corresponding to 
black and white pixels are the estimares of P,, and Pb in Eq. (5.2-14). 

F 7 Restoration in the Presence of Noise ' d -  

Only-Sp atial Filtering 

When the only degradation present in an image is  noise, Eqs. (5.1-1) and 
(5.1-2) become 

and 

The noise terms are unknown, so subtracti~lg them from g ( x ,  y )  or G(u, 7,) i s  
not a realistic option. In the case of periodic noise, it  usually is possible to  
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a b c  

FIGURE 5.6 His togran~s  cornpuled using sjnilll st]-ips (shocvn as insc1.t~) from (a)  t h t  Gaussian. (b) the Kayleigll, 
2nd (c) (lie uniform noisy images in Fig. 5.4. 

estirnatc N ( l r .  71) f1-0111 the spectrum of G ( u ,  v ) ,  as i~otcc( in  Section 5.2.3. In 
(his case N ( L I ,  u) C i l n  be ~ u h t r i ~ c t ~ d  iron1 G(IJ, v )  to obtain a n  estimate of the. 
o1.1ginal image. 111 general, l~owever? this cyps of knowledge is the exception, 
rather than the I-ule. 

Spalial filtcrirlg is the method or choice in situations when only additjve noise 
is present. This topic was discussed io derail in Secliorls 3.5 and 3.6 in connec- 
tion with image er-~l.lancemcr~~. I n  fact, euhanccment a n d  restoration become 
aln~ost  ir~distinguishable disciplines in tbis pal-ricular case. With the exception ol 
the nature 01' the compulation performed by a specific filter, the mec l i an i cs  fot. 
jn3plementing all the Ei1~el.s thal follow are exactly as discussed in Secrion 3.5. 

I:., . r *  . Mean Filters 

In  this section we d i s c u s s  briefly [he noise-reduction spatial filters introduced 
in Sectjon 3.6 and develop several otliel- filters whose pcrrol.mance is i n  many 
cases superior to the filters discussed in  t ha t  section. 

Arithmetic mean filter 

This IS the simplest of the tneall filters. Lei S , ,  reprcscnr the set 01 coordinates 
il l  a rectangular subi~nage window of size m X n ,  centered a t  point (s, !)).The 
aritlin~cr ic mean  filtering process co~nputes tlic average value of r he corrupted 
i~nape g(-r, y )  in t he  area defilicd hy S,!.The value ol the reslored image j at 
any poil~t ( x ,  y) is s i n ~ p l y  thc aritllmetic mean  computed using rlle pixels in thc 
region defined by S,, . In  other words, 

n~is operation c a n  be irnplenientcd using a co~lvolution mask in which all co- 
cflicicnts have valuc l / n t n .  As discussed in Section 3.6.1. a nxean filter sirnply 
smnollies local variations in ;In image. Noise is reduced as a result of blurring. 
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Geometric mean filter 
An image restored using a geometric mean filter is given by the expression 

Here, each restored pixel is given by the product of the pixels in the subimage 
twndow, raised to the power l /mn.  As shown in Example 5.2, a geometric mean 
filter achieves smoothing comparable to the arithmetic mean filter, but it tends 
to lose less image detail in the process. 

Harmonic mean filter 

The harmonic mean filtering operation is given by the expression 

The harmonic mean f~lter works well for salt noise, but fails for pepper noise. 
It does well also with other types of noise like Gaussian noise. 

Con trahannonic mean filter 

The contraharmonic mean filtering operation yields a restored image based on 
the expression 

where Q is called the order of the filter.Tois filter is well suited for reducing or vir- 
tually eliminating the effects of salt-and-pepper noise. For positive values of Q, the 
filter eliminates pepper noise. For negative values of Q it eliminates salt noise. Xt 
cannot do both simultaneously. Note that the contraharmonic filter reduces to the 
arithmetic mean filter if Q = 0, and to the harmonic mean filter if Q = -1. 

EXAMPLE 5.2; 8?-! Figure 5.7(a) shows an X-ray image of a circuit board, and Fig. 5.7(b) shows the 
Illustration of same image, but corrupted with additive Gaussian noise of zero mean and variance 
mean filters. of 400. For this type of image this is a significant level of noise. Figures 5.7(c) and 

(d) show,respectively, the  result of Gltering the noisy image with an arithmetic mean 
filter of size 3 x 3 and a geometric mean filter of the same size. Although both fil- 
ters did a reasonabje job of attenuating the contribution due to noise, the geomet- 
ric mean filter did not blur the image as much as the arithmetic filter. For instance, 
the connector fingers at the top of the image are mucb sharper in Fig. 5.7(d) than 
in (c). The same is true in other parts of the image (see Problem 5.1). 

Figure 5.8(a) shows the same circuit image, but corrupted now by pepper 
noise with probability df 0.1. Similarly. Fig. 5.8(b) shows the image corrupted by 
salt noise with the same probability. Figure 5.8(c) shows the result of filtering 
Fig. 5.8(a) using a contraharmonic mean filter with Q = 1.5, and Fig. 5.8(d) 
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shows Ihe result of filtering Fig. 5.8(b) with Q = -1.5. Both filters did a good job 
in reducing the effect of the noise.The positive-order filter did a better job ol' 
c leani i~g the background, at the expense of blurring the dark nreas. Tl~e oypo- 
site was true of t h e  negative-order filter. 

In gencral, the arithmetic and geometric mean filters (particularly the latter) are 
well suited for random noise like Gaussian or ui~ifom ~loisc.?he c,ontraharmnnic 
filter is well suited for impulse noise, but i t  has the disadvantage that it  nus st be 
known whether the noise is dark or light in order to select the proper sign for Q. 
The results of choosing the wrong sign for Q can be disastrous, as Fig. 5.9 shows. 
Some of the filters discussed in the following section eliminate this shortcoming. 3 

5.3.2 Order-Statistics Filters 
Order-statistics fillers were introduced in Section 3.6.2. We now expand the dis- 
cussion in that section and introduce some additional order-statistics liIters. As 
tloted in Sectiorl 3.6.2, order-statistics filters are spatial filters whose response 
is based o n  ordering (ranking) the pixels contained i n  the image area encom- 
passed by the  Eilter.Ths response o l  the filter at any point is determined by the 
ranking result. 

FIGURE 5.7 (a) 
X-ray image. 
(b) ln~age  
corrupted by 
additive Gaussian 
noise. (c) Kesulr 
of filtering w i r l ~  
an aritlirnrlic 
mcan filter of size 
3 X 3. (d) Result 
of fil~cring with a 
geornctl.ic Incan 
tilter of (he  same 
size. (01.iginal 

. - 
image courtesy of 
Mr. Joseph E. 
Pascenre, Lixi. 
Jnc.) 
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a b  
c d 

FIGURE 5.8 
(a )  lmage 
corrupted by 
pepper noise with 
a probability O F  
0. I .  (b) Image 
corl'upted by salt 
noise wilh the 
same probability. 
( c )  Result of 
I'iltel-ing (a)  with a 
3 x 3  
con 1ralla1'rnotlic 
li!tel. of order 1.5. 
(d) Resulr of 
filter.iug (b)  with 
(2 = -r.s. 

Median filter 

The best-known order-statistics filter is the nwdiun filter, which. as its name im- 
plies, replaces the  value oia pixel by the media11 of the gray levels in the neigh- 
borhood of that pixel: 

j ( x .  g )  = median (g(s. C )  }. 
(s.:)eJr,, 

The original value of the pixel is included jn the compulation of the median. Me- 
dian filters are quite popular because, for certain types of random noise, they  
provide excellent noise-reduc~ion capabilities, with considerably less blurring 
~ h a n  linear smoothing filters of similar size. Median filters are particularly ef- 
fective in the presence of both bipolar and unipolar impulse noise. I n  fact, as Ex- 
ample 5.3 shows, the median filter yields excellent results for j~nagcr corrupted 
by this type of noise. Computation of the  median and implementation of this fil- 
tec are discussed in detail in Section 3.6.2. 

Max and min filters 
Although the  median fjl ter is by far  the order-statistics filter most used in image 
processjng, il is by no means the only one. The median represents t h e  50th per. 



5:3 .% Restoration in the Presence of Noise Only-Spatial Filtering 235 

FIGURE 5.9 Results 
of selecting the 
wrong sign in 
contraharmonic 
filteling. (a) Resull 
of filrerjng 
fig. S.S(a) with a 
coniraharmonic 
filter oi size 3 x 3 
and Q = -1 5.  
(b) Result of 
i i l l e~ i r ig  S.8(b) with 
Q = 1.5. 

centile of a r ankcd  set of nurnbers. but the reader will recall from basic slatis- 
tics that ranking lends itself to many other possibilities. For example, using the 
100th percen(ile ~.esi~l(s in t h e  so-called mufilrer,  given by 

This filter is useful for finding rhe brightest points in an image.A!so, because pep- 
per i~oise has very low values, it i s  reduced by this filter as a resuli of the max 
selection process in the subimage area S,,. 

The 0th percentile lilter is the rnin $/lei: 

Th i s  filler is useful for finding the darkest points in an image. Also. it reduces 
s a l ~  noise as a ~.esult of the rn in  opera riot^. 

Midpoint filter 

The midpoint filter simply computes t h e  midpoint berween t h e  maximum and 
minimum values in the area encornpassed by t h e  filter; 

1 
.?(I. Y )  = - [ max {g(s, t ) }  + min {g(s, r ) } ] .  (5.3-10) 

2 ( \ . . I ) F . S , ,  ( . c . I ) € . ~ , ,  

Note that (his filter combines order statistics and averagjn,q.This filter works best 
(or luandornIy distributed noise, like Gaussian or uniform noise. 

Alpha-trimmed mean filter 

Suppose that we delete the d / 2  lowest and the d / 2  highest gray-level values of 
,q(s. I )  in t he  neighborhood S.,,,,. Lel g,(s. 1 )  repi-esent the remaining mt2 - d 
pixels. A filter formed by averaging chese remaining pixels is called an rllpha- 
lr.i117vnecl rnetlu iilter: 
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where  t h e  value of d can range from 0 to mn - 1. When d = 0, the nlpha- 
trimmed filter reduces to t . 1 ~  arithmetic mean filter discussed irl rhe  previous sec- 
tion. Tf we choose rl = (mn - 1)/2, the filrer becomes a median filter. For other 
values of d ,  the alpha-trimmed filter is useful in situations involvjr~g n~ultiplc 
types of noise, such as a combination of salt-and-pepper ; ~ n d  Gaussian noise. 

EXAMPLE 5.3: 3 Figure 5.10(a) shows the cii.cuit image ~01.1-upled by impulsc noise with yrob- 
Illustratioo of abilities P, = Fj, = 0.1. Figuri: 5.10(b) s h o w  [he 1-esult of median i i l  tering with 
01-der-sta t is l ics a filter of size 3 X 3. The irnprovemc~lt over Fig. 5.1 [)(a) is significant, bul sev- 
Tiltel-s. era1 noise points are still visible. A second pass [of the inage ill Fig. 5.1 O(b)] 

with the median filter removed most of these points, leaving only few, barely vis- 
ible noise points.These are removed with a third pass of the filter.These results 
are good exarnples oC the power of median filtering in handling impulselike ad- 
ditive noise. Keep in mind that repeated passes of a median fjlter tend (o  blur 
the image, so i t  is desirable lo keep the number of passes as low as  possible. 

Figure 5.11(a) shows the result of applying the max filter to thc pepper noise 
image of Fig. 5.8(a), The fjltel did a reasonable job ol  removing the pepper 

FIGURE 5.10 
(a) Image 
corrupted by salt- 
and-pepper noise 
w i ~ h  pl-obabili~ies 
P,, = P, = 0.1. 
(h)  Result or one 
pass with  a 
median I'ilter of 
size 3 X 3. 
(c)  Resulr ol 
processi rig (b) 
with this filter. 
(d) Result of 
proccssi),~ ( c )  
wilh Ihe same 
fil~er. 

I ," : -. 
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noise, but w e  note that i~ also removed (set to a light gray level) some d a r k  pix- 
els from [he borders of the da rk  objects. Figure 5.11 (b) shows tlze result of ap- 
plyirig the min f i l ter  to the image in Fig. 5.8(b). In  this pa r t i cu l a r  case, the min 
filter did a better job than the max filter on noise removal, buI i r  removed some 
white points a r o u n d  r h e  border of light objects. These rrlade the light objects 
smaller and some of the dark objects larger (like the cotinector fingers in the top 
a€ the image) because white points around these objects were set to a dark level. 

The alpha-lrimtned filter is illustrated next. Figure 5.1 2(a) shows the circuit 
image corrupted this time by additive, uniform noise of varjancc 800 and  zero 
m e a n . l ' h ~ s  is a high level of noise corruption that  is made worse by further ad- 
dition of salt-and-pepper noise with P, = P, = 0.1, as Fig. 5.12(b) shows.The 
high level of noise in  this image warrants use of larger filters. Figures 5.12(c) 
through (I) s h o w  the results obcained using arithmetic mean, geometric mean. 
median, and alpha-trimmed mean (with d = 5) filters of size 5 x 5 .  As expect- 
ed. !he arithmetic and geometric mean filters (especially t h e  la t ter )  do not do  
well because of the presence of ~ m p u l s e  noise.7Te median and  alpha-tl,iinmed 
filters performed much better, with thc alpha-trimmed filter giving slightly be(- 
ter noise reduction. Note, for example, that the fourth connector finger from the 
lop, left ,  is slightly smoother in the  alpha-trimmed result. This is not  unexpecl- 
ed because, for a h i g h  value of d ,  the alpha-tl.imrned filter appl-aaches the per- 
formance  of rile median filter, but still retains some  smoothing capabilities. :" 

Adaptive Filters 
Once selected, the Iilters discussed thus far are applied to an image willlout re- 
gard for how image cl~aracteristics vary frorn one point  to another. I n  this sec- 
tion wc take  a look a t  two simple cldrtprive lilters whose behavior changes based 
on statistical characteristjcs of the image inside the filter region defined by t h e  
m >< n rbectangulal- window S,, .  As shown in t h e  following discussio~~, adaptive 
filters are capable of performance superior to thal of the filters djscussed thus 
Car.The price paid for improvcd filtering power is an increase in filter cornplex- 
it!. Keep in mind that we still are dealing with the case in which the degraded 

FIGURE 5.1 1 
(a)  Rcsul t of 
filtering 
Fig. 5.8(;1) with ;r 
nlax filler oC size 
3 x 3. (b) Result 
ot' f i l l z r i t~y  S.,S(b) 
with a n ~ i l l  l i l tcr 
of ( l ie  snnle sizc. 
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FIGURE 5.1 2 (a) Image corrupted by additive uniform noise. (b) Image additionally cor- 
rupted by additive salt-and-pepper nojsc-Image in (b) filtered with a 5 X 5:  (c) arilhn~etic 
mean filter; (d) geornell-ic mean filtcr; ( e )  median filter; and (0 alpl~a-trimmed mean fil- 
ler with d = 5.  
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image is equal to the original image plus noise. No other types of degradations 
are being considered yet. 

Adaptive, local noise reduction filter 

The simplest statistical measures of a random variable are its mean and vaxi- 
ance. These are reasonable parameters on which to base an adaptive filler 
because they are quantities closely related to the appearance of an image. Tl~e 
mean gives a measure of average gray level in the  region over which the mean 
is computed, and the variance gives a measure of average conrrast in that region. 

Our filter is to operate on a local region, S,,.  The response of the filter a t  
any po in~  ( x ,  y)  on which the region is centered is to he based on four quanti- 
ties: (a) g(x ,  y ) ,  the value of the noisy image at (x, y ) ;  (b) a:, the variance of 
the noise corrupting f ( x ,  y)  to form g ( x ,  y);  (c) ml-, the local mean of the pix- 
els in S,ry; and (d) ui, the local variance of the pixels in S,,. We want the behavior 
of the filter to be as follows: 

1. If 02, is zero, the filter should return simply rhe value of g(x, y).This is the 
trivial, zero-noise case in which g(x ,  y)  is equal to f ( x ,  y ) .  

2. 11 the local variance is high relative to cr;, the filter should return a value 
close to g(n, y) .A high local variance typically is associated with edges, and  
these should be preserved. 

3, I the two variances are equal, we want the filter to return the arithmetic 
mean value of the pixels in S,tr. This condition occurs when the local area 
has the same properties as the overall image, and local noise is to be re- 
duced simply by averaging. 

A n  adaptive expression for obtaining j ( x ,  y)  based on these assumptions may 
be written as 

The only quantity that needs to be known or estimated is the variance of the 
ovcrall noise, m i .  The other parameters are computed from the pixels in S,, at 
each location ( x ,  y)  on which the filter window is centered. A tacit assumption 
in Eq. (5.3-12) is that rr: 5 0:. The noise in our model is additive and position 
independent, so this is a reasonable assumption to make because S,,. is a sub- 
set of g ( x ,  y ) .  However, we seldom have exact knowledge of u:. 'ThTh;refore, i t  
is possible for this condition to be violated in practice. For that reason, a test 
should be built into an implementation of Eq. (5.3-12) so that the ratio is set to 
1 if the condition a: > a ~ c c u r s . T h i s  makes this filter nonlinear. Idowever, it 
prevents nonsensical results (i.e., ncgative gray levels, depending on the value 
of m,) due to a potential lack of knowledge about the variance of the image 
noise. Another approach is to allow the negative values to occur, and then rescale 
the gray level values at  the end. The result then would be a loss of dynamic 
range in the image. 
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EXAMPLE 5.4: F4f"' Figure 5.13(a) shows the circuit image,corrupted this time by additivc Gauss- 
1llust1-ation of ian noise of zero mean and a variance of 1000. This is a significant level of noise 
adaptive, local corruption, but it nrakes an ideal tesr bed on which to compare relative filler per- 
noise-recluccion 
Illrering. formance. Figure 5.13(b) i s  the result of processing the noisy image with a n  

arithmetic mean Cilter of size 7 x 7.The noise is srnoothed out, bul a t   he cost 
of significant blurring jn  the image. Similar comments are applicable to 
Fig. 5.13(c) ,  which shows the result of processing the tloisy image with i\ geo- 
m e ~ r i c  mean filter, also of size 7 x 7. The differences between these lwo f i l -  
tered images are analogous to those we discussed in  Example 5.2; only the 
degree of blurring is different. 

Figure 5.13(d) shows the result of using the adaptive filter of Eq. (5 .3-12)  
with 0: = 1000. The irnpi.nvements in this result compared to the two previ- 
ous filters are significant. 111 terms of overall noise reduction, the adaplive fil- 
ter achieved I-esults similar to the arit1)nletic and geometric mean filters. 
However, the image filtered wi th  the adaptive filter is much st~arpei-. For ex- 
ample, t h e  connector fingers at rhe top or the  image are s11arpe1- in  Fig. 5.13(d). 
Other features, such as holes and the tight legs of the dark componenl on Ihc 
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lower left-hand side of the image, are significantly clearer in Fig. 5,13(d).These 
results are typical of what can be achieved with an adaptive filter. As mentioned 
at the beginning of this section, the price paid for the improved performance is 
additional filter complexity. 

The preceding results used a value for CJ: that matched the variance of the 
noise exactly. If this quantity is not known and an  estimate is used that is too low, 
the algorithm will return an image that closely resembles the original because 
the corrections will be smaller than they should be. Estimales that are too high 
will cause the ratio of the variances to be clipped at 1.0, and the algorithm will 
subtract the mean from the image more frequently than it would normally do 
so. If negative values are allowed and the image is rescaled at the end, the re- 
sult will be a loss of dynamic range, as mentioned previously. $g 

Adaptive median filter 
The median filter discussed in Section 5.3.2 performs well as long as the spatial 
density of the impulse noise is not large (as a rule of thumb, Po and Pb less than 
0.2). I t  is shown in this section that adaptive median filtering can hand.le im- 
pulse noise with probabilities even larger than these. An additional benefit of 
the adaptive median filter is that it seeks to preserve detail while smoothing 
nonimpulse noise, something that the "traditional" median filter does not do. As 
in all the filters discussed in the preceding sections, the adaptive median filter 
also works in a rectangular window area S,,. Unlike those filters, however, the 
adaptive median filter changes (increases) the size of S,, during filter opera- 
tion, depending on certain conditions listed in this section. Keep in mind that 
the output of the filter is a single value used to replace the value of the pixel at 
(x, y),  the particular point on which the window S,, is centered at a given time. 

Consider the following notation: 

zmi, = minimum gray level value in S,, 

z,,, = maximum gray level value in S,, 

z,,,~ = median of gray levels in S,, 

z,, = gray level at coordinates ( x ,  y)  
S,, = maximum allowed size of S,,. 

The adaptive median filtering algorithm works in two levels, denoted level A and 
level B, as follows: 

Level A: A1 = Z,,d - Zmi ,  

A2 = Zmcd - Znlax 
If A1 > 0 AND A2 < 0, Go to level B 
Else increase the window size 
If window size 5 S,,, repeat level A 
Else output z,, . 

Level B: B1 = z,, - t,,in 

B2 = z,, - z,,, 
If B1 > 0 AND B2 < 0, output z,, 
Else output zmed. 
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EXAMPLE 5.5: 
Illuslration of 
adaptivc median 
filtering. 

The key to understanding the mechanics of this algorithm is to keep in mind 
that it has three main purposes: to remove salt-and-pepper (impulse) noise, to pro- 
vide smoothing of other noise that may not be impulsive, and to reduce distortion, 
such as excessive thinning or thickening of object boundaries. The values z,,~, and 
z,,, axe considered statistically by the algorithm to be "impulselike" noise compo- 
~lents, even if these are not the lowest and highest possible pixel values in the image. 

With these observations in mind, we see that the purpose of level A is to 
determine if the median filter output, zmCd, is an impulse (black or white) or 
not. if the condition zmin < zmed < zmsx holds, then z,,, cannot be all impulse 
for the reason mentioned in the previous paragraph. l n  this case, we go to 
level B and test to see if the point in the center of the window, z,,., is itself an 
impulse (recall that z,,is the point being processed). If the condition B1 > 0 
AND B2 < 0 is true, then z,,,~,, < z*), < zmoq, and z,, cannot be an  impulse 
fox the same reason that I,,,, was not. In this case, the algorithm outputs the 
unchanged pixel value, z,,. By not changing these "intermediate-level" points. 
distortion is reduced in the image. If the condition B1 > O AND B2 < 0 is  
false, then either z,, = zmin or z,), = z,,,. In either case, the value of the  pixel 
is a n  extreme value and the algorithm outputs the median value z,,,,,, which 
we know from level A is not a noise impulse. The last step is what the stan- 
dard median filte~ does-Thc problem is that the standard median filter I-e- 
places every point in the image by the median of the corresporlding 
neighborhood. This causes unnecessary loss of detail. 

Continuing with the explanation, suppose that level A does find an impulse 
(i.e., jt fails the test that would cause it to branch to levelB).Thc algorithm then 
increases the size of the window and repeats level A.  This looping continues 
until the algorithm either finds a median value that is not an impulse (and 
branches to level B), or the maximum window size is reached. If the maximum 
window size is reached, the algorithm returns the value of z,,.. Note that there 
is no guarantee that this value is not an impulse. The smallel: t h e  noise proba- 
bilities P,, and/or Pb are, or the larger S,,,, is allowed to be, the less likely it is that 
a premature exit conditio~~ will occur-This is plausib1e.A~ the density of the im- 
pulses increases, it stands to reason that we would need a larger wi~ldow to 
"clean up" the noise spikes. 

Every time the algorithm outputs a value, the window S,, is moved to the 
next location in the image. The algorithm then is reinitialized and applied to 
the pixels in the new location. As indicated in Problem 3.20, the median value 
can be updated iteratively using only the new pixels, thus reducing computa- 
tional overhead. . 

3 Figure 5.14(a) shows the circuit image corrupted by salt-and-pepper noise 
with probabilities el = Pb = 0.25, which is 2.5 times the noise level used in 
Fig. 5.10(a). Here the noise level is high enough to obscure most of the detail 
in the image. As a basis for comparison, the image was fjltered first using the 
smallest median filter required to remove most visible traces of impulse noise. 
A 7 X 7 median filter was required to do this, and the result is shown in 

1 
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a b c  

FIGURE 5.1 4 (a) lmage corrupted by salt-and-pepper noise with probabiljties Po = Pb = 0.25. (b) Result of f i l -  
cering wi th i\ 7 X 7 nlcdian filter. (c) Result of adaptive median fillering with S,,,,, = 7. 

Fig. 5.14(b). Altliough the noise was effectively removed, the filter caused sig- 
nificant loss of detail in the image. For instance, some of t he  connector fingers 
;)t the top of rhe jtnage appear  distorted or broken. Other image details are sim- 
il;lrly distol-red. 

Figure 5.14(c) shows the  result of using the adaptive median filter with 
S,,,, = 7. The level of noise removal was similar to the median filter. However, 
the adaptive filter presel-ved sharpness and detail to the  point where improve- 
ments over Fig. 5.14(b) are quite significant. Tl~e co~~nec tor  fingers are less dis- 
Lorted, a n d  some other features that  were either obscured or distorted beyond 
recognitioi~ by the median filter appear sharper and better defined in Fig. 5.14(c). 
Two notable examples are the feed-through small white holes throughout the 
board, and the dark component with eight legs in the bottom, left quadrant of 
the image. 

Considering the high level of noise in Fig. 5.14(a), the adaptive algorithn~ 
performed quite well.The choice of maximum allowed window size depends on 
the application, but a reasonable starting value can be estimated by experi- 
inenling ~ v i ~ h  various sizes of the standard median filter first.This will establisl~ 
a visual baseline regarding expectations on the performance o€  the adaptive 
algorithm. iG 

Periodic Noise Reduction by Frequency 
Domain Filtering 

In  Chapter 4 we discussed lowpass and highpass frequency domain filters as 
fundamental tools for image enhancement. In this section we discuss the more 
specialized bandreject, bandpass, and notch filters as tools for periodic noise 
reduction or removal. 
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a: b: c 
FIGURE 5.1 5 From left to right, perspective plots of ideal, Butterworth (of order  1 ), and Gaussian bandreject 
fjl ters. 

- . .. . - . - - . . . - . . -.. - .. - - . , - . . . - . .. . . 

5.4.1 Bandreject Filters 
Bandreject filters remove or attenuate a band of frequencies about the origin 
of the Fourier transform. An ideal bandreject filter is given by the expression 

where D(u,  v )  is  the distance from the origin of the centered frequency rectan- 
gle,as given in Eq. (4.3-3), W i s  the width of the band, and Do is its radial center. 

Sirnilarly,a Buttenvorth bandreject filter of order n is given by the  expression 

and a Gaussian bandreject filter is given by 

Figure 5.15 shows perspective plots of these three filters. 

EXAMPLE 5.6: @ One of the principal applications of bandreject filtering is for noise removal in 
Use of bandreject applications where the general location of the noise componen t(s) in the fre- 
filtering for quency domain is approximately known. A good example is an image corrupted 
periodic noise 
removal.  by additive periodic noise that can be approximated as two-dimensional sinu- 

soidal functions. It is not difficult to show that the Fourier transform of a sine con- 
sists of lwo impulses that are mirror images of each other about the origin of the 
transform.'lheir locations are given in Table 4.1.The impulses are both imaginary 
(the real part of t h e  Fourier transform of a sine is zero) and are complex conju- 
gates of each other. We will have more to say about this topic in Sections 5.4.3 
and 5.4.4. Our purpose a t  the moment is to illustrate bandrej&t filtering. 
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FIGURE 5.16 
(a) Image 
col.rupted by 
si~lusoidal noise. 
(b) Spectrum of (a) 
( c )  Butterworlh 
bandrc.icct fiber 
(white r'ep~.cscn ts 
1). (d) Result of 
filrering. (0i.iginal 
image ccoul.tesy ol' 
NASA.) 

Figure 5.1 (,(a), which i s  the Sam:: as Fig. S.S(a). shows a n  iinage heavily cor- 
rupted by sinusoidal noise of various frequencies. The noise components are 
e;l.sily seen as symmetric pairs of bright dots in the Fourier spectrum shown in  
Fig. 5. IG(b). I n  this exanlple, the components lie on a n  approximate  circle about 
origin of the t ~ ~ ~ n s f o r m .  so a ci1-cularly symmetric handreject filter is a good 
clloice. Figure 5.16(c) s l~ows n Rutterworlll bandreject filter of  01,del- 4, with the 
appropri ale r.:-)dius a ~ l d  width to enclost: completely the noise impulses. S i n c e  it 
is dcsii-able in general to remove as litlle as possible from the transfol-rn; sharp, 
narrow filters are common in batldrcject filtering. The result o f  Ciltering 
Fig. 5.16(a) wit11 this fillel. is shown in Fig. 5.16(d). The improveme~ll is quitc CV-  

idel l t .  Even sn~a l l  details a n d  textures were rcslored effectively by this simple 
filtel-inp approach. I t  is woi-th noting also that i t  would not be possible to gel 
equivalent r.zsulls by a diisect spatial don~a in  filtering app).oach using small con- 
volution masks. p '  

, - 
:. - '.- Bandyass Filters 

A borztJ/~n.ct. Filler performs the  opposite operation of a ba~ldreject filler. I n  Sec- 
lion 4.4 w e  showcd how n lrighpass filter can be obtained from a col-rcspond- 
ing lowpass filter by using Eq. (4.4-1). Sinlilarly, the rransfer-[unction Hhl,(lt, 2 ) )  

of a bandpass rilter i s  obraincd from a corresponding baudreject fill-er with 
transfer t'unct loll H,, , . ( /L ,  u )  by using t h e  equation 
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FIGURE 5.1 7 
Noise pattern of 
the image in 
Fig. 5.16(a) 
obtained by 
bandpass filtering. 

It is left as an exercise for the reader (Proble~n 5.12) to derive expressions for 
the bandpass filters corresponding to Eqs. (5.4-1) through (5.4-3). 

EXAMPLE 5.7: " Perforrl~ing straight bandpass filtering on an image is not a common proce- 
Bandpass filtering dure because i t  generally removes too much image detail. However, bandpass 
Coi- extracting filtering is quite useful in isolating the effect on an  image of selectcd fi-equen- 
noise pat ferns. cy bands.This is illustrated in Fig. 5.17. This image was generated by (1) usiog 

Eq. (5.4-4) to obtain the bandpass filter corresponding to the bandreject filler 
used in the previous example; and (2) taking the inverse transform of the band- 
pass-filtered transform. Most image detail was lost, but the information that re- 
mains is most useful, as it is clear that the noise pattern recovered using this 
method is quite close to the noise that corrupted the image in Fig. 5.16(a). In 
other words, bandpass iillering helped isolate the noise pattern.13is is a useful 
result because i t  simplifies analysis of the noise, reasonably independently oC 
irnage content. R 

5.3.3 Notch Filters 
A notch filter rejects (or passes) frequencies in predefined neighborhoods about 
a center frequency. Figure 5.18 shows 3-D plots of ideal, Butterworth, and Gauss- 
ian notch (reject) filters. Due to the symmetry of the Fourier transform, notcl~ 
filters must appear in symmetric pajrs about the origin in order to obtain mean- 
ingful results-The one exception to this rule i s  if the notch filter is located at the 
origin, in which case it appears by itself. Although we show only one pair for il- 
lustrative purposes, the number of pairs of notch filters that can be implement- 
ed is arbitrary. The shape of the notch areas also can be arbitrary (e.g., 
rectangular). 

The transfer function of an ideal notch,reject filter of radius Do,with centers 
at ( 1 1 ~ .  vo) and, by symmetry, a t  (-u,,. -v,), is 

0 i i D , ( u , ~ ) S L ) o  or D, (u , . u )SDo  
(5.4-5) 

1 otherwise 
C 

where 
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a 
b c 

FIGURE 5.1 8 Perspective plots of (a) ideal, (b) Bi~trerworth (of order 2), and (c) Gaussian 
nolcti (reject) filters. 

2 112 D,(u, v) = [(u - M / 2  - u , , ) ~  i (20 - N / 2  - 8) ] (5.4-6) 

As usual,  the assumption is that  the cenLer of t h e  frequency rectangle has 
beell shifted to the point ( M j 2 ,  N / 2 ) ,  according to [he filtering procedure 
outlined in  Section 4.2.3. Therefore, rhe values of (u,, vO) are w i ~ h  respecc to 
rhe shifted center. 

Tbe transfeu function of a Butterworth notch reject filter of order rz IS give]) by 

H (u ,  'L') = 
1 

(5.4-8) 

where D , ( L L ,  v)  and  D-,(LI, .u) are given in Eqs. (5.4-6) and (5.4-7). respectively. 
A Gaussian notch reject fiIter has the form 

I t  is interesting to note lhat these three filters become highpass filters if 
11,) = U { ,  = 0. 
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As shown in the previous section for bandpass filters, we can obtain notch fil- 
ters  hat pas.r, rather than suppress, the frequencies contained in the notch areas. 
Since these filters perform exactly the opposite function as the notch reject fil- 
ters given in Eqs. (5.4-5), (5.4-8):and (5.4-9), their transfer functions are given by 

where H,,,(u, v) is the transfer function of the notch pass filter corresponding 
to the notch reject filter with transfer functiol; N,,(LI, a) .  It is left as a n  exercise 
for the reader (Pi-oblcm 5.13) to derive equations for the notch pass lilters cor- 
responding to the  reject Iilters just discussed, and lo sllow that they become 
lowpass filters when u,, = v,, = 0. 

EXAMPLE 5.8: 2: Figure 5.19(a) shows the same image as Fig. 4.2l(a). When we discussed low- 
Ren3ovnl of pass filtering of that image in Section 4.3.4, we indicated that  there were better 
periodic by ways to reduce the effect of the scan lines. The notch filtering approach that 
notch filtering. follows reduces the noise in this image, witliout introduci~~g appreciable blur- 

ring. CJnless blurring is desirable for reasons we discussed in Section 4.3, notch 
filtering is preferable if a suitable filter can bc found. 

Just by looking at  the nearly horizontal lines of the noise pattern in Fig. 5.19(a). 
we expect its contribution i n  the frequency domain to be concentrated along the 
vertical axis. However, Lhe noise is not dominant enough to have a clear pattern 
along this axis, as is evident from t h e  speclrum sllown in Fig. 5,19(b). We can get 
a n  idea of what the noise contribution looks like by constructing a simple ideal 
notch pass filter along the vertical axis of the Fourier transform, as shown in 
Fig. 5.19(c).The spatial representation of the noise pattern (inverse transform of 
rhe rlotch pass-filtered result) is shown in Fig. 5.19(d).Thjs noise pattern cor-re- 
sponds closely to the pattern in Fig. 5.19(a). Having thus constructed a suitable 
11orc11 pass filter that isolates the noise to a reasonable degree, we can obtain the 
col-responding notch reject filter from Eq. (5.4-'10). Tllc result of processing the  
image with the notch I-eject fjlrer is shown in Fig. 5.19(e).This image contains sig- 
nifican tly fewer visible noise scan lines than Fig. 5.19(a). & 

."I .!? II 2.,t.m i,n Optimum Notch Filtering 

Clearly defined interference patterns are  not coJnrnon. Images derived from 
eIectro-optical scanners,such as those used in space and aerial imaging, sometimes 
are corrupted by coupling and amplification of low-level signals in the scanncrs' 
electronic circuitry. The resulting images tend to contain pronounced, 2-D peri- 
odic structures superimposed on the scene data with patterns mare complex than 
those we have studied thus far. 

Figure 5.20(a), an examplc ol this type of periodic image degradation.sliows 
a digital image of the Martian terrain taken by the Mariner 6 spacecraft.The in- 
terference pattern is quite similar to rhe one shown in Fig. 5.16(a), but the fox- 
mzr pattern is considerably more subtle and, consequently: hardel- to detect in 
the frequency plane. Figure 5.20(b) shows the Four-icr spectrum of the image in 
question-The starlike components were caused by the interference, and sever- 
al pairs of components are present, indicating that the pattern concained more 
than just one sinusoidal component. 
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a 
b c 
d e 

FIGURE 5.19 (a) Satellite itnage olFlol.idil and [he Gulf of Mexico (nore h0~i701l t i l j  sen- 
sor scan lines). (1)) Spec(rum of (a). ( c )  Notch pass filcer shoun  supcl-irnposcd on (b). 
( 1 1 )  T~lvcrse F o ~ l r i c ~  t r a n s f o ~ n i  of l'ilresed ilil;lge. showing noise partern in the spa t ia l  do- 
main. (c) Kesulc o l  notch 1.ejec1 iil tering. (Original image coul-tes? of NOAA.) 
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a b  

FIGURE 5.20 
(a) lnlage of the 
Mart ian  tcrrain 
taken by 
Mariner 6. 
(b) Fouriei- 
spectrum showing 
periodic 
interference. 
(Courtesy oC 
NASA.) 

When several interference componen t s  are present. the  methods discussed 
in the preceding sections are not always acceptable because they may remove too 
much image information in the filtering process (a highly undesirable feature 
when images a r e  unique and/or expensive to acquire). In addition, the interfer- 
ence components gene1 ally are not single-frequency bursts. Inslead, they tend to 
have broad skirrs that carry information about rhe interference pattern. These 
skirts are not always easily detectable from the normal traiisform background. 
Alternative filteringmethods that reduce the effect of these drawbacks are qulte 
useful in many  applications-The  neth hod discussed here is optimum, A in the sense 
that it minimizes local variances of the restored estimate f ( x ,  y ) .  

The procedure consists of first isolating the  principal conrributions of the in- 
terference pattern and then subtracting a variable, weighted portioll of the pat- 
tern from the corrupted image. Although we develop the procedure in the  mntexr 
of a specific application, the basic approach is qui te  general  and can be applied 
t o  other restoration tasks in which multiple periodic interference is a problem. 

The first step is to extract the principal frequency components of the intcr- 
fcrence paltern.This can be done by placjng a notch pass filrel-, H ( u ,  v ) ,  at the 
location of each splke. If N (u ,  u) is constructed lo pass only components asso- 
cia ted with the intcrference pattern, then, from the discussion in Sections 5,4.2 
and 5.4.3, it  follo\vs that the Fourier transform of tht: interference noise paltern 
is given by the expression 

where, as usual, G(u ,  v),  denotes the Fourier transform of the co~rupled image. 
Formation of H ( L ~ ,  U )  requires considel-able judgment about what IS or  is nol 

an interference spike. For [his reason, [he notch pass filter generally is con- 
structed interactively by observing the spectrum ol' G(u: 8 )  on a display. After 
a particular filter has  been selected, the corresponding pattern in the spatial 
domain is obtained from the expression 
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Because the corrupted image is assumed to be formed by the addition of the un- 
corrupted image f (x, y )  and the interference, if ~ ( x ,  y )  were known complete- 
ly, subtracting the pattern from g(x,  y )  to obtain f (x, y)  would be a simple 
matter, as discussed earlier in this chapter. The problem, of course, is that this 
filtering procedure usually yields only an approximation of the t rue  pattern. 
The effect of components not present in the estimate of ~ ( x ,  y) can be mini- 
mized instead by subtracting from g ( x ,  y) a weighted portion of q(x, y )  to ob- 
tain an estimate of f  ( x ,  y ) :  

where, as before,j(x, y) is the estimate off (x, y )  and w(x, y) is to be determined. 
The function w(x, y)  is called a weighting or modulation function, and the objec- 
tive of the procedure is to select this function so that the result is optimized in 
some meaningful way. One approach is to select w(x,  y) so that the variance of the 
estimate f (x,  y )  is minimized over a specified neighborhood of every point ( x ,  y).  

Consider a neighborhood of size (2a + 1) by (2b + 1) about a point (x ,  y).  
The "local" variance off  ( x ,  y) at coordinales (x ,  y)  can be estimated from the 
samples as follows: 

- 
where f (x, y)  is the average value off  in the neighborhood; that is, 

- 1 b 

i'(x. Y) = 2 j ( x  + S, y + r ) .  (5.4-1.5) (2a + 1)(2b + I )  ,y=-, 

Points on or near the edge of the image can be treated by considering partial 
neighborhoods. 

Substituting Eq. (5.4-13) into Eq. (5.4-14) yields 

Assuming that w ( x ,  y )  remains essentially constant over the neighborhood 
gives the approximation 

for -a 5 s I (I and -b 5 t 5 b. This assumption also results in the expression 

in the neighborhood. With these approximations, Eq. (5.4-16) becomes . 
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To minimize u2(x., y ) .  we solve 

for 2~(.u, y ) .  The result i s  

To obtain the rcstored image f ( x ,  g ) ,  we compute u ~ ( x ,  r )  from Eq. (5.4-21) 
and then make use of Eq. (5.4-13). As w(x ,  y )  is assumed co be constant in a 
neighborhood, computing this function for every valuc of x and y in the image 
is unnecessary. Jnstead, w(x ,  y )  is computed for one point in each nonoverlap- 
ping neighbol-hood (preferably the ccnter point) and then used to process all the 
image points contained in that  neighborhood. 

EXAMPLE 5.9: % Figures 5.21 through 5.23 show the resul[ of applying the preceding tech- 
~ l l u s t i ~ i ~ t i o ~ ~  of nique to the image shown in Fig. 5.20(a).This image is of size 512 X 532 pixels, 
optimum notch and a nejphborhoad with o = b = 15 was selected. Figure 5.21 shows rlie Fouri- 
lilterinp. cr spectrum of [he corrupted image.The 01-igin was not shifted to the center of  

cbe f~.equer~cy plane in this particular case, so LI = v - 0 is at the top, left corner 
of the transform itnage shown in Fig. 5.21. Figure 5.22(a) shows the spectrum 
of N(LL. .u), where only the noise spikes are present. Figure 5.22(b) shows the 

FIGURE 5-21 Fourier spectrutn (without shiftjng) of the image sllown i n  Fig. 5.201a) 
(Courtesy of NASA.) 



5.4 Gii periodic Noise Reduction by Frequency Domain Filtering 253 

FIGURE 5.22 (a) Fourier spectrum of N (11. u ) ,  and (h)  corresponding noise interference 
paltern q ( x ,  y j .  (COUJ-tesy of NASA.) 

interference pattern r)(x. y )  obtairled by taking the inverse Fourjer rransform 
of N ( L I , , / I ) .  Note the  similarity between this pattern and the structure of the 
noise present jn Fig. 5.20(a). Finally, Fig. 5.23 shows the processed image ob- 
iainccl by using Eq. (5.4- 13). Thc periodic interference was removed for all prac- 
tical purposes. F 

FIGURE 5.23 Processed imase. (Courtesy of NASA.) 



-. dr Linear, Position-Invariant Degradations 
The input-output relationship in Fig.5.1 before the restoration stage is expressed as 

For the moment. let us assume that q(x, y )  = O so that g ( x ,  y )  = ~ [ , f ( x ,  y ) ] .  
Based on the dircussian in Section 2.6, N is lineor i f  . 

H [ L I ~ , ( x ,  y )  + bf2(x1 Y ) ]  - o ~ [ f ,  (*. Y )  1 + b ~ I f , ( - c  Y) 1 (5-5-2) 
k c  i r~s~do i r m l  wvcr where a and b are scalars and f, ( x ,  y )  and f , ( x ,  y )  are any two input images. 

Consi~lt tl>c book web silt 
lor a brief review ail incar If = b = 1, Eq- (5-j-2) becomes 

which is called the  property of cldditiviry.This property simply says that, if H i s  
a linear operator, t h e  response to a sum of two inputs is equal  to the sum of the 
two responses. 

With f 2 ( x ,  y)  - 0,  Eq. (5.5-2) beconies 

which is called the property of homogeneity. It says that the response to a con- 
stant mul~ip le  of any  input is equal to the response to that input mul(iplied by 
the  same constant.Thus a linear operator possesses both the properly of addi- 
tivity and the property of homogeneity. 

An operaror having the input-output relationship g ( x ,  y )  = ~ [ f  (x, y ) ]  i s  
said to be position (or space) in varialzt i f  

for any f (x ,  y )  and any  a and 0. This definition indicates that the response at 
any poinr in the image depends only on the value of the input at t ha t  point, not 
on its position. 

With a slight (but equivaleat) change in notation in the definition of the dis- 
crete impulse function in Eq. (4.2-33), f (x, y )  can be expressed in terms of a 
continuous impulse function: 

This, in fact, is the definition using co~ltinuous variables of a unit impulse lo- 
cated at coordinates ( x ,  y). 

Assume again for a moment that q ( x ,  y)  = O.Then, substitution of Eq. (5.5-6) 
into  Eq. (5.5-1) results in the expression 

If H is a linear operator and we extend the  additivity property to integrals, then 
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Because fr(a, p )  is independent of x and y ,  and using the homogeneity proper- 
ty, i t  follows that 

The term 

is called the impul.re response of H.  In other words, i f  q ( x ,  y)  = 0 in Eq, (5.5-1). 
then h ( x ,  a, y ,  p )  is the response of H to an impulse of strength 1 at coordi- 
nates ( x ,  y). In optics, the impulse becomes a point of light and h(x, a, y. P )  is 
commonly referred to as the point spread fu~zctiorz (PSF).This name arises from 
the fact that all physical optical systems blur (spread) a paint of light to some 
degree, with the amount of blurring being determined by the quality of the op- 
tical components. 

Substituting Eq. (5.5-10) into Eq. (5.5-9) yields the expression 

which is called the superposirion (or Fredholm) integral of thefir.~t kind.This ex- 
pression i s  a fundamental result that is at the core of linear system theory. It 
states that if  the response of If to an impulse is known, the response to any 
input f (a ,p )  can be calculated by means of Eq. (5.5-11). In other words, a lin- 
ear system fJ is completely characterized by its impulse response. 

IT H is position invariant, then, from Eq. (5.5-51, 

Equation (5.5-11) reduces in this case to 

This expression is called the convolurion integral; it is the continuous-variable 
equivalent of the discrete convolution expression in Eq. (4.2-30).Tnis integral 
tells us that knowing the  impulse response of a Iinear system allows us to com- 
pute its response, g, to any input .f: The result is simply the convolution of the 
impulse response and the input function. 

In the presence of additive noise, the expression of the linear degradation 
model [Eq. (5.5-ll)] becomes 

g(x. Y )  = [ L > : / ( n .  B ) h ( x ,  a, i, R )  dB + q(x. iJ- (5-5-14) 

If H is position invariant, Eq. (5.5-14) becomes 
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The values of the noise term T ( ~ ,  y)  are random, and are assumed to be inde- 
pendent of position. Using the familiar notation for convolutjo~~, we can write 
Eq. (5.5-15) as 

& , Y )  = h ( x , ~ )  + f ( x , ~ )  + 77(x3 Y )  (5.5-1 6) 

or, based on the convolution theorem, we can express it in the frequency domain, as 

These two expressions agree with Eqs. (5.1-1) and (5.1-2). Keep in mind that,for 
discrete quantities, al l  products are term by term. For example, term ij o f  
H ( u ,  v )  F( lc ,  v)  is the product of term ij of H (u, u )  and term ij of F ( u ,  v ) .  

1i1 summary, the preceding discussion indicates that a linear, spatially- 
invariant degradation system with additive noise can be modeled in the spatial 
domain as the convolution of the degradazion (point spread) function with an 
jmage, followed by the addition of noise. Based or] the convolution theorem 
(Sections 4.2.4 and 4.6.4), the same process can be expressed in the frequency 
domain as the product of the transforms of the image and degradation, followed 
by the addition of the transform of the noise. When working in the frequency 
domain, we make use of an FFT algorithm, as discussed in Section 4.6. Keep in 
mind also the need for function padding in the implementation of discrete Fouri- 
er transforms, as outlined in Section 4.6.3.  

Many types of degradations can be approximated by linear, position-invariant 
processes. The advantage of this approach is that the extensive tools of linear 
system theory then become available for the solution of image restoration prob- 
lems. Nonlinear and position-dependent techniques, although more general 
(and usually more accurate), introduce difficulties that often have no known 
solution or are very difficult to solve computationally. Tllis chapter focuses on 
linear, space-invariant restoration techniques. Because degradations are mod- 
eled as being the result of convolution, and restoration seeks to find filters that 
apply the process in reverse, the term irnage decon~oluiion is used frequently to 
signify linear image restoration. Similarly, t he  filters used in t h e  restoration 
process often are called deconvolulion filters. 

Estimating the Degradation Function * *  d.ahsa' I 

There are three principal ways to estimate the degradation function for use in 
image restoration: (I) observation, (2) experimentation, and (3) mathematical 
rnodeling.These methods are discussed in the following sections.The process of 
restoring an image by using a degradation function that has been estimated in 
some way sometimes is called blind deconvolurion, due to the fact that the true 
degradation function is seldom known completely. 

5,b.I Estimation by Image Observation 

Suppose that we are given a degraded image without a n y  knowledge about the 
degradation function H. One way to estimate this function is to gather ~nforma- 
Lion from the image itself. For example, i l  t he  image is blurred, we can look at a 
small section of the image containing simple structures, like part of an object 
and the background. In order to reduce the effect of noise i n  our observation, we 
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would look for areas of strong signal content. Using sample gray levels of the ob- 
jecl and background, we can constl-uct an unhlul-red image oC the same size and 
characte~.istics as the observed subimage. Let the observed subimage be d e ~ l o t -  
ed by g,,(x, y ) .  and let the constructed subimage (which En reality is our esrimate 
of the original image i n  t ha t  area) be denoted by fv(.r. y). Then. assuming that  
the effect of noise is negligible because o l  ou r  choice of a strong-signal area,  i t  
Eollows from Eq. (5.5-15) that 

FI.OIYI thc characteristics of this function we then deduce the c o u ~ p l e t e  function 
H ( u ,  v )  by making use of the fact t h a l  we are assunling position inva~~iaiice. Foi- 
example, suppose t h a t  a radial plot of H,,(u, u )  turns o u ~  lo have the shape of 
Butccrwortll lowpass lilter. We can use that  informat ion  to construct a function 
H ( ~ r ,  ,u) on a larger scalc, but having the same shape. 

:: ,:I. 1 Estimation by Experimentation 
If equipment similar to the equipment used to acquire the degraded imagc is avail- 
able, i l  is possible in  principle to obtain a n  rtccui-ate estimarc o l  lhe clegraclatioi~. 
Images similar to the degraded jinage can be acquired wilh various system set- 
rings until they are degraded as closely as possible to t l ~ c  image. we wish to restore. 
Then the idea is to obtain the impulse response of the  degradation by imaging an 
iinpulse (small dor of light) using the same system settings. As noted in Section 
5.5, a linear,spacc-inv~rriant system is described cotnpletely by its impulse rcsllonse. 

A n  i~npulse is simulated by a bright dot ol light, as bright as possll~le to re- 
duce the effecr of noise. Then, recalling char the Fourier 1rausfo1.m of ail im-  
pulse is a constant. i t  tallows from Eq. (5.5-17) that  

where, as belore, G(LI ,  v )  is the Fourier transform ol  the observed image and A is 
n constant describing the strength nf the impulse. Figure 5.24 shows a n  example. 

characterization. 
( a )  An irnpulw of 
ligh\ (st~own 
n~~~gnilied). 
(I>) Ilnaged 
(degraded) 
impulse. 
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, Estimation by ModeIing 
Degradation modeling has been used for many years because of Ihc insjghl it 
affords into the  image restoration problem. In some cases, the model can even 
take into account environmental conditions that cause degradations. For ex- 
ample. a degi.adatio11 model proposed by I-Tufnagel a n d  Stanley [1964] i s  based 
on the physical characrerist,ics of atmospheric iuxbulence.This n ~ o d c l  has a Fa- 
miliar form: 

H ( L I ,  u) = e I ( [ , >  I c!)i 

where  k is a constanr that depends oo the nature of thc turbulence. With the 
exceptioi~ of the 5 / 6  power on the exponent, t l i i s  equat ion has tlie same form 
as t h e  Gaussian lowpass filter discussed in Section 4.3.3. In fac t ,  the Gauss- 
Ian 1,PF is used sometirncs to model mild, uniform blurring. Fjgure 5.25 shows 
exa~nples obtained by sjmulating blurring an image using Eq. (5.6-3) with 
values L = 0.0025 (severe turbulence in this case). k = 0.001 (mild turbu-  

a b  
c d 

FIGURE 5.25 
Illus(ration of t h e  
a tinospheric 
turbulcnce model. 
( a )  Negligibie 
turbulence. 
(h)  Severe 
turbulence. 
Ic = 0.0025. 
(c) Milcl 
turbulence. 
k - 0.00 1. 
(d) Low 
turbule~~ce,  
k = 0.00025. 
(Original image 
courlesy or' 
NASA.) 
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lence), and k = 0.00025 (low turbulence). All images are of size 480 X 480 
pixels. 

Another major approach in modeling is to derive a mathematical model 
starting from basic principles. We illustrate this procedure by treating in some 
detail the case in which an image has been blurred by uniform linear motion be- 
tween the image and the sensor during image acquisition. Suppose that an image 
jL(x, y )  undergocs planar motion and that .r,,(t) and y , ( t )  are [he time val-ying 
components aC rnolion in the x-  and y-directions, respectively. The total expo- 
sure at any point of the recording medium (say, iilm or digital rnemory) is ob- 
tained by integrating the instantaneous exposure over the time interval during 
which the imaging system sliuttci~ i s  open. 

Assuming that shutter opening and closing takes place instantaneously, and 
that the optical imaging process i s  perfect, isolates the effect of image motion. 
Then. i f  Tis the durationof the exposure. i t  follows that 

where g(x, y )  is the blurred image. 
From Eq. (4.2-3), the Fourier transfor111 of Eq. (5.6-4) is 

Reversing the order of integration allows Eq. (5.6-5) to be expressed in thc 
form 

The term inside the outer brackets is the Fourier transform of the displaced 
lunctjon f [x  - s, , ( t ) ,  y - y , , ( r ) ] .  Using E q  (4.6-2) then yields t h e  expression 

where the Iast step follows from the fact that F ( u ,  v) is independent of r .  
By defining 

Ecb (5.6-7) may be expressed in the familiar Iorm 

G ( L ~ ,  v )  = J~(LI ,  v) F ( u ,  v ) .  
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IC the motion v ~ ~ . i a b l e s  .v,,(r) and  v , , ( t )  are known, [he t~.ansfer function H ( r r ,  u) 
can be obtained direclly f rom Eq. (5 .6-8) .  .As an illustl-ation, suppose that  the 
irnagc in cluestjon undergoes  ul~iforrn linear mar-ion in lllc s-direction only, at 

' 
a rate given by . u , , ( l )  = ot /T  When r = T ,   he image has been displaced by a 
total distn[~ce a. With ~ l , ( r )  - 0,  Eq. (-5.6-8) yields 

I - - - sin (.nucr)e-J""". 
T11U 

I t  is noted that H v ~ n i s h e s  at values of u given by u = n / a ,  where 12 is an inte- 
eel-. I f  wc allow the y-component to vary as well, with the motion given by 2 

)I,, = h / T ,  then the degradation function becomes 

J 
H ( L L ,  U )  = -------- -- sin [?r[r,n + ,~b)]e- l" '""~ I " ) .  

m-(rrcr 4- vb) 

EXAbIPLE 5.10: The blurring characteristics ol Eq. (5.6-1.1) are  illustrated next .  Figurc 5.26(b) 
I ~ n a g r  b l u r ~ ~ i n g  is an in~age blurred by computing the Fourier. [I-aixform of the image in Fig. 5.26(a), 
due ro motion. ll~ultiplying the transform by H ( L I .  2)) horn Eq. (5.6-1 l ) ,  and taking the invcrse 

ti-ar>sforo~. The images are of size 688 X 638 pixels, and the parameters used in 
Eq. (5.6-11) were n = h = 0.1 and T = 1 .  As discussed i l l  Sections 5.8 and  5.9, t-e- 

covery of the original image from its bluri.ed counterpart presents some interest- 
ing challenges, particutartly when noise is picsent ill the deginaded image. 

/'--"-.- 1 /-a? - - -(;,- kF:t-.'; ) 
\, ! 'I:--. ,. I.., - 
\,:L - .  . 

FIGURE 5.26 (a)  Original image. (b)  Rrsultwof blurring using the funclion in €4. (5.6-11) 
wilh o = h = 0.1 and T = 1. 
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Inverse Filtering 
The material in this section is our first step in studylng restoration of images de- 
graded by a degradation function H, which is given or obtained by a method 
such as those discussed in the previous section.The simplest approach to restora- 
tion is direct inverse filtering, where we compute an estimate, F(u! v ) ,  of the 
transform of the original irrlage simply by dividing the transform of the de- 
graded image, G(u,  v),  by the degradation function: 

The divisions are between individual elements of the functions, as explained in 
connection with Eq. (5.5-17). Substituting the right side of Eq. (5.5-17) for 
G(u, v )  in Eq. (5.7-1) yields 

This is an interesting expression. It tells us that even if we know the degradation 
function we cannot recover the undegraded image [the inverse Fourier transform 
of F ( u ,  u)]  exactly because N ( u ,  v) is a random function whose Fourier trans- 
form is not known. There is more bad news. If the degradation has zero or very 
small values, then the ratio N ( u ,  v ) / H ( u ,  v) could easily dominate the estimate 
P(u, v). This, in fact, is frequently the case, as will be demonstrated shortly 

One approach to get around the zero or small-value problem is to limit the 
filter frequencies to values near the origin. From Eq. (4.2-22) we know thal  
H(O,  0) is equal to the average value of h ( x ,  y) and that this is usually the high- 
est value of H(u,  a )  in the frequency domain. Thus, by limiting the analysis to 
frequencies near the origin, we reduce the probability of encountering zero val- 
ues.This approach is illustrated in the following example. 

1 Tl~e image shown in Fig. 5.25(b) was inverse filtered with Eq. (5.7-1) using EXAMPLE 5.11: 
the exact inverse of the degradation function thal generated that  image.That is, Inverse filtering, 
the degradation function used was 

with k = 0.0025. The M / 2  and N/2  constants are offset values; they center the 
iunction so that it will correspond with the centered Fourier transform, as dis- 
cussed on  numerous occasions in the previous chapter. In this case, 
M = N = 480. We know that a Gaussian-shape function has no zeros, so that 
will not be a concern here. However, in spite of this, the degradation values be- 
came so small that the result of full inverse filtering [Fig. 5.27(a)] is useless.The 
reasons for this poor result are as discussed in connection with Eq. (5.7-2). 

Figures 5.27(b) through (d) show the results of cutting off values of the ratio 
G(u. v)/H (u, a) outside a radius of 40,70, and 85, respectively. The cut off was 
implemented by applying to the ratio a Butterworth lowpass function of order 
IO.Thjs prov~ded a sharp (but smooth) transition at the desired radius. Radii 
near 70 yielded the best visual results [Fig. 5.27(c)]. Radius values below that 



tended toward blurred images, as illustrated in Fig.5.27(b). which was obtained 
using a radius of 4O.Values above 70 started to produce degraded images, as 11- 
lusrrated in Fig. 5.27(d), which was obtained using a radius of 85.The image 
content is almost visible behind a "curtain" of noise, bul the noise definitely 
dominates the result. Further increases in radius values produced images that 
looked more and more like Fig. 5.27(a). ij;; 

The results in the preceding examplc are illustrative of the poor performance 
of direct inverse filtering in general.The basic theme of the sections that follow 
is how to improve on direct inverse filtering. 

~ i n i m u m  Mean Square Error (Wiener) Filtering 

The inverse filtering approach discussed in the previous section makes [lo ex- 
plicit provision lor handling noise. In thjs section we discuss a n  approach that  
incorporates both the degradation function and statistical characleristics of 
noise jnto the restoration process.The method is founded on considering images 
and nojse as random processes, and the ob~~ectivc is to find an  estimate j of the 
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uncorruptea image f such that the mean square error between them is mini- 
mized. This error measure is given by 

where E { . )  is the expected value of the argument. It is assumed that the noise 
and the image are uncorrelated; that one or the other has zero mean; and that 
the gray levels in the estimate are a linear function of the levels in the degrad- 
ed image. Based on these conditions, the minimum of the error function in 
Eq. (5.8-1) is given in the frequency domain by the expression 

A 

F ( u ,  v) = 

where we used the fact that the product of a complex quantity with its conjugate is 
equal to the magnilude of the complex quantity squared.This result is known as the 
WienerJilrer, after N. Wiener [1942], who fmt proposed the concept in the yea- shown. 
The filter, which consists of the terms inside the brackets, also is cotnmonly referred 
to as the minimum menn square errorfilter 01. the least square errorfilter. We include 
references at the end of the chapter to sources containing detailed derivations of 
the Wiener filter. Note from the fust line in Eq. (5.8-2) that the Wiener filter does not 
have the same problem as the inverse fdter with zeros 111 the degradation function, 
unless both H (u ,  v) and S,(u, v) are zero fox the same value(s) of u and v. 

The terms in Eq. (5.8-2) are as follows: 

H ( u ,  v) = degradation function 
H'y (u ,  v)  = complex conjugate of H ( u ,  v)  
I H (u, v)  l 2  = H* ( u ,  v) H (u, v) 
S,(u, v) = I N ( L I _  v) l 2  = power spectrum of the noise [see Eq. (4.2-20)j 

SI(u ,  o) = J F ( L I ,  v)12 = power spectrum of the undegraded image. 

As before, H (u ,  v) is the transform of the degradation function and G(u, v) is 
the transform of the degraded image.The restored image in the spatial domain 
is given by the inverse Fourier transform of the frequency-domain estimate 
k ( u ,  v). Note that i f  the noise is zero, then the noise power spectrum vanishes 
and the Wiener filter reduces to the inverse filter. 

When we are dealing with spectrally white noise, the spectrum I N ( u ,  v)12 is 
a constant, which simplifies things considerably. However, the power spectrum 
of the undegraded image seldom is known.An approach used frequently when 
these quantities are not known or cannot be estimated is to approximate 
Eq. (5.8-2) by the  expression 
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FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse fillerirlg of Fig. 5.25(b). 
(b) Radially limited inverse filter result. ( c )  Wiener filter result. 

where K is a specified constant.'Ile following examples illllslrate the use ot 
this expression. 

EXAMPLE 5.12: Figure 5.28 illustrates the power of Wiener filtering over direct inverse fi1- 
Comparison of tering. Figure 5.28(a) is the full inverse-liltered result shown in Fig. 5.27(a). Sinl- - - 
inverse and ilarly, Fig. 5.28(b) is the radially limited inverse filter result of I?ig:5.27(d--These 
Wiener filtering. images a re  duplicated here for convenience in 111aking co~nparisons. Figure 

5.28(c) shows rhe result obtained using Eq. (5.8-3) with the degradation function 
used inExample 5.11.Thc value of K was chosci~ interactively to yield the best 
visual results. The power of Wiener filtering over the direct inverse approach is 
evident in this example. By comparing Figs. 5.25(a) and 5.28(c), we see tl~at the 
Wiener filter yielded a result very close in appearance lo the original image. L 

EXAMPLE 5.13: %r The first row of Fig. 5.29 shows, from left to right, the blurred image of 
Further Fig. 5.26(b) heavily corrupted by additive Gaussian noise olzero mean and vari- 
comparisons ance of 650; the result of direcl inverse filtering and the result ofwiener filtering 
Wiener filtering. The Wiener filter of Eq. (5.8-3) was used, with H (u,  v )  from Example 5.1 0, and 

with K chosen interactively to give the best possible visual result. As expected, 
the inverse filter produced an  unusable image. Note rhac the noise in the in- 
verse filter image is so strong that its structure is in the djreclion of the clehlur- 
ring filter.The Wiener filter result is by no means perfect, but i t  does give us a 
hint as to image conlent. With some difficulty, the text is readable. 

The second row of Fig. 5.29 shows the same sequence, but with tlie lcvel of 
noise variance reduced by one order of u~agni tude .  This reduction had l i t t le 
effect on the inverse filter, but the Wiener results a re  considerably improved. 
The text now js much easier to read. Tn the third row of Fig. 5.29, tlie noise vari- 
ance has decreased more than five orders of magnitude from the first row. I n  
fact, image 5.29(g) has no visible noise. The inverse filter result is jn teresting 
in this case.The noise is still quite visible, but t h e  text can be seen through a 
"curtain" of noise. This is a good example of the comments made regarding 
Eq. (5.7-2). In other words, as is evident in Fig. 5.29(h). (he inverse filter was 
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FIGURE 5.29 (a) Image corrupted by motion blur and additive noist. (h) Result of illverse filtei.ing. (c) RzsulL 
of Wiener riltering. (d)-(f) Same sequence, but with noise variarxe one order of magnitude less. (5)-(i) Snnle 
scclilcuce, but noise variance I-cducecl by five o1.del.s ol  magnitude from (a). Now in (h) holi, the deblurrxd 
image is quite visible t hroligh a "cuv~ain" of noise. 
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quite capable of essentially eliminating the bIur in the image. However, the 
noise still dominates the result. If we could "look" behind the noise in 
Figs. 5.29(b) and (e), the characters also would show with little blurring. The  
Wiener filter result in  Fig. 5.29(i) is excellent, being quite close visually to the 
original image shown in Fig. 5.26(a).These types of results are representative 
of what is possible with Wiener filtering, as long as a reasonable estimate of 
the degradation function i s  available. a 

Constrained Least Squares Filtering 
The problem of having to know somethng about the degradation function H is 
common to all methods discussed in this chapter. However, the Wiener filter 
presents an additional difficu1ty:The power spectra of the  undegraded image and 
noise must be known. We showed in the previous section that it is possible to achieve 
excellent results using the approximation given in q. (5.8-3). However, a constant 
estimate of the ratio of the power spectra is not always a suitable solution. 

The rnethod discussed in this section requires knowledge of only the mean 
and variance of the noise.As discussed in Section 5.2.4, these parameters usu- 
ally can be calculated from a given degraded image, so this is an important ad- 
vantage. Another ddference is that the Wiener filter is based on minimizing a 
statistical criterion and,  as such,it is optimal in an  average sense.Tne algorithm 
presented in this section has the notable feature that it yields an optimal result 
for each image to which it is applied. Of course, i t is important to keep in mind 
that ihese optimality criteria, while satisfying from a theoretical point of view, 
are not related to the dynamics of visual perception. As a result, the choice of 
one algorithm over the other will almost always be determined (at least par- 
tially) by the perceived visual quality of the resulting images. 

,< -. 

,x- , ..;% By using the definition of convolution given in Eq. (4.2-30), we can express 
; jk ,:# 3 Eq. (5.5-1 6) in vector-matrix form, as follows: 

ti 
'B 

g = H f + q .  (5.9-1) 
Scc insldc lru~tl corer 

Clmsul~ thc hook \vch sire 
lor. ;l hl-ief rcvicw of vcc- 
l o t i  and marrl-cn 

For example, suppose that g ( x ,  y)  is of size M x N. Then we can form the first 
N eletnents of the vector g by using the irnage elements in first row of g(x, y) ,  
the next N elements from the second row, and so on. The resulting vector will 
have dimensions MN x 1. These are also the dimensions of f and q, as these 
vectors are formed in the  same manner .  The matrix H then has dimensions 
IMN X M N .  Its elements are given by the elements of the convolution given in 
Eq. (4.2-30). 

I t  would be reasonable to come to the conclusion that the restoration prob- 
lem can now be reduced to simple matrix manipulations. Unfortunately, this is 
nor the case. For instance, suppose that  we are working with images of medium 
size; say !A4 = N = 532.Then the vectors in Eq. (5.9-1) would be of dimension 
262,144 x 1, and matrix H would be of dimensions 262,144 x 262,144. Manip- 
ulating vectors and matrices of these sizes is not a trivial task. The problem i s  
complicated further by the fact H is highly sensitive to noise (after the experi- 
ences we had with the effect of noise in the previous two sections, this should 
nor be a surprise), However, formulating the restoration problem in matrix form 
does facilitate derivation of restoration techniques. 
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Although we do not fully derive the method of constrained least squares 
that we are about to present, this method has its roots in a matrix formulation. 
We give references at the end of the chapter to sources where such derivations 
are covered in detail. Central to the method is the issue of the sensitivity of H 
to noise. One way to alleviate the noise sensitivity problem is to base optimal- 
ity of restoration on a measure of smoothness, such as the second derivative of 
an  image (our old friend the Laplacian).To be meaningful, the restoration must 
be constrained by the parameters of the probIems at hand. Thus, what is de- 
sired is to find the minimum of a criterion function, C, defined as 

subject to the constraint 

where 1 1  w I I  A W'W is the Euclidean vector norm,' and T is the estimate of the 
undegraded image. The Laplacian operator V2 is defined in Eq, (3.7-1). 

The frequency domain solution to this optimization problem is given by the 
expression 

where y is a parameter that must be adjusted so that the constraint in Eq. (5.9-3) 
is satisfied, and P(u ,  v) is the Fourier transform of the function 

-1 0 

P { X ,  Y )  = (5.9-5) 
-1 0 

We recognize this function as the Laplacian operator introduced in Section 
3.7.2. As noted earlier, it is important to keep in mind that p ( x ,  y ) ,  as well as all 
other relevant spatial domain functions, must be properly padded with zeros 
prior to computing their Fourier transforms for use in Eq. (5.9-4), as discussed 
in Section 4.6.3. Note that Eq. (5.9-4) reduces to inverse filtering if y is zero. 

IW Figure 5.30 shows the result of processing Figs. 5.29(a), (d), and (g) with con- EXAMPLE 5.14: 
strained least squares filters, in which the values of y were selected manually to Comparison of 
yield the best visual results-This is the same procedure we used to generate the Wiener and 

constrained least 
Wiener filtered results in Fig. 5.29(c), (f),  and (i). By comparing the constrained squares 
least squares and Wiener results, i t  is noted that the former yielded slightly bet- 
ter results for the high- and medium-noise cases, with both filters generating 
essentially equal results for the low-noise case. It is not unexpected that the 
constrained least squares filter would outperform the Wiener filter when se- 
lecting the parameters manually for better visual results. The parameter y in 
Eq. (5.9-4) is a scalar? while the value of K in Eq. (5.8-3) is an approximation to 

'. 

I ,  

'Recall that. for a vector w with n components, wTw = w:, where wk is the kth componenl of w. 
k : l  
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a b c  

FIGURE 5.30 Results of constrained least squares filtering. Compare (a),  (b): a n d  (c) with the Wiener filtering 
results in Figs. 5.29(c). (f), and (i), respzcrively. 

rhe ratio of two unknown frequency domain functions, whose ratio seldom IS 

constant. Thus, it stands to reason that a result based on manually selecring y 
would be a more accurate estimate of the undegraded image. I,' 

As shown in the  preceding example, i t  is possible to adjust the parameter y 
interactively until acceptable results are achieved. If we are interested in opti- 
mality, however, then the parameter y nlusl be adjusted so that the constraillt 
in Eq. (5.9-3) is satisfied. A procedure for computing y by iter-ation is as follows. 

Define a "residual" vector r as 
,. 

r = g - H f .  (5.9-6) 

Since, from the solution in Eq. (5.9-4),$(u. v) (and by implication i) is a func~ion 
of y, then r also is a function of t h s  parameter. It can be shown (Hunt ['1973]) \.ha( 

is a monotonically increasjng function of y. What we want to do  is adjusl  
gamma so tha t  

where a is an accuracy factor. In  view of Eq. (5.9-6), if 1 1  rl12 = Il-qll', the con- 
straint in Eq. (5.9-3) will be strictly satisfied. 

Because $ ( y )  is monotonic, finding the desired value of y is not difficult. 
One approach is to 

1. Specify an initial value of y. 
2. Compute I~rll'. 
3. Stop if Eq. (5.9-8) is sa-tisfied; otherwise return to Step 2 aftcl- increasing y 

if Ilrll' < Ilrll12 - ~1 or decreasing? if llrl12 > Il-qll' + a. 'CJse the new valtie of 
y in E q  (5.9-4) to recompute the optimum estimate F ( u ,  3). 
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Other procedures, such as a Newton-Raphson algorithm, can be used to im- 
prove t,he speed of convergence. 

I n  order' to use this algorithm. we need the quantities llr12 and 11qI12. To com- 
pute Ilr1I2, we note from Eq. (5.9-6) that 

fi-orn, which we obtain r ( x ,  y)  by computing the inverse translorrn of R(LI., v ) . l l c n  
M-1 N-I 

Computation of l(r1112 leads to an interesting result. First, consider the variance of 
the noise over the entire image, which we estimate by the sample-average method: 

where 
1 .M-I  A'-I 

nz,, = - 

i.s the sample mean. With reference to the form oC Eq. (5.9-lo), we note that the 
doubte summation in Eq. (5.9-11) is equal  to I r l l 1 2 .  This gives us the expression 

This is a most useful result. It tells us t,hat we can implemenl an optinlurn restora- 
tion algorithm by having knowledge of only the mean and variance of the noise. 
These quantities are not difiicult lo estimate (Section 5.2.4), assuming that the 
noise and image gray-level values are not correlated, This is a basic assulnptjon 
of a l l  the methods discussed in this chapter. 

P Figure 5.31(a) shows the result obtained by using the algorithm just described EXAMPLE 5.15: 
to estjniate the  optimum filter for restoring Fig. 5.25(b).The initial value used lte'"ive 

eslirnaljo~~ 01' the tor y was lo-'. the correction factor for adjusting y was lo-" and the value (01- upl imum 
a was 0.25. The noise parameters specified were the  same used to generate ,,,,stra,ne~ least  
Fig. 5.2S(a): a noise variance of 10-', and zero mean.The restored result is almost squa1.e~ filter. 
as good as Fig. 5.28(c), which was oh tained by Wiener filtering with K manual- 
l y  specified for best visual results. Figure 5.3L(b) shows what can happen if the 
wrong estimate of noise parameters are used. In this casc, the noise variance 
specified was lo-' and the mean was left at a value of 0. The result in this case 
is considerably more blurred. G 

As staced a the beginning of this section, i t  is important to keep in rnirld that 
optimum restoration in the sense of constrained least squares does not neces- 
sarily imply "best" in the visual sense. Depending on the nature and magnitude 
of the degradation and noise, the other parametcrs in the algorithm for iteratikly 
determining the opti~nurn estimate also play a role in the final result. In gener- 
al, automatically detern~ined restoration filters yield inferior results to manual 
adjustment of filter parameters-This is particularly true of t h e  constrained least 
squares filter, which is cornpleteIy specified by a single, scalar parameter. 
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FIGURE 5.31 
(a) Iteratively 
determined 
constrained least 
squares 
res~oration of 
Fig. 5.16(b), using . 
correct rloise 
paramelers. 
(b) Result 
obtained with 
wrong noise 
parameters 

Geometric Mean FiIfer 

It is possible to generalize slightly the Wiener filter discussed in the Section 5.8. 
The generalization is in t h e  form of the so-called geonlerric rnennfilter: 

with cr and being positive, real constaurs. The geometric mean filter consists 
of the two expressions in brackets raised to the powers n and 1 - a, respectively. 

When cr = 1 this filter reduces to tbe inverse fijter. With cu = 0 the filter be- 
comes the so-called pararnerric IYienerfilrer, which reduces to the standard Wiener 
filter when p = 1. Ti a = 1/2, the filter becomes a product of rhe two quantities 
raised ro the same power, which is the definition of the geometric mean, thus giv- 
ing the filter i ts  name. With P = 1, as a decreases below 1/2, the filtcr perfor- 
mance will tend more toward the inverse filter. Similarly, when LY increases above 
1/2, the filter will behave Inore like the Wiener filter. When a = 1/2 and P = 1, 
the filter also is conlmonly referred to as the specfrlcrn equnlizntion filtcr. Equa- 
tion (5.10-1) is quite useful when implementing restoration filters because i t  re- 
ally represents a family of filters combined into a single expression. 

Geo~netric Transformations 

We conclude this chapter with an  infroductory discussion on the use of gro- 
metric transformations for image restoration. Unlike the techniques discussed 
so far, geometric transformations modify the spatial relationships between pix- 
els in an irnage. Geometric transformations often are  called rubber-sheel 
transfnrn~nrions, because !-hey may be viewed as the process of '.printingv an 
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image on a sheet of rubber and then stretching this sheet according to  some 
predefined set of rules. 

In terms of digital image processing, a geometric transformation consists of 
two basic operations: (1) a sparial tmnsformalion, which defines the "re- 
arrangement" of pixels on the image plane: and (2) gray-level interpolation, 
which deals with the  assignment of gray levels to pixels in  the spatially trans- 
formed image. We discuss in the Collowing sections the fundamental ideas un-  
derlying these concepts, and their use in the  context of image restoration. 

5.1 1. F Spatial Transformations 

Suppose that a n  image f with pixel coordinates ( x ,  y)  undergoes geometric dis- 
tortion to produce an image g with coordinates (x',  y'). This transforma tion may 
be expressed as 

and 

where r ( x ,  y)  and s ( x ,  y)  are the spatial transformations that produced the 
geometrically disrorted image g ( x ' ,  Y ' ) .  For example, if r ( x ,  y)  = x/2 and 
s(x, y) = y / 2 ,  the "distortion" is simply a shrinking of the size off  ( x ,  y )  by one- 
half in both spatial directions. 

I f  I - ( x ,  y) and s ( x ,  y )  were known analytically, recovering f (x, y )  f rom the 
distorted image g ( x l ,  y') by applying the transformations in reverse might be 
possible theoretically. In practice, however, formulating a single set of analyti- 
cal functions r ( x ,  y )  and .r(x, y)  that describe the geometric distortion process 
over the entire image plane generally is not possible. The method used most 
frequently to overcome this difficulty is to formulate the spatial relocation of 
pixels by the use of tiepointr, which are a subset of pixels whose location in the 
input (distorted) and output (corrected) images is known precisely. 

Figure 5.32 shows quadrilateral regions in a distorted and corresponding cor- 
rected image. The vertices of the quadrilaterals are corresponding tiepoints. 

FIGURE 5.32 
Corresponding 
tiepoints in two 
image segments 
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Suppose that the geometric distortion process within the quadrilateral regions 
is modeled by a pair of biliriear equations so that 

aiid 

Then, from Eqs. (5.11-1) and (5.11-2), 

and 

Since there are a total of eight known tiepoints, these equations can be solved 
fur the eight coefficients ci, i = 1,2,. . . ,8.The coefficients constitute the geo- 
m e t r i ~  distortion mode1 used to transform al/ pixels wjthin the quadrilaieral re- 
gion defined by the tiepoints used to obtain the coefficients. In general, enougli 
tiepoints are needed to generate a set of quadrilaterals that cciver the en1ii.e 
image, with each quadrilateral having its own sei of coefficients. 

Once we have the coefficients, the procedure used to generate the corrected 
(Le., restored) image is not difficult. Tf  we want to find the value o€ the undis- 
torted h a g e  at any point (xo y a ) ,  we simply need to know wlierr in the dis- 
torted image f ( x , ,  y,) war rnapped.This we fiiid oui by subsututing (x,,.  y,) into 
Eqs. (5.11-5) and (5.11-6) to obtain the geometi-ically distorted coordinates 
x&, yb . The value of the point in the undistorted image thal was mapped to 
xh, yh is g(xb, yh). So we obtain the restored irnage value sirnply by letting i i 

f (r,, JJ,) = g(rg, JJ;). For exarnple, to generate j'(0, O ) ,  we substitute 
( x ,  y) = (0,O) into Eqs. (5.11-5) and (5.11-6) to obtaiii a pair of coordinates 
( x ' ,  y ' )  Lrom those equaiions.Tl~elien we let f (O, O )  = g(xt, yJ),where xr aiid y' are 
tlie coordiiiate values just obtained. Next, we substitute (x,  y )  = (0, 1) into 
Eqs. (5.11-5) and (5.11-6), obtain another  pair of values ( x ' ,  y ' ) ,  and let 
f (O,  1) = g(xf,  y ' )  for those coordinate values.The procedure continues pixel by 
pixeI and row by row unti1 an  array whose size does not exceed tke size of irnage 
g is obtained. A column (rather than a row) scan would yield identica1 results. 
Also, a bookkeeping procedure is iieeded io keep track of which quadrilaterals 
apply at a given pixel location in order to use the proper coefficients. 

Tiepoiiits are establjshed by a number of different techniques, depending on 
the application. For instance, some image generation systems having physical ar- 
tifacts (such as inetaiiic points) embedded an  tlie imaging sensor itsell. These 
produce a known set of poinrs (called reseau marks) directly on  rhe irnage a5 i t  
is acquired. If the irnage is distorted latei by some other process (such as an 
image display or image reconstruction process), then the image can be geo- 
metrically corrected using the technique just described. 

4.3 1 ,,2 Gray-Leve1 Interpola tion 
The rnethod discussed in the preceding section steps through iiiteger values of the 
coordinates (x, y )  to yield the restored irnage f ( x .  y) .  However, depeiiding on 
the values of the coefficients ci, Eqs (5.11-5) and (5.1 1-6) cm yield noninteger val- 
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FIGURE 5.33 Gray-level interpolation based on the nearest neighbor concept. 
. - . - .  . . . .  

ues for x' and y'. Because the distorted imageg is digital, its pixel values are  defined 
only at integer coordinates. Thus using noninleger values for x' and y' causes a 
mapping into locations of g for which no gray levels are defined. Jafe~~ing wbat the 
gray-level values at those locations should be, based only on the pixel values a t  in- 
teger coordinate locations, then becomes necessary. The technique used to ac- 
complish this is called gray-level inrerpolatio~z. 

The simplest scheme for gray-level interpolation is based on a nearest 
neighbor approach.This method, also called zero-order interpolation, is illus- 
trated in Fig. 5.33. This figure shows (1) the mapping of integer ( x ,  y )  coor- 
dinates into fractional coordinates (x', y') by means of Eqs. (5.1 1-5) and 
(5.11-6); (2) the selection of the closest integer coordinate neighbor to (x', y'): 
and (3) rhe assignment of the gray level of this nearest neighbor to the pixel 
located at (x, y). 

Although nearest neighbor interpolation is simple to implement, this 
method often has the drawback of producing undesirable artifacts. such as 
disrortion of straight edges in images of high resolution. Smoother results can 
be obtained by using more sophisticated techniques, such as cubic convolufion 
i~lrerpnlation, which fits a surface of [he sin (z) /z  type through a much larger 
number of neighbors (say, 16) in order to obtain a smooth estimate of the gray 
level a1 any desired point. Typical areas in which smoother approximations 
generally are required include 3-D graphics (Watt [1993]) and medical imag- 
ing (Lehman e t al. [1999]). The price paid for smoother approximations is ad- 
di tional computational burden. For general-purpose image processing a 
bilinecrr in/erpolution approach chat uses the gray levels of the four nearest 
neighbors usually is adequate. This approach is straightforward. Because the 
gray  level of each of the four integral nearest neighbors of a nonintegral pair 
of coordinates (x', y')  is known, the gray-level value at  these coordinates, de- 
noted v (x l ,  y ' ) :  can be interpolated from the values of its neighbors by using 
the relationship 

v(x ' ,  y ' )  = rtx' + by' + cx'y' + d (5.11-7) 

where the four coefficients are easily determined from the four equations in  
four unknowns that can be written using the four known neighbors of (x', y'), 
When these coefficients havz been determined, u ( x l ,  y')  is computed and this 
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value is assigned to the Jocation in J(x ,  y)  that yielded the spatial mapping into 
location (xi, y'). It is easy to visualize this procedure with the aid of Fig. 5.33.Thz 
exception i s  that ,  instead of using the  gray-level value of the nearest neighbor 
to (x', y'), we actually interpolate a value at locatiorl (x' ,  y') and use this value 
101- thc gray-level assignment at (x, y) .  

EXAMPLE 5.16: I": r=iguu 5.34(a) shows an image with 25 regularly spaced tiepoints (highlighted 
Illustration of to enhance visibility of the points in the picture). Figure 5.34(b) shows a simple 
geometric rearrangement of the tiepoints to create geometric distortion. With reference lo 
transforma~ions. 

t h e  procedure disc~lssed in connection with Eqs. (5.11 -5) and (5.1 1 -6), the co- 
efficients of these equations are a result of t h e  ~nappirlg f om t h e  undistorted 
to the distorted coordinales. Once the coefficients are  known,  we have the 
modcl, and we call ei ther  distort an image (foi- demonstration purposes) or we 
can recover an  image that was geometrically distorted under the set or condi- 
tions defined by the coefficients. 

Suppose that we want to distort the image  i n  Fig. 5,34(a).  We simply sub- 
stitute the value of any pixel ( x o ,  y,,) from that image illto Eqs. (5.1 1-5) and 
(5.11-6) and generate the corresponding coordinates (xb. y l , ) ,  which we round 
off lo the  closest integer values.The value of the distorted irnage at that point 
is given by letting g(rh. y b )  = f(x,, or w e  can use grey-level interpola- 
tion on the values off in the neighborhood of ( x , , .  N i ) ~ h i s  is the same process 
described in connection with Eqs. (5.1'1-5) and (5.1 1-6). We are sin~pIy apply- 
ing it in reverse. 

The result of distorting Fig. 5.34(a) by the n-tethod just discussed is shown i n  
Fig. 5.34(c), where the nearest neighho~. gray-level assignment schcme was used. 
Note that this is fairly severe distortion. If this were the given image. we would 
use the method discussed in connection with Eqs. (5,ll-5) and (5.1 I -6), and one 
of the gray-level assignment techniques discussed in Section 5.11.2. The result 
of this procedure is shown in  Fig. 5.34(d). The nearest neighbor g~-ay-level as- 
signment method was e~nployed again. N o t e  that the geometric correction was 
reasonable, bur thei-e is a significant number of errors in gray-level assignments, 
especially along the boundaries between the gray and Mack regions. Figures 
5.34(e) and (f) show the same sequence of expei,iments, but using biIinear gray- 
level interpolation instead. The improvements are particulal-ly visible in the 
boundaries between the  gray and black regions. 

Thc images just discussed are so ~,egular and have such few gray levels in the 
sharp boundaries that almost a n y  type of geometric distortion will cause sig- 
nificant degradation. When images have more texture,  geometric correction 
errors tend ro be less noticeable. For example, consider Fig. 5.35. Figure 5.35(b) 
is the result of geometrically distorting Fig. 5.3S(a) i n  the same manner as 
Fig. 5.34(e).This distortion in Fig. 5.35(b) is not nearly as noticeable. The dif- 
ferences between Figs. 5.35(a) and (b) are not insignificant, as the difference 
image in Fig. 5.35(c) shows.They sinlply are not as visible becanse of the vari- 
ety of texture in this image. Finally, Fig. 5.35(6) sl~ows the geometrically cor- 
rected image. 'For all practical purposes, this image is of the same quality as 
tile original. tk 
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a h  
c d 
e f 

FIGURE 5.34 ( a )  Image sl lorvi~~g tiepoints. (b)  Tiepoints a f t e l  geometl-ic clisto~~tion. 
(c) G e o ~ l ~ ~ t r i ~ a l l y  distorted itnnge. using nearest neigl~boi. interpolation. (d) Restored 
1-esol1. (e)  I r n ; ~ y  clisto~.ccd using bilinear inrcrpolatio~i. ( f )  Restored image. 
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FIGURE 5.35 (a) An image before geometric distortion. (b)  Image geometrically dis- 
torted using [he same parameters as in Fig. 5.34(e). (c) Difference between (a) and (b). 
(d) Geometrically restored itnage. 

Summa y 
Thc pri~lcipal results in this chapter are based on the assumption t h a t  image degrildation 
can be modeled as a linear,position-invariant process followed by additive noise t h a t  is 
riot correlated with image values. Even when these assumptions are not entirely valid. 
it often i s  possible to obtain useful results by using the methods developed in the pre- 
ceding sect ions. 

Some of the restoration techniques derived i n  this chapter are based on various cri- 
teria of o p  timality, The  use of the word oprimill in th is  context refers slriclly ro  a math- 
ematical concept, not to optimal response of the human visual system. I n  fact, rile prescnt 
lack of knowledge about visual perception precludes a general formulation of the image 
resloration problem that takes into account observer preferences and capabilities. I n  
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view oE these limitations. the advantage of the concepts introduced in this chapter is the 
development of fundamental approaches that have reasonably predictable behavior and 
are supported by a solid body of knowledge. 

As in Chapters 3 and 4. certain restoration tasks,such as random noise reduction, are 
carricd out in the spatial domain using convolution masks. The frequency domain was 
found ideal for reducing periodic noise and for modeling some important degradations, 
such as blur caused by motion during image acquisition. We aIso found the frequency do- 
main lo be a useful tool Ior forlnulating restoration filters, such as the Wiener and con- 
strained least squares filters. 

As mentioned in Chapter 4, the frequency domain offers an intuitive, solid base for 
experimentation. Once an approach (filter) has been found to perform satisfactorily lor 
a givcn application, implementation usually is carried out via the design of a digital f i l -  
ter that approximates the frequency-domain solution, but runs much faster in a computer 
or in a dedicated hardwarelfirmware system. Digital filter design is beyond the scope of 
this book. but references relcvant to this topic are included in the section that follows. 

References and Further Reading 
For additional reading on the linear model of degradation presented in Section 5.1,see 
Caslleman [I9961 and Pratt [1991].The book by PeebIes [l993] provides an intermedi- 
ale-level coverage oC noise probability density functions and their properties (Section 
5.2).The book by Papoulis [I9911 is more advanced and covers Lhese concepts in more 
detail. References for Section 5.3 are Umbaugh [1998j,Boie and Cox [1992], Hwang and 
Haddad [[095], Wil burn [1998], and Eng and Ma [2001].The general area of adaptive fil- 
ter design is good background for the adaptive filters discussed in Section 5.3.The book 
by Haykin [I 9961 is a good introduction to this topic.The filters in Section 5.4 are direct 
extensions of the material in Chapter 4. For additional reading on the material of Sec- 
tion 5.5, sce Rosenfeld and Kak [I9821 and Pratt [1991]. 

Thc topic of estimating the degradation function (Section 5.6) js an  area of consid- 
crable current interest. Some of thc early techniques for estimating the degradation 
function are given in Andrews and Hunt [1977], Rosenfeld and Kak [1982], Bates and 
McDonnell [1986], and Stark ['1987]. Since the degradation function seldom is known 
exactly, a number of techniques have been proposed over the years, in which specific as- 
pects of  restoration are emphasized. For example, Geman and Reynolds [1992], and 
Hum and Jennison [I 9961, deal with issues of preserving sharp transitions in gray Ievels 
in an attempt to emphasize sharpness, while Boyd and Meloche [I9981 are concerned with 
restoring thin objects in degraded images. Examples of techniques that deal with image 
blur are Yitzhaky et al. [1998], Harikumar and Bresler [1999], MesaroviC [2000], and Gi- 
annakis and Heath [2000]. Restoration of sequences of images also is of considerable in- 
teresl. The book by Kokaram [I9981 provides a good foundation in this area. 

The filtering approaches discussed in Sections 5.7 through 5.10 have been explained 
in  various way over the years in numerous books and articles on image processing.There 
are two major approaches underpinning the development of these filters. One is based 
on a general formulation using matrix theory, as introduced by Andrews and Hunt [1977]. 
This approach is elegant and general, but i l  is difficult for newcomers to the field because .. 

i t  lacks inluitiveness. Approaches based directly on frequency domain filtering (the ap- 
proach we followed in this chapter) usually are easier to follow by those who first en- 
counter restoration, but lack the unifying mathematical rigor of the matrix approach. 
Both approaches arrive at the same results, bur our experience in teaching this materi- 
al in a variety of settings indicates that students first entering this field favor the latter 
approach by a significant margin. Completnentary readings for our coverage of the 
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filler-ing concepts presenred in  Sections 5.7 through 5. LO are Casllelnan (1996). Urnbaugh 
[199S),and Petrou and Bosdogianni [1999[.'Illis last refererice also presents a nice tie be- 
tween two-dimensional frequency domain fillers and the c o ~ ~ e s p o n d i n g  digital fillers. On 
the  design of 2-D digital filters. see Lu and Antoniou [1992].AIrhoupli we do not cover 
it in Ihis chapter, lhe area of cornputel-ized axial tomograplly sometimes is included as 
a topic in restoration. A good introduction to this field is given by Kak and Slaney [ 2 0 I ] .  
For furrl1e.r basic reading on the material of Section 5.1.1,see Sonka el al. [1999].-Tht: pa- 
pers by Unser et al. [I9951 and by Carey  et a\ .  [19991 also are of interest. 

Problems 
* 5.1 I h e  w h ~ t e  bars ~n tlre test pattern slm~vn are 7 pixels wide and  2 I D  pixel? high The 

sepalation betwcen bar$ IS 17 pixels. What would chis image look like allel np- 
plicat ion oC 

(a) A 3 X 3 al-lthmet~c mean filter? 
CCL innirlr ir , i f l l  Cowr 

Dcrallcd snlutions lo ~ l l c  
(b) A 7 X 7 arithmetic nlean filter? 

pn~l~lc111~ ~ l i n r k z d  ~ V ~ I I I  a (c) A 9 X 9 arith~netic mean filter? 
slar c:rn bc found in  he 
book wch i ~ r c .  Tlic sire 
nlso cc\~~c;cins sucgcsied 
prajrcfs based nj, llle n>i\- 
ter i .~l  In I his ch:tp~er. 

~Vore: This problem and  t he  ones that follow i t ,  related lo filtering this image, 
may seem a bll tedious. However, they are worth the effort, as Ihev help dcvclop 
a real understanding of how these filters work. After you understand how a par- 
ticular filrer affects the image, your answer can be a brief verbal description af the 
result. For exarnple."the resulting image wil l  consist of vertical bars 3 pixcls wide 
and 206 pixels high." Be sure to describe any deformation of the bars, such as 
rounded corners. You may ignore imagc border effects, in which the nlnsks only 
partially contain image pixels. 

Repcat Problem 5.1 using a geometric meat1 Fi1te.r. 

Repeat Problem 5.1 using a barmonic mean filter. 

Repeat Problem 5.1 using a contraharmonic n ~ c a n  filter with Q = 1. 

Repeat Problem 5.1 using a contral~armor~ic mean filter with Q = - 1 .  

Repeat Problem 5.1 using a median filter. 

Repeat Problen15.1 using a max Ijller. 

Repeat Problem 5..1 using a min filter. 

Repeat Problem 5.2 using a midpoint filter. 

The two subimages shown were extracted from the top, right cornel-s of Figs. 
5.7(c) a n d  (d),respectively.Thus, the subi~nage on the left i s  the result of usingan 
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arithlnetic mean filter of size 3 X 3; the  othcr sitbimage is (he result of using a 
gcoine~ric m e a n  filter of the same size. 

f (a) Explain why the subimage ohtailled with geometric mean filtering is less 
blurred. H i n ~ :  Start your analysis by examining a 1,-D step edge profile (see 
Fig. 3.38 for a n  example of a step edge). 

(I>) Explnin why llle black components in the rigl~t image are thicker. 

5.1 1 Relei- to the contrahar~nonic filtcr given in Eq. (5.3-6).  

(a) Explain why the filler is effectjvc in climinalion pepper noise when Q is positive, 

(b) Explain why the filter is cffective in eli~ninatingsalt noise when Q i s  negative. 

(c) Explain why tllc Ijl(cr gives poor I-aulls  (sucl~ as the results slmwn in Fig.5.9) 
when the wrong polar-ity is chosen for Q. 

(d) Discuss the behavior of the filter when Q = 1 .  

(e) Discuss (lor positive and negative Q) the bellaviol- ol  the filter in areas  of 
consrant gray levels 

*5.12 Obtain equations lor the bandpass fi l ~ e r s  corresponding ro the handrcjcci filters 
in Eqs (5.4-1) through (5.4-3). 

5.13 Obtain equations foi ~ I J C  notch pass filters co~responding to the notch reject FiIte rs 
discussed in Section 5.4.3. Show that they becornc lowpass fillers when 14, = u,, = 0. 

j, 5.14 Show that the Fourier transform of thc 2-D conljnuous sine functior~ 

f (.r, y )  = A sin(u,x. + v0y) 

is Ihe pair of conjugate impulses 

H i ~ z f :  Use the continuous version of the Fourier transform in E+ (4.2-3), arid ex- 
press the sine in terms of exponenrials. 

5.15 Start with Eq. (5.4-19) and derive Eq. (5.4-21). 

Sr5.16 Consider a linear.position-invariai~~ image degradation system with impulse response 

h(-y - a, - p )  = e i ( ~ - ~ ? ' + ! v - ~ ! I ~  

Suppose that the inpul to the system is an image consisting of a line of infinites- 
imal width located a t  -Y = n. and modeled by f(x, y )  = S ( x  - a), where 6 is the 
impulse function. Assuming no noise, what i s  [lie output image g(x ,  y)'! 
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5.17 During acquisition, an image undergoes uniform linear rnorion in the vertical di- 
rection for a time TI .'The direction of tnorion rllen swi~cllcs to thc lzoi~izoncal cli- 
i.ection for a time interval T,. Assu~ning that the time it takes the image to change 
directions is negligible, and that shutter opening and closing times i\Ye negligible 
also. give an eaprzssiotl foi- the bluri.ing function. H ( I I .  u). 

* 5.18 Consider the problcm of' image blurring caused by unll'o1.m acceleral-ion in Lhc 
a-clirection. 71' the image is a t  resr at time / = 0 and accelerntcs wirh a ~lnir01.m RC- 

celeration .u,,(i) = n/'/2 for a time 7, lind the blurring function H(lr, ))).YOU may 
assume that shutter opening and  closing times are iregligihlc. 

5.19 A spacc probe is designed to r~~aostnit images fro111 a pli111et as it wppl-oaches i t  for 
landing. During the last scages o l  landing.o~le of thc control thl-usters fails. l,esull- 
ing in rapid roratiu~i o i  the crar~ about its verricat asis.The inlagessenl du1.i113 thc 
last two seconds prior to landing are blurred as a coi~sequence of this circular mo- 
tion.The camera is located in tl~c bottom of the probe. along its vertical ;\xis. and 
pointing down. Fortunarely, \he  rocation of the ci-aft i s  also about i ~ s  vcrlical asis. 
so the inrages are blur~zcl by u~lillol-rn rotaliol~al motion. Duri~ig the acquisiliorl 
Lime of eacll image the craft rotation was lin~ited to 5i/8 ixdians The image ac- 
quisilion process can be modclcd as an ideal shutter \hat is open only during tlre 
t ime  the cj.af1 rotalccl the ~ i j 8  radians. You may assume that \!el-tical ~iiotion wns 
negligible during image ;\cquisition. Formulnle a solution (or i.esroring the images. 

5.20 The image shown is a hluri-ed:2-D pro,jzctioti of a volu~nelric re~idirioil of a heart. 
I t  is known that each of the cross hairs on the riglit,hottom part ofihe imiigc was 
3 pixels wide, 30 pixels long, and  had 91-ay-level values of 255 belorc blurring. 
P~.ovide a slep-by-step procedure indicating how you would usc the informatio~r 
just given to you obtain lhe blurrillg function IJ(rr. 3). 

Original irnagc courtesy of G.E. Medical 
S!lslems. 

5.21 A certain X-I-ay imaging geometry produces n blun-ing dsgradatioii that can be 
  node led as the convolution of chc sensed imagc with (he spatial. cilrularlp sym- 
rnctric function 

h ( r )  = - f12)/o"li'2!:': 

where I-' = x-' + y2.Show that  the degsadalion in ihe L'reqvency dolnain is g i ~ ~ e n  
by [he expression 

H(,, ,  v )  = - G o ( , , 2  + v?)i'"'":l,"'+d. 
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*5.22 Using the transfer function in Problern 5.21, give the expression for a Wiener fil- 
ter, assuming that the ratio of power spectra of the noise and undegraded signal 
is a constant. 

5.23 Using the lransfer function in Prohle~n 5.21, give the resulting expression lor the 
constrained least squares filter. 

5.24 Assume that the model in Fig. 5.1 is linear and position invariant and show that 
the power spectrum of the output is given by 

Refer to Eqs. (5.5-17) and (4.2-20). 

5.25 Cannon [I9741 suggested a restoralion filter R ( u ,  v )  satisfying the condition 

and based on thc premise of forcing the power spectrum of the restored image, 
2 

(k(li, u) l  . to equal the power spectruin of the original image, ~ ( r r ,  v)lZ. 

* (a) Find H ( n ,  u )  in terms of I F ( u ,  z.)I2, I H ( u ,  v)12, and I N ( & ,  u)12 Hinr: Refer to 
Fig. 5.1, Eq. (5.5-1 7), and Problem 5.24. 

(b) Usc your result in (a )  to state a result in the farm of Eq. (5.8-2). 

5.26 ,411 astronomer working with a large-scale telescope observes Lhat her images 
are a little blurry. The manufacturer tells the astrorlomer (hat the unit is operat- 
ing within specifications-The tclescope lenses focus images onto a high-resolution, 
CCD imaging array. and t h e  images are then converted by the telescope elec- 
tronics into digilal images. Trying to improve the situation by conducting con- 
trolled lab experiments with the lenses and imaging sensors is not possible due 
Lo the sjze and weight of the telescope ca~nponents.l%e astronomer, having heard 
about your success as an image processing expert, calls you to help her for~nulate 
a digital image processing solution for sharpening the jn~ages a little more. How 
would you go about solving this problem, given that Ihe only images you can ob- 
tain are images of stellar bodies? 

* 5.27 A professor of archeology doing research on currency exchange practices during 
the Roman Ernpire recently became aware that four Roman coins crucial to 11;s 
I-esearch are listed in the holdings of the British Museum in London. Unfortu- 
nately, tic was told aftcr arriving there that Ihc coins recently had been stolen. Fur- 
ther research on his part revealed that the museum keeps photographs of every 
item1 for which i t  is responsible. Unfortunately, the photos of the coins in question 
ilre blurred to the poinl where  the date and othcr small markings are not read- 
able. The cause of the blurring was the camera being out of focus when the pic- 
Lures were taken. As an image processing expert and  friend of the professor, you 
are asked as a favor to determine whether computer processing can be utilized 
to restore the images to the point where the professor can read the markings. 
You are told that the  original camera used to lake the photos is still available, as 
are  other representative coins of the same era. Propose a step-by-step solution to 
this problem. 

5.28 Suppose tha l  instead of using quadrilaterals, you use triangular regions in Sec- 
tion 5.11 to establish a spatial transformation and gray-level interpolation. What 
would be the equations analogous to Eqs. (5.11-S), (5.11-6), and (5.11-7) for tri- 
angular regions? 
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Color Image Processing 

It i s  only after years of preparationthat the young artist should touch 

color-not color used descriptively, that is, but as a means of 

personal expression. Henri Motisse 

For a long time I limited myself to one color-as a form OF discipline, 

Pablo Picasso 

Preview 
The use of color in image processing is motivated by two principal factors. First, 
color is a powerful descriptor that often simplifies object identification and ex- 
traction from a scene. Second, humans can discern thousands of color shades 
and intensities, compared to about only two dozen shades of gray. This second 
factor is particularly important in manual (i.e., when performed by humans) image 
analysis. 

Color image processing is divided into two major areas:fill-color and pseudo- 
color processing. In the first category, the images in question typically are ac- 
quired with a full-color sensor, such as a color TV camera or color scanner. In 
the second category, the problem is one of assigning a color to a particular 
monochrome intensity or range of intensities. Until recently, most digital color 
image processing was done a t  the pseudocolor level. However, in the past 
decade, color sensors and hardware for processing color images have become 
available at reasonable prices. The result is that full-color image processing tech- 
niques are now used in a broad range of applications, including publishing, 
visualization, and the Internet. 

It will become evident in the discussions that follow that some of the 
gray-scale methods covered in previous chapters are directly applicable to color 
images. Others require reformulation to be consistent with the properties of 
the color spaces developed in this chapter. The techniques described here are 
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far froni exhaustive; they illustl-ate lfle range of inethods available for color 
image processing. 

., ' - -- ' Color Fundamentals 

Altl-~ough t h s  process followed by the human brain in  perceiving and inter- 
preting color i s  a physiopsychologica1 phenomenon h a t  i s  not yet fully under- 
stood. the physical nature of color can be expressed 011 a formal basis suppo~.ted 
by experii~ler~ tal a11d tlleorclical resul~s. 

In 1666, Sir Isaac Newton discovered that when a beam of sunlight passes 
thl.ough a glass prism, the emerging beam of light is 1101 white but consists in- 
stead of il continuous spec[]-urn of colors ranging from violet at one end LO I-ed 
a t  the ot t~er.  As Fig. 6.1 st\ows, thc color spectrum m a y  be divided in to six broad 
rce io~~s :  - violet, blue. qreen, yellow, orange, and  red. When viewed in full color 
(Fig. h.2), no color in the spec(1-u~n eilcls abruptly, bu t  rather each color blerlds 
smoothly into the next. 

Basically, the colors that humans and some other anitnaIs perceive in a n  
object are determined by the nature of the light reflected from the object. As 
illustrated in Fig. 6.2.visible light i s  cornposed of a I-clatively narrow band offre-  
quencies in the electromagnetic spectr~1m.A body that  rcllects light that i s  bnl- 
anced in all visible wavelengths appears white to the observer. Howevel-. a body 
that favors reflcc[~nce in n lirnitccl range of the visible spectrum exhihils some 
shades of color. Fc3r example, green objects reflect light with wavelensths 1~1.i- 

rnarily jn Ihe 500 to 570 nn1 range while absorbing most of the cnergv a t  other 
wavelenglhs. 

Chat-acterization of light is centual to the science of coloi-. I f  the light i s  
ach~.olnaric (void of color). its only attribute is i t s  iktfensity. 01- a~tiount .  Achro-  
matic light is what  viewers see on a btack and  while television set, and i t  I~as  
1,cen an implicit component of our discussion of i~nage  processirig thus Car.,4s 
defined in Chapter 2. and  used numerous timcs since, the  term K~.oLv levri refers 
10 a scalar measure of intensity t h a t  ranges from black, to grays, and  finally to 
white.  

FIGURE 6.1 Culor spectrum seen by passing white lighl Lhrough a prism. (Courtesy ot the 
General Eleclric Cn., Lamp Dusiness Division.) 
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FIGURE 6.2 Waveleug[hs cornp~.ising [he visible rangc o i  [he elecr~~omagnetic speclr-uln. 
(Coui.tesy of the General E1ecLl.i~ Co., Lamp R\~sincss Division.) 

Chromatic light spans the electron~ngtletic spectrum froni approximately 400 
to 700 nrn.Thtee basic quantities are used to describe [he qual i ty  of a ctlromatic 
light source: radiance, luminal~ce, and brightness. Rndilrnce is the t o ta l  amount 
of energy chat flows from r l~e  IighL source, and i t  is usually n1easu1-ed in  watts 
(W). L~in~innnce,measul-ed in lumens (Im), gives a measure of the amount of cn- 
ergy a n  observer pel-ceivec from a light source. For example. light elnilted h-on) 
a souwe operating jn the  far infrared 1.egio11 of the spectrum could have signif- 
icant eucrgy (radiance), but a n  observer w o ~ ~ l d  liardly perceive i t ;  its Iurninancc 
would be almost zero. Finally. bvightrress js a subjective descriplor thal  is prac- 
tically impossible [o measure. I t  embodies the nchr.ornntic not ion of intensity and 
is one of thc key factors in describing color sensation. 

As noted in Section 2.1.1. cones are the sensors in the eye responsible for 
color vision. Detailed experimental evidei~ce 11as established that the 6 t o  7 
million cones in the burnan eye car1 be divided inlo three principal sensing 
categories, corresponding roughly to red, green, and blue.Apyroxjmalcly 65% 
01 all cones are sensitive to red light. -33% are sensitive to green light, and only  
about 2% are sensitive t o  blue (but the blue cones arc t h e  ]nost sensitive). 
Figure 6.3 shows average experimental curves detailing the absorption of light 
by the red. green, and blue cones in the eye. Due to ~ h c s e  absclt.ption charac- 
teristics oC thc  human eve, colors are seen as variable combinatioris of the so- 
called yrinzary colors red (R),  green (G) ,  and blue (B).  For the purpose of 
standardization, the CIE (Conlmission Intel-nationale de  \'Eclairage-the In- 
ternational Commission on Illumination) designated in 1931 the following 
specific wavelength values to the three primary colors: blue = 435.23 nn-r. 
green = 546.1 nm, and red = 700 nm. This s~andard  was s e l  before the de- 
tailed experimental cuyves shown Fig. 6.3 became available 1n 1965.Thlrs. t h e  
CIE standards correspond only approxj~nately with experimenlal data. We 
note from Figs. 6.2 and  6.3 that no  single color m a y  be called red, green, 01. 

blue. Also, i t  i s  important to  keep in  mind t h a t  having I ~ I - e e  specific primary 
color wavelengths for the purpose of standardization does not Inean [hat these 
thrce fixed RGB components acting alone can gcnerare  all spectrum colors. 
U s e  of the word prirnory has been widely ~nisinterp~.e[cd to mean  hat the  
thrce standard primaries, w h e n  mixed in  various intensi ty propol-tions, can 
produce nil visible colors. As we will see shortly,  t h i s  inlei-pretation is not 
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FIGURE 6.3 Absorption of light by the red, green, and blue cones in Lhe human eye as a 
lunction of wavelength. 

correct unless the wavelength also is allowed to vary, in which case we would 
no longer have three fixed, standard primary colors. 

The  primary colors can be added to produce the secondary colors of light- 
magenta (red plus blue), cyan (green plus blue), and yellow (red plus green). 
Mixing the three primaries, or a secondary with its opposite primary color, in the 
right intensities produces white light. This result is shown in Fig. 6.4(a), which 
also illustrates the three primary colors and their combinations to produce the 
secondary colors. 

Differentiating between the primary colors of light and the primary colors of 
pigments or colorants is important. In the latter, a primary color is defined as 
one that subtracts or absorbs a primary color of light and reflects or transmits 
the other two.Therefore, the primary colors of pigments are magenta, cyan, and 
yellow, and the secondary colors are red, green, and blue-These colors are shown 
in Fig. 6.4(b). A proper combination of the three pigment primaries, or a sec- 
ondary with its opposite primary, produces black. 

Color television reception is an example of the additive nature of Iight col- 
ors. The interior of many color TV tubes is composed of a large array of trian- 
gular dot patterns of electron-sensitive phosphor. When excited, each dot in a 
triad is capable of producing light in one of the primary colors. The intensity 
of the red-emitting phosphor dots is modulated by an electron gun inside the ' 

tube, which generates pulses corresponding to the "red energy" seen by the 
TV camera.The green and blue phosphor dots in each triad are modulated in 
the same manner.The effect, viewed on the television receiver, is that the three 
primary colors from each phosphor triad are "added" together and received by 
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I MIXTURES OF UQHT 
(Additive prlmarlw) 

L I 

MiXNRES OF PIGMENTS 
ISubtraclive prlmarleg) 

PRIMARY AND SECONDAdY COLORS 
OF LIGHT AND PIQMENT 

FIGURE 6.4 Primary and secondary colors of light and pignieuts. (Courtesy or rhe Gen- 
eral Electric Co.. Lamp Business Division.) 

the color-sensitive cones in the  eye as a full-color image. Thirty successive 
image changes per second in all three colol-s complete the illusion oC a contin- 
uous image display on the screen. 

The characteristics generally used to distinguish one color from another are 
brightness, Izue, and sufurarion. As indicated earlier in this section, brigllt~less 
embodies the chromatic notion of intensity. Hue is an  attribute associated wilh 
the dominant wavelength in a mixture ol light waves. Hue represellis dominant 
color as perceived by an observer. Thus, when we call a n  object red. orange, or 
yellow, we are specifying its hue. Saturation refers to the relative purity or the 
anloun t of white Light mixed with a hue. The p u r e  spectrum colors are fully sat- 
urated. Colors such as pink (red and whjle) and  lavender (violet and white) are 
less saturated, with the degree of saturation being inversely proporlional to the 
amount of white ligllt-added. 

Hue and saturation taken together are called chl.o~wnricirv, and .  therefore, a 
color may be characterized by ils brightness and  chrornatici;y, The amounts or 
red, green, and blue needed to form any particular color are called h e  tl-i.ctim- 
L L ~ L L S  values and are denoted. X, Y, and 2, respectively. A color is then specified 
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by its trichromatic coeflcients, defined as 

and 

It is noted from these equations thatt 

For any wavelength of light in the visible spectrum, the tristirnulus values need- 
ed to produce the color corresponding to that wavelength can be obtained di- 
rectly from curves or tables that have been compiled from extensive 
experimental results (Poynton [1996]. See also the early references by Walsh 
[I9581 and by Kiver [1965]). 

Another approach for specifying colors is to use the CIE chromaticity 
diagram (Fig. 6.5), which shows color composition as a function of x (red) and 
y (green). For any value of x and y, the corresponding value of z (blue) is ob- 
tained from Eq. (6.1-4) by noting that z = 1 -- ( x  + y).  The point marked 
green in Fig. 6.5, for example, has approximately 62% green and 25% red con- 
tent. From Eq. (6.1-4), the composition of blue js approximately 13%. 

The positions of the various spectrum colors-from violet at 380 nm to red 
a t  780 nni-are indicated around the boundary of the tongue-shaped chro- 
maticity diagram. These are the pure colors shown in the spectrum of Fig. 6.2. 
Any point not actually on the boundary but within the diagram represents some 
mixture of spectrum colors. The point of equal energy shown in Fig. 6.5 corre- 
sponds to equal fractions of the three primary colors; it represents the CIE stan- 
dard for white light. Any point located on the boundary of the chromaticity 
chart is fully saturated. As a point leaves the boundary and approaches the point 
of equal energy, more white light is added to the color and it becomes less sat- 
uratcd.The saturation at the point of equal energy is zero. 

The chromaticity diagram is useful for color mixing because a straight-line 
segment joining any two points in the diagram defines all the different coIor 
variations that can be obtained by combining these two colors additively. Con- 
sider, fox example, a straight line drawn from the red to the green points shown 
in Fig. 6.5. If there is more red light than green light, the exact point represent- 
ing the new color wilI be on the line segment, but it will be closer to lhe red 
point than to the green point. Similarly, a line drawn from the point of equal en- 
ergy to any point on the boundary of the chart will define all the shades of that 
particular spectrum color. 

'The use x .  y .  z in this context follows notational convention.Tl~ese should not be confused with the use 
of (x, y )  to denote sp;llial coordinates in other sections of the book, 
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FIGURE 6.5 
Cl~rx-unatici t y 
diagram. 
(Courtesy of the 
General Electric 
Co.. Lamp 
Business 
Division . )  

(C.I.E. CHROMATICITY DIAGRAM) 
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Extension of this procedure to three colors is straightfol-wa~.d.To determine 
the range of colors that can be obtained from a n y  three given colors in  the chro- 
rnaticjry diagram, we simply draw connectii~g lines to each of the three color 
poinrs.The result is a triangle, and any color inside the  trial~gle can be produced 
by various coln binations of the three initial colors. A triangle wj 111 vertices at any 
three fixed colors cannot enclose the entire color region in Fig. 6.5. This obser- 
vation supports graphically the remark made earl ier that  no1 all colol-s can be 
obtajned with three single, fixed primaries. 

T l ~ e  triangle in Figure 6.6 shows a iypical range of colors (called the color 
garrzrrr) produced by RGB n~onitors .  The irregular region inside the triangle i s  
representative of t h e  color gamut of today's highqual i ty  colol. prinling devices. 
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FIGURE b.6 Typical color gamut oT color monitors (triangle) and color printing devices 
(irregular region). 

The boundary o l  the color printing gamut is irregular becausc c o l o ~  printing is 
n combination of additive and  subtractive color mixing,a process that is much 
more diffjcult co control than that of displaying colors on a monitol*, which is 
based on the addition of three highly conti.ollable light primaries. 

The purpose of a color model (also called color spuce or color sys~em)  is to fa-  
cil i iate the spccifica~jon of colors in  some standard, generally accepted way. I n  
essence, a color model is a specification of a coordinate system and a subspace 
wirhin that system where each color i s  represented by a single point. 
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FIGURE 6.7 
Schema tic of the 
R G B  color cubc. 
Poinls along t h e  
main diagonal 
have gray values, 
from black a1 ihe 
origin lo  white a[ 
point ( 1 ,  1 ,  ' I ) .  

Most color models in use today are  oriented either. toward hardware (such 
as for color monitors and printers) or toward applications where color manip- 
ulation is a goal (such as in the creation of color graphics for animation). In  
ternls of digital image processing, r h c  hardware-oriented models most com- 
monly used in practice are the KGB (red,green, blue) model far color monitors 
and a broad class of color video cameras; the CMY (cyan,ma_~enta,yellow) and 
CMYK (cyan, magenta, yellow, black) models for color printing; and the HSI 
(hue, saturation, intensity) model, which corresponds closely with tlie way hu- 
mans describe and interpret color.The HS1 model also has the advantage that 
it- decouples the cotor and gray-scale inlormation in an image, making it suitable 
for many of t h e  gray-scale techniques developed in this book. There are n u -  
merous color models in use today due to the fact that color science i s  a broad 
field that encompasses many areas of appIication. I t  is tempting to dwell on 
some of these models here simply because they are interesting and informa- 
tive. However, keeping to the task at hand, t h e  models discussed in this chap- 
ter are leading models for image processing. Having mastered the material in 
this chaprer, the readel- will have no difficulty in understanding additional color 
models in use today. 

8,2. t The RGB Color Model 
In the RGB model, each color appears in its primary spectral components of red, 
green, and blue-This model is based on a Cartesian coordinate sysiem.The color 
subspace oC interest is the cube shown in Fig. 6.7, in which RGB values are at 
three corners; cyan, magenta, and yellow are at three other corners; black i s  at 
the origin; and white is at the corner farthest from the origin. In this model, the 
gray scale (poinls of equal RGB values) extends from black 10 white along the 
l ine joining these two  points.The different colors in this model are points on or 
iosibe t h e  cube, and are defined by vectors extending from the origin. For 

Magenta 

Pod Yellow 

R b  
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convenience, the assumptiotl is that all color values have been nonnali7,ed so that 
the cuhe shown in Fsg. 6.7 is t he  unit cube.That is, all values of R, C ,  and B are  
assumed to be in the  range [ O ,  L 1. 

Images represented in  the RGB color mode! consist of t h ~ e e  component 
images,one for each primary color. When fed into an KGB monitor, these three 
images combine on  the phospl~or screen to produce a composite color image. 
The number o l  bits used to represent each pixel in RGB spacc is called the pixel 
Aeplh. Consider an RCB image in which each of the red, grzen, and blue images 
is an  %bit image. Under these coi~ditions each RGB color pixel [that is, a lriplet 
of values ( R ,  (3, B ) ]  is said to have a depth of 24 bits (3  irnage planes times the 
number of bits per plane). The  term full-color image is used often to denote a 
2A-bit R G B  colo~. image. The total number of colors in a 24-bit RGB image is 
(2')' = 16,777,216. Figurc 6.8 shows the 24-bit RGB color cube corresponding 
to the diagram in Fig. 6.7. 

' : The cube shown in fig, 6.8 is a solid, composed of t he  (q3 = 16.777,216 col- EXAMPLE 6.1: 
01,s mentioned in the preceding paragraph. A convenient way to view these col- Generating 

ors is to generate color planes (faces o r  cross seclions of the cube).  This is hidden face 
planes and a cross 

accomplished simply by fixing one of the  three colors and allowing the other two ,,,tion of  
10 vary. For instance, a cross-sectional plane through the center of the cube and R G R  color cube, 
parallel to (he GB-phne in Figs. 6.8 and 6.7 is Ihc plans. (1 27, G,  R )  for  G ,  B = 0, 
1 . 2 ,  .. . .255. Here  we used the actual pixel values rather Illan the mathemati- 
cally convellier~t noni~alized values in the range [0,  11 because the former val-  
ues are the ones actually used in a computzr to generate  colors. Figure 6.9(a) 
shows that an image of the cross-sectional plane is viewed simply by feeding 
the three individual co~nporlent images into a color monitor. I11 t h e  component 
images, 0 represents black and 255 represents white (note that these are gray- 
scale images). Finally, Fig. 6.9(b) shows the thl.ee hidden surface planes of the 
cube in  Fig. 6.5, generated in t h e  sanle manner.  

I t  is of interest to note tha t  acquiring a color image is basically thc process 
shown in Fig. 6.0 in reverse. A color image can be acquired by using three f j l -  
ters, sens~tive to I ed. green. and blue, respect~vely. When we view a color scene 
wi th  a monochrome camera equipped with one of these filters, t h e  result is a 
monochrome image whose intensity is proporlional ro the response of that filte~. 

FIGURE 6.8 R G B  24-bi l  color cube. 
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FIGURE 6.9 
(a)  Genei.ating 
the RGB image of 
the cross-sectional 
color plane 
(127. G, f3). 
(h)  The three 
hidden surface 
planes i l l  l l ~ e  color 
cu hc of Fig. 6.5. 

Repeating this process with each filter produces three monoc11r.onlc iniages that 
are l l le  RGB conlponznt images of the color scene. (In practice, RGB color 
image sensors usually inlegra te this process into a single device.) Clearly, dis- 
playing rhest: three RGB component i~nagcs in the form shown in Fig. 6.9(a) 
would yield an  RGB color rendjtjon of the original color sccne. 

While high-end display cards a 1 ~ 3  rno~~irol-sprovide a I-easonoble rendiljor) of 
the co lo~s  in a 24-bit RGB itnage, many systeins in use ~ o d a y  are limired ro 256 
colors. Also. there are nunlcraus applications in which it sirnply makes no scnse 
to use more than a Few hundred, and sometimes fewer, colors. A good example 
of this is provided by t he  pseudocolo~- image processiilg Lecl~niques discussed in 
Scction 6.3. Given the variety of systems in current use, it  is of co~~siderable in- 
terest to have  a subset of cololv that are Iikely to be reproduced faithfully. rea- 
sonably independently of viewer hardware capabilities. This su bsel of colors is 
called the set of snfe RGB colors, or the set of all-sysremr-snfi.  color.^. In Inter- 
ne[ applications, ~licy atk called sufe Web c.olot-s or snfv bmwser color-.T. 

On (he assunlption rhat  256 colors is  thc minimum numbcr of colors that can 
be reproduced faithfully by any systein in which a desired rcsi~l t is likely to be 
displayed, it is useful to have an accepted standard notarion to refer- to these col- 
ors. Forty of these 256 colars are known to be'processed differently by v a r i o ~ ~ s  
operating syslems, leaving orlly 216 colors Lhal are common to most sysrcms. 
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Nutnber S yslet~l Color Equivalenfs 

Hex (KI 3.3 66 99 CC FF 
Decimal 0 5 1 102 153 204 255 

Tl~ese 216 colors h a v e  become rhe de  facto s tandard for safe colors, especially 
in Internet applications.They are used whenever  i t  is desired that  the co101.s 
viewed by most people appear the same. 

Each of the 216 safe colors is formed from three RGB values as before, but each 
v;llue can only be 0.51, 102,153,204, or 255. Thus, RGR triplets of these values 
nivc us (6).' = 216 possible values (note rhat  all values a r e  divisible by 3). Tt  is 3 

customary to express thesc values in [he hexagonal number  system. as shown it1 

Table 6.1. Recall that hex numbers 0, 1,2 .  ... ,9 .  A, B. C, D. E, F correspond to 
decimal numbers 0.1,2,. . . .9. lO, 11,12, 13,14,15. Recall also that (O),, = (Oi)C)O), 
ancl (F),,  = (1111)2.Thus, for example. (FF),, = (255),0 =. ( I l l  11 1 and we 
see that a grouping of two hex numbers forms an 8-bit byte. 

Sincc it takes [hree numbers to form an RGB color,each safe color is formed 
from ~hree of the two digit hex numbcrs in Table 6.1. For example, the puresl  
red is FFOOOO. 711e values  000000 and  FFFFFF represent black and white, 
respectively, Keep in  mind that the same result is obtained by using the more 
familiar decimal notation. For instance, rhe  brigblest red in decimal notation 
has K - 255 (FF) and G = B = 0. 

Figure fi.lO(a) shotvs the 216 safe colors: organized in descending RGB val- 
ues. The square in the Lop left array has value FFFFFF (white), the second 

TABLE 6.1 
Valid values of 
each R G B  
component in a 
safe color. 

a 
b 

FIGURE 6.10 
(a) The 216 sdfe 

.-.---1 .- KGB colors. 
(b) All the grays 
In the 256-color 
R G B  syctem 
(grays t h a t  are 
part of the safe 
color group are 
shown 
u~~dzrlinecl). 
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-. 

FIGURE 6.1 1 The RGB safe-co\or cube. 

square to its right has value FFFFCC, the third square has value FFFF99, and 
so on for the first row. The second row of lhat  same array has values FFCCFF, 
FFCCCC, FFCC99, and so on. The final square of that array has value FFOOOO 
(the brightest possible red). The second array to the right of the one just ex- 
amined starts with value CCFFFF and proceeds in the same manner, as do the 
other remaining four arraysThe final (bottom right) square of the last array has 
value 000000 (black). Tt is important to note that not all possible 8-bir gray col- 
ors are included jn the 216 safe colors. Figure 6.10(b) shows the hex codes for 
1111 the possible gray colors in a 256-color RGB system. Some of these values are 
outside of the safe color set but a r e  represented properly (in terms on their re]- 
a tive intensities) by most display systems. The grays from the safe color group, 
( K K K K K K ) 1 6 ,  for K = 0,3,6,9, C, F, are shown underlined in Fig. 6.10(b). 

Figure 6.11 shows the RGB safe-cdox cube. Unlike the full-color cube in 
Fig. G.8, which is solid, the cube in  Fig. 6.11 has valid colors only on the surface 
planes. As shown in Fig. 6.10(a), each plane has a total of 36 colors, so the entire 
surface of the safe-color cube is covered by 216 different colors, as expected. 

- r> .-, 
.2,.r,.r The CMY and CMYK Color Models 
As indicated in Section 6.1. cyan, magenta, and yellow are the secondary colors 
of ligh t or, alternatively, the primary colors of pigments. For example, when a sur- 
face coated with cyan pigment i s  illu~ninated wich white light, no red light i s  re- 
flccted from the surface. That is, cyan subtracts red Iigbt from reflected white 
light, which itself is composed ol equal amounls  of red, green, and blue light. 

Mosr: devices that deposit colored pigments o n  paper, sucl~ as color printers 
and copiers, require CMY data input or perform an RGB to CMY conversion 
internally. This conversion is performed using the simple operation 

where, again, the assumption is that all color values have been normalized to the 
range [ O ,  11. Equation (6.2-1) demonstrates tha t  light reflected from a surface 
coated with pure cyan does not contain red (that is,C = 1 - R in the equation). 
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Similarly, pure magenta does not reflect green, and pure yellow does not reflect 
blue. Equation (6.2-1) also reveals t h a t  RGB values can be obtained easily from 
a set of CMY values by subtract i~ig the individual CMY values from 1 .  As in -  
dicated earlier, in image processing this color model is' used in connection with 
generating hardcopy output, so the inverse operation from CMY to RGB gen- 
erally is of little practical interest. 

According to Fig. 6.4, equal amounts of t h e  pigment primaries, cyan, magen- 
la,and yellow should produce black. I n  practice, combining these colors for print- 
ing produccs a muddy-looking black. So, in order to produce t rue  black (which 
is  the predominant color in printing), a fourth color, block, is added, giving rise 
lo the CMYK color model.Thus, when publishers lalk about "four-color printing," 
they are referring ro the three colors of the CMY color model plus black. 

6 - 2 3  The HSI Color Model 
As we have seen, creating colors in [he RGB and CMY models and changing 
from one model to the other is a straightforward pr0cess.A~ noted earlier, these 
color systems are ideally suited for hardware irnplerner~tations. In addition, the 
RGB system matches nicely with the fact that  the human eye is strongly per- 
ceptive to red, green, and blue primaries. Unforlunalely, the RGB, CMY, and 
other similar color models are not well suited for describing colors in terms that 
are practical for- h u m a n  interpretation. For example, one does not refer to the 
color o f  an automobile by giving the percentage of each of the primaries com- 
posing its color. Furthermore, we do no t  think of color images as being com- 
posed of three primary images tha t  combine to form that single image. 

When humans view a color object, we describe it  by its hue, saturation, and 
brightness Recall from the discussion in Section 6.1 that hue is a color attribute 
that describes a pure color (pure yellow, orange, or red). whereas saturation gives 
a measure of the degree to which a pure color is diluted by white light. Bright- 
ness is a subjective descriptor that is practically impossible to measure. It em- 
bodies the achromatic notion of inremiry and is one of the key  factors in 
describing color sensation. We do know that intensity (gray level) is a most use- 
ful descriptor o l  monochromatic images. This quantity definitely is measurable- 
and easily interpretable. The model we are about ro present, called the HSI (hue, 
saturation, intensity) color model, decouples the intensity component from the 
color-carrying information (hue and saturation) in a color image, As a result, the 
HSZ model is an  idea1 tool for developing image processing algorithms based on 
color descriptions that are natural and intuitive to humans, who, after all, are the 
developers and users of these algorithms. We can summarize by saying that RGB 
is ideal for image color generation (as in image capture by a color camera o r  
image display in a monitor screen), but its use for color description is much more 
limited. The material that follows provides a very effective way to do this. , 

As discussed in Example 6.1, an RGB color image can be viewed as three 
monochrome intensity images (representing red, green, and blue), so it should 
come as no  surprise that we should be able to extract intensity from an RGB 
image. This becomcs ralher clear if we  take the color cube from Fig. 6.7 and 
stand i t  on the  black (0, 0, 0)  vertex, with the white vertex ( I ,  1 ,  I )  directly 
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Whtte While 

Black 

,a b 
FIGURE 6.1 2 Conceptual relationships between the RGB and HSI color models. 
. - - . - . . . . . . . . - . . . . . .  -. .~ . - , - . . 

above it, as shown in Fig. 6.j2(a). As noted in connection with Fig. 6.7, the inten- 
sity (gray scale) is along the line joining these two vertices. In the arrangement 
shown in Fig. 6.12, the line (intensity axis) joining the black and white vertices is 
vertical. Thus, if we wanted to determine the in tensity component of any color 
point k Fig. 6.12, we would simply pass a plane perpendicular to the intensity axis 
and containing the color point.The intersection of the plane with the intensity axis 
would give us a point with intensity value in the range [0, 11. We also note with a 
little thought that the saturation (purity) of a color increases as a function of dis- 
tance from the intensity axis. In fact, the saturation of points on the intensity axis 
is zero, as evidenced by the fact that all points along this axis are gray. 

In order to see how hue can be determined also from a given RGB point. 
consider Fig. 6.12(b), which shows a plane defined by  three points (black, white, 
and cyan).The fact that  the black and white points are contained in t h e  plane tells 
us that the intensity axis also is contained in the plane. Furthermore, we see that 
all points contained in the plane segment defined by the intensity axis and the 
boundaries of the cube have the same hue  (cyan in this case). We would arrive 
at the same conclusion by recalling from Section 6.1 that all colors generated by 
three colors lie in  the  triangle defined by those colors. Tf two of those points are 
black and white and the third is a color point, all points on the triangle would 
have the same hue  because the black and white components cannot change the 
hue (of course, the intensity and saturation olpoints in this triangle would be dif- 
ferent). By rotating the shaded plane about the vertical intensity axis, we would 
obtain different hues. From these concepts we arrive at the conclusion that the 
huz, saturation: and intensity values required to form the HSI space can be ob-  
tained from the RGB color cube. That is, we can convert any RGB point lo a cor- 
responding point is tbe I-IS1 color model by working out the geometrical formulas 
describing the reasoning outllned in the preceding discussion. 

The key point to keep in mind xegarding the cube arrangement in Fig. 6.12 
and its corresponding HSI color space is that the HSI space is represented by 
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FIGURE 6.13 Hue and saturation in the HSI color model. The dot is an arbitrary color 
point.Tt~c angle  ram lhe red axis gives the hue ,  and thc lcnglh of t h e  vector is the sat- 
uration. 'The intensity of all colors in any of lhese plal~es is given by t h e  position of the 
plane on the vertical intensity axis. 

a vertical intensity axis and the locus of color points that lie on planes perpen- 
dic~ilnr to this axis. As the planes move up and down the intensity axis, the 
boundaries defined by the intersection of each plane with the faces of the cube 
have either a triangular or  hexagonal shape-This can be visualized much more 
readily by looking at the cube down i ts  gray-scale axis, as  shown in Fig. 6.13(a). 
In this plane we see that the primary colors are separated by 120". The sec- 
ondary colors are 60" from the primaries, which means that the angle between 
secondaries also is 1.20". Figure 6.13(b) shows the same hexagonal shape and an 
arbitrary color point (shown as a dot).The hue of the point is determined by an 
angle from some reference point. Usually (but not always) an angle of 0" from 
the red axis designates 0 hue, and the hue increases counterclockwise from 
there. The saturation (distance from the vertical axis) is the length of the vec- 
tor from the origin to the point. Note t h a t  the origin is defined by the intersec- 
tion of the color planc with the vertical intensity axis.The important components 
of the  HS1 color space are the vertical intensity axis, the length of the vector to 
a color point, and the angle this vector- makes wirh the red axis. Therefore, i t  is 
not unusual to sce the HST planes defined is terms of the hexagon just discussed, 
a triangle, or even a circle, as Figs. 6.13(c) and (d) show. The shape chosen reat- 
ly does not matter, since any one of these shapes can be warped into one of the 
other two by a geometric transformation. Figure 6.14 shows the HSI model 
based on color triangles and also on circles. 
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Red 

a 
b 
FIGURE 6.14 ?'he I4Sl color ~ilodel based ari (a) tria~igular and (b) cil.culfi1-color p lanes  
The triangles and circles a r e  pel-pendicular lo the  vert icnl inlcnsily axis. 
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Converting colors from RGB to'HS1 

Given an image in RGB color format, the H component of each RGB pixel is 
obtained using the equation 

0 i f B 5 G  
H = [ 3 6 0 0  i f B > C  (6.2-2) Scc inside front covcr 

with 

'The saturation component is given by 

Finally, the intensity component is given by 

1 
1 = - ( R + G +  B) .  (6.2-4) 

3 

It is assumed that the RGB values have been normalized to the range [0, 11 
and that  angle 0 is rneasurecl with respect to the red axis of the HST space, as in- 
dicated in Fig. 6.13. Hue can be normalized to the range [ O , 1 ]  by dividing by 360" 
all values resulting from Eq. (6.2-2). The other two HSI components already 
are in this range if t h e  given RGB values are in the interval [O, 3.1.  

The results in Eqs. (6.2-2) through (6.2-4) can be derived from the geometry 
shown in Figs. 6.12 and 6.13. The derivation is tedious and would not add sig- 
nificantly to the present discussion.The interested reader can consult the book's 
references or web site for a proof of these equations, as well as for the follow- 
ing HSI to RGB conversion results. 

Converting colors from HSI to RGB 

Given values of HSI in the interval [O, 11, we now want to find the corresponding 
RGB values in t he  same range.The applicable equations depend on the values 
of H. There are three sectors of interest, corresponding to the 120" intervals in 
the separation of primaries (see Fig. 6.13). We begin by multiplying H by 360°, 
which returns the hue to its original range of [0°, 360°]. 

RG sector (0° r H < 120"): When H is in this sector, the RGB components 
are given by the equations 

S cos H 
cos (60" - H) 1 

and 

Consult the book web site 
for a detailed dcriva~ioii 
of ihe conversion cqua- 
tions brlwcen RGB and 
HSI. and vice versa. 

G = 31 - ( R  + B) .  (6.2-7) 
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GB sector (120" 5 H < 240"): If the given value of H is in this sector, we first 
subtract 120" from it: 

Then the RGB components are 

and 

B = 31 - ( R  + G). (6.2-1 1) 

BR sector (240" 5 H 5 360"): Finally, if H is in this range, we subtract 240" 
from it: 

Then the RGB components are 

and 

R = 31 - (G + B ) .  (6.2-1 5 )  

Uses of these equations for image processing are discussed i n  several of the fol- 
lowing sections. 

EXAMPLE 6.2: 1 Figure 6.15 shows the hue, saturation, and intensity images for the RGB val- 
The HSJ values ues shown in Fig. 6.8. Figure 6.15(a) is the hue image. Its most distinguishing 
corresponding to feature is the discontinuity in value along a 45" line in the front (red) plane of 
the image of the the cube.To understand the reason for this discontinuity, refer to Fig. 6.8, draw 
RGB color cube. 

a line from the red to the white vertices of the cube, and select a point in the 
middle of this line. Starting at that point, draw a path to the right, following the 
cube around until you return to the starting point. The major colors encoun- 
tered in this path are yellow, green, cyan, blue, magenta, and back to red. Ac- 
cording to Fig. 6.13, the values of hue along this path should increase from 0" 
to 360" (i.e., from the lowest to highest possible values of hue). This is precise- 
ly what Fig. 6;15(a) shows because the lowest value is represented as black and 
the highest value as white in the gray scale. In fact, the hue irnage was original- 
ly normalized to the range [ O , l ]  and then scaled to 8 bits; that is, it was converted 
to  the range [O,  2551; for display. 

The saturation image in Fig. 6.15(b) shows progressively darkel- values toward 
the white vertex of the RGB cube, indicating that colors become less and less 



6.2 a Color Models 301 

a b c 

FIGURE 6.15 HSI components of [he in~age in Fig. (3.8. (a) Hue, (b) saturation. and (c) intensity images. 

saturated as they approach white. Finally. every pixel in the intensity i.mage 
shown in Fig. 6.15(d) is the average of the RGB values at the corresponding 
pixel in Fig. 6.8. G+ .-- 

Manipulating HSI component images 

In the following discussion, we take a look at  some simple lechniques for ma- 
nipulating HS1 component imagcs.This will help develop familjarity with these 
components and also help deepen our understanding of the HSI color model. 
Figure 6.16(a) s l~ows an image composed of the priniary and secondary RGB 
colors. Figures 6.16(b) thi-ough (d) show the H ,  S,  and 1 components of this 
image. These images were generated using Eqs. (6.2-2) through (6.2-4). Recall 
horn the discussion earlier in this secliorl that the gray-level values in Fig. 6.16(b) 
col-r.espond to angles: thus. for example, because red correspot~ds to 0". the red 
region in Fig. 6.16(a) mapped to a black region il-1 the hue image. Similarly. the 
gray levels in Fig. 6.16(c) corrcspond to saturation (they were scaled to [O, 2551 
for display). and the gray levels in Fig. 6.16(d) are average intensities. 

To c h a ~ ~ g e  the individual color of any region in the RGB image, we change 
the values of the corresponding region in the huc image of Fig. 6:16(b).Then we 
convert the new I-I image, along with the unchanged S and I images, back to 
RGB using the procedure explained in connection with Eqs. (6.2-5) through 
(6.2-15).To change rhe saturation (purity) of the color in any region, we follow 
the same procedure, except that we make the changes ill the saturation image 
in HSI space. Siivilar comments apply to changing the average inlensity of any 
region. Of course, these changes can be made simultaneously. For example, the 
image in Fig. 6,17(a) was obtained by changing to 0 the pixels corr-esponding to 
the blue and green regions in Fig. 6.16(b). In Fig. 6.17(b) we reduced by half 
the saturation of the cyan region in component image S from Fig. h.l6(c). In  
Fig. G.I7(c) we I-educed by half the intensity of the central white region in the 
intensity image of Fig. 6.1 6(d). The result of converting this l~lodified HSI image 
back to RGB is shown in Fig. 6.17(d). As expected, we see in this figure that 
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a b  
c d 

FIGURE 6.16 (a) RGB image and t h e  components of its corresponding HSI image: 
(6) hue, (c )  saturatron, and (d) intensity. 

the outel- portions of all circles are now red; t he  purity of the cyan region was 
diminished, and the central region became gray raiher illan ~vhi le .  Allhough 
these results are simple, they illustrate clearly the power of the HSI color model 
in allowing in-dependent control over hue,  saturation, a n d  rntensify, quantrt ies 
with which we are quite familiar when describing colors. 

Pseudocolor Image Processing 

Pseudocolor (also called fahe color) image processing consists ol  assigning col- 
ors to gray values based on a specified criterion. The term pse tdo  or folre color 
is used to differentiate (he process oC assigning c o l o ~ s  to tnonochr-ome irnages 
from the processes associated wjth t rue  color images, a topic discussed srarfing 
i n  Section 6,4.Thc prin&pal use of pseudocolor is for human visualization a n d  
interpreia tion of grav-scale events in an image or sequence of mages. As noted 
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FIGURE 6.1 7 (a)-(c) Modified HSI component images. (d) Resulting RGB image. 
(See Fig. 6.16 for the original HS t inlages.) 

a t  t he  beginning of this chapter, one of tbe principal motivations for using color 
is the fact t ha t  Ilumans can discern thousands of color shades a n d  intensilics, 
cornpal-ed to only two dozen or so shades of gray. 

b.3. : In tensity Slicing 

The rechnique of inlensjty (sometimes called density) slicing and color coding 
is one of rhe simplest examples of pseudocolor image processing. If an image is 
interpreted as a 3-D function (intensity versus spatial coordinates), the method 
can be viewcd as one of placing planes parallel to t h e  coordinale plane of the 
Image; each plane then "slices" the function in the area of intersection. Figure 
6.18 shows an example, of using a plane a t  f (x, y )  = l j  to slice the image lunc-  
tion inro LWO levels. 

If a different color is assigned to cach side of the plane shown in Fig. 6.18, any 
pixel whose gray level is above the plane wilI be coded with one color, and ally 

pixel below the pIane will be coded with the other. Levels that  lie on t h e  plane 
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FIGURE 6.18 Geometric interpretation of the intensity-slicing technique. 

itself may be arbitrarily assigned one of the two colors.The result is a two-color 
image whose relative appearance can be controlled by moving the slicing plane 
up arid down the gray-level axis. 

In general, the  technique may be summarized as follows. Let [0, L - 11 repre- 
sent the gray scale (see Section 2.3 4), let level 1, represent black [ f (x, v )  = 01, and 
level lLp!  represent white [f (s, y )  = 1. - I]. Suppose [hat P planes perpendicu- 
lar to the. intensity axis are defined at levels I , ,  I,, . . . , I,. Then, assuming that 
0 < P < L - 1: t he  P planes partition the gray scale into P + I intervals, V, , 
V,, . . . , V,, , . Gray-level to color assignments are made according to the relalion 

where c, is the color associated with the  kth intensity interval Vk defined by the 
partitioning planes at I = k - 1 and  I = k.  

The idea of planes is useful primarily for a geometric interpretation of the 
intensity-sljc.ing technique. Figure 6.19 shows an alternative representation thar 
defines t h e  same mapping as in Fig. 6.18. According to the  mapping function 
shown in Fig. 6.19, any input gray level is assigned one of two colors. depend- 
ing on whelher i t  is above or below the value of Z j .  When more levels are used, 
the mapping funct ion  takes on a staircase form. 

EXAMPLE 6.3: A simple, but practical, use of intensity slicing is shown in Fig. 6.20. Figure 
IntensitI' slicing. 6.20(a) is a rnonochro~ne image of the Picker Thyroid Phantom (a radiation test 

pattern), and Fig. 6.20(b) is the result of intensity slicing this image jnto eight 
coIor regions Regions that appear of constant intensity in the monochrome image 
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li 1, - I 
Gray lkvels 

FIGURE 6.1 9 An alternative represen tat ion of the jntensit y-slicing technique. 

;Ire really quite variable, as shown by the various colors in the sliced jn~age.The 
left lobs, for insrance, js a dull gray in rhe monochroine image, and picking out 
variations it1 i~tensity js difficult. By cantlast, [he color image clearly shows eight 
different regions of constant intens\tp, one for each of the colors used. &? 

111 the preceding simple example, the gray scale was divided inlo intervals and 
a different color was assigned to each region, without regard for the meaning of 
the 91.ay levels in the image. Interest in that case was simply to view the difkrent  
gray levels constituting the  inlagc. Intensity slicing assumes a much more mean- 
ingCul a n d  useful ]-ole wheri subdivision of the gray scalc is based on physical char- 
acteristics of thc image.  For instance, Fig. 6.2.l(a) shows a n  X-ray image of a weld 

FIGURE 6.20 ( A )  Monoch~.ome image ofthe PickcrThyroid Phantom. (b) Result of den- 
sily slicing illto eight coI01.s. (Co~~r tesy  oL' Dr. J. L. Blankenship, Instrumenratiori and 
Controls Divisio11. Oi~k Ridge National Laboratory.) 
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a 
b 
FIGURE 6.21 
(a) Monochrome 
X-ray image of a 
weld. (b) Result 
of color coding. 
(Original image 
courtesy of 
X-'T'EK Systems, 
Ltd.) 

(the horizontal dark region) containing several cracks and porosities (the blight, 
white streaks running horizontally through the middle of the image). It is known 
that when there is a pol-osity or crack in a weld, the full strength of the X-rays 
going through the object saturates the imaging sensor on the other side of the 
object (see Section 2.3). Thus, gray levels of value 255 in an &bit image coming from 
such a system automatically imply a problem with the weld. If a human were to be 
the ultimate judge of the analysis and manual processes were employed to inspect 
welds (still a common procedure today), a simple color coding that assigns one 
color to level 255 and another to all other gray levels would simplify the j~~spec- 
tor's job considerably. Figure 6.21(6) shows the result. No explanation is required 
to arrive at the conclusion that human error rates would be lower if images were 
displayed in the form of Fig. 6.21(b), instead of the form shown in Fig. 6.21(a). In 
other words, if the exact values of gray levels one j.s looking for are known, in ten- 
sity slicing is a simple but powerful aid in visualization, especially if numerous 
images are involved.The following is a significantly more complex exarnpje. 
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Pvleasurcnlent of rainfall levels, especially in the tropicaI regions of the Earth. EXAMPLE 6.4: 
is of in  tttresl in diverse applications dealing wj th  the environ~nen t .  Accu~*ale  Use oTcolol to 

highlight rairit'all n,easure~nen~s using $round-bascd sensors are difficult and expensive lo ac- 
cluire, and rota1 I-ainfall figures are eve11 more difficult to ot)tr?iti because a sig- 
nificant portion o l  precipitation occurs over the ocean. One approach for 
obtaining rainfall figures is to use a satellite. The T R M M  (Tropical Rainfall 
Measuring Mission) satellite utilizes, among others, three sensors speci~lly de- 
signed to dctecl rain: a precipitatio~i rndar, a microwave imager, al-ld a visible and 
infrared scanner (see Sections 1.3 and 2.3 regalding image sensing modalities). 

The results fro113 the  various rain sensors are processcd. resulting in estimates 
of  nvcragc rainlall over a given time period in che area monitored by the sen- 
sors. From these estima f es, i r is not difficult lo generate gray-scale images whose 
intensity values correspoild directly to rainfall. with each pixel I-epresenting a 
physical land area whose size depends on [he resolution of  the sensors. Such a n  
intensity image is shown in Fig. 6.22(a), where the area monitored by the satellj te 

FIGURE 6.22 (a) Gray-scale image in which intensity (in the lighter Imrizontal band shown) currcsponds lo 

average monLhly rainfall. (b) Color5 assigned co intensity values. ( c )  Color-coded ililage. (d) Zoorl~ o f  the Sou11) 
America region. (Co~~rtesy oi NASA.) 
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is the slightly lighter horizontal band in t h e  middle one-third of the piclure 
(these are the tropical regions). In this particular example, the cainfall values are 
average monthly values (in inches) over a three-year period. 

Visual examination of this picture for rainfall patterns is quite difl'icult, if not 
impossible. However., suppose that we code gray levels frorn 0 to 255 using the 
colors shown in Fig. 6.22(b).Values toward the blues signify low values of rain- 
fall, with the opposite being true for red. Note that the scale raps out at pure red 
for values of rainfall greater than 20 inches. Figure 6.22(c) shows the result of 
color coding the gray image with the color map just discussed. The results are 
much easier to interpret, as shown in this figure and in the zoomed area of 
Fig. 6.22(d). In addition lo providing global coverage, this type of data allows me- 
teorologists to calibrate ground-based rain monitoring systems with greater 
precision than ever before. w11 

6.3.2 Gray Level to Color Transformations 
Other types of transformations are more general and thus are capable of achiev- 
ing a wider range of pseudocolor enhancement rcsuIts than the simple slicing 
technique discussed in the preceding section. An approach that is particularly 
attractive is shown in Fig. 6.23. Basically, the idea underlying this approach is to 
perform three independent transformations on the gray level of a n y  input pixel. 
The three results are then fed separately into the red, green, and blue channels 
of a color television monitor. This method produces a c.omposite image whose 
color content is modulated by the nature of the transionnation Functions. Note 
that these are transformations on the gray-level values of an image and are not 
functions of posilion. 

The method discussed in the previous section is a special case of the technique 
just described. There, piecewise linear functions of the gray levels (Fig. 6.19) 
are used to generate colors.The method discussed in this section, on the other 
hand, can be based on smooth, nonlinear functions, which, as might be expected, ' 

gives the technique considerable flexibility. 

transformation f ~ 4 . L  j f )  

FIGURE 6.23 Funct.ional block diagram for pseudocolor iniage proces~ing.,f,~.f;;, and f, 
are fed into the corresponding red, green, and blue inputs of an KGB cojor monitor. 
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.-,I Figure 6.23(a) shows two monoc111-omc images of luggage oblained fr,oin a n  EXAMPLE 6.5: 

nirporr X-ray scanning sysrem.The image o n  rhe left contains ordinary articles. 
' I ~ C  image on the  right contains [fie same articles,as well as  a blocl< of simulal- pseudocolor for 

highlighting 
ed plasric explosives.The purpose of this cxampLe is to illusfi~atc t h e  use of gray t r p ~ o f j v e s  
level to color translormariotis LO obtain various degrees  of en l i s~ lcement .  contained in 

Figucc 6.25 shows the transforma tion functiolls used. These sinusoidal func- luggage. 
tions contain regions of relatively constant value around the peaks as well as rc- 
gions that change rapidly tiear (lie vallcys. Changlng the phase and frequency of 
cacti sinusoid can emphasize (in colol-) ranges in the gray scale. For instance, i f  all 
three translortnations have the same pl~ase and frequency, the output iniage will 
he rnonochromr.A s~nall change in t h c  phase between the three transformations 
pi.oduces littlc change in pixels whose gray Ievels cor-respond to peaks in the si- 
nusoids, especially i f  the sinusoids have broad p~-oliles (low frequer~cics). Pixels 
w~th - oray-level values in  [he srcep section of the sinusoids are assigned a rnucl~ 
stronger color conte~it as  a result or significant differences between the  a~npli-  
tudes of the three sinusoids caused by the phase displacement bctween thetn. 

The image shown in Fig. 6.24(b) was o l~ ta ined  with the transformation func-  
tions in  Fig. 6.25(a), which shows the gray-level bands correspondince, to t h e  ex-  
plosive,garrnent bag, and background, respectively. Note that t h c  explosive artd 
background have quite different gray levels, but they were both coded with 

a 
b c 

FIGURE 6.24 Pscudocolor cnhancemcn~ by using the gray-Icvel to  colol- tl-ansfonna(ions 
in  Fig. 6.25. (Original irnage courlesy of Dr. Mike Hurwitz. Westinghouse.) 
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approximately the same color as a result of the periodicity of the sine waves.The 
image shown in Fig. 6.24(c) was obtained with the transformation functions in 
Fig. 6.25(b). In this case the explosives and garment bag intensity bands were 
mapped by similar transforrnatjons and thus received essentially the same color 
assignments. Note that this mapping allows an observer to "see" through the 
exp1osives:The background mappings were about the same as those used for 
Fig. 6.24(b), producing almost identical color assignments. PI 

a. 
b 

FIGURE 

L - 1  

Red 

L - 1 

Green 

L - 1  

Blue 

L - 1  

Red 

L - 1  

Green 

L - l  

Blue 

Gray levc l  

Gray level 

~ x ~ l o s i ~ e  ~ a ~ . m e n t  Background 
bag 

6.25 Transformation functions used to obtajn thc images in Fig. 6.24. 
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processing 

FIGURE 6.26 A pseudocolor coding approach used when several mollachron~e images 
are available. 

. .. 

Thc approach shown in Fig. 6.23 is based on a single monochrome image. 
Often, it is of interest to combine several monochrome images into a single 
color composite, as shown in Fig. 6.26. A frequent use of this approach (illus- 
trated in Example 6.6) is in multispectral image processing, where different sen- 
sors produce individual monochrome images, each in a different spectral band. 
The types of additional processes shown in Fig. 6.26 can be techniques such as 
color balancing (see Section 6.5.4), combining images, and selecting the three im- 
ages for display based on knowledge about response characteristics of the 
sensors used to generate the images. 

1 Figures 6.27(a) through (d) show four spectral satellite images of Washington, EXAMPLE 6.6: 
D.C.. including part of h e  Potomac River. The first three images are in the vis- Color coding of 

ible red, green, and blue, and the fourth is in the near infrared (see Table 1.1 and lnu"ispectra' images. 
Fig. 'l..lO). Figure 6.27(e) is the full-color image obtained by combining the first 
three images into an RGB image. Full-color images of dense areas are difficult 
to interpret, but one notable feature of this image is the difference in color in var- 
ious parts of the Potomac River. Figure 6.27(f) is  a little more interesting.This 
image was formed by replacing the red component of Fig. 6.27(e) with the near- 
infrared image. FI-onlTable 1 .I, we know that this band is strongly responsive to 
the biomass components of a scene. Figure 6.27(f) shows quite clearly the dif- 
ference between biomass (in red) and the human-made features it] the scene, 
composed primarily of concrete and asphalt, which appear bluish in the image. 

The t pe of processing just i:llustxated is quite powerful in helping visualize 
events o 1 interest in complex images, especially when those events our beyond 
our norAal sensing capabilities. Figure 6.28 is an excellent illustration of this. 
These are images of the Jupiter moon lo, shown in pseudocolor by combining sev- 
eral of t h e  sensor images from the Galileo spacecraft, some of which are in spec- 
tral regions not visible to the eye. However, by understanding the physical and 
chemical processes likely to affect sensor response, it is possible to combine the 
sensed images inlo a meaningful pseudocolor map. One way to combine the 
sensed image data is by how they show either differences in surface chemical 
composition or changes in the way the surface reflects sunlight. For example, in 
the pseudocolor image in Fig. 6.28(b), bright red depicts material newly ejected 
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a b FIGURE 6.27 (a)-(d) Images in hands 1 4  in Fig. 1.10 ( see rab l e  ' 1 .  I ) .  (e) Color- conlpos- 
c d i le image obtained by t real i~lg (a). (h), and (c) as [lie red. green, blue co~nponents of an 
e f R G R  image. (f)  Image obtained in the same nlanrler, hu[ using in t he  red c l~anl~el  the 

near-infrared image in (d).*(Original rnultjspcctral irnagcs cour-cesy of NASA.) 
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Cram a u  active volcano on lo, and the  surrounding yellow materials are older 
sulfur deposits. This image conveys these characte~istics much more readily than 
\vould be possible by analyzing the component images individually. P 

Basics of Full-Color Image Processing 
In this section be begin the study of processing techniques applicable to full- 
color images. Although they are far from being exhaustive, the techniques de- 
veloped in the sections that follow are illustrative of how full-color images are 
handled for a variety of image processing tasks. Full-color image processing ap- 
proaches fall into cwo major categories. In the first category, we process each 
component image individually arid then fonn a composite processed color image 

FIGURE 6.28 
(a) Pseudocolor 
rendition of 
Jupiter Moon Io. 
(b)  A close-up. 
(Courtesy of 
NASA.) 
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a b  

FIGLIRE 6.29 
Spatial masks for 
gray-scale and 
RGB color 
images. 

from the individually processed co~nponents. In the second category, we work 
with color pixels directly Because full-color images have at least three compo- 
nents, color pixels really are vectors. For example, in  the RGB system, each 
color point can be interpreted as a vector extending from the origin to that 
point in the RGB coordinate system (see Fig. 6.7). 

Let c represent an arbitrary vector in RGB color space: 

This equation indicates that the components of c are simply the RGB compo- 
nents of a color image at a point. We take into account the fact that Lhe color 
components are a function of coordinates (x, y)  by using the notation 

For an image of size h1 X N ,  there are MN such vectors, c ( x ,  y) ,  for x = 0 ,1 ,  
2 ,..., M - l ; y = 0 , 1 , 2  , . . . ,  N - 1. 

It is important to keep clearly in mjnd that Eq. (6.4-2) depicts a vector whose com- 
ponents are spatial variables in x and y.This is a frequent source of confusion that 
can be avoided by focusing on the fact that our interest lies on spatial processesThat 
is, we  are interested in image processing techniques formulated in x and y.The fact 
that the pixels are now color pixels introduces a factor that, in j ts easiest formula- 
tion, allows us to process a color image by processing each of its component images 
separately, using standard gray-scale image processing rncthods. However, the re- 
sults of indiv~dual color component processing are not always equivalent to direct 
processing in color vector space, in which case we must formulate new approaclics. 

In order for per-color-component and vector-based processing to be equiv- 
alent, two conditions have to be satisfied: First, tlle process has to bc applicable 
to both vectors and scalars. Second, the operation o n  each component of a vec- 
tor must be independent of the other components. As an illustration, Fig. 6.29 

Gray-scale image 

- 

Spatial mask 

RGR color image - 
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shows neighborhood spatial processing of gray-scale and full-colol- images. Sup- 
pose that the process is neighborhood averaging. In Fig. 6.29(a), averaging would 
be accomplished by s u m r n i ~ ~ g  the gray levels oE all the pixels in the neighborhood 
and dividing by the total number of pixels in the neighborhood. In Fig. 6.29(h), 
averaging would be done by surrlming all the vectors in the neighborhood and di- 
viding each component by t h e  total number of vectors in the neigllborhood. Bur 
each component ol' the average vector is the sum of the pixels in the image cor- 
responding to that component, which is the same as the result that would be ob- 
tained i f  the averaging were done o n  a per-color-component basis and then the 
vector was formed.M1e sllow this in more derail in  the following sections. We also 
show methods in which the results of the two approaches are not the same. 

Color Transformations 

'The techniques described in this section. collectively called color rransformrr- 
rinns, deal with processing ihe components oi a color image within the context 
of a single color model, as opposed to the conversion of those components 
between models (like the RGB-to-HST and HSI-to-RGB conversion transfor- 
mations of Section 6.2.3). 

Formulation 
As with the gray-level transformation techniques of Chapter 3, we model color 
transformations using the expression 

where f ( x ,  y)  is a color input itiiage. g ( x ,  y) is the transformed 01- processed 
color ou tpu t  image, and  T is a n  opel-ator on f over a sparjal neighborhood of 
(1. ))),The principal difference between this equation and  Eq. (3.1-1) js in irs in- 
[erpretation. The pixel values here are triplets or quartets (i.e., groups of three 
or four values) Crom the color space chosen to represent the images, as illus- 
trated in  Fig. 6,29(b). 

Analogous to the approach we used to introduce the basic gray-level crans- 
formations in Section 3.2, we will restrict attention in this section to color trans- 
formations of [he foxm 

s, = ~ , ( r , ,  r V z ,  . . . , r,,), i = 1, 2, .. . , rl - 
where, for notational simplicity. r, and  s, are variables denoling the color coln- 
ponents oT,f (x. y)  and .g(x, y )  a t  any point (x, y) ,  n is the number o f  color com- 
ponents, and { T ,  . . , , i s  a set oE rro,~.sformntin~~ or color n~npping 
junctions chat operate on r, to produce s,. Note that n transfol-rnatiotis, T,.-coin- 
bine to implemenl the single transformation function, T ,  in Eq. (6.5- ]).'fie color 
space chosen to describe the  pixels o f f  and determines the value oft[. If  the 
KGB color space i s  selected, for exarnple, pt = 3 and I - ,  . r,. and r, denote the  red, 
green, and blue components of the input image, respectively. If the CMYK or 
HSI color spaces are chosen, n = 4 01. = 3. 
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Figure 6.30(a) shows a high-resolution color image of a bowl oC strawberries 
and cup of coffee ,that was digitized from a large format (4" X 5 " )  color neg- 
ative. The second row of the figure contains the components of the initial 
CMYK scan. In these images, black represents O and white represents 1 in each 
CMYK color componenl.Thus, we see that the strawberries are composed of 
large amounts of magenta and yellow because the images corresponding to 
these ~ w o  CMYK components are the brightest. Black is used sparingly and is 
generally confined to the coffee and shadows within the bowl of strawberries. 
When the CMYK image is converted to RGB, as shown in the third row of the 
figure, the strawberries are seen to contain a large amount of red and very little 
(although some) green and blue.The last row of Fig. 6.30 shows t h e  HSI com- 
ponents of Fig. 6.30(a)-computed using Eqs. (6.2-2) through (6.2-4). As 
expected, the intensity component is a monochrome rendition of the fu 11-color 
original. In addition, the strawberries are relatively pure in color; they possess 
the highest saturation or least dilution by white light of any of the hues in the 
image. Finally, we note some difficulty in interpreting the hue component.The 
problem is compounded by the fact that (1) there is a discontinuity in the HSI 
model where 0" and 360" meet, and (2) hue is undefined for a saturation of 0 
(i.e., for white, black, and pure grays). The discontinuity of the model is most 
apparent around the strawberries, which are depicted in gray level values near 
both black (0) and white ( I ) .  The result is an unexpected mixture of highly 
contrasting gray levels to represent a single color-red. 

Any of the color space components in Fig. 6.30 can be used in conjunction 
with Eq. (6.5-2). In theory, any transformation can be performed in any color 
model. In practice, however, some operations are better suited to specific mod- 
els. For a given transformation, the cost of converting between representations 
must be factored into the decision regarding Lhe color space in which to irnple- 
ment it. Suppose, for example, that we wish to modify t he  intensity 01 the image 
in Fig. 6.30(a) using 

where 0 < k < 1. In the HS1 color space. this can be done with the simple 
transformation 

where s, = r ,  and s, = r 2 .  Only HSI intensity component r,  is modified. In thc 
RGB color space, three components must be transformed: 

The CMY space requires a similar set of linear transformations: 

Although the HST transformation involves the fewest number of operations, 
the computations required to convert an RGB or CMY(K) image to the HSI space 
more than ofisetts (in this case) the advantages of the simpler Iransformat~on- 
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r ~ l l  color 

Cva n Magenta 

Red Green 

Hue Saturation Intensity 

FIGURE 6.30 A full-color image and its various color-space components. (Original image courtesy of Med- 
Data Interactive.) , 

the conversion calculations are more computationalIy intense than the intensity 
transfol-mation itself. Regardless of the color space selected, however, the output 
is the same. Figure 6.31 (b) shows the result of applying any of the trcmsformations 
in Eqs. (6.5-4) through (6.5-6) to the image of Fig. 6.30(a) using k = 0.7.The map- 
ping functions themselves are depicted graphically in Figs. 6.31 (c) through (e). 
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F I G U R E  6.31 
Adjusting the 
inlensiry o f  i ln 

image usi~lg color 
rr.ansformations. 
(a) Origins( 
image. (b) Result 
of dccrcasing i t s  
intcnsi~y by 30%. 
(i.c., lerting 
k - 0 7 ) .  
(c)-(e) T'he 
required RGB. 
CMY, and HSI 
transfo1,rnat ion 
funclinns. 
(Original image 
courtesy of 
McdDa ta 
Inleracl ive.) 

It is in-tportant to note that each transformation defined in Eqs. (6.5-4) through 
(6.5-6) depends only on one component within its color space. For example, the red 
output cornponent,~,  , i n  Eq. (6.5-5) is  independent of the green ( r 2 )  and bluc (r,) 
inputs;it depends only on the red ( r , )  input.Tranrformations of this type are among 
the simplest and most used color processing tools and can be carried out an a per- 
color-component basis, as mentioncd at the beginning of our discussion. In the re- 
maindel. of this section we examine several such transformations and discuss a 
case in which the component transformation functions are dependent on all the 
color components of the input image and, therefore, cannot be done on an  indi- 
vidual color componenr basis. 

6,1-;,2 Color Complements 
The hues directly opposite one another on the color circle' of Ag. 6.32 are called 
complements. Our interesr in complements stems from the fact thal t hey  are 
analogous to the gray-scale negatives of Section 3.2.1. As in the gray-scale case, 
color complements are useful for enhancing detail that is embedded in  dark 
regions of a color image-particularly when [he regions are dominant i n  size. 

EXAMPLE: 6.7: !%! Figures 6.33(a) and (c) show the image from Fig. 6.30(a) and its color 
Compu[ingcolor complement. The RGB transformations used to cornpure the complement 
image 
complements. 

are  plotred in Fig. 6.33(b). They a r e  iden t ica l  10 t h e  gray-scale negative 

'The color circle originated with Sir Isaac Newton. who in Lhe s e v e r ~ ~ e e i ~ t h  ceniury joined ~ h c ,  cnds ofthe 
color spcctrun) to foml the first color circle. 
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FIGURE 6.32 
Complzmznts on 
the colol- circle. 

Cyan I 

Yellow 

.- - E l i  FIGURE 6.33 
Color 
coii~pleme~lt 
cransforms tions. 
(a)  Origir~al 
Image. 
(b) Complement 
transformation 
functions. 
(c) Comple~nen( 
of (a) based on 
the: RGB rnnppiny 
I'unctio~ls. (d) An 
appl-oxi~nalion of 
[he RGB 

1 cornplemen~ using 
FIS I 
transformations 
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transformation defined in Section 3.2.1. Note that the computed complement 
is reminiscent of conventional photographic color film negatives. Reds of the 
original image are replaced by cyans in the complement. When the original 
image is black, the complement is white, and so on. Each of the hues in the 
complement image can be predicted from the original image using the color 
circle of Fig. 6.32. And each of the RGB component transforms involved in 
the computation of the complement is a function of only the corresponding 
input color component. 

Unlike the intensity transformations of Fig. 6.31, the RGB complement trans- 
formation functions used in this example do not have a straightforward HSI 
space equivalent. It is left as an exercise for the reader (see Problem 6.18) to 
show that the saturation component of the complement cannot be computed 
from the saturation component of the input image alone. Figure 6.33(d) provides 
an approximation of the complernen t using the hue, saturation, and intensity 
transformations given in Fig. 6.33(b). Note that the saturation component of 
the input image is unaltered; i t  is responsible for the visual differences between 
Figs. 6.33(c) and (d). I 

k5.3 Color Slicing 
Highlighting a specific range of colors in an image is useful for separating ob- 
jects from their surroundings. The basic idea is either to (1) display the colors 
of interest so that they stand out from the background or (2) use the region de- 
fined by the colors as a mask for further processing. The most straightforward 
approach is to extend the gray-level slicing techniques of Section 3.2.4. Because 
a color pixel is an n-dimensional quantity, however, the resulting color trans- 
formation functions are more complicated than their gray-scale counterparts in 
Fig. 3.11. In fact, the required transformations are more complex than the color 
component transforms considered thus far. This is because all practical color 
slicing approaches require each pixel's transformed color components to be a 
function of all n original pixel's color components. 

One of the simplest ways to "slice" a color image is to map the colors outside 
some range of interest to a nonprominent neutral color. If the colors of inter- 
est are enclosed by a cube (or hypercube for n > 3) of width W and centered 
at a prototypical (e.g., average) color with components ( o ,  , a,, . . . , a,), the nec- 
essary set of transformations is 

These transformations highlight the colors around the prototype by forcing a l l  
other colors to the midpoint of the reference color space (an arbitrarily chosen 
neutral point). For the RGB color space, for example, a suitable neutral point 
is middle gray or color (0.5,0.5,0.5). 
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If a sphere is used to specify the colors of interest, Eq. (6.5-7) becomes 

otherwise 

Here, R, is the radius of t h e  enclosing sphere (or hypersphere lor n > 3) and 
(a,, a,, .. . , a,,) are the components of its center ( I . & . ,  the prototypical color). 
0 ther useful variations of Ecls. (6.5-7) and (6.5-8) include implementing multi- 
plc color prototypes and reducing the intensity of the coJors outside the region 
of interest-rather than setting them to a neutral  constant. 

a Equatioils (6.5-7) and (6.5-8) can be used Lo separate the edible part of the EXAMPLE 6.8: 
strawberries in Fig. 6.30(a) from the background cups, bowl, coffee, and table. An illustration of 

Figures 6.34(a) and (b) show the results of applying both transformations. In C O ' ~ '  

each case, a prototype red with RGR calor coordinate (0.6863,0.1608,0.1923) 
was selected from the most prominent strawberry; W a n d  R, were chosen so 
that the highlighred region would not espand lo  undesirable portions of the 
image. The actual values, W = 0.2549 and = 0.1765, were determined inter- 
actively. Note that the sphere-based transformation of Eq. (6.5-8)  is slightly bet- 
ter, in  the sense tha t  i t  includes more of the strawberries' red areas. A sphere of 
radius 0.1765 does not completely enclose a cube of width 0.2549 but is itself nor 
completely cnclosed by thc cube. 

FIGURE 6.34 Color slicing transformations that detect (a)  reds within an RGB cube of 
width W = 0.2549 centered at (0.6863, 0.1608, 0.1922), and (b) reds within an RGB 
sphere of radius 0.1765 centered at the same point. Pixels outside the cube and sphere 
were replaced by color (0.5,0.5,0.5). 
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h.S.4 Tone and Color Corrections 
Color transformritio~~s can be performed on most deskrop computers. In con- 
junction with digital cameras, flatbed scanners. and inkjet printers, they turn a 
personal co~nputer into a digiinl darkroom-allowing tonal adjustments and 
color corrections, the mainstays of hig11-end color reproduction systems, to be 
performed witllout the need for traditionally outfitted wet processing (i.e., dark- 
roam) facilities. Although tone and color corrections are useful in other areas 
of imaging, the focus of the current discussion is on the most common uses- 
photo enhancement and color reproduction. 

The effectiveness of the transformations examined in this section is judged 
ultimately in print. Since these transformations are developed, refined, and eval- 
uated on monitors, it is necessary to maintain a high degree of color consisten- 
cy between the ~nonilors used and the evenlual output devices. In fact, the colors 
of the monitor should represent accurately any digitally scanned source images, 
as well as the final printcd output.  This is best accomplished with a device- 
iizclependen/ color moclel that relates the color gamuts (see Section 6.1) of the 
monitors and output devices, as well as any other devices being used. to one 
anolher.The success of this approach is a function of t h e  quality of the color pro- 
file,~ used to map each device to the model and the model itselC The model of 
choice for many color mnnagenzena systems (CblS) is the CIE L*akh* model, 
also called CIELAB (CIE [1978], Robertson [I 9771). The L*cr*b* color com- 
pone~lts  are given by the following equations: 

where 

and X,, Yw, and Zw are reference white tl-islirnulus values-typically the white 
of a perfectly reflecting diffuser under CIE standard 065 illumination (defined 
by x = 0.3127 and y = 0.3290 in the CIE chromalicity diagram of Fig. B.S).The 
L*a*h" color space is colorimetric (i.e., colors perceived as matching are en- 
coded identically), percept~ially uniform ( i .~ . ,  color differences among various 
hues are perceived uniformly-see the classic paper by MacAdams [1942]), and 
device independent. While not a directly displayable format (conversion to an- 
other color space i s  required), its gamut encompasses the  entire visible spectrutn 
and can represent accurately the colors of any display, print, or  inpul device. 
Like the HSI system, the L*a'%hY' system is an excellent dccoupler of intensity 
(represented by lightness L*) and color (represented by a* for red minus green 
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and b* for green minus blue), making it useful in both image lnanipulation (tone 
and contrast editing) and image cornpressio~l applications.'" 

The principal benefit of calibrated imaging systems is that they allow tonal 
and color imbalances to be corrected interactively and independently-that is, 
in two sequential operations. Before color irregularities, like over- and under- 
saturaled colors, are resolved, problems involving the image's tonal range are 
corrected.The tonal range of an image, also called its key type, refers to its gen- 
eral distribution of color intensities. Most of the information in high-key im- 
ages is conceiltrated at high (or light) intensities; the colors of low-key images 
are located predominantly at low intensities; middle-key images lie in between. 
As in the monochronle case, it is often desirable to  distribute the intensities of 
a color image equally between the highlights and the s11adows.Tne following ex- 
amples demonstrate a variety of color transformations for the correction of 
tonal and color imbalances. 

Transformations for modifying image tones normally are selected interac- EXAMPLE 6.9: 
tively. The idea is to adjust experimentally the image's brightness and conlrast Rmal  
to provide maximum detail over a suitable range of intensities.The colors them- transformations. 

selves are not changed. In the RGB and CMY(K) spaces, this means mapping 
all three (or four) color components with the same transformation function; in 
the HSI color space, only the intensity component is modified. 

Figure 6.35 shows typical transformations used for correcting three cornlnon 
tonal imbalances-flat, light, and dark images. The S-shaped curve in the first 
row of the figure is ideal lor boosting contrast [see Fig. 3.2(a)]. Its rnidpoi~lt is 
anchored so that highlight and shadow areas can be lightened and darkened, re- 
spectively. (The inverse of this curve can be used to correct excessive contrast.) 
The transformations in the second and third rows of the figure correct light and 
dark images and are reminiscent of the power-law transformations in Fig. 3.6. 
Although the color components arc discrete, as are the actuat transformatjon 
functions, the transformation functions themselves are displayed and manipu- 
lated as continuous quantities-typically constructed from piecewise linear or 
higher order (for smoother mappings) polynomials. Note that the keys of the irn- 
ages in Fig. 6.35 are directly obscrvable; they could also be determined using the 
histograms of the images' color components. % 

8!l After the tonal characteristics of an image have been properly established, EXAMPLE 6.10: 
any color in~balances can be addressed. Although color imbalances can be de- Color balancing. 

termined objectively by analyzing-with a color spectrometer-a known color 
in an image, accurate visual assessments are possible when white areas, where 
the RGB or CMY(K) components should be equal, are present. As can be seen 
in Fig. 6.36, skin tones also are excellei~t subjects for visual color assessments be- 
cause humans are highly perceptive of proper skin color. Vivid colors, such as 
bright red objects, are of liitlc value when it comes to visual color assessment. 

' Studies indicate that the degrcc to which the luminance (lightness) ini'ormation is separated lrom Ihc colol. 
informati011 in L : ' : u : ~ ' ~ : ~ s  greater than in other color models--such as CIIELIJV. YIQ. YIJV. YCC. and 
X Y Z  (Kasson and Plouffe [19921). 
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Flat Corrected 

1 lii 

m 

Dark 

FIGURE 6.35 Tonal corrections for flat, light (high key) .  and  dark (low key)  color images. Adjusting (tie 14, 
green, and blue components equal ly does no1 alter [he image hues. 
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FIGURE 6.36 Color balancing correct ions for CMYK 
color images. 
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When a color imbalance is noted, there are a variety of ways to correct it. 
When adjusting the color components of an image, it is important to realize 
that every action affects the overall color balai~ce of the image.That is, the per- 
ception of one color is affected by its surrounding colors. Nevertheless, the color 
wheel of Fig. 6.32 can be used to predict how one color component will affect 
others. Based on the color wheel, for example, the proportion of any color can 
be increased by decreasing the amount of the opposite (or complementary) 
color in the image. Similarly, it can be increased by raising the proportion of 
the two immediately adjacent colors or decreasing the percentage of the two 
colors adjacent to the complement. Suppose, for instance, that there is an abun- 
dance of magenta in an RGB image. It can be decreased by (1) removing both 
red and blue or (2) adding green. 

Figure 6.36 shows the transformations used to correct simple CMYK output 
imbalances. Note that the transEormatior~s depicted are the functions required 
for correcting the images; the inverses of these functions were used to generate 
the associated color imbalances. Together, the images are analogous to a color 
ring-around print of a darkroom environment and are useful as a reference tool 
for identifying color printing problems. Note, for example, that too much red can 
be due to excessive magenta (per the bottom left image) or  too little cyan (as 
shown in the rightmost image of the second row). P 

6.5,s Histogram Processing 
Unlike the interactive enhancement approaches of  he previous section, the gray- 
level histogram processing lransforrnalions of Section 3.3 can be applied to color 
images in an automated way. Recall that histogram equalization automatically 
determines a transformation that seeks to produce an image with a uniform 
histogram of intensity values. In the case of monochrome images, it was shown (see 
Fig. 3.17) to be reasonably successful at hand.ling low-, bigh-, and middle-key im- 
ages. Since color images are composed of multiple components, however, con- 
sideration must be given to adapting the gray-scale technique to more than one 
component and/or histogram. As might be expected, it i s  generally unwise to his- 
togram equalize the components of a color image independently. This results in 
erroneous color. A more logical approach is to spread the color intensities uni- 
formly, leaving the colors themselves (e.g., hues) unchanged. Tne following ex- 
ample shows that the HSI color space is ideally suited to this type of approach. 

EXAMPLE 6.11: !#! Figure 6.37(a) shows a color image of a caster stand containing cruets and 
Histogram shakers whose intensity component spans the en tire (normalized) range of pos- 
equalization in sible values, [ O ,  1].As can be seen in the histogram of its intensity component 
the HSI color 
space. prior to processing [Fig. 6.37(b)], the image contains a large number of dark 

colors that reduce the median intensity to 0.36. Histogram equalizing the in- 
tensity component, without altering the hue and saturation, resulted in the image 
shown in Fig. 6.37(c). Note that the overall image is significantly brighter and 
that several moldings and the grain of the wooden table on which the caster is 
sitting are now visible. Figure 6.37(b) shows the intensity histogram of the new 
image, as well as the intensity transformation used to equalize the intensity 
componeilt [see Eq. (3.3-8)]. 
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I liriabrani btiort: processing I\ (rncdtafi = 03-5) 

Although the intensity equalization process did not alter the values of hue 
and saturation of the image, it did impact t he  overall color perceptiotl. Nole,  in 
particular, the loss of vibrancy in the oil and vinegar in the cruets. Figure 6.37(d) 
shows the result of correcting this partially by increasing the image's saturation 
component, subsequent to histogram equalization, using the transformation in 
Fig. 6.37(b).This type of adjustment is common when working with the inten- 
slty component in HSI space because changes in intensity usually affect the rel- 
a t ive  appearance of colors in an image. B 

- - .  

: I l , , ;  Smoothing and Sharpening 

a b 
c d 

FIGURE 6.37 
Histogram 
equallzalion 
(followed by 
s a t w a  tion 
adjustment) in  the 
HS1 colo~* space. 

The next step beyond transforming each pixel  of a color image without regard 
to its neighbors (as in the previous section) is to modify its value based on the 
characteristics of the surrounding pixels. I n  this section, the basics of this type 
of neighborhood processing are illustrated within the  corltext of color image 
smoothing and sharpening. 
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6.B.1 Color Image Smoothing 
With refzrence t o  Fig. 6.29(a) and the discussion in Section 3.6, gray-scale image 
smoothing can be viewed as a spatial filtering operation in which the coelfi- 
cients of the filtering mask are all 1's. As the  mask is slid across the image to 
be srnootl~ed, each pixel js replaced by the average of the pixels in the neigh- 
borhood defined by the mask. As can be seen in Fig. 6.29(b), this concept is  eas- 
ily extended to [he processing of full-color images The principal difference is 
that instead of scalar gay-level values we must deal with component vectors of 
the form given in Eq. (6.4-2). 

Let S,, denote the set of coordinates defining a neighborhood centered at  
(.r, y )  in an RGB color image. The average of the RGB componei~t vectors in 
this ~leighborhood is 

1 
( r  ) = - C c ( x ,  y ) .  

K ( x , ~ ! e S , , ,  

I t  follows from Eq. (6.4-2) and the properties of vector addition that 

Scc ~nrrlc  I r w l  orvrr 

C o n s ~ l l ~  I h r  h c ~ o k  wcb IIIC 

(or a hricl  rcvlcw of VCC- 

I011 acrd nkill riCCs. 

We recognize t b e  components of this vector as the scalar images that would be 
obtained by independently smoothing each planc of the starting RGB image 
using conve~ltional gray-scale neighborhood processing.Thus, we conclude t h a t  
smoothing by neighborhood averaging can be carried o u t  on a per-color-plane 
basis. The result is the  same as when the  averaging is performed using RGB 
color vectors. 

EXAMPLE 6-12: D Consider the color image shown in Fig. 6.38(a). The  red, green, and blue 
Color image planes of this image are depicted in Figs. 6.3Y(b) through (d). Figures 6.39(a) 
snloothing by through (c) show the image's HSI components. Tn accordance with the discus- 
~~eighborhood 
averaging. sion in the preceding paragraph, we can smooth the RGB image in Fig. 6.38 

using the 5 X 5 gray-level averaging mask of Section 3.6. We simply smooth in- 
dependently each of the RGB color planes and then combine the pi-ocessed 
planes to form a smoothed full-color resuIt. TIle image so computed is shown 
in Fig. 6.40(a). Note that i t  appears as  we would expect from the discussion and  
examples in Section 3.6. 

In Section 6.2 i t  was noted that an important advantage of the HSI color 
model is that it decouples intensity (closely related to gray scale) and cotor in- 
formation.This makes it suitable for many gray-scale processing techniques and 
suggests that i t  might be mow efficient to smooth only the intensity cornponenr 
of the HST representation in Fig. 6.39. To illustrate the merits and/or 
consequences of this approach, we next smooth only the  intensity component 
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FIGURE 6.38 
(a) RGB image. 
(b) Red 
cornpollent image. 
(c) Green 
cornpone11 t . 
(d) Blue 
component. 

a b c  

FIGURE 6.39 HSI components of the RGB color image in Fig. 6;.38(a). (a) Hue. (b) Saturation. (c) Jnlensity. 
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FIGURE 6.40 Tmage srnoolhing wirh a 5 x 5 avei.agi11g mask. (a)  Result of pi.occssing racl.1 RGB component 
i\ i~agc. (b) Rcsult of processil\g the intensity component of the HSI image and conve~-ling lo RGB. ( c )  bif- 
(el-cnce betwcen  he two results. 

( leaving chc liue and  sa tu~~at ion components unmodified) and coi~ve1~1 the 
processed result to an R G B  image for display. The s ~ n o o t h e d  color image is 
shown in Fig. 6.40(b). Norc that i t  is sjrnjla~. to Fig 6.40(a). but, as c a n  be seen f~ on) 
the difki.ence image in Fig. 640(c). is 1101 identical.Tl>is is due to t l ie fact llial' the 
avcrage of two pixels of differing color i s  a ~nixture oi the two colol's, no1 either 
of the original colors. By s~nootbing only the in~ellsity image, the pixels in  Fig. 
6.40(b) ma~nta in  their original h u e  and saIu1-ation-and thus tllejr original colo~.. 
Finally, we note that the  difference (between the  snloot t ~ c d  I-esults jn t h i s  
example) would i~icl-case as the size of the smoor hing mask i~icl-eases 

. . .> 

Color Image Sharpening 
Ti1 this secliou we consider image sharpening using the Lap lac ia i i  (see Section 
3.7.2). From vecior a n n l y s ~ s ,  we know that  t h e  Laplacian of a vector i s  defintrd 
as a vector whose coniponents are  equal to tllc Laplacia11 or l-he individual sca l~r  
components o f  the input vector. In the RGB c o l o ~  system. the [,aplacian of vec- 
lor c in Eq. (6.4-2) is 

which,  as in the prcvious section.  ells us thal we can compute (he Laplacian 
of a full-color image by c o ~ n p u t i ~ i g  the Laplacjan of each  c o ~ n p o ~ ~ e n t  ir~iage 
separately. 

EXAMPLE 6.13: Figure 6.41 (a) was obtained using Eq. (3.7-6) to compute the Laplacians or rhc 
SIlarl?eni% with RGB comporlen t images in Fig. 6.38 and combining them to prqoduce the sharp- 
thc Lnplacian, ened full-colol- resul~.  Figure 6.4 1 (b) shows a simililrly shal-penrd irnage based on 

the HSI components in Fig. 6.39. This result was generafed by co~nbini~lg tlic 
Laplacia11 of the  intensity cornpollent with the unchanged hue and  saturation 
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a b c  

FIGURE 6.41 I~iiagc shnl-pening with the Lap l i~c ian .  (a)  Result of processing eilch RGB channel.  (I)) Result of 
processirlg thc  irltcnsity coniponent and corlverling to RGB. (c) Dil'l'etl-ence betwcerl the two  resl~lts. 

compunents.'fhe difference between the RGB and HS1-based results is stiowi~ jl-I 

Fig. 6.4 1 ( c ) ;  i t  results from the same laclors explained in Example 6.12. 

, Color Segmentation 

Segmentalion is a process that pal-ticions ai l  image in to regions. A1rhougl.l segmen- 
ration is the topic of Chapter 10, we consider color. segmentation briefly here fur the 
sake of continuity.The reader wil l  have no difficulty in following the discussion. 

; Segmentation in HSI Color Space 
If we wish to segment a n  image based on color, and. in addi~ion.  we want ro 
carry out the process on i ~ ~ d i v i d u a l  planes, i l  is natural to think first of [he  HSI 
space because color is conveniently represented in the h u e  image.Typically, sat- 
urnlion is used as a inasking irnage in order to isolate Curlher regions of inter- 
est in the hue image.Tlie intensity image is used less frequently for segrne~~taljon 
of color images beciluse i l  can-ies no color information. The fallowing example 
i s  typical of how segmentation is performed i n  the HSI system. 

Si~ppose that i r  is of interesl lo segment the 1.eddis11 re~ ion  in the lowel- lcft EXAMPLE 6.14: 
of 1-he image in Fig. 6.42(~). Although i t  was generated by pseudoco1o~- methods. se$lncllt;l(ion i l l  

[his image can be processed (segmented) as a full-colol image wi tlwul loss of HSI space. 

general i ty.  Figures 6.42(b) through (d) are i t s  HS1 component images. Note by 
aompnring Fig. 6.42('a) and (b) that the region in which we ale inreresced has rel- 
alively high values of hue, inclicatitlg that the colors are on the blue-magenta side 
of red (see Fig. 6.13). Figure 6.42(e) shows n binary mask generated b y  thresh- 
olding the  saturatio~l inlagc with a threshold equal to 10% of (he maximurn 
value in t t ie  sa~ura t ion  image. Any pixcl value grealer. than r l ~ e  thr-eshold was 
sct L O  I (whi te) .Al l  others were set to 0 (black). 

Figure 6.42(t] is the product of the Inask wit11 Ihc hue image, and Fig. 6.42(g) is 
(l ie histogram oi t h e  111-oduct image (note that the gray scale is in the range [0,1 I). 
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a 
FIGURE 6.42 lrnage segmentation in HSI space. (a)  Original. (b) Hue. ( c )  Saturalion. c d 

-5 f (d) Intensity. ( e )  Binary saturation mask (black = 0 ) .  (I)  Product of (b )  and (e) .  
(g) IIistogram of (I). (h )  Segmentalion of red components in (a). 

- .  . 
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We see i n  the histogram that high values (which are the values of interest) are 
grouped at the vew high end of the gray scale,near 1.0.The result of thresholding 
the product image with threshold value of 0.9 resulted in the binary image shown 
in Fig. 6.42(h). The spatial location of the white points it1 this image identifies the 
points in the original image rhar have the reddish hue of interest.This was far from 
a perfect segmerltation because there are points in the original image that we cer- 
tainly would say have a reddish hue, but that were not identified by this segmen- 
tation method. Elowever, i t  can be shown by experimentation that the regions 
shown in white in Fig. 6.42(h) are about the  best this method can do  in identifying 
the reddish components of the original image.The segmentatiou method discussed 
in the following section is capable of yielding considerably better results. 

6.7.2 Segmentation in RGB Vector Space 
Although, as mentioned numerous times in this chapter, worhng in I-ISI space is 
more intuitive. segmentation is one area in which better results generally are ob- 
tained by using RGB color vec.tors. The approach is straightforward. Suppose that 
the objective is to segment objects of a specified color range in an RGB image. 
Given a set of sample color points representative of the colors of interest, we ob- 
ta in  an estimate of the "average" color that we wish to segment. Let this average 
color be denoted by the RGB vector a. The objective of segmentation is to classi- 
fy each RGB pixel in a given image as having a color in the specified range or not. 
In order to perform this comparison, it is necessary to have a measure of similari- 
ty. One of the simplest measures is the Euclidean. distance. Let z denote an arbitrary 
point in RGB space. We say that z is similar to a i f  the distance between them i s  less 
than a specified threshold, Do. The Euclidean distance between z and a is gwen by 

D ( z ,  a) = llz - all 

= [ ( z  - a)'(. - a)]' 

1 

= [(z, - aRj2  + ( z G  - + ( z s  - 
where [he subscripts R,  G, and B, denote the RGB components of vectors a 
and z.The locus of points such that D ( z ,  a )  5 Do is a solid sphere of radius D,,, 
as illustrated in Fig. 6.43(a). Points contained within or on the surface of the 

FIGURE 6.43 
Three approaches 
for enclosing data 
regions for RGB 
vector 
segmentation. 

G 

n R R 
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sphere satisfy the  specified color criterion; points outside the sphere do not. 
Coding these two sets of points in the image with, say, black and white, pro- 
duces a binary segmented image. 

A useful generalization of Eq. (6.7-1) is a distance measure of the form 
I 

D(z ,  a )  = [(z - a)'cP1(z - a)]? (6.7-2) 

where C is the covariance matrixt of the samples representative of the color we 
wish to segment.The locus of points such that D(z ,  a)  5 Do describes a solid 3-D 
elliptical body [Fig. 6.43(b)] with the important property that its principal axes 
are oriented in the direction of maximum data spread. When C = I, the 3 x 3 
identity matrix, Eq. (6.7-2) reduces to Eq. (6.7-1). Segmentation is as described 
in the preceding paragraph. 

Because distances are positive and monotonic, we can work with the dis- 
tance squared instead, thus avoiding root computations. However, implement- 
ing Eq. (6.7-1) or (6.7-2) is computational.ly expensive for images of practical 
size, even if the square roots are not computed. A compromise is to use a bound- 
ing box, as illustrated in Fig. 6.43(c). In this approach, the box is centered on a, 
and its dimensions along each of the color axes is chosen proportional to the 
standard deviation of the samples along each of the axis. Computation of the 
standard deviations is done onIy once using sample color data. 

Given an arbitrary color point, we segment it by determining whether or not 
it is on the surface or inside the box, as with the distance formulations. However, 
determining whether a color point is inside or outside the box is much simpler 
computationally when compared to a sphericaI or elliptical enclosure. Note that 
the preceding discussion is a generaIizatio11 of the method introduced in Section 
6.5.3 in connection with color slicing. 

EXAMPLE 6.15: The rectangular region shown Fig. 6.44(a) contains samples of reddish col- 
Color image ors we wish to segment out of the color image. This is the same problem we 

in considered in Example 6.14 using hue, but here we approach the problem usin$ 
RGB space. RGB color vectors. The approach followed was to compute the mean vector a 

using the color points contained within the rectangle in Fig. 6.44(a), and then to 
compute the standard deviation of the red, green, and blue values of those sam- 
ples. A box was centered at a, and its dimensions along each of the RGB axes 
were selected as 1.25 times the standard deviation of the data along the corre- 
sponding axis. For example, let a~ denote the standard deviation of the red 
components of the sample points. Then the dimensions of the box along the R- 
axis extended from ( a ,  - 1.250,) to ( a ,  + 1.25aR), where a, denotes the red 
component of average vector a. The result of coding each point in the entire 
color image as white if it was on the surface or inside the box, and as black oth- 
erwise, is shown in Fig. 6.44(b). Note how the segmented region was generalized 
from the color samples enclosed by the rectangle. In fact, by comparing 

'Computation of the covariance matrix of a set or vector samples is discussed in d e t a ~ l  in  Section 11.4. 
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FIGURE 6.44 
Segmentation in 
RGB space. 
(a) Origjnal image 
with colors of 
i~~terest  shown 
enclosed by a 
rectangle. 
(b) Result of 
segmentation in 
RGB vcclor 
space. Cornpaiae 
with Fig. 6.42(h). 

Figs. 6.44(b) and .  6 
yielded results that 
much more closely 

.42(h), we see thar segmentation in the RGB vector space 
are much  more accurate, in the sense that they correspond 
wjth what we would define as "reddish" poinrs in  the origi- 

7- nal color image. A 

.., . 
,... .- ' Color Edge Detection 

As discussed in Chapter. 10, edge detection is an  itnportarlt tool foi- image seg- 
mentation. I n  this  section, we are interested in rhe Issue of computing edges on 
a n  individual-irnage basis versus computing edges directly i n  color vector space. 
The details of edge-based segmentation are given in Section 10.1.3. 
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Edge detectiorl by gradient operators was introduced in Section 3.7.3 in con- 
nection with edge en ha.ncctne~lr. UnfolStuna tely, the gradient discussed in Sec- 
tion 3.7.3 is  not defined for vector quantities. Thus. w e  k n o w  imnlediately that 
computii~g the gradient on individual images and then using the results to form 
a color image will lead to erroneous results. A simple esamplc will help illustrate 
the reason why. 

Consider the Iwo M X M color images (A4 odd) in Fig. 6.45(d) and (11),com- 
posed of the three component images in Figs. 6.45(a) through ( c )  and 6.45(e) 

, through (g), respecrively. If ,  for example, we compute rhe gradient image of 
each of the compo~ient images [see Eq. (3.7-13)j and add  he resulls to form 
the two corresponding RGB gradient images, the value of the gradient a1 point 
[ ( M  + 1)/2. ( M  + l)/2] would be the  same in bolh cases. Intuitively. we would 
expect the gradient at that point to be stronger for the image in Fig. 6.45(d) be- 
cause [he edges ol  he P, G, and B images are in the same direction in  thar  
image, as opposed to tlie image in Fig. 6.4S(h). i n  whicll only two of the edges 
are in the sarile direction. Thus we see from this simple exarrlple that process- 
ing the three individual planes to form a coniposite gradient image can yield er.- 
roneous results. If the problem is one of just detecting edges. then the 
individual-cornponenC approach usually yields acceptable results. If accuracy is 
an issue, kowever, then obviously we need a new definition ofthe gradient ap- 
plicable to vector quantities. We discuss next a method PI-oposed by Di Zcnzo 
119861 for doing this. 

Thc problern at hand is io define the gradient (magnitude and direction) of 
the vector c in Eq. (6.4-2) at any point (x-, y ) .  As was just menrioned,  the gra- 
dicnt we studied in Section 3.7.3 is applicable ro a scalar function f (x, y ) :  i t  is 

FIGURE 6.45 (a)-(c) H. (7. ;lnd B component irnages and (d) resulting RC;B color irnagc, 
(l)-(g) R. C. and B componcu t inrages and (h) resulting RGB color image. 
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not applicable to vector functions. l11e following is one of the various ways in 
which we can extend the concept of a gradient to vector functions. Recall that 
for a scalar function f ( x ,  y),  the gradient is a vector pointing in the direction of 
maximum rate of change o f f  at coordinates ( x ,  y) .  

Let r, g, and b be unit vectors along the R, G, and B axis of RGB color space 
(Fig. 6.7), and define the vectors 

and 

Let the quantities g,,, g,.,, and s ,~ ,  be defined in terms of the dot product of 
these vectors, as follows: 

and 

Keep in mind that R,  G, and 3, and consequently the g's, are functions of x and 
y. Using this notation, i t  can be shown (Di zenzo [1986]) that the direction of 
maximum rate of change of c ( x ,  y)  is given by the angle 

and that the value of the rate of change at ( x ,  y),in the direction of 9,i.s given by 

Because tan (a) = tan ( a  * n),  if O0 is a solution to Eq. (6.7-8), so is Oo- J; n / 2 .  
Furthermore, F ( 8 )  = F ( 8  + T ) ,  so F needs to be computed only for values of 
0 in the half-open interval [0, T). The fact that Eq. (6.7-8) provides two "al- 
ues 90" apart means that this equation associates with each point ( x ,  y )  a pair 
of orthogonal directions. Along one of those directions F  is maximum, and it 
is minimum along the other. The derivation of these results is rather lengthy, 
and we would gain little in terms of the fundamental objective of our current 
djscussion by detailing i t  here-The interested reader should consult the paper 
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by Dj Zenzo ['L9SG] for details. The partial derivatives I-equircd for irnple- 
tnenting Eqs. (6.7-5) througll(6.7-7) call be co~npulecl using, for example, the 
Sobel operators discussed in Section 3.7.3. 

EXAMPLE 6.16: Figure 6.46(b) is the gradie~lt of the image jn Fig. 6.46(a), obtained using tlre 
Edge detection i l l  vector rnefl~od just discussed. Figure 6.4h(c) shows the in~age obrained by corn- 
vector sl)ace. p ~ ~ t i n g  the gradient of each RCiB component image and forming a colnposite 

gradient image by adding the corresponding values of the Ibl-ee component 
images at each cool-d~irate ( x ,  y).The edge detail of the vector gradient image 
i s  more colnplete than the detail in rhe individual-plane gradient  image i n  
Fig. 6.46(c);for example, see the detail around t h e  subject's right eye.7"he itnage 
in Fig. 6.46(d) shows the difference between the two gradient i~nages at each 
point ( x .  y ) .  Tt is important to note thal both approaches vieldtd l asonable  
I-esults. Whether the  extra detail in Fis- 6.46(b) is worth rhe added computa- 
tional burden (as opposed LO implementation of the Sobel operators, which 

a b  
c d 

FIGURE 6.46 
(a) R G B  image. 
(b) Gr;ldie111 
computed irl RGB 
color vector 
space. 
(c) (;r;ldieuts 
computed on a 
per-in~agc hasis 
and then added. 
(d) Di C~I-enct: 
between (h) 
a n d  (c). 
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3 

a b c  

FIGURE 6.47 Compone~rr  qradient i~nagcs of the color iinage in Fig. 6.40. (a) Red camponen[. (b) green corn- 
ponei\c,and (c j  blue cornponeni.These t h ~ e e  images were added and scaled lo prodwe rhe image in Fig. 6.46(c). 

were used to generate t h e  gradient  of the  individual planes) can on ly  be 
detern~ined by the requiremel~ts of a gjven problem. Figure 6.47 shows t h e  
three componenl gradient images, which. when added and scaled, wece used to 
obtain Fig. 6.46(c). 

Noise in Color Images 

The noise models discussed in Section 5.2 a r e  applicable Lo color images. Usu- 
ally. the noise content of  a color image has the s a m e  characteristics in each 
colol- channel ,  but i t  is possible for color channels to be affected d i l f e re~~ t ly  by 
noise. O n e  possibility is For the electronics of a p;lrticular chanrlel  to ~nal-  
I'unction. However, dilferenl noise levels are more likelv to be caused bv dif- 
lercnces in ihe rrlaLivr strength of illun~ination a v a i l a h b  to each oi the color. 
channels. For example, use of a rcd (reject) filler in  a CCD camera will re- 
duce the st~-engtli  of illumination available to the red sensol-. CCD sensors 
are noisier a t  lower levels of illumination. SO the r e s u l t i ~ ~ g  red coinponent of 
an RGB image would tcnct to be noisier than the other  two component images 
i n  this situatio1.r. 

I n  this example we take a brief look at noise in color im;lges and how noise E X A M P L E  6.17: 
carries over wllen conve~~ting from one coloi. model ro anothern. Figures 6.4S(a) Illustration or tllc 

through (c) show the three color plailes of a n  RGB iinags corrupted by Gauss- effects of 
convrrtil-lg noisy 

iail noise, and Fig. 6.4R(d) is the  cornposits RGB image. Note 1ha1 fine-grain R G R  in,ngs 
noise such as this tends to be less visually noticeable in a color image than it i s ,  HSI.  
in a monochrome image. Figures 6.49(a) thl-ough (c) show the result of con- 
verting 11ic RGH image in Fig. 6.4S(d) to HSI. Compare these results with t h e  
HSI components of rhe 01-iginal iinilge (Fig. 6.39) and note how significantly 
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FIGURE 6.48 
(a)-(c) Red, 
green, and blue 
component 
images corrupted 
by additive 
Gaussian noise of 
mean 0 and 
variance 800. 
(d) Resulting 
RGB image. 
[Compare (d) 
with Fig. 6.46(a).] 

a b c  
FIGURE 6.49 HSI components of the noisy color imagc in Fig. 6.4X(d). (a)  Hue. (b) Saturat ion.  (c) Jntensity. 

- 



degraded rhe  hue and sarurarion components of the noisy image are.-Illis is  due 
to the nonlinearity of the cos and mill operations in Eqs. (6.2-2) and (6.2-3), re- 
spectively. On the other hancl, the intensity cornpoilent in Fig. 6.49(c) is slighl- 
ly  stnoolller than  any of the lhree noisy RGB componel~t in~ages.This i s  due  lo 
the fact t h a t  (he intensity image i s  the average of [he RGB images, as indicat-  
ed in  Eq. (6.2-4). (Recall the discussion in Section 3.4.2 r q a r d i n g  the lact that 
jrnase averaging reduces 1-andoill noise.) 

I n  cases when.say. only one RGB channel is affected by noise,conversion to 
HSI spreads the noise to all HS1 component images. Figure 6.50 shows an ex- 
ample. Figure 6.50(a) shows a n  RGB image whose green image is corrupted by 
salt-and-pcpper noise. in which [he probability oi either salt or pepper is 0.05. 
?'he HSJ colnponcnt i r~azes in Figs. 6.50(b) through (d)  show clearly haw the 
noise spread from the green RGB channel to all the HSI images. Of course, this 
is not unexpected because conlputatjot~ of the IiSI components makes use of 
all KGB componet~ ts, as shown in Sectio~l 6.2.3. rn 

FIGURE 6.50 
(a )  R G B  image 
with green plane 
corrupted by salt- 
and-pepper noise. 
(b) Hue 
component of 
HSI image. 
(c) Saturation 
component . 
( d )  Intensity 
component. 



342 Chapler 6 a Color Jmage Processing 

As is true of the processes we have  discussed thus far, filtering of full-color 
images can be carried out on a per-image basis or directly in color vector space, 
depending on the process. For example, noise reduction by using an  averaging 
filter is the process discussed in Section 6.6.1, which we know gives the same re- 
sult in  vector space as i t  does i f  the component images are processed indepen- 
dently.,Other filters, however, cannot be formulated in this manner. Examples 
include the class of order statistics filters discussed in Section 5.3.2. For instance, 
to implement a median filter in color vector space it is necessary to find a scheme 
for ordering vectors in a way tha t  the median makes sense. While this was a 
simple process when dealing with scalars, the  process is considerably more com- 
plex when dealing with vectors. A discussion of vector ordering is  beyond the 
scope of our discussion here, but the book by PIataniotis and Venetsanopoulos 
[2000] is a good reference on vector ordering and some of the filters based on 
the ordering concept. 

Color Image Compression 

Since the numbcr of bits required to represent color is typically three to four 
times greater than the  number employed in the representation of gray levels, 
dnta compression plays a central role in the storage and transmission of color 
images. With respect to the RGB, CMY(K), and HSI images of the previous 
sections, the dntrr that are the object of any compression are the components of 
each color pixel (e.g., the red, green, and blue componetlts of the pixels in an  
RGB image); they are the means by which the color information is conveyed. 
Con~pression is the process of reducing or eliminating redundant andlor irrel- 
evant data. Although compression is the topic o l  Chapter 8, we illustrate the 
concept briefly in the following example using a color image. 

EXAMPLE 6.18: Figure 6.51(a) shows a 24-bit RGB full-color iinage of an iris in which 8 bits 
A color image each are used to represent the red, green, and blue components. Figure 6.51(b) 
compression was reconstructed fiom a compressed version of the image in (a) and is, in fact, 
example. 

a compressed and subsequently decompressed approximation of it. Although 
the compressed image is not directly displayable-it must be decompressed 
before input to a color monitor-the compressed image contains only 1 data 
bit (and thus 1 storage bit) for every 230 hits of data in the original image. As- 
sunling that the compressed image could be transmitted over, say, the Internet, 
in 1 minute, transmission of the original image would require almost 4 hours. 
Of course, the transmitted data would have to be decompressed for viewing, 
but the decolnpressioll could be done in a matter of seconds. The JPEG 2000 
compression algorithm used to generate Fig. 6.51 (b) is a recently introduced 
standard that is described in detail in Section 8.6.2.Note that the reconstruct- 
ed approximation image is slightly blurred. This is a characteristic of many 
lossy compression techniquks; jt can be reduced or eliminated by altering the 
level of compression. 
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Summary 
The material in this chapter is an introductjon to color image processing and covers top- 
ics selected to give the reader a solid background in the techniques used in this branch 
of i~nage processing. Our treatment of color fundamentals and color models was prepared 
as foundation material for a field that is in its own right widc in technical scope and 
arcas of application. In  particular, we focused on color models thal we felt are no1 only 
useful in digital image pr.wessing but  would also provide the tools necessary for further 
stucly in this area oC color image processing.The discussion of pseudocolor and full-wlor 
processing on an i~idividual image bash provides a tie to techniques that were covered 
in some detail in  Chapters 3 through 5 .  

-The lnarer ial  on  color vector spaces is a departure from melhods that we had stud- 
ied before and highliglils some in~por~ant  diffcrcnces between gray-scale and full-color 

a b  
c d 

FIGURE 6.51 
Color image 
compression. 
(a) Original RGB 
image. (b) Resulr 
of conlpressjng 
and 
decompressing 
the image i n  (a). 
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processing. Ji terms of techniques, the areas of direct color vector processing are nu- 
merous and include processes such as median and other order filters, adaptive and mor- 
phological filters, image restoration, image compression, and many others. These 
processes are not equivalent to color processing carried out on the individual component 
images of a color image.The references in the followjng section provide a pointer to fur- 
ther results in this field. 

Our treatment of noise in color images also points out that the veclor nature of the 
problem, along with the fact that color images are routinely transformed from one work- 
ing space to another, has implications on tbe issue of how to reduce noise in these im- 
ages. Jn some cases, noise filtering can be done on a per-image basis, bur orhers, such as 
median filtering, require special treatment to reflect the fact that color pixels are vector 
quantjties, as mentioned in the previous paragraph. 

Although segmentation is the topic of Chapter 10 and image data compression is the 
topic of Chapter 8, we gained the advantage of continuity by introducing [hem here in 
the context of color image processing. As will become evident in subsequent discussions, 
many of the techniques developed in those chapters are applicable to the discussion in 
this  chapter. 

References and Further Reading 
For a comprehensive reference on the science of color. see Malacara [2001]. Regarding 
the physiology of color,see Gegenfurtner and Sharpe [1999].These two references, along 
with the early books by LValsh' 119581 and by Kiver [1965], provide ample supplernen~ary 
material for the discussion in Section 6.1. For hr ther  reading on coIor models (Section 
6.2), see Fortner and Meyer [1997], Poynton [1996], and Fairchild [1998]. For a detailed 
derivation of the HSI model equations in Section 6.2.3 see the paper by Smith [I9781 or 
consult the book web site.The topicol pseudocolor (Sechon 6.3) 1s closely tied lo the gen- 
eral area of data visualization Wolff and Yaeger [I9931 is a good basic reference on the  
use o i  pseudocolor.The book byThorel1 and Smith [I9901 also is of interest. For a dis- 
cussion on the vector representation of color signals (Secfjon 6.4),  see Plataniotis and 
Venctsanopoulos [2000]. 

References for Section 6.5 are Benson [1985], Robertson [ I  9771, and CIE [I 9783. See 
also the classic paper by MacAdarn [1942]. The material on color image filtering (Sec- 
tion 6.6) IS based on the vector formulation introduced in Section 6.4 and on our dis- 
cussion of spatial filtering in Chapter 3.  Segnlentatio~l of color images (Section 6 7) has 
been a topic of much attention during the  past ten years.The papers by Liu and Yang 
[I9941 and by Shafarenko et al. [I9981 are representative of work in this field. A special 
issue of Ihe IEEE Transactions on h u g e  Processing I19971 also js of inrerest. T i e  dis- 
cussjon on color edge detection (Section 6.7.3) is from D j  Zenzo [1986].Tbe book by Pla- 
tanjotis and Venetsanopoulos [2000] does a good job of summarizing a variety of 
approaches to the segmentation of color images The discussion In Secrion 6.8 is based 
on the noise models introduced in Section 5.2. References on image compression (Sec- 
tion 6.9) are listed at the end of Chapter 8. 

Scc in\& Irmc mvsr 

Detailed solurions to the Problems 
prohlerns marked with a 
s b r  can be found in lire 

6.1 Give the percentages of red (X),  green ( Y ) ,  and blue ( 2 )  light rcquired lo gen- 
book web si le.  T h e  si le erate the point labeled "warm white'' in Fig. 6.5. 
also contalns suggested 
projects based on the ma- + 6.2 Consider any two valid colors c ,  and c2 with coordinates ( 1 , .  y , )  and ( x 2 .  y2 )  in 
terra1 in IIIIS chapter. the chromaticity diagram of Fig. 6.5. Derive the necessary general expression(s) 



a Problems 345 

for compu~iag the re la tivr percentages of  colors c ,  and c2 composing a given color 
that is k n o w n  lo l ie  oil thz s1ratgl)t line joining these two colors. 

6.3 Co~lsider a n y  three valid colors c , .  c.,, and c, with coordinates ( x ,  , yl). ( x , ,  y,), and  
(s?. y,) in the chrornalicity diagram of Fig. 6.5. ~ e r i v e  the necessary general ex- 
pressiori(s) lor conlpuling the relat ive percentages of c , ,  c,, arid c3 composing a 
given color tha t  is known to lie wirhin the ~ ~ i a n g l e  \vl~ose vertices are a t  the 
coordinates of c , .  c 2 ,  and c,. 

* 6.4 111 ar! automated asseunbly application, three classes of parts are to be color coded 
it1 oldel to sirnplify detection. However, only a monochromeTV camera is avail- 
able to acquire digital images. Propose a technique for using this camera to detect 
the three different colors. 

6.5 I n  a simp[e RGB image, the R, G ,  and B component images have  [he horizontal 
intensiiy profiles shown in thc t'ollowing diagram. What color would a person see 
in ~ I l c  iniddle column ol  this image? 

* 6.6 Sketcli the R G  B components of the following inlageas they would appear on a 
 non no chrome mor,itor. All colors arc at maximum intensity and s a t u r a t i o ~ .  It1 

working I his problem. consider the middle gray border as part of the  image. 

6.7 How many  different shades of g ray  arc there in a color KGB system in which 
each RGB image is an 8-bit image'? 

6.8 Consider tlic RGB cotor cube shown in  Fig 6.8. and ansnrer each of the following: 
* (a) Dcscribe how the gray levels va ry  in the R ,  G,  and  R primary irnnges thaL 

make up the Pront face of  the color cubc. 

(b) Suppose thar  we replace every color in the RGB cube by its CMY color.This 
new cube is  displayed on an RGB monitor. Label with a color n a m e  the eight 
vertices ot  the new cube that you would see on the screen. 
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(c) CVt~at can you say about (he colors on the  edges OF the RGB c o l o ~  cube se- 
garding saturation? 

6.9 (a) Sketch t h e  CMY components of the image in PI-ohlem 6.6 as they would ap- 
peat on a monochrome nlonilor. 

(h) If the CMY components skelched in (a) are fed into lhe red.green,and blue 
inputs of a color inonitor, respcclively, describe t-he resulting image. 

* 6.10 Dcrive the CMY intensity mdpping function of Ecl. (6-5-6.) from i ts  RGB coun- 
terpart in Eq. (6.5-5). 

6.11 Consider the ei~tirc 216 safe-color array shown in Fig. 6.10(a). Label cach cell hy 
its (row. column) designation, s o  that the top left cell is ( I .  1)  and the rightmost 
bottom ccll is (12, 18). A1 which cells will you find 

(a) The purest green? 

(b) The purest blue? 

* 6.12 Skelch the HSI components of the image in Problem 6.6 as they would appear on 
a tnonochrome monitor. 

6.13 P1.opose a rncttrod io i  generaling a colol- band simila~. to the one show11 in the 
zoomed section entitled Visible Sprctr-nnz in Fig. 6.2. Notc lhaI the band starts at 
a dark purple on  the left arid proceeds Loward purc I-ed an the riglit. (Hinr: Use 
the HSI color nlodel.) 

Jr 6.14 Propose a method for generating a color version of t h e  image sllown diagram- 
matically in Fig. 6.13(c). Givc  you^ answer in rhe form of a [low char[. Ass,ulne that 
the  intensity value js fixed and given. (Hint: Use the HSI color model.) 

6.15 Consider the following image colnposed o l  solid color squares. For discussing 
your answer, choose a gray scale consisting of eight shades of gray, 0 lhrougli 7, 
where O is black and 7 is white. Suppose that the image is conve1,tecl to HS1 color 
space. In answering the following questions, use specific numbers for the grade 
shades if they make sense. Otlierwise, the relationships "same as,""lighter than," 
OJ' "darker than" are sufficient. If you cannot assign a specific gray level or one 
of these relationships to the image you are discussing, give the reason. 

(a) Sketch the hue image. 

(b) Sketch the saturation image. 

(c) Sketch the intensity image. 

Magenta 

Green 

Cyn n Yellow n 
White 



6.16 The following 8-bit images are (left ro right) the H, S, and I co~nporlent images 
f r o m  Fig. 6.16. The numbers indicate gray-level values. Answer the t'oll owi~ig ques- 
tions, explaining the basis for your answer in each. If it is not possible to answer 
a question based on the given information, state why you cannot d o  so. 

* (a) Give the gray-level valuzs of all regions in rhe hue image. 

(b) Give the gray-level value of all regions in t h e  saturation image. 

(c) Give the gray-level values of all regions in the in tens i ty  image. 

6.17 Rzler to Fig. 6.27 in answering the following: 

(a) Why does the image in Fig. 6.27(f) exhibit predorni~lantly red tones'? 

(b) Suggest an  automated procedure for coding rhe warer in Fig.6.27 in :i bl-ighr- 
blue color. 

(c) Suggesl a n  automated procedure for coding the pi.edotninantly man-made 
components in a bright yellow color. [Hin l :  Work with Fig. 6.27(1').1 

* 6.18 Show t h a t  the saluration component of the  complement of a color image canno t  
be computed from the saturation component of the  input image alone. 

6.19 Explain the shape of t h e  hue transformation function for the complement 
nppraximation in Eg.  6.33(b) using the HSI color model. 

.k 6.20 Derive the CMY cransforrnations to generate t h e  compleme~i t of a color image. 

6.21 Draw the general shape of the transformation functions used to correct excessive 
contrast in the RGB color space. 

k6.22 ,4ssume that the monilor and printer of  all imaging system are imperfectly cali- 
brated.An image thal looks balanced on the monitor appears yellowish in print. 
Describe general transformations that might correct the imbalance. 

6.23 Compute the L * u * ~ ' ~  components of the image in Problem 6.6 assuming 

This matrix equation defines the tristimulus values of t h e  colors generated hv 
slandard National Television System Committee (NTSC) c o l o ~  T V  phosphors 
viewed u n d e r  0 6 5  standard jllurninaLion (Benson [1985J). 

* 6.24 How would you implement the color equivalenr of gray scale histogram match- 
ing (specification) from Section 3.3.2? 

6.25 Consider the following 500 X 500 RGB color image-where the squares arc purc 
red, green, and blue. 
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(a) Suppose that we convert this image to HSI, blur the H component image 
with a 25 X 25 averaging mask, and convert back to RGB. What would the 
result look like? 

(b) Repeat, blurring only the saturation component this time. 

6.26 Show that Eq. (6.7-2) reduces to Eq. (6.7-1) when C = I, the identity matrix. 

6.27 Sr (a) With reference to the discussion in Section 6.7.2, give a procedure (in flow 
chart form) for determining whether a color vector (point) z is inside a cube 
with sides W, centered at an average color vector a. Distance computations 
are not allowed. 

(b) This process also can be implemented on an image-by-image basis if the box 
is lined up with the axes. Show how you would do it. 

6.28 Sketch the surface in RGB space for the points that satisfy the equation 

Green 

Blue 

1 
D(z ,  a) = [ ( z  - a)TC-l(z - a)]? = Do 

Red 

Green 

where Do is a specified nonzero constant. Assume that a = 0 and that 

6.29 Refer to Section 6.7.3. One might think that a logical approach for defining the 
gradient of an RGB image at any point ( x ,  y )  would be to compute the gradient 
vector (see Section 3.7.3) of each component image and then form a gradient vec- 
tor for the color image by summing the three individual gradient vectors. Unfor- 
tunately, this method can at times yield erroneous results. Specifically, it is possible 
for a color image with clearly defined edges to have a zero gradient if this method 
were used. Give an  example of such an image. (Hin t  Set one of the color planes 
to a constant value to simplify your analysis.) 
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Wavelets and, 
Multiresolu tion Processing 

All this time, the guard was looking at her, first 

through a telescope, then through a microscope, and 

then through an opera glass. 

Lewis Carrol, Through the Looking Gloss 

Preview 
Although the Fourier transform has been the mainstay of transform-based 
image processing since the late 1950s, a more recent transformation, called the 
wavelet transform, is now making it even easier to compress, transmit, and an- 
alyze many images. Unlike the Fourier transform, whose basis functions are si- 
nusoids, wavelet transforms are based on small waves, called wavelets, of varying 
frequency and limited duration. This allows them to provide the equivalent of 
a musical score for an image, revealing not only what notes (or frequencies) to 
play but also when to play them. Conventional Fourier transforms, on the other 
hand, provide only the notes or frequency information; temporal information 
is lost in the transformation process. 

In 1987, wavelets were first shown to be the foundation of a powerful new 
approach to signal processing and analysis called multiresolution theory (Mallat 
[1987]). Multiresolution theory incorporates and unifies techniques from a vari- 
ety of disciplines, including subband coding from signal processing, quadrature 
mirror filtering from digital speech recognition, and pyramidal image processing. 
As its name implies, multiresolution theory is concerned with the representa- 
tion and analysis of signals (or images) at more than one resolution.The appeal 
of such an approach is obvious-features that might go undetected at one reso- 
lution may be easy to spot a t  another.Al.though the imaging community's inter- 
est in multiresolution analysis was limited until the late 1980s, it is now difficult 
to keep up with the number of papers, theses, and books devoted to the subject. 
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In  this chapter, we examine wavelet-based transformations From a multires- 
olution point oE view. Although they can be presented in othei- ways, this ap- 
proach siinplifies both the mathematics a n d  physical interpretations. We begin 
with a n  overview of imaging techniques \ha{ influenced the  formulation of mul- 
tiresolution theory. Our objective is to introduce the theory's fundamental con- 
cepts within rhe context of image processing atld sjmultaneously provide a brief 
historical perspective of the  method and its ayplication.The bulk of the chap- 
ter is focused on the  development of a mulliresolutlon-based toolkit for the 
representation and  processing of images. To demonstrate the usefulness of the 
toolkit, examples ranging from image coding to noise removal and edge detcc- 
lion are provided. In rhe next chapter, wavelels will be used for image conl- 
pt.ession, an application in which they have received considerable attention. 

Background 

When we look a t  images, generally we see connected regions of similar texture 
and gray level that combine to form objects. Tf the objects a re  small in size or 
low in contrasl, wc normally examine them a t  high resolutions; if they are large 
in size or high in contrast, a coarse view is all that is requirccl. If both small and 
large objects-or low and high corltrast objects-are present simultal~eously, i t  
can be advantageous to study t l ~ e ~ n  at several resolutions.This, of course, is the 
fundamental motivation for rnulrjresolution processing. 

From a marhematical viewpoint, images are two-dimensional arrays of inten- 
sity values with locally varying statistics that result from different cort~binatio~~s 
of abrupt features like edges and contrasting homogeneous regions. As illustrat- 
ed in Fig. 7.1-an image that will be examined repeatedly in the rGemajnder of the 

FIGURE 7.1 A 
n a t u ~ a l  image a n d  
its local histogram 
variations. 
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section-even first-order statistics vary significantly from one part of an image to 
another. They defy simple statistical modeling over the entire image. 

7.7.1 Image Pyramids 
A powerful, but conceptually simple structure for representing images at  more 
than one resolution is the image pyramid (Burt and Adelson [1983]). Original- 
ly devised for machine vision and image compression applications, an  image 
pyramid is a collection of decreasing resolution images arranged in the shape 
of a pyramid. As can be seen in Fig. 7.2(a), the base of the pyramid contains a 
high-resolution representation of the image being processed; the apex contains 
a low-resolution approximation. As you move up the pyramid, both size and 
resolution decrease. Since base Ievel 1 is size 2 /  X 2J or N X N ,  where 
J = Log, N, intermediate level j is size 21 X 25, where 0 5 j 5 1. Fully populated 
pyramids are composed of J + 1 resolution levels from 2J x 2/ to 2' x 2") but 
most pyramids are truncated to P + 1 levels, where j = J - P , .  . .  , J - 2, 
J - 1, J and 1 r P 5 J.That is, we normally limit ourselves to P reduced res- 
olution approximations of the original image; a 1 X 1 or single pixel approxi- 
mation of a 512 X 512 image, for example, is of Little value. The total number 
o€  elements in a P + 1 level pyramid for P > 0 is 

figure 7.2(b) shows a simple system for constructing image pyramids. The 
level j - 1 approximalion output is used to create approximntion pyramids, 

%l' 
'B'I 

FIGURE 7.2 (a) A 
pyramidal image 
s[ructure and 
(b) system block 
diagram for 
creating it .  

Ltvel j 
Lcvcl)  prediction 

Input Image residual 
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which contain one or more approximations of the original image. Both the orig- 
inal image, which is at the base of the pyramid, and its P reduced resolution ap- 
proximations can be accessed and manipulated directly. The level j prediction 
residual output of Fig. 7.2(b) is used to buildpredicrion residualpyramids.These 
pyramids contain a low-resolution approximation of the original image at level 
J - 9 and information for the construction of P higher-resolution approxi- 
mations at the other 1evels.The information at level j is the difference between 
the level j approximation of the corresponding approximation pyramid and an 
estimate of that approximation based on the level j - 1 prediction residua[. 
This difference can be coded-and therefore stored and transmitted-more 
efficiently than the approximation. 

As the block diagram of Fig. 7.2(b) suggests, approximation and prediction 
residual pyramids are computed in an iterative fashion. A P + 1 level pyramid 
is built by executing the operations in the block diagram P times. During the first 
iteration or pass, j = J and the original 2' x 2' image is applied as the level J 
input irnnge.This produces the bvel J - 1 approxim,ution and level Jpredicrion 
residual results. For passes j = J - 1, J - 2, ... , J - P + 1 (in that order), 
the previous iteration's level j - 1 approximarion output is used as the input. 
Each pass is composed of three sequential steps: 

1. Compute a reduced-resolution approximation of the input image. This is 
done by filtering the input and downsampling (i.e., subsampling) the filtered 
result by a factor of 2. A variety of filtering operations can be used, includ- 
ing neighborhood averaging, which produces a mean pyramid, lowpass Gauss- 
ian filtering (see Section 4.2.4), which produces a Gaussian pyramid, ox no 
filtering, which results in a subsamplingpyrarnid.The quality of the generated 
approximation, labeled the level J - 1 approximation in fig. 7.2(b), is a func- 
tion of the filter selected. Without the filter, aliasing can become pronounced 
in the upper levels of the pyramid, as the subsampled points may not be good 
representatives of the areas from which they were taken. 

2. Upsample the output of the previous step-again by a factor of 2-and fil- 
ter the result.This creates a prediction image with the same resolution as the 
input. By interpolating intensities between the pixels of the Step 1 output, 
the interpolation filter determines how accurately the prediction approxi- 
mates the input to Step 1.  If the interpolationfilter is omitted, the prediction 
is an upsampled version of the Step I output and the blocking effects of 
pixel replication may become visible. 

3. Compute the difference between the prediction of Step 2 and the input to 
Step I .  This difference, labeled the level j prediction residual, can be later 
used to reconstruct progressively the original image (see Example 7.1). In 
the absence of quantization error, a prediction residual pyramid can be 
used to generate the corresponding approximation pyramid, including the 
original image, without error. 

Executing this proceduie P times produces two intimately related P + 1 level 
approximation and prediction residual pyramids. The level j - 1 approximation 
outputs are used to populate the approximation pyramid;-the levd j prediction 
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residilal outputs are placed in the prediction residual pyramid. If a prediction 
residual pyramid is not needed, Steps 2 and 3, together with the upsampler, 
interpolationfjlter, and summer of Fig. 7.2(b), can be omitted. 

S Figure 7.3 shows one possible approximation and prediction residual pyramid EXAMPLE 7.1: 
for the vase of Fig. 7.1. The approximation pyramid in Fig. 7.3(a) is a Gaussian Gaussian and 

pyramid. Filtering was performed in the spatial domain using a 5 x 5 lowpass Laplacian 
pyramids. 

Gaussian convolution kernel of the type depicted in Fig. 4.9(c) of Section 4.2.4. 
As can be seen, the resulting pyramid contains the original 512 X 512 resolu- 
tion image (at its base) and three low-resolution approximations (of resolution 
256 X 256,128 X 128, and 64 X 64).That is, P = 3 and the pyramid has been 
truncated to four levels-levels 9,8,7, and 6 out of a possible log, (512) + I or 
10 levels. Note the reduction in detail that accompanies the lower resolutions 
of the pyramid. The level 6 (i.e., 64 X 64) approximation is sujtable for locating 
the window stiles, for example, but not for finding the philodendron's stems. In 
general, a pyramid's lower-resolution levels can be used for the analysis of large 

a 
.b 

FIGURE 7.3 Two 
image pyramids 
and their 
statistics: (a) a 
Gaussian 
(approximation) 
pyramid and (b) a 
Laplacian 
(prediction 
residual) pyramid. 
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FIGURE 7.4 (a)  A 
two-band filter 
bank for one- 
din?eilsional 
subband coding 
and decoding, and 
(b) its spectrum 
splitting 
properties. 

structures or overall image context; its high-resolution images are appropriate for 
analyzing individual object characteristics. Such a coarse to fine analysis strategy 
is particularly useful in pattern recognition. 

The Laplacian pyramid in Fig. 7.3(b) contains the prediction residuals need- 
ed to compute its Gaussian counterpart in 7.3(a). To build the Gaussian pyramid, 
we begin with the Laplacian pyramid's level 6 64 x 64 approximation image, 
predict the Gaussian pyramid's level 7 128 x 128 resolution approxitnation (by 
upsampling and filtering), and add the Laplacian's level 7 prediction residual. 
This process i s  repeated using successively computed approximation images ,, 
until the original 512 x 512 image is generated. Note that the firsl-order sta- 
tistics of the prediction residual images in the Laplacian pyramid are highly 
peaked around zero. Unlike their Gaussian counterparts, these images can be 
highly compressed by assigning fewer bits to the more probable values (see the 
variable length codes of Section 8.1.1). Finally, we note that the prediction resid- 
uals in Fig. 7.3(b) are scaled to make the smaller prediction errors more visible; 
t he  prediction residual histogram, however, is based an prescaled residuals, with 
level 128 representing zero error. A 

7.1 .? Subband Coding 
Another important imaging technique with ties to rnultiresolution analysis is 
subbarad coding. In subband coding, an image i s  decomposed into a set of band- 
limited components, called subbands, which can be reassembled to reconstruct 
the original image without error. Originally developed for speech and image 
compression. each subband is generated by bandpass filtering the input. Since 
the bandwidth of the resulting subbands is smaller than that of the original 
image, the subbands can be downsampled without loss of information. Recon- 
struction of the original image is accomplished by upsampling, filtering, and 
summing the individual subbands. 

Figure 7.4(a) shows rhe principal components of a two-band subband coding 
and decoding system.The input of the system is a one-dimensional, band-limited 
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discrete-time signal x ( n )  for n = O,1,2,.  . . ; the output sequence, +?(n), is formed 
through the decomposition of x ( n )  into y,,(n) and y ,  ( n )  via analysisfilters h o ( n )  
and h ,  ( n ) ,  and subsequent recombination via synthesis filters g o ( n )  and g ,  ( n ) .  
Note that filters h,,(n) and h ,  (n) are half-band digilal filters whose idealized 
transfer characteristics, H,, and H I ,  are shown in Fig. 7.4(b). Filter Ho is a low- 
pass filter whose output is an approximation of x ( n ) ;  filter H,  is a highpass fil- 
ter whose output is t h e  high frequency or detail part of x ( n ) .  All filtering is 
performed in the time domain by convolving each filter's input with its impulse 
response-its response to a unit amplitude impulse function, S ( n ) .  We wish to 
select ho(n) ,  h l ( n ) ,  g o ( n ) ,  and g ,  ( n )  (or, alternately H,, H,, Go, and G, )  so that 
the input can be reconstructed perfectly. That is, so that i ( n )  = x ( n ) .  

The 2-transform, a generalization of the discrete Fourier transform, is the 
ideal tool for studying discrete-time, sampled-data systems like the one in 
Fig. 7.4(a). The 2-transform of sequence x ( n )  for n = 0, 1,2 , .  . . is 

where z is a complex variable. [If el" is substituted for z, Eq. (7.1-1) becomes the 
discrete Fourier transform of x ( n ) ] .  Our interest in the Z-transform stems from 
the ease with which it handles sampling rate changes. Downsampling by a fac- 
tor of 2 in the time domain corresponds to the simple Z-domain operation 

where the double arrow indicates that the expressions on the  left and right form 
a 2-transform pair. In a similar manner, upsampling-again by a factor of 2- 
is defined by the transform pair 

{r(n0/2) n = 0 . 2 , 4 , * . .  
x u P ( n )  = * XUP(z) = x(z2). (7.1-3) 

otherwise 

If sequence x ( n )  is downsampled and subsequently upsampled to yield i ( n ) ,  
Eqs. (7.1 -2) and (7.1-3) combine to yield 

where i ( n )  = ~ - ' [ 2  (z)] is the resulting downsampled-upsampled sequence. 
The X ( - z )  term in this equation is the 2-transform of an afinsed or modltlared 
version of sequence x ( n ) .  Its inverse Z-transform is - 

2 - ' [ x ( - z ) ]  = ( - l ) " x ( n ) .  (7.1-5) 

With this brief introduction to the 2-transform, consider again the subband 
coding and decoding system of Fig. 7.4(a). Ln accordance with Eq. (7.1-4), we can 
express the system's output as 
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I x ( z )  = ~ o ( z ) [ H ~ ( z ) X ( z )  + H O ( - ~ ) X ( - ~ ) ]  (7.1-6) 

where, for example, the output of filter ho(n) in Fig. 7.4(a) is defined by the 
transform pair 

As with Fourier transforms, convolution in the time (or spatial) domain is 
equivalent to multiplication in the 2-domain. Rearranging terms in Eq. (7.1-6), 
we then get 

where the second component-by virtue of the fact that it contains the -z 
dependence-represents the aliasing that is introduced by the downsampling- 
upsampling process. 

For error-free reconstruction of the input, i ( n )  = x ( n )  and 2 ( 2 )  = X ( z ) .  
Thus, we impose the following conditions: 

Equation (7.1-9) eliminates aliasing by forcing the second term of Eq. (7.1-8) to 
zero; Eq. (7.1-10) eliminates amplitude distortion by reducing the first term to 
X ( z ) .  Both can be incorporated into the single matrix expression 

where analysis modulation matrix W,,(z) is 

Assuming H,,(z) is nonsingular (i-e., it has a common left and right inverse), 
we can transpose Eq. (7.1-11) and left multiply by inverse (H:(z))-' to get 

where d e t ( ~ , ( z ) )  denoies the determinate of H,,,(z). 
Equations (7.1-9) through (7.3 -13) reveal several important characteristics of 

perfect reconstruction filter banks. Matrix Eq. (7.1-13), for instance, tells us that 
GI (2) is a function of HO(-z) ,  while Go(z)  is a function of H, (-z). The analysis 
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and synthesis filters are cross-modulated. That is, diagonally opposed filters in 
the block diagram of Fig. 7.4(a) are functionally related by -2 in the 2-domain. 
For finite impulse response (FIR) filters, the determinate of the modulation 
matrix is a pure delay, i-e., d e t ( ~ , ( z ) )  = ruz -(2k+ 1 )  (see, for example, Vet terli 
and Kovacevic [1995]). Thus, the exact form of the cross-modulation is a func- 
tion of a. The z - ( ~ ~ + ' )  term can be considered arbitrary since it is a shift that 
only changes the overall delay of the filter. Ignoring the delay, letting a = 2, 
and taking the inverse 2-transform of Eq. (7.1-13), for instance, we get 

If a = -2, the resulting expressions are sign reversed: 

Thus, FIR synthesis filters are cross-modulated copies of the analysis filters- 
with one (and only one) being sign reversed. 

Equations (7.1-9) through (7.1-13) can also be used to demonstrate the 
biorthogonality of the analysis and synthesis filters. To do this, let P(  z) be the 
product of the lowpass analysis and synthesis filter transfer functions. Substi- 
tuting for Go from Eq. (7.1-13), we get 

Since d e t ( ~ , , ( e ) )  = -det(~,(-z)), product G l ( z ) H , ( z )  can be similarly de- 
fined as 

Thus, G , ( z ) H , ( z )  = P ( - z )  = Go(-z)&(-z) and Eq. (7.2-10) becomes 

Taking the inverse 2-transform, we see that 

where, as usual, impulse function S(n) is 1 if n = 0 and 0 otherwise. Since the 
odd indexed terms cancel, additional simplification 

xg l , (k )ho(2n  - k )  = (go(k) ,  h0(2n - k ) )  = 6(n) .  (7.1-19) 
k 

'The vector inner product of sequences x ( n )  and y(n) is (x. y)  = x*(n)y(n), where the * denotes the 
I 

camplex conjugate operation. Ii x ( n )  and y(n) are real.(x, y )  = ( y ,  x) .  
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By starting over from Eqs. (7.1-9) and (7.1-10) and expressing Go and H,, as a 
function of G, and HI, we can also show that 

and 

which, in combination with Eq. (7.1-19), establishes the more general expression 

(12,(2n - k), ~ ( k ) )  = S(i - j )S(n) ,  i, j = (0, I}, (7.1-21) 

Filter banks satisfying t h s  condition are called biorthogonal. Moreover, the 
analysis and synthesis filter impulse responses of all two-band, real-coefficient, 
perfect reconstruction filter banks are subject to the biorthogonality constraint. 
Example bioxthogonal, FIR filters include the biorthogonul spline family 
(Cohen, Daubechies, and Feauveau [I99211 and the biofhogonal coiflet fami- 
ly (Tian and Wells [1995]). 

Table 7.1 gives three general solutions to Eqs. (7.1-9) and (7.1-10). While 
each satisfies the biorthogonality requirement of Eq. (7.1-21), they are gener- 
ated in different ways and define unique classes of perfect reconstruction filters. 
For each class, a "prototype" filter is designed to a particular specification and 
the  remaining filters are computed from the  prototype. Columns 1 and 2 of 
Table 7.1 are classic results from the filter bank literature-namely, quadrature 
mirror filters (QMFs) (Croisier, Estaban, and Galand [1976]) and conjugate 
quadrature filters (CQFs) (Smith and Barnwell (19861). The filters in column 
three, which are later used in the development of the fast wavelet transform 
(see Section 7.4), are called orthonorrnal.They move a step beyond biorthogo- 
nality and require 

which defines orthonormality for perfect reconstruction filter banks. Note that 
in the expression for G,(z) in row three of the table, 2K denotes the length or 
number of coefficients (i.e., filter taps) in each filter. As can be seen, GI is re- 

ime rever- lated to lowpass synthesis filter Go by modulation (see Eq. (7.1-5)), t' 
sal, and odd shifti. In addition, both No and H ,  are time-reversed versions of the 
corresponding synthesis filters, Go and G, ,  respectively. Taking the inverse 
2-transform of the appropriate entries from column 3 of Table 7.1, we get that 

gl (n)  = (-l)"go(2K - 1 - n )  (7.1-23) 

h,(n)  = g,(2K - I - n) ,  i = {0,1) 

where ho, )al,  go, and g ,  are the impulse responses of the defined orthonormal 
filters. Examples include the Smith and Barnwell filter (Smith and Barnwell 

'''The 2-transform pairs for time reversal and shift are x(-n)  * X ( Z - ' )  and x ( n  - k) & Z - ' ~ ( z ) ,  
respectively. 
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Filter QMF CQF Orthonormal 
TABLE 7.1 
Perfect 
~~econstruclion 
filter families. 

4~47-4 ~ ( r n  nI (along m )  
I- 

Columns 

FIGURE 7.5 A 
two-dimensional, 
four-band filter 
bank for subband 
image coding. 

, ,  . 

[1984]), Daubechies filters (Daubechies [1988]), and the Vaidyanathan and 
Hoang filter (Vaidyanathan and Hoang [1088]). 

The one-din-rensional filters in Table 7.1 can be used as two-dimensional sep- 
arable filters for [be processing of 1mages.A~ can be  seen in Fig. 7.5, separable 
filters are first applied in one dimension (e.g., vertically) and then in the other 
(e.g., horizontally). Moreover, downsampling is performed i n  two stages-once 
before the second filtering operation to reduce the overall number of compu- 
tations. The resulting filtered outputs, denoted n ( m ,  n), d v ( m ,  )7), dH(rn,  n), 
and d D ( m ,  n) in Fig. 7.5, are called t h e  approximation, vertical detail, l~orizon- 
tal detail, and diagonal detail subbands of the image. respectively. One ox more 
of these subbands can be split into four smaller subbands, which can be split 
again, and so on.  

'.' Figure 7.6 shows the impulse responses of four 8-tap orthonormal fiIters. EXAMPLE 7.2: 
The coefficients of lowpass filter h,(n) for 0 r n 5 7 a le  -0.01059740, A four-band 

0.03288301,0.03084138, -0.18703481, -0.02798376,0.63088076,0.71484657, and of 
the vase in 

0.23037781 (Daubechies [1992]); the coefficien is of the remaining orthonormal Fig, 
filters can be computed using Eq. (7.1-23). Note (by visual inspection) the cross- 
modulafion of the analysis and syrlthesis filters in Fig. 7.6. Lt is relatively easy to 



FIGURE 7.6 The 
impulse responses 
of four &tap 
Daubechies 
orthonormal 
filters. 

show numerically that the filters are both biorthogonal (satisfy Eq. 7.1-21) and 
orthogonal (satisfy Eq. 7.1-22). Moreover, they fulfill Eqs. (7.1-9) and (7.1-1 0) 
and support error-free reconstruction of the decomposed input. 

A four-band split of the 512 X 512 image of a vase in Fig. 7.1, based on the 
filters in fig. 7.6, is shown in Fig. 7.7. Each quadrant of this image is a subband 
of size 256 X 256. Beginning with the upper left corner and proceeding in a 
clockwise manner, the four quadrants contain approximation subband a, hori- 
zontal detail subband dH, diagonal detail subband dD, and vertical detail subband 
d V ,  respectively. A11 subbands, except the approximation subband in the upper 
left quadrant, have been scaled to make their underlying structure more visible. 
Note the aliasing that is present in dH and d V ,  which is due to downsampling the 
barely discernable window screen in Fig. 7.1. Reconstruction of the original 
image from the subbands via synthesis filters go(n) and gl(n)  will cancel this 
aliasing in accordance with Eq. (7.1-9). To perform the reconstruction, a filter 
bank that roughly mirrors the system in Fig. 7.5 is required. In the new filter 
bank, the hi(n) for i = (0 , l )  filters are replaced by their g,(n) counterparts, and 
upsamplers and summers are added. a 

7.1 $3 The Haar Transform 
The third and final imaging-related operation with ties to multiresolution andy- 
sis that we will look at isthe Haar transform (Haar [1910]). Within the context 
of ths  chapter, its importance stems from the fact that its basis functions are the 
oldest and simplest known orthonormal wavelets. They will be used in a num- 
ber of examples in the sections that follow. 
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The Haar transform itself is both separable and symmetric and can be ex- 
pressed in matrix form 

where F is an  hi X N image matxix, H is an N X N [ransformation matrix, and 
T is the resulting N x N transform. For the Haar transform, transformarion 
matrix H contains the Haar basis functions. h , ( z ) .  They are defined over the 
continuous, closed interval z E [O, I] for k = 0 ,1 ,2 , .  . . , N - 1, where N = 2". 
To generate H, we define the integer k such that k = 2'' + q - 1, where 
0 p 5 n - 1 , q  = Oor l fo rp  = 0 , a n d l  5 q 5 2pforp + 0.ThentheHaar 
basis functions are 

and 

FIGURE 7.7 A 
four-band split of 
the vase in Fig. 7.1 
using t h e  subband 
coding system of 
Fig. 7.5. 

( 4  - 1)/2P 5 z < ( q  - 0.5)/2P 

h k ( z )  = h,>[,(z) = ( 4  - 0.5)/2P< z < q/2P (7.1-26) 
0 otherwise, z E [O, 11. 
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The ith row of an N X N Haar transformation matrix contains the elements of 
h i ( z )  for z = O/A1, 1 / N ,  2 / N , .  . . , ( N  - l ) / N .  If N = 4, for example, k ,  q, and 
p assume the values 

and the 4 x 4 transformation matrix, H,, is 

In a similar manner, the  2 x 2 transformation matrix, H,, is 

Its basis functions define the only two-tap FIR filter bank that will satisfy the 
QMF prototype filter specification in row 1 and column I of Table 7.1. The co- 
efficients of the corresponding QMF analysis filters, ho(n) and h , ( n ) ,  are the 
elements of the first and second rows of matrix Hz, respectively. 

EXAMPLE 7.3: Pf Figure 7&8(a) shows a rnultiresolutjon-based decomposition of Fig. 7.1 using 
Haar functionsin the Haar basis functions of Eqs. (7.1-25) and (7.1-26). Unlike the pyramidal 
a discrete wave'et structure in Fig. 7.3, this representation, called the discrere wavelet transform 
t ransforrn. 

and developed later in the chapter, contains the same number of pixels as the 
original image. In addition, 

1. Its local statistics are relatively constant and easily modeled. See Fig. 7.8(a). 
2. Many of its values are close to zero. This makes it an excellent candidate for 

image compression. 
3. Boch coarse and fine resolution approximations of the original image can 

be extracted from it. Figures 7.8(b)-(d) were reconstructed from the subim- 
ages of Fig. 7.8(a). 

In database applications, these properties make it easy for users to access low- 
quality versions of images during searches and later retrieve additional data to 
refine them. 

Finally, we note that Fig. 7.8(a) bears a close resemblance to both the subband 
coding result of Fig. 7.7 and the Laplacian pyramid of Fig. 7.3(b). As in the pre- 
vious results, the subimages in Fig. 7.8(a) are scaled to make their underlying 
structure more visible. The approximation images in Fig. 7.8(b)-(d) are of size 
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64 X 64, 128 X 128, and 256 X 256, respectively. A perfect 512 X 512 recon- 
struction of the original image is also possible. @ 

* e, Multiresolution Expansions 

FIGURE 7.8 (a) A 
discrete wavelet 
transf01.m using 
Haar basis 
functions. Its local 
histogram 
varialions are also 
shown; 
(b)-(d) Sever-al 
different 
approximations 
(64 X 64, 
125 X 128, and 
256 x 256) that 
can be obtained 
from (a). 

The previous section introduced three well-know11 imaging techniques that 
played an important role in the development of a unique mathematical theory 
called rnultiresolution analysis (MRA). In MRA, a scalingfunction is used to cre- 
ate a series of approximations of a function or image, each differing by a factor 
of 2 from its nearest neighboring approximations. Additional functions, called 
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wavelets, are then used to encode the difference in information between adja- 
cent approximations. 

7.2.1 Series Expansions 
A signal or function f (x) can often be better analyzed as a linear combination 
of expansion functions 

where k is an integer index of the finite or infinite sum, the ak are real-valued 
expansion coefficients, and the pk(x) are real-valued expansion functions. If the 
expansion is unique-that is, there is only one set of a, for any given f (x)-the 
q k ( x )  are called basisfunctions, and the expansion set, Iqk(n)} ,  is called a basis 
for the class of functions that can be so expressed. The expressible functions 
form a function space that is referred to as the closed span of the expansion 
set, denoted 

v = SP?~{~%(X)}- (7.2 -2) 

To say that f ( x )  E V means that f (x)  is in the closed span of ( q k ( x ) }  and can 
be written in the form of Eq. (7.2-1). 

For any function space V and corresponding expansion set i V k ( x ) ) ,  there is 
a set of dual functions, denoted {G, (x) }, that can be used to compute the nk co- 
efficients of Eq. (7.2-1) for any f ( x )  E V. These coefficients are computed by tak- 
ing the integral inner ~roducts' of the dual Gk(x)'s and function f ( x ) .  That is, 

where the * denotes the complex conjugate operation. Depending on the or- 
thogonality of the expansion set, this computation assumes one of three possi- 
ble forms. Problem 7.10 at the end of the chapter illustrates the three cases using 
vectors in two-dimensional Euclidean space. 

Case I :  If the expansion functions form an orthonormal basis for V, 
meaning that 

the basis and its dual are equivalent. That is, p k ( x )  = +,(x) and 
Eq. (7.2-3) becomes 

The cuk are computed as the inner products of the basis functions and f (x). 

 h he integral inner product of two real or complex-valued functions f ( x )  and g ( x )  is (f ( x ) ,  g ( x ) )  = 1 f * ( x ) g ( x )  dr. Iff  ( x )  i s  real, f *(x) - f ( x )  and (f(x),  g(x)) = 
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Case 2: If  the expansion functions are not orthonormal, but are an  01.- 

thogonal basis for V, then 

and the  basis Functions and their duals are called hiorthogonnl. The a, 
are conlputed using Eq. (7.2-3), and the biorthogonal basis and its dual 
are such that 

C ~ s e  .3: If the expansjon set is not a basis for V ,  but supports the expansion 
defined in Eq. (7.2-I), it i s  a spanning set in  which there is more than one 
set of a, for any f ( x )  E V.The expansion functions and  their duals are said 
to be overcomplefe or redundant. They form a fi~ilnze in whicht 

for some A > 0, B < m, and all f ( x )  E V,Dividing this equation by the norm 
squared off (x),  we see that A and B "frame" the normalized inner products 
of the expansion coefficients and the function. Quations similal- to (7.2-3) and 
(7.2-5) can be used to find the expansion coefficients for frames Jf A = B, the 
expansion set is cajled a liglzrfinme and it can be shown that (Daubechies [ I  9921) 

Except for the A-' term, which is a measure of the frame's redundancy, this 
is identical to the expression obtained by substituting Eq. (7.2-5) (for or- 
thonormal bases) into Eqs. (7.2-1). 

7 2 2  Scaling Functions 

Now consider the set of expansion functions composed of integer translations 
and binary scalings of the real, square-integrable function cpjx); that is, the 
set { i P i , r ( n ) )  where 

'p,.,(x) = ~ j ~ ' ~ ( 2 j x  - k )  (7.2-1 0 )  

for all j, k t Z and q ( x )  E L ~ ( R ) . $  Here, k determines the position of ~ , . ~ ( x )  
along the x-axis, j determines ~ , ~ ~ ( x ) ' s  width-how broad or  narrow it is along 
the x-axis-and 21i2 c,ontrols its height or amplitude. Because the shape of pjFjk(s) 
changes with j, q ( x )  is called a sctrling filnctiorr. By choosing q ( x )  wisely. 
{ c j , , ( x ) }  can be made to span L'(R), the set of all measurable, square-integrable 
functions. 

'rile norm of f(r).denoted l,f(xjII, is dclined a s  rhe square roo1 of the inner product o f / ( x )  w i ~ h  ilstllf. 

'The noration L 2 ( ~ ) . w h e r e  R is the st[ of real numbers.denotes the set of measurable.square-integrable 
one-dimensional runct~ons: Z is  the set of integers. 
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If we restrict j in Eq. (7.2-10) to a specific value, say j = jo ,  the resulting ex- 
pansion set, { 9 ~ o ~ , ( x ) } ,  is a subset of { r p i . k ( x ) } .  1t wiH not span ~ ' ( ~ ) , l r u t  a sub- 
space within it. Using the notation of the previous section, we can define that 
subspace as 

yo = s$n { rp i , .k (~ ) } -  (7.2-11) 

That is, y, is the span of qjll,,(x) over k.  If f ( x )  E V,, .it can be written 

More gencrally, we will denote the subspace spanned over k for any j a s  

As will be seen in the following example, increasing j increases the size of y,  
allowing functions with smaller variations or finer detail to be included in the 
subspace. This is a consequence of the fact that, as j increases, the q . k ( x )  that 
are used to represent the subspace functions become narrower and separated 
by smaller changes in x. 

EXAMPLE 7.4: R Consider the unit-height, unit-width scaling function (Haar [ISSlO]) 
The Haar scaling 
function. 1 O . I x ( l  (7.2-14) 

0 otherwise. 

Figures 7.9(a)-(d) show four of the many expansion fu~lctions that can be gen- 
erated by substituting this pulse-shaped scaling function into Eq. (7.2-10). Note 
that when j = 1, as opposed to j = 0, the resuiting expansion functions are nar- 
rower and closer together. 

Figure 7.9(e) shows a member of subspace V, . This function does not belong to 
Vo because the V, expansion functions in 7.9(a) and (b) are roo coarsc to represent 
it. Higher-resolution functions Like those in 7.9(c) and (d) are required. They can 
be used, as shown in (e), to represent the function by the three-tern expansion 

To conclude the example, Fig. 7.9(f) illustrates the decomposition of po.o(x) 
as a sum of V, expansion functions. In a similar manner, any Vo expansion func- 
tion can be decomposed using 

Thus, i f f  ( x )  is an element of I/;,, it is also an eleinent of V,. T h i s  is because all 
V;, expansion functions are a part of V,. Mathematically, we write that is a 
subspace of V,, denoted Vo C VL. €4 

The simple scaling function in the preceding example obeys the four Cunda- 
mental requirements of multiresolution analysis (Mallat [1989a]): 
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AURA Requirenzettt 1: Tlze scaling function is orthogonal to its inreger rmnslates. 

This is easy to see in the case of the Haar function, since whenever it has 
a value of 1, its integer translates are 0, so that the product of the two is 0. 
The Haar scaling function is said to have compact support, which means 
that is 0 everywhere outside a finite interval called the support. In fact, its 
support is 1; i t  is 0 outside the half open interval [0, 1). It should b e  noted 
that the requirement for orthogonal integer translates becomes harder to 
satisfy as the support of the scaling function becomes larger than 1. 

M R A  Requirement 2: The subspaces spanned by t t ~ e  scaling fincrion at low 
scales are nested within those spanned at higher scales 

As can be seen in Fig. 7.10, subspaces containing high-resolution func- 
tions must also contain all lower resolution functions.That is, 

FIGURE 7.9 Haar 
scaling functions 
in Vo in V,  . 
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FIGURE 7.1 0 The 
nested function 
spaces spanned by 
a scaling function. 

Wavelets and Multiresolution Processing 

V " C  v, C v, 

Moreover the subspaces satisfy the intuitive condition that if f ( x  ) E y ,  then 
f (2x) E + , .The fact that the Haar scaling function meets this requirement 
should not be taken to indicate that any function with a support of 1 auto- 
matically satisfies the condition. It is left as an exercise for the reader to show 
that the equally simple function 

1 0.25 5 x < 0.75 
0 elsewhere 

is not a valid scaling function for a rnultiresolution analysis (see Problem 7.11). 

MRA Requirement 3: The only fincrion that is common to all V, is f (x) = 0. 
If we consider the coarsest possible expansion functions (i.e., j = -m), 

the only representable function is the function of no information. That is, 

MRA Reguiremenr4:Anyfinction can be represented with arbitrary precision. 

, Though it may not be possible to expand a particular f ( x )  at an arbi- 
trarily coarse resolution, as was the case for the function in Fig. 7.9(e), all 
measurable, square-integrable functions can be represented in the limit as 
j + m. That is, 

Under these conditions, the expansion functions of subspace V, can be ex- 
pressed as a weighted sum of the expansion functions of subspace V,, , . Using 
Eq. (7.2-12), we let 

where the index of summation has been changed to n for clarity. Substituting for 
q,+,,,,(x) from Eq. (7.2-10) and changing variable a,, to h,(n), this becomes 
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Since q(x) = ~ * , ~ ( x ) ,  both j and k can be set to 0 to obtain the simpler non- 
subscripted expression 

The h , ( n )  coefficients in this recursive equation are called scaling function 
coefficients; h, is referred to as a scaling vector. The alternate notations h ( n )  
and ho(n)  are often used in the literature, but we wish to avoid confusion with 
our earlier discussion of subband analysis filters. Equation (7.2-18) is funda- 
mental to multiresolution analysis and is called the refinement equation, the 
MRA equation, or the dilation equation. It states that the expansion functions 
of any subspace can be built from double-resolution copies of themselves-that 
is, from expansion functions of the next higher resolution space. The choice of 
a reference subspace, Vo, is arbitrary. 

The scaling function coefficients for the Haar function of Eq. (7.2-14) are EXAMPLE 7.5: 
h,(O) = h,(l;) = 1 / d ,  the first row of matrix H, in Eq. (j.1-28). Thus, Haar scaling 

Eq. (7.2-18) yields function 
coefficients. 

This decomposition was illustrated graphically for q, , , (x)  in Fig. 7.9(f), where 
the bracketed terms of the preceding expression are seen to be cplqo(x) and 
cp,, , ( x )  . Additional simplification yields p ( x )  = p ( 2 x )  + ~ ( 2 x  - 1 ) .  8% 

7.23 Wavelet Functions 
Given a scaling function that meets the MRA requirements of the previous sec- 
tion, we can define a wavelet function $ ( x )  that, together with its integer trans- 
lates and binary scalings, spans the difference between any two adjacent scaling 
subspaces, V, and ?+,. The situation is illustrated graphically in Fig. 7.11. We 
define the set {a,bj ,x(x)) of wavelets 

FIGURE 7.1 1 The 
relationship 
between scaling 
and wavelet 
function spaces. 
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for all k E Z that spans the W, spaces in the figure.As with scaling functions, we write 

and note that if ,f (x) E W,, 

The scaling and wavelet function subspaces in Fig. 7.11 are related by 

where CB denot.es the union of spaces (like the union of sets). The orthogonal 
complement of V, in V,,, is Wj, and all members of V, are orthogonal to the 
members of W, . Thus, 

(V . , (X) ,    is/(^)) = 0 (7.2-23) 

for all appropriate j, k ,  I E 2. 
We can now express the space of all measurable, square-integrable functions as 

or even 

which eliminates the scaling function and represents a function in terms of 
wavelets alone. Note chat iff  (x )  is an element of V,,  but not G, an expansion 
using Eq. (7.2-24) contains an approximation of f ( x )  using Vo scaling func- 
tions; wavelets from Wo would encode the difference between this approxi- 
mation and the actual function. Equations (7.2-24) through (7.2-26) can be 
generalized to yield 

where jo is an arbitrary starting scale. 
Since wavelet spaces reside within the spaces spanned by the next higher 

resolution scaling functions (see Fig. 7.11), any wavelet function-like its scal- 
ing function counterpart of Eq. (7.2-18)-can be expressed as a weighted sum 
of shifted, double-resolution scaling functions. That is, we can write 

where the h,(n) are called the wavelet.function coeficients and hJ, is the wavelet 
vector [the notation h,(n) / s  often used in the literature]. Using the condition that 
wavelets span the orthogonal complement spaces in Fig. 7.1 1, and that integer 
wavelet translates are orthogonal, it can be shown that hd,(n) is reIated to h,(n) 
by (see, for example, Bur-rus, Gopinath, and Guo [I 9981) 
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h , ( n )  = (-l)"h,(l - n). 

FIGURE 7.1 2 Haar 
wavelet functions 
in W,, and W ,  . 

Note the similarity of this result and Eq. (7.1-23), the relationship governing 
the impulse responses of orthonormal subband coding and decoding filters. 

I In the previous example, the Haar scaling vector was defined as EXAMPLE7.6: 
h,(O) = h,(l) = 1/ fi. Using Eq. (7.2-29), the corresponding wavelet vector The Haar wavelet 

is h,(0) = (-l)Oh,(l - 0 )  = l/d and htb(1) = ( - l ) ' h9 ( l  - 1 )  = - l / f i .  function 
coeffjcjents. 

Note that these coefficients correspond to the  second row of matrix Hz in 
Eq. (7.1-28). Substituting these values into Eq. (7.2-28), we get $ ( x )  = 
~ ( 2 x )  - cp(2x - I),  which is plotted in Fig. 7.12(a). Thus, the Haar wavelet 
function is 

1 O I x < 0 . 5  
-1 0.5 r x < 1 
0 elsewhere. 
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Using wj.th Eq. (7.2-19), we can now generate the universe of scaled and trans- 
lated Haar wavelets, Two such wavelets, ~ , b ~ , ~ ( x )  and $, , , (x) ,  are plotted in 
Figs. 7.12(b) and (c), respectively. Note that wavelet ~ , h ~ , ~ ( x )  for space W, is nar- 
rower than $,,,(x) for W o ;  it can be used to represent finer detail. 

Figure 7.12(d) shows a function of subspace V, that is not in subspace Vo. This 
function was considered in an earlier example [see Fig. 7.9(e)]. Although the 
function cannot be represented accurately in V,, Eq. (7.2-22) indicates that it can 
be expanded using Vo and Wo expansion functions. The resulting expansion is 

where 

and 

Here, f ,(x) is an approximation of f  (x) using Vo scaling functions, while f , ( x )  
is the difference f ( x )  - f , ( x )  as a sum of Wo wavelets. The two expansions, 
which are shown in Figs. 7.12(e) and (f), divide f ( x )  in a manner similar to a low- 
pass and highpass filter. The low frequencies of f ( x )  are captured in f,(x)-it 
assumes the average value o f f  ( x )  in each integer interval-while the high- 
frequency details are encoded in f d ( x ) .  IS 

Wavelet Transforms in One Dimension 

We can now formally define several closely related wavelet transformations: 
the generalized wavelet seriesexpansion, the discrete wavelet transform, and 
the continuous wavelet transform. Their counterparts in the Fourier domain 
are the Fourier series expansion, the discrete Fourier transform, and the inte- 
gral Fourier transform, respectively. In Section 7.4, we will define a computa- 
tionally efficient implementation of the discrete wavelet transform called the 
fast wavelet transform. 

7.3*1 The Wavelet Series Expansions 
We begin by defining the wavelet series expansion of function f (x)  E L ~ ( R )  rel- 
ative to wavelet q ( x )  and scaling function cp(x). In accordance with Eq. (7.2-27), 
we can write 

where jo is an arbitrary starting scale and the cjo(k)'s and d,(k)'s are relabeled 
ak's from Eqs. (7.2-12) and (7.2-21), respectively.The cjo(k)'s are normally called 
the approximation or scaling coefficients; the di(k)'s  are referred to as the detail 
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or wavelet coefficients. This is because the first sum in Eq. (7.3-1) uses scaling 
functions to provide an  approximation off ( x )  at scale jo [unless f ( x )  E V, and 
it is exact]. For each higher scale j r jn in the second sum, a finer resolution 
function-a sum of wavelets-is added to the appr,oximation to provide in-  
creasing detail. If the expansion functions form an orthonormal basis or tight 
frame, which is often the case, the expansion coefficients are calculated-based 
on Eqs. (7.2-5) and (7.2-9)-as 

and 

If the expansion functions are part of a biorthogonal basis, the cp and $ terms in 
these eqnations must be replaced by their dual functions, and $, respectively. 

Consider the simple function 

x2 O I X < 1  

, 0 otherwise 

shown in Fig. 7.13(a). Using Haar wavelets-see Eqs. (7.2-14) and (7.2-30)- 
and a starting scale jo = 0, Eqs. (7.3-2) and (7.3-3) can be used to compute the 
following expansion coefficients: 

Substituting these values into Eq. (7.3-I), we get the wavelet series expansion 

EXAMPLE 7.7: 
The I-laar wavelet 
series ex ansion P o f y =  .r .  

The first term in this expansion uses ~ ~ ( 0 )  to generate a subspace VD approxi- 
mation of the function being expanded. This approximation is shown in 
Fig. 7.13(b) and is the average value of the original function.The second term 
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.:& 8. 
6 ,a 
,$ ..$ 

FIGURE 7.13 A wavelet series expansion of y = x 2  using Haar wavelets. 
.. . - 

uses do(0) to refine the approximation by adding a level of detail from sub- 
space WO. The added detail and resulting V, approximation are shown in 
Figs. 7.13(c) and (d), respectively. Another level of detail is added by the sub- 
space W, coefficients d,(O) and d , ( l ) .  This additional detail i s  shown in 
Fig. 7,13(e), and the resulting V2 approximation is depicted in 7.13(f). Note that 
the expansion is now begmning to resemble the original function. As higher 
scales (or greater levels of detail) are added, the approximation becomes a more 
precise representation of the function, realizing i t  in the limit as j -+ m. m 

7.3.2 The Discrete Wavelet Transform 
Like the Fourier series expansion, the wavelet series expansion of the previous 
section maps a iuilction of a continuous variable into a sequence of coefficients. 
If the function being expanded is a sequence of numbers, like samplcs of a con- 
tinuous function f ( x ) ,  the resulting coefficients are called the discrete wavelet 
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transform (DWT) of f (x).    or this case, the series expansion defined in 
Eqs. (7.3-1) through (7.3-3) becomes the DWT transform pair 

for j r I,, and 

Here, f ( x ) ,  r p i u , k ( ~ ) ,  and +hIUk(x)  are functions of the discrete variable x = 0, 
1 , 2 .  ... , M - I .  For example, f ( x )  = f (x, ,  + * A X )  for some x, ,  A x ,  and 
x = 0,1,2, . . . , M - 1.  Normally, we let j, = 0 and select M to  be a power 
of 2 (i.e., M = 2') so that the summations are performed over x = 0, 1, 
2 , . . . ,  M - 1 , j = 0 , 1 . , 2  , . . . ,  J - l , a n d k = 0 , 1 , 2  ,..., 2 j - 1 . F o r H a a r  
wavelets, the discretized scaling and wavelet functions eii~ployed in the 
transform (i-e., the basis functions) correspond to the rows of the M X M 
Haar transformation matrix of Section 7.1.3. The transform itself is com- 
posed of M coef icients, the minimum scale is 0, and the  maximum scale is 
J - 1. For reasons noted in Section 7.3.1 and illustrated in Example 7.6, 
the coefficients defined in  Eys. (7.3-5) and (7.3-6) are usually called 
opproxirnation and detail coefficients, respectively, 

The wp(j0, k)'s and WU(j ,  k) 's  in Eqs. (7.3-5) to (7.3-7) correspond to the 
cj,,(k)'s and d,(k)'s  of the wavelet series expansion in the previous section. (This 
change of variables is not necessary but paves the way for the standard natation 
used for the continuous waveIet transform of the next section.) Note that the 
integrations in the series expansion have been replaced by summat io~~s ,  and a 
l / f l  normalizing factor, reminiscent of the DFT in Section 4.2.1, has been 
added to both the forward and inverse expressions.Thjs factor could alternately 
be incorporated into the forward or inverse alone as 1 / iM. Finally, i t  should be 
remembered that Eqs. (7.3-5) through (7.3-7) are valid for orthonormal bases 
and tight frames alone. For biorthogonal bases, the cp and $ terms in Eqs. (7.3-5) 
and (7.3-6) must be replaced by their duals, and t F ,  respectively. 

Y To illustrate the use of Eqs. (7.3-5) through (7.3-7), consider the discrete EXAMPLE 7.8: 
function of four points: f (0) = 1, f (1) = 4, f (2) = -3, and f (3) = 0. Since Com~ut iWaone-  
M = 4, J = 2 and, with jo = 0, the summations are performed over x = 0,1, dimensional 

discrete wavelet 
2, 3, j = 0, 1, and k = 0 for j = 0 or k = 0 , l  for j = 1. We will use the Haar transform, 
scaling and wavelet functions and assume that the four samples of f  ( x )  are dis- 
tributed over t he  support of the  basis tinctions, which is 1. Substituting the four 
samples inlo Eq. (7.3-5), we find that 
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because cp,,,,(x) = 1 for x = 0,1,2,3. Note that we have employed ui~iformly 
spaced samples of the Haar scaling function for j := 0 and k = 0. The values 
correspond to the first row of Haar transformalion matrix Hq of Section 7.1.3. 
Continuing with Eq. (7.3-6) and sin~ilarly spaced samples of t,bj.,(x), which cor- 
respond to rows 2,3, and 4 of If , ,  we get 

Thus, the discrete wavelet transform of our simple four-sample funcrion re]- 
ative to the Haar wavelet and scaling function is {I. 4, -1.5v?. - 1 . 5 ~ ) .  
where the transform coefficients have been arranged in the  order in which 
[hey were computed. 

Equation (7.3-7) lets us reconstruct the original function from ils transform. 
Iterating through its summation indices, we get 

for x = 0, l! 2,3. If x = 0, for instance, 

As in the forward case, uniformly spaced samples of the scaling and wavelet 
functions are used i n  the computation of the inverse. 8 

The four-point DWT in the preceding example is an illustration of a two- 
scale decomposition of f (x)-that is, j = 10, 1). The underlying assumption 
was t h a t  starting scale jo was zero, but other starting scales are possibIe. It is left 
as an exercise for the reader (see Problem 7.26) to compute the single-scale 
transform { 2 . 5 f i ,  -1.5~2, -IS*, -1.~a}, which results when the start- 
ing scale is one-Thus, Eqs. (7.3-5) a ~ d  (7.3-6) define a "family" of transforms that  
differ in starting scale j0 .  

1.5-3 The Continuous Wavelet Transform 
The natural extension of the discrete wavelet transform is the continu~us wavelet 
tran~form (CWT), which transforms a continuous function into a highly re- 
dundant function of two continuous variables-translation and scale. The re- 
suIting transform is easy to interpret and valuable for time-frequency analysis. 
Although our interest is in discrete images, it is covered here for completeness. 

The continuous wavelet transform of a continuous, square-integrable func- 
tion, f ( x ) ,  relative to a real-valued wavelet, $ ( x ) ,  is 
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where 

and s and r are called scale and translation parameters, respectively. Given 
W,(s, T ) ,  f (x) can be obtained using the inverse continuo~ts wavelet transform 

where 

and ?(u) is the Fourier transform of + ( x ) .  Equations (7.3-8) through (7.3-11) de- 
fine a reversible transformation as long as the so-called admissibility criterion, 
C, < m, is satisfied (Grossman and Morlet [1984]). In most cases, this simply 
means that q ( O )  = 0 and q ( u )  -+ 0 as u -+ oo fast enough to make C* < m. 

The preceding equations are reminiscent of their discrete counterpaxts- 
Eqs. (7.2-19), (7.3-I), (7.3-3), (7.3-6), and (7.3-7). The following similarities 
should be noted: 

1. The continuous translation parameter, 7, takes the place of the integer trans- 
lation parameter, k. 

2. The continuous scale parameter, s, is inversely related to the binary scale pa- 
rameter, ;".This is because s appears in the denominator of $ ( ( x  - r ) / ~ )  in 
Eq. (7.3-9).Thus, wavelets used in continuous transforms are compressed or 
reduced in width when 0 < s < 1 and dilated or expanded when s > 1. 
Wavelet scale and our traditional notion of frequency are inversely related. 

3. The continuous transform is similar to a series expansion [see Eq. (7.3-I)] 
or discrete transform [see Eq. (7.3-6)] in which the starting scale jo = -QO. 

This-in accordance with Eq. (7.2-26)-eliminates explicit scaling function 
dependence, so that the function is represented in terms of wavelets alone. 

4. Like the discrete transform, the continuous transform can be viewed as a set 
of transform coefficients, {w,(s, T)}, that measure the similarity off ( x )  with 
a set of basis functions, { $ , , ( x ) ) .  In the continuous case, however, both sets 
are infinite. Because $,,,(x) is real valued and $ , , ( x )  = $ , t , ( x ) ,  each coef- 
ficient from Eq. (7.3-8) is the integral inner product, ( f ( x ) ,  $, , (x)) ,  of f (x) 
and +,,,(x). 

I The Mexican hat wavelet, EXAMPLE 7.9: 
A one-dimensional 
continuous wavelet 

(7.3-12) transform. 
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FIGURE 7.1 4 The 
co~lri~luous 
wavelet trarrsform 
(c aod d) and 
Fourier spectrum 
(b) of a 
C O D ~ ~ ~ U O U S  one- 
dimensional 
function (a) .  

gets its name from i ts distinctive shape.[see Fig. 7.14(a)]. It is proportional to the 
second derivative o l  thc Gaussian probability function, Jlas a n  average value of 
zero, and is compactly supported (i.e., dies out rapidly as 1x1 + w). Although i t  

satisfies the admissibility requirement for t tle existei~ce of continuous. reversible 
transforms, there is not an associated scalir-lg function, and the computed trans- 
form does not result in an orthogonal analysis. Its most distinguishing features 
are its symmetry and the existence of the esplicit expression of Eq. (7.3-12). 

The continuous, one-dimensional function in Fig. 7.14(a) is the sum of two 
Mexican h a t  wavelets: 

11s Fourier spectrum, shown in Fig. 7.14(b), reveals the close connection be- 
tween scaled wavelets a d  Fourier frequency bands. The spectrum contains two 
broad frequency bands (or peaks) that correspond to the function's two 
Gaussian-like perturbations. 

Figure 7.14(c) shows a portion (3 5 s 5 10 and T 5 100) of the CWT of the 
function in Fig. 7.14(a) relative to the Mexican hat waveler. Unlike the Fourier 
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spectrum in Fig. 7.14(b), it provides both spatial and frequency information. 
Note, for example, that when s = 1, the transform achieves a maximum at 
T = 10, which corresponds to the location of the $,, , , ( x )  component off (x). Be- 
cause the transform provides an objective measure of the similarity between 
f ( x )  and the wavelets for which it is computed, it is easy to see how it can be 
used for feature detection. We simply need wavelets that match the features of 
interest. Similar observations can be drawn from the intensity plot in Fig. 7.14(d), 
where the absolute value of the transform, Iw,(s, T)I, is displayed as gray lev- 
els between black and white. Note that the continuous wavelet transform turns 
a one-dimensional function in to a two-dimensional result. Ei 

The Fast Wavelet Transform 

The fast wavelet transform (FWT) is a computationally efficient implementation 
of the discrete wavelet transform (DWT) that exploits a surprising but fortunate 
relationship between the coefficients of the DWT at adjacent scales. Also called 
Mallat's herringbone algorithm (Mallat [1989a, b] ) ,  the FWT resembles the two- 
band subband coding scheme of Section 7.1.2. 

Consider again the rnultiresolution refinement equation 

Scaling x by 2i, translating it by k, and letting m = 2k + n gives 

= h,(m - 2k)  V&(2 j t 'x  - m). (7.4-2) 

Note that scaling vector h, can be thought of as the "weights" used to expand 
p(2~x  - k) as a sum of scale j + 1 scaling functions. A similar sequence of op- 
erations-beginning with Eq. (7.2-28)-provides an analogous result for 
$(2 jx  - k ) . ~ h a t  is, 

where scaling vector h,(n) in Eq. (7.4-2) is replaced by wavelet vector h,(n) in 
Eq. (7.4-3). 

Now consider Eqs. (7.3-5) and (7.3-6) of Section 7.2.2. They define the dis- 
crete wavelet transform. Substituting Eq. (7.2-19)-the wavelet defining 
equation-into Eq. (7.3-6), we get 

1 
W,(j, k )  = - f (x)2jl2+(2jx - k ) ,  (7.4-4) 

x 

which, upon replacing $(2'x - k) with the right side of Eq. (7.4-3), becomes 



380 Chapter 7 Wavelets and Multiresolution Processing 

FIGURE 7.1 5 An 
FWT analysis 
bank. 

Interchanging the sum and integral and rearranging terms then gives 

where the bracketed quantity is identical to Eq. (7.3-5) with j, = j + 1 .To see this, 
substituteEq. (7.2-10) intoEq. (7.3-5) and let jo be j + 1. Wecan therefore write 

w$(b k )  = 2 vl h$(m - 2k) W,(J + 1, rn) (7.4-7) 

and nule that the DWT d e ~ a i l  coefficients at scale j are a function of the DWT 
approximation coefficients at scale j + 1. Recognizing Eqs. (7.4-2) and (7.3-5) 
as the starting point of a similar derivation involving the DWT approximation 
coefficie.nts, we find similarly that 

W,(j, k )  = x h , ( m  - 2k)W,(j + 1, m). (7.4-8) 
nl 

Equations (7.4-7) and (7.4-8) reveal a remarkable relationship between the 
DWT coefficients of adjacent scales. Comparing these results to Eq. (7.1-7), we 
see that both W,(j, k )  and W$(j, k ) ,  the scale j approximation and the detail 
coefficients, can be computed by convolving W,(j + 1, k ) ,  the scale j + 1 ap- 
proximation coefficients, with the time-reversed scaling and wavelet vectors, 
h,(-n) and h,(-n), and subsampling the resut ts. Figure 7.15 reduces these op- 
erations to block diagram form. Note that it is identical to the analysis portion 
of the two-band subband coding and decoding system of Fig. 7.4, with 
ho(n) = h,(-n) and h ,(n) = h,b(-n). We can therefore write 

and 

where the convolutions arc evaluated at instants n = 2k for k 1 0. Evaluating 
convolutions at nonnegative, even indices is equivalent to filtering and down- 
sampling by 2. 

To conclude the development of the FWT, we simply note that the filter bank 
in Fig. 7.15 can be "iterated" to create multistage structures for computing DWT 
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coefficients at two or more successive scales. For example, Fig. 7.16(a) shows a 
two-stage filter bank for generating the coefficients at the two highest scales of 
the transform. Note that the highest scale coefficients are assumed to be sam- 
ples of the function itse1f.That is, W,(J, n) = f (n),  where J is the highest scale. 
[In accordance with Section 7.2.2, f ( x )  E Vj, where Vj is the scaling space in 
which f (x)  resides.] The first filter bank in Fig. 7.16(a) splits the original func- 
tion into a lowpass, approximation component, which corresponds to scaling 
coefficients W,(J - 1, n) ,  and a highpass, detail component, corresponding to 
coefficients W,(J - 1, n) .  This is graphically illustrated in Fig. 7.16(b), where 
scaling space VJ is split into wavelet subspace Wj-, and scaling subspace Vj-,. 
The spectrum of the original function is split into two half-band cornponents.The 
second filter bank of Fig. 7.16(a) splits the spectrum and subspace Vj-l, 
the lower half-band, into quarter-band subspaces W,-, and V,-,-with corre- 
sponding DWT coefficients W$(J - 1, n)  and W,(J - 1, n) ,  respectively. 

The two-stage filter bank of Fig. 7.16 is easily extended to any number of scales. 
A third filter bank, for example, would operate on the W,(J - 2, /.I) coefficients, 
splitting scaling space V,-, into two eighth-band subspaces WJ-, and VJ-,. Nor- 
mally, we choose 2' samples off ( x )  and employ P filter banks (& la Fig. 7.15) to 
generate a P-scale FWT at scales J - 1, J - 2,. . . , J - P.The highest scale (i.e., 
J - 1) coefficients are computed first; the lowest scale (i.e., J - P) last. If func- 
tion f ( x )  is sampled above the Nyquist rate, as is usuaIly the case, its samples are 
good approximations of the scaling coefficients at the sampling resolution and 
can be used as the starting high-rcsolution scaling coefficient inputs. Tn other 
words, no wavelet or detail coefficients are needed at the sampling scalc. a l e  

FIGURE 7.16 
(a) A two-stage or 
two-scale FWT 
analysis bank and 
(b) its frequency 
splitting 
characteristics. 
- - 
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highest-resolution scaling functions act as "delta functions"in Eqs. (7.3-5) and 
(7.3-6), allowing f ( n )  to be used as the scale J approximation or scaling coefficient 
input to the first two-band filter bank (Odegard, Gopinath, and Burrus [1992]). 

EXAMPLE 7.10: To illustrate these concepts, consider the  discrete function f (n)  = (1,4, -3,O) 
Computing a 1-D from Example 7.8. As in that example, we will recompute the transform based on 
fast wavelet Haar scaling and wavelet functions. Here, however, we will not use the basis func- 
transform. tions directly, as was done in the DWT of Example 7.8, but the corresponding scal- 

ing and wavelet vectors from Examples 7.5 and 7.6: 

1 n = 0 , l  
0 otherwise 

and 

(7.4- 12) 
otherwise. 

These are the functions used to build the FWT filler banks; they provide the fil- 
ter coefficients. 

Since the DWT computed in Example 7.8 was composed of elements 
{w,(o, O), W,(O, 0). W,(l, 0), W,(l,l) } , we will compute the corresponding two- 
scale FWT for scales j := (0, 1). That is, J = 2 (there are 2j  = 22 samples) and 
P = 2 ( w e a r e w o r k i n g w i t h s c a l e s J - 1 = 2 - 1 = 1 a n d J - P = 2 - 2 = 0  
in that order).The transform d l  be computed using the two-stage filter bank of 
Fig. 7.16(a). Figure 7.17 shows the sequences that result fioln the requjred FWT 
convolutions and downsamphgs. Note that function f (n) itself is the scaling or 

{25. 1, -1.5) 
-- 

FIGURE 7.17 Computing a two-scale fast wavelet transform of sequence {I ,  4, -3,O) using Haar scalir~g and 
wavelet vectors. 
. . , . , . , . , 
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approximation input to the leftmost filter bank. To compute the Wql(l, k)  coeffi- 
cients that appear at the end of the upper branch of Fig. 7.17, for example, we first 
convolve f (n)  with h,(-n).As explained in Section 4.6.3, this requires fhpping one 
of the functions about the ongin, sliding it past the other, and computing the sum 
of the point-to-point product of the two functions. For sequences (1,4, - 3 , O )  and 
{-I/*, l / f l } ,  this produces { - 1 / ~ ,  - 3 / , 7 /  - 3 / f l ,  0),where the 
second term corresponds to index k = 2n = 0. (In Fig. 7.17, underlined values rep- 
resent negative indices, i.e., n < 0.) When downsampled by talung the even-indexed 
points, we get W,,(l, k )  = {-3/*, - 3 / f i )  for k = { O , l ) .  We can alternately 
use Eq. (7.4-9) to compute 

Here, we have substituted 2k for n in the convolution and employed I as a dummy 
variable of convolution (i.e., for displacing the two sequences relative to one an- 
other). There are only two terms in the expanded sum because there are only two 
nonzero values in the time-reversed wavelet vector htl(-n). Substituting k  = 0, we 
find that Wy(l, 0) = -3/V'?; fork = 1,we get W,(l, 1) = -3/*.Thus, the fil- 
tered and downsampled sequence is {-3/ fl, -3/ lb], which matches the earli- 
er result.The remaining convolutions and downsamplings are performed in a similar 
manner. a 

As one might expect, an equally efficient inverse transform for the reconstruc- 
tion of f (x) from DWTIFWT approxima tion and detail coefficients, W,(j, k  ) and 
Wfi(j ,  k ) ,  can also be formulated. Called the inverse fast wavelel transform (FWT-I), 
it uses the scaling and wavelet vectors employed in the forward transform, togeth- 
er with the level j approximation and detail coefficients, to generate the level j + 1 
approximation coefficients. Noting the similarity between the FWT analysis bank 
in Fig. 7.15 and the two-band subband analysis portion of Fig. 7.4(a), we can inme- 
diately postulate the required FWT-' synthesis filter bank. Figure 7.18 details its 
structure, which is identical to the synthesis portion of the two-band subband cod- 
ing and decoding system in Fig.7.4(a). Equation (7.1-23) of Section 7.1.2 defines the 

FIGURE 7.1 8 The 
FWT-' synthesis 
filter bank. 

- ,  
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relevant synthesis filters. As noted there, pedect reconstruction (for two-band or- 
thonorma1 filters) requires gi(rz) = hi(-n) fox i = { O , 2 }  .That is, the synthesis and 
analysis filters must be time-reversed versions of one another. Since the FWT analy- 
sis filters (see Fig. 7.15) are h0(n) = JzJ-n) and hi (n)  = Izq,(-n), the required 
FWT' synthrsishlters areg,(n) = ho(-n) = h,(n) andg,(n) = A,(-n) = h,(n).  
'It should be rernembered,howevw, thal it is also possible to use biorthogonai analy- 
sis and synthesis filters, which are not time-reversed versions of one another. 
BiorthogonaI analysis and synthesis filters are cross-modulated per Eqs. (7.1-14) 
and (7.1-15). 

The FWT-' filter bank in Figure 7.18 implements the computation 

where WuP signifies upsampling by 2 (i .e., inserting zeros between the elcmen ts 
o l  W so that it is twice its original length). The upsampled coefficients are fi l-  
tered, by convolution with h,(n) and ht,(n), and added to generate a higher 
scale approximation. In essence, a better approximation off ( x ) ,  with greater de- 
tail and resolution,is created. As with the forward FWT, the inverse filter bank 
can be iterated as shown in Fig. 7.19, where a two-scale structure for comput- 
ing t h e  Final two scales of a FWT-I reconstruction is depicted. This coefficient 
combining process can be extended to any number of scales and guarantees 
perfect reconstruction of function f ( x ) .  

EXAMPLE 7.11: Computation of the inverse fast wavelet transform mirrors its forward caun- 
Com~u t jng  a 1-D terpart. Figure 7.20 illustrates the process for the sequence considered in Exam- 
inverse last ple 7.10.To begin the calculation, the level 0 approximation and detail coefficients 
wavelet 
transform. are upsampled to yield (1, 0) and {4,0), respectively. Convolution with filters 

gil(n) = h,(n)  = { l / f i ,  1 / f i }  and g,(n) = h,,,(n) = {I/*, - l / ~ ? }  
produces {l/fi, I/*, 0) and { 4 / f i ,  - 4 / f l ,  01, which when added give 
Wv(l, n) = { 5 / f l ,  -3/fi}.Thus, the level 1 approximation ofFig.7.20,which 
matches the computed approximation in Fig. 7.17, is reconstructed. Continuing in 
this manner, f ( n )  is formed at the right of the second synthesis filter bank. E 

We conclude our discussion of the fast wavelet transform by noting several 
differences between the FWT and the FFT-the first being their numerical 
complexity. The number of n~athernatical operations involved i n  the computa- 

FIGURE 7.1 9 A 
two-stage or two- 
scale FWT-' 
synthesis bank. 
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FIGURE 7.20 Computing a two-scale inverse fast wavelet transform of sequence (1 ,4 ,  -IS*, - 1 . 5 f i )  with 
Haar scaling and wavelet vectors. 

. - 

tion of the FWT of a length M = 2' sequence is on the order of O ( M ) .  That is, 
the number of floating-point multiplications and additions (using filter banks) 
is linear with respect to the length of the sequence. This compares favorably 
with the FFT algorithm, which requires O(M log M).  

The second difference relates to the transforms' basis functions. While the 
Fourier basis functions (i.e., sinusoids) guarantee the existence of the FFT, the 
existence of the FWT depends upon the availability of a scaling function for 
the wavelets being used, as well as the orthogonality (or biorthogonality) of the 
scaling function and corresponding wavelets. Thus, the Mexican hat wavelet of 
Eq. (7.3-12), which does not have a companion scaling function, cannot be used 
in the computation of the FWT. In other words, we cannot construct a filter 
bank like that of Fig. 7.15 for the Mexican hat wavelet; it does not satisfy the un- 
derlying assumptions of the FWT approach. 

Finally, we note that while time and frequency are usually viewed as differ- 
ent domains when representing functions, they are inextricably linked. When you 
try to analyze a function simultaneously in time and frequency, you run into the 
following problem: If you want precise information about time, you must put up 
with some vagueness about frequency, and vice versa. This is the Heisenberg 
uncertainty principle applied to information processing.To illustrate graphical- 
ly the principle, each basis function used in the representation of a function is 
viewed schematically as a tile in a time-frequency plane. The tile, also called a 
Heisenberg cell or Heisenberg box, shows where the basis function's energy is 
concentrated. Basis functions that are orthonormal are characterized by 
nonoverlapping tiles. 

Figure 7.21 shows the time-frequency tiles for (a) a delta function (i.e., con- 
ventional time domain) basis, (b) a sinusoidal (F'FT) basis, and (c) an FWT basis. 
Note that the standard time domain basis pinpoints the instants when events 
occur but provides no frequency information. A sinsusoidal basis, on the other 
hand, pinpoints the frequencies that are present in events that occur over long 

but provides no  time resolution.rhe time and frequency resolution of 
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Time Time Time 

a b c  

FlGURE 7.21 Time-frequency tilings for (a) sarnpled data, (b) FFT, and ( c )  FWT basis 
functions. 

the FWT tiles vary, but the area of each tile is the same.That is, each tile rep- 
resents an  equal portion of the time-frequency plane. At low frequencies, the 
tiles are shorter (i.e., have better frequency resolution or less ambiguiry re- 
garding frequency) but are wider (whjc,h corresponds to poorer ti me  resolution 
or more ambiguily regarding time). At high frequencies, tile width is smaller 
(so the time rzsolution is jmproved) and tile height is greater (which means the 
frequency resolution is poorer).This fundamental difference between the FFT 
and F W T  was noted io  the irltroduction to the chapter and i s  important  ijl the 
analysis of nonstarionary functions whose frequencies vary in time. 

88  . m Wavelet Transforms in Two Dimensions 

The one-dimensional transforms of thz previous sections are easily extended to 
two-dimensiotial functions like images. In  two dirnensior~s, a two-dimensional 
scaling function, q ( x ,  y ) ,  and three two-dimensional wavelets, + b H ( x ,  y ) ,  1,9"(x, y) ,  
and ~ ~ ( x ,  y),  are required. Each is the product of a one-dimensional scaling 
function cp and corresponding wavelet +. Excluding products that produce one- 
dimensional results, like cp(x)q!r(x),  the four remaining products produce the 
sepnrrrble scaling function 

and separable, "directionally sensitive" wavelets 

These wavele ts  measure functional variations-intensity or gray-level varia- 
tions for images-along different directions: measures variations along 
columns (for example, horizontal edges), $" responds to variations along rows 
(like vertical edges), and 30 corresponds to variations along diagonals. The di- 
rectional sensitivity is a natural consequence of the separability imposed by 
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Eqs. (7.5-2) to (7.5-4); it does not increase the computational complexity of the 
two-dimensional transform discussed in this section. 

Given separable two-dimensional scaling and wayelet functions, extension of 
the one-dimensional DWT to two dimensions is straightforward. We first define 
the scaled and translated basis functions: 

~ . n , l , ( x ,  y )  = 2i/2'p(2jx - rn, 2jy - n) ,  (7.5-5) 
11' 2jx - m, 2Jy - n), i = { H ,  V ,  D )  (7.5-6) 1 , 1 1 1  Y = 2' air( 

where index i identifies the directional wavelets in Eqs. (7.5-2) to (7.5-4). Rather 
than an exponent, i is a superscript that assumes the values H, V, and D.Tlle dis- 
crete wavelet transform of function f ( x ,  y )  of size M x N is then 

1 M - I  N-1 

As in the one-dimensional case, jo is an arbitrary starting scale and  the 
~ , ( j , ,  m, n) coefficients define an approximation of f (x ,  y )  at scale j,. The 
Wi, ( j ,  m, n )  coefficients add horizontal, vertical, and diagonal details for scales 
j 1 j,. We normally let j,, = 0 and select N = M = 2J so that j = 0, 1 , 2 ,  . . . !  
.I - 1 and m, n = 0,1 ,2 , .  . . 2' - 1. Given the W, and W;, of Eqs. (7.5-7) and 
(7.5-8),f (x, y) is obtained via the inverse discrete wavelet transform 

1 
f(x, Y )  = C C W,(lO> my n)~,o.nl$l,(~l Y )  (7.5-9) 

m I f  

Like the one-dimensional discrete wavelet transform, the two-dimensional 
DWT can be implemented using digital filters and downsainplers. With seyara- 
ble two-dimensional scaling and wavelet functions, we simply take the one- 
dimensional FWT of the rows off (x, y),  followed by the one-dimensional FWT 
of the resulting columns. Figure 7.22(a) shows the process in block diagram form. 
Note that, like its one-dimensional counterpart in Fig. 7.15, the two-dimension- 
al FWT "filters" the scale j + 1 approximation coefficients to construct the scale 
j approxi mation and detail coefficients. In the two-dimensional case, however, we 
get three sets of detail coefficients-the horizontal, vertical, and diagonal details. 

The single-scale filter bank of Fig. 7.22(a) can be "iterated" (by tying the ap- 
proximation output to the input of another filter bank) to produce a P scale 
transform in which scale j = J - 1, J - 2,. . . J - P.As in the one-dimensional 
case, image f (x, y)  is used as the W,(J, m, n )  input. Convolving its rows with 
h,(-n) and h,(-n) and downsampling its columns, we get two subimages whose 
horizontal resolutions are reduced by a factor of 2.The highpass or detail com- 
ponent characterizes the image's high-frequency information with vertical ori- 
entation; the lowpass, approximation component contains its low-frequency, 
vertical information. Both subimages are then filtered columnwise and down- 
sampled to yield four quarter-size output subimages- W,, w:, w:. and w;. 
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-pq--p-+ Rows 
(along m )  

Columns 
(along n )  Lhp , , )+T  w,,i, ..>..I 
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WP(i, m, n) 

Rows 
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(along rn) 

j m n )  - 21 --( hQ(rn) 

Rows 

H 
W,O. nr, n )  +- hlb(m) 

Rows 

wq(i, m, n) +- 2t - hco(m) 

Rows 

a FIGURE 7.22 The two-dimensional fast wavelet transform: (a) the analysis filter bank; 
:tj (b) the resulting decomposition; and (c) the synthesis filter bank.  
\ \  : 

c - , -. . . .- -- - -- -- -- -- - - -- -. . - - - . , - - .  



7.5 &% Wave!e t Transforms in Two Dimensions 389 

These subimages, which are shown in the middle of Fig, 7,22(b), are the inner 
products of f (x ,  y )  and the two-dimensional scaling and wavelet functjons in 
Eqs. (7.5-1) througll (7.5-4), followed by downsampljng by two in each dirnen- 
sjon. Two iterations ol the  filtering process produces-the two-scale decoinposi- 
tion at t h e  far- right of Fig. 7.22(b). 

Figure 7.22(c) shows the synthesis filter bank that reverses the process de- 
scribed above. As would be expected, the reconstruction algorithm is similar lo 
rhe one-ciirncnsional case. At each iteration,four scale j approximation and de- 
tail s~lbjn~ages are upsampled and convolved with two one-dimensional fjlters- 
one operating on the subimages' columns and the other on its rows. Addition 
of thc results yields the scale j + I approximation, and the process is repeated 
u u ~ i l  the original image is xeconstructed. 

Cons~der the two-dimensional FWT shown in Fig. 7.23. Here. we see a se- EXAMPLE 7.12: 
quence of €1 1 ter-based decompositions of the 128 X 128 computer-genera ted Conl~uting a 2-D 

image in Fig. 7.23(a).To generate the results, the two-dimensional filter bank of 
transform. Fie - 7.22(a) and the symlef reconstruction filters of Figs. 7.24(a) and (b) w w e  

used. Figures 7.23(b), (c). and (d) are the resulting decompositions, I n  the first 
decomposition [Fig. 7.23(b)], t h e  original image-a series of sinusoidal pulses 
on a black background-is the filter bank input; in all subsequent decomposi- 
tlons. approxin~a tion image CVv-a subimage lrom the upper-left-hand corner of 

FIGURE 7.23 A 
three-scale FWT. 



FIGURE 7.24 
Fourth-order 
symlets: 
(a)-(b) decompo- 
sition filters; 
(c)-(d) recon- 
struction filters; 
(e) the one- 
dimensional 
wavelet; (f) the 
one-dimensional 
scaling function; 
and (g) one of 
three two- 
dimensional 
wavelets, 
$ ) / ( x ,  y ) -  
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the previous decomposition-is the input. Each decomposition produces four 
quarter-size output images that are arranged as shown in Fig. 7.22(b) a.nd sub- 
stituted for the input from which they were derived. Note the directional nature 
of the wavelet- based subimages. W g  , W $  , and w:, at each scale. a 

The decomposition filters used in the preceding example axe part of a well- 
known family of wavelets called symlels, short for "symmetrical wavelels."Al- 
though they are not perfectly symmetrical, they are designed to have the least 
asymmetry and highest number of vanishing moments' for a given compact 
support (Daubechies [1992]). Figures 7.24(e) and (f) show the fourth-order one- 
dimensional syrnlets (i.e., wavelet and scaling functions). Figures 7.24(a)-(d) 
show the corresponding decomposition and reconstruction filters. The coeffi- 
cients of lowpass reconstruction filter go(n) = h,(n) are 0.0322, -0.0126, 
-0.0992,0.2979,0.8037,0.4976, -0.0296, and -0.0758 for 0 5 n S 7. The coef- 
ficients of the remaining orthonormal filters can be obtained using Eq. (7.1-23). 
Figure 7.24(g), a low-resolution graphic depiction of wavelet 41rH(x, y),  is pro- 
vided as an illustration of how a one-dimensional scaling and wavelet function 
combine to form a separable, two-dimensional wavelet. 

We conclude the section with two examples that demonstrate the useful- 
ness of wavelets in image processing. As in the Fourier domain, the basic ap- 
proach is to 

1. Compute the two-dimensional wavelet transform of an image. 
2. Alter the transform. 
3. Compute the inverse transform. 

Because the DWT's scaling and wavelet vectors are used as lowpass and high- 
pass filters, most Fourier-based filtering techniques have an equivalent "wavelet 
domain" counterpart. 

Figure 7.25 provides a simple illustration. In Fig. 7.25(a), the lowest scale ap- EXAMPLE 7.13: 
proximation component of the discrete wavelet transform shown in Fig. 7.23(c) LVavelet-based 

has been eliminated by setting its values to zero. When the inverse transform edge detection. 

is computed using these modified transform coefficients, as seen in Fig. 7.25(b), 
t h e  effect is to emphasize or highlight the reconstructed image's edges. This 
provides considerable insight into the location of the original image's edges, 
despite the fact that they are relatively soft, sinusoidal transitions. By zeroing 
the horizontal details as well-see Figs. 7.25(c) and (d)-we can isolate the ver- 
tical edges. rn 

As a second example, cansider the magnetic resonance image (MRI) of a EXAMPLE 7.14: 
human head shown in Fig. 7.26(a). As can be seen in the background, the image Wavelet-based 

has been uniformly corrupted with a form of additive or multiplicative white 

'The kth moment of wavelet $ ( x )  is m ( k )  = S x k @ ( x )  dx. Zero moments impact the smoothness nf t he  
scnlinp, and wavelet functions and our ability to represent them as polynomials. An order-N symlet has 
N vanishing mornen ts. 
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FIGURE 7.25 
Modifying a DWT 
lor edge 
detect~nn: (a) and 
(c) lwo-scale 
decompositions 
with selected 
coefficients 
delered; (b) and 
(d) the 
corresponding 
~ ~ c ~ ~ ~ I T u c ~ ~ o ~ s .  

noise. The general wavelet-based procedure for detznisi~zg [he image (i.e., sup- 
pressing the noise part) is as follows: 

I. Choose a wavelet (e.g.. Haa I., syrnlet, . . . ) and num bey of levels 01- scales, P. 
for the decomposition-Then cornpule the FFVT of [he noisy image. 

2. Threshold the derail coefficietlb.That is.select and apply a threshold to [he de- 
tail coefficients from scales 3 - 1 to J - P.This can be accomplished by h a d  
lhresholdi~~g, which means settjng to zero the elements whose absolute values 
are lower than the threshold, or by sofi thresholding, which involves ljrst set- 
ting 10 zero the elements whose absolute values are lower than the threshold 
and then scaling the nonzero coefficients toward zero. Soft thresholdjng d i m -  
inales the discontinuity (a[ the threshold) that is inherent in hard tbresholding. 

3. Perform a wavelet reconstruction based o n  the original approximation 
coefficients a t  level I - P and the modified detajl coecficients for levels 
J - 1 1 0 J - P .  

Figure 7.26(b) shows the resuit of performing these operations with fou~ .~h-  
order ryrnlcts, two scales (ire., P = 2). and a global threshold 01 94.9093. Note 
the reduction in noise and corresponding loss of quality a t  the image edges.111is 
loss of edge detail is greally reduced in Fig. 7.26(c), tvhicl~ was generated by 
zeroing the highest-resolution detail coefficients (not the lower-resolution de- 
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tails) and reconstructing the image. Here. almost all of the background noise has 
been eliminated and the edges are only slightly disturbed. Figure 7.26(d) shows 
the information that is lost in the process. T h i s  result was generated by corn- 
puting the inverse FWT of the decomposed image with all but the highest- 
resolution detail coefficients zeroed. As can be seen, it contains most of the 

:a b 
:..c d 
:e f 
FIGURE 7.26 
Modifying a DWT 
for noise removal: 
(a) a noisy MRI 
of a human head: 
(b). (c) and 
( e )  various 
reconslruct ions 
after tl~resholding 
t he  detail 
coefficien 1s: (d) 
and (f) the 
information 
ren~oved during 
the reconstruction 
of (c) and (e ) .  
(Orjginal image 
courtesy 
Vanderbuilt 
University 
Medical Center.) 
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noise in the original image and some of the edge jnf~rmation. Figures 7.26(e) 
and (f) are a similar set of images invol.ving all detail coefficients. That is, 
Fig. 7.26(e) is a reconstruction of the DWT in which the details at both levels 
of the decompositjon have been zeroed; Fig. 7.26(f) is a reconstruction in which 
all but the detail coefficients (i.e., only the lowest level approximation coeffi- 
cients) have been eliminated.Noie the significant increase in edge information 
in Fig. 7.26(f) and the corresponding decrease in edge detail. in  Fig. 7.26(e). 

Wavelet Packets 

Toe last wavelet transform decomposes a function into a series of logarithmi- 
cally related frequency bands.That is, the low frequencies are grouped into nar- 
row bands, while the high frequencies are grouped into wider bands. If you look 
along the frequency axis of the time-frequency plane in Fig, 7.21(c), this i s  im- 
mediately apparent. It is a defining characteristic of what are commonly called 
consfont-Q fillers. If we want greater control over the partitioning of the time- 
frequency plane (e.g., smaller bands at the higher frequencies), the FWT must 
be generalized to yield a more flexible decomposition-called a wavelet packet 
(Coifman and Wickerhauser [1992]). The cost of this generalization is an in-  
crease in computational complexity from O ( M )  for the FWT to O(M log M). 

Consider again the two-scale filter bank of Fig. 7.16(a)-but picture the de- 
composition as a binary Iree. Figure 7.27(a) details the structure of the tree and 
links the appropriate FWT scaling and wavelet coefficients [from Fig. 7.16(a)] 
to i ts  nodes. The root node is assigned the highest-scale approxin~ation coeffi- 
cient$ which are samples of t he  [unction itself, while the leaves inherit the trans- 
form's approximation and detail coefficient outputs. The lone intermediate 
node, W,(J - 1, n) ,  is a filter bank approxinlation that is ultimately filtered to 
become two Ieaf nodes. Note that the coefficients of each node are the weights 
of a linear expansion that produces a band-limited "piece" of root node f (n). 
Since any such piece is an element of a known scaling or wavelet subspace (see 
Sections 7.2.2 and 7.2.3), we can replace the generating coefficients in Fig. 7.27(a) 
by the corresponding subspace. The result is the  subspace analysis tree of 
Fig. 7.27(b). Although the variable W is used to denote both coefficients and sub- 
spaces, the two quantities are distinguishable by the format of their subscripts. 

FIGURE 7.27 A coefficient (a) and analysis (b) tree for the two-scale FWT analysis 
bank of Fig. 7.16, 
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These concepts are  further illustrated in Fig. 7.28, where a three-scale FWT 
analysis bank, analysis tree, and corresponding frequency spectrum a r e  de- 
picted. Unlike Fig. 7.16(a), the block diagram of Fig. 7.28(a) is labeled to re- 
semble the analysis tree in Fig. 7.28(b)-as well as the spectrum in Fig. 7.28(c). 
Thus,  while the output of the upper-left filter and subsampler is, to be accu- 
rate. WJJ - 1, n), i t  has been labeled W,-,-the subspace of the function 
that is generated by the W$(J - 1, n) transform coefficients. This subspace 
corresponds to t h e  upper-right leaf of the associated analysis tree, as we11 as 
the rightmost or widest bandwidth segment of the corresponding frequency 
spectrum. 

Analysis trees provide a compact and informative way of representing mul- 
tiscale wavelet transforms. They are si-mple to draw, take less space than their 
corresponding filter and subsampler-based block diagrams, and make i t  rela- 
tively easy to spot valid decompositions. The three-scale analysis tree of 
Fig. 7.28(b), for example, offers the following three expansion options: 

..-a 
:b .c. 

FIGURE 7.28 A 
three-scale FWT 
filter bank: 
(a) block diagram; 
(b) decomposition 
space tree; and 
(c) spectrum 
splitting 
characteristics. 

. - ,  

They correspond to the one-, two-, and three-scale FWT decompositions of Sec- 
tion 7.4 and may be obtained from Eq. (7.2-27) of Section 7.2.3 by letting 
jo = J - P for P - {1,2,3). In general, a P-scale FWT analysis tree supports 
P unique decompositions. 
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FlGURE 7.29 A three-scaJe wavelet packet analysis tree. 
. . A A - . . . , . . , . . - . . . . . . . , . . - - - . . - . . . . . . . - . . .  . .  . 

Analysis trees are also an efficient mechanism for representing wavelei 
packers, which are nothing more than conventional wavelet iransforms in. 
which the details are iteratively filtered. Thus, the thr ee-scale FWT analysis 
tree of Fig. 7.28(b) becomes the three-scale wavelet packet tree of Fig. 7.29. 
Note the additional subscripting that i s  introduced. The first subscript of a 
double-subscripted node identifies the scale of the FWT parent node from 
which it descended. The second-a variable length string of A's and D's- 
encodes the  path from the parent to the node. An A designates approxima- 
tion filtering, while a D indicates detail filtering. Subspace W,-,,,,, for 
example, is obtained by "filtering" the scale J - 1 FWT coefficients (i.e., par- 
ent W,-, in Fig. 7.29) through an additional detail filter (yielding W J - l , D ) ,  fol- 
Iowed by an approximation filter (giving W,-,.,,). Figures 7.30(a) and (b) 
are the filter bank and spectrum splitting characteristics of the analysis tree 
in Fig. 7.29. Note the evenly spaced frequency bands that are characteristic 
of full packet decompositions. 

The three-scale packet tree in Fig. 7.29 almost triples the number of decom- 
positions (and associated time-frequency tilings) that are available from the 
three-scale FWT tree. Recall that in a normal FWT, we split, filter, and down- 
sample the lowpass bands alone. This creates a fixed logarithrmc relationship be- 
tween frequency bands. Thus, while the three-scale FWT analysis tree of 
Fig. 7.28(a) offers three possible decompositions-see Eqs. (7.6-1) to (7.6-3)- 
the wavelet packet tree of Fig. 7.29 supports 26 different: decompositions. For in- 
stance, V, [and therefore function f (n)] can be expanded as 

whose spectrum is shown in Fig. 7.30(b), or 

whose spectrum is depicted in Fig. 7.31. Note the difference between this last 
spectrum and the full packet spectrum of Fig. 7.30(b), or the three-scale FWT 
spectrum of Fig. 7.28(c). In general, P-scale, one-dimensional wavelet packet 
transforms (and associated P + 1-level analysis trees) support 
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unique decon~positions, where D(1) = 1. With such a large number of valid ex- 
pansions, packet-based transforms provide improved control of the partition- 
ing of the decomposed function's spectrum. Of course, the cost of this control 
is an increase in computational complexity [compare the filter bank in 
Fig. 7.28(a) to that of Fig. 7.30(a)]. 

FIGURE 7.30 'The 
(a) filter bank and 
(b) spectrunl 
splitling 
characteristics of 
a three-scale full 
wavelet packet 
analvsis tree. 

FIGURE 7.31 The 
spectrum of the 

I decomposilion in 

['J - I L 
0 

0 
2 5 ~ 1 8  3n!4 T 

I Eq. (7.6-5). 
I 

I 

: >  

WJ-1.o 
I 

I 

I 

- ' I  ~ V J - I ,  AA ~ V J - I . A D  
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FIGURE 7.32 The _ I _  - _ _ - -Tt - - - -  - - 1 

Now consider the two-dimensional, four-band filter bank of Fig. 7.22(a). As 
was noted in Section 7.5, it splits approximation W,(j + 1, m, n )  into outputs, 
W,(j, m, n),  w?(j, m, n), w;(j, m, n), and ~ f ( j ,  rn, n).  As in the one- 
dimensional case, it can be "iterated" to generate P scale transforms for scales 
j = J - 1, J - 2, ... , J - P, with W,(J, rn, n) = f ( m ,  n).The spectrum re- 
sulting from the first iteration [i.e., using j + 1 = J in Fig. 7.22(a)] is shown in 
Fig. 7.32(a). Note that i t  divides the frequency plane into four equal areas. The 
low-frequency quarter band in the center of the plane coincides with transform 
coefficients W,(J - 1, rn, n) and scaling space V,-, . (This nomenclature is con- 
sistent with the one-dimensional case.) To accommodate the  two-dimensional 
nature of the input, however, we now have three (rather than one) wavelet sub- 
spaces-They are denoted w ; ~ ,  wL,, and wY-,  and correspond to coefficients 
W$(J  - 1, m, n) ,  W;(J - 1, m, n), and W i ( J  - 1, m, n) ,  respectively. Fig- 
ure 7.32(b) shows the resul tlng four-band, single-scale quaternary FWT analy- 
sis tree. Note the superscripts that link the wavelet subspace designations to 
their transform coefficient counterparts. 

Figure 7.33 shows a portion of a three-scale, two-dimensional wavelet pack- 
et analysis tree. Like its one-dimensional counterpart in Fig. 7.29, the first sub- 
script of every node that is a descendent of a conventional FWT detail node is 

first I D 
decomposition of I w ~ - ~  
a two-dimensional I 

FWT (a) the I 

spectrum and I 

(b) the subspacc +-+ w;!~ 
-7;. analysis tree. I 

FIGURE 7.33 A three-scale, full wavelet packet decomposition tree. Only a portion of the tree is provided. 
. ... . - .  . . . . 

v I 

WJ-I 

VJ-I 
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n I 

J -  I I 
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I 

H I 
WJ-]? W h o r i ~ o ~ t ~ o l  

7r 
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the scale of that parent detail node. Thc second subscript-a variable length 
string of A's and D's-encodes the path from the parent to the node under con- 
sideration. The node labeled WE,,  y ,,, for example, is obtained by "ro~v/column 
filtering" the scale J - 1 FWT l~orizontal detail coefficients (i.e., parent w;'-, 
in Fig. 7.33) through an additional detail/approximation Iilter (yielding 
W:'! ,, ,), followed by a detailldetail filter (giving wY- [,,,). A P-scale, two- 
dimensional wavelet packet tree supports 

unique expansions, where D ( l )  = 1.Thus the three-scale tree of Fig. 7.33 offers 
83,522 possible decompositions! 

A single wavelet packet tree presents numerous decomposition options. In EXAMPLE 7.15: 
fact, the number of possible decompositions is often so large that it is imprac- Two-dimensional 

tical, if not impossible, to enumerate or examine them individually. An efficient wavelet packet 
decompositions. 

algorithm for finding optimal decompositions with respect to application spe- 
cific criteria is highly desirable. As will be seen, classical entropy-based criteria 
are applicable in many situations and well suited to binary and quartenary tree - - 
searching algorithms. 

Consider the problem of compressing the fingerprint image in Fig. 7.34(a). 
Using three-scale wavelet packet trees, there are 83,522 [see Eq. (7.6-7)) 

a b 

FIGURE 7.34 (a) A scanned tingcrpri~ll and (b) its three-scale, full wavelet packet decomposition. (Original 
image courtesy of the National Institute of Standards and Technology.) 

" - .  . .  
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potential decompositions that could serve as the starting point for the compres- 
sion process.Figure 7.34(b) shows one of them-a full wavelet packet, 64-leaf de- 
composition like the analysis tree of Fig. 7.33. Note that the leaves of the tree 
correspond to the subbands of the 8 X 8 array of decomposed subimages in 
Fig. 7.34(b).The probability that this particular 64-leaf decomposition is in some 
way optimal for the purpose of compression, however, is relatively low. In the ab- 
sence of a suitable optimality criterion, we can neither confirm nor deny i t .  

One reasonable criterion for selecting a decomposition for the compression 
of the image of Fig. 7.34(a) is the additive cost function 

This function measures the entropy or information contenl of two-dimensional 
function f .  Entropies near 0 indicate functions with little lo no inCorrnation. For 
example, the entropy of function f (m, n) = 0 for all m and n is 0. It provides 
no information. High entropy values, on the other hand, are indicative of func- 
tions with many nonzero values. Since most transform-based coinpression 
schemes work by truncating or thresholding the small coefficients to zero, a 
cost function that maximizes the number of near-zero values is a reasonable 
criterion for selecting a "best," from a compression viewpoint, decomposition. 

The cost function just described is both computationally simple and easily adapt- 
ed to tree optimization routines.The optimizaljon algorithm must use the function 
to minimize the "cost" of the decomposition tree's leaf nodes. Minimal entropy 
leaf nodes should be favored because they have more nem-zero values, which leads 
to greater compression. Because the cost function of Eq. (7.6-8) is a local measure 
that uses only the information available at the node under consideration, an effi- 
cient algorithm for finding minimal entropy solutions is easily constructed: 

For each node of the analysis tree, beginning with the root and proceeding 
level by level to the leaves: 

1. Compute both the entropy of the node, denoted E ,  (for parent entropy), 
and the entropy of its four offspring--denoted E A ,  E , ,  Ev, and E D .  For 
two-dimensional wavelet packet decompositions, the parent is a two- 
dimensional array of approximation or detail coefficients; the offspring are 
the filtered approximation, horizontal, vertical, and diagonal details. 

2. If the combined entropy of the offspring is less than the entropy of the  par- 
ent-that is, EA + E H  + Ev + E D  < Ep-include the offspring in the 
analysis tree. If the combined entropy of the offspring is greater than or 
equal to that of the parent, prune the offspring, keeping only the parent. It 
is a leaf of the optimized analysis tree. 

The preceding algorithm can be used to (1) prune wavelet packet trees or 
(2) design procedures for computing optimal trees from scratch. In the latter 
case, nonessential siblings-descendants of nodes that would be eliminated in 
Step 2 of the algorilhm-would not be computed. Figure 7.35 shows the opti- 
mized decomposition that resutts from applying the algorithm to the image of 
Fig. 7.34(a) with the cost function of Eq. (7.6-8). The corresponding analysis 
tree is given in Fig. 7.36. Note that many of the original full packet decomposi- 
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FIGURE 7.35 An 
optimal wavelet 
packet 
decomposition for 
the fjngerprin t of 
Fig. 7.34(a) 

iU,$ I v L' "1-3 ~ 1 y 2  WL W J - I , A  W J - I . H  w ; - I , v  ~7-1 .n  

FIGURE 7.36 The optimal wavelet packet analysis tree for the decomposition in Fig. 7.35. 

tion's 64 subbands in Fig. 7.34(b) (and corresponding analysis tree's 64 leaves 
in Fig. 7.33) have been eliminated. In addition, the subimages that are not split 
(or further decomposed) in Fig. 7.35 are relatively smooth and composed of 
pixels that are middle gray in value. Since all but the approximation subimage 
of this figure have been scaled so that gray level 128 indicates a zero-valued co- 
efficient, these subimages contain little information. There would be no over- 
all decrease in entropy realized by splitting them. 1 
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The preceding example is based on a real-world problem that was solved 
through the use of wavelets. The Federal Bureau of Investigation (FBI) cur- 
rently maintains a large database of fingerprints and has established a wavelet- 
based national standard for the digitization and compression of fingerprint 
images (FBI [1993]). Using biorthogonal wavelets, the standard achieves a typ- 
ical compression ratio of 15 : 1. The advantages of wavelet-based compression 
over the more traditional JPEG approach are examined in the next chapter. 

The decomposition filters used in Example 7.15, as well as by the FBI, are part 
of a well-known family of wavelets called Cohen-Daubechies-Feauveau 
biorthogonal wavelets (Cohen, Daubechies, and Feauveau [1992]). Because the 
family's scaling and waveIet functions are symmetrical and have similar lengths, 
they are among the most widely used biorthogonal wavelets. Figures 7.37(e)-(h) 
show the dual scaling and wavelet functions that are characteristic of biorthog- 
onal bases. Figures 7.37(a)-(d) are the corresponding decomposition and re- 
construction filters. The coefficients of lowpass decomposition filter ho(n) are 
0,0.0019, -0.0019, -0.017,0.0119,0.0497,~.0773, -0.0941,0.4208,0.8259,0.4208, 
-0.0941, -0.0773,0.0497,0.0119, -0.017, -0.0019, and 0.0010 for 0 5 n r 17. 
Highpass decomposition filter h , ( n )  has coefficients O,0, 0, 0.0144, 0 .0145,  
-0.0787,0.0404,0.4178, -0.7589,0.4178,0.0404,-0.0787, -0.0145,0.0144,0,0,0, 
and 0 for 0 5 n I 17. The corresponding coefficients of the biorthogonal 
synthesis filters can be computed using g o ( n )  = ( - l ) " + ' h , ( n )  and 
g,(n)  = (-l)"ho(n) of Eq. (7.1-15).That is, they are cross-moduIated versions 
of the decomposition filters. Note that zero padding is employed to make the 
filters the same length. 

Summa y 
The material of this chapter establishes a solid mathematical foundation for under- 
standing and accessing the role of wavelets and rnultiresolution analysis in image pro- 
cessing. Wavelets and wavelet transforms are relatively new imaging tools that are being 
rapidly applied to a wide variety of image processing problems. Because of their simi- 
larity to the Fourier transform, many of the techniques in Chapter 4 have wavelet domain 
counterparts. A partial listing of the imaging applications that have been approached 
from a wavelet point of view includes image matching, registration, segmentation, de- 
noising, restoration, enhancement, compression, morphological filtering, and compuied 
tomography. Since it is impractical to  cover all of these applications in a single chapter, 
the topics included were chosen for their value in introducing or  clarifying fundarnen- 
tal concepts and preparing the reader for further study in the field. In Chapter 8, we will 
apply wavelets to the compression of images. 

References and Further Reading 
There are many good texts on wavelets and their application. Several complement our 
treatment and were relied on during the development of the core sections of the chap- 
ter.The material in Section 7.1.2 on  subband coding and digital filtering follows the book 
by Vetterli and Kovacevic [1995], while Sections 7.2 and 7.4 on multiresolution expan- 
sions and the fast wavelet transform follow the treatment of these subjects in Burrus, 
Gopinath, and Guo  [1995].The remainder of the material in the chapter is based on the 



U References and Further Reading 403 

1 0.4 ;e f 

0.8 0.2 
h 

0.6 0 FIGURE 7.37 A 
member oi the 

0.4 -0.2 Cohen- 

19.2 -0.4 Daubechies- 

0 Feauveau 
-0.6 biorthogonal 

-0.2 n -0.8 
0 3 8 12 16 0 4 8 12 16 (a)  and 

" wavelet family: 

(b) decomposition 
filter coefficien Is; 
(c) and 
(d) reconstruct ion 
Eil ter coeffic,ients; 
(e)-(h) dual 
wavelet and 
scaling funclions. 



404 (bqter 7 0 Wavelets and Multiresolution Processing 

references cited in the text. Experimental work and many of the examples were done 
using the MATLAB wavelet toolbox (Misiti, Misiti, Oppenheim, and Poggi [19%]). 

The history of wavelet analysis is recorded in a book by Hubbard [1998].The early pre- 
decessors of wavelets were developed simultaneously in different fields and unified in a 
paper by Malla t [1987]. It brought a mathematical framework to the field. Much of the 
history of wavelets can be traced through the works of Meyer [I9873 [I9901 [1992a, bl 
[1993], Mallat [I9871 [1989a<] [1998],and Daubechies [I9881 [I9901 [19!X!] [1993'1 [1996]. 
The current interest in wavelets was stimulated by many of their publications.'fhe book 
by Daubechies [I9921 is a classic source for the mathematical details of wavelet theory. 

The applica~ioli of wavelets to image processing is addressed in general image pro- 
cessing texts, like Castleman 119961, and many application-specific books, some of which 
are conference proceedings. In this latter category, for example, are Rosenfeld [1984], 
Prasad and Iyengar [1997], and Topiwala [1998]. Recent articles that can serve as start- 
ing points for further research into specific imaging applications include ThCvenaz and  
Unser [2000] for image registration; Chang and Kuo [I9931 and Unser [I9951 on texture- 
based classification;Heijmans and Goutsias [2000] on morphological wavelets; Banharn 
et al. [1994], Wang,Zhang, and Pan [L995], and Banham and Kastaggelos [I9961 on image 
restoration; Xu et al. [I9941 and Chang,Yu, and Vetterli [2000] on image enhancement; 
Delaney and Bresler [I9951 and Westenberg and Roerdink [2000] on computed tomog- 
raphy; and Lee, Sun, and Chen [1995], Liang and Kuo [1!9!39], Wang, Lee, and Toraichi 
[2999], and You and Bhattacharya [2000] on image description and matching. One of the 
most important applications of wavelets is image compression-see, for example, An- 
tonini et al. [1992]. Wei et al. [1998], and the book by Topiwala 119981. Finally, there have 
been a number of special issues devoted to wavelets, including a special issue on wavelet 
transforms and multiresolution signal anaysis in the IEEE Transaclions on Information 
Theory 119921, a special issue on wavelets and signal processing in the JEEE Trunsactionr 
on Sign01 Procesring [1993], and a special section on mulliresolution representation i n  
the IEEE Transactions on Partern Analysis and Machine Inrelligence [1989]. 

Although the chapter- focuses on &he fundamentals of wavelei  and their ~pplication to 
image processing. there is considerable interest in the construction of wavelets themselves 
The interested reader is referred to the work of Battle [I9871 [1988], Daubechies [I9881 
[1992], Cohen and Daubechies [1992], Meyer [1990], Mallar [1989b], Unser, Aldroubi, and 
Eden [1993], and Grochenig and Madych [1992]. This is not an exhaustive list but should serve 
as a starting po~nt for further reading. See also the general referenceson subband codingand 
filter bankg including Strang and Nguyen [I9961 andVetterIi and Kovacevic [1995], and the 
references included in the  chapter with respect to the wavelets we used as examples 

Problems 

kc incidc Iron1 (aver 

Detailed solurions to the 
problems marked with ;I 
smr can be found in [he 
book web site. Tht rile 
also cantains suggesred 
projects hased on the ma- 
t e r ~ a l  in this chap~er. 

Design a system for decoding the prediction residual pyramid generated by the 
encoder of Fig. 7.2(b) and draw its block diagram. Assume there is no quantua- 
tion error introduced by the encoder. 

Construct a fully populated approximation pyramid and corresponding prediction 
residual pyramid for the image 

r l  2 3 4 1  

Use 2 X 2 block neighborhood averaging for the approxjmation filter i n  
Fig. 7.2(b) and assume the interpolation filter is omitted. 
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k7.3 Given a 2' X 2.' image, does a J -t 1-level pyramid reduce or expand the 
amount of data required to represent the image? What i s  the compression or ex- 
pansion ratio? 

7.4 Prove that the  following filters from Table 7.1 form perfect reconstruction filter banks: 

.k (a) Quadrature mirror filter (QMF) 
(b) Orthonorma[ filter 

7.5 Arc quadrature mirror filters biorthogonal or  othonormal or both? 

7.6 Compute the coefficients of the Daubechies synthesis filters g,,(n) and g, (n.) for Ex- 
ample 7.2. Usjng Eq. (7.1-22) with )n = 0 only,show that the filters are orthonomal. 

7 7  Draw a two-dirne~lsional four-band filter bank decoder lo reconstruct input 
.r(nz, n) in Fig. 7.5. 

7.8 Obtain (he Haar transformation matrix for N = 8. 

7.9 (a) Compute the Haar transform of the 2 X 2 image 

(b) The inverse Haar transfolm is F = H-'TH-', where T is the Haar transfortn 
and H-' denotes the matrix inverse of Haar tranformation matrix H. Find 
H;' for Haar transformation matrix 13, and use it  to compute the inverse 
Haar transform of the result in (a). 

7.10 Compute the expansion coefficients of 2,-tuple [3 ,2 I f  for the following bases and 
write the corresponding expansions: 

*(a) Basis*, = [ 1 / ~ ' 2 ,  l / f i ] T a n d ( p l  = [ ~ / ~ , - l / f i ] ~ o n ~ ~ , f h c s e f  ofreal 
2-t uples. 

(b) Basis cp, = [ I .  01" a n d  (F, = [I, I]', and its dual, G,, = [ I ,  -1IT and (pl = 
[O, I 1". on R>. 

( )  Basis fi = [ I ,  O ] T , q l  = [-1/2; f l / 2 I P ,  and *1, = (-112. -V'3/2IT, and their 
duals, Gi = 2pi/3 for i = (0, 1.21, on R*. 

Hint: Vector inner products must be used in place of the integral inner products 
of Section 7.2.1. 

7.11 Show t h a t  scajing function 

I 0.25 I x < 0.75 
= { O elsewhere 

does not satisfy the second requirement of a multiresolution analysis. 

7.12 Write an expression for scaling space as a function of scaling function q ( x ) .  Use 
the Haar scaling function definition of Eq. (7.2-14) t o  draw the Haar V3 sca!ing 
functions a t  translations k = {O, 1 , 2 ) .  

k7.13 DF;IW wavelet #, ... :(x) . for  the Haar wavelet function. Write an  expression for 
)I,, - ~. ;(.r) in terms of the Haar scaling function. 

7.14 Suppose function f (,u) is a member of Haar scaling space h-that is, f ( x )  E V'. 
Use Eq. (7.2-22) to express V3 a5 a function of scaling space Vo and any required 
wavelct spaces. I f f  (x) is 0 outside the intervaI [O, l),skerch the scaling and  wavelet 
functions required for a linear expansion off (x) based an your expression. 

7.15 Compute thc first four terms of the  wavelet series expansion of the function used 
in Example 7.7 with starting scale j,, = 1. Write the resulting expansion in terms 
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of rhe sci~ljng and ivavelec funccjons involved. How does your result compare to 
the example, where t he  startirig scale was jo = O? 

7.16 The DWT in Eqs. (7.3-5) and (7.3-6) is a function of starring scale j,. 

(a) Reco~nputc the one-dimensional DWT of function f ( n )  = {l. 4, -3, 0) for 
0 5 n 4 3 in Example 7.8 with j, = 1 (rallier than 0).  

(b) Use  he result from (a)  to compute f (1 ) from the transform values. 

h7.17 What does the following continuous wavelet transform reveal about the one- 
dimensional function upon which i t  was based? 

7.18 (a) 'rile continuous wavelet t rans lo~,n~ oC Problem 7.17 is conlputcr generated. 
The function upon which i t  is based was firs1 sampled ac discrete intervals. 
What is continuous about the transform-or what distinguishes i t  from the 
discrere waveler trnnsfo~m of the function? 

* (b) Under what circ~imslanccs i s  the DWT A berler choice t h a n  the CWT? Are 
there tinles when the CWT is bctrer than the DWT? 

*?.I9 Draw the FWT filter bank required to  compute the [I-ansform i n  Problem 7.16. 
Label all inputs and  outputs with the appropriate sequences. 

7.20 The computational complexity o i  an IV-point fast wavelet transform is O(1W). 
That is, the number of operalions is proportional IM. What detcrnmines the con- 
st a11 t o l  p~~opot~lionality? 

7.21 * ( a )  I f  the input to the three-scale FWT filter bank of Fig. 7.28(a) is the: Haar scal- 
ing function ~ ( n )  = 1 for 11 = 0. 1,. . . - 7  and 0 elsewhere, what is the result- 
ing tratislorm with respect to Haar  wavelets'? 

(b) \&'hat i s  rhe ~ransfortn iC tlie illput is thc corresponding Haar wavelet function 
$ ( n )  = {I ,  1, 1, I ,  -1, -1, -1, -1) for n = O , l ,  ,.. ,7'! 

(c) What input sequence produces transform {O. 0,0,0.0.0, B, 0 )  wi th  nonzero 
coefficient W,(2 ,2 )  = B? 

It7.22 The two-dimensional fast wavelet transform is similar to [he pyranlidal coding 
scheme of Section 7.2.1. How are  t h ~ y  similar? Given the three-scale wavelel 
transform in Fig. 7.8(a), liow would you consti~uct the corresponding approxima- 
Lion pyramid? H o w  many levels would i t  have? 

7.23 Compute the two-dimensiollal wavelet transform with rcspect to Haar wavelels 
of the 2 X 2 image in Problem 7.9. Draw the requircd f i l ter bank and label all i n -  
puts and outputs with [he proper arrays. 
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k7.24 In the Fourier domain 

and translation does not effect the display of ]F(I I . -v) l .  IJsing the following se- 
quence of images, explain t h e  translation property of wavelet transforms. The 
leftmost image contains two 32 X 32 while squares centeyed on a 128 X 12.8 gray 
background. The second image (from the left) is i t s  single-scale wilvelzt trans- 
form with respect 10 Haar wavelets.The third is thc wavelet transform of the orig- 
inal image after shifting i t  32 pixels to the right a n d  downward,  and  the final 
(rightmost) image is the wavelet transforn~ of the orignal image after i t  has been 
shifted 1 pixel to the right and  downward. 

7.25 The following table shows the Haar wavelet and scaling functions for a lour-scale 
Cast wavelet transfotm. Sketch the additional basis functions needed for a ful l  
tlil-ee-scale packel decomposition. Give the mathematical expression or exprcs- 
sions for determining them. 
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7.26 A wavelet packet decomposition of the vase from Fig. 7.1 is shown below. 

(a) Draw the corresponding decomposition analysis tree. labeling a l l  nodes with 
the names of t h e  proper scaling and wavelet spaces. 

(b)  Draw and label the decomposition's frequency spectrum. 

7.27 Using the Haar wavelet, determine the minimum entropy packet decompos~tion 
for the function f ( u r )  = 0.25 for n = 0, 1. 2,. . . . 15. E~nploy the nonnormalized 
Shannon e,ntropy, 

as the minimization criterion, Draw [he optimal tree. labeling the nodes with the 
computed entropy values. 
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Image Corn pression 

But life is short and information endless . . . 
Abbreviation is a n@cessary evil and the abbreviator's 

business is to make the best of a iob which, although 
intrinsically bad, i s  still better khan nothing. 

A ~ ~ O U S  Huxley 

Preview 
Every day, an enormous amount of information is stored, processed, and trans- 
mitted digitally. Companies provide business associates, investors, and poten- 
tial customers with financial data, annual reports, inventory, and product 
information over the Internet. Order entry and tracking, two of the most basic 
on-line transactions, are routinely performed from the comfort of one's own 
home. The U.S., as part of its digital- or e-government initiative, has made the 
entire catalog (and some of the holdings) of the Library of Congress, the 
world's largest library, electronically accessible; and cable television pro- 
gramming on demand is on the verge of becoming a reality. Because much of 
this on-line information is graphical or pictorial in nature, the storage (see 
Section 2.4.2) and communications requirements are immense. Methods of 
compressing the data prior to storage andlor transmission are of significant 
practical and commercial interest. 

Image compression addresses the problem of reducing the amount of data 
required to represent a digital image. The underlying basis of the reduction 
process is the removal of redundant data. From a mathematical viewpoint, this 
amounts to transforming a 2-D pixel array into a statistically uncorrelated data 
set.The transformation is applied prior to storage or transmission of the image. 
At some later time, the compressed image is decompressed to reconstruct the 
original image or an approximation of it. 
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Interest in image compression dates back more than 35 years. The initial 
focus of research efforts in this fieId was on the development of analog meth- 
ods for reducing video transmission bandwidth, a process called bandwidth 
compression. The advent of the digital computer and subsequent develop- 
ment of advanced integrated circuits, however, caused interest to shift from 
analog to digital compression approaches. With the relatively recent adoption 
of several key international image compression standards, the field has un- 
dergone significant growth through the practical application of the theoretic 
work that began in the 1940s, when C. E. Shannon and others first formulat- 
ed the probabilistic view of information and its representation, transmission, 
and compression. 

Currently, image compression is recognized as an "enabling technology." In 
addition to the areas just mentioned, image compression is the natural technol- 
ogy for handling the increased spatial resolutions of today's imaging sensors and 
evolving broadcast television standards. Furthermore, image compression plays 
a major role in many important and diverse applications, including televideo- 
conferencing, remote sensing (the use of satellite imagery for weather and other 
earth-resource applications), document and medical imaging, facsimile trans- 
mission (FAX), and the control of remotely piloted vehicles in military, space, and 
hazardous waste management applications. In short, an ever-expanding number 
of applications depend on the efficient manipulation, storage, and transmission 
of binary, gray-scale, and color images. 

In this chapter, we examine bo-th the theoretic and practical aspects of the 
image compression process. Sections 8.1 through 8.3 constitute an introduction 
to the fundamentals that collectively form the theory of this discipline. Section 8.1 
describes the data redundancies that may be exploited by image compression 
algorithms. A model-based paradigm for the general compression-decompres- 
sion process is presented in Section 8.2. Section 8.3 examines in some detail a 
number of basic concepts from information theory and their role in establishing 
fundamental limits on the representation of information. 

Sections 8.4 through 8.6 cover the practical aspects of image compression, 
including both the principal techniques in use and the standards that have been 
instrumental in increasing the scope and acceptance of this discipline. Com- 
pression techniques fall into two broad categories: information preserving and 
iossy. Section 8.4 addresses methods in the first category, which are particular- 
ly useful in image archiving (as in the storage of legal or medical records).These 
methods allow an image to be compressed and decompressed without losing 
information. Section 8.5 describes methods in the second category, which pro- 
vide higher levels of data reduction but result in a less than perfect reproduc- 
tion of the original image. Lossy image compression is useful in applications 
such as broadcast television, videoconferencing, and facsimile transmission, in 
which a certain amount of error is an acceptable trade-off for increased com- 
pression performance. Finally, Section 8.6 deals with existing and proposed 
image compression standards. 
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Fundamentals 
The term data compression refers to the process of reducing the amount of 
data required to represent a given quantity of Information. A clear distinc- 
tion must be made between data and infurmation.They are not synonymous. 
In fact, data are the means by which information is conveyed.Various amounts 
of data may be used to represent the same amount of information. Such might 
be the case, for example, if a long-winded individual and someone who is short 
and to the point were to relate the same story. Here, the information of interest 
is the story; words are the  data used to relate the information. If the two in- 
dividuals use a different number of words to tell the same basic story, two 
different versions of the story are created, and a t  least one includes nonessen- 
tial  data. That is, it contains data (or words) that either provide no relevant 
information o r  simply restate that which is already known. It is rhus said to 
contain data redundancy. 

Data redundancy is a central issue in digital image compression. It is not an  
abstract concept but a mathematically quantifiable entity. If n, and n, denote the 
number of information-carrying units in two data sets that  represent the same 
information, the relarive dara redundancy RD of the first data set (the one char- 
acterized by n,) can be defined as 

where C R ,  commonly called the compression ratio, is 

For the case n2 = n, , CR = 1 and RD = 0, indicating that (relative to the sec- 
ond data set) the first representation of the information contains no redundant 
data. When n, << n,, CR + ca and R,  + 1, implying significant compression 
and highly redundant data. Finally, when n2 >> n,, CR + 0 and RD -+ -m, in- 
dicating that the second data set contains much more data than the original 
representation. This, of course, is the rlormally undesirable case of data expan- 
sion. In general, CR and RD lie in the open intervals (0, m) and (-m, I ) ,  re- 
spectively. A practical compression ratio, such as 10 (or 1.0: I), means that the 
first data set has 10 information carrying units (say, bits) for every I unit in the 
second or compressed data set. The corresponding redui~dancy of 0.9 implies 
that 90% of the data in the first data set is redundant. 

In digital image compression, three basicdata redundancies can be identified 
and exploited: coding redundancy, interpixel redundancy, and psychovisual re- 
dundancy. Data compression is acheved when one or more of these redundancies 
are reduced or eliminated. 
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8,1,1 Coding Redundancy 
In Chapter 3 we developed the technique for image enhancement by histogram 
processing on the assumption that the gray levels of an image are random quan- 
tities. We showed that a great deal of information about the appearance of an 
image could be obtained from a histogram of its gray levels. In this section, we 
utilize a similar formulation to show how the gray-level histogram of an image 
also can provide a great deal of insight into the construction of codesi to reduce 
the amount of data used to represent it. 

Let us assume, once again, that a discrete random variable r, in the interval 
[O, 11 represents the gray levels of an image and that each rk occurs with prob- 
ability p, .(rk).  As in Chapter 3, 

where L is the number of gray levels, n, is the number of times that the kth 
gray level appears in the image, and n is the total number of pixels in the image. 
If the number of bits used to represent each value of r ,  is l ( r , ) ,  then the aver- 
age number of bits required to represent each pixel is 

That is, the average length of the code words assigned to the various gray-level 
values is found by summing the product of the number of bits used to represent 
each gray level and the probability that the gray level occurs. Thus the total 
number of bits required to code an M x N image is MNL,,,. 

Representing the gray levels of an image with a natural m-bit binary codei 
reduces the right-hand side of Eq. (8.1-4) to m bits-That is, L,,, = m when m 
is substituted for l ( r k ) .  Then the constant rn may be taken outside the sum- 
mation, leaving only the sum of the p,.(rk) for 0 5 k 5 L - I, which, of course, 
equals 1. 

EXAMPLE 8.1: &fi An 8-level image has the gray-level distribution shown in Table 8.1. If a nat- 
A simple ural3-bit binary code [see code 1 and l , ( r , )  inTable 8.11 is used to represent the 
illustration of 8 possible gray levels, La,, is 3 bits, because l , ( r , )  = 3 bits for all r, . If code 2 in 
variable-length 
coding. Table 8.1 is used, however, the average number of bits required to code the ., 

image is reduced to 

' A wde is a system of symbols (letters, numbers, bits, and the like) used to represent a body of informa- 
tion or ser of events. Each piece of information or event is assigned a sequence of code symbols, called a 
code word.The number of symbols in each code word is its length. One of the most famous codes was used 
by Paul Revere on April 18,1775.The phrase "one if by land, two if by sea" is often used to describe that 
code, in which one or two lights were used to indicate whether the Britjsh were traveling by land or sea. 
% na~ural (or srraigh~) binary code is o n e  in which each event or piece of information to be encoded 
(such as gray-level value) is assigned one of 2"'m-bit binary codes from an m-bit binary counting sequence. 



8.1 1: Fundamentals 413 

rk ~ r ( r k )  Code 1 ~ ~ ( r k )  Code 2 Iz(rk ) 
r ,  = 0 0.19 000 3 11 2 
r ,  = 1/7 0.25 001 3 0 1 2 
r2 = 2/7 0.2 1 010 3 10 2 
r3 = 3/7 0.16 
r4 = 4/7 
rg = 5/7 00001 
r6 = 6/7 0.03 000~0  1 
r, = 1 0.02 111 000000 

= 2.7 bits. 

From Eq. (8.1-2), the resulting compression ratio CR is 3/2.7 or 1.ll.Thus ap- 
proximately 10% of the data resulting from the use of code 1 is redundant. The 
exact level of redundancy can be determined from Eq. (8.1-1): 

Figure 8.1 illustrates the underlying basis for the compression achieved by code 
2. It shows both the histogram of the image [a plot of pr(r,)  versus rk] and i2(rk).  
Because these two functions are inversely proportional-that is, 12(r,) increas- 
es as p,(rk)  decreases-the shortest code words in code 2 are assigned to the 
gray levels that occur most frequently in an  image. B 

TABLE 8.1 
Example of 
variable-length 
coding. 

FIGURE 8.1 
Graphic 
represen tation of 
the fundamental 
basis of data 
compression 
through variable- 
length coding. 



414 Chapter 8 a h a g e  Conlpression 

In the preceding example, assigning fewer bits to the more probable gray 
levels than to the less probable ones achieves data compression. This process 
commonly is referred to as variable-length coding. If the gray levels of an image 
are coded in a way that uses more code symbols than absolutely necessary to 
represent each gray level [that is, the code fails to minimize Eq. (8.1-4)]. the re- 
sulting image is said to contain coding redutzdoncy. In general, coding redun- 
dancy is present when the codes assigned to a set of events (such as gray-level 
values) have not been selected to take  full advantage of the probabilities of the  
events. Ir is almost always present when a n  image's gray levels are represented 
with a straight or natural binary code. In this case, t h e  underlying basis for the 
coding redundancy is that images are typically composed of objects that have 
a regular and somewhat predictable morphology (shape) and reflectance, and 
are generally sampled so that the objects being depicted are much larger than 
the picture elements The natural consequence i s  that, in most images, certain 
gray levels are more probable than ofhers ~13a~'is,'rhe'n~s~ograrns o'r rnos;r.\n'r- 
ages are not uniform). A natural binary coding of their gray levels assigns the 
same number of bits to both the most and least probable values, thus failing to 
minimize Eq. (8.1-4) and resulting in coding redundancy. 

8.7,2 Interpixel Redundancy 
Consider the images shown in Figs. 8.2(a) and (b). As Figs. 8.2(c) and (d) show, 
these images have virtually identical histograms. Note also that  both histograms 
are trimodal, indicating the presence of three dominant ranges of gray-level 
values. Because the gray levels in these images are not equally probable, 
variable-length coding can be used to reduce the coding redundancy that would 
result from a straight or natural binary encoding of their pixels. The coding 
process, however, would not alter the level of correlation between the pixels 
within the images. In other words, the codes used to represent the gray levels 
of each image have nothing to d o  with the correlation between pixels.These cor- 
relations result from the structural or geometric relationships between the 
objects in  the image. 

Figures 8.2(e) and (f) show the respective aurocorrelarion coefficients con)- 
puted along one ljne of each image. These coefficients were computed using a 
normalized version of Eq. (4.6-30) in which 

where 

Tbe scaling factor in Eq. (8.1-6) accounts for the varying number of sum terms 
that arise for each integer value of An. Of course, An must be strictly less than N, 
the number of pixels on a line. The variable x is the coordinate of the line used in 
the computation:~ote the dramatic difference between the shape of the functions 
shown in Figs. 8.2(e) and (f).Their shapes can be qualitatively related to the struc- 
ture in the images in Figs. 8.2(a) and (b).Tl.ris relationship is particularly noticeable 
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in Fig. 8.2(f), where the high correlation between pixels separated by 45 and 90 
samples can be directly related to the spacing between the vertically oriented 
matches of Fig. 8.2(b). In addition, the adjacent pixels of both images are highly cor- 
related. When An is 1. y is 0.9922 and 0.9928 for the images of Figs. 8.2(a) and (b), 
respectively.These values are typical of most properly sampled television images. 

These illustrations reflect another important form of data redundancy-one 
directly related to the interpixel correlations w i t h  an image. Because the value 
of any given pixel can be reasonably predicted from the value of its neighbors, 
[he information carried by individual pixels is relatively small. Much of the vi- 
sual contribution of a single pixel to an image is redundant; it  could have been 
guessed on the basis of the values of its neig11bors.A variety of names, including 

FIGURE 8.2 Two 
jn~ages and their 
gray-level 
histograms and 
normalized 
autocorrelation 
coefficients along 
one line. 

, . 
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spatial redundancy, geometric r-edundnncy, and  inferframe redundancy, have 
been coined to refer to these interpixel dependencies. We use the term irrlerpixel 
redundnncy to encompass them all. 

In order to reduce the interpixel redundancies in an image, t he  2-D pixel 
array normalIy used for human viewing and interpretation must be transformed 
into a more efficient (but usually "nonvisual") format. For example, the differ- 
ences between adjacent pixels can be used to represenr an  image. Transforma- 
tions of this type ( that  is, those that remove interpixel redundancy) are referred 
to as mappings. They are called reversible moppings if the original image 
elements can be reconstructed from the transformed data set. 

EXAMPLE 8.2: Z Figure 8.3 illustrates a simple mapping procedure. Figure 8.3(a) depicts a 
A simple 1-in. by 341-1. section of an electrical assembly drawing that has been sampled at 

. illustration of run- 
Length coding. 

FIGURE 8.3 
illustration of 
run-length coding: 
(a) original image. 
(b) Binary image 
with line 100 
marked. (c) Line 
profile and 
binarizaf ion 
threshold. 
(d) Run-length 
code. 

Cira y level 

255 r 

Horizontal coordinate 

Line 100: (1.63) (0,87) (1,37) (0,s) (1,4) (0,556) (1,62) (0,210) 



approximately 330 dpi (dots per inch). Figure 8.3(b) shows a binary version of 
this drawing, and Fig. 8.3(c) depicts the gray-level profile of one line of the 
image and the threshold used to obtain the binary version (see Section 3.1). 
Because the binary image contains many regions of constant intensity, a more 
efficient representation can be constructed by mapping the pixels along each 
scan line f (x, 0), f (x,  I ) ,  . . . , f (x, N - 1) into a sequence of pairs (g, ,  w,), 
(g2 ,  w?),. . . ,in which gi denotes the ith gray level encountered along the line and 
wi the run length of the ith run. In other words, the thresholded image can be 
more efficiently represented by the value and length of its constant gray-level 
runs (a nonvisual representation) than by a 2-D array of binary pixels. 

Figure 8.3(d) shows the run-length encoded data corresponding to the thresh- 
olded line profile of Fig. 8.3(c). Only 88 bits are needed to represent the 1024 bits 
of binary data. In fact, the entire 1024 X 343 section shown in Fig. 8.3(b) can be 
reduced to 12,166 runs. As 11 bits are required to represent each run-length 
pair, the resulting compression ratio and corresponding relative redundancy are 

and 

8.1.3 Psychovisual Redundancy 
We noted in Section 2.1 that the brightness of a region, as perceived by the eye, 
depends on factors other than simply the light reflected by the region. For ex- 
ample, intensity variations (Mach bands) can be perceived in an area of constant 
intensity. Such phenomena result from the fact that the eye does not respond 
with equaI sensitivity to all visual information. Certain information simply has 
less relative importance than other information in normal visual processing. 
This information is said to be psychovisually redundant. It  can be eliminated 
without significantly impairing the quality of image perception. 

That psychovisual redundancies exist should not come as a surprise, because 
human perception of the information in an image normally does not involve 
quantitative analysis of every pixel value in the image. In general, an observer 
searches for distinguishing features such as edges or textural regions and mentally 
combines them into recognizable groupings.The brain then correlates these group- 
ings with prior knowledge in order to complete the image interpretation process. 

Psychovisual redundancy is fundamentally different from the redundancies 
discussed earlier. Unlike coding and interpixel redundancy, psychovisual 
redundancy is associated with real or quantifiable visual information. Its elimi- 
nation is possible only because the information itself is not essential for normal 
visual processing. Since the elimination of psychovisually redundant data results 
in a loss of quantitative information, it is commonly referred to as quantization. 
This terminology is consistent with normal usage of the word, which generally 
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means the mapping of a broad range of input values 10 a limited number of 
output values, as discussed in Section 2.4.A~ i t  is a n  irreversible operation (visual 
information is lost), quan titation results in lossy data coinpression. 

. . 
EXAMPLE 8.3: r:. Consider the images jn Fig. 8.4. Figure 8.4(a) shows a monochron)e image 
Coflll)re~ion h!' will1 256 possible gray levels. Figure 8.4(b) shows the same image aftci- unjfor~n 
quailtizalion. quanrization cc, four birs or 16 possible levels.?bz resulting compression ratio 

is 2 : 1. Note, as discussed in  Section 2.4. that false contouring is PI-esenl in the 
previously s~~ loo th  regions of lhc originaljniage.This is the natural visual effect 
of more coarselv representing the gray Levels of the image. 

Figure 8.4(c) illust~-ates the significant irnpi*ovemenis possible wit 1) quanti- 
zation that takes advantage of the peculiarities of [he Ilurnau visual system.Al- 
though the compression ratio resultingfrom this second quantization pt.ocedul.e 
also is 2 :  1, false cont-ourirlg is greatly reduced at the expense of some addilional 
but less objectionable graininess. The method used to produce t-his: result is 
known as irnproVe(l' g~a,y-scoIe (IGS) y u o ~ ~ i z n ~ i o ~ ~ .  J t  r.ecognizcs the eye's i n -  
herent sensitivity to edges and breaks them up by adding to each pixel a pseudo- 
rarldom nurnber, which i s  generated from the low-order bits of neighboring 
pixels, bct'ol-e quan tizjng tllc res~ilt. Because the low-order biis arc fairly random 
(see the bit planes in Section 3.2.4), this amounts to adding a level of random- 
ness, whjch depends on the local cl~aracterisfjcs ol t h e  image, to the artificial 
edges ~ ~ o r m a l l y  associated with false contou~.ing. 

Table 8.2 illustt-ales this nlethod. A sum-initially set to zero-is first formcd 
from the current 8-bit gray-level value and the four least significant hits of a 
previously genera ted s u m .  If the  four mosl significant bits oC Ihc curt-erl( value 
a r c  11 1 I ? ,  howevel~,0000, is added ir~stcad.The Four mosr siyliiicanc b i ~ s  of the 
resultjng sum are used as t h e  coded pjxel. value. r- i 

a b c  

FIGURE 8.4 
(i\) Original 
Inlagc. 
(b) Unit'orm 
q~~nnlization to 16 
levels. (c) lGS 
cluan~ization to 16 
levels. 
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Improvcd gray-scale quantization is typical of a large group of quantization 
procedures that operate directly on the gray levels of t h e  image to be com- 
pressed. They usually en tail a decrease in the image's spatial and/or- gray-scale 
resolutjon.The resulting false contouring or other related effects necessitates the 
use of l~euristic techniques to compensate for- the visual impact of quantization. 
The normal 2 :  1 Ijne interlacing apptnoach used in comrnelncial broadcast televj- 
sjon, for cxarnple, is a form of quantization in which inte~.leaving portioiis of 
adjacent frames allows redrlced video scanning rates wi th  little decrease in 
perceived image quality. 

1 :I. Fidelity Criteria 

As noted previously, removal of psychovjsually redundant data  results in a loss 
of real or quanti tat ive visual informa tion. Becausc information of infercst may 
be lost, a repeatable or reproducible means of quantifying the  nature and ex- 
tent of information loss is highly desirable. Two general classes of criieria are  
used as the basis for such an  assessment: (1) objective fidelity criteria and 
(2) subjective fidelity criteria. 

When the level of information loss can be expressed as a function of the orig- 
inal or input image and the compressed and subsequently decolnyressed output 
image, it is said to be based on an objectivefideli~ criterion. A good example is 
[he root-mean-square (rms) error between an inpul and output image. Let f (.r, y)  
represent a n  input jmage and let f ( x ,  y )  denote  an estimate o r  approxin~ation 
oC f ( x ,  y) that  results from cornpressing and subsequently decompl-essing [he 
input.  For any  value olx and y ,  the en-or e(x, y )  between / ( x _  y )  a n d  j ( x ,  y )  can 

be defined as 

so that the total error  between t h e  two images is 

where rhe images are of size M x /V. The roof-tnem-sqt~rrre error, e,,,,, , hetween 
f(r,  y)  and j ( r ,  y)  then is ihe square root of the squared er ror  averaged over 
the M X N array, o r  

TABLE 8.2 
1GS quantiznl-ion 
procedure. 
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A closely related objective fidelity criterion is the mean-square signal- 
to-noise ratio of the compressed-decompressed image. 1f f (x, y)  is considered 
[by a simple rearrangement of the terms in Eq. (8.1-7)j to be the sum of the 
original image f ( x ,  y)  and a noise signal e ( x ,  y), the mean-square signal-to-noise 
ratio of the output image, denoted SNR,,, is 

M - I N - I  

C Cicx, Y)' 

The rms value of the signal-to-noise ratio, denoted SNR,,, is obtained by taking 
the square root of Eq. (8.1-9). 

Altbough objective fidelity criteria offer a simple and convenient mechanism 
for evaluating information loss, most decompressed images ultimately are 
viewed by humans. ConsequentIy, measuring image quality by the subjective 
evaluations of a human observer often is more appropriate. This can be ac- 
complished by showing a "typical" decompressed image to an appropriate cross 
section of viewers and averaging their evaluationsTne evaluations may be made 
using an absolute rating scale or by means of side-by-side comparisons off ( x ,  y)  
and j ( x ,  y) .  Table 8.3 shows one possible absolute rating scale. Side-by-side 
comparisons can be done with a scale such as (-3, -2, -1,0, 1 ,2 ,3 )  to repre- 
sent the subjective evaluations {much worse, worse, slightly worse, the same, 
slightly better, better, much better), respectively. In either case, the evaluations are 
said to be based on subjective fidelity criteria. 

EXAMPLE 8.4: B The rms errors in the quantized images of Figs. 8.4(b) and (c) are 6.93 and 6.78 
Com~arisons of gray levels, respectively. The corresponding rms signal-lo-noise ratios are 10.25 
image quality. and 10.39. Although these values are quite similar, a subjective evaluation of the 

visual quality of the two coded images might result in a marginal rating for the 
image in Fig. 8.4(b) and a passable rating for that in Fig. 8.4(c). El 

TABLE 8.3 
Rating scale of the 
Television 
Allocations Study 
Organization. 
(Frendendal and 
Behrend.) 

I value Rating Description 

1 Excellent 

2 Fine 

3 Passable 

4 Marginal 

5 Inferior 

6 Unusable 

An image of extremely high quality, as good as you 
could desire. 

An image of high quality, providing enjoyable 
viewing. Interference is not objectionable. 

An image of acceptable quality. Interference is not 
objectionable. 

An image of poor quality; you wish you could 
improve it. Interference is somewhat objectionable. 

A very poor image, but you could watch i t .  
Objectionable interference is defimtely present. 

An image so bad that you could not watch it. 
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Image Compression Models 

In Section 8.1 we discussed individually three general techniques for reducing 
or compressing the amount of data required to represent an image. However, 
these techniques typically are combined to form practical image compression 
systems. In this section, we examine the overall characterjstics of such a system 
and develop a general model to represent it. 

As FigP8.5 shows, a compression system consists of two distinct structural 
blocks: an encoder and a decoder.' An input image f ( x ,  y )  is fed into the en- 
coder, which creates a set of symbols from the input data. After transmission 
over the channel, the encoded representation is fed to the decoder, where a re- 
constructed output image f ( ~ ,  y)  is generated. In general, j ( x ,  y)  may or may 
not be an exact replica o f f  ( x ,  y) .  If it is, the system is error free or information 
prbserving; if not, some level of distortion is present in the reconstructed image. 

Both the encoder and decoder shown in Fig. 8.5 consist of two relatively in- 
dependent functions or subblocks.The encoder is made up of a source encoder, 
which removes input redundancies, and a channel encoder, which increases the 
noise immunity of the source encoder's output. As would be expected, the de- 
coder includes a channel decoder followed by a source decoder. If the channel 
between the encoder and decoder is noise free (not prone to error), the chan- 
nel encoder and decoder are omitted, and the general encoder and decoder be- 
come the source encoder and decoder, respectively. 

82.1 The Source Encoder and Decoder 
The source encoder is responsible for reducing or  eliminating any coding, 
interpixel, or psychovisual redundancies in the input image. The specific appli- 
cation and associated fidelity requirements dictate the best encoding approach 
to use in any given situation. Normally, the approach can be modeled by a se- 
ries of three independent 0perations.A~ Fig. 8.6(a) shows, each operation is de- 
signed to reduce one of the three redundancies described in Section 8.1. 
Figure 8.6(b) depicts the corresponding source decoder. 

In the first stage of the source encoding process, the mapper transforms the 
input data into a (usually nonvisual) format designed to reduce interpixel re- 
dundancies in the input image. This operation generally is reversibIe and may 
or may not reduce directly the amount of data required to represent the image. 
Run-Iength coding (Sections 8.1.2 and 8.4.3) is an example of a mapping that 

FIGURE 8.5 A 
Channel 

encoder decoder decoder compression 

I system model 
Encoder Decoder 

' I t  would be reasonable to expect these blocks to be called the "compressor" and "decompressor."The 
Lerrns encoder and decoder retlect the influence of information theory (to be discussed in Section 8.3) on 
the field of image compression. 
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-F-F--y encoder 

Channel 

Source encode1- 

decoder Iilapper 

Channel 

Source decoder 

FIGURE 8.6 (a) Source encoder and (b) source decoder model. 
. . .  . , . . -. . . , 

directly results in data compression in this initial stage of the overall source en- 
coding process. The representation of an image by a set of transform coeffi- 
cients (Section 8.5.2) is an example of the opposite case. Here, the mapper 
transforms the image into an array of coefficients, making its interpixel redun- 
dancies more accessible for compression in later stages of the encoding process. 

The second stage, or quantizer block in fig. S.G(a), reduces the accuracy of the 
mapper's output in accordance with some preestablished fidelity criterion.This 
stage reduces the psychovisual redundancies of the input image. As noted i n  
Section 8.1.3, this operation is irreversible-Thus i t  must be omitted when error- 
free compression is desired. 

In the third and final stage of the source encoding process, the symbol coder 
creates a fixed- or variable-length code to represent the quantizer output and 
maps the output in accordance with the code. The term symbol coder distin- 
guishes this coding operation from the overall source encoding process. I n  most 
cases: a variable-length code is used to represent the mapped and quantized 
data set. It assigns the shortest code words to the most frequently occurring out- 
put values and thus reduces coding redundanqThe operation, of course, is re- 
versible. Upon completion of the symbol coding step, the input image has been 
processed to remove each of the three redundancies described in Section 8.1. 

Figure 8.6(a) shows the source encoding process as three successive opera- 
tions, but all three operations are not necessarily included in every compres- 
sion system. Recall, for example, that the quantizer must be omitted when 
error-free compression is desired. In addition, some compression techniques 
normally are modeled by merging blocks that are physically separate in 
Fig. 8.6(a). In the predictive compression systems of Section 8.5.1, for instance, 
the mapper and quantizer are often represented by a single block, which 
simul taoeously performs both operations. 

T l le  source decoder shown in Fig. 8.6(b) contains only two components; a 
symbol decoder and an inverse mapper. These blocks perform, in reverse order, 
the inverse operations of the source encoder's symbol encoder and mapper blocks 
Because quantization results in irreversible information loss, an inverse quantiz- 
er block is not included in the general source decoder model shown in Fig. 8.6(b). 
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8.2.2 The Channel Encoder and Decoder 
The channel encoder and decoder play an important role in the overall encod- 
ing-decoding process when the channel of Fig. 8.5 is noisy or prone to error. 
They are designed to reduce the impact of channel noise by inserting a con- 
trolled form of redundancy into the source encoded data. As the output of the 
source encoder contains little redundancy, it would be highly sensitive to trans- 
mission noise without the addition of this "controlled redundancy." 

One of the most useful channel encoding techniques was devised by R. W. 
Hamming (Hamming [1950]). It is based on appending enough bits to the data 
being encoded to ensure that some minimum number of bits must change be- 
tween valid code words. Hamming showed, for example, that if 3 bits of redun- 
dancy are added to a 4-bit word, so that the distancet between any two valid 
code words is 3, all single-bit errors can be detected and corrected. (By ap- 
pending additional bits of redundancy, multiple-bit errors can be detected and 
corrected.) The 7-bit Hamming (7,4) code word h ,  h 2 . .  . h5h6h7 associated with 
a 4-bit binary number b3 b2 b, b, is 

where @ denotes the exclusive OR operation. Note that bits h, , h,, and h, are even- 
parity bits lor the bit fields b3b2b,, h,b, bo, and bzbl bo, respectively. (Recall that a 
stnng of binary bits has even parity if the number of bits with a value of 1 is even.) 

To decode a Hamming encoded result, the channel decoder must check the en- 
coded value for odd parity over the bit fields in which even parity was previously 
established. A single-bi t error is indicated by a nonzero parity word c, c2c,, where 

If a nonzero value is found, the decoder simply complements the code word bit 
position indicated by the parity word. The decoded binary value is then ex- 
tracted from the corrected code word as h3 hs h6 h7. 

Consider the transmissjon of the 4-bit IGS data of Table 8.2 over a noisy 
communication channel. A single-bit error could cause a decompressed pixel 
to deviate from its correct value by as many as 128 gray levels.$ A Hamming 

'The distrmce between two code words is defined as the minimum number o i  digits that must change in 
one word so that the other word results. For example, the distance between 101101 and 01~101 is 2.The 
minimum disllance of a code is the smallest number of digits by which any two code words difIer. 

EXAMPLE 8.5: 
Hamming 
encoding. 

t A  simple procedure for decompressing 4-bil IGS data is to multiply the decimal equivalent of the IGS 
value by 16. For exaniple, I I  the IGS value is 1170, the decornprcssed gray level is (14)(16) or 224. If the 
most significant bit of this IGS value was incorrectly transmitted as a 0, the decompressed gray level 
becomes 96.The resulting erIol- is 128 gray levels. 
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channel encoder  can be utilized to increase the noise immunity of this source 
encoded IGS data by inserting enough redundancy to allow the detection and 
correction of  single-bit errors. From Eq. (8.2-I), the Hamming encoded value 
for the first IGS value in Table 8.2 is 11001102. Because the Hamming chan- 
nel encoder increases the number of bits required to represent the IGS value  
from 4 to 7, the 2 :  1 compression ratio noted in the IGS example is reduced to 
8/7 o r  1.14:l . This reduction in compression is the price paid for increased 
noise immunity. : it., e 

Elements of Information Theory 
In Section 8.1 we introduced several ways to reduce the amount of data used lo 
represent an image.The question that naturally arises is: I-Iow few data actual- 
ly are needed to represent an image? That is, is there a minimum amount of 
data that is sufficient to describe completely an image without loss of informa- 
lion? Information theory provides the mathematical framework to answer this 
and related questions. 

8.3.1 Measuring Information 
'me fundamental premise of information theory is that the generation af in- 
formation can be modeled as a probabilistic process that can be measured in a 
manner that agrees with intuition. In accordance with this supposition, a random 
event E that occurs with probability P ( E )  is said to contain 

1 
I ( E )  = log- - 

P ( E )  
- -log P ( E )  

units of information.The quantity I ( E )  often is called the self-informarion of E. 
Generally speaking, the amount  of self-information attributed to event E is in- 
versely related to the probability of E. If P( E )  = 1 (that is, the event always oc- 
curs), I ( E )  = 0 and no information is attributed to it. That is, because no 
uncertainty is associated with the event, no information would be transferred 
by communicating that the event has occurred. However, if P ( E )  = 0.99, com- 
municating that E has occurred conveys some small amount of information. 
Communicating that E has nor occurred conveys more information, because 
this outcome is less likely. 

The base of the logarithm in Eq. (8.3-1) determines the unit used to mea- 
sure information.' If the base m logarithm is used, the measurement is said to 
be in m-ary units. If the base 2 is selected, the resulting unit  of information is 
called a bit. Note that if P ( E )  = I ( E )  = -log2%, or I bit. T h a t  is. 1 bit is 
the  amount of information conveyed when one of two possible equally likely 
events occurs. A simple example of such a situation is flipping a coin and  
communicating the result. 

'When we dopot explicitly specify Ihe base ofthe log used in an expression, the result may be interpreted 
in any base and corresponding information uni t .  
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8 .32  The Information Channel 
When self-information is transferred between an information source and a user 
of the information, the source of information is said to be,connected to the user 
of information by an information channel.The information channel is the phys- 
ical medium that links the source to the user. It may be a telephone line, an 
electromagnetic energy propagation path, or a wire in a digital computer. Fig- 
ure 8.7 shows a simple mathematical model for a discrete information system. 
Here, the parameter of particular interest is the system's capacity, defined as its 
ability to transfer information. 

Let us assume that the information source in Fig. 8.7 generates a random se- 
quence of symbols from a finite or countably infinite set of possible symbols. 
That is, the output of the souxce i s  a discrete random variable.The set of source 
symbols { a , ,  a,, . . . ,a,} is referred to as the source alphnhetd, and the elements 
of the set, denoted ai, are cal.led symbols or Ietfers.The probability of the event 
that the source will produce symbol a, is ~ ( a , ) ,  and 

.I 

A J x 1 vector z = [ ~ ( a , ) ,  P(&),  . . . , p(aJ)IT customarily is used to represent 
the set of all source symbol probabilities { ~ ( a , ) ,  P(%), . . . , ~ ( a , ) ) .  The finite 
ensemble ( A ,  z) describes the information source compIetely. 

The probability that the discrete source will emit symbol a, is ~ ( a , ) ,  so the 
self-information generated by the production of a single source symbol is, in 
accordance with Eq. (8.3-I), I (a,) = --log ~ ( 0 ~ ) .  If k source symbols are gener- 
ated, the law of large numbers stipulates that, for a sufficiently large value of k, 
symbol a, will (on average) be output k ~ ( a , )  times. Thus the average self- 
information obtained from k outputs is 

- k ~ ( n , )  log ~ ( a , )  - kp(a2)  logp(a2) - . . . - k ~ ( a . , )  k p ( a J )  

The average information per source output, denoted H ( z ) ,  is 
J 

H ( z )  = - ~ ( n , )  log p(nj). 
j=1 

Ensemble ( A ,  z) 

Information 
source 

Ensemble ( B ,  v) 

B = { b k )  
v = [P(bl>. P(b,), ... , P ( ~ K ) I '  

FIGURE 8.7 A 
simple 
information 
system. 

Information * Channel 
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This quantity is called the rmcertainty or entropy of the source. I t  defines rhe 
average amount of information (in m-ary units per symbol) obtained by ob- 
serving a single source output.As its magnitude increases, more uncertainty and 
thus more information is associated with the source. If the source symbols are 
equally probable, the entropy or uncertainty of Eq. (8.3-3) is maximized and the 
source provides the greatest possible average information per source symbol. 

Having modeled the information source, we can develop the input-output 
characteristics of the information channel rather easily. Because we modeled the 
input to the channel in Fig. 8.7 as a discrete random variable, the information 
transferred to the output of the channel is also a discrete random variable. Like 
the source random variable, it takes on values from a finite or countably infi- 
nite set of symbols {bl  , b2, . . . , bx} called the channel alphabet, 3. The proba- 
bility of the event that symbol b, is presented to the informotion user is ~ ( 6 , ) .  
The finite ensemble (B, v) ,  where v = [ ~ ( b , ) ,  ~ ( b ~ ) ,  . . . , p(bK)IT, describes the 
channel output completely and thus the information received by the user. 

The probability p(bk)  of a given channel output and the probability distrib- 
ution of the source z are related by the expression' 

where P(bkI u j )  is the conditional probability that output symbol b, is received, 
given that source symbol aj was generated. If the conditional probabilities ref- 
erenced ia Eq. (8.3-4) are arranged in a matrix K x J matrix Q, such that 

then the probability distribution of the complete output alphabet can be 
computed from 

Y = Qz. (8.3-6) 

Matrix Q, with elements qkj = p(bk 1 o,), is referred to as the forward channel 
transifion matrix or by the abbreviated term channel matrix. 

To determine the capacity of an information channel with forward channel 
transition matrix Q, h e  entropy of the information source must first be comput- 
ed under the assumption that the information user observes a particular output 
bk . Equation (8.3-4) defines a distribution of source symbols for any observed bk, 
so each bk has one conditional entropy firnction. Based on the steps leading to 
Eq. (83-3), this conditional entropy function, denoted H ( Z  I&), can be written as 

One of lhe fundamental lawsof probability theory i s  that. for an arbitrary event D and r mutually exclusive 
events C,, C2, .. . , C,, the total probability of D is P(D) = P ( D ]  c , )P(C , )  + . . . + P ( D {  c,) P(C,) .  
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where p ( a j  I bk )  is the probability that symbol aj was transmitted by the source, 
given that the user received b k .  The expected (average) value of this expres- 
sion over all bk is 

which, after substitution of Eq. (8.3-7) for H ( Z I  b k )  and some minor rearrange- 
men t,? can be written as 

.I K 

Here, ~ ( a , ,  bk)  is the joint probability of a, and hk.That is, ~ ( a , ,  b,) is the prob- 
ability that a, is transmitted and bk is received. 

The term H ( z  1 v) is called the equivocation of z with respect to v. It repre- 
sents the average information of one source symbol, assuming observation of 
the output symbol that resulted from its generation. Because H ( z )  is the aver- 
age information of one source symbol, assuming no knowledge of the resulting 
output symbol, the difference between H ( z )  and H ( z  lv) is the average infor- 
mation received upon observing a single output symbol. This difference, de- 
noted I(z,  v) and called the mutual information of z and v, is 

Substituting Eqs. (8.3-3) and (8.3-9) for H ( z )  and H ( z  1 v),  and recalling that 
~ ( a , )  = ~ ( a , ,  b,)  + ~ ( n , ,  b,) + . . + ~ ( a j ,  b,), yields 

which, after further manipulation, can be written as 

Thus the average information received upon observing a single output of the in- 
formation channel is a function of the input or source symbol probability vector 
z and channel matrix Q. The minimum possible value of I ( z ,  v)  is zero and oc- 
curs when the input and output symbols are statistically independent, in which 
case ~ ( a , ,  bk)  = p(a , )p(bk)  and the log term in Eq. (8.3-11) is O for a l l j  and k. 
The maximum value of I (z, v) over all possible choices of source probabilities in 
vector z is the capacily, C, of the channel described by channel matrix Q.TZlat is, 

C = rnax[l (z, v)]  (8.3-13) 

'use is made of the fact that the joint probability of two events, C and D, is P(C,  D )  = P ( C )  P ( D I C )  = 

P(D)P(C  I Dl.  
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where ,the maximum is taken over all possible input symbol probabilities.The 
capacity of the channel defines the maximum rate (in m-ary information units 
per source symbol) at which information can be transmitted reliably through the 
channel. Moreover, the capacity of a channel does not depend on the input 
probabilities of the source (that is, on how the channel is used) but is a function 
of the conditional probabilities defining the channel alone. 

EXAMPLE 8.6: ill Consider a binary information source with source alphabet A = {a,, a,} = 
The binary case. (0, 1). The probabilities that the source will produce symbols a ,  and a, are 

~ ( a , )  = pbn and ~ ( a , )  = 1 - p,, = Pbs, respectively. From Eq. (8.3-3), the 
entropy of the source is 

Because z = [ ~ ( a , ) ,  p(a2) lT = [ p , , ,  1 - p , s ]T ,  H ( z )  depends on the single 
parameter p,,, and the right-hand side of the equation is called the binary 
entropy function, denoted H b s ( - )  Thus, for example, H,,(t) is the function 
- l o  t - i logl T. Figure 8.8(a) shows a plot of H ~ ~ ( ~ ~ ~ )  for 0 5 pbs 5 I .  
Note that Hbs obtains its maximum value (of I bit) when p,, is '/:.For all other 
values of p,,, the source provides less than 1 bit of information. 

Now assume that the information is to be transmitted over a noisy binary 
information channel and let the probability of an error during the transmission 
of any symbol be p,. Such a channel is called a binary symmetric channel (BSC) ' 

and is defined by the channel matrix 

For each input or source symbol, the BSC produces one output bj from the out- 
put alphabet B = { b , ,  bl)  = {0, 1}.The probabilities of receiving output sym- 
bols b,  and b, can be determined from Eq. (8.3-6): 

Consequently, because v = [ ~ ( b , ) ,  ~(b , ) ] '  = [P (o ) ,  ~ ( l ) ] ' ,  the probability that 
the output is a 0 is pepbs f pePbsr and the probability that it is a 1 is pepbs + p,p , , .  

The mutual information of the BSC can now be computed from Eq. (8.3-12). 
Expanding the summations of this equation and collecting the appropriate 
terms gives 

where H,,(*) is the binary entropy function of Fig. 8.8(a). For a fixed value of 
p,, I ( z ,  v) is 0 when pbs is O or 1. Moreover, I ( z ,  v )  achieves its maximurn value 
when the binary source symbols are equally probable. Figure 8.8(b) shows I (z ,v)  
for all values of p,, and a given channel error p,. 

In accordance with Eq. (8.3-13), the capacity of the BSC is obtained from the 
maximum of the mutual information over all possible source distributions. From 
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0 0.2 0.4 0.6 0.8 1.0 
Probability pbs 

0 0.2 0.4 0.6 0.8 1.0 
Probability p, 

Fig. 8.8(b), which plots I ( z ,  v)  for all possible binary source distributions (that is, 
for 0 5 p, 5 I or for z = [0, 1IT to z = [I, o]'), we see that I (z ,  v) is maximum 
(for any p,) when p ,  = ' /2.~his value of p, corresponds to source probabilities 
vector z = [ x ,  %IT.The corresponding value of I ( a ,  v) is 1 - ~ ~ , ( ~ , ) . ~ h u s  the 
capacity of the BSC, plotted in Fig. 8.8(c), is 

Note that when there is no possibility of a channel error ( p ,  = 0)-as well as 
when a channel error is a certainty = I)-the capacity of the channel ob- 
tains its maximum value of 1 bit/symbol. In either case, maximum information 
transfer is possible because the channel's output is completely predictable. How- 
ever, when p, = '!,, the channel's output is completely unpredictable and no 
information can be transferred through it. W 

FIGURE 8.8 Tl~ree 
binary 
information 
functions: (a) Ihe 
binary entropy 
function; (b) the 
mutual 
information 0.C a 
binary symmetric 
channel (BSC); 
(c) the capacity of 
the BSC. 
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9 3 . 3  Fundamental Coding Theorems 
The overall mathematical framework introduced in Section 8.3.2 is based on 
the model shown in Fig. 8.7, which contains an information source, channel, and 
user. In this section, we add a communication system to the model and exam- 
ine three basic theorems regarding the coding or representation of informa- 
tion. As Fig. 8.9 shows, the communication system is inserted between the source 
and the user and consists of an encoder and decoder. 

The noiseless coding theoxem 

When both the information channel and communication system are error free: 
the principal function of the communication system is to represent the source 
as compactly as possible. Under these circumstances, the noiseless coding theo- 
rem, also called Shannon's first theorem (Shannon [1948]), defines the minimum 
average code word length per source symbol that can be achieved. 

A source of information with finite ensemble ( A ,  z) and statistically inde- 
pendent source symbols is called a zero-memory source. If we consider its out- 
put to be an n-tuple of symbols from the source alphabet (rather than a single 
symbol), the source output then takes on one of J n  possible values, denoted a;, 
from the set of all possible n element sequences A' = {a , ,  a,, . . . ,aJn).  In other 
words, each cri (called a block random variable) is composed of n symbols from 
A. (The notation A' distinguishes the set of block symbols from A, the set oC sin- 
gle symbols.) The probability of a given ai is ~ ( a , ) ,  ... which is related to the 
single-symbol probabilities ~ ( a , )  by 

where subscripts jl, j2,. . . , jn are used to index the n symbols from A that make 
up an cri. As before, the vector z' (the prime is added to indicate the use of the 

block random variable) denotes the set of all source probabilities 
{ ~ ( a , ) ,  p(ol2), . . . , ~ ( c r ~ ~ ~ ) ) ,  and the entropy of the source is 

H (z') = - C ~ ( q )  log ~ ( a , )  

Tnformation 
source 

- Channel - + Information 
user 

- - - - - 

Communication 
system 

FIGURE 8.9 A communication system model. 
. . . . . -. - . - - 

-- - - - - - 

- Encdder + Decoder - 
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Substituting Eq. (8.3-14) for p(ai) and simplifying yields 

H ( 2 ' )  - n H ( z ) .  (8.3-15) 

Thus the entropy of the zero-memory information source (which produces the 
block random variable) is n times the entropy of the corresponding single sym- 
bol source. Such a source is referred to as the nth extension of the single sym- 
bol or nonextended source. Note that the first extension of any source is the 
nonextended source itself. 

Because the self-information of source output rui is l o g [ l / ~ ( n , ) ] ,  it seems 
reasonable to code a; with a code word of integer length i(&) such that 

1 1 
log - 5 1 ( q )  < log - + 1. 

p(,i) ~(ai) 

Intuition suggests that the source output a,  be represented by a code word 
whose length is the snlallest integer exceeding the self-information of a,.' 
Multiplying this result by ~ ( a , )  and summing over all i gives 

J" 1 1'' J" 1 c p ( 4  1% - 5 2 ~(a,)l(a,) < C ~ ( a ; )  log - + 1 
i =  1 ( i )  i = ,  I= 1 ~(ai) 

where L:,, represents the average word length of the code corresponding to 
the nth extension of the nonextended source.That is, 

J" 

L:,, = x ~(a,)l(a,). (8.3-18) 
i =  l 

Dividing Eq. (8.3-17) by n and noting from Eq. (8.3-25) that H(zl) /n  is equal 
lo H ( z )  yields 

which, in the limiting case, becomes 

Equation (8.3-19) states Shannon's first theorem for a zero-memory source. It 
shows that i t  is possible to make LL,,/n arbitrarily close to H ( z )  by coding infi- 
nitely long extensions of the source. Although derived under the assumption of 
statistically independent source symbols, the result is easily extended to more 
general sources, where the occurrence of source symbol a, may depend on a fi- 
nite number of preceding symbols.These types of sources (called Markov soz~rce.~) 
com~nonly are used to model interpixel correlations in an image. Because H ( z )  

' A  uniquely decodable code can be constructed subjecl to this constraint. 
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is a lower bound on Lt,,/la [that is, the limit of LL,,/n as n becomes large in 
Eq. (8.3-20) is H ( z ) ] ,  the eficiency q of any encoding strategy can be defined as 

EXAMPLE 8.T A zero-memory informatio~l source with source alphabet A = { a , ,  a2} has 
Exlension coding. symbol probabilities p(al) = and ~ ( a , )  = :/,. From Eq. (8.3-3), the entropy 

of this source is 0.918 bitslsymbol. If symbols al and a* are represented by the 
binary code words 0 and 1, Li,, = 1 bit/symbol and the resulting code efficiency 
is q = (1 )(0.918)/1, or 0.918. 

Table 8.4 summarizes the code just described and an  alternative encoding 
based on the second extension of the source.The Iower portion ofTable 8.4 lists 
the four block symbols (a, ,a2, cr3, and a4) in the second extension of the source. 

4 '  2 /  2 '  From Eq. (8.3-14) their probabilities are !,, /,, j9, arid '/9, respeclively. In  ac- 
cordance with Eq. (8.3-18), the average word length of the second encoding is 
'yl OK 1.89 bits/symbol.The entropy of the second extension is twice the entropy 
of the nonextended source, or 1.83 bits/symbol, so the efficj-ency of the second 
encoding is q = 1.83/1.89 = 0.97. I t  is slightly better than the nonextended cod- 
ing efficiency of 0.92. Encoding the second extension of the source reduces the 
average number of code bits per source symbol from 1 bit/symbol to 1.89/2 or 
0.94 birs/symbol. E! 

The noisy coding theorem 
If the channel of Fig. 8.9 is noisy or prone to error, interest shifts from repre- 
senting the inlormation as compactly as possible to encoding it so that reliable 
communication is possible,The question that naturally arises is: How small can 
the error in communication be made? 

EXAMPLE 8.8: 1 Suppose that a BSC has a probability of error p, = 0.01 {that is, 99% of all 
Noisy binary source symbols are transmitted through the channel correctly). A simple 
channel. method for increasing the reliability of the communication is to repeat each 

message or binary symbol several times. Suppose, for example, t.hal rather 
than transmitting a 0 or a 1, the coded messages 000 and 111 are used. The 

TABLE 8.4 
Source P( ai) I(a,) l(ai) Code Code 

Extension coding Symbols Eq. (8.3-14) Eq. (8.3-1) Eq. (8.3-16) Word Length 
example. -. 1 Firsr Extension 

a, 2/3 0.59 1 0 1 
0 2  a2 1/3 1.58 2 I 1 
Second Exfension 
@I 4 0 1  4/9 1.17 2 0 1 
a2 a102 ' 2/9 2.17 3 10 2 
a3 a2a1 2/9 2.17 3 110 3 
ff4 a? a2 1 /9  3.17 4 i 1 l 3 



8.3 W Elements of Information Theory 433 

probability that no errors will occur during the transmission of a three-symbol 
message is or (1 - or j5:. T h e  probability of a single error is 3~1,p: ,  the 
probability of two errors is 3p:p,, and the probability of three errors is p:. 
Because the probability of a single symbol transmission error is less than 50%, 
received messages can be decoded by using a majority vote of the t h e e  re- 
ceived symbols. Thus the probability of incorrectly decoding a three-symbol 
code word is the sum of the probabilities of two symbol errors and three sym- 
bol errors, or p: + 3 p z p , .  When no errors or a single error occurs, the majority 
vote decodes the message correctly. For p, = 0.01, the probability of a 
communication error is reduced to 0.0003. I 

By extending the repetitive coding scheme just described, we can make the 
overall error in communication as small as desired. In the general case, we do 
so by encoding the nth extension of the source using K-ary cade sequences of 
length r, where K' 5 J". The key to this approach is to select only cp of the Kr 
possible code sequences as valid code words and devise a decision rule that op- 
timizes the probability of correct decoding. In  the preceding example, repeat- 
ing each source symboI three times is equivalent to block encoding the 
nonextended binary source using two out of 2', or 8, possible binary code words. 
The two valid code words are 000 and 111. If a nonvalid code word is present- 
ed to the decoder,a majority vote of the three code bits determines the output. 

A zero-memory information source generates information at a rate (in In- 
formation units per symbol) equal to its entropy H(z) .The nth extension of the 
source provides information a t  a rate of H ( z l ) / n  information units per symbol. 
If the information is coded, as in the preceding example, the maximum rate of 
coded information is log(cp/r) and occurs when the q valid code words used to 
"code the source are equally probable. Hence, a code of size cp and block length 
r is said to have a rate of 

io R = log; 

information units per symbol. Shannon's second fheorem (Shannon [1948]), also 
called the noisy coding theorem, tells us that for any R < C, where-c is the ca- 
pacity of the zero-memory channel with matrix Q,+ there exists an integer r, and 
code of block length rand rate R such that the probability of a block decoding 
error is less than or equal to E for any E > 0. Thus the probability of error can 
be made arbitrarily small so long as the coded message rate is Iess than the ca- 
pacity of the channel. 

The source coding theorem 
The theorems described thus far establish fundamental limits on error-free com- 
munication over both reliable and unreliable channels. In this section, we turn to 
[he case in which the channel is error free but the communication process itself 
is lossy. Under these circumstances, the principal function of the communication 

' A  zero-memory channel is one in which the channel's response to the current input symbol is indepen- 
dent of its response to previous input symbols. 
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system is "information compression:" In most cases, the average error introduced 
by the compression is constrained to some maximum allowable level D. We want 
to determine the smallest rate, subject to a given fidelity criterion, at which in- 
forma tion about the source can be conveyed to the user. This problem is specifi- 
cally addressed by a branch of information theory known as rate dktortion theory. 

Let the information source and decoder outputs in Fig. 8.9 be defined by the 
finite ensembles (A, z)  and ( B ,  z), respectively.The assumption now is that the 
channel of Fig. 8.9 is error free, so a channel matrix Q; which relates z to v in ac- 
cordance with Eq. (8.3-6), can be thought of as modeling the encoding-decod- 
ing process alone. Because the encoding-decoding process is deterministic, Q 
describes an artificial zero-memory channel that models the effect of the in- 
formation compression and decompression. Each time the source produces 
source symbol ai, i t  is represented by a code symbol that is then decoded to 
yield output symboI bk with probability qkj (see Section 8.3.2). 

Addressing the problem of encoding the source so that the average distor- 
tion is less than D requires that a rule be formulated to assign quantitatively a 
distortion value to every possible approximation a t  the source output. Fox tlie 
simple case of a nonextended source, a nonnegative cost function p(a,, bx), 
called a distortion measure,can be used to define the penalty associated with re- 
producing source output a, with decoder output bk.The oulpur of the  source is 
random. so the distortion also is a random variable whose average value, 
denoted d ( Q ) ,  is 

The notation d ( Q )  emphasizes that the average distortion is a function of the 
encoding-decoding procedure, which (as noted previously) is modeled by Q. A 
particular encoding-decoding procedure i s  said to be D-admissible if and only 
if the average distortion associated with Q is less than or equal to D. The set of 
all D-admissible encoding-decoding procedures therefore is 

Because every encoding-decoding procedure is defined by an artificial channel 
matrix Q ,  the average information obtained from observing a single decoder 
output can be computed in accordance with Eq. (8.3-12). Hence, we can define 
a rate distortion funcrion 

which assumes the minimum value of Eq. (8.3-12) over all D-admissible codes. 
Note that the minimum can be taken over Q, because l(z, v )  is a fu~~ction of the 
probabilities in vector z and elements in matrix Q. If D = 0, R ( D )  is less than  
or equal to the entropy of the source, or  R(O) r H (2). 

Equation (8.3-25) defines the minimum rate at which information about the 
source can be conveyed to the user subject to the constraint that the average 
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distortion be less than or equal to D.To compute this rate [that is, R ( D ) ] ,  we sim- 
ply minimize I ( z ,  v) [Eq. (8.3-12)j by appropriate choice of Q (or qki) subject 
to the constraints 

q k j  (8.3-26) 
K 

and 

Equations (8.3-26) and (8.3-27) are fundamental properties of channel matrix 
Q .  The elements of Q must be positive and, because some output must be re- 
ceived for any input symbol generated, the terms in any one column of Q must 
sum to 1. Equation (8.3-28) indicates chat the minimum information rate occurs 
when the maximum possible distortion is allowed. 

R Consider a zero-memory binary source with equalIy probable source symbols EXAMPLE 8.9: 
{0,1} and tl-le simple distortion measure Computing the 

rate distortion 
p(ffi+ br) = 1 - ajk function for a 

zero-menlory 
where S, ,  is the unit delta function. Because p(a j ,  b,) is 1 if a, + bk but is 0 0th- binary source. 
erwise, each encoding-decoding error is counted as one unit of distortion. The 
calculus of variations can be used to compute H ( D ) .  Letting PI, p2,. . . , p,+ I be 
Lagrangian multipliers, we form the augmented criterion function 

J K 

equate its JK derivatives with respect to qkj to 0 (that is, dJ/dqki  = 01, and solve 
the resulting equations, together with the d + 1 equations associated with 
Eqs. (8.3-27) and (8.3-28), for unknowns q,, and p, ,  p2, - - - ,  p.,,, . If the result- 
ing qkj are nonnegative [or satisfy Eq. (8.3-26)], a valid solution is found.For the 
source and distortion pair defined above, we get the following 7 equations (with 
7 unknowns): 

A series of tedious but straightforward algebraic steps then yields 

p, = p, = log v2(1 - D) 
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FIGURE 8.1 0 The 
rate distortion 
function for a 
binary symmetric 
source. 

so that 

[ I - "  D I - D  " 1. 
It is given that the source symbols are equally probable, so the maximum 
possible distortion is %. Thus 0 5 D 5 % and the elements of Q satisfy 
Eq. (8.3-12) for all D.The mutual information associated with Q and the pre- 
viously defined binary source is computed by using Eq. (8.3-12). Noting the 
similarity between Q and the binary symmetric channel matrix, however, we 
can immediately write 

This result fo1Jows from Example 8.6 by substituting ph, = y2 and p, = D into 
I ( z ,  v) = H , , , ( ~ , , ~ ,  + pbSp,) - H,,,(~,). The rate distortion function follows 
immediately from Eq. (8.3-25): 

The final simplification is based on the fact that, for a given D,  1 - H,,(D) as- 
sumes a single value, which, by default, is the minimum. The resulting function 
is plotted in Fig. 8.10. Its shape is typical of most rate distortion functions. Note 
the maximum value of D, denoted D,,,, such that R ( D )  = 0 for all D I D,,,. 
In addition, R ( D )  is always positive, monotonically decreasing, and convex i n  
the interval (0, D,,). 811 

Rate distortion functions can be computed analytically for simple sources and 
distortion measures, as in the preceding example. Moreover, convergent iterative 
algorithms suitable for implementation on digital computers can be used when 

. O  0.1 0.2 0.3 0.4 0.5 
Distortion D 
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analytical methods fail or are impractical.After R ( D )  is computed (for any zero- 
memory source and single-lerrer distortion measure'), the source coding rheo- 
rem tells us that, for any E > 0, there exists a n  r ,  and code of block length r and 
rate R < R ( D )  + &,such that the average per-letter distortion satisfies the con- 
dition d ( Q )  5 D + E .  An important practical consequence of this theorem and 
the noisy coding theorem is that the source output can be recovered at the de- 
coder with an arbitrarily small probability of error provided that the channel 
has capacity C > R ( D )  + E .  This latter result is k n o w n  as the information 
rransnlission zheorern. 

8.3,4 Using Information Theory 
Information theo~.y provides the basic tools needed to deal with infor~nation 
representation and inanipulation directly and  quantitatively. I n  this section we 
explore the  application of thesc tools to t he  specific problem of image com- 
pression. Because the fundamental premjse of information theory is that t he  
generation of information can be modeIed as a probabilistic process, we first 
develop a statistical model of the image generation process. 

A Consider t he  problem of estimating the information content (or entropy) of EXAMPLE 8.10: 
the simple 8-bit image: Comput~ng the 

entropy of an 
21 21 21 95 169 243 243 243 Image. 

21 21 21 95 169 243 243 243 

21 21 21 95 169 243 243 243 

One relatively simple approach is to assume a particular source model and com- 
pure the entropy of the  image based on that model. For example, we can as- 
sume that the image was produced by an imaginary "8-bit gray-level source" that 
sequentially emitted statistically independent pixels in accordance with a pre- 
defined probability law. In this case, the source symbols are gray levels, and  the 
source alphabet i s  composed of 256 possible symbols. If the symbol probabili- 
ties are known. the average information content or entropy of each pixel in the 
image can be computed by using Eq. (8.3-3). In the case of a unifonn probabil- 
j ty density, for instance, the source symbols are equally probable, and the source 
is characterized by an entropy of 8 bits/pixel.That is, the average information 
per source output (pixel) is 8 bits.Then the tolal entropy of the preceding 4 X 8 
image is 256 bits This  particular image is but one of 2' ' ', or 225"- 
equally probable 4 x 8 images t h a t  can be produced by the source. 

An alternative method of estimating information content is to construct a 
source model based on the relative frequency of occurrence of the gray levels 
in the image under consideration. That is, an observed image can be interpret- 
ed as a sample of t h e  behavior of the gray-level source that generated it. Because 

' A  single-letter distortion measure is one in which the distortion associated with a block of letters (or 
sytnbols) is  file sum a( the distortions for each letter (or symbol) in the block. 



438 Chpter 8 EI Image Compression 

the observed image is the only available indicator of source behavior, rnodel- 
ing the probabilities of the source symbols using the gray-level histogram of 
the sample image is reasonable: 

Gray Level Count Probability 

2 1 12 3 /8 
95 4 1 /a 

169 4 1 /8  
2 43 12 3 /8 

An estimate, called the firsl-order estima~e, of the entropy of the source can be 
computed with Eq. (5.3-3).The first-order estunate in ths example is 2.81 bits/pixel. 
The entropy of the source andor image thus is approximately 1.81 bits/pixel, or 
58 total bits. 

Better estimates of the entropy of the gray-level source that generated the 
sample image can be computed by examining the relative frequency of pixel 
blocks in the sample image, where a block is a grouping of adjacent pixels. As 
block size approaches infinity, the estimate approaches the source's true en- 
tropy. (Ttus result can be shown with the procedure utilized to prove the valid- 
ity of the noiseless coding theorem in Section 8.3.3.) Thus by assuming that the 
sample image is connected from l ine  to line and end to beginning, we can com- 
pute the relative frequency of pairs of pixels (that is, the second extension of 
the source): 

Gray-level Pair Count Probability 

(21,21) 8 1 /4 
(21: 95) 4 1 /8 
(95: 169) 4 118 
(169,243) 4 1 /8 
(243,243) 8 1 /4 
(243.21 ) 4 1 /8 

The resulting entropy est~mate [again using Eq. (8.3-3)] is 2.5/2,or 1.25 bits/pixel. 
where division by 2 is a consequence of considering two pixels at a time.This es- 
timate is called the second-order estimate of the source entropy, because ~t was 
obtained by computing t h e  relat~ve frequencies of 2-pixel blocks. Although the 
tkird-, fourth-, and higher-order estimates would provide even better approxi- 
mations of source entropv, convergence of these estimates to the true source 
entropy is slow and computationally involved. For instance, a general 8-bit image 
has (28)2, or 65,536, possible symbol pairs whose relarive frequency must be com- 
puted. If 5-pixel blocks are considered, the number of possible 5-tuples is (z~)'. 
or - 1012, ,3 

Although computing the actual entropy of an image is difficult? estimates such 
as  those in the preceding example provide ins igh t  into image compressibility, 
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The first-order estimate of entropy, for example, is a lower bound on the com- 
pression that can be achieved through variable-length coding alone. (Recall from 
Section 8.1.1 that variable-length coding is used to reduce coding redundancies.) 
In addition, the differences between the higher-order estimates of entropy and 
the first-order estimate indicate the presence or absence of interpixel redun- 
dancies.That is, they reveal whether the pixels in an image are statistically inde- 
pendent. If the pixels are statistically independent (that is, there is no interpixel 
redundancy), the higher-order estimates are equivalent to the first-order esti- 
mate, and variable-length coding provides optimal compression. For the image 
considered in the preceding example, the numerical difference between the first- 
and second-order estimates indicates that a mapping can be created that allows 
an additional 1.81 - 1.25 = 0.56 bits/pixel to be eliminated from the image's 
representation. 

@ Consider mapping the pixels of the image in the preceding example to create EXAMPLE 8.11: 
the representation: Using mappings 

to reducc entropy. 
21 0 0 74 74 74 0 0 

2 1 0 0 74 74 74 0 0 

Here, we construct a difference array by replicating the first column of the orig- 
inal image and using the arithmetic difference between adjacent columns for 
the remaining elements. For example, the element in the first row, second col- 
umn of the new representation is (21 - 21), or 0. The resuIting difference 
distribution is 

Gray Level 
or Difference Count Probability 

Jf we now consider the mapped array to be generated by a "difference source," 
we can again use Eq. (8.3-3) to compute a first-order estimate of the entropy of 
the array, which is 1.41 bits/pixel.Thus by variable-length coding the mapped dif- 
ference image, the origiqal image can be represented with only 1.41 bits/pixel or 
a total of about 46 bits.This value is greater than the 1.25 bits/pixel second-order 
estimate of entropy computed in the preceding example, so we know that we 
can find an even better mapping. d 

The preceding examples illustrate that the first-order estirna te of the entropy 
of an image is not necessarily the minimum code rate for the irnage.The reason 
is that pixels in an image generally are not statistically independent. As noted 
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in Section 8.2, the process of minimizing the actual entropy of an  jmage is called 
source coding. In the error-free case it encompasses the two operations of map- 
ping and symbol coding. If  information loss can be tolerated, it also includes 
the third step of quantization. 

The slightly more complicated problem of Iossy image compression can also 
be approached using the tools of information theory. In  this case. however, the 
principal result is the source codjng theorem. As indicated in Section 8.3.3, this 
theorem reveals tba t any zero-mem ory source can be encoded by using a code 
of rate R < R ( D )  such that the average per symbol distorlion is less than D.To 
apply this result correctly to lossy image compression requires identifying an ap- 
propriate source model, devising a meaningful distortion measure, and com- 
pucing the resulting rate distortion function R ( D ) .  The first step of this process 
has already been considered. The second step can be conveniently approached 
through the use of an objective fidelity criterion from Section 8.1.4.The final step 
involves finding a n~atrix Q whose elements minimize Eq. (8.3-12), subject to the 
constraints imposed by Eqs. (8.3-24) through (8.3-28). Unfortunately, this task 
is particularly difficult-and only a few cases of any practical interest have been 
solved. One is when the images are Gaussian random fields and the distortion 
measure is a weighted square error function. In this case, the optimal encoder 
must expand t h e  image into its Karhunen-Lokve components (see Section 11.4) 
and represent each component with equal mean-square error (Davisson [1972)). 

Error-Free Compression 

In numerous applications error-free compression is the only acceptable means 
of data reduction. One such application is the archival of medical or business 
documents, where lossy compression usually is prohibited for legal reasons. An- 
other is the processing of satellite imagery, where both the use and cast of'col- 
lecting the data makes any loss undesirable.Yet another is digital radiography, 
where the loss of information can compromise diagnostic accuracy. In these and 
other cases, the need for error-free compression is motivated by the intended 
use or nature  of the images under consideration. 

In this section, we focus on the principal error-free compression strategies cur- 
rently in use. They oormally provide compression ratios of 2 to 10. Moregver, 
they are equally applicable to both binary and gray-scale images. As indicated 
in Section 8.2, error-free compression techniques generally are composed of 
two relatively independent operations: (1) devising an alternative representa- 
tion of the image in which its in terpixel redundancies are reduced; and (2) cod- 
ing the representation to eliminate coding redundancies.?+hese steps correspond 
to the mapping and symbol coding operations of the source coding model dis- 
cussed in connection with Fig. 8.6. 

8.4. I Variable-Length Coding 
The simplest approa'ch to error-free image compression is to reduce only cod- 
ing redundancy. Coding redundancy normally is present in any natural binary 
encoding of the  gray levels in an image. As we noted in Section 8.1.1, it can be 
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eliminated by coding the gray levels so that Eq. (8.1-4) is minimized. To do so 
requires construction of a variable-length code that assigns the shortest possi- 
ble code words to the most probable gray levels. Here, we examine several op- 
timal and near optimal techniques for constructing such a code.These techniques 
are formulated in the language of information theory. In practice, the source 
symbols may be either the gray levels of an image or the output of a gray-level 
mapping operation (pixel differences, run lengths, and so on). 

Huffman coding 

The most popular technique for removing coding redundancy is due to Huffman 
(Huffman [1952]). When coding the symbols of an information source individ- 
ually, Huffman coding yields the smallest possible number of code symbols per 
source symbol. In terms of the noiseless coding theorem (see Section 8.3.3), the 
resulting code is optimal for a fixed value of n, subject to the constraint that 
the source symbols be coded one at a time. 

The first step in Huffman's approach is to create a series of source reduc- 
tions by orderjng the probabilities of the symbols under consideration and com- 
bining the lowest probability symbols into a single symbol that replaces them 
in the next source reduction. Figure 8.11 illustrates this process for binary cod- 
ing (K-ary Huffman codes can also be constructed). At the far left, a hypothet- 
ical set of source symbols and their probabilities are ordered from top to bottom 
in terms of decreasing probability values. To form the first source reduction, 
the bottom two probabilities, 0.06 and 0.04, are combined to form a "compound 
symbol" with probability 0.1. This compound symbol and its associated proba- 
bility are placed in the first source reduction column so that the probabilities of 
the reduced source are also ordered from the most to the least probable. This 
process is then repeated until a reduced source with two symbols (at the far 
right) is reached. 

The second step in Huffman's procedure is to code each reduced source, 
starting with the smallest source and working back to the original source. The 
minimal length binary code for a two-symbol source, of course, is the symbols 
0 and 1. As Fig. 8.12 shows, these symbols are assigned to the two symbols on 
the right (the assignment is arbitrary; reversing the order of the 0 and 1 would 
work just as well). As the reduced source symbol with probability 0.6 was gen- 
erated by combining two symbols in the reduced source to its left, the  0 used to 
code it is now assigned to both of these symbols, and a 0 and 1 are arbitrarily 

1 Original source Source reduction I 
1 Symbol Probability 1 2 4 1  

FIGURE 8.1 1 
Huffman source 
reductions. 
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FIGURE 8.1 2 
Hufiman code 
assignment 
procedure. 

Original source Source reduction 

Prob. Code 1 2 3 4 

appended to each to distinguish them from each other. This operation is then 
repeated for each reduced source until the original source is reached. The final 
code appears at the far left in Fig. 8.12.71e average length of this code is 

and the entropy of the source is 2.14 bits/symbol. Tn accordance with 
Eq. (8.3-21), the resulting Huffman code efficiency is 0.973. 

Huffman's creates the optimal code for a set of symbols and prob- 
abilities subjecr to the constraint that the symbols be coded one at a time. After 
the code has been created, coding and/or decoding is accomplished in a simple 
lookup table manner. The code itself is an instantaneous uniquely decodable 
block code. It is called a block code because each source symbol is mapped into 
a fixed sequence of code symbols. I t  is instanraneous, because each code word 
in a string of code symbols can be decoded without referencing succeeding sym- 
bols. It is uniquely decodable, because any string of code symbols can be de- 
coded in only one way. Thus, any string of Huffman encoded symbols can be 
decoded by examining the individual symbols of the string in a left to right man- 
ner. For the binary code of Fig. 8.12, a left-to-right scan of the encoded string 
010100111100 reveals that the first valid code word is 01010, which is the code 
for symbol a3.The next valid code is 011, which corresponds to symbol a , .  Con- 
tinuing in this manner reveals the completely decoded message to be a,a., a2a,a6. 

Other near optimal variable length codes 

When a large number of symbols is to be coded, the construction of the optimal 
binary Huffman code is a nontrivial task. For the general case of J source sym- 
bols, J - 2 source reductions must be performed (see Fig. 8.1 1) and J - 2 code 
assignments made (see Fig. 8.12). Thus construction of the optimal Huffman 
code for an image with 256 gray levels requires 254 source reductions and 254 
code assignments. In view of the computational complexity of this task, sacrificing 
coding efficiency for simplicity in code construction sometimes is necessary. 

Table 8.5 illustrates four variable-length codes that provide such a trade-off. 
Note that the average length of the Huffman code-the last row of the table- 
is lower than the other codes 1isted.The natural binary code has the greatest av- 
erage length. In addition, the 4.05 bits/symbol code rate achieved by Huffman's 
technique approaches the 4.0 bits/syrnbol entropy bound of the source, com- 
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Source 
symbol -- - 

Block I 
"I 

02 

fi3 

[td 

n5 

Qh 

fl7 

Block 2 

us 
f l y  

air, 
all 

u12 

a,, 
O14 

Block 3 

n15 

~ I A  

a18 
11 I 1) 

11111 

all 

Binary 
Probability Code Huffman 

01 roo 
0 1 0000 
0 10001 
001010 
00101 1 
01 1010 
llllOIl 

Thrncated 
H u b a n  &-Code Binary Shiff 

3 1 COO 000 
O l  l CO L 001 
11000 Ci 0 010 
01 01 C11 01 1 
00010 COOCOU 3 0  
0001 1 COOCOl 101 
001 00 COOClO 110 

00101 COOCl 1 111 000 
001 10 COI COO 11 I 001 
OOlll COlCOl 1 1 3  010 
0 1m COlClO 111011 
OlOOl COlCI1 111 I00 
100000 c incoo I I I  101 
100001 ClOCOl 111 I10 

100010 ClOCIO 111111000 
100011 ClOCll 111 111 001 
100100 CllCOO 111 llLOl0 
100101 Cllcol 111 111 011 
100110 CllClO 111 I 1  1 100 
100111 Cl lC l l  111 111 101 
10 1000 C0OC0OcOO 1 11 111 110 

Iiuffman 
Shift 

puted by using Eq. (8.3-3) and given at the bottom of the table. Although none 
of the remaining codes in Table 8.5 achieve the Huffman coding efficiency, all 
are easier to construct. Like Huffman's technique, they assign the shor.test code 
words to the most likely source symbols. 

Column 5 ofTab1e 8.5 illustrates a simple modification of the basic Huffman 
coding strategy known as rruncated Huffman coding. A truncated Huffman code 
islgenerated by Huffrnan coding only the most probable J, symbols d the source, 
for some positive integer i,i~ less than J. A prefix code followed by a suitable 
fixed-length code is used to represent all other source symbols. In Table 8.5,+ 
arbitrarily was selected as 12 and the prefix code was generated as the 13th 
Huffrnan code word. That is, a "prefix symbol" whose probability was the sum 
of the probabilities of symbols a ] ,  through a?, was included as a 13th symbol dur- 
ing the Huflman coding of the 12 most probable source symbols. The rernain- 
ing 9 symbols were then coded using the prefix code, which turned our to be 10, 
and a 4-bit binary value equal to the symbol subscript minus 13. 

Column 6 of Table 8.5 illustrates a second, near optimal, and variable-length 
code known 3s a B-code. It is close to optimal when the source symbol proba- 
bilities obey a power law of the form 

TABLE 8.5 
Variable-length 
codes. 
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.I 

for some positive constant p and normalizing constant c = I/ j". For 
j =O 

example, the distribution of run lengths in a binary representation of a typi- 
cal typewritten text document is nearly exponential. As Table 8.5 shows, each 
code word is made up of continuation bits, denoted C, and information bits, 
which are natural binary numbers. The only purpose of the continuation bits 
is to separate individual code words, so they simply alternate between 0 and 
1 for each code word in a string. The B-code shown in Table 8.5 is called a 
B,-code, because two information bits are used per continuation bit. The 
sequence of B2-codes corresponding to  the source symbol string a , ,  n,a, is 
001 010 101 000 010 or 101 110 001 100 110, depending on whether the first 
continuation bit is assumed to be 0 or 1. 

The two remaining variable-length codes in Table 8.5 are referred to as shifi 
codes. A shift code is generated by (1) arranging the source symbols so that 
their probabilities are monotonically decreasing, (2) dividing the total number 
of symbols into symbol blocks of equal size, (3) coding the individual eledents 
within all blocks identically, and (4) adding special shift-up and/or ship-down 
symbols to identify each block. Each time a shift-up or shift-down symbol is 
recognized at the decoder, it moves one block up or down with respect to a pre- 
defined reference block. 

To generate the 3-bit binary shift code in column 7 of Table 8.5, the 21 source 
syrnbols are first ordered in accordance with their probabilities of occurrence 
and divided into three blocks of seven symbols. The individual symbols (a, 
through a7) of the upper block+onsidered the reference block-are then coded 
with the binary codes 000 through 110.The eighth binary code (111) is not in- 
cluded in the reference block; instead, it is used as a single shift-up control that 
identifies the remaining blocks (in this case, a shift-down symbol is not used). 
The symbols in the remaining two blocks are then coded by one or two shift-up 
symbols in combination with the binary codes used to code the reference block. 
For example, source symbol a , ~  is coded as 111 111 100. 

The Huffman shift code in column 8 of Table 8.5 is generated in a similar 
manner. The principal difference is in the assignment of a probability to the 
shift symbol prior to Huffman coding the reference block. Normally, this as- 
signment is accompiished by summing the probabilities of all the source sym- 
bols outside the reference block; that is, by using the same concept utilized to 
define the prefix symboI in the truncated Huffman code. Here, the sum is taken 
over symbols a, through a,, and is 0.39. The shift symbol is thus the most prob- 
able symbol and is assigned one of the shortest Huffman code words (00). 

Arithmetic coding 
Unlike the variable-length codes described previously, arithmetic coding gen- 
erates nonblock codes. In arithmetic coding, which can be traced to the work of 
Elias (see Abramson [1963]), a one-to-one correspondence between source 
symbols and code words does not exist. Instead, an entire sequence of source 
syrrlbols (or message) is assigned a single arithmetic code word.The code word 
itself defines an interval of real numbers between 0 and 1.As the number of sym- 
bols in the message increases, the interval used to represent it becomes smaller 
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k p d i n g  requcnee - 
a2 a3 0 3  a4 

and the number of information units (say, bits) required to represent the inter- 
val becomes larger. Each symbol of the message reduces the size of the inter- 
val in accordance with its probability of occurrence. Because the technique does 
not require, as does Ruffman's approach, that each source symbol translate into 
an integral number of code symbols (that is, that t.he symbols be coded one at 
a time), it achieves (bur only in theory) the bound established by the noiseless 
coding theorem of Section 8.3.3. 

Figure 8.13 illustrates the basic arithmetic coding process. Here, a five-symbol 
sequence or message, a ,  a2a,a,rr,, from a four-symbol source is coded. At the 
start of the  coding process, the message is assumed to occupy the entire half- 
open interval [0, 1 ). As Table 8.6 shows, this interval is initially subdivided into 
four regions based on the probabilities of each source symbol. Symbol a,, for ex- 
ample, is associated with subinterval [0,0.2). Because it is the first symbol of the 
message being coded, the message interval is initially narrowed to LO, 0.2).Thus 
in Fig. 8.13 [O, 0.2) is expanded to the full height of the figure and its end points 
labeled by the values of the narrowed range. The narrowed range is then 
subdivided in accordance with the original source symbol probabilities and the 
process continues with the next message symbol. In this manner, symbol n, 
narrows the subinterval to C0.04, 0.08),a3 further narrows it to [0.056,0.072), and 
so on. The final message symbol, which must be reserved as a special end-of- 
message indicator, narrows the range to [0.06752,0.0688). Of course, any number 
within this subinterval-for example, 0.068-can be used to represent the 
message. 

FIGURE 8.13 
Arithmetic coding 

k-. 

Source Symbol Probability LnitiaI Subinterval 

0 1  0.2 [0.0,0.2) 
a2 0.2 10.2, 0.4) 
0 3  0.4 [0.4, 0.8) 
a4 0.2 [0.8,1.0) 

procedure. 

TABLE 8.6 
Arithmetic coding 
example. 
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In the arithmetically coded message of Fig. 8.13, three decimal digits are used 
to represent the five-symbol message. This translates into % or 0.6 decimal dig- 
its per source symbol and compares favorably with the entropy of the source, 
which, from Eq. (8.3-3), is 0.58 decimal digits or 10-ary unitslsymbol. As the 
length of the sequence being coded increases, the resulting arithmetic code ap- 
proaches the bound established by the noiseless coding theorem. In practice, two 
factors cause coding performance to fall short of the bound: (1) the addition of 
the end-of-message indicator that is needed to separate one message from an- 
other; and (2) the use of finite precision arithmetic. Practical implementations 
of arithmetic coding address the latter problem by introducing a scaling strat- 
egy and a rounding strategy (Langdon and Rissanen [1981.]). The scaling strat- 
egy renormalizes each subinterval to the [O, 1) range before subdividing it in 
accordance with the symbol probabilities. The rounding strategy guarantees 
that the truncations associated with finite precision arithmetic do not prevent 
the coding subintervals from being represented accurately. 

8:-1.2 LZW Coding 
Having examined the principal methods for removing coding redundancy, we 
now consider one of several error-free compression techniques that also at- 
tack an image's interpixel redundancies. The technique, called Lernpel-Ziv- 
Welch (LZW) coding, assigns fixed-length code words to variable length 
sequences of source symbols but requires no a priori knowledge of the prob- 
ability of occurrence of the symbols to be encoded. Recall from Section 8.3.3 
that Shannon's first theorem states that the nth extension of a zero-memory 
source can be coded with fewer average bits per source symbol than the nonex- 
tended source itself. Despite the fact that it must be licensed under United 
States Patent No. 4,558,302, LZW compression has been integrated into a va- 
riety of mainstream imaging file formats, including the graphic interchange for- 
mat (GIF) ,  tagged image file format ( T I F F ) ,  and the portable doci~ment  format 
(PDF). 

LZW coding is conceptually very simple (Welch [1984]). At the onset of the 
coding process, a codebook or "dictionary" containing the source symbols to 
be coded is constructed. For 8-bit monochroine images, the first 256 words of the 
dictionary are assigned to the gray values 0, 1 ,2 , .  . . ,255. As the e ~ ~ c o d e r  se- 
quentially examines the image's pixels, gray-level sequences that are not in the 
dictionary are placed in algorithmically determined (e.g., the next unused) lo- 
cations. If the first two pixels of the image are white, for instance, sequence 
"255-255" might be assigned to location 256, the address following the locations 
reserved for gray levels 0 through 255.The next time that two consecutive white 
pixels are encountered, code word 256, the address of the location containing 
sequence 255-255, is used to represent them. If a 9-bit, 512-word dictionary is em- 
ployed in the coding process, the original (8 + 8) bits that were used to repre- 
sent the rwo pixels are replaced by a single 9-bit code word. Cleary, the size of 
the dictionary is an important system parameter. If it is too small, the detection 
of matching gray-level sequences will be less likely; if it is too large, the size of 
the code words will adversely affect compression performance. 
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5 Consider the following 4 X 4,8-bit image of a vertical edge: EXAMPLE 8.12: 

39 39 126 126 
An LZW coding 
example. 

Table 8.7 detaiIs the steps involved in coding its 16 pixels. A 512-word dictionary 
with the following starting content is assumed: 

Dictionary Location En try 

0 0 
1 1 

' 1  

255 255 
256 - 

511 - 

Locations 256 through 511 are initially unused. 
The image is encoded by processing its pixels in a left-bright, top-to-bottom 

manner .  Each successive gray-level value is concatenated with a variable- 
column 1 of Table 8.7-called the "currently recognized sequence." As can be 
seen, this variable is initially null or empty. The dictionary is searched for each 

TABLE 8.7 
LZW coding 
example. 

Currently Dictionary 
Recognized Pixel Being Encoded Location 

I Sequence Processed Output (Code Word) Dictionary En try 

39 
39 39 3 0 256 39-39 
39 126 39 257 39-126 

126 126 126 258 126- 126 
126 39 126 259 126-39 
39 39 

39-39 126 256 260 39-39-126 
126 126 

226-126 3 9 258 261 126-126-39 
3 9 39 

39-39 126 
39-39-126 126 260 262 39-39-126-126 

126 39 
126-39 3 9 259 263 126-39-39 

39 126 
39- 126 126 257 264 39-126-126 

126 126 
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concatenated sequence and if found, as was the case in the first row of the table, 
is replaced by the newly concatenated and recognized (i.e., located in the dic- 
tionary) sequence. This was done in  column 1 of row 2. No output codes are 
generated, nor is the dictionary altered. If the concatenated sequence is not 
found, however, the address of the currently recognized sequence is output as 
the next encoded value, the concatenated but unrecognized sequence is added 
to the dictionary, and the currently recognized sequence is initialized to the cur- 
rent pixel value. This occurred in row 2 of the table. The last two columns de- 
tail the gray-level sequences that are added to the dictionary when scanning 
the entire 4 X 4 image. Nine additional code words are defined. At the conclu- 
sion of coding, the dictionary contains 265 code words and the LZW algorithm 
has successfully identified several repeating gray-level sequences-leveraging 
them to reduce the original 128-bit image to 90 bits (i.e., 10 9-bit codes)."fhe en- 
coded output is obtained by reading the third column from top to bortom.The 
resulting compression ratio is 1.42 : 1. m 

A unique feature of the LZW coding just demonstrated is that the  coding dic- 
tionary or code book is created while the data are being encoded. Remarkably, 
an LZW decoder builds an identical decompression. dictionary as it decodes si- 
multaneousIy the encoded data stream. It is left as an exercise to the reader 
(see Problem 8.16) to decode the output of the preceding example and recon- 
struct the code book. Although not needed in this example, most practical ap- 
plications require a strategy for handling dictionary overflow. A simple soluijon 
is to flush or reinitialize the dictionary when it becomes full and continue cod- 
ing with a new initialized dictionary. A more complex option is to monitor com- 
pression performance and flush the dictionary when it becomes poor or 
unacceptable. Alternately, the least used dictionary entries can be tracked and 
replaced when necessary. 

8.4.3 Bit-Plane Coding 
Another effective technique for reducing an image's interpixel redundancies is 
to process the image's bit planes individually. The technique, called bir-plane 
coding, is based on the concept of decomposing a multilevel (monochrome or 
color) image into a series of binary images and compressing each binary image 
via one of several well-known binary compression methods. In this section, we 
describe the most popular decomposition approaches and review several of the 
more commonly used compression methods. 

Bit-plane decomposition 
The gray levels of an m-bit gray-scale image can be represented in  the forni of 
the base 2 polynomial 

2"-1 
am- I + 0,-2 2m-2 + - - -  -+ a12' + no2' 

Based on this property, a simple method of decomposing the image into a col- 
lection of binary images is to separate the m coefficients of the polynornjal into 
m 1-bit birplanes. As noted in Chapter 3, the zeroth-order bit plane is generated 
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by collecting the 0,) bits ol each pixel, while the (m - ])st-order bit plane con-. 
tains the a,,-, bits or coefficients. In general, each bit plane is numbered from 
0 to m - 1 and IS constructed by setting its pixels equal to the values of the ap- 
propriate bits or polynomial coefficients from each pixel in the original image. 
The inherent disadvantage of this approach is that small changes in gray level 
con have a significant impact on the complexity of the bit planes. Tf a pixel of 
intensity 127 (0111 11 2 2 )  is adjacent to a pixel of intensity 128 (10000000), for 
instance, every bit plane wjll contain a corresponding 0 ro 1 (or I to 0) transi- 
tion. For example. as the most significant bits of the two binary codes for 127 and 
128 are different, bit plane 7 will contain a zero-valued pixel next to a pixel of 
value I ,  creating a 0 to 1 (or 1 to 0) transition at that point. 

An alternative decomposition approach (which reduces the effect of small 
gray-level variations) is to first represent the image by a n  nz-bit Gray code.The 
m-bit Gray  code g,!-, . . . g2gl go that corresponds to the polynomial in Eq. (8.4-2) 
can be computed from 

Here,@ denotes the exclusive OR operation.This code has the unique proper- 
ty  that successive code words differ in  only one bit position.Thus, small changes 
in  gray level are less likely to affect all m bit planes. For instance, when gray 
levels 127 and 228 are adjacent, only t he  7th bit plane will contain a O to 1 Lran- 
sition, because the Gray codes that corresporld to 127 and 128 are 1 1000000 
and 01000000, respectively. 

I The 3024 X 1024 images shown in Figs. 8.14(a) and (b) are used to illustrate EXAMPLE 8.13: 
the compression techniques described in the remainder of this sec t i0n.m &bit Bit-plane coding. 

monocl~rome image of a child was generated with a high-resolution CCD 
camera. The binary image of a warranty deed prepared by President Andrew 
Jackson in 1796 was produced 011 a flatbed document scanner. Figures 8.15 and 
8.16 show the eight binary and Gray-coded bit planes of the image of the child. 
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FIGURE 8.16 The 
loui- [east  
si2nilic;lnt binary 
( l e l c  column) and 
Gsiiy-coder1 (rig11 t 
coIulni\) bit 
planes ~i the 
image in 
Fig. H.I4(n). 

Bit 7 



452 Chapter 8 a Image Compression 

Note that the high-order bit planes are far less complex than their low-order 
counterparts. That is, they contain large uniform areas of significantly less de- 
tail, busyness, or randomness. In addition, the Gray-coded bit planes are less 
complex than the corresponding binary bit planes. M 

Constant area coding 
A simple but effective method of compressing a binary image or bit plane is to 
use special code words to identify large areas of contiguous 1's or 0's. In one such 
approach, called constant area coding (CAC) ,  the image is divided into blocks 
of size p x q pixels, which are classified as all white, all black, or mixed inten- 
sity. The most probable or frequently occurring category is then assigned the 
1-bit code word 0, and the other two categories are assigned the 2-bit codes 10 
and 11. Compression is achieved because the pq bits that normally would be 
used to represent each constant area are replaced by a 1-bit or 2-bit code word. 
Of course, the code assigned to the mixed intensity category is used as a prefix, 
which is followed by the pq-bit pattern of the block. 

When predominantly white text documents are being compressed, a slight- 
ly simpler approach is to code the solid white areas as 0 and all other blocks (in- 
cluding the solid black blocks) by a 1 followed by the bit pattern of the block. 
This approach, called white block skipping ( W B S ) ,  takes advantage of the an- 
ticipated structural tendencies of the image to be compressed. As few solid 
black areas are expected, they are grouped with the mixed intensity regions, al- 
lowing a l-bit code word to be used for the highly probable white b1ocks.A par- 
ticularly effective modification of this procedure (with blocks of size 1 x q )  is 
to code the solid white lines as 0's and all other lines with a 1 followed by the 
normal WBS code sequence. Another is to employ an iterative approach in 
which the binary image or bit plane is decomposed into successively smaller 
and smaller subblocks. For 2-D blocks, a solid white image is coded as a 0, and 
a11 other images are divided into subblocks that are assigned a prefix of 1 and 
similarly coded.That is, if a subblock is all white, it is represented by the prefix 
1, indicating that it is a first iteration subblock, followed by a 0, indicating that 
it is solid white. If the subblock is not solid white, the decomposition process IS 

repeated until a predefined subblock size is reached and coded as either a 0 (if 
it is all white) or a 1 followed by the block bit pattern. 

One-dimensional run-length coding 

An effective a1 ternative to constant area coding is to represent each row of an 
image or bit plane by a sequence of lengths that describe successive runs of 
black and white pixels. This technique, referred to as run-length coding, was de- 
veloped in the 1950s and has become, along with its 2-D extensions, the standard 
compression approach facsimile (FAX) coding. The basic concept is to code 
each contiguous group of 0's or 1's encountered in a left to right scan of a row 
by its length and to establish a convention for determining the value of the run. 
The most common approaches for determining the value of a run are (1) to 
specify the value of the first run of each row, or (2) to assume that each row 
begins with a white run, whose run length may in fact be zero. 
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Although run-length coding is in itself an effective method of compressing 
an image (see the example in Section 8.1.2), additional compression usually can 
be realzed by variable-length coding the run lengths themselves. In fact, the 
black and white run lengths may be coded separately using variable-length 
codes that are specifically tailored to their own statistics. For example, letting 
symbol a, represent a black run of length j, we can estimate the probability that 
symbol aj was emitted by an imaginary black run-length source by dividing the 
number of black run lengths of length j in the entire image by the total number 
of black runs.An estimate of the entropy of this black run-length source, denoted 
[I,, €allows by substituting these probabilities into Eq. (8.3-3). A similar argu- 
ment holds for the entropy of the white runs, denoted H,  .The approximate run- 
length entropy of the image is 

where the variables Lo and L, denote the average values of black and white 
r u n  lengths, respectively. Equation (8.4-4) provides an estimate of the average 
number of bits per pixel required to code the run lengths in a binary image 
using a variable-length code. 

Two-dimensional run-length coding 
One-dimensional run-length coding concepts are easily extended to create a 
variety of 2-D coding procedures. One of the better known results is relative ad- 
dress coding (RAC), which is based on the principle of tracking the binary tran- 
sitions that begin and end each black and whte run. Figure 8.17(a) illustrates one 
implementation of this approach. Note that ec is the distance from the current 
transition c to the last transition of the current line e, whereas cc' is the distance 
from c to the first similar (in the same direction) transition past e ,  denoted c', on 
the previous line. If ec r cc', the RAC coded distance d is set equal to ec and 
used to represent the current transition at c. But if cc' < ec, d is set equal to cc'. 

Prev~ous row -4 c1 t+- cc' a 
b 

FIGURE 8.1 7 A ~ n ~ ~ 0 f l ~ ~ ~ U ~ ~ ~ ~ U ~ ~ ~ [ I ! ~ u u u ~  i-elatjve address 
Current row kLecpd current transition = O coding (RAC) 

17 = illustration. 

I Distance 
1 measured Distance Code 1 Distance 

range Code h ( d )  1 
0 0 

ec or  cc' (left) 1 100 
cc' (right) 1 101 
ec d ( d > l )  111 h ( d )  
cc' (c' to left) 

/ cc' (c' to right) 1101 h ( d  

1 - 4  0 xx 
5 - 20 10 xxxx 

21 - 84 110 xxxxxx 
85 - 340 1110 XXXXXXXX 

341 - 364 11 110 ~~~~~~X~~ 
1365 - 5460 111110 XXXXXXXXXX 
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Like run-length coding, relative address coding requires the adoption of a 
convention for determining run values. 111 addition, imaginary transitions a t  the 
start and  end of each line, as well as an imaginary starting line (say, an  all-white 
line), must be assumed so that image boundaries can be handled properly. Fi- 
nally, since the probability distributions of the RAC distances of most images 
are not unifor~n in practice (see Section 8.1,1), the final step of the RAC process 
is to code the RAC distance selected (that  is, the shortest) and  its distance, (1, 
by using a suitable variable-length code. As Fig. 8.17(b) shows, a code similar to 
a B,-code can be utilized.The smallest distances are assigned rhe shorfesr code 
words, and all other distances are coded by using a prefix to indicate the short- 
est RAC distance, a second prefix that assigns d to a specific range of distances, 
and the binaiy representation [denoted xxx . . . x in Fig. 8.3.7(b)] of d rnirlus the 
base distance of the range itself. If ec and cc' are +S and +4, as in Fig. 8.17(a), 
the proper RAC code word is 1100011. Finally, if d = 0, c is directly below c', 
whereas if d = 1, the decoder may bave to determine the closest transition 
poinl, because the 100 code does not specify whether the nieasure i i ient  is 
relative to the current row or to the previous row. 

Contour tracing and coding 

Relative address coding is one approach for represenling intensity transitions 
that make up the contours in a binary image. Another approach is to represent 
each contour by a set of boundary points or by a single boundary p o i ~ ~ t  and a 
set of directionals. The latter sometimes is referred to as direct contour tracing. 
Xn this section, we describe yet another method, calIed predictive differentiul 
quo~ltizing (PDQ), which demonstrates the essential characteristics of both ap- 
proaches. It is a scan-linc-oriented contour tracing procedure. 

In predictive differential quantizing, the front and back contours (Fig. 8.18) 
of each object of an image are traced simultaneously to generate a sequence of 
pairs (A', A") .  T l ~ e  term A' is the difference between the starting coordinates of 
the front contours on adjacent lines, and A" is the difference between the fiunt- 
to-back contour 1engths.These differences. together with special messages that 
indicate the start of new contours (the new star; message) and the end of old con- 
tours ( the merge message), represent each object. If A" is replaced by the 

------ 
Front contour 

FIGURE 8.1 8 Parameters of the PDQ algorjthm. 
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difference between the back contour coordinates of adjacent lines, denoted A"', 
the technique is referred to as double delta coding (DDC). 

The new start and merge messages allow the (A', h") or (A', A") pairs gen- 
erated on a scan line basis to be linked properly to the corresponding pairs in 
the previous and next rows. Without these messages, the decoder would be un- 
able to reference one difference pair to another or to position correctly the con- 
tours within the image.To avoid encoding both the row and column coordinates 
of each new start and merge message, a unique code often is used to identify scan 
lines that do not contain object pixels.The final step in both PDQ and DDC cod- 
ing is to represent A', A" or A"', and the coordinates of the new starts and merges 
with a suitable variable-length code. 

3 We conclude this section by comparing the binary compression techniques EXAMPLE 8.14: 
described previously. Each approach was used to compress the images of Fig. 8.14. Com~arJson of 

The resulting code rates and compression ratios are provided inTables 8.8 and 8.9. 
compression 

When interpreting these results, note that first-order estimates (see Section 8.3.4) 
of the  entropies of the RLC run lengths and PDQ and DDC distances were corn- 
puted and used as an approximation of the compression performance that could 
be achieved under the variable-length coding approaches of Section 8.4.1. 

The results in Tables 8.8 and 8.9 show that all the techniques were able to 
eliminate some amount of intexpixel redundancy-That is, the resulting code rates 

Bit-plane code rate (bitsfpixel) 

Code Compression 
Method 7 6 5 4 3 2 1  0 Rate Rs tio 

Binary Bit-Phne Coding 
CBC (4 x 4) 0.14 0.24 0.60 0.79 0.99 - - - 5.75 1.4:  1 
RLC 0.09 0.19 0.51 0.68 0.87 1.00 1.00 1.00 5.33 1.5:l 
PDQ 0.07 0.18 0.79 - - - - - 6.04 1.3;1 
DDC 0.07 0.18 0.79 - - - - - 6.03 1.3: I 
RAC 0.06 0.15 0.62 0.91 - - - - 5.17 1.4: 1 

Gray Bit- Plane Codirrg 
CBC (4 X 4) 0.34 0.18 0.48 0.40 0.61 0.98 - - 4.80 1.7: 1 
RLC 0.09 0:13 0.40 033 0.51 0.85 1.00 1.00 4.29 1.9: 1 
PDQ 0.07 0.12 0.6'1 0.411 0.82 - - - 5.02 1 . 6 ~ 1  
DDC (3.07 0.11 0.61 0.40 0.81 - - - 5.00 1.6: 1 
RAC 0.06 0.10 0.49 0.31 0.62 - - - 4.05 1.8: 1 

WBS WBS 
(1 x 8) (4 x 4) RLC PDQ DDC RAC 

Code rote 
(13 its/p hel)  0.48 0.39 0.32 0.23 0.22 0.23 
Compression 
rulio 2.1 : 1 2.6 : 1 3.1:1 4 . 4 : l  4.7 : 1 4.4:1 

TABLE 8.8 
Error-free 
bit-plane coding 
results for 
Fig. 8.14(a): 
H = 6.82 
bi lslpixel 

TABLE 8.9 
Error-free binary 
image 
compression 
results for 
Fig. 8.14(b): 
H = 0.55 
bitslpixel. 
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,a 
b. 

FIGURE 8.1 9 A 
lossless predictive 
coding model: 
(a)  encoder; 
(bj decoder. 

- .  

were less than the first-order entropy estimate of each image. Run-length coding 
proved to be the best coding method for the bit-plane coded images, whereas 
the 2-D techniques (such as PDQ, DDC, and RAC) performed better when com- 
pressing the binary image. Furthermore, the relatively straightforward procedure 
of Gray coding the image of Fig. 8.14(a) improved the achievable coding per- 
formance by about 1 bitlpixel. Finally, note that the five compression methods 
were able to compress the monochrome image only by a factor of 1 to 2, while 
compressing the binary image of Fig. 8.14(b) by a factor of 2 to 5. As Table 8.8 
shows, the reason for this performance difference is that the algorithms were un- 
able to compress the lower-order bit planes of the bit-plane coded images. In 
fact, the dashed entries of the table indicate instances in which the algorithms 
caused data expansion. In  these cases, the raw data were used to represent the bit 
plane, and only 1 bit/pixel was added to the total code rate. PE 

8A.4 Lossless Predictive Coding 
Let us now turn to an error-free compression approach that does not require de- 
composition of an image into a collection of bit planes. The approach, com- 
monly referred to as lossless predictive coding, is based on eliminating t h e  
interpixel redundancies of closely spaced pixels by extracting and coding only 
the new information in each pixel. The new information of a pixel is defined as 
the difference between the actual and predicted value of that pixel. 

Figure 8.19 shows the basic components of a lossless predictive coding sys- 
tem. The system consists of an encoder and a decoder, each containing an iden- 
tical predictor. As each successive pixel of the input image, denoted f,, is 
introduced to the encoder, the predictor generates the anticipated value of that 
pixel based on some number of past inputs. The output of the predictor is then 
rounded to the nearest integer, denoted j,, and used to form the difference or 
prediction error 

Input 
Image encoder 

Predictor Nearest 

Compressed 
image 

e,, f,, 
Compressed 

image 

1 

Symbol 
decoder 

- Decompressed 
image 
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which is coded using a variable-length code (by the symbol encoder) to gener- 
ate the next element of the compressed data stream.The decoder of Fig. 8.19(b) 
reconstructs en from the received variable-length code words and performs the 
inverse operation 

Various local, global, and adaptive (see Section 8.5.1) methods can be used 
to generate j, . l n  most cases, however, the predctction is formed by a linear com- 
bination of m previous pixels. That is, 

where m is the order of the linear predictor, round is a function used to denote the 
roundil~g or nearest integer operation, and the a; for i = 1,2,. . . , rn are prediction 
coefficients In raster scan applications, the subscript n indexes the predictor out- 
puts in accordance with their time of occurrence.That is,f,,,.fn, and en in Eqs. (8.4-5) 
through (8.4-7) could be replaced with the more explicit notation . f ( t ) ,  f ( r ) ,  and 
e ( t ) ,  where t represents time. In other cases,n is used as an index on the spatial co- 
ordinates andor frame number (in a time sequence of images) of an image. In 1-D 
linear predictive coding, for example, Eq. (8.4-7) can be written 

where each subscripted variable is now expressed explicitly as a function of spa- 
tial coordinates x and y. Note that Eq. (8.4-8) indicates that the 1-D linear pre- 
diction j ( x ,  y)  is a function of the previous pixels on the cunent line alone. In 2-D 
predictive coding, the prediction is a function of the previous pixels in a left-to- 
right, top-to-bottom scan of an image. In the 3-D case, it is based on these pixels 
and the previous pixels of preceding frames. Equation (8.4-8) cannot be evaluat- 
ed for the first m pixels of each line, so these pixels must be coded by using other 
means (such as a Huffman code) and considered as an overhead of the predictive 
coding process. A similar colnrneat applies to the higher-dimensional cases. 

!?4 Consider encoding the monochrome image of Fig. 8.14(a) using the simple EXAMPLE 8.15: 
first-order linear predictor Predictive coding. 

A predictor of this general form commonly is called aprevious pixel predictor, 
and the corresponding predictive coding procedure is referred to as differentia 
coding o r  previous pixel coding. Figure 8.20(a) shows the prediction error image 
that results from Eq. (8.4-9) with a = 1. In this image, gray-level 128 represents 
a prediction error of zero, whereas all nonzero positive and negative prediction 
errors (under and over estimates) are multiplied by 8 and displayed as lighter 
and darker shades of gray, respectively.The mean value of the prediction image 
is 128.02, which corresponds to an average prediction error of only 0.02 bits. 
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a 
b c 
flGURE 8.20 
( a )  Thc prediction 
error image 
resulring from 
Eq. (8.4-9). 
(b) Gray-level 
histogram oi the 
or.iginal image. 
( c )  Histogram of 
the prediction 
error-. 

Gray level Prediction e r r o ~  

Figures 8.20(0) and (c) show the gray-level histogram of the image in Fig. 8.14(a) 
and the histogram of the prediction error resulting t'romEq. (8.4-9). Note that the 
variance of the prediction error in Fig. 8.20(c) is much smallex than the variance of 
the gray levels in the original image.  moreo over, the first-order estimate of the en- 
tropy of the prediction error image is significantly less than the corresponding first- 
order estimate For the original image (3.96 bits/pixel as opposed to 6.81 bits/pixel). 
This decrease in entropy reflects removal of a great deal of redundancy by the pre- 
dictive coding process, despite the fact that for m-bit images, ( m  + 1)-bit numbers 
are needed to represent accurately the error sequence that results from Eq. (8.4-5). 
Ahhough any of the variable-length coding procedures of Section 8.4.1 can be used 
to code this error sequence, the  resulting compression wiU be limited to approxi- 
ma tely 8/3.96, or about 2: 1. In general, an estimate of the maximum compression 
of any lossless predictive coding approach may be obtained by dividing the aver- 
age number of bits used to represent each pixel in the origmal image by a first- 
order estimate of the entropy of the prediction error data. w 

The preceding example emphasizes that the  amount of compression achieved 
in lossless predictive coding is related directly to the entropy reduction that results 
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from mapping the input image into the prediction err-or sequence. Because a great 
dcal of interpixel redundancy is removed by the prediction arid differencing 
process, the probability density function of the prediclion error is, in general, high- 
ly peaked at zero and characterized by a relatively small (in comparison lo the 
input gray-level distribution) variance. In fact, the density function of the pre- 
diction error ofteri is modeled by the zero mean uncorrelaled Laplacian pdf 

where a, is thc standard deviation of e .  

Lossy Compression 

Unlike the error-free approaches outlined in the previous section, lossy encod- 
ing is based on the concept of compromising the accuracy of t h e  reconstructed 
image in exchange for increased compression. If the resulting disrortion (which 
may or may not b e  visually apparent) can be tolerated, the increase in com- 
pression can be significant. In  fact, many lossy encoding techniques are capable 
of reproducing recognizable monochrome images from data illat have been 
compressed by more t h a n  100: 1 and  images that are virtually indistinguishable 
from the originals a t  10: 1 to 50; 1. Error-free encoding of monochrome images, 
however, seldom results in  more than a -3: 1 reduction in data. As indicated in 
Section 8.2, the principal difference between these two approaches is thc pres- 
ence or absence of the quantizcr block of Fig. 8.6. 

8.5.1 Lossy Predictive Coding 
I n  this section, we add a quantizer to tl~c modcl introduced in Sect io~~ 8.4.4 and  
cxamine the resulting trade-off between reconstruction accuracy and  com- 
pression performance. As Fig. 8.21 shows, the quantizer? which absorbs the near- 
est integer funclian oC lhe error-fi-ec encoder. is inserted between the symbol 

Input Quantizer Symbol 
image encoder irnage 

Predictor 

FIGURE 8.21 A 
lossy predict ivc 
coding model: 
(a) encoder and 
(b) decoder. 

Compressed Symhol Decompressed 
image image 

Prcdictcrr 
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encoder and the point at which the prediction error is formed. It maps the pre- 
diction error into a limited range of outputs, denoted el,, which establish the 
amount of compression and distortion associated with lossy predictive coding. 

In order to accommodate the insertion of the quantization step, the error-free 
encoder of Fig. 8.19(a) must be altered so that the predictions generated by the 
encoder and decoder are equivalent. As Fig. 8.21(a) shows, this is accomplished 
by placing the lossy encoder's predictor within a feedback loop, where its input, 
denoted f ,, is generated as a function of past predictions and the correspond- 
ing quantized errors. That is, 

where f,, is as defined in Section 8.4.4.Ihis closed loop configuration prevents 
error buildup at the decoder's output. Note from Fig. 8.21(b) that the output of 
the decoder also is given by Eq. (8.5-1). 

EXAMPLE 8.16: ik?! Delta modulation ( D M )  is a simple but well-known form of lossy predictive 
Delta modulation. coding in which t h e  predictor and quantizer are defined as 

and 

+[ f o r e , > O  
en = { -5 otherwise 

where a is a prediction coefficient (normally less than 1) and 5 is a positive con- 
stant. The output of the quantizer, e,,, can be represented by a single bit 
(Fig. 8.22a), so the symbol encoder of Fig. 8.21(a) can utilrze a I-bit fixed-length 
code. The resulting DM code rate is 1 bit/pixel. 

Figure 8.22(c) illustrates the mechanics of the delta modulation process, 
where the calculations needed to compress and reconstruct the input sequence 
{14,15,14,15,13,15,15,14,20,26,27,28,27,27,29,37,47,62,75, 77, 78,79,80, 
81,81,82,82) with a, = 1 and 5 = 6.5 are tabulated.The process begins with the 
error-free transfer of the first input pixel to the decoder. With the initial condi- 
tion f, = f, = 14 established at both the encoder and decoder, the remaining 
outputs can be computed by repeatedly evaluating Eqs. (8.5-2), (8.4-5), (8.5-3). 
and (8.5-1). Thus, when n = 1, for example, f, = (1)(14) = 14, e ,  = 15 - 
14 = 1, e ,  = +6.5 (because e, > 0), f, = 6.5 + 14 = 20.5, and the resulting re- 
construction error is (15 - 20.5), or -5.5 gray levels. 

Figure 8.22(b) shows graphically the tabulated data shown in Fig. 8.22(c). 
Both the input and completely decoded output Cfn and f ,,) are shown. Note that 
in the rapidly changing area from n = 14 to 19, where 5 was too small to rep- 
resent the input's Iargest changes, a distortion known as slope overload occurs. 
Moreover, when 5 was too large to represent the input's smallest changes, as in 
the relatively smooth region from n = 0 to n = 7, granular noise appears. In 
most images, these two phenomena lead to blurred object edges and grainy or 
noisy surfaces (that is, distorted smooth areas). m 
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input Encodei- Decoder Error 
--  -. -- 

,k e a b  

The distortions noted in the preceding example are common to all forms of 
lossy predictive coding.The severity of these distortions depends on a complex 
set of interactions between the quantization and prediction methods employed. 
Despite these interactions, the predictor normally is designed under the as- 
sumption of no quantization error, and the quan tizer is designed to minimize its 
own error. That is, the predictor and quantizer are designed independently of 
each other. 

+6.5 

4 

Code = 0 

Optimal predictors 

C 

Code = 1 FIGURE 8.22 An 

* 
example of delta 

E modulation. 

-6.5 Granular  noise 
& fl 
rl n n 

v 

The optimal predictor used in most predictive coding applications minimizes the 
encoder's mean-square prediction error:' 

subject to the constraint that 

and 

'The notation E{-)denotes the statislical expectation operator. 
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That is, the optimization criterion is chosen to rninimize the mean-square pre- 
diction error, the quantization error is assumed to be negligible ( e ,  = en), and 
the prediction is constrained to a linear combination of m previous pixels.'These 
restrictions are not essential, but they simplify the analysis considerably and, at 
the same time, decrease the computational complexity of the predictor.The re- 
sul ting predictive coding approach is referred to as di-flerentialpulse code mod- 
ulation (DPCM). 

Under these conditions, the optimal predictor design problem is reduced to 
the relatively straightforward exercise of selecting the m prediction coefficients 
that minimize the expression 

Differentiating Eq. (8.5-7) with respect to each coefficient, equating the deriv- 
atives to zero, and solving the resulting set of simultaneous equations under the 
assumption that f, has mean zero and variance u2 yields 

where RL' is the inverse of the m X m autocorrelation matrix 

and r and cu are the m-element vectors 

Thus for any input image, the coefficients that minimize Eq. (8.5-7) can be de- 
termined via a series of elementary matrix operations. Moreover, the coeffi- 
cients depend only on the autocorrelations of the pixels in the original image. 
The variance of the predic.tion error that results from the use of these optimal 
coefficients is 

Although the mechanics of evaluating Eq. (8.5-8) are quite simple, compu- 
tation of the autocorrelations needed to form R and r is so difficult in practice 

-- pp 

"In general. the optimal predictor for a non-Gaussian image is a nonlinear function ol the pixels used to 
lorn the estimate. 
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that locnl predictions (those in which the prediction coefficients are conlputed 
image by image) are almost never used. In rnosl cases, a sel oi global coerli- 
cients is computed by assuming a simple image model and substituting the cot.- 
responding autocorrelations illto Eqs. (8.5-9) and (8.5-1 O).'For instance, when a 
2-D Markov source (see Section 8.3.3) with separable aulocorrelatjon function 

and generalized fourth-order lineal predict01 

are assurned, the resulting optimal coefficients (Jain [1989]) are 

wllere p,, and p,  are the horizontal and vertical co~.relation coefficients, respec- 
tively, of tlre image under consideration. 

Finally, the sum of t he  prediction coefficienls in Eq. (8 .5-6)  normally is 
requil-ed to bc less than or equal to one.That is, 

This restriction is made to ensure that  the predictor's output faUs within the allowed 
range of gray levels and to reduce the impact of transmission noise. which is gen- 
erally seen as horizontal streaks in the reconstructed image. Reducing the DPCM 
decoder's susceptibility to input noise is impol-tant, because a single error (under 
the right circumstances) can prapagate to all future outputs. That is, the decoder's 
output may become unstable. By further restricting Eq. (6.5-15) to be strictly less 
than 1 confines the impact of an input enol- to a small number of outputs. 

Consider the prediction error that results lrom DPCM coding tllc mono- EXAMPLE 8.17: - 
chrome image 05Fig. 8.23 under the assumption of zero quantization error and Comparison of 

with each of four predictors: prediction 
techniques. 

FIGURE 8.23 A 
512 X 512 8-bit 
monochrome 
image. 



0.97f(x, y - 1)  if A h  5 Av j ( ~ ;  .Y) = 
0.971 ( x  - 1, y )  otherwise 

where Ah = ( f ( r  - I ,  y )  - f ( x  - 1, jj - 1 ) ~  and Aw = j - ( - ~ ,  y - 1) - f ( x  - 
1, y - 1)1  denote the horizontal and vertical gradients at point (r. y ) .  E q u a -  
tions (8.5-16) through (8.5-1 8) define a relat ively I-obust set of a,. which provide 
satisfacto~-y performance over a wide range of images. The adaptive predictor 
of Eq. (8.5-19) is designed to improve edge relldition by computing a local mea- 
sure of the directional properties of an image ( A h  and  Av) and selecting a pl-e- 
dictor specifically tailored l o  the measured behavior. 

Figures 8.24(a) through (d) show the predictioi~ erl-01. irnagcs that result Irom 
using the predictors of Eqs. (8.5-16) rhrough (8.5-19). Note that the visu~lly 

a b  
c d 

FIGURE 8.24 A 
compar.ison of 
four 1111ear 
predict ion 
techniques. 
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perceptible error decreases as the order of the predictor increases.+ e he standard 
deviations of the prediction error distributions follow a similar pattern.They are 
4.9,3.7,3.3, and 4.1 gray levels, respectively. @ 

Optimal quantization 

The staircase quantization fu'unction t = q ( s )  shown in Fig. 8.25 is an odd func- 
tion of s [that is, q(-s) = -q(s) ]  that can be completely described by the L/2 
values of xi and t i  shown in the first quadrant of the graph. These break points 
define function discoi~tinuities and are called the deuwion and reconsrrucrion 
levels of the quantizer. As a matter of convention, s is considered to be mapped 
to l i  if it lies in the half-open interval (s,, s j + , ] .  

The quantizer design problem i s  to select the best s; and ti for a particular op- 
timization criterion and input probability density function p ( s ) .  If the opti- 
mization criterion, which could be either a statistical or psychovisual measure,' 
is the minimization of the mean-square quantization error (that is, ~ { ( s  - t i ) ' ) )  

and p(s) is an even function, the conditions for minimal error (Max [1960]) are 

FIGURE 8.25 A 
lypical 
quantization 
functio~i. 

'Predictors that use more than three or lour previous pixels provide lilrle coml~ression gai~i for the added 
predictor complexity (Habibi [1971]). 

)See Netravali [I9771 and Linib and Rubinstein [I9781 for niore on psychovisual measures. 
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TABLE 8.10 
Lloyd-Max 
quantizers for a 
Laplacian 
proba bilily 
density function 
of unit variance. 

Levels 2 4 8 
i $1 21 si t/ Si t i  

1 03 0.707 1.102 0.395 0.504 0.222 
2 m 1.810 1.181 0.785 
3 2.285 1.576 
4 00 2.994 
8 1.414 1.087 0.731 

and 

Equation (8.5-20) inhcates that the reconstruction levels are the centroids of the 
areas under p(s )  over the specified decision intervals, whereas Eq. (8.521) indi- 
cates that the decision levels are halfway between the reconstruction levels. Equa- 
tion (8.5-22) is a consequence of the fact that q is an odd funceion. For any L,  the 
si and ti that satisfy Eqs. (8.5-20) through (8.5-22) are optimal in the mean-square 
error sense; the corresponding quantizer is called an L-level Lloyd-Mox quantizer. 

Table 8.10 lists the 2-, 4-, and 8-level Lloyd-Max decjsion and reconstruction 
levels for a unit variance Laplacian probability density function [see Eq. (8.4-lo)]. 
Because obtaining an explicit or closed-form solution to Eqs. (8.5-20) through 
(8.5-22) for mosE nontrivial p ( s )  is difficult, these values were generated nu- 
merically (Paez and Glisson [1972]).The three quantizers shown provide fixed 
output rates of 1 , 2 ,  and 3 bits/pixel, respectively. As Table 8.10 was constl-ucted 
for a unit variance distribution, the reconstruction and decision levels for the 
case of u # 1 are obtained by multiplying the tabulated values by the standard 
deviation of the probability density function under consideration.The final row 
of the table lists the step size,d, that simultaneously satisfies Eqs. (8.5-20) through 
(8.5-22) and the additional constraint that 

If a symbol encoder that utilizes a variable-length code is used in the general 
lossy predictive encoder of Fig. 8.21(a), an optimum unifornt qunnrizer of step 
size 0 will provide a lower code rate (for a Laplacian pdf) than a fixed-length 
coded Lloyd-Max quantizer with the same output fidelity (O'Neil [1972]). 

Although the Lloyd-Max and optimum uniform quantizers are n o t  adap- 
tive, much can be gained from adjusting the quantization levels based on the 
local behavior of an image. In theory, slowly changing regions can be finely 
quantized, while the rapidIy changing areas are quantized more coarsely. This 
approach simultaneousJy reduces both granular noise and slope overload, while 
requiring only a minimal increase in code rate. The trade-off is increased 
quan tizer complexity. 

'*18: E? Figures 8.26(a), (c), and (e)  show the DPCM reconstructed images that re- Illustration of 
quantization and sulted from combining the 2-, 4-, and 8-level Lloyd-Max quantizers in Table 8.10 
reconstruction. with the planar predictor of Eq. (8.5-18). The quantizers were generated by 
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rnultiplyj~~g the tabulated Lloyd-Max decision and reconstruction levels by the 
standard deviation of the nonquantized planar prediction error from the pre- 
cedin-g example (that is. 3.3 gray levels). Note that the edges of the decoded im- 
ages are blurred from slope overload. This result is particularly noticeable in 
Fig. 8,26(a), which was generated using a two-level quantizer, but is less appar- 
ent in Figs. 8.26(c) and (e ) ,  where four and eight quantjzation levels were ap- 
plied. Figures 8.27(a), (c), and (e) show the scaled differences between these 
decoded images and the original image of Fig. 8.23. 

I n  order to generate t h e  decoded images in Figs. 8,26(b), (d),  and (f), and the 
resulting error images in Figs. 8.27(b), (d), and (f),  we used an adaptive quanti- 
zation method  in which the best (in a mean-square error sense) of four possi- 
h[e quantizers was selected for each block of 16 pixels.The four quantizers were 
scaled versions of the  optimal Lloyd-Max quantizers previously described. The 
scaling factors were 0.5,1.0,1.75, and 2.5. Because a 2-bit code was appended 
to each block in order to spec@ the selected quantizer, the overhead associat- 
ed with the quantizer switching was x6  or 0.125 bits/pixel. Note thesubstantial 
decrease in perceived error that  resulted from this relatively small increase in 
code rate. 

Table 8.11 lists the rms errors of the difference images in Figs. 8.27(a) through 
(f), as well as for a number of other combinations of predictors and quantizers. 
Note t h a t  in  a mean-square error sense, the two-level adaptive quantizers per- 
formed about as well as the four-level nonadaptive versions. Moreover, the four- 
level adaptive quantizers outperformed the eight-level nonadaptive approaches. 
In  general, the numerical results indicate that the predictors of Eqs. (5.5-IS), 
(8.5-17), and (8.5-19) exhibit the same overall characteristics as the predictor of 
Eq. (8.5-18).The compression (hat resulted under each of the quantization meth- 
ods is listed in the last row of Table 8.11. Note that the  substantial decrease in 
rms error [Eq. (8.1-8)] achieved by the adaptive approaches did not significantly 
affect compression performance. E? 

8,5..2 Transform Coding 
The predictive coding techniques discussed in Section 8.5.1 operate directly on 
the pixels of an image and thus are spatial domain methods. In this section, we 
consider compression techniques that are based on modifying the transform of 
an  image. In frnnsform coding, a reversible, linear transform (such as the Fourier 

Lloyd.Max Quantizer Adaptive Quantizer 

Predictor &level Clevel 8-level 2-level Clevel 8-level 

Eq. (8.5-16) 30.88 6.86 4.08 7.49 3.22 1.55 
Eq. (8.5-27) 14.59 6.94 4.09 7.53 2.49 1.12 
Eq. (8.5-18) 9.90 4.30 2.31 4.6 1 1.70 0.76 
Eq. (8.5-19) 38.18 9.25 3.36 11.46 2.56 1.14 

Conlpres.sion 8.00 : I 4 . M  : 1 2.70: 1 7.11 :1 3.77 : 1 2.56: 1 

TABLE 8.1 1 
Lossy DPCM 
roo t-mean-square 
error summary. 



a b  
c d 
e f 
FIGURE 8.26 UPCM result images: (a) 1.0; (h) 1.125: (c) 2.0; (d)  2.1 25; (e) 3.0; ( f )  3.125 
bits/pixel. A 



FIGURE 8.27 rile scaled (X8) DPCM error images t11at correspond to Figs. X.26(a) 
through (r). 
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a m  image pressed F L F L p L  decoder D ~ i o n ~ ~ r e s s e d  
transform subimages image 

FIGURE 8.28 A transform coding system: (a) encoder; (b) decoder. - - .- . - . . - - 

Inpul 
image - 
(N x N) 

transform) is used to map the image into a set of transform coefficients, which 
are then quantized and coded. For most natural images, a significant number of 
the coefficients have small magnitudes and can be coarsely quantized (or dis- 
carded entirely) with little image distortion. A variety of transformations, in- 
cluding the discrete Fourier transform (DFT) of Chapter 4, can be used to 
transform the image data. 

Figure 8.28 shows a typical transform coding system. The decoder imple- 
ments the inverse sequence of steps (with the exception of the quantization 
function) of the encoder, which performs four relatively straightforward oper- 
ations: subimage decomposition, transformation, quantization, and coding. An 
N x N input image f irst is subdivided into subimages of size n x n, which are 
then transformed to generate ( ~ / n ) ~  subimage transform arrays, each of size 
n X n. The goal of the transformation process is to  decorrelate the pixels of 
each subimage, or to  pack as much information as possible into the smallest 
number of transform coefficients. The quantization stage then selectively elim- 
inates or more coarsely quantizes the coefficients that  carry the least infoxma- 
tion. These coefficients have the smallest impact on reconstructed subimage 
quality. The encoding process terminates by coding (normally using a variable- 
length code) the quantized coefficients. Any or all of the transform encoding 
steps can be adapted to local image content, called adaptive ~ransforrn coding, 
or fixed for all subimages, called nonadaptive transform codil~g. 

encoder 

Transform selection 

Corn pressed 
image 

Conslruct 
32 x n 

subimages 

Transform coding systems based o n  a variety of discrete 2-D transforms have 
been constructed and/or studied extensively.The choice of a particular transform 
in a given application depends on the amount of reconstruction error that can 
be tolerated and the computational resources available. Compression is achieved 
during the quantization of the transformed coefficients (not during the trans- 
formation step). 

Consider an image f ( x ,  y )  of size N X N whose forward, discrete transform, 
T (u, u),  can be expressed in terms of the general relation 

+ Forward 
transform Quantizer + 4 
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for u, v = 0,1, 2 , .  . . , N - 1. Given T ( u ,  v), f ( x ,  y )  similarly can be obtained 
using the generalized inverse discrete transform 

for x, y = 0 ,1 ,2 , .  . . , N - 1. In these equations, g(x,  y, u, v) and h(x, y, u,  v) 
are called the forward and inverse transformation kernels, respectively. For rea- 
sons that will become clear later in the section, they also are referred to as basis 
finclions or basis images. The T (u, v) for u, v = 0,1,2,. . . , N - 1 in Eq. (8.5-25) 
are called transform coefyicients; they can be viewed as the expansion 
coefficients-see Section 7.2.1-of a series expansion of f (x, y )  with respect 
to basis functions h(x, y, u, v). 

The forward kernel in Eq. (8.5-24) is said to be separable if 

In addition, the kernel is symmetric if g, is functionally equal to g,. In this case, 
Eq. (8.5-26) can be expressed in the form 

ldentical comments apply to the inverse kernel if g ( x ,  y, u ,  v) is replaced by 
h ( x ,  y, u, v) in Eqs. (8.5-26) and (8.5-27). It is not difficult to show that a 2-D 
transform with a scparable kernel can be computed using row-column or col- 
umn-row passes of the corresponding 1-D transform, in the manner explained 
jn Section 4.6.1. 

The forward and inverse transformation kernels in Eqs. (8.5-24) and. (8.5-25) 
determine the type of transform that is computed and the overall computa- 
tional complexity and reconstruction error of the transform coding system in 
which they are employed. The most well-known transform kernel pair is 

and 

where j = fl. Substituting these kernels into Eqs. (8.5-24) and (8.5-25) yields 
a simplified version (in which IW = N) of the discrete Fourier transform pair in- 
troduced in Section 4.2.2. 

A computationally simpler transformation that is also useful in transform 
coding, called the Walsh-Hadamard transform (WHT), is derived from the func- 
tionally identical kernels 

where N = 2".The summation in the exponent of this expression is performed 
in modulo 2 arithmetic and b k ( z )  is the kth bit (from right to left) in the binary 
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represcntation of t .If  nl = 3 and z = 6 (3  10 in binary) , lut  example,h(,(z) = 0, 
b , ( z )  = 1, and b,(z)  = 1.The p , (u)  in Eq. (8.5-30) are computed using: 

where  the sums, as n o t e d  previously, are performed in  modulo 2 a]-ithnlelic. 
Sitnilai- expressiorls apply to  pi (v ) .  

Unlike the kernels of the DFT, which are sums of sjnes and cosines [see 
Eels. (8.5-28) and (8.5-29)], the \Valsh-Kndarnard kernels consist of alternaling 
plus and minus 1's arranged in a cbeckerboa~d pattern. Figure 8.29 shows the ker- 
nel COI. N = 4. Eac.h block consists of 4 X 4 = 16 elements (subsquares). Wl~ile 
denotes +l and black denotes  -I.To obtain the top,left block,we let r l  = u = 0 
and plot values of g(x,  y ,  0, 0) for x, y = 0 , l .  2,3. All values in this  case are i-1. 
The second block on [he top row is a p l o ~  of values of g(x, y ,  0, 1 ) for n. y = 0, 
1 ,2.3,  a n d  so on. As already noted, the impor.tance of the Walsh-Hadamard 
transform is its simplicity of implementation-all kernel values are + L  or -3 .  

One of the most frequeiitly used eransformations for image compression is 
the  discrere cosirre trnrzsform (DCT). I t  is obtained by substituting the follow- 
ing (equal) kernels into Eqs. (8.5-24) and (8.5-25) 

FIGURE 8.29 Walsh-Hxdamard basis functions for N = 4.The origin of each blnck is a1 
its lap left. 
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FIGURE 8.30 Discrete-cosine basis iunctions for N = 4.The origin of each block is at its 
top left. 

. .  . - . .  . .. . 

where 

and similarly for a(7i). Figure 8.30 shows g(x, y ,  u ,  z) for. the case N = 4. The 
computation follows the same format as explained for Fig. 8.29, with the  dif- 
ference tha t  the values of g are not integers. In Fig. 8.30, the lighter gray levels 
correspond to larger values of g. 

. Figures 8.31 (a), ( c ) ,  and ( e )  show three approximations of the 51 2 X 512 EXAMPLE 8.19: 
r~ionochrome image in Fig. 5.23. These pictures were obtained by dividing the T'bnsform codillg 

original image into subimages of size 8 X 8, representing each subimage using with the DFT, 
W HT. and DCT. 

one of the transforms just described (i.e., the DFT. WHT, or DCT transform), 
truncating 50% of the resulting coefficients, and taking the inverse transform of 
fhe truncated coefficient arrays. 

In each case, the 32 retamed coefficients were selected on the basis of max- 
imum magnitude. When we disregard any quantization or coding issues, this 
process amounts  to compressing the original image by a factor of 2. Note that 
in all cases, the 32 discarded coefficients had little visual impact on recon- 
sfructcd image quality.Their elimination, however,  was accompanied by some 
mean-square error, which can  be seen jn the  scaled error images of 
Figs. 8.31(b), (d ) ,  and (f).The actual rms errors were 1.28,0.86, and 0.68 gray 
levels, respectively. a 



a b  
c d 
e f 
FIGURE 8-31 Approxjmariol~s of Fig. 8.23 using t h e  (a )  Fourier. (c) Hadamard.  and (e) co- 
sine transrorrns. together with l l ie corresponding scaled en-or images. 
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The small differences in mean-square reconstruction error noted in the. 
preceding example are related directly to the energy or information packing 
properties of the transforms employed. In accordance with Eq. (8.5-25), an 
n x n image f(x, y )  can be expressed as a function of its 2-D transCo1.1-n 
T ( u ,  v):  

n-I 1 i - I  

f (x. y )  = x x T ( u ,  v)h(x, Y ,  2 4  v) (8.5-34) 
u = o  t .=O 

for x ,  y = 0, I,. . . , n - 1. Note that we merely replaced N in Eq. (8.5-25) with 
n, and now consider f (x, y) to represent a subimage of the image being com- 
pressed. Since the inverse kernel h ( x ,  y, u, v) in Eq. (8.5-34) depends only on 
the indices x ,  y, u ,  v, and not on the values off (x, y) or T ( u ,  v) ,  i t  can be viewed 
as defining a set of basis functions or basis images for the series defined by 
Eq. (8.5-34). This interpretation becomes clearer if the notation used in 
Eq. (8.5-34) is modified to obtain 

where F is an n x n matrix containing the pixels of f ( x ,  y )  and 

Then F, the matrix containing the pixeIs of the input subimage, is explicitly de- 
fined as a linear combination of n2 matrices of size n x n; that is, the H,,,; for u, 
v = 0, 1,. . . , n - 1 in Eq. (8.5-36). These matrices in fact are the basis images 
(or functions) of the series expansion in Eq. (8.5-35); the associated T ( u ,  n) are 
the expansion coefficients. Figures 8.29 and 8.30 illustrate graphically the WHT 
and DCT basis images for the case of n = 4. 

If we now define a transform coefficient masking f~dnction 

0 if T ( u ,  v)  satisfies a specified truncation criterion 
y (u ,  v) = 

1 otherwise 

for LL,  v = 0,1, .  . . , n - 1, an approximation of F can be obtained from the trun- 
cated expansion 

n- l  n-1 

@ = C y(u ,  v ) T ( u ,  W'," 
11 = O  f)=O 
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where y(u, v) is constructed to eliminate the basis images that make the smallest 
contribution to the total sum in Eq. (8.5-35). The mean-square error between 
rubimage F and approximation k then is 

where 11 F - k~ is the norm of matrix (F - F), and o$ , , ,~  is the var-iance ol  the 
coefficient at: trailsform location (u, v).The final simplification is based on the 
orthonormal nature of the basis images and the assu~nption that the pixels of F 
are generated by a random process with zero mean and known covariance.Tlle 
total mean-square approximation error thus is the sum of the variances of the 
discarded transform coefficients; that is, the coefficients for which y ( u ,  v)  = 0: 
so that [I - y (u, v)] in Eq. (8.5-39) is 1. Transformations that redistribute or 
pack the most information into the fewest coefficients provide the best subim- 
age approximations and, consequently, the smallest reconstruction errors. Fi- 
nally, under the assumptions that led to Eq. (8.5-39), the mean-square error of 
the ( ~ / n ) ~  subimages of an N X N image are identica1.Thus the mean-square 
error (being a measure of average error) of the N X N image equals the mean- 
square error of a single subimage. 

The earlier example showed that the information packing ability of the DCT 
is superior to that of the DFT and WHT. Although this condition usually holds 
for most natural images, the Karhunen-Lokve transform (the KLT is discussed 
in Chapter Il), not the DCT, is the optimal transform in an information pack- 
ing sense.That is, the KLT minimizes t he  mean-square error in Eq. (8.5-39) fox 
any input image and any number of retained coefficients (Kramer and Math- 
ews [1956]).' However, because the KLT is data dependent, obtaining the KLT 
basis images for each subimage, in general, is a nontrivial computational task. 
For this reason, the KLT is seldom used in practice for image compression. In- 
stead, a transform, such as the  DFT, WHT, or DCT, whose basis images are fixed 
(input independent), normally is used. Of the possible input indepeiident trans- 
forms, the ~lonsinusoidal transforms (such as the WHT transform) are the sim- 
p les~  to jmplernent.The sillusoidal transforms (such as the DFT or DCT) more 
closely approximate the information packing ability of the optimal KLT. 

Hence many transform coding systems are based on the DCT, which provides 
a good compromise between information packing ability and computatjonal com- 
plexity. In fact, the properties of the DCT have proved to be of such practical 
value that the Dm has become an international standard for tl-ansform coding 

An additional cor~dilioa lor optirnaliry is that the masking function of Eq. (8.5-37) sclects the KLT co- 
efficients of maximum variance. 
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FIGURE 8.32 The periodicily implicit in rhc 1 -D (a) DFT and (b) DCT. 

systems (see Section 8.6). Compared to the other input independent transforms, 
i t  has the advantages of having been implemented in a single integrated circuit. 
packing the most information into the fewest coefficients' (for most natural im- 
ages), and minirni~ing the blocklike appearance, called bhcking nrtifncr, that re- 
sults when the boundaries between subimages become visible.This last properly 
is pal.ticularly important in comparisons with the other sinusoidal transforms. As 
Fig. 8.32(a) shows, the implicit 12-point periodicity (see Section 4.6) of the DFT 
gives rise t-o bour~clary discontinuities that result i n  substantial high-frequency 
transform content. When the DFT transform coefficients are truncated or quan- 
tized. the Gibbs pl~enomenon' causes the boundary points to take on erroneous 
values, which appear in an image as blocking artifact.That is,  the boundaries be- 
tween adjacent subimages become visible because the boundary pixels of the 
subimages assume the mean values of discontinuities formed at the boundary 
points [see Fig. 8.32(a)].The DCT of Fig. 8.32(b) reduces this effect, becauseits im- 
plicit 2n-point periodicity does not inherenily produce boundary discontinuities. 

Subimage size selection 

Another significant factor affecting transform coding error and compulational 
complexity is subimage size. In most applications, images are subdivided so that 
lhe correl.ation (redundancy) between adjacent subimages is reduced to some 

Alilned ct i l l .  [lC)71J first noticed that the  KLT basis images of a first-order Markov imagt: source closc- 
Iy rcsemblr rhc DCT's hi~sis i m a p . . ~ \ s  [he correlation helween xdjacen~ pixels approaches one, the ~npui  
cle~'cndcnl KLl- basis images become identical to the input independent DCT basis irnage,s (Clarke ( I  93.51). 

'This phrnonienon. described it1 r ~ ~ o s l  electrical engineering texts on circuit analysis. occurs because lhr 
Fourier transform tails lo converge uniformly at discontinuities. At disco~ltinuities. Fourier expansions 
takc !Ire me;rn valucs. 
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acceptable level and so that n is an integer power of 2 where, as before, n is the 
subimage dimension.The latter condition simplifies rbe computation of the subim- 
age transforms (see the base-2 successive doubling methods in Section 4.6.6). In gen- 
eral. both the level of compression and computational complexity increase as the 
subimage size increasesThe most popular subimage sizes are 8 X 8 and 16 x 16. 

EXAMPLE 8.20: Figure 8.33 illustrates graphically the impact of subimage size on transform 
Effects of coding reconstruction error. Tbe data plotted were obtained by dividing the 
subimage size On monochrome image of Fig. 5.23 into subimages of size n x n, for ,I = 2,4,8,16, 
transform coding. 

and 32. computing the transform of each subimage, t runcat ing 75% of the re- 
suJting coefficients, and taking the inverse transform of the truncated arrays. 
Note that the Hadamard and cosine curves flatten as the size of the  subimage 
becomes greater than 8 X 8, whereas the Fourier xeconstl-uction error decreases 
e-ven more rapidly in this region. Extrapolation of these curves to larger values 
of n suggests that the Fourier reconstruction error will cross the Walsh- 
Hadamard curve and converge to the cosine result. In fact, ths result is consis- 
fcnt with the theoretical and experimental findings reported by Netravali and 
Limb [I9801 and by Pratt [I9911 for a 2-D Markov lmage source. 

All three curves intersect when 2 X 2 subimages are used. Tn this case, only 
one of the four coefficients (25%) of each transformed array was retained.The 
coefficient in all cases was the dc component, so the inverse transform simply 
replaced the four subimage pixels by their average value [see Eq. (4.2-22)].This 
condition is evident in Fig. 8.34(d), which shows a zoomed portion of t h e  2 X 2 
DCT result. Note that the blocking artifact that is prevalent in this result de- 
creases as the subimage size increases to 4 X 4 and 8 X 8 in Figs. 8.34(e) and 
(0. Figure 8.34(c) shows a zoomed portion of the original image for reference. 
In addition. Figs. 8.34(a) and (b) facilitate cornparison of these results to those 
of the preceding example. - 

e2 

FIGURE 8.33 
Reconstruction 
error versus 
subimage size. 

Fourier 
Walsh-Hadamard 

Cosine 

Subimage size 



a b  
c d 
e f 

FIGURE 8.34 Approximations of Fig. 8.23 using 25% of the DCT coefficients: (a)  a n d  
(b) S x 8 subimage resulw; (c) zoorned original; (d) 2 x 2 result; (e) 4 x 4 result; and 
(f) 8 X S resulr. 
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Bit allocation 
The reconstruction error associated with the truncated series expansion of 
Eq. (8.5-38) is a function of the number and relative importance of the trans- 
form coefficients that are discarded, as well as the precision that is used to rep- 
resent the retained coefficients. In most transform coding systems, the retained 
coefficients axe selected [that is, the masking function of Eq. (8.5-37) is con- 
structed] on t h e  basis of rnaximurn variance,called zonal codirlg, or on the basis 
of maximum magnitude, called rhrwhold coding. The overall process of t run-  
cating, quantizing, and coding the coefficients of a transformed subjmage is 
commonly called hit allocation. 

EXAMPLE 8.21: F! Figures 8.35(a) and (b) show two approximations of Fig. 8.23 in which 87.5010 
Bit allocation. of the DCT coefficients of each 8 x 8 subimage were discarded. The f i ~ s t  re- 

sult was obtained via threshold coding by keeping the eight largest transfoi-m 
coefficients, and the second image was generated by using a zonal coding ap- 
proach. In the Iatter case, each DCT coefficient was considered a random vari- 
able whose distributioi~ could be computed over the ensemble of all 
transformed subimages.The 8 distributions of largest variance (12.5'?i;r of the 64 
coefficients in the transformed 8 x 8 subimage) were located and used to de- 
termine the coordinates, u and u ,  of the coefficients, T ( u ,  u ) ,  that were relained 
for all subimages. Note that the threshold coding difference image of Fig. 8.35(c) 
contains far less error than the zonal coding result in Fig. 8.35(d). Figures 8.35(e) 
and (f)  provide a closer view of a small portion of the reconstructed images in 
(a) and (c). n~ 

Zonal coding inzplementatiun Zonal coding is based on the information tbe- 
ory concept of viewing information as uncertainty.Therefore the transform co- 
efficients of maximum variance carry the most image information and should 
be retained in the  coding process. T h e  variances theinselves can be calculated 
directly from the ensemble of ( N / n ) 2  transformed subimage arrays, as in [he 
preceding example, o r  based on an assumed image model (say, a Markov auto- 
correlation function). In either case, the zonal sampling process can be viewed, 
in accordance with Eq. (8.5-38), as multiplying each T ( u ,  v) by the corresponding , 
element in a zorznl mask, which is constructed by placing a 1 in the locations oL 
maximum variance and a C) in all other locations. Coefficients of maximum vari- 
ance usually are located around the origin of an image trarisfo~m, resulting in 
the typical zonal mask shown in Fig. 8.36(a). 

T l ~ e  coefficients retained during the zonal sampling process must be quan- 
tized and coded,so zonal masks are sometimes depicted showing the number of 
bits used to code each coefficient [Fig. 8.36(6)]. In most cases, t h e  coeI3icients are 
allocated the same number of bits, or some fixed number of bits is distributed 
among them unequally. In the first case, the coefficients generaIly are normalized 
by their standard deviations and uniformly quantized. In the second case, a quan- 
t ize~, such as an optimal Lloyd-Max quantizer, is designed for each coefficient. 
To construct the required quantizers, the zeroth or dc coefficienr normally is 



I.. 

FIGURE 8.35 Approximations of Fig. 8.23 using 12.5% of rhe S X 8 DCT coefficients: 
(a), (c), a n d  (c) threshold codirig results; (b). (d), and ( f )  zonal coding results. 
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a b  
c d 

FIGURE 8.36 A 
typical (a) zonal 
mask. (h) zonal 
bit allocation. 
(c) threshold 
mask. and 
( d )  Ihrzsholded 
coel'ficien I 
ordering 
sequence. Shading 
highlights the 
cocEficie.nts that 
are retained. 

modeled by a Rayleigh density function, whereas t h e  remaining coeflicienls are 
modeled by a Laplacian or Gaussian density.+ The  number of quantization lev- 
els (and thus the number ol bits) allotted to each quantizer is made proportion- 
al to log2 rrf(,,, , ,  . This allocation is consisten1 wirh rate distol8tion theory. which 
indicn tes that a Gaussja~i random variable of variance tr2 cannot be represent- 
ed by less t h a n  ; l o g l ( o 2 / ~ )  bits and be reproduced with rnean-square error less 
t h a n  D (see Problem 8.1 1). The intuitive conclusion is t h a t  the information con- 
tent of a Gaussian random variable is proportional to l o g 2 ( a 2 / ~ ) .  Thus the re- 
tained coefficients in Eq. (8.5-38)-which (in the coritext of the current 
discussion) are  selected on the basis of maximum variance-should be assigned 

\ 
bits in proporhon to the logarithm of the coefficient variances. '\ 

Threshold coding implementation Zonal coding usually is implemented by 
using a single fixed mask for all subimages.Th~-eshold coding, Ilowever, is inher- 
ently adaptive in the sense that the location of the tr-ansforrn coellicier~ts re- 
tained for each subimage vary from one subimage to another .  I n  fact, threshold 
coding is the adaptive transform coding approach most often used in practice 
because of its computational simplicity. The underlying concept js  that. for any  
subimage, the transform coefficients of largest magni tude make  the most 
significant contribution to I-econstructed subimage quality,as demonstrated 111 rhe 

'As  cach coefficient i s  3 lineal combination of the pixels in its subiniage (see Eq. (5.5-24)),rhe centml l1rn11 
theorem suggests tI\aI,as subimage size increases, thc coefficients tend lo become Gaussian.lhis resul~ do& 
not apply to the clc coefficient, howcver, bccausc nolrnegabve Iniagcs a l w ~ v s  ]lave posi l~ve  dc cosfficientx 



8.5 3 Lossy Compression 483 

last example. Because the locations of the maximum coefficients vary from one 
subirnage to another, the elements of y(u ,  v ) T ( u ,  v) normally are reordered (in 
a predefined manner) to form a 1 -D, run-lenglh coded sequence. Figure 8.36(c) 
shows a typical tl.~resholl mask for one subimage of a hypothetical image. This 
mask provides a convenient way to visualize the threshold coding process for 
the corresponding subimage, as well as to mathematically describe the process 
using Eq. (8.5-38). When the mask is applied [via Eq. (8.5-38)] to the subimage 
for which it was derived, and the resulting n x n ari-ay is reordered to form an 
,z2-element coefficient sequence in accordance with the zigzag ordering pattern 
of Fig. 1(.34(d), the reordered 1-D sequence contains several long runs of 0's [the 
zigzag pattern becomes evident by starting at 0 in Fig. 8.36(d) and following the 
numbers in sequence]. These runs norlnally are run-length coded.'The nonzero 
or retained coefficients, corresponding to the mask locations that contain a 1, 
are represented using one of the variable-length codes of Section 5.4. 

There are three basic ways to threshold a transformed subimage or, stated dif- 
ferently, to create a subimage threshold masking function of the form given in 
Eq. (8.5-37): (1) A single global threshold can be applied to all subimages; (2) a 
different threshold can be used for each subirnage; or (3) the threshold can be 
varied as a function of the location of each coefficient within the subimage. In 
the first approach, the leveI of compression differs from image to image, de- 
pending on the number of coefficients that  exceed the global threshold. In  the 
second. called N-l~rrgest coding. the same number oE coefficients is  discarded 
for each subimage. As a result, the code rate is constant and known in advance. 
The third technique, like the first, results in a variable code rate, but offers the 
advantage that  thresholding nnd quantization can be combined by replacing 
y(cr, v)T(u, .v) in Eq. (8.5-38) with 

f(u, V )  = round [:I::::: ] 
where ?(,A,  1 ) )  is a thresholded and quantized approximation of T(u .  v) ,  and 
Z(u,  v) is an element of the transform normalization array 

1 
Before a normalized (tliresholded and quantized) subirnage transform, f (u. v), 
can be inverse translormed to obtain an approximation of subimage f ( x ,  y) ,  it 
must be nlultiplied by Z(LL,  v),The resulting de~lormalized array, denoted 
T ( u ,  w), is an approximation of  T ( 1 4 ,  v): 

T ( L L :  u )  = ?(u ,  V)Z(LL> 7 1 ) .  (S .5-42) 

The inverse transform of T ( L ~ , V )  yields the decompressed subimage 
approximation. 
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FIGURE 8.37 
(a) A threshold 
coding 
quantization 
curve [see 
Eq. (8.5-40)]. 
(b) A typical 
normalization 
matrix. 

Figure 8.37(a) depicts Eq. (8.5-40) graphically for ~ h e  case in which Z(11, u) 
is assigned a particular value c. Note that T ( u ,  v j  assumes integer value k iC 
and only if 

I f  Z( i i ,  o) > 2T(rl, 0 ) .  then f ( i r ,  v) = 0 and the ti-ansform coefficient is coq-i- 
plelely truncated or discarded. When f ( r i .  v )  is represented with a variablk- 
lerlpth code that increases in length as the magnitude of k incrcases, the n u r n k r  
of' bits used to represent T ( u ,  v) is controlled by the value of c.Tl~us the e~rmehts 
of Z can be scaled to achieve a variety of compression levels. Figure 8.37(b) 
shows a typical normalization array.This array, which has been used extensive- 
ly in  the JPEGQ standardization efforts (see Section 8.6.2), weighs each coefh- 
cicnt of a transformed subimage according to heurist ically determined 
perceptual or psychovisual importance. 

EXAMPLE 8.22: 
IIlus[ration of 
th~~eshold  coding. 

i Figures S.38(a) a n d  (b) show two threshold-coded approximations of the 
monochrome image in Fig. 8.23. Both images were generated using an  8 X 8 
DCT and t h c  norlnaiization array of Fig. 8.3713). The first result. which pro- 
vide.~ a compression ratio of about 34 to 1, was obtained by direct application 
of that norma1iz;tlion array.The second, which compresses the original image by 
a ratio ol' 67 to 1, was generated after multiplying (scaling) the normalization 
array by 4. By cotnparison, the average cornp~.essjon ratio obtained by using all 
the error-free methods discussed in Section 8.4 was  only 2.62 to 1 .  

The differences between the origji~al itnage of Fig. 8.23 and the ~.econs truct- 
ed images of Figs. 8.38(a) and (b) are shown in Figs. 8.38(c) and (d),  respec- 
tively. The corresponding rms errors [see Eq. (8.1-8)] are 3.42 and 6.33 gray 
levels.The precise na tu re  of the errors is more visible in  the zoo~ned images of  
Figures 8.38(e) and  (F).These iinagcs show a magnified section of Figs. 8.38(a) 
and (b), respcc tively. They allow a better assessment of Lhe subtle differenczs 
between the reconstructed images. 

'JPEG 1s a n  abbreviation (or i l ~ c  Join1 Photogrepliic Expens G~,oup. 



FIGURE 8.38 Left column: Approximations of Fig. 8.23 using the DCT and no~.malizarion 
array of Fig. 8.37(b). Kight column: Similar rzsults for 42. 
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wavelet coding 
system; 
(a)  encoder; Compressed 
(b) decoder. image 

a I 

b Input Wavelet 
image transfor rn 

decoder wavelet transform 
Decom p~.esscd 

image 

FIGURE 8.39 A 

Quantizcr 

F. 5.3 Wavelet Coding 
Like the t.1-ansform coding techniques of the previous sec,tion, wavelet coding is 
based on [he idea that the coefficients of a transform that decorrelates the pixels 
of an image can be coded more efficiently than the original pixels themselves If 
the transform's basis functions-i~r this case wavelets-pack most of the impor- 
tant visual informatio~i into a sinall number of coefficients. the remaining coeffi- 
cients can be quantized coarsely or rruncated to zero with little image distorrion. 

Figure 8.39 shows a typical wavelet coding system.To encode a 2' X 2' image, 
an analyzing waveler, t,b, and minimum decomposition level, ./ - P, are  sclect- 
ed  and used to compute the image's discrete wavelet tl.ansform. I f  the wavelet 
has a compIimentary scaling function cp, the fast wavelet transform (see Sec- 
tions 7.4 and 7.5) can be used. In either case, the computed transform converts 
a large portiori of the original image to horizontal, vertical, and diagonal de- 
composition coelficients with zero mean and Laplacian-like distributions. Re- 
call t h e  image of Fig. 7.1 and the dramatically simpler statistics of its wavelet 
transform in Fig. 7.8(a). Siuce many of the colnpured coefficients carry little vi- 
sual information, they can be quantized and  coded to minimize intercoefficienl 
and coding redundancy. Moreover, the quantization can be adapted to exploit 
any positional correlation across t h e  P decornpositian levels. One 01- more of the 
lossless coding methods of S e c t i o ~ ~  8.4, including run-lenglh. Huffman, ariih- 
metic, and  bit-plane coding, can be jncorporated into (he final symbol coding 
step. Decoding is accomplished by inverting the encoding operations-wi th 1 he 
exception of quantization, which cannot be reversed exactly. 

The principal difference between the wavelet-based system of Flg. 8.39 arid 
the transform coding system of Fig. 8.28 is the omjssion of the transform coder's 
subimage processing stages. Because wavelet transforn~s are both con~pula-  
tionally efficient and inherently local (i.e., their basis (unctions are limiled in  
duration), subdivision of the original image is unnecessary. As will be seen in 
the fo l l owi~~g  example, the rernovaj of the subdivision step eliminates the 
blocking artifact that  characterizes DCT-based approximarions at high 
coinpression ratios. 

Synibol 
encoder 

EXAMPLE 8.23: F Figure 8.40 shows two wavelet-based approximations of the  non no chrome 
Comparing image in Figure 8.23. Figure 8.40(a) was reconstructed from an encoding tha l  

and compressed the original image by 34 : 1; Fig. R.40(b) was generated from a 
based coding. 67: 1 encoding. Since these ratios are identical to the compression levels of 

_ F Cornp~csscd 
iinage 
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Example 8.22, Figs. 8.40(a) through (f) can be compared-both qualitatively 
and quantitatively-to the transform-based results in Figs. 8.38(a) through (f). 

A visual comparison of Figs. 8.40(c) and (d) with 8.38(c) and (d), respec- 
tively, reveals a noticeable decrease of error in the wavelet coding results. In 
fact, the rrns error of the wavelet-based image in Fig. 8.40(a) is 2.29 gray levels, 
as opposed to 3.42 gray levels for the corresponding transform-based result in 
Fig. 8.38(a). In a similar manner, the rms errors of the approximations in 
Figs. 8.38(b) arid 8.40(b) are 6.33 and 2.96, respectively. The computed errors 
favor the wavelet-based results at both compression levels. 

Besides decreasing the reconstruction error for a given level of compression, 
wavelet coding-see Figs. 8.40(e) and (f)-dramatically increases (in a subjec- 
tive sense) image quality. This is particularly evident in Fig. 8.40(f). Note that the 
blocking artifact that dominated the corresponding transform-based result in 
Fig. 8.38(f) is no  longer present. * : 

When  he level of compression exceeds 67:1, the largest ratio examined in 
the previous two examples, there is an increased loss of texture in the woman's 
clothing and blurring of her eyes. Both effects are visible in Figs. 8.41 (a) and 
(b), which were reconstructed from 108: 1 and 167 : 1 wavelet-based encodings 
of the original image in Fig. 8.23. The increased blurring is particularly evident 
in Figs. 8.41(e) and (f).The rrns errors for Figs. 8.41(a) and (b) are 3.72 and 4.73 
gray levels, respectively. A subjective evaluation of either image reveals its ob- 
vious superiority to the 67: 1 transform-based result in Fig. 8.38(b). Its rms error 
was 6.33 gray levels.Thus, at more than twice the level of coinpression, the rnosf 
highly compressed wavelet-based reconstruction has only 75% of the error of the 
less compressed transform-based result-and superior perceived quality as well. 

To conclude our discussion of wavelet-based compression, we end with a 
brief overview of the major factors influencing coding complexity, performance, 
and reconstruction error. 

Wavelet selection 

The wavelets chosen as the basis of the forward and inverse transforms in 
Fig. 8.39 affect all aspects of wavelet coding system design and performance. 
They impact directly the computational complexity of the transfo~ms and, less 
directly, the system's ability to compress and reconstruct images of acceptable 
error. When the transforming wavelet has a co~npanion scaling function, the 
transformation can be implemented as a sequence of digital filtering opera- 
tions, with the number of filter taps equal to the number of nonzero wavelet 
and scaling vector coefficients. The ability of the wavelet to pack information 
into a small number of transform coefficients determines its colnpression and 
reconstruction performance. 

The most widely used expansion functions for wavelet-based conlpression are 
the Daubechies wavelets and biorthogonal wavelets. The latter allow useful 
analysis properties, like number of zero moments (see Section 7 . 9 ,  to be in- 
corporated into the decomposition filters, while important synthesis properties, 
like smoothness of reconstruction, are built into the reconstruction filters. 



FIGURE 8.40 (a), (c), and (e) Wavelel codb~g results comparable to the rransform-biwd 
results in Figs 8.38(a). (c), and (e); (b),(d). and (f) siinilar resulk lor Figs SS.3S(b). (d), and (f). 



FIGURE 8.41 (a). ( c ) ,  and (e) Wavelet coding results wich a co~npression ratio o l  LO8 to 
I :  (b). (d). and (0  similar rcsulls Tor a compression of 167 lo I. 
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EXAMPLE 8.24: 
Wave-lei bases in 
wavelet coding. 

Figure 8 .42  conlairls four  discrete wavelet transforms of the woman in 
Fig. 8.23. Haar wavelets the simplest and only discont~nuous wavelets consid- 
ered here, were used as the expansion o r  basis functions in  Fig. 8.42(a). 
Daubechies wavelets, among the most popular imaging wavelets, were used in 
Fig. 8.42(b), and symlets, which arc an extension of the Daubechies wavelets 
with increased symmetry, were used in Fig. 8.42(c). The Cohen-Daubechies- 
Feauveau wavelets thatwere employed in Fig. 8,42(d) are included to illustrate 
the capabilities of biorthogonal wavelets. As in previous results of this type, all  
detail coefficients have been scaled to make the underlying structure more 
visible-with gray-level 128 corresponding to coefficient value 0. 

As can be seen inTable 8.12, the number of operations involved in the co~n-  
putation of the transforms in Fig. 8.42 increases from 4 to 28 multiplications 

FIGURE 8.42 Wavelet translol-~ns oC Fig. 8.23 wit11 respect to (a)  Hnar  wavcleis. 
(b) Daubechies w;lvelrrs, (c) symlzts, aild (d) Cohen-Daubechies-Fcauveau biorrhogonal 
wavelers. 
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Haar (see Ex. 7.10) 
Daubechies (see Fig. 7.6) 
Symlet (see Fig. 7.24) 
Biorthogonal (see Fig. 7.37) 

Filter Taps 
Wavelet (Scaling + Wavelet) Zeroed Coefticients , 

zeroed coefficients 
when buncating 
the transforms in 
Fig. 8.42 below 1.5. 

TABLE 8.1 2 
Wavelet transform 
filter taps and 

and additions per coefficient (for each deconlposition level) as you move from 
Fig. 8.42(a) to (d).All four transforms were computed using a fast wavelet trans- 
form (i.e., filter bank) formulation. Note that as the computational complexity 
(i.e., the number of filter taps) increases, the information packing ability does 
as well. When Haar wavelets are employed and the detail coefficients below 
1.5 are truncated to zero, 46% of the total transform is zeroed. With the more 
complex biorthogonal wavelets, the number of zeroed coefficients rises to 55%, 
increasjng the potential compression by almost 10%. I 

Decomposition level selection 

Another factor affecting wavelet coding computational complexity and recon- 
struction error is the number of transform decomposition levels. Since a P-scale 
fast wavelet transform involves P filter bank iterations, the number of opera- 
tions in the computation of the forward and inverse transforms increases with 
the number of decomposition levels. Moreover, quantizing the increasingly 
lower-scale coefficients that result with more decomposition levels impacts in- 
creasingly larger areas of the reconstructed image. In many applications, like 
searching image databases or transmitting images for progressive reconstruction, 
the resolution of the stored or transmitted images and the scale of the lowest 
useful approximations normally determine the number of transform levels. 

!J! Table 8.13 illustrates the effect of decomposition level selection on the coding EXAMPLE 8.25: 
of Fig. 8.23 with a fixed global threshold of 25.As in previous wavelet coding ex- Decomposition 

arnples, only detail coefficients are truncated.The table lists both the percent- levels in wavelet 
coding. 

age of zeroed coefficients and the resulting rms reconstruction errors. Note that 
the initial decompositions are responsible for the majority of the data com- 
pression. There is little change in the number of truncated coefficients above 
three decomposition levels. a 

Scales 
Bank 

and Filter Approximation 
Iterations Coefficient Lmage 

Tkuncated Reconstruction 
Coefficients (%) (rms) 

75% 1.93 
93% 2.69 
97 0i'o 3.12 
98% 3.25 
98% 3.27 

TABLE 8.1 3 
Decomposition 
level impact on 
wavelet coding 
the 512 X 512 
image of Fig. 8.23. 
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FIGURE 8.43 'Lhe t 
impact of dcad 
zone interval 
selection on 
wavelet coding. 

1.5 3 4.5 h 7.5 9 12 15 18 

Dead zone threshold 

Quantizer design 

The largest laclor effecting wavelet coding comlnression and reconstruction 
error is coefficicnt quantization. Allhough Ihc most widcly used quantizcrs are 
uniform, the effectiveness ol the quantization can bc improvcd significantly by 
( I )  introducing an enlargecl quantization interval around zero, called a iiecrti 
zone, or (2) adapting the size of the quantization interval from scale to scale, In 
either case. thc selected quantizaljon intel+vals must be transmitted to the de- 
coder with the encoded imagc bit strcain.Tl~c intervals themselves may be de- 
tcrrnined heuristically or computed automatically based on the image being 
compressed. For example. a global coeffjcierlt threshold could he computed as 
the median of the absolute valucs of the first-level cletaiI coefficients or as a 
function of the number of zeroes that are truncated and the amount of energy 
that is retaincd in the reconstl-ucted image. 

EXAMPLE 8.26: * Figure 8.43 illustrates the impact ol dead zone interval size on the percent- 
Dead 7onc age of truncated detail coefficients for a three-scale biorthogonal wavelet-based 

selcc'ion encoding of lhc woman in Fig. 8.23. As thc 5ize of t l~c  dcad zone increases, thc 
in wavelet coding. 

number of truncated coefficients does as well. Above the knee of the curve (i.e., 
beyond 4.5), there is little gain. This is due to the fact that the histograin of the 
detaiI coefficients is highly peaked around zero (see, for example, Fig. 7.8). 

The rnls reco~lstruction errors corrcsponding tc) the dcad zonc thresholds in 
Fig. 5.43 grow from 0 to 1.77 gray levels at a threshold of 4.5 and to 2.79 gray 
levels for a threshold of 18, where the number of zeroes reaches 96.43%. Tf eve~y 
detail coefficicnt werc clirninatcd, that pcrccntage would increase by about 
I S % ,  but the reconstruction crror would grow to 7.6 gray levels. m. 

--- --- 

Image Compression Standards 

Many of  the Iossy and error-free compression methods described so far play 
important roles in popular image compression standards. In this section we ex- 
amine a few of these standards and use them to demonstrate the methods 
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presented earlier. Most of the standards discussed are sanctioned by the Inter- 
national Standardization Organization (ISO) and the Consultative Committee 
of the International Telephone and Tclcgraph (CCITT). Tliey address both bi- 
nary and conti~~uous-tone (monochrome ancl color) image compression, as well 
as both still-frame and video (i.e., sequential-lrame) applications. 

. - 
". . Binary Image Compression Standards 
Two of the most widely used image compression standards are the CCITT 
Group 3 and 4 standards for binary image compression. Although they are cur- 
rently utilized in a wide variety of computer applications, they were originalIy 
designed as facsimile (FAX) coding methods for transmitting documents over 
telephone networks. The Group 3 standard applies a nonadaptive, 1-D run- 
length coding tcch~liquc in which the last K - 1 lines of cach group of K lines 
(For K = 2 or 4) are optionally codcd in a 2-D manner. The Group 4 standard 
is a simplified or streamlined version of the Group 3 standard in which only 
2-D coding is allowed. Both standards use the same nonadaptive 2-D coding 
approach. This approach is quite similar to the relative address coding (RAC) 
technique described in Section 8.4.2. 

During the devcloprnen t of the CCTTT standards, eight representative "test" 
documents were selected and used as a baseline for evaluating various binary 
compression a1 ternat ives. The existing Group 3 and 4 standards coinpress these 
documents, which include both typed and handwritten tcxt (in several languages) 
as well as a few line drawings, by about 15 : 1. Because the Group 3 and 4 standards 
are based on nonadaptive techniques, however, they sometimes result in data ex- 
pansion (e.g., with half-tone jmages).To overcome this and related problems, the 
Joint Bilevcl Imaging Group (JI3IG)-a joint comrni ttee of the C C J T  ancl ISO- 
has adopted andlox proposcd several other binary coxnpression standards. These 
include JBIGl, an adaptive arithmetic compression technique that provides both 
the best average and worst-case binary con~pression available currently and JBIG2 
(now a final committee draft), which achieves compressions that are typically 2 to 
4 times greater than JBIG1.These standards can bc used to compress both binary 
and gray-scale images of up to 6 gray-codcd bitslpixel (on a bit plane basis.) 

One-dimensional compression 

In the I-D CCITT Group 3 compression method, each line of an image' is en- 
coded as a scrics of variable-length code words that represent the run lengths 
of the alternating white and black runs in a left-to-right scan of the line. Tlle 
code words themselves are of two types. If the run length is lcss than 63, a ter- 
minating code from the modified Huffman code in Table 8.14 is used. If the run 
lcngth is greater than 63, the largest possible makeup code (not exceeding the 
run length) from Table 8.15 is used in conjunction with a terminating code that 
rcprcsenls the difference between thc makeup code and the actual run length. 
The standard rcquires that each line begins with a white run-length code word, 
which may in fact be 00110101, thc code for a white run of length zero. Finally, 

' In the standard, images arc referred to as poses and scquences of imayes are referred to as documer~fs. 
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Run White Code Black Code Run White Code Black Code 
LRngth Word Word Len@ h Word Word 

64 11021 0000001 11 1 960 01 1010100 0000001 11 001 1 
I28 10010 000011001000 1024 OllOIOlOl 0000001110100 
192 010111 000011001001 1088 011010110 M300001110101 
256 0110111 0000010~.1011 1152 011010111 0000001i10110 
320 001 101 10 0U0000110011 1216 011011000 OOOOOO1110111 
384 001101 11 0000001 10100 1280 01 101.1.001 000000101001 0 
448 Oll0OlOO 000000110101 1344 01 1011010 OOOOUOlOlOOll 
512 OIlOOlOl 0000001101100 1408 011011011 0000001010100 
576 01 101000 0000001101 101 1472 0 1001 1000 OOOOOO101O1O1 
640 01 1001 11 0000001001010 1536 010011001 OOOOOOlOl lOln  
704 01 1001100 00000OI001011 1600 01001 10'10 000000101 1011 
768 01 1001 101 OOO0001001 100 1664 011000 0000001 lOOlo0 
832 011010010 0000001001101 1728 01001.1.01 1 0000001100101 
896 OllOlOOll 0000001110010 

Code Word Code Word 

1792 0000000 1000 2240 00000001 01 1 0 
1856 00000001 100 2304 0OOOOOO10111 
1920 00000001 101 2368 00000001 1 1.00 
1984 000000010010 2432 0000000111O1 
2048 00000001 00 1 1 2496 000000011110 
21 12 00000001 0 1 00 2560 00000001 1 11 1 
2 176 0000~~001010 1 

Figure 8.44 shows the basic coding process for a single scan line. Note cb.at the 
initial steps of the procedure are directed at locating several key transition or 
ulzanging tilernenrs: a,,, n ,  , a2, b, , and h, . A changing element is defined as a pixel 
whose value is different from that of the previous pixel on the same line. The 
most important changing element is a. (the reference element), which is either 
set to the location of an imaginary white changing element to the left of the 
first pixel of each new coding line or determined from the previous coding 
mode. After a,, is located, a, is identified as the location of the next changing el- 
ement to the right of a,, on the current coding line,a, as the next changing ele- 
ment lo the right of n, on the coding line? b,  as the changing dement of the 
opposite value (of a,) and to the right of a, on the reference (or previous) line, 
and b2 as the next changing element to the right of h, on the reference line. If 
any of these changing elements are not detected, they are set to the location of 
an imaginary pixel to the right of the last pixel on the appropriate line. Fig- 
ure 5.45 provides two illustrations of the general relationships between the var- 
ious changing elements. 

After identification of the current reference element and associated chang- 
ing elements, two simple tests are performed to select one of three possible cod- 
ing modes: poss mode, vertical mode, or horizontal nzode. The inital test, which 

TABLE 8.1 5 
CCITT rnakeup 
codes. 
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FIGURE 8.44 
CCITT 2-D 
coding PI-ocedure. 
The notation 
la, b,l denotes the 
absolute value of 
the distance 
berween changing 
elements n ,  
and h,. 

coding line 

Put a,, before 
the firs1 pixel 

J. Yes 

coding line 
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Reference l ~ n e  b ,  bz a 

ooonoonoor1c1&r-1o&noaonc3nr11~~ b 
FIGURE 8.45 0000@OC1~U~r100L90CI@C1t7~E3@0 ,,I ,,,, 

Coding linc 00 Next ( I ( ,  n, Pass mode mode and 
(b) horizon~al and 

Vzrtica I mode vert~cal  mode 
coding 

Reference line parameters 

Coding line - 00"l 
13=0 

\ / n =  I 
Honzontal mode 

corresponds to t h e  first branch point in the flow chart shown in Fig. 8.44, com- 
pares the locatioa of b, to that of a, .The second test, which corresponds to the 
second branch point in Fig. 8.44, computes the distance (in pixels) between the 
locations of (1 ,  and b, and compares it against 3. Depending on the outcome of  
these tests, one of the three outlined coding blocks of Fig. 8.44 is entered and 
lhe appropriate coding procedure is executed. A new reference element is then 
established, as per the flow chart, in preparation for the next coding iteration. 

Table 8.16 defines the specific codes utilized for each of t h e  three possible 
coding modes. In pass mode, which specifically excludes the case in which 6, is 
directly ahovc a,  .only the pass mode code word 0001 i s  needed. As Fig. 8.45(a) 
shows, this mode identifies white or black reference line runs that do not over- 
lap the current white or black coding line runs. In horizonta1 coding modc, the 
distances from a, to a ,  and a,  to a, must be coded in accordance with the ter- 
mjnation and makeup codes of Tables 8.14 and 8.15 and rhen appended to the 
horizonlal mode code word 001. This is indicated in Table 8.16 by the notation 
00 1 + ~ ( a , a , )  + ~ ( o , a , ) ,  where aoa, and a ,  a,  denote the distances from a, to 
cr, and a, to a,, respectively. Finally, in vertical coding mode, one of six special 
variable-length codes is assigned to the distance between n,  and b ( .  Fig- 
ure 8.45(b) illustrates the parameters involved in both l~orizontal and vertical 
mode coding. The extension mode code word at the bottom of Table 8.16 is used 
to enrer an optional facsimile coding mode. For example, the 00000011 11 code 
is used to initiate an uncompressed mode of transmission. 

1 Although Fig. 8.45(b) is annotated with the parameters for both horizontal EXAMPLE 8.27: 
and vertical mode coding, the depicted condition in realily is a case for vertical CCITT vertical 

mode coding. That is, as b2 is to the right of a , ,  the first (or pass mode) test in mode coding 
example. 

Fig. 8.44 fails.The second test, which determines whether the vertical or horizon- 
tal coding mode is entered, indicates that verticaI mode coding should be used. 
because the distance from a ,  to b, is less than 3. In accordance withTable 8.16, the 
appropriate code word is 000010, implying that a, is two pixels left of b, . In prepa- 
ration for the next coding iteration, a, is moved to the location of a , .  MI 
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TABLE 8.16 
CCITT two- 
dimensional code 
table. 

1 Mode Code Word 1 
Pass 
Horizontal 
Vertical 

a, below b, 
a, one to the right of b, 
n ,  two to the right of b,  
n ,  three to the right of ill 
a ,  one to the left of 6, 
a ,  two to the left of b, 
n, three to the  left of b, 

Extension 

8.6.2 Continuuus Tone Still Image Compression Standards 
The CCITT and IS0 have defined several continuous tone (as opposed to bi- 
nary) image compression standards. These standards, which are in various phas- 
es of the adoption process, address both monochrome and color image 
compression. In contrast to the binary compression standards described in Sec- 
tion 8.6.1, continuous tone standards are based principally on the lossy transform 
coding techniques of Sections 8.5.2 and 8.5.3.To develop the standards, CCTTT 
and IS0 committees solicited algorithm recommendations from a large num- 
ber of companies, universities, and research 1aboratories.The best of those sub- 
mitted were selected on the basis of image quality and compression 
performance. The resulting standards, which include the original DCT-based 
P E G  standard, the recently proposed wavelet-based JPEG 2000 standard, and 
the JPEG-LS standard, a lossless to near lossless adaptive prediction scheme that 
includes a mechanism for flat region detection and run-length coding (ISOtIEC 
[1999]), represent the state of the art in continuous tone image compression. 

JPEG 

One of the most popular and comprehensive continuous tone, still frame com- 
pression standards is the JPEG standard. It defines three different coding sys- 
tems: (1) a lossy baseline codingsystem, which is based on the DCT and is adequate 
for most compression appIications; (2) an mended coding systenz for greater com- 
pression, higher precision, or progressive reconstruction applications; and (3) a 
lossless independenr coding system for reversible compression. To be JPEG com- 
patible, a product or system must include support for the baseline system. No par- 
ticular file format, spatial resolution, or color space model is specified. 

Tn the baseline system, often called the sequentiul baseline system, the input and 
output data precision is limited to 8 bits, whereas the quantized DCT values are 
restricted to 11 bits.The compression itself is performed in three sequential steps: 
DCT computation, quantization, and variable-length code assignment. Tlze image 
is first subdivided into pixel blocks of size 8 X 8, which are processed left to right, 
top to bottom. As each 8 x 8 block or subimage is encountered, its 64 pixels are 
level shifred by subtracting t h e  quantity 2"-', where 2" is the maximum number of 
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gray levels.The 2-D discrete cosine transform of the block is then computed, quan- 
tized in accordance with Eq. (8.5-40), and reordered, using the zigzag pattern of 
fig. 8.36(d), to form a I-D sequence of quantized coefficients. 

Since the one-dimensionally reordered array generated under the zigzag pat- 
tern of Fig. 8.36(d) is qualitatively arranged according to increasing spatial fre- 
quency, the JPEG coding procedure is designed to take advantage of the long runs 
of zeros that normally result from the reordering. In particular, the nonzero AC' 
coefficients are coded using a variable-length code that defines the coefficient's 
value and number of preceding zeros. The DC coefficient is difference coded rel- 
ative to the DC coefficient of the previous subimage. Tables 8.17,8.18, and 8.19 pro- 
vide the default JPEG Huffman codes for luminance imagery. The JPEG 
recommended Iuminance quantization array is given in Fig. 8.37(b) and can be 
scaled to provide a variety of compression levels. Although default coding tables 
and proven quantization arrays are provided for both luminance and chrominance 
processing, the user is free to construct custom tables andlor arrays, which may in 
fact be adapted to the characteristics of the image being compressed. 

A Consider compression and reconstruction of the following 8 X 8 subimage EXAMPLE 8.28: 
with the JPEG baseline standard: J PEG baseline 

The original image consists of 256 or 28 possible gray levels, so the coding process 
begins by level shifting the pixels of the original subimage by -2' or -128 gray 
levels. The resulting shifted array is 

coding and 
decoding. 

'In (he standard, the term AC denotes all transform coefficients with the exception of the zeroth or DC 
coefficient. 
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TABLE 8.1 7 
JPEG coefficient 
coding categories. 

TABLE 8.1 8 
JPEG default DC 
code (luminance). 

DC Difference 
Range Category AC Category 

0 0 N/A 
-1,l 1 1 

-3, -2,2,3 2 2 
-7,. . . , -4,4,. . . ,7 3 3 

-15 ,..., -8,8 ,,.., 15 4 4 
-31, .. . , -16,16,.. . ,31 5 5 
-63, . . . , -32,32, . . . ,63 6 6 

-127,. . . . -64,64,. . . . I27 7 7 
-255,. . . , -128,128,. . . ,255 8 8 
-511,. . . . -256,256,. .. ,511 9 9 

-1023,. . . , -512,512,. . . ,1023 A A 
-2047, . . . , -1024,1024,. . . ,2047 B B 
-4095,. . . . -2048,2048,. . . ,4095 C C 
-13191,. . . , -4096,4096,. . . ,8191 D D 

-16383,. . . , -8192,8192,. . . ,16383 E E 
-32767,. . . , -16384,16384,. . . ,32767 F N/A 

Category Base Code Length Category Base Code Leneh 

0 010 3 6 1110 10 
1 011 4 7 11110 12 
2 100 5 8 111110 14 
3 00 5 9 111 11 10 16 
4 101 7 A 11111110 1 S 
5 110 8 B l l l l l l l l 0  20 

which, when transformed in accordance with the forward DCT of Eqs. (8.5-24) 
and (8.5-32) for N = 8, becomes 
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TABLE 8.1 9 
JPEG default AC 
code (luminance) 
(continued). 

- 
Run/ 

Category 

511 
5 12 
5 13 
514 
515 
516 
517 
518 
519 
5IA 
6 /  1 
612 
6/3 
6/4 
615 
6/6 
6/7 
618 
619 
61 A 
7/ 1 
712 
7/3 
7/4 
715 
7/6 
7/7 
718 
719 
7/A 

Base Code Length 

8 
12 
19 
20 
21 
22 
23 
24 
25 
26 
8 
13 
19 
20 
21 
22 
23 
24 
25 
26 
9 
13 
19 
20 
21 
22 
23 
24 
2 5 
26 

Run1 
Category 

Dl1 
Dl2  
D 13 
D/4 
~ 1 5  
Dl6 
D/7 
D/8 
Dl9  
D/A 
E/ 1 
E/2 
E/3 
El4  
E l5  
E/6 
~ 1 7  
E l 8  
~ 1 9  
E/A 
F/O 
F/ 1 
F/2 
F13 
F/4 
F15 
F/6 
~ 1 7  
F/8 
F/9 
F/ A 

Base Code Length 

12 
18 
19 
20 
2 1 
22 
23 
24 
25 
26 
13 
18 
19 
20 
2 1 
22 
23 
24 
25 
26 
12 
17 
18 
19 
20 
2 1 
22 
23 
24 
25 
26 

If the JPEG recommended normalization array of Fig. 8.37(b) is used to quan- 
tize the transformed array, the scaled and truncated [that is, normalized in ac- 
cordance with Eq. (8.5-40)J coefficients are 
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where, for instance, the DC coefficient is computed as 

f ( 0 . 0 )  = round [ gl :; ] 
= round - = -26. [ -:i5 I 

Note that the transformation and normalization process produces a large num- 
ber of zero-valued coefficients. When the coefficients are reordered in accor- 
dance with the zigzag ordering pattern of Fig. 8.36(d), the resulting I-D 
coefficient sequence is 

where the EOB symbol denotes the end-of-block condition. A special EOB Huff- 
man code word (see category 0 and run-length 0 in Table 8.1 9) is provided to in- 
dicate that the remainder of the coefficients in a reordered sequence are zeros. 

The construction of the default JPEG code for the reordered coefficient se- 
quence begins with the computation of the difference between the current DC 
coefficient and that of the previously encoded subimage.As the subimage here 
was taken from Fig. 8.23 and the D C  coefficient of .the transformed and quan- 
lized subimage to its immediate left was -17, the resulting DPCM difference is 
[-26 - (-17)] or -9, which lies in D C  difference category 4 of Table 8.17. In ac- 
cordance with the default Huffman difference code of Table 8.18, the proper 
base code for a category 4 difference is 101 (a 3-bit code), while the total length 
of a completely encoded category 4 coefficient is 7 bits. The remaining 4 bits 
must be generated from the least significant bits (LSBs) of the difference value. 
For a general DC difference category (say, category K) ,  an additional K bits are 
needed and computed as either the K LSBs of the positive difference or the K 
LSBs of the negative difference minus 1. For a difference of -9, the appropri- 
ate LSBs are (0111) -- 1 or 0110, and the complete DPCM coded D C  code 
word is 1010110. 

The nonzero AC coefficients of the reordered array are coded similarly from 
Tables 8.17 and 8.19. The principal difference is that each default AC Huffman 
code word depends on the number of zero-valued coefficients preceding the 
nonzero coefficient to be coded, as well as the magnitude category of the nonze- 
ro coefficient. (See the column labeled RunICategory in Table 8.19.) Thus the 
first nonzero AC coefficient of the reordered array (-3) is coded as 0100. The 
first 2 bits of this code indicate that the coefficient was in magnitude category 
2 and preceded by no zero-valued coefficients (seeTable 8.17); the last 2 bits are 
generated by the same process used to arrive at the LSBs of the DC difference 
code. Continuing in this manner, the completely coded (reordered) array is 

where [he spaces have been inserted solely for readability. Although it was not 
needed in this example, the default JPEG code contains a special code word for 
a run of 15 zeros followed by a zero (see category 0 and run-length F inTable 8.19). 
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The total number of bits in the completely coded reordered array (and thus the 
number of bits required to represent the entire 8 x 8, 8-bil subimage of this 
example) is 92. The resulting compression ratio is 512/92, or about 5.6 : 1. 

To decompress a JPEG compressed subimage, the decoder ]nust first re- 
creaee the normalized transform coefficients t h a t  led to the compressed bit 
stream. Because a Huffman-coded binary sequence is instantaneous and 
uniquely decodable, this step is easily accomplisl~~ed in a simple lookup table 
manner. Here the regenerated array of quantized coefficients is 

After denormalization in accordance with Eq. (8.5-42), the array becomes 

where. for example, the DC coefficient is computed as 

T l ~ e  completely reconstructed subimage is obtained by taking the inverse DCT 
of the denormalized array in accordance with Eqs. (8.5-25) and (8.5-32) to obtain 
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and level shifting each inverse transformed pixel by +z7 (or I-k128) to yield 

58 64 67 64 59 62 70 78 

Any differences between the original and reconstructed subimage are a result 
of the lossy nature of the JPEG compression and decompression process. In 
this example, the errors range from -14 to +11 and are distributed as follows: 

The root-mean-square error of the overall compression and reconstruction 
process is approximately 5.9 gray levels. B 

The reconstructed subimage in the preceding example is located physically 
at about the center of the woman's right eye in Fig. 8.38(a). Note that both the 
original subimage and reconstructed result contain a Iocal gray-level peak in 
the fourth row and fifth column, where a light is reflected in the woman's pupil. 
This local peak causes the root-mean-square error of the reconstructed subim- 
age to exceed substantially the overall error of the completely decompressed 
image. In fact, it is approximately twice as great as the errox associated with 
Fig. 8.38(a), which also was compressed with the baseline JPEG algorithm.The 
reason is that many of the subimages of the original image are nearly constant 
and can be represented with little distortion. Figure 8.38(b) provides an addi- 
tional JPEG baseline compression result. 

JPEG 2000 

Although not yet formally adopted, JPEG 2000 extends the initial JPEG stan- 
dard to provide increased flexibility in both the compression of continuous tone 
still images and access to the compressed data. For example, portions of a JPEG 
2000 compressed image can be extracted for retransmission, storage, display, 
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and/or editing.The standard is based on the wavelet coding techniques of Sec- 
tion 8.5.3. Coefficient quantization is adapted to individual scales and subbands 
and the quantized coefficients are arithmetically coded on a bit-plane basis (see 
Section 8.4). Using the notation of the standard, an image is encoded as follows 
(ISOIIEC [2000]). 

The first step of the encoding process is to DC level shift the samples of the 
Ssiz-bit unsigned image to be coded by subtracting 2sv'z-1. If the innage has more 
than one conzponent-like the red, green, and blue planes of a color image- 
each component is individually shifted. If there are exactly three co~nponeii ts, 
they may be optionally decorrelated using a reversible or nonreversible linear 
combination of the components. The irreversible conyonent ironsform of the 
standard, for example, is 

where Io ,  I,,  and I, are the level-shifted input components and Y , ,  Y, , and Y ,  
are the corresponding decorrelated components. If the input components are 
the red, green, and blue planes of a color image, Eq. (8.6-1) approximates 
the R'G'B' to YICbC,. color video transform (Poynton [1996])."The goal ol  the 
transformation is to improve compression efficiency; transformed compo- 
nents Y, and Y2  are difference images whose histograms are highly peaked 
around zero. 

After the image has been level shiftcd and optionally decorrelated, its corn- 
ponents are optionally divided into tiles. Tiles are rectangular arrays of pixels 
that contain the same relative portion of all components.Thus, the tiling process 
creates lile components that can be extracted and reconstructed jndependent- 
ly, providing a simple mechanism for accessing and/or manipulating a limited re- 
gjon of a coded image. 

The one-dimensional discrete wavelet transform of the rows and columns of 
each tile component is then computed. For error-free compression, the transform 
is based on a biorthogonal, 5-3 coefficient scaling and wavelet vector (Le Gall 
and Tabatabai [1988]). A rounding procedure is defined for non-integer-valued 
transform coefficients. In lossy applications, a 9-7 coefficient scaling-wavelet 
vector (Antonini, Barlaud, Mathieu, and Daubechies [1992]) is employed. In  
either case, the transform is computed using the fast wavelet transform of Sec- 
tion 7.4 or via a lifting-based approach (Mallat [1999]). The coefficients need- 
ed to construct a 9-7 FWT analysis filter bank are given in Table 8.20. The 
co~nplementary lifting-based implementation involves six sequential "lifting" 
and "scaling" operations: 

'R'G'B' is a gamma corrected, nonlinear version of a linear CIE (International Commission on Tllumi- 
nation) RGB colorimeiry'value. Y' is luminance and C, and C, are color djfferences (i.e.. scalcd B' - Y' 
and R' - Y' values). 
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Highpass Wavelet Lowpass Scaling 
Filter Tap Coefficient Coeficient 

0 -1.1 15087052456994 0.6029490182363579 
f 1 0,5912717631142470 0.2665641184428723 
zt2 0,05754352622849957 -0.07822326652898785 
+3 -0.09127176311424948 -0.01 6864 11 844287495 
k4 0 0.02674875741080976 

Y(2n + 1 )  = X(2n  + I )  + u [ ~ ( 2 n )  + X(2n  + 2 ) ] ,  
L o - 3 1 2 n + l < i 1  + 3  

Y(2n)  = X ( 2 n )  + ~ [ ~ ( 2 n  -- 1) + Y(2n + l ) ] ,  in - 2 5 2n < i, + 2 

Here, X js the tile component being transformed, Y is the resulting transform, 
and io and i, defjne the position of the tile component within a component.That 
is, they are the indices of the first sample of the tile-component row or column 
being transformed and the one immediately following the last sample. Variable 
n assumes values based on io, i, , and which of the six operations is being per- 
formed. If n < io or n r i,, X ( n )  is obtained by symmetrically extending X. For 
example. x(io - 1) = ~ ( i , ,  + I), ~ ( i , ,  - 2 )  = ~ ( i ,  + 2), ~ ( i , )  = X ( i ,  - 2), 
and ~ ( i ,  + 1) = ~ ( i ,  - 3). At the conclusion of the lifting and scaling oper- 
ations, the even-indexed values of Y are equivalent to the EWT lowpass filtered 
output; the odd-indexed values of Y correspond to  the highpass FWT filtered 
result. Lifting parameters a ,  P,  y, and 6 are -2.586134342, -0.052980118, 
0,88291 1075, and 0.433506852, respectively. Scaling factor K is 1.2301741 05. 

The transformation just described produces four subbands-a low-resolution 
approximation of the tile component and the component's horizontal, vertical, 
and diagonal frequency characteristics. Repeating the transformation N ,  times, 
with subsequent iterations restricted to the previous decomposition's approxi- 
mation coefficients, produces an N,-scale wavelet transform. Adjacent scales 
are  related spatially by powers of 2 and the lowest scale contains the only 
explicitly defined approximation of the original tile component. As can be sur- 
mised from Fig. 8.46, where the notation of the standard is summarized for the 
case of N L  = 2, a general NL-scale transform contains 3NL + 1 subbands whose 
coefficients are denoted nb,  for b = NIaLL? N L H L , .  . . , l H L ,  I L H ,  IHH.  The 
standard does not specify the number of scales to be computed. 

When each of the tile components has been processed, the total number of 

TABLE 8.20 
Impulse 
responses of the 
low and highpass 
analysis filters for 
an  irreversible 
9-7 wavelet 
transform. 

transform coefficients is equalto the number of samples in the original irnage- 
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FIGURE 8.46 JPEG 2000 two-scalc wavelet transform tile-component coefficient nota- 
tion and analysis gain. 

but the important visual information is concentrated in a few coefficients.To re- 
duce the number of bits needed to represent the transform, coefficient ah(u, 2 ) )  

of subband b is quantized to value qh(ll, V )  using 

qb(u. 21) -- sign [abju, v) ] floor [kdAy] 
where quandztion slep size Ah is 

R, is the nominal dy~tnmic range of subband 6, and E~ and ph are t h e  number of 
bits allotted to the exponent and mantisso of the subband's coefficients. The 
nominal dynamic range of subband b is the sum of the number of bits used to 
represent the original image and the analysis gain bits for subband b. Subband 
analysis gain bits follow the simple pattern show11 in Fig. 8.46. For example, 
there are two analysis gain bits for subband b = I HH. 

For error-free compression, pb = 0, Rb = E ~ ,  and A, = 1. For irreversible 
con~pression, no particular quantization step size is specified in the standard. In- 
stead, the number of exponent and mantissa bits must be provided to the de- 
coder on a subband basis, called explicir quantization, or for the N L  LL subband 
only, called intplicit quuntizntiotz. In the latter case, the remaining subbands are 
quantized using extrapolated NL LL subband pararneters. Letting EO and po be 
the number of bits allocated to the N L  LL subband, the extrapolaced parame- 
ters for subband b are 



8.6 pc Image Compression Standards 509 

where nscl, denotes the number of subband decomposition levels from the orig- 
inal image tiIe component to subband b. 

The final steps of the encoding process are coefficient bir modeling, arith- 
metic coding, hit-stream layering, and packetizing-The coefficients of each trans- 
formed tile-component's subbands are arranged into rectangular blocks called 
code blocks, which are individually coded a bit plane at a time. Starting from the 
most significant bit plane with a nonzero element, each bit plane is processed 
in three passes. Each bit of a bit plane is coded in only one of the three passes, 
which are called significance propaga~ion, magnitude refinernen.t, and cleanup. 
The outputs are then arithmetically coded and grouped with similar passes from 
other code blocks to form layers, A layer is an arbitrary number of groupings 
of coding passes from each code block. The resulting layers are finally parti- 
tioned into packers, providing an additional method of extracting a spatial re- 
gion of interest from the total code stream. Packets are the EundamentaI unit of 
the encoded code stream. 

JPEG 2000 decoders simply invert the operations described previously. After 
decoding the bit modeled, arithmetically coded, layered, and packctjzed code- 
stream, a user-selected number of the original image's tile-component sub- 
bands are reconstructed. Although the encoder may have encoded Mh bit 
planes for a particular subband, the user-due to the embedded nature of the 
code stream-may choose to  decode only Nh bit planes.This amounts to quan- 
tizing [be code block's coefficients using a step size of 2""b-"1> A[,. Any 
nondecoded bits are set to zero and the resulting coefficients, denoted ijh(u, v),  
are dequantized using 

where Rqb(u, v) denotes a dequantized transform coefficient and Nh(u, v)  is the 
number of decoded bit planes lor q,,(u, v). The dequantized coefficients are 
then inverse transformed by column and by row using an FWT1 filter bank 
whose coefficients are obtained from Table 8.20 and Eq. (7.1.-15) or via the fol- 
lowing lifting-based operations: 

where parameters a, ,B, y, 8, and K are as defined for Eq. (8.6-2). Dequantized 
coefficient row or colum~l element Y (n) is symmetrically extended when nec- 
essary.The final decoding steps are the assembly of the component tiles, inverse 
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component transformation (if required), and DC level shifting. For irreversible 
coding, the inverse component transformation is 

and the transformed pixels are shifted by +2S"z-1. Figures 8.40 and 8.41 of Sec- 
tion 8.5.3, which illustrate compression ratios from 34: 1 to 167 : 1, were gener- 
ated using the irreversible JPEG 2000 algorithm. 

8.6.3 Video Compression Standards 

Video compression standards extend the transform-based, still image com- 
pression techniques of the previous section to include methods for reducing 
temporal or frame-to-frame redundancies. Although there are a variety of video 
coding standards in use today, most rely on similar video compression tech- 
niques. Depending on the intended application, the standards can be grouped 
into two broad categories: (1) video teleconferencing standards and (2) multi- 
media standards. 

A number of video teleconferencing standards, including H.261 (also referred 
to as PX64), H.262, H.263, and H.320, have been defined by the International 
Telecommunications Union (ITU), the successor to the CCITT. H.261 is 
intended for operation at affordable telecom bit rates and to support full mo- 
tion video transmission over ~ 1 '  lines with delays of less than 150 ms. Delays ex- 
ceeding 150 ms do not provide viewers the "feeling" of direct visual feedback. 
H.263, on the other hand, is designed for very low bit rale video, in the range of 
10 to 30 kbit/s, and H.320, a superset of H.261, is constructed for Integrated 
Services Digital Network' (TSDN) bandwidths. Each standard uses a rnotion- 
compensated, DCT-based coding scheme. Since motion estimation is difficult to 
perform in the transform domain, blocks of pixels, called macl-oblocks, are com- 
pared to neighboring blocks of the previous frame and used to compute a mo- 
tion compensated prediction error.The prediction error is then discrete cosine 
transformed in 8 X 8 pixel blocks, quantized, and coded for transmission or 
storage. 

Multimedia video compression standards for video on demand, digital HDTV 
broadcasting, and imagelvideo database services use similar motion estimation 
and coding techniques. The principal standards-MPEG-1, MPEG-2, and 
MPEG-&were developed under the auspices of the Motion Picture Experts 
Group of the CC17T and TSO. MPEG-1 is an "entertainment quality" coding 
standard for the storage and retrieval of video on digital media like compact disk 
read-only memories (CD-ROMs). It supports bit rates on the order of 

'The T1 line was introduced by the Bell system for digital voice communicat~ons over short distances of 
10 to 50 miles. Twenty-Cour telephone channels a r e  time-multiplexed, sampled, and coded into a 
1.544 Mbjt/s PCM (pulse code modulation) signal for transmission over a singleTL line. 
iTwo ISDN "B" channels provide sufficient bandwidth (i.e.. 128 kbit/s) to transmit compressed 320 X 240 
images at 15 frames per second. 
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1.5 Mbit/s. MPEG-2 addresses applications involving video quality between 
NTSCIPAL~ and CCIR 601" bit rates from 2 to 10 Mbit/s, a range that is suit- 
able for cable TV distribution and narrow-channel satellite broadcasting, are 
supported-The goal of both MPEG-1 and MPEG-2 is to make the storage and 
transmission of digital audio and video (AV) material efficient. MPEG-4, on 
the other. hand, provides (1) improved video compression efficiency; (2) content- 
based interactivity, such as AV object-based access and efficient integration of 
natural and synthetic data; and (3) universal access, including increased ro- 
bustness in error-prone environments, the ability to add or drop AV objects, 
and object resolution scalability. Although these functionalities create a need to 
segment arbilrarily shaped video objects, segmentation is not a part of the stan- 
dard. A great deal of video content-like computer games-is produced and 
readily available in the form of video objecb. MPEG-4 targets bit rates between 
5 and 64 kbit/s for mobile and public switched telephone network (PSTN) ap- 
plications and up to 4 Mbit/s for TV and film applica tions. In addition, it sup- 
ports both constant bit rate and variable bit rate coding. 

Like the ITU teleconferencing standards, MPEG standards are built around 
a hybrid block-based DPCMlDCT coding scheme. Figure 6.47 shows a typical 
MPEG encoder. I t  exploits redundancies within and between adjacent video 
frames, motion uniformity between frames, and the psychovisual properties of 
the human visual system. The input of the encoder is an 8 x 8 array of pixels, 
called an image block. The standards define a macroblock as a 2 x 2 array of 
irnage blocks (i.e., a 16 X I6 array of image elements) and a slice as a row of 
nonoverlapping macroblocks. For color video, a macroblock, is composed of 
four luminance blocks, denoted Y, through Y4,  and two chrominance blocks, 
C, and C,. Recall that color difference signal C, is  blue minus luminance and 
C, is red minus luminance. Because the eye has far less spatial acuity for color 
than for luminance, these two components are often sampled at half the hori- 
zontal and vertical resolution of the luminance signa1,resulting in a 4: 1 : 1 sam- 
pling ratio between Y' : Cb: C,. 

The grayed elements of the primary input-to-output path in Fig. 8.47 paral- 
lel the transformation, quantization, and variable-length coding operations of 
a JPEG encoder. The principal difference is the input, which may be a conven- 
tional block of image data or the difference between a conventional block and 
a prediction of it based on simiIar blocks in previous andlor subsequent video 
frames. This leads to three basic types of ellcoded output frames: 

1. Intruframe or independsnt frame (I-franze). An 1-frame is compressed 
independently of all previous and future video frames. Of the three possible 
encoded output frames, it most highly resembles a JPEG encoded image. 
Moreover, it is the reference point for the motion estimation needed to gen- 
erate subsequent P- and B-frclrnes. T-frames provide the highest degree of 

'NTSC and PAL are acronynls far the NationalTelevision System Committee and Phase Alternate Line, 
respectively. Both are composite color video standards 
!CCIR is an acronym for the International Radio Consultive Committee. 
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random access, ease of editing, and greatest resistance 10 the propagation 
of transmission error.As a result, all standards require their periodic insertion 
into t he  co~npressed codestream. 

2. Predictive frame (P-frame). A P-frame is the compressed difference be- 
tween che current frame and a prediction of i t  based on the previous I- or 
P-frame. R e  difference is formed in rhe leftmost summer of fig. 8.47. The 
prediction is motion compensated and typically involves sliding the de- 
coded block in the lower part of Fig. 8.47 around its immediate neighbor- 
hood in the current frame and computing a measure of correlation (such as 
the sum of the square of the pixel-by-pixel differences). In fact, the  process 
is often carried out in subpixel increments (such as sliding the subimage 3 
pixels at a time), which necessitates interpolating pixel values prior to com- 
puting the correlation measure. The computed rrlotion vector is variable- 
length coded and transmitted as an integral part of the encoded data stream. 
Motion estimation is carried out on the macroblock level. 

3. Bidivec~ionczl frame (B-fianze). A B-frame is the compressed difference be- 
tween the current frame and a prediction of it based on the previous I- or 
P-frame and next P-frame. Accordingly, the decoder must have access to 
borh past and future reference frames. The encoded frames arc tllereforc 
reordered before transmission; the decoder reconstructs and displays them 
in the proper sequence. 

Variable-lcngth 
coding 

The  encoder of Fig. 8.47 is designed to generate a bit stream that matches the 
capacity of the intended video channel.To accomplish this, the quantization pa- 
rameters are adjusted by the rare controller as a function of the occupancy of the 
output buffer. As the buffer becomes fuller, the quantization is made coarser, 
so that fewer bits stream into the buffer. 

rnot~orl 
vector 

Decoded 
Motion estimator and block 

compensator wlframe delay 
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Summa y 
The principal objectives of this chapter were lo present the theoretic foundation of dig- 
ital image compression and to describe the most commonly used compressjon methods 
that form the core of the technology as it exists currently. Although the level of the pre- 
sentation is introductory in nature, the depth and breadth of the material covered are suf- 
ficient to serve as the basis for independent reading in this subject area. The references 
provide an entry into the extensive body of literature dealing with image con~pression 
and related topics. In addition to extensive uses involving gray-scale imagery, compres- 
sion methods are playing an increasingly important role in document image storage and 
transmission, as evidenced by the emergence of the international standards discussed 
in Section 8.6. In addjtion to medical imaging, compression is one of the few areas of 
image processing that has received a sufficiently broad commercial appeal to warrant the 
adoption of widely accepled standards. 

References and Further Reading 
The introductory material of the chapter, which is generally confined to Sections 8.1 and 
8.2, is basic to image compression and may be found in one form or anothcr in most of 
tile general image processing books cited at the end of Chapter I. The material in Sec- 
lion 8.1.3 on improved gray-scale quantization is based on Bisignani, Richards, and Whe- 
Ian [1966]. For additional information on the human visual system, see Netravali and 
Limb [l9tiO], as well as in Huang [1966], Schreiber and Knapp [1958], and lhc references 
cited at the end of Chapter 2. Subjective fidelity criteria are discussed in Frendendall and 
Behrend (19601. Error detecting and correcting codes are covcred in most introductory 
texts on switching or finite automata theory, as we.11 as in general information theory texts. 

The matcrial in Section 8.3 is based on several excellei~t books on information theo- 
ry. Noteworthy are Abramson [1963], Blahut [1987], and Berger [1971]. Shannon's clas- 
sic paper, "A Mathematical Theory of Co~nmunication" [1948], lays the foundation for 
most of the material in the section and is another excellent reference. 

The descriptions of the error-free encoding techniques of Section 8.4 are,for the most 
part, based on the original papers cited in the text or as follows. T l ~ e  algorithms covered 
arc representative of the work in this area, but are by no means exhaustive. The rnaler- 
ial on LZW coding has its origins in the work of Ziv and Lempel [I 977,19781. The ma- 
terial on arthmetic coding follows the development in Witten, Neal, and Cleary [1987]. 
Onc of the more important implenlentations of arithmetic coding is summarized in Pen- 
nebaker et al. [L988]. For additional information on bit-plane coding, see Schwartz and 
Barker I19661 and the tutorial by Rabbani and Jones [1991], which also contains a good 
discussion of lossless predictive coding. Huang and Hussian [I9751 first published the de- 
[ails of white-block skipping. Relative address coding and predictive differential quan- 
tizing were first reported by Yamazaki, Wakahara, and Teramura [ I  9761 and Huang and 
Tretiak 119721, respectively.The adaptive predictor of Eq. (8.5-19) is from Graham [1958]. 

The material in Section 8.5 covers the principal lossy encoding approaches. Various 
other methods are directly based on these tecl~niques. Noteworthy among them are hy- 
brid encoding (Habibi [1974]), a scheme that combines 1-D transform coding and DPCM 
to obtain aboul the same performance as 2-D transform coding using fewer computa- 
tions;s~ibbnnd coding (Woods and O'Neil [1986]), in which an image is filtered into a set 
ot images (with different spatial frequencies) that may be individually DPCM coded; 
and interfrome coding (Roesc et al. [1977]), where the redundancy between successive 
frames in a time sequence of images is reduced by using a predictive or transform coding 
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approach. In addition, a varjely of lossy techniques are closely related to the techniques 
described. These include, among others, block fruncation codirzg (Delp and Mitchell 
[1979]), in which a I-bit quantizer is designed for each n X tz block of a subdivided image; 
vector qriantizarion (Linde e t  al. [1980]), in which an image is decomposed into vectors 
(containing pixels, transform coeffjcients, and so on) that are matched against a code 
book of possible vectors and coded to indicate the best fit; and hierarchical codirzg 
(Knowlton [1980]), which usually involves the generation of a pyramid-structured data 
set that can be progressively accessed to obtain better and better representations of the 
originat image. These references do not necessarily cite the inventor or the techniques; 
they provide a starting point for additional reading on the methods. Other articles or 
books of interest include Tasto and Wintz [1971], G haravi and Tabatabai [1988], Raylon 
and Lim [1990], Candy et al. [1971], Jain and Jain [1981], Hcaly and Mitchell [1981], 
Lema and Mitchel.1 [1984], Udpikar and Raina [1987], Gray [1984], Equitz [1989], Sezan 
et al. [I  9891, Tanimoio [1979], Blunle and Fand [1989], Rabbani and Jones [1991.], and 
Storer and Reif [1991].Almost every issue of the I E E E  Transncrioizs on Inzage Process- 
ing includes several articles on video and still image compression, with many of the ar- 
ticlcs related to wavelet- and fractal-based compression, vector quanlization, and video 
motion compensation. Sce, for exarnple,Boulgouris et al. [2001], Martin and Bell [2001], 
Chen and Wilson [2000], Hartenstein et al. [2000], Yang and Ramchandran [2000]. and 
Meyer et al. [2000] as a slarting point for further reading and references. 

Section 8.6 is based primarily on  the published drafts and formal standards of the In- 
ternational Standards Organization and the Consultative Committee of Internalional 
Telepllone and Telegraph.These documents are available from the standards organiza- 
tions or the American National Standards Institute (ANSI). Additional references on 
compression standards include Hunter and Robinson [1980],Ang et al. [ I  9911, Fox [ I  9911, 
Pennebaker and Mitchell. [1992], Bhatt el al. [1997], Sikora [1997].Bhaskaran and  Kon- 
stantinos 119971, Ngan et al. [1999], Weinberger et al. [2000], and Symes [2001]. 

Several survey articles have been devoted ro the field of image compression. Note- 
worthy are Netravali and Limb [1980],A. K. Jain [1981], a special issue on piclure coln- 
~nunication systems in the IEEE Transactions on Conz~nunications [1981], a special issue 
on the encoding of graphics in the  proceeding.^ of IEEE [1980], a special issue on visu- 
al communication systems in the Proceedings of the IEEE [1985], a special issue on imagc 
sequence compression jn the I E E  E Trun.snctio~zs on Image Processing [1.994], and a spe- 
cial issue on vector quantization in the IEEE Transactions on Inznge Processing 119961. 

Problems 
8.1 (a) Can variable-length coding procedures be used to compress a histogram 

equalized image with 2ILgray levels? Explain. 

(b) Can such an image contain interpixel redundancies that could be exploited 
for data compression? 

8.2 One variation of the run-length coding procedure described in Section 8.1.2 in- 
volves (1) coding only the runs of 0's or 1's (not both) and (2) assigning a special 
code to the start of each line to reduce tht: effect of transmission errors. One pos- 
sible code pair is ( x , ,  r,), where x,  and r, represent the kth run's starting coor- 
dinate and run length, respectively.The code (0,O) is used to signal each new linc. 

(a) Derive a general expression for the maximum average runs pel. scan line re- 
quired to guarant-ee data compression when run-length coding a 2" x 2" 
binary image. 

(b) Compute the maximum allowable value for n = 10. 
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*8.3 Consider a n  8-pixel line of gray-scale data, (12, 12,13, 13, 10, 13, 57-54}, which 
has hecn uniformly quantized with 6 b i t  accuracy. Consl~uct i t s  3-bit IGS code. 

8.4 Compute the rms error and r m s  signal-to-noise ratios for the decoded IGS da ta  
of Problem 8.3. 

8.5 (a) Use the Haniming (7,4) code to code the IGS quantized data of Table 8.2. 

* (h) Determine which bil, if any, is in error in the Hamming encoded messages 
I lO01ll,11001 lo, and 110001 4. What are the decoded values? 

$18.6 The base e unit of inforination i s  commoi~ly called a rial, and the base 10 infor- 
mation unit is called a Harlley. Compute the co~tversion factors needed to relate 
these units to the base 2 unit of information (the bit). 

* 8.7 Prove that,for a zero-memory source with q syrnhols, t he  maximurn value of the 
entropy is logq, which is achieved i f  and only i l  all source symbols are equiprob- 
able. Hint: Consider the quantity logq - H ( z )  and  note lhc inequality 
lnx  5 -r - 1. 

8.8 Calculate the various probabilities associated with the information channel in 
which A = (0, 1). B = (0, I ) ,  z = [0.75, 0.25jT and 

Include P ( a  = o), P ( n  = I ) ,  P ( b  = o), P ( b  = I ) ,  P (b  = Oln = 0). 
P(b  = Ola - I ) ?  P ( h  = l l a  = 0). P ( b  = 110 - I ) ,  P ( a  = 016 = 0). 
P ( a  = Olh = l ) . P ( a  = l i b  = O ) , P ( a  = l i b  = ' l ) , P ( a  = O , b  =0),  
P ( n  = 0, 6 = I), P ( L I  = 1, b = O), a n d  P(a = I ,  b = 1 ) .  

k8.9 Consider the binary informalion source and BSC of the example in Section 8.3.2 
and  let p,, = 3/4 and p ,  = 1/3. 

(a) What is the entropy of the source? 

(b) How much less uncertainty about the input i s  there when the  oirlput has 
been observed? 

(c) What is 1l1i.s difference in uncertainty called and how does i t  compare nu- 
merically to the channel's capacity? 

8.10 A binary el-nswe ch~rnnel is one in which [her-c is a finite prc)bability ,B that a trans- 
mitted symbol will not be received. The cllannel has three possible outputs: a 0, 
a n  erasure (no received symbol), and a 1.These three outcomes form the three 
rows of the binary erasure chanuel matrix 

(a) Find the capacity of the channel. 

* (b) Would you prefer a binary symmetric, c h a n n e l  wi th  a 0.125 probability of 
error or  an erasure channel with probability of erasure P = 0.5? 
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8.1.1 The rate distortion function of a zero-memory Gaussian source of arbitrary mean 
and variance cr2 with respect to the mean-square error criterion (Berger [197:1]) is 

10 for D r v2. 

* (a) Plot this function. 

(b) What is D,,,,? 
(c) If a distortion of110 more than 75% of the source's variance is allowed, what 

is the maximum compression that can be achieved? 

8.12 (a) How many unique Huffman codes are there for a three-symbol source? 

(b) Construct them. 

8.13 (a) Compute the entropy of the source whose symbol probabilities are defined 
inTable 8.1. 

(b) Construcl a Huffrnan code for the soulace symbols and explain any differ- 
ences between the constructed code and Code 2 of the table. 

(c) Construct the best B,-code for this distribution. 

(d) Construct the best 2-bil binary shift codc. 

( e )  Divide (he symbols into two blocks of four and construct the best Huffman 
shift code. 

( f )  Co~llpute the average word lengths for each code and compare them to 1l1e 
entropy from part (a). 

* 8.14 The arithmetic decoding process is the reverse of the encoding procedure. Decode 
the message 0.23355 given the coding model 

Symbol Probability 

a 0.2 
e 0.3 
1 0.1. 
0 0.2 

8.15 Use Lhe LZW coding algorithm of Section 8.4.2 to encode the 7-bit ASCII string 
"aaaaaaaaaaa". 

It8.16 Devisc an algorithm for decoding the LZW encoded output o i  Example 8.12. 
Since the dictionary that was used during the encoding is not available, the code 
book must be reproduced as the output is decoded. 

8.17 (a) Construct the entire 4-bit Gray code. 

(b) Create a general procedure for converting a Gray-coded number to its bi- 
nary equivalent and use it to decode 01 J 1010 1001 l l .  

8.18 A 64 X 64 pixel binary image has been coded using 1-D WBS wit11 blocks of four 
pixels.The WBS code for one line of the image was 011001000000100001 0010000000, 
where a 0 is used to  represent a black pixel. 
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(a) Decode the line. 

(b) Create a 1 -D iterative WBS procedure that begins by looking for all white 
lines (a 64-pixe1 block) and successiveIy halves nonwhite intervals until four  
pixel blocks are reached. 

(c) Use your algorithm to code the previously decoded line. It should require 
fewer  bits. 

8.19 * (a) Explain why the first similar transition past e on the previous line is used as 
c' in relative address coding. 

(b) Can you devise an alternate approach? 

8.20 An image whose autocorrelation function is of the form of Eq. (8.5-12) with 
p,, = O is to be DPCM coded using a second-order predictor. 

(a) Form the autocorrelation matrix R and vector r 

(b) Find the optimal prediction coefficients. 

(c) Compute the variance of the prediction error lhat would result from using the 
optimal coefficients. 

Sr8.21 Derive the Lloyd-Max decision and reconstruction levels for L = 4 and the uni- 
form probability density function 

( 0  otherwise. 

8.22 Use the CCJTT Group 4 compression algorithm to code rhe second line of the fol- 
lowing two-line segment: 

Assume that t he  initial reference element a,, is located on the first pixel of the sec- 
ond Iine segment. 

* 8.23 (a) List all rhe members of the JPEG DC coefficient difference category 3. 

(b) Compute their default Huffman codes usingTab1e 8.18. 
8.24 A radiologist from a well-known research hospital recently attended a medical 

conference at  which a system that could transmit 4096 X 4096 12-bit digitized 
X-ray images over standardT1 phone lines was exhibited-The system transmitted 
the images in a compressed form using a progressive technique in which a rea- 
sonably good approximation of the X-ray was first reconstructed at the viewing sta- 
tion and then refined gradually to produce an error-free display. The transmission 
of the data needed to generate h e  first approximation took approximately 5 or 6 s. 
Refinements were made every 5 or 6 s (on the average) for the next 1 min, with 
the first and last refinements having the most and least significant impact on the 
reconstnlcted X-ray, respectively.The physician was favorably impressed with the 
system, because she could begin her diagnosis by using the first approximation of 
thc X-ray and complete i t  as the error-free reconstruction of the X-ray was being 
generated. Upon returning to her office, she submitted a purchase request to the 
hospital administrator. Unfortunately. the hospital was on a relatively tight bud- 
get, which recently had been stretched thinner by the hiring of an aspiring young 
electrical engineering graduate-To appease the radiologist, the administrator gave 
the young engineer the task of designing such a sysrem. (He thought i l  might be 
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cheaper to design and build a similar system in-house.The hospital currently owned 
some of the elements of such a system, but the transmission of the raw X-ray data 
took more than 2 min.) The administrator asked the engineer to have an initial 
block diagram by the afternoon staff meeting. With little time and only a copy 01 
Digital Image Processing (this text, of course) from his recent school days in hand, 
the engineer was able to devise conceptually a system to satisfy the transmission 
and associated compression requirements. Construcl a conceptual block diagram 
of such a system, specifying the compression techniques you would recommend. 

8.25 Show that the lifting-based wavelet transform defined by Eq. (8.6-2) is equivalent 
to the traditional FWT filter bank implementation using the  coefficients i n  
Table 8.20. Define the filter coefficients in terms of a, 0, y, 6, and K.  

8.26 Compute the quantization step sizes ol the subbands for a JPEG 2000 encoded 
image in which implicit quantization is used and 8 bits are allotted to the mantissa 
and exponent of the 2LL subband. 

* 8.27 Draw the block diagram of the companion MPEG decoder for the encoder in Fig. 8.47. 
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Morphological lrnage 
Processing 

In Form and Feature, face and limb, 
I grew so like my brother 

That folks got taking me for him 

And each for one another. 

Henry Sam brooke Leigh, Carols of Cockoyne, The Twins 

Preview 
The word morphology commorlly denotes a branch of biology that deals with the 
form and structure of animals and plants. We use the same word here in the con- 
text of n~nthematical morphology as a tool for extracting image components that 
are useful in the representation and description of region shape,such as boundaries, 
skeletons, and the convex hull. We are interested also in morphological techniques 
for pre- or postprocessing, such as morphological filtering, thinning, and pruning. 

The language of mathematical morphology is set theory. As such, morpholo- 
gy offers a unified and powerful approach to numerous image processing prob- 
lems. Sets in mathematical morphology represent objects in an image. For 
example, the set of a11 black pixels in a binary image is a complete morphologi- 
cal description of the image. In binary images, the sets in question are members 
of the 2-D integer space Z2  (see Section 2.4.2), where each element of a set is a 
tuple (2-D vector) whose coordinates are the (x,  y)  coordinates of a black (or 
white, depending on convention) pixel in the image. Gray-scale digital images can 
be represented as sets whose components are in z3. 111 this case, two compo- 
nents of each element of the set refer to the coordinates of a pixel, and the third 
corresponds to its discrete gray-level value. Sets in higher dimensional spaces 
can contain other image attributes, such as color and time varying components. 

In the following sections we develop and illustrate several important con- 
cepts in mathematical morphology. Many of the ideas introduced here can be 
formulated in terms of n-dimensional Euclidean space, En. However, our interest 
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initially is on binary images whose components are elements of z2. We discuss 
extensions to gray-scale images in Section 9.6. 

The material in this chapter begins a transition from a focus on purely image 
processing methods, whose input and output are images, to processes in which 
the inputs are images, but the outputs are attributes extracted from those irn- 
ages, in the sense defined in Section 1 .l.Tools like morphology and related coii- 
cepts are a cornerstone of the mathematical foundation that is utilized for 
extracting "meaning" from an image. Other approaches are developed and ap- 
plied in the remaining chapters of this book. 

Preliminaries 

In this section we introduce some basic concepts from set theory that are need- 
ed as foundation for the remaining sections of this chapter. 

4, i .l Some Basic Concepts from Set Theory 
Let A be a set in z2. If a = (a1,  uZ)  is an element of A,  then we write 

Similarly, if n is not an element of A, we write 

The set with no elements is called the n ~ i l l  or empty set and is denoted by 
the symbol 0. 

A set is specified by the contents of two braces: {-).The elements of the sets 
with which we are concerned in this chapter are the coordinates of pixels rep- 
resenting objects or other features of interest in an image. For example, when 
we write an expression of the form C = {w I w  = -d, for d E D )  we mean that 
set C is the set of elements, w, such that w is formed by multiplying each of the 
two coordinates of all the elements of set D by -1. 

If every element of a set A is also an element of another set B, then A is said 
to be a subset of B, denoted as 

The union of two sets A and B, denoted by 

is the set of all elements belonging to either A, B, or both. Similarly, the  
intersection of two sets A and B, denoted by 

is the set of all elements belonging to both A and B. 
Two sets A and B are said to be disjoint or mutually exclusive if they have no 

common elements. In this case, 
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The complement of a set A is the set of elements not contained in A: 

The difference of two sets A and B, denoted A - B, is defined as 

We see that this is the set of elements that belong to A, but  not to B. Figure 9.1 
illustrates the preceding concepts. The result of the set operation indicated in 
each figure is shown in gray. 

We need two additiona1 definitions that are used extensively in morphology 
but generally are not found in basic texts on set theory. The reflection of set B. 
denoted B, is defined as 

The ironslation of set A by point z = (zr ,  z 2 ) .  denoted (A),, is defined as 

( A ) ,  = { c ( c  = a + z, for U E A ) .  (9.1-10) 

Figure 9.2 illustrates these two definitions using the sets from Fig. 9.1.The black 
dot identifies the origin of the  sets shown in the figure. 

FIGURE 9.1 
(a) Two sets A 
and B. (b) The 
union of A and B. 
( 4  The 
intersectioi~ of A 
and B. ( d )  The 
complement of A. 
( e )  The difference 
between A and B. 

a b  

FIGURE 9.2 
(a) Translation of 
A b y z .  
(b) Reflection of 
B. The sets A and 
B are from 
Fig. 9.1. 
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TABLE 9.1 
The three basic 
logical operations 

P 4 p AND q (also p q )  p OR q (also p + q) NOT (p) (also p )  

0 0 0 0 1 

0 1 0 1 1 

1 0  0 ' 1  0 

1 1  1 1 0 
i 

9.1.2 Logic Operations Involving Binary Images 
The majority of applications based on the morphological concepts discussed in 
this chapter involve binary images. Logic operations, although simple in nature, 
provide a powerful complement to implementation of image processing algo- 
rithms based on morphology. Logic operations were introduced in Section 3,4 
in connection with masking. In the £01 lowing discussion, we are interested in  
logic operations involving binary pixels and images. 

The principal logic operations used in image processing are AND, OR, and 
NOT (COMPLEMENT). Thek properties are summarized in Table 9.1. These 
operations are funcrionally complete in the sense that they can be combined to 
form any other logic operation. 

Logic operations are performed on a pixel by pixel basis between corre- 
sponding pixels of two or more images (except NOT, which operates on the 
pixels of a single image). Because the AND operation of two binary variables 
is 1 only when both variables are 1, the result at any location in a resulting AND 
image is 1 only if the corresponding pixels in the two input images are 1. Fig- 
ure 9.3 shows various examples of logic operations involving images, where 
black indicates a binary I and white indicates a 0. (We use both conventions in 
this chapter, sometimes reversing the binary meaning of dark [black or gray] and 
light [white], depending on which is clearer in a given situation.) Other logic op- 
erations are easily constructed using the definitions jn Table 9.1. For instance, 
the XOR (exclusive OR) operation yields a 1 when one or the other pixel (but 
not both) is I,  and it yields a 0 otherwise. This operation is unlike the OR op- 
eration, which is 1 when one or the other pixel is 1, or when both pixels are 1. 
Similarly, the NOT-AND operation selects the black pixels that sirnultaneous- 
ly are in B, and not in A. 

It is important to note that: the logic operations just described have a one- 
to-one correspondence with the set operations discussed in Section 9.1 . I ,  with 
the limitation that logic operations are restricted to binary variables, which is 
not the case in general for set operations. Thus, for example, the intersection 
operation in set theory reduces to the AND operation when the variables in- 
volved are binary.Terms such as intersection and AND (and even their nota- 
tion) often are used interchangeably in the literature to denote general 01. 

binary set operations, with the meaning generally being clear from the context 
of the discussion. 
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A NOT(A)  FIGURE 9.3 Some 
logic operarions 
betweell binary 
images. Rlack 
represents binary 
I S  and whire 
binary 0s jn  this 
exa~nplc. 

( A )  ANT) ( B I  

r -  - - - - - - I  

- - - . - - - - - 
AND ; 

0 I i 
---., 

I - . . . . .------ t 

( A )  XOR ( R )  

[NOT ( A ) !  AND ( B )  - 
-+'?3l 

- ,  - Dilation and Erosion 

N 0-T- 
AND 

0 

We begin the discussioll of morphological operations by treating in  some detail 
two operations: dilation and erosion.These operaljons are fundamental ro mor- 
phological processing. I n  fact, many of the ~norpholo~ica l  algorithms discussed 
in this  chapter are based on these two prjmitive opcratio~s.  

- - - - - - - - 

: 
I 
I I 

r ; n m  
* & .  i Dilation 

With A and  B as sets in z2, the  dilrrfion of A by B: denoted A @ B,  is defined as 
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FIGURE 9.4 
(a) Set A. 
(b) Square  
s truct i~ring 
element (dot is 
the center). 
(c) Dilation of A 
by B, s howt~  
shaded. 
(d) Elongated 
structuring 
elernen t. 
(e) Dilation of A 
using lhis 
element. 

This equation is based on obtaining the reflection of B about its origin and shif(- 
ing this reflection by 2. The dilation of A by 3 then is t he  set of all displace- 
menrs, z ,  such tha t  B and A overlap by at least one element. Based on tllis 
interpretation, Eq. (9.2-1) may be rewritten as 

Set 3 is commonly referred to as the sfructuring element In dilation, as well as 
in other morphological operaiions. 

Equation (9.2-1) is not the only definition of dilation in the current literalure 
on morphology (see Problems 9.10 and 9.11 for two different, yet equivalent, 
definitions). However, the preceding definition has a distinct advantage over 
other formulations in that i t  is more intuitive when the structuring element B 
is viewed as a convolution mask. Although dilation is based on set operafions. 
whereas convolution is based on arithmetic operations, the basic process oi 
"flipping" B about its origin and then successively displacing it so that it slides 
over set (image) A is analogous to the convolution process discussed i n  Sec- 
tions 3.5 and 4.2.4. 

Figure 9.4(a) shows a sjmple set, and Fig. 9.4(b) shows a structuring element 
and its reflection (the dark dot denotes the origin of the element). In this case the 

A B A  
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structuring element and its reflection are equal because B is symmetric with xe- 
spect to its origin. The dashed line in Fig. 9.4(c) shows the origj~lal set for refer- 
ence, and the solid line shows the limit beyond which any further displacements 
of the origin of B by z would cause the intersection of and A to be empty. 
Therefore, al l  points inside this boundary constitute the dilation of A by B. Fig- 
ure 9.4(d) shows a structuring element designed to achieve more dilation verti- 
cally than horizontally. Figure 9.4(e) shows the dilation acheved with this ele~nent. 

a One of the simplest applications of dilation is for bridging gaps. Figure 9.5(a) EXAMPLE 9.1: 
shows the same image with broken characters that we studied in Fig. 4.19 in Use of 
connection with lowpassfiltering.The maximum length of the breaks is known movho'ogica' 

dilation for 
to be two pixels. A simple structuring element that can be used for repairing bridging gaps. 
the gaps is shown in Fig. 9.5(b).The result of dilating the original image with this 
structuring element is shown in Fig. 9.5(c).The gaps have been bridged. One im- 
mediate advantage of the morphological approach over the lowpass filtering 
method we used to bridge the gaps in Fig. 4.19 is that the morphological method 
resulted directly in a binary image. Lowpass filtering, on the other hand, start- 
ed with a binary image and produced a gray-scale image, which would require 
a pass with a thresholding function to convert it back to binary form. @ 

9.2,2 Erosion 
For sets A and B in Z* the erosion of A by B,  denoted A 8 B, is defined as 

In words, this equation indicates that the erosion of A by B is the set of all points 
such that B, translated by z,  is contained in A. As in the case of dilation, 

FIGURE 9.5 
(a) Sample Lexl of 
poor resolution 
with broken 
characters 
(rnagni,Fied view). 
(b) Structuring 
element. 
(c) Dilation of (a) 
by (b). Broke,n 
segments were 
joined. 

Histaricaily, certain computer  
programs were wr i t t en  using 

only two digits  ra ther  t han  

four t o  define the agplica ble 
year. Accorclingly, the 
company's software m a y  

recognize a date using "00" 
as 1900 r a t h e r  than  the  

2060. 

Historically, certain computer 
programs were written using 
only two diglb rather than 
four to define the applicable 
year. Accordingly, the 
company's software may 
recognize a data uslng "00" 
as 1900 rather than the 
2000. 

eid- 
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FIGURE 9.6 (a) Set A. (b)  Square structuring clement. (c) Erosion of A by B ,  shown 
shaded. (d) Elongated structuring element. (e) Erosion of A using this element. 

Eq. (9.2-3) is noc the only definition of erosion. (See Problems 9.12 and 9.13 for 
two different, yet equjvaIent. definitions-) However, Eq. (9.2-3) usually is fa- 
vored in practical 'implementations of morphology for the same reasons stated 
earlier in connection with Eq. (9.2-1). 

Figure 9.6 shows a process si~nilar to that shown in Fig. 9.4. As before, set A 
is shown as a dashed line for reference in Fig. 9.6(c).The boundary of the shad- 
ed region shows the limit beyond which further displacement of the origin oEB 
would cause this set to cease being completely contained jn A. Thus, the locus 
of points w i t h n  this boundary (i.e., the shaded region) constitutes the erosion 
of A by B. Figure 9.6(d) shows an  elongated structuring element, and Fig. 9.6(e) 
shows the erosion of A by this element. Note that the original set was eroded 
down to a line. 

Dilation a n d  erosion are duaIs of each other with respect to set comple- 
mentation and reflection.That is. 

( A  0 B)' = A' @ B. (9.2-4) 

We proceed to prove this result formally in order to illustrate a typical approach 
for es~ablishing the validity of morphological expressions. Starting with the de- 
finition of erosion, we have  

( A  0 B)' = ( z  I ( B ) ,  C A)'. 
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I €  set ( B ) ,  is contained in set A ,  then ( B ) ,  f7 A" = 0) ill which case the pre- 
ceding equation becomes 

But  the complemerit or the set of z's that satisfy ( B ) ,  n A' = 0 is the ser of z's 
such t h a t  f~ A" # @.Thus 

where  the last step follows from Eq. (9.2-l).Tl1is cor~cIudes the proof. 

" One of the sirnplest uses of erosion i s  for eliminati.ng irrelevant detail (in EXAMPLE 9.2: 
lertns of size) from a binary image. Figure 9.7(a) shows a binary jtnage corn- Use or 

posed of squares o f  sizes 1,3,5,7.9, and 15 pixels on the side. Suppose that we ~norphological 
erosjon for 

want to eliminate all thc squares  except the largest o l ~ r s  We call do this by 
I.CmOYing 

eroding the image with a structuring element of a size somewhat smaller than  c0mpunellLs. 
the objects we wish to keep. In this example w e  chose a s~i-ucturing element of 
sizc 13 X 13 pixels. The result of eroding the original image with this structur- 
ing element is shown in Fig. 9.7(b). Only portions of the largest squares remain. 
As sllown in Fig. 9.7(c), we car1 restore tl~csc three squares to their original 
15 X 15 size by dilating them with the same slructuring clement we used for ero- 
sion (dilation does not fully restore eroded objects in general: see Problem 
9,113). Note in all threc images in this example that ob,jects are represented by 
white pisels, rather. Illan by black pixels as i l l  the previous example. As noted 
earlier, both representations are used in practice. Unless it is stated olllerwise. 
it is generally understood that the "active" elements of structur-ing elements 
assume the same binary values as the  objects of interest. The concepts pre- 
sented i n  this example are the basis for moi~phological liltering, as  discussed i11 
\he following section. iR.l *.. 

a b c  
FIGURE 9.7 ( 2 ) )  Tnlage of squares of size 1.3.$,7,9. and 15 pixels otl the side. (b) Erosion of (a) with a square 
stri~clu~-it~g element of I 's, 13 pixels on thc side. (c) Dilation of (b) will1 llle same structuring elemenr. 
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on Opening and Closing 

As we have seen, dilation expands a n  image and  erosion shrinks i t .  I n  this sec- 
tion we discuss two other important morphological operations: opening and 
closing. Opening generally slnoothes the cotltour of an object, breaks narrow 
isthmuses, and eliminates thin protrusions. Closing also tends to smooth sec- 
tions of contours but, as opposed to opening, i t  generally fuses narrow breaks 
and long thin gulfs, eliminates small holes, and fills gaps in the contour. 

The opening of set A by structuring element B, denoted A B, is defined as 

Thus, the opening A by B is the erosion of A by B, followed by a dilation of the 
result by B. 

Similarly, the closing of set A by srrucruring element B, denoted A 8, is de- 
fined as 

which,  in words, says tha t  the  closing of A by B is simply the dilation of A by B, 
followed by the erosion of the result by B. 

The opening operation has a simple geometric interpretation (Fig. 9.8). Sup- 
pose that  we view the structuring elenlent B as a (flat) "rolling ball." The  
boundavy of A B is then established by the points in B that reach the fcrrthest 
into the boundary of A as B i s  rolled around tlie inside of this boundary. This 
geometricfitring property of the opening operation leads to a set-theoretic for- 
mulation, which states that the opening of A by B is obtained by taking the 
union of all translates of B h a t  f i t  into A .  Tha t is, opening can be expressed as 
a fitting process such that 

Panslates of B in A 

FIGURE 9.8 (a) Structuring element B "rolling" along the inner boundary'of A (the do1 
indicates the origin of B). (c) The heavy line is the outer boundary of the opening. 
(d) Complete opening (shaded). 
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A - B  

A 

a b c  
FIGURE 9.9 (a) Structuring element B "rolling" on the outer boundary of set A. (b) Heavy 
line is the outer boundary of the closing. (c) Complete closing (shaded). 

where U { a }  denotes the union of all the sets inside the braces. 
Closing has a similar geometric interpretation, except that now we roll B on 

the outside of the boundary (Fig. 9.9). It will be shown shortly that opening and 
closing are duals of each other, so having to roll the ball on the outside is not 
unexpected. Geometrically, a point w is an element of A B if and only if 
(B),  f l  A # 0 for any translate of (B), that contains w. Figure 9.9 illustrates the 
basic geometrical properties of closing. 

7 Figure 9.10 further illustrates the opening and closing operations. Fig- EXAMPLE 9*3: 
A simple ure 9.10(a) shows a set A ,  and Fig. 9.10(b) shows various positions of a disk of 

structuring element during the erosion process. When completed, this process morphological 
resulted in the disjoint figure shown in Fig. 9.10(c). Note the elimination of the openi~lg and 
bridge between the two main sections. Its width was thin in relation to the di- closing. 
ameter of the structuring element; that is, the structuring element could not be 
cornpleteIy contained in this part of the set, thus violating the conditions of 
Eq. (9.2-3).The same also was true of the two rightmost members of the object. 
Protruding elements where the disk did not fit were eliminated. Figure 9.10(d) 
shows the process of dilating the eroded set, and Fig. 9.10(e) shows the final re- 
sult of opening. Note that outward pointing corners were rounded, whereas in- 
ward pointing corners were not affected. 

Similarly, Figs. 9.10(f) through (i) show the results of closing A with the 
same strucluring element. We note that .the inward pointing corners were 
rounded, whereas the outward pointing corners remained unchanged. The 
leftmost intrusion on the boundary of A was reduced in size significantly, 
because the disk did not f i t  there. Note also the smoothing that resulted in 
parts of the object from both opening and closing the set A with a circuIar 
structuring element. W 

As in the case of dilation and erosion, opening and closing are duals of each 
other with respect to set complementation and reflection. That is, 

( A  B)" = (A' 0 h). (9.3-4) 
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FIGURE 9.10 
Morphological 
opening and 
closing. The 
srructurjng 
element is the 
small cjrcle shown 
i n  various 
positions in (b). 
Tie dark dot is 
the center of the 
structuring 
element. 

We leave the proof of this result as an exercise (Problem 9.14). 
The opening operation satisfies the following properties: 

(i) A B is a subset (subimage) of A.  
(ii) If C is a subset of D ,  then C B is a subset of D B. 
(iii) ( A  8) a B = A 0 B. 

Similarly, thc  closing operation satisfies the following properties: 

( i )  A is a subset (subimage) of A B.  
( i i )  If C is a subset of D ,  then C B is a subset of D B .  
(iii) ( A  - B )  - B = A - B. 

Note from condition (iii) in both cases that ~nultiple openings or  closings of a 
set have no effect after the operator has been applied once. 



9.3 +- Opening and Closing 531 

. Morphologicaloperationscanbeusedtacons~suctfilterssimilarinconcept EXAMPLE9.4: 
to the spatial filters discussed in Chapter 3.'I"ne binary image shown in Fig. 9.1 1 (a) Use of opening 

shows a section of a fingerprint cosrupied by noise. Here the noise manifests i t -  for 
morphological 

self as light elenlents on a dark background and as dark elements on the light co~n- 
ponents of the fingerprint. Thc objective is to eliminate the noise and its effccts 
on the print while distorting it as little as possible. A ~norphologlcal filter consisting 
of opening followed by closing can be used to accomplish this objective. 

The st]-ucturing element used is shocvi~ in Fig. 9.1 l(b).The rest of Fig. 9.11 shows 
a step-by-step sequence of the filtel-ing operation. Figure 9.1 I(c) shows the result 
of eroding A with the structuring elernent.Tne background noise was compieteiy 
elimi~iatc-d in the erosiorl stage of opening because in this case all noise components 
are physically smaller than the structuring element.The size of the noise elements 
(dark spots) contained wilhin the fingerprint actually increased in size.The reason 
is that these elements actually are inner boundaries that should increase in size as 
the object is eroded. T h i s  enlargement is countered by performing dilation on 
Fig.Y.l'l(c). Figure 9.ll (d) shows the result.The noise components contained in the 
fingerprin~ were recluced in size or deleted completely. 

e f 
FIGURE 9.1 1 
(a) Noisy image. 
( b )  Structuring 
element. 
(c) Eroded image. 
(d)  Opening of A.  
(e) Dilation of t h e  
opening. 
(f) Closing of the 
opening. (Original 
image lor this 
example courtesy 
of the Narior~al 
Institute of 
Standards and 
Technology.) 
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The two operations just described constitute the opening of A by B.We note 
i n  Fig. 9.11(d) tha t  the net effect of opening was lo eliminate virtually all noise 
components in both the background and the Cingerprin~ itself. However, new 
gaps between the fingerprint ridges were created. To counter this u~ldesirable 
effect, we perform a dilation on the opening, as shown in Fjg. 9.11(e). Most ot 
the breaks were restored, but the ridges were thickened, a condition that can be 
remedied by erosion.The result, shown in Fig. 9.11(f), constitutes the closing ol' 
t h e  opening in Fig. 9.ll(d).This final result is remarkably clean of noise specks, 
but it has the disadvantage that some of the print ridges were not fully repaired, 
and thus contain breaks. This is not totally unexpected, because no conditions 
were built into the procedure for maintaining connectivity (we discuss this issue 
again in Example 9.8 and give ways to address it in Section 11.1.5). P 

The Hit-or-Miss Transformation 

The morphological hit-or-miss transform is a basic tool for shape detection. We 
introduce this concept with the aid of Fig. 9.12, which shows a set A consisting 
of three shapes (subsets), denoted A'! Y, and Z.  The shading in Figs. C).l2(a) 
through ( c )  indicates the original sets, whereas the shading in Figs. 9.12(d) and 
(e) indicates the result of morphological operations.The objective is  to find Ihe 
location of one of the shapes, say, X .  

Let the origin of each shape be loca tcd at its center of gravi ty. Let X be enclosed 
by a slolall window, W.The local hockgroiind of X with respect to W is defined as 
the set difference ( W  - X), as shown in Fig. 9.12(b). Figure 9.12(c) shows the 
complement of A ,  which is needed later. Figure 9.12(d) shows the erosion ol A by 
X ( the  dashed lines are included for reference). Recall that t h e  erosion of A by 
Xis the set of locations of the origi)~ of X, such that Xis corrlpletely contained in 
A .  Interpreted another way, A 8 X may be viewed geometrically as the set of all 
locations of the origjn of Xat which X found a match (hit) in A. Keep in rnind that 
in Fig. 9.12 A corlsists only of the three disjoint sets X, Y, and 2. 

Figure 9.12(c) shows the erosion of the complen~ent of A by the local back- 
ground set ( W - X).  The ourer shaded region in Fig. 9.12(e) is part of the ero- 
sion. We note from Figs. 9.12(d) and (e) that the set of locations for which X 
exuctly fits inside A is the inzerseclion of the erosio~l of A by X and the erosion 
of A-y (W - X) as shown in Fig. 9.12(f). This intersecrion i s  precisely the lo- 
cation sought. In other words, if  B deno~es the set composed of X and  its back- 
ground, the match (or set of matches) of B in  A ,  denoted A O R, is 

We can generalize the notation somewhat by letting B = ( B , ,  B,) ,  where 
B ,  is the set formed from elements  of B associated with an object and B,  is the 
set of elements of B associated with the corresponding background. From the 
preceding discussion, B,  = X and B2 = (W - X). With this notation, 
Eq. (9.4-1) becomes 
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A = X U Y U Z  

Thus, set A O B contains all the (origin) points at which, simultaneously, B ,  
found a match ("hit") in A and B, found a match in A'. By using the definition 
of set differences given in Eq. (9.2-8) and the dual relationship between erosion 
and dilation given in Eq. (9.2-4), we can write Eq. (9.4-2) as 

FlGllRE 9.1 2 
(a)  Set A. (b) A 
window, W, and 
the local 
background of X 
with respect to W, 
( W  - X). 
(c) Complement 
of A. (d) Erosion 
of A by X. 
(e) Erosion of A' 
by ( W  - X). 
(f) Intersection of 
(d) and (el, 
showing the 
location of the 
origin of X ,  as 
desired. 

However, Eq. (9.4-2) is considerably more intuitive. We refer to any of the pre- 
ceding three equations as the morphological hit-or-miss transform. 
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FIGURE 9.13 (a)  Set 
A.  (b) Structlll-ing 
elenlent B. (c) A 
eroded by B. 
(d) Boundary. dvcn  
by rhe set 
difference between 
A aud its erosion. 

The reason for using a structuring element B ,  associated with objects and 
a n  elenlent B2 associated with the background is based on a n  assumed defini- 
tion t b a t  two or more objects ai'e distinct only i f  they ~ O J - m  disjoirlt (discorl- 
nected) sets. This is guaranteed by requiring that each object have at least a 
one-pixel-thick background around i t .  In some applications, w e  lnay be inter- 
esccd in detecting certain patterns (combinations) of 1's and 0's wilhin a set, in 
which case a background is not required. In such an instance, t he  hit-or-miss 
transform reduces to simple erosion. As indicated previously, erosion is still a 
sct of matches, but without the additional requirement of a background match 
for deteciillg individual objects.This simplified pattern detection scheme is used 
in some of the algorithms developed in the following seciion. 

.-" - - Some Basic Morphological Algorithms 
-.A - 
With t h e  preceding discussion as background, we are now ready to consider 
some practical uses of morphology. When dealing with binary images, the prin- 
cipal application of morphology is extracting image components that are use- 
f u l  i n  the  representation and description ol sliape. In particulal.. we consider 
morphological algoritl2ms for extracting boundaries, connected co~nponen ts, 
the convex hull, and the skeleton of a region. We also develop several methods 
(for region filling, thinning, thickening, and pruning) that are used frequently in 
conjunction with these algorithms as pre- or postyrocessingsteps. We makc ex- 
tensive use in this section of "mini-images," designed to clarify the mechanics 
of each morphological process as we introduce it. The images are binary, with 
1's shown shaded and 0's shown in whirc. 

9.5,; Boundary Extraction 
-me boundary of a sct A, denoted by P ( A  ), can be obtained by first eroding A 
by B and then performing the set difference between A and its er.osiotl.That is, 

where R is  a suitable slructuring elemenl. 
Figure 9.13 illustrates the mechanics of boundary extraction. 1t shows a sim- 

ple binary object, a structuring element B, and the result of using Eq. (9.5-1). 
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FIGURE 9.1 4 
(a) A simple 
binary image, with 
1's represented ~ I I  

white. (b) Resul( 
of using 
Eq. (9.5-1) with 
the structuring 
clement in 
Fig. 9.1.3(b). 

Although t h e  structuring element shown in Fig. 9.13(b) is among the most fre- 
quently used, i t  is by no means unique. For example, using a 5 x 5 structuring 
element oi' 1's would result in a boundary between 2 and 3 pixels thick. Note that 
when the origin of 5 is on the edges of the  set, part of the structuring clement 
may be oi~tside the image. The nonnal treatment of this condition is to assume 
that values outside the borders of the image are 0. 

Figure 9.14 fur ther  illustrates the use of Eq. (9.5-1) with the structuring EXAMPLE9.5: 
element of Fig. 9.13(b). In this example. binary 1's are shown in white and 0's Boulldar~ 

in black,so the elements of the structuring element, which are 7 's,also are treat- extraction by 
rno~~pholagical 

ed as white. Because of the structuring element used, the boundary shown in p,,,,,,ing. 
Fig. 9.14(b) is one pixel thick. rn 

\ 

5'. 5.2 Region Filling 

Next we develop a simple algorithm for region filling based on set dilations, conl- 
plementation, and intersections. In Fig. 9.1 5 A denotes a set containing a subset 
whose elements are 8-connected boundary points of a region. Beginning with a 
pointy inside the boundary, the objective is to fill the entire region with 1's. 

If we adopt the convention that all nonboundary (background) points are la- 
beled 0, then we assign a valuc of 1 t o p  to begin. ?'he I'ollowing procedure then 
fills the region with 1's: 

where Xu = p, and B is the sylnlnetric structuring element shown i r ~  Fig. 9.15(c). 
The algol.ithrn terminates at  iteration step k if Xk = Xk-, .The set union of X, 
and A contains the filled set and its boundaiy. 

The dilation process of Eq. (9.5-2) would fill the entire area if left unchecked. 
However, the intersection at each step with Ai'limits the result to inside the re- 
gion of interest.This is our  first example of how a morphological process can be 
conditioned to meet a desired property. In the currenl applicarion, i t  is 
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a b c  
d e f  
g h i  

Region filling. 
(a) Set A .  
(b) Complement 
o l  A .  
(c) S t ruc tu r ing  
dement B. 
(d) Initial point 
inside the 
boundary. 
( e j ( h )  Various 
steps of 
Eq. (9.5-2). 
( i )  Final result 
[un ion  of (a) and 
(h)l .  

Origin 

appropriately called conditional dilation. The rest of Fig. 9.15 illustrates further 
the mechanics of Eq. (9.5-2). Although this example has only one subset, the con- 
cept clearly applies to any finite number of such subsets, assuming that a point 
inside each boundary is given. 

EXAMPLE 9.6: I Figure 9.16(a) shows an image composed of white circles with black inner 
Morphological spots. An image such as this might result from thresholding into two levels a 
region filling. scene containing polished spheres (e.g., ball bearings). The dark spots inside 

the spheres are the result of reflections. The objective is to eliminate the re- 
flections by region filling. Figure 9.16(a) shows one point selected inside one of 
the spheres, and Fig. 9.16(b) shows the result of filling that component. Finally, 
Fig. 9,16(c) shows the result of filling all the spheres. Because it must be known 
whether black points are background points or sphere inner points, f u l l y  au- 
tomating this procedure requires that additional. "intelligence" be built into the 
algorithm (see Problem 9.23). .@ 

9.53 Extraction of Connected Components 

The concepts of connectivity and connected components were introduced in 
Section 2.5.2. In practice, extraction of connected components in a binary image 
is central to many automated image analysis applications. Let Y represent a 
connected component contained in a set A and assume that a point p of Y is 



a b c  

FIGURE 9.1 6 (a) Binary image (the whi le dot inside one of the regions is the starting 
p o i n ~  COY the region-filling algorithm). (b) Rcsult of lilling that regjou (c) Result of f i l l -  
ing all regions. 

known. Then rhc  lollowing iterative expression yields all t he  elements of Y :  

where X,, = 11, and B is a suitable structuring eiemenl, as shown in Fig. 9.17. If 
X A  = X k - ,  , the algorithm has converged and we let Y = X,. 

Equation (9.5-3) is similar i n  form to Eq. (9.5-2). The only difierence is the 
usc of A instead of its complement. This difference arises because all the ele- 
ments sought ( t h a t  is, the e lmrents  of the connected component) are labeled I. 

a b c  
d e 

FIGURE 9.1 7 (a) Sel A showing initial point p (all shaded points are valued 1, but are 
shown different fromp to indicate that they have not yet been found by the algorithm). 
(b)  S~ructur ing element. (c)  Result of first iterative step. ( d )  Resulr of second step. 
(s) Final result. 

. - 
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The intersection with A at each j terative step eliminates dilations centered on 
elerne~lts labeled 0. Figure 9.17 illusrratcs the  mechanics oi Eq. (9.5-3). Note 
illat the shape of the structuring element assumes 8-connectivity between pix- 
els. As in the region-filling algorithm, the results just discussed are applicable to 
a n y  finite number of sets of cot~necled coniponen is contained in A ,  assuming 
that c7 point is known in each connected component. 

EXAMPLE 9.7 7' Connected componznrs are used frequently for automated inspection. Fig- 
Using collllccfed ure 9.18(a) shows an X-ray imagc of a chickell breast that cot1 tains bone €rag- 
COI )~  ponents to Inents. I t  is of considerable intel-est to be able to detecl such forcign objects jn 
detect foreign 
objects in processed food befori: packaging andlor shipping. In this particular case, the 
packaged h o d .  density of the bones is such rhar thcir nominal gray-level values are different 

from the background-This make extrac(ion oe the bones f ium the background 
a silnple 11ia tter by using a single threshold (thresholding was in froduced in Sec- 
tion3.1 and  is discussed in  considerable more dstail in Section 1 @.3).The resul~ 
is rhs binary image sho\vn in Fig. C).lS(h). 

Thc most signillcant feature i n  this  figure is  he fact that the points that  re- 
main are clustered into objecls (boncs), r a the r  than being isolated. iri-elevaul 
poirlts. We C ~ I I I  make surc tha t  onlv objects of --sigr~ificani" size remain by erod- 

FIGURE 9.1 8 
(a) X-ray imagc 
of ch icke~l  filet 
with bone 
fl-ag~nen ts. 
(b) Thresholded 
image. (c) Image 
eroded with a 
5 X 5 strucluring 
clctnenl of 1's. 
(d) Nl~mber of 
pixels i l l  t hc 
connected 
components of 
(c). ( l m i ~ g e  
courtesy of NTB 
Elektronisclre 
Gcracte GmbH. 
Dicpholz ,  
Germany, 
www.nl hxray.com.) 

Connected No. of pixcls in 
compone~rt co~necced conlp 
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ing the thresholded image. In this example, we define as significant any object 
that  remains after erosion with a 5 X 5 structuring element of l's.The result of 
erosion is shown in Fig. 9.18(c). The next step is to analyze the size of the ob- 
jects that remain. We label (identify) these objects by extracting the connected 
components in the image. The table in Fig. 9.18(d) lists the results of the ex- 
traction-There are a total of 15 connected components, with four of them being 
dominant in size. This is enough to determine that significant foreign objects 
are contained in the original image. If desired, further characterization (such 
as shape) is possible using the techniques discussed in Chapter 11. F+ 

9,5-4 Convex Hull 
A set A is said to be convex if the straight line segment joining any two points 
in A lies entirely within A. The convex- hull H of an arbitrary set S is the small- 
est convex set containing S. The set difference H - S is called the convex defi- 
ciency of S .  As discussed in more detail in Sections 11.1.4 and 11.3.2, the convex 
hull and convex deficiency are useful for object description. Here, we present a 
simple morphological algorithm for obtaining the convex hull, C ( A ) ,  of a set A .  

Let B', i = 1,2 ,3 ,4 ,  represent the four structuring elements in Fig. 9.19(a). 
The procedure consists of implementing the equation: 

Xi = (xkL, @ B')U A i = 1 ,2 ,3 ,4  and k = l , 2 , 3  , . . .  (9.5-4) 

with Xb = A. Now let DL = X:,,,, where the subscript "conv" indicates con- 
vergence in the sense that Xk = X i - ,  . Then the convex hull of A is 

In other words, the procedure consists of iteratively applying the hit-or-miss 
transform to A with B'; when no further changes occur, we perform the union 
with A and call the result D1.The procedure is repeated with L12 (applied to A) 
until no further changes occur, and so on. The union of the four resulting D's 
constitutes the convex hull of A. Note that we are using the simplified imple- 
mentation of the hit-or-miss transform in which no background match is 
required, as discussed at the end of Section 9.4. 

Figure 9.19 illustrates the procedure given in Eqs. (9.5-4) and (9.5-5). Fig- 
ure 9.19(a) shows the structuring elements used to extract the convex ]lull. The 
origin of each clement is at its center. The x entries indicate "don't care" con- 
djtions.This means that a structuring element is said to have found a match in 
A if the 3-by-3 region of A under the structuring element mask at that location 
matches the pattern of the mask. For a particular mask, a pattern match occurs 
when the center of the 3-by-3 region in A is 0, and the three pixels under the 
shaded mask elements are 1.The values of the other pixels in the 3-by-3 region 
do not matter. Also, with respect to the notation in Fig. 9.19(a), B' is a clockwise 
rotation of B'-' by 90". 

Figure 9.19(b) shows a set A for which the convex hull is sought. Starting 
with Xh = A resulted in the set shown in Fig. 9.19(c) after four iterations of 
Eq. (9.5-4). Then, letting X i  = A and again using Eq. (9.5-4) resulted in the set 
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FIGURE 9.1 9 
(a) Structuriilg 
elemcnts. (b) Set 
A.  (c)-(f) Results 
of convergence 
with the 
structuring 
elements shown 
in (a). (g) Convex 
hull .  (h) Convex 
llull showing the 
contribution of 
each structuring 
element. 

shown in Fig. 9.19(d) (convergence was achieved in only two steps in this case). 
The next two results were obtained in the same way. Finally, forming the union 
of the sets in Figs. 7.19(c), (d), (e), and (f) resulted in the convex hull shown in 
Fig. 9.19(g). The contribution of each structuring element is highlighted in the 
composite set shown in Fig. 9.19(11). 

One obvious shortcoming of the procedure just outlined is that the convex 
hull can grow beyond the minimum dimensions required to guarantee convex- 
ity. One simple approach to reduce this effect is to limit growth so that it does 
not extend past the vertical and horizontal dimensions of the original set of 
points. Imposing this limitation on the example in Fig. 9.19 resulted in the image 
shown in Fig. 9.20. Boundaries of greater complexity can be used to limit growth 
even further in images with more detail. For example, we could use the maxi- 
mum dimensions of the original set of points along the vertical, horizontal, and 
diagonal directions. The price paid for refinements such as this i s  additional 
complexity (and increased computational requirements) of the algorithm. 
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FIGURE 9.20 Rcss~lt of limiting growth of convex hull algorithm to the maximum di- 
mensions of the originat set of points along the vertical and horizontal directions. 

c.5.S Thinning 
The thinning of a set A by a structuring element B,  denoted A @ B, can be de- 
fined in terms of the hit-or-miss transform: 

As in the previous section, we are interested only in pattern matching with ahe 
structuring elements. so no background operation is required in the hit-or-miss 
transform. A more usefu1 expressirm for lhinning A svmrnetrically is based an 
a seylience of srr~~cturing elements: 

{ B )  = { B I ,  B ~ ,  B', . . . , B" ) (9.5-7) 

where R* is a rotated version of B'-I. Using this concept. we now define thinning 
by a sequence of structuring elernen ts as 

The process is to thin A by one pass with B1, then thin the result with one pass 
of B2, and so on, until A is thinned wit11 one pass of BN.The entire process is re- 
peated until no further changes occur, Each Individual rhinning pass i s  per- 
formed using Eq. (9.5-6). 

Figure 9,21(a) shows a set of structuring elements commonly used for thin- 
ning, and Fig. 9.21(b) shows a set A to be thinned by using the procedure just 
discussed. Figure 9.21(c) shows the result of thinning with one raster pass of A 
wjth B1,  and Figs. 9.21(d) through (k)  show the results of passes with the other 
structuring elements. Convergence was achieved after the second pass of p. 
Figure 9.22(k) shows the thinned result. Finajly, Fig, 9.21(1) shows the thinned 
set converted to nz-connectivity (see Section 2.5.2) to eliminate multiple paths. 

B.5.b Thickening 
Thickening is the morphological dual of thinning and is  defined by the expression 
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- Origin 

B ' B~ BI B4 lIS @ B~ B$ 

Origin 

a FIGURE 9.21 (a) Sequence of rotated structuring elements used for thinning. (b) Sel A. 
b ;c if (c) Result of thinning with the first element. (dl-(i) Results of lhinning with t h e  next 
e. lf 8' seven elements (there was n o  change between the seventh and e~ghth elements). (j) Re- 
:h .i j sult of using the first element again (there wcre no changes for the next two elements). 
k 1 (k) Result afler convergence. ( I )  Conversion to m-connectivity 

- - -  - . - 

where B i s  a structuring element suitable for thickening. As in thinning, thck- 
ening can be defi~led as a sequential operation: 

A O { B )  = (( . . . ( (A  Q B ' )  0 B ~ )  . . . ) O B"). (9.5-10) 

The structuring elements used for thickening have the same form as those shown 
in Fig. 9.21(a) in connection with thinning, but with all 1's and 0's interchanged. 
However, a separate algorithm for thickening is seldom used in practice. In- 
stead, the usual procedure is to thin the background of the set in question and 
then complement the result. Jn sther words. to thicken a set A ,  we form C = AC, 
thin C ,  and then form Cc. Figure 9.22 iIlustrates this procedure. 

Depending an the nature of A ,  this procedure may result in some discon- 
nected points, as Fig. 9.22(d) shows. Hence thicken~ng by this method usually is 
followed by a simple postprocessing step to remove disconnected points. Note 
from Fig. 9.22(c) that the thinned background forms a boundary for the thick- 
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a b: 
c .d. 
e 

FIGURE 9.22 (a )  Set A.  (b) Complement of A. (c) Result of thinning the complement of 
A.  (d)  Thickened set obtained by complementing (c). (e) Final result, with no discon- 
nected points. 

ening process.This useful feature is not present in the direct implementation of 
thickening using Eq. (9.5-10)) and it is one of the principal. reasons for using 
background thinning to accomplish thickening. 

9.5.7 Skeletons 
As shown in Fig. 9.23, the notion of a skeleton, S( A), of a set A is intuitively sim- 
ple. We deduce from this figure that 

(a) If z is a point of S(A)  and (D),  is the largest disk centered at z and con- 
tained in A, one cannot find a larger disk (not necessarily centered at I )  

containing (D), and included in A .The disk (D), is called a maximum disk. 
(b) The disk (D), touches the boundary of A at two or more different places. 

The skeleton of A can be expressed in terms of erosions and openings. That is, 
it can be shown (Serra [1982]) that 

with 

where B is a structuring element, and (A 8 k B )  indicates k successive ero- 
sions of A: 

k times, and K is the last iterative step before A erodes to an empty set. I n  
other words, 
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FIGURE 9.23 
( a )  Set A .  
(b)  Various 
positions of 
maximum disks 
wirh centers on 
the skeleton of A .  
(c) Another 
maximum disk on 
a difleren t 
segment of the 
skeleton oI' A. 
(d) Complete 
skeleton. 

EXAMPLE 9.8: 
C o n ~ p u t ~ n g  the 
skeleton of a 
simple figure. 

The formulation given in Eqs. (9.5-11) and (9.5-12) states that S ( A )  can be 
obtained as the union of the skeleton subsets Sk(A).A1so. it  can be shown t ha l  
A can be reconsrructed from these subsets by using the  equation 

where  (s*(A) @ k ~ )  denotes k successive djlations o( S , ( A ) ;  that is, 

%% Figure 9.24 illustrates the concepts just discussed. The first column shows 
t h e  original set (at the top) and two erosions by the structuring element B. Note 
that  one more erosion of A would yield the ernply set, so K = 2 in this case.The 
second column shows the opening of the sets in the first column by B.These re- 
sults are easily explained by the fitting characterization of the opening opera- 
tion discussed in connection with Fig. 9.8.The third column simply contains the 
set differences between the first and second columns. 

The fourth column contains two partial skeletons and t h e  final  result  (at  the 
bottom of the column).The final skeleton not only is thicker than it needs lo be 
but, more important,  i t  is not connected. This result is not  unexpected,  as noth- 
ing in  the preceding formulation of the morphological skeleton guarantees con- 
nectivity. Morphology p,roduces an  elegant formulation in terms of erosions and 
openings of the given set. However, heuristic formulations such as the alga- 
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FIGURE 9.24 Implementation of Eqs. (9.5-11) througli (9.5-15).The original set is  ar tlie top le f l ,  
and its morpl~o~ogical skeleton is at tlie bottom of the fourth column.The recclnstructed ser is a1 
rhe botlom of t he  sixth column. 

rithm developed in Section 11.1.5 are needed if, as is usually the case. the skele- 
ton must be maximally thin, connected, and minimally eroded. 

The f i f t h  column shows & , ( A ) ,  S , ( A )  63 B, and ( & ( A )  C9 2 ~ )  .= 

(S , (A)  €B 8 )  @ B. Finally, the las t  column s h o w s  r econs t ruc t i on  of set A,  
which,  according to Eq, (9.5-I5), i s  the union of the dilated skeleton subsets 
sllown in t h e  fifth column. M 

9.5.8 Pruning 
Pruning methods are an essential complernenr to thinning and skeletonizing al- 
gorithms because these procedures tend to leave parasitic compo~lents t h a t  
need to he "cleaned up" by postprocessing. We begin the  discussion with a prun- 
ing problem and then develop a morphological solutjon based on the material 
introduced in the p r e c e d i ~ g  sections.'lhus we take this opportunity to illustrate 
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FIGURE 9.25 
(a) Original 
image. (b) and 
( c )  Structuring 
elements used f a r  
deleting end 
poinrs. (d) Result 
of three cycles of 
chinning. (e) End 
points of (d). 
(13 Dilation of end 
points 
conditioned on  
(a). (g) Pruned 
image. 

how to go about  solving a problem by combining several of thc tcchniqucs 
discussed up to rhis  point. 

A common approach in the au to~~~a led  recognition of hand-prinled characters 
is ro analyze the shape of the skeleton of each character.These skeletons often are 
characterized by "spurs" (parasitic components). Spurs are caused during erosion 
by non uniformities jn the strokes composing the characlers. We develop a mor- 
phologjcal technique for handling t.his problem, starting with the assumption that 
the length ol a parasific component does not excccd a specified number of pixels. 

Figure 9.25(a) shows the skeleton of a hand-printed "a." I l e  parasilic corn- 
poilent on the leftmost part of the character is illustl-ative of what we are inter- 
ested in removing. The solutior~ is based on suppressing a parasitic branch by 
successively climi~lating its end point. Of course, this also shortens (01- eliminates) 
oefie1- branches in the character but, in the absence of other structural informa- 
tion, the assumption in this example is that any branch with three or less pixels is 
to be elimillated. Thinning of an input set A with a sequence of structuring ele- 
ments designed to detect only end points achieves t h e  desired result.That is, let 

X, - A 63 ( B )  (9.5-17) 

where ( B )  denotes the structuring element sequence shown in Figs. 9,25(b) and 
(c) [see Eq. (9.5-7) regarding structuring-element sequences].The sequence of 
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structuring elements consists of two different structures, each of which is ro- 
tated 90" for a totti1 of eight elements. The X in Fig. 9.25(b) signifies a "don't 
care" condition,in the sense that it does not matter whether the pixel in that lo- 
cation has a value of 0 or 1.Numerous results reported in  he literature on mor- 
phojogy are based on the use of a single structuring element, similar to the one 
in Fig. 9.25(b), but having "don't care" conditions along the entire first colunln. 
This is incorrect. For example, this element would identify the point located in 
the eighth row, fourth column of Fig. 9.25(a) as an end point, thus eliminating 
it and breaking connectivity in the stroke. 

Applying Eq. (9.5-17) to A three times yields the set X, shown in Fig. 9.25(d). 
The next step is to "restore" the character to its original form, but with the par- 
asitic branches removed-To do so first requires forming a set X2 containing all 
end points in X, [Fig. 9.25(e)]: 

X 

X I  = U ( X ,  0 B') (9.5- 18) 
k = l  

where the Bk are the same cncl-point detectors shown in Figs. 9.25(b) and (c). 
The ncxt step is dilation of the end points three times, using set A as a delirnitcr: 

x3 = ( & @ H ) ~ A  (9.5-19) 

where N is a 3 x 3 structuring element of 1's As in the case of region filling and ex- 
traction of connected components, this type of conditional dilation prevents the 
creation of 1-valued elements outside the region of interest, as evidenced by the 
result shown in Fig. 9.25(E).Finally, the union of X3 and Xi yields the desired result, 

X4 = X, U X3 (9.5-20) 

as shown in Fig. 9.25(g). 
I n  more complex scenarios, use of Eq. (9.5-19) sometimes picks up the "tips" 

of some parasitic branches. This condition can occur when the end points of 
these branches are near the skeleton. Although Eq. (9.5-17) may eliminate them, 
they can be picked up again during dilation because they are valid points in A. 
Unless enti.re parasitic elements are picked up again (a rare case if these ele- 
ments are short with respect to valid strokes), detecting and eliminaling them 
is easy because they are disconnected regions. 

A natural thought at this juncture is that there must be easier ways to solve 
this problem. For example, we could just keep track of all deleted points and sim- 
ply reconncct the appropriate points to all end points left after application of 
Eq. (9.5-l7).This option is valid, but the advantage of the lormulation just pre- 
senled is that the use of simple morphological constructs solved the entire prob- 
lem. In practical situations when a set of such tools is available, the advantage 
is that  no new algorithms have to be written. We sirnpl y combine the  necessary 
morphological functions into a sequence of operations. 

4. ' 4 . 0  Summary of Morphological Operations on Binary Images 
Table 9.2 summal.jzes the morphological results developed in the preceding sec- 
tjons, and Fig. 9.26 summarizes the basic typw of struc-turing elements used in the 
various lnorphological processes discussed thus far. Note that the Roman nu- 
merals in the third column ofTable 9.2 refer to the  structuring elements in Fig. 9.26. 
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TABLE 9.2 
Summary of 
mo~~phological 

Translation ( A ) ,  = {w 1 w = a + z, for a E A )  

operations and 
their properljes. 

Reflection B = {v~u) = -6, f o r b ~ l ? }  

Operation Equation 

Difference A - B = {w 1 w E A, w @ B )  
= A ~ B '  

Dilalion 

Erosion A 8 B  = { z ~ ( B ) ,  A )  

1 Closing AmB = ( A @ B ) @  B 

Hit-or-miss A O B = ( A  8 B , )  n (A' 9 B,) 
transform 

= ( A  8 B , )  - ( A  @ B,) 

Boundary P(A)  = A - ( A 9  B )  
exlraction 

Region filling Xk = (xk- ,  C3 B )  fl A(; XO = p and 
k = l ,2 ,3,  . . .  

Connected Xk = ( x ~ - ,  CB B )  n A; Xg = p and 
components k = l , 2 , 3 ,  . . . 

Convexhull X ~ = ( X ~ _ , O B ~ ) U A ; ~ = ~ , ~ , ~ , ~ ;  
k = 1,2,3,  . . . ; Xb = A; and 
Di = X:onv. 

Comments 
(The Roman numerals refer to the 

structuring elemenfs shown in 

Fig. 9.26). 

Translates the origin 
of A to point i .  

Rcflecls all elernenls 
of B about the origin 
of this set. 

Set of points not in A. 

Set of points that belong 
to A but not to B. 

"Expands" t he  boundary 
of A .  (I)  

"Contracts" the boundary 
of A .  (I) 

Smoothes contours, 
breaks narrow isthmuses, 
and eliminates small 
islands and sharp 
peaks. (I) 

Smoothes con tours, fuses 
narrow breaks and long 
thin gulfs, and eliminates 
small holes. ( I )  

T l e  set of points 
(coordinates) at which, 
simultaneously. B ,  found 
a match ("hit") in A and 
B,  found a match in A". 

Set of points on the 
boundary of 
set A.  ( I )  

Fills a region in A ,  give11 a 
point p in the region. (11) 

Finds a connected 
component Y in A,  given 
a point p in Y. (I)  

Finds the convex hull C ( A )  
of set A ,  where "conv" 
indicates convergence 
in the sense that 
x;, = x;,-, . ([TI) 
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Comments 
(The Roman numerals refer to the 

structuring elements shown in 

Operation Equation ~ i g .  9.26). 

Thinning A @ B = A -  ( A O B )  Thins set A.The first two 
= A n  ( A O B ) c  equations give the basic 

definition of thinning. 
A 8 { B )  = The last two equations 
(( . . . ( ( A  €3 R ' )  8 B ~ )  . , . ) 8 B") denote thinning by a 

{ B }  = { B ' ,  B2, B3, . . . , B") sequence of structuring 
elements. This method 

Thickening A O B = A U ( A O B )  

K 

Skeletons S(A) = US@) 
k = Q  

Reconstruction of A: 
K 

Pruning 

I 

X, = A 63) {B) 
s 

X,  = U ( X ,  @ B ~ )  
k = l  

X3 = (.X2a H) n A 

X ,  = X ,  U x, 

is nornlally used in 
practice. (IV) 

Thickens set A .  (See 
preceding comments on 
sequences of structuring 
elements.) Uses IV with 
0's and 1's reversed. 

Finds the  skeleton S(A) of 
set A.  The last equation 
indicates that  A can be 
reconstructed from its 
skeleton subsers Sk(A) .  
In all three equations, K is 
the value of the iterative 
step after which t h e  set A 
erodes to the empty set. 
The notation ( A  8 kB) 
denotes the k th  iteration 
of successive erosion of 
A by B. (I) 

Xq is the result of pruning 
set A. The number of 
times that the first 
equation is applied to 
obtain X, must be 
specified. Structuring 
elements V are used for 
the first two equations. 
In the third equation H 
denotes structuring 
element I. 

TABLE 9.2 
Summary of 
morphological 
results and their 
propert ies  
(continued) 
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' i = , 2 , 3 , 4  
x x (rotate 90") 

B1;r;aiLLiiy 8 

111 IV 

~ ' i  = l , 2 ,3 ,  4 B' i = 5,6 ,7 ,8  
(rotate 90") (rotate 90") 

FIGURE 9.26 Five basic types of structuring elements used for binary morphology.The 
origin of each element is a t  its center and the X's indicate "don't care" values. 

Extensions to Gray-Scale Images 
In this section we extend to gray-scale images the basic operations of dilation, 
erosion, opening, and closing. We then use these operations to develop several 
basic gray-scale morphological algorithms. In particular, we develop algorithms 
for boundary extraction via a morphological gradient operation, and for region 
partitioning based on texture content. We also discuss algorithms for smooth- 
ing and sharpening, which often are useful as pre- or postprocessing steps. 

Throughout the discussions that follow, we deal with digital image functions 
of the form f (x, y)  and b(x, y) ,  where f (x, y)  is the input image and b(x, y) is 
a structuring element, itself a subimage function. The assumption is that these 
functions are discrete in the sense introduced in Section 2.4.2. That is, if Z de- 
notes the set of real integers, the assumption is that ( x ,  y) are integers from 
Z X Z and that f and b are functions that assign a gray-level value (a real num- 
ber from the set of real numbers, R) to each distinct pair of coordinates ( x ,  y). 
If the gray levels also are integers, Z replaces R. 

9,6.1 Dilation 
Gray-scale dilation off by b, denoted f @ b, is defined as 

(f @ b) ( s ,  1 )  = 

max { f ( s  - x, t - y)  + b(x, y )  1 (s - x ) ,  ( 1  - Y )  E 9; ( x ,  Y E Q) (9.6-1) 

where Df and D, are the domains off and h, respectively. Keep in mind that f 
and b are functions, rather than sets, as is the case in binary morphology. 

The condition that (s - x) and ( t  - y )  have to be in the domain o€.f, and x 
and y have to be in the domain of b, is analogous to the condition in the bina- 
ry definition of dilation, where the two sets have to overlap by at least one 
element. Note also that the form of Eq. (9.6-1) is similar to 2-D convolution 
[Eq. (4.2-30)], with the max operation replacing the sums of convolution and the 
addition repJacing the products of convolution. 



9.6 it1 Extensions to Gray-Scale Images 55 1 

We illustrate the notation and mechanics of Eq. (9.6-1) by means of simple 1-D 
functions. For functions of one variable, Eq. (9.6-1) reduces to the expression 

(f @ b ) ( s )  = max{f(s - x) + b ( x ) ( ( s  - x)  ED, and x  ED^). 
Recall from the discussion of convolution that f (-x) is simply f (x)  mirrored 
with respect to the origin of the x axis. As in convolution, the function f (s - x )  
moves to the right for positives, and to the left for negative $.The requirements 
that [he value of (s - x) has to be in the domain off and that the value of x has 
to be in the domain of b imply that f and b overlap. As noted in the previous 
paragraph, these conditions are analogous to the requirement in the binary de- 
finition of dilation, where the two sets have to overlap by at least one element. 
Finally, unlike the binary case, J; rather than the structuring element b, is shift- 
ed. Equation (9.6-1) could be written so that b undergoes translation instead of 
f. However, if Db is smaller than Df (a condition almost always found in practice), 
the form given in Eq. (9.6-1) is simpler in terms of indexing and achieves the 
same result. Concepiually, f sliding by b is really no different than b sliding by f. 
In fact, although this equation is easier to implement, the actual mechanics of 
gray-scale dilation are easier to visualize if b is the function that slides past f. 

An example is shown in Fig. 9.27. Note that at each position of the structur- 
ing element the value of dilation at that point is the maximum of the sum off 

FIGURE 9.27 (a)  A simple function. (b) Structuring element of height A. (c) Result of dila- 
tion for various positions of sliding b pastf. (d) Complete result of dilation (shown solid). 
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flGURE 9.28 
Erosion of the 
function shown in 
Fig. 9.27(a) by the 
strucruring 
element shown in 
Fig. 9.27(b). 

and b in the interval spanned by b. The general effect of performing dilation on 
a gray-scale iinage is twofold: (1) If all the values of the structuring element are 
positive, the output image tends to be brighter than the input. (2) Dark details 
either are reduced or elitninated, depending on how their values and shapes re- 
late to the structuring element used for dilation. 

5.4-2 Erosion 

Gray-scale erosion, denoted f 8 b, is defined as 

where Dl and D, are the domains of f and b. respectively. The condition that 
(s + x) and ( t  + y)  have to be in the domain ofl; and x and y have to be in 
the domain of b, is analogous to the condition in the binary delinition of er'o- 
sion, where the structuring element has to be compIetelv contained by the set 
being eroded. Note that the form of Eq. (5.6-2) is similar i n  form to 2-D corre- 
lation [Eq. (4.6-30)], with the min operation replacing the sums of correlation 
and subtraction replacing the products of correlation. 

We il[ustrate the mecl~anics of Eq. (9.6-2) by eroding a simple 2-D function. 
For functions of one variable, the expression for erosion reduces to 

As in correlation, the function f (s + x) moves to the left for positive s and to 
the right for negative s.  The requirements thal (s + x )  E D f  and x E Dh imply 
that the range of b is completely contained within the range of the displaced$ 
As noted in the previous paragraph, these requirements are analogous to those 
in the binary definition of erosion, where the structuring element has to be con- 
tained compIetely in the set being eroded. 

Finally. unlike the binary definition of erosion.f, rather than the structuring 
element 6 ,  is shifted-Equation (9.6-2) could be written so that b is the fu~lction 
translated, resulting in a more complicated expression in terms of indexing. Be- 
cause f sliding past b conceptually is the same as b sliding past f, the form of 
Eq. (916-2) is used for the reasons stated at the end of t h e  discussio~~ on dilation. 
Figure 9.28 shows the result of eroding the function of Fig. 9.27(a) by the struc- 
turing element of Fig. 9.27(b). 
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Equation (9.6-2) indicates tha t  erosion is based on choosing the minimum 
value of (f - 1) )  in the inter-val defined by the shape of the structuring ele- 
l n t n  t. The genera I effect of performing erosion 011 a gray-scale image is twofold: 
(1) Tf all the elements of the st)-ucturing element are positive. the output image 
tends to be darker  than the input image. (2) The effect of bright details in the 
input imagt: tha t  are smaller jn area t han  the structuring element is  reduced, 
with t h e  degree of reduction being determined by the gray-level values 
surroundi~lg the bright dctail a n d  by the shape and amplitude values of the 
structuring element itself. 

Gray-scale dilation and erosio~l are duals  with respect to function comple- 
mentation and rellection.That is, 

A 

where!'' = - f (x,  y )  and 1) = h(-x ,  - y ) .  Exccpt as nccdcd for clarity,we simplify 
the notation in the following discussions by omitting the argurnentsof all functions. 

@ Figure 9,29(a) shows a simple 512 X 512 gl-ay-scalc irnage. and Fig. 9.29(b) EXAMPLE9.9: 
shows the result of dilating this image with a "flal-top" strrlcturing element in the ~llusl1atiol~ of 

shape of a pal-allelepiped of u n i ~  height and size 5 X 5 pixels. Based on the pre- d i l a t i o ~ ~  and  
erosion on a gray- 

ceding discussion. dilation is espected to produce a n  image tha t  is brighter than scale 
the origirlal a n d  in  which small, dark details have been reduced or eliminated. 

FIGURE 9.29 
(a) Original 
image. (b) Result 
of dilation. 
(c) Result of 
erosion. 
(Courtesy of 
Mr .  A. Morris, 
Leica Carn br idge. 
Lcd.) 
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These effects dearly are visible in Fig. 9.29(b). Not only does the image appear 
brighter than the original, but the sizes of dark features, such as the nostrils and 
the dark components of the studded rein extending from the ears down to the 
neck, have been reduced. Figure 9.29(c) shows the result of eroding the original 
image. Note the opposite effect to diIation.The eroded image is darker, and the 
sizes of small, bright features (such as the studs on the rein) were reduced. I 

9.5.3 Opening and Closing 

The expressions for opening and closing of gray-scale images have the same 
form as he i r  binary counterparts. The opening of image f by subimage (struc- 
turing element) b, denoted f o h, is 

As in the binary case, opening is simply the erosion o f f  by b, followed by a di- 
lation of the result by b. Similarly, the closing off by b, denoted f m b, is 

The opening and closing for gray-scale images are duaIs with respect to com- 
plementation and reflection. That is, 

(f - b y  = f C O  I;. 

Because f' = - f (x, y ) ,  Eq. (9.6-6) can be written also as ( f  b) = (-f i). 
Opening and closing of images have a simple geometric interpretation. 

Suppose that we view an image function f (x, y) in 3-D perspective (like a re- 
lief map), with the x- and y-axes being the usual spatial coordinates and the 
third axis being gray-level values. In this representation, the image appears as 
a discrete surface whose value at any point ( x ,  y )  is the value off  at those co- 
ordii~ates. Suppose that we open f by a spherical structuring element, b, view- 
ing this element as a "rolling ball."Then the mechanics of opening f by b may 
be interpreted geometrically as the process of pushing the ball against the un- 
derside of the surface, while at  the same time rolling it so that the entire un- 
derside of the surface is traversed. The opening, f b, then is the surface of the 
highest points reached by any part of the sphere as it slides over the entire 
undersurface of ,f 

Figure 9.30 illustrates this concept. Figure 9.30(a) shows a scan line of a gray- 
scale image as a continuous function to simplify the illustration. Figure 9.30(b) 
shows the rolling ball in various positions, and Fig. 9.30(c) shows the complete 
result ol'openingf by b  along the scan 1ine.All the peaks that were narrow with 
respect to the diameter of the ball were reduced in amplitude and sharpness. In 
practical applications, opening operations usually are applied to remove small 
(with respect to the size of the structuring element) light details, while leaving 
the overall gray levels and larger bright features relatively undisturbed. The ini- 
tial erosion removes the small details, but it also darkens the image. The subse- 
quent dilation again increases the overall intensity of the image without 
reintroducing the dktails totally removed by erosion. 
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FIGURE 9.30 
(a) A gray-scale 
scan line. 
(b) Positions of 
rolling ball for 
opening. 
(c) Result of 
opening. 
(d) Positions of 
rolling ball for 
closing. ( e )  Result 
of clos~ng. 

Figures 9.30(d) and ( e )  show the result of closing f by b. Here, the ball sIides 
on top of the surface, and peaks essentially are left in their original form 
(assuming that their separation at the narrowest point exceeds the diameter of 
the ball). In practice, closing is generally used lo remove dark details from an 
image, while leaving bright features relatively undisturbed. The initial diIation 
removes the dark details and brightens the image, and the subsequent erosion 
darkens the image without reintroducing the details removed by dilation. It is 
of interest to compare Fig. 9.30 with Figs. 9.8 and 9.9. 

The gray-scale opening operation satisfies the following properties: 

(0 (fo b )  ~ f .  
(ii) Iff, J f2. then (f, o b) ~ ( f ,  o b). 
( i i i ) ( f  o b )  b = f a  b. 

The notation e j  r is used to indicate that the domain of e is a subset of the do- 
main of P., and also that e ( ~ ,  y)  r r ( x ,  y)  for any (x, y )  in the domain of e. 
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EXAMPLE 9.10: 
Illus~rarion of 
gray -scale 
opening and 
closing. 

FlGURE 9.31 (a) Opet~ing and (b)  closing of Fig. 9.2'9(a). (Courtesy of Mr. A. Moi-ris, 
Leica Cambridge, Ltd.) 

Similal-lg, the closing operation satisfies t he  foliowing properl~es: 

ci, . f ' ~ ( f . b ) .  
(ii) I f ,!I ~ f 2 ,  (hen (f I b)  J (A b). 
(iii) (f - h )  * b  = f a  h. 

The usefulness of these expressions is siuiilar to that of their binary counter.parts. 

Figure 9.31(a) shows the result of opening the image in Fig. 9.29(a) w ~ t h  the 
same structuring element used there. Note the decreased sizes of the small, 
bright. delails. with no appl-ecinble effect on the darker gray levels. Figure 9.31(b) 
shows the closing of Fig. 9.29(a). Note the decreased sizes of the  small, dark de- 
tails, with relatively little effect on the brlght features. 

: Some Applications of Gray-Scale Morphology 
We conclude rhe discussjoi~ of morphological techniques by presen t i n s  in some 
detail val-ious applications of gray-scale morphology. Unless stated otherwise, 
a11 the images shown are of size 512 X 512 and  wcre processed by using the 
structuring elernenl discussed in connection with Fig. 9.29. 

Morphological smoothing 

One way to achieve smoothing is to perform a morphological opening followed 
by a closing. T11c net result of thesc two opcrations is to remove or attenuate 
boih bright and  dark artifacrs or nojse. Figure 9.32 shows a slnoothed versio~r 
of the image shown in  Fig. 9.29(a). 

Morphological gradient 
I n  addition to the operations discussed earlier in connection with the removal 
of sinall dark and bright artifacts, dilafion and  erosion often are used to con)- 
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C 
FIGURE 9.32 Morphologicai snloothing of the image in Fig. 9.29(a). (Courtesy of Mi.. A. 
Mori-is, Leica Cambridge, Lrd.) 

pure the  rnorphologicnl g ) ~ r r l i e n ~  of an image, denoted g: 

Figure 9.33 shows the ~.esult of computing the morphological gradsnt  of the image 
shown in Fig. 9.29(a). As expected, the morphological gradient highlights sharp 
gay-level transitious jn the input image. As opposed to gradients obtained using 
the methods discussed in Sectiorl 3.7.3, morphological gradients obtained using 
syml-rletrical structuring elements tend to depend less on  edge directionality. 

Top-hat transformation 

The so-called morphological lop-hor transformation of an image, denoted h ,  
is defined as 

11 = ,f - (f b )  (9.6-8) 

FIGURE 9.33 Morphological gradient of the image in Fig. 9.29(a). (Courtesy of Mr. A 
Morris, Leica Cambridge. Lcd.) 
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FIGURE 9.35 
(a)  Original 
image. (b) Image 
showing boundary 
between regions 
of different 
texture. (Courtesy 
of Mr. A. Morris. 
Leica Cambridge, 
Ltd.) 

FIGURE 9.34 Result of performing a top-hat transforlnalion on the imagc of Fig. 9.29(a). 
(Courtesy of Mr. A. Morris, Leica Cambridge, Ltd.) 

where, as before, f is the input image and b is the structuring element function. 
This transformation-which owes its original name to the use of a cylindrical or 
parallelepiped structuring element function with a flat top-is useful for en- 
hancing detail in the presence of shading. Figure 9.34 shows the result of per- 
forming a top-hat transformation on  the image of Fig. 9.29(a). Note the 
enhancement of derail in the background region below the lower part of the 
horse's head. 

Textural segmentation 

Figure 9.35(a) shows a simple gray-scale image composed of two texture re- 
gions.The region on the right consists of circular blobs of larger diameter than 
those on the 1eft.The objective is to find the boundary between the two regions 
based on their textural content. 

Because closing tends to remove dark details from an image, the procedure in 
this particular case is to close the input image by using successively Iarger struc- 
turing elements. When the size of the structuring element corresponds to that  of 
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the small blobs, they are removed from the image, leaving only a light background 
in [ h e  area previously occupied by them. At this  point in the process, only the 
larger blobs and  the light background on the left and between the large blobs 
themselves, remain. Next, a single opening is performed with a structuring 
element that is large in relation to the separation between the large bIobs.This 
operation removes the light patches between the  blobs, leaving a dark region on 
the right consisting of the large dark bIobs and the now equally dark patches be- 
tween these blobs. At  this point the process has produced a light region on the 
left and a dark region on the right.A simple threshold then yields the boundary 
between the two textural regions. Figure 9.35(b) shows the resulting boundary su- 
perimposed on the original image. It is instructive to work through this example 
in more detail using the rolling ball analogy described i n  Fig. 9.30. 

Granulometry 

Granulometry is a field that deals principally with determining the size distri- 
bution of particles in an image.Figure 9,36(a) shows a n  image consisting of light 
objects of three different sizes The objects not only are overlapping, but they 
also are too cluttered to enable detection of indivjdual particles. Because the par- 
ticles are lighter than the background, the following morphological approach can 
be used to determine size distribution. Opening operations with structuring el- 
ements of increasing size are performed on the original image. The difference 
between the original image and its opening is computed after  each pass when 
a different structuring elemenr is comp1eted.At the end of the process, these dif- 
ferences are normalized and then used to construct a histogram of particle-size 
distribution. This approach is based on the idea that opening operations of a 
particular size have the most effect on regions of the input image that contain 
particles of sir~iilar size.Thus, a measure of the relative number of such paxticles 
is obtained by computing the difference between the input and output images. 
Figure 9.36(1~) shows the resulting size distribution in this case. The histogram 
indicates the presence of three predominant particle sizes in the input image. 
This type of processing is useful for describing regions with a predominant 
particle-like character. 

a b  

FIGURE 9.36 
(a) Original image 
consisting ol 
overlapping 
particles; (b) size 
distribution. 
(Courtesy of Mr. 
A. Morris. Leica 
Cambridge. Ltd.) 
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Summary 

Scc ;o\mdt ir;mt c w c r  

Dern~lcd solurions to (he 
problents marked u-ill1 a 
xl. lr  i d n  hc !ound I n  rhc 

hook web SI IC ,  The s11c 
also coniainj suggesked 
projrcrs based nn Ihe ma- 
tcrial in  his cl i~plcr 

The morphological concepts and techniques introduced i n  this chapter constitute a 
powerful set of tools for extracting features of interest in an image. One ol ihc most ap- 
pealing aspects of morphological irnage processing is  thc extensive set-theorelical foun- 
dation from which morphological techniques have evolved. A significa~\l advantage in 
terms of implementation is the fact that dilation and erosion are primitive operations that 
are the basis for a broad class of morphologicaJ algorithms. A s  shown in the following 
chapter, morphology can be used as the basis for developing image segmen~ation pro- 
cedures with a wide range of applicarjons As discussed in Chapter 11, morphological 
techniques also play a major role in procedures for image description. 

References and Further Reading 
I'be book by Serra [I9821 is a fundamer~tal reference on tnorphological image process- 
ing. See also Serra [1988], Giardina and Dougherty [lc)88], and Haralick and Shapiro 
[1992].AdditionaI early references relevant to our discussion include Blum [1967], Lan- 
tvejoul [1980], Maragos [1987].and Haralick et  al. [19H7]. For an overview of both binary 
and gray-scale morphology, see Basart and Gonzalez 119921 and Basart et al. [I 992l.This 
set of references provides ample background for rhe material covzred in Sections 9.1 
through 9.4. 

Important issues of implementing morphological algorithms such as the ones given 
in Section 9.5 and 9.6 are exe~nplifjzd in [he papers by Jones and Svalbe [ I  9941, Park and 
Chin [1995], Sussne~  and Ritter [1997],Allelli et al. 119981, and Shaked and Bruckstein 
[1998]. Current  work in the theory and  applications of morphological image processing 
is summarized in the book by Goutsias and Bloomberg [2000], and i n  a special issue of 
Patrer~z Recognirian [2000]. See also a recent compilation of references by RosenCeld 
[2000]. The books I)y Marchand-Maillet and Sharai ha  [2000] on binary image process- 
ing, and by Ritter and  Wilson [2001] on image algebra, also a r e  on interest. 

Problems 
9.1 DigitaI images in this book are embedded in  square grid arrangements a n d  pix- 

els are allowed lo be 4-, 8-, or  m-connected. However, other grid arrangements are 
possible. Specificallv, a hexagonal grid arrangement rllar leads Lo 6-connectivily, 
is sometimes used (see the followjng figure). 

(a) How would you converr a n  image from a square grid to a hexagonal grid? 

(b) Discuss the shape invariance to rotation of objects represented in a square 
grid as opposed to a hexagonal grid. 

(c) Is it possible to have ambiguous diagonal configurations in a hexagonal grid, 
as is the case wit11 8-connectivity? (See Section 2.5.2.) 
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9.2 + (a) With reference to Fig. 9 I(a).skercl~ the set ( A  n B) U ( A  U B)' 

(b) Give expressions for the sets shown shaded in thc following figures The shad- 
ed areas in image conslitute one set, so give an expression for each of 
r he three images: 

9.3 Jr (a) Give a morphological algorithm for converting an 8-connected binary bound- 
ary to a n  m-connected boundary (see Seclion 2.5.2).You may assume that  the 
boundary i s  fully connected and that i t  is one pixel thick. 

(b) Does Lhe operation o f  your algorithm require more than one iteration wirh 
each structuring element? Explain your  reasonjng. 

( c )  1s the  performance of your algorilhlri independenl of the order in which the 
structuring elements are applied? If your answer is yes, prove it; otherwise give 
an example that illustratcs the dependence of your  procedure on the wder 
o l  application of the srructuring elements. 

9.4 Erosion ot  a set A by structuring clement B is a subset ol A as long as the origin 
of B is contained by B. Give an  example in which the erosion A 8 B I ies outside, 
or  partially outside, A. 

9.5 The following four staternznts are hue. Advance an argument tha t  establishes 
the reason(s) for their validity. Part (a)  is true in general. Parts (b) through (d) are 
true only lor ~ligiral setsTo show the validity of (h) through (d), d raw a discrete, 
square grid (as  shown in Probleni 9.1) and give a n  exaniple for each case usilrg 
sets composed of points o n  rhis grid. Hirzr: Keep the number of points in each case 
as small as possible while still establishing the validity of'ihc statemerlts. 

(a) T h e  erosion of a convexset by a convex structuring elenlent is a convex set. 

+ (b) The dilation of a co~lvex set by a convex srructuring element is no t  necessar- 
ily always convex. 

(c) The points in a convex digital set are not always connected. 

(d) 11 is possible to have a set of  points in which a line joining every pail- of poinrs 
in the sel lies within the sct but the set is not convex. 

* 9.6 With reference to the image shown, give the struciuri~~g element and morpho- 
1ogic;tl operation(s) that produced each of the results sbown in images (a) through 
(d). Show the origin of each structuring els~neuc clearly.The dashed tines show the 
boundary of the original set and are irlcluded only for reference. Nore thal in 
(d) all corners are rounded. 
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9.7 Let A denote the set slrown shaded iri r l ~ e  following figure. Refer to the stsuc- 
turing elements shown (the black dots denote the origin). Sketcll the result ol 
the following morphological operntio~~s: 

(a) ( A  8 B" @ B~ 

(b) ( A  8 B' )  B.' 

(c) ( A  C!3 B ' )  @ 

(d) ( A  %3 R') €3 Lt2 
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*9.8 (a) What  is the limiting effect of repeatedly dilating an image? Assume that a triv- 
ial (one point) structuring element is not used. 

(b) What is the smallest image from which you can start in order for your an- 
swer jn part (a) to hold? 

9.9 (a) What is the limiting effect of repeatedly eroding an image? Assume that a triv- 
ial (one point) structuring element is not used. 

(b) What is the smallest image from which you can start in order for your an- 
swer in part (a) to hold? 

k9.10 An alternative definition of dilation is 

Show that this definilion and the definition in Eq. (9.2-1) are equivalent. 

9.11 (a) Show that the definition of dilation given in Problem 9.10 is equivalent to 
yet another definition of dilation: 

(This expression also is called the Minkowsky addition of two sets.) 

(b) Show that the expression in (a) also is equivalent to  t h e  definition in 
Eq. (9.2-1). 

k9.12 An alternalive definition of erosion is 

Show that this definition is equivalent to the definition in Eq. (9.2-3) 

9.13 (a) Show that the definition of erosion given in Problem 9.12 is equivalent to yet 
another definition of erosion: 

(If -b is replaced with h ,  this expression is called the Minkowsky subtraction 
of two sets.) 

(b) Show that  the expression in (a) also is equivalent to  the definition in 
Eq. (9.2-3). 

*9.14 Prove the validity of the duality expression (A B)' = (A' B). 
9.15 Prove the validity of the following expressions: 

$I (a) A 0 B is a subset (subimage) of A 

(b) If C is a subset of D, then C B is a subset of D B. 
(c) ( A  o B)  o B = A o B. 

9.16 Prove the validity of the following expressjons (assume that the o r ign  of B is 
contained in B and that Problem 9.16(a) is true): 

(a) A is a subset (subimage) of A B. 

(b) I f  C is a subset of D, then C B is a subset of D B. 

(c) ( A m B ) * B  = A - B .  

9.17 Refer to  the image and structuring element shown. Sketch what the sets C, D, E, 
and F would look like in the following sequence of operations: C = A €3 B; 
D = C @ B; E = D 63 B; and F = E 8 B. The initial set A consists of all the 
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image components sbowu jn white, with the exception of the st]-ucturing elenlent 
3. Nole rl~al lhis sequence of operations is simply the opening of A by B,  Sol- 
lowed by the closjng of that opcning by B. You may assume that B is just large 
enough to enclose each of the noise components. 

*9,18 In the example given in  conneclion with Pig. 9,7, i t  is demonstrated t h a t  the  
squares surviving rhe erosion step could be fully restni-ecl by dilating rhenl with 
the same strucluring element uscd for erosion. Erosio~l followed by dilation i s  
tlle opening of the image. and we know that,  i l l  gene]-al. opening does not resull 
in iderlticul reconstruction of the ob.jects to which it is applied. Explain why lull  
reconstruction of Ihr  remaining squares was possible in Fig. 9.7. 

9.19 (a) Sketch the result of applying the hit-or-miss transform to the image and struc- 
turing element sl~own. 111dicate cleai-ly the origin and border you selected lor 
the structuring element. 

(b) Compare you1 result with the result of matching by COI-1-elation (Fig. 4.46)- 
stating diflercnces and similarities betwcen the two. 

* 9.20 Tllree features (lake. bay, and line segment) useful for differentialing thinned 
objects in an imagc are shown i n  the following figures. Develop a ~norphologicall 
logical algorithm for diffe~entiati~~g among these shapes.The inpul to your algo- 
rithm would be one of these three shapes.'J%e output tnust be the identity of the 
input.  You may assume that lhe lealures are 1 pixel thick and that each is Cully 
connected. However! they can appear in any orientation. 
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Lake Bay Line segmeut 

9.21 Discuss what you would expect the result to be in each of the following cases: 

(a) The starling point of the region filling algorithm of section 9.5.2 is a point on 
the boundary of the object. 

(b) The starting point in the region filling algorithm is outside of the boundary. 

( c )  Sketch what the convex hull of the figure in Problem 9.7 would look like as 
computed with the algorithm given in Section 9.5.4. Assume that L = 3 pixels. 

k9.22 (a) Discuss the effect of using the structuring element in Fig. 9.15(c) for bound- 
ary extraction, instead of the one shown in Fig. 9.13(b). 

(b) What would be the effect of using a 3 x 3 structuring element composed of 
all 1 ' s  in the region filling algorithm of Eq. (9.5-2), instead of the structuring 
element shown in Fig. 9,15(c)'? 

9.23 Propose a melhod for fully automating the example shown inFig. 9.16.This im- 
plies determining which black points are background points and which are points 
contained within the spheres (i.e., black regions completely contained within 
white regions). Assume that binary 1's are represented in  white. 

f.9.24 The algorithm given in Section 9.5.3 for extracting connected components re- 
quires that a point be known in each connected component in order to extract 
them all. Suppose that you are given a binary image containing an arbitrary (un- 
known) number of connected components. Propose a completely automated pro- 
cedure for extracting all connected conlponents. Assume that points belonging to 
connected components are labeled 1 and background points are labeled 0. 

9-25 Suppose that the image f ( x ,  y) and structuring element h ( x ,  y)  in Eq. (9.6-1) 
bolh are rectangular, with domains D ,  and De denoted ( [F , ,  , F ~ , ] ,  [F,, , F,,,]) and 

( [ B , ,  , B , ~ ] ,  [B,, , B,vz])  respectively. For example, the closed intervals [F,, , F,,] 

and [ F , ,  . 4.,] are the ranges of x and y in the x -  and y-axes of the xy-plane where 
the function f ( x ,  y) is defined. 

* (a) Assume that ( x ,  y )  E D,,, and derive expressions for the intervals over which 
the displacement variables s and t can range to satisfy Eq. (9.6-1). These in- 
tervals in the s- and r-axes define the rectangular domain of (f @ b) (s ,  I )  in 
the .st-plane. 

(b) Repeat far erosion, as defined in Eq. (9.6-2). 

9.26 A gray-scale image, f ( x ,  y),is corrupted by nonoverlapping noise spikes that can 
bc modeled as small. cylind~.ical artifacts of radii Rmi, 5 r 4 R,,,, and amplitude 
A n>in 5 fl 5 A m a x .  

* (a) Develop a morphological filtering approach for cIeaning up the image. 

(b) Repcat (a) ,  but now assume that there is overlapping of, at most, four 
noise spikes. 
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9.27 A preprocessing step in an application of microscopy is coiicerned with the issue 
of isolating individual round particles from similar particles thar overlap irl groups 
of two or more particles (sce lollowing image). Assurni~\g that all particles a re  of 
the same size, propose a morphologjcal algorithm thal- produces three images 
consisting respectively of 

+ (a) Only of particles that have merged with (he boundary of the image. 

(b) Only overlappir~g particles 

(c) Only nonove~.lapping particles 

9.28 A high-technology nlanufacluring plant rvins a government contract ti) manu- 
facture high-precision u~ashers o l  the form shown in the following figure. The 
terms of the contract require t h a t  the shape of all  washers be jnspecled by an 
imaging system. In  this context. shapc inspection refers to deviations from round 
on the inner and outer edges of the washers. You may assume the following: ( 1)  A 
"golden" (perfect with respec1 to [ h e  problem) image of a11 acceptable washer is 
available; and (2) the imaging and posjtjoning systems ultimately used in The sys- 
tern will have a n  accuracy high enough to allow you to ignore errors due to dig- 
i talization and positioning. You are hired as a consultant to help specify the visual 
inspection part of the sysrem. P1.oposz a solution based on morphologici~lllogic 
operations. Your answer should be in the fol-m oE a block diagl'a~n. 



Image Segmentation 

The whole is  equal to the sum of its parts. 

The whole is greater than the sum of ifs parts. 

Max Wertheimer 

Preview 
The material in the previous chapter began a transition from image processing 
methods whose input and output are images, to methods in which the inputs are 
images, but the outputs are attributes extracted from those images (in the sense 
defined in Section 1.1). Segmentation is another major step in that direction. 

Segmentation subdivides an image into its constituent regions or objects.The 
level to which the subdivision is carried depends on the problem being solved. 
Thit is,segmentation should stop when the objects of interest in an application 
have been isolated. For example, in  the automated inspection of electronic as- 
semblies, interest lies in analyzing images of the. products with the objective of 
determining the presence or absence of specific anomalies, such as missing com- 
ponents or broken connection paths. There is no point in carrying segmenta- 
tion past the level of detail required to identify those elements. 

Segmentation of nontrivial images is one of the most difficult tasks in image 
processing. Segmentation accuracy determines the eventual success or failure 
of computerized analysis procedures. For this reason, considerable care should 
be taken to improve the probability of rugged segmentation. In some situations, 
such as industrial inspection applications, at  least some measure of control over 
the environment is possible at times. The experienced image processing system 
designer invariably pays considerable af tention to such opportunities. In other 
applications, such as autonomous target acquisition, the system designer has no 
control of the environment. Then the usual approach is to focus on selecting 
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the types of sensors most likely to enhance the objects of interest  while dimin- 
ishing the contribution of irrelevant image detail. A good example is the use oi 
infrared imaging by the miIitary to detect objccts with s t rong heat  signatures, 
such as equipment and troops in motion. 

Image. se-gmentation algorithnrs generally are  based on one of two basic prop- 
erties of in tensity values: discontinuity and similarity. In the fir-st category, the 
approach is to partition an image based on abrupt changes in intensity, such as 
edges in an image. The principal approaches in the second category are  based 
on partitiorling an image into regious tha t  are similar according to a set ofpre- 
defined criteria. Th rcsholding, region growing, and region splitting and merging 
are examples of methods in this category. 

In  this chapter w e  discuss a number of approaches in the two cate~ories just 
n ~ e n t i o n e d .  We bcgin the development with met hods suitable for detecting gray- 
level discontinuities such as points, lines, and edges. Edge detection in particu- 
lar has been a staple of segmentation algorilhrns for ~nany  years. In addition to 
edge detection per se, we also discuss methods for connecting edge segments and 
for "assemb1ing"edges info rcglon boundaries.The discussion on edge detection 
is followed by the introduction of various th re sho ld j~~g  techniques. Threshold- 
ing also is a fundamental approach to segmentation tha t  enjoys a signifjcsnt 
degree of popularity, especially i n  appIications where speed j s  an important fac- 
lor. The discussion on thresholding is followed by the dzvelopment of several 
region-oriented segmentation approaches. We then discuss a morphological ap- 
proach lo segmentation called watershed segn~clnlnrion. This approach is par- 
ticularly attractive because i r  combines sevcl-a1 of the positive attributes of 
segmentation based on the techniques presented in t h e  first part of the chap- 
ter. We conclude the chapter with a discussion 011 the use of rnotion cues for 
image segmentation. 

Detection of Discontinuities 
In  this section we present several techniques for detecting the  three basic types 
oilgray-level discontinuities in  a digital image: poi~~ts. lines, and edges.Thc most 
common way to look for discontinuities is to run a mask through the image in the 
manner described in Section 3.5. For the 3 X 3 mask shown in Fig. 10.1. this pro- 
cedure involves computing the sum of products of the coefficients with the gray 

FIGURE 10.1 A 
general 3 X 3 
mask. 
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levels contained in the region encompassed by the rnask.Thal is, wit11 reference 
to Eq. (3.5-3). the response of the mask a t  any point in the image is  givcn by 

wlier-e z i  is the gray level of the pixel associated with mask coefficient lo,. As 
usual. the 1,esponse of the mask is defined with respect to i t s  center 1ocation.Thc 
tletails for implementing mask operations are discussed in Section 3.5. 

: ':.I. l .  Point Detection 
The detectio~i of isolated points in a n  image i s  straightforward in principle. 
Usjng the  mask shown in Fig. 10.2(a), we say that  a point has been detectcd a1 
rhe locatio~l 011 which the mask is centered i f  

where T is a nonnegative threshold and R is given by Eq. (10.1-1). Basically, 
this lormulatjon measures the weighted differences bel-ween the cenrer point 
and its neighbors. ' f ie idea is t h a t  an isolclled poinl (a point whose gray level i s  
significantly different from its backgrouncl and which is located in a ho l~~oge-  
neous or ne;rrly homogeneous area) will be quite different from its surround- 
ings, and thus  be easily detectable by this type of mask.  Note that [lit: mask in 
Fig. lC).2(a) i s  the same A S  the mask shown in Fig. 3.39(d) ill connection with 
Laplacian opet-ations.Illowever, the emphasis 1-rer.e is strictly on the detcclion of 
poinrs.That is, thc only differences tha t  a r e  considered o f  interest are those 

FIGURE 10.2 
( i ~ )  Point 
detecrioll m a s k .  
(b) X-ray i ~ w ~ g e  
of A rurkine blade 
with a porosity. 
(c) ResulL- of point 
detection. 
(d) Rcsult of 
using Eq. (10.1 -2). 
(01,iginal image 
courtesy of 
X-TEK Systems 
Lld .) 
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large enough (as determined by T )  lo be considered isolated points. Note that  
the mask coefficients sum to zero, indicating that the mask response will be 
zero in areas of constant gray level. 

EXANJPLE 10.1: We illustrate segmentation of isolated points from an image with the aid of 
Detection of Fig. 10.2(b), which shows an X-ray image of a jet-engine turbine blade with a 
"'lated points in porosity in the upper, right quadrant of the irnage.There is a single black pixel 
an  image. 

embedded within the porosity. Figure 10.2(c) is the resu.lt of applying the point 
detector mask to the X-ray image, and Fig. 10.2(d) shows the result of using 
Eq. (10.1-2) with T equal to 90% of the highest absolute pixel value of the image 
in Fig. 10.2(c). (Threshold selection is discussed in detail in Section 10.3.) The 
single pixel is clearly visible in this image (the pixel was enlarged manually so 
that it would be visible after printing). This type of detection process is rather 
specialized because it is based on single-pixel discontinuities that have a ho- 
mogeneous background in the area of the detector mask. When this condition 
is not satisfied, other methods discussed in this chapter are more suitable for 
detecting gray-level discontinuities. W S ~  

1 8.1.2 Line Detec lion 
The next level of complexity is line detection. Consider the masks shown in Fig. 10.3. 
If the first mask were moved around an image, it would respond more strongly to 
lines (one pixel thick) oriented horizontally. With a constant background, the max- 
imum response would result when the line passed through the middle row of the 
mask.This is easily venfied by sketching a simple array of 1's with a line of a dif- 
ferent gray level (say, 5's) running horizontally through the array. A similar ex- 
periment would reveal that the second mask in Fig. 10.3 responds best to lines 
oriented at +45"; the third mask to vertical lines; and the fourth mask to lines in 
the -45" direction.These directions can be  established also by noting that the pre- 
ferred direction of each mask is weighted with a larger coefficient (i.e., 2) than 
other possible directions. Note that the coefficients in each mask sum to zero, in-  
dicating a zero response from the masks in areas of constant gray level. 

Let R , ,  R,, R,, and R4 denote the responses of the masks in Fig. 10.3, from 
left to right, where the R's are given by Eq. (10.1-1). Suppose that the four masks 
are run individually through an image. If, at a certain point in the image, 
I R ; ~  > I R , ~ ,  for all j # i, that point is said to be more likely associated with a line 
in the direction of mask i. For example, if at  a point in the image, R ,  1 > I R ,  for 

FIGURE 10.3 Line 
masks. 

Horizontal +45" Vertical -45" 
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j - 2,3.4, ~ l ~ a t  p a r r i c ~ ~ l a ~ .  point is said to be nzore likely associa red with a 1101.- 
izontal linc.Alternatively, wc may be interested in detecting liilcs in a specilied 
direction. In this case,we would usc l h e  mask associated with Illat clii~eclioli and 
thi.csho1d i ~ s  ou1pur.w in Eq. (10.1-2). I n  o ther  words. if we are inter-esled i l l  dc- 
iect jng all the lines in a n  image in [he direcrion defined by a given mask, we 
simply run the mask tl)l.ough the image and threshold the absolute value of the 
resu11.-lhe poirlls that are left are the str,ongest responses, which,  for lines one 
pixel [hick. correspor~d closcs~ t o  the di~-ection defitied by thc mask .  The fol- 
lowing exan~plc illustrales this p1.ocedu1.e. 

Figurc 10.4(a) shows a digitized (binary) portion of 21 wire-bond mask lor an EXAMPLE 10.2: 
electl.onic circuit. Suppose [hat we are interested in finding all the lines [hat are Delcction oflj~lcs 

one pixe l  thick arid arc 01-ienred at -45". For this p i~~posc ,  we usc [ h e  last mask in 5peci fictl 
direction. 

shown in Fig. 10.3.The absolute value o l  (he rzsillt is shown in Fig. 10.4(b). Note 
that all vertical and linri~onral coniponents of (lie image were eliinii~ared, and 
t l ~ a l  lhe cornl)onel~ts ol' t11e original image char tend toward a -45:' djreciion 

FIGURE 10.4 
lllustr-ario~i nl' 
delection. 
(a) Binary  wij 

borld ~nnsk .  
(b) Ahsol~~te 
value of r.esul1 
after proccssii 
with -45" lilw 
dc lecior. 
(s) ResuIt of 
thresliolcli~~g 
i1na5c. (h) .  

line 

.e - 
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produced the strongest responses in Fig. 10.4(b). In order to determine which 
lines best fit the mask, we simply threshold this image. The result of using a 
threshold equal to the maximum value in the image is shown in Fig. 10.4(c). 
The maximum value is a good choice for a threshold in applications such as this 
because the input image is binary and we are looking for the strongest responses. 
Figure 10.4(c) shows in white all points that passed the threshold test. In this 
casc, the procedure extracted the only line segment that was one pixel thick 
and oriented at -45' (the other component of the image oriented in this direc- 
tion in the top, left quadrant is not one pixel thick). The isolated points shown 
in Fig. 10.4(c) are points that also had similarly strong responses to the mask. 
In the original image, these points and their immediate neighbors are oriented 
in such as way that the mask produced a maximum response at those isoIated 
locations. These isolated points can be detected using the mask in Fig. 10.2(a) 
and then deleted, or they could be deleted using morphological erosion, as 
discussed in the last chapter. @I 

0.1.3 Edge Detection 

Although point and line detection certainly are important in any discussion on 
segmentation, edge detection is by far the most common approach for detect- 
ing meaningful discontinuities in gray level. In t h s  section we discuss approaches 
for implementing first- and second-order digital derivatives for the detection of 
edges in an irnage. We introduced these derivatives in Section 3.7 in the context 
of image enhancement. The focus in this section is on their properties for edge 
detection. Some of the concepts previously introduced are restated briefly here 
for the sake continuity in the discussion. 

Basic formulat ion 

Edges were introduced informally in Section 3.7.1. In this section we look at 
the concept of a digital edge a little closer. Intuitively, an edge is a set of con- 
nected pixels that lie on the boundary between two regions. However, we al- 
ready went through some length in Section 2.5.2 to explain the  difference 
between a n  edge and a boundary. Fundamentally, as we shall see shortly, an 
edge is a "local" concept whereas a region boundary, owing to the way it is de- 
fined, is a more global idea. A reasonable definition of "edge" requires the abil- 
ity to measure gray-level transitions in a meaningful way. 

We start by modeling an edge intuitively. This will lead us to a formalism jn 
which "meaningful" transitions in gray levels can be measured. Intuitively, an  
ideal edge has the properties of the model shown in Fig. 10.5(a). An ideal edge 
according to this model is a set of connected pixels (in the vertical direction 
here), each of which is located at an orthogonal step transition in gray level (as 
shown by the horizontal profile in the figure). 

In practice, optics, sampling, and other image acquisition imperfections yield 
edges that are blurred, with the degree of blurring being determined by factors 
such as the quality of the image acquisition system, .the sampling rate, and illu- 
mination conditions under which the image is acquired. As a result, edges are 
more closely modeled as having a "ramplike" profile, such as the one shown in  
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Model of a11 idcal cligiral ctlgr Model of a I-amp dipitill edge a b  
FIGURE 10.5 
( a )  Model of iln 

j ranlp edse. The 

i slope oT the c.anlp 
I I i~ ~ > c @ ~ ~ o ~ ~ ~ o I ) ~ I ~  tc) 

r- ~ h c  deg1.e~ of 
blu~'ri t lg 111 \hc 
cdge. 

Cir;\y.lcvcl prolile 
of  il h u r i ~ o ~ l l a l  lint 
~111.0ugh l l ~ c  image 

Fig. lO.S(h).  The slope of the ramp is inversely p~.oportional to the degree of 
blurring in the edge. I n  this model. we no longer- have a thin (one pixel th ick)  
path. Instead,  a n  edge point tlow i s  any point contained in the ramp, a n d  a n  
edge would then b t  a set ol  such poin~s that are  connected-The "(hick~less" of  
t h e  edge is dc~errnined by 11le length of the ramp. as i t  transitions from an ini- 
tial 1.0 a final gray level-This Icngth is  detei-minecl by the slope. which, i n  turn, 
IS determined hy (he degree of blur.l-ing.This makes sense: Blurt.ed edges lend 
to be thick and sharp edges rend to be thin. 

Figul-e 1 C).6(a) shows the  image from which the  close-up in Fig. I O.S(b) was 
estl-acted. Figure 10.6(b) S I I C ) W S  a I io r i~on~i~ l  s lay- level  prolile ol  the edge 
between the two I-egians. This figure also s l~ows  the first and second deriva- 
tives of the :ray-level profile. The first derivative is positive at the points of 
(ransition inlo and out of the ramp as we move from lell to right a l o n g  t h e  
profile: il is  constant foi- points iu the rnmp: and is zero ill areas  oC constant 
gray levcl.Thc second derivative is positive at the transition associated with the 
dnl-k side of the eclae. ~lcgat ive at the ~ r a n s i t  i on  associated with the  ljgllt side 
of the edge. and zero n l o ~ ~ g  the rnmp and in arcas o f  constant gray level. The  
signs of t h e  de~,ivativcs in Fig. 10.6(b) would hc reversed for a n  edge t h a l  tran- 
sitiuns Crom lighi to clark. 

We concluclc frorn [hese observations t h a t  the  magnitude of the  f i rst  deriv- 
ative can be used to detect \he presence of an edge a t  a poinl in an image (i.e.. 
to determine i f  i> point is on a ramp). Similarly, the sign of the second deriva- 
tive can bt: used lo  determine whether a n  edge pixel lies on the dark or Ijght side 
of a n  edge. We note two aclditional properries of the second derivative n ~ . o u n d  
;in eclge: (1) It pr.oduces two values for every edgc in all image (an undesirable 
feature): a n d  (2) a n  imaginary straight line joining the extcerne positive a n d  
negative values of the second dcrivative would cross zero near  the midpoii~t of 
the edge. 'Tljis zero-c~'ossir,g properly of the second derivative is quite useful 
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a b  
FIGURE 10.6 
(a) Two regions 
separated by ;l 
vertical edge. 
(b) Detail near 
th2 edge, showing 
a gr-ay-level 
profile. and the 
first and second 
derivatives of the 
profile. 

for loca tjng the centers of thick edges, as we show later in this secl~ion. Finally, 
we note that some edge models make use of a smooth transition into and out 
of the ramp (Problem 10.5). However. the coocIusions at which we arrive in the 
following discussion are the same. Also, i t  is evident from this discussion that wc 
are dealing here with local measures (thus the comment made in Section 2.5.2 
about the local nature of edges). 

Although attention thus f a r  has been limited to a I-D horizontal profilc, a 
similar argument applies to an edge of any  01-ientalion jn an image. We simply 
define a profile perpendicular to the edge direction at any desired point and 
interpret the results as in the preceding discussion. 

EXAMPLE 10.3 P The edges shown in Fig. 10.5 and 10.6 a r e  free of noise. The irnage segnlen ts 
Behavior of the in the first column in Fig. 10.7 show close-ups of f o u r  ramp edges separating n 

and  second black region on the left and a white region on the right. I t  is important to keep 
derivatives 
around a noisy in mind that the entire transition from black to while is a single edge.The iinage 
edge. segment a t  the top, left is free of noise. The other three images in the lirsr col- 

umn of Fig. 10.7 art: corrupted by additive Gaussian noise with zero meat] and 
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FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by 
random Gaussian noise of mean 0 and 0 - 0.0,O.l. 1.0, and 10.0, rcspec~ively. Second col- 
umn: first-derivative images and gray-levcl profiles. Third column: second-derivative 
images and gray-level pi.ofilcs. 
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standard deviation of 0.1,1.0, and 10.0 gray levels, respectively.The graph shown 
below each of these images is a gray-Level profile of a horizontal scan line pass- 
ing through the image. 

The images in the second column of Fig. 10.7 are the first-order derivatives 
of the images on the left: (we discuss computation o l  the first and second image 
derivatives in the following section). Consider, for example, the center image at 
the top. As discussed in connection with Fig. 10.6(b), the derivative is zero in the 
constant black and white regions.Tllese are the lwo black areas shown in the de- 
rivative image. The derivative of a constant ramp i s  a constant, equal to thc 
slope of the ramp.This constant area in the derivative imagc is shown in gray. 
As we move down the center column, the derivatives become increasingly dif- 
ferent from the noiseless case. I n  fact, i t  would bc diftic~rlt to associate thc lasl 
profile in that c o l u m ~ ~  with a ramp edge. What makes these results interesting 
is that the noise really is almost invisible in the images on the left column.The 
lasc image is a slightly grainy, but this corruptioli is a1 rnost imperceptible.Thcse 
exarnplcs are good illustl-ations of the sensitivily of derivatives to noise. 

As expected, the second derivative is even more sensitive to noisc. The sec- 
ond derivative of the noiseless image is shown in the top, right i~nage.The thin  
black and white lines are the positive and negative components explained in 
Fig. 10.6.Tlle gray in Lllese images represents zero due co scaling. We note that 
t l ~ c  only noisy second derivative that ~.c=sembIes the noiseless case is the one 
corresponding to noise with a standard deviation of 0.1 gray levels. T i e  other 
two second-derivative images and profiles clearly illustl-ate that  it would he dif- 
ficult indeed to detect their positive and negative components. which are the 
truly useful features of the second derivalive in terms ol edge delcction. 

The fact that Fairly little noise can have such a significant irnpact on the two 
key derivatives used for edge detcction in images is an important issue 10 keep 
in mind. In particular, image s~~loothing should be a scrious consideration prior 
to the use of derivatives in  applications where noise with levels similar to tl~osc 
we have just discussed is likely to bc present. I: 

Based on this cxilnlple and on the three paragraphs Lhat precede i t ,  we are 
led lo the conclusion chat, to be classified as a meaningt'ul edge point, the tran- 
sition in gray level associated with that point has to be significantly stronger 
than the background a t  that point. Since wc are dealing with local computa- 
tions, the method of choicc to determine whether a value is "significant" or not 
is to use a th~.eshold.Thus, we define a point in an image as being an rdgepoinr 
if its two-dimensional fii-st-order derivative is greatel- t11an a specified threshold. 
A set of such points that are corlnected according to a predefined criterion of 
connectedness (see Section 2.5.2) is by definition an eclgc.The term edge .vegn?etTf 

generally is used i f  the edge is short in relation to the dimensions of thc image. 
A key problem in segmentation is to assemble edge segments into longer edges, 
as explained in Section 10.2. An alternate definition i f  we elect to use the sec- 
ond-derivative is simply to define the edge points in an image as the zero cross- 
ings of its second derivative. The definition of an edge in this case is the same 
as above. Tt is important to note that these definitions do not guarantee success 
in finding edges in an image.They simply give us a formalism to look for them. 
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As in Chapter 3, first-order derivatives in  a n  image are computed using the gra- 
dient .  Second-order derivatives are obtained using the Laplacian. 

Gradient operators 

First-order derivatives of a digiral image a r e  based on various approxima- 
tions of the 2-D gradient.The gradient of an lmagr , f (s ,  y )  a t  locatlon (x .  y )  
is defined as  the vector 

<CL. mnde { I I ~ I  csvcr 

Consuh thc book wchsilr 

( 10.1-3) for a brief revcew of rcc- 
lor anrllysis 

I t  is well k n o w n  from vector analysis that  the gradient vector points in t he  
direction of maximum rate of change off at coordinates (x, y) .  

An important quant i ty  in  edge delection is the magnitude of th i s  vector, 
denoted Vj*.  where 

This quantity gives the maximum rate of increase of f  ( x .  it.) per unit distance 
in [he direction of Vf.  I t  is a comnlon (although not strictly correct) practice to 
refer to V f  atso as the gradient. We will adhere to convention and  also use this 
term interchangeably, differentiating between tile vector and its magnitude on ly  
in cases in wliich confusion is likely. 

The direction of the gradient  vector aIso is an important  quantity. Let 
o(x, y )  rcpreseut thc direcrion angle of the vector Vf a t  ( x .  y )  T h e n ,  from 
vector analysis, 

~ ( x ,  y)  = tan-' 

where the  angle is tneasured with respect to the x-axis.Tht: direction of an edge 
a1 ( x ,  y )  is yerpendiculnr to t h e  directjon of the gradient vector a t  that point. 

Con~putation of the gradient of an image is based on obtaining the partial de- 
rivatives i) f / d x  and il f l a y  at every pixel local ion. Ls t the 3 x 3 area shown i l l  

Fig. IO.S(a) represent the gray levels in a neighborhood of a n  image. As dis- 
cussed in Secrion 3.7.3, one of the simplest ways to implement a first-order par- 
tial derivative at poi111 zj is to use the followjrig Roberrs cuos,r-grndienr operotow: 

and 

These derivatives can be implerrlenred for an entire image by using the masks 
shown in  Fig. 10.8(b) with the  procedure discussed in Section 3.5. 

Masks of size 2 x 2 are awkward to implement because they do not have a 
clear center. An approach using masks of sjzc 3 X 3 is given by 

G,, = ( z 7  i- Zp + 29) - ( z ,  + 22 + z3) (10.1-8) 



578 Chapter 10 P Jmage Segmentation 

FIGURE 10.8 
A 3 X 3 region of 
a n  image (the 2's 
are gray-level  
values) and 
various masks 
used Lo compute 
t h e  gradienl at 
point labeled rj. 

Robcrts 

Sobcl 

and 

In th is  formulation, the difference between the first and third rows of the 3 X 3 
image region approximates the derivative in the x-direction, and the difference 
between the Lhird and first columns approximates the derivative in the y-direction. 
The masks shown in Fig. 10.8(d) and (e), called the Prewitt operators,can be used 
to impIement these two' equations. 

A slight variation of these two equations uses a weight of 2 in the center 
coefficient: 

and 

A weight value of 2 is used to achieve some smoothing by giving more impor- 
tance to the center point (Problem 10.8). Figures 10.8(f) and (g), calIed the Sobel 
operators, are used to implement these two equations. The Prewitt and Sobel 
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ope~.arors are among the mast used in practice for computing digital gradients. 
The Prewitt masks are simpler to  implement than the Sobel masks, but 1-h.e lat- 
ter have slightly superior noise-suppression charactel-istics, an'impal-tant issue 
when dealing with derivatives. Note illat the coefficients in all the masks shown 
in Fig. 10.8 sum to O ,  indicating that they give a response of 0 in areas ol con- 
siant gray level, as expected of a derivative operator. 

The masks just discussed are used to obtain the gradient components G, and 
G,. Computation of the gradient requires that these two components be com- 
bined in the manner shown in Eq. (10.1-4). However, this in~plementation is 
not always desirable because of the computational burden required by squares 
and square roots. An approach used frequently is to approximate the gradient 
by absolute values; 

This equation is mucl-r more attractive computationally, and it still preserves rel- 
ative changes in gray levels. As discussed in Section 3.7.3, the price paid for this 
advantage is that the resulting filters will not be isotropic (invariant to rotation) 
jn general. However. this is not an issue when masks such as the Prewilt and 
Sobel masks are used to compute G, and G,,.These masks give isotropic results 
o~ily for vertical and horizontal edges, so even if we used Eq. (10.1-4) to com- 
pute the gradient, the results would be isotropic only for edges in those direc- 
tions. In this case,Eqs. (10.1-4) and (10.1-12) give the same result (Problem 10.6). 

I t  is possiblc to modify the 3 x 3 masks in Fig. 10.6 so that  they have their 
st]-ongest responses along the diagonal directions.The two additio~ial Prewitt and 
Sobel masks for detecting disco~~tini~ities in the diagonal directions are shown 
in Fig. 10.9. 

Figure 10.10 il.lustrales the response ol' the two components of the gradient, EXAMPLE 10.4: 
G ,  and G , / ,  as well as the gradient image formed from the sum of these two Illusll.ation of the 

gl'ad~ent: and its 
components. 

a b  
c d Sohel 

FIGURE 10.9 Prcwitt and Sobel masks for detecting diagonal edges. 
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FIGURE 10.10 
(a )  0i.iginal 
image. (b) I G , ~ .  
cnmponenf of  the 
gradient in [he 
x-direction. 
(c) JG?.I~ 
cornponenl in I he  
y-di~.ection. 
(d) GI-adient 
image. (c ,  + L',,I. 

con~ponents.Tl~e dircclionalitqr of the two colnponents i s  widen[ in Figs 10.10(b) 
and (c). Note in particular how strong the roof tile, horizotltal brick joints, and  
horizontal segments of the windows are in Fig. 10,10(b). By contrast,Fig. 10.10(c) 
favors the vertical components, such as the corner of the tiear wall. the  vertical 
components of the window, the vertical joints of the brick, and the la~nppost on 
the right side of the pictlire. 

The original jmagc is of re:-lsonably Iiigh resolutio~i (1200 X l6OO pixels) and, 
at \he  dislai~ce the  image was taken, the contribution made to image detail by 
the wall bricks is still sjgnificanr.This level of dctail often is undesirable, and one 
way to reduce i t  is to smooth  the image. Figure 10.1 1 shows the same sequence 
of images as in Fig. 10.10, but with the original image being smoothed first using 
a 5 X 5 averaging fj[ter.The rcsponse of each mask now shows almost no con- 
tribution due  to the bricks. with the result being dominated ~nostly by the prin- 
cipal edges. Note that avelVagjng caused the response of all edges to be weaker. 

In Figs. 10.10 and 10.1 1, i l  is evident that the horizontal and  vet-tical Sobel 
lnasks respond about equally well to edges oriented in  the  millus and plus 45" 
directions. I f  i t  is important to emphasize edges along the diagonal directions. 
then one of the mask palrs in Fig. 10.9 should be used.The absolute responses 
of the diagonal Sobcl masks a re  showr~ in Fig. 10.12. The sIronget diagonal re- 
sponse of these n ~ a s k s  is evident in this figure. Both disgonal masks have s im-  
ilar Izsponse to horizontal and  vertical edges hut,  as espected, their response i n  
these directions is  weaker than  fhe response of the  ho1.izon~a1 and  vertical Sobel 
masks shown in Figs. lO.lO(b) and 10.10(c). - 
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FIGURE 10.1 1 
Same sequence a5 

image smoochrd 
with a 5 x 5 

. .. . 

The Laplacian 
The Laplacia11 of a 2 - 0  I'unclion f (s. y ) is a second-order derivative defined as 

Digi~al  approsimationl; ro thc  Laplacian wcre introduced in Section 3.7.2. For 
a 3 x -3 rcgiorl. one of  he t w o  fc~~ins  ei~coulltered most f~~equent ly  in practice is 
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FIGURE 10.13 
Laplacian masks 
used to 
implement 
Eqs. (10.1-14) and 
(10.1-IS), 
respectively. 

where the z's are defined in Fig. 10.8(a). A digital approximation including the 
diagonal neighbors is given by 

Masks for implementing these two equations are shown in Fig. 10.13. We note 
from these masks that the implementations of Eqs. (10.1-14) and (I 0.1-15) are 
isotropic for rotation increments of 90" and 45", respectively. 

The Laplacian generally is not used in its original form for edge detection for 
several reasons: As a second-order derivative, the Laplacian typically is unac- 
ceptably sensitive to noise (Fig. 10.7).The magnitude of the Laplacian produces 
double edges (see Figs. 10.6 and 10.7), an undesirable eflect because i t  complj- 
cates segmentation. Finally, the Laplacian is unable to detect edge direction. 
For these reasons, the role of the Laplacian in segmentation consists of (1) using 
its zero-crossing property for edge location, as mentioned earlier in tl1j.s sec- 
tion, or (2) using it for the complementary purpose of establishing whether a 
pixel is on the dark or light side of an edge, as we show in Section 10.3.6. 

In the first category, the Laplacian is combined with smoothing as a precursor 
to finding edges via zero-crossings. Consider the function 

rz -- 
7 

h ( r )  = -e 2u' (10.1-16) 

where 9 = x2 + Y2 and a is the standard deviation. Convolving this function with 
an image blurs the image, with the degree of blurring being determined by the , 

value of a .The Laplacian of h (the second derivative of h with respect to r) is 

This function is commonly referred to as the Laplacian of a Gaussi~in (LOG) be- 
cause Eq. (10.1-16) is in the form o l  a Gaussian function. Figure 10.14 shows a 
3-D plot, image, and cross section of the LOG function. Also shown is a 5 X 5 
mask that approximates V2h.  This approximation is not unique. Its purpose is 
to capture the essential shupe of V2h; that is, a positive central term, surround- 
ed by an adjacent negative region that increases in value as a function of distance 
from the origin, and a zero outer region.'fhe coefficients also must sum to zero, 
so that the response of the mask is zero in areas of constarlt gray level. A mask 
this small is useful only for images that are essentially noise free. Due to its 
shape, the Laplacian of a Gaussian sometimes is called the Mexican hat function. 

Because the second derivative is a linear operation, convolving an  image 
with V2h is the same as convolving the image with the Gaussian smoothing 
function of Eq. (10.1-16) first and then computing the Laplacian of the result. 
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showing zero 
crossings. 
(d) 5 X 5 mask 
approxima tion to 
the shape of (a). 

Tl-lus, we see that the purpose of the Gaussian function in the LOG formulation 
is to smooth the image, and the purpose of the Lnplacian opera tor is to provide 
an image with zero crossings used Lo establish the location of edges. Smoorhjng 
the image reduces the effect of noise and, in principle, it counters the increased 
effect of noise caused by the scco~ld derivatives of the Laplacian. It is of inter- 
est to note that neurophysiological experiments carried out  in the  early 1980s 
(Ullman [I981 1, Marr [1982]) provide evidence that certain aspects ol human vi- 
sion can be modeled mathematically in the basic form of Eq. (10.1-17). 

W Figure 10.15(a) shows the angiogranl image discussed in  Seclion 1.3.2. Fig- EXAMPLE 10.5: 
ure 10.15(b) shows the Sobel gradient of this image, included here for compar- Edge finding by 

ison. Figure 10.15(c) is a spatial Gaussian function (with a standard deviation crossi''~s* 

of five pixels) used to obtain a 27 x 27 spatiaI smoothing mask.The mask was 
obtained by sampling this Gaussian function at equal intervals. Figure 10.25(d) 
is the spatial mask used to implemcnr Eq. (10.1-25). Figure 10.15(e) is the LOG 
image obtained by srnootl~ing the original irnage with the Gaussian smoothing 
mask, foIlowed by application of the Laplacian mask (this image was cropped 
to eliminate the border effects produced by the srnootl~ing mask). As noted in 
the preceding paragraph. V'h can be computed by application of (c) followed 
by (d). Employing this procedure provides more control over the smoothing 
function, and ofterl results in two masks that are much smaller when compared 
with a single composite mask that implements Eq. (10.1-17) directly. A com- 
posite mask usually is larger because it must incorporate th.e more conlplex 
shape sh.own in Fig. 10.14(a). 



FIGURE 10.15 (a) Original irnage. (b) Sobel gradient (shown far comparison). (c) Spatial Gaussian smoorli- 
ing lunctioi~. (d )  Lapl;ician mask. ( e )  LOG. ( I )  Thresholded LOG. ( g )  Zero crossings. (Original inlirge courtesy 
ol Dl.. Davit1 R ,  Pickens, Deparl~nent of Radiology and Radiological Sciences. Vanderbilt Univrt.sily Medical 
cel\ler.) 
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The LOG result shown in Fig. 10.15(e) is the image from which zero crossings 
are computed to find edges. One straightforward approach for approximating 
zero crossings is ro threshold the LOG image by setting all its positive values to, 
say, white, and  all negative valucs to black.The result is shown in Fig. 10.15(f). 
'fie logic behind this approach is that zero crossings occur between positive 
and negative values of the Laplacian. Finally, Fig. lO.lS(g) shows the estimated 
zero crossings. obtained by scanning the threshorded image and noting the tran- 
sitions between black and white. 

Con-~paring Figs. 10.15(b) and (g) reveals several interesting a d  important 
differences. First, we note that the edges in the zero-crossing image are t h i n ~ e r  
than the gradient edges,This is a characteristic of zero crossings that makes this 
approach attractive. On the other hand, we see in Fig. lO.lS(g) that the edges de- 
termined by zero crossjngs form numerous closed loops-This so-called spaghetti 
effect is  one of the most serious drawbacks of this method. Another major draw- 
back is the computation of zero crossings, which is the foundation of the method. 
Altllough i t  was reasonably straightforward in this example, the computation of 
zero crossings presents a challenge in general, and considerably more sophisti- 
caled techniques often are required to obtain acceptable results (Huertas and 
Medione [1986]). 

Zero-crossing methods are of interest because of their noise reduction capabil- 
ities and po~ential for rugged performance. However, the limitations just noted pre- 
sent a significant barrier in practical applications. For this reason, edge-finding 
techniques based on various inlplementations of the gradient still are used more he- 
quently than zero crossings in the implementation of segmentation algorithms. !: 

.?-XI 1 I Edge Linking and Boundary Detection 
Ideally, the methods discussed in the previous section should yield pixels lying 
only on edges. In practice, this set of pixels seldom characterizes an edge com- 
pletely because of noise. breaks in the edge from nonuniform illumination, and 
other effects tha t  introduce spurious intensity discontinuities. Thus edge detec- 
tion algorithms typically are followed by linking procedures to assemble edge 
pixels into meaningful edges. Several basic approaches are suited to this purpose. 

113.2.1 Local Processing 

One of the simplest approaches for linking edge points is to analyze the charac- 
teristics of pixels in a stnall neighborhood (say, 3 x 3 or 5 x 5 )  about every point 
(x, y) in  an image that has been labeled a n  edge point by one of the techniques 
discussed in the previous sectjon. All points chat are similar accordir~g to a set of 
predefined criteria are linked, forming an edge of pixels that share rhose criteria. 

The two principal properties used for establishing similarity of edge pixels jn 
this kind of analysis are (1) the strength of the response of the gradient operator 
used to produce the edge pixel; and (2) the direction of the gradient vector.The 
first property is given by the value of V f ,  as defined in Eq. (20.1-4) or (10.1 -1 2). 
Thus an edge pixe l  with coordinates ( x o ,  yo) in a predefined neighborhood of 
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(s, jj), is similar in magnitude to the pixel at (x, y)  i f  

where E is a nonnegative threshold. 
The direction (angle) of the gradie~l l  vector is gjven by Eq. (10.1 -5).An edge 

pixel ar (x,,, ,v,,) in the predefined neighborhood of (x. )I)  has an angle similar 
to the pixel a1 (.Y, y) if 

where A is a nonr~egative angle threshold. As noted in Eq. (1.0.1 - S ) ,  the dil-ec- 
tion ol the edge at (s ,  y )  is perpcndiculor to the direction of the gl- a d' ~ c n t  vec- 
tor at that point. 

A point in the p~.edefinecl neighborl~ood of (x, y) is linked to the pixel a t  (.u. g )  
j l  both ~nagnitude ancl direction criteria are satisCied.This process is I-epeated at  
every location in the image. A record must be kept of linked points as the center 
of the neigl~borhoocl is ~novcd from pixel to pixel. A si~ilple booltkeeping p~~oce-  
dure is to assign a different gray level to each sel of linked edge pixels. 

EXAMPLE 10.6: To illustrate the foregoing procedure, considel Fig. 10.1 6(a), which shows an 
E~lgc-poinl image of  he rear- of a vehicle. The objective is to find rectangles whose sizes 
linkillg makes  them suilable candidates for license plates.The fol-mation of tlrese I-ec- 
local processing. 

tangles can he accomplishecl by detecting strong horizontal and vertical edges. 
Figures 10.16(b) and (c) SIIOW \~erlicill and horizontal edges obtained by using 

FIGURE 1 0.1 6 
(a) Jnpi11' image. 
( h )  C,, co~rlpo~lei~t 
of the gradient. 
(c) G ,  componenl 
of the g~~aclienl. 
(d) Reslilt of edge 
linking. (Courtesy 
of Perccptics 
Corpol-aLion.) 
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the llorizontal and vertical Sobel operators. Figure 10.16(d) shows the result of 
linking all points that sirnultaneoi~sly had a gradient value greater than 25 and 
whose gradient directions did not differ by morc than lSO.The korizontal lines 
were fol,~ned by sequentially applying these criteria to every row olFig. 10.16(c). 
A sequential column scan of Fig. lO.lG(b) yielded the vertical lines. Further pro- 
cessing consisted of linking edge segments separated by small breaks and delet- 
ing isolated short segments. As Fig. 10.16(4) shows, the recta~lgle corresponding 
to the license plate was one of the few rectangles detected in the image. It would 
be a sirnple matter to locate the license plate based on these rectang.les (the 
width-to-height ratio of the license plate rectangle has a distinctive 2:'l 
proportion for U.S, plates). ?,.~ 

, !? 

1 .  ..' ' Global Processing via the Hough Transform 
111 this section, points are linked by determining lirst i f  they lie on a curve of 
specified shape. Unlike the local analysis method discussed in Seclion 10.2.1, we 
llow consider global relationships between pjxels. 

Given n points in  an  image, suppose that we  want to find subsets of these 
points that lic on straight Lines. One possible solution is to first find al.1. lines de- 
termined by every pair of points and then find all subsets of points that are 
close to particular lines.The problem with this procedure is that it involves find- 
ing n(,t - 1)/2 - 11' lines and then performing (rz)(n(n - l )) /2 - n3 coin- 
parisons of every point to all lines.This approach is computationally prohibitive 
in all bu l  the most trivial applications. 

Hough [1962] proposed an alternative approach, commonly referred to as the 
No~lgh trrrns,fonn. Consider a point ( x i ,  y,) and the general equation of a straight 
line in slope-intercept forn~. yi = [lxi + b. Infinitely many lines pass through 
( x i ,  JJ , ) ,  but thcy all siltisfy the equation y; = axi + b for varying values of a and 
A. However, writing this equation as d =   xi^ + yi and considering the ob-plane 
(also called pornmeter space) yields the equation of a .single line for a fixed pair 
( x i ,  y j ) .  Furthermore, a second point (x,, j;) also has a line in parameter space as- 
sociated with it,and this line intersects the line associated with ( m i ,  y )  at (a', b'), 
where o' is the slope and h' the intercept of the line containing both ( x , ,  y,) and 
( x i ,  Y i )  in the  .ry-plane. In k t .  all points contained on this line have lines in pa- 
ranle ter space that intersect a t (ir',  1)'). Figure 10.17 illustrates these concepts. 

FIGURE 10.1 7 
(a) .wy-plane. 
(b) Parameter 
space. 
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FIGURE 10.18 
Subdivision of the 
parameter plane 
for use in the 
Hough transform. 

. . . . . . - - , 

The computational attractiveness of the tInugh transform arises from subdi- 
viding the parameter space into so-called accumularot. cells, as illustrated in 
Fig. 10.18, where ( o  ,,,, a,,,,,,) and (b ,,., bmi,) are t,he expected ranges of slope 
and intercept values Tile cell at coordinates (i, j), with accumulator value A(i, j ) ,  
corresponds to the square associated with parameter space coordinates (a,, b,). 
Taitiallg, these cells are set to zero. Then, for every point ( x , ,  y k )  in the image 
plane, we let the parameter n equal each of the altowed subdivision values o n  the 
a-axis and solve for the corresponding b using the equation b = -x, a + yk .The 
resulting b's are then rounded off to the nearest allowed value in the b-axis. If  a 
choice of a, results in solution b,, we let A ( p ,  q )  = A ( p ,  q )  + 1. At the end of 
this procedure, a value of Q in A(i, j )  corresponds to Q points in the xy-plane 
lying on the line y = air  t b,. The  number of subdivisions in the ab-plane dc- 
termines the accuracy of the colinearity of these points. 

Note that subdividing the a axis into K increments gives, for every point 
( x i , ,  y,) ,  K values of b corresponding to the K possible values of n .  With n image 
points, this method involves nK cornputations.Thus the procedure just discussed 
is linear in  n, and the product nK does not approach the number of computations 
discussed at the beginning of this section unless K approaches or exceeds n. 

A problem with using the equation y = ax t. b to represent a line is that  
the slope approaches infinity as the line approaches the vertical. One way 
around this difficulty is to use the normal representation of a line: 

.T cos 19 + y sin 0 = p. (1 0.2-3) 

Figure 10.19(a) illustrates the geometrical interpretation of the parameters used 
in Eq. (10.2-3). The use of this representation in constructing a table of accu- 
mulators is identical to the method discussed for the  slope-intercept represen- 
tation. Instead of straight lines, however, the loci are sinusoidal curves in the 
pd-plane. As before, Q collinear points lying on a line x cos 0, + y sin 0, = pi 
yield Q sinusoidal curves that intersect at  (p , ,  0,) in the parameter space. In- 
crementing 8 and solving for the corresponding p gives Q entries in accumulator 
A(i, j) associated wiih the cell determined by ( p , ,  0,). Figure 10.19(b) illustrates 
the subdivision of the parameter space. 
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a b  
FIGURE 10.19 
(a) Normal 
rcpresenrarion of 
a line. 
(b) Subdivision of 
the p8-plane into 
cells. 

The range of angle 8 is * 90°, measured with respect to the x-axisThus with xef- 
erence to Fig. 10.1 9(a), a horizol~tal line has 8 = On,  with p being equal to the pos- 
itive x-intercept. Similarly, a vertical line has 8 = 90°, with p being equal to the 
positive y-intercept, or 0 = -90°, with p being equal to the negative y-intercept. 

Tnl Figure 10.20 illustrates the Hough transform based on Eq. (10.2-3). Fig- EXAMPLE 10.7: 
ure 10.20(a) shows an image with five labeled points. Each of these points is lllustralion of the 

mapped onto the p8-plane, as shown in Fig. 10.20Ib)- T h e  range of 6' values is Hough t ransfn~m.  

k90C, and the range of the p-axis is f f i ~ ,  where D is the distance between cor- 
ners in the image. Unlike the transform based on using the slope intercept, each 
of these curves has a different sinusoidal shape. The horizontal line resulting 
from the mapping of point 1 is a special case of a sinusoid with zero amplitude. 

Tbe colinearity detection property of the Hough transform i.s illustrated in 
Fig. 10.20(c). Point A (not to be confused with accumulator values) denotes the 
intersection of the curves corresponding to points 1,3, and 5 in the xy-image 
plane. l? l~e  location of point A indicates that thesc three points lie on a straight 
line passing through the origin (p  = 0) and oriented at -45". Similarly, the curves 
inlersecting at point B in  the parameter space indicate that points 2 ,3 ,  and 4 lie 
on a straight line oriented at 4.5" and whose distance from the origin is one-half 
the diagonal distance horn the  origin of the image to the opposite corner. 

Finally. Fig. 10.20(d) indicates the fact that the Hough transform exhibits a re- 
flective adjacency relationship at the right and left edges of the parameter space. 
This property, shown by the points marked A, B, and C in Fig. 10.20(d), is the 
result of the  manner in which 8 and p change sign at the *9O0 boundaries. P 

Altl~ough the focus so far has been on straight lines, the Hough transform is 
applicable to any function of the form g(v, c) = 0, where v is a vector of coordi- 
nates and c is a vector of coefficients. For example, the points lying on the circle 

can be detected by using the approach just discussed. The basic difference is 
the presence of three parameters (c, , c2, and c,), which results in a 3-D parameter 
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FIGURE 10.20 
Illustration of the 
Hoi~gh transfornl. 
(Courtesy of Mr. 
D. R. Ca~e,Tcxas 
Ins t rume~~t s .  Inc.) 

space with cubelike cells and accumulators of the form A( i !  j, k).The procedure 
is to incremei~t c,  and c2, solve for the c, thal satisfies Eq. (10.2-4), and update 
the accu~nulator- correspo~lding to the cell associated with the triplet (c ,  , c2, c3) .  
Clearly, the complexity of the Hough transfo~.in is propo~-tional to the number 
of coordinates and coefficients in a given funcliona[ representation. Further 
generalizatjons of the Hough translorrn to detect curves with no sitnplc analytic 
representalions arc possible, as is the application of the transform to gray-scale 
imagcs. SeveraI references dealing with these extensions arc  included at the 
end of this chapter. 

We now return to the edge-linking problem. An approach based on the 
Hough transform is as follows: 

1 Colnpute the gradient of an image and threshold i t  to obtajn a binary image. 
2. Specify subdivisions i l l  the pft-plane. 
3. Examine the counts of the accumulator cells for high pixcl concentrations. 
4. Examine the relationship (principajly for continuity) between pixels in a 

chosen cell. 

Tile concept of continuity in this case usually is based on coiiiputing the distance 
between disconnected pixels identified during traversal of the set of pixels corre- 
sponding to a given accuinulator cell. A gap at any point is significant if the distance 
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a b 
c d 
FIGURE 10.2 1 
(a)  Inh.al-cd 
image. 
(b) Thresl~olded 
gradient image. 
(c) Hough  
Iransforni. 
(d)  Linked pixels. 
(Courtesy of MI-. 
D. R. Cnle,Tesas 
Instrurnencs. Inc.) 

betwcen that point and its closest neighbor exceeds a certain threshold. (See Sec- 
tion 2.5 for a discussion of connectivity, neighborhoods, and distance measures.) 

" Figurc 10.21(a) shows an aerial infrared image containing two hangars and  EAMPLE 10.8: 
a runway. Figure 10.21(b) is a thresholded gradient image obtained using the the  Hough 

I ransfo~ ni €01 Sobel operators discussed in Section 10.1.3 (note the small gaps in the borders edge link,ng,  
of the runway).  Figure 10.21 (c) shows the Hough transform of the gradient 
image. Figure 10.21(d) shows (in white) the set of pixels linked according to the 
criteria that (I) they belonged to one of the three accumulator celIs with the 
highest count, and  (2) no gaps were longer than five pixels. Note the disap- 
pearance of the gaps as a result of linking. T- 

: C.2.3 Global Processing via Graph-Theoretic Techniques 

Tn this section we discuss a global approach for edge detection and linking based 
on representing edge segments in the form of a graph and searching the graph 
lor low-cost paths that correspond to significant rdges.This representation pro- 
vides a rugged approach that performs wcll in the presence of noise. As might 
be expected, the procedure is considerably more complicated and requires more 
processing time than the methods discussed so far. 
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FIGURE 10.22 
Edge element 
between pixels p 
and y. 

We begin the development with some basic definitions A grllyh G = ( N ,  U )  is 
a fi~.lite,nonempty set of nodes N, together with a set U of unordered pairs of dis- 
tinct elements of N.  Each pair (n,, n,) of U i s  called an arc. A gl-aph in which tlre arcs 
are directed is called a directed graph. If an arc is directed from node laj to node ni, 
then ni is said to be a successor of the pnrent node nj.The process of idenlifying the 
successors of a node is called expansion of the node. In each gi-aph we define lev- 
els, such that level 0 consists of a single node, called the smrt 01. rout node, and the 
nodes in the last level are all4 goalnodes. A cost c(17~.  n j )  can be associated with 
every arc (n , ,  n j ) . A  sequence of nodes n, .  n?, . . . , n,, with each node ni being a suc- 
cessor of node ni-, , is called a pmh from n, to n,. The cost of the entire path is 

The following discussion is simplified if we define an  edge t lenzer~t  as the bound- 
ary between two pixels p and q, such that p and y are 4-neighbors, as Fig. .10.22 
illustrates. Edge elements are idex~tif ed by the xy-coordinates oC points p and 
q. In other words, the edge element in Fig. 10.22 is defined by the pairs 
(x,, y,)(x,,  y,). Consistent with the definition given in Section 10.1.3. an edgc 
is a sequence of connected edge elenients. 

We can illustrate how rhe concepts just discussed appJy to edge detection 
using the 3 X 3 image shown in Fig. 10.23(a). The ouler numbers are pixel 

a b c  

FIGURE 10-23 (a) A 3 X 3 image region. (6) Edge segnlents and their costs. (c) Edge corresponding l o  the 
lowest-cost path in the graph sllown i n  Fig. 10.24. 
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coordinates and the numbers in brackets represent gray-level values. Each edge 
element, defined by pixels p and q, has an associated cost, defined as 

where H is the highest gray-level value in the image (7 in this case), and f ( p )  
and f ( q )  are the gray-level values of p and q, respectively. By convention, the 
point p is on the right-hand side of t h e  direction of travel along edge elements. 
For example, t h e  edge segment ( 1 , 2 )  (2,2) is between points (1,2) and (2,2) 
in Fig. 10.23(b). If the  direction of t ravel  is to the right, then p is the point 
w i t h  coordinates ( 2 , 2 )  and  q is point with coordinates (1, 2); therefore, 
c ( p ,  q )  = 7 - [ 7  - 61 = 6.This cost is shown in  the box below the edge seg- 
ment. TI: on the other hand,  we are traveling to the left between the same two 
points, then y is point (1,2)  and q is (2,2). In  this case the cost is 8, as shown 
above t h e  edge segment in Fig. 10.23(b). To simplify the discussion, we as- 
sume that edges start in t h e  top row and terminate in  the last row, so that the  
first element of an edge can be oi~ly between points (1, I), (1 ,2 )  or  (1,2),  
(1,3). Similarly, the last edge element has to be between points (3, I ) ,  ( 3 . 2 )  
or (3, 2) ,  (3, 3 ) .  Keep in mind that  p and q are  4-neighbors, as noted earlier. 

Figure 10.24 shows the graph for this problem. Each node (rectangle) in the 
graph corresponds to an edge element from Fig. 10.23. An arc exists between two 
nodes if the two corresponding edge elements taken in succession can be part 

FIGURE 10.24 
Graph for the 
Lmagc in 
Fig. 10.23(a). The 
lowest-cost path is 
shown dashed. 



of an edge. As in Fig. 10.23(b), the cost of each edge segment, computed using 
Eq. (J.0.2-6), is shown in a box on the side of the arc leading into the corre- 
sponding node. Goal nodes are shown shaded.The minimum cost path i s  shown 
dashed, and the edge corresponding to this path i s  shown in Fig. 10.23(c). 

Jn general, the problem of finding a minimum-cost path is not trivial in terms 
of cornputation.Typically, the approach is to sacrifice optimality for the sake of 
speed, and the following algorithm represents a class of procedures that use 
heuristics in order to reduce the search effort. Let r ( n )  be an es~irnate of the cost 
of a minimum-cost path fro111 the start nodes to a goal node, where the path is 
constrained to go through n.This cost can be expressed as the estirnace of the 
cost of a minimum-cost path froms to plus an estimate of the cost of [hat path 
from n to a goal node; thar is, 

Here, g ( n )  can be chosen as the lowest-cost path from s to n found so far, and 
h ( n )  is obtained by using any available heuristic information (such as expand- 
ing only certain nodes based o n  previous costs in getting to that node). An al-  
gorithm that uses u ( / a )  as the basis for performing a graph search is as follows: 

Step I: Mark the start node OPEN and set g(s) = 0. 
Sfep 2: If no node is OPEN exit with failure; otherwise, continue. 
Step 3: Mark CLOSED the OPEN node n whose estimate r ( n )  computed 
from Eq. (10.2-7) is s~nallest. (Ties for r~linimum r values are resolved arbi- 
trarily, but always in favor of a goal node.) 
Step 4: If n is a goal node, exit with the solution path obtained by tracing 
back through the pointers; otherwise, continue. 
Sfep 5.- Expand node r z ,  generating all of its successors. (If t l~cre  are no suc- 
cessors go to step 2.) 
Step 6: If a successor j7; is not marked, set 

r(ni) = g ( n )  + c(n. ni). 

mark i t  OPEN. and direct pointers from it  back to n. 
Step 7: If a successor ni is marked CLOSEL) or OPEN, update its value by 
letting 

s f ( ~ i )  = rnin[g(s), g(n) -F c(n,  n , ) ] .  

Mark OPEN those CLOSED successors whose g' values were thus lowered 
and redirect to n the pointers from all nodes whosc g' values were lowei-ed. 
Go to step 2. 

This algorilhm docs not guarantee a minimum-cost path; its advantage is 
speed via the use of Ileuristics. However, if h(n) is a lower bound on the cost of 
the minimal-cost path from node n to a goal node, the procedure indeed yields 
an optimal path to a goal (Hart et  al. [1968]). If no heuristic information is avail- 
able (that is, h = O), the procedure reduces lo Ihe unffornt-cosl algoritknl of 
Dijkstra [1959]. 

EXAMPLE 10.9: 
Edge Cindinq by F; Figure 10.25 shows an image of a noisy chrornoso~iie sjlhouette and a n  edge 
graih search. - found using a heuristic graph search based on the algorithm developed in this 
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FIGURE 10.25 
J~nagc ot' ~loisy 
chromoron)c 
silhouette and 
edgc boundary 
( i n  white) 
detei.~niued by 
graph searcl~. 

seclion.The edge is shown in white. superimposed on the original image. Note 
that in th i s  case the edge and t he  boundary of the object are approximately the 
same.The cost was based on Eq. (10.2-6), and  Lhe heuristic used at  any point on 
the grap tl was Lo determinc and use the optimum path lor fjve levels down frum 
that point. Considering the amount of noise present in  this inlage, the graph- 
search appuoach yiclded a reasonably accurate result. -.? . ~ 

WCWI -. : Thresholding ."- . 

Because of i t s  intuitive properties and simplicity of  irnplernentation, image 
threst~olding enjoys a central position in applications of image segmentation. 
Simple thresholding was first introduced in Section 3.1, and we have used it in 
various discussions i n  [he preceding cl~aptcrs. I n  this section. we inrroduce 
thi-esholding in a more formal way and extend i t  to techniques that are consid- 
erably  more general than wha t  has  been presented rhus far. 

1 . , ' 1  1:. Foundation 

Suppose that the gray-level histogra~n shown in Fig. 10.26(a) corresponds to a11 
in~age, f'(.~: y) ,  composed of light objects on a dark background, in such a way  
that object and background pixels have gray levels grouped into two dominant 
mocles. One obvious way to extract the o bjecls from t h e  background is lo select 
a threshold T  hat separates these modes. Then any point ( r ,  y)  for wh ich  
f (.r. y)  > T is called an object poirqt; othenvise. the point is called a hnckgroll~zd 
poirrr. This i s  t h c  lype of thresholdjng introduced in  Seclioil 3.1. 

Figure 1.0.26(b) shows a slightly more general case of this approach, where 
three dominant modes charactcrize the image histogl-am (tor example, two types 
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FIGURE 10.26 (a) Gray-level histograms that can be partitioned by (a) a single thresh- 
old, and (b) multiple thresholds. 

of light objects on a dark background). Here, multilevel thresholding classifies 
a point (x, y )  as belonging to one object class if T, < ( x ,  y )  5 T,, to the other 
object class iff ( x ,  y )  > T2, and to the background i f f  ( x ,  y)  5 TI .  In general, 
segmentation problems requiring multiple thresholds are best solved using re- 
gion growing methods, such as those discussed in Section 10.4. 

Based on the preceding discussion, thresholding may be viewed as an oper- 
ation that involves tests against a function T of the form 

where f ( x ,  y) is the gray level of point ( x ,  y)  and p ( x ,  y )  denotes some local 
property of this point-for example, the average gray level of a neighborhood 
centered on ( x ,  y) .  A thresholded image g(x, y) is defined as 

Thus, pixels labeled 1 (or any other convenient gray level) correspond to objects, 
whereas pixels labeled 0 (or any other gray level not assigned to objects) cor- 
respond to the background. 

When T depends only on f ( x ,  y )  (that is, only on gray-level values) the 
threshold is called global. If T depends on both f (x, y )  and p ( x ,  y), the thresh- 
old is called local. If, in addition, T depends on the spatial coordinates x and y ,  
the threshold is called dynamic or adaptive. 

% 0.3.2 The Role of Illumination 
In Section 2.3.4 we introduced a simple model in which an image f ( x ,  y) is formed 
as the product of a reflectance component r ( x ,  y)  and an illumination compo- 
nent i ( x ,  y).The purpose of this section is to use this model to discuss briefly the 
effect of illumination on thresholding, especially on global thresholding. 

Consider the computer generated reflectance function shown in Fig. 10.27(a). 
The histogram of  this function, shown in Fig. 10.27(b), is clearly bimodal and could 
be partitioned easily by placing a single global threshold, T, in the histogram 



valley. Multiplying the rellectance function in Fig. 10.27(a) by the illuminatiot~ 
f u n c ~ i o n  shown in  Fig. 10.27(c) yields 1 1 1 ~  image shown in  Fig. 10.27(d). Fig- 
ure 10.27(e) shows the his log ran^ of this image. Note that the original valley was 
virtually eliminaled, making segmentation by a single threshold an impossible 
task. Although w e  seldorn have [he refleclance function by itself to work with. this 
simple illus~ration shows thal rhe re€[ectivc nature of ob,jects and background 
could be such that they are easily sepal-able. However, the image I-esultjng from 
p o o ~  (in this case nonuniform) illumination could be quite difficult to segment. 

Tlic re;Lwi) why the hislogr'am iu  Fig. 10.27(e) is so distorted can be explained 
with aid of the cliscussion in Section 4.5. FI-om Eq. (4.5-L), 

FIGURE 10.27 
(a) Computer 
generaled 
reClcctance 
function. 
(b) Histogram of  
reflec~ancc 
funct ior~. 
(c) Computer 
uene1.a ted 
P 
illumination 
[unction. 
( d )  PI-oducr o€ (a) 
and ( c ) .  
( e )  Histogram of 
product icnage. 
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Taking the natural logarithm of this eqitation yields a sum: 

z(., Y )  = I n f ( x ,  Y )  
= Ini(x, y )  + Inr(x, y )  ( 10.3-4) 

= i l ( x ,  y )  + r l ( x ,  y ) .  

From probability theory (Papoulis [1991]), if i ' ( x .  y )  and r ' ( x ,  y) are indepen- 
dent random variables, the histogram of z(x, y)  is given by the corivolution of 
the histograms of i l ( x ,  y )  and r l ( x ,  y ) .  If i ( x ,  y)  were cor~slant, i l ( x ,  y )  would be 
constant also, and its histogram would be a simple spike (like an impulse).The 
convolution of this impulselike function with the histogram of r l ( x ,  y)  would 
leave the basic shape of this histogram unchanged (recall from the discussion 
in Section 4.2.4 that convolution of a function with an impulse copies the func- 
[ion at the location of the impulse). But if i'(x, y )  had a broader histogram (re- 
sulting from nonuniform illumination), t he  convolution process would smear 
the histogram of r ' ( x ,  y ) ,  yielding a histogram for z(x, y) whose shape could be 
quite different from that  of the histogram of r ' ( x ,  y). The degree of distortiotl 
depends on the broadness of the histogram of i l(r,  y),which in turn depends on 
the nonuniformity of the illumination functjon. 

We have dealt with the logarithm off (x, y),instead of dealing with the image 
function directly, but the essence of the problem i s  clearly explained by using 
rhe logarithm to separate the illumination and reflectance componentsThis ap- 
proach allows histogram fornlat-ion to be viewed as a co~~volution process, thus 
explajnjng why a distinct valley in the histogram of the reflectance function 
could be smeared by improper jllumination. 

When access to the illumination source is available, a solutjon frequently 
used in practice to compensate for nonuniformity is to project the illumination 
pattern on to a constant, white reflective surface.  This yields a n  image 
g ( x ,  y) = k i ( x ,  y ) ,  where k is a constant lhat depends on t h e  surface and i ( x .  y)  
is the illumination pattern.Then, for any image J ( x ,  y)  = i ( x ,  y ) r ( x ,  y) obtained 
with the same illumination function, simply dividing/(x, y )  by g ( x ,  y )  yields a 
normalized function h ( x ,  y )  = f ( x ,  y ) / g ( x ,  y )  = r ( . r ,  y)/k.Thus, if r ( x ,  y )  can 
Ile segmented by using a single threshold T ,  then h ( x ,  y)  can be segmented by 
using a single threshold of value T / k .  

102.3 Basic Global Thresholding 
With relerence to the discussion in Section 10.3.1, the simplest of all thresh- 
oIding techniques i s  to partition Lhe image histogram by using a single global 
threshold, T,  as illustrated in Fig. 10.26(a). Segmentation is then accomplished 
by scanning the image pixel by pixel and labeling each pixel as object or back- 
ground, depending on whether the gray level of tha t  pixel is greater or Iess than 
the value of T.  As indicated earlier, the success of this method depends entirely 
on how well the histogram can be partitioned. 

EXAMPLE 10.10: 3 Figure 10.28(a) shows a simple image, and Fig. 10.28(b) shows i ts histogram. 
Global Figure 10.2S(c) shows the  I-esult of segmenting Fig. 10.28(a) by using a thresh- 
thresliolding. old T midway between the maxinlunl and minin~um gray levels. This threshold 
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achicved a "clean" segmentation by eliminaling the shadows and leaving only 
the objects lhernselves, The objects of interest in this case are darker than the 
background, so a n y  pixel with a gray level I T  was labeled black (O), and any 
pixel with a gray level >T was labeled wlzite (255).Tlie key objectjve is mere- 
ly to generate a bjnaty image,so the black-white relationship could be reversed. 

The type of global thresholding just described can bz expected to be suc- 
cessful in highly controlled environments. One of the areas in which this often 
is possible is in jndustrjal irlspection applications, wher-e control of the illumi- 
nation usually is feasible. sq 

The tlireshold in the preceding example was specified by using a heuristic 
approach, based 011 visual inspection of the histogram.The following algorithm 
can be used to obtain T automatically: 

3. Selecl an initial estimate for T. 
2. Segment the image using T.Tl1i.s will produce two groups of pixels: G, con- 

sisting 01 all pixels with grav level values >T and G2 consisting of pixels 
with values 5 T .  

3. Compute t h e  average gray level values ,u, and pl~, for the pixels in regions 
G, and G,. 

a 
b c 
FIGURE 10.28 
(a) 0 t.igi11al 
image. (I,) Image 
hisrogram. 
(c) Result of 
gluhaI 
tlireslioldi~ig with 
T irlid way 
between the 
tnasimuni and 
tnininlum gray 
levels. 
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4. Con~pute a new threshold value: 

5. Repeat steps 2 through 4 until the difference in T i n  successive iterations 
is smaller than  a predefined parameter T,,. 

When there is reason to believe that the background and  object occupy coin- 
pal-able areas in the image, a good initial value for T is the average gray level 
of the image. When objects are small compared to the area occupied by the  
background (or vice versa), then one group of pixels will cloniinate the  his- 
tograni and  the average gray level is no1 as good an initial choice. A more ap- 
propriate initial value for Tin cases such as this is  a value midway between Ihc 
maximum and  minimum gray levels.The parameter T,, is used to stop the algo- 
rithm after changes become small in terms of this parameter. This is used when 
speed  of iteration is an important issue. 

EXAMPLE 10.11: 3 Figure 10.29 shows an example of segmentation based on a thr-eshold esti- 
Iniage mated using the preceding algorithm. Figure 10.29(a) i s  the original imagc, and 
segmelitatlon Fig. 10.29(b) 1s the image histogram. Note the clear valley of the hiscogi4ani.Ap- 
using a n  
esrirnil~ed global plication of the iterat~ve algorithm resulted in a value of  125.4 after three i ter- 
Lhreshold. a tjons starting with the average gray level and T,, = 0. The result obtaincd u s ~ n g  

T - 125 to scgment the original image is shown in Fig. 11>.29(c). As expected 
from the clear separation of modes in  the histogram, the segmentation between 
object and background was very effective. T 

'1 5.2.::\ Basic Adaptive Thresholding 

As illustrated in Fig. 10.27, imaging factors such as uneven illumination can 
t-ransform a perfectly segmentable histogram into a histogram that cannot be 
partitioned effectively by a single global threshold. A11 approach for handling 
such a situation is  to divide the original image into subimages and  then utilize 
a dillerent threshold to segment each subimage.Thc key issues in this approach 
are h o w  Lo subdivide the image and how to esrimate (he L~I-eshold fol- each re- 
sulting subimage. Since t h e  threshold used for each pixel depends on the loca- 
tion of the pixel in terms of the subimages, this type of thresholding is adaptive. 
We jllustrate adaptive thresholding with a simple example. A more compre- 
hznsive example is  given in the next  section. 

EXAMPLE 10.12: $3 Figure 10.30(a) shows the  image frorn Fig. 10.27(d), which we concluded 
Basic adaptive could not be thresholded effectively with a single global threshold. In fact, 
thresholding. Fiq. 10.30(b) shows the result of thresholding rhe Image with a global tl>resl~oId 

G 

manually placed in  the valley of its histogram [see Fig. 10.27(e)J. One approach 
to reduce the effect of nonuniform illumination is to subdivide the image jnto 
smallcr subimages, such that the illuminalion of each subimage is approximately 
unjform. Figure 10.3O(c) shows such a partition, obtained by subdividing the 
image into four  equal parts, and then subdividing each pan by four again. 
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Aj1 the  subimages that did not contain a boundary between object and back- 
ground had variances of less than 75.All subimages containing boundaries had 
variances in excess of 100. Each subimage with variance greater than 100 was 
segmented with a threshold computed for that subirnage using the algorithm dis- 
cussed in the previous section. The initial value for Tin each case was selected 
as the point midway between the  minimum and maximum gray levels in the 
subimage. All sublrnages with variance less than 100 were treated as one com- 
posite image, which was segmented using a single threshold estimated using the 
same algorithm. 

The result of segmentation using this procedure is shown in Fig. 10.30(d). 
With the exception of two subimages, the improvement over Fig. 10.30(b) is 

:a :b- 
.c 

FIGURE 10.29 
(a) Original 
image. (b) Image 
histogram. 
( c )  Result of 
segmentation with 
the threshold 
estimated by 
iteration. 
(Original courtesy 
of the National 
Institute of 
Standards and 
Technology.) 
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a b  
c d 

FIGURE 10.30 
(a) Original 
irnage. (b) Result 
of global 
rhresholding. 
( c )  11nagz 
subdividzd inlo 
individual 
su bi rn ages. 
(d) Result of 
adap ti1.e 
fh rcsholdina. 

evideni. The boundal-y between objcci and background in each of thc inlpr-op- 
erly segmented subimages was small and dark,and the resulti~lg llistogram was 
alnlost unirnodal. Figu1.e 10.31 (a) shows the top irnproperl y segmetlled sitbitn- 
age I'rorn Fig. 10.30(c) a n d  the subimagc dircctly abovc it,, which was segnien(- 
e d  pcoperly. The l ~ j s t o g ~ a m  of ihe subirnage t h a t  was properly scglnented is 
clearly bimodal. with well-defined peaks and vallev. The other l,isrogram is al- 
nos [  unjmoclal. with 110 clear distinction bclween object ancl backglnund. 

Figutz 10,31(d) shows Ihe failed subirnage fur(11e1. subdivided into much 
smaller subimages, and Fig. 10.31(e) shows (lie histogram of rhe top, left srnall 
subimage.This suhhnage contains the lransition bzlwccn objccc~ and background. 
This smaller subimage has a clearly binloclal histogl.am and sllould be easily 
segn~entable. This, in fact, is the case, as  shown in Fig. 10.3'1 ( f ) .  This figure also 
shows the segmentation of  all the olhcr srnall suhimages. All these subimages 
had a nearly ilnjnlodal hiscograin., and  their average gray Ievel was  close^. ro (he 
o l ~ j  ject t han  to the background. so they were all classified as object. I (  is lel't a s  
a projecl lor rl~e reader to show rhal consideleably lnorc accurale segmentation 
can be acl~ieved by subdividing the enlire jmage in Fig. 10.30(a) into subimages 
of the slze shown in Fig. 10.31 (d). :, . 

4 

f l r  f̂  : Optimal Global and Adaptive Thresholding 
In  this section we discuss a method for estimating thresholds tha t  procluce the 
minimum average segmentation errol-.As an illustration? the method is applied 



a b 
C 

e d f  

FIGURE 10.31 (i~) Proper.1 y and improperly segn~en ted suhim:lpes from Fig. 10.30. (b)-(c) Cor~.esponding 
hislogri\m~. (d) Further subdivision of the improperly scgineuted subirnage. ( e )  Histugran) oT 5n1all subim- 
age a1 Lop. 1 ~ 1 ' 1 .  ( f )  Result al' adaptively segmetlring (d). 

to a problem that requires solution of several important issues foui~d frequently 
i n  thc pi-actical application of thsesholding. 

Suppose that a n  iinage cor~tains only two pi.incipa1 gt.ay-level regions. Let z 
denore gray-level values. We can view these values as random quantities. and 
their Iiistog~.ani m a y  be considet.ed an s l i m a t e  of their probability density func- 
tion (PDF). p(z).This overall dcnsjty function is the suin 01. mjxture of two den- 
sities, one for thc light and the other for tile dark regions in  [he image. 
Furrhernlol.e, the mixture parameters are pi-ogortional to the relative areas of 
the  dark and light regions. I f  the form of the densities i s  k n o w n  or assumed, it 

' 1 , P wt r: 
is possible to dctcrn~ine an optimal threshold (ill terms of minimum errorj for 9 
segmenting the irnage into the two distinct regions. hcc ih-ibl~, l~bs~bl LO, L I 

(:olrxuII rhc I l c ~ i ~ k  \ r c l i  s i ~ c  Figure 10.32 shows two probability density functions. Assume chat the 1al.ger 
,i,l,,.ic,rr, r,uo 

of the two PDFs corresponds to the backgroui~d levels while thc srnaller one i\Ilililv cl\ccrr\,. 
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FIGURE 10.32 
Gray-level 
probability 
density [unctions 
of two regions i n  
an  image. 

describes the gray levels of objects in the image. The mixture probability den- 
sity function describing the overall gray-level variation in the image is 

Here, P, and Pz are the probabilities of occurrence of the two classes of pixels: 
that is, P, i s  the probability (a number) that a random pixel with value z is an 
object pixel Similarly, P, is the probability that t h e  pixel is a background pixel. 
We are assunling tha t any given pixel belongs either to an objecr or to t h e  back- 
ground, so that 

An image is segmented by classifyi~~g as background all pixels with gray 1e-vels 
greater than a threshold T (see Fig. 10.32). A11 other pixels are called objcct 
pixels. Our  main objective is to select the value of T that minimizes the average 
error in making the decisions that a given pixel belongs to an object or to the 
background. 

Recall [hat the probability of a random variable having a value in the interval 
[n, b]  is the integral of its probability density funclion from n to b, which is the 
area of the PDF curve between these two limits. Tl-rus, the probability o l  
rrroneo~lsly classitying a background point as an object point is 

7' 

E, ( T )  = / p.(z) dz .  
. -4% 

This is the area under the curve of p 2 ( z )  to the left of the thl-eshold. Similarly. 
the probability of erroneously classifying an object point as background is 

which is the area under the curve of y (2) to the right of T. Then the overall 
probability of error is 

Note how the quantities E., and E2 are weighted (given importance) by the prob- 
ability of occurrence of object or background pixels. Note also that the sub- 



scripts are opposites.This is sin~ple to explain. Consider, for example, the extreme 
case in which background points are known never to occur. In this case P, = 0. 
The contribution to the overall error (E) of classifying a background point as 
an object point (E,)  should be zeroed out because background points are known 
never lo occur.This is accomplished by multiplying E ,  by P2 = 0. If background 
and object points are equally likely to occur, then the weights are P, = P, = 0.5. 

To find the threshold value for which this error is minimal requires differ- 
entiating E ( T )  with respect to T (using Leibniz's rule) and equating the resull 
to 0. The result is 

This  equation is solved for T to find the optimum threshold. Note that if P, = P2! 
then the optimum threshold is where the curves For p , ( z )  and p , ( z )  intersect 
(see Fig. 10.32). 

Obtaining an analytical expression for T requires that we  know i:he equa- 
tions for the two PDFs. Estimating these densities in practice is not always fea- 
sible, and an approach used oCten is to enlploy densities whose parameters are 
reasonably simple to obtain. One of the principal densities used in this manner 
is the Gaussian density, which is completely characterized by two parameters: 
the Incan and the variance. In this case, 

where p,  and rr: are the mean and variance of the Gaussian density of one class 
of pixels (say, objects) and p2 and cri are the mean and variance of the other class. 
Using this equation in the general solution of Eq. (10.3-10) results in the foI- 
lowing solution for the threshold T: 

where 

Since a quadratic equation has two possible solutions, two threshold values may 
be required to obtain the optimal solution. 

I f  the variances are equal, o2 = g: = a:, a single threshold is sufficient: 

J f  P, = P,, the optimal threshold is the average of the means.The same is true 
i f  cr = 0. Delerrnining the optimal threshold may be similarIy accomplished for 
other densities of known form, such as the Raleigh and log-normal densities. 

Instead of assuming a functional form for p ( z ) ,  a minimum mean-square- 
error approach may be used to estimate a composite gray-level PDF of an image 
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Tram the image histogram. For example, the  mean  square error between the 
(continuos) mixture density p ( z )  and the (discrete) image histogram h ( z , )  is 

where an 12-point histogram i s  assurned.?he principal reason for estimating the  
complcte density is to determine the presence or absence d o r ~ i ~ l a ~ t  modes in 
the PDF. For example, two dominant modes typically indicate the PI-esencz of 
edges in the image (or ~~egiorl) over which the PDF is computed. 

111 general, determining analytically the parameters t l ~ a ~  mini~nize this meal) 
square error is not a sirnple matter. Evcn for the Gaussian case, the straight- 
forward computation of equaling the partial derivatives to 0 leads to a set ofsi- 
n l u l ~ a n e o u s  transcendental equations tha r  usually can be solved oilly by 
numerical procedures, such as a conjugate gradients or Newton's melhod for 
silnu I taneaus no11 linear equations. 

EXAMPLE 10.13: T' The following is one of the earlicst (and slill one of t h e  most instructive) 
Use of o ~ t j m u n l  exa~nples of segmentation by optimum thresholding in  image p~.ocessi~lg.'l'his 
thrrsho'ding example is particularly interesting at this junction because il sllows how seg- 
i m a ~ e  
segmentation. men tation results can be improved by employing preprocessing techniques 

based on methods developed in our discussion of image enha~~cenlenl .  In ad- 
dition, the example also illustrates the use of local histogram es i i~na t ion  and 
adaptive thresholding. Thc gciieral problem is to outline auro~natically [he 
boundaries of heart ventricles in ca~dioangiograms (X-ray iniages of a heart 
that has been injected with a contrast medium). The approach discussed here 
was developed by Chow and Kalicko [I9721 Cor outlining boundaries of the left 
ven~~*icle of the heart. 

Prior to segmentation5 all images were pi-eprocessed as follows: (1) Each 
pixel was mapped with a log function (see Seclio~l 3.2.2) to countel- exponen- 
tial effects caused by radioactive absorption. (2) An image obtained bel'oore ap- 
plication oC rhe contrast mediu~n was subtracred from each image caplured after 
the medium was injected in order to remove the spinal column present in both 
images (see Sectior~ 3.4.1). (3) Several ang iog~ams  were s u m m e d  in order to re- 
duce rarldonl noise (see Section 3.4.2). Figure 10.33 shows a cardioangiogram 

a b 
FIGURE 10.33 A 
cardioangiogram 
before and after 
prep~ocessi ng. 
(Chow and 
Kancko.) 



before and after preprocessing (an explanation of the regions marked A and B 
is given in the following paragraph). 

In order to compute the optimal thresholds, each preprocessed image was 
subdivided into 49 regions by placing a 7 X 7 grid with 50% overlap over each 
image (all original images shown in this example are of size 256 x 2.56 pixels). 
Each of the 49 resulting overlapped regions contained 64 X 64 pixels. Fig- 
ures 10.34(a) and 10.34(b) are the histograms of the regions marked A and B 
in Fig. 10.33(b). Note that the histogram for region A clearly is bimodal, indi- 
cating the presence of a boundary.The histogram for region B, however, is uni- 
modal, indicating the absence of two markedly distinct regions. 

After all 49 histograms were computed, a test of bimodality was performed 
to reject the unimodal histograms.The remaining histograms were then fitted by 
bimodal Gaussian density curves [see Eq. (10.3-ll)] using a conjugate gradient 
hill-climbing method to minimize the error function given in Eq. (10.3-15).The 
X's and 0 ' s  in Fig. 10.34(a) are two fits to the histogram shown in black dots.Tl~e 
optimum thresholds were then obtained by using Eqs. (10.3-12) and (10.3-13). 

At this stage of the process only the regions with bimodal histograms were 
assigned thresholds. The thresholds for the remaining regions were obtained by 
interpolating these thresholds. Then a second interpolation was carried out point 
by point by using neighboring threshold values so that, at the end of the pro- 
cedure, every point in  the image had bee11 assigned a threshoId. Finally, a bina- 
ry decision was carried out: for each pixel using Ihe rule 

1 iff  ( x ,  y )  2 T,, 
0 otherwise 

where T,, was the threshold assigned to location ( x ,  y) in the image [note that 
these are adaptive thresholds, because they depend on the spatial coordinales 
( x ,  y ) ] .  Boundaries were obtained by taking the gradient of the binary picture. 
Figure 10.35 shows the boundaries superimposed on the original image. Con- 
sidering the variability and complexity of the images involved, this procedure 
yielded excellent segmentation results. t% 

-Dark Bright - -Dark Bright - 

a b  
FIGURE 10.34 
Histograms (black 
dots) of (a) region 
A, and (b) region 
B in Fig. 10.33(b). 
(Chow and 
Kaneko.) 
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FIGURE 10.35 
Cardioangiogram 
showing 
superimposed 
bounda~.ies. 
(Chow and 
Kaneko.) 

- "  r . . 
L. . . m J 8 , ,  Use of Boundary Characteristics for Histogram 

Improvement and Local Thresholding 
Based on the discussions in the previous five sections,it is intuitively evident that 
the chances of selecting a "good" threshold are enhanced considc~-ably if the his- 
togram peaks arc tall, narrow, syn~n~etr ic ,  and separated by deep valleys. One 
approach for improving the shape of l~istograms is to consider only those pix- 
els that lie on o r  near the edges between objects and the background. An in)- 
mediate and obvious improvement is tliat liistograms would be less clependenl 
on the relative sizes of objects and the background. For instance. the histogram 
of an image composed of a small object 011 a large background area (or  vice 
versa) would be dominated by a large peak because of the liigl~ concentration 
of one type of pixels. Figures 10.30 and 10.31 are a good illustl-ation of how seg- 
mentation performance is affected by this condition. 

If only the pixels on o r  near thc edge between object and the background 
were used, the resultirlg histogram would have peaks of approximately the same 
height. In addition, the probability that any of those given pixels lies o n  an ob- 
ject would be approximately equal to  the probabilily that i t  lies on the back- 
ground, thus improving the symmetry of the hislogram peaks. Finally, as 
indicated in the following paragraph, using pixels that satisfy some sil-r~ple mea- 
sures based on  gradient and Laplacian operators has a tendency to deepen the 
valley between histogram peaks. 

The principal problem with the approach just discussed is the implicit as- 
sumption that the edges between objects andbackground arc known.'T'his in- 
formation clearly is not available during seglnen talion, as finding a division 
between objects and background is precisely what segn~entation is all about. 
However, from the discussion in Section 10.1.3, an indication of whether 21 pixel 
is on an edge may be obtained by computing its gradient. In addition, use of 
the Laplacian can yield information regarding whether a given pixel lies on the 
dark or liglit side of an edge.The average value of the Laplacian is 0 at the Iran- 
sition of an  edge (see Fig. 10.6), so in practice the valleys of liistograms formed 
from the pixels selected by a gradientllaplacian criterion can be expected to be 
sparsely populated. This property produces the highly desirable deep valleys 
discussed previously. 
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The gradient Vf at  any point (x, y) in an image is given by Eq. (10.1-4) or 
(10.1-12). Similarly, the Laplacian V2f is given by Eq. (10.1-14) or (10.1-15). 
These two quantities may be used to form a three-level image, as follows: 

O if Vf < T 
+ if Vf 2 T and v2f 2 0 
- if Vf 2 T and V2f < 0 

where the symbols 0, +, and - represent any three distinct gray levels, Tis a thresh- 
old, and the gradient and Laplacian are computed at every point (x, y). For a dark 
object on a light background, and with reference to Fig. 10.6, the use of 
Eq. (10.3-16) produces an image s ( x ,  y) in which (1) all pixels that are not on an 
edge (as determined by Vf being less than T) axe labeled 0; (2) all pixels on the 
dark side of an edge are labeled +; and (3) all pixels on the light side of an edge 
are labeled -.The symbols + and -in Eq. (10.3-16) are reversed for a light object 
on a dark background. Figure 10.36 shows the labeling produced by Eq. (10.3-16) 
for an image of a dark, underlined stroke written on a light background. 

The information obtained with this procedure can be used to generate a seg- 
mented, binary image in which 1 ' s  correspond to objects of interest and 0's cor- 
respond to the background. The transition (along a horizontal or vertical scan 
l ine) from a light background to a dark object must be characterized by the oc- 
currence of a - fol.lowed by a + in s(x,  y) .  The interior of the object is com- 
posed of pixels that are labeled either 0 or +. Finally, the transition from the 
object back to the background is characterized by the occurrence of a + fol- 
lowed by a -.Thus a horizontal or vertical scan line containing a section of an 
object has the foIlowing structure: 

FIGURE 10.36 
Image of a 
handwritten 
stroke coded by 
using 
Eq. (10.3- 16). 
(Courtesy of IBM 
Corporation.) 
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a 
b 

FIGURE 10.37 
(a) Original 
image. (b) Iniage 
segrnen red by 
local thresholding. 
(Caul-tesy of IBM 
Corporar ion.) 

EXAMPLE LO. 14: 
I magc 
se_~menl;rtion hy 
local  thresholdir~g. 

FIGURE 10.38 
H isrogram ol' 
pixels with 
zradiet~ts gl-catel. 
than 5. (CourLcsy 
of I B M  
Corporal ion.) 

where  (..-) represents any cornbina~ion of -I, -. and 0. The innerrnos1 paren- 
tlieses contairl object poitits a n d  are labelcd 1 .  All olhei- pixels along the same 
scan line arc labeled 0, with the exception ol any other sequence ol' (0 01- +) 
bounded by (-, +) and (+. -). 

3 Figure '10.37(a) shows an image of an ordinary scenic hank check. Figure I(.).-3H 
shows the I~isrogram as a function 01 gradient values for pixets with gr a d '  ients 
grcater than 5. Note that this hislogram has two dominant modes that are sym- 
metric, nearly of the same height, and are separated by a distinct valley. Finally, 
Fig. 10.37(b) sllows the segmen red image obtained by using Eq. (10.3- 16) with 7 
at or ncal- the ~nidpoint of the vallcy.The result was made binary by using the se- 
quence an:llysis .just discussed. Note that this example is an illustration ol  local 
thresholding, as defined in Eq. (10.3-1): because the value of T was detel.niined 
horn a histogram of the gradient and Laplacian, which are local properties. E 

0 
5 to 14 15 to 24 25 and a bovc 

Gradicnt value 
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So fa]- we have been concerned with thresholdit~g gray levels. In  some cases. a 
sensor can makc available illore than one variable to cha[.acterize each pixel i l l  

all i Inage, and  L h us all ow ~nr t l l j s l )ech.~~I  117~1-e.rl1tAdi~1g AS discussed in some cle- 
rail in Sectiotl 6.7, color- irnagi~lg i s  a good exanlple, i t ]  which each pixel is char- 
ac~erized by lhree RGB values. I n  this case, cons t ruc~j r~g a 3-D  hist tog ran^" 
becomes possible.The basic procedure is analogous to the method used for one 
varialde. FOL exaniple. For a n  image with three variablcs (KGB co~nponenls), 
each having 16 possil,le Icvels. a I 6  X 16 X 16 grid (cube) is f 'or~ned.  I ~ l s e r ~ e d  
in each cell oC the cube is rht: number ol  pixels whose RGB con~pot~ents  have 
values corresponding to the coordinates derini~lg the location of chat particular 
ccll. Each entry is rhen dividcd by the total nu~i lber  of pixels in ths  image to form 
a not-n~nlij.ed histog~,anl.  

Thc concept of Ihresholdil~g now beconlcs one of finding clus[el.s of poi~lts  
i n  3-D space. Suppose, for cxaniple, that  K hignificant clusters of poitl~s are found 
i n  the hislogril~n. Thc image can bc scglnen ted by assigning one arbitrary value 
(say, white) to pixcls whose RGB cornponcnts are closer to one clustc~.axzd an- 
other value (say. black) to the other piscls the iniage. 1 1 i s  concept is easily 
extendal~lc to Illore components and certainly to mote clusters.Tlw principal dif- 
l'iculcy is that cluster seeking becomes a n  j~~ci.casingly complex task as thc nun?- 
1x1- or variables increases. Cluster-seeking methods can be  found, for cxarnplc. 
in t h e  hooks by Dud;). Hart, and  Stork [2001], a n d  Tou and Gouzalez [ I  9741. 

- The image shown in Fjg. 10..39(:\) is a monochrome picrui-e ot' a colol- pho- EX,\IMPLE 10.15: 
togi-aph. Tie  original color image is conlposed of tl11-ee 16-level R G B  images. Multjs~ccLl-ill 

'Ihe scarf is ;I vivid red. and the hair and facial colors are  lighr and different in  'h'e"'o'ding- 

specti-a1 cl~aracterislics from thc window and other  I~ackgrnund fea1ur.e~. 
Figure 10.39(6) was obtained b y  threshotdjng about one of the histogram clus- 

ters cot.rexl>o~~djng to facial tones Nole 1ha1 tlie window. which in the 1nonoc11ron)e 

a h c 

FIGURE 10.39 (it) Original colo~. image shown as a rnonochruo~e picture. (b) Scgmenration ol' pixels with col- 
01-s closc to racial Ioiics. (c) Segmenti~tion of I-ed cumponenls. 
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picture is close in gray-level value to the hair, does not appear in the segmented 
image because of the use of multispectral characteristics to separate these two re- 
gions Figure 10.39(c) was obtained by thresholding about a cluster close lo the red 
axis. In this case only the scarf and part of a flower (which is red also) appeared 
in the segmented resull.The threshold used to obtain both results was ;a distance 
of one cell.Thus any pixel whose components were outside the cell enclosing the 
center of the cluster in question was classified as background (black). Pisels wl~ose 
components placed them inside the cell were coded white. -- 

w 

As discussed in Scction 6.7, color segmentation can be based on any of the 
color models introduced in Chapter 6 .  For instance, hue and saturation are im- 
portant properlies in numerous applications dealing with the use of imaging 
for automated inspection. These properties a re  particularly important in at- 
tempts to emulate [he equivalent function performed by humans, such as in the 
inspection of fruits for ripeness or in the inspection of manufactured goods. As  
mentioned in Chap te r  6, the Hue. Saturation, Intensity (I-ISI) model is ideal for 
these typ ts  of applicalio~~s because it- is closely related to the way in  which hu-  
mans  describe the perceptio~~ of co1or.A segmentation approach using the h u e  
and saturation components of a color signal also is particularly attractive, be- 
cause it  involves 2-D data clusters that are easier to analyze than,  say, the 3-D 
clusters needed for RGB segmentation. 

Region-Based Segmentation 

The objective oc segmer~tarion is to partition a n  image into regions. In Sec- 
tions 10.1 and L0.2 we approached this problem by finding boundaries between 
regions based on discontinuities in g ray  levels, whereas i n  Section 10.3 seg- 
mentation was accomplished via thresholds based on the distribution of pixel 
propzrties, such as gray-level values 01, color. In this section we discuss seg- 
mentation techniques that are based on Iinding the regions directly. 

1 fi.4. I Basic Formulation 

Let R represent the entire image region. We may view segmentation as  a process 
that partitions R into n subregions, R, ,  R,, . . . , R,, such that 

(a) U R, = R. 
;= 1 

(b) Ri is a connected region, i = 1,2,. . . , n. - 

(c) R, n R, = ;zI for all i and j ,  i # j .  
R;) = TRUE for i = 1 ,2 , .  . . , n. 
R, U I?,) = FALSE for i it j .  

Here, P(R , )  is a logical predicate defined over the points in set Ri and 0 is 
the null set. 

Condition (a) indicates tha t  the  segmentation must be complele; that  is, every 
pixel must be in a region. Condition (b) requires that points in a region must be 
connected in some predefined sense (see Section 2.5.2 regarding connectivity). 
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Condition (c) indicates rliat the regions must be disjoint. Condition (d) deals with 
the properties that  must be satisfied by the pixels in a segmented region-for ex- 
ample P(R;)  = TRUE if all pixels in Ri have the same gray level. Finally, condi- 
tion (e) indicates that regions R, and Ri are different in the sense of predicate P. 

31-42 Region Growing 

As its name implies, region growing is a procedure that groups pixels 01- subre- 
gions into larger regions based on predefined criteria.The basic approach is to 
start with a set of "seed" points and from these grow regions by appending to 
each seed those neighboringpixeIs that have properties similar to the seed (such 
as specific ranges ol gray level or color). 

Selectirig a set of one 01. more starting points often can be based on the na- 
ture of the problem, as will be shown in Example 10.16. When a priorj infor- 
ination is not available. the procedure i s  to cornpute at every pixel the same set 
oI properties that ult imately will be used to assign pixels to regions during the 
growing process. It' t h e  result of these computations shows clusters of values, 
the pixels whose properties place them near  the centroid of these clusters can 
be used as seeds. 

The selection of similarity crileria depends not only on the problem under 
consideration, but also on [he type of image data available. For example, the 
analysis of land-use satellite imagery depends heavily on the  use of color. This 
problem would be signifjcan tl y more difficult, or even impossible, to handle 
without the inherent information available in color images. When the images are 
monochrome, region analysis [nust be carried out with a set of descriptors based 
on gray levels a n d  spatial properties (such as moments or texture). We discuss 
clcscriptors useful lor. region clia~~acterization in Chapter 11. 

l3escripto1.s alone can yield misleading results if connectivity or adjacency in- 
formation is not used in the region-growing process. For example,visualize a ran- 
dom arrangement of pixels with only three distinct gray-level values. Grouping 
pixels with the same gray level t o  form a "rcgion" without paying attention to 
connectivity would yiclct a segmentation result that is meaningless in  the con- 
text of this discussio~~. 

Another problem in region growing is the Cormulation of a stopping rule. 
Basically, growing a region should stop when no more  pixels satisfy the criteria 
for inclusion in that region. Criteria such as gray level, texture, and color, are 
local in nature and do not take into accauiit the "historyl'of region growth. Ad- 
ditional criteria that increase the powei- of a region-growing algorithm utilize the 
concept of size, likeness between a candidate pixel and the pixels grown so far 
(such as a cornpurisoll of the gray level of a candidate an'd the average gray 
level of the grown region), and the shape of the region being grown.The use of 
these types of descriptors is based on the assulnption tha t  a model of expected 
results is ar least partially available. 

''; Figure 10.40(a) sl~clws an X-ray image of a weld (the horizontal dark region) EXAMPLE 10.16: 
containing several cracks and porosities (the bright, white streaks running hor- A~~l ica ' jo"  of 

izontally through the middle of the image). We wish to use region growing to seg- region growing in 
weld inspection. 

rnent t11c i.egiorls of the weld failures. Thcse segmented features could be used 
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a h  
c d 

FIGURE 10.40 
(a) Jmase 
showing de€ective 
wclds. (b) Seed 
points (c) Resulr 
of region goowing. 
(d)  Bol~ndaries of 
segmented 
d e k c  tivc welds 
(in black). 
(Original i~?lage 
courtesy of 

for j~~spection,for inclusion in a database of histol-ical studies, f o r  controlling an 
automared welding system, and  lor other numerous applications. 

The first order of business is to determine the initial seed points. In this ap-  
plication, i t  js known that  pjxels of defective welds f end  to have  the maximum 
allowable digital value (255 in  this case). Based on this inlormatjon, we select- 
ed as starting points all pjxels having va lues  oi 255. The points thus extracled 
from the original image are shown jn Fig. 10.4D(b). Note tha t  many of the poinrs 
are clustered into seed regions. 

Tt~e next step is to choose criteria for region growing. I n  this particular ex-  
ainple we chose two criteria for a pjxel to be annexed to a region: (1)  The ab- 
solute gay-level difference between any pixel a n d  the seed had lo be less than 
65. This nuinber is based on the histogram s h o w n  i n  Fig. 10.41 and ~.epresents 
the difference between 255 and the location of the first n la jo~ '  valley to the left, 
which is ~ep~.csentative of the highest gray level value in the dark weld region. 
(2) To be included in one of the regions, the- pixel had to be 8-connected to at 
least one  pjxel jn that region. If a pixel was found to be connectzd to more t l ~ a ~ l  
one region. the regions wc1.e merged. 

Figure 10.30(c) shows the regions that  1.esulted by starting with the seeds i n  
Fig. 10.40(b) and urilizing the criteria defined in (lie previous paragrapll. Su- 
perimposing the boundaries ol these regions on the original image [Fig. 10.40(d)] 
reveals tha t  the region-growing procedure did indeed segment the defective 
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12000 1,- I FIGURE 10.41 
Histogram of 
Fig. 10.40(a). 

welds with a n  acceprable degree of accuracy. It is of interest to notc t h a t  i t  was 
not necessary to  specify any stopping rules in this case because the criteria for 
region growing were sufficient to isolate the features of interest. F 

It was mentioned in Section 10.3.1 in connection with Fig. 10.26(b) that prob- 
lems having mu1 timodal histograms generally are best solved using region-based 
approaches-The histogram shown in Fig. 10.41 is an excellent example of a 
"clean" mu1 tirnodal histogram. Th is  histogram and the results in Example 10.16 
confirm the assertion that, even with well-behaved histograms, multilevel thresh- 
olding is a difficult proposition. Based on the results of Example 10.16, i t  should 
be intr~itively obvious that this problem cannot be solved effectively by any rea- 
sonably general method of automatic thresholcl selection based on gray levels 
alone.The use of corrneciivi~y was fundamental in solving the problem. 

: 0.3.3 Region Splitting and Merging 
The procedure just djscussed grows regions from a set of seed points. An alter- 
native is to subdivide an image initially into a set of arbitrary, disjointed regions 
and then  merge and/or split the regions in an  attempt to satisfy the conditions 
stated in Section 10.4.1. A split and merge algorithm that iteratively works 
toward satisfying these conslraints is developed next. 

Let R represent the entire image region and select a predicate P. One ap- 
proach for segrnen ting R is to  subdivide it  successively into smaller and small- 
er quadrant regions so  thal, for any region R,, P(R,)  = TRUE. We start with the 
entire region. If P ( R )  = FALSE, we divide the image inro quadrants. I f  P is 
FALSE for any quadrant, we subdivide that quadrant into subquadrants, and so 
on.  This particular splitting technique has a convenient representation in the 
form of a so-called quadtree (that is, a tree in which nodes have exactly foul- de- 
scendants). as illustrated in Fig. 10.42. Note that t he  root of the tree corresponds 
to the  entire Image and that each node corresponds to  a subdivision. In  this 
case, only R, was subdivided further. 
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a b  

FIGURE 10.42 
(a) Parli tioned 
tmage. 
(b) Correspondi~~g 
quadtree. 

If only splitting were used, the final partition likely would contain adjacent 
regions with identical properties.Tt~is drawback may be I-emedied by allowing 
merging, as well as splitting. Satisfying the constraints of Section 10.4.1 requires 
merging only adjacent regions whose combined pixels satisfy ithe predicate P. 
That is, two adjacent regions Rj and Rx are merged only if P(R,  U R, ) = TRUE. 

The preceding discussion may be summarized by the following procedure, in 
which, at any step we 

1. Splil into lour disjoint quadrants any region Ri for which P(R,)  = FALSE. 
2. Merge any adjacent regions R, and R, for which P(H~ U R,) = TRUE. 
3. Stop when no further merging or splitting is possible. 

Several variatioiis of the preceding basic theme are possible. For example, onc 
possibility is to split the image initially into a set of blocks. Further splitting is 
carried out as described previously, but merging is initially limited to groups ol: 
four bIocks that are descendants in the quadtl-ec representation and that satis- 
fy the predicate P. When n o  further merging of this type are possible, the pro- 
cedure is terminated by one Cinal merging of regions satisfying step 2. A t  this 
point. the merged regions may be of different sizes.The principal advanlage of 
this approach is that jt uses the  same quadtree for splitting and me]-ging, until 
the final merging step. 

EXAMPLE 10.17: r" Figure 10.41(a) shows a simple image. We define P(R,)  = TRUE il at least 
Split and merge. 80% of t h e  pixels in R, have [he property lz, - m,l 5 Zu,, where z, is thc gi ay 

level of thelth pixel in R,. nz, is the mean gray level of that region, and u, i s  the 

a b c  

FIGURE 10.43 
(a) Original 
image. (b) Result 
ol split and merge 
procedure. 
(c) Result of 
thl-esholding (a). 
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standard deviation of the  gray levels in R;. II  P ( R ~ )  = TRUE under this con- 
dition, the values of all the pixels in R; were set equal to m,. Splitting and merg- 
ing was done  using the algorithm outlined previously The result of applying 
[his technique to the image in  Fig. 10.13(a) is show11 in Fig. 10.43(b). Note that 
the image was segmented perfectly. The image  show^^ in Fig. 10.43(c) was ob- 
tained by thresholding Fig. 10.43(a), with a threshold placed midway betwee11 
the two principal peaks of the histogtam.The shading (and the sten) of t h e  leaf) 
were erroneously eliminated by the threshold ing  procedu1.e. Q, 

As used in  the preceding example. properlies based on the mean and  stan- 
dard deviation of pixels in a region attempt to quantify the texrure of a region 
(see Section 11.3.3 for a discussio~l on texture).The concept of fexrrrre scgn?er?- 
rmion is based on using measures of texture for [he predicates P(R,) .  That is. we 
can perform texture segmentation by a n y  of the methods discussed in this sec- 
tion by specifying predicates based on texture contcn t. 

,q-- - - Segmentation by Morphological Watersheds 
u * 

Thus fkr, we have discussed segmentation based on three principal concepts: 
(a )  detection of discontinuilies. (b) thresl~olding, and (c) region processing. Each 
o l  these approaches was  found to have advantages (For example, speed in the 
case of global (hi-esholding) a n d  disadvantages (for example, the need for post- 
processing, such as  edge linking, in methods based on detecting discon tjnui ties 
in gray levels). In this section we discuss an approach based o n  the coilcept of 
so-called nzorplzological ware,-sheds. As will become evident in t h e  foLlowing 
discussion, segmentation by watersheds em bodies many of the concepts of the 
other three approaches and,  as such, often pi-oduces more stable segmentation 
rcsults, including continuous segmentation boundaries.This approach also pro- 
vides a simple framework for incorporating knowledge-based constraints (see 
Fig. 1.23) in the segmcntalion process. 

' 0.5-7 Basic Concepts 
The concept of warersheds is based on visualizing an image in three dimen- 
sions: two spatial coordinates versus gray levels. In such a "~opographic" inrer- 
preration, we consider three types of points: (a) points belonging to a regional 
minimum; (b) poinls at which a drop of water, if placed at the location of any 
of thosc points, would fall with certainty to a sjngle minimum; and  (c) points at 
which water would be equally likely t o  fall to more than one such minimum. For 
a particular regional rninimum,  he se l  of points satisfying condition (b)  is called 
the colchnto~r basin 01. ~torer~heti of that minimum.Tbe points satisfying con- 
dition (c) form crest lines on the ~opographic surface and  are termed divide 
lines or ~vutersherl lines. 

The principal objective of segmentation algorithms based on these concepts 
is to find the watershed lines. The basic idea is simple: Suppose that a hole is 
punched in each regional minimum and that the entire topography is flooded 
from below by letting water rise through the holes at a uniform rare. When the 
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a b 
c d 

FIGURE 10.44 
( a )  01.1ginaI 
1rnng.e. 
(h) Topngl-aphic 
view. (c)-(d) ‘live 
slagcs of i loodi~lg. 

rising water in  distincl calchlnerlr hasins is about co merge, L? dam i s  built to p1.e- 
vent t l~c  rne~.ging.The flooding will eventually reach a stage when only the tops 
of the dams are visible above (lie warel. Iine.Tiese dam boundaries corr.espo~ld 
to thc divide lines oT the watersheds.Therefore, they arc the (co~~tinuous) bound- 
aries at]-acted by a watershed segmentatLon algorithm. 

These ideas can be explained fur ther  with the ajd of Fig. 10.44. Figure 10.44(n) 
shows a simple gl-ay-scale image and Fig. 10.44(b) is a topographic vic~v, in which 
t l ~ e  height oC the "rnoun tains" is pl-oportional to gj-ay-level values i n  the inpul 
image. For ease ol' interpl-etation, the backsides of s~l - i~ctu~.es  are sl~aded.This 
is not lo he conl'used wit11 gray-level va1ues;only the general topogr-aptly of [he 
three-dimet~sional represcntaliou is of interest. In order to pl-even1 [lie rising 
water from spilling ou t  through t h e  edges of rhe structure. we imagine rtle 

perjrnecer of the entire topography (image) being enclosed by dams of height 
ereatel than the highesr possible mountain. whose value is deter~nined by the - 
highest possible gray-level value in thc input image. 

Suppose lha t a hole is punched 111 each regional t n i n i n ~ u ~ i i  [shown as  da rk  
a t a s  in Fig. 10.43(b)j and t h a t  the entire topography is flooded fi.o~n below 
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by l e t t i n3  watel. through the hnles a t  a uniform ralc. Figure 10.44(c) shows 
[lie First stage of flooding. where the "wa ter,"show~l j r l  ljgh t gray, has covered 
only arc;ls that  correspnlld l o  Ihe v e r y  d a r k  back$]-ound in the i m a g e .  I n  
F i ~ s .  10.44(d) a n d  (e) we see that the watcr i iow has risen inlo [he firs1 and sec- 
ond catchmen t basins, 1.espectively. As the water continues to rise, i t  wiIl even- 
rually ovci~ftorv l'rom one catcl~ment basin i n t o  anotl1er.The first indicalion of 
this is shown in 10.44(f). Here, warcr from the I c f t  basin actually overflowed 
into the basin on fhe right a n d  a sho1.t "dam" (consisting of single pixels) was 
buill to prevent waiet, from m e r g i n g  at that level of flooding (the details of 
dam building are djscussed in tlic following section). The effect is more pro- 
noul~ced as w;) tev continues to rise. as shown in Fig. lO.IJ(g). This figure sl*lows 
a 1ongc1' dilm berween the two catchment basins and  another  clan) in the top 
part oC the right basin. The lat tcr dam was Ouill tc) prevenl merging of water 
f r o m  rha t hasill with waleis Cr0111 a r m s  correspondjng to the backgl-ound. This 
process is continued u n  ti1 the n l i ~ x i m u m  level of flooding (correspo~\di~lg to 
the highest gray-level value in [lie image) is reached. The final d a m s  cone-  
sponcl ro the watcrslied lines. whicll aIe the desired segmentation IZSU It. Tl~c  

=T e i - - 
3 i 6 h  
E 
E FIGURE 10.44 

t ( C O I I I ~ I ~ ~ ~ )  

1 ! 
(c) Rcsult oi 

-%' 

H I lurlher Ilooding. = 1 
--I - - -. - - 

i' / ( f )  Beginning nl  
- - : & '  " 

d - -*,\ merging of water - 
% 4' kg - - =' I'rom two 

3 1  - - - c a ~ c h n ~ e n  1 bas~nq 
(a short dam was 
built bctwcen 
then?) ( g )  Longcr 
darns. (11) F ~ n a l  
t r~a re  rshecl 
(segme~~ta l lon)  
lines. (Courtesy o i  
Dr. S. Beuchel-. 
CM M!Ecole des 
Mines de  Paris.) 
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result for this example is shown in Fig. 10.44(h) as a dark ,  one-pixel-thick path 
superimposzd on the original image. Note the important property that the 
watershed lines form a connected path ,  thus giving contjnuous boundaries be- 
tween regions. 

One  of the principal applications of watershed segmentation is in the ex- 
traction of nearly uniform (bloblike) objects from the background. Regions 
characterized by small variations in gray levels have smalI gradient values. Thus. 
in practice, we often see watershed segmentation applied to the gradient of a n  
image, rather than to the image itse[f. In this formulation, the regional minima 
of catchment basins correlate nicely with the small value of the gradient corre- 
sponding to the objects of interest. 

? @*Sa2 Dam Construction 

Before proceeding, let us consider how to construct the dams or watershed lines 
required by watershed segmentation algorithms. Dam construction is based on 
binary images, which are members of 2-D integer space Z* (see Section 2.4.2) .  
The simplest way to construct dams separating sets of binary points is to use 
n~orphological dilation (see Section 9.2.1). 

The basics of how to construct damsusing dilation are illustrated in Fig. 10.45. 
Figure 10.45(a) shows portions of t w o  catchment basins at flooding step n - 1 
and Fig. 10.4S(b) shows the result a t  the next flooding step, n.  The water has 
spilled from one basin to the other and, therefore, a dam must be built to keep 
this from happening. In order to be consistent with notalion to be introduced 
shortly, let M ,  and Mz denote the sets of coordinates of points in two regional 
minima.Then let the set of coordinates of points in the carchment basin associ- 
ated with these two minima at stage n - 1 of flooding be denoted by c,,-,(M,) 
and C,, - , (M,) .  respectively. These are the two black regions shown in 
Fig. 10.45(a). 

Let the union of these two sets be denoted by C [ n  - 11. Tl1el-e are two con- 
nected components in Fig. 10.45(a) (see Section 2.5.2 regarding connected com- 
ponents) and only one connected component in fig. 10.45(b). Th is  connected 
component encompasses the earlier two components, shown dashed. The fact 
that two connected components have become a single component indicates that  
water between the two ca~chrnent basins has merged at flooding step n. Let this 
connected component be denoted q. Note that the two components from step 
n - 1 can be extracted from q by performing the simple AND operation 
q n C [ n  - I]. We note also that all points belonging to an  individual catchment 
basin form a single connected component. 

Suppose that each of the connected components jn Fig. 10.45(a) is dilated 
by the structuring element shown in Fig. 10.45(c), subject to two conditions: 
(1) The dilation has to be constrained to q (this means that the center of the 
structuring element can be located only at points in q d u r i n g  dilation), and 
(2) the dilation cannot be performed on points tha t  would cause the sets bsing 
dilated to merge (become a single connected component). Figure 10.45(d) shows 
that a first dilarion pass (in light g ray)  expanded the boundary of each original 
connected component. Note that  condition ( I )  was satisfied by every poinr 
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............... 1 L---. I <,- 
Origin 

FIGURE 10.45 (a) Two parlially flooded calchinenr basins at stage n - 1 of flooding. 
(b) Flooding a[ stage  showing 1ha1 wale1 has spilled between basins (lor clariry, wa~cl -  
is s h o w n  in while ~'a~Jler than black). ( c )  Struccur.ing element used for dilation. (d) Ke- 
su l t  of dilation and dam construction. 
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during dilation, and condition (2) did not apply to any point during the dilation 
process; thus the boundary of each region was expanded uniforinly. 

In the second dilation (sllown in medium gray), several points failed condi- 
tion ( I )  while meeting condition (2) ,  resulting in the broken perimeter shown 
in the figure. It also is evident that the only points in q that sa tjsfy the two con- 
ditions undel-consideration describe the  one-pixel-thick connected path shown 
crossed-halched in Fig. 10.45(6). This path constitutes the desired separating 
dam at stage n of flooding. Construction of the dam at this level of flooding is 
completed by setting all the points in the path just determined to a value greater 
than the maximum gray-level vatue of the image.The height of all dams is gen- 
erally set at 1 plus the maximum allowed value in the image. This will prevenl 
water from crossing over Ihe part of the completed dam as the level of ilood- 
ing is increased. Tt is important to note that dams built by this procedure, wllich 
are the desired segrne~~ta t ioa  boundaries, are connected components. In other 
words, this method eliminates the problems of broken segmentation lines. 

Althougli the procedure just described is based on a simple exan~ple, the 
method used for more complex situations is exactly the same, including the use 
of the 3 X 3 symmetric structuring element shown in Fig. 10.45(c). 

F.S.3 Watershed Segmentation Algorithm 
Let M , ,  M,,. . . , M R  be sets denoting the coordin.nres of the points in the regional 
minima of an image g ( x ,  v ) .  As indicated at the end of Section 10.5.1, this typ- 
ically will be a g r a d i e ~ ~ t  image. Let e ( ~ , )  be a set denoting the coordinates of 
the points in the catchment basin associated with regional minimum Mi (recall 
that the points in  any catchment basin form a connected component). The no- 
tation n ~ i n  and max wi'l l be used to denote the rninin~um and maximum values 
of g ( x .  y ) .  Finally, let  Tin]  represent the set of coorditlates (s, f )  for which 
g(s, t )  < n That is, 

T [ n ]  = {(s. l )  1 g(s, t )  < n } .  ( 10.5-1) 

Geometrically, T [ n ]  is the set of coordinates o l  points in g ( x ,  y )  lying below 
the plane g ( x ,  y )  = n .  

The topography will be flooded in inreger flood increments, f rom 
n = min + 1 to n = max + 1.  At any step n ol  the flooding process, the algo- 
rithm needs to know the number of points below the flood depth. Conceptual- 
ly, suppose that the coordinates in T [ n ]  that are below the plane g(x, y )  = n are 
"marked" black, and all other coordinates are marked white. Then when we 
look "down" on the xy-plane at any increment n of flooding, we will see a bi- 
nary image in which black points correspond to points in the function that are 
below the plane g ( x ,  y)  = n. This interpretation is quite useful in helping un- 
derstand the following discussion. 

Let C, , (~U~)  denote the set of coordinates of points in the catchment basin 
associated with minimum M i  that are flooded at stage n. With reference to 
the discussion in the previous paragraph, C , ~ ( M ; )  may be viewed as a binary 
image given by 
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In other words, c,,(M,) = 1 at location ( x ,  y)  if (x, y )  E C ( M , )  A N D  
(x, y)  t T [ n ] ;  otherwise c,(M,) = O.The geometrical interpretation of this re- 
sult is straightfo~~ward. We are simply using the AND operator to isolate at stage 
n of flooding the portion of the binary image in T [ n ]  that is associated with re- 
gional minimum M,. 

Next, we let C [ n ]  denote the union of the flooded catchment basins portions 
at stage n: 

Then C[max + 1 1  is the union of all catchment basins: 

I t  can be shown (Problem 10.29) that the elements in both c,(M,) and T [ n ]  are 
never replaced during execution of the algorithm, and that the number of ele- 
ments in these two sets either increases or remains the same as n increases. 
Thus, it follows that C [ n  - 11 is a subset of C [ n ] .  According to Eqs. (10.5-2) 
and (10.5-3), C [ n ]  is a subset of T [ n ] ,  SO jt follows that C[n - I ]  is a subset of 
T [ n ] .  From this we have the important result that each connected component 
of C [ n  - 11 is contained in exactly one connected component of T [ I ~ ] .  

The algorithm for finding the watershed lines is initialized with 
C[rnjn + 11 = T[min + 11. The algorithm then proceeds recursively, assum- 
ing at step n that C[n - I ]  has been constructed. A procedure for obtaining 
C [ n ]  from C[n - 11 is as follows. Let Q denote the set of conilected compo- 
nents in T [ n ] .  Then, for each connected component q t Q[n], there are three 
possibilities: 

(a) q n C [ N  - 11 is empty. 
(b) q n C [ n  - I] contains one connected component of C[n - I ] .  
(c) y n C[n - 11 contains more than one connected component of C[n - 11. 

Construction of C [ n ]  from C [ n  - 1.1 depends on which of these three conditions 
l~olds. Condition (a) occurs when a new minimum is encountered, in which case 
connected component q is incorporated into C [ n  - 11 to form C [ n ] .  Condition 
(b) occurs when q lies within the catchment basin of some regional minimum, 
in which case q is incorporated into C [ n  - I] to form C [ n ] .  Condition (c) oc- 
curs when al.1, or part, of a ridge separating two or more catchment basins is en- 
countered. Further flooding would cause the water level jn these catchment 
basins to merge.Thus a dam (or dams if more tha~ l  two catchment basins are in- 
volved) must be built within q to prevent overflow between the catchment 
basins. As explained in the previous section, a one-pixel-thick dam can be con- 
structed when needed by dilating q n C [ n  - 11 with a 3 X 3 structuring ele- 
ment of l's, and constraining the djlation to q. 

Algorithm efficiency is improved by using only values of n that correspond 
to existing gray-level values in g(x ,  y);  we can determine these values, as well 
as the values of min and max, from the histogram of g(x, y ) .  
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FIGURE 10.46 
( a )  Image of 
blobs. (b) Image 
gradient. 
(c) Watershed 
lines. 
(d) Watershed 
lincs 
superimposed on 
original i m a w  

? '  
(Courtesy 01 Dr. 
S. Bcuclier. 
CMMIEcolc des 
Mines de Pal-is.) 

EXAMPLE 10.18: '":' Consider the image and  its gradienl,  shown i n  Figs. 10.46(a) and (b), 
Illusll-ation d ' t h t :  respectively. Application of [lie watershed algorithm just dcscl-ibcd yielded the 
water-shed watershed lines (while paths) of the gradient image sliown ill Fig. 10.46(c). Tliese 
segmentation 
algorithm. segmentation boundaries a]-e shown superimposed on the original image i n  

Fig. 10.46(d). As noted at the beginning of this sec~ioll ,  the segn~entation bound- 
aries have -the important property of being connected paths. , . 

' ?  " - 
. - The Use of Markers 

Direct application of the watershed segmentation algoi-ithm in the form dis- 
cussed in the previous section generally leads to oversegr7~enrntion due to noise 
and other local irregularities of the gradient. As shown in Fig. 10.47, ova-seg- 
mentation can be serious enough to render the result of the algorithln virtual- 
ly useless. 111 this case, this means a large n u ~ n b e r  of segmented regions. A 
practical solution to  this problcm is to l i~ni l  the number of allowable I-egions by 
incorporating a preprocessing stage designed to  bring addi t io~ial  knowledge 
into the segmentation procedure. 

An approach ~ ~ s e d  t o  control ovcrsegmentation is based on the concept o l  
markers. A nzorker js a connected co~nponen t  belonging to  an imagc. We have 
interrtnl markers, associated with objects of interest, and exiernal markers, 
associated with the background. A procedure for marker selection typically will 
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a b  

FIGURE 10.47 
(a) Electtopliot.esis 
image. (b) Result 
of applying Ihc 
w a t e r s l ~ e d  
s c g ~ n c n t a t i o n  
algorithm to the 
gradient image. 
Ovcrsegrnen Inlion 
is  cviden t. 
(Courtesy of Dl.. 
S.  Beuchev, 
CMMIEcole des 
Mines de Paris.) 

co~lsist of two principal steps: ( I )  preprocessing; and (2)  definition of a set of cri- 
teria that m a r k e r s  must satis€y.To illustrate, consider Fig. 10.47(a) again. Part ol' 
the problem that led to  the oversegmented result in Fig. 10.47(b) is the large 
number of potential minima. Because of their size, Inany of these minima real- 
ly are irrelevant detail. As has bcen pointed out several limes in earlier discus- 
sions, an effective method for minimizing the effecl of small spatial detail is to 
filter the image wit11 a smootl~ing filter. This is an appropriate preprocessing 
scheme in th i s  particular case. 

Suppose ~ h a c  we define an internal marker in this case as (1) a region that is 
su r i . ou~ lded  by points of higher "altitude:" (2) such that  the points in the region 
form a connected component; and (3) in which a11 Lhe points in the connected 
component have the same gray-level value. After the image was smoothed, the 
internal markers resulting fronl this definition are shown as lid1 t gray, bloblike re- 
gions in Fig. 10.48(a). Next, the  watershed algorithm was applied l o  the smoothed 

FIGURE 10.48 
(a) lmage sllowing 
internal markers 
(light gray regions) 
and exlel-nal 
markers  
(watershed lines). 
(b) Result of 
scgtnentaiion. Note 
the jn~p~~ovcmcnr  
over Fig. 10.47(b). 
(Cou1.1esy ol' Dl-. S. 
Beucher.. 
CMMIEcole des 
Mines dc Paris.) 
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irnage, under the restriction that  these internal market.s be the only allowed 
regional minima. Figure 10.48(a) shows the resulting watershed IinesThese wa- 
tershed lines are  defined as the external markers. Note thal the points along r l~e 
watershed lines arc good candidates for the background because thcv pass along 
the highest points between neighboxing markers. 

The external markers shown in Fig. 10.48(a) effectively partition the image 
into regions, with each region co~ltajning a single internal marker and part of the 
background. The problem is thus reduced to partitioning each of these regions 
inlo two: a single object and its background. Wc can bring to  bear on this sim- 
plified problem many of the  segmentation techniques discussed earlier in this 
chapter. Another  approach is simply to apply the watershed segmentation al-  
gorithm to  each individual region. In other words, we simply take the gradient 
of the smoothed image [as in Fig. 10.46(b)j and then r.esti.ict the algorithm to op- 
evale on a single watershed that contains the marker in  that particular region. 
The result obtained using this  approach is shown i n  10.4S(b).The improverncnl 
over the image i n  10.47(b) is evident. 

Marker select-ion can range from simple procedures based 011 gray-level val-  
ues and  connectiviry, as was just illustrated, ru more  complex descriptions in- 
volving size, shape, locatjon, relative distances, texturc conlent,  and so on (see 
Chapter 11 regarding descrip tors).The point is that using markers brings a pri- 
ori knowledge to bear on the segmentation problem. The reader  is reminded 
that humans often aid segmentation and  higher-level lasks in every-day vision 
by using a priori knowledge, one of the most  familiar being the use of context. 
Thus, the  fact t h a t  segmentation by watersheds offers a framework t h a t  can 
make effective use of th js  type of knowledge is a significant advantage of this 
method. 

*y,%...n,,f." 

I The Use of Motion in Segmentation 
1 + ? ' L  

Motion is a powerful cue used by humans  and many anirnals to extract okiecls 
of interest f rom a background of irrelevant detail. In jmaging applications, 1110- 

tion arises from a relative displacement between t h e  sensing systern and the 
scerle- bcing viewed, such as in robotic applications, autonomous navigalion. 
and c i y ~ ~ a m i c  scene analysis. In  the following sections we cousider the use o f  
[notion jn segmentalion both spatially and in the frequency domain. 

; 2. l  'i Spatial Techniques 
Basic approach 

One of the simplest approaches [or detecting changes between Iwo image frames 
f (1, y ,  I , )  a n d  f ( x ,  y. c j )  taken at  times I ,  and r,, respectively, is to compare the 
two images pixel by pixel. One procedure for doing rhis is to  form a difference 
image. Suppose that we have a reference image containing only stationary com- 
ponents. Comparing this jrnage against a subsequent image of the same scene. 
but including a moving object, results in rhe difference of the two images can- 
celi~lg the stationary elements, leaving onlv nonzero entries that correspond to 
the nonslationary image components. 
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A difference image between two images taken a t  times t i  and t ,  rnay bc 
defined as 

L ~ ; ; ( x ,  y )  = 
I I (  Y i - I (x, Y. 1,)I > T (10.6-1) 
0 otherwise 

where T is a specified threshold. Note that d,,(x, y)  has a value of I at spatial 
coordinates (x, y) only if the gray-level difference between the two images is 
appreciably different at those coordinates, as determined by the specified thresh- 
old T. It is assumed that all images are of the same size. Finally, we note that the 
values of the coordinates (x. y )  in Eq. (10.6-1) span the dimensions of these 
images, so that the difference image clji(x, y )  also is of same size as the images 
in t h e  sequence. 

In dynalr~ic image processing, all pixels in cl,,(x, v )  with value 1 ai-e consid- 
ered the result of object motion.This approach is applicable only if the two im- 
ages are registered spatially and if the jllumination is relatively constant wi t l~ i i~  
the bounds established by T. In practice, 1-valued entries in dji(x, y )  often arjse 
as a result of noise.Typically, these entries are isolaled points in the difference 
image, and a simple approach to their removal is to form 4- or 8-connected re- 
gions of 1's in d , , ( ~ ,  y )  and then ignore any region that has less than a prede- 
termined number of entries. Although il may result in ignoring small and/or 
slow-moving objects, this appl-oacli improves the cl~ances that the remaining 
enlries in the difference image actually are the result of motion. 

Accumulative differences 

Isolated entries resulting from noise is not an insignificant problem when trying 
to extract motion cornpoiierits from a sequence of images. Although the number 
of these entries can be reduced by a thresholded connectivity analysis, this filtcring 
process can also remove small or slow-moving objects as noted in ihe previous 
section. One way to address this problem is by considering changes at a pixel lo- 
cation over several frames, thus introducing a "memory" into the proccss. Tl ie 
idea is to ignore changes that occur only sporadically over a frame sequence and 
can therefore be attributed to random noise. 

Consider a sequence of image frames f (x, y .  t , ) ,  f (i;, y ,  t,),. . . , f ( x ,  y,  t,) and 
let f (x,  y, 1 , )  be the reference image. An accumula~ive difference image (ADI) 
js formed by cornparing this reference image with every subsequent image in the 
sequence. A counter for each pixel location in the accumulative image is incre- 
mented every time a difference occurs at that pixel location between the ref- 
erence and an  image in the sequence. Thus when t.he kt11 frame is being 
compared with the reference, the entry in a given pixel of the accumulative 
image gives the number of times thc gray level at that position was different 
from the corresponding pixel value in the reference image. Differences are es- 
tablished, for example, by using Eq. (10.6-1). 

Often useful is collsideratjon of t hrec types of accumulative difference im- 
ages: crb,c.olute,positive, and negative ADIs. Assuming that the gray-level values 
of the moving objects are larger than the background, these three types of ADIs  
are defined as fo:llows. Let R ( x ,  y)  denote thc reference image and, to simplify 
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[he  iotat ti an, lei k denote t , ,  so that  f ( r ,  11. k )  = f ( x ,  y ,  t , ) .  We assume i h a ~  
K ( x ,  y )  = , f ' ( x ,  Y, 1 ) .  T h e n ,  for any  k > 1, and keeping in mind that  1 he values 
of ttie ADls are colrrtts, we define the following for all r e l evan l  values ol' (s, v ) :  

A , - , ( ~ , ~ ) + I  i f I ~ ( , ~ , ) ~ ) - f ( x . y . k ~ l > T  
A, (s ,  y )  = 

A k - , ( - y .  y )  otherwise 

P k ( - r ,  y) = 
Pk- I (x. y )  + 1 il [ ~ ( x ,  y )  - ,f (,r, y l  k ) ]  > T 

(10.6-3) 
PL - 1  (-y3 ) I )  otherrvise 

a n d  

i N,-,(x, y)  + l if [ R ( + ,  y )  - f(r, y.  k ) ]  < -T 
4 ( x ,  Y )  = ( ' I  0.6-4) 

N , - ~ ( x , ~ )  otherwise 

where A , ( x ,  I ) ,  P , ( x ,  y ) .  2nd N k ( x ,  y)  are t.he absolute, positive, a n d  rlegative 
ADIs. respectively, after the kth image in the sequeilcc is encoi~n tered. 

It is uildei-stood tha t  these ADIs start out wit11 all z e r o  values (cou~~ls).  Note 
also rhat the ADTs are lhc same size as the images in the sequence.As noled ptx- 
viously. [he images in the  sequence are all assurned ro be of the same size. Fi- 
nally, w e  note that  the order of tlie inequalities and signs of t l~c tl~rcsllolds in 
Eqs (10.6-3) and  (1 0.6-4) are reversed if the gray-level values of the baclcground 
pixels a re  greater rhan [he levels of the moving objects. 

EXAMPLE 10.19: ' Figure 10.49 shows the three ADIs displayed as  jrltensity images lor a I-ec- 
Cclll~ucfltiofl of  tangular object of dinlension 75 X 50 pixels t h a t  is moving in a southeastel-ly dl- 
(he absolule. rection a t  a speed ol' 5 fi pixels per 11-anie. The images are of size 256 x 256 
posirivc. ancl 
tiegalive pixels. Wc note t h e  fotlowir~g: (1) Tile nonzero area of the positive AD1 is equal 

accumularive to the size of the moving object. (2) The locarion of t h e  positive AD1 corre- 
difference images. sponds ta the locatiotl o l  t h e  moving object in the reference frame. (3) The 1iunl- 

bcl of a w n  ts i n  the positive AD1 slops increasing when tlie moving object is 
displaced completely with respect to the same object i n  Lhe reference Ira~ne.  

a b c  

FIGURE 10.49 ADIs ol'a r e c t a n ~ u l a r  object moving i n  a soulhcastcrly direction. (a) Absolute AD]. (b)  Posi- 
tive ADI.  (c)  Negative ADI. 
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(4) The absolute AD1 contsins rhe regions oC t h e  positive and ncgalive ADI.  
(5) Tlie di~-cctiol~ a11d specd ot' the inovjng objccl can be deterlniried from the 
entries in the abso l~~ te  and negative ADIs. ,, . 

Establishing a reference image 

A kev co the success o f  the techniques discussed in rhe pi-eceding two sections 
is having a rcfel.ence image against whicli subsequent comparisons call be made. 
As i~idica~ed,  the dil'rerence bctween two images in a dynamic imaging proldem 
h a s  t-he tendency to cancel 2 \ 1 1  stationary components. leaving onty image ele- 
ments char cur~.espond lo noise 2nd to the rno\)illg objecls.Tlle noise problem 
can be lnndlcd bv \he f i t  tering approach mcrltioned earlier 01. by Sorming an ac- 
cuniulative diflerence image, as  cliscussed in tlie preceding secrion. 

I n  practice, obtaining a I-efel-cilce image wirb only stationary elements is not 
always possible. ancl bujlding a reference from a set of  irnages containing one 
01, more moving objects becomes necessary. T h i s  necessity applies pal-ticularly 
t o  situations dtrscl.ibing busy sccnes ot. in  cases w11e1.c frecluenr updating is IT- 

quire(!. One proccdul-e for generatjng a rcCerence irnagi: is as follows. Consid- 
er  he Eirst iniage i o  a sequcnce t o  be the refel-ence image. Whet1 n nonstalionary 
component has  roved completely oul of its position in the reference irarne. 
the corresponding background in the prcsent frame can be duplicated in the 
location originally occupied by the ohject in the refere~lce R.aine. When all mov- 
ing - ohjects . have moved col~~pletely out of the i r  original positions. a I-eference 
image contni~li~\p only st;~tionai-y co~nponcnts will have been crcaled. Objecl 
d i sp lace~ne~l~  ci~n he tst;tl!lishcd by ~nonitoring rhe changes in the positive ADT. 
as  inclicated in 1 lic pr.ecedi~lg section, 

' Figures 1 O.SO(a) a n d  (b) sliow (wo image fraules of a lrhafCic intel'sectio~~.Thc EXAMPLE 10.20: 
first image L is considered the I-efecttncc, and the second depicts the same scene Bui ld i1 l~a  

SOMC l ime Iatet'.771e obicclive is to reilmve thc principal movirlg objccts in  thc re icrcnce imacee. 

~*eferencc: image i n  orcler lo creaic a static irnage. Altl~ousI\ [here are other 
s~nallcr moving ol?jccrs, tile pt.incjpaI r~iovitig Feature is ~ l l e  automobile nl thc i n -  
cersectiorl 111oving honl left to r i ~ h t .  For ill ustra tivc purposes we locus on [his 
ohiect. By lnol\iroring r l i t :  clrallges in  the positive ADJ. i t  is possible to determine 
[he initial position ol' n moving object, as  explained previously. Once the area 

a b c  

FIGURE 10.50 Buildilig il sralic rc icrence i ~ ~ i ; ~ g c .  ( a )  and (b) Two frames io a sequence. 
(c) E;isrbound auromobilz s~iblracted fl-orn (a) ;.lnd the  b:tckground restored f r o m  the 
correspoiiclin~ area in (b). (Jain and Jain.) 
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occupied by this object is identified, the object can be relnoved from the image 
by subtraction, By looking at the frame in the sequence at which the positive 
AD1 stopped changing, we can copy from this image the area previously occu- 
pied by the moving object in the initial frame.This area then is pasted onto the 
image from which the object was cut out, thus restoring the background of that 
area. Tf this is done for all moving objects. the result is a reference image wilh 
only static components against which we can compare subsequent frames for 
motion detection, as explained in the previous two sections. The result of re- 
moving the east-bound moving vehicle in this case is shown in Fig. 10,50(c). @ 

: Owb,:! Frequency Domain Techniques 

In this section we consider the problem of determining motion estimates via a 
Fourier transform formulation. Consider a sequence f (x, y ,  t ) ,  t = 0,1,. . . , 
K - 1, of K digital image fraines of size -44 x N generated by a stationary 
camera. We begin the development by assuming that all frames have a homo- 
geneous background of zero intensity. The exception is a single, 1-pixel object 
of unit intensity that is rr~oving with constant velocity. Suppose that for frame 
one (C = 0) the image plane is projected or~ to  the x-axis; that is, the pixel in- 
tensities are summed across the columns. This operation yields a 1 - 0  array 
wilh M en tries that are 0, except at the location where the object is projected. 
Multiplying the components of the array by exp[j21ra, w ~ i ] ,  x = 0, 1, 2 ,  . . . , 
M - 1, with the object at coordinates (x', y') at that instant of Lime, produces 
a sum equal to exp [ j 2 m ,  X'AI]. In this notation a, is a positive integer, and At 
is the time interval between frames. 

Suppose that in frame two ( t  = 1) the object has moved to coordinates 
(x' -I- I ,  y'); that is, it has moved 1 pixel paral.le1 to rhe x-axis.Then repeating the 
projection procedure discussed in the previous paragraph yields rhe surn 
exp[j27ro,(xf + l ) ~ t ] .  If the object continues to move I pixel location per frame, 
then, at any integer instant of time, the result is exp[j21ra,(xf + r)Ar]. which, 
using Euler's formula, may be expressed as 

, j%m, (.ra+ r)af = cos[2rra, (xf + I )  A!] + , sin[2.rrol ( x '  + r)ht] (10.6-5) 

for t = 0,1,. . . ,K - I. In other words, this procedure yields a complex sinusoid 
with Frequency a,.  If t h e  object were moving v l  pixels (in the x-direction) be- 
tween frames, the sinusoid would have frequency @., a , .  Because [varies between 
0 and K - 1 in integer increments, restricting a, to integer values causes the 
discrete Fourier transform of the complex sinusoid to have two peaks--one lo- 
cated at  frequency v,  a, and the other at K - w ,  a, .This latter peak is the result 
of symmetry in the discrete Fourier transform, as discussed in Section 4.6, and 
may be ignored. Thus a peak search in the Fourier spectrum yields v,a,. Divi- 
sion of this quantity by n, yields v,, whicl~ is the velocity component in the 
x-direction, as the frame rate is assumed lo be known. A similar argument would 
yield v2,  t h e  component of velocity in the y-direction. 

A sequence of frames in which no motion lakes place produces identical 
exponential terrns,whose Fourier transform would consist of a single peak at a 
frequency of 0 (a single dc term).Therefore, because the operations discussed 



10.6 a The Use of Motion in Segmentation 631 

so far are linear, t h e  general case involving one or more moving objects in an 
arbitrary static background would have a Fourier transform with a peak at dc 
corresponding to static image components and peaks at locations proportional 
to the velocities of the objects. 

These concepts may be summarized as follows. For a sequence of K digital 
images of size M x N ,  the sum of the weighted projections onto the x axis at 
any integer instant of time is 

Similarly, the sum of the projections onto the y-axis is 

where, as noted already, a, and n, are posilive integers. 
The 1-D Fourier transforms of Eqs. (10.6-6) and (10.6-71, respectively, are 

1 K - I  

G.,.(M, ; u , )  = -- C &(t, O , ) C - I ~ ~ ~ I ' ' ~  L ~ I  = n , ~ ,  . . . ,  K - 1 (10.6-8) 
K , = , I  

and 

In practice, computation of these transforms is carried our using an FFT algo- 
rithm, as discussed in Section 4.6. 

The frequency-velocity relalionship is 

and 

In this formulation the unit of velocity is in pixels per total frame time. For ex- 
ample, v l  = 10 is interpreted as a motion of 10 pixels in K frames. For Frames 
thal are take11 uniformly, the actual physical speed depends on the frame rate 
and the distance between pixeIs.Thus if  8 ,  = 10, K = 30, the frame rate is two 
images per second, and the distance between pixels is 0.5 m, then the actual 
physical speed in the x-direction i s  

vl  = (10 pixels)(O.S rn/pixel)(2 frarnes/s)/(30 frames) 

= 1/3 m/s. 

Tlie sign of thex-component of the velocity is obtained by computing 
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and 

EXAMPLE 10.21: 
Ds[cction of a 
small moving 
objecr via [he 
f l -eq~~ency 
domain.  

FIGURE 10.51 
LANDSAT 
Irame. (Cowart ,  
Snydei-. and  
R u e d ~ e r . )  

Because g ,  is sinusoidal. i t  can  be shown that S I T  and S,, -. will have the same 
sign at an arbitrary point in time, I ? .  if the velocity component  71, is positive. 
Conversely, opposire signs in S,, and S 2 . .  indicate a negative componcnl. If either 
S ,  , nr Sz, is zero, we consider the next closest point in time, i = n & At.  Similar 
comments apply co~nputing the sign of .u,. 

Figures 10.51 through 10.54 illustrate the efcectiveness ol the approach just 
derived. Figure 10.5.1 shows one of a 32-frame sequence of LANDSA'T images 
generated by adding white noise to a reference image. The sequence conlains 
a supcr.imposed target moving a t  0.5 pixel per frame in the x-dil-cction and 1 
pixel per frame in the y-dlrcclion. The target, shown circled in  Fig. 10.52. has a 
Gaussian intensity distribution spl-ead over a small (9-pixel) area and is not eas- 
ily discernible by eye. The results of computing Eqs. (10.6-8) and ( 10.6-9) with 
u, = 6 and o2 = 4 are shown in Figs. 10.53 and 10.54, respectively. The peak at 
1 1 ,  = 3 in Fig 10.53 yields u ,  = 0.5 from Eq. (10.6-1.0). Si~nilarly, the peak al in 
Fig. 10.54 yields .u2 = 1.0 from Eq. (10.6-11). 

Guidelines for the selection of a ,  and  n2 can  he explained with the  aid of 
Figs. 10.53 and 10.54. For instance, suppose that we had used n, = 15 jnstead of 
11, - 4.1n tha t  cisc tlie peaks in  Fig. 10.54 would now be at  11, = 15 and 17 because 
vz  = 1.0, which would he a seriously aliased result. As discussed i l l  Seclion 2.4.4, 
aliasing is caused by u~~dcrsaulpl ing (too iew frames in the present discussion, as 
the range of u is deternlined by K ) .  Because 1 1  = NU, one possibility is to select n 
as the integer closest Lo o = L I , , , ~ , , / ~ u ~ , ; , , ,  where I[,, ,  is the aliasing fi-equency limi- 
tation eslabl~shed K and v,,,,), is ihe maximum expected object velocity. 
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FIGURE 10.52 
Intensity plot of 
the image in 
Fig. 10.51, with 
the target circled. 
(Rajala. Riddle, 
and Snyder.) 

FIGURE 10.53 Spectrum of Eq. (10.6-8) showing a peak at ii, = 3. (Rajala, Riddle, and 
Snyder.) 
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FIGURE 10.54 1 00 
Spectrum of 
Eq. (10.6-9) 
showing a peak ar 
L r ,  = 4. (Rnjala, 
Riddle, and 
Snyder.) 

Summa y 
Image segmentation is an essential preliminary step in rnost alltomatic piclorial pattern 
recog~~itioll and scene analysis problems. As indicated by 111e range of exa~nples p1.e- 
senled in the previous sections, the choice of one segrncntation technique over another 
is dictated mostly by the peculiar chilracteristics of the  problem b e i i l ~  conside~.ed.Tlic 
methods discussed in this chapter, although far from exhaustive. ilre representative of 
tecl~niques comlnonly used in practice.The following refercnccs can be used as  he basis 
for fur-thcs study of this topic. 

References and Further Reading 
Because of i t s  central role in autonomous image processing,segn~entation is a topic cov- 
ered in mosl books dealillg with irnagc processing. imagc analysis. and col-rlpurcr vision. 
The following books provide complementary andfoi- supplen~entary rcading for our cov- 
erage of th.is topic: Sl~apiro and Stock~nan [20C)1], Sonka et al. [1999]. Pclrou and Bos- 
dogianni [1999], and U~nbaugli [Ic)98]. 

Work dcaling with the  use of masks ro dececr gray-lcvcl disconlinuities (Sect,ion 10.1) 
has a long hislory, Numerous masks have bccn proposed o v s ~ -  lhc years: Roberts [ I  9651. 
Prewitt [1970], Kirsli 119711, Robinson [1976].F1-ei and Chen [1977]. and C a n n y  [1086]. 
A review arliclc by Fram and Deutsch 119751 contains numerous masks and 311 e\~alua- 
lion of thcir pel-formance.Thc issue of mask perlornance. especially I'or edge detection, 
still is an area of considerable inlercst, as  exemplified by Qian and l-iua~lg [1996], Wang 
et al. [1996]. Heath e l  al. [1997,1998], and Arldo [2000]. Edge detection otl color i~llages 
has heen increasing in popularity for a number ol' inultisensing applications. See. for ex- 
ample, Salinas, Abidi and Gonzalez [1996]; Zugaj and Latluati [1998]; Mirrnehdi and 
Peirou [2000]; and Platanioiis and Venetsal~opoulos [2000].The interplay bctwecn image 
characteristic and mask performance also is a topic of current interest, as exemplified by 
Ziou [2001.]. Our presentation of the zcro-crossing properries of rlie Laplacian is based 
on a paper by Marr and Hildredlh [1.9SO] and on ttie book by Marr [lY82]. See also a 
paper by Clark [198Y] on authenticating edges produced by zer-o-CI-ossing algorilhrns. 
(Corrections of parts of the Clark paper are given by Piech [1990].) As mentioned in 
Section 10.1, zero cr-ossing via the Laplacian of a Gaussian is an i~nportant approach 
whose relative performar~ce is still an active topic of research (Gunu 11998, 19991). 
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The Hough transform (Hough [1962]) has emerged over the past decade as a method 
of choice for global pixel linking and curve detection. Numerous generalizations to the 
basic transform discussed in this chapter have been proposed over,the years. For exam- 
ple, Lo  and Tsai [I9951 discuss an approach for detecting thick lines, Guil et al. [ I  995,19971 
deal wilh fast implementations of the Hough transform and detection of primitive cul-ves, 
Daul at a1. [I99131 discuss further generalizations for detecting elliptical arcs, and Shapiro 
[I9961 deals with implementation of the Hough transform for gray-scale images. The 
algorithm presented in Section 10.2.3 is based on Martelli [1972, 19761. For addjtioilal 
reading on heuristic graph searching, see NiIsson [1980], 1Jmeyama [1988], ancl Sonka 
et al. [1999). 

As mentioned at the beginning of Section 10.3, thresholding techniques enjoy a sig- 
nificant degree of popularity because they are simple lo implement. It is not surprising 
that there is a considerable body of work reported in the literature on this topic. A good 
appreciatjon of the extent of this literature can be gained from the review papers by 
Sahoo et a]. 119881 and by Lee et al. [1990]. We spent a significant level of erfort in Sec- 
tion 10.3.2 dealing with the effects of illu~nination on thresholding. T l~e  types of ap- 
proaches used to deal with this problem are illustrated by the work of Perez and Gonmlez 
[1987], Parker [1991]. Murase and Nayar 119941, Biscllsel [1998], and Drew et al. [1999]. 
For additional reading on the material in Sections 10.3.3 and 10.3.4, see Jain et al. [ J  9951. 
The early work of Chow and Kaneko [I9721 discussed in Section 10.3.5 js still a standard 
in terms of illustratillg the key aspects of a threshold-based image segn~enlation solulion. 
Essentially the same can be said for the material presented in Sectjon 10.3.6 (due to 
White and Rohrer [1983]), which combines thresholding, the gradient,and the  Laplacian 
in the solution of a difficult segmentation problem. It is interesting to compare the fun- 
damental similarilies in terms of image segmentation capability between these two ar- 
ticles and work on thresholding done almost twenty years later (Cheriet el al. [1998], 
Sauvola and Pietikainen [2000]). See also Liang e t  al. [2000] and Chan et al. [2000] for 
allerrlate approaches to the problem of detecting boundaries in images sin~ilar in con- 
cept to  those studied by Chow and Kaneko. 

See Fu and Mui [I9811 for an  early survey on the topic of region-oriented segrnen- 
tation.The works of Haddon and Boyce [I9901 and of Pavlidis and Liow [I9901 are 
among the earliest efforts to integrate region and boundary information for the purpose 
of segmentation. A newer region-growing approach proposed by Hojjatoleslarni and 
Kjttler [I9981 also is of interest. For current basic coverage of region-oriented segmcn- 
tation concepts, see Shapiro and Stockman [200:l'.] and Sonka et a[. [I 9991. 

Segmentation by watersheds was shown in Section 10.5 to be a powerful concept. 
Early references dealing with segmentation by watersheds are Sen-a [1988], Beucher 
[1990], and Beuchcr and Meyer [1992].The paper by Baccar et al. [I9961 discusses seg- 
mentation based on data fusion and morphological watersheds.The progress in this field 
in a little more than one decade is evident i n  a special issue of Pattern Recognilion [2000], 
devoted entirely to this topic. As indicated in our discussion in Section 10.5, one of the 
key issues wilh watersheds is the problem of over segmentation, The papers by Naj- 
manand and Schmitt [1996], Haris et at. 119981, and Bleau and Leon [2000] are illustra- 
tive of approaches for dealing with this problem. Bieniek and Moga [2000] discuss a 
watershed segmcntation algorithm based on connected components. 

The malcrial in Section 10.6.1 is from Jain, R. [1981]. See also Jain. Kasturi, and 
Schunck [1995].The material in Section 10.6.2 is from Rajala, Riddle, and Snyder (1.9831. 
See also the papers by Shariat and Price [I9901 and by Cumani et al. [I 991-1. The books 
by Shapiro and Stockman [2001] and by Sonka et al.  [I9991 provide additional reading 
regarding motion estimation. 
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Problems 
Ir 10.1 A binary image contamsstraight lines oriented horizontally, vc~,tic;illy. af 4 j 0 , a n d  

a t  -3.5". Give a set of 3 X 3 rnasks that can be used ro delecl I-pixel-long breaks 
in thesz lines. Assume that the gray level of t he  lines is 1 and that the gray level 
of  the background is 0. 

10.2 Propose a technique for detecting gaps of length ranging between 1 and L p~xeis 
in line segments of a binary image. Assume that rlle lines are 1 pixel thick. Base 
your technique on 8-neighbor conneciivity analysis. rathe)- Ihan  allenipling [o  
construct masks for detecting the gaps. 

10,3 Refer to Fig. 10.4 in answering the followiiig questions. 

+ (a) Some of the lines joining the pads and center element in Fig. 10.4(b) are sin- 
gle lines, while some othe1.s are double lines. Explain why. 

(b) How would you go about eliminating the cornponcnts in Fig. L0.4(c) that are 
not pavt of t he  line oriented al -45"? 

10.4 Consider a horizontal intensity profile thl.ough the middle of a binary i~nage t h a t  
contains a step edge running veriically through [he center oT [he image. Draw 
what the profile would look like after the irnage has  been blurred by an averag- 
ing mask of size n X rt, nlit11 coefficienls equal to I /17'. For sirtiplicit): assume thal  

the image was scaled so that its gray levels are 0 on the  left of the edge and 1 to 
its right. Also, assume that the size of the mask is much smaller illan file image, 
so that image border effects are  not a concern near the centel- of the horizontal 
intensity profile. 

*10.5 Suppose that  we had used the edge model shown, instcad of (he  ramp model of 
an edge shown in Fig. 10.6. Sketch (he gradient and Laplacian of each profile. 

I;. : 

9 .\ 
I: -. 1 Inlase 

. - 

10.6 Refer to Fig. 10.8 in answering the following questions. 

(a) Assume tha t  the Sobel masks are used to obtain G, and C,. Show t h a r  in 
this case the gradjent compured by usjng Eqs. (10.1-4) and ( 1  0.1-12) give iden- 
tical results for etlges oriented in the horizontal and vertical direcrions. 

(b) Show that [his is true also for the Prewitt masks. 

+ 10.7 Show that the Sobel and Prewilt gradient masks of Egs. 10 8 and 10.9 give isocrop- 
ic results only lor horizontal and vertical edges, and for edges oriented a t  * 45". 

10.8 The results obtained by a single pass through an image of some 2-D masks can 
be achieved also by two passes using I-D masks. For example, [he same resulr o l  
using a 3 X 3 smoothing mask with coefficients I/') can be obtained by a pass of 



thc mask [ I 1 11 through an image. The result of this pass is then followed hy a 
pass of the mask 

Thc l'jnal result is [hen scaled by I/9. Show that the Sobel masks (Fig. 10.8) can 
be jmplen~entecl by onc pass of a rliJTel-enci17g n~ask o f  thc for111 [-'I 0 'I ] (or ils ver- 
tical countel.part) followed by a smoorllittg mask of rhe form [ l  2 11 (or its verti- 
cal counterpart). 

* 10.9 The so-called con1pus.r gradiuir operotors of size 3 X 3 are designed to measure 
gradients of edges oriented in eight directions: E, NE. N, NW, W, SW, S .  and SE. 
Give the forni of these eight ope1.ator.s using cocffjcjents valued 0, 1 ,  or -1. Spec- 
ifv the gr.adient direction of each mask, keeping in  mind that the gradient direc- 
lion is orthogonal to the edge direction. 

10.10 rrlic cctlter rectangle in Lhe binary image shown is of size nz X 17 pixels. 

(a)  Sketch the gracljcnt of this image using the approximation given in 
Eq. (10.1-12). Assume r l u t  G ,  and G,. are obtained by using the Sobel ope].- 
arors. Sllow all relevant different pixel values i ~ i  thc gradjent in~age.  

(b) Sketch lhe histogram of edge di~.ections conlputed from Eq. (10.1-5). Be pre- 
cise in labeling the height oE cacll peak of the hislogra~n. 

(c) Sketch the Laplacjan of the image for  he approximation given in 
Eq. (10.1-14). Show all I-elevant different pixel values in the Laplacian image. 

10.11 With ~xfcrencc to Eq. (30.1-17). 

* (a) Show that the average value of the Laplacian opcrator 7% is zero. 

(b) Prove [ h a t  the average value of a n y  jrnagc convolved wilh this operator 
also is zero. 

(c) Woi~ld (b) be true in general ios the appl-oximations to the Laplacian given 
in Ecls ((LO. 1-14) and (10.1-15)? Explain. 

10.12 Rcfer to Fig. 10.15. 

(a)  Explain why the edges in Fig. 10.15(g) Corm closed contours. 

(b) Does the zero-crossings method for edge finding always result in edges that 
are closcd contours') Give a reason for your answer. 
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*10.13 Refer to the discussion in Section 10.2.2. 

(a) Explain why the Wougb mapping of point 1 in Fig. 10.20(b) is a straight line. 

(b) Is this the only point that would produce this result? 

( c )  Explain the reflective adjacency relationship illustrated in Fig. 10.20(d) 

10.14 Refer to the discussion in Section 10.2.2. 

(a) Develop a general procedure for obtaining the normal representation of a line 
from its slope-intercept equation y = ax + b. 

(b) Find the normal representation of the line y = -2x i- 1. 

10.15 An important area of application for image segmentation techniques is in pro- 
cessing images resulting from so-called bubble chamber events. These images 
arise from experiments in high-energy physics in which a beam of particles of 
known properties is directed onto a target of known nuclei. A typic, 1 event con- 
sists of incoming tracks, any one of which, in the event of a collision, branches 
out into secondary tracks of particles emanating from the point of collision. Pro- 
pose a segmentation approach for detecling all tracks that contain al least 100 pix- 
els and are angled a t  any of the following six directions off the horjzontal: &25O, 
f 50°, and *75".The allowable estimation error in any o i  these six directions is +5". 
For a track to be valid it must be at least 100 pixels long and not have more than 
three gaps, any of which cannot exceed 10 pixels You may assume that the images 
have been preprocessed so that they are binary and that all tracks are 1 pixel 
wide, except a t  the point of collision from which they emanale. Your procedure 
sl~ould be able to differentiate between tracks that have the same direction but 
different origins. (Hint: Base your solution on the Hough transform.) 

* 10.16 Refer to Figs. 10.22 and 10.24. 

(a) Superimpose on Fig. 10.22 all the possible edges given by tlie graph in 
Fig. 10.24. 

(b) Compute the cost of the minimum-cost path. 

10.17 Find the edge corresponding to the minimum-cost path in  the subimage shown. 
The numbers in brackets are gray levels and the outer numbers are spatial co- 
ordinates. Assume that the edge starts in the first coIumn and ends in lhe last 
column. 
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* 10.18 T h e  imagesshow~~ are  quite differ-enc, but lhcir  histograms a r e  iden~ical. Suppose 
lliat cach image is blurred wiih a 3 X 3 smoothing mask. 

(a) Would [he histograms still be identical after blu,-ring' 

(b) I f  your answer is 110, sketch the two histoya~ns. 

10.19 Coriside~ i\ ~~oise less  i~naee  of size N X IV whosc firs1 iV/2 colunins have gray 
level I,,, and ils remaining colurntls have gray Ievel L,. where L, > L,, .The Ills- 
logram of this irnage has only two peaks,of iden~ical heiglit,ane located at L,, and 
the other a t  L,,. Scgnienring t h i s  iinage illto two  halves based on its gray-level 
conkilt is a trivial task t h i ~ t  can be accomplislied by a single global ~hresliold lo- 
catcd bcrwern I,,, irncl L,,. Suppose. however. thal you multiply the image by 21 

gray-scale wedge tllar va~.ies CI-nin 0 on the leCt l o  K on (he right, with K >. L,,. 
What would t h e  histogt-am o l  this new image look likc'? Label rhe various parts 
o f  the histogram cleil~.ly. 

10.20 Refel to lhe: (111-eshold (inding algor~lhm infroduccd in Section 10.3.3. Assu~ne  that 
in  a givcn problenl the li~slogram is bimodal and ,  lurthermore, tha t  the shape 
of the nlodes can bo approx in~n~cd  by Gaussian curves ol' the fo~-m A,  e ~ ' - " ' ~ ~ ' ~ " ~  
a,ld A>{,-(: ~ I I ~ ) : / ? u :  . Assi~lne t h a t  rn, < n7, and  aive conditions (in terms ol' [he pn- 

1~1rnete1.s o i  rllcse: curves) Tor the following to he [rue when the algol-ithlu 
collvcrsrs: 

* (a)  The threshold i s  cqua l  to (n? ,  t n1-,)/2. 

* (b) The rhreshold is to [lie left of N?, 

(c) 'tile: thresl~old is in the irlte~.val: ( I , , ,  + ,n2)/2 < T < 1n2. 
II i t  is irnpossiblc In). anyotie of Lliese condi t io~~s to exisf.so slilte,and give ;I reason. 

Tlie illumjnatio~i, i ( s ,  y) .  of a sccne is known to vary as ;I function of spatial co- 
orclinatfi accol.ding to ,he cquarion i(a, y )  = ~ ( 1  + e-~I(*'~-"~~~'-(!.--';2~- *I). lrle2l- 

sicrcd iu some app1,opriately not~lilalizecl unils.Tl~e digitized scene. denoted ,f (x, y) .  
is  of size N X N ,  with N = 1000. The collstants have values A = 0.5 and 
B = 10-.'. l r  is known t h a ~  a n y  subimage of S(.Y. !I) having a size greater ~ h a n  
10 >( 10 pixels call be proper,lg segmented, as long as [he i l l lrminnrio)~ spanning 
rlle area of  rllc subimage did not vary by more lhan 0.1 units between a n y  two 
poinls i l l  the suI)itnage when f(x. y) was acqui~.ed. I r  is kllown also ~ l i n r  the thresh- 
olds that work lor the  segtnen tar ion oi the subi~nagss under these condi t iom can 
he ohrained using the algoritli~n introdi~ccd in Section 10.3.3. Propose an adap- 
tive technique capablc of thrcsholding this image. Not all s~ibiniages need to be 
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of the same size, but you are required to use the largest possible subimage at any 
location in the  image. 

*10.22 Suppose t h a t  an  image has the gray-level probability density functions sliown. 
Here, p , ( z )  corrcspands to objects and p,(z) corresponds to the background- 
Assume that P, = P, and find the optimal threshold between object and back- 
ground pixels. 

10.23 The functional form of t h e  Rayleigh probability density function and  a typical 
ptor are shown ill the follo~ving figure. This density is well suited For approxi- 
matingskewerl histograms,such as the ones shown in Fig. 10.29. Use the Rayleigh 
density to set up a two-category bimodal problem, as in Problem 10.22. Find rhe 
optimal threshold in tertns of the a priorj probabilities P, and P!, and the para- 
meters of the RayIeigh density The long "tails" of the two densities should be in 
opposite directions, as in Fig. 10.29. 

*.10.24 SLarr with Eq. (10.3-10) and derive Eqs. (10.3-12) and ( I  0.3-1 3). 

10.25 Derive Eq. (10.3-14) starting with Eqs. (10.3-12) and (10.3-13). 

*10.26 The mean and standard deviation of the background pixels in the image shown are 
110 and 15,1.espectively.The object pixels have mean and standard deviarion values 
of 200 and 40, respectively. Propose a ihresholding solution Cur seglncntirlg the objects 
out of the image. State clearly any assumptions that you make in solving this problem. 
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10.27 Propose an  approach based on region growing for segmenting the image shown in 
Problem 10.26. State clearly any assumptions that you make  in solving this problem. 

10.28 Segment t h e  image shown by using the split and merge- procedure discussed in 
Section 10.4.3. Let P(R, )  = TRUE if  all pixels in R, have the same gray level. 
Show the quadtree corresponding to your segmentation. 

10.29 Refer to the discussion jn Section 10.5.3 

+ (a) Show t ha t  the elemenrs in sets c,,(M,) and T [ n ]  are never replaced during 
execution of the watershed algorithm. 

(b) Show that the number of elements jn sets c,,(M,) and T [ n ]  either increases 
or remains the same as n jncreascs. 

10.30 The bouridarics illustrated in Section 10.5, obtained usjng the watershed seg- 
mentation algorithm, form closed loops. Advance an argument that establishes 
whether or not closed boundaries always result from application of this algorithm. 

+10.31 Give a step-by-step implementation of the dam building procedure for the one- 
dimensional gray-level cross section shown. Show a drawing of [ l ie cross section 
at each step, showing "water" levels and dams constructed. 
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10.32 What would the negative AD1 image in Fig. 10.49(c) look like i f  w e  tested ngainsl 
T ,  instead ol testing against -T, in Eq. (10.6-4)? 

10.33 Delerminc if the following staten~enls arc true of lalse. Explain the reason for 
youi- answer. 

(a) The nonzero entries of the absolute AD1 continue to grow in  dimension as 
long as the object is moving. 

(b) The nonzero entries in the positive AD1 always occupy the samc area. re- 
gardless of the motion undergone by the object. 

(c) The nonzero entries in thc negative ADJ continue lo grow in dimension as 
long as the object is moving. 

10.34 Suppose that in Exanlple 10.21 motion along tlie .Y axis is set to zero.The object 
now moves only along they axis at 1 pixel per frame lor 32 frames and then (in- 
stantaneously) reverses direction and moves in exactly the opposite direction 
for another 32 frames. What would Figs. 10.53 and i0.54 look l ike under these 
conditions? 

10.35 The speed of a bullet in flight is  to be estimalcd by using high-speed imaging 
tecliniqucs.The method of choice invol\~es the use of a T V  camera and I'lasll that 
cxposes the scene for K s. The bullet is 2.5 cm long. 1 cm wide, and its range of 
speed is 750 5 250 m/s.The camera optics produce an image in which the bullet 
occupies 10% of the l~orizonlal resolution of a 256 X 256 digital image. 

(a) Determine the rnaximurn value of K that will guarantee that the blur from 
motion does not cxceed 1 pixel. 

(b) Detcrm~ne the minimum number of frames per second t l ~ a r  would have to be 
taken in order to guaranree [hat at least lwo complete images of the hullct 
are obtained during its path through the field of view of the camera. 

(c) Proposc a segnlentation procedure for automatically extracting  he bullet 
from a sequence of frames. 

(d) Propose a method for automatically determining the speed of the bullet. 
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Repvesen ta tion-- 
and Description 

Well, but reflect; have we not several times 
acknowledged that names rightly given are the 

likenesses and images of the things which they name? 

Socrates 

Preview 
After an irliagc has been segmented into regions by methods such as those dis- 
cussed in Chapter 10, the resulting aggregate of segmented pixels usually is rep- 
resented and described in a fo1.m suitable foi further computer processing. 
Basically, representing a region illvolves two choices: (1) We can represent the 
region in terms of its external characteristics (its boundary). or (2) we can rep- 
resent it in  terms of its internal characteristics (the pixels comprising the re- 
gion). Clioosing a representation scheme, however, is only part of the task of 
making the data useful to a computer. The next task is to describe the region 
based on the chosen representation. For example, a region may be J-epr-esenrecl 
by its boundary, ancl the boundary ciescrihed by features such as ils length, the 
orientation of the straight line joining its extreme points, and the number of 
cvricavities in the boundary. 

An exteriial ~.epresentation is chosen when the primary focus is on shape 
characteristics. An internal representation is selected when the primary focus is 
on regional propcrtics, sucli as color and texture. Sometimes it may be ileces- 
sary to use both types of representation. In either case, the features selected as 
descriptors should be as insensitive as possible to variations in size, translation, 
and rotation. For the ]nost part, the  descriptors discussed ill this chapter satisfy 
one or more of these properties. 
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- = Represen tat ion 

a b  

FIGURE 1 1.1 
Direction 
numbers for 
(a) 4-directional 
chain code, and 
(b) 8-directional 
chain code. 

The segmentation techniques discussed in Chapter 10 yield raw data in the form 
of pixels along a boundary or pixels contained in a region. Although these data 
sometimes are used directly to obtain descriptors (as in determining the texture 
of a region),standard practice is to use schemes that compact the data into rep- 
resentations that are considerably more useful in the computation of descrip- 
tors. In- this section we discuss various represen tation approaches. 

1 1. j .  1 Chain Codes 
Chain codes are used to represent a boundary by a conne,cted sequence of 
straight-line segments of specified length and direction. Typically, this repre- 
sentation is based on 4- or 8-connectivity of the segments.The direction of each 
segment is coded by using a numbering scheme such as the ones shown in 
Fig. 11.1. 

Digital images usually are acquired and processed in a grid format with equal 
spacing in the x -  and y-directions, so a chain code could be generated by fol- 
lowing a boundary in,  say, a clockwjse direction and assigning a direction to the 
segments connecting every pair of pixels. This method generally is unaccept- 
able for two principal reasons; (1) The resulting chain of codes tends to be quite 
long, and (2) any small disturbances along the boundary due to noise or im- 
perfect segmentation cause changes in the code that  may not be related to the 
shape of the boundary. 

An approach frequently used to circumvent the problems just discussed is to 
resample the boundary by se1e.cting a larger grid spacing, as illustrated in 
Fig. 11.2(a). Then, as the boundary is traversed, a boundary point is assigned to 
each node of the large grid, depending on [he proximity of the original boundary 
to that  node, as shown in Fig. 11.2(b). The resampled boundary obtained in this 
way then can be represented by a 4- o r  8-code, as shown in Figs. 11.2(c) and (d), 
respectively-Tne starting point in Fig. 11.2(c) is (arbitrarily) a t  the top, left dot, and 
the boundary is the shortest allowable 4- or 8-parh in the grid of Fig. 11.2(b). The 
boundary representarion in Fig. 11.2(c) is the chain code 0033 . . . 01, and in 
Fig. 11.2(d) i t  i s  the code 0766.. -12. As might be expected, the accuracy of the re- 
sulting code representation depends on the spacing of the sampling grid. 
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The chajn code of a boundary dcpends o n  the starting point. However, the 
code can be normalized with respect to the starting point by a straightforward 
procedure: We simply treat tlie chair1 code as a circular sequence of direction 
numbers and redefine the starting point so that the  resulting sequence of num- 
bers forms an integer of minimunl magnitude. We can riormalize also for rota- 
tion by using the first diference of the chain code instead of the code itse1f.This 
difference is obtained by counting thc number of djrection changes (irl a coun- 
terclockwise direction) that separate two adjacent elements of the code. For in- 
stance, the first difference of the 4-direc.tion chain code 10103322 is 3133030. If 
we elect to treat the code as a circular sequence, then the first element of the 
difference is computed by using the transition between the last and first com- 
ponents of the chain. Here, the result is 33133030. Size normalization can be 
achieved by altering the size of the resampling grid. 

These normalizations are exact only if the boundariss themselves are invari- 
ant to rotation and scale change, which, in practice, is seldom the case. For in- 
stance, the same object digitized in two different orientations will in general have 

FIGURE 11.2 
(a) Digjtal 
boundary with 
resampling grid 
supcrirnposed. 
(b) Result of 
sesarnpl j ng. 
(c) 4-directional 
chajn code. 
(d) 8-directional 
chain code. 
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a b  

FIGURE 11.3 
(a)  Object 
boundary 
enclosed by cells. 
(b) Minimum 
perimeter 
polygon. 

different boundary shapes, with the degree of dissimilarity being proportional to 
image resolulion.This effect can be reduced by selecting chain elements that are 
large in proportion to the distance between pixels in the djgitized image and/or 
by orienting the resampling grid along the principal axes of the object to be coded, 
as discussed in Section 11.2.2, or along its eigen axes, as discussed in Section 1 1.4. 

: 1.1 >2 Polygonal Approximations 

A digital boundary can be approximated with arbitrary accuracy by a polygon. 
For a closed curve, the approximation is exact when the numbel- of segments i n  
the polygon is equal to the number of points in the boundary so that each pair 
of adjacent points defines a segment in the polygon. In practice, the goal of 
polygonal approximation is to capture the "essence" of [he boundary shape 
with the fewest possible polygol~al segments.This problem in general is not triv- 
ial and can quickly turn into a time-consuming iterative search. However, sev- 
eral polygonal approximation techniques of modest complexity and processing 
requirements are well suited for image processing applications. 

Minimum perimeter polygons 

We begin the discussion of polygonal approximations with a method for find- 
ing mininztinz perimeter polygons. The procedure is best explained by an exani- 
ple. Suppose that we enclose a boundary by a set occoncatenated cells, as shown 
in Fig. 11.3(a). It helps to visualize this enclosure as two walls corl-csponding lo  
the outside and inside boundaries of the strip of cells, and think of the object 
boundary as a rubber band contained within the walls. If the rubber band is al- 
lowed to shrink, it takes the shape shown in Fig. 11.3(b), producing a polygon 
of minimum perimeter that fits the geometry established by [he cell strip. If 
each cell encoinpasses only one point on the boundary, [he error in each cell be- 
tween the original boundary and the rubber-band approximation at most woulcl 
be \ A d ,  where d is thc minimum possible distance between different pixels 
(i.e., the distance between lines in the sampling grid used to produce the digi- 
tal image).This error can be reduced by half by forcing each cell to be centered 
on its corresponding pixel. 
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Merging techniques 

Merging techniques based on average error or other criteria have been applied 
to the problem of polygonal approximation. One approach is to  merge points 
along a boundary until the least square error line fit of the points merged so far 
exceeds a preset threshold. When this condition occurs, the parameters of the 
line are stored: the error is set to 0, and the procedure is repeated,merging new 
points along the boundary until the  error again exceeds t h e  threshold.At the end 
of the procedure the intersections of adjacent line segments form the vertices 
of the polygon. One ol  the principal difficulties with this method is that ver- 
tices in the resulting approximation do not always col-respond to inflections 
(such as corners) in the original boundary, because a new line is not started 
until the error threshold is exceeded. If, for instance, a long straight line were 
being tracked and it turned a corner, a number (depending on the threshold) of 
points past the corrler would be absorbed before the threshold was exceeded. 
However, splitting (discussed next) along with merging may he used to allevi- 
ate this difficulty. 

Splitting techniques 
One approach to boundary segment splitting is to subdivide a segment suc- 
cessively into two parts until a specified criterion is satisfied. For instance, a 
requirement might be that the maximum perpendicular distance from a 
boundary segment to the line joining its two end points not exceed a preset 
threshold. If it does, the farthest point horn the line becomes a vertex, thus sub- 
dividing the  initial segment into two subsegments. This approach has the ad- 
vantage of seeking prominent inflection points. For a closed boundary, the 
best starting points usually are the two farthest points in the boundary. For ex- 
ample, Fig. 11.4(a) shows an object boundary, and Fig. 11.4(b) shows a subdi- 
vision of this boundary (solid line) about its farthest points.The point marked 
c i s  the farthest point  (in terms of perpendicular distance) from the top bound- 
ary segment to line ah. Similarly, point d is t h e  farthest point in t h e  bottom seg- 
ment. Figure 11.4(c) shows the result of using the splitting procedure with a 
threshold equal to 0.25 times the length of line ab. As no point in the new 

a b  
c d 

FIGURE 1 1.4 
(a) Original 
boundary. 
(b) Boundary 
divided into 
segments based 
on extreme 
points. (c) Joining 
of vertices. 
(d) Resulting 
polygon. 
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boundary segments has a perpendicular distance (to its corresponding straight- 
line segment) that exceeds this threshold. the procedure terminates with the 
polygon shown in Fig. 11.4(d). 

1 1 .'; .3 Signatures 
A signature is a 1-D functional representation of a boundary and may be gen- 
erated in various ways. One of the simplest is to plot the distance from the cen- 
troid to the boundary as a function of angle, as illustrated in Fig. 11.5. Regardless 
of how a signature is generated, however, the basic idea is Lo reduce the b o u n d -  
ary representation to a 1-D function, which presu~nably is easier to describe 
than the original 2-D boundary. 

Signatures generated by the approach just described are invariant to trans- 
lation, but they do depend on rotation and scaling. Normalization with respecl 
to rotation can be achieved by finding a way to select the same starting point 
to generate the signature, regardless of the shape's orientalion. One way to d o  
so is to select the starting point as the point farthest from the centroid, if [his 
point happens to be unique and independent of rotational aberrations for each 
shape of interest. Another way is to select the point on the eigen axis (see Sec- 
tion 11.4) that is farthest from the centroid. This method requires more cow- 
putation but is more rugged because the direction of the eigen axis js determined 
by using a11 contour points. Yet another way is to obtain the chain code of the 
boundary and  then use the approach discussed in Section 11.1.1, assuming that 
the coding is coarse enough so that rotation does not affecl its circulasity. 

Based on the assumptions of uniformity in scaling with respect to both axes 
and that sampling is taken at equal intervals of 0, changes i n  size of a shape re- 
sult in changes in the amplitude values of the corresponding signature. One way 
to normalize for this result is to scale a1.l functions so that they always span the 

a b  
FIGURE 1 1.5 
Dislance-versus- 
angle signatures. 
In (a) r ( 0 )  is 
constant.  In (b), 
the signature 
consists of I-AJ I-A-I 
repetitions o l  the  
pattern r ( H )  
I - ( # )  = A sect) for 

. s . s n / . a n c l  r ( 0 )  = A csce for /,I d2rr 
7 ~ / 4  < 8 5 ~ / 2 .  
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same range of values, say, [0, 1 ].The maill advantage of this method is simplicity. 
but i l  has the  potentially serious disadvantage that scaling of the entire function 
depends on only two values: the minimum and maximu~n:lf the shapes are 
noisy, rhis dependence can be a source of error from object to object. A more 
rugged (but also more computatiorrally intensive) approach is to divide  each 
sarrlple by t h e  variance of the signature, assuming that the  variance is not zero- 
as in the case of Fig. I l.S(a)--or so small tha t  i t  creates computational difficul- 
tics. Use of t h e  variance yields a variabIe scaling factor that is inversely 
proportional to changes in size and works much as automatic gain control does. 
Whatever the method used, keep in mind that  the basic idea is to remove de- 
pendency on size while pr-esel-ving the fundanlental shape of the waveforms. 

Of course, distance versus angle is not the on ly  way to generate a signa~ure. 
Fo r  example, anothcr way is to traverse the boundary and, corxesponding to 
each pojtlt on the boundary. ploc the angle between a line tangent to the bound- 
ary at that point and a reference 1ine.Tne resulting signature, although quite 
differen1 frorn the r ( B )  curve,  would carry information about  basic shape char- 
acteristics. For instance, horizontal segments in the  curve would correspond to 
straight lines along the boundary, because the tangent angle would be constant 
there. A variation of this approach is to use the so-called slope density,filncrion 
as a s igna tur -e .This  Curlction is simply a histogram of tangent-angle values. As a 
histogram is a measure of concentration of values, the slope density function re- 
sponds st~-ongly to sections of the boundary with constant tangent angles 
(straight or nearly straight segments) and has  deep valleys in sections produc- 
jng rapidly varying angles (corners or orher sharp jnflections). 

.i 1 ! 3 
I . . . .- Boundary Segments 
Decomposing a boundary into segments often is useful. Decomposition reduces 
[he boundary's complexity and thus simplifies the description process.This ap- 
proach is particulal-ly attractive when the boundary contains one or more sig- 
nificanl concavities that carry shape information. In this casc use of the convex 
hul l  of the region enclosed by the boundary is a powerful tool f o r  robust de- 
composition of the  boundary. 

As defined in Section 9.5.4, the convex l tz i l l  H of an arbitrary set S is rhe 
smallest convex set containing S.The set difference H - S is called the convex 
deficiency D of the set S.To see how these concepts might be used to partition 
a boundary inro meaningful segments, consider Fig. 11.6(a), which shows an 

FIGURE 11  .b 
(a )  A region, S, 
and its convex 
deficiency 
(shaded). 
(b) Pariilioncd 
boundary. 
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object (set S) and its convex deficiency (shaded regions).The region boundary 
can  be partitioned by following t h e  contour of S and marking the points at 
which a transition is made into or out of a component of the convex deficien- 
cy. Figure 1 I .6(b) shows the result in this case. Note thal in principle, this scheme 
is independent of region size and orientation. 

Tn practice, digital boundaries tend to be irregular because of digiiization, 
noise, and variations in segmentation. These effects usually result i n  convex 
deficiencies that have srna.11, meaningless components scattered randomly 
throughout the boundary. Rather than attempt to sort out these il-regularities 
by postprocessing, a common approach is to smooth a boundary prior to parti- 
tioning. There are a number of ways to do so. One way is to traverse the bound- 
ary and replace the coordinates of each pixel by the average coordinates of k 
of its neighbors along the boundary. This approach works for small irregulari- 
tics, but it is time-consuming and difficult to control. Large values of k can re- 
sult in excessive smoothing, whereas small values of k might not be sufficient in 
some segments of the boundary. A more rugged technique is to use a polygo- 
nal approximation, as discussed in Section 11.1.2,pnor to finding the convex de- 
ficiency of a region. Most digital boundaries of interest are simple polygons 
(polygons without sell-intersection). Graham and Yao [I9831 give an algorithm 
for linding the convex hull of such polygons. 

The concepts of a convex hull and its deficiency are equally useful for de- 
scribing an entire region, as well as just its boundary. For example, description 
of a region might be based on its area and the area of its convex deficiency, the 
number of components in the convex deficiency, the relative location of these 
componerrts, and so on. Recall that a morphological algorithm for finding the 
convex hull  was developed in Section 9.5.4. References cited at the end of this 
chapter contain other formulations. 

i ': . .S Skeletons 
An important approach to representing the structural shape of a plane regjon 
is to reduce it to a graph. This reduction may bc accomplished by obtaining Lhe 
skeleton of the region via a thinning (also called skeletonizing) algorithm.Thin- 
ning procedures play a central role in a broad range of problems in image pro- 
cessing, ranging from aulomated inspection of printed circuit boards to counting 
of asbeslos libers in air filters. We already discussed in Section 9.5.7 the basics 
of skeletonizing using morphology. However, as noted in that section, the pro- 
cedure discussed there made no provisions for keeping the skeleton connected. 
The algorithm developed here corrects that problem. 

The skeleton 01 a region may be defined via the medial axis transformation 
(MAT) pr.oposed by Blum [1967].The MAT of a region R with border B is as Col- 
lows. For each point p in R, we find its closest neighbor in 13. If y has more than one 
such neighbor, it is said to belong to the medial axis (skeleton) of R. The concept 
of "closest" (and the resulting MAT) depend on the definition of a distance (see 
Section 2.5.3). Figure 11.7 shows some exan~ples using the Euclidean distance.The 
same results would be obtained with the maximum disk of Section 9.5.7. 

The MAT of a region has an intuitive definition based on the so-callcd 
"prairie firc concept." Consider a n  image region as a prairie of uniform, dry 



grass, and suppose that a fire is l i t  a loi~g its border. All fire fronts will advance 
into the region at the same speed. The MAT of the region is the set of points 
reached by more than one Fire front at the same time. 

Al.though the MAT of a region yields an intuitively pleasing skeleton, direct 
jmplelnentation of this definition typically is expensive computationally. Imple- 
mentation potentially involves calculating the distance Irom every interior point 
to every point on t11c boundary of a region. Numerous algorithms have been pro- 
posed for improving computational efficiency while a t  the  sarne time a t  tempting 
to produce a medial axis represenlation of a region. Typically, these are thirlning 
algorithms that iteratively delete edge points of a region subject to the constraints 
that deletion of these points (1) does not remove end points, (2) does no1 break 
connectivity, and (3) does not cause excessive erosion of the region. 

In this section we pixsent an algorithm for thinning binary regions. Region 
points are assumed to have value 1 and background points to have value O.The 
method consists of successive passes of two basic steps applied to [he contour 
poinis ol the given region, wl~ere,  based on the definition given in Section 2.5.2, 
a conro;lr-point is any pixel with value 1 and having at least one 8-neighbor val- 
ued 0. With reference to fhe 8-neighborhood notation shown in Fig. 11.8, step 
1 flags a contour point 13 I for deletion if the following conditions are satisfied: 

(a) 2 5 N ( ~ , )  5 6 
(b) 7'(i?l) = 1 
(4 p2 - p4 ' 196 = 0 
Id) pa' P h '  p# = 0 

where hf(p l )  is the number of nonzero neighbors of p ,  ; that is, 

a b c  

FIGURE 1 1.7 
Medial axes 
(dashed) of1 hree 
simple regions. 

FIGURE 11.8 
Neighborhood 
arrangement used 
by the thinning 
algnri t h n ~ .  
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FIGURE 1 1.9 
llluslra tion of 
conditions (a) 
and (b) in 
Eq. (11 .1 - l ) . In  
~liis case 

= 4 and 

T ( P , )  = 3. 

and T ( ~ , )  is the number of 0-1 lrilnsitions in the ordered sequence p,_ p 3 , .  . . . 
p,, pV.  p2- For example, N ( ~ , )  = 4 and T ( ~ , )  = 3 in Fig. 11.9. 

In step 2, conditions (a) and (b) remain the same, but conditions (c) and (d) 
are changed to 

Step 1 is applied to every border pixel i n  the binary region under consider- 
ation. If one or more of conditi0n.s (a)-(d) are violated, the value of Ihe point 
in question is not changed. If all conditions are satisfied the point is flagged for 
deletion. However, the point is not deleled until all border points have been 
processed. This delay prevents changing the structure of the data during exe- 
cution of the algorithm. Alter step I has been applied to all border points, those 
that were -flagged are deleted (changed to 0). Then step 2 is appIied to the 
resulting data in exactly the same manncr as step 1. 

Thus one iteration of the thinning algorithm corlsists of (1) applying step I 
to flag border points for deletion; (2) deleting the flagged points; (3) applying 
step 2 to flag the remaining border points for deletion; and (4) deleting the 
flagged points.This basic procedure is applied iteratively until no further points 
are deleted, a t  which time the algal-ithm terminates. yielding the skeleton of 
the region. 

Condition (a )  is violated when contour point p ,  only has one 01. seven 
8-neighbors valued 1. Having only one such neighbor implies that p ,  is the end 
point of a skeleton stroke and obviously should not be deleted. Deleting p, i f  it 
had seven such neighbors would cause erosion into the region. Condition (b) is 
violated when it is applied to points on a stroke 1 pixel thick. Hence Illis con- 
dition prevents disconnection of segments of a skeleton during the thinning op- 
eration. Conditions (c) and (d) are satisfied sin~ull.aneously by the minimum 
set. of values: (p, = 0 or p, = 0) or (y ,  = 0 ~rrzd y, - O).Thus with reference to 
the neighborhood arrangement in Fig. 11.8, a point that satisfies these conditions, 
as well as conditions (a)  and (b), is an east or south boundary point or a north- 
west corner point in the boundary. In either case,p, is not part of the skeleton 
and should be removed. Similarly, conditions (c') and (d') are satisfied simulla- 
ncously by the following minimum set of values: ( p ,  = 0 or pH = 0) 01. (p, = O 
llnd 14 = 0). These correspond to north or west: boundary points, or  a south- 
east corner point. Note that northeast corner points have p2 = 0 and p4 = 0, and 
thus satisfy conditions (c) and (d), as well as (c') and (dl).The same is true for 
southwest corner pain ts, which have p6 = 0 and p, = 0. 
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FIGURE 11.10 
I-iunran leg bone 
atld skeletoii 01' 
[he I-egioti s l iou i~~ 
supel-impuscd. 

Figure I 1.10 shows a segmented iinage of a human leg bone and ,  supe~.ini- EXAMPLE 11.1: 
posed, the skclcron of the 1.egior1 con~puted using ( h e  also]-i tlim just d i s c ~ ~ s s t d .  l'he skeleton 

For the most par{, the skelcron looks intuitivelycorr~ect.Tlie~~c is a double branch ~xgion. 

on the ~'ight side of the  "shoulder" of thc bone that a( first glance one would es- 
pect to be a single branch. as  on the correspo~~ding left side. Note, however. rhac 
111e I-igkr shoulder is soniewhat broader ( in the long direction) than the left 
shoulder.  l 'hal is what caused the branch to be created by t h e  a l g o r i t h n ~ .  This 
type of ~iupredictablc behavior i s  not unusual  in  skeletonizing algorithms. :, 

4-  ,-. 7 .  

A - Boundary Descriptors 
11) this secriol~ we consider sevtl.al approaches to describirlg the boundary of a 
region. a n d  i n  Section 1 1.3 we focus on regional desct.iptors. Parts of Sec- 
tions 1 1.4 and 11.5 arc applicable to both boundai-ies and regions. 

r : ; Some Simple Descriptors 
-Tt~e len,q(/? of a bounda~-y is one o l  its simplest descriptol-s.The number of pix- 
els along a boundary gives :I ~.ough approximation of i t s  l eng th .  For a chain- 
coded c u r v e  with i l l l i t  spacing in bo01 d i~ec t io l~s ,  the number of ver.~ical a n d  
ho~.izon tal conlpone~~ts plus fi times the rlumbcr of' diagonal components gives 
its exact length. 

'Ilte dic~nie~er* of a boundary B i s  defined as 

Diam ( 8 )  = ~ n a x  [ D(~,. p j ) ]  
1 .  I 

where D is a distance measure (see Section 2.5.3) and pi and pi arc points on the 
bounda~.y.Tl~e value of the diameter and [ h e  orientation of a line segment con- 
necting  he two ex l ren le  points that compl-ise the dianleter (this line is called the 
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nzcljor axis oE the boundary) are useful descriptors of a boundary. The minor 
axis of a boundary is defined as the line perpendicular to the major axis, and ol 
such length that a box passing t h ~ o u g h  the outer  four points of intersection of 
the boundary with the two axes completely encloses the boundary."' The box 
just described is called the basic rectangle: and the ratio of the major to the minor 
axis is called the eccentricity of the boundary. Tnis also is a useful descriptor. 

C~irvnture is defined as the rate of change of slope. Xn general, obtaining reli- 
able measures of curvature at a point in a digital boundary is difficult because 
these boundaries tend to be locally "ragged." However, using the difference be- 
tween the slopes of adjacent boundary segments (which have been represented 
as straight lines) as a descriptor of curvature a t  the point of intersection of the seg- 
ments sometimes proves useful. For example, the vertices of boundaries sucl~ as 
those shown in Figs. 11.3(b) and 11.4(d) lend themselves well to curvature de- 
scriptions. As the boundary is traversed in the clockwise direction, a vertex point 
y is said to be part of a convex segment if the change in slope at p is nonnegative; 
otherwise,p is said to belong to a segment that is concave.The description of cur- 
vature at  a point can be refined further by using ranges in the change of slope. For 
instance,p could be part of a nearly straight segment if the change is less than 10' 
or a conzer point if the change exceeds 90". Note, however, that these descriptors 
must be used with care because their interpretation depends on the length of the 
individual segments relative to  the overall length of the boundary. 

1 ?1,2-2 Shape Numbers 
As explained in Section 11.1.1, the first difference of a chain-coded boundary 
depends on the starting point. The ,shape number of such a boundary, based on 
the 4-directional code of Fig. l l . l(a),  is defined as the first difference of small- 
est magnitude. The order n of a shape number is defined as the number of dig- 
its in its representation. Moreover, n is even for a closed boundary, and its value 
limits the number of possible different shapes. Figure 11 .I 1 shows all the shapes 
of order 4,6, and 8, along with their chain-code representations, first differences, 
and corresponding shape numbers. Note that the first difference is computed by 
treating the chain code as a circular sequence, as discussed in Section 11.1.1. 
Although the first difference of a chain code is independent ol rotation, in gen- 
eral the coded boundary depends on the orientation of the grid. One way to 
normalize the grid orientation is by aligning the chain-code grid with the sides 
of the basic rectangle defined in the previous section. 

In practice, for a desired shape order, we find the rectangle of order n whose 
eccentricity (defined in the previous section) best approximates that of the basic 
rectangle and use this new rectangle to establish the grid size. For example, if 
n = 12, all the rectangles of order 12 (that is, those whose perimeter length is 
12) are 2 X 4 , 3  X 3, and 1 X 5. If the eccentricity of the 2 X 4 rectangle best 
matches the eccentricity of the basic rectangle for a given boundary, we estab- 
lish a 2 X 4 grid centered on the basic rectangle and use the procedure outlined 

' D o  not confuse this definition of major and minor axes with the cigen axes, which are defined in - 
Section 11.4. 
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Shapc no.: 3 3 .'1 3 0 3 3 0 3 3  

Order 8 

FIGURE 11.1 1 All 
shapes 01: order 4. 
6 .  and 8. The 
dircc-tiolls are 
from Fig, l l . l ( a ) ,  
and the dot 
indicates the 
starting point. 

in Section 11.1.1 to obtain thc chain code. T h e  shape numbel- foIlows from the 
first diffei*ence of rbis code. Although the ordei- of the  resulting shape number 
usunlly equals n because of the way the grid spacing was selected, boundaries 
with depressions con~parable to this spacing sometimes yield shape numbers of 
order gtxatel- than  n. In th is  case. we specify a rectangle of order lowci- than i z  

ancl repeat the PI-ocedure until the resulring shape number is of ordzr n. 

" + 
Suppose rl~at n = IS is specified for the boui~dary shown in Fig. 11.1 2 ( a ) , l b  EXAMPLE 11.2: 

obtain a shape number of this order requires following the steps just discussed. Com~ur i l l f i sha~e  

The first step is to fincl the basic i.ccrangle, as shown in Fig. 11.12(b). The clos- 11 u ~n bei-s. 

esl rectangle of order 18 is a 3 x G rectangle, requiring subdivision of the basic 
rectangle as show11 in Fig. 11.12(c), where  t he  chain-code directions are aligned 
with t h e  resulting grid.Thc 1'11ial slep is lo  oblain the chain code and use its first 
diffcrerlce to compute the shape  umber. as shown in Fig. 11.121d). EJ 

' ; ' :! Fourier Descriptors 

Figure 1'1,13 shows a K-point digital boundal.y in the xy-plane. Starting ai- an ar- 
hi trary poi11 t (s,,, y,,), coo~ -d i~~a te  pairs ( x , ,  , yo;,), ( x ,  , y ,  ). (x? . y2),  . . . , ( wK - , , yti - , ) 
n1.e encotii~tered in trailersiiig the bou~~dary,  say, in the counterclockwise direc- 
tion.These coordiiiatcs can be expressed in the form x ( k )  = s, and y ( k )  = yk.  
With this 110tati011. [he bounclaxy itself call be represented as the sequence of co-  
ordinates s ( k )  = [ . r ( k ) .  ~ ( k ) ] .  for k = 0; 1, 2, ... , K - 1. Moreover, each 
cool-dinatc pair can bc trealed as a colnplex ilurnber so that 
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c d 

FIGURE 1 1.1 2 
Steps in the 
generation of a 
shape number. 

Chaincode: 0 O 0 0 3 0 0 3 2 2 3 2 2 2 1 2  1 1  

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 

Shapeno.: 0 (1 0 3 1 0  3 3 0 1 3  0 0 3 1 3  0 3 

for k = 0,1,2,. . . , K - 1. That is, the x-axis is treated as the real axis and the 
y-axis as the imaginary axis of a sequence of complex numbers. Although the in- 
terpretation of the sequence was recast, the nature of the boundary itself was 
not changed. Of course, this representation has one great advantage: It reduces 
a 2-D to a 1-D problem. 

From Section 4.2.1, the discrete Fourier transform (DFT) of .r(lc) is 

for it = 0,1,2 , .  . . , K - 1.The complex coefficients ~ ( L I )  are called the Fourier 
descriptors of the boundary.The inverse Fourier trai~sform of these coefficients 
restores s(k) .That  is, 
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Real axis 

FIGURE 11.13 A digital boundary and i t s  representation as a complex sequence.The points 
(x,), YO)  and ( x ,  , y , )  shown are (arbitrarily) the lirst two points in the sequence. 

for k = 0,1,2, .  . . , K - I .  Suppose, however, that instead of all the Fourier co- 
efficients, only the first P coefficients are used. This is equivalent to setting 
~ ( L L )  = 0 for u ) P - 1 in Eq. (11.2-4).The result is the following approxima- 
lion to s ( k ) :  

for k = 0,1,2,. . . , K - 1. Although only P terms axe used to obtain each coin- 
ponerlt of i(k), k still ranges from 0 to K - l .That  is, the same number of points 
exists in the approximate boundary, but not as many terms are used in the re- 
construction of each point. Recall from discussions of the Fourier transform in 
Chapter 4 that high-frequency components account for fine detail, and low- 
frequency components determine global shape. Thus the smaller P becomes, 
the more detail that is lost on the boundary. The following example demon- 
strates this clearly. 

k% Figure 1 1.14 shows a square boundary consisting of K = 64 points and the re- EXAMPLE 11.3: 
sults of using Eq. (1 1.2-5) to reconstruct this boundary for various values of P. Note Illustration of 
that the value of P has to be about 8 before the reconstructed boundary looks Fourier 

descriptors. more like a square than a circle. Next, note that little in the way of corner defin- 
ition occurs until P is about 56, at which time the corner points begin to "break 
out" of the sequence.Finally, note that, when P = 61, the curves begin to straight- 
en, which leads to an  alnlost exact replica of the original one additional coefficient 
later.Thus, a few law-order coefficients are able to capture gross shape, but many 
more high-order terms are requlred to deline accurately sharp features sucll as 
comers and straight 1ines.This result is not unexpected in view of the role played 
by low- and high-frequency components in defining the shape of a region. H 
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FIGURE 11.14 
Examples of 
reconstmclion 
from Fourier 
descriptors. P is 
the  number of 
Fourier 
coefficients used 
in the Original ( K  = 64) 

reconstruction of 
[he boundary. 

As demonstrated in the preceding example, a few Fourier desc1.iptol-s can be 
used to capture the gross essencc of a boundary. This property is valuable, be- 
cause these coefficients carry shape inlor~nation. Thus they can be used as the 
basis for differentiating between distinct boundary shapes, a s  we  discuss in some 
detai I  in Chapter 12. 

We have stated several times that descriptors should be as insensitive as pos- 
sible to translation, rotation, and scale changes. In cases where resuIts depend 
on the order in which poirits are processed, an additiot~al constraint is that dc- 
scriptors should be insensitive to starting point. Fourier descriptors are not di- 
rectly insensitive to these geornetricaI changes, but the changes in  these 
parameters can be related to simplc transformations on the descriptors. F o r  ex- 
ample,consider rotationland recall from elementary mathematical analysis that 
rotation of a p o i n t  by an angle 8 about the origin of the complex plane is ac- 
complished by multiplying the point by dliB. Doing so to every point of s ( k )  ro- 
tates the entire sequence about the origin.The rotated sequence is ,s(k)ejH, whose 
Fourier descriptors are 

1 K - I  

n,.(u) = - ,(k)ejG-j?nt~k/'K 
K k=O 

for u = 0,1,2,. . . .  K - 1.Thus rotation simply affects all coefficients equally by 
a multiplicative cnnstanl term doL 
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----- 
Emsformat inn Boundary Fourier Descriptor 1 TABLE1l.l 

Table 1 1.1 summarizes thc Fourier descriptors for a boundary sequence s ( k )  
[ha t  undergoes rotation, translation,scaling, and changes in starting point. The 
symbol A,,, is defined as A,,. - Ax -t jAy,so the notation s , ( k )  = s ( k )  + A,.,,, in- 
dicates yedefining (translating) the sequence as 

.- 

I Identity J (k )  a ( ~ >  , 

Rotation ,r,(k) = s{k)ej1' o 1 ( u )  = o(1l)ei" 
T~ansla tion s , ( k )  = s ( k )  + A,,. n,( l r )  = o ( 1 ) )  -F A,,.S(rl) 
Scaling , s , (k)  = a s ( k )  O , ( L I )  = an(lt) 
Starting point s , , (k )  s ( k  - kn) n l , ( ~ i )  -- o ( l / ) c - ~ ~ ~  Z b,lr/K 

In  o t h e r  words, translation consists of  adding a constant displacement to all co- 
ordinates in the boundary. Note that translation has no effect on the descriptors. 
except for  11 = 0, which has the impulse function ~(u).' Fjnally, the e,xpression 
s , ( k )  = s(k  - i,) means redefining lhe sequence as 

Some basic 
propertics OF 
Fourier 
descri ptors. 

which merely changes the starling point of the sequence to k = k,!  from k = 0. 
The last entry in Table 11.1 shows that a change in starting point affects all de- 
scriptors in a different (hul known) way, in the sense thal the le r~n multiplying 
o(l.1) depends on u. 

1 '4 .?.A Statistical Moments 

The shape of boundary segments (and of signature waveforms) can be described 
quantitatively by uslng simple statistjcal mornen ts ,  sucll as t h e  mean. variance. 
and higher-order rnomcnts. To see how rhis  can he accomplished, consider 
Fig. 11.15(a), which shows the segment of a boundary, and Fjg. 1 l.lS(b). which 
shows t h e  segment represented as a I-D functior~ g ( r )  of a n  arbitrary variable """"~"'""'"""" 

C~bnsull thc Iwok wc.li s~cc 
r. This function is obtained by connecting the two end poinls of the segment , , f i c i  rct. icwo( P ~ O I I -  

and rotating the line segment until i t  is horizontal.The coordinates of the points rlh'"'! ''leu'-" 

are  rotated by the same angle. 
Let us treat the amplitude of g as a discrete random variable v and form an  

amplitude hislogram p(ui) , i  = 0.1.2.. . . . A  - 1,where A is the number of dis- 
crete amplitude increments in which we divide the amplitude scale.Then, keep- 
ing in mind tha t  p(u i )  is a n  estimate of the probability of value vj occurring, 11 
follows from Eq. (3.3-18) that the nth moment of v about its mean i s  

' Hccall from Chap~c r  4 that the Fourier Iranstnrm of a constant is an inipulse located at the origin. Re- 
csll also thi l l  (he  inipulsc lui~clion i s  zero everywhere else. 
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a b- 
FIGURE 11.1 5 
(a) Boundary 
segment. 
(b) Representation 
as a 1 -D function. 

where 

The quantity rn is recognized as the mean or average value of u and p, as its vari- 
ance. Generally, only the first few moments are required to differentiate be- 
tween signatures of clearly distinct shapes 

An a1 ternative approach is to normalize g(r)  lo  unit area and treat i t  as a his- 
togram. In other words, g(r,) is now treated as the probability of value ri oc- 
curring. In this case, r is treated as the random variable and the moments are 

where 

I n  this notation, K is the number of points on the boundary, and ,u,(r) is di- 
rectly related to t h e  shape of g ( r ) .  For example, the second moment h ( r >  rnea- 
sures the spread of The curve about the mean value of r a n d  the third moment 
p , ( r )  measures its symmetry with reference to the mean. 

Basically, what  we have accomplisl~ed is to reduce the description task to 
that of describing I-D functions. Although moments are by f a r  t he  most popu- 
lar method, they a r e  not tbe only descriptors that could be used for this purpose. 
For instance, another method involves computing the 1-D discrete Fourier trans- 
form, obtaining its spectrum, and using the first q components of the spec t rum 
to describe g ( r - ) .  The advantage of moments over other techniques is that im- 
plementation of moments is straightforward and they also carry a "physical" 
in terpretacion of boundary shape.The insensitivity of this approach to rotatjon 
is clear frorn Fig. 11.15. Size normalization, if desired, can be achieved by scal- 
ing the range of values of g and r. 

Regional Descriptors 

In this section we consider various approaches for describing image regions. 
Keep in mind that it is common practice to use of borh boundary and regional 
descriptors combined. 
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i 1.2. t Some Simple Descriptors 

The nrea of a region is defined as the number of pixels in the region. TIleperime- 
rer of a region is the length of its boundary. Although area and perimeter are 
sometimes used as descriptors, the.y apply primarily to situations in which the 
size of the regions of interest is invariant.A more frequent use of these two de- 
scriptors is in measuring con?pocmess of a region, defined as (perimeter)2/area. 
Compactness is a dimensionless quantity (and thus is insensitive to uniform 
scale changes) and is minimal for a disk-shaped region. With the exception of 
errors introduced by rotation of a digital region, compactness also is insensi- 
tive to orientation. 

Other simple measures used as region descriptors include the mean and me- 
dian of the gray levels, the minimum and maximum gray-level values, and the 
number of pixels with values above and beIow the mean. 

E Even  a simple region descriptor such as normalized area can be quite use- EXAMPLE 11.4: 
ful in  extracting information from images. For jnstance,Fig. 1 I .16 shows a satel- Using arcs 

lite infrared image of the Americas. 4 s  discussed in more detail in Section 1.3.4, compu talions to 
extract 

images such as these provide a global inventory of human settlements. The info,.mation from 
sensor used to collect these images has the capability to detect visible and near- images. 
infrared emissions, such as lights, fires, and flares.The table alongside the images 
shows (by region from top to bottom) the ratio of the area occupied by white 
(the lights) Lo the total light area in all foul- regions. A simple measurement like 
thls can give, for example, a relative estimate by region of electrical energy con- 
surned.'fie data  can be refined by normalizing it with respect to land mass per 
region, with respect to population numbers, and so on. 

3 i 2.7' Topological Descriptors 
Topological properties are useful for global descriptions of regions in the image 
plane. Simply defined,topology is the study of properties of a figure that are un- 
affected by any deformation, as long as there is no tearing or joining of t h e  fig- 
ure (sometimes these are called nibher-sheet distortions). For example,Fig. 11.17 
shows a region with two holes.Thus if a topological descriptor is defined by the 
number of holes in the region, this property obviovsly will not be affected by a 
stretching or rotation transformation. In general, I~owever, the number of holes 
will change if the region is tom or folded- Note that, as stretching affects distance, 
topological properties do  not depend on the notion of distance or any proper- 
ties implicitly based on the concept of a distance measure. 

Another topological property useful for region description is the number of 
connected components. A connected conzponcnt of a region was defined in Sec- 
tion 2.5.2. Figure 11 -18 shows a region with three connected components. (See 
Section 9.5.3 regarding an algorithm fox computing connected components.) 

The  number of holes H and connected components C in a figure can be used 
to define the E~iier ncrmber E: 
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Region 110, Rat io  of l i g h t s  per 
(from top) region t o  total  lighfs 

I 0.204 
2 0.6 40 
+ 
3 0 .04 0 
4 0. lo?  

FIGURE 1 1.1 6 Infrared images of the Arne~.icas a t  night. (Cou~.~esv of N OAA.) 



11.3 s Regional Descriptors 663 

FIGURE 11-1 7 A region with two holes. 

The Euler number is also a topological property.'Ilie regions sliown in Fig. 11.19, 
for example, have Euler numbers  equal to 0 and --I, respectively, because the 
"A" has one connected component and one hole and the "B" one connected 
component bul two holes. 

Regions represented by straight-line segments (referred to as polygo~zal ner- 
works) have a particularly simple interpretation in terms of the Euler numbcr. 
Figure 11.20 shows a polygonal network. Classifying interior regions of such a 
network into faces and holes often is important. Denoting the number of ver- 
tices by V ,  the number of edges by Q, and the number of faces by F gives the 
following relationship. called the E ~ ~ l e r  jormulu: 

which, in view of Eq. (11.3-I), i s  equal to the Euler number: 

The network shown in Fig. 11.20 has 7 vertices, 11 edges, 2 faces, 1 connected 
region, and 3 holes; thus the Euler number is -2: 

c 
FIGURE 1 1.18 A region with three connected components. 
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a b  

FIGURE 1 1.19 Regions with Eulcr numbel equal to 0 and  -1 .  I-especlively. 

Topological descriptors provide an additional fea tu re  thal  is oftcn useful i n  
characterizing regions in a scene. 

EXAMPLE 11.5: i:.; Figurc I I .21(a) shows a 512 X 51 2,s-bit image of W;~shington, D.C. takzn by 
Use  of cojlncclecl a NASA LANDSA7'satellite.Tl1is particular imaqe is in the near  infrared band - 
co'nponcnls rol' (see Fig. 1 . 1 0  lor details). Suppose that we want to segrncn t the river using only 
cx11.acling tlie 
Iargesl fen t~~r -es  I r l  

this image (as opposed to using several multispectral images, which would sim- 
s e ~ t n c n ~ e d  pljfy the task).  Since  he river i s  a rather dark, u ~ l i i o r m  region of the image. - 

Image thresholdingjs a n  obvious thing to 1ry.Ttle resulr of thresholding t h c  image with 
t he  highest possible threshold value before the river became a discoimected re- 
gion i s  shown in  Fig. 11,2L(b).The threshold was selected manually to illusl'l.ille 
the p o i n ~  t h a ~  i t  would be impossible in th is  case to segment the river by  itself 
without other regions of the image also appearing i n  the tl~resholded result. 
*llhe objeclive uf (his example is to jllustl-ate how connected components can be 
used to "finish" the segmentation. 

FIGURE 1 1.20 A rezion containing a polygonal ~lerwork. 
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The image in  Fig. 11.21(b) has 1591 connected components (obtained u s i i ~ g  
Y-con~\ectivity) and its Euler  n u n ~ b e r  is 1552, from which wtr deduce r h a ~  the 
~iurnber of holes is  39. Figure I1.21(c) shows the connected c o m p o ~ ~ e n t  with the 
largest n u ~ n b c r  of elelnerlts (8479).'lhis is the desil-ed result, which we already 
k n o w  cannot  be segmented by itself fro~n the image. Note Ilow cleall this  result 
is. It' we wanted to pel-form measuremenis, like the length of each brancll of the 
river. wc coclld use r l ~ e  skeletoi~ of the connected componei~t [Fig. 11.21(d)] to 
do so. I n  olller woi.ds, the lzr~gth of each branch in the skeleton wouid be a rea- 
sonably close approxima tion to the length of t h e  river branch it represents. r* 

, ., 

, . . :. ..j Texture 

FIGURE 1 1 -21 
(a) Infrared 
irnage of the 
W;lshington, 
D.C. area. 
(b) Thres1)olded 
image. (c) Y ie  
largest co~)tlecrecl 
co~nporlei\l ol (b). 
Skeletor~ of (c). 

An importan[ approach to region description is to quantify irs rcisrrrre content. 
Altl~ougli 110 forinal definition of texture exisls, intuitively this  descriptot. pro- 
vides rncasures of pi.operties such as smoothnzss, coarseness, and  I-egulal-ity 
(Fig. 1 1.22 stiows some exainples). The three principal approaches used in image 
processing to dcscribe \he texiure of a region are slatistical, skructural, and spec- 
tral. Statistical appr.oac11es yield characterizations of tzxtures as smooth. coarse, 
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a b c  

FIGURE 11.22 The white squares (nark, from left Lo r i ~ h t ,  smooth. coarse, and regular lextures. These are 
optical microscope images of a superconductor, human cholesterol. a n d  a microprocessor. (Courtesy oC 
01.. Michael W. Davidson, Florida State Universiry.) 

grainy, and so on. Structural techniques deal wit11 the arra~~gement  of irnage 
prirni tives, such as the description of texture based on regulaily spaced pal-al- 
Iel lines. Spectral techniques are based on properties of thc Fourier specb-urn and 
a r e  used primariJy to detect global periodicity in an image by identifying high- 
energy, narrow peaks in tlie spectrum. 

Statistical approaches 
One of the simplest approaches for describing texture is ro use statistical mcr- 
nlents ol the gray-level histogram of an irnage 01- region. Let z be a random 
variable denoting gray levels and let  p ( ~ , ) ,  I = 0, 1.2,.  . . . L - 1. be the coyre- 
spending h~s tog ra~n ,  whe re  L i s  the number  of distinct gray levels. Frorn 
Eq. (3.3-Is), the 12th moment of z about thc mean is 

where 112 is the mean value of 2 (the average gray level): 
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Note from ,Eq. (11.3-4) that po = 1 and p,  = O.The second moment [the vnri- 
ance u2(z) = ,u,(z)] is of particular importance in texture description. I t  is a 
measure of gray-level contrast that can be used to establish descriptors of rel- 
at ive s~noothoess. For example, thc measure 

is 0 for areas of constant intensity (the variance is zero there) and appraaclies 
1 for large values of rr2(z). Because variance values tend to be large for gray- 
scale images with values, for example, in the range O to 255, i t  is a good idea to 

normalize the variance to the interval [ O ,  11 for use in Eq. (31.3-6).This is done 
simply by dividing w2(z)  by ( L  - 1 in Eq, (11.3-6). The standard deviation, 
~ ( z ) ,  also is used frequently as a measure of texture bccause values of the stan- 
dard deviation tend to be more intuitive to many people. 

The third moment, 
L- l 

P ; ( I )  = C ( t i  - m ) ' ~ ( t j ) .  
i-0 

i s  a rneasure ol' the skewness of the histogram while the fourth moment is a 
measure of its relative flatness-The fifth and higher moments are not so easily 
related to histogram shape, but they do provide further quantitative discrimi- 
nation of texture content. Some useful additional texture measures based o n  
histograms include a measure of "uniformity." given by 

and an overage entropy measure, which the reader might recall from basic in- 
formation theory, or from our discussion in Chapter 8, is defined as 

Because the 12's have values in the range [0, I ]  and their sum equals 1 ,  measure 
U is maximum for an image in which al l gray levels are equal (maximally uni- 
form), and decreases from therc. Entropy is a measure of variability and is O 
lor a constant image. 

7 Table 1'1.2 summarizes the values of the preceding measures for the three EXAMPLE 11.6: 
types of textures highlighted in Fig. 11.22. ']The mean just tells us the average Texture nlcasul.es 
gray level of each region and is useful only as a rough idea of intensity, not rc- based on 

hislograms. ally texture. The standard deviation is much more informative; the numbers 
clearly show that the first texture has significantly less variabilily in gray level 
(it is smoother) than the other two textures.The coarse texture sbows up clear- 
ly  in this measure. As expected, the same comments hold for R ,  because it mea- 
sures essenlially the same thing as the standard deviation. The lhird moment 
generally is useful [or determining the degee  of symmetry of liistograms and 
whether (hey are skewed to the left (negative value) or the right (positive value). 
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TABLE 1 1.2 
Texture measures 
for the subimages 
shown in 
Fig. 11.22. 

Standard Third 
Texture Mean deviation R (normalized) moment Uniformity Entropy 

Smooth 82.64 11.79 0.002 -0.105 0.026 5.434 
Coarse 143.56 74.63 0.079 -0.151 0.005 7.783 
Regular 99.72 33.73 0.017 0.750 0.013 6.674 

This gives a rough idea of whether the gray levels are biased toward the dark 
or light side of the mean. In  terms of texture, the information derived from the 
third moment is useful only when variations between measurements are large. 
Looking at the measure of uniformity, we again conclude that the first subim- 
age is smoother (more uniform than the rest) and that the most random (low- 
est uniformity) corresponds to the coarse texture.This is not surprising. Finally. 
the entropy~values are in the opposite order and thus lead us to the same con- 
clusions as the uniformity measure did. The first subimage has the lowest vari- 
ation in gray level and the coarse image the most. The regular texture is in 
between the two extremes with respect to both these measures. nr( 

Measures of texture computed using only histograms suffer from the limita- 
tion that they carry no  information regarding the relative position of pixels with 
respect to each other. One way to bring this type of information into the texture- 
analysis process is to consider not only the distribution of intensities, but also 
the positions of pixels with equal or nearly equal intensity values. 

Let P be a position operator and let A be a k X k matrix whose element a j j  
is the number of times that points with gray level z, occur (in the position spec- 
ified by P) relative to points with gray level z,, with 1 r i, j 5 k. For instance, 
consider an image with three gray levels, z ,  = 0, z2 = 1, and 2, = 2, as follows: 

Defining the position operator P as "one pixel to the right and one pixel below" 
yields the following 3 x 3 matrix A: 

where, for example, a , ,  (top left) is the number of times that a point with level 
2, = 0 appears one pixel location below and to the right of a pixel with the 
same gray level, and a, ,  (top right) is the number of times that a point with 
level z ,  = 0 appears. one pixel location below and to the right of a point with 
gray level z3 = 2.The size of A is determined by the number of distinct gray lev- 
els in the input irnage.Thus application of the concepts discussed in this section 
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usually requires that intensities be requantized into a few gray-level bands in 
order to keep the size of A manageable. 

Let n be the total number of point pairs in the image that satisfy P (in the pre- 
ceding example n = 16, the sum of all values in matrix A).  If a matrix C is 
I'ormed by dividing every element of A by n, then c i j  is an  eslimate of the joint 
probability that a pair of points satisfying P will have values ( z ; ,  zj).The matrix 
C is called the gray-level co-occLlrrence matrix. Because C depends on P, the 
presence of given texture patterns may be delected by choosing an appropriale 
position operator. For instance, the operator used in the preceding example is 
sensitive to bands of constant intensity running at  -45". (Note that the highest 
value in A was a , ,  = 4, partially due to a streak of points with intensity 0 and 
running at - 4 5 O . )  More generally, the problem is to analyze a given C ~iiatrix in 
order to categorize the texture of the region over which C was c0mputed.A set 
of descripto~.~ useful for this purpose includes the following: 

1. Maximum probability 

2. Element difference moment of ordcr k 

3. Inverse element differencc moment of order k 

4. Uniformity 

5. Entropy 

The basic idea is to characterize the "content" of C via these descriptors. For 
example, the first property gives aa indication of the strongest l.esponse to P.Thc 
second descriptor has a relatively low value when the high values of C are near 
the main diagonal, because the differences (i - j) are smaller there. 71ie third 
descriptor has tlic opposite effect.The fourth descriptor is highest when the c,,s 
are all equal. As noted previously, the fifth descriptor is a measure of random- 
ness, achieving its highest value when all elements of C are maximally random. 

One approach for using these descriptors is to "teach" a system represcn- 
tative descriptor values for a set of different textures. The texture of an un- 
known region is then subsequently determined by how closely its descriptors 
match those stored in the system memory. We discuss matching in more detail 
in Chapter 12. 
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Structural approaches 

a 
b 
C 

FIGURE 1 1.23 
(a) Texture 
primitive. 
(b) Pattern 
generated by the 
rule S + as. 
(c) 2-D texture 
pattern generated 
by this and other  
rules. 

As mentioned at the beginning of this section, a second major category of tex- 
ture description is based on structural concepts. Suppose that we have a rule of 
the form S + as, which indicates that the symbol S may be rewritten as aS (for 
example, three applications of this rule would yield the string anaS). Jf a repre- 
sents a circle [Fig. 11.23(a)] and the meaning of "circles to the right" is assigned 
to a string of the form aaa . . . , the  rule S + U S  allows generation of the texture 
pattern shown in Fig. 11.23(b). 

Suppose next that we add some new rules to this scheme: S + bA, A + cA, 
A 4 c, A + bS, S + a, where the presence of a b means "circle down" and 
the presence of a c means "circle to the left." We can now generate a string of 
the form anabccbna that corresponds to a 3 X 3 matrix of circles. Larger texture 
patterns, such as the one shown in Fig. 11.23(c), can be generated easily in the 
same way. (Note, however, that these rules can also generate structures that are 
not rectangular.) 

The basic idea in the foregoing discussion is that a simple "texture primi- 
tive" can be used to form more complex texture patterns by means of some 
rules that limit the number of possible arrangements of the primitive(s). These 
concepts tie at the heart of relational descriptions, a topic that we treat in more 
detail in Section 11.5. 

Spectral approaches 

As indicated in Section 5.4, the Fourier spectrum is ideally suited for describ- 
ing the directionality of periodic or almost periodic 2-D patterns in an image. 
These global texture patterns, although easily distinguishable as concentrations 
of high-energy bursts in the spectrum, generally are quite difficult to detect with 
spatial methods because of the local nature of these techniques. 

Here, we consider three features of the Fourier spectrum that are useful for 
texture description: (1) Prominent peaks in the spectrum give the principal 
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direction of the texture patterns. (2) The location of the peaks in the frequen- 
cy plane gives the fundamental spatial period of the patterns. (3) Eliminating any 
periodic components via filtering leaves nonperiodic image elements, which can 
then be described by statistical techniques. Recall that the spectrum is sym- 
metric about the origin, so only half of the frequency plane needs to be con- 
sidered. Thus for the purpose of analysis, every periodic pattern is associated 
with on ly  one peak in the spectrum, rather than two. 

Detection and interpretation of the spectrum features just mentioned o f~en  
are simplified by expressing the spectrum in polar coordinates to yield a func- 
tion S(r ,  f?), where S is the spectrum function and r and 8 are the vaiiables in this 
coordinate system. For each direction 8, S ( r ,  8 )  may be considered a 1-D func- 
tion S,(r) .  Similarly, for each frequency r, S,.(8) is a 1-0 function. Analyzing 
S,(r) for a fixed value of 8 yields the behavior of the spectrum (such as the pres- 
ence of peaks) along a radial direction from the origin, whereas analyzing S,(0) 
for a fixed value of r  yields the behavior along a circle centered on the origin. 

A more global description is obtained by integrating (summing for discrete 
variables) thesc functions: 

and 

where R,, is the radius of a circle centered at the origin. 
The results of Eqs. (11.3-10) and (11.3-11) constitute a pair of values 

[ ~ ( r ) ,  s ( B ) ]  lor each pair of coordinates (r ,  8) .  By varying these coordinates, we 
can generate two 1-D functions, S ( r )  and S(d), that constitute a spectral-energy 
description of texture for an  entire image or region under consideration. Fur- 
thermore, descriptors of these functions themselves can be computed in order 
to characterize their behavior quantitatively. Descriptors typically used for this 
puTpose are the location of the highest value, the mean and variance of both the 
amplitude and axial variations, and the distance between the  mean and the hgh- 
est value of the function. 

!!'I Figure 11.24 illustrates the use of Eqs. (1 1.3-10) and (1 1.3-1 1) for gIobal tex- EXAMPLE 11.7: 
ture description. Figure 11.24(a) s l~ows an image with periodic texture, and Spectral texture. 

Fig. 11.24(b) shows i ts  spectrum. Figures 11.24(c) and (d) show plots of S(r) 
and S ( 0 ) ,  respectively. The plot of S ( r )  is a typical structure, having h g h  ener- 
gy content near the origin and progressively tower values for higher frequen- 
cies. The plot of S(0) shows prominent peaks at intervals of 45", which clearly 
correspond to the periodicity In the texture content of the image 

As an illustration of how a plot of S(8 )  could be used to differentiate between 
two texture patterns,Fig. 11.24(e) shows another image whose texture paltern is 
predominantly in the horizoiltal and vertical directions. Figure 11.241f) shows 
the plot of S ( 8 )  for the spectrurn of this image. As expected, this plot shows peaks 
at 90" intervals. Discriminating between the two lexture patterns by analyzing 
their corresponding S ( 8 )  waveforms would be st-~aightforward. m 
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the xy-plane, moments of all orders exist, and the moment sequence (m,,) is 
uniquely determined by f ( x ,  y ) .  Conversely, (m,,) uniquely determines f (x, y ) .  

The central moments are defined as 

where 

ml u z = -  mn -I 
and j = -. 

mu o moo 

Iff  ( x ,  y )  is a digital image, then Eq. (11.3-13) becomes 

The central moments of order up to 3 are 

Poi = x x (x - ? ) @ ( Y  - Y ) ' . f ( x ,  Y )  
x Y 

mo I 
= m,, - - (moo) 

moo 

.r y 

= m , ,  - rnl om01 

"0 0 

= m , ,  - im,, = m,, - ymIo 

P20 = E C. (* - i I 2 ( y  - j ) ' ' . f (x ,  Y) 
x Y 

- 2m:o m;o - mZ0 - - + - 
moo mu, 

m:o 
= m20 - - 

moo 
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- n4  1 - f l fO3 - - 
moo 

In  summary, 

Po0 = "%o Po* = mo2 - ym01 

P I O  = 0 p 3 ~  = ln3() - 3Xn12(1 + 2i211110 
- 

PO 1 = 0 PO: - m1-13 - 3LnZu2 + 2j2mo I 

k I l  = m , ,  - j m I o  p, ,  = t1121 - 2 i m , ,  - ~ n z ~ ~  + 2*"m,,, 

p 2 ~  = m2,, - EmlO p , ?  = 1111 - 2jnr, ,  - Em,,, + 2y2rn, ,,. 
The norn7nlized centrul nzomenrs, denoted q,,, , are defined as 

where 

for p + q = 2.3, ... . 
A set of seven invarinnl monzents can be derived from the second and third 

moments. ' 

' Deriva~ion nf thesc rcsults in\~olves c o ~ ~ c e p t s  Lhat are beyond the scope or this discussion. l l ~ c  book by 
Bell 119651 and the paper by Hu [I9621 contain detailed discussions of these conceprs. Moment invariants 
can he generalized to r r  dimensions (Mamistvalov [199Y]). 
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This set of moments is invariant to translation, rotation, and scale change. 

I" The image shown in Fig. 1 1  25(a) was reduced to half size in Fig. 11.25(b). 
mil-ror-~rnaged in Fig. 11.25(c), and rotated by 2" and 45". as shown in Figs 11.25(d) 
and (e). The seven moment invariants given in Eqs. (1  1-3-17} through (1 1.3-23) 
were then computed for each of these images, and the logarithm of the results 
were taken to reduce the dynamic rangc. As Table 11.3 shows. the results for 
Figs. 1 I .25(b) through ( e )  ai-e in reasonable agreement with the invariants coin- 
puted for the original image.The major cause of error can be attributed to the dig- 
ital nature of the data, especially for the rotated images. , - 
- . ,-. 

Use of Principal Components for Description 

The ~naterial discussed in \his sectior~ is applicable to boundaries and regions. 
I n  addition, i t  can be used a s  the basis for describing sets of images that are reg- 
istered spatially, but whose correspondiilg pixel values are different (e.g., the 
rhree component images of a color RGB image). Suppose tha t  we are given the 
three component images of such a co lo~  image. The three images can be treat- 
ed as a unit by expressing each group of three corresponding pixels as a vcctoi-. 
For exa~nple, let s, , x,,and x,, respectively, be the values of the first pixel in each 
of the three images.These three elements can be expressed in [he form of a 3-D 
coiurn~l vector, x. where 

This one vector represents o12e commotl pixel in  all three images. I f  the images 
are of size M X N. there will he a total of K = MN three-dimensional vectors 
a l te r  all the pixels are represented in this manner. If we have n registered im- 
ages, the  vectors will be n-dimensional: 

EXAMPLE 11.8: 
Two-diniensional 
niomenl 
iuvarianls. 

C<inbulr thc h o o k  wcl> r i ~ c  
l(\r :I h l  ~ c l '  rcvrcw o f  \'cs- 
\ t j ~  5 ;tnd III:I(~ICC& 
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flGURE 11.25 
Images used to 
denlonstrate 
properties of 
moment 
invariants (see 
Table 11.3). 

Throughout this section, the assumption is  that all vectors arc column vectors 
(i.e., matrices of order n X I). We can write them o n  a line of text simply by ex- 

7' pressing them as x = (w,, x,. . . . , r,,) . where "T" indicates transpose. 
We can treat the vectors as random quantities, just like we did when con- 

structing a gray-level histogram. The only difference is that, instead of talking 
about quantities like the mean and variance of the random variables, we now 
talk about meun veclors and ~ovnrian~ce  mntrices of the random vectors. The 
mean vector of the population is defined as 
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Invariant (Log) 

dJ l 
dl 2 

4 .: 
i b ~  
43 
'b 6 

47 

Original 

6.249 
17.180 
22.655 
22.91 9 
45.749 
3 1 330 
45.589 

Half Size Mirrored 

6.919 
19.955 
26.689 
26.901 
53.724 
37.134 
53.500 

Rotated 2" Rotaied 45" 
TABLE 1 1.3 
Monient 
invariants for the 
irnagcs in  
Figs. I 1.25(a)-(e). 

where E{-} is the  expected value of the argument, and  the subscript denotes  that 
rn is associated with the population of x vectors, Recall that  t h e  expected value 
of a vector or matrix is obtained by taking the expected value of each element. 

Tlie mvrrrirrncc. nza/rix of the vector population is defined as 

T Because x is n dimensional, C, and (x  - rn,)(x - m,) are matrices of order 
n X 11. Elerne111 c j ,  of C, i s  the variance of x i ,  the it11 component of the  x vec- 
tors i n  the population, and element c i j  of C, is the covariance' between ele- 
ments xi and  .u, of these veclors.Tne matrix C, is real and symmetric. 1f elements 
xi and .r, arc uncorrelated, their covariance is zero and, therefore, c .  - = cii = 0. '! 
Note that all lhese defii~itions reduce to their lamiliar onc-diinens~oiial coun- 
terparts when ,l = I .  

For K vcctor samples from a random populat ion,  the mean vector can be 
approximated from the samples by using the familial. averaging expression 

Similarly, by expanding the product (x - m,)(x - ms)" and using Eqs. (11.4-2) 
and (1  1.4-4) we would find that the  covariance matrix can be approximated 
from t h e  samples as follows: 

i'i To illustt-ate lhc mechanics of Eqs. (11.4-4) and (11.4-5),consider the four vec- EXAMPLE 11.9: 
tors xl = (0,O. 0)'. x2 = (1.0. 0)',x3 = ( I .  1. ( I ) ~ ,  and x, = ( I ,  0, l)', where the  COmputal ion of 

the meat) vector transpose is used so ihal column vectors may be conveniently written horizon- slid covariance 
tally on a line of text, as noted previously. Applying Eq. ( 1  1.4-4) yields the fol- ,,,,i,, 
lowing mean vector: 

'Rccall that the var ia~ ice  of a vando~n v;triablc w with mean n; is defined as E { ( w  - r,l)'}.The covariance 
or two random variables .r, and .r, is defined as E{(.r, - mi)(ri - or,)). I f  the variables art. u)z~~ol-rrlrr~etl. 
Iheir covariance is (1. 
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Similarly, use of Eq. (11.4-5) yields the folIowing covariance matrix: 

All the elements along the main diagonal are equal, which indicates that the 
three components of the vectors in the population have the same variance. Also, 
elements x ,  and x,, as well as x ,  and x, ,  are positively correlated; elements x2 
and x, are negatively correlated. a 

Because C, is real and symmetric, finding a set of rt orthonormal eigenvec- 
tors always is possible (Noble and Daniel [1988]). Let ej and hi, i = 1 ,2 , .  . . , n, 
be the eigenvectors and corresponding eigenvalues of C,,' arranged (for con- 
venience) in descending order so that A, 2 Aj+, for j = 1,2,. .. ,n - 1. Let A be 
a matrix whose rows are formed from the eigenvectors of C,, ordered so that 
the first row of A is the eigenvectol* corresponding to the largest eigenvalue, and 
the last row is the eigenvector corresponding Lo the smallest eigenvalue. 

Suppose that we use A as a transformation matrix to map the x's into vec- 
tors denoted by y's, as follows: 

Y ; A(% - m,). (11.4-6) 

This expression is called the Hotelling transform, which, as will be shown short- 
ly, has some interesting and useful properties. 

11 is not difficult to show that the mean of the y vectors resulting from this 
transformation is zero; that is, 

It follows from basic matrix theory that the covariance matrix of the y's is given 
in terms of A and C, by the expression 

Furthermore, because of the way A was formed, C, is a diagonal matrix whose 
elements along the main diagonal are the eigenvalues of C,; that is, 

T l ~ e  off-diagonal elements of this covariance matrix are 0, so the elements of the 
y vectors are uncorrelated. Keep in mind that the h,'s are the eigenvalues of C, 
and that the elements along the main diagonal of a diagonal matrix are its eigen- 
values (Noble and Daniel [1988]). Thus C, and C, have the same eigenvalues. 
In fact, the same is true for the eigenvectors. 

'By definition, the eigenvectors and eigenvalues of an n X r r  matrix, C, satis@ the relat~on Ce, - Atei, lor 
I = 1,2 ..... n. 



11.4 iii Use of Principal Components for Description 679 

Another important property of the Hotelling transform deals with the re- 
construction of x from y. Because the rows of A are orthonormal vectors, i t  fol- 
lows that A-' = A", and any vector x can be recovered from its corresponding 
y by using the expression 

Suppose, however, that instead of using all the eigenvectors of C, we form ma- 
trix A, from the k eigenvectors corresponding to the k largest eigenvalues,yleld- 
ing a transformation matrix of order k x n. The y vectors would then be k 
di~nensional, and the reconstruction given in Eq. (1 1.4-10) would no longer be 
exact (this is somewhat analogous to the procedure we used in Section 11.2.3 
to describe a boundary with a few Fourier coefficients). 

The vector reconstructed by using A, is 

It can be shown that the mean square error between x and i is given by the 
expression 

= A,. 
j = k + l  

The first line of Eq. (11.4-12) indicates that the error is zero if k = n (that is, if 
all the eigenvectors are used in the transformation). Because tlle Ai's decrease 
monotonically, Eq. (11.4-12) also shows that the error can be minimized by se- 
lecting the k eigenvectors associated with the Iargest eigenvalues. Thus the 
Hotelling transform is optimal in the sense that it minimizes the  mean square 
error between the vectors x and their approximations i. Due to this idea of 
using the eigenvectors corresponding to the largest eigenvalues, the Horel1in.g 
transform also is known as the princlpul componenf,~ transform. 

!? Figure 11.26 shows six images generated by a 6-band multispectral scanner EXAMPLE 11.10: 
operating in the wavelengths shown in Table 11.4. Viewing the images as shown Use of principal 

in Fig. 11.27 allows formation of a 6-dimensional vector x = (x, , x,, . . . , x,) T components to 
describe images. 

from each set of corresponding pixels in the images, as discussed a t  the begin- 
ning of this section. The images in this particular application are of resolution 
384 x 239 so the population consists of 91,776 vectors from which to compute 
the mean vector and  covariance matrix.Tab1e 11.5 shows the eigenvalues of C,. 
Note the dominance of the first two eigenvalues. 

Use of Equation (11.4-6) generated a set of ~ransforned y vectors corre- 
sponding to tlie x vectors. From them, six principal component images were 
assembled (images are constructed from vectors simply by applying Fig. 11.27 
in reverse). Figure 11.28 shows the results. Component 1 denotes the image 
formed from all the y, components of the transformed vectors, and so on for 
the other five images. Recall from basic matrix theory that y l ,  for example, is 
obtained by performing the inner (dot) product of the first row of A with the 
column vector (x  - m J T .  



FIGURE 11.26 Six  
spec(ra1 images 
from a n  airborne 
scanner. 
(Courtesy of the 
Labni.atory for 

P ~ I - d u e  
University.) 

Channel 1 Channe l  2 

Channel 5 Cllannel h 

TABLE 1 1.4 
Chatinel numbers 
and wavele~rg~hs .  

Channel Wavelength band (micro~~s) 

1 0.40-0.44 
2 0.624.66 
3 0.66-0.72 
4 0.80- 1.00 
5 1.00- 1.40 
6 2.00-2.60 

The firs1 row o € A  is the eigenvector corresponding to t h e  largest eigenvalue 
O F  the covariance mati4ix of the population, and this eigenvalue gives the var iance  
of  the gray levels of t he  ljrst transformed image. Thus based on the numbers 
shown in Table 11.5, this image should have the highest contl~ast.Tka1 sucll is the 
case is quite evident in Fig. 11.28. Because the  f i r s t  two images account for about 
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I Spectral band 2 

I Spectral band I 

Spectral band 6 

..a*. 
0 .  .. 

.a. 

FIGURE 11.27 Formation of a vector from corresponding pixels in six images. 
. . . . . . . . .  . . 

. . . . . 

.a a. 
a m * .  

I * . . .  

0 0  .* 
* * *  

a* . . .  
0 .  . a  

* a .  

.ma . .  .. .- . ... 

TABLE 1 1.5 
Eigenvalues of 
the covariance 
matrix obtained 
from the images 
in Fig. 11.26. 

- 
.***.  y:: 
.**. 

94% of the total variance, the fact that the other four principal-component im- 
ages have low contrast is not unexpected.Thus if instead of storing all six images 
for posterity, only the first two transformed images, along with m, and the first 
two rows of A, were stored, a credible job of reconstructing an approximation 
to the six original images could be done a t  a later date. This capability for per- 
forming data compression, although not impressive by today's standards is a use- 
ful byproduct of the Hotelling transform. In terms of description, this means 
describing the content of six images with two, plus the mean vector and first two 
rows of the transformation matrix. The same argument would apply if instead of 
entire images we. were discussing regions. H! 

Spectral band 5 

i@ Tn the preceding discussion we showed how to apply the  principal cornpo- EXAMPLE 21.11: 
nenls transformation to sets of images or regions. In this example we illustrate Use of ~ r l n c i ~ a l  

how to use principal components for describing boundaries and regions in a componene for 
describing 

single image. The approach is to form two-dimensjonal vectors from the coor- boundaries and 
dinates of the boundary or region. Consider the object shown in Fig. 11.29(a). jn a single 
Vectors are formed from the cooxdinates of the pixels in the object if we wish image. 

Spectral band 4 

m e * * *  

- 

- Spectral band 3 
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Componenl 3 

1 
Component 4 

FIGURE 1 1  -28 Six principal-cornponenr images conlputed from the data in Fig. Z 1.26. 
(Courtesy nf (lie L.aboratory lor Applicat~ons of Reniolc Sensing, Purdue University.) 

ro describe the region. 1 f we wish to describe the boundary, we only use the co- 
ordinates of the points on the boundary. 

The resullitlg vectors then are trealed as a 2-11 population of random vectors. 
In other words. cach pixel in the object i s  treated as a 2-D vector x = (0, b) l ' .  
where n and b are the coordinate values of that pixel with respect to the x,- and 
sl-axes.These vectors are used to compute the mean vector and covariance ma- 
trix of the population (object).The problem is much simpler than before bccause 
we are working in only two dimensions. 

The net effect of using Eq. (1 1.4-6) is to establish a new coordinate system 
whosc origin is at the centroid of the population (the coordinates of the mean 
vector) and  whose axes are in the direction of the eigenvectors of C,, as shown 
in Fig. I 1.29(b).This coordinate system clearly shows that t h e  transformation in 
Eq. (1 1.4-6) is a rotation transformation that alig~ls the dala with the eigenvectors, 
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a 
b c 

FIGURf 11.29 (a) An object. (11) Ei~en\lzclors. ( c )  Ob,ject rotr7tccI by using Eq. (1 1.4-6). 
rile nel ctiecr i s  to ~ l i g n  the object along irs eigcii axes. 

as shown in Fig. 11.29(c). In fact, this alignment is prec;isely the rnecl~anisn~ that  
decorrelates the dara. Furtherrnore,as the eigenvalues appear along h e  main di- 
agonal ol C,,, A; is the variance oi component y, along eigenvector e,. The two 
eigenvectars are perpendicular.Tlle y-axes sonletimes are called the eige~z oxes, 
for obvious reasons. % 

lhc concept of aligiling a 3-D object with its principal eigenvectors plays an 
important role in dcscr-iption. As noted earlier, description should be as inde- 
pendent as possible to variations in size. translation.and rotation.Tl~e ability to 
nligr~ thc object with i t s  principal axes provides a reliable means for removing 
the effects of rotation.The eigenvalues are the variances along the  cigen axes. 
and can be used for- size normalization. The effects of translation are account- 
ed foi- by centering the object about its mean, as shown in Eq. (1 1.3-6). Keep in 
mind t i le fact that t h e  method of description derived in this section is equally 
applicable io both regions and boundi~ries. 

,. .m - 8  ,. 

- ,  Relational Descriptors 1 :  . 

Wc introduced in Section 11 3 . 3  the concept of rewriting rules far describing 
rexLure. In this section we expand that concept  in thc contexl of relational de- 
scri~)tors.These apply equally well to boundarics or regions, and their main  pur- 
pose is to capture in the form of rewriting rules basic repelitive patterns in a 
boundary or region. 
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a b  ... 

FIGURE 1 1.30 
(a) A simple 
staircase 
slructure. 
(b) Coded 
structure. 

FIGURE 1 1.31 
Sample 
derivations for 
the rules S + aA, 
A + bS,  and 
A -+ b. 

Consider the simple staircase structure shown i l l  Fig. 11.30(a). Assume that 
this structure has been segmented out o l  an image and that we want to de- 
scribe it in some formal way. By defining the two prinzifive elenzents a and h 
shown, we may code Fig. 11.30(a) in the form shown in Fig. 11.3O(b).The most 
obvious property of the coded structure is the repetitiveness of the elements 
a and A. Therefore, a simple description approach is to formulate a recursive 
relationship involving these primitive elements. One possibility is to use the 
rewriting rules: 

(a) S + nA, 
(b) A + bS, and 
(4 A + h, 

where S and A are variables and the elements a and b are constants corre- 
sponding to the primitives just defined. Rule I indicates that S, called the start- 
ing symbol, can be replaced by primitive a and variable A .  This variable, in 
turn, can be replaced by b and S or by b alone. Replacing A with bS, leads 
back to the fjrst rule and the procedure can be repeated. Replacing A with b 
terminates the procedure, because no  variables remain in tlze expression. Fig- 
ure 11.31 illustl-ates some sample derivations of tliese rules, where the num-  
bers below the structures represent the order in which rules 1,2, and 3 were 
applied. The relationship between a and 12 is preserved, because these rules 
force an a always to be followed by a h. Notably, these thrce simple rewriting 
rules can be used to generate (or describe) infinitely many "similar" struc- 
tures. As we show in Chapter 12, this approach also has the advantage of a 
solid theoretical foundat~on. 

- 7 ( , I .  3 )  
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Because strings are  1-D structures, their applicatio~i to image description 
requires establishing an appropriate method for reducing 2-D positional relations 
to 1 -D forin. Most ayplicalions ol strings to image description ale based or1 the 
idea of exrraclir~g cont~ected line segments from the objects of interest. Onc ap- 
proach is to follow the contour of an object and code the result with segments 
of specified direction andlor length. Figure 11.32 iIlustrates this procedure. 

Another, somewhat more general, approach i s  to describe sections of ax1 

image (such as small homogeneous regions) by directed line segments, which can 
be joined in other ways besides head-to-tail connections. Figure 11,33(a) illus- 
trates this approach, and Fig. 11.33(h) shows some typical operations that can 
be defined on abstracted primitives. Figure .11.33(a) shows a set of specific prim- 
i tivcs consisting of line segments defined in four directions. and Fig. '1 1.33(d) 
shows a step-by-slep generation of a specific shape, whcrc ( - 1 1 )  indicates the 
primitive d with its direct ioi~ reversed. Noce tha t  each cornposile structure has 
a single hcad and a single tail. The result- of interest is the last string, which 
describes t h e  complete structure. 

String descl-iptions are best suited for applications in which connectivity of 
primitives can bc expressed in a head-to-tail or other continuous manner, Some- 
times regions that are similar in terms of texture or  other descriptor may riot be 
conliguous, and  techniques are required for describing such situations. One oE 
Lhe most useful approaches for doing so is to use tree descriptors. 

A tree T is a finite set of one or niore 1-].odes for which 

(a) there is a unique node Y; designated the rout, and 
(b) the remaining nodes are partitioned into m disjointed sets T L ,  . . . , T,,,, each 

of which in turn is a tree called a .s~lbrree nf T .  

The rree frontier is the set of nodes at t h e  bottom of the tree (the leoi~es),  takcn 
jn order from left to right. For example. the t ~ e e  shown in  Fig. 11.34 has I-oot $ 
and frontier ny. 

Generally, two types of information in a tree are imporrant: ( 1 )  info1.mation 
about a node stored as a set of words describing the node, and (2 )  infurmation 
relating a node to its neiglibors, stored as a set of pointers to those neighbors. 

Starting 
poiat-,., 

FIGURE 1 1.32 
Coding a region 
boundary with 
dirrclcd l int  
segments. 
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:d -Head Head 

Abstracled 
primitive 

Tail w 

FIGURE 11.33 (a) Abstracted primitives. (b) Operations among prin~itives. (c) A set of 
specific primitives. (d) Steps in building a structure. 

. . . 

As used in image description, the first type of information identifies an image 
substructure (e.g., region or boundary segment), whereas the second type defines 
the pbysical relationshp of that substructure to other substructures. For exam- 
ple, Fig. 11.35(a) can be represented by a tree by using the relationship "inside 
of." Thus, if the root of the tree is denoted $, Fig. 11.35(a) shows that the first 
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FIGURE 1 1.34 A simple tree with root $ and frontier xy.  
. . 

a b  
FIGURE 11.35 (a) A simple composite region. (b) Tree representation obtained by 
using the relationship "inside of." 

level of complexity involves a and c inside $,which produces  two  branches  em- 
anat ing from the root ,  a s  s h o w n  in Fig. 11.35(b). The next level involves b inside 
a, a n d  d and e inside c. Finally, f inside e completes the tree. 

Summary 
The representation and description of objects or regions that have been segmented out 
of an image are early steps in the operation of most automated processes involving im- 
ages. These descriptions, for example, constitute the input to the object recognition meth- 
ods developed in the following chapter. As indicated by the range of description 
techniques covered in this chapter, [he choice of one method over another is determined 
hy the problem under consideration.The objective is to choose descriptors that "capture" 
essential differences between objects, or classes of objects, while maintaining as much 
independence as possible to changes in factors such as location, size, and  orien ration. 

References and Further Reading 
The chain-code representation discussed in Section 11.1.1 was first proposed by Freeman 
[1961,1974]. For current work using chain codes see Bribiesca [1999], who also has extended 
chain codes to 3-D (Bribiesca [2000]). For a detailed discussion and algorithm to compute 
minimum-perimeter polygons (Section 11.1.2) see Sklansky e l  al.  [1972]. Typical 
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work on polygonal approximations a decade ago is illustrated in the papers by Senpt- 
soon and Eklundh [1991] and by Saro [l992].?he paper by Zhu arid Chirlian [I9951 pre- 
sents an interesting approach to the detection of point inflections along a curve. Scc also 
Hu  and Yan [1997]. More i.ecent work in this area focuses on invariant polygonal filling 
(Voss and Suesse [1997]), on methods for evaluating the performance of polygonal 
approximation algorithms (Rosin [1997]). on generic implementations (Huang and Sun 
[1999]), and on computational speed (Davis 119991). 

Rcferences for the discussion of signalures (Section 11.1.3) arc Ballal-d and Brown 
119821 and Gupta and Srinath [198S]. See Preparata and Shamos 119851 regal-ding I'un- 
damental formulations for finding Lhe convex hull and convex deficiency (Section 1 1.1.4). 
See also the paper by Liu-Yu and Antipolis [1993]. Katzir et a!. 119941 discuss tlie dc- 
Lectioi~ of partially occluded curves. Zim~ner  e t  al. [I9971 discuss an improved algoritllm 
for computing the convex hull, and Latecki and Lakamper [1999] discuss a convexity 
rule for shapc decoinposition. 

The skeletonizing algorithm discussed in Section 11.1.5 is bascd on Zhang and Sucn 
[I984]. Some useful additional comments on the properties and i inplen~en~at io~i  o l  this 
algorithm are included in a papel- by Lu and Wang (19861. A papel by Jang and Chin 
[I9901 provides an interesting tie between the discussion in Section 11  . I  .S and tl7c rnor- 
phological concept of thinning introduced in Seclion 9.5.5. For thin~iitig approaches in 
thc presence of noise see Shi and Wong [I9941 and Chen and  Yu [1996]. Shaked and 
Bruckstcin (19981 discuss a pruning algorithm usel'ul for removing spurs Ii.om a skelc- 
ton. Fast computation or the medial axis transl'orm is discussed by Sah 11i and Jcnq 1 1  9921 
and by Fel-reira and Llbeda [1999]. The survey papcl- by Loncaric (19981 is 01 interest 
regarding many of the approaclles discussed in Section 1 1.1. 

Freeman and Shapira [I9751 g v e  an algoritl~in for finding Lhe basic rectangle oC a closed. 
chain-coded curvc (Section 11.2.1). The discussion on shapc numbers in Section 11.2.2 is 
based on the work of Bribiesca and Guzman [I9801 and Bribiesca [29S.I]. For additional 
rcading on Fourier descriptors (Section 11.2.3),see the early papers by Zahn and Roskies 
[I9721 and by Pel-soon and Fu [1977]. See also Aguado ct al. [I9981 and Sonka el al. [199Y]. 
Rcddy and Chatterji [I9961 discuss an intel-estjng approach using the FFT to achieve i n -  
variance to translalion. rotation, and scale change.?'he rnalerial in Sectio~i 11.2.4 i s  bascd 
on elcrnental-y probability theory (see, for example, Peebles [I9931 and Popoulis [199lj). 

For additio~lal reading on Section 1 I .3.2. see Rosenreld and K a k  [I9821 and Balla1.d 
and Brown [1982]. For an excellent introduction to texture (Scction 1 1.3.3), see Haral- 
ick and Shapiro [I 9921. For an early survey on texture. see Weclisler [1980]. The pape1.s 
by Murino el al .  [I9981 and Garcia LlYYO], and the discussion by Shapiro and Stockmarl 
[2001], are rep~,escntalive of current work in this field. 

The moment invariant approach discussed in Seclion 11.3.4 is from Hu [1962). Also 
sce Bell [ I  96.51. To get an idea of the range ol' applications of rnornenl invar~allts, see 
Hall [I9791 regarding image matching and Chcung and Teoh [I9991 regarding the use of 
monlerlts for describing symmetry. Moment invariants were generalized lo rr dimensions 
by Mamistvalov [ 19981. 

Hotelling [I9331 was the first to derive and publish the approach [hat transforms djs- 
crele variables into uncorrelated coefficienls. He referred lo this tecl~nique as rhc 177ethncl 
of principal con7porrents. His paper gives considerable insight into tlie melhod and is 
worth reading. Hotelling's transformation was rediscovered by Kramer and Malhews 
[I9561 and by Huang and Schultheiss [1963]. Principal coinponenls are still a basic tool 
for image description used in nunlerous applications, as exemplified by Swets and Weng 
I19961 and by Duda, Heart, and Slork [2001]. References for the material jn Seclion 11.5 
arc Gonzalez andrrhomason [1978] and Fu 119821. See also Sonka el al. [1999]. 
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Problems 
11.1 * (a) Show that redefining the starting point of a chain code so that the resulting 

sequence of numbers forms an integer of minimum magnitude makes the 
code independent of the initial starting point on the boundary. 

(b) Find the normalized slarting point of the code 11076765543322. 

11.2 (a)  Show that the first dilference of a chain code normalizes it to rotation, as ex- 
plained in Section 11.1.1. 

(b) Compute the first difference of the code 0101030303323232212111 

11.3 * (a) Show that the rubber-band polygonal approximation approach discussed in 
Section 11.1.2 yields a polygon with minimum perimeter. 

(b) Show that if each cell corresponds to  a pixel on  the boundary, the maximum 
possible error in that cell is f i d ,  where d is the minimum possjble horizon- 
tal or vertical distance between adjacent pixels (i.e., the distance between 
lines in the sampling grid used to  produce the digital image). 

11.4 * (a) Discuss the effect on the resulting polygon if the error threshold is set to zero 
in the merging method discussed in Section 11.1.2. 

(b) What would be the  effect on the splitting method? 

11.5 * (a) Plot the signature of a square boundary using the tangent angIe method dis- 
cussed in Section 11.1.3. 

(b) Repeat for the slope density function. 

Assume that the square is aligned with the x- and y-axes, and let thex-axis be the 
reference line. Start at the corner closest to the origin. 

11.6 Find an expression for the signature of each of the following boundaries, and plot 
the signatures. 

j, (a) An equilateral triangle 

(b) A rectangle 

(c) An ellipse 

11.7 Draw the medial axis of 

* (a) A circle 

ST (b) A square 

(c) A rectangle 

(d) An equilateral triangle 

11.8 For each of the figures shown, 

* (a) Discuss tlie action taken at point p by step 1 of the skeletonizing algorithm 
presented in Section 11.1.5. 

(b) Repeat for step 2 of the algorithm. Assume that p = 1 in all cases. 
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11.9 With reference to the skeletonizing algoi.ithm in Section 1'1.1.5, whal would the 
figure shown look like after 

* (a) Onc pass of step 1 of thc algorithm? 

(b) One pass of step 2 (on the result of step 1, not the original image)? 
. . . . . . . . . . . .  

. . . . . . . . . . . .  
11.10 Ir (a) What is the order of the shape number for the figure shown? 

(b) Obtain the shape nuiuber. 

11.11 The procedure discussed in Section 11.2.3 for using Fourier descriptors consists 
of expressing the coordinates of a contour as cornplex numbers. taking the DFT 
of these nuinhers, and keeping only a few components of the DFT as descriptors 
o l  the boundary shapc. The inverse DFT is then an approximation to the 01-igi- 
nal contour. What class of con tour shapes would have a DFT consisting of real 
numbers and how would the axis system in Fig. 11.13 have to  be set u p  to obtain 
these real numbers? 

* 11.12 Give the slnallest num her of statistical moment descriptors needed 10 differen- 
tiale between the signalures of  he ligures shown in Fig. 11.5. 

11.13 Give two boundary shapes that have the same mean and third slatistici~l mo- 
mcnt descriplors, but different second moments. 

*11.14 Propose a set of descriptors capable of d i l leren~ia~ing between the shapcs of 
the characters 0,1,8,9, and X. (Hil.11: Use topological descriplors in conjunc~ion 
with the convex hull.) 

11.15 Consider a checkerboard iinage conlposed of altel-naling black and white 
squares. each of size m X n7. Give a position operator that would yield a diag- 
onal co-occurrence matrix. 

11.16 Obtain the gray-level co-occurrence matrix of a 5 X 5 image composed of a 
checkerboard of alternating 1's and 0's i f  

$r (a) the position operator P is defined as "one pixel to the right," and 

(b) "two pixels to the right." 

Assulne that the top left pixel has value 0. 

11.17 PI-ove the validity of Eqs. (11.4-7), (11.4-8), and (1 1.4-9). 

*11.18 11 was mentioned in Example 1 I .'I0 that a credible job could be done of recon- 
structing approxin~ations to the six original images by  using only the two 
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pl-incipal-component images associated with the largest eigenvalut.s.C~l~at would 
be the mean square error incurred i n  doing so'? Expi-ess your answer as n per- 
centage ol' the m a x i r n u ~ ~  possible el-ror. 

1 .  For n sct ol' images of size 54 x 64.assi~me that the covarialrce matrix given in 
Eq, ( 1  1.4-9) turns out to he tlic identity nia~rix.  Whal would be the mean sclua1.e 
error between Ihe original images ar~d images reconstrucled using Eq. ( 1  1.4- 1 1 ) 
with only hall of the original cigenveclors? 

* 11.30 Under what conditions would you expect t h e  major axes of a boundary. defined 
il l  Section 11..2.l, to be eqital to the cigen axes  of bou~ld;r~,g'? 

2 Give a spatial relationslrip and con~espond in~  lree r .rp~-cse~~la\ion lor a checker- 
board paLtcrn of bli~ck and white squares Assume that L\IP rop lcfr elelire111 is  
black and that the root ol' the 1 1 . e ~  corresponds to (hat ele~rrent. Yuui- rlxc can 
h a v c  no Inore than IWO branches emilllaling from each node. 

* 11.22 You are contracted to design an image processing systeni for delccting i m p ~ r -  
fec~ions on tht: inside of czrlain solid plastic waiers. Tllc wafe1.s are exan\incd 
using an X-ray imaging system, which yields %bit iniages of 512 X 512 resolu- 
tion. 111 the absence of imperfeclio~~s. the images ;~ppea~-"bland7" 1)avinga lucan 
grzy level of 100 and variance of 400. The ii-npel-fections iippear ;IS bloblike re- 
gions in which nhout 70% of the pixels have excu~.sions in intensity of SO gray 
levcls or less about a mcan ol' 100. A wafer is cot~sidered clefectjvc i f  such a rc- 
:ion occupie5 a n  arca  exceeding 20 X 2.0 pixels in size. PI-opose a system based 
on 1cxtul.e analysis. 

11.23 A colupany that bottles a variely of industl-iaI cheinicals has Ileard of your suc- 
ccss solvi~ig imaging plmblerns and  hires you to design an approach for detect- 
ing when boltIes are not lull.Tllc bottles appcar as shown in the Collowing figurc 
as they move along a collvryor line pas( an r711ionlalic filling and capping s(n(ion. 
A bortle i s  considered imperfectly filled ullieu the level of II)c liquid is hclo~v the 
nridway point berween tire bottom of the neck and the sl~oulcler of che bortle.Tlle 
shoulde~. i s  defined as the region ol'the bottle where the sides and slanted po~'-  
(ion of the bo((le intc-rsecr.The borrlrs are rnoving, huL the company has all inrag- 
i11g systcrn equipped with a illuminatioll flasll fro111 end that effectively stops 
n~ot ion. so you will he. given in~ages that look very close to the sanlple shown 
11~1-e. Bascd 01-1 the  malel-ial you hiive learncd LIP to this point, propose a sol 11- 
tion I'oI. derecting bottles [hat art: not filled propcrly.State clearly all ass~~t~ipt ions  
that you make and t ha t  are likely ro impact the solucion you propose. 

11.24 Having hcarcl aboul your success with t h e  bottling problem. you arc contac~ed 
by n fluids company rhar wishes to automalc buhble-cou~lting in certain process- 
cs lor clualily control. The compi~rly has solved the jrnaging prohlcm and can 
obtain &bit images of resolution 700 X 700 pixels, such as [he ones shown. Each 
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image represents an area of 7 cm2. The company wishes to d o  two things with 
each image; (1) Determine the ratio of the area c~;cupied by bubbles lo the total 
area of the image. and (2) count the number of distinct bubbla. Based on the ma- 
terial you have learned u p  to this point, propose a solution to this problem. In  
your solution, make sure to state the physical dimensions of the smallest bub- 
ble your solurion can detect. State clearly all assumptions that you make and 
that are likely to impact the solution you propose. 
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Object Recognition 

One of the most interesting aspects of !he world 
i s  that i t  can be considered to be made up of 

patterns. 

A pattern i s  essentially an arrangement. It i s  

characterized by the order of the elements of which 

i t  i s  made,rather than by the intrinsic nature of these 

elements. 

Norbert Wiener 

Preview 
Wc conclude our covel-age of digital image processing with an introduction to 
techniques for object recognition. As noted in Section 1.1, we have defined t l ~ c  
scope covered by our treatment of digital image processing to include recogni- 
lion of i nd iv id~~a l  image regions, which in this chapter we call objects or pnlterns. 

The approaches to pattern recognition developed in this chapter are divided 
inlo two principal areas: decision-theoretic a n d  slructural.The first category 
deals wit11 patterns described using quantitative descriptors. such as Icngth, area. 
and texture-The second category deals with patterns best- described by quali ta-  
tive descriptors. such as !he relational descriptors discussed in Section 1 1.5. 

Central to the theme of recognition is the concept of "lear-njng" from sarn- 
ple patterns. Learning techniques for both decision-iheorelic and  struclui-a1 
app~.oaches are developed and illustrated in the n~ater ial  that follows. 

2.- w +>-I 

Patterns and Pattern Classes - ' 

A par~er.)~ i s  arl rrrrongenzenr of'descriptor~-, such as rhosc discussed in Chap- 
rel. 11.The [lame fcat~~re is used often in the patter11 recognition literatwe to de- 
note i I  descriptor. A purlern clnss is a farnily of patterns that share some common 
properties. Pattern classes are denoted o, . loz,. . . , w t v ,  where W is the number 
of classzs. Pattern recognition by machine involves techniques For assigning 
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patterus to their respective classes-automatically and with as little human in- 
tervention as possible. 

Three common pattern arrangements used in practice a re  vectors (for quan- 
titative descriptions) and strjngs and trees (for structural descriptions). Pattern 
vectors are represented by bold lowercase letters, such as x, y ,  and z, and take 
the form 

where each component,  x ; ,  represents t he  ith descriptor and M i s  t h e  total num- 
ber of such descriptors associated with the pattern. Pattern vectors are repre- 
sented as columns (that is, 17 X 1 matrices). Hence a pattern vector can be 
expressed jn the form shown in Eq. (12.1-1) or in the equivalent form 

Scl- rnudc Iron1 covcr x = ( w ,  , x, .  . . . , x,)', where Tindicatez transposition.The reader will recognize 
Concult the book web s ~ l c  
rot. i~ hriei rcview of vec- this notation from Section 11.4. 
rors and malriccs. The nature of the components of a pattern vector x depends on the approach 

used to describe the physical pattern itself. Let us illustrate with an example 
that is both simple and gives a sense of history in the area of classification of 
measurements. In a classic paper, Fisher [I9361 reported the  use of what then 
was a new technique called discrirninanr annlysis (discussed in Section 12.2) to 
recognize three types of iris flowers ( Ir is selosrr, virginica, and versicolor) by 
measuring the widths and lengths of their petals (Fig. L2.1). In our present 

FIGURE 12.1 
Three types of lris 
flowers described 
by two 
measurements. A M  

A A 
MM A A A  A 

A A A 
- A  A 

a A A 
La A M 

6 a A  & A  A 
A 0 

m o o  

Petal length (cm) 
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terminology, each flower is described by two measurements, which leads to a 
2-D pattern vector of the form 

where x ,  and x2 correspond to petal length and width, respectively. The three 
pattern classes in this case, denoted w,, o,, and w 3 ,  correspond to the varieties 
setusa, virginica, and versicolor, respectively. 

Because the petals of flowers vary in width and length, the pattern vectors 
describing these flowers also will vary,not only between different classes, but also 
within a class. Figure 12.1 shows length and width measurements for severaI sam- 
ples of each type of iris.After a set of measurements has been selected (two in t h s  
case), the components of a pattern vector become the entire description of each 
physical sample.Tnus each flower in this case becomes a point in 2-D Euclidean 
space. We also nore that measurements of petal width and length in this case ad- 
equately separated the class of Iris setosa from the other two but did not separate 
as successfully the virginicn and versicolor types from each other. This result il- 
lustrates [he classic feature selection problem, in which the degree of class sepa- 
rability depends strongly on the choice of descriptors selected for an application. 
We say considerably more about this issue in Sections 12.2 and 12.3. 

Figure 12.2 shows another example of pattern vector generation. In  this case, 
we are interested in different types of noisy shapes, a sample of which is shown 
in Fig. 12.2(a). If we elect to represent each object by its signature (see Sec- 
tion 11.1.3),we would obtain 1-D signals of the form shown in Fig. 12.2(b). Sup- 
pose that we elecr to describe each signature simply by its sampled amplitude 
values; that is, we sample the signatures at some specified interval values of 6 ,  
denoted 8 , .  d2,. . . ,0 , , .  Then we can form pattern vectors by letting x ,  = r ( o l ) .  
x2 = r (02) .  . . . , x , ~  = r(0,). These vectors become points in n-dimensional Eu- 
clidean space, and pattern classes can be imagined to be "clouds" inn dimensions. 

Instead of using signature amplitudes directly, we could compute, say, the 
first n statistical moments of a given signature (Section 1 1.2.4) and use these de- 
scriptors as components of each pattern vector. In fact, as may be evident by 
now, pattern vectors can be generated in numerous other ways. We present some 

a b .  
FIGURE 12.2 A noisy object and its corresponding signature. 

, - 
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of them throughout this chapter. For the moment, the key concept to keep in 
mind is that selecting thc descriptors on which to base each cornponen t of a 
pattern vector has a profound influence on the eventual perfortnance of ol?ject 
recognition based on  the pattern vector approach. 

The techniques just described for generating pattern vectors yield pattern 
classes characterized by quantitative information. In somc applications, pattern 
charactel-jstics are best described by structural relationships. For example, Ein- 
gerpi-in t recognition is based on the interrelatiollships of print fcatures called 
rni17.r~riclc.. Together with their relative sizes and locations, these features are prim- 
itive components that describe fingerprint ridge properties, suc l~  as abrupt end- 
ings, branching, merging, and disconnected segments. Recognition problems of 
this type. in which not only quantitative measures about each feature but also the 
spatial relationships betweell the features determine class membership, gener- 
ally are best solved by structural approaches. This subject wiis inti-oduced in 
Section '1 1.5. We revisit it briefly here in the context of pattern descriptors. 

Figure 12.3(a) shows a simple staircase pattern. This patter11 could be sam- 
pled and expressed in terms of a pattern vector, similar to the approach used in 
Fig. 12.2. However, the basic structure, consisting of repetitions of two sin~ple 
primitive elements, would be lost in this method of description. A more mean- 
ingful description would be to define the elements a and b and let the pattern 
be the string of symbols 70 = . . . nbnOrrbnb.. . ,as shown in Fig. 12.3(b).The st~.uc- 
ture of this particular class of patterns is captured in this description by requir- 
ing [hat connectivity be defined in a head-to-tail manner, and by allowing only 
alternating symbols. Tbis structural construct is applicable to staircases 01' a n y  
length but excludes other types of structures that could be generated by other 
combinations of the primitives a and 6. 

String descriptions adequately generate patterns of objects and ollier enti- 
ties whose structure is based on relatively simple connectivity of primitives. usu- 
ally associated with bou~ldary  shape. A more  powerful approac l~  For many 
applicat io~~s is the use of tree descriptions, as del'ined in Section 1 I .5. Basical- 
ly, most hierarchical ordering schemes lead to tree structures. For example, 
Fig. 12.4 is a satellite image of a I~eavily built downtown area a n d  surrounding 

a b  

FIGURE 12.3 (a) Staircase struclure. (b )  Structure coded it1 terms of the primitives u and 
b to yield l l~e  string description . . . ahabah . . . . 
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FIGURE 12.4 
Siitellite image of 
a heavi ly built 
tlowri town arcn 
(Wasliingl-on. 
D.C.) and 
surrnundil-lg 
residential Areas. 
(Courlesy of 
NASA.) 

residential areas. Let us dcfine rhe entire image area by the symbol $. 11e  (up- 
side d o w i ~ )  tree representation shown ill Fig. 12.5 was obtained by using the 
structural  re la~iouship "composed oE."Thus the root of the tree represents the 
entire image.The next lcvel indicates that the irnage is composed of a down town 
and  residential area.The residential area .  in  tu rn  i s  composed of housing, high- 
ways, and  sllopping malls. The next level down further describes the housing 
and  highways. Ufe can continue this type of subdivision until we reach the lirnit 
of our ability to rcsolve different regions in the image. 

We dcvelop in tlie following sections recognition approaches lor  objecrs 
described by a l l  the techniques discussed in  the pi-ecedirlg pa~.agraphs. 

Buildings Highways Housing Shopping H~gl iways 

/ \  /-'I\ / I \  I ~ ~ R J I ~  
FI ~ g h  Ltr~e Mul l~p le  Numerous Loops 

dcnsitity Flrljctures intersecr ions 1.-ow Slnall Woodril Single Few 
/' ", 

density structures areas i ntc~'$tct ions 

FIGURE 12.5 A tree description of the image in Fig. 12.4. 
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,.- " -fl.7 -- - Recognition Based on Decision-Theoretic Methods 
_ I  A 

Decision-theoretic approaches t o  recognition are based on the use of decision 
T (or diccriminon~) f~,~ncrions. Let x = (r, . .r,. . . . . +,,) represent an n-dimcnsiona l 

pattern vector, as discussed in Section 12.1. For W pattern classes w , .  W I . .  . . , W H , ,  

t he  basic PI-obleln in  decision-thcoretic pattern recognition is to f ind W decision 
functions dl(x), dz(x), . . . , d, (x )  with the propel-ty that ,  i f  a palrern x belongs 
to class w ; ,  then 

In other words, an unknown pattern x is said ro belong to the i t h  pattern class 
i f ,  upon substitution of x into all decision functions, d i ( x )  yields the largest 
rlurnci-ical value. Tits are resolved arbitrarily. 

The rlccisio,? borrndnry separating class w, from w j  is given by values of x for 
which d , ( x )  = d,(x) or, equivalently, by values of x for which 

Cornmoll practice is to identify tbc decision boundary between two classes by 
the single function d , ( x )  = d , ( x )  - d , ( x )  = 0. Thus di , (x )  0 for patterns of 
cjass w, and d i , ( x )  < 0 for patterns of class a,. The principal objective of the 
discussion in this section is to develop various approaches For finding decision 
functions that satisfy Eq. (12.2-1). 

. ,?, " 
:.;.:r.i Matching 

Recognition techniques based on n~atching reyr-eseni each class by a prolo- 
type pattern vector. An unknown patlern is assigned to the class to which it 
i s  closest in terms of a prederined metric. The simplest approacl~ is the mini- 
mum-distance classifier, which, as i t s  name implies, computes the (Euclidean) 
distance between the u n k n o w n  and each of the prototype vectors. [I chooses 
the smallest distance to make a decision. We also discuss a n  approach based 
on correlation, which can be formulated directly in terms of images and i s  
quire intuitive. 

Minimum distance classifier 

Srippose thai we defins the prototype of each pattern class to be the mean  vec- 
tor of !he pallerns o f  tha(  class: 

where is the number of pattern vectors from class w i  and the sulnrnation is 
taken over these vectors. As before, W is the numhcr of patlern classes. One 
way to determine the class membership of an unknown pattern vector x is lo 
assign i t  to the class of its closest prototype, as noted previously. Using the 
Euclidean distance to determine closeness reduces the problem to cornputjng 
the distance measures: 
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where llall = ( a ' ' ~ ) ' ' ~  is the Euclidean norm. We then assign w to class o, if D , ( X )  
i s  the  smallest distance.That is, the smallest distance implies the best match in 
this Eormulation. I t  is not difficult to show (Problem 12.2) that  selecting the 
smallest distance is equivalet~t to evaluating thc functions 

and assigning x to class wi iC d , ( x )  yields the largest numerical value. Thjs formu- 
lation agrees with the concept of a decision function, as defined in Eq. (12.2-1). 

FI-om Eqs. (12.2-2) and (12.2-5), the dccisio~l boundary between classes wj 
and  oj for a n1111imum distance classifier is 

1 7' 
= xT(mi - m,) - (m, - mi) (ni, - mj) = 0. (12.2-6) 

2 

The surface given by Eq. (12.2-6) is the perpendicular bisector of the line scg- 
ment  joining ri l i  and mi (see Problem 12.3). For n = 2, the perpendicular bi- 
sector is a line, for n = 3 it is a plane, and for n > 3 it is called a hyperplane. 

3 Figur-e 12.6 shows two pattern classes extracted from the jr-is samples in EXAMPLE 12.1: 
Fig. 12.1.The two classes, Iris versicnlor and Iris serosn, denoted w ,  and w 2 ,  re- Illusfralion . . of tile 

- 

spcctively, have sample mean vectors m, = (4.3, 1.3)" and m2 = (1.5, 0.3)'. rnllurnulli- 
distance classiiict.. 

From Eq. (12-2-51, the decisioli functions are 

x2 
0 I r i s  versicofor 
o I I-is .sL.r(o.vn 

FIGURE 12.6 
I3ecision 
boundary of 
m i n i ~ n u ~ n  dislar~ce 
classifier for the 
classes of Iris 
ver.~irolnr. a.nd Iris 
sctosa. Tile dark 
dot and square 
are the means. 

Petal length (cm) 
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and 

From Eq. (12.2-6), the  equation of the boundary is 

Figure 12.6 shows a plot of this boundary (note that the axes are not to the same 
scale). Substitution df any pattern vector from class w ,  would yield d ,  ?(x) > 0. 
Conversely, any pattern from class u2 would yield d l 2 ( x )  < 0. Tn other words. 
given an unknown pattern belonging to one of these two classes, the sign of 
dl z(x) would be sufficient to determine the  pattern's class membership. 5 

In  practice, the minimum distance classifier works well when the distance 
between means is large compared to the spread or randomness of each class 
with respect to its mean. In Section 12.2.2 we show that the minimum distance 
classifier yields optimum performance (in terms of minimizing the average loss 
of misclassification) when the distribution of each class about i l s  mean is in the 
form of a spherical "hypercloud" in n-dimensional pattern space. 

The simultaneous occurrence of large mean separations and relatively small 
class spread occur seldomly in practice unless the system designer controJs the 
nature of the input. An excellent example is provided by systems designed to 
read stylized character fonts, such as the familiar American Banker's Associa- 
tion E-13B font character set.As Fig. 12.7 shows, this particular font set consists 
of 14 characters that were purposely designed on a 9 X 7 grid in order to lacil- 
itate their reading.T'he characters usually are printed in ink that contains fine- 
ly ground magnetic material. Prior to  being read, t he  i n k  is subjected to a 
magnetic field! which accentuates each character to simplify detection. Tn other 
words, the segmentation' problem is solved by artificially highlighting the key 
characteristics of each character. 

The  characters typically are scanned in a horizontal direction with a singlc- 
slit reading head that i s  narrower but taller than the characters. As the head 
moves across a character, it produces a I-D electrical signal (a signature) that 
is  conditioned to be proportiona1 to the rate of increase or decrease of the chai.- 
acter area under the head. For example, consider the waveforn~ associated with 
the number 0 in Fig. 12.7.A~ the reading head moves from left to right, the area 
seen by the head begins to increase, producing a positive derivative (a positive 
rate ol change). As the head begins to Leave the left leg of the 0, the area under 
the head begins to decrease, producing a negative derivative. When the head is 
in the middle zone of the character, the area remains nearly constant, produc- 
ing a zero derivative. This pattern repeats itself as the head enters t he right leg 
of the character-The desigri of the font ensures that the waveform of each char- 
acter is distinct from that of all others. It also ensures that the peaks and zeros 
of each waveform occur approximately on the vertical lines of the background 
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FIGURE 12.7 
American 
Bankers 
Associa t in11 

E-13B font 
character sct and 
con espondji~g 
wavefornls. 

grid on which these waveforms arc displayed. as shown in Fig. 12.7.The E-13B 
cont has thc property [ha t  samplitlg the waveforms 01114. at these points yields 
enough information for their proper classification.The use of magnetized ink 
aids in providing c lea~ l  waveforms, thus minjmizing scatter. 

Designing a rninimum distance classifier for this application is straightfor- 
ward. We simply store the sample values of each wavefor-~n and let each set of 
samples be rep]-esentecl as a prototype vector ni,, j = 1,2. .  . . ,1.4. When an un- 
known character is to be classified, t h e  approach is  to scan it ill the nlanner just 
desc~.ibed. express the grid samples of the waveform as a vector, x, and identi- 
t'y i ts class by sclecting the class of the prototype vector that yields the highest 
value in Eq. (12.2-5). High classification spceds can be achieved with a~lalog 
circuits composed of resistor banks (see Problem 12.4). 

Matching by correlation 

We introduced t h e  basic concept of image correlalion in Section 4.6.4. Here, 
we consider i t  as the basis for finding matches of a subirnage ?c>(s, y )  of size 
J X K within an image J ( . u .  _)I) 01 size IW X A;, where we assume t h a t  J r M 
and K 5 N.Althougl~ tl~e correlalion approach can be expressed in vector form 
(see Problem 12.5), working directly with an  image or subimage format is more 
intuitive (and traditional). 
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In its simplest form, the correIation between f (x, Y )  and w(x, y )  is 

c ( x ,  y )  = C, C f (s. ~ ) u ! ( x  + s, y 4- t )  
S I 

for x =: 0. 1, 2, ... , IM - 1, y = 0, 1, 2,. . , , N - 1, and the summation is taken 
over the image region where w and f overlap. Note by comparing this equation 
with Eq. (4.6-30) that it  is implicitly assumed that the functions are reaI quan- 
tities and that we left out the MN constant.The reason is that we are going ro 
use a normalized func(ion in which these constants cancel out, and the defini- 
tion given in Eq. (12.2-7) is used commonly in practice. We also used the  sym- 
bols s. and t i n  Eq. (12.2-7) to avoid confusion with m and 11, which are used for 
oilier purposes in this chapter. 

Figure 12.8 illustrates the procedure, where we assume that the origin off is 
at i t s  top left and the origin of 2o is at jts center. For one value of ( x ,  y ) ,  say, 
( x , , .  y,,) inside f; application of Eq. (12.2-7) yjelds onc value of c. As x and y are 
varied, w moves around the image area, giving the function c ( x ,  y ) .  Tbe maxi- 
mum value(s) of c indicates [he position(s) where w best matches f. Note that 
accuracy is lost lor values of x and y near the edges off; with the amount of 
error being in t h e  correlation proportional to the size of w. This is the familiar 
border problem that we encountered numerous times in Chapter 3. 

The correlation function given in Eq. (12.2-7) has the disadvantage of being 
sensitive to changes in the amplitude off and w. For example, doubling all val- 
ues of fdoubles  the value of c(.x, y ) .  An approach frequently used to over- 

FIGURE 12.8 Arrangement for obtaining the correlation of 1 and w at  point ( x , ,  Yo) .  
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comc th i s  difficulty is to perform nlatchirlg via the cour-elr~rinn corf/i'ciri.tr, which 
is del'inecl as 

where .x = 0. 1, 2. ... , M - 1. y = 0, 1.2,. . . . IV - .l. I? is the avcvagi: villue of 
the pixels in 21) (co~npured only once). ,7 is thc average value off in the region 
coincjdont with the cuuent location of 2.u, and the summations are taken over 
the coordinates comnlorl lo both f and to.The coi-~elatioi~ coelficiellt y ( x ,  1 )  is 
scaled in the  range -1 LO 1, independent of scale changes in the  a~npli tude ol',f 
and .u; (see Proble~n 12.5). 

Figure 12.9 illustl-trtes the concepts just discussed. Fig~~l-e 12.9(a) is f (x, y )  and EXAMPLE 12.2: 
Fig. 12.9(b) is I G ( X .  y).The correlation coefficient y (s .  ) I )  is  shown as a n  inlage Objec~ lllatchillg 
in Fjg. 12,9(c).The higher (brightel.) value of y ( s ,  ><)  is i n  the position where t h c  v i a  the correlation 

coefficient. 
best match between f rind lu was ~ouncl. 

Alchough the correlation function can be normalized lor an~plitude changes 
via the co1.t-clarion coeflicieni. o b t a i n i n g  norn~alization f o r   change.^ in size a n d  
relation can be difficult. Norlnalizing for size involves spatial scalirlg, a PI-ocess 
that in itself adds a significant amount  of conlpu tali or^. No]-tnalizing for. 1,otation 
is even more diCCicuIi. Ifa cluc regarding rotation can be extracted Ft-oln {(x. y), 
then we simply rotate w ( . v ,  j~) so illat i t  aligns itself with the degree ol rotation 
in J ' ( x .  j'). However, i f  t he  natul-t. of rotation is u~lknnwn. looking for the best 
rnaich 1-ccluii-es exhaustive ~-orar iolx of l.o(.r. v ) .  This procedure is i~nprac~ical 
a n d ,  as a consequence. correlation seldom js used in cases when arbitl-a1.y or 
unco~~st t .a ined I-otalion is  pr2esen t .  
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In Section 4.6.4 w e  mentioned that correlation also can be carried out in t l ie  
frequency domain via the FFT. I f f  and ru are the  same size, this approach can 
be more efficient than direct implementation of correlation in the spatial do- 
main. Equation (12.2-7) is used when  w is much smaller than ,f. A trade-off 
estimate performed by Campbe l l  [I9691 indicates that ,  if the number of nonze- 
ro terms in  2u is less than 132 (a subimage of approximately 13 x 13 pixels),di- 
rect implementation of Eq. (12.2-7) is more efficient than the FFT approach.n.is 
nutnber, of course, dzpends on the machine and  algorithms used, but i t  does in- 
dicate approximate subimage size at  which the frequency domain should be 
corlsidered as an alternative.The correlation coefficient is rnorc difficult to jm- 
plement in the frequency domain. It generally js computed directly in the spatial 
domain. 

- -, -: '-8 

t C . L . E .  Optimum Statistical Classifiers 
In  this section we develop a probabilistic approach to recoguitiun. As i s  [rue in 
most fields that deal with measuring and interpreting physical events. proba- 
bility considerations become important in pattern recognition because of the 
randomness under  which pattern classes normally are generared. As shown in 
the following discussion, it is possible to derive a classification approach that is  
optimal in the sense that, on average, its use yields the lowest probability of 
conlmitting classiiication ert-ors (see Problem 12.10). 

Foundation 

The probability tha t  a particular pattern x comes from class w;  is denoted 
p ( o j / x ) .  I f  [he pattern classifier decides tllat x came from w, when i t  actually 
came from mi ,  i t  incurs a loss, denoted L,,. As pattern x may belong to any one 
of W classes under consideration, the average loss incurred in assigning x to 
class w ,  is 

. .- 
.- , ,a This equation often is callcd the condiiionnl clvrragc? risk or loss in  decision- 

I #  -) theory terminology. !fw~ From baslc probability theory, we know that p( A/B) = [,v ( A ) ~ ( D / A ) ] / ~ (  B) .  
h Usinq - this expression, we write Eq (12.2-9) In the form 

LC IIIIII~L 111 nl ~ c w c r  

Conqull (IIP 1-k rrcb s i ~ c  
lorn h r ~ c f  rcvitw al p~.oh- 
: ~ h i l i ~ y  ilrcory 

where p ( x / w , )  is the probability density function of the patterns from class w,( 
and P(w, )  is t h e  probabilily or occurrence of class w,. Because l / p ( x )  is posi- 
tive and common to all the r j ( x ) ,  j = 1, 2, . . . , W ,  i t  can be dropped from 
Eq. (12.2-10) without afFecting the relative order of ~hese  functions from the 
smalles~ to the largest value.The expression for the  average loss then reduces lo 
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The classifier has W possible classes to choose from for any given unknown 
pattern. If i t  computes r ,(x),rZ(x),  ... , r W ( x )  for each pattern x and assigns the 
pattern to the class with the smallest loss, the total average loss with respect to 
all decisions will be minimum. The classifier thatminimizes the total average loss 
is called the Bnyes classifier. Thus the Bayes classifier assigns an unknown pat- 
tern x to class wi  if r,(x) < r,(x) for j = 1, 2, .  . . , W :  j # i. In other words, x is 
assigned to class q if 

for all j ;  j # i. The "loss" for a correct decision generally is assigned a vaJue of 
zero, and the loss for any incorrect decision usually is assigned the same nonze- 
ro value (say, I). Under these conditions, the loss function becomes 

where 6;; = 1 if i = j and a,, = 0 if i # j. Equation (12.2-13) indicates a loss of 
unity for incorrect decisions and a loss of zero for correct decisions. Subslitut- 
ing Eq. (12.2-13) into Eq. (12.2-11) yields 

The Bayes classifier then assigns a pattern x to class wi if, for all j # i. 

or, equivalenlly, if 

With reference to the discussion leading to Eq. (12.2-I), we see that the Bayes 
classifier for a 0-1 loss function is nothing more than computation of decision 
functions of the form 

where a pattern veccor x is assigned to the class whose decision fu~lction yields 
the largest numerical value. 

The decision functions given in Eq. (12.2-7) are optimal in the sense that 
they minimize the average loss in misclassification. For this optimali ty to llold, 
however, the probability density functions of the patterns jn each class, as well 
as the probability of occurrence of each class, must be known. The latter re- 
quirement usually is not a problem. For instance, if all classes are equally like- 
ly to occur. then ~ ( o , )  = 1 / M .  Even if this condition is not true, these 
probabilities generally can be inferred from knowledge of the problem. Esti- 
mation of the probability density functions p ( x / w l )  is another matter. If the 
pattern vectors, x, are n dimensional, then p(x/ol) is a iunction of n variables. 
which, if its form is not known, requires methods from multivariate probabili- 
ty rheory for its e~timation.~Shese methods are difficult to apply in pl-actice, 
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FIGURE 12.1 0 
Probability 
density functions 
for two 1 -D 
pat tcrn classes. 
The point r , ,  
shown is the 
decision hounclary 
i f  the two classes 
are equally likely 
to occur. 

especially i f  the number of representative patterns from each class is not large 
or  if the underlying forin of the probability density functions is not well be- 
haved. For these reasons, use of the Bayes classifjer generally is based on the as- 
sumption of an analytic expression for the val-ious density functions and then 
an estimation of the necessary parameters from sample patterns from each class. 
By far  the most prevalent form assumed for p ( x / o j )  is the Gaussian probabil- 
ity density function.The closer this assumption is to reality, the closer the Bayes 
classifier approaches the minimum average loss in classification. 

Bayes classifier for Gaussian pattern classes 

To begin, let us consider a 1-D problem ( n  = 1) involving two pattern classes 
( W = 2) governed by Gaussian densities, with means 1721 and n2, and standard 
deviations a, and n,, respectively. From Eq. (12.2-17) the Bayes decision func- 
tions have the form 

where t h e  patterns are now scalar's, denoted by x .  Figure 12.10 shows a plot of 
the probability dcnsity functions for the two classes.The boundary between the 
two classes is a single point, denoted x-, such that cl , (x , , )  = d,(xO). If the Lwo 
classes are equally likely to  occur, then P w , )  = P(w?)  = 1/2, and the decj- 
sion boundary i s  the value of xu lor which p j xo/wl)  = p ( ~ I I / ~ 2 ) . ~ h ~ ~  point is the 
intersection of the two probability densj ty functions, as shown in Fig. 12.10. Any 
pattern (point) to the right of x,,  is classified as belor~ging to class w, .  Similarly, 
any pattern to the left of x,, is classified as helonging to class w,.  When the class- 
es are not equally likely to occur, x,, moves to the left if class w,  is more likely 
to occur or, conversely, to  the right if class o, is more likely to occur.This result 
is to be expected, because the classifier is trying to mini~nize Ihc loss of mis- 
classification. For instance, in the extreme case, if  class u2 never occu~-s, the d a s -  
sifier wou1.d never make a mistake by always assigning all patterns Lo class o, 
(that is, x,, would move to negative infinity). 
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in the n-dimensional case, the Gaussian density of the vectors in the j t h  pat- 
[ern  class has  the form 

wl~e re  each density i s  specified completely by its mean vector mi and  covariance 
matrjx C j ,  which are defined as 

mi = E,{x)  (12.2-20) 

and 

where E,{-}  denotes rhe expected value of the argument over the pa ttcrns of 
class w,. l n  Eq. (12.2-1 9), n is the dimensionality of the pattern vectors, and I c , ~  
is the determinant of the matrix Cj.Approximati~ig the expected value Ej  by the 
average value of the quantities in  question yields an estimate of the mean vec- 
tor and covariance matrix: 

and 

where N, is thc number of patlern vectors from class wi ,  and the summation is 
taken over these vectors. Later in this section w e  give an  example of how r o use 
these two expressions. 

Thc covariance matrix is symmetric and positive sernjdefi nite. As cxplained in 
,. *;'. :,, :J 

Section 11.4, the diagonal element c k k  IS the variance of the kth eleincnt of t-he pat- 

c;lr tern vectors. The off-diagonal element c,, is the covai-iance of xi and ~,~.Tht:  mul- v;c' n. ,G,t 
tivaria te Gaussian density function reduces to the product of (he univaliate Gaussian 
density of each element of x when the off-diagonal elernen ts of the covariance ma- Scc ,,,riJI. Ir4,tu C'II.LI 

C'cln.;ult thrl lu\ol: ~ v I i  .;he 
trix are zero.This happens when thc vector elements xi and r, are ut~correlared. fa, , b,.,,! ,i\,,c,, (,I vcc- 

According to Eq. (12.2- 171, t he  Bayes decision function for class w j  is ' ona"n  IniL!rrccr .  

d,(x) = P ( x / o i )  ~ ( o , )  However, because of the exponential form of the Gauss- 
ian density, working with the natural  logarithm of this decision function is more 
convenient. In other words, we  can use the form 

This expression i s  equivalent to Eq. (72.2-17) in terms of classification perfor- 
mance because the logarithm is a monotonically increasing function. In  o1he1- 
words, the tiultlerical order  of the  decision functions in Eqs. (12.2-17) and 
(12.2-24) is the same. Substituting Eq. (12.2-29) into Eq. (12.2-24) yields 

)I 1 I r -1 ~ l , ( x )  = In ~ ( w , )  -- - 111 2n - -- l n l ~ , (  - -- [(x - rn,) C ,  (x  - m,)]. (12.2-25) 
2 2 2 
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The tcrm ( j r / 2 )  l n 2 n  is the same for. all classes, so it can he  eliminatecl f rom 
Eq. (12.2-251, wliicl~ then becomes 

1 1 r -1 
l f , ( ~ )  = In ~ ( o , )  - l n ~ ,  - - [(x - m,] C, (x - m,)] (12.2-26) 

2 2 

for j = 1.2,. . . , IT7 .  Eq~1atj011 ( I  2.2-26) represents the Rayes decision functions 
for Gaussian pattern classes under the condition ol' a 0-1 loss Function. 

'The clecision f~~nct ions  in Ecj. ( 1  2.2-26) are hypercluaclrics (cluad~-atic l'unctionc 
in il-dimensional space). becauco no terms l~ighcr t11ar.l the second clcgrce in tllc 
con~ponents of x appear in the equation. Clear l~~.  thcn. the bcct that a B a y s  
classificl- for Gaussian patturns can do  is lo placc 3 scncral second-ordcr dcci- 
sion sul-lace betwccn cach pair of pattcrn classes. If thc p;lttcr11 pop~ilations arc 
t rdy  Gavss i a~~ .  howeter, no other surface would vieIcl a lesser average loss in 
classification. 

JE a11 covariance matrices are equal, then C, = C. l'or j = 1.2, . . . , W. Ry ex- 
pancling Eq. ( I  2.2-26) ancl dropping all terms independent of j, we obtain 

which are linear decision functions ( I lyperpl~rr~c~,~)  for j = 1 . 2. . . . , W. 
If, in addition. C = I, where I is the identity matrix. and also ~ ( w , )  = 1/W. 

for j = 1 ,2 ,  .. . , W ,  tbcil 

These are the decision functions for a rninjnrum distance classifier, as given in 
Eq. (1 2.2-5). Thus the minimum distancc clacsilicr is optiinum in the B a y s  sensc 
if (1 the pattern classcs arc Gaussian, (2) all covar-iancc ~natrices are equal to 
the identity matrix, and ( 3 )  all classcs arc equally likely to c)ccur. Gaussian pa t- 
tern classcs satisfving these conditions are spl~erical clouds of iclen ticaI shape in 
M dirncnsions (callecl hyper:rphrrr.v).The niinimuni di5tance classifier establish- 
cs a hyperpla~le between every pair of classes, with the property that the hy- 
pcrplane is the perpencficular bisector of the line segment joining the center of 
Ihc pair of hyperspheres. 711 two dimensions. the clasyes constitute circular re- 
gions, and the boundaries become lines that biscct the linc segment joining thc 
L 

center of every pair of such circlcs. 

-- 
EXAMPI,E 12.3: Figure 12.1 1 shows a simple arrangement of two pattern classes in three di- 
A B a F s  classirier mensions. We use these patterns to  iilustrate the mecl~anics of' implementing 
for three- the Bayes classifier. assuming that the patterns of each class are samples lrom 
dimensional 
pattcrns. a Gaussian distribution. 

Applying Eq. (12.2-22) to the pattcrns of Fig. 12.11 yiclds 
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Similarly, applving Eq. (12.2-23) to the two pattern classcs in turn yicIds two 
covariance matrices, which in this case are equal: 

Because tllc covariance matrices are equal the Rayes decision functions are 
given by Eq. (12.2-27). If we assume that ~ ( o , )  = ~ ( w , )  = 1 /2, then Eq. (1 2.2- 
28) applies, giving 

in which 

FIGURE 12.1 1 
TWO simple 
pattern classcs 
and their Baycs 
dccision boundary 
(shown shaded). 

Carming out the vector-matrix expansion for ( i , (x )  provides the dccision functions: 

dl (x) = 4xL - 1.5 and d , ( x )  = - 4 . ~ ~  + 8 . ~ ~  i Xx3 - 5.5. 

The decision surface separating the two classcs then is 

cl,(x) - d,(x) = 8.u, - S.Y-, - S.Y? + 4 = 0. 
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Fig~lre 12.1 1 shows a section of this surface, where we note thal the classes were 
separaled effectively. 21 

One of the most successfu1 applications of ihe Bayes classifier approach is in 
the classification of remotely sensed imagery gcneraled by multispcctral scan- 
ners aboard aircraft, satellites, or space slations. The voluminous image data 
generated by these pla tlorms lna ke automa tic imagc classificalioi~ and analysis 
a task of considerable interest in remote sensing. The applications of reniote 
sensing are varied and include land use, crop inventory, crop disease detection, 
lorzstry, air and water qualiry moniroring, geological studies, wearher prediction, 
and a score of other applications having environinenlal significance. The fol- 
lowing example shows a typical application. 

EXAMPLE 12.4: !& As discussed in Sections 1.3.4 and  11.4, a inultispectral scanner I-esponds to 
Classification of electromagnetic energy in selected wavelength bands; for example, 0.40-0.44, 
n'ultispec'ra' 0.58-0.62,0.66-0.72, and 0.80-1.00 microns.These 1-anges are in the violet, green. 
using the Bayes 
classilier. red, and infrared bands, respectively. A region on the ground scar~ned in this 

manncr produces four digital images, one image for each band. I T  the images are 
registered, a condition which is generally true in practice, they can bc visualized 
as being stacked one behind the other, as Fig. 12.12 shows. Thus, just as we did 
in Section 11.4, every point on the ground call be reyrese~~ted by a 4-elerne111 

T paltern vector of the form x = (+, . x2, x;. x4) ,where x ,  is a shade of violet, s! 
is a shade of green, and so on. I f  the images are of size 512 X 512 pixels, each 
stack of four multispectral images can he represenfed by 262,144 4.-dimension- 
a [  pattern vectors. 

As noted previously, the Bayes classifier for Gaussian patterrls requires 
estimation of the Inearl vecror and covariance matrix for each class. In remote 
sensing applicatio~~s these estimates are obtained by collecting mulrispectral 
data for each region of interest and  then using these sa~nples. as described ill the 
preceding example. Pigigure 12.13Ca) shows a typicaJ image sensed teniotcly from 
an ail-craft (this is a monochrome version oI a lnultispectral original). I n  [his 

FIGURE 12.1 2 
Formalion of a 
pattern vector 
from regislered 
pixels of four 
digital images 
generated by a 
rnultispectral 
scanner. 

Spectral band 3 

Spectral band 2 

Spectral band 1 
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particular case, the problem was to classify areas such as vegetation, water,  and 
bare soil. Figure 12.13(b) shows the  results of machine classification, using a 
Gaussian Bayes classificr.The a.rrows indicate some features of interest. Arrow 
I points to a corner of a field of green vegetation. and arrow 2 points to a river. 
Arrow 3 identifies a small hedgerow between two arcas of bare soil. Arrow 3 
indicates n tributary correctly identified by the system. Arrow 5 points to a small 
pond that is almost indistinguisllable in Fig. 12.13(a). Comparing the original 
image with the computer output reveals recognition results chat are very close 
to those t h a t  a human would generate by visual analysis . I a. -. 

Before leaving this  section, i t  is of interest to no(e  hat pixel-by-pixcl classi- 
fication of an image as described in the previous example actually segments the 
image into various classes. This approach is like segmentation by thl.esholding 
with several variables, as discussed briefly in Section 10.3.7. 

1 2.?.3 Neural Networks 

The approaches discussed in the preceding two sections are based on thc use of 
sample patterns to estimate statistical parameters of each pattern class. T l ~ e  
minimum distance classifier is specified completely by the  meari vector ol cach 
class. Similarly, the Bayes classifier for Gaussian populations is specified con)- 
yletely by the mean vector and covariance marrix of each class. The patterns 
(of known class membership) used to estimate these parameters usually are 
called training yrrtterns, artd a set of such patterns from each class is called a 
rraijling scr. The process by which a training set is used to obtain decision func- 
tions is called leanzing or training. 

In the two approaches just discussed, training js a simple matter. The train- 
ing patterns of each class are used to compute the parameters of the decision 
function corresponding to  that class. After the parameters i n  queslion have 
been estimated, the structure of the classifier is fixed, and its eventual perfor- 
mance will depend on how well the  actual pattern populations satisfy (he u n -  
derlying statistical assumptions m a d e  in the derivation of the classificalion 
method being used. 

The statistical properties of the pattern classes in a problem often arc un- 
known or cannot be estimated (recall our brief discussion in the preceding sec- 
tion regarding the difficulty of working with multivariate statistics). In practice, 
such decision-theoretic problems are best handled by methods tha t  yield the 
required decision functions directly via training.Then, making assumptions re- 
garding the underlying probability density functions or other probabilistic in- 
formation about the pattern classes under cotlsideration is unnecessary. I n  this 
section we discuss various approaches tbat meet this criterion. 

Background 
The essence of the material that follows is the we of a mu1 titudc of elemental 
nonlinear computing elements (called neuro~z.~)  organized as networks remi- 
niscent of the way in which neurons are believed to be interconnecied i n  the 
brain. The resulting models are referred to by various names, including neurnl 
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networks, neurocomputers, parallel distributed processing (PDP) models, neu- 
ronzorphic sysrenzs, layered self-adaptive networks, and connictionist models. 
Here, we use the name neurnl networks, or neural nets for short. We use these 
networks as vehicles for adaptively developing the coefficients of decision func- 
tions via successive presentations of training sets of patterns. 

Interest in neural networks dates back to the early 1940s, as exemplified by 
the work of McCulloch and Pitts [1943].They proposed neuron models in the 
form of binary threshold devices and stochastic algorithms involving sudden 
0-1 and 1-0 changes of states in neurons as the bases for ,modeling neural sys- 
tems. Subsequent work by Hebb [I9491 was based on mathematical models that 
attempted to capture the concept of Iearning by reinforcement or associatioi~. 

During the mid-1950s and early 1960s, a class of so-called learning machines 
originated by Rosenblatt [1959,1962] caused significant excitement among re- 
searchers and practitioners of pattern recognition theory. The reason Tor the 
great interest in these machines, called perceptrons, was the development of 
mathematical proofs showing that perceptrons, when trained with linearly sep- 
arable training sets (i.e., training sets separable by a hyperplane), would con- 
verge to a solution in a finite n u ~ n  ber of iterative steps. The solution took the 
form of coefficients of hyperplanes capable of correc1.ly separating the classes 
represented by patterns of the training set. 

Unfortunately, the expectations following discovery of what appeared to be 
a well-founded theoretic model of learning soon met with disappointment. The 
basic perceptron and some of its generalizations at the time were simply inad- 
equate for most pattern recognition tasks of practical significance. Subsequent 
attempts to extend the power of perceptron-like machines by considering mul- 
tiple layers of these devices, although conceptually appealing, lacked effective 
training algorithms such as those that had created interest in the perceptron it- 
self.The state of the field of learning machines in the mid-1960s was summarized 
by Nilsso~l [1965j. A few years later, Minsky and Papert [I9691 presented a dis- 
couraging analysis of the limitation of perceptron-like machines.This view was 
held as late as the mid-1980s, as evidenced by comments by Simon 119863. In this 
work, originally published in French in 1984, Simon dismisses the perceptron 
under the heading "Birth and Death of a Myth." 

More recent results by Rumelhart, Hinton, and Williams [I9861 dealing with 
the development of new training algorithms for multilayer perceptrons have 
changed matters considerably. Their basic method, often called the generulized 
deltu rule for learning by bnckpropngation,provides an effective training method 
for mu1 tilayer machines. Although this training algorithm cannot be shown to 
converge to a solution in the sense of the analogous proof for the single-layer per- 
ceptron, the generaljzed delta rule has been used successfully in numerous prob- 
lems of practical interest.This success has established multilayer perceptron-like 
machines as one of the principal models of neural networks .currently in use. 

Perceptron for two pattern classes 

In its most basic form, the perceptron learns a linear decision function that di- 
chotomizes two linearly separable training sets. Figure 12.14(a) shows schemat- 
ically the perceptron model for two pattcxn classes. The response of this basic 



714 Chapter 12 F.; Object Recognition 

FIGURE 12.1 4 
Two equivalcnl 
represen1;ltions of 
the perccptron 
model (01. two Pattern 

pat tern classes. v ~ c ~ O T S  

X 

Pattern 
vectors 

X 

Weights 

Activation elemenl 

device is based on s weighted sum of its inputs; that is, 

which is a linear decision function with respect to the components of the pat- 
tern vectors.The coefficients to,, i = 1,2,. . . , n, n + l3 calJed weigltts, modify ihe 
inputs before they are summed and fed into the threshold element. I n  this sense, 
weights are analogous to synapses in the human neural system. The function 
that maps the output of the summing junction into Ihe final output of the device 
sometimes is called the ~rcrivnrion. ,fiu.rction. 

When d ( x )  > 0 the threshold element causes the output of the perceptron 
to be +I. indicating that the pattern x was recognized as bejonging ro class w , .  
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The reverse is true when c f ( x )  < O.This mode of operalion agrees with the com- 
ments made earlier in connection with Eq. (12.2-2) regarding the use of a sin- 
gle decision lunction for two pattern classes. When d ( x )  = 0,  x lies on the 
decision surface separatiag the two pattern classes, giving an indeterminate con- 
dition.The decision boundary irnplernented by the perceptron is obtained by set- 
ting Eq. (12.2-29) equal to zero: 

which is the cquation of a hyperplane in n-dime~lsional pattern space. Geo- 
metrically, the first rz coefficients establish the orientation of the hypei-plane, 
whereas the last coefficient, ,w,,+~ ,is proportionat to the perpendicular distance 
from the origin to the hyperplane. Thus il w,,, , = 0, the hyperplane goes through 
the origin of the pattern space. Sinlilarly, if zoj = 0,  Ihe hyperplane is parallel to 
the ,u,-axis. 

711e output of the threshold element in Fig. 12.14(a) depends on the sign of 
c i ( x ) .  Instead of testing the entire function to determine whether it is positive 
or negative, we could test the summation par1 of Eq. (12.2-29) against the term 
w,,., , , in which case the output of the system would be 

This implenientation is equivalent to Fig. 12.14(a) and is shown in Fig. 12.14(b), 
the only differences being that the threshold function is displaced by an atilount 
-u:,, and that the constant unit input is no longer presenl. We return to the 
eq~livalence of these two formulalions later in [his section when we discuss jm- 
plemen tation of multilayer neural networks. 

Another Cornlulation used frequently is to augment the pattern vectors by ap- 
pending an additional ( n  + 1)st element, which is always equal to 1 ,  regardless 
of class membership. That is, an augmented pattern vector g is created from a 
pattcrn vector x by letting y i  = x i ,  i = 1,2. .  . . , 12 ,  and appending the additional 
element y,,,, = 1. Equation (12.2-29) then becomes 

wherc y = ( y ,  . y 2 .  . . . , y ,  , 1 ) '  is now an rrugrn~nred potrerri vecror, and 
w = ( w ,  . 202. . . . . lo,, , VI,+ I ) T  is called the weight veclor. This expression is 
usually more convenient in  terms of notation. Regardless of the formulation 
used, however, the key problem is to find w by using a given training set of 
pattern vectors from each of two classes. 
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Training algorithms 
The algorithms developed in the following discussion are representative of the 
numerous approaches proposed over the years for training perceptrons. 

Linearly separable classes A simple, iterative algorithm for obtaining a solutio~l 
weight vector for two linearly separable training sets follows. For two training sets 
of augmented pattern veciors belonging to pattern classes w ,  and w,, respectively, 
let w(1) represent the initial weight vector, which may be chosen arbitl-arily.Then. 
at the kth iterative step, if y(k) E w, and ~ " ( k ) ~ j k )  5 0, replace w ( k )  by 

where c is a positive correction increment. Conversely, if y ( k )  I w, and 
~ ' ( k ) ~ ( k )  2 0, replace w ( k )  with 

Otherwise, leave w ( k )  unchanged: 

This algorithm makes a change in w only if the pattern being considered at  the 
kth step in the training sequence is misdassified. The correction increment c is  
assumed to be positive and, for now, to be constant.T%is algorithm sometimes is 
referred to as the fixed increrne~zt correcfion rule. 

Convergence of the algorithm occurs when the  entirc training set for bolh 
classes is cycled through the machine without any errors. The fixed increment 
correction rule converges in a finile number of steps if the two training sets of 
patterns are linearly separable. A proof of this result, sometimes called the 
perceptron trcrining heorem, can be Found in the books by Duda, f-Iart, and Stork 
[2003.];Tou and Gonzalez 119741; a n d  Nilsson [1965]. 

EXAMPLE 12.5: m. Consider the two training sets shown in Fig. 12.15(a), each consisting of two 
Illustration a f the  patterns. The training algorithm will be successfu1 because the two training sets 
perceptron are linearly separable. Before the algorithm is applied the patterns are augmented, 
algorithm. 

a b 
FIGURE 12.15 
(a) Patterns 
belonging to two 
classes. 
(b) Decision 
boundary 
deter~nined by 
training. 
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yielding the lraining set {(0,0, I)', (0, I, 1)') for class w ,  and {(1,0, 1lT; (1,1,1)') 
for class w,. Letting c = I, w(1) = 0, and presenting the patterns in order resutts 
in the following sequence of steps: 

w ' ' . ( ~ ) ~ ( L )  = [0,0,0] n = o [:I w(2) = w(1) + y(1) = 0 

w'.(2)y(2) = [ O ,  0, I ]  1 = 1 w(3) = ~(2,) = 0 

[:I 
ri1 

~ " ( 3 ) ~ ( 3 )  = [O, 0. 11 0 = 1 

[:I 
L: 1 w(4) = w(3)  - y ( 3 )  = r AI 

~ ~ ( 4 ) ~ ( 4 )  = [ - I . ,  0.01 1 = -1 [ : 1 ~v(5) = w(4) = [-:I 
where coi.rections in the weight vector were made in the first and third steps 
because of misclassifications, as indicated in Eqs. (3 2.2-34) and (12.2-35). Be- 
cause a solution has been obtained only when the algorithm yields a complete 
erxo~--free iteration through all training patterns, the training set must be pre- 
sented again.Thc machine learning process is continued by Letting y(5) = y ( l ) ,  
y (6)  = y(2),  y (7)  = g(3), and y(8) = y(4) ,  and proceeding in  the same man- 
ner. Convergence is achieved at k = 14, yielding the solution weight vector 
w( 14) = ( - 2 , O .  1 )'. The corresponding decision function is d(y) = -2y, + 1.  
Going back to the original pattern space by letting xi = y ;  yields 
d ( x j  = -2x,  f I ,  which. when set equal to zero, becomes the equation of the  
decision boundary shown in Fig. 12.15(h). -:a 

Nonseparabl~ classes In practice, linearly separable pattern classes are the 
(rare) exceptio~~,rather- tlian the rule. Consequently, a s ig~~jf icai~t  amount of re- 
search effort during the 1960s a n d  1970s went into developmen1 of techniques 
designed to handlc nonseparable pattern classes. With recenr advances ln the 
training of neural networks, many of the mcthods dealing with nonseparable he- 
haviox ]lave become merely itcms of historical ir~tercst. One of [he early meth- 
ods, however, is  directly relevant to this discussion: the original delta rule. Known 
as the Widro w-HojJ or least-nzecm-syunre (LMS) delta rule for training per- 
ceptrons, the method minimizes the error between the actual and desired 
response at any training step. 

Considc~ the criterion function 

where 1. is the desired response (that is, r = -t-1 if [he augmented training pat- 
tern vector.y belongs to class w ,  , and r = - 1 if y belongs to class a,). The task 
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is to adjust w incrementally in the direction of the negative gradjent of J(w)  in 
order to seek the minimum of this function, which occurs when r = wTy; that  
is, the minimum corresponds to correct classification. If w ( k )  represents the 
weight vector at the kth iterative step, a general gradient descent algorithm may 
be written as 

where w(k + 1) is the new value of w, and a > 0 gives the magnitude of the cor- 
rection. From Eq. (1 2.2-37), 

Substituting this result into Eq. (12.2-38) yields 

w ( k  + I)  = w ( k )  + a [ r ( k )  - ~ ' ( k ) ~ ( k ) ] y ( k )  (12.2-40) 

with the starting weight vector, w (1 ), being arbitrary. 
By defining the change (delta) in weight vector as 

Aw - w(k + 1 )  - w ( k )  (12.2-41) 

we can write Eq. (12.2-40) in the form of a delta correction nlgorilhm. 

where 

is the error committed with weight vector w(k) when pattern y ( k )  is presented. 
Equation (12.2-43) gives the error with weight vector w ( k ) .  If we change i t  

to w ( k  4- I ) ,  but leave the pattern the same, the error becomes 

The change in error then is 

But Aw = a e ( k ) y ( k ) ,  so 

Hence changing the weights reduces the error by a factor cully(k 3 11'. The next 
input pattern starts the new adaptation cycle, reducing the next error by a fac- 
tor a l ( y (k  + 1)112, and so on. 

The choice of a controls stability and speed of convergence (Widrow and 
Stearns [1985]). Stability requires that 0 < cu < 2. A practical range for a is 
0.1 < a < 1.0. Although the proof is not shown here, the algorithm of 
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Eq. (12.2-40) or Eqs. (12.2-42) and (1 2.2-43) converges to a solution that rnini- 
mizes the mean square error over the patterns of the training set. When the 
pat tei-n classes are separable, the solution given by the algal-ithm just discussed 
may or may not produce a separating hyperplane.That is, a mean-square-error 
solution does not imply a solution in the sense of the perceptron trailli~lg the- 
orem.This uncertainty is the price of using an algorithm that converges under 
both the separable and nonseparable cases in this particular formulation. 

The two perceptron training algorithms discussed thus far can be extcnded 
to more than two classes and to nonlinear decision functions. Based on the his- 
torical comments made earlier, exploring rnulticlass training algorithms here 
has little merit. Instead, we address rnulticlass training in the context of neural 
networks. 

Multilayer feedforward neural networks 

tn this section we focus on decision functions of inulticlass pattern recognition 
pi.oblcms, independent of whether or not the classes are separable, and involv- 
ing architectures that consist of layers of perceplron computing elements. 

Basic architectt~re Figure 12.1 6 shows the architecture of the neural network 
model under consideration. Tt consists oil layers of structurally identical com- 
puling nodes (neurons) arranged so that the output of every neuron in one Iayer 
feeds into t hc input of every neuron in the next layer. The number of neurons 
in the first layer, called layer A ,  is hiA. Often, N A  = n, the dinle~lsio~lality of the 
input pattern vectors. The number of neurons in the output layer, called layer 
Q, is denotcd Na.711e number No equals W, the number of pattern classes that 
the neural network has been trained to recognize. The network recognizes a 
pattern vector x as belonging to class o, if the ith output of the network is "high" 
while all other outputs are "low,'' as explained in the following discussion. 

As th.e blowup in Fig. 12.16 shows, each neuron has the same form as the 
perceptron model discussed earlier (see Fig. 12.14), with [he except io~~ that ,the 
bard-limi ting actjvalion function 11as been replaced by a soft-limiting "sigmoid" 
function. Differentiability along all paths of the neural network is required it1 

.the clevelopn~ent of the training rule.The following sigmoid activation [unction 
has the necessary differentiability: 

where 1,. j = 1, 2, . . . , IV,, is the input to the activation element of each node 
in layer J of the network, 8, is an offset, and O,, corltrols the shape of the sig- 
nioid iunction. 

Ecjuatfion (12.2-47) is plotted in Fig. 12.17, along with the limits for the "high" 
and "low" responses out of each node. Thus when this particular function is 
used, the system outpuls a high reading for any value of I ,  greater than 0,. Sim- 
ilarly, the system outputs a low reading for any value of less than Bj. As 
Fig. 12.17 shows, the sigrnoid activation function always js positive, and i t  can 
reach its limiting values of O and 1 only if the input to the activation clement is 
infinitely negative or positive, respectively. For this reason, values near 0 and 1 
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0 = h ( l )  FIGURE 12.1 7 The 
A sig~noidal 

activation . . . . . . . . . . . . . . . . . .  1.0 . . . . . . . . . . . . . . . . . . . . . . . . . .  function of 
High - - - - - - - - - - - Eq. (12.2-47). 

a . . . . . . . . . . . . . . . . .  0.5 - 

- I  
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(say, 0.05 and 0.95) define low and high values at  the output of the neurons in 
Fig. 12.16. In principle, differenl types of activalion functions could be used for 
different laycrs or even for different nodes in the same layer of a neural network. 
In practice, the usual approach i s  to use the same forni of activation function 
throughout the network. 

With reference to Fig. 12.14(a), the offset 0, shown in Fig. 12.17 is analogous 
to the weight coefficient 7n,,+, in the earlier discussion of the perceptron. Tm- 
plementation of this displaced threshold function can be done in the form of 
Fig. 12.14(a) by absorbing the offset 8, as an additional coefficient that modifies 
a constant unity input to all nodes in  the network. In order to follow the nota- 
tion predominantly found in the literature, we do not show a separate constant 
input of +1 into all nodes of Fig. 12.16. Instead, this input and its modifying 
weight O j  are integral parts of the network nodes. As noted in the blowup in  
Fig. 12.16, there is one such coefficient for each of the N, nodes in layer J. 

In Fig. 12.16, the input to a node in any layer is the weighted sum of the out- 
puts from the previous layer. Letting layer K denote the layer preceding layel- 
J (no alphabetical order is implied in Fig. 12.16) gives the input to the activation 
elerncnt of each node in layer J ,  denoted I,: 

for j = 1 , 2 , .  . . ,  N j ,  where A', is the number of nodes in layer J, N ,  is the num- 
ber of nodes in layer K, and wjk are the weights modifying the outputs Ok of !:he 
nodes in layer K before they are fed into the nodes in layer J. The outputs of 
layer K are 

for k = 1,2,.  . . .  N K .  
A clear u~lderstanding of the subscript notation used in Eq. (12.2-48) is im- 

portant, because we use it throughout the remainder of this section. First, note 
that I,, j = 1 ,2 , .  . . ,  hi,, represents the input to the activation element of the jth 
node in layer J. Thus I ,  represents the input to the activation element of the 
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First (topmost) node in layer J ,  Z2 represents the input to the activation element 
of the second node in layer J ,  and so on.?"nei.e are N, inputs to every node in 
layer J ,  but eoch individual input can be weighted differently. Thus the NK in- 
puts t o  the first node in layer J are weighted by coefficients w, k ,  k = 1,2,. . . . NK; 
the inputs to the second node are weighted by coefficients wzk, k = 1,2,. . . , IV,; 
and so on. Hcnce a total of N ,  X N K  coefficients are necessary to specify the 
weighting of the outputs of layer K as they are fed into layer J. An additional 
N., offset coefficients, 0,. are needed to specify completely the nodes in layer J. 

Substitution of Eq. (12.2-48) into (12.2-47) yields 

which is the form of activation function used in the remainder of this section. 
During training, adapting the neurons i n  the output  layer is a simple matter 

because the desired output of each node is known.The main problem in train- 
ing a multilayer network lies in adjusting the weights in the so-called hidden 
loyers.That is, in those other than t h e  output layer. 

Training by back propagation We begin by concentrating on the output layer. 
The total squared error between the desired responses, r, , and the corresponding 
actual responses, O,, of nodes in (output) layer Q, is 

where No i s  t h e  number of nodes in output layer Q and the i is used foi con- 
venience in notation for taking the derivative later. 

The objective is to develop a training rule, similar to the delta rule, that al- 
lows adjustment of the weights in each of the layers in a way that seeks a niin- 
i m u ~ n  to an error function of the form shown in Eq. (12.2-51). As before. 
adjusting the weights in proportion to the partial derivalive of the error with 
respecr to the weights achieves this result. Tn other words, 

where layer P precedes layer Q, Aw,, is as defined in Eq. (12.2-42), and a is a 
positive correction increment. 

The error EQ is a function of the outputs, 0,. which in turn are iunctions of the 
inputs I,. Using the chain rule, we evaluate the partial derivative of EQ as follows: 

From Eq. (12.2-48), 
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Substituting Eqs. (12.2-53) arid (12.2-54) into Eq. (12.2-52) yields 

where 

In  order to compute d E y / a l , ,  we use the chain rule to express the partial 
derivative in terms of the rate of change of EQ with respect to 0, and the rare 
of change of 0, with respect: to !,.That is, 

From Eq. (12.2-51): 

and, from Eq. (12.2-49), 

Substituting Eqs. (12.2-58) and (12.2-59) into Eq. (12.2-57) gives 

8, = (rq - Ql)hb(A,)7 (12.2-60) 

which is proportional to the crror quantity ( r ,  - 0,). Substitution of 
Eqs. (12.2-56) through (12.2-58) into Eq. (12.2-55) finally yields 

Alter the function h,(l,) has been specified, all the terms in Eq. (12.2-61) are 
known or can be observed in the network. In other words, upon presentation of 
any training pattern to the input of the network, we know what the desired re- 
sponse, r , ,  of each output node should be. T h e  value 0, of each ourput node 
can be observed as can I , ,  the input to the activation elements of layer Q, and 
O,,, the output of the nodes in layer P.Thus we know how to adjust the weights 
that modify the links between the lasl and next-to-last layers in the network. 

Continuing to work our way back from the output layer, let us now analyze 
whal: happens at layer P. Proceeding ill the same manner as above yields 

where the error term is 
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With the exception of r, .  all the terms in Eqs. (12.2-62) and (12.2-63) either are 
known or can be observed in the network.'The term r ,  makes no sense in an in- 
ternal layer because we do not know what the  response of an internal node ixi 

terms of pattern membership should be. We may specify what we want the re- 
sponse r lo be only at the outputs of the network where final pattern classifi- 
cation takes place. If we knew that information ar internal nodes, there would 
be n o  need for further 1 a y e r s . n ~ ~  we have to find a way to restate 6, in terms 
of quantities that are  known o r  can be observed in the nelwoilc. 

Going back to Eq. (1 2.2-57), we write the error term foi- layer P as 

The term dO,/dl,, presents n o  difficulties. As before, il is 

dO,_ - dh,(l,) 
dl, = h;Xfp). 

which is known once h ,  is specified because I ,  can be observed. Tbe term that  
produced r ,  was the derivative BE,/dO,,so this term must be expressed in a way 
that does no t  contain r, .  Using the chain rule, we write the derivative as 

where the last step follows from Eq. (12.2-56). Substitutjng Eqs. (12.2-65) and 
(12.2-66) into Eq. (12.2-64) yields the desired expression for 6,: 

The parameter 6, can be computed now because all its terms are known. Thus 
Eqs. (12.2-62) and (12.2-67) establish completely the training rule for layer 
P.The importance of Eq. (12.2-67) is that it computes 6, from the quantities 
8, and w,,, which are terms that were computed in the layer immediately fol- 
lowing layer P. After the error term and weights have been computed for 
layer P, these quant i t ies may be used similarly to compute the error a n d  
weights €01 the layer immediately preceding layer P. In other words, we have 
found a way to  propagate the error back into the network, starting with the 
error at t h e  output layer. 

We may summarize and generalize the training procedure a s  follows. For any 
layers K and 1, where layer K immediately precedes layer J ,  compute the weights 
wjk, which modify the connections between these two layers, by using 
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If layer J is the output la)er, 6, is 

If layer J is an internal layer and layer P is the next layer (to the right), then 6, 
is given by 

8, = h;(l,) C F,, w;, 
for j = 1.2,. . . , N,. Using the activation function in Eq. (12.2-50) with 8,, = I yields 

in which case Eqs. (12.2-69) and (12.2-70) assume the following, particularly at- 
tractive forms: 

for the output layer, and 

for internal layers. In both Eqs. (12.2-72) a n d  (12.2-73), j = 1,2, . . . , N , .  
Equations (12.2-68) through (12.2-70) constitute the generalized delta rule 

fur training the multjlayer feedforward neural network of Fig. 12.16.The process 
starts with a n  arbitrary (but not all equal) set of weights throughout the network. 
Then application of the generalized delta rule at any iterative step involves two 
basic phases. In the first phase, a training vector is presenled to the network 
and is allowed Lo propagate through the layers to compute the output 0, for 
each node. The outputs 0 ,  of the nodes in the  output layer are then compared 
against their desired responses, I-,, to generate the error terms 6,. The second 
phase involves a backward pass through the network during which the appro- 
priate error signal is passed to each node and the corresponding weight changes 
are made. This procedure also applies to the bias weights 8,. As discussed ear- 
lier in some detail, these are treated simply as additional weights that modify a 
unit input  into the summing junction of every node in Ihe network. 

Common practice is to track the network error, as well as errors associated 
wit11 individual patterns. I n  a successful training session, the network error de- 
creases with the number of iterations and the procedure converges to a stable 
set of weights that exhibit only small fluctuations with additional training. The 
approach followed to establish whether a pattern has been classified correctly 
during training is to determine whether the response of the node in the output 
layer associated with the pattern class from which the pattern was obtained is 
high, while all the other nodes have outputs that are low, as defined earlier. 

After the system has been trained, it classifies patterns using the parameters 
established during the training phase. In normal operatjon, all feedback paths 
are disconnected. Then any input pattern is allowed to propagate through the 
various layers, and  the pattern is classified as belonging to the class of the out- 
put node that was high, while all the others were low. If more than one output 
is labeled high, or if none of the outputs is so labeled, the choice is one of de- 
claring a misclassification or simply assigning the pattern to the cIass of the out- 
put node with the highest numerical value. 
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b 

shapes and 
(b) typical noisy 
shapes used in 
training the 
neural network of 
Fig. 72.19. 
(Cour'tesy of Dr. Shape I 
Lalit Gupta, ECE 
Depastnient, 
Southern Illinois 
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EXAMPLE 12.6: 3.: We illustrate now how a neural network of the for-m shown i l l  Fig. 12.16 was 
Shape trained to laecognize the four shapes shown in Fig. 12.1 8(a). as well as noisy ver- 
clnssifica tion sions af these shapes, sanlples of which are shown in  Fig. 12.18(b). 
using a neural 
network. Pattern vectors were generakd by computing { l ie norlnaljzed signatures of 

the shapes (see Section 11.1.3) and then obtaining 48 uniformly spaccd sam- 
ples of eachsignsture.  he resulting 48-dimensional vectors were the inputs lo 
the three-layer Ceedforwal-d neural network shown in Fig. .I 2.19. The riumber of 
neuron nodes in Ihc first layer was chosen to be 4s. corresponding to the di- 
me~~sionality of the input pal1cl.n vecl-ors.The four neurons in thc third (outpul) 
layer correspond to the number of pattern classes, and the ~iumber  of neurons 
in the  middle layer was he~lristically specified as 26 ( the average of h e  numbel. 
of neurons in the input and ourput layers).Therc are no known l.ules for spec- 
ifying the n u m b e r  of nodes in the internal layers oT a neural network, so this 
number generally is based either on prior experience or sj.rnpIy chosen arbi- 
trarily and then refined by testing. In  output layer, the four nodes h,orn top 
to boltom in this case represent the classes wj, j = I : 2.3,4,  respectively. After- 
the network stl-uclure has been sei, activation f~inctions have to be selccted Col- 
each unit and 1ayer:All activation functions were selected to satisfy Eq. (12.2-50) 
with O,, = 1 so that, according to our  earlier discussion, Eqs. (12.2-72) a n d  
(12.2-73) apply. 

The training process was divided in two parts. In  the first par(, the weigllts 
were initialized to small random values with zero mean, and the network was 
then trained wirh pattern vectors corresponding to noise-free sa~nples like the 
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lrlpul 
pattern 
vector 

Layer A 
NA = 48 

Shape 1 

Shape 2 

Shape 3 

Shape 4 

shapes shown in Fig. 12.18(a).The output nodes were monitored during training. 
'Ihe network was said to have learned the shapes from all four classes when, for 
any training pattern from class w i ,  the elements of the output layer yielded 
O i ~ 0 . 9 5 a n d 0 , 5 0 . 0 5 , f o ~ q  = 1,2 ,..., No;$  # i. In other words, for any pat- 
tern of class oi, the output unit corresponding to that class had to be high (2 0.95) 
while, simultaneously, the output of all other nodes had to be low (5 0.05). 

The second part of training was carried out with noisy samples, generated as 
follows. Each contour pixel in a noise-free shape was assigned a probability V 
of retaining its original coordinate in the image plane and a probability 
R = 1 - V of being randomly assigned to the coordinates of one of its eight 
neighboring pixels-The degree of noise was increased by decreasing V (that is, 
increasing R). Two sets of noisy data were generated. The first consisted of 100 
noisy patterns of each class generated by varying R between 0.1 and 0.6, giving 
a total of 400 patterns. This set, called the test set. was used to establish systerm 
a performance after training. 

FIGURE 12.1 9 
Three-layer 
neural network 
used to recognize 
the shapes in 
Fig. 12.18. 
(Courtesy of Dr. 
Lalit Gupta, ECE 
Department, 
Southern Illinois 
Univcrsi ty,) 
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FIGURE 12.20 
Perfornlance of 
thc neural 
network as a 
function of noise 
level. (Courtesy of 
Dr. Lalit Gupta, 
ECE Departlnenl. 
Southern Illinois 
Universj t y.) 
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Several noisy sets werc generated for training the system with noisy data. 
The Cirst set consisted of 10 samples for each class, generated by using R, = 0. 
where R, denotes a value of R used to generate training data. Starting with the 
wcight vectors obtained in the first (noise-free) part of training, the system was 
allowed to go through a learning sequence with the new data set. Because R, = 0 
implies no noise, this retraining was an extension of the earlier, noise-free train- 
ing. Using the resulting weights learned in this manner, the network was sub- 
jected to the test data set yielding the results shown by the cuwe labeled R, = 0 
in Fig. 12.20. The number of misclassified patterns divided by the total number 
of patterns tested gives the probability of misclassification, which is a measure 
commonly used to  establish neural network performance. 

Next, starting with the weight vectors learned by using the data generated 
with R, = 0, the system was retrained with a noisy data  set generated with 
R, = 0.1. The recognition performance was then established by running the lest 
samples through the system again with the new weight vectors. Note the sig- 
nificant improvement in performance. Figure 12.20 shows the results obtained 
by contiuujng this retraining and retesting proccdure for R, = 0.2,0.3, and 0.4. 
As expected if the syslem is learning properly, the pl-obabiIity of misclassifying 
patterns from the test set decreased as the value of R, increased because the sys- 
tem was being trained with noisier data for higher values of R,. l'lie one ex- 
ception in Fig. 12.20 is the  result for R, = 0.4. The reason is the small number 
of samples used to train the system. That is, the network was not able Lo adapt 
itself sufi'iciently to the larger variations in shape a t  higher noise levels with the 
number of samples used.'This hypothesis is verified by the results in Fig. 12.21. 
which show a lower probability of misclassification as the number of training 
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0.100 FIGURE 12.21 
Improvement in 

R, = 0.4.N = 10 performance for 
R, = 0.4 by 
increasing the 

0.080 11 umber of 
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samples was increased. Figure 12.21 also shows as a reference the curve for 
R, = 0.3 from Fig. 12.20. 

The preceding results show that- a three-layer neural network was capable of 
learning to recognize shapes corrupted by noise after a modest level of training. 
Even when trained with noise-f~ec data (R, = I) in Fig. 12.20), the systein was able 
to achieve a correct recognition level of close to 77% when tested with data high- 
ly co~rupted by noise ( R  = 0.6 in Fig. 12,20).Thc rccognition rate on the same 
data increased to about 99% when the system was trained with noisier data 
(R,. = 0.3 and 0.4j. It is important to note that the system was trained by increas- 
ing its classification power via systematic, small incremental additions of noise. 
When the nature of the noise is known, this method is ideal fox improving the 
convergence and stability properties of a neural network during learning. w 

Complexity of decision surfaces We have already established that a single- 
layer perceptron implements a hyperplane decision surface. A natural question 
at this point is, What is the nature of the decision surfaces implemented by a mul- 
tilayer network, such as the model in Fig. 12.26? It is demonstrated in the fol- 
lowing discussion that a three-la y er network i s  capable of implementing 
arbitrarily complex decision surfaces composed of intersecting hyperplanes. 

As a starting point, consider the two-input. two-layer network shown in 
Fig. 12.22(a). With two inputs, the patterns are two dimensional, and therefore, 
each node in the first layer of the network implements a line in 2-D space. We 

traini~lg patterns 
(the curve for 
R, = 0.3 is shown 
for rererence). 
(Courtesy of Dr. 
Lalit Gupta, ECE 
Department, 
Southcrn Illinois 
Univel-sily.) 
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a b c  
FIGURE 12.22 (a)  A two-inpul, two-layer, fccdforwa~.d lleural network. (b) and (c) Ex- 
arnples of decision houndarics that can be jml~lemented with this network. 

denote by 1 and 0, respectively, the high and low outputs of these two nodes. 
Wc assume that a 1 output  indicates that the corresponding input vector to a 
node in the first layer lies on the positive side of the line. Then the possible 
combinations of outputs feeding the single node in the  second layer are ( I ,  1 ). 
(1. O) ,  (0, I ) ,  and (0, 0). Xf we define two regions, one for class w l  lying on the 
positive side of b0t.h lines and the other for class 01 lying anywhere else, the 
output node can classify any input pattern as belonging co one of these two 
regions simply by performing a logical AND operat ion.  In other words, the 
output  nodc responds with a 1, indicating class o, , only w h e n  both oueputs 
from the first layer are I .  The AND operation can be perforrncd by a neural 
node of the form discussed earlier i f  0, is set to a value in the hall open intcl-- 
val ( 1 ,  2].'l?hus if we assume 0 and 1 responses out of the first layer, the  re- 
s p o ~ ~ s c  of lhe output node will be high, i nd i ca~ ing  class w ,  , only when the sum 
pcrforrned by t h e  neu~.al node on the two outputs from the first layer is greatel. 
thau 1. Figures 12.22(b) and (c) show ]low the network of Fig. 12.22(a) can suc- 
cessfully dichotonlize two pattern classes that collld ~ io t  be separaled by a 
single linear surface. 

If the number of nodes in the first laycr were increased to three, h e  network 
of Fig. 12,22(a) would implement a decisioi~ boundary consisting of t h e  inrer-- 
section of three lines. The requirement that class o, lie on the positive side of 
all three lines would yield a convex region bounded by the three lines. In ,fact, 
an arbitrary open or closed convex region call bc constructed simply by in- 
creasing the number of nodes in the first layel of a two-layer neural 1ietwo1.k. 

The next logical step is to increase the number of layers to three. In this case 
the nodes of the first layer implement lines. as hefore.The nodes of the second 
layer then perform AND operations i n  order to form regions from the various 
lines.The nodes in the third layer assign class membership to the various regions. 
For instance, suppose that class (0, consists of two distincl regions, each of which 
is bounded by a different set of 1ines.Then two of the nodes in the second layer 
are for regions corresponding to the same pattern class, One of the ourput nodes 
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FIGURE 12.23 
Types of decision 
regions thal can 
be formed by 
single- and 
multilayer 
feed-forward 
networks with 
one and two 
layers ol' hidden 
units and two 
inputs. (Lippman) 

needs to be able to signal the presence of that class when either of the two nodes 
in the second layer goes high. Assun~ing that high and low condilio~is in the sec- 
ond layer are denoted 1 and 0, respectively, this capability is obtained by mak- 
ing the output nodes of the network perform the logical OR operation. In terms 
of neural nodes of the forin discussed earIier, we do  so by setting 8, to a value in 
the half-open interval [O. I ).Tl~en, whenever at least one of the nodes in the  sec- 
ond layer associated with that output node goes high (outputs a I), the corre- 
spondiiig node in the output layer will go high, indicating that the pattern being 
processed belongs to the class associated with that node. 

Figure 12.23 summarizes the preceding comments. Note In the third row that 
the complexity of decision regions implemented by a three-layer network is, in 
principle, arbilrary. In practice, a serious difficulty usually arises in structurii~g 
the second layer to respond correctly to the various combinations associated 
with particular. classes. The reason is that lines do not just stop at their inter- 
section with other lines, and, as a result. patterns of the same class may occul- 017. 
both sides of lines in the pattern space. In practical terms, the second layer may 
have difficulty figuring out which lines should be included in the AND opera- 
tion for a given pattern class-or it may even be impossible. The reference to 
the exclusive-OR problem in the third column of Fig. 12.23 deals with the fact 
that, if the input patterns were binary, only four different patterns could be con- 
structed in two dimensions. If the patterns are so arrangcd that class w ,  consists 
of patterns ((0, 1 ), (1,0))  and class w, consists of the patterns ( ( 0 . 0 ) .  (1. I)}, 
class membership of the patterns in these two classes is given by the exclusive- 
OR (XOR) logical function, which is 1 only when one or the other of the two 
variables is 1 ,  and it is 0 otherwise-Thus an XOR value of 1 i~ldicates patterns 
of class w,  , and an XOR value of 0 indicates patterns of class o,. 
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The preceding discussion is generalized to n dimensions in a straightforward 
way: Instead of lines, we deal wish hyperplanes. A single-layer network imple- 
ments a single byperplane. A two-layer network implements arbitrarily convex 
regions consisting of intersections of hyperplanes. A three-layer network im- 
plements decision surfaces of arbitrary complexity. The number of nodes used 
in each layer determines the complexity of the last two cases. The number of 
classes in the first case is limited to two. In the othei- two cases, the number of 
classes is arbitrary, because the number of output nodes can be selected to F i t  
the problem a t  hand. 

Considering the preceding comments, it is logical to ask, Why would anyone 
be interested in studyingneural networks having more than three layers? After 
all, a three-layer network can implement decision surfaces of arbitrary corn- 
plexity. The answer lies in the method used to train a network to utilize only 
three 1ayers.The training rule for the network in Fig. 12.16 minimizes an error 
measure bu t  says nothing about how to associate groups of hyperplanes with 
specific nodes in the second layer of a three-layer network oi the type discussed 
earlier. In fact, the problem of how to perform trade-off analyses between the 
number of layers and the number of nodes in each layer remains unresolved. In 
practice, the trade-off is generally resolved by trial and error or by previous 
experience with a given problem domain. 

7. e' d2 Structural Methods 
The techniques discussed in Section 12.2 deal with patterns quantitatively and 
largely ignore a n y  structural relationships inherent jn a pattern's shape. The 
structural methods discussed in this section, however, seek Lo achieve paltern 
recognition by capitalizing precisely on these types of relationships. 

i 2.3.1 Matching Shape Numbers 
A procedure analogous to the minimum distance concept introduced in Sec- 
tion 12.2.2 for pattern vectors can be formulated for the comparison of region 
boundaries that  are described in [ e m s  of shape numbers. With reference to the 
discussion in Section 1 1.2.2, the  degree ofsimilarity, k ,  belweeri two  region 
boundaries (shapes) is defined as the largest order for which their shape num- 
bers still coincide. For example, let n and b denote shape numbers of closed 
boundaries represented by 4-directional chain codes. These two shapes have a 
degree of similarity k if 

s , (a )  = s,(b) for j = 4,6,8, .  . . . k 

s,(a) + s,(b) for j = k + 2, k -+ 4, 

wbere s indjcates shape number and the subscript indicates order.The distance 
between two shapes a and b is defined as the inverse of their degree of similarity: 
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This distance satisfies t h e  following properties: 

D(a,  b )  2 0 
D(n, k )  = O iff a = b (12.3-3) 

D(n, c )  5 r n a x [ ~ ( n ,  b): D(h,  c ) ] .  

Either k or D may be used to compare two shapes. If the degree of similarity is 
used. the larger k is. the Inore similar the shapes are (note that k is infinite for 
identical shapes).The reverse is true when the distancc measure is used. 

M ' -. Suppose that we have a shapef and want  t.o find its closest match in a sel ol EXAMPLE 12.7; 
live other shapes (n, b, c, (1, and e)! as shown in Fig. 12.24(a). This problem is anal- Usj1~g shape 

ogous to having five pi-ototype shapes and trying to find the best inatch to a numbers to 
con] pare shapes. 

given unknown shape.The search may be visualized with the aid of the similarity 
tree shown in Fig. 12.24(b).The root of the tree corresponds to t h e  lowest pos- 
sible degree of similarity, which, for this example, is 4. Suppose that  the shapes 
are identical up to degree 8, with the exception of shape a, whose degree of sim- 
ilarity with respect to all other shapes is 6. Proceeding down tllc tree, we find tha t  
shape d has degree of similarity 8 with respect to all others. and so on. Shapes 

FIGURE 12.24 
( a )  Shapes. 
(b) flypolhelical 
similarity tree. 
( c )  Similai-ity 
mail-ix. (Bribiesca 
and Guzman.) 



734 Chapter 12 a: Object Recognition 

.f and c match uniquely, having a higher degree of similarity than any other two 
shapes. At  the other extreme, i f  a had been an unknown shape, all we could 
have said using this method i s  that  a was similar to the other five shapes with 
degree of similarity 6.The same information can be surnma~*ized in t h e  form of 
a similarity rnnfri,~, as shown in Fig. 13,.24(c). pl 

T.2.3.2 String Matching 
Suppose chat two region boundaries, o and b, are coded into strings (see 
Section 11.5) denoted a, 4, .. . , a,, and 6 ,  b2, . . . , h ,,,, respectively. Let cu repre- 
sent the number of matches between the  two srrings, where a match occurs in 
the kth position if n, = bk.  The number of symbols that do not match i s  

where (argJ is the length (number of sylnbols) in the string representation of 
the argument. It can be shown that ,G = 0 if and only if n and b are identical (see 
Problem 12.21). 

A simple measure of similarity between a and 13 is the ratio 

Hence R is infinite for a perlect match and 0 when none of the symbols in a 
and b match ( a  = 0 in this case). Because matching is done symbol by symbol. 
the starting point on each boundary is important in terms of reducing the 
amount of computation. Any method that normalizes to, or near, the same stut- 
ing point is helpful, so long as it provides a computational advantage over brute- 
force matching, whic.h consists of starting at arbitrary points on each siring and 
then shifting one of the strings (with wraparound) and computing Eq. (12.3-5) 
for each shift. The largest value of R gives the best match. 

EXAMPLE 12.8: Figures 12.25(a) and (b) show sample boundal-ies from each of two object 
Illustr-atian of classes, which were approximated by a polygonal Fit (see Section 21.1.2). Fig- 
strillg matching ures 12.25(c) and (d) show the polygonal approxilnations corresponding to the 

boulldaries sllown in Figs. 12.25(a) and (b), respectively. Slrings were fo~.rned 
from the polygons by computing the interior angle, 8, between segments as each 
polygon was traversed clockwise. Angles were coded into one of eight possible 
symbols, corresponding to 45" increments; that is, a, :0° < 19 5 45"; 
cu2:45" < A 5 90"; ...; cr8:315" < 9 5 360". 

Figure 12.25(e) shows the results of computing the  measure R for live sam- 
ples of object 1 against themselves. The entries correspond to R values and. for 
example, the notation 1.c refers to the third string from object class I. Fig- 
ure 12.25(1) shows the results of comparing the strings olthe second object class 
against themsebes. Finally, Fig. 12.25(g) shows a tabulation of R values obtained 
by corrlparing strings of one class against the other. Note that, here, all R values 
are considerably smaller than any entry in the two preceding tabulations, indi- 
cating that the R measure achieved a high degree of discrimination between 
the two classes of objects.For example, if the class membership of string 1.a Iiad 
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FIGURE 12.25 (a) 
and (b) Sample 
boundaries d l  (wo 
different obiect 
classes; (c) and 
(d) (heir 
corsesponding 
polygonal 
approximations: 
(e)-(g) tabulations 
of R .  (Sze and 
Ya11g.) 

been unknown,  the snzallesf value of R resulking from comparing this string 
against sample (prototype) strings of class 1 would have been 4.7 [Fig. 12.25(e)]. 
By conlrast, the lnrge.~i value in. comparing it  against strings of class 2 would 
have been 1.24 [Fig. 12.25(g)].This result would have led to t h e  conclusion that 
string 1.a is a inember of object class I .  This approach 1 0  classification is anal- 
ogous to the minimum distance classifier introduced in Section 12.2.1. $3 

12.3.3 Syntactic Recognition of Strings 

Syntactic methods pr-ovide a unified methodology for handling structural recog- 
nition problems. Basically, rbe idea behind syntactic pattern rccogi~ition is rhe 
specification of a set of pat ter~lpritnirivex (see Sect~on 11.5), a set of rules (in the  
form of a grrrmnmr) that governs their interconnection, and a rccognizer (called 
an n~lfomaton), whose structure is determined by the set of rules in the gram- 
mar. First we consider string grammars and automata and then extend these 
ideas in the next section to tree grammars and their corresponding automata. 
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String grammars 

Suppose that we have two classes, w, and w 2 ,  whose patterns arc strings of prim- 
itives, generated by one of the methods discussed in Section 12.5. We can in -  
terpret each primitive as being a symbol permissible in the ~rlphnbrr~ of some 
~ I - I Z ~ I I ~ Z O P ,  where a grammar is a set of rules of syntax (hence the name syntac- 
tic recognition) that govern the generation of sentences formed fl-on1 symbols 
of the alphabet.The set of sentences generated by a grammar, G, is called its Inn- 
glmge and is denoted L(G) .  Here, sentences are strings of symbols (which in 
turn represent patterns), and languages correspond to pattern classes. 

Consider two grammars, G, and C2, whose rules of syntax are such that G ,  
only allows generation of sentences that correspond to patlerns from class w , ,  

and G2 only allows generation of senlellces corr.esponding to patterns from class 
w,. After two grammars with these properties have been established, the syn- 
tactic pattern recognition process, in principle, is slraigh tforwal-d. For a sentence 
representing an unknown pattern, the task is to decide in which language the pat- 
tern represents a valid sentence. II the sentence belongs to L(c; , ) ,  we say that 
the pattern is from class w ,  . Similarly, the pattern is said to be from class w 2  if the 
sentence is valid in L(G?). A unique decision cannot be made if the sentence be- 
longs lo both languages. A sentence that is invalid in both languages is rejected. 

When there are more than Iwo pattern classes, the syntactic classification 
approach is thc same as described in the preceding paragraph, with the excep- 
tion that more grammars (a t least one per class) are involvcd i n  the process. For 
multiclass classification, a paltern belongs to class w j  if i t  is a valid sentence 
only of L(G;) .  As before, a unique decision cannot be made if a sentence be- 
longs to more than one language. A sentence that is invalid over all languages 
is rejected. 

When dealing with strings, we define a grammar as the 4-tuple 

G = (N. C ,  P ,  S )  

where 

N is a finite set of variables called nonrernri~~als, 

C is a finite set of constants called ternzinals, 

P is a set of rewriting rules called productions, and 

S in N is called the starring synzhol. 

I t  is required that N and 2 be disjoint sets. In the followjng discussion, capital 
letters. A,  B,.. . , S, .  . . ,denote nonterminals. Lowercase letters, a ,  b, c.. . .  at the 
beginning of the alphabet denote terminals. Lowercase letters, v, to, x? y. z to- 
ward the end of [he alphabet denote strings of terminals. Lowercase Greek let- 
ters a, p. 9, .  . . denote strings of mixed terminals and nonlerrnjnals. The enzpry 
sentence (the sentence with no symbols) is denoted A. Finally, for a set V of syrn- 
bols, the notation V* denotes the set of all sentences composed of elements 
from V. 

String grammars are characterized by the form of theii productions. Of par- 
ticular interest in syntactic pattern recognition are reg~ilarg~zznzm,ai-s and context- 
free granzmars. Regular grammars have productions only of the form A -+ aR  or 
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A + a, with A and 3 in Nand a in C. Context-free grammars have productions 
only of the form A -+ a, with A in N and ac in the set (N U X)*; that is, CY can be 
any string composed of terminals and nonterminals, except the empty string. 

V &lore proceeding, it will be useful to consider the mechanics of how gram- EXAMPLE 12.9: 
mars generate object classes. Suppose that the object s l~own in Fig. 12.26(a) i s  Object class 
represented by its (pruned) skeleton and that we define the primltives shown generation using a 

regular string in Fig. 12.26(b) to describe the structure of this (and similar) skeletons. Consider glammar. 
the grammar G = ( N ,  C., P, S ) ,  with N = { A ,  B, S ) ,  E = { a ,  b, c )  and 
P = {S + nA, A + bA, A + bB, B -> c ) ,  where the terminaIs a, 6,  and c 
correspond to the primitives shown in Fig. 12.26(b). As indicated earlier, S is the 
startlng symbol from which the strings of L(G) are generated. For instance, ap- 
ply~ng the first production faIlowed by two applications of the second produc- 
tion yields S + aA + abA + abbA, where (=+) indicates a string derivation 
starting from S and using productions from the set P. The first production al- 
lowed rewriting S as aA, and the second production allowed rewritingA as bA. 
With a nonterminal jn the string abbA, we can continue the derivation. For ex- 
ample, applying the second production two more times, followed by one appli- 
cation of the third production and one application of the fourth production, 
yields t h e  string abbbbbc, which corresponds to the structure shown in 
Fig. 12.26(c). No nonterminals remain after application of the fourth production, 
so the derivation terminates when this production is used. The language gen- 
erated by the rules of this grammar is L(G) = {abNcln r I}, where b" indicates 
n repetitions of the symbol b.  In  other words, G is capable of generating cmly 
skeletons ol the form shown in Fig. 12.2A(c) but having arbitrary length. 

a 
b 
c 

FIGURE 12.26 
(a)  Object 
represented by i t s  
(pruned) 
skeleton, 
(b) Primitives, 
(c) Stsuclure 
generated by 
using a regular 
string grammar. 
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TABLE 1 2.1 
Example of 
semarl tic 
information 
attached to 
production I-ules. 

Production Semantic Information 

5 + oA Coilnections to rr are made only at tllc dot.The direc~ion of n. 

denoted 8. is given by the  direction o l  the perpendicular 
bisector of the line joini~lg the end points of llie two undotted 
segn~ents.The line segmcnts are 3 cnr c i ~ c h .  

A -+ bA Connections to h are made  only at  the dots. N o  tnul~iple 
connections art: allowed,l'he direction of b musi be the samc 
as the direction of a . T l ~ e  lensrh oC 1) is 0.25 crn.l'his production 
cannor be applied more than 10 Limes. 

A + bl3 The direction or ( I  and b must  be rhe samc. Conuections 111usr be 
simple and made only ar the dots. 

13 4 c T h e  direction of c and N must hc Lhe same. Connections tnust be 
simple and made only a1 the dots. 

Use of semantics 

In  he preceding example we assumed that  he i~~terconnection between prim- 
tives takes place only a[ the dots shown in  Fig. 12.26(b). In more complicated si t-  
uations the 1.u1es of conncclivity, as well as information regarding other factors 
(such as primitive length and direction) and the number ol l imes a production can 
be applied, I I I U S ~  bt: made explicit. This can be accomplished by using sevunn.rLc 

rrllpsstored in the Icnn~ule&e bnre of Fig. I .23. Basically. the syntax inher-cnt in the 
production I-ules esiabl ishes die structure of an  object. whereas selnan tics deal 
with its correctness. For example. ~ I I  a programming language li kc C,  the slatcrne~~t 
A - D I E  is syntactically correct, hut i t  is sem;lntically correct only if E # 0. 

Suppose that we attach semantic information to tht: giAarnmar disc~~ssed in the 
preceding example. The information can be allachcd to the production rules in 
the form shown in Table '12.1. By using semantic info~*mation. we arc able to use a 
few rules of syntax to desclribe a broad (bur limited as  desired) class of patterns 
For instance. by specifving the directioil of A in  Table 12.1. we avoid having lo spec- 
ify PI-imi~ives for each possible orienration. Similarly, by requiring that all primi- 
tives be oriented in the same chrection, we e lirninate from consideratiotl nonsensical 
structures that deviate from the hasic shapes typified by Fig. 12.26(a). 

Automata as string recognizers 

So fill. we have demonstrated tha t  grammars are genet-crro)..s of patLzrns. In  the 
following discussion we consider the problem of recognizing whether a pattern 
belongs to the language L(C)  generated by a gammar G.The basic concepts un- 
derlying syntactic recognition may be illustrated by the development of mathe- 
ma!-ical models of computing machines. called nlctonzolrr. Give11 a n  input palleril 
string.an automaton is  capable of 1.ecognizing whether the pattern belongs to the 
language with which the autolnatorl is associated. Here, we focus only on f~nire 011- 

r o r 7 7 ~ 1 1 n ,  which are  the recognizers of languages generated by regular grammars. 
A finite autojnciron is defined as the 5-tuple 
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where Q is a finile, nonempty set of stales, X is a f ini te input nlphnhet, S is a 
n~nypirlg from Q X Z (the set of ordered pairs formed from elements of Q and 
X) into the collectinn of all subsets of Q, q, is the stwring stare, and F (a subset 

states. of Q> is a set of finirl, or nccpptingl 

'7 Consider an automaton given by E q  (12.3-7), with 0 = iq,!, q , ,  +}. EXAMPLE 12.10: 
A simple ' = b ) ,  F = {qo). and mappings a(q,. n )  = { q z } ,  6(40 .  b )  = {41} .  au,,,,,,,,~ 

6(rl1. ~ 1 )  = {q?)? 6(41. h )  = { q o } .  S(q2 n)  = {qo}, and b )  = { 4 , ) .  If, for 
example, the automaton is in state q,, and an n is input, its state changes to q,. 
Similarly, if a 2) is input next, the automaton changes lo state q ,  , and so on.The 
initial and final statcs are the same in this case. 

Figure 12.23 shows a sfate dingmnz for the automaton just discussed. The 
state diagram consists of a node for each state and dirccted arcs showing the pos- 
sible transitions between stares.The linal state is shown as a double circle, and 
each arc is labeled with the symbol that causes the transition between the states 
joined by that arc. I11 this case the initial and final states arc the same. A string 
w of terminal symbols i s  said to be accepted or recognized by an automaton if. 
starting in state qo. the sequence of symbols (encountered as ~ A I  is scanned from 
left to right) causes the automaton to be in a final stale after the last syrnbol from 
w has been scanned. For example, the automaton in Fig. 12.27 recognizes the 
string ?u = lrbbabh but rejects the  string u: = aabnb. 

Tliere is a one-to-one correspondence between regular granzmars and finite 
automata.That is, a language js recognized by a finite automaton if and only i f  it 
is generated by a regular gramxnar. The design of a syntactic string recognizer 
based on the concepts discussed so far is a s tl-aightforward procedure, consisli~~g 
of obtaining a finite automaton horn a given regular grammar. Let the gramtnar 
be denoted G = ( N ,  C, P, X,,), where X;, = S, and suppose that N is composed of 
X,, pIus 17 additional nontermir~ats X,. X,, , , . , X,,.Tlle sct Q for the au lomato i~  is 
formed by introducing n + 2 states iq,, q,,  . . . . q,,. q,,,,,) such that q, corrcsponds 

FIGURE 12.27 A 
finite automaton. 
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to Xi for O 5 i 5 n, and q,\,, is the final state.The set of input symbols is identical 
to the set of terminals in G. The mappings in S are obtained by using two rules 
based on the productions of G; namely, for each i and j, with 0 5 i I lz ,O 5 j 5 n, 

1. If X, + ax, is in P, then n )  contains q,. 
2. If X, + n is in P, then a )  contains q,,, . 

Conversely, given a finite automaton, A, = (Q, X, 6 ,  q,,, F ) ,  we obtain the 
corresponding regular grammar, G = (N, X, P, x,,) by letting N consist of the 
elements of Q, with the starting symbol Xo corresponding to  q,,. and the pro- 
ductions of G obtained as follows: 

1. If qi is in 6(qi. a ) ,  there is a production Xi + nX, in P. 
2. If a state in F is in 6(qj, a )  there is a production X, + n in P. 

The terminal set, C, is the same in both cases. 

EXAMPLE 12.11: a The finite automaton for the grammar given in connection with Fig. 12.26 is 
autOnlaton obtained by writing the productions as XO + ax,, X, + hX,  , X ,  + bX2,  and 

for recognlzlng 
the pa~ le rns  in X2 + c. Then Ai = (&, x, 8,  q o ,  F ) .  with Q = I q o ,  q l ,  q2, ~7,). x = {u .  6, c), 

Fig. 12.26. F = { q 3 }  and mappings 6(rlo, a )  = { q , ) ,  6 ( q , ,  b )  = { q , ,  qz}, c )  = {~7,). 
For completeness, we wrile b )  = c) = ~ 3 ( ~ ,  , a )  = 6(,3,, c )  = 6(92,0) = 
6 ( q 2 ,  h )  = 0, where 0 is the null set, mdicating that these lransitlons are not defined 
for this automaton. P 

12.3.4 Syntactic Recognition of Trees 

Following a format similar to the preceding discussion for strings, we now ex- 
pand the discussion to include tree descriptions of patterns. We assume that the 
image regions or objects of interest have been expressed in the form of trees by 
using the appropriate primitive elements, as discussed in Section 11.5. 

Tree grammars 

A tree gramnlnr is defined as the 5-tuple 

G = ( N ,  C, P,  r,  S )  

where, as before, N and C are sets of nonterminals and terminals, respectively; 
S, contained in N, is the start symbol, which in general can be a tree; P is a set 
of productions of the form + T,, where T, and T, are trees; and v is a ranking 
fiinction that denoles the number of direct descendants (offspring) of a node 
whose label is a terminal in the grammar. Of particular relevance to our 
discussion are expansive tree grammars having productions of the form 

where X I  , X2, .  . . , X, are nonterminals and k is a terminal. 
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FIGURE 12.28 
(a) AII objecl a n d  
(b) p~'imitives 
l ised for 
rrprescnting the 
skcle(ou by 
means ot' a tt-ee 
g1.a nl mar. 

The skele~on of t h e  structure shown in Fig. 12.28(a) can be generated by EXAMPLE 12.12: 
using B tree grammar with N = (X,. X;, X,. 5 )  and S = { a ,  6, c.  d ,  e ) ,  wliere A s i~np le  tree 

the terminals represent the primitives shown in Fig. 12,28(b). Assuming head- g1'""1"1"'- 

to-tail connectivity of the line primitives, and arbitrary connections to the cir- 
cle along i t s  circumference, the grammar undei consideratjon has p r o d ~ c t i o n s  
of the Eortn 

The ranking functions in this cass a re  r(cr) = (0, I ) ,  r ( h )  = r ( d )  = (11, 
r ( e )  = (0. I ), and r ( c )  = ( 2 ) .  Restricting application of productions 2 ,4 ,  a t ~ d  
6 to the same numbex of times would generate a structure in which all three 
legs have the same length. Sinlilal.ly,requuing application of productions 4 and 
6 the same number of times would produce a structure that is symmetl-ical about 
its vertical axis. This type of semantic information is similar to the earlier dis- 
cussion in connec t ion  with Table 12.1 and  the knowledge base of Fig. 1.23. Rt; 

Tree automata 

Whereas a conven t iona l  f ini te  automaton scans an input string synlbol by sym- 
bol from left lo right, a tree aulomaton must begin simultaneously at each node 
on the frontier ( the  leaves taken in order  h o r n  left to right) of an input tree 
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and proceed along parallel. paths toward the root. Specifically, a frorzriev-to-roo/ 
unronzoton is defined as 

A, = (a, F ,  (,fk I k E x}) ( 12.3-9) 

where 

Q i s  a finite set of states, 

F, a subset of Q, is a set of f ina l  states, and 

fk  is a relation in Q"' x Q such that 172 is a rank of k. 

The notation Q"' indicates Lhe Cartesian product oC Q with itself j n  times: 
Q'" = Q X Q X Q X . . .  X Q.From the definition of the Cartesian product, 
we know that this expression mcans the set of all ordered m-tuples with el- 
ements From Q. For example, i f  m = 3, than 0" Q X Q X Q = { x ,  y ,  
Z I X E Q ,  y ~ Q . z ~ Q ) . K e c a l l  that arelation R f r o n l a s e t A  t o a s e t l l i s a  
subset of the Cartesian product of A and B;  that is, R A X B. Thus a rela- 
tion in Q"' X Q is simply a subset of the set Q"' X Q. 

For a n  expansive tree grammar, G = (N, C, Y ,  I- ,  S), w e  construct the cor- 
responding tree automaton by letting Q = N ,  with F = ( S )  and, for each sym- 
bol cr in C.,defining a relationfk such that (XI ,  X2,. . . ,X,,,, X) is inJk i f  and only 
if rhere is in G a production 

For example, consider the tree grammar G = ( N ,  X,  P ,  u, S ) ,  with N = {S, X), 
X = (a, 6, c, d ) ,  productions 

and rankings r ( n )  = {O) ,  r ( b )  = { 0 ) ,  r ( c )  = ( 1  }, and r ( d )  = { 2 ) .  The COY- 

responding tree automaton. A, == ( Q ,  F ,  {fk 1 k E x)), is specified by letting 
Q = {S.X), F = {S),and { , h { l k ~  B} = {f, ,f , , f , ,~~,},where thc I-elationsare 
defined as 

f, = ((0. X )  ), arising from production X -+ n 

.fh = {(a, x)), arising from production X + b 
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and 

f;, = {(x, X. s ) ) ,  arising from production S i d 

/\ 
; \, 

The interpretation of rclatjonf,, is that a node labeled a with no offspring (hence 
the null symbol 0) is assigned state X. The interpretation off, is that  a node la- 
beled c, with one offspring having state X, is assigned state X. The interpreta- 
tion of relation f ,  is that a node labeled d with two offspring, each having slate 
X, is assigned state S. 

In order to see how this tree automaton goes about recognizing a tree gene]-- 
ated by the gi.ammar discussed earlier, consider the tree shown in Fig. 12.29(a). 
Automaton A, first assigns states Lo the frontier nodes n and b via relations,[, and 
hl, respectively. In this case, according to these two relations, state X is assigned 
Lo both leaves, as Fig. 12.29(b) shows. The auto~natoil now moves up one levcl 
from the frontier and makes a state assignment to node c on the basis of i. and 
the stale of this node's offspring. The state assignment based on.f,, again is X, as 
indicated in Fig. 12.29(c). Moving up one more level, the auto~naton encounters 
node d and, as its two offspring have been assigned states, relation,f,,, which calls 
for assigning state S to node d ,  is used. Because this is the last node and the  state 
S is in F, the automaton accepts (I-ecognizes) the tree as being a valid member of 
the language of the lree grammar given earlier. Figure 12.29(d) shows the final 
represenla tion of the stale sequences followed a1 ong the frontier- to-root paths. 

FIGURE 12.29 
Pi.ocessing stages 
of a frontier-to- 
root tree 
automaton:  
(a) Input  lree. 
(b) State 
assig~lrnent to  
frotitier nodes. 
(c) Slate 
assignmenl to 
intermediate 
nodcs. (d) State 
assignmenl to 
root node. 
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EXAMPLE 12.13: 
'Use of tree 
grammars lor 
recognizing 
events in bubble 
c h a ~ ~ ~ b c r -  images. 

FIGURE 12.30 A 
bubble chamber 
pl~otogroph. (Fu 
and Bhal-gava.) 

';"' Images of bubble c l ~ a m b e ~  events are taken I-outinely during experiments jn 
high-energy pllysics in which a beam of pariicles of known properties is direct- 
ed onto a taxget of known nuclei. A typical event consists of tracks of secondary 
pa~.ticles emanating from tlie point of collision, s u c l ~  as the example shown in 
Fig. 12.30. The incoming tracks are the horizontal parallel. lines. Note the natural 
tree structure of the event near the middle of the photograph. 

A typical experinlent produces hundreds of tl~ousands of photographs, many 
of which do not contain events of interest. Examiriing and caregorizing these 
photograpl~s is tedjous and time-consuming for a Iluman interpreter. tlius 
creating a need for automatic event recognition techniques. 

A tree grammar G = {N, X, P, r ,  S) can be specified that generates trees 
representing events typical of those found in a hydrogen bubble chamber as a 
result of incoming positively charged particle streams In this case, N = {s, X I ,  
x~}, X = { ( I ,  b ) ?  and the primitives a and b are interpreted as follows: 

u: n convex arc 
b u concave arc. 

The produclions in P are 

The I-ankings arc r ( n )  = (0, 1,2,4,6) and  r ( D )  = {O, 1 ).The blxnching pro- 
ductions represent the  number of tracks emanating from a collision, which occur 
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"Ti 
" 'i 

I FIGURE 12.31 

I (a) Coded event 
from Fig. 12.30. 

i' (b) Corresponding 

T 
tree representation. 
(Fu and Bhargava.) 

k\ 
b h b  

I I I 
b b b  

I I 1  
b b 11 

I 
b b 

in pairs and usually do not exceed six. Figure 12.31(a) shows the collision event 
in  Fig. 12.30 segmented into convex and concave sections, and Fig. 12.31(b) 
shows the corresponding tree representation. This tree, as well as variations of' 
it, can be generated by the grammar given above. 

TJle tree automaton needed to recognize the types of trees just discussed is 
defined by using the procedure outlined in the preceding discussion. Thus, 
A, - (Q. F ,  { f k  1 k E z)) is specified by letting Q = { s ,  X, ,  X,) ,  F = {S), and 
{f, 1 k E Z) = {fo,fh}.The relations are defined as fa = { ( s ,  s), (x, , X 2 ,  S ) ,  XI ,  
x , , x , . x , , ~ ) .  (x, ,x, ,x, ,  x,,x,,x,,s), (x,,x,), (0,~,)) andf, = { X*, 

tree in Fig. 12,31(b). 

i 
x~) ,  (@,A'..)). we leave it as an exercise to show that this automaton accepts the 

a 

Learning 

The syntactic recognition approaches introduced in the preceding discussion re- 
quire specification of the appropriate automata (recognizers) for each class under 
consideration. In simple situations, inspection may yield the necessary automa- 
ta. In more complicated cases, an algorithm for learning the automa ta from sarn- 
ple patterns (such as strings or trees) may be required. Because of the one-to-one 
correspondence between automata and grammars described previously, the 
learning problem sometimes is posed in terms of learning gramn1ar.s directly 
from sample patterns, a process that  usually is called grammatical inference. Our 
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focus is  on learning finite automata directly from sample pattern strings.The ref- 
erences a t  the end of this chapter provide a guide to  methods lor learning tree 
grammars and automata. as well as other syntactic recognition approaches. 

Suppose that al! patterns of a class are generated by an u n k ~ ~ o w n  grammar 
G and that a finite set of samples Ri with the property 

is available.Tl~e set R" , called a positive sample set, is simply a set of training pat- 
terns from the class associated with grammar G. This sample sel is said to be 
srrlrcrlrrnlly con~pieie if each produclion in G is used to generate a t  least one 
element of R". We want to learn (synthesize) a finite automaton A,- that will 
accept the strings of Ri and possibly some strings that resemble those of R'. 

Based o n  the definition of a finite automat011 and the cnrrespondence be- 
tween G and Af  , i t  follows that R+ ZX:, where Zs' is the set of all strings com- 
posed of elements from X. Let z in C* be a string such that i u !  is in R' for some 
20 i n  Xi'. Foi- a positive integer Ic, we define the k rail of z with respect to R+ as 
the  set A(z ,  R+, k ) ,  wbere 

h(7, R-', k )  = {w zto ill R+. Iu?I c k ) .  (12.3-1 1) 

I n  other words, the k tail of z i s  the set of strings la with the properties (1) z?i) 
i s  in R", and (2) the length of 20 is less than or equal to k. 

A procedure for learning an automaton A!(R+. k )  = (0, Z. 6,  q,,, F) from a 
samplc set R" and a particular value of k consists of letting 

and. for each (1 in 2, 

S ( q .  n )  - {q' in QJq '  = h(zo ,  R'. k ) ,  wit11 y = h(z. Rt. k ) ) .  (12.3-13) 

In addition, we let 

and 

where h is t h e  empty string ( t h e  string with no  symbols). We note that  the 
automaton A/.(R+. k )  has as states subsets of the set of all k tails that  can be 
constructed from Xf. 

EXAMPLE 12.14: " '  Suppose that R' = { a ,  ah,nbb) and k = 1.Tnen from the preceding discussion, 
Inferring a finite 
a utomalon f ~ o m  
sample patterns. 

= (4 
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z = nb. h(nh, Rt. I)  = {A, b) 

= 91 
z = abb, h(abb, R+, 1) = { A )  ' 

In this case, other shings z in C* yield strings ,stu that do not belong to R', giv- 
ing rise to a Fourth state,denoted LIB, which corresponds to the condition that is 
the 11ull set. The states, therefore, are q,, = { n ) ,  q, = {A,  n ) ,  q2 = {A) ,  and q w ,  
which give the set Q = {q,,, q,  . q,, qn}.~1though the states are obtained as sets ol 
symbols ( k  tails), only the state labels q,,, q , ,  . . . are used in forming the set Q.7'he 
next slep is to obtain the transition functions. Since % = h ( ~ ,  R' .  1). it follows that 

~ ( c ~ , ,  a) - h(ho, R-I, I )  = h(n,  R', 1) = q ,  

and 

Similarly. q l  = h(a. K'_ 1 )  = h(ah. R+, 1) and it follows that 

Also. 8 ( r j , .  h 1 h(oh, Ri, 1) = q ,  a n d  s ( ~ , .  b )  3 h(abh, R ' .  1) = 42; that is, 
~ ( q ,  , h )  = , } Following the procedure just described gives 
f i ( ~ j 2 .  [ I )  = 8 I 42, h )  = 6(qa. o) = 6(rl,, b )  = q@.The set of Final states contains 
those states that have the empty string A in their k-tail representation. In this 
case, ql = {A. h )  and q, = { A } ,  so F = { q , ,  q,). 

Based on these results, the inIerred automaton is given by 

where Q = {yo. y,. q,. qa). Z = {o, b} .  F = lq , ,  y2}, and the transition func- 
tions are as given above. Figure 12.32 shows the state diagram. The automaton 
accepls strings of the form a, ah, abh,. . . ,ah", which are consistent with the given 
sample set. $2 -> 

FIGURE 12.32 
Srate diagram for 
the finite 
auloma[on 
inferred from the 
sample set 
K' = {o ,  ah,  
nbb). 
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FIGURE 12.33 
R d a  tionship 
between 
L[A, (R+ ,  kit] and 
k.The value of k,,, 
is such that 
k,,, 2 (length of 
the longest string 
in R'). 

The preceding exaniple shows that the value of k controls the nature of the 
resulting automaton. The following properties exemplify the dependence of 
A ~ ( R + ,  k )  on this parameter. 

Property 1. R+ C L[A,(R+, k ) ]  for all k 2 0, where L [ A [ ( R + ,  k ) ]  is the lan- 
guage accepted by A,(R+, k ) .  

Property 2. L [ A ~ ( R + ,  k ) ]  = R' i f  k is equal to, or greater than,  the length 
of the longest string in R'; L [ A ~  (R', k ) ] = Xf if k = 0. 

Property 3. L[A,-(R', k + I )  i L[A ,(R-', k ) ] .  

Property 1 guarantees that A ~ ( R " ,  k )  will, as a minimum, accept the strings in 
the sample set R+. If k is equal to, or greater than, the length of the longest 
string in Rt, then by Property 2 the automation will accept only the strings in 
Ri. If k = 0, A ~ ( R + ,  0 )  will consist of one state yo = { A ) ,  which will act as both 
the initial and final states. The transition functions will then be of the form 
6(qo,  a)  = qofor n in Z-Therefore. L[A,(R+, o)] = X*, and the automaton will 
accept the empty string A and all strings composed of symbols from C. Finally, 
Property 3 indicates that the  scope of the language accepted by A[(R', k )  de- 
creases as k increases. 

These three properties allow control of ihe nature of A,-(R', k )  simply by 
varying the parameter k .  If L[A,(R'-, k ) ]  is a guess of the languagc Lo from 
which the sample R' was chosen and if k is very small, this guess of L,, will con- 
stitute a liberal inference that may include most 01. all of the stri~igs in X*. How- 
ever, if k is equal to the length of the longest string in R', the inference will be 
conservative in the sense that A,(R', k )  will accept only the strings contained 
in R". Figure 12.33 shows these concepts graphically. 
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'P? Consider the set R* = {cuanh, bbaub, caab, bbah. cab, bbb, cb).  For k = 1, EXAMPLE 12.15: 
Following the same procedure used in the preceding example gives 

1. z = A, 
2. z = c ,  
3. z = o n .  
4. z = cb, 
5. z = c a n ,  
6. z = cab, 
7. z = cana, 
8. z 3 c a a b ,  
9. Z = C L ~ L L C ~ ~ ,  

10. z = b, 
1 2 = bb, 
12. z = bbrt, 
13. z = bbb. 
14. z = bbuct, 
15. 7: = hhah. 
16. z = bhnc~b, 

The au ton~a ton  is 

with Q = y,. qo}. P = (a. 6 ,  c } ,  F = {qe) ,  and the transitions shown in 
the state diagram in Fig. 12.34.To be accepted by the automaton, a string must 
begin wilh a, h,or  c and end with a symbol b. Also,stri~~gs with repetitions of a, 
h. 01- c are accepted by A ~ [ R + ,  I ) .  Fs7 

The principal advantage of the preceding method is simplicity of imple- 
mentalion. The synthesis procedure can be simulated in a digital co~nputer with 
a modest amount of e l fo r t .~he  main disadvantage is deciding on a pr6pcr valuc 
for k ,  although this problem i s  simplified to some degree by the three proper- 
tics discussed earlier. 

Another  exan-lple 
ot' i l ~ f e r ~ i n g  an 
a u t o r n a t o i ~ s o n ~  a 
~ i v e n  set of 
pa tlcrns. 

FIGURE 12.34 State  diagram for the automaton A/ (x+ ,  1) inferred from the sample 
set R k  = {cauah, hbalrb, caab, bbab, cab, bbb. cb) .  
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Summa y 
Starting with Chapter 9, our treatment of digital image processing began n lransitioli 
from processes whose out puts  a r e  images to processes whose oulputs are a ttribules 
about images, in the sense defined in  Section 1.1. ALthough the inaterjal in the pi.esent 
chapter is introductory in nalure,  the  topics covered are fundamental to understanding 
the state of  the arl in object recognition. As nientjoned at  the beginning or Illis chapter, 
recognition of individual objects is a logical place to conclude this book. To go pas[ this 
point. wc need concepts that  are beyond the scope we set for our jouimey back in Sec- 
tion 1.4. Specifically, the next logical step ~vould be the developn~ent of irnage analysis 
methods whose proper developmenr requires concepts from machine intelligence. 

As mentioned in Sections 1.1 and 1.4, machine intelligel~ce and seine areas chat depznd 
on i t ,  sucll as scene a~iaiysis and computer vision. still are in their relatively early stages 
oi practical development. Solu~ions of image analysis prohleins loday are characterized 
by heuristic approaches. While these approaches are indeed varied, most of them share a 
significant base of techrliques that are precisely the methods covered in this book. 

Haviug concluded s(udy of [he material jrl the preceding twelve chaplers, llie reader 
is now in thc positjon of being able Lo understand the princjpal arcas spanning ~ l l e  field 
o f  digital image processing, borh from a theoretical and practical poinr of view. C'are was 
rakel) throughout all discussions to lay a solid foundation upon wh~cli further study of 
ihis  and  related fields could be based. Given the task-specific i~ature  of nratly imaging 
problems. ; I  clear understanding of basic principles cnhances signjficantly the cl~ances lor 
the i r  successful solution. 

References and Further Reading 
Backgi~ound material for Sec~ions 12.1 througli 12.2.2 are the books by Duda, I-l;lrt,and 
Slork [200 t ] ,  and by Tou and Gonzalez [1974]. The survey article by Jail) et al. [2000] 
also is of inccrest.The book by Principe et al. [L999] presents a good overview of ncur-  
a1 nerworks. A special issuc of IEEE T r o ~ s  Im.uge ProcrssD?g 119981 is  worlh cornpiil-ing 
with a similar special issue ten years earlier ( IEEE Cor7rpu1er [ I  988]).The material pre- 
sented in Section 12.2.3 is inrroducro~.y. In  fact, the neural network model used in that  
discussion is one of numerous models proposed over the years. However, the model we 
discussed i s  representative and also is used quite extensively in image processing.-he ex- 
ample dealin2 wi th  the I-ecognilion of dislorred shapcs is  adapted from Gupta et al. 
11990, 19941. The pape,r by Gori and Scarselli [ I  9981 discusses the classilica tion power o f  
tnultilayer neural networks An approach reporred by Ueds [2000] based 011 using lin- 
ear combinations of neural nerworks to achieve nijniinum classification error is good 
additional reading in this context. 

Foi. additional rcading ou the malerial in Section 12.3.1, see Brihiesca and Cuzrnan 
[1980]. On string matching see Sze and Yang 11 9811, Ooln~nen and Lokc  [1997], and 

. . Gdalyahu and Weinshall 119991. References for Sections '12.3.3 and 12.3.4 a r c  Gonzalez 
and Thornason [1978], Fu 1198a. and B u n k  and Sanleliu [19911]. Sce alsoTanaka [1995], 
Vailaya ct a\.  [1998],Aizaka and Nakarr~ura [1999], and Jonk et al. 11999). 

Scc ~nurL- tr,\nl cover 

Dcia i lzd ~ o l u ~ i o n s  to (lie Problems 
prohlel~~s marked with a 
star cnll hc lou11d in tl,e 

12.1 (a) Conipute the dccision functions of a niinirnum distance classifier For the pat- 
boot W S ~  \ i ~ e  tilc <ilc terns show-1'1 in Fig. 12.1.You may obtain the required tnean vectors by (care- 
also cont,iins ~ u g g c ~ ~ e d  ful) inspection, 
prulwls I\ascC on chc 
rnnlcrii\l i ~ !  lllk chap~cf.  (b) Sketch the  decision surfaces irnpleniented by the decision functions i l l  (a). 
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Sliow that Ecls ( I  2.2-4) and (12.2-5) perform the same function in terms of pattern 
classification, 

Sliow that  the  surface given by Eq. (12.2-6) is the pel-pcndicular bisector of the 
line Joining the n-dimensional points mi and mj. 

Show how the niiniinum distance classifier discussed in connection with Fig. 12.7 
could be implemented by using W resist.or banks (W is tbe number o-I classes), a 
summing Junction at each bank (for summing currents),a~ld a maximum sclcctor 
capable of selecting tlie maximu111 of W inputs, where the inputs  are cunents .  

Show that t h e  correlation coefficient of Eq. (12.2-8) has values in the range [- 1, 1 1. 
Hinf :  Express y ( x ,  y)  in vector form, 

An experiment produccs binary images of blobs chat are nearly elliptica1 in 
shape (see the following figure).The blobs are of three sizes, with the average 
values of the principal axes of the ellipscs being (1.3. 0.7), (1.0, 0 . 5 ) .  and 
(0.75,0.25). The dimensions of these axes vary &TO% about their average val- 
ues. Develop an  image processing system capable of rejecting incomplete or 
overlapping ellipses and then classifying the ~.emaining single ellipses into one 
of thc three size classes given. Show your solution in block diagl-am form, giv- 
i n g  specific details regarding Lhe operation of each block. Solve the  classifica- 
tion probleln using a minimum distance classifier. indicating clearly how you 
would go about obtaining training sa~nples R I I ~  how Y O U  W O I I I ~  use these 
sanlples to I-rain the  classifier. 

The following pattern classes have Gaussian probability density functions: wl ; 

{(o. O)'., (2. 0)'. (2,2)", (0; and M Z :  {(4- 4)>'', (6, 4)'., (6,6)', (4, 6)'.}. 
I (a) A S S U ~ E  that ~ ( w , )  = ~ ( w , )  = 7 and obtain tlle equation of the Bayes 

decision boundary hetween these two classes. 

(b) Sketch the boundary. 

Repeat PI-oblern 12.7, hut use the following patrern classes: w ,  : ((-1.0)". (0. -l)", 
(1, o)', (0.1)') and w z :  ((-2, O)', (0. -2 ) ' ,  (2, o ) ~ ,  (0.2)"). Observe that these 
classes are n o t  linearly separable. 

Repeat Problem 12.6, but use a Bayes classifier (assume Gaussian densities). Jn- 
dicate clearly how you would go about obtaining training samples and how you 
would use these samples Lo train the classifier. 

The Bayes decision fui~ctions d , ( x )  = y ( x j w i ) ~ ( w j ) .  j = 1, 2. -.. , W ,  were de- 
rived using a 0-1 loss function. PI-ove that these decisioli functions minimize the 
probability of error. (Hint: The  probability of error p ( e )  is 1 - p ( c ) ,  where p(c) 
is the prohahilily of being corrccl. For a pattern vector x belonging to class m i ,  
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~ ( c / x )  = p(w , /x ) .  Find p(c)  and show that p ( c )  is maximum [ p ( e )  is minimum] 
when p ( x / q )  ~ ( o , )  is maximum.) 

12.11 (a) Apply the perceptron algorithm to  the following pattern classes; w , :  
{(o, 0, o ) ~ ,  (1, 0, O)', (1 ,  0, 1 l T ,  (1, I ?  0)') and w 2 :  { ( o .  0, I) ' . ,  (0. 1, I ) ' ,  
( 0 , l .  o ) ~ ,  (1,1, 1)'). Let c  = 1,and w ( 1 )  = ( I ,  -2. -2,0)'. 

(b) Sketch the decision surface obtained in (a). Show thc pattern classes and 
indicate the positive side of the surface. 

ltl2.12 The perceptron algorithm given in Eqs. (12.2-34) through (12.2-36) can be 
expressed in a more concise form by n~ultiplying the palterns of class w,  by - 1 ,  
in which case the correction steps in the algorithm become w(k + 1) = w ( k ) ,  if 
~ ' ( k ) ~ ( k )  > 0, and w ( k  + 1) = w ( k )  + cy(k) otherwise. This is one of sever- 
al perceptron algorithm formulations that can be derived by slarting from the 
general gradient descent equation 

where c > 0: J ( w ,  y) is a criterion funclion, and the partial derivative is evaluated 
at  w = w ( k ) .  Show that Lhe perceptron algorithm formulation is obtainable from 
this general gradient descent procedure by using the criterion function 

I 
J(w, y )  = - ( /wTy /  - w T y ) ,  where largl is the absolute value of the argument 

2 
(Note: The partial derivative of w r y  with ~.especL to w equals y . )  

12.13 Prove that the  perceplron training algorithm given in Eqs. (12.2-34) th~.ougli 
(12.2-36) converges in a finite number of steps i f  the training pattern sets are lin- 
early separable. [Hint: Multiply the patterns of class w 2  by -1 a ~ l d  consider a [Ion- 
negative threshold, T. so  that the perceptron training algorithm (with c  = I )  is 
expressedas w(k + 1)  = ~ ( k ) , i f w ~ ( k ) ~ ( k )  > T,and w(k + 1 )  = w ( k )  + y ( k )  
otherwise. You may need to  use the Cauchy-Schwartz inequality: 
Ila1211bll' 2 (aTb) i ]  - 

*12.14 Specify the slructure and weights of a ncural network capable of performing 
exactly the same function as a minimum distance classifier for two pattern class- 
es in n-dimensional space. 

12.15 Specify the structure and wcights of a neural network capable of perfol-ming 
exactly the same function as a Bayes classifie~. for two pallern classes in  
n-dimensional space. The classes are Gaussian with different ~ n e a n s  but  equal 
covariance matrices. 

*12.16 (a) Under  what conditions a re  t h e  neural networks in Problems 12.14 and  
12.15 identical? 

(b) Would the generalized delta rule for multilayci- Seedforward neural [jetworks 
developed in Section 12.2.3 yield the particular neural network in (a) i f  trained 
with a sufficiently large number of samples'? 

12.17 Two pattern classes in two dimensions are distributed in such a way [hat the pat- 
terns of class w ,  lie randomly along a circle of radius r ,  . Similarly. the patterns of 
class w, lie randomly along a circle of radius r z ?  where r2 = 2r, .  Specify the slruc- 
ture of a neural network with r l ~ e  minimum number of layers and nodes needcd 
to classify properly, the patterns of these two classes. 
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* 12.18 Repeat Problem 12.6, but use a neural aetwork. Indicate clear.ly how you would 
go about obtaining training samples and how you woilld use these samples to 
train the classifier. Select the simplest possible neural network tha1,in your opin- 
ion, is capabIc of sol.ving the problem. 

12.19 Show that [he expression hj(l,) = Oi(l - o,) giver, in Eq. (12.2-71), where A;(!;) 
= dh,(l,)/rll,. follows from Eq. (12.2-50) with 8,, = 1. 

+12.20 Show that the distance measure D(A.  B )  of Eq. (12.3-2) satisfies tlre properties 
given in Eq. ( 1  2.3--3), 

12.21 Show that 0 = max(lol, Jh l )  - a in Eq. (12.3-4) is 0 i f  and  only i f  u and h are 
identical strings. 

l2.22*(a) Specify a finite aulornaton capable of recognizing pattern strings of the form a6"(1. 

(b) Obtain the corresponding regular grammar from your solution in (a) .  (Do 
not solve by inspection.) 

12.23 Give a n  expansive tree grammar for generating images consisting of alternating 
1's and 0's in both spatial directions (in a checkerboard pattern). Assume that 
the top left element is a 1 and that all irnages terminate with a I as the bottom 
left element. 

k12.24 Use the learning procedure specified irl Eqs. (12.3-12) through (12.3-15) to learn 
a Iinitc automaton capable of recognizing strings of the form uhna, with 11 > 0. 
Start with the  sample set (aha, abba, obhhu). If this set is insufficient for the al- 
gor.ithm to discover the iterative regularity of symbol h, add more sample strings 
until i l  can. 

12.25 Show that the tree automalon given jn connection with Fig. 12.30 accepts the free 
given in Fig. 12.31(b). 

.12.26 A certain factory mass produces small American flags tor sporting events.'fllc 
quality assurance learn has observed that ,  during periods of peak production. 
some printing n~achines have a tendency to drop ( ra~~domly)  between one and 
three stars and one or two en tire stripes. Aside from these errors, t tle flags are pel-- 
iect in every other way. Although the flags colitaining errors represent a snlatl 
percentage of total production, the plant manager decides lo solve the problem. 
After much invesligation, he concludes that au~ornatic inspection using image 
processing techniques i s  the most economical way to handle the problem. The 
basic specifications are as fol1ows:Thc flags are approximately 7.5 crn by 12,5 cm 
in s i te .They move lengthwise down t h e  production line (individually, but with a 
k1S0 variation in orientation) a t  approxiinately 50 cm/s, with a separation be- 
Lween flags of approximately 5 cm. In allcases,"app~~oximately"means &5%.The 
plant manager hires yo11 to dcsign a n  image processing system for each produc- 
tion line. You are told that cost and simplicity are i~nportax~t parametel-s in de- 
termining lhe viability of your approacll. Design a complete system based 011 the 
model of Fig. 1.23. Document your solution (including assumptions and specifi- 
cations) in a brier (hut clear) writ1e.n report addressed to the plant nlanagcr. 
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Index 

A 
Absolute ADI, 627-628 
Accumulative difference image 

( ADI), 627-628 
Accumulator cells, 588 
Achromatic light, 44,283 
Acquisition, 45-5 1 
Activation function, 714 
Adaptive filters, 237-243 
Adaptive mean filter, 241-243 
Adaptive median filtering 

algorithm, 241-242 
Adaptive thresholding, 596, 

600-607 
Adaptive transform coding, 470 
Additive cost function, 400 
Additive uniform noise, 238 
Additivity, 254 
A DI, 627-628 
Adjacency, 66-68 
Admissibility criterion, 377 
Aliasing, 62-63 
All-systems-safe colors, 292 
Alpha-trimmed mean filter, 

235-236 
ALU, 28 
AnaIysis trees, 396 
Angiograrns, 9-1 1,583 
Angiography, 9-11,583 
Apollo mission, 5 
Approximation pyramids, 

351-352 
Area, 66'1 
Arithmetic coding, 444-446 
Ari thmeticilogic operations, 

108-1 16,522 
Arithmetic logic unit (ALU), 28 
Arithmetic mean filter, 231 
Array sensor, 46 
Artificial intelligence, 2 
Astronomy, 13 
Augmented pattern vector, 715 

Au tocorrelation, 206 
A 

coefficients, 414 
theorem, 206 

Automata 
finite, 738 
string recognizers, 738 
tree, 741 

Automated visual inspection, 
16-17 

Automaton. See also Finite 
automa ton 

frontier-to-root, 742-743 
structural methods example, 739 
syntactic recognition, 735 

Average value, 155,210 
Averaging filters, 119,231,581 
Axis convention (images), 55 

B 
Background point, 595 
Back propagation training, 

722-726 
Band-limited functions, 62 
Bandyass filters, 245-246 
Bandreject filters, 244-245 
Bandwidth compression, 410 
Bartlane cable picture 

transmission system, 3-4 
Basis functions and images, 

471473,475 
Bayes classifier, 705-710 
Bayes decision function, 707 
Bell Laboratories, 5 
Bidirectional frame (B-frame), 

51 1 
Bilinear interpolation, 64,273 
Binary compression technique 

comparison, 455-456 
Binary entropy function, 429 
Binary image 

compression 
error-free, 455 
standards, 493 

logic operations, 522 

morphology, 520-549 
Binary information source, 

428-429 
Binary symmetric channel (BSC), 

428-429 
capacity, 429 

Binary symmetric source, 436 
Binary tree, 394 
Biorthogonal, 358 

coiflet family, 358 
spline family, 358 
wavelets in lossy compression, 

487 
Bipolar impulse noise, 225-226 
Bit allocation, 480 
Bit plane 

coding, 448-456 
decomposition, 445 
examples, 450,451 
slicing, 86-87 

Blind deconvolution, 256 
Blind spot, 36 
Blobs, 169 
Block code, 442 
Blocking artifact, 477 
Block random variable, 

430-43 1 
Blurring, 259,264,267,280 
Bone scan, 8 
Boost filtering, 132,187 
Boundary, 67,528 

basic rectangle of, 654 
curvature, 654 
decomposing, 649 
descriptors, 653-660 
detection, 585-595 
diameter, 653 
eccentricity, 654 
eigen axes, 683 
extraction, 535 
length, 653 
major axis, 654 
minor axis, 654 
pixels, 66-68 



780 fl Index 

Boundary characteristics 
histogram improvement. 

608-6 10 
local thresholding, 608-610 

Box filter, 120 
Brighl-light vision, 36 
Brightness, 44,284,286 
Brightness adaptation, 38-42 
BSC, 4 2 8 4 2 9  
Bubble chamber image 

recognition, 744-745 
Buffer, 51.1 
Butterworth handreject filters, 

244 
Butterworth highpass filters, 183 
Butterworth lowpass filter, 

173-175 
Butterworth notch fiIter, 246--248 

c 
CAC, 452 
Canny edge detection, 634 
CAT. 5 
Cartesian product, 55 
Cataracts, 36 
Catchment basin, 61 7 
CCD imaging, 37 
cc rrr, 4934  95 
CDF, 92 
Central moments, 673 
Chain codes 

direction numbers, 644-645 
first difference, 645 
representation, 644-646 

Channel alphabet, 426 
Channel decoder, 421,423424 
Channel encoder, 42 1,423424 
Channel matrix, 426 
Charge-coupled device (CCD) 

imaging, 37 
Chessboard distance, 69 
Choroid, 35,36 
Chromaticity, 286 
Chromaticity diagram, 287 
CIE (Commission Internationale 

de liEclairage) 
chromaticity diagram, 287 
standards, 284 

CIELAB, 322 
Ciliary body, 36 

Circular sensor strip. 48 
City-block distance, 68 
Cleanup, 509 
Closing, 528-532 
CMS, 322 
CMY (cyan: magenta, yellow), 

290 
c o l o ~  models, 294-292 

CMYK (cyan, magenta, yellow, 
black) 

component example, 317 
models, 290,294 
scan, 316 

Code(s) and Coding 
arithmetic, 444 
B, 443 
bi t-plane, 448 
block, 442 
block truncation, 514 
constant area (CAC), 452 
contour, 454 
differential, 457 
distance of, 423 
double delta (DDC). 455 
efficiency of, 432 
Gray, 449 
Harnmjng, 423 
hierarchcical ,514 
Huffman, 441 

truncated. 443 
hybrid, 513 
instantaneous, 442 
interframe, 513 
Limpel-Ziv-WeIch (LZW), 446 
minimum distance of, 423 
N-largest. 483 
predictive 

lossless, 456 
lossy, 459 

previous pixel, 457 
rate of, 433 
redundancy, 41 1414  
relative address (RAC), 453 
run-length (IZLC), 417,452,453 
shift, 444 
subband, 354 
theorems, 430-437 
threshold,,480,482 
transform, 467 
uniquesly decodeable, 442 

variable-length, 413,440 
near optimal, 442 

wavelet, 486 
zonal, 480 

Coefficients 
autocorrclation, 41 4 
bit modeling. 509 
correlation, 703-704 
expansion, 364 

Haar example, 37'1-372 
filter subimage, l I6 
JPEG, 500 
scaling function. 369 
rransform, 471,474 
wavelet function. 370 

Cohen-Daubechies-Feauveau 
wavelets, 490 

Coiflet family, 358 
Color balancing 

co~.rections, 325 
exarnpte, 323 

Color circle, 3 19 
Color coded image, 307 
Color coding 

monochrome X-ray image, 306 
multispectral images, 31 1-313 

Color cornplen~ en ts, 318-320 
transformations, 319 

C ~ l o r  conversions, 299 
Color con-ections, 322 
Color edge detection, 335-339 
Color fundamentals, 283-289 
Color garnul, 288 
Color image co~npression, 

342-343 
example, 342 

Color image noise, 339-342 
Color image processing, 26, 

282-344 
exercise problems relared to. 

344-348 
full color. 313 
pseudocolor, 302 

Color image segmentation, 
33 1-339 

Color image sharpening, 330 
Color image smooching, 328-330 
Color managenlent systems 

(CMS), 322 
Color mapping fbnctions, 3 15 



a Index 781 

Color models, 289-301 
CMY (K), 294 
converting between RGB and 

HSI, 299 
HSI, 295 
L*a*b*, 322 
RGB, 290 
R'G'B' .506 
YIC,,Ch, 506 

Color pixel, 291 
Color profiles, 322 
Color segrnen tation, 33 1-339 
Color slicing, 320-321 
Color space, 289-301. See also 

Color models 
Color spectrum, 283 
Color system, 289-301. See also 

Color models 
Color translormations, 315-327 
Colorimetric, 322 
Commission Internationale de  

I'Eclairage (CIE) 
chroinaticity diagram, 287 
standards, 284 

Communication sys tem model, 
430 

Compactness in regional 
descriptors, 661 

Compression, 27,409-5 13. See 
also Codes(s) 

bandwidth, 410 
binary technique comparison, 

455456 
by quantization, 418 
by removing redundancies, 41 1 
color image, 342-343 
description by principal 

components, 681 
error-free, 440459 
error-free binary, 455 
fundamentals, 411420 
IOSSY, 410,440,459-492 
ratio, 411 
standards, 492-5 12 

binary image, 493-498 
continuous tone image, 

498-510 
JPEG, 498 
JPEG 2000,505 
video, 510-512 

system model, 421 
types, 410 

Computer 
history of, 4 
image processing system, 29 
vision, 2 

Computer generated illumination 
function, 597 

Computer generated reflectance 
function, 597 

Computerized axial tomography 
(CAT), 5,49 

Concave boundary descriptor, 
654 

Conditional average loss, 704 
Conditional average risk, 704 
Conditional entropy function, 426 
Cones, 36 

distribution, 37 
Cone vision, 36 
Conjugate quadrature filters 

(CQFs), 358 
Conjugate symmetry. 155,196, 

210 
Conjugate symmetry 
Connected components, 67 

extraction, 536 
topological descriptor. 661 

Connected set, 67 
Connectionist models, 71 3 
Connectivity, 66 
Constant area coding (CAC), 452 
Constant quadrature filters, 394 
Constrained least squares 

filtering, 266269 
Consultative Committee of the 

International Telephone 
and Telegraph (CCITT), 
493494 

makeup codes, 495 
terminating codes, 494 

Context free grammars, 736-737 
Continuous tone image 

compression standards, 
498 

Continuous wavelet transform 
(CWT), 372,376-377 

Contour point, 65 1-652 
Contour tracing and coding, 454 
Con traharmonic mean filter, 232 

Contrast stretching, 77 ,8546  
Controlled redundancy, 423 
Convex 

boundary descriptor, 654 
deficiency, 649 
hull, 649 
~norphological algori tllms, 

539-541 
Convo[ution, 118 

expression, 2 11 
integral, 255 
kernel, 118 
masks, 11 8 
padding, need for, 199 
theorem, 161-162,199,205-208 

Cornea, 35 
Corner boundary descriptor, 654 
Correlation 

coefficient 
matching recognition 

techniques, 703 
object matching example, 

703-704 
cross, 206 
expression, 21 I 
finding matches, 701-702 
padding, 207 
matching recognition 

technique, 70 1-704 
theorem, 205-208 

Cosine, 21 1 
Cosmetic processing, 178 
Cost function, 400 
Covariance, 677 
Covariance matrix, 677,707 

computation, 677-678 
moment invariants, 677 

CQFs, 358 
Cross correlation, 206 
Cross modulated syntl~esis filters, 

357 
Cross sectional image, 21-22 
CT, 5 
Cubic convolution interpolation, 

273 
Curnulalive distribution function 

(CDF), 92 
Curtain of noise, 265 
Curvature boundary descriplor, 

654 



Cutoff frequency, 168 
CWT, 372.376-377 
Cyan. magenta, ycllow, 290, 

204-205 
Cyan. inagenca, yellow, black,290. 

294-295,3 16 
Cygnus Loop, 8 

D 
D-admissible, 334 
Dan1 conslruction. 620-622 
Data colnpression. See i11.so 

Image cotnpression 
descl-iption by principal 

components. 68'1 
lundatnentals, 411-420 

Data redundancy. 411 
Dau bechies o~* thonon~~a l  filters, 

360 
Daubechies wavelets, 487 
clc component, 155 
DCT. 472-477 
DDC. 455 
Dead zone interval selection, 492 
Dc.blutring filicr, 264 
Decision boundary. 698 
Decision iunclions, 698 
Dccision regions, 731 
Decision surfiace conlplcxily. 

729-732 
Decision-theoretic methods, 

698-732 
De-coder, 42 1 4 

DeconvoIution filters. 256 
Degradation (unction, 221,254 

eslimating, 256-260 
Degree of similarity, 732-733 
Dclta nlodulation (DM), 460461 
Density slicing, 303. See nlso Slicing 
Derivative operator 

gradient. 13J.577.608 
Laplacian, 129,581,60S 

Description. 27,653-687 
Descriptors. 653-687 

boundary. 653 
Fourier, 655-659 
moments, 659,672 
principal colnponents 675 
~.cgion al, 660-675 

rcl atianal, 683487 
topological. 661-665 

Device-independent color model. 
322 

DFT. See Discrete Fourier 
transForm (Dm) 

Diagonal edge detection, 581 
Diagonal masks, 580 
Diameter boundary descriptor, 

653 
Differential coding, 457 
Differentia t pulse code 

rnodulalion (DPCM), 
462 

Differentia tion, 210 
Digital boundary. See Boundary 
Digital darkroom, 322 
Digi Lal edge. See Edge 
Digital f u ~ ~ c t i o n  derivatives, 125 
Digital image processing. See also 

Image 
definition of scope, 1-3 
examples! 7-25 
origins of, 3 
sleps i n ,  2.5-28 
systerlz components. 28-30 

13 igit i l l  images, 1,25-28,34-70 
See nlso Image 

examples of, 7-25 
redundancies, 4'1 1 
representing, 54-56 
zooming a n d  shrinking, 64-66 

Digitizer, 28 
Dilation 

binary, 523 
equation, 369 
gray-scale, 550 
in watersheds, 620 

Dim-light vision, 36 
Direct contour tracing, 454 
Discontinuity detection, 568-585 
Discrete cosine basis functions, 

473 
Discrete cosine t~.ansform ( DCT), 

472477 
Discrete Fourier Lransforl-n 

(DFT), 150. See al.so 
' Fourier transform 

in lossy compression, 470, 
172478 

Discrele quantities. 54 
Discrete wavetel transform 

(DWT), 372,374-376. 
379-386. Sec olso 
Wavelet transform 

using Haar function, 362-363 
Discriminant analysis, 694 
Discriminant functions, (598 
Discrimina~ion, 38 
Djslance measures, 68-70 
JJistortion measure. 434 
Distributivity, 195.210 
Divide lines, 617 
DM, 460-461 
Double delta coding (DDC). 

455 
DPCM. 462 
DWT. See Discrere wavelet 

transform (DWT) 
Dyna~nic image processi~ig, 627 
Dynamic tangc, 55,137 
Dynamic threshnlding, 596 

E 
Edge 

angle, 577 
concept, 68 
color images, 135 
deliniliun, 572 
detection, 572-585 
direction. 577 
enhancemeni, 12.5.180 
first derivative. 125. 134,573 
global processiilg, 557-590 
gradient, 136,577 
linking. 585-595 
IocaI processing, 585-587 
masks, 578,579,582, 
models, 572 
gl-adienl operators, 336,577 
modifyit~g DWT. 392 
noise, 574 
ramp. 126.573 
second derivalive. 126. 128,574. 

581 
step, 126,573 
in vector space, 335-339 



using wavelets, 391-392 
zero-crossi~igs, 573,583-585 

Edge point, 576 
Edge segment, 576 
Eigen axes, 683 
Eigenvalues, 678,680-681 
Ejgenvectors, 678,680-681 
Eight-bit fractal image, 88 
Eight-directional chain code. 

644-645 
Electromagnetic spectrum, 2,43 
Elenlent difference moment of 

order k, 669 
Empty sentence, 736 
Encoder, 421 
End-or-line (EOL) code word, 

494 
Enhanced SEM image, 107 
Enhancement. See Image 

enhancenlent 
Entropy 

first-order estimate. 438 
measures or texture, 669 
second-o~der estimate, 438 
sousce, 426 

EOL code word, 494 
equivocal ion^ 427 
Erlang density, 225 
Erlang noise, 223-225 
Erosion 

binary. 525 
gray-scale, 552 

En-or-Trce binary image 
compression, 455 

Error-free bit-plane coding, 455 
Error-free. con~pl.ession, 440459 

bit planes coding, 445-452 
lossless predictive coding, 

456459 
Euclidean distance, 68 
Euclidean vector norm, 267 
Euler's Formula, 151 
Euler's formula (description), 663 
Euler number, 661 -664 
Expansive tree grammars, 740 
Explicit quanti-zition, 508 
Exponential noise, 225 
Extended coding system, 498 
Extended [unction, 201 

Extension coding, 432 
External markers in watershed 

segmentation, 624-626 
External representation, 643 
Extraction or connected 

components, 536-539 
Eye 

diagram, 35 
light inLensity discrimination, 

39 
image formation, 37-38 

F 
False color image processing, 

302-31 3 
False contouring, 60 
Fast Fourier transform (FFT), 

208-213. See also 
Fourier transform 

Fast wavelet transform (FWT), 
372,379-387 

analysis bank, 380 
Feature, 27,693 
FFT, 208-213. See also Fourier 

transform 
Fidelity criteria, 419-420 
Filter, 77,116. See also individual 

tY Pes 
adaptive, 237 
averaging, 119,231 
bandpass, 245 
bandreject, 244, 
bank, 397 
concept, 116 
constrained least squares, 267 
design, 2 13-214,277-278 
frequency domain, 156-160 
highpass, 160,180 
homomorpl~ic, 191 
geometric mcan, 270 
inverse, 261-262 
lowpass, 119,167 
mean. 119,231 
notch, 246.248, 
order-statistics, 123,233 
padding, 205 
parametric Wiener, 270 
properties, 159 

sharpening 180. See nl,m 
Laplacian, Gradienl 

spatial, 116 
spatial and frequency domains, 

161-167 
spectrum equalization, 270 
trarlsform function, 158 
Wiener, 262 

Finite automata, 738 
Finite automaton, 739. Srr nlso 

Autonla toil 
inferring patterns, 746,749 
pattern recognition. 740 
state diagram, 747 

Finite ensemble, 425 
First derivative. 125-126,573 
First difference chain code, 645 
Fixed incremen [ correction rule, 

716 
Flooding in walershed 

segmentation, 622424 
Fluorescence microscopy, -1 1-1 2 
Focal length, 37-38 
Forward channel transition 

matrix, 426 
Forward Fourier transform, 162. 

See olso Fourier 
transform 

Four-directional chain code, 
644-645 

Fourier, Jean Baptiste Joseph, 148 
Fourier descriptors 

boundary, 655-659 
illustrat~on, 657 
properties, 659 
reconstruction examples, 658 

Fourier series, 148 
Fourie~ spectrum, 80,152,157 
Fourier transform, 149-21 3 

dc component, 155 
expression, 210 
fast, 208 
filtering, 156-191,243,261-270 
implementation, 194-214 
interference noise pattern, 250 
inverse, 150,1.54,198 
one and two dimensions, 

149-167 
phase angle. 152,154 



Fourier transform (conr.) 
properties, table of, 210 
spectrum. 152,154,210 
use in scgmcntation, 630-634 

Fovea, 36,37,38 
Fractal image, 24-25,86.110 
Frame buffers, 30 
Fredholm in~egral o l  the first 

kind, 255 
Frequency componenl, 151 
Frequency domain, 149-1.67 

definition, 151 
filter function, 204 
filtering. 156160  
Fourier lransforln. 15 I 
image enhancement, 147-214 
Laplacian, 185-187 
moving object detection, 630 
properties, 156 

Frequency rectangle, 154 
Frequency variables, 154 
Front-end subsystem, 28 
Frontier-to-root automaton, 

742-743 
Full-color image, 291 

processing, 313-315 
Full wavelet packet 64-leaf 

decomposition, 400 
Function spaces 

relationship between scaling 
and wavelet. 369 

FWT, 372.379-387 

G 
Gamma 

correction, 81 
noise, 223-225 
radiation, 8 

Gamma-ray imaging, &9 
Gating function, 63 
Gaussian 

expression, 164 
bandreject filters, 244 
curve, 164 
difference of, 165 
filter, 164,176,215 
Fourier transfornl of. 21 1 
function, 164 
highpass filters, 165.184-185 
Laplacian of (LOG), 582 

lowpass filters, 165,175,215, 
583 

noise, 222-223 
notch filter, 246-248 
pattern classes, 706-712 
pyramid, 353 
smoothing function, 584 
thresholding function, 605 

Generaljzed delta rule, 713 
Geometric fitting property, 528 
Geometric mean filter, 232,270 
Geometric redundancy, 4 16 
Geometric transformations, 

270-276,281 
GEOS satellitcs, 15 
GIF, 446 
Global thresholding, 596,598. See 

nlso,Threshold 
Gradient, 134-137,577-581 

angle, 577 
color images. 336 
direction, 577 
discontinuity detection, 

577-578,608 
edge, 136 
magnitude, 134,577 
masks, 578 
morphological, 556 
operators, 135-136,577-579 

Grammars 
expansive tree, 740 
inlerence, 745 
learning, 745 
string, 736-738 
tree, 740-745 

Grammatical inference, 745-746 
Granular noise, 460 
Granulometry, 559 
Graphic interchange format 

(GIF) ,446 
Graph-theoretic edge linking, 

591-595 
Gray code, 446 
Gray level, 1,44,283 

color transformation, 308-3 1 3 
co-occurrence ~natrix, 669 
image. 1 
interpolation, 271,272-276 
PD F, 92,604 
resolution, 57-62 

slicing, 86 
transformatjons, 78-87 

Gray scale, 51 

H 
Haar function, 362-363 
Haar scaling function, 366-369 
Haar transform, 360-363 
Haar wavelet Cu~lction 

coefficients, 371 -372 
Haar wavelet series expansion, 

373-374 
Hamming code, 423 
Hardcopy devices, 30 
Hard thresholding. 392 
Harmonic mean filter, 232 
Heisenberg box, 385 
Heisenberg cell. 385 
Heisellberg uncertainty principle, 

385 
Heuristic approach to global 

thresholding, 598-600 
Hidden layers in neural networks, 

722 
High-boost filtering, 132, 187-'191 
Higb-contrast imagc examples, 90 
Higher-level processes, 2 
High-frequency emphasis 

filtering, 187-19 1 
High-key image, 323 
Highpass filters, 160,165,180 

ideal, 182 
Butterworth, 183 
Gaussian, 184 
spatial represenlation, 182 

I-listogram 
color images. 326 
definition, 88 
equalization, 9.1-94 
in HSI color space, 326 
implementation, 97-102 
linearization, 93 
matching, 9 6 1 0 2  
specification, 94-102 
local, 103 
segmentation, 596 
statistics, 103-108,350 

Hit-or-miss transformalion, 
532-534 



Homogeneity, 254 
Homomorphic filter function. 193 
Homornurphic l'il tering, 191-194 
Homomorphic systems, 193 
Horizontal mode, 495497 
Horizontal neighbors, 66 
Horizontal shifts. 30 
Motelling transforrrt, 678-679 
Hough transform, 587-591. 
Hounsfield, Godirey N., 5 
HSl (hue, saturation, intensity) 

color ~nodel, 295-30 1 
conceptual relalionships, 296 

component images, 303 
rnanipulaling, 301 

components, 295-302 
of noisy RGB image, 340 
of RGB image. 302,317,329, 

332 
converting RGB to. 299 
model, 290 
to RGB conversion, 299 
space segmentalion, 332 

Hue, 286. See ulso HS1 (hue, 
saturalion, intensity) 

Hue. saturation, ~ntensity. See 
HSl (hue, saturation, 
intensity) 

Huffman coding, 44 1442 
Huffman source reductions, 441 
Human eye 

diagram, 35 
structure, 35-37 

Hyperplane, 699 
Flypersphere. 708 

I 
ldeal highpass Iillcrs (IHPF), 

182- 1 83 
Ideal lowpass filters (ILPF), 

167-173 
I-frame, 51 1 
IGS quantization, 418,429 
IHPF, 182-133 
Illumination, 45.50,596-598 
Illuminalion-retlectance model, 

50,191,596 
lL>PF. 167-1 73 
Image 

acquisition. 25 

analysis, 2 
au tocorrelation, 206 
classiiica tion. 712 
color processing, 282348 
compression, 409-51 8 
convolution, 162,171,205,255 
correlation, 206,701 
cross correlation, 206 
description, 643-692 
enhancement, 25,75-219 
model, 50 
morphological processing. 

5 19-566 
rnultjresolu tion processing, 

349408 
noise. 112,222-230.339-342, 

574 
recognition, 693-753 
representation, 644-653 
restoration, 220-281 
segmentation, 567442 
sensors, 45-49 
understanding, 2 
wavelet processing, 349408 

lrnage area, 661 
Tlnage average value, 155 
Image averaging, 112-1 I h 
Image blocks in MPEG. 51 2 
lmage compression, 409-513 

exercise problems related to, 
514-518 

models, 421 4 2 4  
s~andards, 492 

lmage coordinaLes convention, 54 
Image correlation, 206,211,701 
Image deconvolution, 256 
image degadationirestoration 

process, 221-222 
Image displays. 30 
Image elements, 2,55 
Image enhancement, 25 

arithmetic/logic operations, 
108-1 16 

combining techniques, 137 
frequency domain filtering: 

147-21 4 
gray-level transformations, 

78-88 
histogram processing, 58-108 

homomorphic filtering, 
191-194 

sharpening, 125-137,180-191 
smoothing, 1.19-125,167-180 
spatial domain filtering, 75-141 

Image entropy, 437 
Image interpulation, 64,271 
Jmagc negatives. 78-79 
Image operation on a pixel basis, 

69 
Image padding, 199-205,207,2 11 
lmage processing. See also Digital 

image processing 
vs image analysis, 2 
system compone~ls,  28 

Tmage pyramids, 35 1-354 
Ttilage quality comparisons, 61. 

420 
Image quantization, 52,417 
Image representation, 54,644 
Image resolution. 57 
Image restoration, 25,220-28 1 

adaptive filters, 237-243 
bandpass Ijltering, 24.5 
bandreject filtering, 244 
constrained least squares 

Eilterjng. 266 
degradation funclions, 256-260 
denoising (noise reduction). 

230-254 
frequency-domai n filtering, 

243 -270 
geometric mean iiltering, 270 
geometric 1-1-ansforma t ions. 

27Cb276 
inverse filtering, 261 
mean fillers, 231-233 
noise ~nodels, 222-230 
notch filtering, 246-254 
order-statistics filters. 233-237 
spatial filtering, 230-243 
Wiener filtering, 262-266 

Image sampling, 5 2 4 6  
Jmage segmentation, 27,331-339, 

567-634 
of color images, 33 1-339 
connected componerl ts, 

664-665 
definition, 567 
discontinuity detection. 565 



Image segmentation (cont.) 
edge detection, 572-581 
edge linking, 585-595 
frequency domain techniques, 

630-634 
granulornetry, 559 
Laplacian of Gaussian (LoG), 

580-585 
line detection, 570 
point detection, 569 
region-based, 61 2-617 
textural, 558 
thresholding, 595-612 
morphological watershed, 

622-624 
mot ion, 626-633 

linage sensing, 7-25,45-5 1 
Iinage showing periodic texture, 

672 
Image subsampling, 58 
Image subtraction, 11&112,274, 

626630 
lrnage i~nderstanding, 2 
Imaging modalities, 7-25,4549 
implicit quanlizalion, 508 
llnproved gray-scale (IGS), 

4 1 W 1 9  
Impulse 

i n  dtgradatjun estimation, 257 
expression, 21 1 
function, 163,254 
noise, 123,225-226 
response, 255 

Independent frame (I-frame), 51'1 
Information channel, 425-427 
In formation preserving, 430 
Information systems, 425 
Infolmation theory 

elements, 424-440 
measuring, 424 
using, 437 

lnforma tion transmission 
theorem, 437 

Information user, 426 
Infrared images, 12-13,591,662, 

664 
Instantaneous image zoom, 30 
Integral inner products, 364 
Integrated circuit, 5 

Intensity, 1,44,283. See nbo HSI 
(hue, saturation, 
inlens1 ty) 

discrimination, 39-40 
image, 1 
plot, 633 
slicing, 303-305 
transformation function, 77 

Interference noise pattern, 250 
In terfrarnc redundancy, 416 
Internal markers in watershed 

segmentation. 624-626 
Internal representation, 643 
International Commission on 

Illurninntion, 284 
Inrernational Standardization 

Organization (ISO), 493 
Interpixel redundancy, 41'1, 

414-417 
Interpolation, 64,271 
Tnterpolation filter, 352 
Intraframe, 51 1 
Invariant moments, 674-675 
lnverse continuous wavelet 

translorm, 377 
Inverse element difference 

moment of order k, 669 
Inverse filtering, 261-262 
Inverse Fourier transforin. See 

Fourier transform 
Inverse mapper, 422 
Inverse transformation kernels. 

47 1 
Iris diaphragm, 36 
ISO, 493 
Tsopreference curves, 6 1,62 
Isotropjc filters, 128 

J 
Jet Propulsiol~ Laboratory (JPL), 

5 
Joint Bilevel Imaging Group 

(JBIG), 493 
JPEG, 498-505 

baseline coding and decoding, 
499 

coefficient coding categories, 
,500 

default AC code, 501-502 

default DC code, 500 
JPEG 2000.505-.-510 

Karhunen-Loeve t rnnsforrn 
(RLT), 476-477 

Kernels, 77,116. See uf,so Filtcr 
Key (of an image), 323 
Knowledge base. 27 
Known set points, 272 

L 
LANDSAT, 1 4 
Laplacian, 128 

color images, 330 
expression. 21 0 
filtered images, 131-132 
frequency domain, 185-187 
Lloyd-Max quantizers, 466 
masks, 129,132,185,267,584 
of Gaussian (LOG). 582 
operators, 120, '132,185.267, 

584 
pyramids, 353 
spatial dornairl, 128-134 

Layered sell-adaptive networks, 
71 3 

Learning, 71 2,745. See nlqo 
Training 

Least-mean-square (LMS) delta 
rule, 717 

Least sy uare error filter, 263-264 
Leaves, 394 
Lempel-Ziv-Welch (LZW) 

coding. 446-448 
decoding, 448 
example, 447 

Length boundary descriptor, 653 
Lifting-based wavelel transform, 

506 
Light 

achromatic, 44,283 
brightness. 44,284 
characterization. 283 
chromatic. 284 
color, 283 
definition, 44 
discrimination, 39 
gray IeveI, 44,283 
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intensity, 44.283 
luminance. 44,284 
monochromatic, 44 
primary and secondary colors, 

286 
radiance. 44,284 
spectrum, 7 ,4245,284 
visible, 44,283 

Light microscopy, 13 
Line 

detection, 570-572 
ni ask, 570 
pair, 57 
representation, 589 
sensor, 46 

Linear degradation, 254-256 
Linear operalion, 70 
Linear spatial filtering, 116 
Linear wedge gray-scale image, 

82 
Linearly separable classes, 

716-717 
Lloyd-Max decision and 

reconstruction levels, 
466467 

Lloyd-Max quantizers, 466 
LMS delta rule, 717 
Local noise reduction filter, 239 
Local thres holding, 596,608-610 
LOG (Laplacian of a Gaussian), 

582,583 
Logic operations 

binary images. 522 
pixel-by-pixel basis, 1 08-109 

Log transformation, 79-80 
Lossless independent coding 

system, 498 
Lossless predictive coding, 

45 &-45 9 
Lossy baseline coding system, 498 
Lossy compression, 410,440, 

459-492 
Lossy DPCM root-mean-square 

error summary, 467 
Lossy predictive coding, 459-467 
LOw-contrast images, 90 
Low-level processes, 2 
Lowpass filters. See Filter 
Luminance, 44,284 

LZW. See Lempel-Ziv-Welch 
(LZW) 

M 
Mach bands, 40 
Macroblocks, 510,511 
Magnetic resonance image, 21 
Magnitude refinement, 509 
Major axis boundary descriptor, 

654 
Mallat's herringbone algorithm, 

379-386 
Mapper, 422 
Mappings, 416 

entropy reducing, 439 
transformation function, 77 

Mariner mission, 5 
Markers in watershed 

segmentation, 624626 
Mask. See also Filter 

definition, 77 
implementation, 116-1 19 

Mask mode radiography, 11 1 
Masking, 109,137 
Mass storage, 29 
MAT, 650 
Matching 

correlation, 206,701 
recognition techniques, 

698-704 
shape numbers, 732-733 

Max filter, 124,234-235 
Maximum probability in texture, 

669 
Mean 

computation, 104,145,229 
filters, 119,231-233 
vector, 676678,707, 

Mean-square signal-to-noise 
ratio, 420 

Mean vector computation, 
677-678 

Medial axis transformation 
(MAT), 650 

Median filter, 123,234 
Mexican hat function, 582 
Mexican hat wavelet, 377 
Microdensitometers, 47 
Microns, 43 

Microprocessor, 5 
Microscopy, 13 
Microwave band imaging, 18-19 
Middle-key image, 323 
Mid-level processes. 2 
Midpoint filter, 235 
Min filter, 124,234-235 
Minimum distance classifier. 

695-70 1 
Minimum mean square error 

filtering, 262-266 
Minimum perimeter polygons, 

646 
Minor axis boundary descriptor, 

654 
Minutiae recognition, 696 
Mixed adjacent pixels, 67 
Modeling in degradation 

estimation, 258-260 
Modulation Eunction, 251 
Moire patterns, 6 2 4 3  
Moment invariants, 674 
Moments 

one-dimensional functions, 659 
two-dimensional functioils, 672 

Monochromatic light, 44 
Morphological mage processing, 

27,519-560 
algorithms, 534-549 
filtering, 531 
gradient, 556 
region filling, 536 
smoothing, 556 
textural segmentation, 558 
watersheds segmentalion. 

617-626 
Motion segmentation, 

spatial techniques, 626-630 
frequency domain techniques, 

63Cb634 
Motion blur, 259,264,267,280 
Motion Picture Experts Group, 

510 
MPEG (Motion Picture Experts 

Group), 510 
MRA, 363,366-369 
MRT (magnetic resonance 

image), 21 



788 M Index 

Multilayer feecl forward neural 
iletworks, 719-732 

Multilevel thresholding, 596 
Mul tiresolu tion ;inalysis (MRA), 

363 
dilalion, M RA, and refinement 

equation, 369 
Cundamental requirements, 

366-369 
Multii.esoIution cxpar~sions, 

363-372 
Mult iresolu tion processing, 

349403 
exercise problems related to, 

404-409 
Mu1 tiresolution Lheory, 349 
Mullispectral images, 14,31'1-313, 

61 1,664,720 
Multispectral thresholding, 

611-612 
Mutual information, 427 

N 
l\lanomelers, 43 
Nearest neighbor interpolation, 

64 
Near-infrared region, 45 
Neza tive ADT,h27-628 
Negative inzage, 79 
Neighborhood averaging, 120, 

23 1.328-330 
Neighbors of a pixel, 66 
Networking, 30 
Neural netwoi-ks. 7 19-732 
Neurocomputers. 713 
Neuromoryliic systems. 713 
Nei~rons 7 12 
Newton, Isaac, 283 
Newton- Raphsor~ algorithm. 269 
Nodes, 394 
Noise 

additive, 265 
addilive uniform, 2.38 
c o l o ~  image, 39-34? 
curlain, 265 
granular, 460 
interference pattern. 250 
models, 222 
parameter estimation, 227-230 
PDF, 222-227 

bipolar impulse, 225-226 
Erlang, 223-225 
exponential, 225 
gamma, 223-225 
Gaussian, 222-223 
uniform, 225 

periodic, 227 
properties, 222 
reduction 

filter, 239 
image averaging. 113 
periodic, 243-253 

removal using wavelets, 
391-394 

salt-and-pepper, 123,243 
shot, 226 
spatially periodic, 222 
spike. 226 
white, 222 

Noiseless coding theorem, 
430-432 

Noisy binary channel, 432 
Noisy coding tlleorem, 432-433 
Noisy edge. 574-576 
Noisy object signature, 695 
Noisy shapes, 726 
Nonadaptive transform coding, 

470 
Nonlinear computing elements, 

7 12 
Nonlinear operation, 70 
Nonlinear spatial filters, 118 
Nonseparable classes, 717-719 
Nonternlinals in grammars, 736, 

740 
Normalized central moments, 674 
Notch filter, 159,246-248 
Nyquist rate, 38'1 

0 
Object class generation, 737 
Objective fidelity criteria, 419 
Object point, 595 
Object recognition, 27,693-750 

Bayes classifier, 705 
correlation, 701 
correlation coefficient, 703 
decision-theoretic methods, 

698-732 
feature selection, 695 

matching, 698 
minimum-distance classifier, 

699,708 
neural networks, 712 
optimum classifier. 704 
pattern, 693 
pattern class, 693 
pa tterri vector, 694 
perceptron, 713 
semantics, 738 
string, 606,736 
slring matching, 734 
string recognition. 735 
structural methods, 733-749 
tree, 697,740 
tree ~.ecognition, 740 

One-dimensional compression, 
493-494 

One-dimensional continuous 
wavelet transform 

example, 377 
One-dimensional discrete 

wavelet transform. 
375-376 

One-dimensional fast wavelet 
transform, 382-383 

One-dimensional filters: 359 
One-dimensional inverse Fast 

wavelet transform, 384 
One-dime~siol~al pattern classes. 

706 
One-dimensional run-length 

coding, 452-453 
Opening in morphology, 528,548, 

554 
Optical illusions, 42 
Optimal global thresholdjng, 

602-607 
Optimal predictors, 461 
Opiirnal quantization, 465466 
Optimal variable length codes, 

4 4 2 4 4  
Optimal wavelet packet analysis 

trce, 401 
Optimum notch filtering, 248-253 
Optimum statistical classifiers, 

704-7 10 
Order 

boundary. 654 
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statistics filters, 123-124. 
233-237 

Orthonormal, 358 
Over segmentation, 624-626 

P 
Packets (in JPEG 2000), 509 
Padding, 199-205 
Pan. 30 
Parallel distri buled processing 

(PDP), 713 
Pass mode, 495497 
Pattern, 693-697 
Paltern classes, 693-697 
Pattern primitives, 683-687,735 
Pattern recognition. See Object 

recognition 
PDF (portable clocument 

format), 446 
PDF (probability density 

function). See 
Probability density 
function (PDF) 

PDP, 713 
PDQ, 454 
Pel, 2,55 
PerceptuaIly uniform, 322 
Pcriodic noise, 227 
Periodic noise reduction, 243-253 
Pcriodic texture, 672 
Periodicity in D m ,  196,210 
PET image, 8 
P-Frame. 51 1 
Phase angle, 152,154,210 
Photon, 44 
Photopic. 36 
Picture elernen ts, 2,55 
Piecewise-linear transformation 

functions: 85-87 
Pigments, 286 
Pixel 

adjacency. 66 
border. 67 
conneclivity, 67 
definition, 2,55 
depth, 291 
distance between, 68 
neiglibor-s of, 66 
path, 67 
regions, 67 

relationships, 66 
replication, 64 

Pixel basis image operation, 69 
Pixe I-by-pi xel basis, 69,108-1 09 
Pixel-by-pi xel  classification, 71 2 
Planck's constant, 43 
Point. See also Pixel 

definition, 576 
detection, 569-570 
isolated, 570 
processing, 77 

Point spread function (PSF), 255 
Polar representation, 210 
Polygonal approximations 

digital boundary, 646-648 
merging techniques, 647 
representations, 646-648 
splj tting tecllnjques, 647-648 

Portable document format 
(PDF), 446 

Position-invariant degradation, 
254-256 

Positive ADI, 627-628 
Positive sample set, 746 
Posilron emission tomography 

(PET), 8 
Power-law transformation, 8 M 4  
Power spectrum, 152,154,157, 

210,263,270,281 
Perceptron, 723-719 
Prediction error. 456 
Prediction error example, 458 
Prediction residual, 352 
Prediction residual pyramid, 

352-353 
Prediction technique comparison, 

463-465 
Predictive coding, 457 
Predictive differential quantizing 

(PDQ), 454 
Predictive frame (P-frame), 51 1 
Previous pixel coding, 457 
Previous pixel predictor, 457 
Prewitt operators, 578-579 
Primary colors, 284 
Primitive elements, 684,741 
Principal component description, 

678-679 
Probability density function 

(PDF), 92,222-229 

Production rules, 736-738,740 
Pruning, 545-547 
Pseudocolor image processing, 

302-3 1 3 
PSF, 255 
Psycl~ovisual redundancy, 4'1 1 ,  

417-419 
Pupil, 36 
Pyramidal image structure. 351 

Quadrature mirror filters 
(QMFs), 358 

Quantization, 5246,417 
basic concepts, 52-54 
function. 465 
illustration, 466-467 
optimal lossy, 465466 

Quantizer design, 492 

R 
RAC, 453 
Radiance, 4445,284 
Radio band imaging, 20 
Radiography, 9 
Ranger. 7,s 
Ranking function, 740-742 
Rate controller, 511 
Ratc distortion functio~l, 434 

binary symmetric source, 436 
computing, 435 

Rate distortion iheory, 434 
Raylcigh density funciion, 482 
Rayleigh noise, 223 
Real-valued expansion 

cocfficienls, 364 
Real-valued expansion functions, 

364 
Receptor density, 36 
Recogn~tion. See Object 

recognition 
Reconstruction error V.S. 

su bimage size, 478 
Rectangle 

basic, 654 
Fourier transform of, 21 1 

Red. green, blue. See RGB (red, 
green, blue) 

Redundancy, 41 2-419 
controlled, 423 



Reference element, 494 
Reference image, 629-630 
Reference linc, 494 
Reference shapes, 726 
Refinement equation. 369 
Reflecta~~ce components, 50,151 I ,  

596 
Reflectivity, 5 1 
Region, 66. See also Connected 

compouen{. Boundary 
description, 660 
growing, 613-615 
filling. 535-536 
growing, 613-615 
merging, 6 15 
moments, 672475 
pixels, 6648,67 
segmentation, G1.2 
splitting! 615 
texture, 665-671 

Region of interest (ROI) 
PI-ocessing, 109 

Regular grammars, 736 
Relational desc~,iptors, 683-687 
Relative address coding (RAC), 

453 
Relative data redundancy,421 
Remole sensing, 13 
Represenea t ion. 27,643-653 

boundary segments, 649-650 
polygona t approxi ma tjons. 

646-648 
signal ures, 648-649 
skeletons, 6 5 M 5 3  

Reseau marks, 5,272 
Resolution 

gray-level: 57 
line pairs, 57 
spatial. 57 

Restor;~tion, SCP lnlage 
restoration 

Retina, 35 
Reversible niappiogs, 416 
RGB (red, green, blue) 

color cube, 290 
color model, 290-294 

conceplual relationships, 296 
components 

cxi~mples, 329,317 
thresholding, 61 1-612 

conversion 
to CMY, 294 
to and from HSI, 299 

image description, 675 
model, 290 
safe-color cube, 294 
safe colors. 292 
vector space segmentation, 

333-335 
Ringing, 'I 69,173 
Roberts cross-gradient operators, 

134,577-578 
Rods, 36 
Roentgen, Wilheln~ Conrad. 5 
ROI processing, 109 
Rolling ball, 555 
Root-mean-square error, 4 19 
Root nodes. 394 
Rotation 

expression, 210 
Fourier transform, 195 
invariance, 128 

Rotational invariance 
filters, 128 
descriptors, 643 

Rubber shect distortio~ls, 661 
Rubber  sheet translormalion. 270 
Run-length coding, 452453 

illustralion, 416 

S 
Safe browser colors, 292 
Safe RGB colors, 292 
Safe Web colol.s, 292 
Salt-and-pepper nojsc, 123,225, 

243 
Sampling. 52-66 
Sampling rate, 62 
Satura~ion, 286. See nlso HSI (hue, 

saturation, inrensi ty) 
Scaling 

expression, 210 
Fourier transform, 195 
function, 363 

MRA. 369 
multii~esolution expansions, 

365-369 
vector, 369 

Scanning eleclron microscope 
(SEM), 23-25,105,157 

Scene. 45. See olso Image 
Sclera, 35 
Sco topic, 36 
Scroll, 30 
Secondary colors: 285 
Second-otdel- de~,ivative. 126.573 
Seed regions. 6 14 
Segmentation. See Image 

segmei~tation 
SEM. See Scanning elcctron 

microscope 
Semantic rules. 738 
Sensing, 28.45. See niso Jmage 

sensing 
Sensor. S i ~ e  also Image sensing 

arrangements, 4 6 4 7  
arrays. 49,54 
strips, 45 

Separability of DFT, 197,210 
Separable scaling function, 386 
Sequenlial baseline system, 498 
Series expansion. 364-365 
Set theory concepts, 520-521 
Sharlnon's Cirst Iheol-em, 43043  I 
Shannon's second theorem, 433 
Shape classification using neural 

networks. 726-729 
Shape number 

boundary, 654 
for comparing shapes. 733-734 
computing, 655 
generating procedure, 656 

Shaiapening 
color image, 327-331 
frequency domain Eiltcrs, 

180-101 
Laplacian, 330 
~norpliological, 5.56 
spatial filters, 125-L37 

Shill codes, 444 
Sl~or-1-lerm slorage, 30 
Shot noise, 226 
Shrinking a digital image. 6 6 6 6  
Sigmoidal acriva tion function, 721 
Signatures 

distance V.S. angle, 648 
noisy object, 695 
representations, f 1 4 8 ~ 4 9  

Significance propagation, 509 



Simple in~age formatioil model, 
5075 I 

Si~nultaneous contrast. 4 M 1  
Sine (two-dimensional). 21 1,270 
Single imaging sensor, 46 
Single-scale filter bank. 387-358 
Size invariance of descl-iptor-s. 643 
Skeletonizing. 650 
Skcletorrs 

definitions,S43,650 
morphological algorithms, 

543-545 
representations, 650-652 

Slicing 
bit planes, 86-87 
color. 320-321 
density. 303 
gray-level, 86 
intensity, 303 

Slope density Function, 649 
Slope overload, 460 
Smith and Bal-nwell filter, 358 
Smootliing 

color image, 327-33 1 
effects, 121-122 
example, 58 1 
frequel~cy-domain filters, 

167-'180 
linear I'iltcrs, 119-123 
morphological. 556 
spatial fillers. 119-124 

Sobel operators, 136,138, 
578-579,584 

Soft Lhresholding, 392 
Software for image processing, 29 
Sound imaging, 20 
Source alphabet, 425 
Source coding theorem, 433-437 
Source decoder, 421-422 
Source encoder, 421 
Spaceborne radar inlase, 20 
Space invariant. 254 
Spatial coordinates. 1, 
Spatial domain 

definition, 75 
image enhancement. 75-141 
Laplacian. 186-187 
padded lowpass filter, 204 

Spatial enhancement methods 
combining, '137-141 

Spatial fil Lering implementat ion, 
1 L6-119 

Spatial Gaussian filler. 176 
Spatial Gaussian' sn~oothing 

function: 584 
Spatial masks. Sce rrlso Filter 

gray-scale and RGB color 
images, 314 

Spatial periodic noise, 222 
Spalial. redundancy, 416 
Spatial resolution, 57-62 
Spatial transformations, 271-272 
Specialized image processing 

hardware, 28 
Spectral density. See Power 

spectrum 
Spect~.um, 7,42 

equalization filter. 270 
expression, 21 0 
Fourier transform, 152, 154,210 
splitting, 397 

Speed of light. 43 
Spike noise. 226 
Spline family, 358 
Splitting techniques in polygonal 

approxirnalions. 
647-645 

Starting point invariance, 645 
Slarting symbol. 736 
State diagram. 739 
Statistical moments. 659-660 
String. 735 
String descriptions 

pal tern generation, 696 
relational descriptors, 685 

String granlmars, 736-738 
String matching, 734-35 
String re cognizer.^, 738 
Structurally complete. 746 
Structural methods in object 

recognition. 733-749 
Structuring element, 524 
Subband, 354 

coding, 354-360 
Subirnage size selection, 477479 
Subjective brightness, 38 
~ub,ective fidelity crileria, 419 
Successive doubling method, 209 
Superposition integral of the first 

kind, 255 

Symbol coder. 422 
Syrnlets, 391 

~.econstructjon filters. 359 
SymmetricaJ wavelets. See 

Symlcts . 
Syntactic recognition. 738-745 
Synthesis filters, 355 

cross-modulated, 357 

T 
'l'agged image file formal (TIFF), 

446 
TEM, 23 
-Tcn~pla te. Sec nlso Filter 

correlation. 206 
definition. 77 
implementation. 116-1 19 

Terminals. 736 
'lwexture 

spcct I-a1 approaches, 670-67 I 
srr~ucl~u-a1 approaches, 670 
imagc showiug periodic. 672 
measures, 668 
I-cgional descriptors. 665-671 
segmentation. 558 

Themalic bands. 14  
Thickening, 541 -543 
Thinning, 541 
Three-din>ensionaI objects, 48 
Three-scale FWT. 389 

filter bank, 395 
Three-scale wavelet packels. 

396-398 
Threshold, 595-612 

adaptive, 600 
estimating, 602-607 
founda t io~~ ,  595-596 
function, 86 
gradient image. 591 
hard. 392 
LOG. 584 
mask. 483 
segmentation, 7'12 
soft, 392 
types, 596 
variables, 61 1-61 2 

Threshold coding, 480,482-484 
Thresholding. See Threshold. 

Image segmentation 
Tiepoii~ts. 27 1 



792 EI Lndex 

TIFF, 446 
Tile. 24,385 

JPEG 2000 components, 506 
Time domain, 151 
Time-frequency plane, 385 
Time-lrequency tiles, 385-386 
Tonal corrections, 324 
Tonal range, 323 
Tonal transformations, 323-324 
Tone corrections, 322 
Top-hat transformation, 557-558 
Topological descriptors. 661-665 
Topology, 661 
Training, 712,745. See also 

Learning 
algorithms, 7 16-717 
back propagation, 722-726 
patterns, 712 
set, 712 

Transform 
coding, 467485 
coefficient masking function, 

474 
coefficients, 47 1 
Discrete Fourier (DFT). See 

Fourier transform 
discrete cosine (DCT), 472 
Fourier. See Fourier transform 
Haar. 360 
Hotelling, 678479 
Hough, 587-591 
Karhuncn-Loeve, 476-477 
Principal components, 679 
selection, 470-477 
Walsh-Hadamard (WHT), 471 
wavelet. See Wavelet transform 

 ans sf or mat ion function 
examples, 310 

Translation (of DFT), 194-195, 
210 

Translation invariance of 
descriptors, 643 

Transmission electron 
microscope (TEM). 23 

Transmissivi ty, 5 1 
Tree automata, 741 
Tree frontier, 685 
Tree grammars, 740-745 
Tristimulus values, 286 
Truncated Huffman coding, 443 

Two-band filter bank, 354 
Two-band subband coding, 

354-355 
Two-dimensional compression 

standards, 494 
Two-dimensional DFT. See 

Fourier transform 
Two-dimensional Fourier 

transform. See Fourier 
transform 

Two-dimensional FWT, 388-389. 
See also Transform 

Two-dimensional moment 
invariants, 675 

Two-dimensional run-length 
coding, 453454 

Two-dimensional wavelet packet 
decomposilion, 399 

Two-scale FWT 
analysis bank, 381 
computing, 382 
synthesis bank, 384 

Two-scale inverse FWT. 385 

U 
ULSI, 5 
Ultra large scale integration 

(ULSI), 5 
Ultrasound imaging. 22 
Ultraviolet light imaging, 11 
Uncertainty, 426 
Undersampled, 62 
Uniformity measures, 669 
Uniform noise, 225 
Uniform probability density 

function, 93,225 
Unipolar noise impulses, 226 
Uniquely decodable, 442 
Unsharp masking, 132-133, 
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