Fundamentals
of Multimedia

Ze-Nian Li and Mark S. Drew

School of Computing Science
Simon Fraser University

Pearson Education International

If you purchased this book within the United States or Canada
you should be aware that it has been wrongfully imported
without the approval of the Publisher or the Author. ’

Vice President and Edilorial Direclor, ECS: Marcia J. Horton
Senior Acquisitions Editor: Kate Hargett

Editorial Assistant: Michael Giacobbe

Vice President and Director of Production and Manufacturing. ESM: David W. Riccardi
Executive Managing Editor: Vince O'Brien

Managing Editor: Camille Trentacoste

Production Editor: Inwin Zucker

Director of Creative Services: Paul Belfanti

Art Director and Cover Manager: Jayne Conte

Cover Designer: Suzanne Behnke

Managing Editor, AV Management and Production: Patricia Burns
Art Editor: Gregory Dulles

Manufacturing Manager: Trudy Pisciolli

Manufacturing Buyer: Lisa McDowell

Marketing Manager: Pamela Shaffer

© 2004 by Pearson Education, Inc.
Pearson Prentice Hall

Pearson Education, Inc.

y Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any format or by any means, without permission
in writing from the publisher.

Images of Lena that appear in Figures 3.1, 3.3, 3.4; 3.10, 8.20, 9.2, and 9.3, are reproduced by special permission
of Playboy magazine. Copyright 1972 by Playboy.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their efiectiveness. The author
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing, performance, or use of these
programs.

Printed in the United States of America

1098 765 43
ISBN 0-13-127256-X

Pearson Education LTD.

Pearson Education Australia PTY, Limited

Pearson Education Singapore, Pte. Ltd

Pearson Education North Asia Ltd

Pearson Education Canada, Ltd.

Pearson Educacién de Mexico, S.A. de C.V.
Pearson Education -- Japan

Pearson Education Malaysia, Pte. Ltd

Pearson Education, Upper Saddle River, New Jersey

To my mom, and my wife Yansin.

Ze-Nian

To Noah, James (Ira), Eva, and, especially, to Jenna.
Mark

List of Trademarks

The following is a list of products noted in this text that are trademarks or registered trademarks their
associated companies.

3D Studio Max is a registered trademark of Autodesk, Inc.

After Effects, Iustrator, Photoshop, Premniere, and Cool Edit are registered trademarks of Adobe
Systems, Inc.

Authorware, Director, Dreamweaver, Fireworks, and Freehand are registered trademarks, and Flash
and Soundedit are trademarks of Macromedia, Inc., in the United States and/or other countries.
Cakewalk Pro Audio is a trademark of Twelve Tone Systems, Inc.

CorelDRAW is a registered trademark of Corel and/or its subsidiaries in Canada, the United States
and/or other countries.

Cubase is a registered trademark of Pinnacle Systems.

DirectX, Internet Explorer, PowerPoint, Windows, Word, Visual Basic, and Visual C++ are registered
trademarks of Microsoft Corporation ir the United States and/or other countries.

Gifcon is a trademark of Alchemy Mindworks Corporation.
HyperCard and Final Cut Pro are registered trademarks of Apple Computer, Inc.

HyperStudio is a registered trademark of Sunburst Technology.

Java Media Framework and Java 3D are trademarks of Sun Microsystems, Inc., in the United States
and other countries.

Jell-O is a registered trademark of Kraft Foods Incorporated.

MATLAB is a trademark of The MathWorks, Inc,

Maya and OpenGL are registered trademarks of Silicon Graphics Inc.

Mosaic is a registered trademark of National Center for Supercomputing Applications (NCSA).

Netscape is a registered trademark of Netscape Communications Corporation in the U.S. and other
countries.

Playstation is a registered trademark of Sony Corporation.

Pro Tools is a registered trademark of Avid Technology, Inc.

Quest Multimedia Authoring System is a registered trademark of Allen Communication Learning
Services.

RenderMan is a registered trademark of Pixar Animation Studios.
Slinky is a registered trademark of Slinky Toys.

Softimage XSI is a registered trademark of Avid Technology Inc.
Sound Forge is a registered trademark of Sonic Foundry.

]
WinZip is a registered trademark WinZip Computing, Inc.

Contents

Preface

I Multimedia Authoring and Data Representations 1

1 Introduction to Multimedia 3

1.1

1.2

13

14

1.5
1.6
1.7

What is Muliimedia? 3

1.1.1 Components of Multimedia 3

1.1.2 Multimedia Research Topics and Projects 4
Multimedia and Hypermedia 5

1.2.1 History of Multimedia 5

1.2.2 Hypermedia and Multimedia 7

World Wide Web 8

1.3.1 History of the WWW 8

1.3.2 HyperText Transfer Protocol (HTTP) 9
1.3.3 HyperText Markup Language (HTML) 10
1.3.4 Extensible Markup Language (XML) 11
1.3.5 Synchronized Multimedia Integration Language (SMIL) 12
Overview of Multimedia Software Tools 14

1.4.1 Music Sequencing and Notation 14

14.2 Digital Audio 15

143 Graphics and Image Editing 15

1.44 Video Editing 15

14.5 Animation 16

1.4.6 Multimedia Authoring 17

Further Exploration 17

Exercises 18

References 19

2 Multimedia Authoring and Tools 20

2.1

2.2

2.3

24
2.5
2.6

Multimedia Authoring 20

2.1.1 Multimedia Authoring Metaphors 21
2.1.2 Multimedia Production 23

2.1.3 Multimedia Presentation 25

2.14 Automatic Authoring 33

Some Useful Editing and Authoring Tools 37
2.2.1 Adobe Premiere 37

2.2.2 Macromedia Director 40

2.2.3 Macromedia Flash 46

2.24 Dreamweaver 51

VRML 51

2.3.1 Overview 351

2.3.2 Animation and Interactions 54

2.33 VRML Specifics 54

Further Exploration S5

Exercises 56

References 59

vi

3 Graphics and Image Data Representations

3.1

3.2

33
34
3.5

Graphics/Image Data Types 60

3.1.1 1-Bit Images 61

3.1.2 B8-Bit Gray-Level Images 61
3.1.3 TImage Data Types 64

3.1.4 24-Bit Color Images 64
3.1.5 8-Bit Color Images 65

3.1.6 Color Lookup Tables (LUTs) 67
Popular File Formats 71

321 GIF 71

322 JPEG 75

323 PNG 76

324 TIFF 77

325 EXIF 77

3.2.6 Graphics Animation Files 77
327 PSandPDF 78

3.2.8 Windows WMF 78

3.2.9 Windows BMP 78

3.2.10 Macintosh PAINT and PICT 78
3.2.11 X Windows PPM 79

Further Exploration 79

Exercises 79

References 81

4 Color in Image and Video

4.1

4.2

4.3

Color Science 82

4.1.1 Light and Spectra 82

4,12 Human Vision 84

4.1.3 Spectral Sensitivity of the Eye 84
4.1.4 TImage Formation 85

4.1.5 Camera Systems 86

4,1.6 Gamma Correction 87

417 Color-Matching Functions 89
4.1.8 CIE Chromaticity Diagram 91
4.1.9 Color Monitor Specifications 94
4.1.10 Out-of-Gamut Colors 95

4,1.11 White-Point Correction 96
4.1.12 XYZ to RGB Transform 97

4.1.13 Transform with Gamma Correction 97

4,1.14 L*a*b* (CIELAB) Color Model 98

4,1.15 More Color-Coordinate Schemes 100

4.1.16 Munsell Color Naming System 100
Color'Models in Images 100
42.1 RGB Color Model for CRT Displays

42,2 Subtractive Color: CMY Color Model 101

4.2.3 Transformation from RGB to CMY

424 Undercolor Removal: CMYK System 102

42.5 Printer Gamuts 102

Color Models in Video 104

43.1 Video Color Transforms 104
4.3.2 YUV Color Model 104

60

82

44
45
4.6

4.3.3 YIQ Color Model 105
434 YCbCrColor Model 107
Further Exploration 107
Exercises 108

References 111

Fundamental Concepts in Video

5.1

5.2

53

5.4
55
5.6

Types of Video Signals 112

5.1.1 Component Video 112

5.1.2 Composite Video 113

5.1.3 S-Video 113

Analog Video 113

5.2.1 NTSC Video 116

52.2 PAL Video 119

523 SECAM Video 119

Digital Videc 119

5.3.1 Chroma Subsampling 120

5.3.2 CCIR Standards for Digital Video 120
5.3.3 High Definition TV (HDTV) 122
Further Exploration 124

Exercises 124

References 125

Basics of Digital Audio

6.1

6.2

6.3

6.4
6.5
6.6

Digitization of Sound 126

6.1.1 WhatIs Sound? 126

6.1.2 Digitization 127

6.1.3 Nyquist Theorem 128

6.1.4 Signal-to-Noise Ratio (SNR) 131

6.1.5 Signal-to-Quantization-Noise Ratio (SQNR)
6.1.6 Linear and Nonlinear Quantization 133
6.1.7 Audio Filtering 136

6.1.8 Audio Quality versus Data Rate 136
6.1.9 Synthetic Sounds 137

MIDI: Musical Instrument Digital Interface 139
6.2.1 MIDIOverview 139

6.2.2 Hardware Aspects of MIDI 142

6.2.3 Structure of MIDI Messages 143

6.2.4 General MIDI 147

6.2.5 MIDI-to-WAY Conversion 147
Quantization and Transmission of Audio 147
6.3.1 Coding of Audio 147

6.3.2 Pulse Code Modulation 148

6.3.3 Differential Coding of Audio 150
6.3.4 Lossless Predictive Coding 151

6.3.5 DPCM 154

63.6 DM 157

63.7 ADPCM 158

Further Exploration 159

Exercises 160

References 163

131

vii

112

126

viii

II Multimedia Data Compression 165

7 Lossless Compression Algorithms 167
7.1 Introduction 167
7.2 Basics of Information Theory 168
7.3 Run-Length Coding 171
7.4 Variable-Length Coding (VLC) 171
74.1 Shannon-Fano Algorithm 171
74.2 Huffman Coding 173
7.4.3 Adaptive Huffman Coding 176
7.5 Dictionary-Based Coding 181
7.6 Arithmetic Coding 187
7.7 Lossless ITmage Compression 191
7.7.1 Differential Coding of Images 191
7.72 Lossless JPEG 193
7.8 Further Exploration 194
7.9 Exercises 195
7.10 References 197

8 Lossy Compression Algorithms 199

8.1 Imtroduction 199

8.2 Distortion Measures 199

8.3 The Rate-Distortion Theory 200

8.4 Quantization 200
8.4.1 Uniform Scalar Quantization 201
8.4.2 Nonuniform Scalar Quantization 204
8.4.3 Vector Quantization®* 206

8.5 Transform Coding 207
8.5.1 Discrete Cosine Transform (DCT) 207
8.5.2 Karhunen-Loéve Transform* 220

8.6 Wavelet-Based Coding 222
8.6.1 Introduction 222
8.6.2 Continuous Wavelet Transform* 227
8.6.3 Discrete Wavelet Transform* 230

8.7 Wavelet Packets 240

8.8 Embedded Zerotree of Wavelet Coefficients 241
8.8.1 The Zerotree Data Structure 242
8.8.2 Successive Approximation Quantization 244
8.8.3 EZW Example 244

8.9 Set Partitioning in Hierarchical Trees (SPIHT) 247

8.10 Further Exploration 248

8.11 Exercises 249

8.12 References 252

9 Image Compression Standards 253
9.1 TheJPEG Standard 253
9.1.1 Main Steps in JPEG Image Compression 253
9.12 JPEG Modes 262
9.1.3 A Glance at the JPEG Bitstream 265
9.2 The JPEG2000 Standard 265
9.2.1 Main Steps of JPEG2000 Image Compression™ 267

9.2.2 Adapting EBCOT to JPEG2000 275
9.2.3 Region-of-Interest Coding 275
9.2.4 Comparison of JPEG and JPEG2000 Performance 277

93 TheJPEG-LS Standard 277
9.3.1 Prediction 280
9.3.2 Context Determination 281
9.3.3 Residual Coding 281
9.3.4 Near-Lossless Mode 281
9.4 Bilevel Image Compression Standards 282
94.1 TheJBIG Standard 282
9.42 ThelBIG2 Standard 282
9.5 Further Exploration 284
9.6 Bxercises 285
9.7 References 287
10 Basic Video Compression Techniques 288
10.1 Introduction to Video Compression 288
10.2 Video Compression Based on Motion Compensation 288
10.3 Search for Motion Vectors 290
10.3.1 Sequential Search 290
10.3.2 2D Logarithmic Search 291
10.3.3 Hierarchical Search 293
104 H.261 295
104.1 Intra-Frame (I-Frame) Coding 297
10.4.2 Inter-Frame (P-Frame) Predictive Coding 297
10.4.3 Quantization in H.261 297
10.4.4 H.261 Encoder and Decoder 298
10.4.5 A Glance at the H.261 Video Bitstream Syntax 301
10.5 H.263 303
10.5.1 Motion Compensation in H.263 304
10.5.2 Optional H.263 Coding Modes 305
10.5.3 H.263+and H.263++ 307
10.6 Further Exploration 308
10.7 Exercises 309
10.8 References 310
11 MPEG Video Coding I — MPEG-1 and 2 312
11.1 Overview 312
112 MPEG-1 312
11.2.1 Motion Compensation in MPEG-1 313
11.2.2 Other Major Differences from H.261 315
11.2.3 MPEG-1 Video Bitstream 318
11.3 MPEG-2 319
11.3.1 Supporting Interlaced Video 320
11.3.2 MPEG-2 Scalabilities 323
11.3.3 Other Major Differences from MPEG-1 329
11.4 Further Exploration 330
11.5 Exercises 330

11.6

References 331

12 MPEG Video Cading IL — MPEG-4, 7, and Beyond

12.1
12.2

12.3

124

12.5

12.6

12.7
12.8
12.9

Overview of MPEG-4 332

Object-Based Visual Coding in MPEG-4 335
12.2.1 VOP-Based Coding vs. Frame-Based Coding 335

12.2.2 Motion Compensation 337
12.2.3 Texture Coding 341

12.2.4 Shape Coding 343

12.2.5 Static Texture Coding 346
12.2.6 Sprite Coding 347

12.2.7 Global Motion Compensation 348
Synthetic Object Coding in MPEG-4 349
12.3.1 2D Mesh Object Coding 349
12.3.2 3D Model-based Coding 354
MPEG-4 Object types, Profiles and Levels
MPEG-4 Part10/H.264 357

12.5.1 Core Features 358

12.5.2 Baseline Profile Features 360
12.5.3 Main Profile Features 360
12.5.4 Extended Profile Features 361
MPEG-7 361

12.6.1 Descrdptor (D) 363

12.6.2 Description Scheme (DS) 365

12.6.3 Description Definition Language (DDL) 368

MPEG-21 365
Further Exploration 370
Exercises 370

12.10 References 371

13 Basic Audio Compression Techniques

14

13.1

132
13.3

134
13.5
13.6

ADPCM in Speech Coding 374
13.1.1 ADPCM 374

G.726 ADPCM 376

Vocoders 378

13.3.1 Phase Insensitivity 378
13.3.2 Channel Vocoder 378

13.3.3 Formant Vocoder 380

13.3.4 Linear Predictive Coding 380
13.3.5 CELP 383

13.3.6 Hybrid Excitation Vocoders® 389
Further Exploration 392

Exercises 392

References 393

MPEG Audio Compression

14.1

14.2

Psychoacoustics 395

14.1.1 Equal-Loudness Relations 396
14.1.2 Frequency Masking 398
14.1.3 Temporal Masking 403
MPEG Audio 405

14.2.1 MPEG Layers 405

332

374

395

14.2.2 MPEG Audio Strategy 406
14.2.3 MPEG Audio Compression Algorithm 407
14.2.4 MPEG-2 AAC (Advanced Audio Coding) 412
1425 MPEG-4 Audio 414 .

14.3 Other Commercial Audio Codecs 415

14.4 The Future: MPEG-7 and MPEG-21 415

14.5 Further Exploration 416

14.6 Exercises 416

14.7 References 417

IIT Multimedia Communication and Retrieval

15 Computer and Multimedia Networks

15.1 Basics of Computer and Multimedia Networks 421
15.1.1 OSI Network Layers 421
15.12 TCP/IP Protocols 422

15.2 Multiplexing Technologies 425
15.2.1 Basics of Multiplexing 425
15.2.2 Integrated Services Digital Network (ISDN) 427
15.2.3 Synchronous Optical NETwork (SONET) 428
15.2.4 Asymmetric Digital Subscriber Line (ADSL) 429

15.3 LANand WAN 430
15.3.1 Local Area Networks (LANs) 431
15.3.2 Wide Area Networks (WANs) 434
15.3.3 Asynchronous Transfer Mode (ATM) 435
15.3.4 Gigabit and 10-Gigabit Ethernets 438

154 Access Networks 439

15.5 Common Peripheral Interfaces 441

15.6 Further Exploration 441

15.7 Exercises 442

15.8 References 442

16 Multimedia Network Communications and Applications

16.1 Quality of Multimedia Data Transmission 443
16.1.1 Quality of Service (QoS) 443
16.1.2 QoS for IP Protocols 446
16.1.3 Prioritized Delivery 447

16.2 Multimedia over IP 447
16.2.1 IP-Multicast 447
16.2.2 RTP (Real-time Transport Protocol) 449
16.2.3 Real Time Control Protocol (RTCP) 451
16.2.4 Resource ReSerVation Protocol (RSVP) 451
16.2.5 Real-Time Streaming Protocol (RTSP) 453
16.2.6 Internet Telephony 455

16.3 Multimedia over ATM Networks 459
16.3.1 Video Bitrates over ATM 459
16.3.2 ATM Adaptation Layer (AAL) 460
16.3.3 MPEG-2 Convergence to ATM 461
16.3.4 Multicast over ATM 462

Xi

419

421

443

xii

16.4 Transport of MPEG-4 462
16.4.1 DMIF in MPEG-4 462
16.42 MPEG-4 over IP 463

16.5 Media-on-Demand (MOD) 464
16.5.1 Interactive TV (ITV) and Set-Top Box (STB) 464
16.5.2 Broadcast Schemes for Video-on-Demand 465
16.5.3 Buffer Management 472

16.6 Further Exploration 475

16.7 Exercises 476

16.8 References 477

17 Wireless Networks 479

17.1 Wireless Networks 479
17.1.1 Analog Wireless Networks 480
17.1.2 Digital Wireless Networks 481
17.1.3 TDMA and GSM 481
17.1.4 Spread Spectrum and CDMA 483
17.1.5 Analysis of CDMA 486
17.1.6 3G Digital Wireless Networks 488
17.1.7 Wireless LAN (WLAN) 492

17.2 Radio Propagation Models 493
17.2.1 Multipath Fading 494
17.2.2 PathLoss 496

17.3 Multimedia over Wireless Networks 496
17.3.1 Synchronization Loss 497
17.3.2 Error Resilient Entropy Coding 499
17.3.3 Error Concealment 501
17.3.4 Forward Error Correction (FEC) 503
17.3.5 Trends in Wireless Interactive Multimedia 506

174 Further Exploration 508

17.5 Exercises 508

17.6 References 510

18 Content-Based Retrieval in Digital Libraries 7 511

18.1 How Should We Retrieve Iinages? 511

182 C-BIRD — A Case Study 513
18.2.1 C-BIRD GUI 514
18.2.2 Color Histogram 514
18.2.3 Color Density 516
18.2.4 ColorLayout 516
18.2.5 Texture Layout 517
18.2.6 Search by lllumination Invariance 519
18.247 Search by Object Model 520

18.3 Synopsis of Current Iinage Search Systems 533
18.3.1 QBIC 535
18.3.2 UC Santa Barbara Search Engines 536
18.3.3 Berkeley Digital Library Project 536
18.3.4 Chabot 536
18.3.5 Blobworld 537
18.3.6 Columbia University Image Seekers 537

xiii

18.3.7 Informedia 537
18.3.8 MetaSEEk 537
18.3.9 Photobook and FourEyes 538
18.3.10MARS 538
18.3.11 Virage 538
18.3.12 Viper 538
18.3.13 Visual RetrievalWare 538
18.4 Relevance Feedback 539
18.4.1 MARS 539
18.4.2 iFind 541
18.5 Quantifying Results 541
18.6 Querying on Videos 542
18.7 Querying on Other Formats 544
18.8 Outlook for Content-Based Retrieval 544
18.9 Further Exploration 545
18.10 Exercises 546
18.11 References 547

Index 551

xiv

Preface

A course in multimedia is rapidly becoming a necessity in cornputer science and engineering
curricula, especially now that multimedia touches most aspects of these fields. Multimedia
was originally seen as a vertical application area; that is, a niche application with methods
that belong only to itself. However, like pervasive computing, multimedia is now essentially
a horizontal application area and forms an important component of the study of computer
graphics, image processing, databases, real-time systems, operating systems, information
retrieval, computer networks, computer vision, and so on. Multimedia is no longer just
a toy but forms part of the technological environment in which we work and think. This
book fills the need for a university-level text that examines a good deal of the core agenda
computer science sees as belonging to this subject area. Multimedia has become associated
with a certain set of issues in computer science and engineering, and we address those here.

The book is not an introduction to simple design issues—it serves a more advanced
audience than that. On the other hand, it is not a reference work — it is more a traditional
textbook. While we perforce discuss multimedia tools, we would like to give a sense of
the underlying principles in the tasks those tools carry out. Students who undertake and
succeed in a course based on this text can be said to really understand fundamental matters
in regard to this material; hence the title of the text.

In conjunction with this text, a full-fledged course should also allow students to make use
of this knowledge to carry out interesting or even wonderful practical projects in multimedia,
interactive projects that engage and sometimes amuse and, perhaps, even teach these same
concepts.

Who Should Read This Book?

This text aims at introducing the basic ideas in multimedia to an audience comfortable with
technical applications—that is, computer science and engineering students. It aims to cover
an upper-level undergraduate multimedia course but could also be used in more advanced
courses and would be a good reference for anyone, including those in industry, interested in
current multimedia technologies. Graduate students needing a solid grounding in materials
they may not have seen before would undoubtedly benefit from reading it.

The text mainly presents concepts, not applications. A multimedia course, on the other

‘hand, teaches these concepts and tests them but also allows students to use coding and

presentation skills they already know to address problems in multimedia. The accompanying
web site shows some of the code for multimedia applications, along with some of the better
projects students have developed in such a course and other useful materials best presented
electronically.)

The ideas in the text drive the results shown in student projects. We assume the reader
knows how to program and is also completely comfortable learning yet another tool. Instead
of concentrating on tools, however, we emphasize what students do not already know.

Preface xv

Using the methods and ideas collected here, students are also able to learn more themselves,
sometimes in a job setting. It is not unusual for students who take the type of multimedia
course this text aims at to go on to jobs in a multimedia-related industry immediately after
their senior year, and sometimes before.

The selection of material in the text addresses real issues these learners will face as soon
as they show up in the workplace. Some topics are simple but new to the students; some
are more complex but unavoidable in this emerging area.

Have the Authors Used This Material in a Real Class?

Since 1996, we have taught a third-year undergraduate course in multimedia systems based
on the introductory materials set out in this book. A one-semester course could very likely
not include all the material covered in this text, but we have usually managed to consider
a good many of the topics addressed and to mention a select number of issues in Part III
within that time frame.

Over the same time period as an introduction to more advanced materials, we have also
taught a one-semester graduate-level course using notes covering topics similar to the ground
covered by this text. A fourth-year or graduate course would do well to consider material
from Parts I and II of the book and then some material from Part III, perhaps in conjunction
with some of the original research references included here and results presented at topical
conferences.

We have attempted to fill both needs, concentrating on an undergraduate audience but
including more advanced material as well. Sections that can safely be omitted on a first
reading are marked with an asterisk.

What is Covered in This Text?

In Part I, Multimedia Authoring and Data Representations, we introduce some of the no-
tions included in the term wmultimedia and look at its history as well as its present. Practi-
cally speaking, we carry out multimedia projects using software tools, so in addition to an
overview of these tools, we get down to some of the nuts and bolts of multimedia authoring.
Representing data is critical in multimedia, and we look at the most important data repre-
sentations for multimedia applications, examining image data, video data, and andio data in
detail. Since color is vitally important in multimedia programs, we see how this important
area impacts multimedia issues.

In Part II, Multimedia Data Compression, we consider how we can make all this data
fly onto the screen and speakers. Data compression turns out to be an important enabling
technology that makes modern multimedia systems possible, so we look at lossless and lossy
compression methods. For the latter category, JPEG still-image compression standards,
including JPEG2000, are arguably the most important, so we consider these in detail. But
since a picture is worth a thousand words and video is worth more than a million words
per minute, we examine the ideas behind MPEG standards MPEG-1, MPEG-2, MPEG-4,
MPEG-7, and beyond. Separately, we consider some basic audio compression techniques
and take a look at MPEG Audio, including MP3.

In Part I, Multimedia Communication and Retrieval, we consider the great demands
multimedia places on networks and systems. We go on to consider network technologies

Xvi

Preface

and protocols that make interactive multimedia possible. Some of the applications discussed
include multimedia on demand, muttimedia over IP, multimedia over ATM, and multimedia
over wireless networks. Content-based retrieval is a particularly important issue in digital
libraries and interactive multimedia, so we examine ideas and systems for this application
in some detail.

Texthook Webh Site

The book’s web site is www.cs.sfu.ca/mmbook. There, you will find copies of figures from
the book, an errata sheet updated regularly, programs that help demonstrate concepts in the
text, and a dynamic set of links for the Further Exploration section of each chapter. Since
these links are regularly updated (and of course URLs change often) they are mostly online
rather than in the text.

Instructors’ Resources

The main text web site has no ID and password, but access to sample student projects is
at the instructor’s discretion and is password-protected. Prentice Hall also hosts a web site
containing Course Instructor resources for adopters of the text. These include an extensive
collection of online course notes, a one-semester course syllabus and calendar of events,
solutions for the exercises in the text, sample assignments and solutions, sample exams, and
extra exam questions.

Acknowledgements

We are most grateful to colleagues who generously gave of their time to review this text, and
we wish to express our thanks to Shu-Ching Chen, Edward Chang, Qianping Gu, Rachelle S.
Heller, Gongzhu Hu, S. N. Jayaram, Tiko Kameda, Xiaobo Li, Siwei Lu, Dennis Richards,
and Jacques Vaisey.

The writing of this text has been greatly aided by a number of suggestions from present
and former colleagues and students. 'We would like to thank James Au, Chad Ciavarro,
Hao Jiang, Steven Kilthau, Michael King, Cheng Lu, Yi Sun, Dominic Szopa, Zinovi
Tauber, Malte von Ruden, Jian Wang, Jie Wei, Edward Yan, Yingchen Yang, Osmar Zaiane,
Wenbiao Zhang, and William Zhong for their assistance. As well, Mr. Ye Lu made great
contributions to Chapters 8 and 9 and his valiant efforts are particularly appreciated. We
are also most grateful for the students who generously made their course projects available
for instructional use for this book.

PART ONE

JITHORING AND
DATA
REPRESENTATIONS

Chapter 1 Introduction to Multimedia 3

Chapter2 Muitimedia Authoring and Tools 20

Chapter 3 Graphics and Image Data Representations 60
Chapter 4 Color in Image and Video 82 _

Chapter 5 Fundamental Concepts in Video 112

Chapter 6 Basics of Digital Audio 126

Introduction to Multimedia

As an introduction to multimedia, in Chapter 1 we consider the question of just what
multimedia is. We examine its history and the development of hypertext and hypermedia.
‘We then get down to practical matters with an overview of multimedia software tools. These
are the basic means we use to develop multimedia content. But a multimedia production is
much more than the sum of its parts, so Chapter 2 looks at the nuts and bolts of multimedia
authoring design and a taxonomy of authoring metaphors. The chapter also sets out a list
of important contemporary multimedia authoring tools in ciurent use.

Multimedia Data Representations

As in many fields, the issue of how to best represent the data is of crucial importance in
the study of multimedia. Chapters 3 through 6 consider how this is addressed in this field,
setting out the most important data representations in multimedia applications. Because the
main areas of concern are images, moving pictures, and audio, we begin investigating these

1

in Chapter 3, Graphics and Image Data Representations, then look at Basics of Video in
Chapter 5. Before going on to Chapter 6, Basics of Digital Audio, we take a side trip in
Chapter 4 to explore several issues on the use of color, since color is vitally important in

multimedia programs.

CHAPTER 1

Introduction to Multimedia

1.1 WHAT IS MULTIMEDIA?

Pcople who use the term “multimedia” often seem to have quite different, even opposing,
viewpoints. A PC vendor would like us to think of multimedia as a PC that has sound
capability, a DVD-ROM drive, and perhaps the superiority of multimedia-enabled micro-
processors that understand additional multimedia instructions. A consumer entertainment
vendor may think of multimedia as interactive cable TV with hundreds of digital channels,
or a cable-TV-like service delivered over a high-speed Internet connection.

A computer science student reading this book likely has a more application-oriented
view of what multimedia consists of: applications that use multiple modalities to their
advantage, including text, images, drawings (graphics), animation, video, sound (including
speech), and, most likely, interactivity of some kind. The popular notion of “convergence”
is one that inhabits the college campus as it does the culture at large. In this scenario,
PCs, DVDs, games, digital TV, set-top web surfing, wireless, and so on are converging in
technology, presumably to arrive in the near future at a final all-around, multimedia-enabled
product. While hardware may indeed involve such devices, the present is already exciting —
multimedia is part of some of the most interesting projects underway in computer science.
The convergence going on in this field is in fact a convergence of areas that have in the past
been separated but are now finding much to share in this new application area. Graphics,
visualization, HCI, computer vision, data compression, graph theory, networking, database
systems — all have important contributions to make in multimedia at the present time.

1.1.1 Components of Multimedia

The multiple modalities of text, audio, images, drawings, animation, and video in multimedia
are put to use in ways as diverse as

¢ Video teleconferencing
o Distributed lectures for higher education
o Telemedicine

¢ Cooperative work environments that allow business people to edit a shared document
or schoolchildren to share a single game using two mice that pass control back and
forth

4 Chapter 1

introduction to Multimedia

Searching (very) large video and image databases for target visual objects

“Augmented” reality: placing real-appearing computer graphics and video objects
into scenes so as to take the physics of objects and lights (e.g., shadows) into account

Audio cues for where video-conference participanis are seated, as well as taking into
account gaze direction and attention of participants

Building searchable features into new video and enabling very high to very low bitrate
use of new, scalable multimedia products

Making multimedia components editable — allowing the user side to decide what
components, video, graphics, and so on are actually viewed and allowing the client
to move components around or delete them — making components distributed

Building “inverse-Hollywood” applications that can re-create the process by which a
video was made, allowing storyboard pruning and concise video summarization

Using voice recognition to build an interactive environment — say a kitchen-wall
web browser

From the computer science student’s point of view, what makes multimedia interesting
is that so much of the material covered in traditional computer science areas bears on the
multimedia enterprise: networks, operating systems, real-time systems, vision, information
retrieval. Like databases, multimedia touches on many traditional areas.

1.1.2 Multimedia Research Topics and Projects

To the computer science researcher, multimedia consists of a wide variety of topics [1]:

Multimedia processing and coding. This includes multimedia content analysis,
content-based multimedia retrieval, multimedia security, audio/image/video process-
ing, compression, and so on.

Multimedia system support and networking. People look at such topics as network
protocols, Internet, operating systems, servers and clients, quality of service (QoS),
and databases.

Multimedia tools, end systems, and applications. These include hypermedia sys-
tems, user interfaces, authoring systems, multimodal interaction, and integration:
“ubiquity” — web-everywhere devices, multimedia education, including computer
supported collaborative learning and design, and applications of virtual environments.

The concerns of multimedia researchers also imnpact researchers in almost every other branch
of computer science. For example, data mining is an important current research area, and
a large database of multimedia data objects is a good example of just what we may be
interested in mining. Telemedicine applications, such as “telemedical patient consultative
encounters,” are multimedia applications that place a heavy burden on existing network
architectures.

Section 1.2 Multimedia and Hypermedia 5

Current Multimedia Projects Many exciting research projects are currently underway
in multimedia, and we’d like to introduce a few of them here.

For example, researchers are interested in camera-based object tracking technology. One
aim is to develop control systems for industrial control, gaming, and so on thatrely on moving
scale models (toys) around a real environment {(a board game, say). Tracking the control
objects (toys) provides user control of the process.

3D motion capture can also be used for multiple actor capture, so that multiple real
actors in a virtual studio can be used to automatically produce realistic animated models
with natural movement.

Multiple views from several cameras or from a single camera under differing lighting can
accurately acquire data that gives both the shape and surface properties of materials, thus
antomatically generating synthetic graphics models. This allows photo-realistic {video-
quality) synthesis of virtual actors.

3D capture technology is next to fast enough now to allow acquiring dynamic characteris-
tics of human facial expression during speech, to synthesize highly realistic facial animation
from speech.

Multimedia applications aimed at handicapped persons, particularly those with poor
vision and the elderly, are a rich field of endeavor in current research.

“Digital fashion” aims to develop smart clothing that can communicate with other such
enhanced clothing using wireless communication, so as to artificially enhance human in-
teraction in a social setting. The vision here is to use technology to allow individuals to
allow certain thonghts and feelings to be broadcast automatically, for exchange with others
equipped with similar technology.

Georgia Tech’s Electronic Housecall system, an initiative for providing interactive health
monitoring services to patients in their homes, relies on networks for delivery, challenging
current capabilities.

Behavioral science models can be brought into play to model interaction between peo-
ple, which can then be extended to enable natural interaction by virtual characters. Such
“augmented interaction” applications can be used to develop interfaces between real and
virtual humans for tasks such as augmented storytelling.

Each of these application areas pushes the development of computer science generally,
stimulates new applications, and fascinates practitioners.

1.2 MULTIMEDIA AND HYPERMEDIA

To place multimedia in its proper context, in this section we briefly consider the history of
multimedia, a recent part of which is the connection between multimedia and hypermedia.
We go on to a quick overview of multimedia software tools available for creation of multi-
media content, which prepares us to examine, in Chapter 2, the larger issue of integrating
this content into full-blown multimedia productions.

1.2.1 History of Multimedia

A brief history of the use of multimedia to communicate ideas might begin with newspapers,
which were perhaps the first mass communication medium, using text, graphics, and images.

6

Chapter 1 Introduction to Multimedia

Motion pictures were originally conceived of in the 1830s to observe motion too rapid
for perception by the human eye. Thomas Alva Edison commissioned the invention of a
motion picture camera in 1887. Silent feature films appeared from 1910 to 1927, the silent
era effectively ended with the release of The Jazz Singer in 1927.

In 1895, Guglielmo Marconi sent his first wireless radio transmission at Pontecchio, Italy.
A few years later (1901), he detected radio waves beamed across the Atlantic. Initially
invented for telegraph, radio is now a major medium for audio broadcasting. In 1909,
Marconi shared the Nobel Prize for physics. (Reginald A. Fessenden, of Quebec, beat
Marconi to human voice transmission by several years, but not all inventors receive due
credit. Nevertheless, Fessenden was paid $2.5 million in 1928 for his purloined patents.)

Television was the new medium for the twentieth century. It established video as a
commonly available medium and has since changed the world of mass communication.

The connection between computers and ideas about multimedia covers what is actually
only a short period:

1945 As part of MIT’s postwar deliberations on what to do with all those scientists em-
ployed on the war effort, Vannevar Bush (1890-1974) wrote a landmark article [2]
describing what amounts to a hypermedia system, called “Memex.” Memex was
meant to be a universally useful and personalized memory device that even included
the concept of associative links — it really is the forerunner of the World Wide Web.
After World War 11, 6,000 scientists who had been hard at work on the war effort
suddenly found themselves with time to consider other issues, and the Memex idea
was one fruit of that new freedom.

1960s Ted Nelson started the Xanadu project and coined the term “hypertext.” Xanadu
was the first attempt at a hypertext system — Nelson called it a “magic place of
literary memory.”

1967 Nicholas Negroponte formed the Architecture Machine Group at MIT.

1968 Douglas Engelbart, greatly influenced by Vannevar Bush’s “As We May Think,”
demonstrated the “On-Line System” (NLS), another early hypertext program. En-
gelbart’s group at Stanford Research Institute aimed at “augmentation, not automa-
tion,” to enhance human abilities through computer technology. NLS consisted of
such critical ideas as an outline editor for idea development, hypertext links, tele-
conferencing, word processing, and e-mail, and made use of the mouse pointing
device, windowing software, and help systems [3].

1969 Nelson and van Dam at Brown University created an early hypertext editor called
FRESS' [4]. The present-day Intermedia project by the Institute for Research in
Information and Scholarship (IRIS) at Brown is the descendant of that early system.

1976 The MIT Architecture Machine Group proposed a project entitled “Multiple Media.”
This resulted in the Aspen Movie Map, the first hypermedia videodisc, in 1978.

1985 Negroponte and Wiesner cofounded the MIT Media Lab, a leading research institu-
tion investigating digital video and multimedia,

Section 1.2 Multimedia and Hypermedia 7

1989 Tim Berners-Lee proposed the World Wide Web to the European Council for Nuclear
Research (CERN).

1990 Kristina Hooper Woolsey headed the Apple Multimedia Lab, with a staff of 100.
Education was a chief goal. '

1991 MPEG-1 was approved as an international standard for digital video. Its further
development led to newer standards, MPEG-2, MPEG-4, and further MPEGs, in the
1990s.

1991 The introduction of PDAs in 1991 began a new period in the use of computers in
general and multimedia in particular. This development continued in 1996 with the
marketing of the first PDA with no keyboard.

1992 JPEG was accepted as the international standard for digital image compression. Its
further development has now led to the new JPEG2000 standard.

1992 The first MBone audio multicast on the Net was made.

1993 The University of Illinois National Center for Supercomputing Applications pro-
duced NCSA Mosaic, the first full-fledged browser, launching a new era in Internet
information access.

1994 Jim Clark and Marc Andreessen created the Netscape program.
1995 The JAVA language was created for platform-independent application development.

1996 DVD video was introduced; high-quality, full-length movies were distributed on a
singledisk. The DVD format promised to transform the music, gaming and computer
industries.

1998 XML 1.0 was announced as a W3C Recommendation.

1998 Handheld MP3 devices first made inroads into consumer tastes in the fall, with the
introduction of devices holding 32 MB of flash memory.

2000 World Wide Web (WWW) size was estimated at over | billion pages.

1.2.2 Hypermedia and Multimedia

Ted Nelson invented the term “HyperText” around 1965. Whereas we may think of a book
as a linear medium, basically meant to be read from beginning to end, a hypertext system is
meant to be read nonlinearly, by following links that point to other parts of the document,
or indeed to other documents. Figure 1.1 illustrates this idea.

Hypermedia is not constrained to be text-based. It can include other media, such as
graphics, images, and especially the continuous media — sound and video. Apparently Ted
Nelson was also the first to use this term. The World Wide Web (WWW) is the best example
of a hypermedia application.

As we have seen, multimedia fundamentally means that computer information can be
represented through audio, graphics, images, video, and animation in addition to tradi-
tional media (text and graphics). Hypermedia can be considered one particular multimedia
application.

8 Chapter 1 Introduction to Multimedia

Hypertext

Normal text

Linear

® "Hot spots"

Nonlinear

FIGURE 1.1: Hypertext is nonlinear.

Examples of typical multimedia applications include: digital video editing and produc-
tion systems; electronic newspapers and magazines; the World Wide Web; online reference
works, such as encyclopedias; games; groupware; home shopping; interactive TV; multi-
media courseware; video conferencing; video-on-demand; and inferactive movies.

1.3 WORLD WIDE WEB

The World Wide Web is the largest and most commonly used hypermedia application. Its
popularity is due to the amount of information available from web servers, the capacity
to post such information, and the ease of navigating such information with a web browser.
WWW technology is maintained and developed by the World Wide Web Consortinm (W3C),
although the Internet Engineering Task Force (IETF) standardizes the technologies. The
W3C has listed the following three goals for the WWW: universal access of web resources
(by everyone everywhere), effectiveness of navigating available information, and responsi-
ble use of posted material.

1.3.1 History of the WWW

Amazingly, one of the most predominant networked multimedia applications has its roots
in nuclear physics!- As noted in the previous section, Tim Berners-I.ee proposed the World
‘Wide Web to CERN (European Center for Nuclear Research) as a means for organizing and
sharing their work and experimental results. The following is a short list of important dates
in the creation of the WWW:

Section 1.3 World Wide Web 9

1960s Itisrecognized that documents need to have formats that are human-readable and that
identify structure and elements. Charles Goldfarb, Edward Mosher, and Raymond
Lorie developed the Generalized Markup Language (GML) for IBM.

1986 The ISO released a final version of the Standard Generalized Markup Language
(SGML), mostly based on the earlier GML.

1990 With approval from CERN, Tim Berners-Lee started developing a hypertext server,
browser, and editor on a NeXTStep workstation. He invented hypertext markup
language (HTML) and the hypertext transfer protocol (HTTP) for this purpose.

1993 NCSA released an alpha version of Mosaic based on the version by Marc Andreessen
for the X Windows System. This was the first popular browser. Microsoft’s Internet
Explorer is based on Mosaic.

1994 Marc Andreessen and some colleagues from NCSA joined Dr. James H. Clark (also
the founder of Silicon Graphics Inc.) to form Mosaic Communications Corpora-
tion. In November, the company changed its name to Netscape Communications
Corporation.

1998 The W3C accepted XML version 1.0 specifications as a Recommendation. XML is
the main focus of the W3C and supersedes HTML.

1.3.2 HyperText Transfer Protocol (HTTP)

HTTP is a protocol that was originally designed for transmitting hypermedia, but it also
suppoits transmission of any file type. HTTP is a “stateless” request/response protocol, in
the sense that a client typically opens a connection to the HTTP server, requests information,
the server responds, and the connection is terminated — no information is carried over for
the next request.

The basic request format is

Method URI Version
Additional-Headers

Message-body

The Uniform Resource Identifier (URI) identifies the resource accessed, such as the host
name, always preceded by the token “http://”. A URI could be a Uniform Resource
Locator (URL), for example. Here, the URI can also include query strings (some interactions
require submitting data). Method is a way of exchanging information or performing tasks
on the URI. Two popular methods are GET and POST. GET specifies that the information
requested is in the request string itself, while the POST methad specifies that the resource
pointed to in the URI should consider the message body. POST is generally used for
submitting HTML forms. Additiohal-Headers specifies additional parameters about
the client. For example, to request access to this textbook’s web site, the following HTTP
message might be generated:

GET http://www.cs.sfu.ca/mmbook/ HTTP/1.1

N

10 Chapter 1 Introduction to Multimedia

The basic response format is

Version Status-Code Status- Phrase
Additional-Headers

Message-body

Status-Code is a number that identifies the response type (or error that occurs), and
Status-Phrase is a textual description of it. Two commonly seen status codes and
phrases are 200 OK when the request was processed successfully and 404 Not Found
when the URI does not exist. For example, in response to the example request above for
this textbook’s URL, the web server may retarm something like

HTTP/1.1 200 OK Server:

[No-plugs-here-please] Date: Wed, 25 July 2002
20:04:30 GMT

Content-Length: 1045 Content-Type: text/html

<HTML>

</HTML>

1.3.3 HyperText Markup Language (HTIVL)

HTML is a language for publishing hypermedia on the World Wide Web. It is defined using
SGML and derives elements that describe generic document structure and formatting. Since
ituses ASCIL, it is portable to all different (even binary-incompatible) computer hardware,
which allows for global exchange of information. The current version of HTML is version
4.01, specified in 1999. The next generation of HTML is XHTML, a reformulation of
HTML using XML.

HTML uses tags to describe document elements. The tags are in the format <token
params> to define the start point of a document element and </ token> to define the end
of the element. Some elements have only inline parameters and don’t require ending tags.
HTML divides the document into a HEAD and a BODY part as follows: '

<HTML>
<HEAD>
</HEAD>
<BODY>
</BODY>
</HTML>
The HEAD describes document definitions, which are parsed before any document rendering
is done. These include page title, resource links, and meta-information the author decides to

specify. The BODY part describes the document structure and content. Common structure
elements are paragraphs, tables, forms, links, item lists, and buttons.

Section 1.3 World Wide Web 11

A very simple HTML page is as follows:

<HTML>
<HEAD>
<TITLE>
A sample web page.
</TITLE>
<META NAME = "Author" CONTENT = "Cranky Professor">
</HEAD> <BODY>
<P>
We can put any text we like here, since this is
a paragraph element.
</P>
< /BODY>
</HTML>

Naturally, HTML has more complex structures and can be mixed with other standards.
The standard has evolved to allow integration with script langunages, dynamic manipulation
of almost all elements and properties after display on the client side (dynamic HTML), and
modular customization of all rendering parameters using a markup language called Cascad-
ing Style Sheets (CSS). Nonetheless, HTML has rigid, nondescriptive structure elements,
and modularity is hard to achieve.

1.3.4 Extensible Markup Language (XML)

There is a need for a markup language for the WWW that has modularity of data, structure,
and view. That is, we would like a user or an application to be able to define the tags
(structure) allowed in a document and their relationship to each other, in one place, then
define data using these tags in another place (the XML file) and, finally, define in yet another
document how to render the tags.

Suppose you wanted to have stock information retrieved from a database according to
a user query. Using XML, you would use a global Document Type Definition {(DTD) you
have already defined for stock data. Your server-side script will abide by the DTD rules to
generate an XML document according to the query, using data from your database. Finally,
you will send users your XML Style Sheet (XSL), depending on the type of device they use
to display the information, so that your document looks best both on a computer with a
21-inch CRT monitor and on a cellphone.

The current XML version is XML 1.0, approved by the W3C in February 1998. XML
syntax looks like HTML syntax, although it is much stricter. All tags are lowercase, and a
tag that has only inline data has to terminate itself, for example, <token params />.
XML also uses namespaces, so that multiple DTDs declaring different elements but with
similar tag names can have their elements distinguished. DTDs can be imported from URIs
as well. As an example of an XML document structure, here is the definition for a small
XHTML document:

12 Chapter 1 Introduction to Multimedia

<?xml version="1.0" encoding="iso-8859-1"7?>
< IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0"
"http://www.w3.org/TR/xhtmll/DTD/xhtmlil-transition.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
[html that follows
the above mentioned
XML rules]
</html>

All XML documents start with <?xml version="ver"?>, <!DOCTYPE ...>isa
special tag used for importing DTDs. Since it is a DTD definition, it does not adhere to
XML rules. xmlns defines a unique XML namespace for the document elements. In this
case, the namespace is the XHTML specifications web site.

In addition to XML specifications, the following XML-related specifications are stan-
dardized:

¢ XML Protocol. Used to exchange XML information between processes. It is meant
to supersede HTTP and extend it as well as to allow interprocess communications
across networks,

¢ XML Schema. A more structured and powerful language for defining XML data
types (tags). Unlike a DTD, XML Schema uses XML tags for type definitions.

o XSL.. This is basically CSS for XML. On the other hand, XSL is much more complex,
having three parts: XSL Transformations (XSLT), XML Path Language (XPath), and
XSL Fonmnatting Objects.

¢ SMIL: Synchronized Multimedia Integration Language, pronounced ‘“‘smile”.
This is a particular application of XML (globally predefined DTD) that permits spec-
ifying temporally scripted interaction among any media types and user input. For
example, it can be used to show a streaming video synchronized with a slide show
presentation, both reacting to user navigation through the slide show or video.

1.3.5 Synchronized Multimedia Integration Language (SMIL)

Just as it was beneficial to have HTML provide text-document publishing using a readable
markup langudge, it is also desirable to be able to publish multimedia presentations using a
markup language. Multimedia presentations have additional characteristics: whereas in text
documents the text is read sequentially and displayed all at once (at the same time), multi-
media presentations can include many elements, such as video and audio, that have content
changing through time. Thus, a multimedia markup language must enable scheduling and
synchronization of different multimedia elements and define these elements’ interactivity
with the user.

Section 1.3 World Wide Web 13

The W3C established a Working Group in 1997 to come up with specifications for a
multimedia synchronization language. That group produced specifications for SMIL 1.0
that became a Recommendation in June 1998. As HTML was being redefined in XML
(XHTML specifications), so too did SMIL 1.0, with some enhancements. SMIL 2.0, which
also provides integration with HTML, was accepted as a Recommendation in August 2001.

SMIL 2.0 is specified in XML using a modularization approach similar to the one used in
XHTML. All SMIL elements are divided into modules — sets of XML elements, attributes,
and values that define one conceptual functionality. In the interest of modularization, not all
available modules must be included for all applications. For that reason, Language Profiles
are defined, specifying a particular grouping of modules. Particular modules may have
integration requirements a profile must follow. SMIL 2.0 has a main language profile that
includes almost all SMIL modules, a Basic profile that includes only modules necessary
to support basic functionality, and an XHTML+SMIL profile designed to integrale HTML
and SMIL. The latter includes most of the XHTML modules, with only the SMIL timing
modules (but not structure modules — XHTML has its own structure modules) added.

The SMIL language structure is similar to XHTML. The root element is smil, which
contains the two elements head and body. head contains information not used for
synchronization — metainformation, layout information, and content control, such as media
bitrate. body contains all the information relating to which resources to present, and when.

Three types of resource synchronization (grouping) are available: seq, par, and excl.
seq specifies that the elements grouped are to be presented in the specified order (sequen-
tially). Alternatively, par specifies that all the elements grouped are to be presented at
the same time (in parallel). excl specifies that only one of the grouped elements can be
presented at a time (exclusively); order does not matter.

Let’s look at an example of SMIL code

<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 2.0"

"hitp://www.w3.0rg/2001/SMIL20/SMIL20.dtd ">

<smil xmlns=
"http://www.w3.0rg/2001/SMIL20/Language”>

<head>
<meta name="Author" content="Some Professor" />
</head>
<body>
<par id="MakingOfABook">
<seqg>
<video src="authorview.mpg" />

</seqg>

<audio src="authorview.wav" />
<text src="http://www.cs.sfu.ca/mmbook/" />
</par>
</body>
</smil>

14 Chapter 1 Introduction to Multimedia

A SMIL document can optionally use the <IDOCTYPE. . .> directive to import the
SMIL DTD, which will force the interpreter to verify the document against the DTD. A
SMIL document starts with <smi 1> and specifies the default namespace, using the xmlns
attribute. The <head> section specifies the author of the document. The body element
contains the synchronization information and resources we wish to present.

In the example given, a video source called "authorview.mpg", an audio source,
"authorview.wav", and an HTML document at "http://booksite.html"
are presented simultaneously at the beginning. When the video ends, the image
"onagoodday . jpog" is shown, while the audio and the HTML document are still pre-
sented. At this point, the audio will thank the listeners and conclude the interview.

Additional information on SMIL specifications and available modules is available on the
W3C web site.

1.4 OVERVIEW OF MULTIMEDIA SOFTWARE TOOLS

1.4.1

In this subsection, we look briefly at some of the software tools available for carrying
out tasks in multimedia. These tools are really only the beginning — a fully functional
multimedia project can also call for stand-alone programming as well as just the use of
predefined tools to fully exercise the capabilities of machines and the Net.!

The categories of software tools we examine here are

o Music sequencing and notation
o Digital audio

Graphics and image editing

e Video editing
s Animation

o Multimedia authoring

Music Sequencing and Notation

Cakewalk Cakewalk is a well known older name for what is now called Pro Audio.
The firm producing this sequencing and editing software, Twelve Tone Systems, also sells an
introductory version of their software, “Cakewalk Express”, over the Internet for a low price.

The term sequericer comes from older devices that stored sequences of notes in the MIDI
music language (events, in MIDI; see Section 6.2), 1t is also possible to insert WAV files and
Windows MCI commands (for animation and video) into music tracks. (MCl is a ubiquitous

" component of the Windows APL)

Cubase Cubase is another sequencing/editing program, with capabilities similar to
those of Cakewalk. It includes some digital audio editing tools (see below).

LSee the accompanying web site for several interesting uses of software tools. In a typical computer science
course in multimedia, the tools described here might be used to create a small multimedia production as a first
assignment. Some of the tools are powerful enough that they might also form part of a course project.

Section 1.4 Overview of Multimedia Software Tools 15

Macromedia Soundedit Soundedit is a mature program for creating audio for multi-
media projects and the web that integrates well with other Macromedia products such as
Flash and Director. -

1.4.2 Digital Audio

Digital Audio tools deal with accessing and editing the actual sampled sounds that make up
audio.

Cool Edit Cool Edit is a powerful, popular digital audio toolkit with capabilities (for
PC users, at least) that emulate a professional audio studio, including multitrack productions
and sound file editing, along with digital signal processing effects.

Sound Forge Sound Forge is a sophisticated PC-based program for editing WAV files.
Sound can be captured from a CD-ROM drive or from tape or microphone through the sound
card, then mixed and edited. It also permits adding complex special effecits.

Pro Tools Pro Tools is a high-end integrated andio production and editing environment
that runs on Macintosh computers as well as Windows. Pro Tools offers easy MIDI creation
and manipulation as well as powerful audio mixing, recording, and editing software.

1.4.3 Graphics and Image Editing

~ Adobe Illustrator Hlustrator is a powerful publishing tool for creating and editing
vector graphics, which can easily be exported to use on the web.

Adobe Photoshop Photoshop is the standard in a tool for graphics, image processing,
and image manipulation. Layers of images, graphics, and text can be separately manipulated
for maximum flexibility, and its “filter factory” permits creation of sophisticated lighting -
effects.

Macromedia Fireworks Fireworks is software for making graphics specifically for
the web. It includes a bitmap editor, a vector graphics editor, and a JavaScript generator for
buttons and rollovers.

Macromedia Freehand Freehand is a text and web graphics editing tool that supports
many bitmap formats, such as GIF, PNG, and JPEG. These are pivel-based formats, in that
each pixel is specified. Tt also supports vector-based formats, in which endpoints of lines
are specified instead of the pixels themselves, such as SWF (Macromedia Flash) and FHC
(Shockwave Freehand). It can also read Photoshop format.

1.4.4 Video Editing

Adobe Premiere Premiere is a simple, intuitive video editing tool for nonlinear editing
— putting video clips into any order. Video and audio are arranged in fracks, like a musical

16

Chapter 1 Introduction to Multimedia

score. It provides a large number of video and audio tracks, superimpositions, and virtnal
clips. A large library of built-in transitions, filters, and motions for clips allows easy creation -
of effective multimedia productions.

Adobe After Effects After Effects is a powerful video editing tool that enables users to
add and change existing movies with effects such as lighting, shadows, and motion blurring.
It also allows layers, as in Photoshop, to permit manipulating objects independently.

Final Cut Pro Final Cut Pro is a video editing tool offered by Apple for the Macintosh
platform. It allows the capture of video and audio from numerous sources, such as film
and DV. It provides a complete environment, from capturing the video to editing and color
comrection and finally output to a video file or broadcast from the computer.

1.4.5 Animation

Multimedia APIs

Java3D is an API used by Java to construct and render 3D graphics, similar to the way
Java Media Framework handles media files. It provides a basic set of object primitives (cube,
splines, etc.) upon which the developer can build scenes. It is an abstraction layer built on
top of OpenGL or DirectX (the user can select which), so the graphics are accelerated.

DirectX, a Windows API that supports video, images, audio, and 3D animation, is the
most common API used to develop modern multimedia Windows applications, such as
computer games.

OpenGL was created in 1992 and has become the most popular 3D API in use today.
OpenGL is highly portable and will run on all popular modern operating systems, such as
UNIX, Linux, Windows, and Macintosh.

Rendering Tools

3D Studio Max includes a number of high-end professional tools for character animation,
game development, and visual effects production. Models produced usmg this tool can be
seen in several consumer games, such as for the Sony Playstation.

Softimage XSI (previously called Softimage 3D) is a powerful modeling, animation,
and rendering package for animation and special effects in films and games.

Maya, a competing product to Softimage, is a complete modeling package. It features a
wide variety of modeling and animation tools, such as to create realistic clothes and fur.

RenderMan is a rendering package created by Pixar. It excels in creating complex

_surface appearances and images and has been used in numerous movies, such as Monsters

Inc. and Final Farzmsy The Spirits Within. Itis also capable of importing models from Maya.

GIF Animation Packages For a simpler approach to animation that also allows quick
development of efféctive small animations for the web, many shareware and other programs
permit creating animated GIF images. GIFs can contain several images, and looping through
them creates a simple animation. Gifcon and GifBuilder are two of these. Linux also
provides some simple animation tools, such as animate.

Section 1.5 Further Exploration 17

1.4.6 Multimedia Authoring

Tools that provide the capability for creating a complete multimedia presentation, including
interactive user control, are called authoring programs.

Macromedia Flash Flash allows users to create interactive movies by using the score
metaphor — a timeline arranged in parallel event sequences, much like a musical score
consisting of musical notes. Elements in the movie are called symbols in Flash. Symbols are
added to a central repository, called a library, and can be added to the movie’s timeline. Once
the symbols are present at a specific time, they appear on the Stage, which represents what
the movie looks like at a certain time, and can be manipulated and moved by the tools built
into Flash. Finished Flash movies are commonly used to show movies or games on the web.

Macromedia Director Director uses a movie metaphor to create interactive presen-
tations. This powerful program includes a built-in scripting language, Lingo, that allows
creation of complex interactive movies.?2 The “cast” of characters in Director includes
bitmapped sprites, scripts, music, sounds, and palettes. Director can read many bitmapped
file formats. The program itself allows a good deal of interactivity, and Lingo, with its own
debugger, allows more control, including control over external devices, such as VCRs and
videodisc players. Director also has web authoring features available, for creation of fully
interactive Shockwave movies playable over the web.

Authorware Authorware is amature, well-supported authoring product that has an easy
learning curve for computer science students because it is based on the idea of flowcharts (the
so-called iconic/flow-control metaphor). It allows hyperlinks to link text, digital movies,
graphics, and sound. It also provides compatibility between files produced in PC and Mac
versions. Shockwave Authorware applications can incorporate Shockwave files, including
Director movies, Flash animations, and audio.

Quest Quest, which uses a type of flowcharting metaphor, is similar to Authorware in
many ways, However, the flowchart nodes can encapsulate information in a more abstract
way (called “frames”) than simply subroutine levels. As aresult, connections between icons
are more conceptual and do not always represent flow of control in the program.

1.5 FURTHER EXPLORATION

Chapters 1 and 2 of Steinmetz and Nahrstedt [S] provide a good overview of multimedia
concepts.

The web site for this text is kept current on new developments. Chapter 1 of the Further
Exploration directory on the web site provides links to much of the history of multimedia. As
a start, the complete Vannevar Bush article on the Memex system conception is online. This
article was and still is considered seminal. Although written over 50 years ago, it adumbrates
many current developments, including fax machines and the associative memory model that
underlies the development of the web. Nielsen’s book [6] is a good overview of hypertext

2Therefore, Director is often a popular chaice with students for creating a final project in multimedia courses
— it provides the desired power without the inevitable pain of using a full-blown C++ program.

18 Chapter 1 Introduction to Multimedia

and hypermedia. For more advanced reading, the collection of survey papers by Jeffay and
Zhang [1] provides in-depth background as well as future directions of research.
Other links in the text web site include information on

Ted Nelson and the Xanadu project

Nicholas Negroponte’s work at the MIT Media Lab. Negroponte’s small book on
multimedia [7] has become a much-quoted classic.

Douglas Engelbart and the history of the “On-Line System”

The MIT Media Lab. Negroponte and Wiesner cofounded the MIT Media Lab, which
is still going strong and is arguably the most influential idea factory in the world.

Client-side execution. Java and client-side execution started in 1995; “Duke”, the
first JAVA applet, is also on the textbook’s web site.

Chapter 12 of Buford’s book [8] provides a detailed introduction to authoring. Neuschotz’s
introductory text [9] gives step-by-step instructions for creating simple Lingo-based inter-
active Director movies.

Other links include

o

Digital Audio. This web page includes a link to the Sonic Foundry company for
information on Sound Forge, a sample Sound Forge file, and the resulting output
WAV file. The example combines left and right channel information in a complex
fashion. Little effort is required to produce sophisticated special effects with this tool.
Digidesign is one firm offering high-end Macintosh software, which can even involve
purchasing extra boards for specialized processing.

Music sequencing and notation
Graphics and image editing information
Video editing products and information
Animation sites

Multimedia authoring tools

XML ,

1.6 EXERCISES

1.

2.

Identify three novel applications of the Internet or multimedia applications. Discuss
why you think these are novel.

Briefly explain, in your own words, “Memex” and its role regarding hypertext. Could
we carry out the Memex task today? How do you use Memex ideas in your own work?

Section 1.7 References 19

Your task is to think about the transmission of synell over the Internet. Suppose we
have a smell sensor at one location and wish to transmit the Aroma Vector (say) to
a receiver to reproduce the same sensation. You are asked to design such a system.
List three key issues to consider and two applications of such a delivery system. Hint:
Think about medical applications.

Tracking objects or people can be done by both sight and sound. While vision systems
are precise, they are relatively expensive; on the other hand, a pair of microphones can
detect a person’s bearing inaccurately but cheaply. Sensor fitsion of sound and vision
is thus useful. Surf the web to find out who is developing tools for video conferencing
using this kind of multimedia idea.

Non-photorealistic graphics means computer graphics that do well enough without
attempting to make images that look like camera images. An example is conferenc-
ing (let’s look at this cutting-edge application again). For example, if we track lip
nmovements, we can generate the right animation to fit our face. If we don’t much
like our own face, we can substitute another one — facial-feature modeling can map
correct lip movements onto another model. See if you can find out who is carrying
out research on generating avatars to represent conference participants’ bodies.

Watermarking is a means of embedding a hidden message in data. This could have
important legal implications: Is this image copied? Is this image doctored? Who
took it? Where? Think of “messages” that could be sensed while capturing an image
and secretly embedded in the image, so as to answer these questions. (A similar
question derives from the use of cell phones. What could we use to determine who
is putting this phone to use, and where, and when? This could eliminate the need for
passwords.)

1.7 REFERENCES

1

K. Jeffay and H. Zhang, Readings in Multimedia Computing and Networking, San Francisco:
Morgan Kaufmann, CA, 2002.

Vannevar Bush, “As We May Think,” The Atlantic Monthly, Jul. 1945.

3 D. Engelbart and H. Lehtman, “Working Together,” BYTE Magazine, Dec. 1998, 245-252.

N. Yankelovitch, N. Meyrowitz, and A. van Dam, “Reading and Writing the Electronic Book,”
in Hypermedia and Literary Studies, ed. P. Delany and G.P. Landow, Cambridge, MA: MIT
Press, 1991.

R. Steinmetz and K. Nahrstedt, Multimedia: Computing, Connnunications and Applications,
Upper Saddle River, NJ: Prentice Hall PTR, 1995.

J. Nielsen, Multimedia and Hypertext: The Internet and Beyond, San Diego: AP Professional,
1995.

N. Negroponte, Being Digital, New York: Vintage Books, 1995.

8 J.EX. Buford, Multimedia Systems, Reading, MA: Addison Wesley, 1994.

N. Neuschotz, Introduction to Director and Lingo: Multimedia and Internet Applications,
Upper Saddle River, NJ: Prentice Hall, 2000.

2.1

20

CHAPTER 2

Multimedia Authoring and
Tools

MULTIMEDIA AUTHORING

Multimedia authoring is the creation of multimedia productions, sometimes called “movies”
or “presentations”. Since we are interested in this subject from a computer science point
of view, we are mostly interested in interactive applications. Also, we need to consider
still-image editors, such as Adobe Photoshop, and simple video editors, such as Adobe
Premiere, because these applications help us create interactive multimedia projects.

How much interaction is necessary or meaningful depends on the application. The
spectrum runs from almost no interactivity, as in a slide show, to full-immersion virtual
reality.

In a slide show, interactivity generally consists of being able to control the pace (e.g.,
click to advance to the next slide). The next level of interactivity is being able to control
the sequence and choose where to go next. Next is media control: start/stop video, search
text, scroll the view, zoom. More control is available if we can control variables, such as
changing a database search query.

The level of control is substantially higher if we can control objects — say, moving
objects around a screen, playing interactive games, and so on. Finally, we can control an
entire simulation: move our perspective in the scene, control scene objects.

For some time, people have indeed considered what should go into a multimedia project;
references are given at the end of this chapter. '

In this section, we shall look at

¢ Multimedia authoring metaphors
¢ Multimedia production

o Multimedia presentation

e Automatic authoring

The final item deals with general authoring issues and what benefit automated tools, using
some artificial intélligence techniques, for example, can bring to the authoring task. As a
first step, we consider programs that carry out automatic linking for legacy documents.
After an introduction to multimedia paradigms, we present some of the practical tools
of multimedia content production — software tools that form the arsenal of multimedia

Section 2.1 Multimedia Authoring 21

production. Here we go through the nuts and bolts of a number of standard programs
currently in use.

2,11 Multimedia Authoring Metaphors

Authoring is the process of creating multimedia applications. Most authoring programs use

one of several authoring metaphors, also known as authoring paradigms: metaphors for

easier understanding of the methodology employed to create multimedia applications [1].
Some common authoring metaphors are as follows:

e Scripting language metaphor

The idea here is to use a special language to enable interactivity (buttons, mouse, etc.)
and allow conditionals, jumps, loops, functions/macros, and so on. An example is
the OpenScript langnage in Asymetrix Learning Systems’ Toolbook program. Open-
Script looks like a standard object-oriented, event-driven programming language. For
example, a small Toolbook program is shown below. Such a language has a learning
curve associated with it, as do all authoring tools — even those that use the standard C
programming language as their scripting language — because of the object libraries
that must be learned.

-- load an MPEG file
extFileName of MediaPlayer "theMpegPath" =
"c:\windows\media\home33 .mpg";

-— play

extPlayCount of MediaPlayer "theMpegPath" = 1;

-— put the MediaPlayer in frames mode (not time mode)
extDisplayMode of MediaPlayer "theMpegPath" = 1;

-- if want to start and end at specific frames:
extSelectionStart of MediaPlayer "theMpegPath" = 103;
extSelectionEnd of MediaPlayer '"theMpegPath" = 1997;

-- start playback
get extPlay() of MediaPlayer "theMpegPath";

e Slide show metaphor
Slide shows are by default a linear presentation. Although tools exist to perform
jumps in slide shows, few practitioners use them. Example programs are PowerPoint
or ImageQ.

e Hierarchical metaphor
Here, user-controllable elements are organized into a tree structure. Such a metaphor
is often used in menu-driven applications.

e Iconic/flow-control metaphor
Graphical icons are available in a toolbox, and authoring proceeds by creating a
flowchart with icons attached. The standard example of such a metaphor is Author-
ware, by Macromedia. Figure 2.1 shows an example flowchart. As well as simple
flowchart elements, such as an IF statement, a CASE statement, and so on, we can

22

Chapter 2 Multimedia Authoring and Tools

Level 1

E'ZI results

i

FIGURE 2.1: Authorware flowchart.

group elements using a Map (i.e., a subroutine) icon. With little effort, simple ani-
mation 1s also possible.

Frames metaphor

As in the iconic/flow-control metaphor, graphical icons are again available in a tool-
box, and authoring proceeds by creating a flowchart with icons attached. However,
rather than representing the actual flow of the program, links between icons are more
conceptual. Therefore, “frames” of icon designs represent more abstraction than in
the simpler iconic/flow-control metaphor. Anexample of such a program is Quest, by
Allen Communication. The flowchart consists of “modules” composed of “frames”.
Frames are constiucted from objects, such as text, graphics, audio, animations, and
video, ali of which canxespond to events. A real benefit is that the scripting language
here is the widely used programming language C. Figure 2.2 shows a Quest frame.

Card/scripting metaphor

This metaphor uses a simple index-card structure to produce multimedia productions.
Since links are available, this is an easy route to producing applications that use
hypertext or hypermedia. The original of this metaphor was HyperCard by Apple.
Another example is HyperStudio by Knowledge Adventure. The latter program is
now used in many schools. Figure 2.3 shows two cards in a HyperStudio stack.

Cast/score/scripting metaphor

In this metaphor, time is shown horizontally in a type of spreadsheet fashion, where
rows, or tracks, represent instantiations of characters in a multimedia production.
Since these tracks control synchronous behavior, this metaphor somewhat parallels a
music score. Multimedia elements are drawn from a “cast” of characters, and “scripts”

Section 2.1 Multimedia Authoring 23

This sxample starts up the Windoyvs Catoulstor,
/1 If the user minimizes the calcutator and then

firles to start it up apain, the Caloulstor is

by

Mrought to the {op instead of starting up another instance of it.
/ITo use this In your tiles, copy the followling three lines into
Iypour frams as well as the wstch for. Then modify thes watch
Iior 1o wwatch for whatever button or event you have designated

Iherill launch the calculator. You do not need to use the

Noall program tool at the title dezign (evel for this to work.

WORD wStatus; HiCopy thesa 3 lines of
HMMD hevnd; foode into your frame
char sxhizg[B80];

% Graphic File (cals bmp) "OpenCalz!
Parz]

NCopy this watch 1or Into your frame ard modify it to watch
MHar whatever event you would like to launch the calculator
&3 Wystch for .., "OpenCale” LELttonClicked then...

FIGURE 2.2: Quest frame.

are basically event procedures or procedures triggered by timer events. Usually, you
can write your own scripts. In a sense, this is similar to the conventional use of the term
“scripting language” — one that is concise and invokes lower-level abstractions, since
that is just what one’s own scripts do. Director, by Macromedia, is the chief example
of this metaphor. Director uses the Lingo scripting language, an object-oriented,
event-driven language.

2.1.2 Multimedia Production

A multimedia project can involve a host of people with specialized skills, In this book
we focus on more technical aspects, but multimedia production can easily involve an art
director, graphic designer, production artist, producer, project manager, writer, user interface
designer, sound designer, videographer, and 3D and 2D animators, as well as prograrmmers.

24 Chapter 2 Multimedia Authoring and Tools

e DY CN[EE [S
20|/ =088
W [O=[e ol

FIGURE 2.3: Two cards in a HyperStudio stack.

The production timeline would likely only involve programming when the project is
about 40% complete, with a reasonable target for an alpha version (an early version that
does not contain all planned features) being perhaps 65-70% complete. Typically, the
design phase consists of storyboarding, flowcharting, prototyping, and user testing, as well
as a parallel production of media. Programming and debugging phases would be carried
out in consultation with marketing, and the distribution phase would follow.

A storyboard depicts the initial idea content of a multimedia concept in a series of
sketches. . These are like “keyframes” in a video — the story hangs from these “stopping
places”. A flowchart organizes the storyboards by inserting navigation information — the
multimedia concept’s structure and user interaction. The mostreliable approach for planning
navigation is to pick a traditional data structure. A hierarchical system is perhaps one of the
simplest organizational strategies.

Multimedia is not really like other presentations, in that careful thought must be given to
organization of movement between the “rooms” in the production. For example, suppose we
are navigating an African safari, but we also need to bring specimens back to our museurn
for close examination — just how do we effect the transition from one locale to the other?
A flowchart helps imagine the solution.

The flowchart phase is followed by development of a detailed functional specification.
This consists of a walk-through of each scenario of the presentation, frame by frame, includ-
ing all screen action and user interaction. For example, during a mouseover for a character,
the character reacts, or a user clicking on a character results in an action.

The final part of the design phase is prototyping and testing. Some multimedia designers
use an authoring tool at this stage already, even if the intermediate prototype will not be
used in the final product or continued in another tool. User testing is, of course, extremely
important before the final development phase.

Section 2.1 Multimedia Authoring 25

2.1.3 Multimedia Presentation

In this section, we briefly outline some effects to keep in mind for presenting multimedia
content as well as some useful guidelines for content design.,

Graphics Styles Careful thought has gone into combinations of color schemes and
how lettering is perceived in a presentation. Many presentations are meant for business
displays, rather than appearing on a screen. Human visual dynamics are considered in
regard to how such presentations must be constructed. Most of the observations here are
drawn from Vetter et al. [2], as is Figure 2.4.

Color Principles and Guidelines Some color schemes and art styles are best combined
with a certain theme or style. Color schemes could be, for example, natural and floral for
outdoor scenes and solid colors for indoor scenes. Examples of art styles are oil paints,
watercolors, colored pencils, and pastels.

A general hint is to not use too many colors, as this can be distracting. It helps to be
consistent with the vse of color — then color can be used to signal changes in theme.

Fonts For effective visual communication, large fonts (18 to 36 points) are best, with
no more than six to eight lines per screen. As shown in Figure 2.4, sans serif fonts work
better than serif fonts (serif fonts are those with short lines stemming from and at an angle
to the upper and lower ends of a letter’s strokes). Figure 2.4 shows a comparison of two
screen projections, (Figure 2 and 3 from Vetter, Ward and Shapiro [2]).

The top figure shows good use of color and fonts. It has a consistent color scheme, uses
large and all sans-serif (Arial) fonts. The bottom figure is poor, in that too many colors are
used, and they are inconsistent. The red adjacent to the blue is hard to focus on, becausc the
human retina cannot focus on these colors simultaneously. The serif (Times New Roman)
font is said to be hard to read in a darkened, projection setting. Finally, the lower right
panel does not have enough contrast — pretty pastel colors are often usable only if their
background is sufficiently different.

A Color ContrastProgram Seeingtheresults of Vetteret al.’s research, we constructed
a small Visual Basic program to investigate how readability of text colors depends on color
and the color of the background (see the Further Exploration section at the end of this
chapter for a pointer to this program on the text web site. There, both the executable and
the program source are given).

The simplest approach to making readable colors on a screen is to use the principal
complementary color as the background for text. For color values in the range 0 to 1 (or,
effectively, 0 to 255), if the text color is some triple (R, G, B), a legible color for the
background is likely given by that color subtracted from the maxinum:

(R,G,B) = (1—R,1-G,1— B) .1)

That is, not only is the color “opposite” in some sense (not the same sense as artists use),
but if the text is bright, the background is dark, and vice versa.

26 Chapter 2 Multimedia Authoring and Tools

Flle Edit Page Applications - Help

Press Button to Play
8-bit Audio Clip

tions Help

:,ﬁo

=

FIGURE 2.4: Colors and fonts. (This figure also appears in the color insert section.) Courtesy
of Ron Vetter.

In the Visual Basic program given, sliders can be used to change the background color.
As the background changes, the text changes to equal the principal complementary color.
Clicking on the background brings up a color-picker as an alternative to the sliders.

If you feel you can choose a better color combination, click on the text. This brings
up a color picker not tied to the background color, so you can experiment. (The text itself
can also be edited.) A little experimentation shows that some color combinations are more

Section 2.1 Multimedia Authoring 27

FIGURE 2.5: Program to investigate colors and readability.

pleasing than others — for example, a pink background and forest green foreground, or a
green background and mauve foreground. Figure 2.5 shows this small program in operation.

Figure 2.6 shows a “color wheel”, with opposite colors equalto (1—-R, 1 -G, 1 —B). An
artist’s color wheel will not look the same, as it is based on feel rather than on an algorithm.
In the traditional artist’s wheel, for example, yellow is opposite magenta, instead of opposite
blue as in Figure 2.6, and blue is instead opposite orange.

Sprite Animation Sprites are often used in animation. For example, in Macromedia
Director, the notion of a sprite is expanded to an instantiation of any resource. However, the
basic idea of sprite animation is simple. Suppose we have produced an animation figure, as
in Figure 2.7(a). Then it is a simple matter to create a 1-bit mask M, as in Figure 2.7(b),
black on white, and the accompanying sprite S, as in Figure 2.7(c).

Now we can overlay the sprite on a colored background B, as in Figure 2.8(a), by first
ANDing B and M, then ORing the result with S, with the final result as in Figure 2.8(e).
Operations are available to carry out these simple compositing manipulations at frame rate
and so produce a simple 2D animation that moves the sprite around the frame but does not
change the way it looks.

28 Chapter 2 Multimedia Authoring and Tools

FIGURE 2.6: Color wheel. (This figure also appears in the color insert section.)

Video Transitions Video transitions can be an effective way to indicate a change to
the next section. Video transitions are syntactic means to signal “scene changes” and often
carry semantic meaning. Many different types of transitions exist; the main types are cuts,
wipes, dissolves, fade-ins and fade-outs.

A cut, as the name suggests, carries out an abrupt change of image contents in two
consecutive video frames from their respective clips. It is the simplest and most frequently
used video transition.

A wipe is a replacement of the pixels in a region of the viewport with those from another
video. I the boundary line between the two videos moves slowly across the screen, the
second video gradually replaces the first. Wipes can be left-to-right, right-to-left, vertical,
horizontal, like an iris opening, swept out like the hands of a clock, and so on.

(b) ©

FIGURE 2.7: Sprite creation: (a) original; (b) mask image M; and (c) sprite S. “Duke”
figure courtesy of Sun Microsystems.

Section 2.1 Multimedia Authoring 29

@

FIGURE 2.8: Sprite animation: (a) Background B; (b) Mask M; (c) B AND M ; (d) Sprite S;
(e) B AND M OR S.

A dissolve replaces every pixel with a mixture over time of the two videos, gradually
changing the first to the second. A fade-outis the replacement of a video by black (or white),
and fade-in is its reverse. Most dissolves can be classified into two types, corresponding, for
example, to cross dissolve and dither dissolve in Adobe Premiere video editing software.

In type I (cross dissolve), every pixel is affected gradually. It can be defined by

D=00—-a@) -A+uoa()-B 2.2)

where A and B are the color 3-vectors for video A and video B. Here, ¢/(¢) is a transition
function, which is often linear with time ¢:

oty =kr, with ke =1 2.3)

Type I (dither dissolve) is entirely different. Determined by o (¢), increasingly more and
more pixels in video A will abruptly (instead of gradually, as in Type I) change to video B.
The positions of the pixels subjected to the change can be random or sometimes follow a
particular pattern.

Obviously, fade-in and fade-out are special types of a Type I dissolve, in which video A
or B is black (or white). Wipes are special forms of a Type 1I dissolve, in which changing
pixels follow a particular geometric pattern,

30 Chapter2 Multimedia Authoring and Tools

(@ (b ©

FIGURE 2.9: (a) Videoy; (b) Videog; (c¢) Videoy, sliding into place and pushing out Videoz.

Despite the fact that many digital video editors include a preset number of video tran-
sitions, we may also be interested in building our own. For example, suppose we wish to
build a special type of wipe that slides one video out while another video slides in to replace
it. The usual type of wipe does not do this. Instead, each video stays in place, and the
transition line moves across each “stationary” video, so that the left part of the viewport
shows pixels from the left video, and the right part shows pixels from the right video (for a
wipe moving horizontally from left to right).

Suppose we would like to have each video frame not held in place, but instead move
progressively farther into (out of) the viewport: we wish to slide Videoy, in from the left
and push out Videog. Figure 2.9 shows this process. Each of Video;, and Videog has its
own values of R, G, and B. Note that R is a function of position in the frame, (x, y), as well
as of time ¢t. Since this is video and not a collection of images of various sizes, each of the
two videos has the same maximum extent, X,,,x. (Premiere actnally makes all videos the
same size — the one chosen in the preset selection — so there is no cause to worry about
different sizes.)

As time goes by, the horizontal location x7 for the transition boundary moves across the
viewport from x7 = 0 att = 00 X7 = Xyay a1 = hyay. Therefore, for a transition that is
linear in time, X7 = (t/tyax)} Xmax-

So for any time ¢, the situation is as shown in Figure 2.10(a). The viewport, in which we
shall be writing pixels, has its own coordinate system, with the x-axis from O to x,,4. For
each x (and y) we must determine (a) from which video we take RGB values, and (b) from
what x position in the unmoving video we take pixel values — that is, from what position x
from the left video, say, in its own coordinate system. It is a video, so of course the image
in the left video frame is changing in time.

Let’s assume that dependence on y is implicit. In any event, we use the same y as in the
source video. Then for the red channel (and similarly for the green and blue), R = R(x,).
Suppose we have determined that pixels should come from Videoy. Then the x-position x7,
in the unmoving video should be x; = x + (X;u0x — XT), Where x is the position we are
trying to fill in the viewport, x7 is the position in the viewport that the transition boundary
has reached, and x4 is the maximum pixel position for any frame.

To see this, we note from Figure 2.10(b) that we can calculate the position xy, in Videor’s
coordinate system as the sumn of the distance x, in the viewport, and the difference X0y —x7.

Section 2.1 Multimedia Authoring 31

, : /_ Viewport

) 1 i
Video 1 l' Video R :
{ I

{ I

! |

! I

! 1

I)

0 xXp Xpnax X
()
))

3 r o

\ 0 xmax X

max = XT

P

x
)

FIGURE 2.10: (a) Geometry of Video;, pushing out Videog; (b) Calculating position in
Videoy, from where pixels are copied to the viewport.

Substituting the fact that the transition moves linearly with time, X1 = Xpmax (!/tmax)
we can set up a pseudocode solution as in Figure 2.11. In Figure 2.11, the slight change in
formula if pixels are actually coming from Videog instead of from Videoy, is easy to derive.

Some Technical Design Issues Technical parameters that affect the design and delivery
of multimedia applications include computer platform, video format and resolution, memory
and disk space, delivery methods.

¢ Computer Platform. Usually we deal with machines that are either some type of
UNIX box (such as a Sun) or else a PC or Macintosh. While a good deal of software
is ostensibly “portable”, much cross-platform software relies on runtime modules that
may not work well across systems.

32

Chapter 2 Multimedia Authoring and Tools

for ¢t in 0. thyax
for x in 0..Xnax
if x;:a_r < lmtax)
R =Ry (x +3~'max*[1—f,;r;]’ n
else
R = Rr (X — Xpax %

k]
,I)l(”t

FIGURE 2.11: Pseudocode for slide video transition.

¢ Video Format and Resolution. The most popular videc formats are NTSC, PAL,

and SECAM. They are not compatible, so conversion is required to play a video in a
different format.

The graphics card, which displays pixels on the screen, is sometimes referred to as
a “video card”. In fact, some cards are able to perform “frame grabbing”, to change
analog signals to digital for video. This kind of card is called a “video capture
card”.

The graphics card’s capacity depends on its price. An old standard for the capacity
of a card is S-VGA, which allows for a resolution of 1,280 x 1,024 pixels in a dis-
played image and as many as 65,536 colors using 16-bit pixels or 16.7 million colors
using 24-bit pixels. Nowadays, graphics cards that support higher resolution, such as
1,600 x 1,200, and 32-bit pixels or more are common.

Memory and Disk Space Requirement. Rapid progress in hardware alleviates
the problem, but multimedia software is generally greedy. Nowadays, at least 128
megabytes of RAM and 20 gigabytes of hard-disk space should be available for ac-
ceptable performance and storage for multimedia programs. ‘

Delivery Methods. Once coding and all other work is finished, how shall we present
our clever work? Since we have presumably purchased a large disk, so that perfor-
mance is good and storage is not an issue, we could simply bring along our machine
and show the work that way. However, we likely wish to distribute the work as a
product. Presently, rewritable DVD drives are not the norm, and CD-ROMs may lack
sufficient storage capacity to hold the presentation. Also, access time for CD-ROM
drives is longer than for hard-disk drives.

Electronic delivery is an option, but this depends on network bandwidth at the user
side (and at our server). A streaming option may be available, depending on the
presentation.

Section 2.1 Multimedia Authoring 33

No perfect mechanism currently exists to distribute large multimedia projects. Never-
theless, using such tools as PowerPoint or Director, it is possible to create acceptable
presentations that fit on a single CD-ROM.

2.1.4 Automatic Authoring

Thus far, we have considered notions developed for authoring new multimedia. Neverthe-
Iess, a tremendous amount of legacy multimedia documents exists, and researchers have
been interested in methods to facilitate automatic authoring. By this term is meant either
an advanced helper for creating new multimedia presentations or a mechanism to facilitate
automatic creation of more useful multimedia documents from existing sources.

Hypermedia Documents Let us start by considering hypermedia documents. Gen-
erally, three steps are involved in producing documents meant to be viewed nonlinearly:
information generation or capture, authoring, and publication. A question that can be asked
is, how much of this process can be automated?

The first step, capture of media, be it from text or using an audio digitizer or video
frame-grabber, is highly developed and well automated. The final step, presentation, is the
objective of the multimedia tools we have been considering. But the middle step (authoring)
is most under consideration here.

Essentially, we wish to structure information to support access and manipulation of the
available media. Clearly, we would be well advised to consider the standard computing
science data structures in structuring this information: lists, trees, or networks (graphs).
However, here we would like to consider how best to structure the data to support multiple
views, rather than a single, static view.

Externalization versus Linearization Figure 2.12 shows the essential problem in-
volved in communicating ideas without using a hyperinedia mechanism: the author’s ideas
are “linearized” by setting them down in linear order on paper. In contrast, hyperlinks allow
us the freedom to partially mimic the author’s thought process (i.e., externalization). After
al], the essence of Bush’s Memex idea in Section 1.2.1 involves associative links in human
memory.

Now, using Microsoft Word, say, it is trivial to create a hypertext version of one’s doc-
ument, as Word simply follows the layout already set up in chapters, headings, and so on.
But problems arise when we wish to extract semantic content and find links and anchors,
even considering just text and not images. Figure 2.13 displays the problem: while it is
feasible to mentally manage a few information nodes, once the problem becomes large, we
need autoimatic assistants.

Once a dataset becomes large, we should employ database methods. The issues be-
come focused on scalability (to a large dataset), maintainability, addition of material, and
reusability. The database information must be set up in such a way that the “publishing”
stage, presentation to the user, can be carried out just-in-time, presenting information in a
user-defined view from an intermediate information structure.

34 Chapter2 Multimedia Authoring and Tools

.

Author %ﬁ E? oy;D/‘gP Reader

2 @
Lilgigftion De]im?Kz/ation

?

@

@ Reader

TN
<
gypation

S
Ext&*{iation Inte/vf
o] \<°

G)]
FIGURE 2.12: Communication using hyperlinks. Courtesy of David Lowe; (©1995
IEEE). [5]
Index Index
4 P N (G = LT LT 7
Concept 1 + W’ Concept | | S aasam
Concept 2 | &=~ £/ | Concept2 |E2525555555 f‘;%,
/Nude 7,1 m J 4 g)gg:kza‘:a 74T, = Eggg
—— A — i P = .
Concept 34 — — C 3 J P =2
L7 o | RORCCPLINSEES ==
Concept 4 | §— < = Concept 4 ggf‘? A
v 4 0 J S e Y —r
s || L Ly O - ==
4 y Q Q/C!QE =
2225 e
Information space Information space
(@ (]

FIGURE 2.13: Complex information space: (a) complexity: manageable; (b) complexity:
overwhelming. Courtesy of David Lowe; (©)1995 IEEE). [5)

Section 2.1 Multimedia Authoring 35

Node Node
Textual data has been widely used to construct and A node is simply a grouping of certain infe
ipulare inf 100 in multimedia systems. If we together to form a unit. The node can be made up

consider the use of texwal data withia muldmedia from different fypes of informalicn such as text.
we can ses \hat text can te stored, analysad, > images, video, sound, etc.
maaipulated,gecerated synthetically, and extracted This page of informstion w hich you are currently

.
for use elsew here. Essentially texrual infasaration Links ading is a pode. Note that it containg some text,
can be grouped into ‘nodes'. ode can be and ammqage. Typically (in traditional maltimedia

treated as consisting of discretz entities (wards, systems) theswgual data is used for the linking, and
sentences, paragraphs etc.) which obey a series of
syntzctict and semantic rules describing the A n C’IO"

interelationships.

/

FIGURE 2.14: Nodes and anchors in hypertext. Courtesy of David Lowe. [6]

Semiautomatic Migration of Hypertext The structure of hyperlinks for text informa-
tion is simple: “nodes” represent semantic information and are anchors for links to other
pages. Figure 2.14 illustrates these concepts.

For text, the first step for migrating paper-based information to hypertext is to automat-
ically convert the format used to HTML. Then, sections and chapters can be placed in a
database. Simple versions of data mining techniques, such as word stemming, can easily
be used to parse titles and captions for keywords — for example, by frequency counting.
Keywords found can be added to the database being built., Then a helper program can
automatically generate additional hyperlinks between related concepts.

A semiautomatic version of such a program is most likely to be successful, making
suggestions that can be accepted or rejected and manually added to. A database management
system can maintain the integrity of links when new nodes are inserted. For the publishing
stage, since it may be impractical to re-create the underlying information structures, it is
best to delay imposing a viewpoint on the data until as late as possible.

Hyperimages Matters are not nearly so straightforward when considering image or
other multimedia data. To treat an image in the same way as text, we would wish to
consider an image to be a nade that contains objects and other anchors, for which we need
to determine image entities and rules, What we desire is an automated method to help us
produce true hypermedia, as in Figure 2.15.

It is possible to mannally delineate syntactic image elements by masking image arcas.
These can be tagged with text, so that previous text-based methods can be brought into play.
Figure 2.16 shows a “hyperimage”, with image areas identified and automatically linked to
other parts of a document,

36

Chapter 2

Multimedia Authoring and Tools

Node

Node

Node

W be g s paty
Lusil s esing of &
~uaLe peaemeh
) T 30 i L a1 e
[ERNVEOREN

Tzl s b R i by e o 2
o Elson i i esneta gy Keg

Tebahibyg 3ol

N ke b ity 3 gy et B fvinn e
163 it The alévas e ik i

fohr =y

fa

T e of i=eim whh yor zy emey

3 Qg b3 male Netr o i g wimm
Links S o

ricen N sl dea b cd 1 DLl g

Anchor

Toveal s o has iy me b oaiat and

fee
canby gromd ms gaka £ ke an be

FIGURE 2.15: Structure of hypermedia

. Courtesy of David Lowe. (6]

Such methods are certainly in their infancy but provide a fascinating view of what is to
come in authoring automation. Naturally, we are also interested in what tools from database
systems, data mining, artificial intclligence, and so on can bc brought to bear to assist
production of full-blown multimedia systems, not just hypermedia systems. The above
discussion shows that we are indeed at the start of such work.

e T} View r) Ed

fr I Hypermedia - /u/dblrec/hyperddata’grocerles/demo.db s edible

]

7 Liew

Sl teadDay Play)
T R T
<J Gae Ty Quit: object: sgible,

= | dreas-——==_ 517

D& File: ! par/data/grecadics /dem.db,

2demie =5 ApcplecalimsdesTawIa7acadamlr

7 érix—
1 I
0 drm—

e

) drex—{ <J Hypertedla Text =1
; o
T D ~Trw==| .| ELIELE
L) drvr Urually the anjority of grozeries
O droe=| 24| are edsble pradusts. They can be [

biokan dom anke varicws categories,
chouch thiss e3tsfdcies m2y rat be
arthegzral (.2 zilk can press an
4xicy produzes, daarks, higquads
abz) .

Ceazcally Mae iten? e centeinsd in
(¢eFten eXcessive) packaging (waith
tke probabla szezpbica of
vigrtables) The packrging has the
fertinate reault =f slleving the
sentents €8 be analysed, dedccibré. L
reyectad, ets . . P

Hyperstedla Image

FIGURE 2.16: Hyperimage. Courtesy of David Lowe. [6]

Section 2.2 Some Useful Editing and Authoring Tools 37

2.2 SOME USEFUL EDITING AND AUTHORING TOOLS

This text is primarily concerned with principles of multimedia — the fundamentals to be
grasped for a real understanding of this subject. Nonetheless, we need real vehicles for
‘showing this understanding, and straight programming in C++ or Java is not always the
best way of showing your knowledge. Most introductory multimedia courses ask you to
at least start off delivering some multimedia product (e.g., see Exercise 11). So we need a
jump-start to help you learn “yet another software tool.” This section aims to give you that
jump-start,

Therefore, we’ll consider some popular authoring tools. Since the first step in creating a
multimedia application is probably creation of interesting video clips, we start off looking
at a video editing tool. This is not really an authoring tool, but video creation is so important
that we include a small introduction to one such program.

The tools we look at are the following:

e Adobe Premiere 6

e Macromedia Director 8§ and MX
o Flash 5 and MX

o Dreamweaver MX

While this is not an exhaustive list, these tools are often used in creating multimedia content.

2.2.1 Adobe Premiere

Premiere Basics Adobe Premiere is a very simple video editing program that atlows you
to quickly create a simple digital video by assembling and merging multimedia components.
It effectively uses the score authoring metaphor, in that components are placed in “tracks”
horizontally, in a Timeline window.

TheFile > New Project command opens a window that displays a series of “pre-

sets” — assemblies of values for frame resolution, compression method, and frame rate.
There are many preset options, most of which conform to some NTSC or PAL video stan-
dard.

Start by importing resources, such as AVI (Audio Video Interleave) video files and WAV
sound files and dragging them from the Project window onto tracks 1 or 2. (In fact, you can
use up to 99 video and 99 audio tracks!)

Video 1 is actually made up of three tracks: Video 1A, Video 1B and Transitions.
Transitions can be applied only to Video 1. Transitions are dragged into the Transitions
track from the Transition window, such as a gradual replacement of Video 1A by Video 1B
(a dissolve), sudden replacement of random pixels in a checkerboard (a dither dissolve), or
a wipe, with one video sliding over another. There are many transitions to choose from, but
you can also design an original transition, using Premiere’s Transition Factory.

You can impoit WAV sound files by dragging them to Audio 1 or Audio 2 of the Timeline
window or to any additional sound tracks. You can edit the properties of any sound track
by right-clicking on it.

38 Chapter2 Multimedia Authoring and Tools

G B2 Prjed Op Tewbe Kndow B

FIGURE 2.17: Adobe Premiere screen.

Figure 2.17 shows what a typical Premiere screen might look like. The yellow ruler at the
top of the Timeline window delineates the working timeline — drag it to the right amount
of time. The 1 Second dropdown box at the bottom represents showing one video keyframe
per 1 second.

To “compile” the video, go to Timeline > Render Work Area and save the
project as a .ppj file. Now it gets interesting, because you must make some choices
here, involving how and in what format the movie is to be saved. Figure 2.18 shows the
project options. The dialogs that tweak each codec are provided by the codec manufacturer;
bring these up by clicking on the Configure button. Compression codecs (compression-
decompression protocols) are often in hardware on the video capture card. If you choose
a codec that requires hardware assistance, someone else’s system may not be able to play
your brilliant digital video, and all is in vain!

Images can also be inserted into tracks. We can use transitions to make the images
gradually appear or disappear in the final video window. To do so, set up a “mask” image,
as in Figure 2.19. Here, we have imported an Adobe Photoshop 6.0 layered image, with
accompanying alpha channel made in Photoshop.

Then in Preniiere, we click on the image, which has been placed in its own video track,
anduse Clip > Video Options > Transparency to set the Key (which triggers
transparency) to Alpha Channel. It is also simple to use Clip > Video Options >
Motion to have the image fly in and out of the frame.

Section 2.2 Some Useful Editing and Authoring Tools 39

e Conc tyros T e | o

¥ = 1

== . -] e o

} . - N K = (oxd

FameSie: 50 h 080 v 7 43Agmi R r o ‘—%
:) o

framefate: (2997 ~). PielAspatPila {Square Paes (10 ~] K

~QuRy ——— ;- Data Rate — s - —3 N

| tow film ™ % Heh I Liptdaarata [1000 7 K - -

! N N i . - -

[— T A ; ¥ Escompress {A!»ays Z] *aw']

(a)

\' ‘CUmpIESSIUhCOHHDI i
- Smoothness -

(b)

FIGURE 2.18: (a) output options; (b) compression options.

In Photoshop, we set up an alpha channel as follows:

1. Use an image you like — a . JPG, say.

2. Make the background some solid color — white, say.

3. Make sure you have chosen Imége > Mode > RGB Color.

4. Select that background area (you want it to remain opaque in Premiere) — use the
magic wand tool.

5. Goto Select > Save Selection....

6. Ensure that Channel = New. Press OK.

40 Chapter 2 Multimedia Authoring and Tools

BGB ;1 f At b Dieations:

(2) (&)
FIGURE 2.19: (a): RGB channels. (b): Alpha channel.

7. Gotowindow > Show Channels, double-click the new channel, and rename it
Alpha; make its color (0, 0, 0).
8. Save the file as a PSD.

If the alpha channel you created in Photoshop has a white background, you’ll need to
choose Reverse Key in Premiere when you choose Alpha.

Premiere has its own simple method of creating titles (to give credit where credit is due)
for your digital video.
i Another nice feature of Premiere is that it is simple to use in capturing video. To form a
: digital video from a videotape or camcorder input, go to File > Capture > Movie
Capture. (The menu for video/audio capture options appears by right-clicking the capture
window.) Similarly, saving to analog tape format is also simple.

Premiere Transitions Premiere offers an interesting assortment of video transitions.
However, examining the resvlting video frame by frame reveals that the built-in transitions
do not work quite as “advertised”. For example, on close examination, what purports to be
a wipe that is linear with time turns out to have a nonlinear dip as it begins — the video
transition line moves at not quite constant speed.

The Premiere Transition Factory provides a good many functions for building our own
transitions, if we are interested in doing so. Since we are actually in an int regime, these
functions, such as sin and cos, have both domain and range in the ints rather than
floats. Therefore, some care is required in using them. Exercise 9 gives somé of these
details in a realistic problem setting.

2.2.2 Macromedia Director

Director Windows Director is a complete environment (see Figure 2.20) for creating
interactive “movies”, The movie metaphor is used throughout Director, and the windows

Section 2.2 Some Useful Editing and Authoring Tools 41

BETR
5
44
z fata o/RmENA
n Edmap [ielr=nuge 3l
52 Bremp 0VETIIeMA
$1 Birap QR 12UP
L B /R4 RDP
ry Pdie 023/ 61D H
a Patses mes 63 10H
a Bimen
ko] Paes
5 Bteap
B - Ted
3 ftmy
€0 Sond
£ Sound
13 Bi=zp
1 Brp

FIGURE 2.20: Director: main windows.

used in the program reflect this. The main window, on which the action takes place, is
the Stage. Explicitly opening the Stage automatically closes the other windows. (A useful
shortcut is Shift + Keypad-Enter (the Enter key next to the numeric keypad, not the usual
Enter key); this clears all windows except the Stage and plays the movie.)

The other two main windows are Cast and Score. A Cast consists of resources a movie
may use, such as bitmaps, sounds, vector-graphics shapes, Flash movies, digital videos, and
scripts. Cast members can be created directly or simply imported. Typically you create
several casts, to better organize the parts of a movie. Cast members arc placcd on the Stage
by dragging them there from the Cast window. Because several instances may be used for a
single cast member, each instance is called a sprite. Typically, cast members are raw media,
whereas sprites are objects that control where, when, and how cast members appear on the
stage and in the movie,

Sprites can become interactive by attaching “behaviors” to them (for example, make the
sprite follow the mouse) either prewritten or specially created. Behaviors are in the internal
script language of Director, called Lingo. Director is a standard event-driven program that
allows easy positioning of objects and attachment of event procedures to objects.

The set of predefined events is rich and includes mouse events as well as network events
(an example of the Jatter would be testing whether cast members are downloaded yet). The
type of control achievable might be to loop part of a presentation until a video is downloaded,
then continue or jump to another frame. Bitmaps are used for buttons, and the most typical
use would be to jump to a frame in the movie after a button-click event.

The Score window is organized in horizontal lines, each for one of the sprites, and vertical
frames. Thus the Score looks somewhat like a musical score, in that time is from left to
right, but it more resembles the list of events in a MIDI file (see Chapter 6.)

Both types of behaviors, prewritten and user-defined, are in Lingo. The Library palette
provides access to all prewritten behavior scripts. You can drop a behavior onto a sprite or
attach behaviors to a whole frame.

42 Chapter 2 Multimedia Authoring and Tools

FIGURE 2.21: A tweened sprite.

If a behavior includes parameters, a dialog box appears. For example, navigation be-
haviors must have a specified frame to jump to. You can attach the same behavior to many
sprites or frames and use different parameters for each instance. Most behaviors respond to
simple events, such as a click on a sprite or the event triggered when the “playback head”
enters a frame. Most basic functions, such as playing a sound, come prepackaged. Writing
your own user-defined Lingo scripts provides more flexibility. Behaviors are modified using
Inspector windows: the Behavior Inspector, or Property Inspector. '

Animation Traditional animation (cel animation) is created by showing slightly differ-
ent images over time. In Director, this approach amounts to using different cast members in
different frames. To control this process more easily, Director permits combining many cast
members into a single sprite. (To place on the score, select all the images to be combined,
then use the Cast To Time menu item to place them in the current score location.) A useful
feature is that expanding the time used on the score for such an animation slows the playback
time for each image, so the whole animation takes the required amount of time.

A less sophisticated-looking but simple animation is available with the rweening feature
of Director. Here, you specify a particular image and move it around the stage without
altering the origihal image. “Tweening” refers to the job of minor animators, who used to
have to fill in between the keyframes produced by more experienced animators — a role
Director fulfills automatically.

To prepare such an animation, specify the path on the stage for the tweened frames to
take. You can also specify several keyframes and the kind of curve for the animation to

Section 2.2 Some Useful Editing and Authoring Tools 43

] VGane v Endng — T

. Eﬁl

FIGURE 2.22: Score window.

follow between keyframes. You also specify how the image should accelerate and decelerate
at the beginning and end of the movement (“ease-in” and “ease-out”). Figure 2.21 shows a
tweened sprite.

A simple kind of animation called palette animation is also widely used. If images are
8-bit, cycling throngh the color lookup table or systematically replacing lookup table entries
produces interesting (or strange) effects.

The Score window’s important features are channels, frames, and the playback head.
The latter shows where we are in the score; clicking anywhere in the score repositions the
playback head. Channels are the rows in the Score and can contain sprite instances of visible
media. Therefore, these numbered channels are called Sprite channels.

At the top of the Score window are Special Effects channels for controlling the palettes,
tempo, transitions, and sounds. Figure 2.22 shows these channels in the Score window.
Frames are numbered horizontally in the Sprite and Special Effects channels. A frame is
a single step in the movie, as in a traditional film. The movie’s playback speed can be
modified by resetting the number of frames per second.

Control You can place named markers at any frame. Then the simplest type of control
event would be to jump to a marker. In Director parlance, each marker begins a Scene.
Events triggered for frame navigation are Go To Frame, Go To Marker, or Hold on Current
Frame, which stops the movie at that frame. Behaviors for frames appear in a Script Channel
in the score window.

44 Chapter 2 Multimedia Authoring and Tools

Buttons are simply bitmaps with behaviors attached. You usually make use of two
bitmaps, one depicting the depressed state of the button and one for the undepressed state.
Then the built-in event on mouseUp effects the jump.

Lingo Scripts Director uses four types of scripts: behaviors, scripts attached to cast
members, movie scripts, and parent scripts. Behaviors, movie scripts, and parent scripts all
appear as cast members in the Cast window.

A “behavior” is a Lingo script attached to a sprite or a frame. You might use a script to
determine whether a sprite moves, based on whether the user has clicked a button. A useful
feature is that a script can control when a multimedia resource is played, depending on how
much of the resource has already streamed froin the web. To attach a behavior, drag it from
a cast to a sprite or frame in the Score or on the Stage.

Also used are Movie scripts, which are available to the entire movie. Movie scripts can
control event responses when a movie starts, stops, or pauses and can also respond to events,
such as key presses and mouse clicks. Parent scripts can be used to create multiple instances
of an object without adding cast members to the score.

User-written Lingo scripts can be used to create animation or to respond to typical events,
such as user actions with the keyboard and mouse. Scripts can also be used to stream videos
from the Internet, perform navigation, format text, and so on.

Lingo scripts also extend behaviors beyond what the Score alone can do. The basic
data type is a list, which is of course the fundamental data structure. Using lists, you can
manipulate arrays as well. Math operations and string handling are also available. Lists are
of two types: linear and property.

A linear list is simply a list as in LISP, such as [32,43,12]. A property list is an
association list, again as in LISP: each element contains two values separated by a colon.
Each property is preceded by a number sign. For example, statements to create two different
property lists to specify the Stage coordinates of two sprites are as follows:

spritelLocation [#left:100, #top:150, #right:300, #bottom:350)
sprite2Location = [#left:400, #top:550, #right:500, #bottom:750]

Lingo has many functions that operate on lists, such as append to add an element to the
end of a list and deleteOne to delete a value from a list.

Lingo Specifics
e The function the frame refers to the corrent frame.

e Special markers next or previous refer to adjacent markers (not adjacent frames).

¢ Functionmarker (-1) returns the identifier for the previous marker. If the frame is
marked and has a marker name, marker (0) returns the name of the current frame;
otherwise, it returns the name of the previous marker.

e movie ‘‘Jaws’ ‘ refers to the start frame of the global movie named * *Jaws ‘.
This would typically be the name of another Director movie. The reference frame
100 of movie ‘‘Jaws’’ points into that movie.

Section2.2 Some Useful Editing and Authoring Tools 45

These details are well outlined in the Lingo Help portion of the online help. The
Help directory Learning > Lingo_Examples has many DIR files that detail
the basics of Lingo use.

Lingo Movie-in-a-Window For an excellent example of Lingo usage, the Lingo Help
article on creating a movie-in-a-window shows a good overview of how to attach a script.

Lingo is a standard, event-driven programming language. Event handlers are attached
to specific events, such as a mouseDown message. Scripts contain event handlers. You
attach a set of event handlers to an object by attaching the script to the object.

3D Sprites A new feature recently added to Director is the ability to create, import,
and manipulate 3D objects on the stage. A simple 3D object that can be added in Director is
3D text. To create 3D text, select any regular text, then in the Property Inspector click on the
Text tab and set the display mode to 3D. Other options, such as text depth and texture, can
be changed from the 3D Extruder tab in the Property Inspector window. These properties
can also be dynamically set in Lingo as well, to change the text as the movie progresses.

3D objects other than text can be formed only using Lingo or imported from 3D Studio
Max. Director supports many basic elements of 3D animation, including basic shapes such
as spheres and user-definable meshes. The basic shapes can have textures and shaders added
to them; textures are 2D images drawn onto the 3D models, while shaders define how the
basic model looks. Lights can also be added to the scene; by default, one light provides
ambient lighting to the whole scene. Four types of lights can be added: ambient, directional,
point, and a spotlight. The strength and color of the light can also be specified.

The viewpoint of the user, called the camera, can be moved around to show the 3D objects
from any angle. Movement of the camera, such as panning and tilting, can be controlled
using built-in scripts in the Library window.

Properties and Parameters Lingo behaviors can be created with more flexibility by
specifying behavior parameters. Parameters can change a behavior by supplying inpat to
the behavior when it is created. If no parameters are specified, a default value will be used.
Parameters can be easily changed for a particular behavior by double-clicking on the name
of the behavior while it is attached to another cast member, with dialog-driven parameter
change as shown in Figure 2.23.

A behavior can have a special handler called get PropertyDescriptionList that
is Tun when a sprite attached to the behavior is created. The handler retums a list of
parameters that can be added by the addProp function. For example, if a movement
behavior is made in Lingo, parameters can be added to specify the direction and speed of
the movement. The behavior can then be attached to many cast members for a variety of
movements.

The parameters defined in the get PropertyDescriptionList handler are prop-
erties of the behavior that can be accessed within any handle of that behavior. Defining
a property in a behavior can be done by simply using the property keyword outside
any handler and listing all the properties, separated by commas. Global variables can be

46

Chapter 2 Multimedia Authoring and Tools

- ‘100 I

| {é;ﬁt?a;é}{é?éf‘r?;ﬁ};sﬁ“iéﬁ}

FIGURE 2.23: Parameters dialog box.

accessed across behaviors; they can be declared like a property, except that the global
keyword is used instead. Each behavior that needs to access a global variable must declare
it with the global keyword.

Director Objects Director has two main types of objects: those created in Lingo and
those on the Score. Parent scripts are used to create a new object in Lingo. A behavior can
be transformed into a parent script by changing the script type in the Property Inspector.
Parent scripts are different from other behaviors, in that parameters are passed into the object
when it is created in Lingo script.

Parent scripts can be created and changed only in Lingo, while objects in the Score can
only be manipulated. The most common objects used are the sprites in the Score. Sprites
can be used only in the same time period as the Lingo script referencing them. Reference
the sprite at the channel using the Spri te keyword followed by the sprite channel number.

A sprite has many properties that perform a variety of actions. The location of the sprite
can be changed by the locv and loch properties to change the vertical and horizontal
position, respectively. The member property specifies the sprite’s cast member and can be
used to change the cast member attached to that behavior. This can be useful in animation
— instead of changing the sprite in the Score to reflect a small change, it can be done in
Lingo.

2.2.3. Macromedia Flash

Flash is a simple authoring tool that facilitates the creation of interactive movies. Flash
follows the score metaphor in the way the movie is created and the windows are organized.
Here we give a brief introduction to Flash and provide some examples of its use.

Windows A movie is composed of one or more scenes, each a distinct part of the
movie. The command Insert > Scene creates a new scene for the current movie.

Section 2.2 Some Useful Editing and Authoring Tools 47

In Flash, components such as images and sound that make up a movie are called symbols,
which can be included in the movie by placing them on the Stage. The stage is always
visible as a large, white rectangle in the center window of the screen. Three other important

~ windows in Flash are the Timeline, Library,-and Tools.

Library Window The Library window shows all the cuirent symbols in the scene
and can be toggled by the Window > Library command. A symbol can be edited by
double-clicking its name in the library, which causes it to appear on the stage. Symbols can
also be added to a scene by simply dragging the symbol from the Library onto the stage.

Timeline Window The Timeline window manages the layers and timelines of the
scene. The left portion of the Timeline window consists of one or more layers of the Stage,
which enables you to easily organize the Stage’s contents, Symbols from the Library can
be dragged onto the Stage, into a particular layer. For example, a simple movie could have
two layers, the background and foreground. The background graphic from the library can
be dragged onto the stage when the background layer is selected.

Another useful function for layering is the ability to lock or hide a layer. Pressing the
circular buttons next to the layer name can toggle their hidden/locked state. Hiding a layer
can be useful while positioning or editing a symbol on a different layer. Locking a layer
can prevent accidental changes to its symbols once the layer has been completed.

The right side of the Timeline window consists of a horizontal bar for each layer in the
scene, similar to a musical score. This represents the passage of time in the movie, The
Timeline is composed of a number of keyframes in different layers. A new keyframe can be
inserted into the current layer by pressing F6. An event such as the start of an animation or
the appearance of a new symbol must be in a keyframe. Clicking on the timeline changes
the current time in the movie being edited.

Tools Window The Tools window, which allows the creation and manipulation of
images, is composed of four main sections: Tools, View, Colors, and Options. Tools consists
of selection tools that can be used to demarcate existing images, along with several simple
drawing tools, such as the pencil and paint bucket. View consists of a zoom tool and a hand
tool, which allow navigation on the Stage. Colors allows foreground and background colors
to be chosen, and symbol colors to be manipulated. Options allows additional options when
a tool is selected.

Many other windows are useful in manipulating symbols., With the exception of the
Timeline window, which can be toggled with the View > Timeline command, all other
windows can be toggled under the Window menu. Figure 2.24 shows the basic Flash screen.

Symbols Symbols can be either composed from other symbals, drawn, or imported
into Flash. Flash is able to import several audio, image, and video formats into the symbol
library. A symbol can be imported by using the command File > Import, which
automatically adds it to the current library. To create a new symbol for the movie, press
ctrl + F8. A pop-up dialog box will appear in which you can specify the name and
behavior of the symbol. Symbols can take on one of three behaviors: a button, a graphic,
or a movie, Symbols, such as a button, can be drawn using the Tools window.

48 Chapter 2 Multimedia Authoring and Tools

FIGURE 2.24: Macromedia Flash.

Buttons To create a simple button, create a new symbol with the button behavior.
The Timeline window should have four keyframes: up, down, over, and hit. These
keyframes show different images of the button when the specified action is taken. Only the
up keyframe is required and is the default; all others are optional. A button can be drawn
by selecting the rectangular tool in the Tools window and then dragging a rectangle onto
the Stage. .

To add images, so that the button’s appearance will change when an event is triggered,
click on the appropriate keyframe and create the button image. After at least one keyframe
is defined, the basic button is complete, although no action is yet attached to it. Actions are
discussed further in the action scripts section below.

Creating a symbol from other symbols is similar to creating a scene: drag the desired
symbols from the Library onto the Stage. This allows the creation of complex symbols by
combining simpler symbols. Figure 2.25 shows a dialog box for symbol creation.

Animation in Flash Animation can be accomplished by creating subtle differences in
each keyframe of asymbol. In the first keyframe, the symbol to be animated can be dragged
onto the stage from the Library. Then another keyframe can be inserted, and the symbol
changed. This canbe repeated as often as needed. Although this process is time-consuming,
it offers more flexibility than any other technique for animation. Flash also allows specific
animations to be more easily created in several other ways. Tiveening can produce simple
animations, with changes automatically created between keyframes.

Section 2.2 Some Useful Editing and Authoring Tools 49

Marne: |Background Image]

" Behavior: 1~ Movie Clip
¢ Bulton
¥« Graphic . -

FIGURE 2.25: Create symbol dialog.

Tweening There are two types of tweening: shape and movement tweening. Shape
tweening allows you to create a shape that continuously changes to a different shape over
time. Movement tweening allows you to place a symbol in different places on the Stage
in different keyframes. Flash automatically fills in the keyframes along a path between the
start and finish. To camry out movement tweening, select the symbol to be tweened, choose
Insert > Create Motion Tween,andselectthe end frame. Then use the command
Insert > Frame and move the symbol tothe desired position, More advanced tweening
allows control of the path as well as of acceleration. Movement and shape tweenings can
be combined for additional effect.

Mask animation involves the manipulation of a layer mask — a layer that selectively
hides portions of another layer. For example, to create an explosion effect, you could use
a mask to cover all but the center of the explosion. Shape tweening could then expand the
mask, so that eventually the whole explosion is seen to take place. Figure 2.26 shows a
scene before and after a tweening effect is added.

Action Scripts Action scripts allow you to trigger events such as moving to a different
keyframe or requiring the movie to stop. Action scripts can be attached to a keyframe
or symbols in a keyframe. Right-clicking on the symbol and pressing Actions in the
list can modify the actions of a symbol. Similarly, by right-clicking on the keyframe and
pressing Actions in the pop-up, you can apply actions to a keyframe. A Frame Actions
window will come up, with a list of available actions on the left and the current actions
being applied symbol on the right. Action scripts are broken into six categories: Basic

5

M MULTIMED,

FIGURE 2.26: Before and after tweening letters.

50 Chapter2 Multimedia Authoring and Tools

& Frame Actions|.

[Feams actions”

' @ Basic Actions

Play

Stop

Coa

Toyggle High Guality
Stop All Sounds
Ger URL

FSCommand

Peeee®

FIGURE 2.27: Action scripts window.

Actions, Actions, Operators, Functions, Properties, and Objects. Figure 2.27 shows the
Frame Actions window.

Basic Actions allow you to attach many simple actions to the movie. Some common
actions are

e Goto. Moves the movie to the keyframe specified and can optionally stop. The stop
action is commonly used to stop interactive movies when the user is given an option.

e Play. Resumes the movie if the movie is stopped.
o Stop. Stops the movie if it is playing.

e Tell Targct. Sends messages to different symbols and keyframes in Flash. Itis
commonly used to start or stop an action on a different symbol or keyframe.

The Actions category contains many programming constructs, such as Loops and Goto
statements. Other actions are also included, similar to those in typical high-level, event-
driven programming languages, such as Visual Basic. The Operators category includes
many comparison and assignment operators for variables. This allows you to perform
operations on variables in the action script.

The Functions category contains built-in functions included in Flash that are not specific
to a Flash object. The Properties section includes all the global variables predefined in
Flash. For example, to refer to the current frame, the variable _currentframe is defined.
The Objects section lists all objects, such as movie clips or strings and their associated
functions.

Section 2.3 VRML 51

Buttons need action scripts — event procedures — so that pressing the button will cause
an effect. It is straightforward to attach a simple action, such as replaying the Flash movie,
to a button. Select the button and click to launch the action script window, located at the
bottom right of the screen. Then click onBasic Actions, which generates a drop-down
Tlist of actions. Double-clicking on the Play action automatically adds it to the right side
of the window. This button now replays the movie when clicked.

2.2.4 Dreamweaver

Dreamweaver is quite a popular Macromedia product (Dreamweaver MX is the current
version) for building multimedia-enabled web sites as well as Internet applications in HTML,
XML, and other formats. It provides visual layout tools and code-editing capability for file
types such as JavaScript, Active Server Pages, PHP, and XML. The product is integrated
with other Macromedia products such as Flash MX and Fireworks MX.

Along with its use as basically a WYSIWY G web development tool, an interesting part of
Dreamweaver that relates more directly to authoring is the fact that it comes with a prepack-
aged set of behaviors and is also extensible. The behaviors are essentially event procedures,
responding to events such as mouseover — the set of possible events is different for each tar-
get browser and is reconfigurable for each browser and version number. Computer Science
students can write their own Javascript code, say, and attach this to events.

2.3 VRML
2.3.1 Overview

VRML, which stands for Virtual Reality Modeling Language, was conceived at the first
international conference of the World Wide Web. Mark Pesce, Tony Parisi, and David
Ragget outlined the structure of VRML at the conference and specified that it would be
a platform-independent language that would be viewed on the Internet. The objective of
VRML was to have the capability to put colored objects into a 3D environment.

VRML is an interpreted language, which can be seen as a disadvantage, because it runs
slowly on many computers today. However, it has been influential, because it was the first
method available for displaying a 3D world on the World Wide Web.

Strictly speaking, VRML is not a “tool,” like Premiere or Director. In fact, the only
piece of software needed to create VRML content is a text editor. Nonetheless, VRML is
a tool used to create 3D environments on the web, much like Flash is a tool used to create
interactive movies.

History VRML 1.0 was created in May 1995, with a revision for clarification called
VRML 1.0C in January 1996. VRML is based on a subset of the file inventor format created
by Silicon Graphics Inc. VRML 1.0 allowed for the creation of many simple 3D objects,

. such as a cube, sphere, and user-defined polygons. Materials and textures can be specified
~ for objects to make the objects more realistic.

The last major revision of VRML was VRML 2.0. This revision added the ability to create
an interactive world. VRML 2.0, also called “Moving Worlds”, allows for animation and
sound in an interactive virtual world. New objects were added to make the creation of virtual
worlds easier. Java and Javascript have been included in VRML, to allow for interactive

52 Chapter2 Multimedia Authoring and Tools

FIGURE 2.28: Basic VRML shapes.

objects and user-defined actions. VRML 2.0 was a major change from VRML 1.0, and the
two versions are not compatible. However, utilities are available to convert VRML 1.0 to
VRML 2.0.

VRML 2.0 was submitted for standardization to the International Organization for Stan-
dardization (ISO), and as a result, VRML97 was specified. VRML97 is virtually identical to
VRML 2.0 — only minor documentation changes and clarifications were added. VRML97
is an ISO/IEC standard.

VRML Shapes VRML is made up of nodes put into a hierarchy that describe a scene
of one or more objects. VRML contains basic geometric shapes that can be combined to
create more complex objects. The Shape node is a generic node for all objects in VRML.,
The Box, Cylinder, Cone, and Sphere are geometry nodes that place basic objects
in the virtual world.

VRML allows for the definition of complex shapes that include IndexedFaceSet
and Extrusion. An IndexedFaceSet is a set of faces that make up an object. This
allows for the creation of complex shapes, since an arbitrary number of faces is allowed.
An Extrusion is a 2D cross-section extruded along a spine and is useful in creating a
simple curved surface, such as a flower petal.

An object’s shape, size, color, and reflective properties can be specified in VRML. The
Appearance node controls the way a shape looks and can contain a Material node and
texture nodes. Figure 2.28 displays some of these shapes.

A Material node specifies an object’s surface properties. It can control what color
the object is by specifying the red, green, and blue values of the object. The specular and
emissive colors can be specified similarly. Other attributes, such as how much the object
reflects direct and indirect light, can also be controlled. Objects in VRML can be transparent

- or partially transparent. This is also included in the Material node.

Three kinds of texture nodes can be used to map textures onto any object. The most
common one is the ImageTexture, which can take an external JPEG or PNG image file
and map it onto the shape. The way the image is textured can be specified — that is, the
way the image should be tiled onto the object is editable.

A MovieTexture node allows mapping an MPEG movie onto an object; the starting
and stopping time can also be specified.

Section 2.3 VRML 53

FIGURE 2.29: A simple VRML scene.

The final texture-mapping node is called a PixelTexture, which simply means cre-
ating an image to nse with ImageTexture VRML. Although it is more inefficient than
an ImageTexture node, it is still useful for simple textures.

Text can be put into a VRML world using the Text node. You can specify the text to be
included, as well as the font, alignment, and size. By default, the text faces in the positive
Y direction, or “up”.

All shapes and text start in the middle of the VRML. world. To arrange the shapes,
Transform nodes must be wrapped around the shape nodes. The Transform node can
contain Translation, Scale, and Rotation nodes. Translation simply moves
the object a specific distance from its current location, which is by default the center of the
world. Scale increases or decreases the size of the object, while Rotation rotates the
object around its center.

VRMIL World A virtual world needs more than just shapes to be realistic; it needs
cameras to view the objects, as well as backgrounds and lighting. The default camera
is aligned with the negative z-axis, a few meters from the center of the scene. Using
Viewpoint nodes, the default camera position can be changed and other cameras added.
Figure 2.29 displays a simple VRML scene from one viewpoint.

The viewpoint can be specified with the position node and can be rotated from the
default view with the orientation node. The camera’s angle for its field of view can be
changed from its default 0.78 radians with the £ie1d0fViewnode. Changing the field of
view can create a telephoto effect.

Three types of lighting can be used in a VRML world. A DirectionalLight node
shines a light across the whole world in a certain direction, similar to the light from the sun
— it is from one direction and affects all objects in the scene. A PointLight shines a
light in all directions from a certain point in space. A SpotLight shines alightin a certain
direction from a point. Proper lighting is important in adding realism to a world. Many
parameters, such as the color and strength of the light, can be specified for every type of light.

54 Chapter2 Multimedia Authoring and Tools

The background of the VRML world can also be specified using the Background
node. The background color, black by default, as well as the sky color can be changed.
A Panorama node can map a texture to the sides of the world. A panorama is mapped
onto a large cube surrounding the VRML world. If a panorama is used, the user can never
approach the texture, because the panorama is centered on the user. It is also possible to add
fog in VRML using the Fog node, where the color and density of the fog can be specified.
Fog can increase the frame rate of a world, since objects hidden by the fog are not rendered.

2.3.2 Animation and Interactions

An advantage of VRMLI7 over the original VRML 1.0 is that the VRML world can be
interactive. The only method of animation in VRML is tweening, which can be done by
slowly changing an object specified in an interpolator node. This node will modify an object
over time, based on the type of interpolator.

There are six interpolators: color, coordinate, normal, orientation, position, and scalar.
All interpolators have two nodes that must be specified: the key and keyValue. The
key consists of a list of two or more numbers, starting with 0 and ending with 1. Each key
element must be complemented with a keyValue element. The key defines how far along
the animation is, and the keyValue defines what values should change. For example, a
key element of 0.5 and its matching keyvalue define what the object should look like at
the middle of the animation.

A TimeSensor node times an animation, so that the interpolator knows what stage the
object should be in. A TimeSensor has no physical form in the VRML world and just
keeps time. To notify an interpolator of a time change, a ROUTE is needed to connect two
nodes. One is needed between the TimeSensor and the interpolator and another between
the interpolator and the object to be animated. Most animation can be accomplished this
way. Chaining ROUTE commands so that one event triggers many others can accomplish
complex animations.

Two categories of sensors can be used in VRML to obtain input from a user. The first is en-
vironment sensors. There are three kinds of environment sensor nodes: VisibilitySen-
sor, ProximitySensor, and Collision. A VisibilitySensor’'is activated
when a user’s field of view enters an invisible box. A ProximitySensor is activated
when a user enters or leaves an area. A Collision is activated when the user hits the
node.

The second category of sensors is called pointing device sensors. The first pointing
device sensor is a touch sensor, activated when an object is clicked with the mouse. Three
other sensors are called drag sensors. These sensors allow the rotation of spheres, cylinders,
and planes wher a mouse is dragging the object.

2.3.3 VRML Specifics

A VRML file is simply a text file with a ,wr1 extension. VRML97 must include the line
#VRML V2.0 UTF8 in the first line of the file. A # denotes a comment anywhere in the
file except for the first line. The first line of a VRML file tells the VRML client what version
of VRML to use. VRML nodes are case sensitive and are usually built hierarchically.

Section 2.4 Further Exploration 55

Although only a simple text editor such as notepad is needed, VRML-specific text
editors are available, such as VRMLpad. They aid in creating VRML objects by providing
different colors and collapsing or expanding nodes.

All nodes begin with “{” and end with “}”” and most can contain nodes inside nodes.
Special nodes, called group nodes, can cluster multiple nodes. The keyword children
followed by “[” begins the list of children nodes, which ends with “1”. A “Transform”
node is an example of a group node.

Nodes can be named using DEF and can be used again later by using the keyword USE.
This allows for creation of complex objects using many simple objects.

To create a simple box in VRML

Shape (
Geometry Box{}

)

The box defaults to a 2-meter-long cube in the center of the screen. Putting it into a
Transformnode can move this box to a different part of the scene. We can also give the
box a different color, such as red:

Transform { translation 0 10 0 children [
Shape {
Geometry Box({}
appearance Appearance {
material Material (
diffuseColor 1 0 0
}

}
1}

This VRML fragment puts a red box centered in the 410 Y direction. The box can be
reused if DEF mybox is put in front of the Transform. Now, whenever the box needs
to be used again, simply putting USE mybox will make a copy.

2.4 FURTHER EXPLORATION

Good general references for multimedia authoring are introductory books [3, 1] and Chap-
ters 5-8 in [4]. Material on automatic authoring is fully expanded in [7].

A link to the overall, very useful FAQ file for multimedia authoring is in the textbook

~ web site’s Further Exploration section for this chapter.

Our TextColor.exe program for investigating complementary colors, as in Fig-
ure 2.5, is on the textbook web site as well.

We also include a link to a good FAQ collection on Director. A simple Director movie
demonstrating the ideas set out in Section 2.2.2 may be downloaded from the web site, along
with information on Dreamweaver, VRML, and a small demo VRML world.

56 Chapter 2 Multimedia Authoring and Tools

2.5 EXERCISES

1.

2.

What extra information is multimedia good at conveying?

(a) What can spoken text convey that written text cannot?
(b) When might written text be better than spoken text?

Find and learn 3D Studio Max in your local 1ab software. Read the online tutorials to
see this software’s approach to a 3D modeling technique. Learn texture mapping and
animation using this product. Make a 3D model after carrying out these steps.
Design an interactive web page using Dreamweaver. HTML 4 provides layer func-
tionality, as in Adobe Photoshop. Each layer represents an HTML object, such as
text, an image, or a simple HTML page. In Dreamweaver, each layer has a marker
associated with it. Therefore, highlighting the layer marker selects the entire layer,
to which you can apply any desired effect. As in Flash, you can add buttons and
behaviors for navigation and control. You can create animations using the Timeline
behavior.

In regard to automatic authoring,

(a) What would you suppose is meant by the term “active images”?

(b) What are the problems associated with moving text-based techmniques to the
realm of image-based automatic authoring?

(c) What is the single most important problem associated with automatic authoring
using legacy (already written) text documents?

Suppose we wish to create a simple animation, as in Figure 2.30. Note that this image
is exactly what the animation looks like at some time, not a figurative representation
of the process of moving the fish; the fish is repeated as it moves. State what we need
to carry out this objective, and give a simple pseudocode solution for the problem.

FIGURE 2.30: Sprite, progressively taking up more space.

Section 2.5 Exercises 57

Assume we already have a list of (x, y) coordinates for the fish path, that we have
available a procedure for centering images on path positions, and that the movement
takes place on top of a video.

6. For the slide transition in Figure 2.11, explain how we arrive at the formula for x in
the unmoving right video Rp.

7. Suppose we wish to create a video transition such that the second video appears under
the first video through an opening circle (like a camera iris opening), as in Figure 2.31.
Write a formula to use the correct pixels from the two videos to achieve this special
effect. Just write your answer for the red channel.

FIGURE 2.31: Iris wipe: (a) iris is opening; (b) at a later moment.

8. Now suppose we wish to crcate a video transition such that the second video appears
under the first video through a moving radins (like a clock hand), as in Figure 2.32.
Write a formula to use the correct pixels from the two videos to achieve this special
effect for the red channel.

FIGURE 2.32: Clock wipe: (a) clock hand is sweeping out; (b) at a Jater moment.

58 Chapter 2 Multimedia Authoring and Tools

9.

" 10.

11.

FIGURE 2.33: Filter applied to video.

Suppose you wish to create a wavy effect, as in Figure 2.33. This effect comes from
replacing the image x value by an x value offset by a small amount. Suppose the
image size is 160 rows x 120 columns of pixels.

(a) Using float arithmetic, add a sine component to the x value of the pixel such
that the pixel takes on an RGB value equal to that of a different pixel in the
original image. Make the maximum shift in x equal to 16 pixels.

(b) In Premiere and other packages, only integer arithmetic is provided. Functions
such as sin are redefined so as to take an int argument and return an int.
The argument to the sin function must be in 0.. 1,024, and the value of sin
is in —512..512: sin(0) returns 0, sin (256) returns 512, sin(512)
returns 0, sin(768) returns -512 and sin (1, 024) returns 0.

Rewrite your expression in part (a) using integer arithmetic.
{c) How could you change your answer to make the waving time-dependent?

How wotild you create the image in Figure 2.6?7 Write a small program to make such
an image. Hint: Place R, G, and B at the corners of an equilateral triangle inside the
circle. It’s best to go over all columns and rows in the output image rather than simply
going around.the disk and trying to map results back to (x, y) pixel positions.

As a longer exercise for learning existing software for manipulating images, video,
and music, make a I-minute digital video. By the end of this exercise, you should be
familiar with PC-based equipment and know how to use Adobe Premiere, Photoshop,

Section 2.6 References 59

Cakewalk Pro Audio, and other multimedia software.

(a) Capture (or find) at least three video files. You can use a camcorder or VCR to
make your own (through Premiere or the like) or find some on the Net.

(b) Compose (or edit) a small MIDI file with Cakewalk Pro Audio.

(c) Create (or find) at least one WAV file. You may either digitize your own or
download some from the net.

(d) Use Photoshop to create a title and an ending.

(e) Combine all of the above to produce a movie about 60 seconds long, including a
title, some credits, some soundtracks, and at least three transitions. Experiment
with different compression methods; you are encouraged to use MPEG for your
final product.

(f) The above constitutes a minimum statement of the exercise. You may be tempted
to get very creative, and that’s fine, but don’t go overboard and take too much
time away from the rest of your life!

2.6 REFERENCES

1

A.C. Luther, Authoring Interactive Multimedia, The IBM Tools Series, San Diego: AP Profes-
sional, 1994,

R. Vetter, C. Ward, and S. Shapiro, “Using Color and Text in Multimedia Projections,” JEEFE
Multimedia, 2(4); 46-54, 1995.

J.C. Shepherd and D. Colaizzi, Authoring Authorware: A Practical Guide, Upper Saddle River,
NT: Prentice Hall, 1998.

D.E. Wolfgram, Creating Multimedia Presentations, Indianapolis: Que Publishing, 1994.

5 A. Ginige, D. Lowe, and J. Robertson, “Hypermedia Authoring,” IEEE Multimedia, 2: 24-35,

1995.

A. Ginige and D. Lowe, “Next Generation Hypermedia Authoring Systems,” In Proceedings
of Multimedia Infonmnation Systems and Hypermedia, 1995, 1-11.

D. Lowe and W. Hall, Hypermedia and the Web: An Engineering Approach, New York: Wiley,
1999.

3.1

60

CHAPTER 3

Graphics and Image Data
Representations

In this chapter we look at images, starting with 1-bit images, then 8-bit gray images and how
to print them, then 24-bit color images and 8-bit versions of color images. The specifics of
file formats for storing such images will also be discussed.

We consider the following topics:

o Graphics/image data types

o Popular file formats

GRAPHICS/IMAGE DATA TYPES

The number of file formats used in multimedia continues to proliferate [1]. For example,
Table 3.1 shows a list of file formats used in the popular product Macromedia Director.
In this text, we shall study just a few popular file formats, to develop a sense of how they
operate. We shall concentrate on GIF and JPG image file formats, since these two formats
are distinguished by the fact that most web browsers can decompress and display them.

To begin, we shall discuss the features of file formats in general.

TABLE 3.1; Macromedia Director file formats.

File import File export | Native
Image Palette | Sound | Video | Animation | Image | Video
BMP, D}B, PAL | AIFF | AVI | DIR BMP | AVI | DIR
GIF, JPG, | ACT | AU MOV | FLA MOV | DXR
PICT, PNG, MP3 FiLC EXE
PNT, PSD, - WAV FLI
TGA, TIFF, GIF
WMF | PPT

3.11

Section 3.1 Graphics/image Data Types 61

FIGURE 3.1: Monochrome 1-bit Lena image.

1-Bit Images

Images consist of pixels, or pels — picture elements in digital images. A 1-bitimage consists
of on and off bits only and thus is the simplest type of image. Each pixel is stored as a single
bit (0 or 1). Hence, such an image is also referred to as a binary image.

It is also called a 1-bit monochrome image, since it contains no color. Figure 3.1 shows
a 1-bit monochrome image (called “Lena” by multimedia scientists — this is a standard
image used to illustrate many algorithms). A 640 x 480 monochrome image requires 38.4
kilobytes of storage (= 640 x 480/8). Monochrome 1-bit images can be satisfactory for
pictures containing only simple graphics and text.

3.1.2 8-Bit Gray-Level Images

Now consider an 8-bit image — that is, one for which each pixel has a gray value between
0 and 255. Each pixel is represented by a single byte — for example, a dark pixel might
have a value of 10, and a bright one might be 230.

The entire image can be thought of as a two-dimensional array of pixel values. We refer .
to such an array as a bitmap, — a representation of the graphics/image data that parallels
the manner in which it is stored in video memory.

Image resolutionrefers to the number of pixels in a digital image (higherresolution always
yields better quality). Fairly high resolution for such an image might be 1,600 x 1,200,
whereas lower resolution might be 640 x 480. Notice that here we are using an aspect ratio
of 4:3. We don’t have to adopt this ratio, but it has been found to look natural.

Such an array must be stored in hardware; we call this hardware a frame buffer. Special
(relatively expensive) hardware called a “video” card (actually a graphics card) is used for
this purpose. The resolution of the video card does not have to match the desired resolution
of the image, but if not cnough video card memory is available, the data has (o be shifted
around in RAM for display.

We can think of the 8-bit image as a set of 1-bit bitplanes, where each plane consists of
a 1-bit representation of the image at higher and higher levels of “elevation”: a bit is turned
on if the image pixel has a nonzero value at or above that bit level.

Figure 3.2 displays the concept of bitplanes graphically. Each bit-plane can have a value
of 0 or 1 at each pixel but, together, all the bitplanes make up 2 single byte that stores

62 Chapter3 Graphics and Image Data Representations

Plane 7

Plane 0

\
N —
\ Bitplane

FIGURE 3.2: Bitplanes for 8-bit grayscale image.

values between 0 and 255 (in this 8-bit situation). For the least significant bit, the bit value
translates to O or 1 in the final numeric sum of the binary number. Positional arithmetic
implies that for the next, second, bit each 0 or 1 makes a contribution of 0 or 2 to the final
sum. The next bits stand for 0 or 4, 0 or 8, and so on, up to 0 or 128 for the most significant
bit. Video cards can refresh bitplane data at video rate but, unlike RAM, do not hold the
data well. Raster fields are refreshed at 60 cycles per second in North America.

Each pixel is usually stored as a byte (a value between 0 to 255), so 2 640 x 480 grayscale
image requires 300 kilobytes of storage (640 x 480 = 307,200). Figure 3.3 shows the Lena
image again, this time in grayscale.

If we wish to print such an image, things become more complex. Suppose we have
available a 600 dot-per-inch (dpi) laser printer. Such a device can usually only print a dot
or not print it. However, a 600 x 600 image will be printed in a i-inch space and will
thus not be very pleasing. Instead, dithering is used. The basic strategy of dithering is to
trade intensity resolution for spatial resolution. (See [2], p. 568, for a good discussion of
dithering).

FIGURE 3.3: Grayscale image of Lena.

Section 3.1 Graphics/image Data Types 63

Dithering For printing on a 1-bit printer, dithering is used to calculate larger patterns of
dots, such that values from O to 255 correspond to pleasing patterns that correctly represent
darker and brighter pixel values. The main strategy is to replace a pixel value by a larger
pattern, say 2 x 2 or 4 x 4, such that the number of printed dots approximates the varying-

'sized disks of ink used in halftone printing. Half-tone printing is an analog process that
uses smaller or larger filled circles of black ink to represent shading, for newspaper printing,
say.

If instead we use an n x n matrix of on-off 1-bit dots, we can represent n2 -+ 1 levels
of intensity resolution — since, for example, three dots filled in any way counts as one
intensity level. The dot patterns are created heuristically. For example, if we use a2 x 2

“dither matrix”:
0 2
31

we can first remap image values in 0.. 255 into the new range 0 .. 4 by (integer) dividing by
256/5. Then, for example, if the pixel value is 0, we print nothing ina 2 x 2 area of printer
output. But if the pixel value is 4, we print all four dots. So the rule is

If the intensity is greater than the dither matrix entry, print an on dot at that
entry location: replace each pixel by an n x » matrix of dots.

However, we notice that the number of levels is small for this type of printing. If we
increase the number of effective intensity levels by increasing the dither matrix size, we also
increase the size of the output image. This reduces the amount of detail in any small part
of the image, effectively reducing the spatial resolution. * !

Note that the image size may be much larger for a dithered image, since replacing each
pixel by a 4 x 4 array of dots, say, makes an image 16 times as large. However, a clever
trick can get around this problem. Suppose we wish to use a larger, 4 x 4 dither matrix,
such as

0 8 2 10
12 4 14 6
3 11 1 9
15 7 13 5

, Then suppose we slide the dither matrix over the image four pixels in the horizontal and
vertical directions at a time (where image values have been reduced to the range 0... 16). An
“ordered dither” consists of turning on the printer output bit for a pixel if the intensity level
is greater than the particular matrix element just at that pixel position. Figure 3.4(a) shows
a grayscale image of Lena. The ordered-dither version is shown as Figure 3.4(b), with a
detail of Lena’s right eye in Figure 3.4(c).

64

3.1.3

Chapter 3 Graphics and Image Data Representations

(b)

FIGURE 3.4: Dithering of grayscale images. (a) 8-bit gray image lenagray.bmp;
(b) dithered version of the image; (c) detail of dithered version. (This figure also appears in
the color insert section.)

An algorithm for ordered dither, with n x n dither matrix, is as follows:

ALGORITHM 3.1 ORDERED DITHER
begin
for x = 010 X;ax /! columns
fory =0 to Yax /l rows
i =xmodn
J=ymodn
/I I(x, y)is the input, O(x, y) is the output, D is the dither matrix.
if I(x,y) > D(, j)
O(x,y»=1
else
O(x,y)=0;
end

Foley, et al. [2] provides more details on ordered dithering.

Image Data Types

The next sections introduce some of the most common data types for graphics and image
file formats: 24-bit color and 8-bit color. We then discuss file formats. Some formats
are restricted to particular hardware/operating system platforms, while others are plaiform-
independent, or cross-platform, formats. Even if some formats are not cross-platform,
conversion applications can recognize and translate formats from one system to another.

Most image formats incorporate some variation of a compression technique due to the
large storage size of image files. Compression techniques can be classified as either /oss-
less or lossy. We will study various image, video, and audio compression techniques in
Chapters 7 through 14.

3.1.4 24-Bit Color Images

In a color 24-bit image, each pixel is represented by three bytes, usually representing RGB.
Since each value is in the range 0-255, this format supports 256 x 256 x 256, or a total

Section 3.1 Graphics/lmage Data Types 65

@ ()

(@

FIGURE 3.5: High-resolution color and separate R, G, B color channel images. (a) example
of 24-bit color image forestfire.bmp; (b, ¢, d) R, G, and B color channels for this
image. (This figure also appears in the color insert section.)

of 16,777,216, possible combined colors, However, such flexibility does result in a storage
penalty: a 640 x 480 24-bit color image would require 921.6 kilobytes of storage without
any compression.

An important point to note is that many 24-bit color images are actually stored as 32-bit
images, with the extra byte of data for each pixel storing an « (alpha) value representing
special-effect information. (See [2], p. 835, for an introduction to use of the @-channel
for compositing several overlapping objects in a graphics image. The simplest use is as a
transparency flag.) :

Figure 3.5 shows the image forest.fire.bmp, a 24-bit image in Microsoft Windows
BMP format (discussed later in the chapter). Also shown are the grayscale images for just
the red, green, and blue channels, for this image. Taking the byte values 0..255 in each
color channel to represent intensity, we can display a gray image for each color separately.

3.1.5 ‘' 8-Bit Color Images

If space is a concern (and it almost always is), reasonably accurate color images can be ob-
tained by quantizing the color information to collapse it. Many systems can make use of only
8 bits of color information (the so-called *256 colors”) in producing a screen image. Even
if a system has the electronics to actually use 24-bit information, backward compatibility
demands that we understand 8-bit color image files.

66 Chapter 3 Graphics and Image Data Representations

FIGURE 3.6: Three-dimensional histogram of RGB colors in forestfire.bmp.

Such image files use the concept of a lookup fable to store color information. Basically,
the image stores not color but instead just a set of bytes, each of which is an index into a table
with 3-byte values that specify the color for a pixel with that lookup table index. Inaway, it’s
a bit like a paint-by-number children’s art set, with number 1 perhaps standing for orange,
number 2 for green, and so on — there is no inherent pattern to the set of actual colors.

It makes sense to carefully choose just which colors to represent best in the image: if an
image is mostly red sunset, it’s reasonable to represent red with precision and store only a
few greens. :

Suppose all the colors in a 24-bit image were collected in a 256 x 256 x 256 set of cells,
along with the count of how many pixels helong to each of these colors stored in that cell.
For example, if exactly 23 pixels have RGB values (45, 200, 91) then store the value 23 in
a three-dimensional array, at the element indexed by the index values [45, 200, 91]. This
data structure is called a color histogram (see, e.g., [3, 4]).

Figure 3.6 shows a 3D histogram of the RGB values of the pixels in forestfire.bmp.
The histogram has 16 x 16 x 16 bins and shows the count in each bin in terms of intensity
and pseudocolor. We can see a few important clusters of color information, corresponding
to the reds, yellows, greens, and so on, of the forest fire image. Clustering in this way
allows us to pick the most important 256 groups of color.

Basically, large populations in 3D histogram bins can be subjected to a split-and-merge
algorithm to determine the “best” 256 colors. Figure 3.7 shows the resulting 8-bit image
in GIF format (discussed later in this chapter). Notice that it is difficult to discern the
difference between Figure 3.5(a), the 24-bit image, and Figure 3.7, the 8-bit image. This is

N-1

Section 3.1 Graphics/lmage Data Types 67

FIGURE 3.7: Example of 8-bit color image. (This figure also appears in the color insert
section.)

not always the case. Consider the field of medical imaging: would you be satisfied with only
a “‘reasonably accurate” image of your brain for potential laser surgery? Likely not — and
thatis why consideration of 64-bit imaging for medical applications is not out of the question.

Note the great savings in space for 8-bit images over 24-bit ones: a 640 x 480 8-bit color
image requires only 300 kilobytes of storage, compared to 921.6 kilobytes for a color image
(again, without any compression applied).

Color Lookup Tables (LUTs)

Again, the idea used in 8-bit color images is to store only the index, or code value, for each
pixel. Then, if a pixel stores, say, the value 25, the meaning is to go to row 2S5 in a color
lookup table (ILUT). While images are displayed as two-dimensional arrays of values, they
are usnally sfored in row-column order as simply a long series of values. For an 8-bit image,
the image file can store in the file header information just what 8-bit values for R, G, and B
correspond to each index. Figure 3.8 displays this idea. The LUT is often called a palette.

0

moryvalue | > 25 [00011110:10111110:0011110¢

25

255

FIGURE 3.8: Color LUT for 8-bit color images.

68 Chapter3 Graphics and Image Data Representations

R G B

0
oooof[rtr1[2222] 9
0000(1111(2222], 25 5 |c
0000{1111|2222] 3| ° | B G
0000[1111[2222] 4
3333(4444|5555|
3333(4444|5555
3333(4444|5555
3333/4444|5555
666677778888
6666(7777|8888
6666/7777|8888
6666/7777|8888

255

FIGURE 3.9: Color picker for 8-bit color: each block of the color picker corresponds to one
row of the color LUT. '

A color picker consists of an array of fairly large blocks of color (or a semicontinuous
range of colors) such that a mouse click will select the color indicated. In reality, a color
picker displays the palette colors associated with index values from O to 255. Figure 3.9
displays the concept of a color picker: if the user selects the color block with index value
2, then the color meant is cyan, with RGB values (0, 255, 255).

A simple animation process is possible via simply changing the color table: this is called
color cycling or palette animation. Since updates from the color table are fast, this can
result in a simple, pleasing effect.

Dithering can also be carried out for color printers, using 1 bit per color channel and
spacing out the color with R, G, and B dots. Alternatively, if the printer or screen can print
only a limited number of colors, say using 8 bits instead of 24, color can be made to seem
printable, even if it is not available in the color LUT. The apparent color resolution of a
display can be increased without reducing spatial resolution by averaging the intensities of
neighboring pixels. Then it is possible to trick the eye into perceiving colors that are not
available, because it carries out a spatial blending that can be put to good use. Figure 3.10(a)
shows a 24-bit color image of Lena, and Figure 3.10(b) shows the same image reduced to
only 5 bits via dithering. Figure 3.10(c) shows a detail of the left eye.

. How to Devise a Color Lookup Table In Section 3.1.5, we briefly discussed the idea
of clustering to generate the most important 256 colors from a 24-bit color image. However,
in general, clustering is an expensive and slow process. But we need to devise color LUTs
somehow — how shall we accomplish this?

The most straightforward way to make &-bit lookup color out of 24-bit color would be
to divide the RGB cube into equal slices in each dimension. Then the centers of each of the
resulting cubes would serve as the entries in the color LUT, while simply scaling the RGB
ranges 0.. 255 into the appropriate ranges would generate the 8-bit codes.

Section 3.1 Graphics/lmage Data Types 69

®

FIGURE 3.10: (a) 24-bit color image lena.bmp; (b) version with color dithering; (c) detail of
dithered version.

Since humans are more sensitive to R and G than to B, we could shrink the R range and
G range 0..255 into the 3-bit range 0..7 and shrink the B range down to the 2-bit range
0..3, making a total of § bits. To shrink R and G, we could simply divide the R or G byte
value by (256/8 =) 32 and then truncate. Then each pixel in the image gets replaced by its
8-bit index, and the color LUT serves to generate 24-bit color.

However, what tends to happen with this simple scheme is that edge artifacts appear in
the image. The reason is that if a slight change in RGB results in shifting to a new code, an
edge appears, and this can be quite annoying perceptually.

A simple alternate solution for this color reduction problem called the median-cut algo-
rithm does a better job (and several other competing methods do as well or better). This
approach derives from computer graphics [S]; here, we show a much simplified version.
The method is a typc of adaptive partitioning scheme that tries to put the most bits, the most
discrimination power, where colors are most clustered.

The idea is to sort the R byte values and find their median. Then values smaller than the
median are labeled with a 0 bit and values larger than the median are labeled with a 1 bit.
The median is the point where half the pixels are smaller and half are larger.

Suppose we are imaging some apples, and most pixels are reddish. Then the median R
byte value might fall fairly high on the red 0..255 scale. Next, we consider only pixels
with a 0 label from the first step and sort their G values. Again, we label image pixels with
another bit, O for those less than the median in the greens and 1 for those greater. Now
applying the same scheme to pixels that received a 1 bit for the red step, we have arrived at
2-bit labeling for all pixels.

Carrying on to the blue channel, we have a 3-bit scheme. Repeating all steps, R, G, and
B, results in a 6-bit scheme, and cycling through R and G once more results in 8 bits. These
bits form our 8-bit color index value for pixels, and corresponding 24-bit colors can be the
centers of the resulting small color cubes.

You can see that in fact this type of scheme will indeed concentrate bits where they most
need to differentiate between high populations of close colors. We can most easily visualize
finding the median by using a histogram showing counts at position 0..255. Figure 3.11
shows a histogram of the R byte values for the forestfire.bmp image along with the
median of these values, depicted as a vertical line.

70 Chapter 3 Graphics and Image Data Representations

Red bit 1

500 1000 1500

0 50 100 150 200

Green bit 2, for red bit 1 ==0

Green bit 2, forred bit 1 == 1

g =
E3 2
(= (=]
g g
8 8
< <
=))
a HM\’\/"} @ Ny
c o H
0 S0 160 150 200 3250 1] 50 100 150 200 250

FIGURE 3.11: Histogram of R bytes for the 24-bit color image forestfire.bmp results
in a 0 or 1 bit label for every pixel. For the second bit of the color table index being built,
we take R values less than the R median and label just those pixels as 0 or 1 according as
their G value is less or greater than the median of the G valune. Continuing over R, G, B for
8 bits gives a color LUT 8-bit index.

The 24-bit color image resulting from replacing every pixel by its corresponding color
LUT 24-bit color is only an approximation to the original 24-bit image, of course, but the
above algorithm does a reasonable job of putting most discriminatory power where it is most
needed — where small color shading differences will be most noticeable. "It should also
be mentioned that several methods exist for distributing the approximation errors from one
pixel to the next. This has the effect of smoothing out problems in the 8-bit approximation.

The more accurate version of the median-cut algorithm proceeds via the following steps:

Find the smallest box that contains all the colors in the image.

Sort the enclosed colors along the longest dimension of the box.

Split the box into two regions at the median of the sorted list.

Repeat the above process in steps (2) and (3) until the original color space has been

divided into, say, 256 regions.

5. Forevery box, call the mean of R, G, and B in that box the representative (the center)
color for the box.

6. Based on the Euclidean distance between a pixel RGB value and the box centers,

assign every pixel to one of the representative colors. Replace the pixel by the code

E ol

Section 3.2 Popular File Formats 71

in a lookup table that indexes representative colors (in the table, each representative
color is 24-bits — 8 bits each for R, G, and B.)

This way, we might have a table of 256 rows, each containing three 8-bit values. The row
indices are the codes for the lookup table, and these indices are what are stored in pixel
values of the new, color quantized or palettized image.

3.2 POPULAR FILE FORMATS

Some popular file formats for information exchange are described below. One of the most
important is the 8-bit GIF format, because of its historical connection to the WWW and
HTML markup language as the first image type recognized by net browsers. However,
currently the most important common file format is JPEG, which will be explored in great
depth in Chapter 9.

3.21 GIF

Graphics Interchange Format (GIF) was devised by UNISYS Corporation and Compuserve,
initially for transmitting graphical images over phone lines via modems. The GIF standard
uses the Lempel-Ziv-Welch algorithm (a form of compression — see Chapter 7), modified
slightly for image scanline packets to use the line grouping of pixels effectively.

The GIF standard is limited to 8-bit (256) color images only. While this produces accept-
able color, it is best suited for images with few distinctive colors (e.g., graphics or drawing).

The GIF image format has a few interesting features, notwithstanding the fact that it has
been largely supplanted. The standard supports interlacing — the successive display of
pixels in widely spaced rows by a four-pass display process.

In fact, GIF comes in two flavors. The original specification is GIF87a. The later version,
GIF89a, sapports simple animation via a Graphics Control Extension block in the data. This
provides simple control over delay time, a transparency index, and so on. Software such as
Corel Draw allows access to and editing of GIF images.

It is worthwhile examining the file format for GIF87 in more detail, since many such
formats bear a resemblance to it but have grown a good deal more complex than this “simple”
standard. For the standard specification, the general file format is as in Figure 3.12. The
Signature is 6 bytes: GIF87a, the Screen Descriptor is a 7-byte set of flags. A GIF87 file
can contain more than one image definition, usually to fit on several different parts of the
screen. Therefore each image can contain its own color lookup table, a Local Color Map,
for mapping 8 bits into 24-bit RGB values. However, it need not, and a global color map
can instead be defined to take the place of a local table if the latter is not included.

The Screen Descriptor comprises a set of attributes that belong to every image in the file.
According to the GIF87 standard, it is defined as in Figure 3.13. Screen Width is given in the
first 2 bytes. Since some machines invert the order MSB/LSB (most significant byte/least
significant byte — i.e., byte order), this order is specified. Screen Height is the next 2 bytes.
The “m” in byte 5 is 0 if no global color map is given. Color resolution, “cr”, is 3 bits in
0..7. Since this is an 0ld standard meant to operate on a variety of low-end hardware, *‘cr’

is requesting this much color resolution.

72

Chapter 3

Graphics and Image Data Representations

GIF signature

Screen descriptor

Global color map

Image descriptor

Local color map

Repeated
1 to n times

Raster area

GIF terminator

FIGURE 3.12: GIF file format.

Bits
76543210

Screen width

Screen ‘hei ght

m| cr |0] pixel

Background

0'0000000

Byte #
1
Raster width in pixels (LSB first)
2
3 ,
Raster height in pixels (L.SB first)
4
5

6 Background = color index of screen
background (color is defined from

7 the global color map or if none
specified, from the default map)

m=1 Global color map follows descriptor
cr+1- #bits of color resolution
pixel + 1 # bits/pixel in image

FIGURE 3.13: GIF screen descriptor.

Section 3.2 Popular File Formats 73

Bits
76543210 Byte#

Red intensity | 1 Red value for color index 0

Green intensity Green value for color index 0

Blue intensity Blue value for color index 0

Green intensity Green value for color index 1

2
3
Red intensity | 4 Red value for color index 1
5
6

Blue intensity Blue value for color index 1

(continues for remaining colors)

FIGURE 3.14: GIF color map.

The next bit, shown as “0”, is extra and is not used in this standard. “Pixel” is another
3 bits, indicating the mamber of bits per pixel in the image, as stored in the file. Although
“cr” usually equals “pixel”, it need not. Byte 6 gives the color table index byte for the
background color, and byte 7 is filled with zeros. For present usage, the ability to use a
small color resolution is a good feature, since we may be interested in very low-end devices
such as web-enabled wristwatches, say.

A color map is set up in a simplc fashion, as in I'igure 3.14. However, the actual length
of the table equals 2?1 a5 given in the screen descriptor.

Each image in the file has its own Image Descriptor, defined as in Figure 3.15. Interest-
ingly, the developers of this standard allowed for future extensions by ignoring any bytes
between the end of one image and the beginning of the next, identified by a comma character.
In this way, future enhancements could have been simply inserted in a backward-compatible
fashion.

If the interlace bitis set in the local Image Descriptor, the rows of the image are displayed
in a four-pass sequence, as in Figure 3.16. Here, the first pass displays rows 0 and 8, the
second pass displays rows 4 and 12, and so on. This allows for a quick sketch to appear when
a web browser displays the image, followed by more detailed fill-ins. The JPEG standard
(below) has a similar display mode, denoted progressive mode.

The actual raster data itself is first compressed using the LZW compression scheme (see
Chapter 7) before being stored.

The GIF87 standard also set out, for future use, how Extension Blocks could be defined.
Even in GIF87, simple animations can be achieved, but no delay was defined between
images, and multiple images simply overwrite each other with no screen clears.

GIF89 introduced a number of Extension Block definitions, especially those to assist
animation: transparency and delay between images. A quite useful feature introduced in
GIF89 is the idea of a sorted color table. The most important colors appear first, so that if

74

Chapter 3 Graphics and Image Data Representations

Bits
7 65 43210 Byte#
001011001 Image separator character (comma)
) . .
Start of image in pixels from the
Image left 3 left side of the screen (L.SB first)
I 4 Start of image in pixels from the
mage top 5 top of the screen (LSB first)
6
Image width Width of the image in pixels (LSB first)
7
) 8
Image height 9 Height of the image in pixels (LSB first)
m|i|0|0]|O0 |pixel| 10 m=0 Use global color map, ignore ‘pixel’
m=1

FIGURE 3.15: GIF image descriptor.

-t

Local color map follows, use ‘pixel’
= Image formatted in Sequential order
i=1 Image formatted in Interlaced order
pixel + | # bits per pixel for this image

Image

row Pass 1

Pass2 Pass3 Pass4 Result

R LoV NN AW —O

#] g%
*4 g%
g%
4p
0 g%
R ok
3p
#44*%
%] h*
x4
%3
H 4
)l

K] g%
%4 g%
xgg %
*4h%
*) %
R4k
Jp
g%
*]pk
*4e%
®3ok
R
#2hy*

FIGURE 3.16: GIF four-pass interlace display row order.

Section 3.2 Popular File Formats 75

a decoder has fewer colors available, the most important ones are chosen. That is, only a
segment of the color lookup table is used, and nearby colors are mapped as well as possible
into the colors available. :

. We can investigate how the file header works in practice by having a look at a particular
GIF image. Figure 3.7 is an 8-bit color GIF image. To see how the file header Iooks, we can
simply use everyone’s favorite command in the UNIX operating system: od (octal dump).
In UNIX,! then, we issue the command

od -c forestfire.gif | head -2
and we see the first 32 bytes interpreted as characters:

G I F 8 7 a \208 \2 \188 \1 \247 \0 \O \6 \3 \5
J \132 \24 |) \7 \198 \195 \ \128 U \27 \1%6 \166 & T

To decipher the remainder of the file header (after GIF87a), we use hexadecimal:
od -x forestfire.gif | head -2
with the result

4749 4638 3761 d002 bcOl £700 0006 0305
ae84 187c 23807 cb6cl3 5¢80 551b cda6 2654

The 4002 bc01 following the Signature are Screen Width and Height; these are given in
least-significant-byte-first order, so for this file in decimal the Screen Widthis 0+ 13 x 16+
2 x 16% = 720, and Screen Height is 11 x 16+ 12+ 1 x 16> = 444. Then the £7 (which is
247 in decimal) is the fifth byte in the Screen Descriptor, followed by the background color
index, 00, and the 00 delimiter. The set of flags, £7, in bits, reads 1, 111, 0, 111,
or in other words: global color map is used, 8-bit color resolution, O separator, 8-bit pixel
data.

3.2.2 JPEG

The most important current standard for image compression is JPEG [6]. This standard was
created by a working group of the International Organization for Standardization (ISO) that
was informally called the Joint Photographic Experts Group and is therefore so named. We
shall study JPEG in a good deal more detail in Chapter 9, but a few salient features of this
compression standard can be mentioned here.

The human vision system has some specific limitations, which JPEG takes advantage
of to achieve high rates of compression. The eye-brain system cannot see extremely fine
detail. If many changes occur within a few pixels, we refer to that image segment as having
high spatial frequency — that is, a great deal of change in (v, y) space. This limitation is
even more conspicuous for color vision than for grayscale (black and white). Therefore,
color information in JPEG is decimated (partially dropped, or averaged) and then small
blocks of an image are represented in the spatial frequency domain (i, v), rather than in
(x, y). That is, the speed of changes in x and y is evaluated, from low to high, and a new
“image” is formed by grouping the coefficients or weights of these speeds.

! Solaris version; older versions use slightly different syntax.

76

Chapter 3 Graphics and Image Data Representations

FIGURE 3.17: JPEG image with low quality specified by user. (This figure also appears in
the color insert section.)

Weights that correspond to slow changes are then favored, using a simple trick: values
are divided by some large integer and truncated. In this way, small values are zeroed out.
Then a scheme for representing long runs of zeros efficiently is applied, and voila!"— the
image is greatly compressed.

Since we effectively throw away a lot of information by the division and truncation step,
this compression scheme is “lossy” (although a lossless mode exists). What’s more, since
it is straightforward to allow the user to choose how large a denominator to use and hence
how much information to discard, JPEG allows the user to set a desired level of quality, or
compression ratio (input divided by output).

As an example, Figure 3.17 shows our forestfire image with a quality factor Q0 =
10%. (The usual default quality factoris O = 75%.) '

This image is a mere 1.5% of the original size. In comparison, a JPEG imagc with
Q = 75% yields an image size 5.6% of the original, whereas a GIF version of this image
compresses down to 23.0% of the uncompressed image size.

3.2.3 PNG

One interesting development stemming from the popularity of the Internet is efforts toward
more system-independent image formats. One such format is Portable Network Graphics
(PNG). This standard is meant to supersede the GIF standard and extends it in impor-
tant ways. The motivation for a new standard was in part the patent held by UNISYS
and Compuserve on the LZW compression method. (Interestingly, the patent covers only
compression, not decompression: this is why the UNIX gunzip utility can decompress
LZW-compressed files.)

Section 3.2 Popular File Formats 77

Special features of PNG files include support for up to 48 bits of color information —
a’large increase. Files may also contain gamma-correction information (see Section 4.1.6)
for correct display of color images and alpha-channel information for such uses as control
of transparency. Instead of a progressive display based on widely separated rows, as in GIF
images, the display progressively displays pixels in a two-dimensional fashion a few at a
time over seven passes through each 8 x 8 block of an image.

3.2.4 TIFF

Tagged Image File Format (TIFF) is another popular image file format. Developed by
the Aldus Corporation in the 1980s, it was later supported by Microsoft. Its support for
attachment of additional information (referred to as “tags”) provides a great deal of flexibility.
The most important tag is a format signifier: what type of compression etc. is in use in the
stored image. For example, TIFF can store many different types of images: 1-bit, grayscale,
8-bit, 24-bit RGB, and so on. TIFF was originally a lossless format, but a new JPEG tag
allows you to opt for JPEG compression. Since TIFF is not as user-controliable as JPEG, it
does not provide any major advantages over the latter.

3.2.5 EXIF

Exchange Image File (EXIF) is an image format for digital cameras. Initially developed in
1993, its current version (2.2) was published in 2002 by the Japan Electronics and Informa-
tion Technology Industries Association (JEITA). Compressed EXIF files use the baseline
JPEG format. A variety of tags (many more than in TIFF) is available to facilitate higher-
quality printing, since information about the camera and picture-taking conditions (flash,
exposure, light source, white balance, type of scene) can be stored and used by printers
for possible color-correction algorithms. The EXIF standard also includes specification of
file format for audio that accompanies digital images. It also supports tags for information
needed for conversion to FlashPix (initially developed by Kodak).

3.2.6 Graphics Animation Files

A few dominant formats are aimed at storing graphics animations (i.e., series of drawings
or graphic illustrations) as opposed to video (i.e., series of images). The difference is
that animations are considerably less demanding of resources than video files. However,
animation file formats can be used to store video information and indeed are sometimes
used for such.

FLC is an important animation or moving picture file format; it was originally created
" by Animation Pro. Another format, FLI, is similar to FLC.

GL produces somewhat better quality moving pictnres. GL animations can also usually
handle larger file sizes.

Many older formats are used for animation, such as DL and Amiga IFF, as well as
alternates such as Apple Quicktime. And, of course, there are also animated GIF89 files.

78 Chapter3 Graphics and Image Data Representations

3.2.7 PSand PDF

PostScript is an important language for typesetting, and many high-end printers have a
PostScript interpreter built into them. PostScript is a vector-based, rather than pixel-based,
picture language: page elements are essentially defined in terms of vectors. With fonts
defined this way, PostScript includes text as well as vector/structured graphics; bit-mapped
images can also be included in output files. Encapsulated PostScript files add some infor-
mation for including PostScript files in another document.

Several popular graphics programs, such as Illustrator and FreeHand, use PostScript.
However, the PostScript page description language itself does not provide compression; in
fact, PostScript files are just stored as ASCIIL. Therefore files are often large, and in academic
settings, it is common for such files to be made available only after compression by some
UNIX utility, such as compress or gzip.

Therefore, another text + figures language has begun to supersede PostScript: Adobe
Systems Inc. includes LZW (see Chapter 7) compression in its Portable Document Format
(PDF) file format. As a consequence, PDF files that do not include images have about
the same compression ratio, 2:1 or 3:1, as do files compressed with other LZW-based
compression tools, such as UNIX compress or gzip on PC-basedwinzip (a variety of
pkzip). For files containing images, PDF may achieve higher compression ratios by using
separate JPEG compression for the image content (depending on the tools used to create
original and compressed versions). The Adobe Acrobat PDF reader can also be configured
toread documents structured as linked elements, with clickable content and handy summary
tree-structured link diagrams provided.

3.2.8 Windows WMF

Windows MetaFile (WMF) is the native vector file format for the Microsoft Windows oper-
ating environment. WMF files actually consist of a collection of Graphics Device Interface
(GDI) function calls, also native to the Windows environment, Whena WMF file is “played”
(typically using the Windows PlayMetaFile () function) the described graphic is ren-
dered. WMEF files are ostensibly device-independent and unlimited in size.

3.2.9 Windows BMP

3.2.10

BitMap (BMP) is the major system standard graphics file format for Microsoft Windows,
used in Microsoft Paint and other programs. It makes use of run-length encoding compres-
sion (see Chapter 7) and can fairly efficiently store 24-bit bitmap images. Note, however,
that BMP has many different modes, including uncompressed 24-bit images.

Macintosh PAINT and PICT

PAINT was originally used in the MacPaint program, initially only for 1-bit monochrome
images.

PICT is used in MacDraw (a vector-based drawing program) for storing structured
graphics.

Section 3.3 Further Exploration 79

3.2.11 X Windows PPM

T'his is the graphics format for the X Windows System. Portable PixMap (PPM) supports
24-bit color bitmaps and can be manipulated using many public domain graphic editors,
such as xv. It is used in the X Windows System for storing icons, pixmaps, backdrops, and
SO on.

3.3 FURTHER EXPLORATION

Foley et al. [2] provide an excellent introduction to computer graphics. For a good discussion
on issues involving image processing, see Gonzalez and Woods [7]. More information
including a complete up-to-date list of current file formats can be viewed on the textbook
web site, in Chapter 3 of the Further Exploration directory.

Other links include

e GIF87 and GIF§9 details. Although these file formats are not so interesting in them-
selves, they have the virtue of being simple and are a useful introduction to how such
bitstreams are set out.

o A popular shareware program for developing GIF animations
e JPEG considered in detail

o PNG details

o The PDF file format

¢ The ubiquitous BMP file format

In terms of actual input/output of such file formats, code for simple 24-bit BMP file
reading and manipulation is given on the web site.

3.4 EXERCISES

1. Briefly explain why we need to be able to have less than 24-bit color and why this
makes for a problem. Generally, what do we need to do to adaptively transform 24-bit
color values to 8-bit ones?

2. Suppose we decide to quantize an 8-bit grayscale image down to just 2 bits of accuracy.
What is the simplest way to do so? What ranges of byte values in the original image
are mapped to what quantized values?

3. Suppose we have a 5-bit grayscale image. What size of ordered dither matrix do we
need to display the image on a [-bit printer?

4. Suppose we have available 24 bits per pixel for a color image. However, we notice
that humans are more sensitive to R and G than to B — in fact, 1.5 times more sensitive
to R or G than to B. How could we best make use of the bits available?

80 Chapter3 Graphics and Image Data Representations

5. At your job, you have decided to impress the boss by using up more disk space for
the company’s grayscale images. Instead of using 8 bits per pixel, you'd like to use
48 bits per pixel in RGB. How could you store the original grayscale images so that
in the new format they would appear the same as they used to, visnally?

6. Sometimes bitplanes of an image are characterized using an analogy from mapmaking
called “elevations”. Figure 3.18 shows some elevations.
Suppose we describe an 8-bit image using 8 bitplanes. Briefly disctiss how you could
view each bitplane in terms of geographical concepts.

60 80 100 120

40

-

0 20 40 60 80 100 120

FIGURE 3.18: Elevations in geography.

7. For the color LUT problem, try out the median-cut algorithm on a sample image.
Explain briefly why it is that this algorithm, carried out on an image of red apples,
puts more color gradation in the resulting 24-bit color image where it is needed, among
the reds.

8. In regard to nonordered dithering, a standard graphics text [2] states, “Even larger

patterns can be used, but the spatial versus intensity resolution trade-off is limited by
our visual acuity (about one minute of arc in normal lighting).”

’
(a) What does this sentence mean?

{(b) If we hold a piece of paper out at a distance of 1 foot, what is the approximate
linear distance between dots? (Information: One minute of arc is 1/60 of one
degree of angle. Arc length on a circle equals angle (in radians) times radius.)
Could we see the gap between dots on a 300 dpi printer?

(c) Write down an algorithm (psendocode) for calculating a color histogram for
RGB data.

Section 3.5 References 81

3.5 REFERENCES

1 J. Miano, Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP, Reading, MA:
Addison-Wesley, 1999,

2 1. D. Foley, A. van Dam, S. K. Feiner, and J. F Hughes, Computer Graphics: Principles and
Practice in C, 2nd ed., Reading, MA: Addison-Wesley, 1996.

3 M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision, Boston:
PWS Publishing, 1999.

4 L.G. Shapiro and G.C. Stockman, Computer Vision, Upper Saddle River, NJ: Prentice Hall,
2001.

5 P.Heckbert, “ColorImage Quantization for Frame Buffer Display,” in SIGGRA PH Proceedings,
vol. 16, p. 297-307, 1982.

6 W.B. Pennebaker and J.L. Mitchell, The JPEG Still Image Data Compression Standard, New
York: Van Nostrand Reirhold, 1993.

7 R.C. Gonzalez and R.E. Woods, Digital Image Processing, 2nd ed., Upper Saddle River, NJ:
Prentice Hall, 2002.

CHAPTER 4

Color in Image and Video

Color images and videos are ubiquitous on the web and in multimedia productions. Increas-
ingly, we are becoming aware of the discrepancies between color as seen by people and the
sometimes very different color displayed on our screens. The latest version of the HTML
standard attempts to address this issue by specifying color in terms of a standard, “sRGB”,
arrived at by color scientists.

To become aware of the simple yet strangely involved world of color, in this chapter we
shall consider the following topics:

e Color science
e Color models in images

e Color models in video

4.1 COLOR SCIENCE
4,11 Light and Spectra

82

Recall from high school that light is an electromagnetic wave and that its color is char-
acterized by the wavelength of the wave. Laser light consists of a single wavelength —
for example, a ruby laser produces a bright, scarlet beam. So if we were to plot the light
intensity versus wavelength, we would see a spike at the appropriate red wavelength and no
other contribution to the light.

In contrast, most light sources produce contributions over many wavelengths. Humans
cannot detect all light — just contributions that fall in the visible wavelength. Short wave-
lengths produce a blue sensation, and long wavelengths produce a red onc.

We measure visible light using a device called a spectrophotometer, by reflecting light
from a diffraction grating (a ruled surface) that spreads out the different wavelengths, much
as a prism does. Figure 4.1 shows the phenomenon that white light contains all the colors of
arainbow. If you have ever looked through a prism, you will have noticed that it generates
a rainbow effect, due to a natural phenomenon called dispersion. You see a similar effect
on the surface of a soap bubble.

Visible light is an electromagnetic wave in the range 400-700 nmn (wWhere nm stands
for nanometer, or 1072 meter). Figure 4.2 shows the relative power in each wavelength
interval for typical outdoor light on a sunny day. This type of curve, called a spectral power
distribution (SPD), or spectrium, shows the relative amount of light energy (electromagnetic
signal) at each wavelength. The symbol for wavelength is X, so this type of curve might be
called E(A).

Section 4.1 Color Science 83

FIGURE 4.1: Sir Isaac Newton’s experiments. By permission of the Warden and Fellows,
New College, Oxford.

In practice, measurements are used that effectively sum up voltage in a small wavelength
range, say S or 10 nanometers, so such plots usually consist of segments joining function
values every 10 nanometers. This means also that such profiles are actnally storcd as vectors.
Below, however, we show equations that treat E(A) as a continuous function, although in
reality, integrals are calculated using sums.

Spectral power
distribution

400 450 500 550 600 650 700
Wavelength (nm)

FIGURE 4.2: Spectral power distribution of daylight.

84 Chapter4 Color in Image and Video

4.1.2 Human Vision

The eye works like a camera, with the lens focusing an image onto the retina (upside-down
and left-right reversed). The retina consists of an array of rods and three kinds of cones,
so named because of their shape. The rods come into play when light levels are low and
produce an image in shades of gray (“At night, all cats are gray!”). For higher light levels,
the cones each produce a signal. Because of their differing pigments, the three kinds of
cones are most sensitive to red (R), green (), and blue (B) light.

Higher light levels result in more neurons firing, but just what happens in the brain further
down the pipeline is the subject of much debate. However, it seems likely that the brain
makes use of differences R—G, G-B, and B—R, as well as combining all of R, G, and B into
a high-light-level achromatic channel (and thus we can say that the brain is good at algebra).

4.1.3 Spectral Sensitivity of the Eye

The eye is most sensitive to light in the middle of the visible spectrum. Like the SPD
profile of a light source, as in Figure 4.2, for receptors we show the relative sensitivity as
a function of wavelength. The blue receptor sensitivity is not shown to scale, because it is
much smaller than the curves for red or green. Blue is a late addition in evolution (and,
statistically, is the favorite color of humans, regardless of nationality — perhaps for this
reason: blue is a bit surprising!). Figure 4.3 shows the overall sensitivity as a dashed line,
called the luminous-efficiency function. It is usually denoted V(1) and is the sum of the
response curves to red, green, and blue [1, 2].

The rods are sensitive to a broad range of wavelengths, but produce a signal that generates
the perception of the black—white scale only. The rod sensitivity curve looks like the
luminous-efficiency function V (1) but is shifted somewhat to the red end of the spectrum [1].

1.0

0.8

0.6

Relative response
0.4

0.0

400 450 500 550 600 650 700
Wavelength (nm)

FIGURE 4.3: Cone sensitivities: R, G, and B cones, and luminous-efficiency curve V(1).

Section 4.1 Color Science 85

The eye has about 6 million cones, but the proportions of R, G, and B cones are different.
They likely are present in the ratios 40:20:1 (see [3] for a complete explanation). So the
achromatic channel produced by the cones is thus something like 2R + G + B/20.

These spectral sensitivity functions are usually denoted by some other letters than R, G,
and B, so here let us denote them by the vector function g (1), with components

g) = [gr), e (), g 1T 4.1)

That is, there are three sensors (a vector index ¥ = 1..3 therefore applies), and each is a
function of wavelength.

The response in each color channel in the eye is proportional to the number of neurons
firing. For the red channel, any light falling anywhere in the nonzero part of the red cone
function in Figure 4.3 will generate some response. So the total response of the red channel
is the sum over all the light falling on the retina to which the red cone is sensitive, weighted
by the sensitivity at that wavelength. Again thinking of these sensitivities as continuous
functions, we can succinctly write down this idea in the form of an integral:

R = /E(x)qR(A)dA
G = [EQ) go() dx 4.2)
B = /E(A)qg(k)dk

Since the signal transmitted consists of three numbers, colors form a three-dimensional
vector space.

4,1.4 Image Formation

Equation (4.2) above actually applies only when we view a self-luminous object (i.e., a
light). In most situations, we image light reflected from a surface. Surfaces reflect different
amounts of light at different wavelengths, and dark surfaces reflect less energy than light
surfaces. Figure 4.4 shows the surface spectral reflectance from orange sneakers and faded
bluejeans [4]. The reflectance function is denoted S(1).

The image formation situation is thus as follows: light from the illuminant with SPD
E()) impinges on a surface, with surface spectral reflectance function S(1), is reflected,
and is then filtered by the eye’s cone functions g (1). The basic arrangement is as shown in
Figure 4.5. The function C (1) is called the color signal and is the product of the illuminant
E()) and the reflectance S(L): C(A) = E(X) S(A).

The equations similar to Egs. (4.2) that take into account the image formation model are

R=/E(A) S(A) gr(X) d
G = / EQ) SO gg (V) dA 4.3)

B =/E(A) S(A) gg(\) dxh

86 Chapter 4 Color in Image and Video

Sneakers

Surface spectral reflectance
0.1 02 03 04 05 06

400 450 500 550 600 650 700
Wavelength (nm)

FIGURE 4.4: Surface spectral reflectance functions S(}) for two objects.

4.1.5 Camera Systems

Now, we humans develop camera systems in a similar fashion. A good camera has three
signals produced at each pixel location (corresponding to a retinal position). Analog signals
are converted to digital, truncated to integers, and stored. If the precision used is 8-bit, the
maximum value for any of R, G, B is 255, and the minimum is 0.

However, the light entering the eye of the computer user is what the screen emits — the
screen is essentially a self-luminous source. Therefore, we need to know the light E(})
entering the eye.

Sensors gp g (M)

/N

l
R ¢ B

FIGURE 4.5: Image formation model.

Section 4.1 Color Science 87

4.1.6 Gamma Correction

The RGB numbers in an image file are converted back to analog and drive the electron guns
in the cathode ray tube (CRT). Electrons are emitted proportional to the driving voltage,
and we would like to have the CRT system produce light linearly related to the voltage.
Unfortunately, it turns out that this is not the case. The light emitted is actually roughly
proportional to the voltage raised to a power; this power is called “gamma”, with symbol y.

Thus, if the file value in the red channel is R, the screen emits light proportional to
RY, with SPD equal to that of the red phosphor paint on the screen that is the target of the
red-channel electron gun. The value of gamma is around 2.2.

Since the mechanics of a television receiver are the same as those for a computer CRT,
TV systems precorrect for this situation by applying the inverse transformation before trans-
mitting TV voltage signals. 1t is customary to append a prime to signals that are “gamma-
corrected” by raising to the power (1/y) before transmission. Thus we have

R—> R =RY = (RY - R (4.4)

and we arrive at “linear signals”.

Voltage is often normalized to maximum 1, and it is interesting to see what effect these
gamma transformations have on signals. Figure 4.6(a) shows the light output with no gamma
correction applied. We see that darker values are displayed too dark. This is also shown in
Figure 4.7(a), which displays a linear ramp from left to right.

Figure 4.6(b) shows the effect of precorrecting signals by applying the power law Ry,
where it is customary to normalize voltage to the range 0 to 1. We see that applying first
the correction in Figure 4.6(b), followed by the effect of the CRT system in Figure 4.6(a),

No gamma correction Gamrna correction
e e
— i
@ ©
(] O
0 o
) = o
®° £
= =% —
<= <]
o S|
o o
= o
[} <o L,- PR
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Voltage Voltage

(2) ()

FIGURE 4.6: Effect of gamma correction: (a) no gamma correction —effect of CRT on light
emitted from screen (voltage is normalized to range 0 .. 1); (b) gamma correction of signal.

88 Chapter4 Color in Image and Video

(@ ®

FIGURE 4.7: Effect of gamma correction: (a) display of ramp from 0 to 255, with no gamma
correction; (b) image with gamma correction applied.

would result in linear signals. Figure 4.7(b) shows the combined effect. Here, a ramp is
shown in 16 steps, from gray level O to gray level 255.

A more careful definition of gamma recognizes that a simple power law would result in
an infinite derivative at zero voltage — which makes constructing a circuit to accomplish
gamma correction difficult to devise in analog. In practice a more general transform, such
as R —> R’ = a x RYY + b is used, along with special care at the origin:

45 x Vi Vi, < 0.018
Vout = 4.5)
1.099 x (Vi — 0.099) Vi, > 0.018

This is called a camera transfer function, and the above law is recommended by the Society
of Motion Picture and Television Engineers (SMPTE) as standard SMPTE—-170M.

Why a gamma of 2.27 In fact, this value does not produce a final power law of 1.0. The
history of this number is buried in decisions of the National Television System Committee
of the U.S.A. (NTSC) when TV was invented. The power law for color receivers may in
actuality be closer to 2.8. However, if we compensate for only about 2.2 of this power law,
we arrive at an overall value of about 1.25 instead of 1.0. The idea was that in viewing
conditions with a dim surround, such an overall gamma produces more pleasing images,
albeit with color grrors — darker colors are made even darker, and also the eye—-brain system
changes the relative contrast of light and dark colors [5].

With the advent of CRT-based computer systems, the situation has become even more
interesting. The camera may or may not have inserted gamma correction; software may write
the jmage file using some gamma; software may decode expecting some (other) gamma;
the image is stored in a frame buffer, and it is common to provide a lookup table for gamma
in the frame buffer. After all, if we generate images using computer graphics, no gamima is
applied, but a gamma is still necessary to precompensate for the display.

Section 4.1 Color Science 89

It makes sense, then, to define an overall “system” gamma that takes into account all such
transformations. Unfortunately, we must often simply guess at the overall gamma. Adobe
Photoshop allows us to try different gamma values. For WWW publishing, it is important
to know that a Macintosh does gamma correction in its graphics card, with a gamma of 1.8.
SGI machines expect a gamma of 1.4, and most PCs or Suns do no extra gamma correction
and likely have a display gamma of about 2.5. Therefore, for the most common machines,
it might make sense to gamma-correct images at the average of Macintosh and PC values,
or about 2.1.

However, most practitioners might use a value of 2.4, adopted by the sSRGB group. A new
“standard” RGB for WWW applications called sRGB, to be included in all future HTML
standards, defines a standard modeling of typical light levels and monitor conditions and is
(more or less) “device-independent color space for the Internet”.

An issue relaled to gamma correction is the decision of just what intensity levels will be
represented by what bit patterns in the pixel values in a file. The eye is most sensitive to
ratios of intensity levels rather than absolute intensities. This means that the brighter the
light, the greater must be the change in light level for the change to be perceived.

If we had precise control over what bits represented what intensities, it would make sense
to code intensities logarithmically for maximum usage of the bits available. Then we could
include that coding in an inverse of the (1/y) power law transform, as in Equation (4.4), or
perhaps a lookup table implementation of such an inverse function (see [6], p. 564).

However, it is most likely that images or videos we encounter have no nonlinear encoding
of bit levels but have indeed been produced by a camcorder or are for broadcast TV. These
images will have been gamma corrected according to Equation (4.4). The CIE-sponsored
CIELAB perceptually based color-difference metric discussed in Section 4.1.14 provides a
careful algorithm for including the nonlinear aspect of human brightness perception.

4.1.7 Color-Matching Functions

Practically speaking, many color applications involve specifying and re-creating a particular
desired color. Suppose you wish to duplicate a particular shade on the screen, or a particular
shade of dyed cloth. Over many years, even before the eye-sensitivity curves of Figure 4.3
were known, a technique evolved in psychology for matching a combination of basic R, G,
and B lights to a given shade. A particular set of three basic lights was available, called the
set of color primaries. To match a given shade, a set of observers was asked to separately
adjust the brightness of the three primaries using a set of controls, until the resulting spot of
light most closely matched the desired color. Figure 4.8 shows the basic situation. A device
for carrying out such an experiment is called a colorimeter.

The international standards body for color, the Commission Internationale de L' Eclairage
(CIE), pooled all such data in 1931, in a set of curves called the color-matching functions.
They used color primaries with peaks at 440, 545, and 580 nanometers. Suppose, in-
stead of a swatch of cloth, you were interested in matching a given wavelength of laser
(i.e., monochromatic) light. Then the color-matching experiments are summarized by a
statement of the proportion of the color primaries needed for each individual narrow-band
wavelength of light. General lights are then matched by a linear combination of single
wavelength results.

90 Chapter 4 Color in Image and Video

Red Room illumination

Green

Blue

Black =" --
partition

White
screen

Light to be matched

FIGURE 4.8: Colorimeter experiment.

Figure 4.9 shows the CIE color-matching curves, denoted 7 (1), g (1), b()). In fact, such
curves are a linear matrix-multiplication away from the eye sensitivities in Figure 4.3.

B, r(v)
b(2)

8(.)

Relative sensitivity

=<

T T T T T T T

400) 450 500 550 600 650 700
Wavelength (nm)

FIGURE 4.9: CIE color-matching functions (1), g(), b().

Section 4.1 Color Science 91

zZ(A) -

Relative sensitivity

T T T T T T

400 450 500 550 600 650 700
Wavelength (nm)

FIGURE 4.10: CIE standard color-matching functions x (1), y(1), z(}).

Why are some parts of the curves negative? This indicates that some colors cannot be
reproduced by a linear combination of the primaries. For such colors, one or more of the
primary lights has to be shifted from one side of the black partition in Figure 4.8 to the other,
so they illuminate the sample to be matched instead of the white screen. Thus, in a sense,
such samples are being matched by negative lights.

4.1.8 CIE Chromaticity Diagram

In times long past, engineers found it upsetting that one CIE color-matching curve in Fig-
ure 4.9 has a negative lobe. Therefore, a set of fictitious primaries was devised that led
to color-matching functions with only positives values. Figure 4.10 shows the resulting
curves; these are usually referred to as the color-matching functions. They result from a
linear (3 x 3 matrix) transform from the 7, Z, b curves, and are denoted (1), (1), Z(1).
The matrix is chosen such that the middle standard color-matching function y(k) exactly
equals the luminous-efficiency curve V(1) shown in Figure 4.3.

For a general SPD E (1), the essential “colorimetric” information required to characterize
a color is the set of tristimulus values X, Y, Z, defined in analogy to Equation (4.1) as

X = /E(A)E(A)dk
Y = f EQ) (1) dx (4.6)

zZ = /E()L)Z(A)dl

92

Chapter 4 Color in Image and Video

The middle value, Y, is called the luminance. All color information and transforms
are tied to these special values, which incorporate substantial information about the human
visual system. However, 3D data is difficult to visualize, and consequently, the CIE devised
a 2D diagram based on the values of (X, Y, Z) triples implied by the curves in Figure 4.10.
For each wavelength in the visible, the values of X, ¥, Z given by the three curve values
form the limits of what humans can see. However, from Equation (4.6) we observe that
increasing the brightness of illumination (turning up the light bulb’s wattage) increases the
tristimulus values by a scalar multiple. Therefore, it makes sense to devise a 2D diagram
by somehow factoring out the magnitude of vectors (X, Y, Z). In the CIE system, this is
accomplished by dividing by the sum X + Y + Z:

x = X/(X+Y+2)
= Y/(X+Y+2) “.7)
z = Z/(X+Y+2)

This effectively means that one value out of the set (x, y, z) is redundant, since we have

x+y+z=—" " =1 (4.8)
so that
z=1—-x—y 4.9)

Values x, y are called chromaticities.

Effectively, we are projecting each tristimulus vector (X, Y, Z) onto the plane connecting
points (1, 0, 0), (0, 1, 0), and (0, 0, 1). Usually, this plane is viewed projected onto the z = 0
plane, as a set of points inside the triangle with vertices having (x, y) values (0, 0), (1, 0),
and (0, 1),

Figure 4.11 shows the locus of points for monochromatic light, drawn on this CIE “chro-
maticity diagram”. The straight line along the bottom of the “horseshoe” joins points at
the extremities of the visible spectrum, 400 and 700 nanometers (from blue through green
to red). That straight line is called the line of purples. The horseshoe itself is called the
spectrum locus and shows the (x, y) chromaticity values of monochromatic light at each of
the visible wavelengths.

The color-matching curves are devised so as to add up to the same value [the area under
each curve is the same for each of (1), $(1), z(A)]. Therefore for a white illuminant with
all SPD values equal to 1 — an “equi-energy white light” — the chromaticity values are
(1/3, 1/3). Fighre 4.11 displays this white point in the middle of the diagram. Finally, since
we must have x, y < 1and x +y < 1, all possible chromaticity values must necessarily lie
below the dashed diagonal line in Figure 4.11.

Note that one may choose different “white” spectra as the standard illuminant. The CIE
defines several of these, such as illuminant A, illuminant C, and standard daylights D65 and
D100. Each of these will display as a somewhat different white spot on the CIE diagram:
D6S has a chromaticity equal to (0.312713, 0.329016), and illuminant C has chromaticity

Section 4.1 Color Science 93

FIGURE 4.11: CIE chromaticity diagram.

(0.310063, 0.316158). Figure 4.12 displays the SPD curves for each of these standard
lights. Hlurninant A is charactcristic of incandescent lighting, with an SPD Lypical of a
tungsten bulb, and is quite red. Illuminant C is an early attempt to characterize daylight,
while D65 and D100 are respectively a midrange and a bluish commonly used daylight,
Figure 4.12 also shows the much more spiky SPD for a standard fluorescent illumination,
called F2 [2].

Colors with chromaticities on the spectrum locus represent “pure” colors. These are the
most “saturated”: think of paper becoming more and more saturated with ink. In contrast,
colors closer to the white point are more unsaturated.

The chromaticity diagram has the nice property that, for a mixture of two lights, the
resulting chromaticity lies on the straight line joining the chromaticities of the two lights.
Here we are being slightly cagey in not saying that this is the case for colors in general, just
for “lights”. The reason is that so far we have been adhering to an additive model of color
mixing. This model holds good for lights or, as a special case, for monitor colors. However,
as we shall see below, it does not hold for printer colors (see p. 102).

For any chromaticity on the CIE diagram, the “dominant wavelength” is the position on
the spectrum locus intersected by a line joining the white point to the given color and extended
through it. (For colors that give an intersection on the line of purples, a complementary
dominant wavelength is defined by extending the line backward through the white point.)
Another useful definition is the set of complementary colors for some given color, which is
given by all the colors on the line through the white spot. Finally, the excitation purity is the

94 Chapter4 Color in Image and Video

Spectral power distribution

400 450 500 550 600 650 700
Wavelength (nm)

FIGURE 4.12: Standard illuminant SPDs

ratio of distances from the white spot to the given color and to the dominant wavelength,
expressed as a percentage.

4.1.9 Color Monitor Specifications

Color monitors are specified in part by the white point chromaticity desired if the RGB
electron guns are all activated at their highest power. Actually, we are likely using gamma-
corrected values R/, G/, B'. If we normalize voltage to the range 0 to 1, then we wish to
specify a monitor such that it displays the desired white point when R’ = G’ = B’ =1
(abbreviating the transform from file value to voltage by simply stating the pixel color values,
normalized to maximum 1). ’

However, the phosphorescent paints used on the inside of the monitor screen have their
own chromaticities, so at first glance it would appear that we cannot independently control
the monitor white point. However, this is remedied by setting the gain control for each
electron gun such that at maximum voltages the desired white appears.

Several monitor specifications are in current use. Monitor specifications consist of the
fixed, manufactyrer-specified chromaticities for the monitor phosphors, along with the stan-
dard white point needed. Table 4.1 shows these values for three common specification
statements. NTSC is the standard North American and Japanese specification. SMPTE is a
more modern version of this, wherein the standard illuminant is changed from illuminant C
to illuminant D65 and the phosphor chromaticities are more in line with modern machines.
Digital video specifications use a similar specification in North America. The EBU sys-
tem derives from the European Broadcasting Union and is used in PAL and SECAM video
systems.

Section 4.1 Color science 95

TABLE 4.1: Chromaticities and white points for monitor specifications.

Red " Green Blue White Point

Systern | xr yr xg Vg Xp b xw yw

NTSC | 0.67 | 033 |021 |071 |014 | 008 |03101 | 03162
SMPTE | 0.630 | 0.340 | 0.310 | 0.595 | 0.155 | 0.070 ; 0.3127 | 0.3291
EBU 0.64 | 033 | 0290 | 060 |0.15 |0.06 | 03127 |0.3291

4.1.10 Out-of-Gamut Colors

For the moment, let's not worry about gamma correction. Then the really basic problem
for displaying color is how to generate device-independent color, by agreement taken to be
specified by (x, y) chromaticity values, using device-dependent color values RG B.

For any (x, y) pair we wish to find that RG B triple giving the specified (x, y, z): there-
fore, we form the z values for the phosphors via z = 1 — x — y and solve for RG B from
the manufacturer-specified chromaticities. Since, if we had no green or blue value (i.e., file
values of zero) we would simply see the red-phosphor chromaticities, we combine nonzero
values of R, G, and B via

Xy X Xp R X
Yro Yz b G |=1|y (4.10)
ir Zg b B Z

If (v, y) is specified instead of derived from the above, we have to invert the matrix of
phosphor (x, y, z) values to obtain the correct RG B values to use to obtain the desired
chromaticity,

But what if any of the RG B numbers is negative? The problem in this case is that while
humans are able to perceive the color, it is not representable on the device being used. We
say in that case the color is out of gamut, since the set of all possible displayable colors
constitutes the gamut of the device.

One method used to deal with this situation is to simply use the closest in-gamut color
available. Another common approach is to select the closest complementary color.

For a monitor, every displayable color is within a triangle. This follows from so-called
Grassman’s Law, describing human vision, stating that “color matching is linear”. This
means that linear combinations of lights made up of three primaries are just the linear set of
weights used to make the combination times those primaries. That is, if we compose colors
from a linear combination of the three “lights” available from the three phosphors, we can
create colors only from the convex set derived from the lights — in this case, a triangle.
(We’ll see below that for printers, this convexity no longer holds.)

Figure 4.13 shows the triangular gamut for the NTSC systemn drawn on the CIE diagram.
Suppose the small triangle represents a given desired color. Then the in-gamut point on the
boundary of the NTSC monitor gamut is taken to be the intersection of (a) the line connecting
the desired color to the white point with (b) the nearest line forming the boundary of the
gamut triangle.

96 Chapter 4 Color in Image and Video

4.1.11

< |

Green
[vs}
“.
O
O’ b %

N
<
[an)
®
Red
N
(e
g Blue
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 4.13: Approximating an out-of-gamut color by an in-gamut one. The out-of-gamut
color shown by a triangle is approximated by the intersection of (a) the line from that color
to the white point with (b) the boundary of the device color gamut,

White-Point Correction

One deficiency in what we have done so far is that we need to be able to map tristimulus
values XY Z to device RG Bs, and not just deal with chromaticity xyz. The difference is
that XY Z values include the magnitude of the color. We also need to be able to alter matters
such that when each of R, G, B is at maximum value, we obtain the white point.

But so far, Table 4.1 would produce incorrect values. Consider the SMPTE specifications.
Setting R = G = B = 1 results in a value of X that equals the sum of the x values, or
0.630 + 0.310 + 0.155, which is 1.095. Similarly, the Y and Z values come out to 1.005
and 0.9. Dividing by (X + Y + Z) results in a chromaticity of (0.365, 0.335) rather than
the desired values of (0.3127, 0.3291).

The method used to correct both deficiencies is to first take the white-point magnitude
of Y as unity:

' Y (white point) = 1 (4.11)

Now we need to find a set of three correction factors such that if the gains of the three electron
guns are multiplied by these values, we get exactly the white point XY Z valueat R = G =
B = 1. Suppose the matrix of phosphor chromaticities x,, x,, ... in Equation (4.10) is called
M. We can express the correction as a diagonal matrix D = diag(di, d3, d3) such that

XY Zunie =MD (1,1, DT 4.12)

4,1.12

4.1.13

Section 4.1 Color Science 97

where ()7 means transpose.

For the SMPTE specification, we have (x, y, z) = (0.3127, 0.3291, 0.3582) or, dividing
by the middle value, XY Zypye = (0.95045, 1, 1.08892). We note that multiplying D by
1, 1, D7 just gives (dy, da, d3)T, and we end up with an equation specifying (d1, dz, d3)”:

b 0.630 0310 0.155] [4
Y =| 0340 0595 0070 | | d; (4.13)
Z |white L 0.03 0095 0.775 ds

Inverting, with the new values XY Z,,pie Specified as above, we arrive at
(dh, d2, d3) = (0.6247,1.1783, 1.2364) 4.14)
XYZ to RGB Transform
Now the 3 x 3 transform matrix from XYZ to RGB is taken to be
T =MD (4.15)

even for points other than the white point:

X R
Y |=T | G (4.16)
z B

For the SMPTE specification, we arrive at

0.3935 0.3653 0.1516
T =(02124 0.7011 0.0866 4.17)
0.0187 0.1119 0.9582

Written out, this reads

X =03935-R+0.3653-G +0.1916- B
Y =0.2124- R+0.7011 - G + 0.0866 - B (4.18)
Z=0.0187-R+0.1119- G +0.9582 - B

Transform with Gamma Correction

The above calculations assume we are dealing with linear signals. However, instead of
linear R, G, B, we most likely have nonlinear, gamma-corrected R’, G/, B’.

The best way of carrying out an XY Z-to- RG B transform is to calculate the linear RGB
required by inverting Equation (4.16), then create nonlinear signals via gamma correction.

Nevertheless, this is not usually done as stated. Instead, the equation for the ¥ value is
used as is but is applied to nonlinear signals. This does not imply much error, in fact, for
colors near the white point. The only concession to accuracy is to give the new name Y’ to
this new Y value created from R, G/, B’. The significance of Y’ is that it codes a descriptor
of brightness for the pixel in question.’

!n the Color FAQ file on the text web site, this new value ¥’ is called “luma”.

98 Chapter 4 Color in Image and Video

4.1.14

The most-used transform equations are those for the original NTSC system, based upon
an illuminant C white point, even though these are outdated. Following the procedure
outlined above but with the values in Table 4.1, we arrive at the following transform:

X =0.607-R+0.174 - G +0.200- B
Y=0299-R+0587-G+0.114-B (4.19)
Z=0.000-R+0.066-G+1.116-B

Thus, coding for nonlinear signals begins with encoding the nonlinear-signal correlate
of luminance:

Y =0299-R +0.587-G'+0.114 - B/ (4.20)

(See Section 4.3 below for more discussion on encoding of nonlinear signals.)

L*a*b* (CIELAB) Color Model

The discussion above of how best to make use of the bits available to us touched on the
issue of how well human vision sees changes in light levels. This subject is actually an
example of Weber’s Law, from psychology: the more there is of a quantity, the more change
there must be to perceive a difference. For example, it’s relatively easy to tell the difference
in weight between your 4-year-old sister and your 5-year-old brother when you pick them
up. However, it is more difficult to tell the difference in weight between two heavy objects.
Another example is that to see a change in a bright light, the difference must be much larger
than to see a change in a dim light, A rule of thumb for this phenomenon states that equally
perceived changes must be relative. Changes are about equally perceived if the ratio of the
change is the same, whether for dark or bright lights, and so on. After some thought, this
idea leads to a logarithmic approximation to perceptually equally spaced units.

For human vision, however, CIE arrived at 2 somewhat more involved version of this kind
of rule, called the CTELAB space. Whatis being quantified in this space is, again, differences
perceived in color and brightness. This makes sense because, practically speaking, color
differences are most useful for comparing source and target colors. You would be interested,
for example, in whether a particular batch of dyed cloth has the same color as an original
swatch. Figure 4.14 shows a cutaway into a 3D solid of the coordinate space associated
with this color difference metric.

CIELAB (also known as L*a*b*) uses a power law of 1 /3 instead of a logarithm. CIELAB
uses three values that correspond roughly to luminance and a pair that combine to make
colorfulness and hue (variables have an asterisk to differentiate them from previous versions
devised by the CIE). The color difference is defined as

AE = LN+ (@) + (b7)? 421)

Section 4.1 Color Science 99

L=100
White

Green: a < (0 Yellow: 5> 0

Blue: b <0 Red:a>0

Black
L=0

FIGURE 4.14: CIELAB model. (This figure also appears in the color insert section.)

where

¥\
L* = 116(;) - 16

n

LNAB p A
* 5 — — | — 22
a OO[(X,,) (Y) 422)
Y (1/3) 7z (1/3)
200 —_— -t —
[(}’)1> (Z")

with X, ¥y, Z,, the XY Z values of the white point. Auxiliary definitions are

chroma = c* = /(a*)?+ (b*)?
*
hue angle = A" = arctan — (4.23)
a*

Il

b*

Il

Roughly, the maximum and minimum of value a* correspond to red and green, while b*
ranges from yellow to blue. The chroma is a scale of colorfulness, with more colorful (more
saturated) colors occupying the outside of the CIELAB solid at each L* brightness level,
and more washed-out (desaturated) colors nearer the central achromatic axis. The hue angle
expresses more or less what most people mean by “the color” — that is, you would describe
it as red or orange.

The development of such color-differences models is an active field of research, and
there is a plethora of other human-perception-based formulas (the other competitor of the
same vintage as CIELAB is called CIELUV — both were devised in 1976). The interest is
generated partly because such color metrics impact how we model differences in lighting and

100

4.1.15

4.1.16

Chapter 4 Color in Image and Video

viewing across device and/or network boundaries [7]. Several high-end products, including
Adobe Photoshop, use the CIELAB model.

More Color-Coordinate Schemes

There are several other coordinate schemes in use to describe color as humans perceive it,
with some confusion in the field as to whether gamma correction should or should not be
applied. Here we are describing device-independent color — based on XY Z and correlated
to what humans see. However, generally users make free use of RGB or R, G, B'.

Other schemes include: CMY (described on p. 101); HSL — Hue, Saturation and Light-
ness; HSV — Haue, Saturation and Value; HST — and Intensity; HCI — C=Chroma; HVC
— V=Value; HSD — D=Darkness; the beat goes on!

Munsell Color Naming System

Accurate naming of colors is also an important consideration. One time-tested standard
system was devised by Munsell in the early 1900’s and revised many times (the last one
is called the Munsell renotation) [8]. The idea is to set up (yet another) approximately
perceptually uniform system of three axes to discuss and specify color. The axes are value
(black-white), hue, and chroma. Value is divided into 9 steps, hue is in 40 steps around a
circle, and chroma (saturation) has a maximum of 16 levels, The circle’s radius varies with
value.

The main idea is a fairly invariant specification of color for any user, including artists.
The Munsell corporation therefore sells books of all these patches of paint, made up with
proprietary paint formulas (the book is quite expensive). It has been asserted that this is the
most often used uniform scale.

4.2 COLOR MODELS IN IMAGES

4.2.1

‘We now have had an introduction to color science and some of the problems that crop up
with respect to color for image displays. But how are color models and coordinates systems
really used for stored, displayed, and printed images? .

RGB Color Model for CRT Displays

According to Chapter 3, we usually store color information directly in RGB form. However,
we note from the previous section that such a coordinate system is in fact device-dependent.

We expect to be able to use 8 bits per color channel for color that is accurate enough.
In fact, we have to use about 12 bits per channel to avoid an aliasing effect in dark image
areas — contour bands that result from gamma correction, since gamma correction results
in many fewer available integer levels (see Exercise 7).

For images produced from computer graphics, we store integers proportional to intensity
in the frame buffer. - Then we should have a gamma correction LUT between the frame
buffer and the CRT. If gamma correction is applied to floats before quantizing to integers,
before storage in the frame buffer, then we can use only 8 bits per channel and still avoid
contouring artifacts.

Magenta

Section 4.2 Color Models in Images 101

Blue ' Cyan Yellow Red
| |
1 1
| Green l
{ |
| 1
I) -
A — — — I — \./Green A4 — — — + — \-/Magenta

’ / ,
7 /
/ 7/
Red / Yellov Cyan Blue
Black (0, 0, 0) White (1,1, 1) White (0, 0, 0) Black (1,1, 1)
The RGB Cube The CMY Cube

FIGURE 4.15: RGB and CMY color cubes. (This figure also appears in the color insert section.)

4.2.2 Subtractive Color: CMY Color Model

So far, we have effectively been dealing only with additive color. Namely, when two light
beams impinge on a target, their colors add; when two phosphors on a CRT screen are turned
on, their colors add. So, for example, red phosphor + green phosphor makes yellow light.

But for ink deposited on paper, in essence the opposite situation holds: yellow ink
subtracts blue from white illumination but reflects red and green; which is why it appears
yellow!

So, instead of red, green, and blue primaries, we need primaries that amount to —red,
—green, and —blue; we need to subtract R, G, or B. These subtractive color primaries are
cyan (C), magenta (M), and yellow (Y) inks. Figure 4.15 shows how the two systems,
RGB and CMY, are connected. In the additive (RGB) system, black is “no light”, RGB =
(0, 0,0). In the subtractive CMY system, black arises from gubtracting all the light by
laying downinks withC =M =Y = 1.

4.2.3 Transformation from RGB to CMY

Given our identification of the role of inks in subtractive systems, the simplest model we
can invent to specify what ink density to lay down on paper, to make a certain desired RGB
color, is as follows: ’

M |=|1]|-|G 4.24)

102 Chapter4 Color in Image and Video

(a) (b

FIGURE 4.16: Additive and subtractive color: (a) RGB is used to specify additive color;
(b) CMY is used to specify subtractive color. (This figure also appears in the color insert
section.)

Then the inverse transform is

R 1 C
G |=|1]=| M (4.25)
B 1 Y

4.2.4 Undercolor Removal: CMYK System

C, M, and Y are supposed to mix to black. However, more often they mix to a muddy
brown (we all know this from kindergarten). Truly “black” black ink is in fact cheaper than
mixing colored inks to make black, so a simple approach to producing sharper printer colors
is to calculate that part of the three-color mix that would be black, remove it from the color
proportions, and add it back as real black. This is called “undercolor removal”.

The new specification of inks is thus)

K =min{C,M,Y}

C C-K
M| =| M-k (4.26)
Y Y -K

- Figure 4.16 depicts the color combinations that result from combining primary colors
available in the two situations: additive color, in which we usually specify color using RGB,
and subtractive color, in which we usually specify color using CMY or CMYK.

4,2.5 Printer Gamuts

In a common model of the printing process, printers lay down transparent layers of ink onto
a (generally white) substrate. If we wish to have a cyan printing ink truly equal to minus-red,

Section 4.2 Color Models in Images 103

Block dyes Block dyes gamut + NTSC gamut

S =
<0 0
o 1=
3
g 3 =
e o
g3 S
—
E_.t
o PR
(=] o
of - Q
S o . .
400 450 500 550 600 650 700 60 02 04 06 08 10
Wavelength X
(@ (®)

FIGURE 4.17: (a) transmission curves for block dyes; (b} spectrum locus, triangular NTSC gamut,
and six-vertex printer gamut.

our objective is to produce a cyan ink that completely blocks red light but also completely
passes all green and blue light. Unfortunately, such “block dyes” are only approximated
in industry. In reality, transmission curves overlap for the C, M, and Y inks. This leads
to “crosstalk” between the color channels and difficulties in predicting colors achievable in
printing.

Figure 4.17(a) shows typical transmission curves for real block dyes, and Figure 4.17(b)
shows the resulting color gamut for a color printer that uses such inks. We see that the
gamut is smaller than that of an NTSC monitor and can overlap it.

Such a gamut arises from the model used for printer inks. Transmittances are related
to optical density D via a logarithm: D = —InT, where T is one of the curves in
Figure 4.17(a). A color is formed by a linear combination D of inks, with D a combination
of the three densities weighted by weights w;, i = 1..3, and w; can be in the range from
zero to the maximum allowable without smearing.

So the overall transmittance T is formed as a product of exponentials of the three weighted
densities — light is extinguished exponentially as it travels through a “sandwich” of trans-
parent dyes. The light reflected from paper (or through a piece of slide film)is TE = ¢~ PE,
where F is the illuminating light. Forming colors XYZ with Equation (4.6) leads to the
printer gamut in Figure 4.17(b).

The center of the printer gamut is the white-black axis, and the six boundary vertices
correspond to C, M, Y, and the three combinations CM, CY, and MY laid down at full
density. Lesser ink densities lie more in the middle of the diagram. Full density for all inks
corresponds to the black/vhite point, which lies in the center of the diagram, at the point
marked “o”. For these particular inks, that point has chromaticity (x, y) = (0.276, 0.308).

104 Chapter 4 Color in Image and Video

4.3 COLOR MODELS IN VIDEO
4.3.1 Video Color Transforms

Methods of dealing with color in digital video derive largely from older analog methods
of coding color for TV. Typically, some version of the luminance is combined with color
information in a single signal. For example, a matrix transform method similar to Equa-
tion (4.19) called YIQ is used to transmit TV signals in North America and Japan. This
coding also makes its way into VHS vidcotape coding in these countrics, since video tape
technologies also use YIQ.

In Europe, videotape uses the PAL or SECAM codings, which are based on TV that uses
a matrix transform called YUV.

Finallzy, digital video mostly uses a matrix transform called YCbCr that is closely related
to YUV.

4.3.2 YUV Color Model

Initially, YUV coding was used for PAL analog video. A version of YUV is now also used
in the CCIR 601 standard for digital video.

First, it codes a luminance signal (for gamma-corrected signals) equal to Y’ in Equa-
tion (4.20). (Recall that Y’ is often called the “luma.’) The luma Y’ is similar to, but
not exactly the same as, the CIE luminance value Y, gamma-corrected. In multimedia,
practitioners often blur the difference and simply refer to both as the luminance.

As well as magnitude or brightness we need a colorfulness scale, and to this end chromi-
nance refers to the difference between a color and a reference white at the same luminance.
It can be represented by the color differences U, V:

U = B -Y
V = R-Y 4.27)

From Equation (4.20), Equation (4.27) reads

Y 0.299 0.587 0.144 | [R
U |=| —0299 —0587 0.886 G O (@428)
14 0.701 —0.587 —0.114 | | B

We go backward, from (Y, U, V) to (R’, G, B'), by inverting the matrix in Equation (4.28).

Note that for a gray pixel, with R’ = G’ = B’, the luminance Y” isequal to that same gray
value, R’, say, since the sum of the coefficients in Equation (4.20) is 0.299+0.587+0.114 =
1.0. Sofor a gray (“black-and-white”) image, the chrominance (U, V) is zero, since the sum
of coefficients in each of the lower two equations in (4.28) is zero. Color TV canbe displayed
on a black-and-white television by just using the ¥’ signal.® For backward compatibility,
color TV uses old black-and-white signals with no color information by identifying the
signal with ¥,

2The luminance-chrominance color models (YIQ, YUV, YCbCr) are proven effective. Hence, they are also
adopted in image-compression standards such as JPEG and JPEG2000.

31t should be noted that many authors and users simply use these letters with no primes and (perhaps) mean
them as if they were with primes!

Section 4.3 Color Models in Video 105

Finally, in the actual implementation, U and V are rescaled for purposes of having a
more convenient maximum and minimum. For analog video, the scales are chosen such
that each of U or V is limited to the range between £0.5 times the maximum of ¥’ [9].
(Note that actual voltages are in another, non-normalized range — for analog, ¥’ is often in
the range 0 to 700 mV, so rescaled U and V, called Pp and Py in that context, range over
4350 mV.)

Such scaling reflects how to deal with component video — three separate signals. How-
ever, for dealing with composite video, in which we want to compose a single signal out of
Y’, U, and V at once, it turns out to be convenient to contain the composite signal magnitude
Y’ £ +/U? + V2 within the range —1/3 to +4/3, so that it will remain within the amplitude
limits of the recording equipment. For this purpose, U and V are rescaled as follows:

U = 0492111(B' -Y)
V = 0.877283(R' —Y)) (4.29)

(with multipliers sometimes rounded to three significant digits). Then the chrominance
signal is composed from U and V as the composite signal

C =U -cos(wt) + V - sin(wr) (4.30)

where o represents the NTSC color frequency.

From equations (4.29) we note that zero is not the minimum value for U/, V. In terms of
real, positive colors, U is approximately from blue (U > 0) to yellow (U < 0) in the RGB
cube; V is approximately from red (V > 0) to cyan (V < 0).

Figure 4.18 shows the decomposition of a typical color image into its ¥’, U, V compo-
nents. Since both U and V go negative, the images are in fact shifted, rescaled versions of
the actual signals.

Because the eye is most sensitive to black-and-white variations, in terms of spatial fre-
quency (e.g., the eye can see a grid of fine gray lines more clearly than fine colored lines),
in the analog PAL signal a bandwidth of only 1.3 MHz is allocated to each of U and V,
while 5.5 MHz is reserved for the ¥’ signal. In fact, color information transmitted for color
TV is actually very blocky.

4,3.3 YIQ Color Model

YIQ (actually, Y’ I Q) is used in NTSC color TV broadcasting, Again, gray pixels generate
zero (I, @) chrominance signal. The original meanings of these names came from combi-
nations of analog signals — I for in-phase chrominance, and Q for quadrature chrominance
— and can now be safely ignored.

It is thought that, although U and V are more simply defined, they do not capture the
most-to-least hierarchy of human vision sensitivity., Although they nicely define the color
differences, they do not best correspond to actual human perceptual color sensitivities.
NTSC uses I and Q instead.

YIQ is just a version of YUV, with the same Y’ but with U and V rotated by 33°:

I = 0.877283(R’ — Y'ycos33° — 0.492111(B’ — ¥’)sin 33°
Q0 = 0.877283(R’ — ¥’)sin33° + 0.492111(B’ — ¥') cos 33° @.31)

106 Chapter 4 Color in Image and Video

{b) (© (@)

FIGURE 4.18: Y'U V decomposition of color image: (a) original color image; (b) ¥’; (c) U;
(d) V. (This figure also appears in the color insert section.)

This leads to the following matrix transform:

Y’ 0.299 0.587 0.144 R
I | =| 0595879 —-0274133 -—0.321746 |=| G’ . (4.32)
o 0.211205 —0.523083 0.311878 B’

I is roughly the orange-blue direction, and Q roughly corresponds to the purple-green
direction.

Figure 4.19 shows the decomposition of the same color image as above into YIQ com-
ponents. Only the I and @ components are shown, since the original image and the ¥’
component are the same as in Figure 4.19.

For this particular image, most of the energy is captured in the ¥’ component, which
is typical. However, in this case the YIQ decomposition does a better of job of forming a
hierarchical sequence of images: for the 8-bit ¥/ component, the root-mean-square (RMS)
value is 137 (with 255 the maximum possible). The U, V components have RMS values 43
and 44. For the YIQ decomposition, the I and Q components have RMS values 42 and 14,
so they better prioritize color values. Originally, NTSC allocated 4.2 MHz to Y, 1.5 MHz
to 1, and 0.6 MHz to (. Today, both I and Q are each allocated 1.0 MHz.

Section 4.4 Further Exploration 107

(@ (®

FIGURE 4.19: (a) I and (b) O components of color image.

4.3.4 YCbCr Color Model

The international standard for component (three-signal, studio quality) digital video is of-
ficially Recommendation ITU-R BT.601-4 (known as “Rec. 601”). This standard uses
another color space, Y CC,, often simply written YCbCr. The YCbCr transform is used
in JPEG image compression and MPEG video compression and is closely related to the
YUV transform. YUV is changed by scaling such that Cp is U, but with a coefficient of 0.5
multiplying B’. In some software systems, Cj, and C, are also shifted such that values are
between 0 and 1. This makes the equations as follows:

Cy = ((B'=Y")/1.772)+0.5
C, = ((R'—Y")/1.402)+0.5 (4.33)
Written out, we then have
Yy’ 0.299 0.587 0.144 R’ 0
C, | =| —0.168736 —0.331264 0.5 G |+]| 05 (4.34)
C, 0.5 —0.418688 —0.081312 B’ 0.5

In practice, however, Rec. 601 specifies 8-bit coding, with a maximum ¥’ value of only
219 and a minimum of +16. Values below 16 and above 235, denoted headroom and
Jootroom, are teserved for other processing. Cp and C, have a range of +112 and offset of
+128 (in other words, a maximum of 240 and a minimum of 16). If R/, G’, B’ are floats in
[0.. + 1], we obtain Y?, Cp, C, in [0.. 255] via the transform [9]

Y’ 65.481 128.553 24.966 R 16
Cy | = =37.797 ~74.203 112 G" |+ 128 (4.35)
C, 112 —93.7786 —18.214 | B 128

In fact, the output range is also clamped to [1..254], since the Rec. 601 synchronization
signals are given by codes 0 and 255.°

4.4 FURTHER EXPLORATION

In a deep way, color is one of our favorite pleasures as humans and arguably is one of the
chief attributes that makes multimedia so compelling. The most-used reference on color in

108 Chapter 4 Color in Image and Video

general is the classic handbook [2]. A compendium of important techniques used today is
the collection [10].

Links in the Chapter 4 section of the Further Exploration directory on the text web site
include

e More details on gamma correction for publication on the WWW
e The full specification of the new sRGB standard color space for WWW applications
o An excellent review of color transforms and a standard color FAQ

e A MATLAB script to exercise (and expand upon) the color transform functions that
are part of the Image Toolbox in MATLAB: the standard Lena image is transformed
to YIQ and to YCbCr

e A new color space. The new MPEG standard, MPEG-7, (discussed in Chapter 12)
somewhat sidesteps the thorny question of whose favorite color space to use in a
standard definition by including six color spaces. One of them is a new variant on
HSV space, HMMD color space, that purports to allow a simple color quantization
— from 24-bit down to 8-bit color, say, — that is effectively equivalent to a complex
vector color quantization (i.e., considering a more careful but also more expensive
mapping of the colors in an image into the color LUT). This new color space may
indeed become important.

4,5 EXERCISES

1. Consider the following set of color-related terms:

(a) Wavelength
(b) Color level
(c) Brightness
(d) Whiteness

How would you match each of the following (more vaguely stated) characteristics to
each of the above terms?

(¢) Luminance
() Hue

(g) Saturation
(h) ChIlomjnance

2. What color is outdoor light? For example, around what wavelength would you guess
the peak power is for a red sunset? For blue sky light?

3. “The LAB gamut covers all colors in the visible spectrum.”

(a) What does this statement mean? Briefly, how does LAB relate to color? Just
be descriptive.

4.

Section 4.5 Exercises 109

(b) What are (voughly) the relative sizes of the LAB gamnt, the CMYK gamut, and
a monitor gamut?

Where does the chromaticity “horseshoe” shape in Figure 4.11 come from? Can we
calculate it? Write a small pseudocode solution for the problem of finding this so-
called “spectrum locus”. Hint: Figure 4.20(a) shows the color-matching functions in
Figure 4.10 drawn as a set of points in three-space. Figure 4.20(b) shows these points
mapped into another 3D set of points. Another hint: Try a programming solution for
this problem, to help you answer it more explicitly.

0.9,
0.8 |
0.7]
0.6
05

0.4]
0.3 |
02]

o] |
4 o) S

1
0T oo 5% 08
T 0.2 02 ~

070

(®)

FIGURE 4.20: (a) color-matching functions; (b) transformed color matching functions.

5.

6.

7.

Suppose we use a new set of color-matching functions X*€¥(L), y"¢% (L), 7" (L)
with values

Afnm) | FTQ) | PTQ) | 2RO
450 | 0.2 0.1 0.5
500 | 0.1 0.4 0.3
600 | 0.1 0.4 0.2
700 | 0.6 0.1 0.0

In this system, what are the chromaticity values (x, ¥) of equi-energy white light E(})
where E(A) = 1 for all wavelengths A? Explain.
(a) Suppose images are nor gamma corrected by a camcorder. Generally, how
would they appear on a screen?

(b) What happens if we artificially increase the output gamma for stored image
pixels? (We can do this in Photoshop.) What is the effect on the image?
Suppose image file values are in 0..255 in each color channel. If we define R =
R /255 for the red channel, we wish to carry out gamma correction by passing a new

value R to the display device, with X' = R'/*°,

110 Chapter 4 Color in Image and Video

It is common to carry out this operation usihg integer math. Suppose we approximate
the calculation as creating new integer values in 0 .. 255 via

=1 /2.0))

@(int) (255 - (R

(a) Comment (very roughly) on the effect of this operation on the number of actually
available levels for display. Hint: Coding this up in any language will help you
understand the mechanism at work better — and will allow you to simply count
the output levels.

(b) Which end of the levels 0..255 is affected most by gamma correction — the
low end (near 0) or the high end (near 255)? Why? How much at each end?

8. Inmany computer graphics applications, y-correction is performed only in color LUT
(lookup table). Show the first five entries of a color LUT meant for use in y -correction.
Hint: Coding this up saves you the trouble of using a calculator.

9. Devise a program to produce Figure 4.21, showing the color gamut of a monitor that
adheres to SMPTE specifications.

FIGURE 4.21: SMPTE Monitor Gamut. (This figure also appears in the color insert section.)

10. Hueis the color, independent of brightness and how much pure white has been added
to it. We can make a simple definition of hue as the set of ratios R:G:B. Suppose a
color (i.e., an RGBY) is divided by 2.0, so that the RGB triple now has values 0.5 times
its former values. Explain, using numerical values:

(a) If gamma correction is applied after the division by 2.0 and before the color is
stored, does the darker RGB have the same hue as the original, in the sense of
having the same ratios R:G:B of light emanating from the CRT display device?

Section 4.6 References 111

(We’re not discussing any psychophysical effects that change our perception —
here we’re just worried about the machine itself).

(b) If gamma correction is not applied, does the second RGB have the same hue as
the first, when displayed?

(¢) For what color triples is the hue always unchanged?

11. We wish to produce a graphic that is pleasing and easily readable. Suppose we make
the background color pink. What color text font should we use to make the text
most readable? Justify your answer.

12. To make matters simpler for eventual printing, we buy a camera equipped with CMY
sensors, as opposed to RGB sensors (CMY cameras are in fact available).

(a) Draw spectral curves roughly depicting what such a camera’s sensitivity to
frequency might look like.

(b) Could the output of a CMY camera be used to produce ordinary RGB pictures?
How?

13. Color inkjet printers use the CMY model. When the cyan ink color is sprayed onto a
sheet of white paper,

(a) Why does it look cyan under daylight?
(b) What color would it appear under a blue light? Why?

4.6 REFERENCES

1 D.H. Pritchard, “U.S. Color Television Fundamentals — A Review.” IEEE Trans. Consumer
Electronics 23(4): p. 467478, 1977.

2 G. Wyszecki and W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and
Formulas, 2nd ed., New York: Wiley, 1982.

3 R.W.G. Hunt, “Color Reproduction and Color Vision Modeling,” in Ist Color Inaging Con-
Sference: Transforms & Transportability of Color, Society for Imaging Science & Technology
(IS&T)/Society for Information Display (SID) joint conference, 1993, 1-5.

4 M.J. Vrhel, R. Gershon, and L.S. Iwan, “Measurement and Analysis of Object Reflectance
Spectra,” Color Research and Application, 19: 4-9, 1994.

5 R.W.G.Hunt. The Reproduction of Color, 5th ed., Tolworth, Surry, U.K.: Fountain Press, 1995.

6 J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and
Practice in C, 2nd ed., Reading MA: Addison-Wesley, 1996.

7 Mark D. Fairchild, Color Appearance Models, Reading MA: Addiscn-Wesley, 1998.
8 D. Travis, Effective Color Displays, San Diego: Academic Press, 1991.
9 C.A. Poynton, A Technical Introduction to Digital Video, New York: Wiley, 1996.

10 P. Green and L. MacDonald, eds., Colour Engineering: Achieving Device Independent Colour,
New York: Wiley, 2002.

CHAPTER 5

Fundamental Concepts in Video

In this chapter, we introduce the principal notions needed to understand video. Digital video
compression is explored separately, in Chapters 10 through 12.

Here we consider the following aspects of video and how they impact multimedia appli-
cations:

o Types of video signals
e Analog video
o Digital video

Since video is created from a variety of sources, we begin with the signals themselves.
Analog video is represented as a continuous (time-varying) signal, and the first part of
this chapter discusses how it is measured. Digital video is represented as a sequence of
digital images, and the second part of the chapter discusses standards and definitions such
as HDTV.

5.1 TYPES OF VIDEO SIGNALS

5.1.1

112

Video signals can be organized in three different ways: Component video, Composite video,
and S-video.

Component Video

Higher-end video systems, such as for studios, make use of three separate video signals for
the red, green, and blue image planes. This is referred to as component video. This kind of
system has three wires (and connectors) connecting the camera or other devices to a TV or
monitor.

Color signals are not restricted to always being RGB separations. Instead, as we saw in
Chapter 4 on color models for images and video, we can form three signals via a luminance-
chrominance transformation of the RGB signals — for example, YIQ or YUV. In contrast,
most computer systems use component video, with separate signals for R, G, and B signals.

For any color separation scheme, component video gives the best color reproduction,
since there is no “crosstalk” between the three different channels, unlike composite video or
S-video. Component video, however, requires more bandwidth and good synchronization
of the three components.

Section 5.2 Analog Video 113

5.1.2 Composite Video

In composite video, color (“chrominance”) and intensity (“luminance”) signals are mixed
into a single carrier wave. Chrominance is a composite of two color components (/ and
Q, or U and V). This is the type of signal used by broadcast color TVs; it is downward
compatible with black-and-white TV,

In NTSC TV, for example [1], and Q are combined into a chroma signal, and a color
subcarrier then puts the chroma signal at the higher frequency end of the channel shared
with the Juminance signal. The chrominance and luminance components can be separated
at the receiver end, and the two color components can be further recovered.

When connecting to TVs or VCRs, coniposite video uses only one wire (and hence one
connector, such as a BNC connector at each end of a coaxial cable or an RCA plug at each
end of an ordinary wire), and video color signals arc mixed, not sent separately. The audio
signal is another addition to this one signal. Since color information is mixed and both color
and intensity are wrapped into the same signal, some interference between the luminance
and chrominance signals is inevitable.

5.1.3 S-Video

As a compromise, S-video (separated video, or super-video, e.g., in S-VHS) uses two wires:
one for luminance and another for a composite chrominance signal. As a result, there is
less crosstalk between the color information and the crucial gray-scale information.

The reason for placing luminance into its own part of the signal is that black-and-white
information is crucial for visual perception. As noted in the previous chapter, humans are
able to differentiate spatial resolution in grayscale images much better than for the color part
of color images (as opposed to the “black-and-white” part). Therefore, color information
sent can be much less accurate than intensity information. We can see only fairly large blobs
of color, so it makes sense to send less color detail.

5.2 ANALOG VIDEO

Most TV is still sent and received as an analog signal. Once the electrical signal is received,
we may assume that brightness is at least a monotonic function of voltage, if not necessarily
linear, because of gamma correction (see Section 4.1.6).)

An analog signal f(#) samples a time-varying image. So-called progressive scanning
traces through a complete picture (a frame) row-wise for each time interval. A high-
resolution computer monitor typically uses a time interval of 1/72 second.

In TV and in some monitors and multimedia standards, another system, interlaced scan-
ning, is used. Here, the odd-numbered lines are traced [irst, then the even-numbered lines.
This results in “odd” and “even” fields — two fields make up ore frame.

In fact, the odd lines (starting from 1) end up at the middle of a line at the end of the
odd field, and the even scan starts at a half-way point. Figure 5.1 shows the scheme used.
First the solid (odd) lines are traced — P to Q, then R to S, and so on, ending at T — then
the even field starts at U and ends at V. The scan lines are not horizontal because a small
voltage is applied, moving the electron beam down over time.

114 Chapter 5 Fundamental Concepts in Video

FIGURE 5.1: Interlaced raster scan.

Interlacing was invented because, when standards were being defined, it was difficult
to transmit the amount of information in a full frame quickly enough to avoid flicker. The
double number of fields presented to the eye reduces perceived flicker.

Because of interlacing, the odd and even lines are displaced in time from each other. This
is generally not noticeable except when fast action is taking place onscreen, when blurring
may occur. For example, in the video in Figure 5.2, the moving helicopter is blurred more
than the still background.

Since it is sometimes necessary to change the frame rate, resize, or even produce stills
from an interlaced source video, various schemes are used to de-interlace it. The simplest
de-interlacing method consists of discarding one field and duplicating the scan lines of the
other field, which results in the information in one field being lost completely. Other, more
complicated methods retain information from both fields.

CRT displays are built like fluorescent lights and must flash 50 to 70 times per second
to appear smooth. In Europe, this fact is conveniently tied to their 50 Hz electrical system,
and they use video digitized at 25 frames per second (fps); in North America, the 60 Hz
electric system dictates 30 fps.

The jump from Q to R and so on in Figure 5.1 is called the horizontal retrace, during
which the electronic beam in the CRT is blanked. The jump from T to U or V to P is called
the vertical refrace.

Since voltage is one-dimensional — it is simply a signal that varies with time — how do
we know wher a new video line begins? That is, what part of an electrical signal tells us
that we have to restart at the left side of the screen?

The solution used in analog video is a small voltage offset from zero to indicate black
and another value, such as zero, to indicate the start of a line. Namely, we could uvse a
“blacker-than-black” zero signal to indicate the beginning of a line.

Figure 5.3 shows a typical electronic signal for one scan line of NTSC composite video.
‘White’ has a peak value of 0.714 V; ‘Black’ is slightly above zero at 0.055 V; whereas

Section 5.2 Analog Video

(® © @

115

FIGURE 5.2: Interlaced scan produces two fields for each frame: (a) the video frame;

(b) Field 1; (c) Field 2; (d) difference of Fields.

Blank is at zero volts. As shown, the time duration for blanking pulses in the signal is used
for synchronization as well, with the tip of the Sync signal at approximately —0.286 V. In
fact, the problem of reliable synchronization is so important that special signals to control

sync take up about 30% of the signat!

White (0.714 V) ==~ -~ oo oo

Black (0.055 V)
Blank (0 V) -q--p0——-----~------"----------—-- ---> 1

Sync (-0286V) | — "7 " """t TooTTToo oo oo -

Horizontal retrace Active line signal

FIGURE 5.3: Electronic signal for one NTSC scan line.

116 Chapter 5 Fundamental Concepts in Video

The vertical retrace and sync ideas are similar to the horizontal one, except that they
happen only once per field. Tekalp [2] presents a good discussion of the details of analog
(and digital) video. The handbook [3] considers many fundamental problems in video
processing in great depth.

5.2.1 NTSC Video

The NTSC TV standard is mostly used in North America and Japan. It uses a familiar 4:3
aspect ratio (i.e., the ratio of picture width to height) and 525 scan lines per frame at 30
frames per second.

More exactly, for historical reasons NTSC uses 29.97 fps — or, in other words, 33.37 msec
per frame. NTSC follows the interlaced scanning system, and each frame is divided into
two fields, with 262.5 lines/field. Thus the horizontal sweep frequency is 525 x 29.97 =
15, 734 lines/sec, so that each line is swept out in 1/15,734 sec =~ 63.6 pusec. Since the
horizontal retrace takes 10.9 usec, this leaves 52.7 psec for the active line signal, during
which image data is displayed (see Figure 5.3).

Figure 5.4 shows the effect of “vertical retrace and sync” and “horizontal retrace and
sync” on the NTSC video raster. Blanking information is placed into 20 lines reserved for
control information at the beginning of each field. Hence, the number of active video lines
per frame is only 485. Similarly, almost 1/6 of the raster at the left side is blanked for
horizontal retrace and sync. The nonblanking pixels are called active pixels.

Pixels often fall between scanlines. Therefore, even with noninterlaced scan, NTSC TV
is capable of showing only about 340 (visually distinct) lines, — about 70% of the 485
specified active lines. With interlaced scan, it could be as low as 50%.

Image data is not encoded in the blanking regions, but other information can be placed
there, such as V-chip information, stereo andio channel data, and subtitles in many langnages.

NTSC video is an analog signal with no fixed horizontal resolution. Therefore, we must
decide how many times to sample the signal for display. Each sample corresponds to one
pixel output. A pixel clock divides each horizontal line of video into samples. The higher
the frequency of the pixel clock, the more samples per line.

Vertical retrace and sync

Horizontal retrace and sync

FIGURE 5.4: Video raster, including retrace and sync data.

Section 5.2

Format Samples per line
VHS | 240
S-VHS 400425
Beta-SP 500
Standard 8 mm | 300
Hi-8 mm 425

Analog Video

TABLE 5.1: Samples per line for various analog video formats.

117

Different video formats provide different numbers of samples per line, as listed in Ta-
ble 5.1. Laser disks have about the same resolution as Hi-8. (In comparison, miniDV
1/4-inch tapes for digital video are 480 lines by 720 samples per line.)

NTSC uses the YIQ color model. We employ the technique of quadratire modulation
to combine (the spectrally overlapped part of) I (in-phase) and O (quadrature) signals into
a single chroma signal C [1, 2]:

C = I cos(Fyet) + O sin(Fyet) (5.1)

This modulated chroma signal is also known as the color subcarrier, whose magnitude
is /12 + Q2 and phase is tan~!(Q/I). The frequency of C is Fs. ~ 3.58 MHz.

The I and Q signals are multiplied in the time domain by cosine and sine functions with
the frequency F;. [Equation (5.1)]. This is equivalent to convolving their Fourier transforms
in the frequency domain with two impulse functions at F;. and — F;.. As a result, a copy
of I and O frequency spectra are made which are centered at F;. and — F;., respectively.!

The NTSC composite signal is a further composition of the luminance signal ¥ and the
chroma signal, as defined below:

composite =Y 4+ C =Y + I cos(Fct) + Q sin(Fi.t) 5.2)

NTSC assigned a bandwidth of 4.2 MHz to Y but only 1.6 MHzto [and 0.6 MHz to 0,
due to humans’ insensitivity to color details (high-frequency color changes). As Figure 5.5
shows, the picture carrier is at 1.25 MHz in the NTSC video channel, which has a total
bandwidth of 6 MHz. The chroma signal is being “carried” by F;, & 3.58 MHz towards
the higher end of the channel and is thus centered at 1.25 + 3.58 = 4.83 MHz. This greatly
reduces the potential interference between the ¥ (luminance) and C (chrominance) signals,
since the magnitudes of higher-frequency components of Y are significantly smaller than
their lower frequency counterparts.

Moreover, as Blinn[1] explains, great care is taken to interleave the discrete Y and
C spectra so as to further reduce the interference between them. The “interleaving” is
illustrated in Figure 5.5, where the frequency components for Y (from the discrete Fourier
transform) are shown as solid lines, and those for I and Q are shown as dashed lines. As

1 Negative frequency {(— Fi¢) is a mathematical notion needed in the Fourier transform. In the physical spectrum,
only positive frequency is used.

118 Chapter 5 Fundamental Concepts in Video

i
<
T
{

'
1
i
i

eeo l I ' ’ 'll’ln.']) £ (MHz)
0 1.25 I and Q 4.83 5.75 6.0
Picture Color Audio
carrier subcarrier subcarrier

FIGURE 5.5: Interleaving Y and C signals in the NTSC spectrum.

a result, the 4.2 MHz band of Y is overlapped and interleaved with the 1.6 MHz to I and
0.6 Mliz to Q.

The first step in decoding the composite signal at the receiver side is to separate ¥ and
C. Generally, low-pass filters can be used to extract ¥, which is located at the lower end of
the channel. TV sets with higher quality also use comb filters [1] to exploit the fact that ¥
and C are interleaved.

After separation from Y, the chroma signal C can be demodulated to extract [and QO
separately.

To extract I:

1. Multiply the signal C by 2 cos(Fs.!f)

C-2cos(Fsct) = I-2c08?(Fyet) + Q - 2sin(Fyet) cos(Fyet)
I (1+cos(2F;ct)) + QO - 2sin(Fy.1) cos(Fct)
I+ 171 -cosQFsct) + Q - sin(2Fg 1)

l

2. Apply alow-pass filter to obtain / and discard the two higher-frequency (2 F;,) terms.

Similarly, extract Q by first multiplying C by 2 sin(F.t) and then applying low-pass
filtering.

The NTSC bandwidth of 6 MHz is tight. Its audio subcarrier frequency is 4.5 MHz,
which places the center of the audio band at 1.25 + 4.5 = 5.75 MHz in the channel
(Figure 5.5). This would actually be a bit too close to the color subcarrier — a cause for
potential interference between the audio and color signals. It was due largely to this reason

Section 5.3 Digital Video 119

that NTSC color TV slowed its frame rate to 30 x 1,000/1,001 = 29.97 fps [4]. As a
result, the adopted NTSC color subcarrier frequency is slightly lowered, to
Jie=30x1, OOO/I; 001 x 525 x 227.5 &~ 3.579545 MHz

where 227.5 is the number of color samples per scan line in NTSC broadcast TV.

52.2 PAL Video

PAL (Phase Alternating Line) is a TV standard originally invented by German scientists. It
uses 625 scan lines per frame, at 25 frames per second (or 40 msec/frame), with a 4:3 aspect
ratio and interlaced fields. Its broadcast TV signals are also used in composite video. This
important standard is-widely used in Western Europe, China, India and many other parts of
the world.

PAL uses the YUV color model with an 8 MHz channel, allocating a bandwidth of
5.5 MHz to Y and 1.8 MHz each to U and V. The color subcarrier frequency is f;, =
4.43 MHz. To improve picture quality, chroma signals have alternate signs (e.g., +U and
—U) in successive scan lines; hence the name “Phase Alternating Line”2 This facilitates the
use of a (line-rate) comb filter at the receiver — the signals in consecutive lines are averaged
so as to cancel the chroma signals (which always carry opposite signs) for separating Y and
C and obtain high-quality Y signals.

5.2.3 SECAM Video

53

SECAM, which was invented by the French, is the third major broadcast TV standard.
SECAM stands for Systeme Electronique Coulenr Avec Memoire. SECAM also uses 625
scan lines per frame, at 25 frames per second, with a 4:3 aspect ratio and interlaced fields.
The original design called for a higher number of scan lines (over 800), but the final version
settled for 625.

SECAM and PAL are similar, differing slightly in their color coding scheme. In SECAM,
U and V signals are modulated using separate color subcarriers at 4.25 MHz and 4.41 MHz,
respectively. They are sent in alternate lines — that is, only one of the U or V signals will
be sent on each scan line.

Table 5.2 gives a comparison of the three major analog broadcast TV systems.

DIGITAL VIDEO

The advantages of digital representation for video are many. It permits

o Storing video on digital devices or in memory, ready to be processed (noise removal,
cut and paste, and so on) and integrated into various multimedia applications

e Direct access, which makes nonlinear video editing simple
e Repeated recording without degradation of image quality

¢ Ease of encryption and better tolerance to channel noise

2 According to Blinn [1), NTSC selects a half integer (227.5) number of color samples for each scan line. Hence,
its chroma signal also switches sign in successive scan lines.

120 Chapter5

Fundamental Concepts in Video

TABLE 5.2: Comparison of analog broadcast TV systems.

Frame | Number of Total Bandwidth
TV system rate scan channel allocation (MHz)
(fps) lines width(MHz) | ¥ |TorU | QorV
NTSC 29.97 525 6.0 4.2 1.6 0.6
PAL 25 625 8.0 5.5 1.8 1.8
SECAM 25 625 8.0 6.0 2.0 2.0

In earlier Sony or Panasonic recorders, digital video was in the form of composite video.
Modem digital video generally uses component video, although RGB signals are first con-
verted into a certain type of color opponent space, such as YUV. The usual color space is
YCbCr [5].

5.3.1 Chroma Subsampling

Since humans see color with much less spatial resolution than black and white, it makes
sense to decimate the chrominance signal. Interesting but not necessarily informative names
have arisen to label the different schemes used. To begin with, numbers are given stating how
many pixel values, per four original pixels, are actually sent. Thus the chroma subsampling
scheme “4:4:4” indicates that no chroma subsampling is used. Each pixel’s ¥, Ch, and Cr
values are transmitted, four for each of ¥, Cb, and Cr.

The scheme “4:2:2” indicates horizontal subsampling of the Cb and Cr signals by a factor
of 2. That is, of four pixels horizontally labeled O to 3, all four Y's are sent, and every two
Cbs and two Crs are sent, as (Ch0, YO)(Cr0, Y 1)(Ch2, Y2)(Cr2, Y3)(Ch4, Y4), and so on.

The scheme “4:1:1” subsamples horizontally by a factor of 4. The scheme “4:2:0”
subsamples in both the horizontal and vertical dimensions by a factor of 2. Theoretically, an
average chroma pixel is positioned between the rows and columns, as shown in Figure 5.6.
‘We can see that the scheme 4:2:0 is in fact another kind of 4:1:1 sampling, in the sense that
we send 4, 1, and 1 values per 4 pixels. Therefore, the labeling scheme is not a very reliable
mnemonic!

Scheme 4:2:0, along with others, is commonly vsed in JPEG and MPEG (see later
chapters in Part IT).

5.3.2 CCIR Standards for Digital Video

"The CCIR is the Consultative Committee for International Radio. One of the most im-
portant standards it has produced is CCIR-601, for component digital video (introduced
in Section 4.3.4). This standard has since become standard ITU-R-601, an international
standard for professional video applications. It is adopted by certain digital video formats,
including the popular DV video.

The NTSC version has 525 scan lines, each having 858 pixels (with 720 of them visible,
not in the blanking period). Because the NTSC version uses 4:2:2, each pixel can be

Section 5.3 Digital Video 121

©® ©®©® ©® ® ©® 0O ® O ®O
® O ® O ® O
©® O0O® 0 ®O0O
© 0O ® O ® O
4:4:4 4:2:2
®©@ OO0 ®O 000000
®© OO0 0 ® O O0OO0OO0OOO0
©® OO0 0 ®O 000000
®©® O00®O OO0OO0O00OO0
4:1:1 4:2:0

O Pixel with only Y value
® Pixel with only Cr and Cb values
Pixel with Y, Cr, and Cb values

FIGURE 5.6; Chroma subsampling.

represented with two bytes (8 bits for ¥ and 8 bits alternating between Cb and Cr). The
CCIR 601. (NTSC) data rate (including blanking and sync but excluding audio) is thus
approximately 216 Mbps (megabits per second):

bit
525 x 858 x 30 x 2 bytes x 8# ~ 216 Mbps
yte

During blanking, digital video systems may make use of the extra data capacity to carry
audio signals, translations into foreign languages, or error-correction information.

Table 5.3 shows some of the digital video specifications, all with an aspect ratio of 4:3.
The CCIR 601 standard uses an interlaced scan, so each field has only half as much vertical
resolution (e.g., 240 lines in NTSC).

-0

At

122 Chapter5 Fundamental Concepts in Video
TABLE 5.3: Digital video specifications.
CCIR 601 CCIR 601 CIF QCIF
525/60 625/50
NTSC PAL/SECAM
Luminance resolution 720 x 480 720 x 576 352 x 288 | 176 x 144
Chrominance resolution | 360 x 480 360 x 576 176 x 144 | 88 x 72
Color subsampling 4:2:2 4:2:2 4:2:0 4:2:0
Aspect ratio 4:3 4:3 4:3 4:3
Fields/sec 60 50 30 30
Interlaced Yes Yes No No
CIF stands for Conumnon Intermediate Format, specified by the International Telegraph
and Telephone Consultative Committee (CCITT), now superseded by the International
< Telecommunication Union, which oversees both telecommunications (ITU-T) and radio
(¢ &) frequency matters ITU-R) under one United Nations body. The idea of CIF, which is about
R >(("J the same as VHS quality, is to specify a format for lower bitrate. CIF uses a progressive
c\r§9 \,{{5'/'\' ’" (noninterlaced) scan. QCIF stands for Quarter-CIF, and is for even lower bitrate. All the

CIF/QCIF resolutions are evenly divisible by 8, and all except 88 are divisible by 16; this
is convenient for block-based video coding in H.261 and H.263, discussed in Chapter 10.
CIF is 2 compromise between NTSC and PAL, in that it adopts the NTSC frame rate and
half the number of active lines in PAL. When played on existing TV sets, NTSC TV will first
need to convert the number of lines, whereas PAL TV will require frame-rate conversion.

5.3.3 High Definition TV (HDTV)

The introduction of wide-screen movies brought the discovery that viewers seated near
the screen enjoyed a level of participation (sensation of immersion) not experienced with
conventional movies. Apparently the exposure to a greater field of view, especially the
involvement of peripheral vision, contributes to the sense of “being there”, The main thrust
of High Definition TV (HDTV) is not to increase the “definition” in each unit area, but
rather to increase the visual field, especially its width.

First-generation HDTV was based on an analog technology developed by Sony and NHK

in Japan in the late 1970s. HDTV successfully broadcast the 1984 L.os Angeles Olympic
'Games in Japan. MUltiple sub-Nyquist Sampling Encoding (MUSE) was an improved
NHK HDTV with hybrid analog/digital technologies that was put in use in the 1990s. It has
1,125 scan lines, interlaced (60 fields per second), and a 16:9 aspect ratio. It uses satellite to
broadcast — quite appropriate for Japan, which can be covered with one or two satellites.

The Direct Broadcast Satellite (DBS) channels used have a bandwidth of 24 MHz.

In general, terrestrial broadcast, satellite broadcast, cable, and broadband networks are
all feasible means for transmitting HDTV as well as conventional TV. Since uncompressed

Section 5.3

Digital Video

TABLE 5.4: Advanced Digital TV Formats Supported by ATSC,

Number of active | Number of active | Aspect ratio Picture rate
pixels per line lines
1,920 1,080 16:9 601 30P 24P
1,280 720 16:9 60P 30P 24P
704 480 16:9 and 4:3 | 601 60P 30P 24P
640 480 4:3 601 60P 30P 24P

123

HDTYV will easily demand more than 20 MHz bandwidth, which will not fit in the current
6 MIz or 8 MHz channels, various compression technigues are being investigated. It is
also anticipated that high-quality HDTV signals will be transmitted using more than one
channel, even after compression.

In 1987, the FCC decided that HDTV standards must be compatible with the existing
NTSC standard and must be confined to the existing Very High Frequency (VHF) and Ultra
High Frequency (UHF) bands. This prompted a number of proposals in North America by
the end of 1988, all of them analog or mixed analog/digital.

In 1990, the FCC announced a different initiative — its preference for full-resolution
HDTV. They decided that HDTV would be simultaneously broadcast with existing NTSC
TV and eventually replace it. The development of digital HDTV immediately took off in
North America.

Witnessing a boom of proposals for digital HDTV, the FCC made a key decision to
go all digital in 1993. A “grand alliance” was formed that included four main proposals,
by General Instruments, MIT, Zenith, and AT&T, and by Thomson, Philips, Sarnoff and
others. This eventually led to the formation of the Advanced Television Systems Committee -
(ATSC), which was responsible for the standard for TV broadcasting of HDTV. In 1995,
the U.S. FCC Advisory Committee on Advanced Television Service recommended that the
ATSC digital television standard be adopted.

The standard supports video scanning formats shown in Table 5.4, In the table, “I” means
interlaced scan and “P” means progressive (noninterlaced) scan. The frame rates supported
are both integer rates and the NTSC rates — that is, 60.00 or 59.94, 30.00 or 29.97, 24.00
or 23.98 fps.

For video, MPEG-2 is chosen as the compression standard. As will be seen in Chapter 11,
it uses Main Level to Bigh Level of the Main Profile of MPEG-2. For audio, AC-3 is the
standard. It supports the so-called 5.1 channel Dolby surround sound — five surround
channels plus a subwoofer channel. .

The salient difference between conventional TV and HDTV [4, 6] is that the latter has
a much wider aspect ratio of 16:9 instead of 4:3. (Actually, it works out to be exactly
one-third wider than current TV.) Another feature of HDTV is its move toward progressive
(noninterlaced) scan. The rationale is that interlacing introduces serrated edges to moving
objects and flickers along horizontal edges.

124 Chapter 5 Fundamental Concepts in Video

The FCC has planned o replace all analog broadcast services with digital TV broadcasting
by the year 2006. Consumers with analog TV sets will still be able to receive signals via an
8-VSB (8-level vestigial sideband) demodulation box. The services provided will include

o Standard Definition TV (SDTV) — the current NTSC TV or higher

e Enhanced Definition TV (EDTV) — 480 active lines or higher — the third and
fourth rows in Table 5.4

e High Definition TV (HDTV) — 720 active lines or higher. So far, the popular
choices are 720P (720 lines, progressive, 30 fps) and 10801 (1,080 lines, interlaced,
30 fps or 60 fields per second). The latter provides slightly better picture quality but
requires much higher bandwidth.

5.4 FURTHER EXPLORATION

Tekalp [2] covers various important issues for digital video processing. Chapter 5 of Stein-
metz and Nahrstedt [7] provides detailed discussions of video and television systems. Poyn-
ton [6] provides an extensive and updated review of digital video and HDTV.

Links given for this chapter on the text web site include:

e Tutorials on NTSC television

o The official ATSC home page

o The latest news on the digital TV front
¢ Introduction to HDTV

e The official FCC home page

5.5 EXERCISES

1. NTSC video has 525 lines per frame and 63.6 psec per line, with 20 lines per field of
vertical retrace and 10.9 usec horizontal retrace.

(a) Where does the 63.6 psec come from?

(b) Which takes more time, horizontal retrace or vertical retrace? How much more
time?

2. Which do you think has less detectable flicker, PAL in Europe or NTSC in North
America? Justify your conclusion.

* 3. Sometimes the signals for television are combined into fewer than all the parts required
for TV transmission.

(a) Altogether, how many and what are the signals used for studio broadcast TV?
{b) How many and what signals are used in S-video? What does S-video stand for?

(¢) How many signals are actually broadcast for standard analog TV reception?
What kind of video is that called?

Section 5.6 References 125

4, Show how the O sxgnal can be extracted from the NTSC chroma signal C [Equa-
tion (5.1)] during demodulation.

5. One sometimes hears that the old Betamax format for videotape, which competed
with VHS and lost, was actually a better format. How would such a statement be
justified?

6. We don’t see flicker on a workstation screen when displaying video at NTSC frame
rate. Why do you think this might be?

7. Digital video uses chroma subsampling. What is the purpose of this? Why is it
feasible?

8. What are the most salient differences between ordinary TV and HDTV? What was
the main impetus for the development of HDTV?

9. What is the advantage of interlaced video? What arc some of its problems?

10. One solution that removes the problems of interlaced video is to de-interlace it. Why
can we not just overlay the two fields to obtain a de-interlaced image? Suggest some
simple de-interlacing algorithins that retain information from both fields.

5.6 REFERENCES

1 IF Blinn, “NTSC: Nice Technology, Super Color,” JEEE Computer Graphics and Applica-
tions, 13(2): 17-23, 1993.

AM. Tekalp, Digital Video Processing, Upper Saddle River, NJ: Prentice Hall PTR, 1995.
A.Bovik, editor, Handbook of Image and Video Processing, San Diego. Academic Press, 2000.
C.A. Poynton, A Technical Introduction to Digital Video, New York: Wiley, 1996.

J.E. Blinn, “The World of Digital Video.” IEEE Computer Graphics and Applications, 12(5):
106-112, 1992.

6 C.A. Poynton, Digital Video and HDTV Algorithms and Interfaces, San Francisco: Morgan
Kaufmann, 2003.

wn AW

7 R. Steinmetz and K. Nahrstedt. Multimedia: Computing, Communications and Applications,
Upper Saddle River, NJ: Prentice Hall PTR, 1995.

CHAPTER 6

Basics of Digital Audio

Audio information is crucial for multimedia presentations and, in a sense, is the simplest
type of multimedia data. However, some important differences between audio and image
information cannot be ignored. For example, while it is customary and useful to occasionally
drop a video frame from a video stream, to facilitate viewing speed, we simply cannot do
the same with sound information or all sense will be lost from that dimension. We introduce
basic concepts for sound in multimedia in this chapter and examine the arcane details
of compression of sound information in Chapters 13 and 14. The digitization of sound
necessarily implies sampling and quantization of signals, so we introduce these topics here.

We begin with a discussion of just what makes up sound information, then we go on
to examine the use of MIDI as an enabling technology to capture, store, and play back
digital audio. We go on to look at some details of audio quantization, for transmission
and give some introductory information on how digital audio is dealt with for storage or
transmission. This entails a first discussion of how subtraction of signals from predicted
values yields numbers that are close to zero, and hence easier to deal with.

6.1 DIGITIZATION OF SOUND

6.1.1 Whatls Sound?

126

Sound is a wave phenomenon like light, but it is macroscopic and involves molecules of air
being compressed and expanded under the action of some physical device. For example,
a speaker in an audio system vibrates back and forth and produces a longitudinal pressure
wave that we perceive as sound. (As an example, we get a longitudinal wave by vibrating
a Slinky along its length; in contrast, we gel a lransverse wave by waving the Slinky back
and forth perpendicular to its length.)

Without air there is no sound — for example, in space. Since sound is a pressure wave, it
takes on continuous values, as opposed to digitized ones with a finite range. Nevertheless,
if we wish to use a digital version of sound waves, we must form digitized representations

- of audio information.

Even though such pressure waves are longitudinal, they still have ordinary wave proper-
ties and behaviors, such as reflection (bouncing), refraction (change of angle when entering
a medium with a different density), and diffraction (bending around an obstacle). This
makes the design of “surround sound” possible.

Since sound consists of measurable pressures at any 3D point, we can detect it by measur-
ing the pressure level at a location, using a transducer to convert pressure to voltage levels.

Section 6.1 Digitization of Sound 127

Amplitude

Time

FIGURE 6.1: An analog signal: continuous measurement of pressure wave.

6.1.2 Digitization

Figure 6.1 shows the one-dimensional nature of sound. Values change over time in ampli-
tude: the pressure increases or decreases with time {1]. The amplitude value is a continuous
quantity. Since we are interested in working with such data in computer storage, we must
digitize the analog signals (i.e., continuous-valued voltages) produced by microphones.
For image data, we must likewise digitize the time-dependent analog signals produced by
typical videocameras. Digitization means conversion to a stream of numbers — preferably

integers for efficiency.

Since the graph in Figure 6.1 is two-dimensional, to fully digitize the signal shown we
have to sample in each dimension — in time and in amplitude. Sampling means measur-
ing the quantity we are interested in, usually at evenly spaced intervals. The first kind of
sampling — using measurements only at evenly spaced time intervals — is simply called
sampling (surprisingly), and the rate at which it is performed is called the sampling fre-
quency. Figure 6.2(a) shows this type of digitization.

Amplitude
Amplitude

Time
())

FIGURE 6.2: Sampling and quantization: (a) sampling the analog signal in the time dimen-
sion; (b) quantization is sampling the analog signal in the amplitude dimension.

128 Chapter 6 Basics of Digital Audio

For audio, typical sampling rates are from 8 kHz (8,000 samples per second) to 48 kHz.
The human ear can hear from about 20 Hz (a very deep rumble) to as much as 20 kHz; above
this level, we enter the range of ultrasound. The human voice can reach approximately 4 kHz
and we need to bound our sampling rate from below by at least double this frequency (see
the discussion of the Nyquist sampling rate, below). Thus we arrive at the useful range
about 8 to 40 or so kHz.

Sampling in the amplitude or voltage dimension is called quantization, shown in Fig-
ure 6.2(b). While we have discussed only uniform sampling, with equally spaced sampling
intervals, nonuniform sampling is possible. This is not used for sampling in time but is used
for quantization (see the p-law rule, below). Typical uniform quantization rates are 8-bit
and 16-bit; 8-bit quantization divides the vertical axis into 256 levels, and 16-bit divides it
into 65,536 levels.

To decide how to digitize audio data, we need to answer the following questions:

1. What is the sampling rate?
2. How finely is the data to be quantized, and is the quantization uniform?
3. How is audio data formatted (i.e., what is the file format)?

6.1.3 Nyquist Theorem

Signals can be decomposed into a surn of sinusoids, if we are willing to use enough sinusoids.
Figure 6.3 shows how weighted sinusoids can build up quite a complex signal. Whereas
frequency is an absolute measure, pitch is a perceptual, subjective quality of sound —
generally, pitchis relative. Pitch and frequency are linked by setting the note A above middle
C to exactly 440 Hz. An octave above that note corresponds to doubling the frequency and
takes us to another A note. Thus, with the middle A on a piano (“A4” or “A440”) set to 440
Hz, the next A up is 880 Hz, one octave above.

Here, we define harmonics as any series of musical tones whose frequencies are integral
multiples of the frequency of a fundamental tone. Figure 6.3 shows the appearance of these
harmonics.

Now, if we allow noninteger multiples of the base frequency, we allow non-A notes and
have a complex resulting sound. Nevertheless, each sound is just made from sinusoids. Fig-
ure 6.4(a) shows a single sinusoid: it is a single, pure, frequency (only electronic instraments
can create such boring sounds).

Now if the sampling rate just equals the actual frequency, we can see from Figure 6.4(b)
that a false signal is detected: it is simply a constant, with zero frequency. If, on the
other hand, we sample at 1.5 times the frequency, Figure 6.4(c) shows that we obtain an
incorrect (alias) frequency that is lower than the correct one — it is half the correct one (the
wavelength, from peak to peak, is double that of the actual signal). In computer graphics,
much effort is aimed at masking such alias effects by various methods of antialiasing. An
alias is any artifact that does not belong to the original signal. Thus, for correct sampling
we must use a sampling rate equal to at least twice the maximum frequency content in the
signal. This is called the Nyquisr rate.

The Nyquist Theoremis named after Harry Nyquist, a famous mathematician who worked
at Bell Labs. More generally, if a signal is band-limited — that is, if it has a lower limit f

Section 6.1 Digitization of Sound 129

ntal : s
S 5 250
U\.ul(z e }\'\jlvﬁ s s

SR
'{r(‘((‘;u\tj Conpong,

+0.5%
2 % fundamental

Ujf i S_Lof/\u](;‘-'bj

A D

.)\)puf rfé\lv'-[._
+0.33 % -

3 x fundamental 1’ O
rozsn /VW\/ N

4 x fundamental
+0.5x%
FIGURE 6.3: Building up a complex signal by superposing sinusoids.

5 x fundamental

and an upper limit f> of frequency components in the signal — then we need a sampling
rate of at least 2(f5 — f}).

Suppose we have a fixed sampling rate. Since it would be impossible to recover fre-

quencies higher than half the sampling rate in any event, most systems have an antialiasing

filter that restricts the frequency content of the sampler’s input to a range at or below half
the sampling frequency. Confusingly, the frequency equal to half the Nyquist rate is called
the Nyquist frequency. Then for our fixed sampling rate, the Nyquist frequency is half the
sampling rate. The highest possible signal frequency component has frequency equal to
that of the sampling itself. .

Note that the true frequency and its alias are located symmetrically on the frequency axis
with respect to the Nyquist frequency pertaining to the sampling rate used. For this reason,
the Nyquist frequency associated with the sampling frequency is often called the “folding”
frequency. That is to say, if the sampling frequency is less than twice the true frequency, and
is greater than the true frequency, then the alias frequency equals the sampling frequency

130 Chapter 6 Basics of Digital Audio

(a)

(©)

FIGURE 6.4: Aliasing: (a) asingle frequency; (b) sampling at exactly the frequency produces
a constant; (c) sampling at 1.5 times per cycle produces an alias frequency that is perceived.

minus the true frequency. For example, if the true frequency is 5.5 kHz and the sampling
frequency is 8 kHz, then the alias frequency is 2.5 kHz:

Satias = Ssampling — Srrue, Tor firye < fsampling <2 X frrue. (6.1)

As well, a frequency at double any frequency could also fit sample points. In fact, adding
any positive or negative multiple of the sampling frequency to the true frequency always
gives another, possible alias frequency, in that such an alias gives the same set of samples
when sampled at the sampling frequency.

So, if again the sampling frequency is less than twice the true frequency and is less than
the true frequency, then the alias frequency equals » times the sampling frequency minus the
true frequency, where the » is the lowest integer that makes » times the sampling frequency
larger than the true frequency. For example, when the true frequency is between 1.0 and
1.5 times the sampling frequency, the alias frequency equals the true frequency minus the
sampling frequency.

Section 6.1 Digitization of Sound 131

Apparent frequency (kHz)
[\

|
|
1
I
[
I
|
|

0 2 4 6 8 10
True frequency (kHz)

FIGURE 6.5: Folding of sinusoid frequency sampled at 8,000 Hz. The folding Irequency,
shown dashed, is 4,000 Hz.

In general, the apparent frequency of a sinusoid is the lowest frequency of a sinusoid that
has exactly the same samples as the input sinusoid. Figure 6.5 shows the relationship of the
apparent frequency to the input (true) frequency.

6.1.4 Signal-to-Noise Ratio (SNR)

In any analog system, random fluctuations produce noise added to the signal, and the mea-
sured voltage is thus incorrect. The ratio of the power of the correct signal to the noise is
called the signal-to-noise ratio (SNR). Therefore, the SNR is a measure of the quality of the
signal.

The SNR is usually measurcd in decibels (dB), where 1 dB is a tenth of a bel. The SNR
value, in units of dB, is defined in terms of base-10 logarithms of squared voltages:

2

Ve Vs
SNR = 1010g10 ‘jtgnal —20 10g10 signal

’ (6.2)

noise noise

The power in a signal is proportional to the square of the voltage. For example, if the signal
voltage Viienar is 10 times the noise, the SNR is 20 x log;,(10) = 20 dB.

In terms of power, if the squeaking we hear from ten violins playing is ten times the
squeaking we hear from one violin playing, then the-ratio of power is given in terms of
decibels as 10 dB, or, in other words, 1 Bel. Notice that decibels are always defined in
terms of a ratio. The term “decibels” as applied to sounds in our environment usually is
in comparison to a just-audible sound with frequency 1 kHz. The levels of sound we hear
around us are described in terms of decibels, as a ratio to the quietest sound we arc capablc
of hearing. Table 6.1 shows approximate levels for these sounds.

y

6.1.5 Signal-to-Quantization-Noise Ratio (SQNR)

For digital signals, we must take into account the fact that only quantized values are stored.
For a digital audio signal, the precision of each sample is determined by the number of bits
per sample, typically 8 or 16.

132

Chapter 6 Basics of Digital Audio

TABLE 6.1: Magnitudes of common sounds, in decibels

Threshold of hearing 0
Rustle of leaves 10
Very quiet room 20
Average room 40
Conversation 60
Busy street 70
Loud radio 80
Train through station 90
Riveter 100
Threshold of discomfort | 120
Threshold of pain 140
Damage to eardrum 160

Aside from any noise that may have been present in the original analog signal, additional
error results from quantization. That is, if voltages are in the range of O to 1 but we have
only 8 bits in which to store values, we effectively force all continuous values of voltage
into only 256 different values. Inevitably, this introduces a roundoff error. Although it is
not really “noise,” it is called quantization noise (or quantization error). The association
with the concept of noise is that such errors will essentially occur randomly from sample to
sample.

The quality of the quantization is characterized by the signal-to-quantization-noise ratio
(SONR). Quantization noise is defined as the difference between the value of the analog
signal, for the particular sampling time, and the nearest quantization interval value. At
most, this error can be as much as half of the interval. .

For a quantization accuracy of N bits per sample, the range of the digital signal is —
to 2¥~! — 1. Thus, if the actual analog signal is in the range from — Vyuax t0 +Viuax, €ach
quantization level represents a voltage of 2V, /2N, or Viyax /2N -1, SQNR can be simply
expressed in terms of the peak signal, which is mapped to the level Vi;gnar of about 2N-1,
and the SQNR has as denominator the maximum Vyuannoise 0f 1/2. The ratio of the two is
a simple definition of the SQNR:!

2N—1

Vsignal N-1
SQNR = 20log, & = 20log;p —
quan.-noise)
= 20x N xlog2 = 6.02N(dB) 6.3)

In other words, each bit adds about 6 dB of resolution, so 16 bits provide a maximum SQNR
of 96 dB.

I This ratio is actually the peak signal-to-quantization-noise ratio, or PSQNR.

Section 6.1 Digitization of Sound 133

We have examined the worst case. If, on the other hand, we assume that the input signal
is sinusoidal, that quantization error is statistically independent, and that its magnitude is
uniformly distributed between 0 and half the interval, we can show ([2], p. 37) that the
expression for the SQNR becomes

SONR = 6.02N + 1.76(d B) (6.4)

Since larger is better, this shows that a more realistic approximation gives a better charac-
terization number for the quality of a system.

Typical digital audio sample precision is either 8 bits per sample, equivalent to about
telephone quality, or 16 bits, for CD quality. In fact, 12 bits or so would likely do fine for
adequate sound reproduction.

6.1.6 Linear and Nonlinear Quantization

We mentioned above that samples are typically stored as uniformly quantized values. This
is called linear format. However, with a Iimited number of bits available, it may be more
sensible to try to take into account the properties of human perception and set up nonuniform
quantization levels that pay more attention to the frequency range over which humans hear
best.

Remember that here we are quantizing magnitude, or amplitude — how loud the signal is.
In Chapter 4, we discussed an interesting feature of many human perception subsystems (as
it were) — Weber’s Law — which states that the more there is, proportionately more must
be added to discern a difference. Stated formally, Weber’s Law says that equally perceived
differences have values proportional to absolute levels:

AResponse « AStimulus/Stimulus (6.5)

This means that, for example, if we can feel an increase in weight from 10 to 11 pounds,
then if instead we start at 20 pounds, it would take 22 pounds for us to feel an increase in
weight.

Inserting a constant of proportionality %, we have a differential equation that states

dr =k(1/s)ds (6.6)
with response » and stimulus s. Integrating, we arrive at a solution

r=klns+C (6.7)
with constant of integration C. Stated differently, the solution is

r = k1In(s /so) (6.8)

where sq is the lowest level of stimulus that causes a response (» = 0 when s = g).

Thus, nonuniform quantization schemes that take advantage of this perceptual charac-
teristic make use of logarithms. The idea is that in a log plot derived from Equation (6.8), if
we simply take uniform steps along the s axis, we are not mirroring the nonlinear response
along the r axis.

134 Chapter 6 Basics of Digital Audio

Instead, we would like to take uniform steps along the r axis. Thus, nonlinear gquantization
works by first transforming an analog signal from the raw s space into the theoretical r space,
then uniformly quantizing the resulting values. The result is that for steps near the low end
of the signal, quantization steps are effectively more concentrated on the s axis, whereas for
large values of s, one quantization step in » encompasses a wide range of s values.

Such a law for audio is called p-law encoding, or u-law, since it’s easier to write. A very
similar rule, called A-law, is used in telephony in Europe.

The equations for these similar encodings are as follows:

-law:
r:i"“)—ln{uui} LR} (6.9)
In(1 + 1) spl}’ spl~
A-law:
4 s s 1
I+lna (5) ’ S|=4
r = (6.10)
SEN(s) 1
RS [1+1nA é], 1 <|z]=1

1 if s >0,

where sgn(s) = { —1 otherwise

Figure 6.6 depicts these curves. The parameter of the p-law encoder is usually set to
@ = 100 or i = 255, while the parameter for the A-law encoder is usually set to A = 87.6.

Here, s is the peak signal value and s is the current signal value. So far, this simply
means that we wish to deal with 5 /sp, in the range —1 to 1.

The idea of using this type of law is that if s /5, is first transformed to values r as above and
then r is quantized uniformly before transmitting or storing the signal, most of the available
bits will be used to store information where changes in the signal are most apparent to a
human listener, because of our perceptual nonuniformity. '

To see this, consider a small change in |s/s,| near the value 1.0, where the curve in
Figurc 6.6 is flattest. Clearly, the change in s has to be much larger in the flat area than
near the origin to be registered by a change in the quantized r value. And it is at the quiet,
low end of our hearing that we can best discern small changes in s. The w-law transform
concentrates the available information at that end.

First we carry out the y-law transformation, then we quantize the resulting value, which s

_anonlinear trapsform away from the input. The logarithmic steps represent low-amplitude,
quiet signals with more accuracy than loud, high-amplitude ones. What this means for
signals that are then encoded as a fixed number of bits is that for low-amplitude, quiet
signals, the amount of noise — the error in representing the signal — is a smaller number
than for high-amplitude signals. Therefore, the p-law transform effectively makes the
signal-to-noise ratio more uniform across the range of input signals.

Section 6.1 Digitization of Sound 135

. ' . n-law or A-law

0.8+

0.6}

04l — p-law: £ =100
ool — — - Alaw: A =87.6 |

r: u-law or A-law
o
-

-1 -08 -06 -04 -02 O 02 04 06 08 1
s/sp

FIGURE 6.6: Nonlinear transform for audio signals.

This tcchnique is based on human perception — a simple form of “perceptual coder”.
Interestingly, we have in effect also made use of the statistics of sounds we are likely to
hear, which are generally in the low-volume range. In effect, we are asking for most bits to
be assigned where most sounds occur — where the probability density is highest. So this
type of coder is also one that is driven by statistics.

In summary, a logarithmic transform, called a “compressor” in the parlance of telephony,
is applied to the analog signal before it is sampled and converted to digital (by an analog-to-
digital, or AD, converter). The amount of compression increases as the amplitude of the input
signal increases. The AD converter carries out a uniform quantization on the “compressed”
signal. After transmission, since we need analog to hear sound, the signal is converted
back, using a digital-to-analog (DA) converter, then passed through an “expander” circuit
that reverses the logarithm. The overall transformation is called companding. Nowadays,
companding can also be carried out in the digital domain.

The p-law in audio is used to develop a nonuniform quantization rule for sound. In
general, we would like to put the available bits where the most perceptual acuity (sensitivity
to small changes) is. Ideally, bit allocation occurs by examining a curve of stimulus versus
response for humans. Then we try to allocate bit levels to intervals for which a small change
in stimulus produces a large change in response.

136 Chapter 6 Basics of Digital Audio

That is, the idea of companding reflects a less specific idea used in assigning bits to
signals: put the bits where they are most needed to deliver finer resolution where the result
can be perceived. This idea militates against simply using uniform guantization schemes,
instead favoring nonuniform schemes for quantization. The p-law (or A-law) for audio is
an application of this idea.

6.1.7 Audio Filtering

Prior to sampling and AD conversion, the audio signal is also usnally filtered to remove un-
wanted frequencies. The frequencies kept depend on the application. For speech, typically
from 50 Hz to 10 kHz is retained. Other frequencies are blocked by a band-pass filter, also
called a band-limiting filter, which screens out lower and higher frequencies.

An audio music signal will typically contain from about 20 Hz up to 20 kHz. (Twenty Hz
is the low rumble produced by an upset elephant. Twenty kHz is about the highest squeak
we can hear.) So the band-pass filter for music will screen out frequencies outside this
range.

At the DA converter end, even though we have removed high frequencies that are likely
Jjust noise in any event, they reappear in the output. The reason is that because of sampling
and then quantization, we have effectively replaced a perhaps smooth input signal by a series
of step functions. In theory, such a discontinuous signal contains all possible frequencies.
Therefore, at the decoder side, a low-pass filter is used after the DA circuit, making use of
the same cutoff as at the high-frequency end of the coder’s band-pass filter.

We have still somewhat sidestepped the issue of just how many bits are required for
speech or audio application. Some of the exercises at the end of the chapter will address
this issue.

Some important audio file formats include AU (for UNIX workstations), AIFF (for MAC
and SGI machines), and WAV (for PCs and DEC workstations). The MP3 compressed file
format is discussed in Chapter 14.

6.1.8 Audio Quality versus Data Rate

The uncompressed data rate increases as more bits are used for quantization. Stereo infor-
mation, as opposed to mono, doubles the amount of bandwidth (in bits per second) needed
to transmit a digital audio signal. Table 6.2 shows how audio quality is related to data rate
and bandwidth.

The term bandwidth, in analog devices, refers to the part of the response or transfer
function of a device that is approximately constant, or flat, with the x-axis being the fre-
quency and tHe y-axis equal to the transfer function. Half-power bandwidth (HPBW) refers
to the bandwidth between points when the power falls to half the maximum power. Since
101og;4(0.5) ~ —3.0, the term —3 dB bandwidth is also used to refer to the HPBW.

So for analog devices, the bandwidth is expressed in frequency units, called Hertz (Hz),
which is cycles per second. For digital devices, on the other hand, the amount of data that
can be transmitted in a fixed bandwidth is usually expressed in bits per second (bps) or bytes
per amount of time. For either analog or digital, the term expresses the amount of data that
can be transmitted in a fixed amount of time.

Section 6.1 Digitization of Sound 137
TABLE 6.2: Data rate and bandwidth in sample audio applications

Quality | Sample | Bits per’ Mono/ Data rate Fregquency

rate sample stereo (if uncompressed) band

(kHz) (kB/sec) (Hz)
Telephone 8 Mono 8 200-3,400
AM radio 11.025 3 Mono 11.0 100-5,500
FM radio 22.05 16 Stereo 88.2 20-11,000
CD 44.1 16 Stereo 176.4 5-20,000
DAT 48 16 Stereo 192.0 5 20,000

DVD audio | 192 (max) | 24 (max) | Up to 6 channels| 1,200.0 (max) |0-96,000 (max)

Telephony uses jt-law (or u-law) encoding, or A-law in Europe. The other formats use
linear quantization. Using the g-law rule shown in Equation (6.9), the dynamic range of
digital telephone signals is effectively improved from 8 bits to 12 or 13.

Sometimes it 1s useful to remember the kinds of data rates in Table 6.2 in terms of bytes
per minute. For example, the uncompressed digital audio signal for CD-quality stereo sound
is 10.6 megabytes per minute — roughly 10 megabytes — per minute.

6.1.9 Synthetic Sounds

Digitized sound must still be converted to analog, for us to hear it. There are two funda-
mentally different approaches to handling stored sampled audio. The first is termed FM,
for frequency modulation. The second is called Wave Table, or just Wave, sound.

In the first approach, a carrier sinusoid is changed by adding another term involving
a second, modulating frequency. A more interesting sound is created by changing the
argument of the main cosine term, putting the second cosine inside the argument itself —
then we have a cosine of a cosine. A time-varying amplitude “envelope” function multiplies
the whole signal, and another time-varying function multiplies the inner cosine, to account
for overtones. Adding a couple of extra constants, the resulting function is complex indeed.

For example, Figure 6.7(a) shows the function cos(27t), and Figure 6.7(b) is another
sinusoid at twice the frequency. A cosine of a cosine is the more interesting function
Figure 6.7(c), and finally, with carrier frequency 2 and modulating frequency 4, we have the
much more interesting curve Figure 6.7(d). Obviously, once we consider a more complex
signal, such as the following [3],

x(t) = A(t) cos[wmt + 1(t) cos(wmmt + dw) + ¢l (6.11)

we can create a most complicated signal.

This FM synthesis equation states that we make a signal using a basic carrier frequency
w, and also use an additional, modulating frequency w,,. In Figure 6.7(d), these values
were w. = 2 and 0, = 4. The phase constants ¢,, and ¢, create time-shifts for a more
interesting sound. The time-dependent function A(¢) is called the envelope — it specifies

138 Chapter 6 Basics of Digital Audio

cos (2nt) cos (4xt)
1.0 : 1.0
é 0.5 é 0.5
E 0.0 ‘H 0.0
& oy
= —0.5 = -0.5
-1.0 ~1.0
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Time Time
@ (b)
cos (cos (4rh)) : cos (2mt + cos (4mt))
nAVAVAVANE
_g 0.5 -g 05
‘2 0.0 E:; 0.0
& &
= 0.5 = ~0.5
-1.0 -1.0
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Time Time
(c) (@)

FIGURE 6.7: Frequency modulation: (a) a single frequency; (b) twice the frequency; (c) usu-
ally, FM is carried out using a sinusoid argunment to a sinusoid; (d) a more complex form
arises from a carrier frequency 27t and a modulating frequency 4st cosine inside the
sinusoid.

overall loudness over time and is used to fade in and fade out the sound. A guitar string has
an attack period, then a decay period, a sustain period, and finally a release period.

Finally, the time-dependent function 7 () is used to produce a feeling of harmonics
(“overtones”) by changing the amount of modulation frequency heard. When 7 (¢) is small,
we hear mainly low frequencies, and when 7 (¢) is larger, we hear higher frequencies as well.
FM synthesis is used in low-end versions of the ubiquitous Creative Labs Sound Blaster PC
sound card.

A more accurate way of generating sounds from digital signals is called wave-table
synthesis. In this technique, digital samples are stored sounds from real instruments. Since
wave tables are stored in memory on the sound card, they can be manipulated by software
so that sounds can-be combined, edited, and enhanced. Sound reproduction is a good
deal better with wave tables than with FM synthesis. To save memory space, a variety of
special techniques, such as sample looping, pitch shifting, mathematical interpolation, and
polyphonic digital filtering, can be applied [4, 5].

Section 6.2 MIDI: Musical Instrument Digital Interface 139

For example, it is useful to be able to change the key — suppose a song is a bit too high
for your voice. A wave table can be mathematically shifted so that it produces lower-pitched
sounds. However, this kind of extrapolation can be used only just so far without sounding
wrong. Wave tables often include sampling at various notes of the instrument, so that a
key change need not be stretched too far. Wave table synthesis is more expensive than FM
synthesis, partly because the data storage needed is much larger.

6.2 MIDI: MUSICAL INSTRUMENT DIGITAL INTERFACE

Wave-table files provide an accurate rendering of real instrument sounds but are quite large.
For simple music, we might be satisfied with FM synthesis versions of andio signals that
could easily be generated by a sound card. A sound card is added to a PC expansion
board and is capable of manipulating and outputting sounds through speakers connected
to the board, recording sound input from a microphone connected to the computer, and
manipulating sound stored on a disk.

If we are willing to be satisfied with the sound card’s defaults for many of the sounds
we wish to include in a multimedia project, we can use a simple scripting language and
hardware setup called MIDI.

6.2.1 MIDI Overview

MIDI, which dates from the early 1980s, is an acronym that stands for Musical Instriument
Digital Interface. It forms a protocol adopted by the electronic music industry that enables
computers, synthesizers, keyboards, and other musical devices to communicate with each
other. A synthesizer produces synthetic music and is included on sound cards, using one of
the two methods discussed above. The MIDI standard is supported by most synthesizers,
so sounds crcated on one can be played and manipulated on another and sound reasonably
close. Computers must have a special MIDI interface, but this is incorporated into most
sound cards, The sound card must also have both DA and AD converters.

MIDI is a scripting language — it codes “events” that stand for the production of certain
sounds. Therefore, MIDI files are generally very small. For example, a MIDI event might
include values for the pitch of a single note, its duration, and its volume.

Terminology. A synthesizer was, and still may be, a stand-alone sound generator that
can vary pitch, loudness, and tone color. (The pitch is the musical note the instrument
plays — a C, as opposed to a G, say.) It can also change additional music characteristics,
such as attack and delay time, A good (musician’s) synthesizer often has a microprocessor,
keyboard, control panels, memory, and so on. However, inexpensive synthesizers are now
included on PC sound cards. Units that generate sound are referred to as tone modules or
sound modules. -

A sequencer started off as a special hardware device for storing and editing a sequence
of musical events, in the form of MIDI data. Now it is more often a software music editor
on the computer.

A MIDI keyboard produces no sound, instead generating sequences of MIDI instructions,
called MIDI messages. These are rather like assembler code and usually consist of just a
few bytes. You might have 3 minutes of music, say, stored in only 3 kB. In comparison,

140 Chapter 6 Basics of Digital Audio

a wave-table file (WAV) stores 1 minute of music in about 10 MB. In MIDI parlance, the
keyboard is referred to as a keyboard controller.

MIDI Concepts. Music is organized into fracks in a sequencer. Each track can be
turned on or off on recording or playing back. Usually, a particular instrament is associated
with a MIDI channel. MID] channels are used to separate messages. There are 16 channels,
numbered from O to 15. The channel forms the last four bits (the least significant bits) of
the message. The idea is that each channel is associated with a particular instrument — for
example, channel 1 is the piano, channel 10 is the drums. Nevertheless, you can swiich
instruments midstream, if desired, and associate another instrument with any channel.

The channel can also be used as a placeholder in a message. If the first four bits are all
ones, the message is interpreted as a sysfem common message.

Along with channel messages (which include a channel number), several other types of
messages are sent, such as a general message for all instruments indicating a change in tuning
or timing; these are called system messages. 1t is also possible to send a special message
to an instrument’s channel that allows sending many notes without a channel specified. We
will describe these messages in detail later.

The way a synthetic musical instrument responds to a MIDI message is usually by simply
ignoring any “play sound” message that is not for its channel. If several messages are for
its channel, say several simultaneous notes being played on a piano, then the instrument
responds, provided it is multi-voice — that is, can play more than a single note at once.

It is easy to confuse the term voice with the term timbre. The latter is MIDI terminology
for just what instrument we are trying to emulate — for example, a piano as opposed to a
violin. It is the quality of the sound. An instrument (or sound card) that is multi-timbral is
capable of playing many different sounds at the same time, (e.g., piano, brass, drums)

On the other hand, the term “voice”, while sometimes used by musicians to mean the
same thing as timbre, is used in MIDI to mean every different timbre and pitch that the tone
module can produce at the same time. Synthesizers can have many (typically 16, 32, 64,
256, etc.) voices. Each voice works independently and simultaneously to produce sounds
of different timbre and pitch.

The term polyphony refers to the number of voices that can be produced at the same
time. So a typical tone module may be able to prodnce “64 voices of polyphony” (64
different notes at once) and be “16-part multi-timbral” (can produce sounds like 16 different
instruments at once).

How different timbres are produced digitally is by using a patch, which is the set of
control settings that define a particular timbre. Patches are often organized into databases,
called banks. For true aficionados, software patch editors are available.

A standard mapping specifying just what instruments (patches) will be associated with
what channels has been agreed on and is called General MIDI. In General MID], there
are 128 patches are associated with standard instruments, and channel 10 is reserved for
percussion instruments,

For most instruments, a typical message might be Note On (meaning, e.g., a keypress),
consisting of what channel, what pitch, and what velociry (i.e., volume). For percussion
instruments, the pitch data means which kind of drum. A Note On message thus consists
of a status byte — which channel, what pitch —- followed by two data bytes. It is followed

Section 6.2 MIDI: Musical Instrument Digital Interface 141

Stop One Start
bit byte bpit

-~
Y

Transmitting 01110111000 10110011 00 110111010

device

Synthesizer

Y

FIGURE 6.8: Stream-of 10-bit bytes; for typical MIDI messages, these consist of {status
byte, data byte, data byte) = {Note On, Note Number, Note Velocity}.

by a Note Off message (key release), which also has a pitch (which note to tum off) and —
for consistency, one supposes — a velocity (often set to zero and ignored).

The data in a MIDI status byte is between 128 and 255; each of the data bytes is between
0 and 127. Actual MIDI bytes are 8 bit, plus a O start and stop bit, making them 10-bit
“bytes”. Figure 6.8 shows the MIDI datastream.

A MIDI device often is capable of programmability, which means it has filters available
for changing the bass and treble response and can also change the “envelope” describing
how the amplitude of a sound changes over time. Figure 6.9 shows a model of a digital
instrument’s response to Note On/Note Off messages.

MIDI sequencers (editors) allow you to work with standard music notation or get right
into the data, if desired. MIDI files can also storc wave-table data. The advantage of wave-

Amplitude
4
o Decay
g Note off
<
Sustain ;
Release
f e !
Note on

FIGURE 6.9: Stages of amplitude versus time for a music note.

142 Chapter 6 Basics of Digital Audio

table data (WAV files) is that it much more precisely stores the exact sound of an instrument.
A sampler is used to sample the audio data — for example, a “drum machine” always stores
wave-table data of real drums.

Sequencers employ several techniques for producing more music from what is actually
available. For example, looping over (repeating) a few bars can be more or less convincing.
Volume can be easily controlled over time — this is called time-varying amplitude modu-
lation. More interestingly, sequencers can also accomplish time compression or expansion
with no pitch change.

While it is possible to change the pitch of a sampled instrument, if the key change is large,
the resulting sound begins to sound displeasing. For this reason, samplers employ nudlti-
sampling. A sound is recorded using several band-pass filters, and the resulting recordings
are assigned to different keyboard keys. This makes frequency shifting for a change of key
more reliable, since less shift is involved for each note.

6.2.2 Hardware Aspects of MID!

The MIDI hardware setup consists of a 31.25 kbps (kilobits per second) serial connection,
with the 10-bit bytes including a O start and stop bit. Usually, MIDI-capable units are either
input devices or output devices, not both.

Figure 6.10 shows a traditional synthesizer. The modulation wheel adds vibrato. Pitch
bend alters the frequency, much like pulling a guitar string over slightly. There are often
other controls, such as foots pedals, sliders, and so on.

The physical MIDI ports consist of 5-pin connectors labeled IN and OUT and a third
connector, THRU. This last data channel simply copies data entering the IN channel. MIDI
conmmunication is half-duplex. MIDI IN is the connector via which the device receives all
MIDI data, MIDI OUT is the connector through which the device transmits all the MIDI
data it generates itself. MIDI THRU is the connector by which the device echoes the data it
receives from MIDI IN (and only that — all the data generated by the device itself is sent via
MIDI OUT). These ports are on the sound card or interface externally, either on a separate
card on a PC expansion card slot or using a special interface to a serial or parallel] port.

Keyboard

e N
Pitch bend Modulation
wheel wheel

FIGURE 6.10: A MIDI synthesizer,

Section 6.2 MIDI: Musical Instrument Digital Interface 143

ouT IN THRU

Master keyboard

— —

THRU N

MIDI module A

P
IN THRU

MIDI module B

etc.

FIGURE 6.11: A typical MIDI setup.

Figure 6.11 shows a typical MIDI sequencer setup. Here, the MIDI OUT of the keyboard
is connected to the MIDI IN of a synthesizer and then THRU to each of the additional sound
modules. During recording, a keyboard-equipped synthesizer sends MIDI messages to a
sequencer, which records them. During playback, messages are sent from the sequencer to
all the sound modules and the synthesizer, which play the music.

6.2.3 Structure of MIDI Messages

MIDI messages can be classified into two types, as in Figure 6.12 — channel messages and
system messages — and further classified as shown. Each type of message will be examined
below.

- Voice messages
—— Channel messages —|:
Mode messages

: Common messages
—— System messages —E Real-time messages

Exclusive messages

MIDI messages

FIGURE 6.12: MIDI message taxonomy.

144 Chapter 6 Basics of Digital Audio

TABLE 6.3: MIDI voice messages

Voice message Status byte Data bytel Data byte2
Note Off &H8n Key number Note Off velocity
Note On &HOn Key number Note On velocity
Polyphonic Key Pressure | &HAn Key number Amount
Control Change &HBn Controller number | Controller value
Program Change &HCn Program number None
Channel Pressure &HDn Pressure value None
Pitch Bend &HEn MSB LSB

&H indicates hexadecimal, and n in the Status byte hex value stands for a channel number. All values
are in 0., 127 except Controller number, which is in 0.. 120.

Channel Messages. A channel message can have up to 3 bytes; the first is the status byte
(the opcode, as it were), and has its most significant bit set to 1. The four low-order bits
identify which of the 16 possible channels this message belongs to, with the three remaining
bits holding the message. For a data byte, the most significant bit is set to zero.

Voice Messages. This type of channel message controls a voice — that is, sends in-
formation specifying which note to play or to turn off — and encodes key pressure. Voice
messages are also used to specify controller effects, such as sustain, vibrato, tremolo, and
the pitch wheel. Table 6.3 Lists these operations.

For Note On and Note Off messages, the velocity is how quickly the key is played.
Typically, a synthesizer responds to a higher velocity by making the note louder or brighter.
Note On makes a note occur, and the synthesizer also attempts to make the note sound like
the real instrument while the note is playing. Pressure messages can be used to alter the
sound of notes while they are playing. The Channel Pressure message is a force measure for
the keys on a specific channel (instrument) and has an identical effect on all notes playing
on that channel. The other pressure message, Polyphonic Key Pressure (also called Key
Pressure), specifies how much volume keys played together are to have and can be different
for each note in a chord. Pressure is also called aftertouch.

The Control Change instruction sets various controllers (faders, vibrato, etc.). Each
manufacturer may make use of different controller numbers for different tasks. However,
controller 1 is likely the modulation wheel (for vibrato).

" For example, a Note On message is followed by two bytes, one to identify the note and
one to specify the velocity, Therefore, to play note number 80 with maximum velocity on
channel 13, the MIDI device would send the following three hex byte values: &H9C &HS50
&HTF. (A hexadecimal number has a range 0.. 15. Since it is used to denote channels 1 to
16, “&HC” refers to channel 13). Notes are numbered such that middle C has number 60.

To play two notes simultaneously (effectively), first we would send a Program Change

message for each of two channels. Recall that Program Change means to load a particular

Section 6.2 MIDI: Musical Instrument Digital Interface 145

TABLE 6.4: MIDI mode messages

1st data byte Description Meaning of 2nd data byte
&H79 Reset all controllers None; setto 0

&H7A Local control 0 =off; 127 = on

&H7B All notes off None; setto 0

&H7C Omni mode off None; set to 0

&HTD Omni mode on None; setto 0

&H7E -| Mono mode on (Poly mode off) | Controller number
&H7F Poly mode on (Mono mode off) | None; setto 0

patch for that channel. So far, we have attached two timbres to two different channels.
Then sending two Note On messages (in serial) would turn on both channels. Alternatively,
we could also send a Note On message for a particular channel and then another Note On
message, with another pitch, before sending the Note Off message for the first note. Then
we would be playing two notes effectively at the same time on the same instrument.
Polyphonic Pressure refers to how much force simultaneous notes have on several in-
struments. Channel Pressure refers to how much force a single note has on one instrument.

Channel Mode Messages. Channel mode messages form a special case of the Con-
trol Change message, and therefore all mode messages have opcode B (so the message is
“&HBn,” or 1011nnnn). However, a Channel Mode message has its first data byte in 121
through 127 (&H79-7F).

Channel mode messages determine how an instrument processes MIDI voice messages.
Some examples include respond to all messages, respond just to the correct channel, don’t
respond at all, or go over to local control of the instrument,

Recall that the status byte is “&HBn,” where n is the channel. The data bytes have
meanings as shown in Table 6.4. Local Control Off means that the keyboard should be
disconnected from the synthesizer (and another, external, device will be used to control the
sound). All Notes Offis a handy command, especially if, as sometimes happens, a bug arises
such that a note is left playing inadvertently. Omni means that devices respond to messages
from all channels. The usual mode is OMNI OFF — pay attention to your own messages
only, and do not respond to every message regardless of what channel it is on. Poly means a
device will play back several notes at once if requested to do so. The usual mode is POLY
ON.

In POLY OFF — monophonic mode — the argument that represents the number of
monophonic channels can have a value of zero, in which case it defaults to the number
of voices the receiver can play; or it may set to a specific number of channels. However,
the exact meaning of the combination of OMNI ON/OFF and Mono/Poly depends on the
specific combination, with four possibilities. Suffice it to say that the usual combination is
OMNI OFF, POLY ON.

146

Chapter 6 Basics of Digital Audio

TABLE 6.5: MIDI System Common messages

System common message | Status byte | Number of data bytes
MIDI Timing Code &HF1 1

Song Position Pointer &HF2 2

Song Select &HE3 1

Tune Request &HF6 None

EOX (terminator) | &HF7 None

System Messages. Systemn messages have no channel number and are meant for com-
mands that are not channel-specific, such as timing signals for synchronization, positioning
information in prerecorded MIDI sequences, and detailed setup information for the desti-
nation device. Opcodes for all system messages start with “&HE” Systermn messages are
divided into three classifications, according to their use.

System Common Messages. Table 6.5 sets out these messages, which relate to timing
or positioning. Song Position is measured in beals. The messages delermine what is to be
played upon receipt of a “start” real-time message (see below).

System Real-Time Messages. Table 6.6 sets out system real-time messages, which are
related to synchronization.

System Exclusive Message. The final type of system message, System Exclusive mes-
sages, is included so that manufacturers can extend the MIDI standard. After the initial
code, they can insert a stream of any specific messages that apply to their own product. A
Systern Exclusive message is supposed to be terminated by a terminator byte “&HEF7,” as
specified in Table 6.5. However, the terminator is optional, and the datastream may simply
be ended by sending the status byte of the next message.

TABLE 6.6: MIDI System Real-Time messages

System real-time message | Status byte
! Timing Clock &HF8
Start Sequence &HFA
Continue Sequence &HFB
Stop Sequence &HFC
Active Sensing &HFE
System Reset &HFF

Section 6.3 Quantization and Transmission of Audio 147

6.2.4 General MIDI

‘For MIDI music to sound more or less the same on every machine, we would at least like to
have the same patch numbers associated with the same instruments — for example, patch
1 should always be a piano, not a flugethorn. To this end, General MIDI [5] is a scheme
for assigning instruments to patch numbers. A standard percussion map also specifies
47 percussion sounds. Where a “note” appears on a musical score determines just what
percussion element is being struck. This book’s web site includes both the General MIDI
Instrument Path Map and the Percussion Key map.

Other requirements for General MIDI compatibility are that a MIDI device must sup-
port all 16 channels; must be multi-timbral (i.e., each channel can play a different instru-
ment/programy); must be polyphonic (i.e., each channel is able to play many voices); and
must have a minimum of 24 dynamically allocated voices.

General MIDI Level2, An extended General MIDI has recently been defined, with a
standard SMF Standard MIDI File format defined. A nice extension is the inclusion of extra
character information, such as karaoke lyrics, which can be displayed on a good sequencer.

6.2.5 MIDI-to-WAYV Conversion

Some programs, such as early versions of Premiere, cannot include MIDI files — instead,
they insist on WAV format files. Various shareware programs can approXimate a reasonable
conversion between these formats. The programs essentially consist of large lookup files
that try to do a reascnable job of substituting predefined or shifted WAV output for some
MIDI messages, with inconsistent success,

6.3 QUANTIZATION AND TRANSMISSION OF AUDIO

To be transmitted, sampled audio information must be digitized, and here we look at some
of the details of this process. Once the information has been quantized, it can then be
transmitted or stored. We go through a few examples in complete detail, which helps in
understanding what is being discussed.

6.3.1 Coding of Audio

Quantization and transformation of data are collectively known as coding of the data. For
audio, the p-law technique for companding audio signals is usually combined with a simple
algorithm that exploits the temporal redundancy present in audio signals. Differences in
signals between the present and a previous time can effectively reduce the size of signal
values and, most important, concentrate the histogram of pixel values (differences, now)
into a much smaller range. The result of reducing the variance of values is that lossless
compression methods that produce a bitstream with shorter bit lengths for more likely values,
introduced in Chapter 7, fare much beétter and produce a gfeatly compressed bitstream.

In general, producing quantized sampled output for audio is called Pulse Code Modula-
tion, or PCM. The differences version is called DPCM (and a crude but efficient variant is
called DM). The adaptive version is called ADPCM, and variants that take into account
speech properties follow from these. More complex models for audio are outlined in
Chapter 13.

148

Chapter 6 Basics of Digital Audio

6.3.2 Pulse Code Modulation

PCM in General. Audio is analog — the waves we hear travel through the air to reach
our eardrums. We know that the basic techniques for creating digital signals from analog
ones consist of sanpling and guantization. Sampling is invariably done uniformly — we
select a sampling rate and produce one value for each sampling time.

In the magnitude direction, we digitize by quantization, selecting breakpoints in mag-
nitude and remapping any value within an interval to one representative output level. The
set of interval boundaries is sometimes called decision boundaries, and the representative
values are called reconstruction levels.

We say that the boundaries for quantizer input intervals that will all be mapped into the
same output level form a coder mapping, and the representative values that are the output
values from a quantizer are a decoder mapping. Since we quantize, we may choose to create
either an accurate or less accurate representation of sound magnitude values. Finally, we
may wish to compress the data, by assigning a bitstream that uses fewer bits for the most
prevalent signal values.

Every compression scheme has three stages:

1. Transformation. The input data is transformed to a new representation that is easier
or more efficient to compress. For example, in Predictive Coding, (discussed later in
the chapter) we predict the next signal from previous ones and transmit the prediction
E€ITOr.

2. Loss. We may introduce loss of information. Quantization is the main lossy step.
Here we use a limited number of reconstruction levels, fewer than in the original
signal. Therefore, quantization necessitates some loss of information.

3. Coding. Here, we assign a codeword (thus forming a binary bitstream) to each output
level or symbol. This could be a fixed-length code or a variable-length code, such as
Huffman coding (discussed in Chapter 7).

For audio signals, we first consider PCM, the digitization method. That enables us
to consider Lossless Predictive Coding as well as the DPCM scheme; these ‘methods use
differential coding. We also look at the adaptive version, ADPCM, which is meant to provide
better compression.

Pulse Code Modulation, is a formal term for the sampling and quantization we have
already been using. Pulse comes from an engineer’s point of view that the resulting digital
signals can be thought of as infinitely narrow vertical “pulses”. As an example of PCM,
audio samples on a CD might be sampled at a rate of 44.1 kHz, with 16 bits per sample.
For stereo sounfl, with two channels, this amounts to a data rate of about 1,400 kbps.

PCMin Speech Compression. Recall thatin Section 6.1.6 we considered companding:
the so-called compressor and expander stages for speech signal processing, for telephony.
For this application,signals are first transformed using the y-law (or A-law for Europe) rule
into what is essentially a logarithmic scale. Only then is PCM, using uniform quantization,
applied. The result is that finer increments in sound volume are used at the low-volume end of
speechrather than at the high-volume end, where we can’tdiscern small changes in any event.

Section 6.3 Quantization and Transmission of Audio 149

Assuming a bandwidth for speech from about 50 Hz to about 10 kHz, the Nyquist rate
.would dictate a sampling rate of 20 kHz. Using uniform quantization without companding,
the minimum sample size we could get away with would likely be about 12 bits. Hence,
for mono speech transmission the bitrate would be 240 kbps. With companding, we can
safely reduce the sample size to & bits with the same perceived level of quality and thus
reduce the bitrate to 160 kbps. However, the standard approach to telephony assumes that
the highest-frequency audio signal we want to reproduce is about 4 kHz. Therefore, the
sampling rate is only 8 kHz, and the companded bitrate thus reduces to only 64 kbps.

We must also address two small wrinkles to get this comparatively simple form of speech
compression right. First because only sounds up to 4 kHz are to be considered, all other
frequency content must be noise. Therefore, we should remove this high-frequency content
from the analog input signal. This is done using a band-limiting filter that blocks out high
frequencies as well as very low ones. The “band” of not-removed (“passed”) frequencies
are what we wish to keep. This type of filter is therefore also called a band-pass filter.

Second, once we arrive at a pulse signal, such as the one in Figure 6.13(a), we must
still perform digital-to-analog conversion and then construct an output analog signal. But

Amplitude

S S

(b) ©

FIGURE 6.13: Pulse code modulation (PCM): (a) original analog signal and its corresponding
PCM signals; (b) decoded staircase signal; (c) reconstructed signal after low-pass filtering.

150 Chapter 6 Basics of Digital Audio

Input analog . ';L-law or
speech signal >| B anc;ﬁ?;tmg A-law Linear PCM
compressor
Transmission
Output analog 1 .
-law o i
speech signal Low-pass H A-law ' Digital-to-analog
filter converter
expander

FIGURE 6.14: PCM signal encoding and decoding.

the signal we arrive at is effectively the staircase shown in Figure 6.13(b). This type of
discontinuous signal contains not just frequency components due to the original signal but,
because of the sharp comners, also a theoretically infinite set of higher-frequency compo-
nents (from the theory of Fourier analysis, in signal processing). We know these higher
frequencies are extraneous. Therefore, the output of the digital-lo-analog converter is in
turn passed to a low-pass filter, which allows only frequencies up to the original maximum to
be retained. Figure 6.14 shows the complete scheme for encoding and decoding telephony
signals as a schematic. As aresult of the low-pass filtering, the output becomes smoothed, as
Figure 6.13(c) shows. For simplicity, Figure 6.13 does not show the effect of companding.

A-law or pi-law PCM coding is used in the older Intermational Telegraph and Telephone
Consultative Committee (CCITT) standard G.711, for digital telephony. This CCITT stan-
dard is now subsumed into standards promulgated by a newer organization, the International
Telecommunication Union (ITU).

6.3.3 Differential Coding of Audio

Audio is often stored not in simple PCM but in a form that exploits differences. For a start,
differences will generally be smaller numbers and hence offer the possibility of using fewer
bits to store.

An advantage of forming differences is that the histogram of a difference signal is usually
considerably more peaked than the histogram for the original signal. For example, as an
extreme case, the histogram for a linear ramp signal that has constant slope is uniform,
whereas the histogram for the derivative of the signal (i.e., the differences, from sampling
point to sampling point) consists of a spike at the slope value.

Generally, if a time-dependent signal has some consistency over time (temporal redun-
dancy), the difference signal — subtracting the current sample from the previous one —
will have a more peaked histogram, with a maximum around zero. Consequently, if we then
go on to assign bitstring codewords to differences, we can assign short codes to prevalent
values and long codewords to rarely occurring ones.

Section 6.3 Quantization and Transmission of Audio 151

To begin with, consider a lossless version of this scheme. Loss arises when we quantize.
If we apply no quantization, we can still have compression — via the decrease in the variance
of values that occurs in differences,. compared to the original signal. Chapter 7 introduces
more sophisticated versions of lossless compression methods, but it helps to see a simple
version here as well. With quantization, Predictive Coding becomes DPCM, a lossy method,;
we’ll also try out that scheme.

6.3.4 Lossless Predictive Coding

Predictive coding simply means transmitting differences — we predict the next sample as
being equal to the current sample and send not the sample itself but the error involved in
making this assumption. That is, if we predict that the next sample equals the previous one,
then the error is just the difference between previous and next. Our prediction scheme could
also be more complex.

However, we do note one problem. Suppose our integer sample values are in the range
0..255. Then differences could be as much as —255..255. So we have unfortunately
increased our dynamic range (ratio of maximum to minimum) by a factor of two: we may
well need more bits than we needed before to transmit some differences. Fortunately, we
can use a trick to get around this problem, as we shall see.

So, basically, predictive coding consists of finding differences and transmitting them,
using a PCM system such as the one introduced in Section 6.3.2. First, note that differences
of integers will at least be integers. Let’s formalize our statement of what we are doing by
defining the integer signal as the set of values f,,. Then we predict values fu as simply the
previous value, and we define the error e, as the difference between the actual and predicted
signals:

ﬁi - fn—l
en = fo— fa (6.12)

We certainly would liAke our error value e, to be as small as possible. Therefore, we would
wish our prediction f; to be as close as possible to the actual signal f,,. But for a particular
sequence of signal values, some function of a few of the previous values, f,—1, fu—2, fu—3,
etc., may provide a better prediction of f,,. Typically, a linear predictor function is used:

2tod

o= ankfui (6.13)
k=1

Such a predictor can be followed by a truncating or rounding operation to result in integer
values. In fact, since now we have such coefficients a,_; available, we can even change
them adaptively (see Section 6.3.7 below).

The idea of forming differences is to make the histogram of sample values more peaked.
For example, Figure 6.15(a) plots 1 second of sampled speech at 8 kHz, with magnitude
resolution of 8 bits per sample.

A histogram of these values is centered around zero, as in Figare 6.15(b). Figure 6.15(c)
shows the histogram for corresponding speech signal differences: difference values are much
more clustered around zero than are sample values themselves. As a result, a method that

152 Chapter 6 Basics of Digital Audio

0.04
g
E! 0.0
Nﬂ
=
-0.04
0 2000 4000 6000 8000
Samples
@
b=
=
o
O

-0 05 00 05 1.0
Sample value

®)

Count

-1.0 -05 00 0.5 1.0
Sample difference

©

FIGURE 6.15:; Differencing concentrates the histogram: (a) digital speech signal; (b) his-
‘togram of digital speech signal values; (c) histogram of digital speech signal differences.

assigns short codewords to frequently occurring symbols will assign a short code to zero and
do rather well. Such a coding scheme will much more efficiently code sample differences
than samples themselves, and a similar statement applies if we use a more sophisticated
predictor than simply the previous signal value.

Section 6.3 Quantization and Transmission of Audio 153

However, we are still left with the problem of what to do if, for some reason, a particular
_set of difference values does indeed consist of some exceptional large differences. A clever
solution to this difficulty involves defining two new codes to add to our list of difference
values, denoted SU and SD, standing for Shift-Up and Shift-Down. Some special
values will be reserved for them.

Suppose samples are in the range 0..255, and differences are in —255..255. Define
SU and SD as shifts by 32. Then we could in fact produce codewords for a limited set
of signal differences, say only the range —15..16. Differences (that inherently are in the
range —255 ..255) lying in the limited range can be coded as is, but if we add the extra two
values for SU, SD, a value outside the range —15 .. 16 can be transmitted as a series of
shifts, followed by a value that is indeed inside the range —15..16. For example, 100 is
transmitted as SU, -SU, SU, 4, where (the codes for) SU and for 4 are what are sent.

Lossless Predictive Coding is . . . lossless! That is, the decoder produces the same signals
as the original. It is helpful to consider an explicit scheme for such coding considerations,
so let’s do that here (we won’t use the most complicated scheme, but we’ll try to carry out an
entire calculation). As a simple example, suppose we devise a predictor for f,, as follows:

A 1
o= LU+)]
en = fo— ﬁz (6.14)

Then the error ¢, (or a codeword for it) is what is actually transmitted.

Let’s consider an explicit example. Suppose we wish to code the sequence fi, f2, f3, f4,
fs =21,22,27,25,22. For the purposes of the predictor, we’ll invent an extra signal value
fo, equal to f) = 21, and first transmit this initial value, uncoded; after all, every coding
scheme has the extra expense of some header information.

Then the first exror, ¢, is zero, and subsequently

~

fo= 21, e=2-21=1

n 1 1

i = Li(fz +)l = L§(22 +21)] =21

e3 = 27—-21=6

~ 1 1

fa = LE(-fa + f2)l = L§(27 +22)] =24

ey = 25-24=1

” 1 1

5 = LE(ﬁt +)] = L§(25 127)] =126

es = 22-26=—4 (6.15)

The error does center around zero, we see, and coding (assigning bitstring codewords) will
be efficient. Figure 6.16 shows a typical schematic diagram used to encapsulate this type of
system. Notice that the Predictor emits the predicted value f,,. What is invariably (and an-
noyingly) left out of such schematics is the fact that the predictor is basedon f5,—1, fu—2,....

154 Chapter 6 Basics of Digital Audio

> Predictor \—‘

(@)

e, —@ > f, Reconstructed
\———ﬁ Predictor <

(b

FIGURE 6.16: Schematic diagram for Predictive Coding: (a) encoder; (b) decoder.

Therefore, the predictor must involve a memory. At the least, the predictor includes a circuit
for incorporating a delay in the signal, to store f;—.

6.3.5 DPCM

Differential Pulse Code Modulation is exactly the same as Predictive Coding, except that it
incorporates a quantizer step. Quantization is as in PCM and can be uniform or nonuniform.
One scheme for analytically determining the best set of nonuniform quantizer steps is the
Lloyd-Max quantizer, named for Stuart Lloyd and Joel Max, which is based on a least-
squares minimization of the error term.

Here we should adopt some nomenclature for signal values. We shall call the original
signal fy, the predicted signal f, and the quantized, reconstructed signal f,. How DPCM
operates is to form the prediction, form an error e, by subtracting the prediction from the
actual signal, then quantize the error to a quantized version, &,. The equations that describe
DPCM are as follows:

ﬁ, = function-of (fu—t, fu-2, fazs...)

en = Jfu— fn

en = Qley] (6.16)
transmit codeword(ey)

reconstruct: f, = fi + én

Codewords for quantized error values e, are produced using entropy coding, such as Huff-
man coding (discussed in Chapter 7).

Section 6.3 Quantization and Transmission of Audio 155

Notice that the predictor is always based on the reconstructed, quantized version of the
signal: the reason for this is that then the encoder side is not using any information not
avatlable to the decoder side. Generally, if by mistake we made use of the actual signals
f, in the predictor instead of the reconstructed ones f;, quantization error would tend to
accumulate and could get worse rather than being centered on zero.

The mameffcctof the coder-decoder process is to producelcconstmcted quantized s1gnal
values f,, = f,, + e,. The “distortion” is the average squared error[zn ¢ f,, f,,) 1/N,
and one often sees diagrams of distortion versus the number of bit levels used. A Lloyd-Max
quantizer will do better (have less distortion) than a uniform quantizer.

For any signal, we want to choose the size of quantization steps so that they correspond
to the range (the maximum and minimurmn) of the signal. Even using a uniform, equal-step
quantization will naturally do better if we follow such a practice. For speech, we could
modify quantization steps as we go, by estimating the mean and variance of a patch of
signal values and shifting quantization steps accordingly, for every block of signal values.
That is, starting at time { we could take a block of N values f; and try to minimize the
quantization error:

i+N—1

min Y (fy — QLD (6.17)

n=i

Since signal differences are very peaked, we could model therm using a Laplacian proba-
bility distribution function, which is also strongly peaked at zero [6]: it looks like I(x) =
1/ «/é?)exp(—ﬁlxl /o), for variance o2, So typically, we assign quantization steps for
a quantizer with nonuniform steps by assurning that signal differences, d,, say, are drawn
from such a distribution and then choosing steps to minimize

i+N-1

min)" (dy — Qldnl)* 1(dy) (6.18)

n=f

This is a least-squares problem and can be solved iteratively using the Lloyd-Max quantizer.

Figure 6.17 shows a schematic diagram for the DPCM coder and decoder. As is common
in such diagrams, several interesting features are more or less not indicated. First, we notice
that the predictor makes use of the reconstructed, quantized signal values f£,, not actual
signal values f, — that is, the encoder simulates the decoder in the predictor path. The
quantizer can be uniform or non-uniform. ' h

The box labeled “Symbol coder” in the block diagram simply means a Huffman coder —
the details of this step are set out in Chapter 7. The prediction value f,, is based on however
much history the prediction scheme requires: we need to buffer previous values of fto
form the prediction. Notice that the quantization noise, fy — fx, is equal to the quantization
effect on the error term, e, — &,.

It helps us explicitly understand the process of coding to look at actual numbers. Suppose
we adopt a particular predictor as follows:

fn = trunc I:(ﬁi—l + f;z——2) /2]
sothate, = f, — f,, is an integer. (6.19)

156 Chapter 6 Rasics of Digital Audio

én . & Symbol
Ju —*@—* Quantizer > coder

Binary stream
F 7 4
h Predictor tf” < +>
(a)
Symbol &, _
decoder + > f, Reconstructed
A .
Predictor |«

Binary stream
()

FIGURE 6.17: Schematic diagram for DPCM: (a) encoder; (b) decoder.

Let us use the particular quantization scheme

én = Qlen] = 16 trunc [(255 -+ ey) /16] — 256 -+ 8
o = htén (6.20)

First, we note that the error is in the range —255 .. 255 — that is, 511 levels are possible
for the error term. The quantizer takes the simple course of dividing the error range into
32 patches of about 16 levels each. Tt also makes the representative reconstructed value for
each patch equal to the midway point for each group of 16 levels.

Table 6.7 gives output values for any of the input codes: 4-bit codes are mapped to 32
reconstruction levels in a staircase fashion. (Notice that the final range includes only 15
levels, not 16.)

As an example stream of signal values, consider the set of values

h L f fa fs
130 150 140 200 230

We prepend extra values f = 130 in the datastream that replicate the first value, fi,
and initialize with quantized error &; = 0, so that we ensure the first reconstructed value is

Section 6.3 Quantization and Transmission of Audio 157

TABLE 6.7: DPCM quantizer reconstruction levels

ey intange | Quantized to value
—255.. =240 —248
—239..—-224 —232
-31..—16 —24
—-15..0 -8
1..16 8
17..32 24
225..240 232
241..255 248

exact: f; = 130. Then subsequent values calculated are as follows (with prepended values

in a box):
f = [130] 130, 142, 144, 167
e = [0 20, -2, 56 63
¢ = [o] 24, -8 56 56
f = [130], 154, 134, 200, 223

On the decoder side, we again assume extra values f equal to the correct value fi, so that
the first reconstructed value fi is correct. What is received is &, and the reconstructed f,, is
identical fo the one on the encoder side, provided we use exactly the same prediction rule.

6.3.6 DM

DM stands for Delta Modulation, a much-simplified version of DPCM often used as a quick
analog-to-digital converter. We include this scheme here for completeness.

Uniform-Delta DM. The idea in DM is to use only a single quantized error value,
either positive or negative. Such a 1-bit coder thus produces coded output that follows the
original signal in a staircase fashion. The relevant set of equations is as follows:

f;x = flhl)

en = fo—=Jn=1Jn— fu-1

5 = +k ife, > Q, where k is a constant 6.21)
—k otherwise,

ﬁx = ﬁl ‘i'én

Note that the prediction simply involves a delay.

158 Chapter 6 Basics of Digital Audio

Again, let’s consider actual numbers. Supposé signal values are as follows:

N fH A fis
10 11 13 15

We also define an exact reconstructed valve f; = f; = 10.
Suppose we use a step value k = 4. Then we arrive at the following values:

fr=10, ea=11-10=1 & =4, fr=10+4=14
fi=14, ;3=13—-14=—1, B3 =-—4, fr=14-4=10
fi=10, e =15—10=5 &e1=4, f1=10+4=14

We see that the reconstructed set of values 10, 14, 10, 14 never strays far from the correct
set 10, 11, 13, 15.

Nevertheless, it is not difficult to discover that DM copes well with more or less constant
signals, but not as well with rapidly changing signals. One approach to mitigating this
problem is to simply increase the sampling, perhaps to many times the Nyquist rate. This
scheme can work well and makes DM a very simple yet effective analog-to-digital converter.

Adaptive DM, However, if the slope of the actual signal curve is high, the staircase
approximation cannot keep up. A straightforward approach to dealing with a steep curve
is to simply change the step size k adaptively — that is, in response to the signal’s current
properties.

6.3.7 ADPCM

Adaptive DPCM takes the idea of adapting the coder to suit the input much further. Basically,
two pieces make up a DPCM coder: the quantizer and the predictor. Above, in Adaptive DM,
we adapted the quantizer step size to suit the input. In DPCM, we can adaptively modify
the quantizer, by changing the step size as well as decision boundaries in a nonuniform
quantizer.

We can carry this out in two ways: using the properties of the input signal (called fornvard
adaptive quantization), or the properties of the quantized output. For if quantized errors
become too large, we should change the nonuniform Lloyd-Max quantizer (this is called
backward adaptive quantization).

We can also adapt the predictor, again using forward or backward adaptation. Generally,
making the predictor coefficients adaptive is called Adaptive Predictive Coding (APC). It is
interesting to see how this is done. Recall that the predictor is vsually taken to be a linear
function of previously reconstructed quantized values, f,. The number of previous values
used is called the order of the predictor. For example, if we use M previous values, we need
M coefficients 4;, i = 1.. M in a predictor

M
fo= aifasi (6.22)
i=1

However we can get into a difficult situation if we try to change the prediction coefficients
that multiply previous quantized values, because that makes a complicated set of equations

Section 6.4 Further Exploration 159

to solve for these coefficients. Suppose we decide to use a least-squares approach to solving
a minimization, trying to find the best values of the a;:

N
min Y (fo — fu)? (6.23)

n=1

where here we would sum over a large number of samples f,, for the current patch of speech,
say. But because f:, depends on the quantization, we have a difficult problem to solve. Also,
we should really be changing the fineness of the quantization at the same time, to suit the
signal’s changing nature; this makes things problematical.

Instead, we usually resont to solving the simpler problem that results from using not f,, in
the prediction but simply the signal f;, itself. This is indeed simply solved, since, explicitly
writing in terms of the coefficients a;, we wish to solve

M

N
min » (fo = Y ai fu-i)’? (6.24)
=1

n=I1

Differentiation with respect to each of the a; and setting to zero produces a linear system of
M equations that is easy to solve. (The set of equationsis called the Wienexr-Hopf equations.)

Thus we indeed find a simple way to adaptively change the predictor as we go. For
speech signals, it is common to consider blocks of signal values, just as for image coding,
and adaptively change the predictor, quantizer, or both. If we sample at 8 kHz, a common
block size is 128 samples — 16 msec of speech. Figure 6.18 shows a schematic diagram
for the ADPCM coder and decoder [7].

6.4 FURTHER EXPLORATION

Fascinating work is ongoing in the use of audio to help sight-impaired persons. One tech-
nique is presenting HTML structure by means of audio cues, using creative thinking as in
the papers [8, 9, 10].

Anexcellentresource for digitization and SNR, SQNR, and so on is the book by Pohimann
[2). The audio quantization p-law is described in the Chapter 6 web page in the Further
Exploration section of the text web site. Other useful links included are

o An excellent discussion of the use of FM to create synthetic sound
e An extensive list of audio file formats

o A good description of various CD audio file formats, which are somewhat different.
The main music format is called red book audio.

o A General MIDI Instrament Patch Map, along with a General MIDI Percussion Key
Map

e Alink to a good tutorial on MIDI and wave-table music synthesis

e Alink to a Java program for decoding MIDI streams

160 Chapter 6 Basics of Digital Audio

64 kbps A-law -
or ;L-lI:liV L Convert to i@_e,; Adaptive & 32 kbps
PCM input uniform PCM X quantizer output
—>
Adaptive]ﬁ‘;

R predictor

A

(a)

= 64 kbps A-law

In g Convertto |, . p-law

PCM PCM output

32 kbps
mput .

Adaptive

predictor

i
()

FIGURE 6.18: Schematic diagram for: (a) ADPCM encoder; (b) decoder.

e A good multimedia/sound page, including a source for locating Internet sound/music
materials

e A performing-arts-oriented site that is an excellent all-around resource on sound gen-
erally, including a great deal of information on definitions of terms, signal processing,
and sound perception.

6.5 EXERCISES
1. My old SoundBlaster card is an 8-bit card.

(a) What is it 8 bits of?
(b) What is the best SQNR it can achieve?

2. If a set of ear protectors reduces the noise level by 30 dB, how much do they reduce
the intensity (the power)?

3. Aloss of audio output at both ends of the audible frequency range is inevitable, due
to the frequency response function of an audio amplifier and the medium (e.g., tape).

(a) If the output was 1 volt for frequencies at midrange, what is the output voltage
after a loss of —3 dB at 18 kHz?

10.

Section 6.5 Exercises 161

(b) To compensate for the loss, a listener can adjust the gain (and hence the output)
on an equalizer at different frequencies. If the loss remains —3 dB and a gain
through the equalizer is 6 dB at 18 kHz, what is the output voltage now? Hint:
Assume log2 = 0.3.

Suppose the sampling frequency is 1.5 times the true frequency. What is the alias
frequency?

In a crowded room, we can still pick out and understand a nearby speaker’s voice,
notwithstanding the fact that general noise levels may be high. This is known as
the cocktail-party effect. The way it operates is that our hearing can localize a sound
source by taking advantage of the difference in phase between the two signals entering
our left and right ears (binawral auditory perception). In mono, we could not hear
our neighbor’s conversation well if the noise level were at all high. State how you
think a karaoke machine works. Hint: The mix for commercial music recordings is
such that the “pan” parameter is different going to the left and right channels for each
instrument. That is, for an instrument, either the left or right channel is emphasized.
How would the singer’s track timing have to be recorded to make it easy to subtract
the sound of the singer (which is typically done)?

The dynamic range of a signal V is the ratio of the maximum to the minimum absolute
value, expressed in decibels. The dynamic range expected in a signal is to some extent
an expression of the signal quality. Italso dictates the number of bits per sample needed
to reduce the quantization noise to an acceptable level. For example, we may want to
reduce the noise to at least an order of magnitude below Vj,;,,. Suppose the dynamic
range for a signal is 60 dB. Can we use 10 bits for this signal? Can we use 16 bits?
Suppose the dynamic range of speech in telephony implies a ratio V},;4x / Vinin of about
256. Using uniform quantization, how many bits should we use to encode speech to
make the quantization noise at least an order of magnitude less than the smallest
detectable telephonic sound?

Perceptual nonuniforinity is a general term for describing the nonlinearity of human
perception. That is, when a certain parameter of an audio signal varies, humans do
not necessarily perceive the difference in proportion to the amount of change.

(a) Briefly describe at least two types of perceptual nonuniformities in human au-
ditory perception.

(b) Which one of them does A-law (or z¢-law) attempt to approximate? Why could
it improve quantization?

Draw a diagram showing a sinusoid at 5.5 kHz and sampling at 8 kHz (show eight
intervals between samples in your plot). Draw the alias at 2.5 kHz and show that in
the eight sample intervals, exactly 5.5 cycles of the true signal fit into 2.5 cycles of
the alias signal.

Suppose a signal contains tones at 1, 10, and 21 kHz and is sampled at the rate 12 kHz
(and then processed with an antialiasing filter limiting output to 6 kHz). What tones
are included in the output? Hint: Most of the output consists of aliasing.

162 Chapter 6

11. (a)
(b)

(©)

(@)

12. (a)
(b)
(0

Basics of Digital Audio

Can a single MIDI message produce more than one note sounding?

Is it possible for more than one note to sound at once on a particular instrument?
If so, how is it done in MIDI?

Is the Program Change MIDI message a Channel Message? What does this mes-
sage accomplish? Based on the Program Change message, how many different
instruments are there in General MIDI? Why?

In general, what are the two main kinds of MIDI messages? In terins of data,
what is the main difference between the two types of messages? Within those
two calegories, list the different subtypes.

Give an example (in English, not hex) of a MIDI voice message.

Describe the parts of the “assembler” statement for the message.

What does a Program Change message do? Suppose Program change is hex
“&HC1.” What does the instruction “&HC103” do?

© 13, In PCM, what is the delay, assuming 8 kHz sampling? Generally, delay is the time
penalty associated with any algorithm due to sampling, processing, and analysis.

14. (a)

(b)

Suppose we use a predictor as follows:

R | .
fn = trunc |:§(ﬁ1—l + f;l—2):|
J (6.25)

€n

Also, suppose we adopt the quantizer Equation (6.20). If the input signal has
values as follows:

2038567492110 128 146 164 182 200 218 236 254
show that the output from a DPCM coder (without entropy coding) is as follows:
2044 5674 89 105 121 153 161 181 195212 243 251

Figure 6.19(a) shows how the quantized reconstructed signal tracks the input
signal. As a programming project, write a small piece of code to verify your
results.

Suppose by mistake on the coder side we inadvertently use the predictor for
lossless coding, Equation (6.14), using original values f, instead of quantized
ones, f,,. Show that on the decoder side we end up with reconstructed signal
values as follows:

20 44 56 74 89 105 121 137 153 169 185 201 217 233

so that the error gets progressively worse.

Figure 6.19(b) shows how this appears: the reconstructed signal gets progres-
sively worse. Modify your code from above to verify this statement.

o

Section 6.6 References 163

250 250
200 200
= =
“ 100 “ 100
50 50
Time Time
(@) (b)

FIGURE 6.19: (a) DPCM reconstructed signal (dotted line) tracks the input signal (solid
line); (b) DPCM reconstructed signal (dashed line) steers farther and farther from the input
signal (solid line).

6.6 REFERENCES

1

B. Truax, Handbook for Acoustic Ecology, 2nd ed., Burnaby, BC, Canada: Cambridge Street
Publishing, 1999.

K.C. Pohlmann, Principles of Digital Audio, 4th ed., New York: McGraw-Hill, 2000.

3 J.H. McClellan, R.W. Schafer, and M.A. Yoder, DSP First: A Multimedia Approach, Upper

10

Saddle River, NJ: Prentice-Hall PTR, 1998.

J. Heckroth, Tutorial on MIDI and Music Synthesis, La Habra, CA: The MIDI Manufacturers
Association, 1995, www.harmony-central.com/MIDI/Doc/tutorial.html.

P.X. Andleigh and K. Thakrar, Multimedia Systenis Design, Upper Saddle River, NJ: Prentice-
Hall PTR, 1984.

K. Sayood, Introduction to Data Compression, 2nd ed., San Francisco. Morgan Kaufmann,
2000.

Roger L. Freeman, Reference Manual for Telecommunications Engineering, 2nd ed., New
York: Wiley, 1997.

M.M. Blattner, D.A. Sumikawa, and R. Greenberg, “Earcons and Icons: Their Structure and
Common Design Principles,” Human-Computer Interaction, 4: 11-44, 1989,

M.M. Blattner, “Multimedia Interfaces: Designing for Diversity,” Multinedia Tools and Ap-
plications, 3: 87-122, 1996.

W.W. Gaver and R. Smith, “Auditory Icons in Large-Scale Collaborative Environments,” in
Readings in Human-Computer Interaction: Toward the Year 2000, ed. R. Baecker, J. Grudin,
W. Buxton, and S. Greenberg, San Francisco: Morgan-Kaufman, 1990, pp. 564-569.

PART TWO

Chapter 7 Lossless Compression Algorithms 167
Chapter 8 Lossy Compression Algorithms 199
Chapter 9 Image Compression Standards 253
Chapter 10 Basic Video Compression Techniques 288
Chapter 11 MPEG Video Coding | — MPEG-1and 2 312

Chapter 12 MPEG Video Coding Il — MPEG-4, 7, and Beyond
332

Chapter 13 Basic Audio Compression Techniques 374
Chapter 14 MPEG Audio Compression 395

In this part, we examine the role played by data compression, perhaps the most important
enabling technology that makes modern multimedia systems possible.

We start off in Chapter 7 looking at lossless data compression — that is, involving no
distortion of the original signal once it is decompressed or reconstituted. So much data
exists, in archives and elsewhere, that it has become critical to compress this information.
Lossless compression is one way to proceed.

Forexample, suppose we decide to spend our savings on a whole-body MRI scan, looking
for trouble. Then we certainly want this costly medical information to remain pristine, with
no loss of information. This example of volume data forms a simply huge dataset, but we
can’t afford to lose any of it, so we’d best use lossless compression. WinZip, for example,
is a ubiquitous tool that uses lossless compression.

Another good example is archival storage of precious artworks. Here, we may go to the
trouble of imaging an Old Master’s painting using a high-powered camera mounied on a
dolly, to avoid parallax. Certainly we do not wish to lose any of this hard-won information,
so again we’ll use lossless compression.

On the other hand, when it comes to home movies, we're more willing to lose some
information. If we have a choice between losing some information anyway, because our
PC cannot handle all the data we want to push through it, or losing some information on
purpose, using a lossy compression method, we’ll choose the latter, Nowadays, almost all

165

166

video you see is compressed in some way, and the compression used is mostly lossy. Almost
every image on the web is in the standard JPEG format, which is usually lossy.

Soin Chapter 8 we go on to look at lossy methods of compression, mainly focusing on the
Discrete Cosine Transform and the Discrete Wavelet Transform. The major applications of
these important methods is in the set of JPEG still image compression standards, inclading
JPEG2000, examined in Chapter 9.

We then go on to look at how data compression methods can be applied to moving images
—videos. We start with basic video compression techniques in Chapter 10. We examine the
ideas behind the MPEG standard, starting with MPEG-1 and 2 in Chapter 11 and MPEG-4,
7, and beyond in Chapter 12. Audio compression in a sense stands by itself, and we consider
some basic andio compression techniques in Chapter 13, while in Chapter 14 we look at
MPEG Audio, including MP3.

7.1

CHAPTER 7

Lossless Compression
Algorithms

INTRODUCTION

The emergence of multimedia technologies has made digiral libraries a reality. Nowadays,
libraries, museums, film studios, and governments are converting more and more data and
archives into digital form. Some of the data (e.g., precious books and paintings) indeed
need to be stored without any loss.

As a start, suppose we want to encode the call numbers of the 120 million or so items
in the Library of Congress (a mere 20 million, if we consider just books). Why don’t we
just transmit each item as a 27-bit number, giving each item a unique binary code (since
227 > 120, 000, 000)?

The main problem is that this “great idea” requires too many bits. And in fact there exist
many coding techniques that will effectively reduce the total number of bits needed to rep-
resent the above information. The process involved is generally referred to as compression
[1,2].

In Chapter 6, we had a beginning look at compression schemes aimed at audio. There, we
had to first consider the complexity of transforming analog signals to digital ones, whereas
here, we shall consider that we at least start with digital signals. For example, even though
we know an image is captured using analog signals, the file produced by a digital camera
is indeed digital. The more general problem of coding (compressing) a set of any symbols,
not just byte values, say, has been studied for a long time.

Getting back to our Library of Congress problem, it is well known that certain parts of
call numbers appear more frequently than others, so it would be more economic to assign
fewer bits as their codes. -This is known as variable-length coding (VLC) — the more
frequently-appearing symbols are coded with fewer bits per symbol, and vice versa. As a
result, fewer bits are usually needed to represent the whole collection.

In this chapter we study the basics of information theory and several popular lossless
compression techniques. Figure 7.1 depicts a general data compression scheme, in which
compression is performed by an encoder and decompression is performed by a decoder.

We call the output of the encoder codes or codewords. The intermediate medium could
either be data storage or a communication/computer network, If the compression and
decompression processes induce no information loss, the compression scheme is lossless;
otherwise, it is lossy. The next several chapters deal with lossy compression algorithms as
they are commonly used for image, video, and audio compression. Here, we concentrate
on lossless compression.

167

168 Chapter7 Lossless Compression Algorithms

Input Encoder Storage or Decoder Output

(compression) networks (decompression)

data data

FIGURE 7.1: A general data compression scheme.

If the total number of bits required to represent the data before compression is Bo and the
total number of bits required to represent the data after compression is By, then we define
the compression ratio as

. . B
compression ratio = — 7.1
1

In general, we would desire any codec (encoder/decoder scheme) to have a compres-
sion ratio much larger than 1.0. The higher the compression ratio, the better the lossless
compression scheme, as long as it is computationally feasible.

7.2 BASICS OF INFORMATION THEORY
According to the famous scientist Claude E. Shannon, of Bell Labs [3, 4], the entropy n of

an information source with alphabet S = {s1, 52, ..., s, } is defined as:
" 1
n=H(S) = Y pilog,— (7.2)
i=1 pi
n
= —)_ pilog, pi (7.3)

i=1

where p; is the probability that symbol s; in S will occur.
The term log, ﬁ indicates the amount of information (the so-called self-information

defined by Shannon [3]) contained in s;, which corresponds to the number of bits! needed
to encode §;. For example, if the probability of having the character n in a manuscript is
1/32, the amount of information associated with receiving this character is 5 bits. In other
words, a character string nnn will require 15 bits to code. This is the basis for possible data
reduction in text compression, since it will lead to character coding schemes different from
the ASCII representation, in which each character is always represented with 8 bits.

What is the entropy? In science, entropy is a measure of the disorder of a system — the
more entropy, the more disorder. Typically, we add negative entropy to a system when we
impart more order to it. For example, suppose we sort a deck of cards. (Think of a bubble
sort for the deck — perhaps this is not the usual way you actually sort cards, though.) For

ISince we have chosen 2 as the base for logarithms in the above definition, the unit of information is bit —
naturally also most appropriate for the binary code representation used in digital computers. If the log base is 10,
the unit is the hartley; if the base is ¢, the unit is the nat.

Section 7.2 Basics of Information Theory 169

every decision to swap or not, we impart 1 bit of information to the card system and transfer
1 bit of negative entropy to the card deck.

The definition of entropy includes the idea that two decisions means the transfer of twice
the negative entropy in its use of the log base 2. A two-bit vector can have 22 states, and the
logarithmn takes this value into 2 bits of negative entropy. Twice as many sorting decisions
impart twice the entropy change.

Now suppose we wish to communicate those swapping decisions, via a network, say.
Then for our two decisions we’d have to send 2 bits. If we had a two-decision system, then
of course the average humber of bits for all such communications would also be 2 bits. If
we like, we can think of the possible number of states in our 2-bit system as four outcomes.
Each outcome has probability 1/4. So on average, the number of bits to send per outcome
is4 x (1/4) x log((1/(1/4)) = 2 bits — no surprise here. To communicate (transmit) the
results of our two decisions, we would need to transmit 2 bits.

But if the probability for one of the outcomes were higher than the others, the average
number of bits we’d send would be different. (This situation might occur if the deck
were already partially ordered, so that the probability of a not-swap were higher than for
a swap.) Suppose the probabilities of one of our four states were 1/2, and the other three
states each had probability 1/6 of occurring. To extend our modeling of how many bits
to send on average, we need to go to noninteger powers of 2 for probabilities. Then we
can use a logarithm to ask how many (float) bits of information must be sent to transmit
the information content. Equation (7.3) says that in this case, we’d have to send just
(1/2) x log,(2) + 3 x (1/6) x log,(6) = 1.7925 bits, a value less than 2. This reflects
the idea that if we could somehow encode our four states, such that the most-occurring one
means fewer bits to send, we’d do better (fewer bits) on average.

The definition of entropy is aimed at identifying often-occurring symbols in the data-
stream as good candidales for short codewords in the compressed bitstream. As described
earlier, we use a variable-length coding scheme for entropy coding — frequently-occurring
symbols are given codes that are quickly transmitted, while infrequently-occurring ones are
given longer codes. For example, E occurs frequently in English, so we should give it a
shorter code than Q, say.

This aspect of “surprise” in receiving an infrequent symbol in the datastream is reflected
in the definition (7.3). For if a symbol occurs rarely, its probability p; is low (e.g., 1/100),
and thus its logarithm is a large negative number. This reflects the fact that it takes a longer
bitstring to encode it. The probabilities p; sitting outside the logarithm in Eq. (7.3) say that
over a long stream, the symbols come by with an average frequency equal to the probability
of their occurrence. This weighting should multiply the long or short information content
given by the element of “surprise” in seeing a particular symbol.

As another concrete example, if the information source § is a gray-level digital image,
each s; is a gray-level intensity ranging from 0 to (2¢ — 1), where & is the number of bits
used to represent each pixel in an uncompressed image. The range is often {0, 255], since
8 bits are typically used: this makes a convenient one byte per pixel. The image histogram
(as discussed in Chapter 3) is a way of calculating the probability p; of having pixels with
gray-level intensity i in the image.

One wrinkle in the algorithm implied by Eq. (7.3) is that if a symbol occurs with zero
frequency, we simply don’t count it into the entropy: we cannot take a log of zero.

170 Chapter 7 Lossless Compression Algorithms

1/256 213

0 255 0 255
(@) (b)

FIGURE 7.2: Histograms for two gray-level images.

Figure 7.2(a) shows the histogram of an image with uniform distribution of gray-level
intensities, — that is, Vi p; = 1/256. Hence, the entropy of this image is

255
n= Z 756 1082256 =8 (7.4)
i=0
As can be seen in Eq. (7.3), the entropy 75 is a weighted sum of terms log, L. hence it
represents the average amount of information contained per symbol in the source S. For
a memoryless source” S, the entropy 7 represents the minimum average number of bits
required to represent each symbol in §. In other words, it specifies the lower bound for the
average number of bits to code each symbol in S.
If we use / to denote the average length (measured in bits) of the codewords produced
by the encoder, the Shannon Coding Theorem states that the entropy is the best we can do
(under certain conditions):

n=<l (7.5)

Coding schemes aim to get as close as possible to this theoretical lower bound.

It is interesting to observe that in the above uniform-distribution example we found that
n = 8 — the minimum average number of bits to represent each gray-level intensity is at
least 8. No compression is possible for this image! In the context of imaging, this will
correspond to the “worst case,” where neighboring pixel values have no similarity.

Figure 7.2(b) shows the histogram of another image, in which 1/3 of the pixels are rather
dark and 2/3 of them are rather bright. The entropy of this image is

1 2 3
n = g']og23+§-log2§
= 0.33 x1.59+0.67 x 0.59 = 0.52 4+ 0.40 = 0.92

In general, the entropy is greater when the probability distribution is flat and smaller when
it is more peaked.

2 An information source that is independently distributed, meaning that the value of the current symbol does
not depend on the values of the previously appeared symbols.

Section 7.3 Run-Length Coding 171

7.3 RUN-LENGTH CODING

Instead of assuming a memoryless source, run-length coding (RLC) exploits memory present
in the information source. It is one of the simplest forms of data compression. The basic
idea is that if the information source we wish to compress has the property that symbols
tend to form continuous groups, instead of coding each symbol in the group individually,
we can code one such symbol and the length of the group.

As an example, consider a bitevel image (one with only 1-bit black and white pixels)
with monotone regions. This information source can be efficiently coded using run-length
coding. In fact, since there are only two symbols, we do not even need to code any symbol
at the start of each run. Instead, we can assume that the starting run is always of a particular
color (either black or white) and simply code the length of each run.

The above description is the one-dimensional run-length coding algorithm. A two-
dimensional variant of it is usually used to code bilevel images. This algorithm uses the
coded run information in the previous row of the image to code the run in the current row.
A full description of this algorithm can be found in [5].

7.4 VARIABLE-LENGTH CODING (VLC)

Since the entropy indicates the information content in an information source S, it leads to
a family of coding methods commonly known as entropy coding methods. As described
earlier, variable-length coding (VLC) is one of the best-known such methods. Here, we
will study the Shannon—Fano algorithm, Huffman coding, and adaptive Huffman coding.

7.4.1 Shannon-Fano Algorithm

The Shannon—Fano algorithm was independently developed by Shannon at Bell Labs and
Robert Fano at MIT [6]. To illustrate the algorithm, let’s suppose the symbols to be coded
are the characters in the word HELLO. The frequency count of the symbols is

Symbol | H E L O
Count 1 1 2 1

The encoding steps of the Shannon—Fano algorithm can be presented in the following
top-down manner:

1. Sort the symbols according to the frequency count of their occurrences.

2. Recursively divide the symbols into two parts, each with approximately the same
number of counts, until all parts contain only one symbol.

A natural way of implementing the above procedure is to build a binary tree. As a
convention, let’s assign bit 0 to its left branches and 1 to the right branches.

172 Chapter 7 Lossless Compression Algorithms

5) ‘ 5)

/1\ -

L:(2) H,E,0:(3) L:(2)

H:(1) E,0:(2)
(a) (b)

E:(1) O:(1)
©

FIGURE 7.3: Coding tree for HELLO by the Shannon—Fano algorithm.

Initially, the symbols are sorted as LHEO. As Figure 7.3 shows, the first division yields
two parts: (a) L with a count of 2, denoted as L:(2); and (b) H, E and O with a total count
of 3, denoted as H,E,0:(3). The second division yields H:(1) and E,0:(2). The last division
is E:(1) and O:(1).

Table 7.1 summarizes the result, showing each symbol, its frequency count, information
content { log, 1}—/) ,resulting codeword, and the number of bits needed to encode each symbol

in the word HELLO. The total number of bits used is shown at the bottom.
To revisit the previous discussion on entropy, in this case,

1 1 1 1

pL -logy — + pu -logy — + pE - logy — + po - logy—

2PL 2PH P & PE P ,21’0
04x132402x2324+02x232+02x232=1.92

n

TABLE 7.1: One result of performing the Shannon-Fano algorithm on HELLO.

Symbol | Count | log, % Code | Number of bits used
"L 2 1.32 0 2
H 1 2.32 10 2
E 1 2.32 110 3
e} 1 2.32 111 3

TOTAL number of bits: 10

Section 7.4 Variable-Length Coding (VLC) 173

))

m
LH:(3) E,0:(2)
L:(2) H:(1) E:(1) (ON¢))]
(2) (b)

FIGURE 7.4: Another coding tree for HELLO by the Shannon-Fano algorithm.

This suggests that the minimum average number of bits to code each character in the word
IIELLO would be at least 1.92. In this example, the Shannon-Fano algorithm uses an
average of 10/5 = 2 bits to code each symbol, which is fairly close to the lower bound of
1.92. Apparently, the result is satisfactory.

It should be pointed out that the outcome of the Shannon-Fano algorithm is not neces-
sarily unique. For instance, at the first division in the above example, it would be equally
valid to divide into the two parts L,H:(3) and E,O:(2). This would result in the coding in
Figure 7.4. Table 7.2 shows the codewords are different now. Also, these two sets of code-
words may behave differently when errors are present. Coincidentally, the total number of
bits required to encode the world HELLO remains at 10.

The Shannon—Fano algorithm delivers satisfactory coding results for data compression,
but it was soon outperformed and overtaken by the Huffman coding method.

7.4.2 Huffman Coding

First presented by David A. Huffman in a 1952 paper [7], this method attracted an over-
whelming amount of research and has been adopted in many important and/or commercial
applications, such as fax machines, JPEG, and MPEG.

In contradistinction to Shannon—Fano, which is top-down, the encoding steps of the
Huffman algorithm are described in the following bottom-up manner. Let's use the same
example word, HELLO. A similar binary coding tree will be used as above, in which the
left branches are coded 0 and right branches 1. A simple list data structure is also used.

TABLE 7.2: Another result of performing the Shannon-Fano algorithm on HELLO.

Symbol | Count | log, ﬁ Code | Number of bits used
L 2 132 00 4
H 1 2.32 01 2
E 1 2.32 10 2
0] 1 2.32 11 2

| TOTAL number of bits: 10

174 Chapter 7 Lossless Compression Algorithms

P1:(2) ' P2:(3)
/01\ 0
E:(1) 0:(1)
E:(1) 0x(1)
(a) (b)

E:A(1) oD
(©

FIGURE 7.5: Coding tree for HELLO using the Huffman algorithm.

ALGORITHM 7.1 HUFFMAN CODING

1. Initialization: put all symbols on the list sorted according to their frequency counts.
2. Repeat until the list has only one symbol left.

(a) From the list, pick two symbols with the lowest frequency counts. Form a
Huffman subtree that has these two symbols as child nodes and create a parent
node for them.

(b) Assign the sum of the children’s frequency counts to the parent and insert it into
the list, such that the order is maintained.

(c) Delete the children from the list.

3. Assign a codeword for each leaf based on the path from the root.~=

~ In the above figure, new symbols P1, P2, P3 are created to refer to the parent nodes in
the Huffman coding tree. The contents in the list are illustrated below:

After initialization: LHEO
After iteration (a): LP1H
After iteration (b): LP2
After iteration (c): P3

Section 7.4 Variable-Length Coding (VLC) 175

For this simple example, the Huffman algorithm apparently generated the same coding
‘result as one of the Shannon-Fano results shown in Figure 7.3, although the results are
usually better. The average number of bits used to code each character is also 2, (i.e.,
(I + 142+ 3+ 3)/5=2). As another simple example, consider a text string containing
a set of characters and their frequency counts as follows: A:(15), B:(7), C:(6), D:(6) and
E:(5). It is easy to show that the Shannon—Fano algorithm needs a total of 89 bits to encode
this string, whereas the Huffman algorithm needs only 87.

As shown above, if correct probabilities (“prior statistics”) are available and accurate,
the Huffman coding method produces good compression results. Decoding for the Huffman
coding is trivial as long as the statistics and/or coding tree are sent before the data to be
compressed (in the file header, say). This overhead becomes negligible if the data file is
sufficiently large.

The following are important properties of Huffman coding:

¢ Unique prefix property. No Huffman code is a prefix of any other Huffman code.
For instance, the code 0 assigned to L in Figure 7.5(c) is not a prefix of the code 10
for H or 110 for E or 111 for O; nor is the code 10 for H a prefix of the code 110 for
E or 111 for O. It turns out that the unique prefix property is guaranteed by the above
Huffman algorithm, since it always places all input symbols at the leaf nodes of the
Huffman tree. The Huffman code is one of the prefix codes for which the unique
prefix property holds. The code generated by the Shannon—Fano algorithm is another
such example.

This property is essential and also makes for an efficient decoder, since it precludes
any ambiguity in decoding. Inthe above example, if a bit 0 is received, the decoder can
immediately produce a symbol L without waiting for any more bits to be transmitted.

o Optimality. The Huffman code is a minimum-redundancy code, as shown in Huff-
man’s 1952 paper [7]. It has been proven [8, 2] that the Huffman code is optimal for
a given data model (i.e., a given, accurate, probability distribution):

— The two least frequent symbols will have the same length for their Huffman
codes, differing only at the last bit. This should be obvious from the above
algorithm.

— Symbols that occur more frequently will have shorter Huffman codes than sym-
bols that occur less frequently. Namely, for symbols s; and s;, if p; > p; then
li <1;, where [; is the number of bits in the codeword for s;.

— Ithas beenshown (see [2]) that the average code length for an information source
S is strictly less than n 4 1. Combined with Eq.(7.5), we have

n§f<n+1 (7.6)

Extended Huffman Coding. The discussion of Huffman coding so far assigns each

symbol a codeword that has an integer bit length. As stated earlier, log, % indicates the
- a . . - 1

amount of information contained in the information source s;, which corresponds to the

176 Chapter 7 Lossless Compression Algorithms

number of bits needed to represent it. When a particular symbol s; has a large probability
(close to 1.0), log, ﬁ will be close to 0, and assigning one bit to represent that symbol will
be costly. Only when the probabilities of all symbols can be expressed as 27, where k is a
positive integer, would the average length of codewords be truly optimal — that is, I = 7.
Clearly, I> 7 in most cases.

One way to address the problem of integral codeword length is to group several symbols
and assign a single codeword to the group. Huffman coding of this type is called Extended
Huffman Coding [2). Assume an information source has alphabet S = {s1, 52, ..., s,}. If
k symbols are grouped together, then the extended alphabet is

k symbols
(k) e o
S = (s(81 ... 81, S1S1. -5, caey SIS Sn, SIS . 8280, «on s SpSy ... Sy}

Note that the size of the new alphabet S®) is n*. If k is relatively large (e.g., k > 3), then
for most practical applications where »n 3> 1, n¥ would be a very large number, implying a
huge symbol table. This overhead makes Extended Huffman Coding impractical.

As shown in [2], if the entropy of S is 7, then the average number of bits needed for each
symbol in § is now

- 1
nsl<ntog .7

so we have shaved quite a bit from the coding schemes’ bracketing of the theoretical best
limit, Nevertheless, this is not as much of an improvement over the original Huffman coding
(where group size is 1) as one might have hoped for.

7.4.3 Adaptive Huffman Coding

N
The Huffman algorithm requires prior statistical knowledge about the information source,
and such information is often not available. This is particularly true in multimedia applica-
tions, where future data is unknown before its arrival, as for example in live (or streaming)
audio and video. Even when the statistics are available, the transmission of the symbol table
could represent heavy overhead.

For the non-extended version of Huffman coding, the above discussion assumes a so-
called order-0 model — that is, symbols/characters were treated singly, without any context
or history maintained. One possible way to include contextual information is to examine
k preceding (or succeeding) symbols each time; this is known as an order-k model. For
example, an order-1 model can incorporate such statistics as the probability of “qu” in
addition to the individual probabilities of ““q” and “u”. Nevertheless, this again implies that
much more statistical data has to be stored and sent for the order-k model when k > 1.

The solution is to use adaptive compression algorithms, in which statistics are gathered
and updated dynamically as the datastream arrives. The probabilities are no longer based
on prior knowledge but on the actual data received so far. The new coding methods are
“adaptive” because, as the probability distribution of the received symbols changes, symbols
will be given new (longer or shorter) codes. This is especially desirable for multimedia
data, when the content (the music or the color of the scene) and hence the statistics can
change rapidly.

As an example, we introduce the Adaprive Huffman Coding algorithm in this section.
Many ideas, however, are also applicable to other adaptive compression algorithms.

Section 7.4 Variable-Length Coding (VLC) 177

PROCEDURE 7.1 Procedures for Adaptive Huffman Coding

ENCODER DECODER
Initial_code() ; Initial_code();
while not EOF while not EOF
{ {
get (c); decode (c) ;
encode (¢} ; output () ;
update_tree{c); update_tree(c);
} }

e Initial_code assigns symbols with some initially agreed-upon codes, without
any prior knowledge of the frequency counts for them. For example, some conven-
tional code such as ASCII may be used for coding character symbols.

o update_tree isaprocedure for constructing an adaptive Huffman tree. It basically
does two things: it increments the frequency counts for the symbols (including any
new ones), and updates the configuration of the tree.

— The Huffman tree must always maintain its sibling property — that is, all nodes
(internal and leaf) are arranged in the order of increasing counts., Nodes are
numbered in order from left to right, bottom to top. (See Figure 7.6, in which
the first node is 1.A:(1), the second node is 2.B:(1), and so on, where the numbers
in parentheses indicates the count.) If the sibling property is about to be violated,
a swap procedure is invoked to update the tree by rearranging the nodes.

— When a swap is necessary, the farthest node with count N is swapped with the
node whose count has just been increased to N + 1. Note that if the node with
count N is not a leaf-node — it is the root of a subtree — the entire subtree will
go with it during the swap.

o The encoder and decoder must use exactly the same Tnitial_code and
update_tree routines.

Figure 7.6(a) depicts a Huffman tree with some symbols already received. Figure 7.6(b)
- shows the updated tree after an additional A (i.e., the second A) was received. This increased
the count of As to N + | = 2 and triggered a swap. In this case, the farthest node with
count N = 1 was D:(1). Hence, A:(2) and D:(1) were swapped.

Apparently, the same result could also be obtained by first swapping A:(2) with B:(1),
then with C:(1), and finally with D:(1). The problem is that such a procedure would take
three swaps; the rule of swapping with “the farthest node with count N” helps avoid such
unnecessary swaps.

178 Chapter 7 Lossless Compression Algorithms

9.09) 9.(10)

1. Ax(1) 2.B:i(1) 3.C:(1) 4.D:(1) 1.D:(1) 2.B:(1) 3.C:(1) 4.A:(2)
(a) Huffman tree (b) Receiving 2nd “A” triggered a swap
9.(10)

9. (10)

1.D:(1) 2.B:(1) 3.C:i(1) 4. A:(2+1) 1.D:(1) 2.B:(1)
(c-1) A swap is needed after receiving 3rd “A” (c-2) Another swap is needed

9. (11)

1.D:(1) 2. B:(1)
(c-3) The Huffman tree after receiving 3rd “A”
FIGURE 7.6: Node swapping for updating an adaptive Huffman tree: (a) a Huffman tree; (b) receiving

2nd “A” triggered a swap; (c-1) a swap is needed after receiving 3rd “A”; (c-2) another swap is needed;
(c-3) the Huffman tree after receiving 3rd “A”.

Section 7.4 Variable-Length Coding (VLC) 179

The update of the Huffman tree after receiving the third A is more involved and is
jllustrated in the three steps shown in Figure 7.6(c-1) to (c-3). Since A:(2) will become
A:(3) (temporarily denoted as A:(2+1)), it is now necessary to swap A:(2+1) with the fifth
node. This is illustrated with an arrow in Figure 7.6(c-1).

Since the fifth node is a non-leaf node, the subtree with nodes 1. D:(1), 2. B:(1), and
5. (2) is swapped as a whole with A:(3). Figure 7.6(c-2) shows the tree after this first swap.
Now the seventh node will become (5+1), which triggers another swap with the eighth node.
Figure 7.6(c-3) shows the Huffman tree after this second swap.

The above example shows an update process that aims to maintain the sibling property
of the adaptive Huffman tree — the update of the tree sometimes requires more than one
swap. When this occurs, the swaps should be executed in multiple steps in a “bottom-up”
manner, starting from the lowest level where a swap is needed. In other words, the update
is carried out sequentially: tree nodes are examnined in order, and swaps are made whenever
necessary.

To clearly illustrate more implementation details, let’s examine another example, Here,
we show exactly what bits are sent, as opposed to simply stating how the tree is updated.

EXAMPLE 7.1 Adaptive Huffman Coding for Symbol String AADCCDD

Let’s assnme that the initial code assignment for both the encoder and decoder simply
follows the ASCII order for the 26 symbols in an alphabet, A through Z, as Table 7.3
shows. To improve the implementation of the algorithm, we adopt an additional rule: if any
character/symbol is to be sent the first time, it must be preceded by a special symbol, NEW.
The initial code for NEW is 0. The count for NEW is always kept as O (the count is never
increased); hence it is always denoted as NEW:(0) in Figure 7.7.

Figure 7.7 shows the Huffman tree after cach step. Initially, there is no tree. For the first
A, 0 for NEW and the initial code 00001 for A are sent. Afterward, the tree is built and
shown as the first one, labeled A. Now both the encoder and decoder have constructed the
same first tree, from which it can be seen that the code for the second A is 1. The code sent
is thus 1.

After the second A, the tree is updafted, shown labeled as AA. The updates after receiving
D and C are similar. More subtrees are spawned, and the code for NEW is getting longer
— from 0 to 00 to 000.

TABLE 7.3: Initial code assignment for AADCCDD using adaptive Huffman coding.

Initial Code
NEW: 0
A: 00001
© B: 00010
C: 00011
D: 00100

180 Chapter7 Lossless Compression Algorithms

(1) @ ©)]

NEW:(0) A1) NEW:(0) A:2)
NEW:(0) D:()
“A’, &(AA,, ((AAD!?

NEW:(0) Cx(1) NEW:(0) C:(141) NEW:(0) D:()
“AADC” “AADCC” step 1 “AADCC” step 2

NEW:(0) Dy(1) NEW:(0) D:(2) NEW:(0) A2
“AADCC” step 3 “AADCCD” “AADCCDD”

FIGURE 7.7: Adaptive Huffman tree for AADCCDD.

From AADC to AADCC takes two swaps. To illustrate the update process clearly, this
is shown in three steps, with the required swaps again indicated by arrows.

e AADCC Step 1. The frequency count for C is increased from 1 to 1 + 1 = 2; this
necessitates its swap with D:(1).

e AADCG Step 2. After the swap between C and D, the count of the parent node of
C:(2) will be increased from 2 to 2 4 1 = 3; this requires its swap with A:(2).

e AADCC Step 3. The swap between A and the parent of C is completed.

Table 7.4 summarizes the sequence of symbols and code (zeros and ones) being sent to
the decoder. :

Section 7.5 Dictionary-Based Coding 181

TABLE 7.4: Sequence of symbols and codes sent to the decoder

[symbol [NEw| A |[a[new] b |new| ¢ [c Db | D
| Code o |oooot| 1| o |ootoo| oo | ooott | oot | 101 | 101

It is important to emphasize that the code for a particular symbol often changes during
the adaptive Huffman coding process. The more frequent the symbol up to the moment, the
shorter the code. For example, after AADCCDD, when the character D overtakes A as the
most frequent symbol, its code changes from 101 to 0. This is of course fundamental for the
adaptive algorithm — codes are reassigned dynamically according to the new probability
distribution of the symbols.

The “Squeeze Page” on this book’s web site provides a Java applet for adaptive Huffman
coding that should aid you in learning this algorithm. .

7.5 DICTIONARY-BASED CODING

The Lempel-Ziv-Welch (LZW) algorithm employs an adaptive, dictionary-based compres-
sion technique. Unlike variable-length coding, in which the lengths of the codewords are
different, LZW uses fixed-length codewords to represent variable-length strings of sym-
bols/characters that commonly occur together, such as words in English text.

As in the other adaptive compression techniques, the LZW encoder and decoder builds
up the same dictionary dynamically while receiving the data— the encoder and the decoder
both develop the same dictionary. Since a single code can now represent more than one
symbol/character, data compression is realized.

LZW proceeds by placing longer and longer repeated entries into a dictionary, then
emitting the code for an element rather than the string itself,, if the element has already been
placed in the dictionary. The predecessors of LZW are 1.Z77 [9] and L.Z78 [10], due to Jacob
Ziv and Abraham Lempel in 1977 and 1978. Terry Welch [11] improved the technique in
1984. LZW is used in many applications, such as UNIX compress, GIF for images, V.42
bis for modems, and others.

ALGORITHM 7.2 LZW COMPRESSION

BEGIN
s = next input character;
while not EOF

{

¢ = next input character;

if s + ¢ exists in the dictionary
S =5 + C;

182 Chapter 7 Lossless Compression Algorithms

else
{
output the code for s;
add string s + ¢ to the dictionary with a new code;

s = cC;
}
}
output the code for s;

END

EXAMPLE 7.2 LZW Compression for String ABABBABCABABBA

Let’s start with a very simple dictionary (also referred to as a string table), initially containing
only three characters, with codes as follows:

code string
1 A
2 B
3 C

Now if the input string is ABABBABCABABBA, the LZW compression algorithm works

as follows:
s c output code string
1 A
2 B
3 C
A B 1 4 AB’
B A 2 5 BA
A B
AB B 4 6 ABB
B A
BA B 5 7 BAB
, B C 2 8 BC
C A 3 9 CA
A B
AB A 4 10 ABA
A B
AB B
ARBB A 6 11 ABBA

»
53]
o
ol
=

Section 7.5 Dictionary-Based Coding 183

The output codes are 124 523 4 6 1. Instead of 14 characters, only 9 codes need to be
sent. If we assume each character or code is transmitted as a byte, that is quite a saving (the
compression ratio would be 14/9 ='1.56). (Remember, the LZW is an adaptive algorithm,
in which the encoder and decoder independently build their own string tables. Hence, there
is no overhead involving transmitting the string table.)

Obviously, for our illustration the above example is replete with a great deal of redundancy
in the input string, which is why it achieves compression so quickly. In general, savings for
LZW would not come until the text is more than a few hundred bytes long.

The above LZW algorithm is simple, and it makes no effort in selecting optimal new
strings to enter into its dictionary. As a result, its string table grows rapidly, as illustrated
above. A typical LZW implementation for textual data uses a 12-bit codelength. Hence,
its dictionary can comain up (v 4,096 entries, with the first 256 (0-255) entries being
ASCII codes. If we take this into account, the above compression ratio is reduced to
(14 x 8)/(9 x 12y = 1.04,

ALGORITHM 7.3 LZW DECOMPRESSION (SIMPLE VERSION)

BEGIN
s = NIL;
while not EOF
{
k = next input code;
entry = dictionary entry for k;
output entry;
if (s != NIL)
add string s + entry[0] to dictionary
with a new code;
s = entry;
}
END

EXAMPLE 7.3 LZW decompressjon for string ABABBABCABABBA

Input codes to the decoder are 1 24 523 4 6 1. The initial string table is identical to what
is used by the encoder.
The LZW decompression algorithm then works as follows:

s k entry/output code string
1 A
2 B
3 C

184 Chapter?7

Lossless Compression Algorithms

A 2 B 4 AB

B 4 AB 5 BA

AB 5 BA 6 ABB

BA 2 B 7 BAB

B 3 C 8 BC

C 4 AB 9 CA

AB 6 ARR 10 ABA

ABB 1 A 11 ABBA
A EOF

Apparently the output string is ABABBABCABABBA — a truly lossless result!

LZW Algorithm Details A more careful examination of the above simple version of
the LZW decompression algorithm will reveal a potential problem. In adaptively updating
the dictionaries, the encoder is sometimes ahead of the decoder. For example, after the
sequence ABABB, the encoder will output code 4 and create a dictionary entry with code
6 for the new string ABB.

On the decoder side, after receiving the code 4, the output will be AB, and the dictionary
is updated with code S for a new string, BA. This occurs several times in the above example,
such as after the encoder outputs another code 4, code 6. In a way, this is anticipated —
after all, it is a sequential process, and the encoder had to be ahead. In this example, this
did not cause problem.

‘Welch [11] points out that the simple version of the LZW decompression algorithm will
break down when the following scenario occurs. Assume that the input string is ABAB-
BABCABBABBAX....

The LZW encoder:
s o} output code string
1 A
2 B
3 C
A B 1 4 AB
B A 2 5 BA
A B
AB B 4 6 ABB
, B A
BA B 5 7 BABR
B C 2 8 BC
C A 3 9 CA
A B
AB B

Section 7.5 Dictionary-Based Coding 185

ABB A 6 10 ABBA
A B
AB B
ABRB A .
ABBA X 10 11 ABBAX

The sequence of output codes from the encoder (and hence the input codes for the decoder)
is124523610.....

The simple LZW decoder:
s k entry/output code string

1 A
2 B
3 C

NIL 1 A
A 2 B 4 AB
B 4 AB 5 BA
AB 5 BA 6 ABB
BA 2 B 7 BAB
B 3 C 8 BC
C 6 ABB 9 CA

ABB 10 ??9?

“?77” indicates that the decoder has encountered a difficulty: no dictionary eniry exists
for the last input code, 10. A closer examination reveals that code 10 was most recently
created at the encoder side, formed by a concatenation of Character, String, Character. In
this case, the character is A, and string is BB — that is, A + BB + A. Meanwhile, the
sequence of the output symbols from the encoder are A, BB, A, BB, A.

This example illustrates that whenever the sequence of symbols to be coded is Character,
String, Character, String, Character, and so on, the encoder will create a new code to
represent Character -- String + Character and use it right away, before the decoder has had
a chance to create it!

Fortunately, this is the only case in which the above simple LZW decompression algo-
rithm will fail. Also, when this occurs, the variable s = Character + String. A modified
version of the algorithm can handle this exceptional case by checking whether the input
code has been defined in the decoder’s dictionary. If not, it will simply assume that the code
represents the symbols s + s[0]; that is Character 4 String + Character.

186 Chapter7 Lossless Compression Algorithms

ALGORITHM 7.4 LZW DECOMPRESSION (MODIFIED)

BEGIN
s = NIL;
while not EOF
{
k = next input code;
entry = dictionary entry for k;

/* exception handler */
if (entry == NULL)
entry = s + s[0];

output entry;

if (s != NIL)
add string s + entry[0] to dictionary
with a new code;

s = entry;

END

Implementation requires some practical limit for the dictionary size — for example, a
maximum of 4,096 entries for GIF and 2,048 entries for V.42 bis. Nevertheless, this still
yields a 12-bit or 11-bit code length for LZW codes, which is longer than the word length
for the original data — 8-bit for ASCIL

In real applications, the code length / is kept in the range of [Iy, lnax]. For the UNIX
compress command, lp = 9 and /4y is by default 16. The dictionary initially has a size
of 2/o, When it is filled up, the code length will be increased by 1; this is allowed to repeat
until / = lygy. '

If the data to be compressed lacks any repetitive structure, the chance of using the new
codes in the dictionary entries could be low. Sometimes, this will lead to data expansion
instead of data reduction, since the code length is often longer than the word length of the
original data. To deal with this, V.42 bis, for example, has built in two modes: compressed
and transparent. The latter turns off compression and is invoked when data expansion is
detected. ,

Since the dictionary has a maximum size, once it reaches 2lmac entries, LZW loses its
adaptive power and becomes a static, dictionary-based technique. UNIX compress, for
example, will monitor its own performance at this point. It will simply flush and re-initialize
the dictionary when the compression ratio falls below a threshold. A better dictionary
management is perhaps to remove the LRU (least recently used) entries. V.42 bis will look
for any entry that is not a prefix to any other dictionary entry, because this indicates that the
code has not been used since its creation.

Section 7.6 Arithmetic Coding 187

7.6 ARITHMETIC CODING

Arithmetic coding is a more modern coding method that usually outperforms Huffman

coding in practice. It was fully developed in the late 1970s and 1980s [12, 13, 14]. The
initial idea of arithmetic coding was introduced in Shannon’s 1948 work [3]. Peter Elias
developed its first recursive implementation (which was not published but was mentioned in
Abramson’s 1963 book [15]). The method was further developed and described in Jelinek’s
1968 book [16]. Modermn arithmetic coding can be attributed to Pasco (1976) [17] and
Rissanen and Langdon (1979) [12].

Normally (in its non-extended mode), Huffman coding assigns each symbol a codeword
that has an integral bit length. As stated earlier, log, L indicates the amount of information
contained in the information source s;, which corresplonds to the number of bits needed to
represent it.

For example, when a particular symbol s; has a large probability (close to 1.0), log, L
will be close to 0, and assigning one bit to represent that symbol will be very costly. O gr
when the probabilities of all symbols can be expressed as 2%, where k is a positive integer,
would the average length of codewords be truly optimal — that is, I' = 5 (with 5 the entropy
of the information source, as defined in Eq. (7.3)). Apparently, [> 7 in most cases.

Although it is possible to group symbols into metasymbols for codeword assignment
(as in extended Huffman coding) to overcome the limitation of integral number of bits per
symbol, the increase in the resultant symbol table required by the Huffman encoder and
decoder would be formidable.

Arithmetic coding can treat the whole message as one unit. In practice, the input data
is usually broken up into chunks to avoid error propagation. However, in our presentation
below, we take a simplistic approach and include a terminator symbol.

A message is represented by a half-open interval [a, b) where a and b are real numbers
between O and 1. Initially, the interval is [0, 1). When the message becomes longer,
the length of the interval shortens, and the number of bits needed to represent the interval
increases. Suppose the alphabetis[A, B, C, D, E, F, $)], in which $ is a special symbol used
to terminate the message, and the known probability distributionis as shown in Figure 7.3(a).

ALGORITHM 7.5 ARITHMETIC CODING ENCODER

BEGIN
Jow = 0.0; high = 1.0; range = 1.0;

while (symbol != terminator)
{
get (symbol);
low = low + range * Range_low(symbol);
high = low + range * Range_high (symbol) ;
range = high - low;

}

output a code sc that low <= code < high;
END

188 Chapter7 Lossless Compression Algorithms

Symbol | Probability | Range
A 0.2 [0, 0.2)
B 0.1 [0.2,0.3)
C 0.2 [0.3,0.5)
D 0.05 [0.5, 0.55)
E 0.3 [0.55, 0.85)
F 0.05 [0.85, 0.9)
$ 0.1 [0.9, 1.0)
)]
1.0 05 0.34 334 03322 0.3322
o s s Ts . Ts s [s
ogs L F K i F TE T F .- TF “\\ [F
/I 1‘ \
/ ! \
E E ! | E E E E
/ ! \
/ It \
0.55 - ! + [S 4+ 4 - 5 Lo+
0'5 a1 _])_ 4’ N D Il 1 -D \\ 1 D \\ —1_ D ‘\ 1 D
! \ \ '
C C 1 C \ C \ C \ C
1 \ \ ‘\
0 3 T - - = T l T \ 1T \ T T
B . B | B V| B \ | B I
02 + R + v+ \ s
\\ \ \ i
A A A oA A A
\ \ \ v
pu A o — - — — o J_ . 5y = 5y _L
0 0.3 0.3 0.322 0.3286 0.33184
®)
Symbol low high range
0 1.0 1.0
0.3 0.5 0.2

0.30 0.34 0.04

0.322 0.334 0.012
03286 | 0.3322 | 0.0036
0.33184 | 0.33220 | 0.00036

o omm o0

L

(©

FIGURE 7.8: Arithmetic coding: encode symbols CAEES$: (a) probability distribution of
symbols; (b) graphical display of shrinking ranges; (¢) new low, high, and range generated.

Section 7.6 Arithmetic Coding 189

The encoding process is illustrated in Figure 7.8(b) and (c), in which a string of symbols
CAEES is encoded. Initially, low = 0, high = 1.0, and range = 1.0. After the first
symbol C, Range low(C) = 0.3, Range_high(C) = 0.5; so low = 0+ 1.0 x 0.3 = 0.3,
high =04 1.0 x 0.5 = 0.5. The new range-is now reduced to 0.2.

For clarity of illustration, the ever-shrinking ranges are enlarged in each step (indicated
by dashed lines) in Figure 7.8(b). After the second symbol A, low, high, and range are 0.30,
0.34, and 0.04. The process repeats itself until after the terminating symbol $ is received.
By then low and high are 0.33184 and 0.33220, respectively. It is apparent that finally we
have

range = Pc % ,PA X PEX Pgpx Ps=02x0.2x0.3x0.3x 0.1 =0.00036

The final step in encoding calls for generation of a number that falls within the range [low,
high). Although it is trivial to pick such a number in decimal, such as 0.33184, 0.33185, or
0.332 in the above example, it is less obvious how to do it with a binary fractional number.
The following algorithm will ensure that the shortest binary codeword is found if /ow and
high are the two ends of the range and low < high.

PROCEDURE 7.2 Generating Codeword for Encoder

BEGIN
code = 0;
k = 1;
while (value(code) < low)
{
assign 1 to the kth binary fraction bit;
if (value(code) > high)
replace the kth bit by 0;
k =k + 1;

END

For the above example, low = 0.33184, high = 0.3322, If we assign 1 to the first binary
fraction bit, it would be 0.1 in binary, and its decimal value(code) = value(0.1) = 0.5 >
high. Hence, we assign O to the first bit. Since value(0.0) = 0 < low, the while loop
continues.

Assigning 1 to the second bit makes a binary code 0.01 and value(0.01) = 0.25, which
is less than high, so it is accepted. Since il is still true that value(0.01) < low, the iteration
continues. Eventually, the binary codeword generated is 0.01010101, whichis 272 2%+
276 + 278 = 0.33203125.

It must be pointed out that we were lucky to have found a codeword of only 8 bits to
represent this sequence of symbols CAEES. In this case, log, PI—C -+ log, PLA + log, ?]E +

log, ﬁ + log, P%, =log, —m}, @ = log, 0——‘0(}036 = 11.44, which would suggest that it could
take 12 bits to encode a string of symbols like this.

190 Chapter 7 Lossless Compression Algorithms

It can be proven [2] that [log,(1/]]; Pi)1 is the upper bound. Namely, in the worst
case, the shortest codeword in arithmetic coding will require k bits to encode a sequence of
symbols, and

1 1
1= [logy; —-1 (7.8)

k=1
flog, range I1; Pi

where P; is the probability for symbol i and range is the final range generated by the encoder.
Apparently, when the length of the message is long, its range quickly becomes very

small, and hence log, ﬁg—e— becomes very large; the difference between log, range and

1083 7zng | is negligible.

Generally, Arithmetic Coding achieves better performance than Huffman coding, because
the former treats an entire sequence of symbols as one unit, whereas the latter has the
restriction of assigning an integral number of bits to each symbol. For example, Huffman
coding would require 12 bits for CAEES$, equaling the worst-case performance of Arithmetic
Coding.

Moreover, Huffman coding cannot always attain the upper bound illustrated in Eq. (7.8).
It can be shown (see Exercise 5) that if the alphabet is [A, B, C] and the known probability
distribution is P4 = 0.5, Pg = 0.4, Pc = 0.1, then for sending BBB, Huffman coding will
require 6 bits, which is more than [log, (1/]1; Ps)] = 4, whereas arithmeltic coding will
need only 4 bits,

ALGORITHM 7.6 ARITHMETIC CODING DECODER

BEGIN
get binary code and convert to decimal value = value(code) ;
Do
{
find a symbol s so that
Range_low(s) <= value < Range_high(s);
output s;
low = Rang low(s);
high = Range_high(s);
range = high - low;
value = [value - low]} / range;
}
Until symbol s is a terminator
END .

Table 7.5 illustrates the decoding process for the above example. Initially, value =
0.33203125. Since Range_low(C) = 0.3 < 0.33203125 < 0.5 = Range_high(C), the first
output symbol is C. This yields value = [0.33203125 — 0.3]/0.2 = 0.16015625, which in
turn determines that the second symbol is A. Eventually, value is 0.953125, which falls in
the range [0.9, 1.0) of the terminator $.

Section 7.7 Lossless Image Compression 191

TABLE 7.5: Arithmetic coding: decode symbols CAEE$

}_Value Outi)ut s ymblol Low | High | Range
0.33203125 C 03 0.5 0.2
0.16015625 A 0.0 0.2 0.2
0.80078125 E 0.55] 0.85 03
0.8359375 E 0.55 | 0.85 0.3
0.953125 $ 0.9 1.0 0.1

The algorithm described previously has a subtle implementation difficulty. When the
intervals shrink, we need to use very high-precision numbers to do encoding. This makes
practical implementation of this algorithm infeasible. Fortunately, it is possible to rescale
the intervals and use only integer arithmetic for a practical implementation [18].

In the above discussion, a special symbol, $, is used as a terminator of the string of
symbols. This is analogous to sending end-of-line (EOL) in image transmission. In con-
ventional compression applications, no terminator symbol is needed, as the encoder simply
codes all symbols from the input. However, if the transmission channel/network is noisy
(lossy), the protection of having a terminator (or EOL) symbol is crucial for the decoder to
regain synchronization with the encoder.

The coding of the EOL symbol itself is an interesting problem. Usually, EOL ends up
being relatively long. Lei et al. [19] address some of these issues and propose an algorithm
that controls the length of the EOL codeword it generates.

7.7 LOSSLESS IMAGE COMPRESSION

One of the most commonly used compression techniques in multimedia data compression
is differential coding. The basis of data reduction in differential coding is the redundancy
in consecutive symbols in a datastream. Recall that we considered lossless differential
coding in Chapter 6, when we examined how audio must be dealt with via subtraction from
predicted values. Audio is a signal indexed by one dimension, time. Here we consider
how to apply the lessons learned from audio to the context of digital image signals that are
indexed by two, spatial, dimensions (x, y).

7.7.1 Differential Coding of Images

Let’s consider differential coding in the context of digital images. In a sense, we move from
signals with domain in one dimension to signals indexed by numbers in two dimensions
(x, y) — the rows and columns of an image. Later, we'll look at video signals. These are
even more complex, in that they are indexed by space and time (x, y, £).

Because of the continuity of the physical world, the gray-level intensities (or color) of
background and foreground objects in images tend to change relatively slowly across the
image frame. Since we were dealing with signals in the time domain for audio, practitioners
generally refer to images as signals in the spatial domdin. The generally slowly changing

192

Chapter 7 Lossless Compression Algorithms

0 50 100 150 200 250 -80-60-40-20 0 20 40 60 80
(© @

FIGURE 7.9: Distributions for original versus derivative images. (a,b) original gray-level
image and its partial derivative image; (c,d) histograms for original and derivative images.
This figure uses a commonly employed image called Barb.

nature of imagery spatially produces a high likelihood that neighboring pixels will have
similar intensity values. Given an original image I (x, y), using a simple difference operator
we can define a difference image d(x, y) as follows:

dix,y) =1(x,y) —I(x—1,y) _ (7.9

This is a simple approximation of a partial differential operator 3/8x applied to an image
defined in terms of integer values of x and y.

Another approach is to use the discrete version of the 2D Laplacian operator to define a
difference image d(x, y) as

dix,y) =4I,)~ {(x,y—D—I(x,y+D-Ix+1,y)—-Ix—-1,y (7.10)

In both caseé, the difference image will have a histogram as in Figure 7.9(d), derived from
the d (v, y) partial derivative image in Figure 7.9(b) for the original image I in Figure 7.9(a).
Notice that the histogram for I is much broader, as in Figure 7.9(c). It can be shown that
image I has larger entropy than image d, since it has a more even distribution in its intensity
values. Consequently, Huffman coding or some other variable-length coding scheme will
produce shorter bit-length codewords for the difference image. Compression will work
better on a difference image.

Section 7.7 Lossless Image Compression 193

FIGURE 7.10: Neighboring pixels for predictors in lossless JPEG. Note that any of A, B,
or C has already been decoded before it is used in the predictor, on the decoder side of an
encode/decode cycle.

7.7.2 Lossless JPEG

Lossless JPEG is a special case of the JPEG image compression. It differs drastically from
other JPEG modes in that the algorithm has no lossy steps. Thus we treat it here and consider
the more used JPEG methods in Chapter 9. Lossless JPEG is invoked when the user selects
a 100% quality factor in an image tool. Essentially, lossless JPEG is included in the JPEG
compression standard simply for completeness.

The following predictive method is applied on the unprocessed original image (or each
color band of the original color image). It essentially involves two steps: forming a differ-
ential prediction and encoding.

1. A predictor combines the values of up to three neighboring pixels as the predicted
value for the current pixel, indicated by X in Figure 7.10. The predictor can use any
one of the seven schemes listed in Table 7.6. If predictor P1 is used, the neighboring
intensity value A will be adopted as the predicted intensity of the current pixel; if

TABLE 7.6: Predictors for lossless JPEG

Predictor Prediction
P1 A
P2 B
P3 C
[P4’ A+B-C
P5 A+B-0C)/2
P6 B+(A-C)/2
P7 (A+B)/2

194 Chapter 7 Lossless Compression Algorithms

TABLE 7.7: Comparison of lossless JPEG with other lossless compression programs

rCompression progranj Compression ratio
Lena | Football | F-18 | Flowers
Lossless JPEG 145 1.54 2.29 1.26
Optimal lossless JPEG 1.49 1.67 2.71 1.33
compress (LZW) 0.86 1.24 2.21 0.87
gzip (LZ77) 1.08 1.36 3.10 1.05
gzip-9 (optimal LZ77) 1.08 1.36 3.13 1.05
pack (Huffman coding) | 1.02 1.12 1.19 1.00

predictor P4 is used, the current pixel value is derived from the three neighboring
pixels as A + B — C; and so on.

2. The encoder compares the prediction with the actual pixel value at position X and

_1— encodes the difference using one of the lossless compression techniques we have

discussed, such as the Huffian coding scheme.

Since prediction must be based on previously encoded neighbors, the very first pixel in
the image 7 (0, 0) will have to simply use its own value. The pixels in the first row always
use predictor Pi, and those in the first column always use P2.

Lossless JPEG usually yields a relatively low compression ratio, which renders it im-
practical for most multimedia applications. An empirical comparisonusing some 20 images
indicates that the compression ratio for lossless JPEG with any one of the seven predictors
ranges from 1.0 to 3.0, with an average of around 2.0. Predictors 4 to 7 that consider neigh-
boring nodes in both horizontal and vertical dimensions offer slighily better compression
(approximately 0.2 to 0.5 higher) than predictors 1 to 3.

Table 7.7 shows a comparison of the compression ratio for several lossless compression
techniques using test images Lena, football, F-18, and flowers. These standard images
used for many purposes in imaging work are shown on Lhe textbook web site in the Further
Exploration section for this chapter.

This chapter has been devoted to the discussion of lossless compression algorithms. It
should be apparent that their compression ratio is generally limited (with a maximum at
about 2 to 3). However, many of the multimedia applications we will address in the next
several chapters require a much higher compression ratio. This is accomplished by lossy
compression schemes.

7.8 FURTHER EXPLORATION

Mark Nelson’s book [1] is a standard reference on data compression, as is the text by Khalid
Sayood [2].

The Further Exploration section of the text web site for this chapter provides a set of web
resources for lossless compression, including

Section 7.9 Exercises 195

An excellent resource for data compression compiled by Mark Nelson that includes
libraries, documentations, and source code for Huffman Coding, Adaptive Huffman
Coding, LZW, Arithmetic Coding, and so on.

Source code for Adaptive Arithmetic Coding

The Theory of Data Compression web page, which introduces basic theories behind
both lossless and lossy data compression. Shannon’s original 1948 paper on infor-
mation theory can be downloaded from this site as well.

The FAQ for the comp . compression and comp . compression.research
groups. This FAQ answers most of the commonly asked questions about data com-
pression in general.

A set of applets for lossless compression that effectively show interactive demonstra-
tions of Adaptive Huffman, LZW, and so on. (Impressively, this web page is the fruit
of a student’s final project in a third-year undergraduate multimedia course based on
the material in this text.)

A good introduction to Arithmetic Coding.

Grayscale testimages £-18 . bup, flowers . bmp, football . bmp, lena . bmp.

7.9 EXERCISES

1.

2.

Suppose eight characters have a distribution A:(1), B:(1), C:(1), D:(2), E:(3), F:(5),
G:(5), 11:(10). Draw a Huffman tree for this distribution. (Because the algorithm may
group subtrees with equal probability in a different order, your answer is not strictly
unique.)
(a) What is the entropy (7)) of the image below, where numbers (0, 20, 50, 99)
denote the gray-level intensities?

99 99 99 99 99 99 99 99
20 20 20 20 20 20 20 20
6 0 0 0 O
50 50 50 50 O
50 50 50 50 O
50 sO0 S0 50 O
50 50 50 50 O
0 0 0 0 O

OO OO COo
OO oo o0
[N ol Nl N

(b) Show step by step how to construct the Huffman tree to encode the above four
intensity values in this image. Show the resulting code for each intensity value.

(c) What is the average number of bits needed for each pixel, using your Huffman
code? How does it compare to n?

196 Chapter7 Lossless Compression Algorithms

3. Consider an alphabet with two symbols A, B, with probability P(A) = x and P(B) =
1—x.

(a) Plot the entropy as a function of x. You might want to use log,(3) = 1.6,
log, (7) = 2.8.

(b) Discuss why it must be the case that if the probability of the two symbols is
1/2 | € and 1/2 — ¢, with small ¢, the entropy is less than the maximum.

(c) Generalize the above result by showing that, for a source generating N symbols,
the entropy is maximum when the symbols are all equiprobable.

(d) As asmall programming project, write code to verify the conclusions above.

4. Extended Huffman Coding assigns one codeword to each group of k symbols. Why is
average(l) (the average number of bits for each symbol) still no less than the entropy
n as indicated in equation (7.7)?
5. (a) What are the advantages and disadvantages of Arithmetic Coding as compared
to Huffman Coding?

(b) Suppose the alphabet is [A, B, C], and the known probability distribution is
Py = 0.5, Pg = 0.4, Pc = 0.1. For simplicity, let’s also assume that both
encoder and decoder know that the length of the messages is always 3, so there
is no need for a terminator.

i. How many bits are needed to encode the message BBB by Huffman
coding?

ii. How many bits are needed to encode the message BBB by arithmetic
coding?

6. (a) What are the advantages of Adaptive Huffman Coding compared to the original
Huffman Coding algorithm?

FIGURE 7.11: Adaptive Huffman tree.

Section 7.10 References 197

(b) Assnme that Adaptive Huffman Coding is used to code an information source §
with a vocabulary of four letters (a, b, c, d). Before any transmission, the initial
coding isa=00, b=01,¢ =10, d = 11. As in the example illustrated in Figure
7.7, a special symbol NEW will be sent before any letter if it is to be sent the
first time.

Figure 7.11 is the Adaptive Huffman tree after sending letters aabb. After

that, the additional bitstream received by the decoder for the next few letters is
01010010101.

1. What are the additional letters received?

ii. Draw the adaptive Huffman trees after each of the additional letters is
received.

7. Compare the rate of adaptation of adaptive Huffman coding and adaptive arithmetic
coding (see the textbbook web site for the latter). What prevents each method from
adapting to quick changes in source statistics?

8. Consider the dictionary-based LZW compression algorithm. Suppose the alphabet is
the set of symbols {0, 1}. Show the dictionary (symbol sets plus associated codes)
and output for LZW compression of the input

0110011

9. Implement Huffman coding, adaptive Huffman, arithmetic coding, and the LZW
coding algorithms using your favorite programming language. Generate at least three
types of statistically different artificial data sources to test your implementation of
these algorithms. Compare and comment on each algorithm’s performance in terms
of compression ratio for each type of data source.

7.10 REFERENCES
1 M. Nelson, The Data Compression Book, 2nd ed., New York: M&T Books, 1995.

2 K. Sayood, Introduction to Data Compression, 2nd ed., San Francisco: Morgan Kaufmann,
2000.

3 C.E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal,
27: 379423 and 623-656, 1948.

4 C.E. Shannon and W. Weaver, The Mathematical Theory of Communication, Champaign, IL:
University of Illinois Press, 1949.

5 R.C. Gonzalez and R.E. Woods, Digital Image Processing, 2nd ed., Upper Saddle River, NJ:
Prentice Hall, 2002.

6 R. Fano, Transmission of Infonnatio)z, Cambridge, MA: MIT Press, 1961.

7 D.A.Huffman, “A Method for the Construction of Minimum-Redundancy Codes,” Proceedings
of the IRE [Institute of Radio Engineers, now the IEEE], 40(9): 1098-1101, 1952.

8 T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, Cambridge, MA:
MIT Press, 1992.

198

Chapter 7 Lossless Compression Algorithms

9

10

11

12

13

14

15
16
17

13

19

J.Zivand A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE Trans-
actions on Information Theory, 23(3): 337-343, 1977.

J. Zivand A. Lempel, “Compression of Individual Sequences Via Variable-Rate Coding,” IEEE
Transactions on Information Theory, 24(5): 530-536, 1978.

T.A. Welch, “A Technique for High Performance Data Compression,” IEEE Computer, 17(6):
8-19, 1984.

J. Rissanen and G.G. Langdon, “Arithmetic Coding,” /BM Journal of Research and Develop-
ment, 23(2): 149-162, 1979.

I.H. Witten, R.M. Neal, and J.G. Cleary, “Arithmetic Coding for Data Compression,” Commu-
nications of the ACM, 30(6): 520-540, 1987.

T.C. Bell, J.G. Cleary, and LH. Witten, Text Compression, Englewood Cliffs, NJ, Prentice Hall,
1990,

N. Abramson, Information Theory and Coding, New York: McGraw-Hill, 1963.
E Jelinek, Probabilistic Information Theory, New York: McGraw-Hill, 1968.

R. Pasco, “Source Coding Algorithms for Data Compression,” Ph.D. diss., Department of
Electrical Engineering, Stanford University, 1976.

P. G. Howard and J. S. Vitter, “Practical Iinplementation of Arithmetic Coding,” Image and
Text Compression, ed. J. A. Storer, Boston: Kluwer Academic Publishers, 1992, 85-112.

S.M. Lei and M.T. Sun, “An Entropy Coding System for Digital HDTV Applications,” JEEE
Transactions on Circuits and Systems for Video Technology, 1(1): 147-154, 1991.

CHAPTER 8

Lossy Compression Algorithms

In this chapter, we consider lossy compression methods. Since information loss implies
some tradeoff between error and bitrate, we first consider measures of distortion — e.g.,
squared error. Different quantizers are introduced, each of which has a different distortion
behavior. A discussion of transform coding leads into an introduction to the Discrete Cosine
Transform used in JPEG compression (see Chapter 9) and the Karhunen Loéve transform.
Another transform scheme, wavelet based coding, is then set out.

8.1 INTRODUCTION

As discussed in Chapter 7, the compression ratio for image data using lossless compression
techniques (e.g., Huffman Coding, Arithmetic Coding, LZW) is low when the image his-
togram is relatively flat. For iinage compression in multimedia applications, where a higher
compression ratio is required, lossy methods are usually adopted. Inlossy compression, the
compressed image is usually not the same as the original image but is meant to fonm a close
approximation to the original image perceptually. To quantitatively describe how close the
approximation is to the original data, some form of distortion measure is required.

8.2 DISTORTION MEASURES

A distortion measure is a mathematical quantity that specifies how close an approximation
is to its original, using some distortion criteria. When looking at compressed data, it is
natural to think of the distortion in terms of the numerical difference between the original
data and the reconstracted data. However, when the data to be compressed is an image,
such a measure may not yield the intended result.

For example, if the reconstructed iinage is the same as original image except that it is
shifted to the right by one vertical scan line, an average human observer would have a hard
time distinguishing it from the original and would therefore conclude that the distortion is
small. However, when the calculation is carried out numerically, we find a large distortion,
because of the large changes in individual pixels of the reconstructed image. The problem
is that we need a measure of perceptual distortion, not a more naive numerical apprc;aEH.
However, the study of perceptual distortions is beyond the scope of this book.

Of the many numerical distortion measures that have been defined, we present the three
most commonly used in image compression. If we are interested in the average pixel
difference, the mean square error (MSE) o2 is often used. It is defined as

1 N
0_2 = ﬁ Z(xn - yn)z (8.1

n=1

198

200 Chapter 8 Lossy Compression Algorithms

where x,,, yu, and N are the input data sequence, reconstructed data sequence, and length
of the data sequence, respectively.

If we are interested in the size of the error relative to the signal, we can measure the
signal-to-noise ratio (SNR) by taking the ratio of the average square of the original data
sequence and the mean square error (MSE), as discussed in Chapter 6. In decibel units (dB),
it is defined as

SNR = 10logyy = (8.2)
%4
where 03’ is the average square value of the original data sequence and o} is the MSE.
Another commonly used measure for distortion is the peak-signal-to-noise ratio (PSNR),
which measures the size of the error relative to the peak value of the signal X peqr. Itis given
by
2

PSNR = 10logy, ”e"‘ (8.3)
d

8.3 THE RATE-DISTORTION THEORY

Lossy compression always involves a tradeoff between rate and distortion. Rate is the
average number of bits required to represent each source symbol. Within this framework,
the tradeoff between rate and distortion is represented in the form of a rate-distortion function
R(D).

Intuitively, for a given source and a given distortion measure, if D is a tolerable amount
of distortion, R(D) specifies the lowest rate at which the source data can be encoded while
keeping the distortion bounded above by D. Itis Itis easy to see that when D = 0, we have
a lossless compression of the source. The rate-distortion function is meant to describe a
fundamental limit for the performance of a coding algorithm and so can be used to evaluate
the performance of different algorithms.

Figure 8.1 shows a typical rate-distortion function. Notice that the minimum possible
rate at D = 0, no loss, is the entropy of the source data. The distortion corresponding to a
rate R(D) = 0 is the maximum amount of distortion incurred when “nothing” is coded.

Finding a closed-form analytic description of the rate-distortion function for a given
source is difficult, if not impossible. Gyorgy [1] presents analytic expressions of the rate-
distortion function for various sources. For sources for which an analytic solution caunot be
readily obtained, the rate-distortion function can be calculated numerically, using algorithms
developed by Arimoto [2] and Blahut [3].

8.4 QUANTIZATION

Quantization in some form is the heart of any lossy scheme. Without quantization, we
would indeed be losing little information. Here, we embark on a more detailed discussion
of quantization than in Section 6.3.2.

The source we are interested in compressing may contain a large number of distinct
output values (or even mﬁmte 1f analog). To efficiently represent tt 1he source output we

Section 8.4 Quantization 201

R(D)

H__

0 | »p
D max

FIGURE 8.1: Typical rate-distortion function.

Each algorithm (each guantizer) can be uniquely determined by its partition of the input
range, on the encoder side, and the set of output values, on the decoder side. The input and
output of each quantizer can be either scalar values or vector values, thus leading to sealar
quantizers and vector guantizers. In this scction, we examine the design of both uniform and

nonuniform scalar quantizers and briefly introduce the topic of vector quantization (VQ).

8.4.1 Uniform Scalar Quantization

A uniform scalar quantizer partitions the domain of input values into equally spaced intervals,
except possibly at the two outer intervals. The endpoints of partition intervals are called the
quantizer’s decision boundaries. The output or reconstruction value corresponding to each
interval is taken to be the midpoint of the interval. The length of each interval is referred
to as the step size, denoted by the symbol A. Uniform scalar quantizers are of two types:
midrise and niidtread. A midtread quantizer has zero as one of its output values, whereas
the midrise quantizer has a partition interval that brackets zero (see Figure 8.2). A midrise
quantizer is used with an even number of output levels, and a midtread quantizer with an
odd number.
A midtread quantizer is important when source data represents the zero value by fluc-
_tuating between small positive and negative numbers. Applying the midtread quantizer in
this case would produce an accurate and steady representation of the value zero. For the
special case A = 1, we can simply compute the output values for these quantizers as

Qmidri.re(l') = |-.1‘-|—0.5 (84)
Omidiread®x) = |x+0.5] (8.5)

202

Chapter 8 Lossy Compression Algorithms

b O(X) L O(X)
3.5
2.5
1,5
TR 2 3 4 . L+ 4 4 gy los 15 2535 45
T T { i] 1 T T T [>
-4 -3 2 4 1 x/A —4.5-3,5-2.5-1.5-05 X/A
L —1.0
-—1.5
- 2.0
- 2.5
- -3.0
3.5
- —4.0
(a) (b)

FIGURE 8.2; Uniform scalar quantizers: (a) midrise; (b) midtread.

The goal for the design of a successful uniform quantizer is to minimize the distortion for
a given source input with a desired number of output values. This can be done by adjusting
the step size A to match the input statistics.

Let’s examine the performance of an M level quantizer. Let B = {bg, by, ... , bar} be
the set of decision boundaries and ¥ = {y1, ¥2, --- , yar} be the set of reconstruction or
output values. Suppose the input is uniformly distributed in the interval [—Xax, Ximaxl]-
The rate of the quantizer is

R = [log, M (8.6)

That is, R is the number of bits required to code M things — in this case, the M output
levels. T T A

The step size A is given by

A = g_}_fﬂ (8.7)
M

since the entire’ range of input values is from — X4y 0 Xpex. For bounded input, the
quantization error caused by the quantizer is referred to as granular distortion. If the
quantizer replaces a whole range of values, from a maximum value to oo, and similarly for
negative values, that part of the distortion is called the overload distortion.

To get an overall figure for granular distortion, notice that decision boundaries b; for a
midrise quantizer are [(i — 1)A, iAl,i = 1.. M/2, covering positive data X (and another
half for negative X values). Output values y; are the midpoints iA — A/2,i = 1..M/2,

Section 8.4 Quantization 203

Error

m A2

FIGURE 8.3: Quantization error of a uniformly distributed source.

again just considering positive data. The total distortion is twice the sum over the positive
data, or

M
2. oria 2i—1 \? 1
D =2 E / (x - A) dx (8.8)
gran = (i—l)A 2 2Xmax

where we divide by the range of X to normalize to a value of at most 1.

Since the reconstruction values y; are the midpoints of each interval, the quantization
error must lie within the values [~ %, %]. Figure 8.3 is a graph of quantization error
for a uniformly distributed source. The quantization error in this case is also uniformly
distributed. Therefore, the average squared error is the same as the variance a} of the
quantization error calculated from just the interval [0, A] with error values in [—%, %].
The error value at x is e(x) = x — A /2, so the variance of errors is given by -

2 1 4 =2
oy = _A‘_/(; {e(x) —&)" dx

1' A - A 2
_ Zfo (_1-_5-0) dx (8.9)
A2

12

204 Chapter 8 Lossy Compression Algorithms

Similarly, the signal variance is a = 2Xmax)> / 12, so if the quantizer is n bits, M = 2",
then from Eq. (8.2) we have

o2
SQNR = 10logyy | —5
o

d
2Xmax)* 12
= 101 T il —
0810 (12 A2
2X max)?
— 10 lOglo (max) . 12 5
12 (2Xmax)
M
10log;g M? = 201 logyy2 (8.10)
6.02n (dB) (8.11)

Hence, we have rederived the formula (6.3) derived more simply in Section 6.1. From
Eq. (8.11), we have the important result that increasing one bit in the quantizer increases
the signal-to-quantization noise ratio by 6.02 dB. More sophisticated estimates of D result
from more sophisticated models of the probability distribution of errors.

8.4.2 Nonuniform Scalar Quantization

If the input source is not uniformly distributed, a uniform quantizer may be inefficient.
Increasing the number of decision levels within the region where the source is densely
distributed can effectively lower granular distortion. In addition, without having to in-
crease the total number of decision levels, we can enlarge the region in which the source is
sparsely distributed. Such nonuniform quantizers thus have nonuniformly defined decision
boundaries.

There are two common approaches for nonuniform quantization: the Lloyd-Max quan-
tizer and the companded quantizer, both introduced in Chapter 6.

Lloyd-Max Quantizer.* For a uniform quantizer, the total distortion is equal to the
granular distortion, as in Eq. (8.8). If the source distribution is not uniform, we must
explicitly consider its probability distribution (probability density function) fx(x). Now
we need the correct decision boundaries b; and reconstruction values y;, by solving for both
simultaneously. To do so, we plug variables b;, y; into a total distortion measure

M

gran = E/ \ -)’_, —*fX(\) dx (8.12)

’

Then we can minimize the total distortion by setting the derivative of Eq. (8.12) to zero.
Differentiating with respect to y; yields the set of reconstruction values

P yfy(x)d:
yy = B PO 13
fbj];l Sx(x)dx

Section 8.4 Quantization 205

This says that the optimal reconstruction value is the weighted centroid of the x interval.
Differentiating with respect to b; and setting the result to zero yields

Yi+r t ¥
2
This gives a decision boundary b; at the midpoint of two adjacent reconstruction values.

Solving these two equations simultaneously is carried out by iteration. The result is termed
the Lloyd-Max quantizer.

by = (8.14)

ALGORITHM 8.1 LLOYD-MAX QUANTIZATION

BEGIN
Choose initial level set yg
i=0
Repeat
Compute b; using Equation 8.14
i=1+1
Compute y; using Equation 8.13
Until |y —yi-1l < €
END

Starting with an initial guess of the optimal reconstruction levels, the algorithm above
iteratively estimates the optimal boundaries, based on the current estimate of the recon-
struction levels. It then updates the current estimate of the reconstruction levels, using the
newly computed boundary information. The process is repeated uatil the reconstruction
levels converge. For an example of the algorithm in operation, see Exercise 3.

Companded Quantizer. In companded quantization, the input is mapped by a com-
pressor function G and then quantized using a uniform quantizer. After transmission, the
quantized values are mapped back using an expander function G~ 1. The block diagram
for the companding process is shown in Figure 8.4, where X is the quantized version of X.
If the input source is bounded by Xy, then any nonuniform quantizer can be represented
as a companded quantizer. The two commonly used companders are the p-law and A-law
companders (Section 6.1). :

X > AV ‘.‘ Uniform quanﬁzer > /}/ >

G G-!

P>

FIGURE 8.4: Companded quantization.

206 Chapter8 Lossy Compression Algorithms

P>

Encoder ' Decoder
| i e - — |
| |] !
! Find closest I I X
: code vector | | | : Table lookup ‘[
! * ! 1 ", ;
! |
I I AN !
! 2 1 (2)
B l HRE !
S E ‘ | [4 .

§

X : g 1[Index ! 2 :
1 \ X !
—y: 7 : > - : 2 ll -
! 8 I 1 8)

{

P : L[!
o BN U
. ! g
: 3 | ! ; :
| \'\—/~\ \) \'\/\ .
| 1 | I
I ! LN |
1) X :
{ | [|

FIGURE 8.5: Basic vector quantization procedure.

8.4.3 Vector Quantization*

One of the fundamental ideas in Shannon’s original work on information theory is that any
compression system performs better if it operates on vectors or groups of samples rather than
on individual symbols or samples. We can form vectors of input samples by concatenating
a number of consecutive samples into a single vector. For example, an input vector might
be a segment of a speech sample, a group of consecutive pixels in an image, or a chunk of
data in any other format.

The idea behind vector quantization (VQ) is similar to that of scalar quantization but
extended into multiple dimensions. Instead of representing values within an interval in
one-dimensional space by a reconstruction value, as in scalar quantization, in VQ an n-
component code vector represents vectors that lie within a region in n-dimensional space.
A collection of these code vectors forms the codebook for the vector quantizer.

Since there is no implicit ordering of code vectors, as there is in the one-dimensional
case, an index set is also needed to index into the codebook. Figure 8.5 shows the hasic
vector quantization procedure. In the diagram, the encoder finds the closest code vector to
the input vector and outputs the associated index. On the decoder side, exactly the same
codebook is used. When the coded index of the input vector is received, a simple table
lookup is performed to determine the reconstruction vector.

Finding the appropriate codebook and searching for the closest code vector at the encoder
end may require considerable computational resources. However, the decoder can execute
quickly, since only a constant time operation is needed to obtain the reconstruction. Because
of this property, VQ is attractive for systems with a lot of resources at the encoder end while

Section 8.5 Transform Coding 207

the decoder has only limited resources, and the need is for quick execution time. Most
multimedia applications fall into this category.

8.5 TRANSFORM CODING

L

8.5.1

From basic principles of information theory, we know that coding vectors is more efficient
than coding scalars (see Section 7.4.2). To carry out such an intention, we need to group
blocks of consecutive samples from the source input into vectors.

Let X = {x1,x3, ... ,xz)7 be a vector of samples. Whether our input data is an image,
a piece of music, an audio or video clip, or even a piece of text, there is a good chance that a
substantial amount of correlation is inherent among neighboring samples x;. The rationale
behind transform coding is that if Y is the result of a linear transform T of the input vector
‘(in such a way that the components of Y are much less correlated, then Y. can be coded
more efﬁc1ent1y than X.

For example, if most information in an RGB image is contained in a main axis, rotating so
that this direction is the first component means that luminance can be compressed differently
from color information. This will approximate the luminance channel in the eye.

In higher dimensions than three, if most information is accurately described by the
first few components of a transformed vector, the remaining components can be coarsely
quantized, or even sel to zero, with little signal distortion. The more decorrelated — that

- is, the less effect one dimension has on another (the more orthogonal the axes), the more

chance we have of dealing differently with the axes that store relatively minor amounts
of information without affecting reasonably accurate reconstruction of the signal from its
quantized or truncated transform coefficients.

Generally, the transform T itself does not compress any data. The compression comes
f[om the processing and quantization of the components of Y. In this section, we will
study the Discrete Cosine Transform (DCT) as a tool to decorrelate the input signal. We
will also examine the Karhunen—Logve Transform (KLT), which optimally decorrelates the
components of the input X.

Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT), a widely used transform coding technique, is able
to perform decorrelation of the input signal in a data-independent manner. Because of this,
it has gained tremendous popularity. We will examine the definition of the DCT and discuss
some of its properties, in particular the relationship between it and the more familiar Discrete
Fourier Transform (DFT).

Definition of DCT. Let’s start with the two-dimensional DCT. Given a function f (i, j)
over two integer variables i and j (a piece of an image), the 2D DCT transforms it into a

. new function F(u, v), with integer 1 and v running over the same range as i and j. The

general definition of the transform is
M-1N-1
2Cw) C(v) Z Z (27 -l- I)IU[(2] + Dur

Fu,vw=—1—r——
) MN i=0 j=0 2N

FAUN) (8.15)

208 Chapter 8 Lossy Compression Algorithms
where i,u=0,1,... , M—1,j,v=0,1,..., N — 1, and the constants C(x) and C(v)
are determined by

L2 fg =0,

C(E):[% otherwise. ®.16)

Tn the TPEG image compression standard (see Chapter 9), an image block is defined to
have dimension M = N = 8. Therefore, the definitions for the 2D DCT and its inverse
(IDCT) in this case are as follows:

2D Discrete Cosine Transform (2D DCT).

Fu,v) =

Cu) C(v) Z Z (21 + l)u:'r (2J + 1)”” 14,), (8.17)

i=0 j=0

where!, j, 1, v = 0,1, ..., 7, and the constants C (i) and C (v) are determined by Eq. (8.16).

2D Inverse Discrete Cosine Transform (2D IDCT). The inverse function is almost
the same, with the roles of f(I, j)} and F (i, v) reversed, except that now C(u)C (v) must
stand inside the sums:

7 7 . .
fan=%" CwClvy 2 t61)z-m cos 2 J;61)un

Fu, v) (8.18)
u=0 v=0

where i, j,u,v=01,...,7.
The 2D transforms are applicable to 2D signals, such as digital images. As shown below,
the 1D version of the DCT and IDCT is similar to the 2D version.

1D Discrete Cosine Transform (1D DCT).

7 .
F(u):-?ZCOSM

_ e — . (8.19)
i=0
wherei =0,1,...,7,0=0,1,...,7.
1D Inverse Discrete Cosine Transform (1D-IDCT).
! 7 .
_ Cu) Qi + Dun
= R 2
fay =3 o Cos S F () (8.20)

u=0

wherei =0,1,...,7,u=0,1,...,7.

One-Dimensional DCT. Let’s examine the DCT for a one-dimensional signal; almost
all concepts are readily extensible to the 2D DCT.

Section 8.5 Transform Coding 209

An electrical signal with constant magnitude is known as a DC (direct current) signal. A
-cornmon example is a battery that carries 1.5 or 9 volts DC. An electrical signal that changes
its magnitude periodically at a certain frequency is known as an AC (alternating current)
signal. A goodexample is the household electric power circuit, which carries electricity with
sinusoidal waveform at 110 volts AC, 60 Hz (or 220 volts, 50 Hz in many other countries).

Most real signals are more complex. Speech signals or a row of gray-level intensities
in a digital image are examples of such 1D signals. However, any signal can be expressed
as a sum of multiple signals that are sine or cosine waveforms at various amplitudes and
'frequcnmes This is known as Fourier analysis. The terms DC and AC, originating in
clectrical engineering, are carried over to describe these components of a signal (usually)
composed of one DC and several AC components.

If a cosine function is used, the process of determining the amplitudes of the AC and
DC components of the signal is called a Cosine Transform, and the integer indices make
it a Discrete Cosine Transform. When u = 0, Eq. (8.19) yields the DC coefficient; when
1 =1,0r2,..,upto7, it yields the first or second, etc., up to the seventh AC coefficient.

Eqg. (8.20) shows the Inverse Discrete Cosine Transform. This uses a sum of the products
of the DC orAC coefﬁcients and the cosine funcnons toreconstruct (recompose) the function

In short the role of the DCT is to dccompose the ongmal signal into its DC and AC
components the role of the IDCT is to reconstruct (recompose) the signal. The DCT and
IDCT use the same set of cosine functions; they are known as basis functions. Figure 8.6
shows the family of eight 1D DCT basis functions: « = 0..7.

The DCT enables a new means of signal processing and analysis in the frequency domain.
‘We mean to analyze blocks of eight pixels in an image, but we can begin by considering time-
dependent signals, rather than space-dependent ones (since time-signal analysis is where
the method originates).

Suppose f (i) represents a signal that changes with time i (we will not be bothered here
by the convention that time is usually denoted as ¢). The 1D DCT transforms f (i), which
is in the fime domain, to F (1), which is in the frequency domain. The coefficients F (u) are
known as the frequency responses and form the frequency spectrum of f(i).

Let’s use some examples to illustrate frequency responses.

EXAMPLE 8.1

The left side of Figure 8.7(a) shows a DC signal with a magnitude of 100, i.e., f1 (i) = 100.
Since we are examining the Discrefe Cosine Transform, the input signal is discrete, and its
domain is [0, 7].

When 1 = 0, regardless of the i value, all the cosine terms in Eq. (8.19) become cos 0,
which equals 1. Taking into account that C(0) = /2/2, F1(0) is given by

2
O = Ziz-(l-IOO+1-100+1~100+1-100

+1-100+1.100+41-100+ 1 -100)
283

&

210 Chapter 8

Lossy Compression Algorithms

‘The Oth basis function (u = 0)

The 1st basis function (1= 1)

1.0 ™ 1.0
0.5 0.5
st hestiloa,
o o5 007
-1.0 -1.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
i i
The 2nd basis function (1 =2) The 3rd basis function (1 = 3)
1.0 T 1.0
0.5 0.5
o H e nen o DH o 18 oo DH oo
Inl o5 [il
-1.0 ~1.0
0 1 2 5 6 7 0 1 2 3 4 5 6 7
i i
The 4th basis function (u = 4) The 5th basis function (z = 5)
1.0 1.0 —
0.5 0.5
L1 I 1N 1 I S | R
ws| O 00 s U 1 []
-1.0 -1.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
i i
The 6th basis function (4 = 6) The 7th basis function (u=7)
1.0 1.0
0.5 H 0.5 D
o LO... HU o- L. 0 L0 . U o
] [
1.0 -1.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5
i i
FIGURE 8.6: The 1D DCT basis functions,
When u = 1, F((u) is as below. Because cos 16 = —Cos 1156 , COS 31’6' —COoS %’, etc.
and C(1) = 1, we have
Fi(1) 1 (co - 100 + 3m <100 + o7 -100 + cos Tz - 100
g = —. cos — Ccos — —
! 2 16 16 16 16
ki 11w 137 157
cos — - 100 + cos — - 100 + cos —— - 100 + cos —— - 100
Hoos g - 100+ cos 7 - 100+ cos +eos - 100)

0

Section 8.5 Transform Coding

Signal f(i) that does not change DCT output Fj(u)
200 400
150 300
100 200
0 . 0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
i u
(a)
A changing signal f;(i) 400 DCT output Fy(u)

that has an AC component

30 U U 200
ol 0 g g ol
~50 D ﬂ 100
-100 0
01 2 3 4 5 6 7 0 1 2 3 4 5 6 1
i u
(®)
DCT cutput F3()
. oo . 400
Signal f3(1) = f,()) + fo(D)
200 300
150
200
100 H H 0 H
50 100
0 R A 1
o 1 2 3 4 5 6 17 0 1 2 3 4 S5 6 7
i u
(c)
An arbitrary signal f{r) DCT output F(u)
100 200
50 100
ol oo o l0™lo 0. .ala.
=50 |:| D -100
-100 =200 -
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
i 1
@

211

FIGURE 8.7: Examples of 1D Discrete Cosine Transform: (a) a DC signal f1(i); (b) an AC
signal fo(i); (¢) f3() = f1(i) + f2(); and (d) an arbitrary signal ().

Similarly, it can be shown that F1(2) = F1(3) = ... = Fy(7) = 0. The 1D-DCT result
F (u) for this DC signal fj (i) is depicted on the right side of Figure 8.7(a) — only 2 DC

(i.e., first) component of F is nonzero.

212 Chapter 8 Lossy Compression Algorithms

EXAMPLE 8.2

The left side of Figure 8.7(b) shows a discrete cosine signal f,(i). Incidentally (or, rather,
purposely), it has the same frequency and phase as the second cosine basis function, and its
amplitude is 100.

Whenu = 0, again, all the cosine terms in Eq. (8.19) equal 1. Because cos % = —COSs 281,
cos 383 = — oS —Ssl, and so on, we have
2 3 5 7
) = E‘CZ -1 (100005% + IOOCOS—;T‘ + 100 cos —SE + 100 cos ?ﬂ
9 11 13 15
+ 100 cos = + 100 cos —= + 100 cos ~& -+ 100 cos —)
8 8 8 8
= 0

To calculate F (1), we first note that when 1 = 2, because cos 38’1 = sin %, we have

3
cos? % + cos? —g = cos? % + sin®];— =1
Similarly,
Sm n
2 2

- = =1

cos 3 + cos 2

o 117

2 2
cos“ — +cos" — = 1
8 + 8
13 1
cos? = + cos? 371 = 1
8 8
Then we end up with
F (2)- _ ! (c sﬂ cos]Ir +c053—n cosiﬂ— + cos i coséﬁ
e I TR 8 8 8 8
+ cos Tm 0s Iz —+ cos o cos o + cos 1n cos Lz
2 cos — - - . i
8 8 8 8 8 8
13 13 15 15
’ +cosTn~cosT”+cosTﬂ-cosTﬁ)-IOO

1
= 5‘(1+1+1+1)o100=200

We will not show the other derivations in detail. It turns out that F5(1) = F,(3) =
B@)=---=FRM=0

Section 8.5 Transform Coding 213

EXAMPLE 8.3

In the third row of Figure 8.7 the input signal to the DCT is now the sum of the previous
two signals — that is, f3(/) = fi(}) + f2(i). The output F (it) values are

F3(0) = 283,
F3(2) = 200,
B1) = BA)=FKW@=---=K1=0

Thus we discover that F3(u) = Fi(u) + F» ().

EXAMPLE 8.4

The fourth row of the figure shows an arbitrary (or at least relatively complex) input signal
(@) and its DCT output F (u):

fO@E=0.7: 8 —65 15 30 -56 35 90 60
F@)w=0.7: 69 —-49 74 11 16 117 44 -5

Note that in this more general case, all the DCT coefficients F(u) are nonzero and some
are negative.

From the above examples, the characteristics of the DCT can be summarized as follows:

1. The DCT produccs the frequency spectrum F(u) corresponding to the spatial signal

f.
In particular, the Oth DCT coefficient F(0) is the DC component of the signal f(i).

Up to a constant factor (i.e., % . %—5 .8 = 2.4/2in the ID DCT and ‘% . # . 464 =8
in the 2D DCT), F(0) equals the average magnitude of the signal. In Figure 8.7(a),
the average magnitude of the DC signal is obviously 100, and F(0) = 2+/2 x 100;
in Figure 8.7(b), the average magnitude of the AC signal is 0, and so is F(0); in
Figure 8.7(c), the average magnitude of f3(i) is apparently 100, and again we have
F(0) = 24/2 x 100.

The other seven DCT coefficients reflect the various changing (i.e., AC) components
of the signal f (i) at different frequencies. If we denote F(1) as AC1, F(2) as AC2,
..., F(7) as AC7, then ACl is the first AC component, which completes half a cycle
as a cosine function over [0, 7]; AC2 completes a full cycle; AC3 completes one and
one-half cycles; ..., and AC7, three and a half cycles. All these are, of course, due to
the cosine basis functions, which are arranged in exactly this manner. In other words,
the second basis function corresponds to AC1, the third corresponds to AC2, and so
on. In the example in Figure 8.7(b), since the signal f> (i) and the third basis function
have exactly the same cosine waveform, with identical frequency and phase, they will
reach the maximum (positive) and minimum (negative) values synchronously. As a
result, their products are always positive, and the sum of their products (#2(2) or AC2)

214 Chapter 8 Lossy Compression Algorithms

is large. It turns out that all other AC coefficients are zero, since f3(i) and all the
other basis functions happen to be orthogonal. (We will discuss orthogonality later in
this chapter.)
It should be pointed out that the DCT coefficients can easily take on negative values.
For DC, this occurs when the average of f (i) is less than zero. (For an image, this
never happens so the DC is nonnegative.) For AC, a special case occurs when f (i)
and some basis function have the same frequency but one of them happens to be half
a cycle behind — this yields a negative coefficient, possibly with a large magnitude.
In general, signals will look more Iike the one in Figure 8.7(d). Then f (i) will produce
many nonzero AC components, with the ones toward AC7 indicating higher frequency
content. A signal will have large (positive or negative) response in its high-frequency
components only when it alternates rapidly within the small range [0, 7].
As an example, if AC7 is a large positive number, this indicates that the signal f (i)
has a component that alternates synchronously with the eighth basis function — three
and half cycles. According to the Nyqist theorem, this is the highest frequency in
the signal that can be sampled with eight discrete values without significant loss and
aliasing.

2. The DCT is a linear transform.
In general, a transform 7 (or function) is linear, iff

T(ap+ Bg) =T (p)+ BT (), (8.21)

where o and § are constants, and p and ¢ are any functions, variables or constants.

From the definition in Eq. (8.19), this property can readily be proven for the DCT,
because it uses only simple arithmetic operations.

One-Dimensional Inverse DCT. Let’s finish the example in Figure 8.7(d) by showing
its inverse DCT (IDCT). Recall that F (1) contains the following:
Fa)(u=0..7: 69 —-49 74 11 16 117 44 -5

The 1D IDCT, as indicated in Eq. (8.20), can readily be implemented as a loop with eight
iterations, as illustrated in Figure 8.8.

Tteration 0: f(i) = €& . cos0- F(0) = {2 - 1-69 ~ 24.3.

Iteration 1: f(i) = £& - cos0 - F(0) + € . cos EHDT . F(1)
| m2434 L. (-49) - cos BEDT 4.3 245 . cos BHDT,

Iteration 2: f(i) = -@'COSO-F(O)—F%)‘-COS%E-F(1)+%21-COSQ‘:%[£‘F(2)
"2 24.3 - 24.5 - cos BHEDT 4 37 cos AT

e

Section 8.5 Transform Coding 215

After Oth iteration (DC) After st iteration (DC + ACI1)

100
50 _
P ¥ T O s N B R B [P o i B NI
-50
-100 —
0 1 2 3 4 5 6 o 1 2 3 4 5 6 17
i i
After 2nd iteration (DC + AC1 + AC2) After 3rd iteration (DC + AC1 + AC2 + AC3)
100 100
50 D 50 H
0 O .o, ——— e []I:l 0 DEI = g — 1 D .
—50 -50
—-100 -100
0 1 2 3 4 5 6 7 0 1 2 3 4 S 6 17

After 4th iteration (DC + ACL +. ..+ AC4) After Sth iteration (DC + ACL + . . . + ACS)

100 100
"0 1] =] |
s ol 0 0
-100 -
0 1 2 3 4 5 6 7 100 o 1 2 3 4 5 6 1
i i
After 6th iteration (DC + AC1 +. . . + AC6) % After 7th iteration (DC + AC1 +...+ AC7)

100 1

_53 U D o O “q 0. D s _58 H DGD DDHD

FIGURE 8.8: An example of 1D IDCT.

After iteration 0, f (i) has a constant value of approximately 24.3, which is the recovery

of the DC component in f (i); after iteration 1, f(i) ~ 24.3 — 24.5 - cos DT which is

the sum of the DC and first AC component; after iteration 2, f (i) reflects the sum of DC and
AC1 and AC2; and so on. As shown, the process of the sum-of-product in IDCT eventually
reconstructs (recomposes) the function f (i), which is approximately

f@O@E=0..7: 8 —65 15 30 =56 35 90 60

As it happens, even though we went from integer to integer via intermediate floats, we
recovered the signal exactly. This is not always true, but the answer is always close.

216 Chapter 8 Lossy Compression Algorithms

The Cosine Basis Functions For a better decomposition, the basis functions should
be orthogonal, so as to have the least redundancy amongst them.
Fuanctions B (i) and B, (i) are orthogonal if

D [Bp(i) Byl =0 if p#q (8.22)

Functions B, (i) and B, (i) are orthonormal if they are orthogonal and

Y [Bpi) B =1 if p=gq (8.23)

The orthonormal property is desirable. With this property, the signal is not amplified
during the transform. When the same basis function is used in both the transformation
and its inverse (sometimes called forward transform and backward transform), we will get
(approximately) the same signal back.

It can be shown that

7
@i+ pn @i+ 1)-gm]| _)
,-_E_g [cos 16 - COS T] = 0 if p#gq
7 . ,
Clp) @Qi+1D)-pr C(g) @Qi+1)-gnm e
,-=EO[> cos 16 * 7 ©0s 16] 1 if p=g¢g

The cosine basis functions in the DCT are indeed orthogonal. With the help of constants
C(p) and C(q) they are also orthonormal. (Now we understand why constants C (i) and
C(v) in the definitions of DCT and IDCT seemed to have taken some arbitrary values.)

Recall that because of the orthogonality, for f; (i) in Figure 8.7(b), only F3(2) (foru = 2)
has a nonzero output whereas all other DCT coefficients are zero. This is desirable for some
signal processing and analysis in the frequency domain, since we are now able to precisely
identify the frequency components in the original signal.

The cosine basis functions are analogous to the basis vectors ¥, ¥, 7 for the 3D Cartesian
space, or the so-called 3D vector space. The vectors are orthonormal, because

.y = (1,0,0)-(0,1,0) =0
¥z = (1,0,0)-(0,0,1) =0
' $.2 = (0,1,00-(0,0,1) =0
¥ = (1,0,00-(1,0,0) =1
y.3 = (1,0,0)-(1,0,0) =1
FA¥ (1,0,0)-(1,0,0) = 1

Any point P = (x,, yp, zp) can be represented by a vector OP = (xp, Yp» 2p), where
O is the origin, which can in turn be decomposed into xp - X + yp - ¥ + 2 - Z.

Section 8.5 Transform Coding 217

FIGURE 8.9: Graphical illustration of 8 x 8 2D DCT basis.

If we view the sum-of-products operation in Eq. (8.19) as the dot product of one of the
discrete cosine basis functions (for a specified 1) and the signal f (i), then the analogy be-
tween the DCT and the Cartesian projection is remarkable. Namely, to get the x-coordinate
of point P, we simply projcct P onto the x axis. Mathematically, this is equivalent to a dot
product X - OP =x p- Obviously, the same goes for obtaining y, and z.

Now, compare this to the example in Figure 8.7(b), for a point P = (0,5, 0) in the
Cartesian space. Only its projection onto the y axis is y, = 5 and its projections onto the
x and z axes are both 0.

2D Basis Functions. For two-dimensional DCT functions, we use the basis shown as
8 x 8 images. These are depicted in Figure 8.9, where white indicates positive values and
black indicates negative. To obtain DCT coefficients, we essentially just form the inner
product of each of these 64 basis images with an 8 x 8 block from an original image. Notice
that now we are talking about an original signal indexed by space, not time. We do this for
each 8 x 8 image block. The 64 products we calculate make up an 8 x 8 spatial frequency
image F(u, v).

2D Separable Basis. Of course, for speed, most software implementations use fixed
point arithmetic to calculate the DCT transform. Just as there is a mathematically derived
Fast Fourier Transform, there is also a Fast DCT. Some fast implementations approximate
coefficients so that all multiplies are shifts and adds. Moreover, a much simpler mechanism
is used to produce 2D DCT coefficients — factorization into two 1D DCT transforms.

When the block size is 8, the 2D DCT can be separated into a sequence of two 1D DCT
steps. First, we calculate an intermediate function G (i, v) by performing a 1D DCT on each

218 Chapter 8 Lossy Compression Algorithms

column — in this way, we have gone over to frequency space for the columns, but not for
the rows:

2 1
Gli,v) = —C(v)z @7 !)””f(7 (8.24)

Then we calculate another 1D DCT, this time replacing the row dimension by its frequency
counterpart:

F(u,v) = ~C(u) Zcos MG(', ») (8.25)
i=0

This is possible because the 2D DCT basis functions are separable (multiply separate func-
tions of i and j). It is straightforward to see that this simple change saves many arithmetic
steps. The number of iterations required is reduced from 8 x 8 to 8 + 8.

Comparison of DCT and DFT. The discrete cosine transform [4] is a close counterpart
to the Discrete Fourier Transform (DFT), and in the world of signal processing, the latter
is likely the more common. We have started off with the DCT instead because it is simpler
and is also much used in multimedia. Nevertheless, we should not entirely ignore the DFT.

For a continuous signal, we define the continuous Fourier transform F as follows:

o0
Flw) = f f)e @ gt (8.26)
-0
Using Euler’s formula, we have
'™ = cos(x) + i sin(x) (8.27)

Thus, the continuous Fourier transform is composed of an infinite sum of sine and cosine
terms. Because digital computers require us to discretize the input signal, we define a DFT

that operates on eight samples of the input signal { fy, fi1, ..., f7} as
7 ot
Fo=) fire T8 (8.28)
x=0

Writing the sine and cosine terms explicitly, we have

' ! 2rrwx . ! . [2rox
F, = Z Jx cos A — i Z fx sm(2 (8.29)
x=0

x=0

Even without giving an explicit definition of the DCT, we can guess that the DCT is likely
atransform thatinvolves only the real part of the DFT. The intuition behind the formulation of
the DCT that allows it to use only the cosine basis functions of the DFT is that we can cancel
out the imaginary part of the DFT by making a symmetric copy of the original input signal.

Section 8.5 Transform Coding 219

T — T T > X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 8.10: Symmetric extension of the ramp function.

This works because sine is an odd function; thus, the contributions from the sine terms
cancel each other out when the signal is symmetrically extended. Therefore, the DCT of
eight input samples corresponds to the DFT of 16 samples made up of the original eight
input samples and a symmetric copy of these, as in Figure 8.10.

With the symmetric extension, the DCT is now working on a triangular wave, whereas
the DFT tries to code the repeated ramp. Because the DFT is trying to model the artificial
discontinnity created between each copy of the samples of the ramp function, a lot of high-
frequency components are needed. (Refer to [4] for a thorough discussion and comparison
of DCT and DFT.)

Table 8.1 shows the calculated DCT and DFT coefficients. We can see that more energy is
concentrated in the first few coefficients in the DCT than in the DFT. If we try to approximate

TABLE 8.1: DCT and DFT coefficients of the ramp function

Ramp | DCT DFT
N 0 9.90 | 28.00
1 —6.44 | —4.00

2 0.00 9.66

3 —0.67 | —4.00

4 0.00 4.00

5 —-0.20 | —4.00

6 0.00 1.66

7 —-0.51 | —4.00

220 Chapter 8 Lossy Compression Algorithms

/1
6 6
5 5] ’
AN
4 4] ~
y y B
3 3]
N ,
2‘ 27 \/
1 1]
"
0 — —
T Y A A U T A A
X X
(3) (b)

FIGURE 8.11: Approximation of the ramp function: (a) three-term DCT approximation; (b)
three-term DFT approximation.

the original ramp function using only three terms of both the DCT and DFT, we notice that
the DCT approximation is much closer. Figure 8.11 shows the comparison.

8.5.2 Karhunen-Loéve Transform*

The Karhunen-Loé&ve Transform (KXLT) is a reversible linear transform that exploits the sta-
tistical properties of the vector representation. Its primary property is that it optimally decor-
relates the input. To do so, it fits an n-dimensional ellipsoid around the (mean-subtracted)
data. The main ellipsoid axis is the major direction of change in the data.

Think of a cigar that has unfortunately been stepped on. Cigar data consists of a cloud
of points in 3-space giving the coordinates of positions of measured points in the cigar. The
long axis of the cigar will be identified by a statistical program as the first KLT axis. The
second most important axis is the horizontal axis across the squashed cigar, perpendicular
to the first axis. The third axis is orthogonal to both and is in the vertical, thin direction. A
KLT component program carries out just this analysis.

To understand the optimality of the KLT, consider the autocorrelation matrix Rx of the
input vector X, defined as

Rx = E[XX') (8.30)
Rx(1,1) Rx(L,2) -+ Rx(Lk)
, Rx(2,1) Rx(,1) - RxZ,k-1)
= . : . : (8.31)

Re(6)) Ry(k—1,1) - Ry(l,1)

Section 8.5 Transform Coding 221

where Ry (1, s) = E[X,X;]is the autocorrelation function. Our goal is to find a transform
T such that the components of the output Y are uncorrelated — that is, E[Y, Y] = O, if
t # 5. Thus, the autocorrelation matrix of Y takes on the form of a positive diagonal matrix.

Since any autocorrelation matrix is symmetric and nonnegative definite, there are & or-
thogonal eigenvectors uy, Uy, ... , U and k corresponding real and nonnegative eigenvalues
A > Ay > --- > Ar > 0. We define the Karhunen-Logve transform as

T=[u,u, -, w]” (8.32)

Then, the autocorrelation matrix of Y becomes

Ry = E[YYT] (8.33)
= E[TXX'T] (8.34)
= TRxT? (8.35)
M O 0
0 x -+ O
= (8.36)
0 .0
0 0 - X

Clearly, we have the required autocorrelation matrix for Y. Therefore, the KLT is optimal,
in the sense that it completely decorrelates the input. In addition, since the KLT depends
on the computation of the autocorrelation matrix of the input vector, it is data dependent: it
has to be computed for every dataset.

EXAMPLE 8.5

To illustrate the mechanics of the KLT, consider the four 3D input vectors x; = (4,4, 5),
x2=3,2,5),x3=(57,6), and x4 = (6,7,7). To find the required transform, we must
first estimate the autocorrelation matrix of the input. The mean of the four input vectors is

18
my = — 20
23

‘We can estimate the autocorrelation matrix using the formula

1
Ry = — Zx,-x-T —mym? (8.37)

X

where 7 is the number of input vectors. From this equation, we obtain

125 225 0.88
Rx=| 225 450 150
0.88 1.50 0.69

222

Chapter 8 Lossy Compression Algorithms

The eigenvalues of Ry are Ay = 6.1963, X = 0.2147, and A3 = 0.0264. Clearly, the first
component is by far the most important. The corresponding eigenvectors are

0.4385] 0.4460 —0.7803
u = | 0.8471 u; = [—0.4952 u = 0.1929
0.3003 | 0.7456 0.5949

Therefore, the KLT is given by the matrix

0.4385 0.8471 0.3003
T= 0.4460 —0.4952 0.7456
| —0.7803 0.1929 0.5949

Subtracting the mean vector from each input vector and applying the XLT, we have

[—1.2916] [—3.4242 7

yi = | —0.2870 y2 = 0.2573
| —0.2490 | | 0.1453
1.9885] 27273

Y3 = —0.5809 ¥4 = 0.6107
0.1445 | L —0.0408 |

Since the rows of T are orthonormal vectors, the inverse transform is just the transpose:
T~' = TT. We can obtain the original vectors from the transform coefficients using the
inverse relation

X = TTy -+ my (8.38)

In terms of the transform coefficients y;, the magnitude of the first few components is
usually considerably larger than that of the other components. In general, after the KLT, most
of the “energy” of the transform coefficients is concentrated within the first few components.
This is the energy compaction propexty of the KLT.

For an input vector x with n components, if we coarsely quantize the output vector y by
setting its last k components to zero, calling the resulting vector ¥, the KLT minimizes the
mean squared error between the original vector and its reconstruction.

8.6 WAVELET-BASED CODING

8.6.1

Introduction ’

Decomposing the input signal into its constituents allows us to apply coding techniques
suitable for each constituent, to improve compression performance. Consider again a time-
dependent signal f () (it is best to base discussion on continuous functions to start with).
The traditional method of signal decomposition is the Fourier transform. Above, in our
discussion of the DCT, we considered a special cosine-based transform. If we carry out
analysis based on both sine and cosine, then a concise notation assembles the results into a

Section 8.6 Wavelet-Based Coding 223

function F(w), a complex-valued function of real-valued frequency w given in Eq. (8.26).
Such decomposition results in very fine resolution in the frequency domain. However, since
a sinusoid is theoretically infinite in extent in time, such a decomposition gives no temporal
resolution.

Another method of decomposition that has gained a great deal of popularity in recent
years is the wavelet transform. It seeks to represents a signal with good resolution in both
time and frequency, by using a set of basis functions called wavelets.

There are two types of wavelet transforms: the Continuons Wavelet Transform (CWT) and
the Discrete Wavelet Transform (DWT). We assume that the CWT is applied to the large class
of functions f(x) that are square integrable on the real line — that is, f [f)12 dx < o0.
In mathematics, this is written as f(x) € L2(R).

The other kind of wavelet transform, the DWT, operates on discrete samples of the input
signal. The DWI' resembles other discrete linear transforms, such as the DFT or the DCT,
and is very useful for image processing and compression.

Before we begin adiscussion of the theory of wavelets, let’s develop an intuition about this
approach by going through an example using the simplest wavelet transform, the so-called
Haar Wavelet Transform, to form averages and differences of a sequence of float values.

If we repeatedly take averages and differences and keep results for every step, we effec-
tively create a multiresolution analysis of the sequence. For images, this would be equivalent
to creating smaller and smaller summary images, one-quarter the size for each step, and
keeping track of differences from the average as well. Mentally stacking the full-size image,
the quarter-size image, the sixteenth size image, and so on, creates a pyramid. The full set,
along with difference images, is the multiresolution decomposition.

EXAMPLE 8.6 A Simple Wavelet Transform

The objective of the wavelet transform is to decompose the input signal, for compression
purposes, into components that are easier to deal with, have special interpretations, or have
some components that can be thresholded away. Furthermore, we want to be able to at
least approximalely reconstruct the original signal, given these components. Suppose we
are given the following input sequence:

{xn,i} = (10, 13,25, 26, 29, 21,7, 15} (8.39)

Here, i € [0..7] indexes “pixels”, and n stands for the level of a pyramid we are on. At the
top, n = 3 for this sequence, and we shall form three more sequences, forn = 2, 1, and 0.
At each level, less information will be retained in the beginning elements of the transformed
signal sequence. When we reach pyramid level n = 0, we end up with the sequence average
stored in the first element. The remaining elements store detail information.

Consider the transform that replaces the original sequence with its pairwise average
xn—1; and difference dy—1,;, defined as follows:

Xn,2i T X 2i41 (8.40)
_2 .

d”_.l',‘ _ ~\‘n,2i _2'-“!1,'21'4'1 (8.41)

Xp—1,i =

224 Chapter 8 Lossy Compression Algorithms

Notice that the averages and differences are applied only on consecutive pairs of input
sequences whose first element has an even index. Therefore, the number of elements
in each set {x,1,;} and {d,_;} is exactly half the number of elements in the original
sequence. We can form a new sequence having length equal to that of the original sequence
by concatenating the two sequences {x,—1 ;} and {d,—1,;}. The resulting sequence is thus

(X 1i» dn-1,4) = {11.5,25.5,25,11, —1.5, =0.5,4, - 4) (8.42)

where we are now at level n — | = 2. This sequence has exactly the same number of
elements as the input sequence — the transform did not increase the amount of data. Since
the first half of the above sequence contains averages from the original sequence, we can
view it as a coarser approximation to the original signal.

The second half of this sequence can be viewed as the details or approximation errors
of the first half. Most of the values in the detail sequence are much smaller than those of
the original sequence. Thus, most of the energy is effectively concentrated in the first half.
Therefore, we can potentially store {d,—|,;} using fewer bits.

It is easily verified that the original sequence can be reconstructed from the transformed
sequence, using the relations

2k = Xn—l,i"'dn—l.i
Xn2i41 = xnﬁl.i—dn—%,i (8.43)

This transform is the discrete Haar wavelet transform. Averaging and differencing can be
carried out by applying a so-called scaling function and wavelet function along the signal.
Figure 8.12 shows the Haar version of these functions.

2 1 T 2) I T
1 - 1+ .
0 0
1k . . -1 (i
_2 { 1 | _2 | | 1
-0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5
() (b)

FIGURE 8.12: Haar Wavelet Transform: (a) scaling function; (b) wavelet function,

Section 8.6 Wavelet-Based Coding 225

We can further apply the same transform to {x,_ ;}, to obtain another level of approxi-
mation x,_, ; and detail dy—2,;: '

{In—Z.i: d)!—2,i1 d))~1.1'} - {185! 187 _7| 7) _15| —Ojv 41 _4} (844)

This is the essential idea of multiresolution analysis. We can now study the input signal in
three different scales, along with the details needed to go from one scale to another. This
process can continue n times, until only one element is left in the approximation sequence.
In this case, n = 3, and the final sequence is given below:

{xu——S.i- dn—3,i» dn—2,ia dn~1,i} = {18'25, 0-25, “7, 7, “1.5, —0.5, 4, —4} (8.45)

Now we realize that n was 3 because only three resolution changes were available until we
reached the final form.

The value 18.25, corresponding to the coarsest approximation to the original signal, is
the average of all the elements in the original sequence. From this example, it is easy to see
that the cost of computing this transform is proportional to the number of elements N in the
input sequence — that is, O(N).

Extending the one-dimensional Haar wavelet transform into two dimensions is relatively
easy: we simply apply the one-dimensional transform to the rows and columns of the two-
dimensional input separately. We will demonstrate the two-dimensional Haar transform
applied to the 8 x & input image shown in Figure 8.13.

EXAMPLE 8.7 2D Haar Transform

This example of the 2D Haar transform not only serves to illustratc how the wavelet trans-
form is applied to two-dimensional inputs but also points out useful interpretations of the

7 0/010|0 00
olojojo|ofojo 0]
00]|63|127)127[63| 0 | O
|0 0 (127(255|255!127| O
0| 0 [127|255|255(127; O
T 0 |63|127|127(63| O
0|0 0]0|0|0]0O) |
00 0(o0ofo|0|o0) |
(a) (b)

FIGURE 8.13: Input image for the 2D Haar Wavelet Transform: (a) pixel values; (b) an 8 x 8
image.

226

Chapter 8 Lossy Compression Algorithms

0/0|0|0]|]0O]JO]O|O
0/0/0]J0/O|0]O|O
0[95/95|0 |0 |-32[32]|0
0 [191[191| 0 | O |-64| 64| 0
0 [191{191| O | O |-64| 64 | O
0|95({05|0 |0 (-32/32(0
o|0|0]O0|O|O|O]O
ojo|lo|o|o|lO|O|OD

FIGURE 8.14: Intermediate output of the 2D Haar Wavelet Transform.

transformed coefficients. However, it is intended only to provide the reader with an intuitive
feeling of the kinds of operations involved in performing a general 2D wavelet transform.
Subsequent sections provide more detailed description of the forward and inverse 2D wavelet
transform algorithms, as well as a more elaborate example using a more complex wavelet.

2D Haar Wavelet Transform. We begin by applying a one-dimensional Haar wavelet
transform to each row of the input. The first and last two rows of the input are trivial. After
performing the averaging and differencing operations on the remaining rows, we obtain the
intermediate output shown in Figure 8.14.

We continue by applying the same 1D Haar transform to each column of the intermediate
output. This step completes one level of the 2D Haar transform. Figure 8.15 gives the
resulting coefficients.

We can naturally divide the result into four quadrants. The upper left quadrant contains
the averaged coefficients from both the horizontal and vertical passes. Therefore, it can be

0/|0C|0)0]JO]OJ0]O
0 |143|143] 0 | O |48/ 48| 0
0 |143|143| O [O |-48| 48| O
ofojo|jolofoj0]|oO
‘ o(ojo|lofo|0)|0]0O
0 (—48|-48/ 0 | O | 16 [-16] O
0 |48|48| 0|0 |-16/16(0
o(fojofojofo|o L

FIGURE 8.15: QOutput of the first level of the 2D Haar Wavclet Transform.

Section 8.6 Wavelet-Based Coding 227

FIGURE 8.16: A simple graphical illustration of the Wavelet Transform.

viewed as alow-pass-filtered version of the original image, in the sense that higher-frequency
edge information is lost, while low-spatial-frequency smooth information is retained.

The upper right quadrant contains the vertical averages of the horizontal differences
and can be interpreted as information about the vertical edges within the original image.
Similarly, the lower left quadrant contains the vertical differences of the horizontal averages
and represents the horizontal edges in the original image. The lower right quadrant contains
the differences from both the horizontal and vertical passes. The coefficients in this quadrant
represent diagonal edges.

These interpretations are shown more clearly as images in Figure 8.16, where bright
pixels code positive and dark pixels code negative image values.

The inverse of the 2D Haar transform can be calculated by first inverting the columns
using Eq. (8.43), and then inverting the resulting rows.

8.6.2 Continuous Wavelet Transform*

We noted that the motivation for the use of wavelets is to provide a set of basis functions that
decompose a signal in time over parameters in the frequency domain and the time domain
simultaneously. A Fourier transform aims to pin down only the frequency content of a
signal, in terms of spatially varying rather than time varying signals. What wavelets aim to
do is pin down the frequency content at different parts of the image.

For example, one part of the image may be “busy” with texture and thus high-frequency
content, while another part may be smooth, with little high-frequency content. Naturally,
one can think of obvious ways to consider frequencies for localized areas of an image:
divide an image into parts and fire away with Fourier analysis. The time-sequence version
of that idea is called the Short-Term (or Windowed) Fourier Transform. And other ideas
have also arisen. However, it turns out that wavelets, a much newer development, have
neater characteristics.

To further motivate the subject, we should consider the Heisenberg uncertainty principle,
from physics. In the context of signal processing, this says that there is a tradeoff between
accuracy in pinning down a function’s frequency, and its extent in time. We cannot do both

228

Chapter 8 Lossy Compression Algorithms

3 3.0
2 20
0 =~ 1.0
-10 -5 5 10 -10 -5 0 5 10
Frequency
(b)
(® ®

FIGURE 8.17: A Mexican-hat Wavelet: (a) o = 0.5; (b) its Fourier transform.

accurately, in general, and still have a useful basis function. For example, a sine wave is
exact in terms of its frequency but infinite in extent.

As an example of a function that dies away quickly and also has limited frequency content,
suppose we start with a Gaussian function,

1 =2
es? (8.46)
o2

The parameter o expresses the scale of the Gaussian (bell-shaped) function.
The second derivative of this function, called ¥ (#), looks like a Mexican hat, as in
Figure 8.17(a). Clearly, the function v (t) is limited in time. Its equation is as follows:

1 =2 (12
o [eza— (; — 1)] (847

We can explore the frequency content of function v () by taking its Fourier transform. This
turns out to be given by

f@ =

y(n =

8]

2

Flw) = w?e™ 2 (8.48)

Figure 8.17(b) displays this function: the candidate wavelet (8.47) is indeed limited in
frequency as well.
In general, a wavelet is a function ¢ € L2(R) with a zero average,

+o0
/ v di =0 (8.49)
—00

that satisfies some conditions that ensure it can be utilized in a multiresolution decompo-
sition. The conditions ensure that we can use the decomposition for zooming in locally in
some part of an image, much as we might be interested in closer or farther views of some
neighborhood in a map.

Section 8.6 Wavelet-Based Coding 229

The constraint (8.49) is called the admissibility condition for wavelets. A function that
sums to zero must oscillate around zero. Also, from (8.26), we see that the DC value, the
Fourier transform of i (¢) for w = 0, is zero. Another way to state this is that the Oth
moment Mg of ¥ () is zero. The pth moment is defined as

(o]
M, = f Py (1) dt (8.50)
—00

The function ¥ is normalized with ||{|| = 1 and centered in the neighborhood of t = 0.
We can obtain a family of wavelet functions by scaling and translating the mother wavelet
 as follows:

1 t—u
]r//s,u(f) - 75'9” <) (8.51)

S

If ¥ (t) is normalized, 50 is ¥, (£).
The Continuous Wavelet Transform (CWT) of f € L?(R) at time « and scale s is defined
as
“+co

W(f, s, u) = FOYs () dr (8.52)
—0
The CWT of a 1D signal is a 2D function — a function of both scale s and shift u.

A very important issue is that, in contradistinction to (8.26), where the Fourier analysis
function is stipulated to be the sinusoid, here (8.52) does not state what v/ (¢) actually is!
Instead, we create a set of rules such functions must obey and then invent useful functions
that obey these rules — different functions for different uses.

Just as we defined the DCT in terms of products of a function with a set of basis functions,
here the transform W is written in terms of inner products with basis functions that arc a
scaled and shifted version of the mother wavelet ¥ (r).

The mother wavelet ¥ (¢) is a wave, since it must be an oscillatory function. Why is
it wavelet? The spatial-frequency analyzer parameter in (8.52) is s, the scale. We choose
some scale s and see how much content the signal has around that scale. To make the
function decay rapidly, away from the chosen s, we have to choose a mother wavelet ¥ (r)
that decays as fast as some power of .

Tt is actually easy to show, from (8.52), that if all moments of i (t) up to the nth are zero
(or quite small, practically speaking), then the CWT coefficient W(, s, u) has a Taylor
expansion around x = 0 that is of order s"*2 (see Exercise 9). This is the localization in
frequency we desire in a good mother wavelet.

We derive wavelet coefficients by applying wavelets at different scales over many lo-
cations of the signal. Excitingly, if we shrink the wavelets down small enough that they
cover a part of the function f(r) thatis a polynomial of degree » or less, the coefficient for
that wavelet and all smaller ones will be zero. The condition that the wavelet should have
vanishing moments up to some order i$ one way of characterizing mathematical regularity
conditions on the mother wavelet.

The inverse of the continuous wavelet transform is:

1 [f% ptoo 1 t—u

) iz duds (8.53)
s

230

Chapter 8 Lossy Compression Algorithms

where

“+oo i 2
Cy :/ l—(ﬂda) < 400 (8.54)
0 »

and W (w) is the Fourier transform of ¥ (¢). Eq. (8.54) is another phrasing of the admissibility
condition.

The trouble with the CWT is that (8.52) is nasty: most wavelets are not analytic but
result simply from numerical calculations. The resulting infinite set of scaled and shifted
functions is not necessary for the analysis of sampled functions, such as the ones arise in
image processing. For this reason, we apply the ideas that peirtain to the CWT to the discrete
domain.

8.6.3 Discrete Wavelet Transform*

Discrete wavelets are again formed from a mother wavelet, but with scale and shift in discrete
steps.

Multiresolution Analysis and the Discrete Wavelet Transform. The connection be-
tween wavelets in the continuous time domain and filter banks in the discrete time domain
is multiresolution analysis; we discuss the DWT within this framework. Mallat [5] showed
that it is possible to construct wavelets 1 such that the dilated and translated family

1 t —2in
b L : 8.55
{w "= 7 ¢(2i >}(j,n)€Z2 o

is an orthonormal basis of L2 (R), where Z represents the set of integers. This is known
as “dyadic” scaling and translation and corresponds to the notion of zooming out in a map
by factors of 2. (If we draw a cosine function cos(t) from time 0 to 27 and then draw
cos(r/2), we see that while cos(t) goes over a whole cycle, cos(f/2) has only a half cycle:
the function cos(2711) is a wider function and thus is at a broader scale.)

Note that we change the scale of translations along with the overall scale 27, s0 as to
keep movement in the lower-resolution image in proportion. Notice also that the notation
used says that a larger index j corresponds to a coarser version of the image.

Multiresolution analysis provides the tool to adapr signal resolution to only relevant
details for a particular task. The octave decomposition introduced by Mallat [6] initially
decomposes a signal into an approximation component and a detail component. The ap-
proximation component is then recursively decomposed into approximation and detail at
successively coarser scales. Wavelets are set up such that the approximation at resolu-
tion 27/ contains all the necessary information to compute an approXimation at coarser
resolution 2~U+D),

Wavelets are used to characterize detail information. The averaging information is for-
mally determined by a kind of dual to the mother wavelet, called the scaling function ¢ (t).

The main idea in the theory of wavelets is that at a particular level of resolution j, the
set of translates indexed by n form a basis at that level. Interestingly, the set of translates
forming the basis at the j - 1 next level, a coarser level, can all be written as a sum of

Section 8.6 Wavelet-Based Coding 231

weights times the level-j basis. The scaling function is chosen such that the coefficients of
its translates are all necessarily bounded (less than infinite).

The scaling function, along with its translates, forms a basis at the coarser level j + 1
(say 3, or the 1/8 level) but not at level j (say 2, or the 1/4 level). Instead, at level j the
set of translates of the scaling function ¢ along with the set of translates of the mother
wavelet ¢ do form a basis. We are left with the situation that the scaling function describes
smooth, or approximation, information and the wavelet describes what is left over — detail
information.

Since the set of translates of the scaling function ¢ at a coarser level can be written
exactly as a weighted sum of the translates at a finer level, the scaling function must satisfy
the so-called dilation equation [7]:

$(1) =) ~2ho[nlp (2t — n) (8.56)

neZ

The square brackets come from the theory of filfers, and their use is carried over here. The
dilation equation is a recipe for finding a function that can be built from a sum of copies of
itself that are first scaled, translated, and dilated. Equation (8.56) expresses a condition that
a function must satisfy to be a scaling function and at the same time forms a definition of
the scaling vector hg.

Not only Is the scaling function expressible as a sum of translates, but as well the wavelet
at the coarser level is also expressible as such:

V() = Z V2h1[n)p (2t — n) (8.57)

neZ

Below, we’ll show that the set of coefficients #1; for the wavelet can in fact be derived from
the scaling function ones /19 [Eq. (8.59) below], so we also have that the wavelet can be
derived from the scaling function, once we have one. The equation reads

Y(@) =Y (—1)"holl — nlp (2 — n) (8.58)

nezZ

So the condition on a wavelet is similar to that on the scaling function,
Eq. (8.56), and in fact uses the same coefficients, only in the opposite order and with
alternating signs.

Clearly, for efficiency, we would like the sums in (8.56) and (8.57) tobe as few as possible,
s0 we choose wavelets that have as few vector entries iy and /11 as possible. The effect of
the scaling function is a kind of smoothing, or filtering, operation on a signal. Therefore
it acts as a low-pass filter, screening out high-frequency content, The vector values /o[7]
.are called the low-pass filter impulse response coefficients, since they describe the effect
of the filtering operation on a signal consisting of a single spike with magnitude unity (an
impulse) at time 7 = 0. A complete discrete signal is made of a set of such spikes, shifted
in time from O and weighted by the magnitudes of the discrete samples.

Hence, to specify a DWT, only the discrete low-pass filter impulse response hofn] is
needed. These specify the approximation filtering, given by the scaling function. The

232 Chapter 8 Lossy Compression Algorithms

TABLE 8.2: Orthogonal wavelet filters

Wavelet Number of | Start | Coefficients
taps index

Haar 2 0 [0.707, 0.707]

Daubechies 4 | 4 0 [0.483, 0.837, 0.224, —0.129]

Daubechies 6 | 6 0 [0.332, 0.807, 0.460, —0.135,
—0.085, 0.0352)

Daubechies 8 | 8 0 [0.230, 0.715, 0.631, —0.028,
—0.187, 0.031, 0.033, —0.011]

discrete high-pass impulse response 71 [n], describing the details using the wavelet function,
can be derived from hg[n] using the following equation:

hn] = (—=1)"holl —n] (8.59)

The number of coefficients in the impulse response is called the number of taps in the filter.
If hpfn] has only a finite number of nonzero entries, the resulting wavelet is said to have
compact support. Additional constraints, such as orthonormality and regularity, can be
imposed on the coefficients hg[n]. The vectors hp[n] and h[#] are called the low-pass and
high-pass analysis filters.

To reconstruct the original input, an inverse operation is needed. The inverse filters are
called synthesis filters. For orthonormal wavelets, the forward transform and its inverse are
transposes of each other, and the analysis filters are identical to the synthesis filters.

Without orthogonality, the wavelets for analysis and synthesis are called biorthogonal,
a weaker condition. In this case, the synthesis filters are not identical to the analysis filters.
We denote them as /ig(1] and /11 [n]. To specify a biorthogonal wavelet transform, we require
both hg[r] and ﬁg[n]. As before, we can compute the discrete high-pass filters in terms of
sums of the low-pass ones:

hilnl = (=1)"holl — n} (8.60)
Byl = (=1)"hol1 — n] (8.61)

Tables 8.2 and 8.3 (cf. [8]) give some commonly used orthogonal and biorthogonal wavelet
filters. The “start index” columns in these tables refer to the starting value of the index n
used in Eqgs. (8.60) and (8.61).

Figure 8.18 shows a block diagram for the 1D dyadic wavelet transform. Here, x[n]
is the discrete sampled signal. The box means subsampling by taking every second

element, and the box means upsampling by replication. The reconstruction phase
yields series y[n].

Section 8.6 Wavelet-Based Coding 233

TABLE 8.3: Biorthogonal wavelet filters

Wavelet Filter | Number | Start | Coefficients

of taps |index

Antonini 9/7 [holn]| 9 | —4 [[0.038, —0.024, —0.111,0.377, 0.853, 0.377, —0.111,
—0.024, 0.038]
holm) 7 | —3 |[-0.065, —0.041, 0.418, 0.788, 0.418, —0.041, —0.065]
Villa 10/18 |Ag[n]| 10 | —4 |[0.029, 0.0000824, —0.158, 0.077, 0.759, 0.759, 0.077,
—0.158, 0.0000824, 0.029]
holnl| 18 | —8 [[0.000954, —0.00000273, —0.009, —0.003, 0.031, —0.014,

—0.086, 0.163, 0.623, 0.623, 0.163, —0.086, —0.014, 0.031,
—0.003, —0.009, —0.00000273, 0.000954]

Brislawn | ho[n]| 10 | —4 |[0.027, —0.032, —0.241, 0.054, 0.900, 0.900, 0.054,
—0.241, —0.032, 0.027]

holn]| 10 | —4 |[0.020, 0.024, —0.023, 0.146, 0.541, 0.541, 0.146,
~0.023, 0.024, 0.020]

For analysis, at each level we transform the series x[n] into another series of the same
length, in which the first half of the elements is approximation information and the second
half consists of detail information. For an N-tap filter, this is simply the series

(x[n)} = yinl= 1) x[jlholn — j1; Y _x[jlln— j] (8.62)
j : j

J

where for each half, the odd-numbered results are discarded. The summation over shifted
coefficients in (8.62) is referred to as a convolution.

2D Discrete Wavelet Transform. The extension of the wavelet transform to two di-
mensions is quite straightforward. A two-dimensional scaling function is said to be sepa-
rable if it can be factored into a product of two one-dimensional scaling functions, That
is,

P(x,y) =p(x)0 () (8.63)

For simplicity, only separable wavelets are considered in this section. Furthermore, let’s
assume that the width and height of the input image are powers of 2.

234 Chapter 8 Lossy Compression Algorithms

ho[n]—J l2 >

he 1] rJ ‘P

hy [n] | |2 hy [n] L > l2 —>

x[n] hy] l2 >

hy [n] »{ 12 .

] T2 —> hy [n]

|2 hy (1]

~— 12 . hy In] 12 hy [n]

> Tz L>hl [n] ylr]

SEPRE®

FIGURE 8.18: Block diagram of the 1D dyadic wavelet transform.

For an N by N input image, the two-dimensional DWT proceeds as follows:

1. Convolve each row of the image with hg[n] and h;{n}, discard the odd-numbered
columns of the resulting arrays, and concatenate them to form a transformed row.

2. After all rows have been transformed, convolve each column of the result with hg[n]
and hy[n]. Again discard the odd-numbered rows and concatenate the result.

After the above two steps, one stage of the DWT is complete. The transformed image now
contains four subbands LL, HL, LH, and HH, standing for low-low, high-low, and so on, as
Figure 8.19(a) shows. As in the one-dimensional transform, the LL subband can be further
decomposed to yield yet another level of decomposition. This process can be continued
unti] the desired number of decomposition levels js reached or the LL component only has
a single element lefi. A two level decomposition is shown in Figure 8.19(b).

The inverse transform simply reverses the steps of the forward transform.

Section 8.6 Wavelet-Based Coding 235

LL2 | HL2
LL HL - HL1
’ LH2 | HH2

LH HH LH1 HHI1

@ (b)

FIGURE 8.19: The two-dimensional discrete wavelet transform: (a) one-level transform;
(b) two-level transform.

1. For each stage of the transformed image, starting with the last, separate each column
into low-pass and high-pass coefficients. Upsample each of the low-pass and high-
pass arrays by inserting a zero after each coefficient.

2. Convolve the low-pass coefficients with hg[n] and high-pass coefficients with h;{n]
and add the two resulting arrays,

3. After all columns have been processed, separate each row into low-pass and high-
pass coefficients and upsample each of the lwo arra