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PRACTICAL APPLICATIONS

Each chapter devotes material to practical applications of the concepts covered in Fundamentals of Electric
Circuits to help the reader apply the concepts to red-life situations. Here is a sampling of the practical applications
found in the text:

» Rechargeable flashlight battery (Problem 1.11)

e Cost of operating toaster (Problem 1.25)

« Potentiometer (Section 2.8)

» Design alighting system (Problem 2.61)

» Reading a voltmeter (Problem 2.66)

» Controlling speed of a motor (Problem 2.74)

« Electric pencil sharpener (Problem 2.78)

e Calculate voltage of transistor (Problem 3.86)

e Transducer modeling (Problem 4.87)

 Strain gauge (Problem 4.90)

» Wheatstone bridge (Problem 4.91)

» Design a six-bit DAC (Problem 5.83)

* Instrumentation amplifier (Problem 5.88)

» Design an analog computer circuit (Example 6.15)

» Design an op amp circuit (Problem 6.71)

» Design analog computer to solve differential equation (Problem 6.79)
« Electric power plant substation—capacitor bank (Problem 6.83)
 Electronic photo flash unit (Section 7.9)

« Automobile ignition circuit (Section 7.9)

* Welding machine (Problem 7.86)

 Airbag igniter (Problem 8.78)

 Electrical anaog to bodily functions—study of convulsions (Problem 8.82)
« Electronic sensing device (Problem 9.87)

» Power transmission system (Problem 9.93)

» Design a Calpitts oscillator (Problem 10.94)

» Stereo amplifier circuit (Problem 13.85)

e Gyrator circuit (Problem 16.69)

e Calculate number of stations alowable in AM broadcast band (Problem 18.63)
 Voice signa—Nyquist rate (Problem 18.65)
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COMPUTER TOOLS promote flexibility and meet ABET requirements

» PSpice is introduced in Chapter 3 and appears in special sections throughout the text. Appendix D serves
as atutorial on PSpice for Windows for readers not familiar with its use. The special sections contain exam-
ples and practice problems using PSpice. Additional homework problems at the end of each chapter also
provide an opportunity to use PSpice.

« MATLAB® is introduced through a tutorial in Appendix E to show its usage in circuit analysis. A number
of examples and practice problems are presented throughout the book in a manner that will alow the student
to develop a facility with this powerful tool. A number of end-of-chapter problems will aid in understanding
how to effectively use MATLAB.

» KCIDE for Circuits is a working software environment developed at Cleveland State University. It is
designed to help the student work through circuit problems in an organized manner following the process
on problem-solving discussed in Section 1.8. Appendix F contains a description of how to use the software.
Additional examples can be found at the web site, http://kcide.fennresearch.org/. The actual software pack-
age can be downloaded for free from this site. One of the best benefits from using this package is that it
automatically generates a Word document and/or a PowerPoint presentation.

CAREERS AND HISTORY of electrical engineering pioneers

Since a course in circuit analysis may be a student’s first exposure to electrical engineering, each chapter opens
with discussions about how to enhance skills that contribute to successful problem-solving or career-oriented
talks on a sub-discipline of electrical engineering. The chapter openers are intended to help students grasp
the scope of electrical engineering and give thought to the various careers available to EE graduates. The open-
ing boxes include information on careers in electronics, instrumentation, electromagnetics, control systems,
engineering education, and the importance of good communication skills. Historicals throughout the text
provide brief biological sketches of such engineering pioneers as Faraday, Ampere, Edison, Henry, Fourier,
Volta, and Bell.



OUR COMMITMENT TO ACCURACY

You have a right to expect an accurate textbook, and McGraw-Hill Engineering invests
considerable time and effort to ensure that we deliver one. Listed below are the many
steps we take in this process.

OUR ACCURACY VERIFICATION PROCESS

|||First Round
Step 1: Numerous college engineering instructors review the manuscript and report
errors to the editorial team. The authors review their comments and make the necessary
corrections in their manuscript.

||Second Round
Step 2: An expert in the field works through every example and exercise in the final
manuscript to verify the accuracy of the examples, exercises, and solutions. The authors
review any resulting corrections and incorporate them into the final manuscript and solu-
tions manual.

Step 3: The manuscript goes to a copyeditor, who reviews the pages for grammatical and
stylistic considerations. At the same time, the expert in the field begins a second accuracy
check. All corrections are submitted simultaneously to the authors, who review and inte-
grate the editing, and then submit the manuscript pages for typesetting.

||Third Round
Step 4: The authors review their page proofs for a dual purpose: 1) to make certain that
any previous corrections were properly made, and 2) to look for any errors they might
have missed.

Step 5: A proofreader is assigned to the project to examine the new page proofs, double
check the authors' work, and add a fresh, critical eye to the book. Revisions are incorpo-
rated into a new batch of pages which the authors check again.

||[Fourth Round

Step 6: The author team submits the solutions manual to the expert in the field, who
checks text pages against the solutions manual as a final review.

Step 7: The project manager, editorial team, and author team review the pages for a
final accuracy check.

The resulting engineering textbook has gone through several layers of quality assurance
and is verified to be as accurate and error-free as possible. Our authors and publishing
staff are confident that through this process we deliver textbooks that are industry leaders
in their correctness and technical integrity.
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Preface

You may be wondering why we chose a photo of astronauts working
in space on the Space Station for the cover. We actually chose it for
several reasons. Obviously, it is very exciting; in fact, space represents
the most exciting frontier for the entire world! In addition, much of the
station itself consists of all kinds of circuits! One of the most signifi-
cant circuits within the station is its power distribution system. It is a
complete and self contained, modern power generation and distribution
system. That is why NASA (especially NASA-Glenn) continues to be
at the forefront of both theoretical as well as applied power system
research and development. The technology that has gone into the devel-
opment of space exploration continues to find itself impacting terres-
trial technology in many important ways. For some of you, this will be
an important career path.

FEATURES
New to This Edition

A course in circuit analysis is perhaps the first exposure students have
to electrical engineering. This is also a place where we can enhance
some of the skills that they will later need as they learn how to design.

In the fourth edition, we have included a very significant new
feature to help students enhance skills that are an important part of the
design process. We call this new feature, design a problem.

We know it is not possible to fully develop a student’s design skills
in a fundamental course like circuits. To fully develop design skills a
student needs a design experience normally reserved for their senior
year. This does not mean that some of those skills cannot be devel oped
and exercised in a circuits course. The text aready included open-
ended questions that help students use creativity, which is an impor-
tant part of learning how to design. We already have some questions
that are open desired to add much more into our text in this important
area and have developed an approach to do just that. When we develop
problems for the student to solve our goa is that in solving the prob-
lem the student learn more about the theory and the problem solving
process. Why not have the students design problems like we do? That
is exactly what we will do in each chapter. Within the normal problem
set, we have a set of problems where we ask the student to design a
problem. This will have two very important results. The first will be a
better understanding of the basic theory and the second will be the
enhancement of some of the student’s basic design skills.

We are making effective use of the principle of learning by teach-
ing. Essentially we all learn better when we teach a subject. Design-
ing effective problems is a key part of the teaching process. Students

xiii
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should also be encouraged to develop problems, when appropriate,
which have nice numbers and do not necessarily overemphasize com-
plicated mathematical manipulations.

Additionally we have changed almost 40% of the Practice Prob-
lems with the idea to better reflect more real component values and to
help the student better understand the problem and have added 121
design a problem problems. We have also changed and added a total
of 357 end-of-chapter problems (this number contains the new design
a problem problems). This brings up a very important advantage to our
textbook, we have a total of 2404 Examples, Practice Problems,
Review Questions, and end-of-chapter problems!

Retained from Previous Editions

The main objective of the fourth edition of this book remains the same
as the previous editions—to present circuit analysis in a manner that is
clearer, more interesting, and easier to understand than other circuit text,
and to assist the student in beginning to see the “fun” in engineering.
This objective is achieved in the following ways:

e Chapter Openers and Summaries
Each chapter opens with a discussion about how to enhance skills
which contribute to successful problem solving as well as suc-
cessful careers or a career-oriented talk on a sub-discipline of elec-
trical engineering. Thisis followed by an introduction that links the
chapter with the previous chapters and states the chapter objectives.
The chapter ends with a summary of key points and formulas.

» Problem Solving Methodology
Chapter 1 introduces a six-step method for solving circuit problems
which is used consistently throughout the book and media supple-
ments to promote best-practice problem-solving procedures.

e Student Friendly Writing Style
All principles are presented in alucid, logical, step-by-step manner.
As much as possible, we avoid wordiness and giving too much
detail that could hide concepts and impede overall understanding of
the material.

* Boxed Formulas and Key Terms
Important formulas are boxed as a means of helping students sort
out what is essential from what is not. Also, to ensure that students
clearly understand the key elements of the subject matter, key
terms are defined and highlighted.

e Margin Notes
Marginal notes are used as a pedagogical aid. They serve multiple
uses such as hints, cross-references, more exposition, warnings,
reminders not to make some particular common mistakes, and
problem-solving insights.

* Worked Examples
Thoroughly worked examples are liberally given at the end of every
section. The examples are regarded as a part of the text and are
clearly explained without asking the reader to fill in missing steps.
Thoroughly worked examples give students a good understand-
ing of the solution process and the confidence to solve problems
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themselves. Some of the problems are solved in two or three dif-
ferent ways to facilitate a substantial comprehension of the subject
material as well as a comparison of different approaches.

Practice Problems

To give students practice opportunity, each illustrative example is
immediately followed by a practice problem with the answer. The
student can follow the example step by step to aid in the solution
of the practice problem without flipping pages or looking at the
end of the book for answers. The practice problem is also intended
to test a student’s understanding of the preceding example. It will
reinforce their grasp of the material before the student can move
on to the next section. Complete solutions to the practice problems
are available to students on ARIS.

Application Sections

The last section in each chapter is devoted to practical application
aspects of the concepts covered in the chapter. The material cov-
ered in the chapter is applied to at least one or two practical prob-
lems or devices. This helps students see how the concepts are
applied to real-life situations.

Review Questions

Ten review questions in the form of multiple-choice objective items
are provided at the end of each chapter with answers. The review
questions are intended to cover the little “tricks” that the examples
and end-of-chapter problems may not cover. They serve as a self-
test device and help students determine how well they have mas-
tered the chapter.

Computer Tools

In recognition of the requirements by ABET® on integrating com-
puter tools, the use of PSpice, MATLAB, KCIDE for Circuits, and
developing design skills are encouraged in a student-friendly man-
ner. PSpice is covered early on in the text so that students can
become familiar and use it throughout the text. Appendix D serves
as a tutorial on PSpice for Windows. MATLAB is aso introduced
early in the book with a tutorial available in Appendix E. KCIDE
for Circuitsis abrand new, state-of-the-art software system designed
to help the students maximize their chance of success in problem
solving. It is introduced in Appendix F. Finaly, design a problem
problems have been introduced, for the first time. These are meant
to help the student develop skills that will be needed in the design
process.

Historical Tidbits

Historical sketches throughout the text provide profiles of important
pioneers and events relevant to the study of electrical engineering.
Early Op Amp Discussion

The operational amplifier (op amp) as a basic element is introduced
early in the text.

Fourier and Laplace Transforms Coverage

To ease the transition between the circuit course and signals and
systems courses, Fourier and Laplace transforms are covered
lucidly and thoroughly. The chapters are developed in a manner
that the interested instructor can go from solutions of first-order
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circuits to Chapter 15. This then allows a very natural progression
from Laplace to Fourier to AC.

e Four Color Art Program
A completely redesigned interior design and four color art program
bring circuit drawings to life and enhance key pedagogica ele-
ments throughout the text.

e Extended Examples
Examples worked in detail according to the six-step problem solv-
ing method provide a roadmap for students to solve problemsin a
consistent fashion. At least one example in each chapter is devel-
oped in this manner.

« EC 2000 Chapter Openers
Based on ABET'’s new skill-based CRITERION 3, these chapter
openers are devoted to discussions as to how students can acquire
the skills that will lead to a significantly enhanced career as an
engineer. Because these skills are so very important to the student
while in college as well as in their career, we will use the head-
ing, “ Enhancing your Skills and your Career.”

* Homework Problems
There are 358 new or changed end-of-chapter problems which will
provide students with plenty of practice as well as reinforce key
concepts.

« Homework Problem Icons
Icons are used to highlight problems that relate to engineering design
as well as problems that can be solved using PSpice or MATLAB.
» KCIDE for Circuits Appendix F
A new Appendix F provides a tutorial on the Knowledge Captur-
ing Integrated Design Environment (KCIDE for Circuits) software,
available on ARIS.

Organization

This book was written for a two-semester or three-quarter course in
linear circuit analysis. The book may also be used for a one-semester
course by a proper selection of chapters and sections by the instructor.
It is broadly divided into three parts.

e Part 1, consisting of Chapters 1 to 8, is devoted to dc circuits. It
covers the fundamental laws and theorems, circuits techniques, and
passive and active elements.

e Part 2, which contains Chapter 9 to 14, deals with ac circuits. It
introduces phasors, sinusoidal steady-state analysis, ac power, rms
values, three-phase systems, and frequency response.

e Part 3, consisting of Chapters 15 to 19, is devoted to advanced
techniques for network analysis. It provides students with a solid
introduction to the Laplace transform, Fourier series, Fourier trans-
form, and two-port network analysis.

The material in three parts is more than sufficient for a two-semester
course, so the instructor must select which chapters or sections to cover.
Sections marked with the dagger sign (T) may be skipped, explained
briefly, or assigned as homework. They can be omitted without loss of
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continuity. Each chapter has plenty of problems grouped according to
the sections of the related material and diverse enough that the instruc-
tor can choose some as examples and assign some as homework. As
stated earlier, we are using three icons with this edition. We are using
;;7§ to denote problems that either require PSpice in the solution process,
where the circuit complexity is such that PSpice would make the solu-
tion process easier, and where PSpice makes a good check to see if the
problem has been solved correctly. We are using 3, to denote problems
where MATLAB is required in the solution process, where MATLAB
makes sense because of the problem makeup and its complexity, and
where MATLAB makes a good check to see if the problem has been
solved correctly. Finally, we use e%d to identify problems that help the
student develop skills that are needed for engineering design. More dif-
ficult problems are marked with an asterisk (*). Comprehensive prob-
lems follow the end-of-chapter problems. They are mostly applications
problems that require skills learned from that particular chapter.

Prerequisites

As with most introductory circuit courses, the main prerequisites, for
a course using the text, are physics and calculus. Although familiarity
with complex numbers is helpful in the later part of the book, it is not
required. A very important asset of this text is that ALL the mathe-
matical equations and fundamentals of physics needed by the student,
are included in the text.

Supplements

McGraw-Hill’'s ARIS—Assessment, Review, and Instruction
System is a complete, online tutorial, electronic homework, and course
management system, designed for greater ease of use than any other
system available. Available on adoption, instructors can create and
share course materials and assignments with other instructors, edit ques-
tions and algorithms, import their own content, and create announce-
ments and due dates for assignments. ARIS has automatic grading and
reporting of easy-to-assign algorithmically-generated homework,
quizzing, and testing. Once a student is registered in the course, all stu-
dent activity within McGraw-Hill’sARIS is automatically recorded and
available to the instructor through a fully integrated grade book that can
be downloaded to Excel. Also included on ARIS are a solutions man-
ual, text image files, transition guides to instructors, and Network
Analysis Tutorials, software downloads, complete solutions to text
practice problems, FE Exam questions, flashcards, and web links to stu-
dents. Visit www.mhhe.com/alexander.

Knowledge Capturing Integrated Design Environment for Circuits
(KCIDE for Circuits) This new software, developed at Cleveland State
University and funded by NASA, is designed to help the student work
through a circuits problem in an organized manner using the six-step
problem-solving methodology in the text. KCIDE for Circuits allows
students to work a circuit problem in PSpice and MATLAB, track the
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evolution of their solution, and save a record of their process for future
reference. In addition, the software automatically generates a Word
document and/or a PowerPoint presentation. Appendix F contains a
description of how to use the software. Additional examples can be
found at the web site, http:/kcide.fennresearch.org/, which is linked
from ARIS. The software package can be downloaded for free.

Problem Solving Made Almost Easy, a companion workbook to Fun-
damentals of Electric Circuits, is available on ARIS for students who
wish to practice their problem-solving techniques. The workbook con-
tains a discussion of problem-solving strategies and 150 additional
problems with complete solutions provided.

C.0.SM.0.SThisCD, availableto instructors only, is a powerful solu-
tions manual tool to help instructors streamline the creation of assign-
ments, quizzes, and tests by using problems and solutions from the
textbook, as well as their own custom material. Instructors can edit
textbook end-of-chapter problems as well as track which problems have
been assigned.

Although the textbook is meant to be self-explanatory and act as
a tutor for the student, the personal contact in teaching is not forgot-
ten. It is hoped that the book and supplemental materials supply the
instructor with all the pedagogical tools necessary to effectively pres-
ent the material.
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The four color art program brings circuit draw-
ings to life and enhances key concepts throughout o e "
the text.

Craster 1 Baic Concepts

1.8 fProblem Solving

GUIDED TOUR

The main objective of this book is to present circuit analysisin a man-
ner that is clearer, more interesting, and easier to understand than other
texts. For you, the student, here are some features to help you study
and be successful in this course.

“To relate power and energy to voltage and current, we recall from
sics that:

Power i the time fte of expending or absorbing enersy, measured in

watts (W),

We wiite this relationship as

PE 15

‘where p is power in watts (W), w is energy in joules (), and tis time.
in seconds (5). From Es. (1.1), (13), and (L5), it follows that

e
d_du
Geacy 6 @
. daodt Figure 1.8
o nsemw;mmmmsuame
Son convrson: (2 aborbing
o, (0 sppirg owe.
an

Although the probles to be solved during one's career will vary in
complexity and magnitude, the basic principles o be followed reman
the same. The process outlined here is the one developed by the
authors over many years of problem solving with students, for the
solution of engineering problems in industry, and for problem solving
in reseerch.
We wil st the steps simply and then elzborate on them.

Carefully Define the problem.
ihing you know about the problem.

Establish aset of Alernalive solutions and determine the one that

promises the grestest likelihood of sucoess.

N.
z
E
iz
H
H
£
£

Evaluate the solution and check for accur:

6. Has the problem been solved Satistactorily? If <o, present the
solution; if not, then return 1o Siep 3 and continue through the
process again.

1. Carefully Define the problem This may be the most important part
of the process, because it becomes the foundation for all the rest of the

Steps: In general, the present
incomplete. You must do all
problem as thoroughly as thi

iressex before continuf

Solutions. This important stef
3. Establish a set of Alter]

desirable to identify as many
you also need to determine
PSpice and MATLAB and
reduce effort and increese.
spent carefully defining
approaches 1o ts solution
alternatives and determining|
Success may be difficult bu
this process well since you
approach does not work

4. Attempt a problem sol
solving the problem. The pr

18 PoblemSaling

in order to present a detailed solution f successful, and to evaluzte the

process if you are not successl. This detailed evaluation may lead to

corrections tht can then lead to a successul solution. It can also lead

0 new alternatives to try. Many times, it is wise to fully set up a solu-

tion before putting numbers into equations. This will help in checking

you resiits.
5.

alucte whet Deside if you h abi
‘solution, one thet you wan o presen to your team, boss, or professox

6. Has the problem been solved Satisfactorily? If o, presen the solu-
tion; if not, then retrn o step 3 and continue through the process
again. Now you need to present your solution o try another altera-
tive. At this point, presenting your solution may bring closure to the
process. Often, however, presentation of a solution leads to further
TEACGI o the prbie cefiion, 2 te proess coniues Fo-

“The power p in Eq. (17) is a time-varying quanity and is caled the
instantaneous power. Thus, the power absorbed or supplied by an ele-
ment is the product of the voltage across the element and the current
through it I the power has a + sign, power is being delivered to or
absorbed by the element. I, on the other han, the power has:a — sign,
power is being supplied by the element. But how do we know when
the power has a negative or a positive Sign?

Current direction and voltage polarity play a major role in deter-
mining the sign of powe. It is therefore important that we pay atten-
tion to the reationship between current i and voltage o in Fig. 1.8(a).
‘The voltage polarity and current direction must conform with those.
shoun in Fig. 18(3) n orde fo the power m have a positve sign.

veion, e ers rough he postve Wmly o thevaliage In
this +ui or vi > 0 implies that the element is absorbing
pous, Howewe, i = o o 0,6 n Fige 1), i Slemend
is refeasing or supplying power.

Passive sign convention is satsfec whe the curent enters tivoush
the positve terminal of an elem = v, I the curent enters
thvough the neatve terming, p

Unless otherwise stated, we will follow the passive sign conven-
tion throughout this text. For example, the element in both circuts of
Fig. 1.9 has an absorbing power of +12 W because a positive current
enters the positive terminal in both cases. In Fig. 1.10, howeve, the
element is supplying power of +12 W because a positive curen enters
the negative terminal. Of course, an absorbing power of ~12 W is
equivalent to a supplying power of +12 W. In general,

+Power absorbed = —Power supplied

When the voltage and current directions
confomn o ig. 1 8(0),we have the
tve sign comentonand p = -+

3 3
av av
@ ®
Figure 1.9

o s n dema it n orting
poer of 12W- (&) p = 4 3 =
®p-4x3

@ o
Figure 1.10
o cesclendema vihasppling
oo 121 @) x3=

W, (b))

B w

lowing this process will eventually

Now Iet us look a this process for af
and computer engineering foundations cou|
applies 1o amost every enginesring 2
although the steps have been simplified tc
problems, the process as stated aways ned
sider a simple example.

Solve for the current flowing through the

Solution:
1. Carelully Define the problem. This is|
we can already see tht we do not know
We have the following options. We can
polarity should be. If we cannot ask, then
on whet 10 do next. If we have time to w|
we can solve for the current when the 3-
then plus on the bottom. If we do not haf
ways, assume a polarity and then careful
Let us zesume that the professor tells us f
bottom as shown in Fig. 1.20.
2. Present everything you know abou thd
we know about the problem involves abel
we defne what we seek.
Given the circuit shown in Fig. 1.20,
We now check with the professor, i 1

femispopety dfnes
h a set of Alternative solutiond

Y

likefihood of succesq
techniques thal can be used to solve this p
will see that you can use Gircuit analysis
Onm's law), nodal analysis, and mesh and
To solve for igg using circuit znal
solution, but it will likely teke more work

A six-step problem-solving method-
ology isintroduced in Chapter 1 and
incorporated into worked examples

Chapter 1 Basc Concests

analysis. To solve for iy, using mesh analysis will require writing
two Smultaneous equations to find the two loop currents indicated in
Fig. 121 Using noda analysis requires solving for only one unknown,
This is the essiest approach.

o™ e

Using nodal anysis.

Therefore, we will solve for ig, using nodel
4. At & probiem o, Vi % wine donn 1 o
tions we will need in order 10 find ige,

Now we can solve for vy,
B8 n-0 nt3
2 g Ea
leatsto (dv; — 20) + (vy) + (201 + )

£

Ty =414, vy =42V,

5. Evaluate the solution and check for accuracy. We can
Kirchhof's voltage law (KVL) to check the resuts.

w-5_2-5_ 3_

i 5154
iz =i = 025A
0 +3 243 5
e R R =1

iy g i

~15+025+125=0 (Checks)
Applying KVL o 100p 1,
5+ v+ ven = 5+ (11X 2) + (X 8)
=54 (-(-152) + (025 % 8
5+3+2-0 (Checks)

Applying KVL to loop 2,

Voo + a0 3= (2 X8 + (12X 4 -3
~025x 8+ (125% 4 -3
~245-3-0  (Chesks)

19 summry
S0 we now have a very high degree of confidence in the accuracy

of our anwr,
6. Has the problem been solved Satistactorily? If o, present the solu-

tion; if not, then return to step 3 and continue through the process
again. This problem has been solved satisfactorly.

The curent thiough the -6 resistor is 0.25 A flowing down through
the 80 resistor

Try applying this process to some of the more difficult problems a the
of the chapter.

1.9 Summary
1. An dectric cirait condits of dlectical clements connected
\

ogel

2. The Interational System of Urits (S1) is the international mea-
surement language, whic ers o communicate their
e, Fa th S Pl it tha s of eyl
quantities ived.

2 &men e oo e o

T

4 Voltage is the energy required to move 1 C of charge through an

element.

5. Power is the energy supplied or absorbed per unit time. It is dlso
the product of voltage and current.

6. According to the passive sign convention, power assumes a posi-

throughout the text to promote
sound, step-by-step problem-solving

practices.

XX

the voltage

acr0ss an element.

An idel voltage source produces a specific potential difference

acr0ss s terminals regerdless of wht is connected 1o it An ideel

current source produces a specific current through its terminals

regardiess of what is connected 10 it

8 Voltage and current sources can be or independert, A
dependent source i one whose value depends on some ather cir-
ait variable.

‘Two areas of zpplication of the concepts covered in this chapter

arethe TV picture tube and dectricity billing procedure.

Practice Problem 1.10
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Each illustrative example is immediately followed by
— S a practice problem and answer to test understanding of
ot ‘ the preceding example.

The supemode contains the 2V source, nodes 1 and 2, and the 10-0
resistor. Applying KCL to the supernode as shawn in Fig. 3.10(a) gives

2=y +ip+7

T e PSpice® for Windows is a student-friendly tool intro-
L duced to students early in the text and used through-
T out, with discussions and examples at the end of each

in Fig. 3.10(t). Going around the lcop, we obtain

Casriu-0 o u-wsr 63 appropriate chapter.

From Egs. (33.1) and (332), we write

% Crapter3  Methods o Andyis

2= $7 = B=ytu+ 2

For Bxample33

ba=vy+2=-20- 20,
o
W=-2 > =73V

and v, = v, + 2 = ~5333V. Note that the 10-0 resstor does ot
meke any difference because it is connected across the Superode.

et The last section in each chapter is devoted to appli-
w At Ton TR cations of the concepts covered in the chapter to help

T students apply the concepts to real-life situations.

@

Figure 3.10
Applying:(2) KCL to the supermode, () KVL to theloop,

Practice Problem 3.3 Find v and i in the dircuit of Fig. 3.11.

Answer: 06V, 42A. ~————

Figure 3.1
For Practce Prob, 3.3

10 Chopters mathods of Andss 39 Applcatons.OC Tarsitor et 107
o o, w0, oo Solution:
T 2 3 The schematc is shown in Fig. 335. (The schemtic in Fig. 335
£ i includes the output rests, mplying that it i the schematic cisplayed
1 o on the screen afte the Smulation) Notice that the voltage-controlled
v =V, mEw mio  u()aa

voltage source E1 in Fig. 335 is connected 5o that its input is the
voltage across the 4-(1 resistor; its gain is et equal 10 3. In order to
display the required currents,we insert pseudocomponent |PROBES in

5 ihe appopriae branches The schamaic s sved 6 eanGiLsch and

Figure 3.32

D 33 st hanaica the rostinFig 331 IPROBES a6 hown n Fig. .35 and s i cuput fe eandLL ot
From thectput il o the IPROBES, we oban' = i - 1333/ and
iy = 2667 A

ae displayed_on VIEWPOINTS and also saved in output file
‘e@mB10.0ut. The output fle includes the following:

NODE VOLTAGE NODE VOLTAGE NCDE VOLTAGE
(1) 1200000 (2) 81.2900 (3) 89.0320
indicating that V; = 120V, V = 8129V, Vs = 89082 V.

Practice Problem 3.10  For the circuit in Fig. 3.33, use PSpice to find the node voltages.

2

N 2 wa 5
00 wa w0 =a 20 Figure 3.35
The schemstc of th et n Fig. 334,
Figure 3.33 disinthe Fig 3% Practice Problem 3.11
For Pracice Frob. 310
Answer: iy = 04286 A, iy = 2286 A, Iy = 2A I
Answer: V; = ~40V, V; = 5714V, V; = 200V.
2n
i T Vo
Example 3.11 1 the Gircuit of Fig. 3.34, determine the curents i, i, and I 3.9 Bapplications: DC Transistor Circuits 10 i 320
20v
1o Most of us dedl with electronic products on a routne basis and have
some experience vith personal computers A basic component for  Figure 3.36
the integratd Grcuits found in these elcironics and computersis the o Prcice Prob 3.1
P 20 B active, three-terminal device known as the transistor. Understanding
the transisor i essentia before an engineer can start an electronic cir-
i tie tis cuit design.
+ Figure 3.37 depicts verious kindsof transistors commercially avil-
w@ oo sag  aaZw able. There ae two basic types of transstors: ipolar juncton transis-
tors (BJTS) and fieceffecttransistors (FETS). Here, we consider orly
the BTS, which were the firs of the two and are sill sed todey. Our
Figure 3.34
For Exanple 311 arauts

-mi

Sinusoids and
Phasors . . .
. Each chapter opens with a discussion about how to

e e enhance skills that contribute to successful problem

S solving as well as successful careers or a career-
Enbancing Your Sils and Your Career oriented talk on a sub-discipline of electrical engi-
s e 7o ooy @ fncton on neering to give students some real-world applications
of what they are learning.

A

“The *abiity to function on multidisciplinary teams” is inherently crit-
ical for the working enginees. Engineers rarey, if ever, work by them-
selves. Engineers will always be part of some team. One of the things
1 like to remind students is that you o not have to like everyone on a
tea; you just have to be a successful part of that team.

Most frequently, these teams include individuals from of a variety
of disciplines, as well
disciplines such as merketing and finance.

Students can ezsily develop and enhance this ill by working in
study groups in every course they take. Clearly. working in study
groups in nonengineering courses as well as engineering courses out-
Side your discipline will also give you experience with multiciscipli-
nary teams.

eqd |cons next to the end-of-chapter homework problems
let students know which problems relate to engineer-
ing design and which problems can be solved using
PSpice or MATLAB. Appendices on these computer
programs provide tutorials for their use.

Photo by Crirles Alexander
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Supplements for Students and Instructors

McGraw-Hill's ARIS—Assessment, Review,
CARIS ~ ARI = and Instruction System is a complete, online
= L tutorial, electronic homework, and course man-

| o a; agement system, designed for greater ease of

use than any other system available. With ARIS, instructors can create
and share course materials and assignments with other instructors, edit
guestions and algorithms, import their own content, and create
announcements and due dates for assignments. ARIS has automatic
grading and reporting of easy-to-assign algorithmically-generated
homework, quizzing, and testing. Once a student is registered in the
- e ol .| course, al student activity within McGraw-Hill’s ARIS is automatically
recorded and available to the instructor through a fully integrated grade
book that can be downloaded to Excel.
www.mhhe.com/alexander

Knowledge Capturing Integrated Design Environment
for Circuits (KCIDE for Circuits) software, linked
from ARIS, enhances student understanding of the

six-step problem-solving methodology in the book.
KCIDE fgr Ci rCl_Jits alows students to work a ci r(?uit Sleto) o) sloie) S Sime 3 Sislala) nlleleIAlE
problem in PSpice and MATLAB, track the evolution 2i-EHEELE L I T -
of their solution, and save a record of their process for . al
future reference. Appendix F walks the user through 0 2
this program. | s : k5l ‘ 3
f = -
| i i
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Other resources provided on ARIS.

For Sudents:

— Network Analysis Tutorials—a series of interactive quizzes to help
students practice fundamental concepts in circuits.

— FE Exam Interactive Review Quizzes—chapter based self-quizzes
provide hints for solutions and correct solution methods, and help
students prepare for the NCEES Fundamentals of Engineering
Examination.

— Problem Solving Made Almost Easy—a companion workbook to the
text, featuring 150 additional problems with complete solutions.

— Complete solutions to Practice Problems in the text

— Fashcards of key terms

— Web links

For Instructors:

— Image Sets—electronic files of text figures for easy integration into
your course presentations, exams, and assignments.

— Transition Guides—compare coverage of the third edition to other
popular circuits books at the section level to aid transition to teach-
ing from our text.

xXiii






A Note to the Student

This may be your first course in electrical engineering. Although elec-
trical engineering is an exciting and challenging discipline, the course
may intimidate you. This book was written to prevent that. A good text-
book and a good professor are an advantage—but you are the one who
does the learning. If you keep the following ideas in mind, you will do
very well in this course.

This course is the foundation on which most other courses in the
electrical engineering curriculum rest. For this reason, put in as
much effort as you can. Study the course regularly.

Problem solving is an essentia part of the learning process. Solve as
many problems as you can. Begin by solving the practice problem
following each example, and then proceed to the end-of-chapter
problems. The best way to learn is to solve a lot of problems. An
asterisk in front of a problem indicates a challenging problem.
Spice, a computer circuit analysis program, is used throughout the
textbook. PSpice, the personal computer version of Spice, is the
popular standard circuit analysis program at most universities.
PSpice for Windows is described in Appendix D. Make an effort
to learn PSpice, because you can check any circuit problem with
PSpice and be sure you are handing in a correct problem solution.
MATLAB is another software that is very useful in circuit analysis
and other courses you will be taking. A brief tutorial on MATLAB
is given in Appendix E to get you started. The best way to learn
MATLAB isto start working with it once you know afew commands.
Each chapter ends with a section on how the material covered in
the chapter can be applied to real-life situations. The concepts in
this section may be new and advanced to you. No doubt, you will
learn more of the details in other courses. We are mainly interested
in gaining a general familiarity with these ideas.

Attempt the review questions at the end of each chapter. They
will help you discover some “tricks’ not revealed in class or in the
textbook.

Clearly alot of effort has gone into making the technical detailsin
this book easy to understand. It also contains all the mathematics
and physics necessary to understand the theory and will be very
useful in your other engineering courses. However, we have aso
focused on creating a reference for you to use both in school as
well as when working in industry or seeking a graduate degree.
It isvery tempting to sell your book after you have completed your
classroom experience; however, our adviceto youis DO NOT SELL
YOUR ENGINEERING BOOKS Books have aways been expen-
sive, however, the cost of this book is virtually the same as | paid
for my circuits text back in the early 60s in terms of real dollars.
In fact, it is actually cheaper. In addition, engineering books of
the past are no where near as complete as what is available now.
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A Note to the Student

When | was a student, | did not sell any of my engineering text-
books and was very glad | did not! | found that | needed most of
them throughout my career.

A short review on finding determinants is covered in Appendix A,
complex numbers in Appendix B, and mathematical formulas in Appen-
dix C. Answers to odd-numbered problems are given in Appendix G.

Have fun!

C.K.A.and M.N.O.S.
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Basic Concepts

Some books are to be tasted, others to be swallowed, and some few to
be chewed and digested.

—TFrancis Bacon

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.a), “an ability to apply knowledge
of mathematics, science, and engineering.”

As students, you are required to study mathematics, science, and engi-
neering with the purpose of being able to apply that knowledge to the
solution of engineering problems. The skill here is the ability to apply
the fundamentals of these areas in the solution of a problem. So, how
do you develop and enhance this skill?

The best approach is to work as many problems as possible in all
of your courses. However, if you are really going to be successful with
this, you must spend time analyzing where and when and why you have
difficulty in easily arriving at successful solutions. You may be sur-
prised to learn that most of your problem-solving problems are with
mathematics rather than your understanding of theory. You may also
learn that you start working the problem too soon. Taking time to think
about the problem and how you should solve it will aways save you
time and frustration in the end.

What | have found that works best for me is to apply our six-
step problem-solving technique. Then | carefully identify the areas
where | have difficulty solving the problem. Many times, my actual
deficiencies are in my understanding and ability to use correctly cer-
tain mathematical principles. | then return to my fundamental math
texts and carefully review the appropriate sections and in some cases
work some example problems in that text. This brings me to another
important thing you should always do: Keep nearby all your basic
mathematics, science, and engineering textbooks.

This process of continually looking up material you thought you
had acquired in earlier courses may seem very tedious at first; how-
ever, as your skills develop and your knowledge increases, this process
will become easier and easier. On a personal note, it is this very process
that led me from being a much less than average student to someone
who could earn a Ph.D. and become a successful researcher.

Photo by Charles Alexander
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Figure 1.1
A simple electric circuit.

Chapter 1 Basic Concepts

1.1 Introduction

Electric circuit theory and electromagnetic theory are the two funda
mental theories upon which all branches of electrical engineering are
built. Many branches of electrical engineering, such as power, electric
machines, control, electronics, communications, and instrumentation,
are based on electric circuit theory. Therefore, the basic electric circuit
theory course is the most important course for an electrical engineer-
ing student, and always an excellent starting point for a beginning stu-
dent in electrical engineering education. Circuit theory is also valuable
to students specializing in other branches of the physical sciences
because circuits are a good model for the study of energy systems in
general, and because of the applied mathematics, physics, and topol-
ogy involved.

In electrical engineering, we are often interested in communicating
or transferring energy from one point to another. To do this requires an
interconnection of electrical devices. Such interconnection is referred
to as an electric circuit, and each component of the circuit is known as
an element.

An electric circuit is an interconnection of electrical elements.

A simple electric circuit is shown in Fig. 1.1. It consists of three
basic elements: a battery, a lamp, and connecting wires. Such a simple
circuit can exist by itself; it has several applications, such as a flash-
light, a search light, and so forth.

A complicated real circuit is displayed in Fig. 1.2, representing the
schematic diagram for a radio receiver. Although it seems complicated,
this circuit can be analyzed using the techniques we cover in this book.
Our goal in this text is to learn various analytical techniques and
computer software applications for describing the behavior of a circuit
like this.

Electric circuits are used in numerous electrical systems to accom-
plish different tasks. Our objective in this book is not the study of
various uses and applications of circuits. Rather our major concern is
the analysis of the circuits. By the analysis of a circuit, we mean a
study of the behavior of the circuit: How does it respond to a given
input? How do the interconnected elements and devices in the circuit
interact?

We commence our study by defining some basic concepts. These
concepts include charge, current, voltage, circuit elements, power, and
energy. Before defining these concepts, we must first establish a sys-
tem of units that we will use throughout the text.

1.2 Systems of Units

As electrical engineers, we deal with measurable quantities. Our mea-
surement, however, must be communicated in a standard language that
virtually all professionals can understand, irrespective of the country
where the measurement is conducted. Such an international measurement
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Figure 1.2

Electric circuit of aradio receiver.
Reproduced with permission from QST, August 1995, p. 23.

language is the International System of Units (Sl), adopted by the
General Conference on Weights and Measures in 1960. In this system,
there are six principal units from which the units of al other physica
quantities can be derived. Table 1.1 shows the six units, their symbols,
and the physical quantities they represent. The SI units are used
throughout this text.

One great advantage of the Sl unit is that it uses prefixes based on
the power of 10 to relate larger and smaller units to the basic unit.
Table 1.2 shows the Sl prefixes and their symbols. For example, the

TABLE 1.2

The SI prefixes.

following are expressions of the same distance in meters (m):

600,000,000 mm

600,000 m

600 km

TABLE 1.1

Six basic SI units and one derived unit relevant to this text.

Quantity Basic unit Symbol
Length meter m
Mass kilogram kg
Time second S
Electric current ampere A
Thermodynamic temperature kelvin K
Luminous intensity candela cd
Charge coulomb C

Multiplier Prefix Symbol
108 exa E
10" peta P
102 tera T
10° giga G
108 mega M
10° kilo k
10? hecto h
10 deka da
101 deci d
102 centi c
1073 milli m
10°° micro o
10°° nano n
102 pico p
10°1° femto f
10 atto a




Battery
Figure 1.3
Electric current due to flow of electronic
charge in a conductor.

A convention is a standard way of
describing something so that others in
the profession can understand what
we mean. We will be using IEEE con-
ventions throughout this book.
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1.3 Charge and Current

The concept of electric charge is the underlying principle for explain-
ing al electrical phenomena. Also, the most basic quantity in an elec-
tric circuit is the electric charge. We all experience the effect of electric
charge when we try to remove our wool sweater and have it stick to
our body or walk across a carpet and receive a shock.

Charsge is an electrical property of the atomic particles of which mat-
ter consists, measured in coulombs (C).

We know from elementary physics that al matter is made of funda-
mental building blocks known as atoms and that each atom consists of
electrons, protons, and neutrons. We also know that the charge e on an
electron is negative and equal in magnitude to 1.602 X 10~ *° C, while
a proton carries a positive charge of the same magnitude as the elec-
tron. The presence of equal numbers of protons and electrons leaves an
atom neutrally charged.
The following points should be noted about electric charge:

1. The coulomb is a large unit for charges. In 1 C of charge, there
are 1/(1.602 X 10~ ') = 6.24 x 10 electrons. Thus realistic or
laboratory values of charges are on the order of pC, nC, or uC.*

2. According to experimental observations, the only charges that
occur in nature are integral multiples of the electronic charge
e=—1602 x 10 *°C.

3. The law of conservation of charge states that charge can neither
be created nor destroyed, only transferred. Thus the algebraic sum
of the electric charges in a system does not change.

We now consider the flow of electric charges. A unique feature of
electric charge or electricity is the fact that it is mobile; that is, it can
be transferred from one place to another, where it can be converted to
another form of energy.

When a conducting wire (consisting of several atoms) is con-
nected to a battery (a source of electromotive force), the charges are
compelled to move; positive charges move in one direction while neg-
ative charges move in the opposite direction. This motion of charges
creates electric current. It is conventional to take the current flow as
the movement of positive charges. That is, opposite to the flow of neg-
ative charges, as Fig. 1.3 illustrates. This convention was introduced
by Benjamin Franklin (1706-1790), the American scientist and inven-
tor. Although we now know that current in metallic conductors is due
to negatively charged electrons, we will follow the universaly
accepted convention that current is the net flow of positive charges.
Thus,

Electric current is the time rate of change of charge, measured in
amperes (A).

1 However, a large power supply capacitor can store up to 0.5 C of charge.
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Historical

Andre-Marie Ampere (1775-1836), a French mathematician and
physicist, laid the foundation of electrodynamics. He defined the elec-
tric current and developed a way to measure it in the 1820s.

Born in Lyons, France, Ampere at age 12 mastered Latin in a few
weeks, as he was intensely interested in mathematics and many of the
best mathematical works were in Latin. He was a brilliant scientist and
a prolific writer. He formulated the laws of electromagnetics. He in-
vented the electromagnet and the ammeter. The unit of electric current,
the ampere, was named after him.

The Burndy Library Collection
a The Huntington Library,
San Marino, Cdifornia

Mathematically, the relationship between current i, charge g, and time't is

4 dg
i = at (2.2

where current is measured in amperes (A), and
1 ampere = 1 coulomb/second

The charge transferred between time ty and t is obtained by integrat-
ing both sides of Eq. (1.1). We obtain

Q éfti dt (1.2)

to

The way we define current asi in Eq. (1.1) suggests that current need
not be a constant-valued function. As many of the examples and prob-
lems in this chapter and subsequent chapters suggest, there can be sev-
era types of current; that is, charge can vary with time in several ways.

If the current does not change with time, but remains constant, we
cal it adirect current (dc).

A direct current (dc) is a current that remains constant with time.

By convention the symbol | is used to represent such a constant current.

A time-varying current is represented by the symbol i. A common
form of time-varying current is the sinusoidal current or alternating
current (ac).

An alternating current (ac) is a current that varies sinusoidally with time.

Such current is used in your household, to run the air conditioner,
refrigerator, washing machine, and other electric appliances. Figure 1.4

/\

(b)
Figure 1.4
Two common types of current: (a) direct
current (dc), (b) alternating current (ac).
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Figure 1.5
Conventional current flow: (a) positive
current flow, (b) negative current flow.
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shows direct current and alternating current; these are the two most
common types of current. We will consider other types later in the
book.

Once we define current as the movement of charge, we expect cur-
rent to have an associated direction of flow. As mentioned earlier, the
direction of current flow is conventionally taken as the direction of pos-
itive charge movement. Based on this convention, a current of 5 A may
be represented positively or negatively as shown in Fig. 1.5. In other
words, a negative current of —5 A flowing in one direction as shown
in Fig. 1.5(b) is the same as a current of +5 A flowing in the opposite
direction.

Example 1.1

How much charge is represented by 4,600 electrons?

Solution:
Each electron has —1.602 x 10~ 1° C. Hence 4,600 electrons will have

—1.602 X 10 ° C/electron x 4,600 electrons = —7.369 X 10 ¢ C

Practice Problem 1.1

Calculate the amount of charge represented by four million protons.

Answer: +6.408 x 10" %3 C.

Example 1.2

Thetotal charge entering aterminal isgiven by q = 5t sin 47t mC.
Calculatethecurrentatt = 0.5s.

Solution:

_da_

dt
Att =05,
i =5sin27 + 107 cos27 = 0 + 107 = 31.42mA

d . .
a(Stsm A7ty mC/s = (5sin4xwt + 207t cos4mt) mA

Practice Problem 1.2

If in Example 1.2, g = (10 — 10e ?) mC, find the current at t = 0.5 s.

Answer: 7.36 mA.
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Determine the total charge entering a terminal between t = 1s and
t = 2 sif the current passing the terminal isi = (3t% — t) A.

Solution:

2 2
sz idt:J (3t2 — t)dt
t=1 1
2 1
=(8—2)—<1—)=5.5C
l 2

-9

Example 1.3

The current flowing through an element is

i_{ZA, 0o<t<1
2t2A, t>1

Calculate the charge entering the element fromt =0tot = 2 s

Answer: 6.667 C.

1.4 Voltage

As explained briefly in the previous section, to move the electron in a
conductor in a particular direction requires some work or energy trans-
fer. This work is performed by an external electromotive force (emf),
typically represented by the battery in Fig. 1.3. This emf is aso known
as voltage or potential difference. The voltage vy, between two points
a and b in an electric circuit is the energy (or work) needed to move
a unit charge from a to b; mathematically,
A Qw

where w is energy in joules (J) and g is charge in coulombs (C). The
voltage vy, or smply v is measured in volts (V), named in honor of
the Italian physicist Alessandro Antonio Volta (1745-1827), who
invented the first voltaic battery. From Eq. (1.3), it is evident that

1volt = 1joule/coulomb = 1 newton-meter/coulomb

Thus,

Voltage (or potential difference) is the energy required to move a unit
charge through an element, measured in volts (V).

Figure 1.6 shows the voltage across an element (represented by a
rectangular block) connected to points a and b. The plus (+) and minus
(=) signs are used to define reference direction or voltage polarity. The
Ugp Can be interpreted in two ways: (1) point a is at a potential of vy,

Practice Problem 1.3

Figure 1.6
Polarity of voltage vgp.
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Historical

Alessandro Antonio Volta (1745-1827), an lItalian physicist,
invented the electric battery—which provided the first continuous flow
of electricity—and the capacitor.

Born into a noble family in Como, Italy, Volta was performing
electrical experiments at age 18. His invention of the battery in 1796
revolutionized the use of electricity. The publication of his work in
1800 marked the beginning of electric circuit theory. Volta received
many honors during his lifetime. The unit of voltage or potential dif-
ference, the volt, was named in his honor.

10
P~
—Ooa
+
D ov
L ob
@
Figure 1.7

(b)

Two equivalent representations of the
same voltage vy, (@) point ais 9V above

point b, (b) point bis —9V above point a.

Keep in mind that electric current is
always through an element and that
electric voltage is always across the
element or between two points.

volts higher than point b, or (2) the potential at point a with respect to
point b is vy, It follows logically that in general

Uagp = —Upa (14)

For example, in Fig. 1.7, we have two representations of the same volt-
age. In Fig. 1.7(a), point ais +9 'V above point b; in Fig. 1.7(b), point b
is —9 V above point a. We may say that in Fig. 1.7(a), there is a 9-V
voltage drop from a to b or equivalently a 9-V voltage rise from b to
a. In other words, a voltage drop from a to b is equivalent to a volt-
age rise from b to a.

Current and voltage are the two basic variables in electric circuits.
The common term signal is used for an electric quantity such as a cur-
rent or a voltage (or even electromagnetic wave) when it is used for
conveying information. Engineers prefer to call such variables signals
rather than mathematical functions of time because of their importance
in communications and other disciplines. Like electric current, a con-
stant voltage is called a dc voltage and is represented by V, whereas a
sinusoidally time-varying voltage is called an ac voltage and is repre-
sented by v. A dc voltage is commonly produced by a battery; ac volt-
age is produced by an electric generator.

1.5 Power and Energy

Although current and voltage are the two basic variables in an electric
circuit, they are not sufficient by themselves. For practical purposes,
we need to know how much power an electric device can handle. We
all know from experience that a 100-watt bulb gives more light than a
60-watt bulb. We also know that when we pay our hills to the electric
utility companies, we are paying for the electric energy consumed over
a certain period of time. Thus, power and energy calculations are
important in circuit analysis.
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To relate power and energy to voltage and current, we recall from
physics that:

Power is the time rate of expending or absorbing energy, measured in
watts (W).

We write this relationship as

dw
dt

=

p (1.5)

where p is power in watts (W), w is energy in joules (J), and t is time
in seconds (s). From Egs. (1.1), (1.3), and (1.5), it follows that

_Ow _dw dq_ .
& dg (1.6)
or
p = vi (1.7)

The power p in Eq. (1.7) is a time-varying quantity and is called the
instantaneous power. Thus, the power absorbed or supplied by an ele-
ment is the product of the voltage across the element and the current
through it. If the power has a + sign, power is being delivered to or
absorbed by the element. If, on the other hand, the power has a — sign,
power is being supplied by the element. But how do we know when
the power has a negative or a positive sign?

Current direction and voltage polarity play a magjor role in deter-
mining the sign of power. It is therefore important that we pay atten-
tion to the relationship between current i and voltage v in Fig. 1.8(a).
The voltage polarity and current direction must conform with those
shown in Fig. 1.8(a) in order for the power to have a positive sign.
This is known as the passive sign convention. By the passive sign con-
vention, current enters through the positive polarity of the voltage. In
this case, p = +wvi or vi > 0 implies that the element is absorbing
power. However, if p = —vi or vi < 0, asin Fig. 1.8(b), the element
is releasing or supplying power.

Passive sign convention is satisfied when the current enters through
the positive terminal of an element and p = +Vi. If the current enters
through the negative terminal, p = —Vi.

Unless otherwise stated, we will follow the passive sign conven-
tion throughout this text. For example, the element in both circuits of
Fig. 1.9 has an absorbing power of +12 W because a positive current
enters the positive terminal in both cases. In Fig. 1.10, however, the
element is supplying power of +12 W because a positive current enters
the negative terminal. Of course, an absorbing power of —12 W is
equivalent to a supplying power of +12 W. In general,

+Power absorbed = —Power supplied

11
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Figure 1.8

Reference polarities for power using the
passive sign convention: (&) absorbing
power, (b) supplying power.

When the voltage and current directions
conform to Fig. 1.8 (b), we have the ac-
tive sign conventionand p = +Vi.

3A 3A
o— o—
g 2

aw D w D
— +
o—— o——
@ (b)

Figure 1.9

Two cases of an element with an absorbing
power of 12W: (8) p =4 X 3= 12W,
byp=4x3=12W.

3A 3A
o—— o—
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av D av D
_ +
o——- o——
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Figure 1.10

Two cases of an element with a supplying
power of 12W: (@) p= —4 X 3=
—12W, (b) p= -4 X 3 = —12W.
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In fact, the law of conservation of energy must be obeyed in any
electric circuit. For this reason, the algebraic sum of power in a cir-
cuit, at any instant of time, must be zero:
>p=0 (1.8)
This again confirms the fact that the total power supplied to the circuit
must balance the total power absorbed.
From Eg. (1.6), the energy absorbed or supplied by an element
fromtimety totimetis
t t
w—det—Jvidt (2.9
to to
Energy is the capacity to do work, measured in joules (J).
The electric power utility companies measure energy in watt-hours
(Wh), where
1Wh = 3,600J
Example 1.4 An energy source forces a constant current of 2 A for 10 s to flow

through a lightbulb. If 2.3 kJ is given off in the form of light and heat
energy, calculate the voltage drop across the bulb.

Solution:
The total charge is

Aq=iAt=2x10=20C
The voltage drop is

_Aw _ 23x10°

=S¥ _ ~ 115V
YT Aq 20

Practice Problem 1.4

To move charge q from point a to point b requires —30 J. Find the
voltage drop vy, if: (@ g=2C, (b)g= -6 C.

Answer: () —15V, (b) 5 V.

Example 1.5

Find the power delivered to an element at t = 3 msif the current enter-
ing its positive termina is

i =5cos607mt A
and the voltage is: (a) v = 3i, (b) v = 3di/dt.
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Solution:
(8 The voltage isv = 3i = 15 cos 607rt; hence, the power is

p = vi = 75c08> 607t W
Att=3ms,

p = 75c0s” (607 X 3 X 10 %) = 75c0s? 0.187 = 53.48 W
(b) We find the voltage and the power as
di

v = Sa = 3(—607)5sin 607t = —9007 sin 607t V

p = vi = —45007 sin 607t cos 607t W
Att= 3 ms,

p = —45007 sin 0.187 cos0.187 W
= —14137.167 sin 32.4° cos 32.4° = —6.396 kW

13

Find the power delivered to the element in Example 1.5 at t = 5 ms
if the current remains the same but the voltage is: (a) v = 2i V,

(b) v = (10 + SJ i dt) V.
(0]

Answer: () 17.27 W, (b) 29.7 W.

Practice Problem 1.5

How much energy does a 100-W electric bulb consume in two hours?

Solution:
w = pt = 100 (W) X 2 (h) X 60 (min/h) X 60 (§min)
= 720,000 J = 720 kJ
This is the same as
w = pt=100W X 2h = 200 Wh

Example 1.6

A stove element draws 15 A when connected to a 240-V line. How
long does it take to consume 60 kJ?

Answer: 16.667 s.

Practice Problem 1.6
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Historical

1884 Exhibition In the United States, nothing promoted the future
of electricity like the 1884 International Electrical Exhibition. Just
imagine a world without electricity, aworld illuminated by candles and
gaslights, a world where the most common transportation was by walk-
ing and riding on horseback or by horse-drawn carriage. Into this world
an exhibition was created that highlighted Thomas Edison and reflected
his highly developed ability to promote his inventions and products.
His exhibit featured spectacular lighting displays powered by an impres-
sive 100-kW “JumbqQ” generator.

Edward Weston's dynamos and lamps were featured in the United
States Electric Lighting Company’s display. Weston's well known col-
lection of scientific instruments was aso shown.

Other prominent exhibitors included Frank Sprague, Elihu Thompson,
and the Brush Electric Company of Cleveland. The American Institute
of Electrical Engineers (AIEE) held its first technical meeting on Octo-
ber 7-8 at the Franklin Institute during the exhibit. AIEE merged with
the Institute of Radio Engineers (IRE) in 1964 to form the Institute of
Electrical and Electronics Engineers (IEEE).

NTERNATIDONAL
AlS 1584
GTRIGEXHIBITIUN

Smithsonian Institution.




1.6 Circuit Elements

1.6 Circuit Elements

As we discussed in Section 1.1, an element is the basic building block
of acircuit. An electric circuit is smply an interconnection of the ele-
ments. Circuit analysis is the process of determining voltages across
(or the currents through) the elements of the circuit.

There are two types of elements found in electric circuits. pas-
sive elements and active elements. An active element is capable of
generating energy while a passive element is not. Examples of pas-
sive elements are resistors, capacitors, and inductors. Typical active
elements include generators, batteries, and operational amplifiers. Our
aim in this section is to gain familiarity with some important active
elements.

The most important active elements are voltage or current
sources that generally deliver power to the circuit connected to
them. There are two kinds of sources. independent and dependent
sources.

An ideal independent source is an active element that provides a
specified voltage or current that is completely independent of other
circuit elements.

In other words, an ideal independent voltage source delivers to the
circuit whatever current is necessary to maintain its terminal volt-
age. Physical sources such as batteries and generators may be
regarded as approximations to ideal voltage sources. Figure 1.11
shows the symbols for independent voltage sources. Notice that both
symbols in Fig. 1.11(a) and (b) can be used to represent a dc volt-
age source, but only the symbol in Fig. 1.11(a) can be used for a
time-varying voltage source. Similarly, an ideal independent current
source is an active element that provides a specified current com-
pletely independent of the voltage across the source. That is, the cur-
rent source delivers to the circuit whatever voltage is necessary to
maintain the designated current. The symbol for an independent cur-
rent source is displayed in Fig. 1.12, where the arrow indicates the
direction of current i.

An ideal dependent (or controlled) source is an active element in
which the source quantity is controlled by another voltage or current.

Dependent sources are usually designated by diamond-shaped symbols,
as shown in Fig. 1.13. Since the control of the dependent source is
achieved by a voltage or current of some other element in the circuit,
and the source can be voltage or current, it follows that there are four
possible types of dependent sources, namely:

1. A voltage-controlled voltage source (VCVS).
2. A current-controlled voltage source (CCVS).
3. A voltage-controlled current source (VCCS).
4. A current-controlled current source (CCCS).

15
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Figure 1.11

Symbols for independent voltage sources:
(a) used for constant or time-varying volt-
age, (b) used for constant voltage (dc).

'®

L 0o

Figure 1.12
Symbol for independent current source.

———oO ——O
v t i *
L—o L— o

@) (b)

Figure 1.13
Symbolsfor: (a) dependent voltage
source, (b) dependent current source.
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Figure 1.14
The source on theright-hand sideisa
current-controlled voltage source.
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Dependent sources are useful in modeling elements such as transis-
tors, operational amplifiers, and integrated circuits. An example of a
current-controlled voltage source is shown on the right-hand side of
Fig. 1.14, where the voltage 10i of the voltage source depends on
the current i through element C. Students might be surprised that
the value of the dependent voltage source is 10i V (and not 10i A)
because it is a voltage source. The key idea to keep in mind is
that a voltage source comes with polarities (+ —) in its symbol,
while a current source comes with an arrow, irrespective of what it
depends on.

It should be noted that an ideal voltage source (dependent or inde-
pendent) will produce any current required to ensure that the terminal
voltage is as stated, whereas an ideal current source will produce the
necessary voltage to ensure the stated current flow. Thus, an ideal
source could in theory supply an infinite amount of energy. It should
also be noted that not only do sources supply power to a circuit, they
can absorb power from a circuit too. For a voltage source, we know
the voltage but not the current supplied or drawn by it. By the same
token, we know the current supplied by a current source but not the
voltage across it.

Example 1.7

I=5A P2

.l —
L I

* o |V6A

12V
+
}w n {4 o2

20v (e ps [

Figure 1.15
For Example 1.7.

Calculate the power supplied or absorbed by each element in Fig. 1.15.

Solution:

We apply the sign convention for power shown in Figs. 1.8 and 1.9.
For p,;, the 5-A current is out of the positive terminal (or into the
negative terminal); hence,

p. = 20(—5) = —100W  Supplied power

For p, and ps, the current flows into the positive terminal of the ele-
ment in each case.

p> = 12(5) = 60 W Absorbed power

ps = 8(6) = 48W Absorbed power
For p,, we should note that the voltage is 8 V (positive at the top), the
same as the voltage for ps, since both the passive element and the
dependent source are connected to the same terminals. (Remember that
voltage is always measured across an element in a circuit.) Since the
current flows out of the positive terminal,

ps = 8(—0.21) = 8(—0.2 X 5) = —8W  Supplied power

We should observe that the 20-V independent voltage source and
0.2 dependent current source are supplying power to the rest of
the network, while the two passive elements are absorbing power.
Also,

pr +p2+ps+ps,=-100+60+48—-8=0

In agreement with Eq. (1.8), the total power supplied equals the total
power absorbed.
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Compute the power absorbed or supplied by each component of the Practice Problem 1.7
circuit in Fig. 1.16. 8A 2V |=5A
— m —
Answer: p; = —40W, p, =16 W, p; = 9 W, p, = 15 W. N
P2 * 3A
+ +
5V D o >osl m D 3V

1.7 T Applications?

In this section, we will consider two practical applications of the
concepts developed in this chapter. The first one deals with the TV
picture tube and the other with how electric utilities determine your
electric bill.

1.7.1 TV Picture Tube

One important application of the motion of electrons is found in both
the transmission and reception of TV signals. At the transmission end,
a TV camera reduces a scene from an optical image to an electrical
signal. Scanning is accomplished with a thin beam of electrons in an
iconoscope camera tube.

At the receiving end, the image is reconstructed by using a cathode-
ray tube (CRT) located in the TV receiver.® The CRT is depicted in
Fig. 1.17. Unlike the iconoscope tube, which produces an electron
beam of constant intensity, the CRT beam varies in intensity accord-
ing to the incoming signal. The electron gun, maintained at a high
potential, fires the electron beam. The beam passes through two sets
of plates for vertical and horizontal deflections so that the spot on the
screen where the beam strikes can move right and left and up and
down. When the electron beam strikes the fluorescent screen, it gives
off light at that spot. Thus, the beam can be made to “paint” a picture
on the TV screen.

Horizontal
deflection
Electron gun plates

q ---------------- Bright spot on
\ \

fluorescent screen

d\éﬁrti gal Electron

I trgjectory
plates

Figure 1.17

Cathode-ray tube.

D. E. Tilley, Contemporary College Physics Menlo Park, CA: Benjamin/
Cummings, 1979, p. 319.

2 The dagger sign preceding a section heading indicates the section that may be skipped,
explained briefly, or assigned as homework.

3 Modern TV tubes use a different technology.

Figure 1.16
For Practice Prob. 1.7.
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Zworykin with an iconoscope.
© Bettmann/Corbis.

Historical
Karl Ferdinand Braun and Vladimir K. Zworykin

Karl Ferdinand Braun (1850-1918), of the University of Strasbourg,
invented the Braun cathode-ray tube in 1879. This then became the
basis for the picture tube used for so many years for televisions. It is
still the most economical device today, although the price of flat-screen
systems is rapidly becoming competitive. Before the Braun tube could
be used in television, it took the inventiveness of Vladimir K.
Zworykin (1889-1982) to develop the iconoscope so that the modern
television would become a reality. The iconoscope developed into the
orthicon and the image orthicon, which allowed images to be captured
and converted into signals that could be sent to the television receiver.
Thus, the television camera was born.

Example 1.8

[

b
Figure 1.18
A simplified diagram of the cathode-ray
tube; for Example 1.8.

/N

The electron beam in a TV picture tube carries 10™ electrons per sec-
ond. As a design engineer, determine the voltage V,, needed to accel-
erate the electron beam to achieve 4 W.

Solution:
The charge on an electron is

e=-16x10C
If the number of electrons is n, then g = ne and

_da_ e@ = (—1.6 X 10" %910%) = —1.6 X 10 *A

dt dt
The negative sign indicates that the current flows in a direction
opposite to electron flow as shown in Fig. 1.18, which is a simplified
diagram of the CRT for the case when the vertical deflection plates
carry no charge. The beam power is

. p 4
=Vj o \=—-=————=25000V
p=Yo ° i 16x10*

Thus, the required voltage is 25 kV.

Practice Problem 1.8

If an electron beam in a TV picture tube carries 10™® electrons/second
and is passing through plates maintained at a potential difference of
30 kV, calculate the power in the beam.

Answer: 48 mW.
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TABLE 1.3 _ _ _
Typical average monthly consumption of household

appliances.

Appliance  kWh consumed  Appliance kWh consumed
Water heater 500 Washing machine 120
Freezer 100 Stove 100
Lighting 100 Dryer 80
Dishwasher 35 Microwave oven 25
Electriciron 15 Personal computer 12

TV 10 Radio 8
Toaster 4 Clock 2

1.7.2 Electricity Bills

The second application deals with how an electric utility company charges
their customers. The cost of electricity depends upon the amount of
energy consumed in kilowatt-hours (kWh). (Other factors that affect the
cost include demand and power factors; we will ignore these for now.)
However, even if a consumer uses no energy at al, there is a minimum
service charge the customer must pay because it costs money to stay con-
nected to the power line. As energy consumption increases, the cost per
kWh drops. It is interesting to note the average monthly consumption of
household appliances for a family of five, shown in Table 1.3.

A homeowner consumes 700 kwWh in January. Determine the electric- Example 1.9
ity bill for the month using the following residential rate schedule:

Base monthly charge of $12.00.

First 100 kWh per month at 16 centskWh.

Next 200 kWh per month at 10 centskWh.

Over 300 kWh per month at 6 centskWh.

Solution:
We calculate the electricity hill as follows.
Base monthly charge = $12.00
First 100 kWh @ $0.16/kWh = $16.00
Next 200 kWh @ $0.10/kWh = $20.00
Remaining 400 kWh @ $0.06/kWh = $24.00
Tota charge = $72.00

$72
Average cost = 100 200 + 400 10.2 centskWh

Referring to the residential rate schedule in Example 1.9, calculate the Practice Problem 1.9
average cost per kWh if only 400 kWh are consumed in July when the
family is on vacation most of the time.

Answer: 13.5 centgkWh.
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1.8 TProblem Solving

Although the problems to be solved during one’s career will vary in
complexity and magnitude, the basic principles to be followed remain
the same. The process outlined here is the one developed by the
authors over many years of problem solving with students, for the
solution of engineering problems in industry, and for problem solving
in research.

We will list the steps ssmply and then elaborate on them.

1. Carefully define the problem.

2. Present everything you know about the problem.

3. Establish a set of alternative solutions and determine the one that
promises the greatest likelihood of success.

4. Attempt a problem solution.

5. Evaluate the solution and check for accuracy.

6. Has the problem been solved satisfactorily? If so, present the solu-
tion; if not, then return to step 3 and continue through the process

again.

1. Carefully define the problem. This may be the most important part
of the process, because it becomes the foundation for all the rest of the
steps. In general, the presentation of engineering problems is somewhat
incomplete. You must do all you can to make sure you understand the
problem as thoroughly as the presenter of the problem understands it.
Time spent at this point clearly identifying the problem will save you
considerable time and frustration later. As a student, you can clarify a
problem statement in a textbook by asking your professor. A problem
presented to you in industry may require that you consult several indi-
viduals. At this step, it is important to develop questions that need to
be addressed before continuing the solution process. If you have such
guestions, you need to consult with the appropriate individuals or
resources to obtain the answers to those questions. With those answers,
you can now refine the problem, and use that refinement as the prob-
lem statement for the rest of the solution process.

2. Present everything you know about the problem. You are now ready
to write down everything you know about the problem and its possible
solutions. This important step will save you time and frustration later.

3. Establish a set of alternative solutions and determine the one that
promises the greatest likelihood of success. Almost every problem will
have a number of possible paths that can lead to a solution. It is highly
desirable to identify as many of those paths as possible. At this point,
you also need to determine what tools are available to you, such as
PSpice and MATLAB and other software packages that can greatly
reduce effort and increase accuracy. Again, we want to stress that time
spent carefully defining the problem and investigating alternative
approaches to its solution will pay big dividends later. Evaluating the
alternatives and determining which promises the greatest likelihood of
success may be difficult but will be well worth the effort. Document
this process well since you will want to come back to it if the first
approach does not work.

4. Attempt a problem solution. Now is the time to actually begin
solving the problem. The process you follow must be well documented
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in order to present a detailed solution if successful, and to evaluate the
process if you are not successful. This detailed evaluation may lead to
corrections that can then lead to a successful solution. It can also lead
to new alternatives to try. Many times, it is wise to fully set up a solu-
tion before putting numbers into equations. This will help in checking
your results.

5. Evaluate the solution and check for accuracy. You now thoroughly
evaluate what you have accomplished. Decide if you have an acceptable
solution, one that you want to present to your team, boss, or professor.

6. Has the problem been solved satisfactorily? If so, present the solu-
tion; if not, then return to step 3 and continue through the process
again. Now you need to present your solution or try another alterna-
tive. At this point, presenting your solution may bring closure to the
process. Often, however, presentation of a solution leads to further
refinement of the problem definition, and the process continues. Fol-
lowing this process will eventually lead to a satisfactory conclusion.

Now let us look at this process for a student taking an electrical
and computer engineering foundations course. (The basic process also
applies to almost every engineering course.) Keep in mind that
although the steps have been simplified to apply to academic types of
problems, the process as stated always needs to be followed. We con-
sider a simple example.

21

Solve for the current flowing through the 8-Q) resistor in Fig. 1.19.

Solution:

1. Carefully define the problem. This is only a simple example, but
we can aready see that we do not know the polarity on the 3-V source.
We have the following options. We can ask the professor what the
polarity should be. If we cannot ask, then we need to make a decision
on what to do next. If we have time to work the problem both ways,
we can solve for the current when the 3-V source is plus on top and
then plus on the bottom. If we do not have the time to work it both
ways, assume a polarity and then carefully document your decision.
Let us assume that the professor tells us that the source is plus on the
bottom as shown in Fig. 1.20.

2. Present everything you know about the problem. Presenting all that
we know about the problem involves labeling the circuit clearly so that
we define what we seek.

Given the circuit shown in Fig. 1.20, solve for igq.
We now check with the professor, if reasonable, to see if the prob-
lem is properly defined.

3. Establish a set of alternative solutions and determine the one that
promises the greatest likelihood of success. There are essentialy three
techniques that can be used to solve this problem. Later in the text you
will see that you can use circuit analysis (using Kirchhoff’s laws and
Ohm'’s law), nodal analysis, and mesh analysis.

To solve for ign using circuit analysis will eventualy lead to a
solution, but it will likely take more work than either nodal or mesh

Example 1.10
2Q 4Q
5V 8Q 3V
Figure 1.19

Illustrative example.

Figure 1.20
Problem defintion.
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analysis. To solve for ign using mesh analysis will require writing
two simultaneous equations to find the two loop currents indicated in
Fig. 1.21. Using nodal analysis requires solving for only one unknown.
This is the easiest approach.

i i
20 1, 3 a0
MW NV

* g T +
s5v (* * 1) 3V
C— @ vgg§89 Loop 2 D

Figure 1.21
Using nodal analysis.

Therefore, we will solve for ign using nodal analysis.
4. Attempt a problem solution. We first write down all of the equa-
tions we will need in order to find igq.

. . . U1 . U1
lgo = l2 I = §, lgo = §

U1_5+U1_0+U1+3=
2 8 4

0

Now we can solve for v;.

U1_5 Ul—O Ul+3
8 + + -0
2 8 4

leads to (40, — 20) + (v1) + (2v1 + 6) = O

2
Y1 _ 2 _p25A

7Ul: +14, U, = +2V, IBQZE_ 8

5. Evaluate the solution and check for accuracy. We can now use
Kirchhoff’s voltage law (KVL) to check the results.

01_5_2_5_ 3

=== _"= _15A
. 2 2 2
v, +3 2+3 5

= = == =125A
== 4 4

ii +i, +i3=-15+025+125=0 (Checks.)
Applying KVL to loop 1,
-5+ Vo0 + Ugn = -5+ (_|1 X 2) + (|2 X 8)
= -5+ [—(—-15)2] + (0.25 X 8)
=-5+3+2=0 (Checks.)
Applying KVL to loop 2,
—Ugn T Ugg — 3= —(i2 X 8 + (i3 x4 —3
—(025x 8 +(1L25x 4) — 3
=-2+5-3=0 (Checks.)
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So we now have a very high degree of confidence in the accuracy
of our answer.
6. Has the problem been solved satisfactorily? If so, present the solu-
tion; if not, then return to step 3 and continue through the process
again. This problem has been solved satisfactorily.

The current through the 8-() resistor is 0.25 A flowing down through
the 8-() resistor.

23

Try applying this process to some of the more difficult problems at the
end of the chapter.

1.9 Summary
1. An electric circuit consists of electrical elements connected
together.

2. The International System of Units (S) is the international mea-
surement language, which enables engineers to communicate their
results. From the six principal units, the units of other physical
guantities can be derived.

3. Current is the rate of charge flow.

9
ot
4. Voltage is the energy required to move 1 C of charge through an
element.
s =
da

5. Power is the energy supplied or absorbed per unit time. It is aso
the product of voltage and current.

_Gw _
P= "t

6. According to the passive sign convention, power assumes a posi-
tive sign when the current enters the positive polarity of the voltage
across an element.

7. An idea voltage source produces a specific potential difference
across its terminals regardless of what is connected to it. An ided
current source produces a specific current through its terminals
regardless of what is connected to it.

8. Voltage and current sources can be dependent or independent. A
dependent source is one whose value depends on some other cir-
cuit variable.

9. Two areas of application of the concepts covered in this chapter
are the TV picture tube and electricity billing procedure.

vi

Practice Problem 1.10
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3

1.1
1.2

1.3
1.4

15
1.6

1.7

1

Review Questions

One millivolt is one millionth of avalt.

(a) True (b) False

The prefix micro stands for:

@10° (10° ()10% (d)10°°©

The voltage 2,000,000 V can be expressed in powers
of 10 as:

@2mv ®2kV  (©2MV  (d)2GV

A charge of 2 C flowing past a given point each
second isacurrent of 2 A.

(a) True (b) False
The unit of current is:

(a) coulomb (b) ampere

(c) volt (d) joule

Voltage is measured in:

(a) watts (b) amperes

(c) volts (d) joules per second

A 4-A current charging a dielectric materia will
accumulate a charge of 24 C after 6 s.

(@) True (b) False

1.8 Thevoltage acrossa 1.1-kW toaster that produces a
current of 10Ais:

(@11kv  (b)1100V  ()110V  (d)11V
1.9 Which of theseis not an electrical quantity?

(a) charge (b) time (c) voltage

(d) current (e) power
1.10 Thedependent sourcein Fig. 1.22is:

(a) voltage-controlled current source
(b) voltage-controlled voltage source
(c) current-controlled voltage source
(d) current-controlled current source

¥io
% Cj) 6io

Figure 1.22
For Review Question 1.10.

Answers: 1.1b, 1.2d, 1.3c, 1.4a, 1.5b, 1.6¢c, 1.7a, 1.8c,
1.9b, 1.10d.

Problems

Section 1.3 Charge and Current

11

1.2

1.3

How many coulombs are represented by these
amounts of electrons?

(@ 6.482 x 10  (b) 1.24 X 10%
(c) 2.46 x 10% (d) 1.628 x 10%°

Determine the current flowing through an element if
the charge flow is given by

@ q(t) = 3t + 8y mC

(b)qt) = (8> + 4t — 2) C

(© qt) = (3" — 5e"?)nC

(d) q(t) = 10sin 1207t pC

(e q(t) = 20e * cos 50tuC

Find the charge q(t) flowing through a device if the
current is:

@i(t) =3A,q0 =1C

(b)i(t) = (2t + 5) mA, q(0) = 0

(c) i(t) = 20 cos(10t + 7/6) uA, gq(0) = 2uC
(d)i(t) = 106 **sin40t A, g(0) = 0

1.4 A current of 3.2 A flows through a conductor.
Calculate how much charge passes through any
cross-section of the conductor in 20 s,

1.5 Determinethetotal charge transferred over the time
interval of 0 = t = 10 swheni(t) = 3t A.

1.6 Thecharge entering a certain element is shown in
Fig. 1.23. Find the current at:

@t=1ms (b)t=6ms (ct=10ms

qa() (mC)
80 1

X | | X |

0 2 4 6 8 10 12 {(mg
Figure 1.23
For Prob. 1.6.




1.7 Thechargeflowing in awireisplotted in Fig. 1.24.
Sketch the corresponding current.

q(©)
50 L
0 1 1 ] >
2 4\\&/ 8 t(9
_50 -

Figure 1.24
For Prob. 1.7.

1.8 Thecurrent flowing past apoint in adeviceisshownin
Fig. 1.25. Cdculate the total charge through the point.

i (mA)
10

0

Figure 1.25
For Prob. 1.8.

=

2 t(mg)

1.9 Thecurrent through an element is shown in Fig. 1.26.
Determine the total charge that passed through the
element at:

@t=1s (b)t=3s (c)t=5s
i (A)
10

0 1 2 3 4 5¢(@

Figure 1.26
For Prob. 1.9.

Sections 1.4 and 1.5 Voltage, Power, and Energy

1.10 A lightning bolt with 8 kA strikes an object for 15 us.
How much charge is deposited on the object?

1.11 A rechargeable flashlight battery is capable of
delivering 85 mA for about 12 h. How much charge
can it release at that rate? If itsterminal voltageis
1.2V, how much energy can the battery deliver?

1.12 If the current flowing through an element is given by

3tA, 0 =t<6s
i) = 18A, 6 =t<10s
—12A, 10 =t<15s
(08 t=15s

Plot the charge stored in the element over
0<t< 20s.

Problems 25

1.13 The charge entering the positive terminal of an
element is

g=10sn47tmC
while the voltage across the element (plusto minus) is
v =2cos4mtV

(a) Find the power delivered to the element at
t=03s.

(b) Calculate the energy delivered to the element
between 0 and 0.6 s.

1.14 The voltage v across a device and the current i
through it are

v(t) = 5cos2tV,
Calculate:

i) =10(1 — e A

(a) thetotal chargeinthedeviceatt = 1s
(b) the power consumed by the deviceatt = 1s.
1.15 The current entering the positive terminal of a device

isi(t) = 3¢ % A and the voltage across the device is

v(t) = 5di/dt V.

() Find the charge delivered to the device between
t=0andt=2s

(b) Calculate the power absorbed.

(c) Determine the energy absorbed in 3 s.

Section 1.6 Circuit Elements

1.16 Find the power absorbed by each element in
Fig. 1.27.

4A Y 2nt -3AY

ov 12V 5V

Figure 1.27
For Prob. 1.16.

1.17 Figure 1.28 shows acircuit with five elements. If
pl = 7205W, p2 = 60W, p4 = 45W, p5 = SOW,
calculate the power ps received or delivered by
element 3.

2 4

Figure 1.28
For Prob. 1.17.
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1.18 Calculate the power absorbed or supplied by each

element in Fig. 1.29.

4A  + 6V -
™
L

1 tan

9VCD 2D;v

(@

lb=3A +10V -
| I

1

2av (%) 3, *

-5V + 3A

(b)

Figure 1.29
For Prob. 1.18.

1.19 Find | inthe network of Fig. 1.30.

llA l'
+
. N 3V
4A 9V D 9V -
6V
Figure 1.30
For Prob. 1.19.
1.20 Find\, inthecircuit of Fig. 1.31.
l,=2A
—_—
1
e
28V
6A [12V_ 1A
— R
| I | I
3A | + -
28V
N
v () v, D + 5l
6A 1 {3A

Figure 1.31
For Prob. 1.20.

Basic Concepts

Section 1.7 Applications

1.21 A 60-W incandescent bulb operates at 120 V. How
many electrons and coulombs flow through the bulb
in one day?

1.22 A lightning bolt strikes an airplane with 30 kA for
2 ms. How many coulombs of charge are deposited
on the plane?

1.23 A 1.8-kW electric heater takes 15 min to boil a
quantity of water. If thisis done once a day and
power costs 10 cents’kWh, what is the cost of its
operation for 30 days?

1.24 A utility company charges 8.5 centskWh. If a
consumer operates a40-W light bulb continuously
for one day, how much is the consumer charged?

1.25 A 1.2-kW toaster takes roughly 4 minutes to heat
four slices of bread. Find the cost of operating the
toaster once per day for 1 month (30 days). Assume
energy costs 9 centskWh.

1.26 A 12-V car battery supported a current of 150 mA to
abulb. Calculate:
(a) the power absorbed by the bulb,

(b) the energy absorbed by the bulb over an interval
of 20 minutes.

1.27 A constant current of 3 A for 4 hoursis required
to charge an automotive battery. If the terminal
voltageis 10 + t/2V, where t isin hours,

(@) how much charge is transported as aresult of the
charging?

(b) how much energy is expended?

() how much does the charging cost? Assume
electricity costs 9 cents/kWh.

1.28 A 30-W incandescent lamp is connected to a 120-V
source and is left burning continuously in an
otherwise dark staircase. Determine:

(a) the current through the lamp.
(b) the cost of operating the light for one non-leap
year if electricity costs 12 cents per kWh.

1.29 An €lectric stove with four burners and an oven is
used in preparing ameal asfollows.
Burner 1: 20 minutes Burner 2: 40 minutes
Burner 3: 15 minutes Burner 4: 45 minutes
Oven: 30 minutes
If each burner israted at 1.2 kW and the oven at
1.8 kW, and electricity costs 12 cents per kWh,

calculate the cost of electricity used in preparing
the meal.



Comprehensive Problems

1.30 Reliant Energy (the electric company in Houston,

Texas) charges customers as follows:
Monthly charge $6

First 250 kwWh @ $0.02/kWh

All additional kWh @ $0.07/kWh

If acustomer uses 1,218 kWh in one month, how
much will Reliant Energy charge?

27

1.31 Inahousehold, a120-W persona computer (PC) is

run for 4 h/day, while a 60-W bulb runs for 8 h/day.
If the utility company charges $0.12/kWh, calculate
how much the household pays per year on the PC
and the bulb.

3

1.32
1.33

134

Comprehensive Problems

A telephone wire has a current of 20 A flowing
through it. How long does it take for a charge of
15 C to pass through the wire?

A lightning bolt carried a current of 2 kA and lasted
for 3 ms. How many coulombs of charge were
contained in the lightning bolt?

Figure 1.32 shows the power consumption of a
certain household in 1 day. Calculate:

(a) the total energy consumed in kWh,
(b) the average power per hour.

1200 W

800 W

200w

| | | | | | | |

12

[ R B > t (h)
2 4 6 8 1012 2 4 6 8 10 12
noon

Figure 1.32
For Prob. 1.34.

1.35

The graph in Fig. 1.33 represents the power drawn
by an industrial plant between 8:00 and 8:30 A.Mm.
Calculate the total energy in MWh consumed by the
plant.

p (MW) 4

who
||||||||

800 805 810 815 820 825 8.30t'
Figure 1.33
For Prob. 1.35.
1.36 A battery may be rated in ampere-hours (Ah). A

1.37

1.38

lead-acid battery israted at 160 Ah.

(8) What is the maximum current it can supply for
40 h?

(b) How many dayswill it last if it is discharged at
1mA?

A unit of power often used for electric motorsisthe
horsepower (hp), which equals 746 W. A small
electric car is equipped with a 40-hp electric motor.
How much energy does the motor deliver in one
hour, assuming the motor is operating at maximum
power for the whole time?

How much energy does a 10-hp motor deliver in
30 minutes? Assume that 1 horsepower = 746 W.

1.39 A 600-W TV receiver isturned on for 4 h with

nobody watching it. If electricity costs 10 cents’kWh,
how much money is wasted?






Basic Laws

There are too many people praying for mountains of difficulty to be
removed, when what they really need is the courage to climb them!
—Unknown

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.b), “an ability to design and con-
duct experiments, as well as to analyze and interpret data.
Engineers must be able to design and conduct experiments, as well as
analyze and interpret data. Most students have spent many hours per-
forming experiments in high school and in college. During this time,
you have been asked to analyze the data and to interpret the data.
Therefore, you should already be skilled in these two activities. My : ’ S
recommendation is that, in the process of performing experiments in ~ P1oto by CharlesAlexander
the future, you spend more time in analyzing and interpreting the data
in the context of the experiment. What does this mean?

If you are looking at a plot of voltage versus resistance or current
Versus resistance or power versus resistance, what do you actualy see?
Does the curve make sense? Does it agree with what the theory tells
you? Does it differ from expectation, and, if so, why? Clearly, practice
with analyzing and interpreting data will enhance this skill.

Since most, if not all, the experiments you are required to do as a
student involve little or no practice in designing the experiment, how
can you develop and enhance this skill?

Actually, developing this skill under this constraint is not as diffi-
cult as it seems. What you need to do is to take the experiment and
analyze it. Just break it down into its simplest parts, reconstruct it try-
ing to understand why each element is there, and finally, determine
what the author of the experiment is trying to teach you. Even though
it may not always seem so, every experiment you do was designed by
someone who was sincerely motivated to teach you something.
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Materia with
resistivity p
Cross-sectional

area A

@ (b)
Figure 2.1
(a) Resistor, (b) Circuit symbol for
resistance.

Chapter 2 Basic Laws

2.1 Introduction

Chapter 1 introduced basic concepts such as current, voltage, and
power in an electric circuit. To actually determine the values of these
variables in a given circuit requires that we understand some funda-
mental laws that govern electric circuits. These laws, known as Ohm'’s
law and Kirchhoff’s laws, form the foundation upon which electric cir-
cuit analysis is built.

In this chapter, in addition to these laws, we shall discuss some
techniques commonly applied in circuit design and analysis. These tech-
niques include combining resistorsin series or parallel, voltage division,
current division, and delta-to-wye and wye-to-delta transformations. The
application of these laws and techniques will be restricted to resistive
circuits in this chapter. We will finally apply the laws and techniques to
real-life problems of electrical lighting and the design of dc meters.

2.2 Ohm’s Law

Materials in general have a characteristic behavior of resisting the flow
of electric charge. This physical property, or ability to resist current, is
known as resistance and is represented by the symbol R. The resist-
ance of any material with a uniform cross-sectional area A depends on
A and its length ¢, as shown in Fig. 2.1(a). We can represent resistance
(as measured in the laboratory), in mathematical form,

¢

R=p—

i 2.1)

where p is known as the resistivity of the material in ohm-meters. Good
conductors, such as copper and aluminum, have low resistivities, while
insulators, such as mica and paper, have high resistivities. Table 2.1
presents the values of p for some common materials and shows which
materials are used for conductors, insulators, and semiconductors.
The circuit element used to model the current-resisting behavior of a
material is the resistor. For the purpose of constructing circuits, resistors
are usualy made from metallic alloys and carbon compounds. The circuit

TABLE 2.1 _
Resistivities of common materials.

Material Resistivity ((2-m) Usage

Silver 164 X 108 Conductor
Copper 172 X 108 Conductor
Aluminum 28 x 1078 Conductor
Gold 245 % 1078 Conductor
Carbon 4x10°° Semiconductor
Germanium 47 x 1072 Semiconductor
Silicon 6.4 X 107 Semiconductor
Paper 10% Insulator
Mica 5 x 10% Insulator
Glass 102 Insulator

Teflon 3 x 10% Insul ator




2.2 Ohm’s Law

symbol for the resistor is shown in Fig. 2.1(b), where R stands for the
resistance of the resistor. The resistor is the smplest passive element.

Georg Simon Ohm (1787-1854), a German physicist, is credited
with finding the relationship between current and voltage for a resis-
tor. This relationship is known as Ohm's law.

Ohm’s law states that the voltage v across a resistor is directly propor-
tional to the current / flowing through the resistor.

That is,
U o< i (2.2)

Ohm defined the constant of proportionality for a resistor to be the
resistance, R. (The resistance is a material property which can change
if the internal or externa conditions of the element are altered, e.g., if
there are changes in the temperature.) Thus, Eq. (2.2) becomes

v=iR (2.3)

which is the mathematical form of Ohm’s law. R in Eq. (2.3) is mea
sured in the unit of ohms, designated (). Thus,

The resistance R of an element denotes its ability to resist the flow of
electric current; it is measured in ohms (£).
We may deduce from Eq. (2.3) that

R= % (2.4)

S0 that
10 =1VI/A

To apply Ohm's law as stated in Eq. (2.3), we must pay careful
attention to the current direction and voltage polarity. The direction of
current i and the polarity of voltage v must conform with the passive

Historical

Georg Simon Ohm (1787-1854), a German physicist, in 1826
experimentally determined the most basic law relating voltage and cur-
rent for a resistor. Ohm'’s work was initially denied by critics.

Born of humble beginnings in Erlangen, Bavaria, Ohm threw him-
self into electrical research. His efforts resulted in his famous law.
He was awarded the Copley Medal in 1841 by the Royal Society of
London. In 1849, he was given the Professor of Physics chair by the
University of Munich. To honor him, the unit of resistance was named
the ohm.
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Figure 2.2

(@) Short circuit (R = 0), (b) Open circuit
R = ).

(b)

Figure 2.3

Fixed resistors: (a) wirewound type,
(b) carbon film type.

Courtesy of Tech America.

@ (b)

Figure 2.4
Circuit symbol for: (a) avariable resistor
in general, (b) a potentiometer.
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sign convention, as shown in Fig. 2.1(b). Thisimplies that current flows
from a higher potential to alower potential in order for v = i R. If cur-
rent flows from a lower potential to a higher potential, v = —i R

Since the value of R can range from zero to infinity, it is impor-
tant that we consider the two extreme possible values of R. An element
with R = Oiscalled a short circuit, as shown in Fig. 2.2(a). For a short
circuit,

v=iR=0 (2.5)

showing that the voltage is zero but the current could be anything. In
practice, a short circuit is usualy a connecting wire assumed to be a
perfect conductor. Thus,

A short circuit is a circuit element with resistance approaching zero.

Similarly, an element with R = o is known as an open circuit, as
shown in Fig. 2.2(b). For an open circuit,

. . v

i = FI{|_r)n£ —=0 (2.6)
indicating that the current is zero though the voltage could be anything.
Thus,

An open circuit is a circuit element with resistance approaching infinity.

A resistor is either fixed or variable. Most resistors are of the fixed
type, meaning their resistance remains constant. The two common types
of fixed resistors (wirewound and composition) are shown in Fig. 2.3.
The composition resistors are used when large resistance is needed.
The circuit symbol in Fig. 2.1(b) is for a fixed resistor. Variable resis-
tors have adjustable resistance. The symbol for a variable resistor is
shown in Fig. 2.4(a). A common variable resistor is known as a poten-
tiometer or pot for short, with the symbol shown in Fig. 2.4(b). The
pot is a three-terminal element with a dliding contact or wiper. By dlid-
ing the wiper, the resistances between the wiper terminal and the fixed
terminals vary. Like fixed resistors, variable resistors can be of either
wirewound or composition type, as shown in Fig. 2.5. Although resistors
like those in Figs. 2.3 and 2.5 are used in circuit designs, today most

@ (b)

Figure 2.5
Variable resistors: (a) composition type, (b) slider pot.
Courtesy of Tech America.
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circuit components including resistors are either surface mounted or
integrated, as typically shown in Fig. 2.6.

It should be pointed out that not all resistors obey Ohm’s law. A
resistor that obeys Ohm’s law is known as a linear resistor. It has a
constant resistance and thus its current-voltage characteristic is asillus-
trated in Fig. 2.7(a): its i-v graph is a straight line passing through the
origin. A nonlinear resistor does not obey Ohm’s law. Its resistance
varies with current and its i-v characteristic is typically shown in
Fig. 2.7(b). Examples of devices with nonlinear resistance are the light-
bulb and the diode. Although all practical resistors may exhibit nonlin-
ear behavior under certain conditions, we will assume in this book that
all elements actually designated as resistors are linear.

A useful quantity in circuit analysis is the reciprocal of resistance
R, known as conductance and denoted by G:

=— @2.7)

The conductance is a measure of how well an element will con-
duct electric current. The unit of conductance is the mho (ohm spelled
backward) or reciprocal ohm, with symbol U, the inverted omega.
Although engineers often use the mho, in this book we prefer to use
the siemens (S), the Sl unit of conductance:

1S=10=1A/V (2.8)
Thus,

Conductance is the ability of an element to conduct electric current;
it is measured in mhos (U') or siemens (S).

The same resistance can be expressed in ohms or siemens. For
example, 10 () is the same as 0.1 S. From Eq. (2.7), we may write

i = Gu (2.9)

The power dissipated by aresistor can be expressed in terms of R.
Using Egs. (1.7) and (2.3),

U2

f— i f— i2 = —
p=vi=iR R (2.10)
The power dissipated by a resistor may also be expressed in terms of
Gas

2
2
p=vi =0vG G (2.11)

We should note two things from Egs. (2.10) and (2.11):

1. The power dissipated in aresistor is a nonlinear function of either
current or voltage.

2. Since R and G are positive quantities, the power dissipated in a
resistor is always positive. Thus, a resistor always absorbs power
from the circuit. This confirms the idea that a resistor is a passive
element, incapable of generating energy.
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resistors laser cut
]

Figure 2.6

Resistors in a thick-film circuit.

G. Daryanani, Principles of Active Network
Synthesis and Design (New York: John Wiley,
1976), p. 461c.

VA

Slope=R

@

v A

Slope=R

(b)
Figure 2.7
Thei-v characteristic of: (a) alinear
resistor, (b) anonlinear resistor.
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Example 2.1

An €electric iron draws 2 A at 120 V. Find its resistance.

Solution:
From Ohm's law,

Practice Problem 2.1

The essential component of a toaster is an electrical element (a resis-
tor) that converts electrical energy to heat energy. How much current
is drawn by a toaster with resistance 10 () at 110 V?

Answer: 11 A.

Example 2.2

v () 5kg§

Figure 2.8
For Example 2.2.

In the circuit shown in Fig. 2.8, calculate the current i, the conductance
G, and the power p.

Solution:

The voltage across the resistor is the same as the source voltage (30 V)
because the resistor and the voltage source are connected to the same
pair of terminals. Hence, the current is

v 30

=== = 6mA
R 5x 10°
The conductance is
1 1
G=—=——==02mS
R 5x 103

We can calculate the power in various ways using either Egs. (1.7),
(2.10), or (2.11).

p = vi = 30(6 X 103 = 180 mW
or

p=i’R= (6 X 10 3?5 X 10° = 180 mW
or

p = v°G = (30)°0.2 X 10 3 = 180 mW

Practice Problem 2.2

2mA CD 10kQ

:

Figure 2.9
For Practice Prob. 2.2

ii

v

For the circuit shown in Fig. 2.9, calculate the voltage v, the conduc-
tance G, and the power p.

Answer: 20V, 100 uS, 40 mW.
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A voltage source of 20sinzt V is connected across a 5-k{) resistor.
Find the current through the resistor and the power dissipated.
Solution:

v 20sinwt

R 5x10° = 4sinmt mA

Hence,

p = vi = 80sinzt mW

Example 2.3

A resistor absorbs an instantaneous power of 20 cos®t mW when con-
nected to a voltage source v = 10 cost V. Find i and R.

Answer: 2 cost mA, 5 k().

2.3 TNodes, Branches, and Loops

Since the elements of an electric circuit can be interconnected in sev-
eral ways, we need to understand some basic concepts of network
topology. To differentiate between a circuit and a network, we may
regard a network as an interconnection of elements or devices, whereas
a circuit is a network providing one or more closed paths. The con-
vention, when addressing network topology, is to use the word network
rather than circuit. We do this even though the words network and cir-
cuit mean the same thing when used in this context. In network topol-
ogy, we study the properties relating to the placement of elements in
the network and the geometric configuration of the network. Such ele-
ments include branches, nodes, and loops.

A branch represents a single element such as a voltage source or a
resistor.

In other words, a branch represents any two-terminal element. The cir-
cuit in Fig. 2.10 has five branches, namely, the 10-V voltage source,
the 2-A current source, and the three resistors.

A node is the point of connection between two or more branches.

A node is usually indicated by a dot in a circuit. If a short circuit (a
connecting wire) connects two nodes, the two nodes constitute a sin-
gle node. The circuit in Fig. 2.10 has three nodes a, b, and c. Notice
that the three points that form node b are connected by perfectly con-
ducting wires and therefore constitute a single point. The same is true
of the four points forming node c. We demonstrate that the circuit in
Fig. 2.10 has only three nodes by redrawing the circuit in Fig. 2.11.
The two circuits in Figs. 2.10 and 2.11 are identical. However, for the
sake of clarity, nodes b and ¢ are spread out with perfect conductors
asin Fig. 2.10.

Practice Problem 2.3

a 5Q b
(o o o
v (* 29?39? @) 2a
\ v
C
Figure 2.10

Nodes, branches, and loops.

2A

0oV

Figure 2.11
The three-node circuit of Fig. 2.10is
redrawn.
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A loop is any closed path in a circuit.

A loop is a closed path formed by starting at a node, passing through a
set of nodes, and returning to the starting node without passing through
any node more than once. A loop is said to be independent if it contains
at least one branch which is not a part of any other independent loop.
Independent loops or paths result in independent sets of equations.

It is possible to form an independent set of loops where one of the
loops does not contain such a branch. In Fig. 2.11, abca with the 2Q)
resistor is independent. A second loop with the 3() resistor and the cur-
rent source is independent. The third loop could be the one with the 2Q)
resistor in parallel with the 3() resistor. This does form an independent
set of loops.

A network with b branches, n nodes, and | independent loops will
satisfy the fundamental theorem of network topology:

b=Il+n-1 (2.12)

As the next two definitions show, circuit topology is of great value
to the study of voltages and currents in an electric circuit.

Two or more elements are in series if they exclusively share a single
node and consequently carry the same current.

Two or more elements are in parallel if they are connected to the same
two nodes and consequently have the same voltage across them.

Elements are in series when they are chain-connected or connected
sequentialy, end to end. For example, two elements are in series if
they share one common node and no other element is connected to
that common node. Elements in parallel are connected to the same pair
of terminals. Elements may be connected in a way that they are nei-
ther in series nor in parallel. In the circuit shown in Fig. 2.10, the volt-
age source and the 5-() resistor are in series because the same current
will flow through them. The 2-Q) resistor, the 3-Q) resistor, and the cur-
rent source are in parallel because they are connected to the same two
nodes b and ¢ and consequently have the same voltage across them.
The 5-Q and 2-Q) resistors are neither in series nor in parallel with
each other.

Example 2.4

Determine the number of branches and nodes in the circuit shown in
Fig. 2.12. Identify which elements are in series and which are in
paralel.

Solution:

Since there are four elements in the circuit, the circuit has four
branches: 10 V, 50,6, and 2 A. The circuit has three nodes as
identified in Fig. 2.13. The 5-Q resistor is in series with the 10-V
voltage source because the same current would flow in both. The 6-Q
resistor is in paralel with the 2-A current source because both are
connected to the same nodes 2 and 3.
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5Q 1 5Q 2
10V 6Q 2A 10V (© 6Q })2A
Figure 2.12 3
For Example 2.4. Figure 2.13
The three nodes in the circuit of
Fig. 2.12.
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How many branches and nodes does the circuit in Fig. 2.14 have? Iden-
tify the elements that are in series and in parallel.

Answer: Five branches and three nodes are identified in Fig. 2.15. The
1-Q and 2-Q) resistors are in paralel. The 4-Q) resistor and 10-V source
are also in parallel.

Practice Problem 2.4

5Q 1 3Q 2

A A
10 20 10V 240 1Q 2Q )iov 240

c . D
Figure 2.14
For Practice Prob. 2.4. Figure 2.15
Answer for Practice Prob. 2.4.
2.4 Kirchhoff’'s Laws

Ohm’'s law by itself is not sufficient to analyze circuits. However, when
it is coupled with Kirchhoff’s two laws, we have a sufficient, powerful
set of tools for analyzing a large variety of electric circuits. Kirchhoff’s
laws were first introduced in 1847 by the German physicist Gustav
Robert Kirchhoff (1824-1887). These laws are formally known as
Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL).

Kirchhoff’s first law is based on the law of conservation of charge,
which requires that the algebraic sum of charges within a system cannot
change.

Kirchhoff’s current law (KCL) states that the algebraic sum of currents
entering a node (or a closed boundary) is zero.

Mathematically, KCL implies that

>in=0 (2.13)

where N is the number of branches connected to the node and i, is
the nth current entering (or leaving) the node. By this law, currents
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Historical

Gustay Robert Kirchhoff (1824-1887), a German physicist, stated
two basic laws in 1847 concerning the relationship between the cur-
rents and voltages in an electrical network. Kirchhoff’s laws, aong
with Ohm’s law, form the basis of circuit theory.

Born the son of a lawyer in Konigsberg, East Prussia, Kirchhoff
entered the University of Konigsberg at age 18 and later became a lec-
turer in Berlin. His collaborative work in spectroscopy with German
chemist Robert Bunsen led to the discovery of cesium in 1860 and
rubidium in 1861. Kirchhoff was aso credited with the Kirchhoff law
of radiation. Thus Kirchhoff is famous among engineers, chemists, and
physicists.

Figure 2.16
Currents at anode illustrating KCL.

Closed boundary

Figure 2.17
Applying KCL to aclosed boundary.

Two sources (or circuits in general) are
said to be equivalent if they have the
same /-v relationship at a pair of
terminals.

entering a node may be regarded as positive, while currents leaving the
node may be taken as negative or vice versa.

To prove KCL, assume a set of currents ix(t), k=1, 2,..., flow
into a node. The algebraic sum of currents at the node is
iT(t) = iq(t) + ix(t) +ig(t) + - (2.14)
Integrating both sides of Eq. (2.14) gives
Or(t) = aut) + go(t) + as(t) + - (2.15)

where gk (t) = [ik(t)dt and gr(t) = [ir(t)dt. But the law of conserva-

tion of electric charge requires that the algebraic sum of electric

charges at the node must not change; that is, the node stores no net

charge. Thus g (t) = 0 — i+ (t) = 0, confirming the validity of KCL.
Consider the node in Fig. 2.16. Applying KCL gives

iy + (—ip) + g+ i + (—ig) = 0 (2.16)

since currents i, i3, and i, are entering the node, while currents i, and
is are leaving it. By rearranging the terms, we get

i1+ |3+ i4: |2+ i5 (217)

Equation (2.17) is an alternative form of KCL:

The sum of the currents entering a node is equal to the sum of the cur-
rents leaving the node.

Note that KCL also applies to a closed boundary. This may be
regarded as a generalized case, because a node may be regarded as a
closed surface shrunk to a point. In two dimensions, a closed bound-
ary is the same as a closed path. As typicaly illustrated in the circuit
of Fig. 2.17, the total current entering the closed surface is equa to the
total current leaving the surface.

A simple application of KCL is combining current sources in par-
allel. The combined current is the algebraic sum of the current supplied
by the individual sources. For example, the current sources shown in
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Fig. 2.18(a) can be combined as in Fig. 2.18(b). The combined or
equivalent current source can be found by applying KCL to node a.

lT + |2 = Il + |3
or
(2.18)

A circuit cannot contain two different currents, 1, and I, in series,
unless I, = |,; otherwise KCL will be violated.

Kirchhoff’s second law is based on the principle of conservation
of energy:

lT:|1_|2+|3

Kirchhoff’s voltage law (KVL) states that the algebraic sum of all volt-
ages around a closed path (or loop) is zero.

Expressed mathematically, KVL states that

(2.19)

where M is the number of voltages in the loop (or the number of
branches in the loop) and v,,, is the mth voltage.

To illustrate KVL, consider the circuit in Fig. 2.19. The sign on
each voltage is the polarity of the terminal encountered first as we
travel around the loop. We can start with any branch and go around
the loop either clockwise or counterclockwise. Suppose we start with
the voltage source and go clockwise around the loop as shown; then
voltages would be —uv,, +v,, +vg, —v4, and +uvs, in that order. For
example, as we reach branch 3, the positive terminal is met first; hence,
we have +uv3. For branch 4, we reach the negative terminal first; hence,
—v4. Thus, KVL yields

—v, + Uy + U3~ U4+t UV5=0 (2.20)
Rearranging terms gives
(%) + U3 + Ug = Uq + Uy (221)
which may be interpreted as
Sum of voltage drops = Sum of voltage rises (2.22)

This is an dternative form of KVL. Notice that if we had traveled
counterclockwise, the result would have been +v4, —vs, +v4, —Us3,
and —v,, which is the same as before except that the signs are reversed.
Hence, Egs. (2.20) and (2.21) remain the same.

When voltage sources are connected in series, KVL can be applied
to obtain the total voltage. The combined voltage is the algebraic sum
of the voltages of the individual sources. For example, for the voltage
sources shown in Fig. 2.20(a), the combined or equivalent voltage
source in Fig. 2.20(b) is obtained by applying KVL.

_Vab+V1+V2_V3:O
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I
ao—
b o
@

It
-
a

lr=l—ly+1g

(b)
Figure 2.18
Current sourcesin paralel: (a) origina
circuit, (b) equivalent circuit.

KVL can be applied in two ways: by

I taking either a clockwise or a counter-
clockwise trip around the loop. Either
way, the algebraic sum of voltages
around the loop is zero.

+ Y2 LU
2« ) @
1
L T
Figure 2.19

A single-loop circuit illustrating KVL.
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or
Vab = Vl + V2 - V3 (223)

To avoid violating KVL, acircuit cannot contain two different voltages
V,; and V, in paralée unless V; = V..

@ (b)
Figure 2.20
Voltage sourcesin series: (@) original circuit, (b) equivalent circuit.

Example 2.5

For the circuit in Fig. 2.21(a), find voltages v; and v,.

2Q 2Q
MWW MWW
1

+ oy -
20v (%) v2§3g 20v () ﬁ) u;§3g
+

+

@ (b)
Figure 2.21
For Example 2.5.

Solution:

To find v, and v,, we apply Ohm's law and Kirchhoff’s voltage law.
Assume that current i flows through the loop as shown in Fig. 2.21(b).
From Ohm's law,

vy = 2i, v, = —3i (25.1)
Applying KVL around the loop gives
~20+ v, —v,=0 (25.2)
Substituting Eg. (2.5.1) into Eq. (2.5.2), we obtain
-20+2i +3i=0 or 51 = 20 = i=4A

Substituting i in Eqg. (2.5.1) findly gives
U1:8V, U2:_12V
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Find v, and v, in the circuit of Fig. 2.22.

Practice Problem 2.5

Answer: 12V, —6 V. 4Q
1ov () (%) 8v
20
Figure 2.22
For Practice Prob. 2.5.
Determine v, and i in the circuit shown in Fig. 2.23(a). Example 2.6

40 24 4Q 24,
AMA—G = ANN—G >
v () av (3) v () q av (3)
6Q 60
AW MWV
+ oy - + oy -
@ (b)
Figure 2.23
For Example 2.6.
Solution:

We apply KVL around the loop as shown in Fig. 2.23(b).
—12+4i +20,-4+6i=0
Applying Ohm'’s law to the 6-() resistor gives
Uy = —6i
Substituting Eq. (2.6.2) into Eq. (2.6.1) yields
-16 + 10i — 121 =0
and v, = 48 V.

= —-8A

The result is
(2.6.1)

(2.6.2)

Find v, and v, in the circuit of Fig. 2.24.

Answer: 10V, -5 V.

Practice Problem 2.6

10Q
MW
togy -

35V

5Q
AW
+oy -

Figure 2.24
For Practice Prob. 2.6.
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Example 2.7 Find current i, and voltage v, in the circuit shown in Fig. 2.25.
Solution:
a Applying KCL to node a, we obtain
N o 3+05i,=i, = io=6A
050, <4 ‘ﬁ% 40 CD 3A For the 4-Q) resistor, Ohm'’s law gives
Vo = dip = 24V
Figure 2.25
For Example 2.7.
Practice Problem 2.7 Find v, and i, in the circuit of Fig. 2.26.
Answer: 8V, 4 A.
1o
) +
6A(}) 20 'ﬁ 83 ®

Figure 2.26
For Practice Prob. 2.7.

Example 2.8 Find currents and voltages in the circuit shown in Fig. 2.27(a).

ga I3 ga 1 I3

+ + + +
v (%) w%m 1@%69 v (%) @ v2§39 @ 03%69

@ (b)

Figure 2.27
For Example 2.8.

Solution:
We apply Ohm'’s law and Kirchhoff’s laws. By Ohm'’s law,

U1 = 8i1, Up = 3i2, U3 = 6|3 (281)
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Since the voltage and current of each resistor are related by Ohm’s
law as shown, we are redly looking for three things: (v4, v, v3) OF
(i1, i i3). At node a, KCL gives

ip—ip,—i3=0 (2.8.2)
Applying KVL to loop 1 asin Fig. 2.27(b),
-304+v,+v,=0
We express this in terms of i; and i, as in Eq. (2.8.1) to obtain
-30+8i; +3i,=0
or

30 — 3i
- 30— 30) (2.83)
8
Applying KVL to loop 2,
—Up + U3 = 0 = U3z = U (284)

as expected since the two resistors are in paralel. We express v, and
vy interms of iy and i, as in Eq. (2.8.1). Equation (2.8.4) becomes

Substituting Egs. (2.8.3) and (2.8.5) into (2.8.2) gives

30-3, . i
B0

or i, = 2 A. From the value of i,, we now use Egs. (2.8.1) to (2.8.5)
to obtain

i, =3A, is=1A, 0v,=24V, 0v,=6V, v3=6V

Find the currents and voltages in the circuit shown in Fig. 2.28. Practice Problem 2.8
Answer: v; =3V, v,=2V, v3=5V, i; =15 A, i, =025 A, 20 1 3 40
I3 = 1.25A. #i2+ vy —

8Q 3V
2.5 Series Resistors and Voltage Division  Figure 2.28

For Practice Prob. 2.8.
The need to combine resistors in series or in parallel occurs so fre-
quently that it warrants special attention. The process of combining the
resistors is facilitated by combining two of them at a time. With this
in mind, consider the single-loop circuit of Fig. 2.29. The two resistors
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Figure 2.29
A single-loop circuit with two resistorsin
series.

! a Req
AV
+ o, -
v
b

Figure 2.30
Equivalent circuit of the Fig. 2.29 circuit.

Resistors in series behave as a single
resistor whose resistance is equal to
the sum of the resistances of the
individual resistors.

Chapter 2 Basic Laws

are in series, since the same current i flows in both of them. Applying
Ohm’s law to each of the resistors, we obtain

Uq = iRl, Uy = |R2 (224)

If we apply KVL to the loop (moving in the clockwise direction), we
have

—v+uv,+v,=0 (2.25)
Combining Egs. (2.24) and (2.25), we get
v=v,+v,=i(R + R) (2.26)
or
i = Rli 5 (2.27)
Notice that Eq. (2.26) can be written as
v = iRy (2.28)

implying that the two resistors can be replaced by an equivalent resis-
tor Reg; that is,

Rg=Ri+ R (2.29)
Thus, Fig. 2.29 can be replaced by the equivalent circuit in Fig. 2.30.
The two circuits in Figs. 2.29 and 2.30 are equivaent because they
exhibit the same voltage-current relationships at the terminals a-b. An

equivalent circuit such as the one in Fig. 2.30 is useful in simplifying
the analysis of a circuit. In general,

The equivalent resistance of any number of resistors connected in
series is the sum of the individual resistances.

For N resistors in series then,

N
Rq=Ri+ R+ +Ry=>R, (2.30)
n=1

To determine the voltage across each resistor in Fig. 2.29, we sub-
stitute EQ. (2.26) into Eq. (2.24) and obtain

R R
TR+R TR AR

U1 (2.31)

Notice that the source voltage v is divided among the resistors in direct
proportion to their resistances; the larger the resistance, the larger the
voltage drop. This is called the principle of voltage division, and the
circuit in Fig. 2.29 is caled a voltage divider. In general, if a voltage

divider has N resistors (R, Ry, ..., Ry) in series with the source volt-
age v, the nth resistor (R,) will have a voltage drop of
Un Ro (2.32)

:R1+R2++RNU
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2.6 Parallel Resistors
and Current Division

Consider the circuit in Fig. 2.31, where two resistors are connected
in parallel and therefore have the same voltage across them. From
Ohm's law,

v = ilRl = i2R2

or
. v . v
= — = — 2.
I1 R, I2 R, (2.33)
Applying KCL at node a gives the total current i as
=10y + i (2.34)
Substituting Eq. (2.33) into Eq. (2.34), we get
.U v 1 1 ) v
i=—+——=v(=+=|=— 2.35
RR R (Rl Ry Req (%)
where Ry is the equivalent resistance of the resistors in parallel:
1 1 1
—=—+ — 2.36
Re R R (2.36)
or
1 R+R
Req RiRx
or
RiR.
= 2.37
Reg R, + Ry ( )
Thus,

The equivalent resistance of two parallel resistors is equal to the prod-
uct of their resistances divided by their sum.

It must be emphasized that this applies only to two resistors in paral-
lel. From Eq. (2.37), if Ry = Ry, then Ryq = Ry/2.

We can extend the result in EQ. (2.36) to the general case of a cir-
cuit with N resistors in parallel. The equivalent resistance is

1 1 1 1
—=—+_—+ -+ (2.38)
Rg R R Ry
Note that Ry, is always smaller than the resistance of the smallest resis-
tor in the parallel combination. If R, = R, = -+ = Ry = R, then
R

Rea = 3y (2.39)

46 %Rl

Figure 2.31
Two resistorsin parallel.

Node b

45
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Conductances in parallel behave as a
single conductance whose value is
equal to the sum of the individual
conductances.

6 :

Reqor Geq

Figure 2.32
Equivalent circuit to Fig. 2.31.

Figure 2.33
(a) A shorted circuit, (b) an open circuit.

Chapter 2 Basic Laws

For example, if four 100-() resistors are connected in parallel, their
equivalent resistance is 25 ().

It is often more convenient to use conductance rather than resist-
ance when dealing with resistorsin parallel. From Eqg. (2.38), the equiv-
alent conductance for N resistors in parallel is

WhaeGeq = 1/Req, G]_: 1/Rl! Gz = 1/R2, G3 = 1/R3, ey GN = 1/RN
Equation (2.40) states:

The equivalent conductance of resistors connected in parallel is the
sum of their individual conductances.

This means that we may replace the circuit in Fig. 2.31 with that in
Fig. 2.32. Notice the similarity between Egs. (2.30) and (2.40). The
equivalent conductance of parallel resistors is obtained the same way
as the equivalent resistance of series resistors. In the same manner,
the equivalent conductance of resistors in series is obtained just
the same way as the resistance of resistors in parallel. Thus the
equivalent conductance G, of N resistors in series (such as shown in
Fig. 2.29) is

1 1 1 1
T T

241
Gg Gi G, Gs (241)

4+ —
Gn

Given the total current i entering node a in Fig. 2.31, how do we
obtain current i, and i,? We know that the equivalent resistor has the
same voltage, or

. iRR
v=iRa=p " p (2.42)

Combining Egs. (2.33) and (2.42) results in

Ryi , Ryi

=—2 = 243
R, + R, 2R +R (2:43)

i1

which shows that the total current i is shared by the resistors in
inverse proportion to their resistances. This is known as the princi-
ple of current division, and the circuit in Fig. 2.31 is known as a
current divider. Notice that the larger current flows through the
smaller resistance.

As an extreme case, suppose one of the resistors in Fig. 2.31 is
zero, say R, = 0; that is, R, is a short circuit, as shown in
Fig. 2.33(a). From Eq. (2.43), R, = O impliesthat i, = 0, i, = i. This
means that the entire current i bypasses R; and flows through the
short circuit R, = 0, the path of least resistance. Thus when a circuit
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is short circuited, as shown in Fig. 2.33(a), two things should be kept
in mind:
1. The equivalent resistance Ry = 0. [See what happens when
R, = 0in Eq. (2.37).]
2. The entire current flows through the short circuit.

As another extreme case, suppose R, = o, that is, R, is an open
circuit, as shown in Fig. 2.33(b). The current still flows through the
path of least resistance, R;. By taking the limit of Eq. (2.37) as R, — «,
we obtain Ry = Ry in this case.

If we divide both the numerator and denominator by R;R», Eq. (2.43)
becomes

Gy

= —L 2.44
TG G, (2:442)

G,

__ G 2.44p
G, + G, (2:440)

i2

Thus, in general, if acurrent divider has N conductors (G4, G, ..., Gy)
in parallel with the source current i, the nth conductor (G,) will have
current

i = Gn i
n_Gl+Gz+"'+GN

(2.45)

In general, it is often convenient and possible to combine resis-
tors in series and parallel and reduce a resistive network to a single
equivalent resistance Ry Such an equivalent resistance is the resist-
ance between the designated terminals of the network and must
exhibit the same i-v characteristics as the original network at the
terminals.

47

Find Ry for the circuit shown in Fig. 2.34.

Solution:
To get Ry, we combine resistors in series and in parallel. The 6-() and
3-Q) resistors are in parallel, so their equivalent resistance is
6 X3
6030 = =20

H 6+ 3
(The symbol || is used to indicate a parallel combination.) Also, the 1-Q
and 5-() resistors are in series; hence their equivalent resistance is

10+50=60Q

Thus the circuit in Fig. 2.34 is reduced to that in Fig. 2.35(a). In
Fig. 2.35(a), we notice that the two 2-() resistors are in series, so the
equivalent resistance is

20+20=40Q

Example 2.9

o A%

Figure 2.34
For Example 2.9.
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4Q This 4-Q) resistor is now in parallel with the 6-() resistor in Fig. 2.35(a);
o—WW their equivalent resistance is
2Q
R 60 a0)60=2"%_540
-, n .
e % 4+6
oo The circuit in Fig. 2.35(a) is now replaced with that in Fig. 2.35(b). In
@ Fig. 2.35(h), the three resistors are in series. Hence, the equivalent
resistance for the circuit is
o Rgq=4Q+240 +80Q = 1440
E, 24Q
8Q
(b)
Figure 2.35

Equivalent circuits for Example 2.9.

Practice Problem 2.9 By combining the resistors in Fig. 2.36, find Ry,

Answer: 6 ().

20 30 40
O
B, 6Q 50
10
O
Figure 2.36

For Practice Prob. 2.9.

Example 2.10 Calculate the equivalent resistance Ry, in the circuit in Fig. 2.37.
100 1Q d 10
a o—\VW\ MW AWV
6Q
Rab
— 3Q § % 4Q % 5Q
12Q
bo
b b
Figure 2.37

For Example 2.10.

Solution:
The 3-Q and 6-() resistors are in parallel because they are connected
to the same two nodes ¢ and b. Their combined resistance is

3X6
3+6

3060 = =20 (2.10.1)
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Similarly, the 12-Q) and 4-() resistors are in parallel since they are
connected to the same two nodes d and b. Hence
12 X 4

12439

120140 = (2.10.2)
Also the 1-Q) and 5-() resistors are in series; hence, their equivalent

resistance is
10+50=60Q (2.10.3)

With these three combinations, we can replace the circuit in Fig. 2.37 with

that in Fig. 2.38(a). In Fig. 2.38(a), 3-Q) in parald with 6-() gives 2-(},

as caculated in Eqg. (2.10.1). This 2-Q) equivaent resistance is now in series

with the 1-() resistance to give acombined resistance of 1) + 2Q = 3().

Thus, we replace the circuit in Fig. 2.38(a) with that in Fig. 2.38(b). In

Fig. 2.38(b), we combine the 2-Q) and 3-() resistors in pardlel to get
2X3

20(130=——-=120
| 2+3

This 1.2-Q) resistor is in series with the 10-Q) resistor, so that
Rp =10+ 12=11.20Q
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10Q . 1Q 4
a
2Q 33Q Z6Q
b o
b b b
@
10Q
a
2Q 3Q
b o
b b
(b)
Figure 2.38

Equivalent circuits for Example 2.10.

Find Ry, for the circuit in Fig. 2.39.

Practice Problem 2.10

20Q
Answer: 11 Q). A
8Q 5Q
a A AN
Ry 18Q 200
== 0l Z10
20
b MW
Figure 2.39
For Practice Prob. 2.10.
Find the equivalent conductance G, for the circuit in Fig. 2.40(a). Example 2.11

Solution:
The 8-S and 12-S resistors are in parallel, so their conductance is

8S+125=20S

This 20-S resistor is now in series with 5 S as shown in Fig. 2.40(b)

so that the combined conductance is
20X5
20+ 5

4S

Thisis in parallel with the 6-S resistor. Hence,
Gqq=6+4=10S

We should note that the circuit in Fig. 2.40(a) is the same as that
in Fig. 2.40(c). While the resistors in Fig. 2.40(a) are expressed in
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55
AMA
G
= 6S 8SS 125
@
55
G
= 20S
(b)
1
lo
AV
Ba, lo lo Lo
©
Figure 2.40

For Example 2.11: (a) original circuit,

(b) its equivalent circuit, (c) same circuit as

in (a) but resistors are expressed in ohms.

Chapter 2 Basic Laws

siemens, those in Fig. 2.40(c) are expressed in ohms. To show that the
circuits are the same, we find Ry, for the circuit in Fig. 2.40(c).

(/1 1|1 1)/1 1 1)1
w2126 2)-
61\5 8]12 61\5 20 614

1wl 1
- =0
1
Geq=@=108

This is the same as we obtained previously.

Practice Problem 2.11

O
%88
Ceq

%45

o

—_—
%28 128
o MWV

Figure 2.41
For Practice Prob. 2.11.

Calculate Ggq in the circuit of Fig. 2.41.

Answer: 4 S.

Example 2.12

Find i, and v, in the circuit shown in Fig. 2.42(a). Calculate the power
dissipated in the 3-Q) resistor.

Solution:
The 6-Q) and 3-Q) resistors are in parallel, so their combined resistance is
6 X3
60|30-= =20
” 6+3

Thus our circuit reduces to that shown in Fig. 2.42(b). Notice that v, is
not affected by the combination of the resistors because the resistors are
in paralel and therefore have the same voltage v,. From Fig. 2.42(b),
we can obtain v, in two ways. One way is to apply Ohm'’s law to get

12
4+ 2

=2A
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and hence, v, = 2i = 2 X 2 = 4V. Another way is to apply voltage
division, since the 12 V in Fig. 2.42(b) is divided between the 4-Q and
2-Q) resistors. Hence,
__2 (22v) =4V
T 24

Similarly, i, can be obtained in two ways. One approach is to apply
Ohm'’s law to the 3-Q) resistor in Fig. 2.42(a) now that we know v, thus,
o= 2 A
° 3
Another approach isto apply current division to the circuit in Fig. 2.42(a)
now that we know i, by writing

i—6i
° 6+3

Vo =3i,=4 =

2 4
=_(2A)=ZA
3( ) 3
The power dissipated in the 3-Q) resistor is

4
B = Vo = 4(3) — 5333W

51
—I> 4Q a i»
A
+
12V 6Q % 3Q
b
(@
. 40 a
+
12v %S 2Q
b
(b)
Figure 2.42

For Example 2.12: (a) original circuit,
(b) its equivalent circuit.

Find v, and v, in the circuit shown in Fig. 2.43. Also caculate i1 and
i» and the power dissipated in the 12-Q) and 40-() resistors.

Answer: v, =5V, i, = 416.7 mA, p, = 2083 W, v, =10V, i, =
250 mA, p, = 25W.

Practice Problem 2.12

" 10

—

1
6 Q
4'A%%%

Lk

%109 22 40Q

15V C_D

Figure 2.43
For Practice Prob. 2.12.

For the circuit shown in Fig. 2.44(a), determine: (&) the voltage vy,
(b) the power supplied by the current source, (c) the power absorbed
by each resistor.

Solution:
(8 The 6-kQ and 12-k() resistors are in series so that their combined
value is 6 + 12 = 18 k(). Thus the circuit in Fig. 2.44(a) reduces to
that shown in Fig. 2.44(b). We now apply the current division technique
to find i, and i,.

P 18,000

t 9,000 + 18,000

P 9,000

27 9,000 + 18,000

(30 mA) = 20 mA

(30mA) = 10mA

Example 2.13
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6 kQ

30 mA = 9kQ 12 kQ

soma (})

(b)
Figure 2.44
For Example 2.13: (a) original circuit,
(b) its equivalent circuit.

Chapter 2 Basic Laws

Notice that the voltage across the 9-k() and 18-k(} resistorsis the same,
and v, = 9,000i, = 18,000i, = 180 V, as expected.
(b) Power supplied by the source is

M = Uolo = 180(30) MW = 54 W
(c) Power absorbed by the 12-kQ) resistor is
p=iv=i,(i,R) =i3R= (10 X 1073)?(12,000) = 1.2 W
Power absorbed by the 6-k() resistor is
p=i3R= (10 X 10 %?(6,000) = 0.6 W
Power absorbed by the 9-k() resistor is
ve  (180)°

R 9,000

=3.6W

or
P = Uiz = 180(20) MW = 3.6 W

Notice that the power supplied (5.4 W) equals the power absorbed
(1.2 + 0.6 + 3.6 = 5.4 W). This is one way of checking results.

Practice Problem 2.13

«® y

Figure 2.46
The bridge network.

For the circuit shown in Fig. 2.45, find: (a) v, and v,, (b) the power
dissipated in the 3-kQ) and 20-kQ} resistors, and (c) the power supplied
by the current source.

1kQ

+ +
3kQ S v CDlOmA %Skg » =S 20kQ

Figure 2.45
For Practice Prob. 2.13.

Answer: (@) 15V, 20V, (b) 75 mW, 20 mW, (c) 200 mW.

2.7 TWye-Delta Transformations

Situations often arise in circuit analysis when the resistors are neither in
parallel nor in series. For example, consider the bridge circuit in Fig. 2.46.
How do we combine resistors R; through Rg when the resistors are neither
in series nor in parallel? Many circuits of the type shown in Fig. 2.46
can be smplified by using three-terminal equivalent networks. These are
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the wye (Y) or tee (T) network shown in Fig. 2.47 and the delta (A) or R
pi (IT) network shown in Fig. 2.48. These networks occur by themsdlves 1 MWW 3
or as part of a larger network. They are used in three-phase networks,
electrical filters, and matching networks. Our main interest hereisin how Ry Ra
to identify them when they occur as part of a network and how to apply
wye-delta transformation in the analysis of that network. 2 4
@
1 3 R
R R
R, R, L 1 2 5 1 MWV 3
. " "I ZR
2 4 2 4 5 4
@ (b) (b)
Figure 2.47 Figure 2.48
Two forms of the same network: () Y, (b) T. Two forms of the same network: (a) A,
(b) TI.

Delta to Wye Conversion

Suppose it is more convenient to work with a wye network in a place
where the circuit contains a delta configuration. We superimpose awye
network on the existing delta network and find the equivaent resist-
ances in the wye network. To obtain the equivalent resistances in the
wye network, we compare the two networks and make sure that the
resistance between each pair of nodes in the A (or IT) network is the
same as the resistance between the same pair of nodes in the Y (or T)
network. For terminals 1 and 2 in Figs. 2.47 and 2.48, for example,

Rlz(Y) - Rl + R3 (246)
Ri2(A) = Ry (Ra + R)
Setting Rix(Y) = Ri»(A) gives

R, +
SRLEL R (@47
Similarly,
Re(Ra + Ry)
Rz=Ri+R=—""—"—"" 2.47b
13 1+ Re R, + R, + R, ( )
R.(Ry +
Ry = R, + Ry = M (2.47¢)
Subtracting Eq. (2.47¢) from Eq. (2.47a), we get
_ R(R— R
Adding Egs. (2.47b) and (2.48) gives
R, RoRe (2.49)

TR FR, R
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Figure 2.49
Superposition of Y and A networks as an
aid in transforming one to the other.

Chapter 2 Basic Laws

and subtracting Eq. (2.48) from Eq. (2.47b) yields

ReRa
R=—""—"— 2.50
> = R+ R+ R (2.50)
Subtracting Eq. (2.49) from Eq. (2.47a), we obtain
RaRo
Re=—"——"—— 251
5= R+ R+ R (2.51)

We do not need to memorize Egs. (2.49) to (2.51). To transform a A net-
work to Y, we create an extra node n as shown in Fig. 2.49 and follow
this conversion rule:

Each resistor in the Y network is the product of the resistors in the two
adjacent A branches, divided by the sum of the three A resistors.

One can follow this rule and obtain Egs. (2.49) to (2.51) from Fig. 2.49.

Wye to Delta Conversion

To obtain the conversion formulas for transforming a wye network to
an equivalent delta network, we note from Egs. (2.49) to (2.51) that

_ RaRoRe(Ra + Ry + R)
RiR + RoRy + RsRy = R+ R, + Rc)z
_ RRR
Ra+ Ro + Re

Dividing Eg. (2.52) by each of Egs. (2.49) to (2.51) leads to the fol-
lowing equations:

(2.52)

RiR, + RRs + RsR

Raz 12 23 3 M1 (253)
Ry

&:&&+%ﬁ+&& 254
2

RiR, + RRs + RsR

Rc: 12 2R3 3™ (255)

3

From Egs. (2.53) to (2.55) and Fig. 2.49, the conversion rule for Y to
A is as follows:

Each resistor in the A network is the sum of all possible products of Y
resistors taken two at a time, divided by the opposite ¥ resistor.
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The Y and A networks are said to be balanced when
Ri=R =R =Ry, Ri=R,=R. =Ry (2.56)

Under these conditions, conversion formulas become

One may wonder why Ry is less than R,. Well, we notice that the Y-
connection is like a “series’ connection while the A-connection is like
a “paralel” connection.

Note that in making the transformation, we do not take anything
out of the circuit or put in anything new. We are merely substituting
different but mathematically equivalent three-terminal network patterns
to create a circuit in which resistors are either in series or in paraldl,
allowing us to calculate Ry, if necessary.

Convert the A network in Fig. 2.50(a) to an equivalent Y network. Example 2.14

@ (b)
Figure 2.50
For Example 2.14: (a) original A network, (b) Y equivalent network.

Solution:
Using Egs. (2.49) to (2.51), we obtain

RyRe 10 X 25 250
R,+R,+ R 15+10+25 50
R X
R, = ReRa - 15=7.5Q
R,+ R, + R 50
X
R, R.R, _15x10 .

"R, +R,+R 50
The equivalent Y network is shown in Fig. 2.50(b).
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Practice Problem 2.14

Ry Ry
a o—AMWW AMAM—o0 b
100 200
Ry < 40Q
C
Figure 2.51

For Practice Prob. 2.14.

Transform the wye network in Fig. 2.51 to a delta network.

Answer: R, = 1400, R, = 70, R, = 35().

Example 2.15

5Q
120V D c n §30§2

Figure 2.52
For Example 2.15.

Obtain the equivalent resistance Ry, for the circuit in Fig. 2.52 and use
it to find current i.

Solution:

1

2.

Define. The problem is clearly defined. Please note, this part
normally will deservedly take much more time.

Present. Clearly, when we remove the voltage source, we end
up with a purely resistive circuit. Since it is composed of deltas
and wyes, we have a more complex process of combining the
elements together. We can use wye-delta transformations as one
approach to find a solution. It is useful to locate the wyes (there
are two of them, one at n and the other at ¢) and the deltas
(there are three: can, abn, cnb).

. Alternative. There are different approaches that can be used to

solve this problem. Since the focus of Sec. 2.7 is the wye-delta
transformation, this should be the technique to use. Another
approach would be to solve for the equivalent resistance by
injecting one amp into the circuit and finding the voltage
between a and b; we will learn about this approach in Chap. 4.

The approach we can apply here as a check would be to use
a wye-delta transformation as the first solution to the problem.
Later we can check the solution by starting with a deltawye
transformation.

. Attempt. In this circuit, there are two Y networks and three A

networks. Transforming just one of these will simplify the circuit.
If we convert the Y network comprising the 5-(), 10-(), and
20-Q) resistors, we may select

R,=10Q, R,=200Q,
Thus from Egs. (2.53) to (2.55) we have
R, = RiR, + RRRs + RsRy 10X 20+ 20X 5+ 5X 10

RSZSQ

Ry 10
350
=——=350
10
RiR, + +
_ ko RoRs + RgRy _ @ — 1750
R 20

RiR, + RyRs + RsR
_ 112 21\3 312@2709
Rs 5
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125Q 1750
§ 70Q § 30Q
35Q
15Q
b o
@
Figure 2.53

2.7 Wye-Delta Transformations

7.292Q

105Q

(b)

Equivalent circuits to Fig. 2.52, with the voltage source removed.
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2.273Q

21Q
15Q

4.545 Q

1.8182 Q

n

20Q

§3OQ

With the Y converted to A, the equivalent circuit (with the

voltage source removed for now) is shown in Fig. 2.53(a).
Combining the three pairs of resistors in parallel, we obtain

= 9.632 O

70 X 30
7OH30 20+ 30 21Q
125 X 175
125|175 = ———-—==7.292Q
” 125 + 175
15 X 35
1 = = 1050
5|35 151 35 0.5
so that the equivalent circuit is shown in Fig. 2.53(b). Hence, we
find
17.792 X 21
= (7. + 10. =
Rap = (7202 +109) |20 = 220,51
Then
Us 120
= —=——= 12458 A
' TRy 9632

We observe that we have successfully solved the problem.

Now we must evaluate the solution.

5. Evaluate. Now we must determine if the answer is correct and

then evaluate the final solution.

It is relatively easy to check the answer; we do this by

solving the problem starting with a delta-wye transformation. Let
us transform the delta, can, into a wye.

Lt R.=10Q, R, =50, and R, = 125 Q. This will lead
to (let d represent the middle of the wye):

R R.R, _ 10x 125
9T R.+R +R, 5+10+ 125
R.R, 5Xx 125
= = =22730
R =75 275 3
X
Rua = RaRe _5x10_ 1.8182 Q

275 275

= 4.545 ()

©
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This now leads to the circuit shown in Figure 2.53(c). Looking
at the resistance between d and b, we have two series
combination in paralel, giving us

_ (2273 + 15)(1.8182 + 20)  376.9
© 2273+ 15+ 18182 + 20  39.09

Rab = 0.642 ()

This is in series with the 4.545-Q) resistor, both of which are in
parallel with the 30-Q) resistor. This then gives us the equivalent
resistance of the circuit.

(9.642 + 4545)30 4256
9.642 + 4545 + 30  44.19

This now leads to

= 0.631 Q

Rap =

Vg 120

R,  9.631 12.46 A
We note that using two variations on the wye-delta transformation
leads to the same results. This represents a very good check.

6. Satisfactory? Since we have found the desired answer by
determining the equivalent resistance of the circuit first and the
answer checks, then we clearly have a satisfactory solution. This
represents what can be presented to the individual assigning the
problem.

Practice Problem 2.15

Ja 130
O
240 100
100v (%)
300 50Q
b
Figure 2.54

For Practice Prob. 2.15.

So far, we have assumed that connect-
ing wires are perfect conductors (i.e.,
conductors of zero resistance). In real
physical systems, however, the resist-
ance of the connecting wire may be
appreciably large, and the modeling
of the system must include that
resistance.

For the bridge network in Fig. 2.54, find Ry, and i.

Answer: 40 (), 25 A.

2.8 T Applications

Resistors are often used to model devices that convert electrical energy
into heat or other forms of energy. Such devices include conducting
wire, lightbulbs, electric heaters, stoves, ovens, and loudspeakers. In
this section, we will consider two rea-life problems that apply the con-
cepts developed in this chapter: electrical lighting systems and design
of dc meters.

2.8.1. Lighting Systems

Lighting systems, such as in a house or on a Christmas tree, often con-
sist of N lamps connected either in parallel or in series, as shown in
Fig. 2.55. Each lamp is modeled as aresistor. Assuming that all the lamps
are identical and V, is the power-line voltage, the voltage across each
lamp is V,, for the parallel connection and V,/N for the series connec-
tion. The series connection is easy to manufacture but is seldom used
in practice, for at least two reasons. Firg, it isless reliable; when alamp
fails, all the lamps go out. Second, it is harder to maintain; when a lamp
is bad, one must test al the lamps one by one to detect the faulty one.
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Historical

Thomas Alva Edison (1847-1931) was perhaps the greatest
American inventor. He patented 1093 inventions, including such
history-making inventions as the incandescent electric bulb, the phono-
graph, and the first commercial motion pictures.

Born in Milan, Ohio, the youngest of seven children, Edison received
only three months of formal education because he hated school. He was
home-schooled by his mother and quickly began to read on his own. In
1868, Edison read one of Faraday’s books and found his calling. He
moved to Menlo Park, New Jersey, in 1876, where he managed a well-
staffed research laboratory. Most of his inventions came out of this
laboratory. His laboratory served as a model for modern research organ-
izations. Because of his diverse interests and the overwhelming number
of his inventions and patents, Edison began to establish manufacturing
companies for making the devices he invented. He designed the first elec-
tric power station to supply electric light. Formal electrical engineering
education began in the mid-1880s with Edison as arole model and leader.

Library of Congress
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o FFES
Power ‘\
@

plug
Lamp (b)

Figure 2.55
(a) Parallel connection of lightbulbs, (b) series connection of lightbulbs.

Three lightbulbs are connected to a 9-V battery as shown in Fig. 2.56(a).
Calculate: (a) the total current supplied by the battery, (b) the current
through each bulb, (c) the resistance of each bulb.

ik
V25 R
R
9V 20W Vs 2 Ry
T 0w z
@ (b)

Figure 2.56
(a) Lighting system with three bulbs, (b) resistive circuit equivalent model.

Example 2.16
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Solution:
(a) The total power supplied by the battery is equal to the total power
absorbed by the bulbs; that is,

p=15+10+ 20 =45W
Since p = V1, then the total current supplied by the battery is

_P_45_

vV 9
(b) The bulbs can be modeled as resistors as shown in Fig. 2.56(b).
Since Ry (20-W bulb) isin parallel with the battery as well as the series
combination of R, and Ry,

V1:V2+V3:9V

SA

The current through R; is

pr 20

I, = =-—=2222A

v, o9

By KCL, the current through the series combination of R, and R is
lb=1—1,=5-2222=2778A

(c) Since p = I°R,
P1 20

Ri=—2=——"=4050
T2 g2
15
Rzzp—g=—2: 1.945 0
12 2777
10
R3:p—§= 5 =12970Q
12 2777

Practice Problem 2.16

W@

Figure 2.57
The potentiometer controlling potential
levels.

Refer to Fig. 2.55 and assume there are 10 lightbulbs that can be con-
nected in parallel and 10 lightbulbs that can be connected in series,
each with a power rating of 40 W. If the voltage at the plug is 110 V
for the paralel and series connections, calculate the current through
each bulb for both cases.

Answer: 0.364 A (parallel), 3.64 A (series).

2.8.2 Design of DC Meters

By their nature, resistors are used to control the flow of current. We
take advantage of this property in several applications, such as in a
potentiometer (Fig. 2.57). The word potentiometer, derived from the
words potential and meter, implies that potential can be metered out.
The potentiometer (or pot for short) is athree-terminal device that oper-
ates on the principle of voltage division. It is essentially an adjustable
voltage divider. As a voltage regulator, it is used as a volume or level
control on radios, TVs, and other devices. In Fig. 2.57,

Vour = Ve = % Vin (2.58)

ac
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where Ry = Ry + Rye. Thus, Vg decreases or increases as the diding
contact of the pot moves toward c or a, respectively.

Another application where resistors are used to control current flow
is in the analog dc meters—the ammeter, voltmeter, and ohmmeter,
which measure current, voltage, and resistance, respectively. Each of
these meters employs the d’Arsonval meter movement, shown in
Fig. 2.58. The movement consists essentially of a movable iron-core coil
mounted on a pivot between the poles of a permanent magnet. When
current flows through the coil, it creates atorque which causes the pointer
to deflect. The amount of current through the coil determines the deflec-
tion of the pointer, which is registered on a scale attached to the meter
movement. For example, if the meter movement israted 1 mA, 50 (), it
would take 1 mA to cause a full-scale deflection of the meter movement.
By introducing additiona circuitry to the d’ Arsonval meter movement,
an ammeter, voltmeter, or ohmmeter can be constructed.

Consider Fig. 2.59, where an analog voltmeter and ammeter are
connected to an element. The voltmeter measures the voltage across a
load and is therefore connected in parallel with the element. As shown

stationary iron core

Figure 2.58
A d Arsonval meter movement.

in Fig. 2.60(a), the voltmeter consists of a d’Arsonval movement in
series with a resistor whose resistance R,, is deliberately made very
large (theoretically, infinite), to minimize the current drawn from the
circuit. To extend the range of voltage that the meter can measure,
series multiplier resistors are often connected with the voltmeters, as
shown in Fig. 2.60(b). The multiple-range voltmeter in Fig. 2.60(b) can
measure voltage from0to 1V, 0to 10 V, or 0 to 100 V, depending on
whether the switch is connected to R;, R,, or Rs, respectively.

Let us calculate the multiplier resistor R, for the single-range volt-
meter in Fig. 2.60(a), or R, = Ry, Ry, or Rs for the multiple-range
voltmeter in Fig. 2.60(b). We need to determine the value of R, to be
connected in series with the internal resistance R, of the voltmeter. In
any design, we consider the worst-case condition. In this case, the
worst case occurs when the full-scale current l¢s = I, flows through
the meter. This should also correspond to the maximum voltage read-
ing or the full-scale voltage V;s. Since the multiplier resistance R, isin
series with the internal resistance R,

Vis = | fS(Rn + Rm) (259)
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I An instrument capable of measuring

voltage, current, and resistance is
called a multimeter or a volt-ohm
meter (VOM).

A load is @ component that is receiving

I energy (an energy sink), as opposed
to a generator supplying energy (an
energy source). More about loading
will be discussed in Section 4.9.1.

Ammeter |
—

+

Voltmeter 6/) \ Element

O
Figure 2.59
Connection of avoltmeter and an anme-
ter to an element.
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Multiplier ~ Meter

Figure 2.60
Voltmeters: (a) single-range type, (b) multiple-range type.

ln ”””” R\« From this, we obtain
b ee——AWWW————
: : \
! Meter ! R, = Tfs - Rn (2.60)
! ! f
e BN s - )
! ! Similarly, the ammeter measures the current through the load and
: w ! is connected in series with it. As shown in Fig. 2.61(a), the ammeter
b i consists of a d’Arsonval movement in parallel with a resistor whose
e - resistance R, is deliberately made very small (theoretically, zero) to
A4 Probes A4 minimize the voltage drop across it. To alow multiple ranges, shunt
@ resistors are often connected in parallel with R,, as shown in
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Fig. 2.61(b). The shunt resistors allow the meter to measure in the
Ry . range 0-10 mA, 0-100 mA, or 0-1 A, depending on whether the switch
10 mA | is connected to Ry, Ry, or Rs, respectively.
R _ E Now our objective is to obtain the multiplier shunt R, for the single-
2 100mA X\ Switch | range ammeter in Fig. 2.61(a), or R, = Ry, Ry, or Ry for the multiple-
1A ' range ammeter in Fig. 2.61(b). We notice that R, and R, are in parallel
Rs / i and that at full-scale reading | = Its = |, + |, where I, is the current
i through the shunt resistor R,. Applying the current division principle
Meter 1 yields
o @ i | = L|
& i " RitRa”
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Loor
Probes
N N |
R,= —"—Rq (2.61)
(0) Ifs - Im

Figure 2.61
Ammeters: (a) single-range type, The resistance R, of alinear resistor can be measured in two ways.

(b) multiple-range type. An indirect way is to measure the current | that flows through it by



2.8  Applications

connecting an ammeter in series with it and the voltage V across it by
connecting a voltmeter in parallel with it, as shown in Fig. 2.62(a).
Then

\%
RXZT

(2.62)
The direct method of measuring resistance is to use an chmmeter. An
ohmmeter consists basically of a d’Arsonval movement, a variable

resistor or potentiometer, and a battery, as shown in Fig. 2.62(b).
Applying KVL to the circuit in Fig. 2.62(b) gives

E=(R+R,+R)In

or

E
R(= = R+ Ry (2.63)
m
The resistor R is selected such that the meter gives a full-scale deflec-
tion; that is, I, = lts when R, = 0. This implies that

E=R+ Rl (2.64)
Substituting Eq. (2.64) into Eq. (2.63) leads to

R, = (:fs - 1) (R+ Ry) (2.65)

As mentioned, the types of meters we have discussed are known
as analog meters and are based on the d’ Arsonval meter movement.
Another type of meter, called a digital meter, is based on active circuit
elements such as op amps. For example, a digital multimeter displays
measurements of dc or ac voltage, current, and resistance as discrete
numbers, instead of using a pointer deflection on a continuous scale as
in an analog multimeter. Digital meters are what you would most likely
use in a modern lab. However, the design of digital meters is beyond
the scope of this book.

@

Ohmmeter

Figure 2.62

Two ways of measuring resistance:
(a) using an ammeter and a voltmeter,
(b) using an ohmmeter.

Historical

Samuel F. B. Morse (1791-1872), an American painter, invented
the telegraph, the first practical, commercialized application of
electricity.

Morse was born in Charlestown, Massachusetts and studied at Yale
and the Royal Academy of Arts in London to become an artist. In the
1830s, he became intrigued with developing a telegraph. He had a
working model by 1836 and applied for a patent in 1838. The U.S.
Senate appropriated funds for Morse to construct a telegraph line
between Baltimore and Washington, D.C. On May 24, 1844, he sent
the famous first message: “What hath God wrought!” Morse a so devel-
oped a code of dots and dashes for letters and numbers, for sending
messages on the telegraph. The development of the telegraph led to the
invention of the telephone.

63
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Example 2.17

Following the voltmeter setup of Fig. 2.60, design a voltmeter for the
following multiple ranges:

(& 01V (b) -5V (c) 50V (d) 0-100 V

Assume that the internal resistance R, = 2 k() and the full-scale cur-
rent lys = 100 pA.

Solution:

We apply Eg. (2.60) and assume that R;, Ry, Rs, and R, correspond
with ranges 0-1 V, 0-5 V, 0-50 V, and 0-100 V, respectively.

(a) For range 0-1V,

1
1 = —————5 — 2000 = 10,000 — 2000 = 8 k()
100 X 10
(b) For range 0-5V,
5
R, = —————— — 2000 = 50,000 — 2000 = 48 k()
100 X 10
(c) For range 0-50 V,
50
Rs = —————¢ — 2000 = 500,000 — 2000 = 498 k()
100 x 10
(d) For range 0-100 V,
100V
Ry = —————5 — 2000 = 1,000,000 — 2000 = 998 k()
100 X 10

Note that the ratio of the total resistance (R, + R,) to the full-scale
voltage Vi, is constant and equal to 1/ for the four ranges. This ratio
(given in ohms per volt, or Q/V) is known as the sensitivity of the
voltmeter. The larger the sensitivity, the better the voltmeter.

Practice Problem 2.17

Following the ammeter setup of Fig. 2.61, design an ammeter for the
following multiple ranges:

(@ 0-1A (b) 0-100 mA (c) 0-10 mA

Take the full-scale meter current as |,, = 1 mA and the internal resist-
ance of the ammeter as R,, = 50 ().

Answer: Shunt resistors: 0.05 (2, 0.505 (), 5.556 ().

2.9 Summary

1. A resistor is a passive element in which the voltage v across it is
directly proportiona to the current i through it. That is, a resistor
is a device that obeys Ohm'’s law,

v =iR

where R is the resistance of the resistor.



10.

11

12.

2.9  Summary

. A short circuit is aresistor (a perfectly conducting wire) with zero

resistance (R = 0). An open circuit is a resistor with infinite resis-
tance (R = »).

. The conductance G of aresistor is the reciprocal of its resistance:

G =

Tl

. A branch is a single two-terminal element in an electric circuit. A

node is the point of connection between two or more branches. A
loop is a closed path in a circuit. The number of branches b, the
number of nodes n, and the number of independent loops | in a
network are related as

b=1+n-1

. Kirchhoff’s current law (KCL) states that the currents at any node

algebraically sum to zero. In other words, the sum of the currents
entering a node equals the sum of currents leaving the node.

. Kirchhoff’s voltage law (KVL) states that the voltages around a

closed path algebraically sum to zero. In other words, the sum of
voltage rises eguals the sum of voltage drops.

. Two elements are in series when they are connected sequentially,

end to end. When elements are in series, the same current flows
through them (i, = i,). They are in paralel if they are connected
to the same two nodes. Elements in parallel always have the same
voltage across them (v, = vy).

. When two resistors R; (=1/G;) and R, (=1/G,) arein series, their

equivalent resistance Ry and equivalent conductance G are

SRRy Gy 22
Rea =Rt R, ¥ G+ Gy
. When two resistors R; (=1/G,) and R, (=1/G,) are in paralld,
their equivalent resistance Ry, and equivalent conductance G, are
- R Geg=G1 + G
R = R+ Ry G Tt
The voltage division principle for two resistors in series is
R R
“NTR AR TR AR
The current division principle for two resistors in parald is
. R . . R .
I, = I, I, = |
Rl + R2 Rl + RZ
The formulas for a delta-to-wye transformation are
_ RoRe _ R.Ra
Rl b I b LB RZ - B B LD
Rat+ Rt R Rat Ry + Re
Ra Ro

Rg= —— =2
Rat Ry + R

65
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13. The formulas for a wye-to-delta transformation are

&:&&+&&+&@

&:&&+&&+&@

Ry Ry
RiR, + RoRs + RyRy
R. = R
3

14. The basic laws covered in this chapter can be applied to the prob-
lems of electrical lighting and design of dc meters.

Review Questions

2.1 Thereciprocal of resistanceis:
(a) voltage
(c) conductance

An electric heater draws 10 A from a120-V line. The
resistance of the heater is:

(a) 1200 © (b) 120

(0120 (d) 120

The voltage drop across a 1.5-kW toaster that draws
12 A of current is:

(a) 18kV (b) 125V

(c) 120V (d) 10.42V

The maximum current that a 2W, 80 k() resistor can
safely conduct is:

(a) 160 kA (b) 40 KA
(c) 5mA (d) 25 uA

A network has 12 branches and 8 independent
loops. How many nodes are there in the
network?

@19 (17 ()5 (4

The current | in the circuit of Fig. 2.63is:
(@) —0.8A (b) —0.2A
(c)0.2A (d)0.8A

(b) current
(d) coulombs
2.2

2.3

2.4

2.5

2.6

40 '

3V 5V
6Q

Figure 2.63
For Review Question 2.6.

2.7 Thecurrent |, of Fig. 2.64is:

(@ —4A (b) —2A (©)4A (d) 16 A
o
flOA
2A % 4A
—_— -
o MW VW O
o
(@]
Figure 2.64
For Review Question 2.7.
2.8 InthecircuitinFig. 2.65, Vis:
(@ 30V (b) 14V (9)10V (d)6V
10V
+ —
1
| |
12v (%) *)sv
1
| |
+ \VJ -
Figure 2.65

For Review Question 2.8.
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2.9  Which of the circuitsin Fig. 2.66 will give you 2.10 Inthecircuit of Fig. 2.67, adecreasein Rz leadsto a
Vo =7V? decrease of :

(a) current through R,

(b) voltage across Rs

(c) voltage across Ry

(d) power dissipated in R,

(e) none of the above

Rl
AV
(b)
Vs RZ RS
Figure 2.67
For Review Question 2.10.

Answers: 2.1c, 2.2c, 2.3b, 2.4c, 2.5¢c, 2.6b, 2.7a, 2.8d,
2.9d, 2.10b, d.

(© (d)
Figure 2.66
For Review Question 2.9.

1

Section 2.2 Ohm’s Law

Problems

2.1 Design aproblem, complete with a solution, to help
efd studentsto better understand Ohm's Law. Use at
least two resistors and one voltage source. Hint, you
could use both resistors at once or one at atime, it is
up to you. Be creative.

2.2 Findthe hot resistance of alightbulb rated 60 W, 120 V.

2.3 Abarof siliconis4 cm long with acircular cross sec-
tion. If the resistance of the bar is 240 () at room tem-

Figure 2.69

perature, what is the cross-sectional radius of the bar? For Prob. 2.5.
2.4 (@) Cdculate currenti in Fig. 2.68 when the switch is

in position 1. 2.6 Inthe network graph shown in Fig. 2.70, determine

(b) Find the current when the switch isin position 2. the number of branches and nodes.
1 2
-
100 Q § ? ! § 150 Q
15V

Figure 2.68
For Prob. 2.4.

Section 2.3 Nodes, Branches, and Loops

2.5 For the network graph in Fig. 2.69, find the number Figure 2.70
of nodes, branches, and loops. For Prob. 2.6.
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2.7 Find the number of branches and nodes in each of
thecircuits of Fig. 2.71.

10 20 2V 70

&
av ()

@ (b)

Figure 2.71
For Prob. 2.7.

Section 2.4 Kirchhoff’s Laws

2.8 Design aproblem, complete with a solution, to help
efd other students better understand Kirchhoff’s Current
Law. Design the problem by specifying values of i,
i, and i, shownin Fig. 2.72, and asking them to
solve for values of i4, i,, and iz. Be careful specify
realistic currents.

Yoo

ib‘

Figure 2.72
For Prob. 2.8.

2.9 Findi,, i, andiszinFig. 2.73.

8A
-
TZA Tiz
10Al A B Tis
Til 12A ll4A
pm—
4A ¢

Figure 2.73
For Prob. 2.9.

2.10 Determinei, and i, inthecircuit of Fig. 2.74.

4A/ \\—ZA

Figure 2.74
For Prob. 2.10.

Basic Laws

2.11 Inthecircuit of Fig. 2.75, calculate V; and V..

1V 2V
+ - + -
1 1
L L
+ + +
A 5V V,

Figure 2.75
For Prob. 2.11.

2.12 Inthecircuit of Fig. 2.76, obtain v4, v,, and vs.

15V
+ _
| —
| I
25V 10V )
-+ + - + Y2 _
——
+ + +
20V u v3

Figure 2.76
For Prob. 2.12.

2.13 For thecircuit in Fig. 2.77, use KCL to find the
branch currents |4 to I,.

2A
—
1
| S|
P 7A s
- . -

Figure 2.77
For Prob. 2.13.

2.14 Giventhecircuitin Fig. 2.78, use KVL to find the

branch voltages V, to V,.
+ + -
3V Vi V,
_ _ $2V_
- + - + +
V3
4V V, 5V

Figure 2.78
For Prob. 2.14.



2.15 Cadlculatev and iy in the circuit of Fig. 2.79.

12v (%) 2v+ U > 3N

Figure 2.79
For Prob. 2.15.

2.16 Determine V, inthe circuit of Fig. 2.80.

v © “ OF

o

Figure 2.80
For Prob. 2.16.

2.17 Obtain v, through vy in the circuit of Fig. 2.81.

2av (%) L2 § i3 (F)10v

Figure 2.81
For Prob. 2.17.

2.18 Find | and V4, in the circuit of Fig. 2.82.

Figure 2.82
For Prob. 2.18.

Problems 69

2.19 Fromthecircuit in Fig. 2.83, find I, the power
dissipated by the resistor, and the power absorbed by
each source.

10V
A
%

20v (0) §3Q

@

-4V

Figure 2.83
For Prob. 2.19.

2.20 Determinei, inthecircuit of Fig. 2.84.

lo 4Q

36V e

Figure 2.84
For Prob. 2.20.

& s

2.21 Find Vyinthecircuit of Fig. 2.85.

1Q

15v ()

Figure 2.85
For Prob. 2.21.

2.22 Find V, inthe circuit of Fig. 2.86 and the power
dissipated by the controlled source.

ty, -
60 (1) 10A 2V,

Figure 2.86
For Prob. 2.22.
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2.23 Inthecircuit shown in Fig. 2.87, determine v, and 2.27 Cdculate V, in the circuit of Fig. 2.91.
the power absorbed by the 12-() resistor.

1Q 12Q 40
W WA
Ux 40 + V, —
6A (1) %29 %89 %129 16v (%) 6Q
3Q 6Q
Figure 2.91
For Prob. 2.27.

Figure 2.87
For Prob. 2.23.

2.28 Design aproblem, using Fig. 2.92, to help other

2.24 For thecircuit in Fig. 2.88, find V,/Vsin terms of ed students better understand series and parallel
a, Rl! Rz, R3, and R4 If Rl = R2 = R3 = R4, What CirCUits.

vaue of a will produce |V,/Vs| = 10?

lo R,
A,
+ *too -
V, R, al Rs RSV, + +
° ° _ V() v2 % R, v3 % Ry

Figure 2.88
For Prob. 2.24.

Figure 2.92
For Prob. 2.28.
2.25 For the network in Fig. 2.89, find the current,

voltage, and power associated with the 20-k()

resisior 2.29 All resistorsin Fig. 2.93 are 1 () each. Find R,

N
5mA 10kQ 2\, <$ 001, <5kQ < 20kQ
Req

Figure 2.89 -
For Prob. 2.25.
Figure 2.93
For Prob. 2.29.
Sections 2.5 and 2.6 Series and Parallel Resistors
2.26 For thecircuitin Fig. 2.90, i, = 2 A. Calculateiy 2.30 Find Re for the circuit of Fig. 2.94.
and the total power dissipated by the circuit.
|
. 6Q 6Q
e
20 40 8Q 16 Q E‘; 20 20
Figure 2.90 Figure 2.94

For Prob. 2.26. For Prob. 2.30.



2.31 For thecircuit in Fig. 2.95, determinei, to is.

av ()

Figure 2.95
For Prob. 2.31.

2.32 Findi, throughi, in the circuit of Fig. 2.96.

i i
10Q _4 2200
00 - 300

Figure 2.96
For Prob. 2.32.

2.33 Obtainv and i in the circuit of Fig. 2.97.

~ 4S 6S

+

9A

<
[uy
w
N
)
w
)

Figure 2.97
For Prob. 2.33.

2.34 Using seried/parallel resistance combination, find the
equivalent resistance seen by the source in the circuit
of Fig. 2.98. Find the overall dissipated power.

20Q 8Q 10Q
AW
12v 40 Q 40 Q 20Q
%%
12 Q 10Q

Figure 2.98
For Prob. 2.34.

Problems

2.35 Calculate V, and |, in the circuit of Fig. 2.99.

sov ()

70 Q

20Q

30Q

L, S50

Figure 2.99
For Prob. 2.35.

2.36 Findi and V, inthecircuit of Fig. 2.100.

', 10Q

24 Q

50 Q

15v ()

609§

Figure 2.100
For Prob. 2.36.

2.37 Find Rfor thecircuit in Fig. 2.101.

20v (5)

R 10Q
AV AWV
+10V —

Figure 2.101

For Prob. 2.37.

2.38 Find Rqandi, inthecircuit of Fig. 2.102.

aov (%)

60 Q
A
120
A
o, 50 60
VW 80Q
§159 §2og
| Reg

Figure 2.102

For Prob. 2.38.
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2.39 Evauate Ry, for each of the circuits shownin 2Q 4Q 5Q
Fig. 2.103. a 0o—/WW, WA W ob
5Q 3Q 10Q
o 6kQ —AWA—AW
VW 8Q 4Q
2kQ WA
1kQ 4kQ 12 kQ
o AN (b)
Figure 2.106
2kQ 1kQ 12 kQ For Prob. 2.42.
O O
@ (b)
Figure 2.103 2.43 Calculate the equivalent resistance Ry, at terminals
For Prob. 2.39.

2.40 For the ladder network in Fig. 2.104, find | and Ry,

1 30 20Q 10
AW WA
10V C:) 40 60 20
|_>
| Re

Figure 2.104
For Prob. 2.40.

2.41 If Ryq = 50 Q in the circuit of Fig. 2.105, find R.

12Q

Figure 2.105
For Prob. 2.41.

2.42 Reduce each of the circuitsin Fig. 2.106 to asingle
resistor at terminals a-b.

5Q

8Q 200
\—:v/vvj*—‘
300
@

a-b for each of the circuitsin Fig. 2.107.

5Q
a
20Q 10Q 40 Q
b o
@
10Q
ao VWWA

80 Q
60 Q %ZOQ 30Q
b o
b)

(

Figure 2.107
For Prob. 2.43.

2.44 For thecircuit in Fig. 2.108, obtain the equivalent
resistance at terminals a-b.

20Q 20Q

10Q

%59
b o

Figure 2.108
For Prob. 2.44.
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2.45 Find the equivalent resistance at terminals a-b of 2.47 Find the equivalent resistance Ry, in the circuit of
each circuit in Fig. 2.109. Fig. 2.111.

10Q
MW
400
AW
20Q
) d
300 § 50
50Q
bo A
@
Figure 2.111
For Prob. 2.47.
30Q
MW
%12 Q Section 2.7 Wye-Delta Transformations
50 200 2.48 Convert the circuitsin Fig. 2.112 from Y to A.
o—VWW\ MWV
% 25Q § 60 Q
3 100Q 10Q 30Q 200
15Q 100 a b a b
o— AW AMN
10Q 50 Q
(b)
Figure 2.109
For Prob. 2.45. c c
@ (b)
Figure 2.112
For Prob. 2.48.

2.46 Findl inthecircuit of Fig. 2.110.

2.49 Transform the circuitsin Fig. 2.113 from A to Y.

200 150
1, 40 150 120 60Q
WA a AW b a AW b
50 150
+
v (&) 240 %59 120 120 300 100
C C
8Q @ (b)
Figure 2.110 Figure 2.113

For Prob. 2.46. For Prob. 2.49.
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2.50 Design aproblem to help other students better
efd understand wye-delta transformations using
Fig. 2.114.

oma (B

Figure 2.114
For Prob. 2.50.

2.51 Obtain the equivalent resistance at the terminals a-b

for each of the circuitsin Fig. 2.115.

ao
10Q 20Q
309§ 10Q
10Q 20Q
b o
@
30Q
AW
25Q 10Q 20Q
ao MW MW MW
5Q 15Q
bo

(b)
Figure 2.115
For Prob. 2.51.

*2.52 For thecircuit shown in Fig. 2.116, find the
equivaent resistance. All resistorsare 1 ().

-

Figure 2.116
For Prob. 2.52.

* An asterisk indicates a challenging problem.

Basic Laws

*2.53 Obtain the equivalent resistance Ry, in each of the

circuits of Fig. 2.117. In (b), al resistors have a

value of 30 Q).
300 40Q
200
ao
0Q 500 80«
b o
@
ao
30Q
b o MW AW

(b)
Figure 2.117
For Prob. 2.53.

2.54 Consider thecircuit in Fig. 2.118. Find the
equivalent resistance at terminads: (a) a-b, (b) c-d.

50 Q 150 Q 60 Q
a a%%5 a%%5 AWV c

100 Q 100 Q

150 Q

Figure 2.118
For Prob. 2.54.

2.55 Calculate |, inthecircuit of Fig. 2.119.

200 60Q
200
2av (%)

50 Q

Figure 2.119
For Prob. 2.55.



2.56 DetermineV inthe circuit of Fig. 2.120.

16 Q

100V 20Q

Figure 2.120
For Prob. 2.56.

*2.57 Find Ry and | inthe circuit of Fig. 2.121.

40 2Q
6Q 10
20V D 8Q 20
100 3Q
Req

Figure 2.121
For Prob. 2.57.

Section 2.8 Applications

2.58 Thelightbulbin Fig. 2.122 israted 120 V, 0.75 A.
Calculate Vg to make the lightbulb operate at the
rated conditions.

A O Bub Zs00

Figure 2.122
For Prob. 2.58.

2.59 Three lightbulbs are connected in seriesto a 100-V
battery as shown in Fig. 2.123. Find the current |
through the bulbs.
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30w 40W 50w

O O 9
100th)

Figure 2.123
For Prob. 2.59.

2.60 If the three bulbs of Prob. 2.59 are connected in
parallel to the 100-V battery, calculate the current
through each bulb.

2.61 Asadesign engineer, you are asked to design a
eqd lighting system consisting of a 70-W power supply
and two lightbulbs as shown in Fig. 2.124. You must
select the two bulbs from the following three
available bulbs.

R; = 80 (), cost = $0.60 (standard size)
R, = 90 (), cost = $0.90 (standard size)
Rs = 100 Q, cost = $0.75 (nonstandard size)

The system should be designed for minimum cost
such that lieswithintherangel = 1.2A = 5 percent.

—_—

+|
now
Power

Supply [D "
-1
Figure 2.124
For Prob. 2.61.

2.62 A three-wire system suppliestwo loads A and B as
shown in Fig. 2.125. Load A consists of a motor
drawing acurrent of 8 A, whileload BisaPC
drawing 2 A. Assuming 10 h/day of use for 365 days
and 6 cents’kWh, calculate the annual energy cost of

the system.
1ov % A
=
110V § B

Figure 2.125
For Prob. 2.62.

2.63 If an ammeter with an internal resistance of 100 ()
and a current capacity of 2 mA isto measure 5 A,
determine the value of the resistance needed.
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Calculate the power dissipated in the shunt
resistor.

2.64 The potentiometer (adjustable resistor) R, in Fig. 2.126
isto be designed to adjust current i, from 1 A to
10A. Caculate the values of R and R, to achieve this.

110V l .
I)(

Figure 2.126
For Prob. 2.64.

2.65 A d Arsonval meter with an internal resistance of
1 kQ requires 10 mA to produce full-scale deflection.
Calculate the value of a series resistance needed to
measure 50 V of full scale.

2.66 A 20-kQ/V voltmeter reads 10 V full scale.
(a) What seriesresistance is required to make the
meter read 50 V full scale?
(b) What power will the series resistor dissipate
when the meter reads full scale?
2.67 (@) Obtainthe voltage V, in the circuit of Fig. 2.127(a).

(b) Determine the voltage V; measured when a
voltmeter with 6-k() internal resistanceis
connected as shown in Fig. 2.127(b).

(c) The finite resistance of the meter introduces an
error into the measurement. Calculate the percent
error as

Vo B Vc;
Vo

X 100%

(d) Find the percent error if the internal resistance
were 36 k().

1kQ
A%%Y%

+

2mA 5kQ 4kQ =V

@

1kQ
A%%Y

+

2mA 5kQ 4kQ =V, Voltmeter

(b)
Figure 2.127
For Prob. 2.67.

Basic Laws

2.68 (@) Find the current | in the circuit of Fig. 2.128(a).

(b) An ammeter with an internal resistance of 1 Q) is
inserted in the network to measure |’ as shown in
Fig. 2.128(b). What is|'?

(c) Calculate the percent error introduced by the

meter as
(I
| X 100%
|
1 160
MW
4v 400Q 60Q

(b)

Figure 2.128
For Prob. 2.68.

2.69 A voltmeter is used to measure V, in the circuit in
Fig. 2.129. The voltmeter model consists of an ideal
voltmeter in parallel with a 100-k() resistor. Let
Vs = 40V, Rs = 10kQ, and R, = 20 kQ). Calculate
V, with and without the voltmeter when

@R, = 1kQ (b) R, = 10kQ
(©) R, = 100 kQ
Rs
Rl
VS O O
+
R v, 100 kQ
o o

Figure 2.129
For Prob. 2.69.



2.70 (a) Consider the Wheatstone bridge shown in
Fig. 2.130. Calculate v,, vy, and vy,

(b) Rework part (a) if the ground is placed at

ainstead of o.
8kQ 15kQ
xsv ()
12 kQ 10kQ
(o]
Figure 2.130
For Prob. 2.70.

2.71 Figure 2.131 represents amodel of asolar
photovoltaic panel. Given that Vs = 30V,
R, =20Q,andi, = 1A, findR_..

77

Problems

Figure 2.133
For Prob. 2.73.

2.74 Thecircuitin Fig. 2.134 isto control the speed of a

motor such that the motor draws currents5A, 3A,
and 1 A when the switch is at high, medium, and low
positions, respectively. The motor can be modeled as
aload resistance of 20 m(). Determine the series
dropping resistances Ry, Ry, and Rs.

Ry
WW :
Vi Low
Rl
A C_) R, 10-A, 0.01-Q fuse
- |
Medium
Figure 2.131 High § R
For Prob. 2.71. 2
6V —
2.72 Find V, in the two-way power divider circuit in
Fig. 2.132. % Ry
Lo 1o Motor
Figure 2.134
For Prob. 2.74.
1Q
VO 2Q . . .. . L
2.75 Find Ry, in the four-way power divider circuit in
Fig. 2.135. Assume each element is 1 ().
v (F)
10 1Q
1 1
=
Figure 2.132 1 1
For Prob. 2.72. 1 1
1
. . 1 1 1
2.73 An ammeter model consists of an ideal ammeter
in series with a 20-() resistor. It is connected
with a current source and an unknown resistor 1 1
R as shown in Fig. 2.133. The ammeter reading 1 1
is noted. When a potentiometer R is added and
adjusted until the ammeter reading drops to one bo
half its previous reading, then R = 65 Q. What Figure 2.135
For Prob. 2.75.

isthe value of R?
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Basic Laws

1

2.76 Repeat Prob. 2.75 for the eight-way divider shown in

Comprehensive Problems

Fig. 2.136.
1 1
1 1 .
1 1
13 1
1
1 1 ]
1 1
1
a §1 1 1
1
1 1 ]
1 1
13 1
1 1 I
1 1
bo
Figure 2.136
For Prob. 2.76.

2.77 Suppose your circuit laboratory has the following
efd standard commercially available resistorsin large
quantities:

180 200 300 O 24 kQ

Using series and parallel combinations and a
minimum number of available resistors, how would
you obtain the following resistances for an electronic
circuit design?

@50 (b) 311.8 O
(©40kQ  (d)52.32kQ

2.78 Inthecircuit in Fig. 2.137, the wiper dividesthe
potentiometer resistance between R and (1 — )R,
0=a=1Findvy/vs

56 k()

Figure 2.137
For Prob. 2.78.

2.79 An electric pencil sharpener rated 240 mW, 6V is
connected to a 9-V battery as shown in Fig. 2.138.
Calculate the value of the series-dropping resistor R,
needed to power the sharpener.

switch R«

ov ET dm
|

Figure 2.138
For Prob. 2.79.

2.80 A loudspeaker is connected to an amplifier as shown
in Fig. 2.139. If a10-() loudspeaker draws the
maximum power of 12 W from the amplifier,
determine the maximum power a 4-() loudspeaker
will draw.

[

Amplifier [Q

| L oudspeaker

Figure 2.139
For Prob. 2.80.

2.81 In acertain application, the circuit in Fig. 2.140
must be designed to meet these two criteria:

(@ Vo/Ve= 005 (D) R = 40kQ

If the load resistor 5 k() isfixed, find R; and R, to
meet the criteria.

2
AWV
< .

Vs C:) _%5@

Figure 2.140
For Prob. 2.81.
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2.82 The pin diagram of aresistance array is shown in 2.83 Two delicate devices arerated as shown in Fig.
Fig. 2.141. Find the equivalent resistance between 2.142. Find the values of theresistors R; and R,
the following: needed to power the devices using a 24-V battery.
(@ 1and2
(b)land 3 60-mA, 2-Q fuse
(c)land 4

4 3 24V, 480 mW
Ry

. = Device 2

00 200 2%V
R
) 00 9V, 45 mw
Figure 2.142
100 For Prob. 2.83.
80Q
O O
1 2

Figure 2.141
For Prob. 2.82.






Methods of
ANalysis

No great work is ever done in a hurry. To develop a great scientific
discovery, to print a great picture, to write an immortal poem, to
become a minister, or a famous general—to do anything great requires
time, patience, and perseverance. These things are done by degrees,
“little by little.”

—W. J. Wilmont Buxton

Enhancing Your Career

Career in Electronics

One area of application for electric circuit analysis is electronics. The
term electronics was originally used to distinguish circuits of very low
current levels. This distinction no longer holds, as power semiconduc-
tor devices operate at high levels of current. Today, electronics is
regarded as the science of the motion of charges in a gas, vacuum, or
semiconductor. Modern electronics involves transistors and transistor
circuits. The earlier electronic circuits were assembled from compo-
nents. Many electronic circuits are now produced as integrated circuits,
fabricated in a semiconductor substrate or chip.

Electronic circuits find applications in many areas, such as automa
tion, broadcasting, computers, and instrumentation. The range of devices
that use electronic circuits is enormous and is limited only by our imag-
ination. Radio, television, computers, and stereo systems are but a few.

An electrical engineer usualy performs diverse functionsand islikely
to use, design, or construct systems that incorporate some form of elec-
tronic circuits. Therefore, an understanding of the operation and analysis
of electronics is essential to the electrical engineer. Electronics has
become a speciaty distinct from other disciplines within electrical engi-
neering. Because the field of electronics is ever advancing, an electronics
engineer must update his’her knowledge from time to time. The best way
to do this is by being a member of a professional organization such as
the Ingtitute of Electrical and Electronics Engineers (IEEE). With a mem-
bership of over 300,000, the |EEE is the largest professional organization
in the world. Members benefit immensely from the numerous magazines,
journas, transactions, and conference/symposium proceedings published
yearly by IEEE. You should consider becoming an IEEE member.

‘\- A
Troubleshooting an electronic circuit
board.
© BrandX Pictures/Punchstock
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I Nodal analysis is also known as the
node-voltage method.

Chapter 3 Methods of Analysis

3.1 Introduction

Having understood the fundamental laws of circuit theory (Ohm’s law
and Kirchhoff’s laws), we are now prepared to apply these laws to
develop two powerful techniques for circuit analysis: nodal analysis,
which is based on a systematic application of Kirchhoff’s current law
(KCL), and mesh analysis, which is based on a systematic application
of Kirchhoff’s voltage law (KVL). The two techniques are so impor-
tant that this chapter should be regarded as the most important in the
book. Students are therefore encouraged to pay careful attention.

With the two techniques to be developed in this chapter, we can ana-
lyze any linear circuit by obtaining a set of simultaneous equations that
are then solved to obtain the required values of current or voltage. One
method of solving simultaneous equations involves Cramer’s rule, which
allows us to calculate circuit variables as a quotient of determinants. The
examples in the chapter will illustrate this method; Appendix A also
briefly summarizes the essentials the reader needs to know for applying
Cramer’s rule. Another method of solving simultaneous equations is to
use MATLAB, a computer software discussed in Appendix E.

Also in this chapter, we introduce the use of PSpice for Windows,
a circuit simulation computer software program that we will use
throughout the text. Finally, we apply the techniques learned in this
chapter to analyze transistor circuits.

3.2 Nodal Analysis

Nodal analysis provides a general procedure for analyzing circuits
using node voltages as the circuit variables. Choosing node voltages
instead of element voltages as circuit variables is convenient and
reduces the number of equations one must solve simultaneously.

To simplify matters, we shall assume in this section that circuits
do not contain voltage sources. Circuits that contain voltage sources
will be analyzed in the next section.

In nodal analysis, we are interested in finding the node voltages.
Given a circuit with n nodes without voltage sources, the noda analy-
sis of the circuit involves taking the following three steps.

Steps to Determine Node Voltages:

1. Select a node as the reference node. Assign voltages v,
Us, ..., Un_1 to the remaining n — 1 nodes. The voltages are
referenced with respect to the reference node.

2. Apply KCL to each of the n — 1 nonreference nodes. Use
Ohm'’s law to express the branch currents in terms of node
voltages.

3. Solve the resulting simultaneous equations to obtain the
unknown node voltages.

We shall now explain and apply these three steps.
The first step in nodal analysis is selecting a node as the reference
or datum node. The reference node is commonly called the ground
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since it is assumed to have zero potential. A reference node is indicated
by any of the three symbolsin Fig. 3.1. The type of ground in Fig. 3.1(c)
is called a chassis ground and is used in devices where the case, enclo-
sure, or chassis acts as a reference point for al circuits. When the
potential of the earth is used as reference, we use the earth ground in
Fig. 3.1(a) or (b). We shall aways use the symbol in Fig. 3.1(b).

Once we have selected a reference node, we assign voltage desig-
nations to nonreference nodes. Consider, for example, the circuit in
Fig. 3.2(a). Node O is the reference node (v = 0), while nodes 1 and
2 are assigned voltages v, and v, respectively. Keep in mind that the
node voltages are defined with respect to the reference node. As illus-
trated in Fig. 3.2(a), each node voltage is the voltage rise from the ref-
erence node to the corresponding nonreference node or simply the
voltage of that node with respect to the reference node.

As the second step, we apply KCL to each nonreference node in
the circuit. To avoid putting too much information on the same circuit,
the circuit in Fig. 3.2(a) is redrawn in Fig. 3.2(b), where we now add
i1, 12, and i3 as the currents through resistors Ry, Ry, and R, respec-
tively. At node 1, applying KCL gives

|1: |2+i1+i2 (31)
At node 2,
|2 + i2 = i3 (32)

We now apply Ohm'’s law to express the unknown currents i4, i, and
i3 in terms of node voltages. The key idea to bear in mind is that, since
resistance is a passive element, by the passive sign convention, current
must always flow from a higher potential to a lower potential.

Current flows from a higher potential to a lower potential in a resistor.

We can express this principle as

. Unigher — Ulower
i = — R (3.3)

Note that this principle is in agreement with the way we defined resist-
ance in Chapter 2 (see Fig. 2.1). With this in mind, we obtain from
Fig. 3.2(b),

. U1 — 0 .
I, = Rl or 11 = G]_U]_
. U, — 0V .
ip = 1?2 or iy =Gy(vy — V) (3.4)
2
. Uo — 0 .
I3 = R or I3 = vaz
3

Substituting Eq. (3.4) in Egs. (3.1) and (3.2) results, respectively, in

U1 U1 — U2
|1 - |2 + — +
Ry Ry
U1 — U2 U2

I, + +—2=22 :
= 36)

(35)
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The number of nonreference nodes is
equal to the number of independent
equations that we will derive.

R -

@ (b) (©
Figure 3.1
Common symbolsfor indicating a
reference node, (@) common ground,
(b) ground, (c) chassis ground.

Figure 3.2
Typical circuit for nodal analysis.
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I Appendix A discusses how to use
Cramer’s rule.

Chapter 3 Methods of Analysis

In terms of the conductances, Egs. (3.5) and (3.6) become
|1 = |2 + G]_Ul + G2(U1 - U2) (37)
l2 + Ga(vy — v2) = Gavy (3.8)

The third step in nodal analysis is to solve for the node voltages.
If we apply KCL to n — 1 nonreference nodes, we obtain n — 1 simul-
taneous equations such as Egs. (3.5) and (3.6) or (3.7) and (3.8). For
the circuit of Fig. 3.2, we solve Egs. (3.5) and (3.6) or (3.7) and (3.8)
to obtain the node voltages v, and v, using any standard method, such
as the substitution method, the elimination method, Cramer’s rule, or
matrix inversion. To use either of the last two methods, one must cast
the simultaneous equations in matrix form. For example, Egs. (3.7) and
(3.8) can be cast in matrix form as

Gl + GZ _GZ :| |:l)1:| o |:|1 - |2:|
_G2 GZ + Gg Uo B |2 (39)

which can be solved to get v, and v,. Equation 3.9 will be generalized
in Section 3.6. The simultaneous equations may also be solved using
calculators or with software packages such as MATLAB, Mathcad,
Maple, and Quattro Pro.

Example 3.1

ZQ% 6Q§ 10A

5A

o\

ZJ
*'1:5 fi1=5
i i,=10
—2> 4Q vy 44—

! MWW

(b)
Figure 3.3
For Example 3.1: (a) original circuit,
(b) circuit for analysis.

Calculate the node voltages in the circuit shown in Fig. 3.3(a).

Solution:

Consider Fig. 3.3(b), where the circuit in Fig. 3.3(a) has been prepared
for nodal analysis. Notice how the currents are selected for the
application of KCL. Except for the branches with current sources, the
labeling of the currents is arbitrary but consistent. (By consistent, we
mean that if, for example, we assume that i, enters the 4-() resistor
from the left-hand side, i, must leave the resistor from the right-hand
side.) The reference node is selected, and the node voltages v, and v,
are now to be determined.

At node 1, applying KCL and Ohm’s law gives
=iy = 5=”14”2+"12 0

Multiplying each term in the last equation by 4, we obtain

20=v, —vy,+ 2v4

or
3U1 — Uy = 20 (311)
At node 2, we do the same thing and get
- -0
b+is=i +i5 = 01402+10:5+U2

Multiplying each term by 12 results in
3v, — 3v, + 120 = 60 + 2v,
or

—3v; + 50, = 60 (3.1.2)
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Now we have two simultaneous Egs. (3.1.1) and (3.1.2). We can solve
the equations using any method and obtain the values of v, and v,.

B METHOD 1 Using the elimination technique, we add Egs. (3.1.1)
and (3.1.2).

41)2 =80 = Up = 20V
Substituting v, = 20 in Eq. (3.1.1) gives

40
W-20=20 = v=- =13338Y

B METHOD 2 To use Cramer’s rule, we need to put Egs. (3.1.1)
and (3.1.2) in matrix form as

3 -1||v; 20
= 3.1.3
3 sl 1) 619
The determinant of the matrix is
3 -1
A= =15-3=12
2

We now obtain v, and v, as

‘20 —1‘
A, |60 5| 100+ 60
= S1 - = 13333V
V1T A A 12
‘ 3 20‘
A, |-3 60| 180+ 60
=2 _ = = 20V

Y27 ) A 12

giving us the same result as did the elimination method.

If we need the currents, we can easily calculate them from the
values of the nodal voltages.
U1 — U _

L=5A, o=t = ~16668A, i3=%26.666A

. . Uo
4= 10A, 5= =33BA

The fact that i, is negative shows that the current flows in the direction
opposite to the one assumed.

85

Obtain the node voltages in the circuit of Fig. 3.4.

Answer: v, = —2V,v, = —14 V.

Practice Problem 3.1

1 6Q

2

MWW

A 20

7Q

@) 2A

L

Figure 3.4
For Practice Prob. 3.1.
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Example 3.2

Determine the voltages at the nodes in Fig. 3.5(a).

Solution:

The circuit in this example has three nonreference nodes, unlike the pre-
vious example which has two nonreference nodes. We assign voltages
to the three nodes as shown in Fig. 3.5(b) and label the currents.

4Q 4Q
AMA M
. i : : i
M 2 b 20 b,y 2 80 2 i
1 A AW 3 n AM—— AMA v
sat| i, i | }is
3A CD §4§2 P 2 3A D §4Q v 2
0
(@ (b)

Figure 3.5

For Example 3.2: (a) original circuit, (b) circuit for analysis.

At node 1,
U1 — U3 U1 — U2
4 2

3=i,+iy, = 3=

Multiplying by 4 and rearranging terms, we get

3U1 - 2U2 — U3z = 12 (321)
At node 2,
. . . U1 — U2 Up — U3 02_0
=i, + = +
ix =1+ i3 = > 8 2
Multiplying by 8 and rearranging terms, we get
—4u, + Tv, —v3=0 (3.2.2)

At node 3,

01_03+02_03:2(01_U2)
4 8 2

ip+i=2 =

Multiplying by 8, rearranging terms, and dividing by 3, we get
21)1 - 3U2 + vz = 0 (323)

We have three simultaneous equations to solve to get the node voltages
U1, Uy, and vs. We shall solve the equations in three ways.

B METHOD 1 Using the limination technique, we add Egs. (3.2.1)
and (3.2.3).
5Ul - 51)2 =12
or
12
U1 — Uy = E =24 (324)
Adding Egs. (3.2.2) and (3.2.3) gives
_201 + 41)2 =0 = U1 — 2U2 (325)
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Substituting Eq. (3.2.5) into Eq. (3.2.4) yields
20, — V=24 = vy = 2.4, v = 20, = 48V
From Eg. (3.2.3), we get
U3 =3Up — 201 = 30y — 4vp = —vp = —24V
Thus,
v, = 4.8V, v, =24V, vy = —24V

B METHOD 2 To use Cramer’s rule, we put Egs. (3.2.1) to (3.2.3)
in matrix form.

3 -2 —-1||v; 12
-4 7 =1||ve,|=1| 0 (3.2.6)
2 -3 1] |vs 0
From this, we obtain
Aq As Az
Ulzfy Usza USZX

where A, A4, A,, and Az are the determinants to be calculated as
follows. As explained in Appendix A, to calculate the determinant of
a 3 by 3 matrix, we repeat the first two rows and cross multiply.

3 -2 -1
A=|-4 7 -1|=
2 -3 1

=21-12+4+14-9-8=10
Similarly, we obtain

A = =84+0+0-0—-36—-0=48

=0+0-24-0-0+48=24

Ay = —0+144+0—-168—0—0=—24

87
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Thus, we find
A, 48 A, 24
=—==-—=48V, =-—=—=24V
LA T 10 274 T 10
Ay  —24
=—==_""=_24vVv
TN T 10

as we obtained with Method 1.
B METHOD 3 We now use MATLAB to solve the matrix. Equa-
tion (3.2.6) can be written as

AV=B = V=AB

where A is the 3 by 3 square matrix, B is the column vector, and V is
a column vector comprised of v4, v,, and v that we want to determine.
We use MATLAB to determine V as follows:

>A=[3 -2 -1, -4 7 -1, 2 -3 1

>>B =1[12 0 Q];
>>V = inv(A) » B
4.8000
V = 24000
—2.4000

Thus, v, = 48V,v, = 24V, andv; = —2.4V, asobtained previoudly.

Practice Problem 3.2

2Q
MWW
4
3Q 2 X
1 AN -~

10A CD §4Q

Figure 3.6
For Practice Prob. 3.2.

Find the voltages at the three nonreference nodes in the circuit of
Fig. 3.6.

Answer: vy = 80V, v, = —64V,v3 = 156 V.

3.3 Nodal Analysis with Voltage Sources

We now consider how voltage sources affect nodal analysis. We use the
circuit in Fig. 3.7 for illustration. Consider the following two possibilities.

B CASE 1 If avoltage source is connected between the reference
node and a nonreference node, we simply set the voltage at the non-
reference node equal to the voltage of the voltage source. In Fig. 3.7,
for example,

vy =10V (3.10)

Thus, our analysis is somewhat simplified by this knowledge of the volt-
age at this node.

B CASE 2 If the voltage source (dependent or independent) is con-
nected between two nonreference nodes, the two nonreference nodes
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Figure 3.7
A circuit with a supernode.

form a generalized node or supernode; we apply both KCL and KVL
to determine the node voltages.

A supernode is formed by enclosing a (dependent or independent)
voltage source connected between two nonreference nodes and any
elements connected in parallel with it.

In Fig. 3.7, nodes 2 and 3 form a supernode. (We could have more
than two nodes forming a single supernode. For example, see the cir-
cuit in Fig. 3.14.) We analyze a circuit with supernodes using the
same three steps mentioned in the previous section except that the
supernodes are treated differently. Why? Because an essential com-
ponent of nodal analysis is applying KCL, which requires knowing
the current through each element. There is no way of knowing the
current through a voltage source in advance. However, KCL must
be satisfied at a supernode like any other node. Hence, at the super-
node in Fig. 3.7,

or

U1 — Uy U1 — U3 1)2—0 03_0
+ = + 3.11b
2 4 8 6 ( )

To apply Kirchhoff’s voltage law to the supernode in Fig. 3.7, we
redraw the circuit as shown in Fig. 3.8. Going around the loop in the
clockwise direction gives

_U2+5+U3:O = U2_U3:5 (312)

From Egs. (3.10), (3.11b), and (3.12), we obtain the node voltages.
Note the following properties of a supernode:

1. The voltage source inside the supernode provides a constraint
equation needed to solve for the node voltages.

2. A supernode has no voltage of its own.

3. A supernode requires the application of both KCL and KVL.
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A supernode may be regarded as a
closed surface enclosing the voltage
source and its two nodes.

Figure 3.8
Applying KVL to a supernode.
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Example 3.3 For the circuit shown in Fig. 3.9, find the node voltages.
100 Solution:
VW The supernode contains the 2-V source, nodes 1 and 2, and the 10-()
” 2V vy resistor. Applying KCL to the supernode as shown in Fig. 3.10(a) gives
)
N4 2=iy+i,+7
2A CD 20 40 CD 7A  Expressing i, and i, in terms of the node voltages
2=t =0, =0 g oyt 28
Figure 3.9 or
For Example 3.3.
Up = —20 — 21)1 (331)
To get the relationship between v, and v,, we apply KVL to the circuit
in Fig. 3.10(b). Going around the loop, we obtain
—U1 — 2+ Up = 0 = Up = Uq + 2 (332)
From Egs. (3.3.1) and (3.3.2), we write
vy =v; +2=-20— 2v,
or
v, = —22 = v, = —7.333V
and v, = v; + 2 = —5.333V. Note that the 10-() resistor does not
make any difference because it is connected across the supernode.
1, n 200 2V
— . R 1. 2
2A l'l l'z 2 N T@f ”””
2AG> gzg 4Q§ CD?A " q L
T e
= (b)
@
Figure 3.10
Applying: (a) KCL to the supernode, (b) KVL to the loop.
Practice Problem 3.3 Find v and i in the circuit of Fig. 3.11.
40 v Answer: —0.6V, 4.2 A.
D '
NS i
+
21V 3Q § v 2Q § 6Q

Figure 3.11
For Practice Prob. 3.3.
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Find the node voltages in the circuit of Fig. 3.12.

Figure 3.12
For Example 3.4.

Solution:

30
AW
______ L' B
- A
) 20V > 60 3 &%
1 . W >
29§ 10A §4Q
T

Nodes 1 and 2 form a supernode; so do nodes 3 and 4. We apply KCL
to the two supernodes as in Fig. 3.13(a). At supernode 1-2,

i3 + 10 = il + i2
Expressing this in terms of the node voltages,

U3z — Uy U1 — Uy U1
Btz Pt
6 3 2

or

Example 3.4

5U1 + vy, —v3 — 2U4 =60 (341)
At supernode 3-4,
Vg — U Uz — U 1% v
iy =ig+is+is = 134:362+T4 Z3
or
4Ul + 2U2 - 5U3 - 161)4 =0 (342)
3Q
30
W s
Z/x -
f'_l _____ "1 @
ST Ty, 8O O 20V is 3i
[\\l 77777777 ! 4—/\NW<— T 1‘/4' m - A A
1.7 i3 i3 \~~'.“'__ . + u + 60 L+ +
*lz *'5 ¢|4 ' !
2Q§ (1) 10A §4Q §19 ” ”

Figure 3.13

Applying: (8) KCL to the two supernodes, (b) KVL to the loops.
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We now apply KVL to the branches involving the voltage sources as
shown in Fig. 3.13(b). For loop 1,
v, +20+v,=0 = v, — Uy =20 (34.3)
For loop 2,
—v3+ 3, +v,=0
But vy = v; — v4 SO that
v, —v3— 20,=0 (3.4.9)
For loop 3,
Uy — 3uy + 6i3 — 20 =0
But 6i5 = v3 — v, and vy, = v, — V4. Hence,
—2v1 — Uy + U3+ 20, =20 (3.4.5)

We need four node voltages, v4, v,, U3, and vy, and it requires only
four out of the five Egs. (3.4.1) to (3.4.5) to find them. Although the fifth
equation is redundant, it can be used to check results. We can solve
Egs. (3.4.1) to (3.4.4) directly using MATLAB. We can eliminate one
node voltage so that we solve three simultaneous equations instead of
four. From Eq. (3.4.3), v, = v, — 20. Substituting thisinto Egs. (3.4.1)
and (3.4.2), respectively, gives

6v, — vz — 2v4 = 80 (3.4.6)
and
6v, — 5v3 — 16v, = 40 (34.7)
Equations (3.4.4), (3.4.6), and (3.4.7) can be cast in matrix form as

3 -1 -21[u, 0
6 -1 -2||vs| =180
6 -5 —16] v, 40

Using Cramer’s rule gives

3 -1 -2 0 -1 -2
A=|6 -1 -—-2|=-18 A; =80 -1 -—2|= —480,
6 -5 —16 40 -5 -16
3 0 -2 3 -1 0
Az =16 80 —2|= —3120, A,=16 —1 80| =840
6 40 -—16 6 -5 40

Thus, we arrive at the node voltages as

Aq —480 Aj —3120
= = —2867V =— = = 173.33V
U A 18 6.67V, U3 A 18 3.33V,
Ay 840
=—=——= —46.67V
4T A T 18

and v, = v, — 20 = 6.667 V. We have not used Eq. (3.4.5); it can be
used to cross check results.
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Find v4, vy, and v3 in the circuit of Fig. 3.14 using nodal analysis.

Answer: v, = 3.043V, v, = —6.956V, v3 = 0.6522 V.

3.4 Mesh Analysis

Mesh analysis provides another general procedure for analyzing cir-
cuits, using mesh currents as the circuit variables. Using mesh currents
instead of element currents as circuit variables is convenient and
reduces the number of equations that must be solved simultaneously.
Recall that aloop is a closed path with no node passed more than once.
A mesh is a loop that does not contain any other loop within it.

Nodal analysis applies KCL to find unknown voltages in a given
circuit, while mesh analysis applies KVL to find unknown currents.
Mesh analysis is not quite as general as nodal analysis because it is
only applicable to a circuit that is planar. A planar circuit is one that
can be drawn in a plane with no branches crossing one another; oth-
erwise it is nonplanar. A circuit may have crossing branches and till
be planar if it can be redrawn such that it has no crossing branches.
For example, the circuit in Fig. 3.15(a) has two crossing branches, but
it can be redrawn as in Fig. 3.15(b). Hence, the circuit in Fig. 3.15(a)
is planar. However, the circuit in Fig. 3.16 is nonplanar, because there
is no way to redraw it and avoid the branches crossing. Nonplanar cir-
cuits can be handled using nodal analysis, but they will not be con-
sidered in this text.

1Q
MWW
5Q
4Q§ 7Q §2Q
6Q
4%%%% 3Q
130 MV
5A 12Q §QQ
G> § 11Q 8Q
4%%%%
10Q

Figure 3.16
A nonplanar circuit.

To understand mesh analysis, we should first explain more about
what we mean by a mesh.

A mesh is a loop which does not contain any other loops within it.

Practice Problem 3.4

6Q
A
v 5i
2
1 &) — + v3
*i N\

§4Q

230

Figure 3.14
For Practice Prob. 3.4.

| Mesh analysis is also known as loop
analysis or the mesh-current method.

4Q

8Q 7Q

1Q§ 3Q§

4Q
59§ AAMY
m%

Figure 3.15

(&) A planar circuit with crossing branches,
(b) the same circuit redrawn with no cross-
ing branches.

§GQ

(b)
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Although path abcdefa is a loop and

I not a mesh, KVL still holds. This is the
reason for loosely using the terms
loop analysis and mesh analysis to
mean the same thing.

I The direction of the mesh current is

arbitrary—(clockwise or counterclock-
wise)—and does not affect the validity
of the solution.

I The shortcut way will not apply if one

mesh current is assumed clockwise
and the other assumed counter-
clockwise, although this is permissible.

Chapter 3 Methods of Analysis

Iy R P R,
— —
MV

w@ W e ™) o

f e d

Figure 3.17
A circuit with two meshes.

In Fig. 3.17, for example, paths abefa and bcdeb are meshes, but path
abcdefa is not a mesh. The current through a mesh is known as mesh
current. In mesh analysis, we are interested in applying KVL to find
the mesh currents in a given circuit.

In this section, we will apply mesh analysis to planar circuits that
do not contain current sources. In the next section, we will consider
circuits with current sources. In the mesh analysis of a circuit with n
meshes, we take the following three steps.

Steps to Determine Mesh Currents:

1. Assign mesh currents iy, i, ..., i, to the n meshes.

2. Apply KVL to each of the n meshes. Use Ohm's law to
express the voltages in terms of the mesh currents.

3. Solve the resulting n simultaneous equations to get the mesh
currents.

To illustrate the steps, consider the circuit in Fig. 3.17. The first
step requires that mesh currentsi; and i, are assigned to meshes 1 and
2. Although a mesh current may be assigned to each mesh in an arbi-
trary direction, it is conventional to assume that each mesh current
flows clockwise.

As the second step, we apply KVL to each mesh. Applying KVL
to mesh 1, we obtain

_Vl + Rlil + R3(i1 - |2) =0

or
(Ry + Ry)is — Rein = Vy (3.13)
For mesh 2, applying KVL gives
Roiz + Vo + Ra(i, —ip) = 0
or
—Rsip + (R, + Ry)i, = =V (3.19)

Note in Eq. (3.13) that the coefficient of i, is the sum of the resistances
in the first mesh, while the coefficient of i, is the negative of the resis-
tance common to meshes 1 and 2. Now observe that the same is true
in Eg. (3.14). This can serve as a shortcut way of writing the mesh
equations. We will exploit this idea in Section 3.6.
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The third step is to solve for the mesh currents. Putting Egs. (3.13)
and (3.14) in matrix form yields

it R TR } {'1} = { Vl} (3.15)
_R3 Rz + R3 |2 _V2

which can be solved to obtain the mesh currents i; and i,. We are at
liberty to use any technique for solving the simultaneous equations.
According to Eq. (2.12), if acircuit has n nodes, b branches, and | inde-
pendent loops or meshes, then | = b — n + 1. Hence, | independent
simultaneous equations are required to solve the circuit using mesh
analysis.

Notice that the branch currents are different from the mesh cur-
rents unless the mesh is isolated. To distinguish between the two types
of currents, we use i for amesh current and | for a branch current. The
current elements 14, |,, and |3 are algebraic sums of the mesh currents.
It is evident from Fig. 3.17 that

|1: il, |2: i2, |3: il_ i2 (316)
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For the circuit in Fig. 3.18, find the branch currents 14, I, and |5 using
mesh analysis.

Solution:
We first obtain the mesh currents using KVL. For mesh 1,
—15 + 5i; + 10(i;y — i) +10=10
or
3;-2i,=1 (35.1)
For mesh 2,
6i, + 4i, + 10(i, — i) —10= 0
or
i1 =2,—-1 (35.2)

B METHOD 1 Using the substitution method, we substitute
Eg. (3.5.2) into Eq. (3.5.1), and write

From Eq. (35.2),i1 =2, —1=2—-1=1A. Thus,
Il:il:lA, |2:i2:1A, |3:i1_i2:0

B METHOD 2 To use Cramer’s rule, we cast Egs. (3.5.1) and
(3.5.2) in matrix form as

Eani N

I
150

Example 3.5

I
2 6Q

'A%

1sv (5) @

e
@ §4Q

0V

Figure 3.18
For Example 3.5.
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We obtain the determinants
3 -2

A= =6—-2=4
2
1 -2 31
= =24+ 2= = =34+ 1=
Ay ‘1 2‘ 2+ 2 =4, A, ‘_11‘ 3+1=4
Thus,
Ay A,
=—=1A =—=1A
1 A ) 12 A
as before.

Practice Problem 3.5

2Q 9Q

M
: 120
v () @ Q 24V
2

MW
4Q 3Q

Figure 3.19
For Practice Prob. 3.5.

Calculate the mesh currents i; and i, of the circuit of Fig. 3.19.

Answer: i; = 2A, i, = 0A.

Example 3.6

2av (%) @

12Q

Figure 3.20
For Example 3.6.

Use mesh analysis to find the current |, in the circuit of Fig. 3.20.

Solution:
We apply KVL to the three meshes in turn. For mesh 1,

—24 + 10(i; — ip) + 12(i, —ig) =0

or
11i; — 5i, — 6iz = 12 (3.6.1)
For mesh 2,
24i, + 4(i, — iz) + 10(i, — i) =0
or
—5iy + 19, — 2i3=0 (3.6.2)
For mesh 3,

Ay + 12(i5 — iy) + 4(5 —ix) = O
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But at node A, I, = i; — iy, SO that
4@, — ip) + 12(i3 —iy) + 4z — i) =0
or
—ip— i, +2i3=0 (3.6.3)
In matrix form, Egs. (3.6.1) to (3.6.3) become

11 -5 —67][i, 12
-5 19 —2||i,|=] 0

We obtain the determinants as

A =
A=
A, = =24 + 120 = 144
Ag = = 60 + 228 = 288
- +
- 19 +
- +

We calculate the mesh currents using Cramer’s rule as

A, 432 A, 144
_ 21 _ % 505 _ S22 o75A
1T T e SAL 2= =g, T OBA,
As 288
83 _29_ g5
STOA 12

97
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Practice Problem 3.6

6Q
AN
is
o e () oo
WM\ AN

20v (%) @ 29@ 7> 10,

Figure 3.21
For Practice Prob. 3.6.

40 30
WA
10V @ 60 @ #DSA

Figure 3.22
A circuit with a current source.

Using mesh analysis, find I, in the circuit of Fig. 3.21.

Answer: —5 A.

35 Mesh Analysis with Current Sources

Applying mesh analysis to circuits containing current sources (dependent
or independent) may appear complicated. But it is actually much easier
than what we encountered in the previous section, because the presence
of the current sources reduces the number of equations. Consider the
following two possible cases.

Bl CASE 1 When acurrent source exists only in one mesh: Consider
the circuit in Fig. 3.22, for example. We set i, = —5 A and write a
mesh equation for the other mesh in the usual way; that is,

—10 + 4i, + 6(i4 — i) =0 = ii=—-2A (317
B CASE 2 When acurrent source exists between two meshes; Con-
sider the circuit in Fig. 3.23(a), for example. We create a supermesh

by excluding the current source and any elements connected in series
with it, as shown in Fig. 3.23(b). Thus,

A supermesh results when two meshes have a (dependent or inde-
pendent) current source in common.

10Q

Q

VII 2
20V D @ f
v BA

\
\
\
'
'
'
1
'
'
'
i
I
'
i

"
’
,

MWW

@ §4Q 20v (5) @ @ §4Q

—~at

I

Figure 3.23

A ’
.0 .-

@

~t
|

Exclude these (b)
elements

(a) Two meshes having a current source in common, (b) a supermesh, created by excluding the current

source.

As shown in Fig. 3.23(b), we create a supermesh as the periphery of
the two meshes and treat it differently. (If a circuit has two or more
supermeshes that intersect, they should be combined to form a larger
supermesh.) Why treat the supermesh differently? Because mesh analy-
sis applies KVL—which requires that we know the voltage across each
branch—and we do not know the voltage across a current source in
advance. However, a supermesh must satisfy KVL like any other mesh.
Therefore, applying KVL to the supermesh in Fig. 3.23(b) gives

—20 + 6iy + 10i, + 4i, = 0
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or
6i, + 14i, = 20 (3.18)

We apply KCL to a node in the branch where the two meshes inter-
sect. Applying KCL to node 0 in Fig. 3.23(a) gives

i, =i, +6 (3.19)
Solving Egs. (3.18) and (3.19), we get
ip = —3.2A, i, =28A (3.20)

Note the following properties of a supermesh:

1. The current source in the supermesh provides the constraint equa-
tion necessary to solve for the mesh currents.

2. A supermesh has no current of its own.

3. A supermesh requires the application of both KVL and KCL.
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For the circuit in Fig. 3.24, find i, to i, using mesh analysis.

,,,,,,,,,,,,,

Figure 3.24
For Example 3.7.

Solution:

Note that meshes 1 and 2 form a supermesh since they have an
independent current source in common. Also, meshes 2 and 3 form
another supermesh because they have a dependent current source in
common. The two supermeshes intersect and form a larger supermesh
as shown. Applying KVL to the larger supermesh,

2y + 4diz + 8(iz —iy) +6i, =0
or
i + 3ip + 6i3 — 4i, =0 (3.7.1)
For the independent current source, we apply KCL to node P:
i,=1i,+5 (3.7.2)
For the dependent current source, we apply KCL to node Q:

i2: |3+3|0

Example 3.7
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But I, = —i4, hence,
i, =13 — 3i4 (3.7.3)
Applying KVL in mesh 4,
2, + 8(is —iz) +10=0

or

5i, — 4i3 = =5 (3.7.4)
From Egs. (3.7.1) to (3.7.4),

ip = —75A, ir = —25A, iz = 3.93A, iy = 2143A

Practice Problem 3.7

2Q @ 2Q
w® () ) o

@ 8Q
1Q
Figure 3.25

For Practice Prob. 3.7.

w® (W) in () O

(b)

Figure 3.26
(a) Thecircuit in Fig. 3.2, (b) the circuit
inFig. 3.17.

Use mesh analysis to determine i, i», and iz in Fig. 3.25.

Answer: i, = 3474 A,i, = 04737 A, i; = 1.1052 A.

3.6 TNodal and Mesh Analyses

by Inspection

This section presents a generalized procedure for nodal or mesh analy-
sis. It is a shortcut approach based on mere inspection of a circuit.
When all sources in a circuit are independent current sources, we
do not need to apply KCL to each node to obtain the node-voltage
equations as we did in Section 3.2. We can obtain the equations by
mere inspection of the circuit. As an example, let us reexamine the cir-
cuit in Fig. 3.2, shown again in Fig. 3.26(a) for convenience. The
circuit has two nonreference nodes and the node equations were

2 3 2 |2

G, + G,
-G,

Observe that each of the diagonal terms is the sum of the conductances
connected directly to node 1 or 2, while the off-diagonal terms are the
negatives of the conductances connected between the nodes. Also, each
term on the right-hand side of Eq. (3.21) is the algebraic sum of the
currents entering the node.

In generd, if acircuit with independent current sources has N non-
reference nodes, the node-voltage equations can be written in terms of
the conductances as

(3.21)

G Gi Gin U1 i
G.21 G.22 G.ZN U2 | _ i? (3.22)
Gni Gne Gnn UN in



3.6 Nodal and Mesh Analyses by Inspection

or simply
Gv =i (3.23)
where

G = Sum of the conductances connected to node k

Gy = Gjk = Negative of the sum of the conductances directly
connecting nodes k and j, k # j

vk = Unknown voltage at node k

i, = Sum of al independent current sources directly connected
to node k, with currents entering the node treated as positive

G is called the conductance matrix; v is the output vector; and i is the
input vector. Equation (3.22) can be solved to obtain the unknown node
voltages. Keep in mind that this is valid for circuits with only inde-
pendent current sources and linear resistors.

Similarly, we can obtain mesh-current equations by inspection
when a linear resistive circuit has only independent voltage sources.
Consider the circuit in Fig. 3.17, shown again in Fig. 3.26(b) for con-
venience. The circuit has two nonreference nodes and the node equa-
tions were derived in Section 3.4 as

Rit R —Rs } H - { ”1} (3.24)

_R3 RZ + R3 |2 _U2

We notice that each of the diagonal terms is the sum of the resistances
in the related mesh, while each of the off-diagonal terms is the nega
tive of the resistance common to meshes 1 and 2. Each term on the
right-hand side of Eq. (3.24) is the algebraic sum taken clockwise of
all independent voltage sources in the related mesh.

In general, if the circuit has N meshes, the mesh-current equations
can be expressed in terms of the resistances as

Ryp Ro ... RynlT[i; vy
Roo Rz oo Rl 02 (3.25)
Ru Rwe -~ Rw in UN
or simply
Ri =v (3.26)
where

R« = Sum of the resistances in mesh k
Ry = Rk = Negative of the sum of the resistances in common
with meshes k and j, k # |
i, = Unknown mesh current for mesh k in the clockwise direction

v = Sum taken clockwise of all independent voltage sources in
mesh k, with voltage rise treated as positive

R is called the resistance matrix; i is the output vector; and v is
the input vector. We can solve Eq. (3.25) to obtain the unknown mesh
currents.

101
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Example 3.8

Write the node-voltage matrix equations for the circuit in Fig. 3.27 by
inspection.

n 5Q v 8Q w3 8Q vy

AN ANV ANV
3a () we  (§)1A %m 29% @) 2a
+

Figure 3.27
For Example 3.8.

Solution:

The circuit in Fig. 3.27 has four nonreference nodes, so we need four
node equations. This implies that the size of the conductance matrix
G, is4 by 4. The diagonal terms of G, in siemens, are

1 1 1 1 1
=—+—==0. =—+—-+-=1
G ST 0.3, Goo stgt1 1.325
1 1 1 1 1 1
=_-+ -+ .9, =—+ -+ =1
Gas ststa 05 G s t517 1.625
The off-diagonal terms are
1
G = _g = =02, Giz3=Gu=0
1 1
GZl = _02, 623 = _g = _0125, G24 = _I =-1

1
G31 = O, ng = _0125, G34 = _g = —0.125
G4l = O, G42 = _1, G43 = —0.125
The input current vector i has the following terms, in amperes:
i1=3, |2=_1_2=_3, i3=0, |4=2+4=6

Thus the node-voltage equations are

03 -02 0 0 U1 3
-02 1325 -0125 -1 v | | -3
0 -0125 05 —0125||ws| | O
0o -1 -0125 1625 | | v, 6

which can be solved using MATLAB to aobtain the node voltages v, v,
U3, and Ug.
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By inspection, obtain the node-voltage equations for the circuit in Practice Problem 3.8
Fig. 3.28.
1Q vy 4Q oy
MWV
Answer:
13 -02 -1 0 v, 0 co 1A
-0.2 0.2 0 0 Uo _ 3 121 vo § 20 C*) 3A
-1 0 1.25 —-0.25 U3 -1
0 0 -025 075]|v, 3 100 2A
L

Figure 3.28

For Practice Prob. 3.8.

Example 3.9

By inspection, write the mesh-current equations for the circuit in Fig. 3.29.

50
A
o
20 4v 2Q
AW ¢ Wy
20
i
@ 4Q§ gsg
10V .
10 10 @
A
+
) 12v
40 @ 30 @ C‘Dev C

Figure 3.29
For Example 3.9.

Solution:
We have five meshes, so the resistance matrix is 5 by 5. The diagonal

terms, in ohms, are:
Rp=5+2+2=09, Rp=2+4+1+1+ 2=10,
Rizs=2+3+4=9, Ryu=1+3+4=8 Rs=1+3=4
The off-diagonal terms are:
R = =2, Riz = =2, Ris = 0 = Rys,
Ry = =2, Ros = —4, Ros = —1, Ros = —1,
Rap = =2, Raz = —4, Ras = 0 = Rss,
Riu = 0, Rp = —1, Riz = 0, Ris = =3,
R51:01 R52:_11 R53:01 R54:_3
The input voltage vector v has the following terms in volts:
v, = 4, v, =10 — 4 = 6,
Vg — 0, Ug = -6

vs=—12+ 6 = —6,
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Thus, the mesh-current equations are:

9 -2 -2 0 O0]|]|iy 4
-2 10 -4 -1 —-1]||i» 6
-2 -4 9 0 O0f]|ig|=]|—-6
0 -1 0 8 —3||ia 0
0 -1 0 -3 4]]lis -6
From this, we can use MATLAB to obtain mesh currents i, iy, is, i,

and is.

Practice Problem 3.9 By inspection, obtain the mesh-current equations for the circuit in

Fig. 3.30.
50 Q
A
400 3OQ§ ) 12v
ORED
: 100 200
v (5) @ AV AV
o | @
800 @ 10V 60 Q
Figure 3.30
For Practice Prob. 3.9.
Answer:
170 —40 0 —-80 0Of]iy 24
—-40 80 —-30 -—-10 0|]i, 0
0 —30 50 0 —20||isz|=|—12
-80 -10 0 90 O||ia 10
0 0 —20 0 80| |is -10
3.4 Nodal Versus Mesh Analysis

Both nodal and mesh analyses provide a systematic way of analyzing
a complex network. Someone may ask: Given a network to be ana-
lyzed, how do we know which method is better or more efficient? The
choice of the better method is dictated by two factors.
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The first factor is the nature of the particular network. Networks
that contain many series-connected elements, voltage sources, or super-
meshes are more suitable for mesh analysis, whereas networks with
parallel-connected elements, current sources, or supernodes are more
suitable for nodal analysis. Also, a circuit with fewer nodes than
meshes is better analyzed using nodal analysis, while a circuit with
fewer meshes than nodes is better analyzed using mesh analysis. The
key is to select the method that results in the smaller number of
equations.

The second factor is the information required. If node voltages are
required, it may be expedient to apply nodal analysis. If branch or mesh
currents are required, it may be better to use mesh analysis.

It is helpful to be familiar with both methods of analysis, for at
least two reasons. First, one method can be used to check the results
from the other method, if possible. Second, since each method has its
limitations, only one method may be suitable for a particular problem.
For example, mesh analysisis the only method to use in analyzing tran-
sistor circuits, as we shall see in Section 3.9. But mesh analysis can-
not easily be used to solve an op amp circuit, as we shall seein Chapter 5,
because there is no direct way to obtain the voltage across the op amp
itself. For nonplanar networks, nodal analysis is the only option,
because mesh analysis only applies to planar networks. Also, nodal
analysis is more amenable to solution by computer, asit is easy to pro-
gram. This allows one to analyze complicated circuits that defy hand
calculation. A computer software package based on nodal analysis is
introduced next.

3.8 Circuit Analysis with PSpice

PSpice is a computer software circuit analysis program that we will
gradually learn to use throughout the course of this text. This section
illustrates how to use PSpice for Windows to analyze the dc circuits we
have studied so far.

The reader is expected to review Sections D.1 through D.3 of
Appendix D before proceeding in this section. It should be noted that
PSpice is only helpful in determining branch voltages and currents
when the numerical values of al the circuit components are known.

I Appendix D provides a tutorial on

using PSpice for Windows.
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Use PSpice to find the node voltages in the circuit of Fig. 3.31.

Solution:

The first step is to draw the given circuit using Schematics. If one
follows the instructions given in Appendix sections D.2 and D.3, the
schematic in Fig. 3.32 is produced. Since thisis a dc analysis, we use
voltage source VDC and current source IDC. The pseudocomponent
VIEWPOINTS are added to display the required node voltages. Once
the circuit is drawn and saved as exam310.sch, we run PSpice by
selecting AnalysigSimulate. The circuit is simulated and the results

Example 3.10

1 200 , 10Q 3
MV
120V 30Q 400
0
Figure 3.31

For Example 3.10.

3A
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120.0000 Ry 812900 X R3 89.0320 5
———MWW————— AW
20 10
+ IDC
120V — VvV, R2 § 30 R4 § 40 11 3A

°

%
Figure 3.32
For Example 3.10; the schematic of the circuit in Fig. 3.31.

are displayed on VIEWPOINTS and also saved in output file
exam310.out. The output file includes the following:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 120.0000 (2) 81.2900 (3) 89.0320

indicating that V; = 120V, V, = 81.29V, V5 = 89.032 V.

Practice Problem 3.10

For the circuit in Fig. 3.33, use PSpice to find the node voltages.

2A 10Q 3
-~ MM

50Q (*) 200v

309§ §259

Figure 3.33
For Practice Prob. 3.10.

Answer: V, = —40V,V, = 57.14V,V3; = 200 V.

Example 3.11

In the circuit of Fig. 3.34, determine the currents iy, i, and is.

10
AV
40 2Q 3o
M
*il *iz *is
+
24V 20 § 8Q § 40 § %
Figure 3.34

For Example 3.11.
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Solution:

The schematic is shown in Fig. 3.35. (The schematic in Fig. 3.35
includes the output results, implying that it is the schematic displayed
on the screen after the simulation.) Notice that the voltage-controlled
voltage source E1 in Fig. 3.35 is connected so that its input is the
voltage across the 4-Q) resistor; its gain is set equal to 3. In order to
display the required currents, we insert pseudocomponent IPROBES in
the appropriate branches. The schematic is saved as exam311.sch and
simulated by selecting Analysis/Simulate. The results are displayed on
IPROBES as shown in Fig. 3.35 and saved in output file exam311.out.
From the output file or the IPROBES, we obtaini, = i, = 1.333 A and
iz = 2.667 A.

El [ B
— +
2 S
——MMNW———
R5
R1 1
AN
4 R6
+ R2Z 2 R3Z 8 R4 Z 4
24V — V4
1.333E + 00 1.333E+00 | 2.667E + 00
<o
Figure 3.35

The schematic of the circuit in Fig. 3.34.
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Use PSpice to determine currentsi4, i», and i in the circuit of Fig. 3.36.

Answer: i; = —0.4286 A, i, = 2286 A, iz = 2 A.

3.9 T Applications: DC Transistor Circuits

Most of us deal with electronic products on a routine basis and have
some experience with personal computers. A basic component for
the integrated circuits found in these electronics and computers is the
active, three-termina device known as the transistor. Understanding
the transistor is essential before an engineer can start an electronic cir-
cuit design.

Figure 3.37 depicts various kinds of transistors commercialy avail-
able. There are two basic types of transistors. bipolar junction transis-
tors (BJTs) and field-effect transistors (FETS). Here, we consider only
the BJTs, which were the first of the two and are still used today. Our
objective is to present enough detail about the BJT to enable us to apply
the techniques developed in this chapter to analyze dc transistor circuits.

Practice Problem 3.11

2Q

0V

Figure 3.36
For Practice Prob. 3.11.
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Historical
William Schockley (1910-1989), John Bardeen (1908-1991), and
Walter Brattain (1902-1987) co-invented the transistor.

Nothing has had a greater impact on the transition from the “Indus-
trial Age” to the “Age of the Engineer” than the transistor. | am sure
that Dr. Shockley, Dr. Bardeen, and Dr. Brattain had no idea they would
have this incredible effect on our history. While working at Bell Lab-
oratories, they successfully demonstrated the point-contact transistor,
invented by Bardeen and Brattain in 1947, and the junction transistor,
which Shockley conceived in 1948 and successfully produced in 1951.

fu It is interesting to note that the idea of the field-effect transistor,
b the most commonly used one today, was first conceived in 1925-1928
A by J. E. Lilienfeld, a German immigrant to the United States. This is
Courtesy of Lucent evident from his patents of what appears to be a field-effect transistor.
Technologies/Bell Labs Unfortunately, the technology to realize this device had to wait until
1954 when Shockley’s field-effect transistor became areality. Just think

what today would be like if we had this transistor 30 years earlier!

For their contributions to the creation of the transistor, Dr. Shockley,
Dr. Bardeen, and Dr. Brattain received, in 1956, the Nobel Prize in
physics. It should be noted that Dr. Bardeen is the only individual to
win two Nobel prizes in physics; the second came later for work in
superconductivity at the University of Illinois.

CoII((Ector c
n
Base o— P B
n
Emitter E
@
Collector Figure 3.37
¢ Various types of transistors.
T (Courtesy of Tech America.)
p
Base o— ' B There are two types of BJTs. npn and pnp, with their circuit sym-
p bols as shown in Fig. 3.38. Each type has three terminals, designated
i as emitter (E), base (B), and collector (C). For the npn transistor, the
Emitter E currents and voltages of the trqnsistor are specified as in Fig. 3.39.
o Applying KCL to Fig. 3.39(a) gives
Figure 3.38

Two types of BJTs and their circuit
symbols: (&) npn, (b) pnp.

le =g+ Ic (3.27)
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where Ig, I, and Iy are emitter, collector, and base currents, respec-
tively. Similarly, applying KVL to Fig. 3.39(b) gives

VCE + VEB + VBC =0 (328)

where Vg, Veg, and Vg are collector-emitter, emitter-base, and base-
collector voltages. The BJT can operate in one of three modes:. active,
cutoff, and saturation. When transistors operate in the active mode, typ-
|Ca”y VBE =07 V,

(3.29)

where « is caled the common-base current gain. In Eq. (3.29),
a denotes the fraction of electrons injected by the emitter that are col-
lected by the collector. Also,

lC = CYIE

lc = Blg (3.30)

where B is known as the common-emitter current gain. The « and 8
are characteristic properties of a given transistor and assume constant
values for that transistor. Typicaly, « takes values in the range of 0.98 to
0.999, while B takes values in the range of 50 to 1000. From Egs. (3.27)
to (3.30), it is evident that

le = (1 + B)lg (3.31)

and
(64
11—«

These eguations show that, in the active mode, the BJT can be modeled
as a dependent current-controlled current source. Thus, in circuit analy-
sis, the dc equivalent model in Fig. 3.40(b) may be used to replace the
npn transistor in Fig. 3.40(a). Since B in Eq. (3.32) islarge, a small base
current controls large currents in the output circuit. Consequently, the
bipolar transistor can serve as an amplifier, producing both current gain
and voltage gain. Such amplifiers can be used to furnish a considerable
amount of power to transducers such as loudspeakers or control motors.

B = (3.32)

c
+
I
Bo— Vee
Vee B
. E
@ (b)
Figure 3.40

(a) An npn transistor, (b) its dc equivalent model.

It should be observed in the following examples that one cannot
directly analyze transistor circuits using nodal analysis because of the
potential difference between the terminals of the transistor. Only when the
transistor is replaced by its equivalent model can we apply nodal anaysis.

109

(b)
Figure 3.39
The terminal variables of an npn transistor:
(&) currents, (b) voltages.

I Infact, transistor circuits provide moti-
vation to study dependent sources.
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Example 3.12 Find Ig, I, and v, in the transistor circuit of Fig. 3.41. Assume that
the transistor operates in the active mode and that 8 = 50.

lc 1000

——

AV, _‘,
Figure 3.41
For Example 3.12.

Solution:
For the input loop, KVL gives

—4+ 15(20 X 10°) + Vg = 0
Since Vge = 0.7 V in the active mode,
lg = ﬁ = 165 uA
But
lc = Blg = 50 X 165 uA = 8.25mA
For the output loop, KVL gives
~0o— 100lc + 6 =0
or
Vo =6 —100lc = 6 — 0.825 = 5175V

Note that v, = Ve in this case.

Practice Problem 3.12 For the transistor circuit in Fig. 3.42, let B = 100 and Vge = 0.7 V.
Determine v, and Vce.

Answer: 2.876 'V, 1.984 V.

Figure 3.42
For Practice Prob. 3.12.
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For the BJT circuit in Fig. 3.43, B = 150 and Vg = 0.7 V. Find v,. Example 3.13

Solution: 1kQ

1. Define. The circuit is clearly defined and the problem is clearly
stated. There appear to be no additional questions that need to
be asked.

2. Present. We are to determine the output voltage of the circuit
shown in Fig. 3.43. The circuit contains an ideal transistor with

3. Alternative. We can use mesh analysis to solve for v,. We can
replace the transistor with its equivalent circuit and use nodal
analysis. We can try both approaches and use them to check

; . o Figure 3.43
each other._ As_a third (_:heck, we can use the equivalent circuit Fo?ExampIe3.13.
and solve it using PSpice.

4. Attempt.

B METHOD 1 Working with Fig. 3.44(a), we start with the first loop.

—2 + 100kl; + 200k(l, — 1) =0 or 3, —2l,=2x10"°
(3.13.1)

100 Q2
AWA%Y% 7 | +
+ AW 3 — 16V
2V =— @ 200 kQ ﬂ - -
_ 2

L
@

100 kQ Vv,

— 16V

700.00mV
100k
+ +
2V = R2 <200k 0.7V {
’ T
(©
Figure 3.44

Solution of the problem in Example 3.13: (8) Method 1, (b) Method 2,
(c) Method 3.
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Now for loop 2.

200k(|2 - Il) + VBE =0 or _2|1 + 2'2 = —-0.7 X 1075
(3.13.2)

Since we have two equations and two unknowns, we can solve for I
and |,. Adding Eqg. (3.13.1) to (3.13.2) we get;

I, =13 X 107 °A and 1, =(—07+ 2.6)10 °/2 = 95uA
Since Iz = —150l, = —1.425 mA, we can now solve for v, using loop 3:
—vo+ Klg+16=0 or v,= —1425+ 16 = 14575V

B METHOD 2 Replacing the transistor with its equivalent circuit
produces the circuit shown in Fig. 3.44(b). We can now use nodal
analysis to solve for v,

At node number 1: V, = 0.7V
(0.7 — 2)/100k + 0.7/200k + 15 = 0 or g = 9.5 uA
At node number 2 we have:

150l + (v — 16)/1k =0  or
v = 16 — 150 X 10° X 9.5 X 10 6 = 14575V

5. Evaluate. The answers check, but to further check we can use
PSpice (Method 3), which gives us the solution shown in
Fig. 3.44(c).

6. Satisfactory? Clearly, we have obtained the desired answer with
a very high confidence level. We can now present our work as a
solution to the problem.

Practice Problem 3.13

20kQ

ol
120kQ

N + M 20kQ§”o
lV—( Vee

— 10V

Figure 3.45
For Practice Prob. 3.13.

The transistor circuit in Fig. 3.45 has 8 = 80 and Vgg = 0.7 V. Find v,
and I,

Answer: 3V, 150 uA.

3.10 Summary

1. Nodal analysis is the application of Kirchhoff’s current law at the
nonreference nodes. (It is applicable to both planar and nonplanar
circuits.) We express the result in terms of the node voltages. Solv-
ing the simultaneous equations yields the node voltages.

2. A supernode consists of two nonreference nodes connected by a
(dependent or independent) voltage source.

3. Mesh analysisiis the application of Kirchhoff’s voltage law around
meshes in a planar circuit. We express the result in terms of mesh
currents. Solving the simultaneous equations yields the mesh
currents.
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4. A supermesh consists of two meshes that have a (dependent or
independent) current source in common.
5. Nodal analysis is normally used when a circuit has fewer node
equations than mesh equations. Mesh analysis is normally used
when a circuit has fewer mesh equations than node equations.
6. Circuit analysis can be carried out using PSpice.
7. DC transistor circuits can be analyzed using the techniques cov-
ered in this chapter.
Review Questions
3.1 Atnodelinthecircuit of Fig. 3.46, applying KCL 3.3 For thecircuit in Fig. 3.47, v, and v, arerelated as:
gIves (@ vy, =6 + 8+ v, (b)v, = 6 — 8 + v,
@2+ 201 Vi Vi Ve ©Quvi=—6i+8+v, (dvy=—6—8+u,
3 6 4
— - 8V
2+ 22 U1, b2l n  6Q v2
3 6 4 - >
12701 O_Ul U1 — U |
4 = + 12V
@2+ . . @ 40
vi,—12 0—-vy vy, — Uy
+ =
(@2 3 6 4 é
Figure 3.47
For Review Questions 3.3 and 3.4.
3.4 Inthecircuit of Fig. 3.47, the voltage v, is:
2A 8Q @ -8V (b) —16V
30 40 () 16V (d)8v
1 2 2 3.5 Thecurrenti inthecircuit of Fig. 3.48is:
v (* (a) —2.667A (b) —0.667 A
CE 6Q 60 (c) 0.667A (d) 2.667 A
= 40
Figure 3.46 VW

For Review Questions 3.1 and 3.2.

v (&) Q (Hev

3.2 Inthecircuit of Fig. 3.46, applying KCL at node 2

ives: VWW
gives: ’0
@2ty 2_t2 Figure 3.48
4 8 6 For Review Questions 3.5 and 3.6.
U1 — U2 Uo Uo
(b) 4 + 8 6 3.6 Theloop equation for the circuit in Fig. 3.48 is:
vVi— U 12—v, Uy (@ —-10+4i+6+2 =0
©74 * 8 T (D)10+4i +6+2 =0
- v, —12 v c)10+4i—-6+2 =0
R V2 U1 U2 _ U2 ©

4 8 6 (d)—10+4i—6+2=0
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3.7 Inthecircuit of Fig. 3.49, current i, is:

@4A  (O)3A  (92A  (d)1A
2Q 1Q
AWV MM
ZOV# @ v 2A @
AV AW
3Q 4Q

Figure 3.49
For Review Questions 3.7 and 3.8.

Methods of Analysis

3.9 ThePSpice part name for a current-controlled
voltage sourceis:

(& EX (b) EX (c) HX (d) GX
3.10 Which of the following statements are not true of the
pseudocomponent |PROBE:
(a) It must be connected in series.
(b) It plots the branch current.

(c) It displays the current through the branch in
which it is connected.

(d) It can be used to display voltage by connecting it
inparalel.

(e) Itisused only for dc analysis.
() It does not correspond to a particular circuit

3.8 Thevoltage v across the current source in the circuit element.
f Fig. 3.49is:
O g SAIS Answers. 3.1a, 3.2¢, 3.3a, 3.4c, 3.5¢, 3.6a, 3.7d, 3.8b,
(@ 20V (b) 15V (c)10V (d)5Vv 3.9¢, 3.10b,d.
4 Problems

Sections 3.2 and 3.3 Nodal Analysis

3.1 Using Fig. 3.50, design a problem to help other
efd students better understand nodal analysis.

Ry Ry

12V Ry Ct) 9V

Figure 3.50
For Prob. 3.1.

3.2 For thecircuit in Fig. 3.51, obtain v, and v-.

U1 2
D)
-

%SQ 49% 6A

10Q

Figure 3.51
For Prob. 3.2.

3.3 Find the currents I, through |, and the voltage v, in
the circuit of Fig. 3.52.

¢|l ¢I2 l|3 l|4
04 () 109% 209% 309% 2a (}) GOQ%

€L

Figure 3.52
For Prob. 3.3.

3.4 Giventhecircuit in Fig. 3.53, calculate the currents
I, through 1,.

lll lIZU *IS ¢|4
4ACD 59% 109% 109% 59% 5ACD

Figure 3.53
For Prob. 3.4.



3.5 Obtain v, inthecircuit of Fig. 3.54.

30V 20V +
4kQ § %

2kQ 5kQ -

Figure 3.54
For Prob. 3.5.

3.6 Usenodal analysisto obtain v, in the circuit of

Fig. 3.55.
4Q 4 1;’!
:
[ e

12v (%)

Figure 3.55
For Prob. 3.6.

3.7 Apply nodal analysisto solvefor V, in the circuit of
Fig. 3.56.

2a(}) 100 § \_/x § 200

Figure 3.56
For Prob. 3.7.

3.8 Using nodal analysis, find v, in the circuit of Fig. 3.57.

3Q 5Q

AW AN
”0%29 S 4y
- 1Q

Figure 3.57
For Prob. 3.8.
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3.9 Determine |, in the circuit of Fig. 3.58 using nodal

analysis.
| 601,
b 250Q
MW F-
12V 50 Q 150 Q

Figure 3.58
For Prob. 3.9.

3.10 Find I, inthecircuit of Fig. 3.59.

1Q

4A 2l,

|0;4@ %

89% 2Q %49

Figure 3.59
For Prob. 3.10.

3.11 Find V, and the power dissipated in all the resistors
in the circuit of Fig. 3.60.

10 v, 4Q

36V %29 12v

Figure 3.60
For Prob. 3.11.

3.12 Using nodal analysis, determine V, in the circuit in

Fig. 3.61.
100 1Q
MW
|
fh 50
30V 2Q Al v,

Figure 3.61
For Prob. 3.12.



116 Chapter 3 Methods of Analysis

3.13 Calculate v, and v, in the circuit of Fig. 3.62 using 3.17 Using nodal analysis, find current i, in the circuit of
nodal analysis. Fig. 3.66.

oy 20 2V,

e
8Q 4Q 3A
4Q 2Q
1 10Q %
= 8Q
Figure 3.62 i
For Prob. 3.13. 60V 3iy
3.14 Using nodal analysis, find v, inthecircuit of Fig. 363.  Figure 3.66
For Prob. 3.17.
5A
20 80 3.18 Determine the node voltagesin the circuit of Fig. 3.67
AAAA using nodal analysis.
1Q +
% % 40 (%) 20v
40V B 0V
S
Figure 3.63
For Prob. 3.14. 20 2 20
1 A%%Y% 4'A%%Y% 3
3.15 Apply nodal analysisto find i, and the power
dissipated in each resistor in the circuit of Fig. 3.64. 49% SA %89
2A 1
C Figure 3.67
0V 33 For Prob. 3.18.
IO
6S 55 b)an 3.19 Usenodal analysisto find v4, v,, and vz in the circuit
1 of Fig. 3.68.
Figure 3.64 ML
For Prob. 3.15.
24
3.16 Determine voltages v, through v in the circuit of &/
Fig. 3.65 using nodal analysis. 2Q
AW
25 vl 8Q 4, 4Q
AV AV AW v

2y,

& > +7,2 4/8v§» v3 SACD §4Q §2§2 §89
00%48
—

1

2A %IS

Figure 3.65
For Prob. 3.16.

+
ﬂ—) 13V O v

Figure 3.68
For Prob. 3.19.




3.20 For thecircuit in Fig. 3.69, find v4, v,, and v; using
nodal analysis.

V1

%49

Figure 3.69
For Prob. 3.20.

v3

+ i

%g

3.21 For thecircuit in Fig. 3.70, find v, and v, using
nodal analysis.

4kQ

2kQ
U1

3mA<?

Problems

R
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3.24 Usenodal analysis and MATLAB to find V, in the
circuit of Fig. 3.73.
ML

8Q
MW\
+ V, -

®s

4Q

%%

2Q %29 1Q

19%

Figure 3.73
For Prob. 3.24.

3

3.25 Usenodd analysis along with MATLAB to determine
the node voltagesin Fig. 3.74.
ML

200 vs
MW
_ 10Q
1Q 4 10Q
vy v3
= § 30Q
Figure 3.70 aa (4 80 200
For Prob. 3.21.
3.22 Determinev, and v, in the circuit of Fig. 3.71. %
80 Figure 3.74
For Prob. 3.25.
— MW/
20 4, 3A
+ g - <> 2 3.26 Calculate the node voltages v4, v,, and v in the
10 1 cdircuit of Fig. 3.75.
12V % 4Q ML
St
Figure 3.71

For Prob. 3.22.

3A
R\
N4 i
10Q -9
AW
" 50 b,y 50 "
3.23 Usenodal andysisto find V, in the circuit of Fig. 3.72. MWV MWy
20Q 5Q 15Q
15V 4o 10V
L
Figure 3.72 Figure 3.75
For Prob. 3.23.

For Prob. 3.26.
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*3.27 Usenodal analysisto determine voltagesv4, v,, and
vz inthecircuit of Fig. 3.76.

3.30

Methods of Analysis

Using nodal analysis, find v, and I, in the circuit of
Fig. 3.79.

H
ML
4s
M
< 00 120V
7 —WM———— H—
100 'oT 200
n| 1S w 1S |
M AW N
vio 100V 4y, 2, | 800 %
2n (1) %23 %45 2s§ @) aa -
Figure 3.79
B For Prob. 3.30.

Figure 3.76
For Prob. 3.27.

*3.28 Use MATLAB to find the voltages at nodes a, b, c,
1 anddinthecircuit of Fig. 3.77.

ML
c

1OQ§ §5£2
20Q

d W%%Y

§16£2

§4Q
8Q

WY b
8Q

4Q
0OV

60V

Figure 3.77
For Prob. 3.28.

3.29 Use MATLAB to solve for the node voltages in the
1 circuit of Fig. 3.78.
ML

5A

Figure 3.78
For Prob. 3.29.

* An asterisk indicates a chalenging problem.

3.31 Find the node voltages for the circuit in Fig. 3.80.

H
ML
10
+oy -
21 Ao vy 2t vy 2Q
— + -— *
IO
1A () 4Q %19 4Q 10V
L

Figure 3.80
For Prob. 3.31.

*3.32 Obtain the node voltagesv4, v,, and vs in the circuit

3 of Fig.3.8L
ML
5kQ
MW
ov 20V
amA (4 12V %lOkQ
-

Figure 3.81
For Prob. 3.32.



Sections 3.4 and 3.5 Mesh Analysis

3.33 Which of thecircuitsin Fig. 3.82 is planar? For the
planar circuit, redraw the circuits with no crossing

branches.
1Q
AW
3Q
L 4Q 5Q
2Q 2
>
VWA
6Q
o)
Z
2A
@
3Q
ANV
40
5Q

12v (%) %29

1Q

(b)
Figure 3.82
For Prob. 3.33.

3.34 Determine which of the circuitsin Fig. 3.83 is planar

and redraw it with no crossing branches.

20
ANV
10 50
7Q %39
v (* 6Q
40

@
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8Q
VWY
5Q 4Q
MWV NWY
1Q§ 6Q 39%
7Q 20
MY
o)
N
4A

(b)

Figure 3.83
For Prob. 3.34.

3.35 Rework Prob. 3.5 using mesh analysis.

3.36 Rework Prob. 3.6 using mesh analysis.

3.37 Solve Prob. 3.8 using mesh analysis.

3.38 Apply mesh analysisto the circuit in Fig. 3.84 and

1 obtainl,
ML
4Q 30
— MM——AMA—
2av (5) e 210
20 20
AW ——AWA—

19% %19 (&) ov

Figure 3.84

For Prob. 3.38.

3.39 Determine the mesh currentsi, and i, in the circuit
shown in Fig. 3.85.

Figure 3.85
For Prob. 3.39.
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3.40 For the bridge network in Fig. 3.86, find i, using
1 meshanayss.

ML )
o 2kQ
ANV
6 kQ 6 kQ
2kQ
sov (0) A
4kQ 4kQ

Figure 3.86

For Prob. 3.40.
3.41 Apply mesh analysisto find i in Fig. 3.87.
ﬁl. 10Q
NV
)
G
A -
*i N\
1Q
403 @ @ S50
8V

Figure 3.87
For Prob. 3.41.

3.42 Using Fig. 3.88, design a problem to help students
efd better understand mesh analysis using matrices.

Methods of Analysis

3.44 Use mesh analysisto abtain i, in the circuit of

Fig. 3.90.

6V

g
202 | 240

— ()1av
50 3A

Figure 3.90
For Prob. 3.44.

3.45 Find current i in the circuit of Fig. 3.91.

H
ML
40 8Q
MW MWWV
4A
20 6Q
if MWV AW

20Q 30Q 10Q
A% VWA VVWA
¥ : %309 400 @ =y
w© ) 770 O
&
V2
Figure 3.88
For Prob. 3.42.
3.43 Usemesh analysisto find v, and i, in the circuit of
ﬁ Fig. 3.89.
ML
20Q
AWV
o
g 30Q
80V (©
20Q +
30Q § Yo
+
80V (© 300
20Q
MWV

Figure 3.89
For Prob. 3.43.

30V (? 30

%19

Figure 3.91
For Prob. 3.45.

3.46 Solvefor the mesh currentsin Fig. 3.92.

2Q

(i)

3Q

6 Q

VWA

60V (D@ 19%@19% @ %49

VWWA

VWA

Figure 3.92
For Prob. 3.46.



3.47 Rework Prob. 3.19 using mesh analysis.

H
ML
3.48 Determine the current through the 10-k() resistor in

1 thecircuit of Fig. 3.93 using mesh analysis.

ML
3kQ
AW
4Q  2kQ 5kQ
—AVA—]
1kQ

2v (%) §10k9 G)ev

8V

Figure 3.93
For Prob. 3.48.

3.49 Findv,andi, inthecircuit of Fig. 3.94.

Figure 3.94
For Prob. 3.49.

3.50 Use mesh analysisto find the current i, in the circuit

1 of Fig. 3.95.
ML
iO
—
4Q 2Q
100
<
60V 3y

Figure 3.95
For Prob. 3.50.
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3.51 Apply mesh analysisto find v, in the circuit of
Fig. 3.96.

5A

20 5 8Q

10
§4Q (%) 20v

40V

Figure 3.96
For Prob. 3.51.

3.52 Usemesh analysistofind i, i5, and iz in the circuit
1 of Fig.3.97.
ML

l;ézg @ %89

3A

I
%49 @ S 24

22v (%) @

Figure 3.97
For Prob. 3.52.

3.53 Find the mesh currentsin the circuit of Fig. 3.98
1 using MATLAB.
ML

2kQ
MW

(1)

6kQ 8KkQ
—AMA AW
q @ Q>3mA
1kQ 4KkQ
—AMA AW

12V _)@ 3

Figure 3.98
For Prob. 3.53.
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*3.54 Giventhe circuit Fig. 3.99, use mesh analysisto find 3.57 Inthecircuit of Fig. 3.102, find the values of R, V4,
ﬁ the mesh currents. and V, giventhat i, = 18 mA.
ML )
IO
—

3kQ SV,

ov w0ov (7)

4kQ 2V,

Py
AV\AA-'——K
+

Figure 3.102

30 For Prob. 3.57.
3.58 Findi,, i, and iz inthecircuit of Fig. 3.103.
H
ML 30Q
Figure 3.99
For Prob. 3.54.
300 @ 300
*3.55 Inthecircuit of Fig. 3.100, solvefor I4, I, and I 5.
1 Figure 3.103
ML For Prob. 3.58.
0V
o 3.59 Rework Prob. 3.30 using mesh analysis.
/ 1
6Q
L 1A ML . . L
XN 3.60 Calculate the power dissipated in each resistor in the
I
an(¥) NG % 20 circuit of Fig. 3.104.
12Q '/I 4Q
z 0.5i,
© &
8V - 4Q 8Q
Figure 3.100 )
For Prob. 3.55. |0¢
1Q 10V % 20
3.56 Determinev; and v, in thecircuit of Fig. 3.101. Figure 3.104
For Prob. 3.60.
20 3.61 Calculate the current gainiy/isin the circuit of
MW Fig. 3.105.
+ oy -
2Q 2Q 20Q 100
AW )
+ + l lo
12V 20 02%29 is %bh<30Q 54, 40Q
Figure 3.101 Figure 3.105

For Prob. 3.56. For Prob. 3.61.



3.62 Find the mesh currentsi4, i», and iz in the network of

+  Fig. 3.106.

ML

8kQ 2kQ

{5

Figure 3.106
For Prob. 3.62.

3.63 Find v, and iy inthe circuit shown in Fig. 3.107.

Ix
—

10Q

ov ©

3A 2 5Q

Figure 3.107
For Prob. 3.63.

3.64 Finduv,andi, inthecircuit of Fig. 3.108.

H ©
ML p's

100v ()

10Q

Figure 3.108
For Prob. 3.64.

3.65 Use MATLAB to solve for the mesh currentsin the
1 circuit of Fig. 3.109.

ML

6Q

9V

Figure 3.109
For Prob. 3.65.

Problems 123

3.66 Write aset of mesh equations for the circuit in
1 Fig. 3.110. Use MATLAB to determine the mesh
ML currents.

10Q 10Q
AW AWV
4Q 8Q
)
24V 40V
MMV MMV MMV
2Q 2Q 6Q
8Q
(3 (D)  Ze0(d)
32V

Figure 3.110
For Prob. 3.66.

Section 3.6 Nodal and Mesh Analyses
by Inspection

3.67 Obtain the node-voltage equations for the circuit in
1+ Fig. 3.111 by inspection. Then solve for V.

ML
2A
&
N
40 20
AW AM—
+ Vo -
v, <> 100 § 50 § ) 2a
T

Figure 3.111
For Prob. 3.67.

3.68 Using Fig. 3.112, design a problem, to solve for V,,
efd to help other students better understand nodal
analysis. Try your best to come up with values to
make the calculations easier.

HO,

Figure 3.112
For Prob. 3.68.
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3.69 For the circuit shown in Fig. 3.113, write the node-
voltage equations by inspection.

1kQ
AWV
5mA
vy 4KkQ vy 4kQ
aA%%Y ]

20 mA 10 mA

%Zkﬁ

Figure 3.113
For Prob. 3.69.

3.70 Write the node-voltage equations by inspection and
then determine values of V; and V. in the circuit of

Fig. 3.114.
4i,
v, Vs
——
e
ORI Tt
1

Figure 3.114
For Prob. 3.70.

3.71 Write the mesh-current equations for the circuit
H inFig. 3.115. Next, determine the values of iy, i,

ML andis.

5Q§ @ §3g
ov (&) @ «}v(vl» 2
il

Figure 3.115
For Prob. 3.71.

Methods of Analysis

3.72 By inspection, write the mesh-current equations for
the circuit in Fig. 3.116.

4Q
AW
ia
8V 4v q 10
& & W

50 @29%@49 () (‘gmv

Figure 3.116
For Prob. 3.72.

3.73 Write the mesh-current equations for the circuit in
Fig. 3.117.

2Q 5Q

sv (%) @3Q§ @ Q) av

(W) Zia

103 () 103

o
N\ S
2V 3V

§55 ® 2 Figure 3.117

For Prob. 3.73.

3.74 By inspection, obtain the mesh-current equations for
thecircuit in Fig. 3.118.

Ry Ry Rs
—WVWW MWV AV
i Rs
W@ (1) zw, (i)
v, !
Re @ A
&)
(&) .
G0
AV O
R; Vs
Figure 3.118
For Prob. 3.74.
Section 3.8 Circuit Analysis with PSpice
tl;)
ps

3.75 Use PSpiceto solve Prob. 3.58.
3.76 Use PSpiceto solve Prob. 3.27.



3.77 Solvefor V, and Vs in the circuit of Fig. 3.119 using
PSpice.

5A CD §1§2 2A

Figure 3.119
For Prob. 3.77.

3.78 Solve Prob. 3.20 using PSpice.
3.79 Rework Prob. 3.28 using PSpice.

3.80 Find the nodal voltages v, through v, in the circuit
1 of Fig. 3.120 using PSpice.

ML
6,
10Q »| 120
u AN AAA— 73
8A §4Q
20
L
v |—— C_ 20V
IO
10

Figure 3.120
For Prob. 3.80.

3.81 Use PSpiceto solve the problem in Example 3.4.
3.82 If the Schematics Netlist for a network is as follows,

draw the network.

R_.R1 1 2 2K

R_R2 2 0 4K

R_R3 3 0 8K

R_.R4 3 4 oK

R_R5 1 3 3K

V_.VS 4 0@ DC 100
I_IS © 1 DC 4
F_.F1 1 3 VF_F1 2
VF_F1 5 0 oV

E_E1 3 2 1 3 3

Problems 125

3.83 Thefollowing program is the Schematics Netlist of a
particular circuit. Draw the circuit and determine the

voltage at node 2.

R_.R1 1 2 20

R_R2 2 © 50
R_.R3 2 3 70
R_.R4 3 0 30
V_VS 1 0 20V
I_IS 2 © DC 2A

Section 3.9 Applications

3.84 Cdlculatev, and |, in the circuit of Fig. 3.121.

o 4xq

-—
%
100 < # > 501,

3.85 Anaudio amplifier with aresistance of 9 Q) supplies
efd power to a speaker. What should be the resistance of
the speaker for maximum power to be delivered?

3.86 For the smplified transistor circuit of Fig. 3.122,
calculate the voltage v,

+ O

3mv 20 kQ

S

Ol

Figure 3.121
For Prob. 3.84.

1kQ

T ' 4001

5k9§%

30mv
2kQ

Figure 3.122
For Prob. 3.86.

3.87 For thecircuit in Fig. 3.123, find the gain v, /vs.

2kQ
+
U v1 < 500 Q

€

200 Q

+
< ; 60y, 400 Q % %

Figure 3.123
For Prob. 3.87.



126 Chapter 3

*3.88 Determinethe gain v,/vs of the transistor amplifier
circuitin Fig. 3.124.

2k o

200 Q 9
MM
+
% ar
% 1009§ o5 <> 401, ¥ %_%lOKQ

Figure 3.124
For Prob. 3.88.

3.89 For thetransistor circuit shown in Fig. 3.125, find Ig
and VCE' Let B = 100, and VBE =07V

=

07V

07V 100k 15y -

3V §1kg

Figure 3.125
For Prab. 3.89.

3.90 Cadlculate v for the transistor in Fig. 3.126 given that
v, =4V, B =150, Vgg = 0.7 V.

1kQ

Figure 3.126
For Prob. 3.90.

Methods of Analysis

3.91 For thetransistor circuit of Fig. 3.127, find lg, Vcg,
and v,. Take B = 200, Vgg = 0.7 V.

5kQ

3V ——

Figure 3.127
For Prob. 3.91.

3.92 Using Fig. 3.128, design a problem to help other
efJd students better understand transistors. Make sure you
use reasonable numbers!

Figure 3.128
For Prob. 3.92.

1 Comprehensive Problem

*3.93 Rework Example 3.11 with hand calculation.



Circuit Theorems

Your success as an engineer will be directly proportional to your ability
to communicate!
—Charles K. Alexander

Enhancing Your Skills and Your Career

Enhancing Your Communication Skills

Taking a course in circuit analysis is one step in preparing yourself for
acareer in electrical engineering. Enhancing your communication skills
while in school should aso be part of that preparation, as a large part
of your time will be spent communicating.

People in industry have complained again and again that graduat-
ing engineers are ill-prepared in written and oral communication. An
engineer who communicates effectively becomes a valuable asset.

You can probably speak or write easily and quickly. But how effec-
tively do you communicate? The art of effective communication is of
the utmost importance to your success as an engineer.

For engineers in industry, communication is key to promotability.
Consider the result of a survey of U.S. corporations that asked what
factors influence managerial promotion. The survey includes a listing
of 22 personal qualities and their importance in advancement. You may
be surprised to note that “technical skill based on experience” placed
fourth from the bottom. Attributes such as self-confidence, ambition,
flexibility, maturity, ability to make sound decisions, getting things
done with and through people, and capacity for hard work all ranked
higher. At the top of the list was “ability to communicate.” The higher
your professional career progresses, the more you will need to com-
municate. Therefore, you should regard effective communication as an
important tool in your engineering tool chest.

Learning to communicate effectively is a lifelong task you should
always work toward. The best time to begin is while still in school.
Continually look for opportunities to develop and strengthen your read-
ing, writing, listening, and speaking skills. You can do this through
classroom presentations, team projects, active participation in student
organizations, and enrollment in communication courses. The risks are
less now than later in the workplace.

Ability to communicate effectively isre-

garded by many as the most important

step to an executive promotion.
© IT Stock/Punchstock
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Chapter 4  Circuit Theorems

4.1 Introduction

A major advantage of analyzing circuits using Kirchhoff’s laws as we
did in Chapter 3 is that we can analyze a circuit without tampering
with its original configuration. A major disadvantage of this approach
is that, for a large, complex circuit, tedious computation is involved.

The growth in areas of application of electric circuits has led to an
evolution from simple to complex circuits. To handle the complexity,
engineers over the years have developed some theorems to simplify cir-
cuit analysis. Such theorems include Thevenin's and Norton's theorems.
Since these theorems are applicable to linear circuits, we first discuss the
concept of circuit linearity. In addition to circuit theorems, we discuss the
concepts of superposition, source transformation, and maximum power
transfer in this chapter. The concepts we develop are applied in the last
section to source modeling and resistance measurement.

4.2 Linearity Property

Linearity is the property of an element describing a linear relationship
between cause and effect. Although the property applies to many cir-
cuit elements, we shall limit its applicability to resistors in this chap-
ter. The property is a combination of both the homogeneity (scaling)
property and the additivity property.

The homogeneity property requiresthat if the input (also called the
excitation) is multiplied by a constant, then the output (also called the
response) is multiplied by the same constant. For a resistor, for exam-
ple, Ohm’s law relates the input i to the output v,

v = iR (4.1)

If the current is increased by a constant k, then the voltage increases
correspondingly by k; that is,

kiR = kv (4.2

The additivity property requires that the response to a sum of
inputs is the sum of the responses to each input applied separately.
Using the voltage-current relationship of a resistor, if

v = iR (4.339)
and
vz = iR (4.3b)
then applying (i, + i,) gives
[ (|1 + |2)R = |1R + |2R =01+ Uy (44)

We say that a resistor is a linear element because the voltage-current
relationship satisfies both the homogeneity and the additivity properties.

In general, a circuit is linear if it is both additive and homoge-
neous. A linear circuit consists of only linear elements, linear depend-
ent sources, and independent sources.



4.2 Linearity Property

A linear circuit is one whose output is linearly related (or directly pro-
portional) to its input.

Throughout this book we consider only linear circuits. Note that since
p = i’R = v?/R (making it a quadratic function rather than a linear one),
the relationship between power and voltage (or current) is nonlinear.
Therefore, the theorems covered in this chapter are not applicable to power.

To illustrate the linearity principle, consider the linear circuit
shown in Fig. 4.1. The linear circuit has no independent sources inside
it. It is excited by a voltage source vs, which serves as the input. The
circuit is terminated by a load R. We may take the current i through R
as the output. Suppose vs = 10V givesi = 2 A. According to the lin-
earity principle, vs= 1V will give i = 0.2 A. By the same token,
i = 1 mA must be due to vg = 5mV.

129

For example, when current J; flows
through resistor R the power is p; = Ri%,
and when current iy flows through R, the
power is po = Rig. If current i; + iy flows
through R, the power absoroed is p; =
RGiy + )% = Ri§ + Rig + QRiyip # py +
Po. Thus, the power relation is nonlinear.

¢ [

vg Cﬁ) Linear circuit R

Figure 4.1
A linear circuit with input vg and output i.

For the circuit in Fig. 4.2, find |, when vg = 12V and vs = 24 V.

Solution:
Applying KVL to the two loops, we obtain
12i; — 4di, + vs=0 (4.1.1)
—4i; + 16i, — vy —vs =0 (4.1.2)
But v, = 2i,. Equation (4.1.2) becomes
—10i; + 16i, —vs=0 (4.13)

Adding Egs. (4.1.1) and (4.1.3) yields
2il + 12|2 =0 = il = _6|2
Substituting this in Eq. (4.1.1), we get

. . Ug
_76|2+Us=0 = |2=%
When vs = 12V,
12
lo =1, =—A
0= 127 %
When vs = 24V,
lo =1 ——24
° 2 76

showing that when the source value is doubled, |, doubles.

Example 4.1
2Q 8Q
4%4%%% AN
+ [ |0
40
4Q
sz (W) | ()
s 3y

Figure 4.2
For Example 4.1.

For the circuit in Fig. 4.3, find v, when ig = 15 and i = 30 A.

Answer: 20V, 40 V.

Practice Problem 4.1
12Q

Figure 4.3
For Practice Prob. 4.1.
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Example 4.2

Assume |, = 1 A and use linearity to find the actual value of |, in the
circuit of Fig. 4.4.

I, 6Q 2V2 I, 2Q 1V1 3Q

I3 Iy lo

Io= 15A CD 7Q 40 50

‘\}—

Figure 4.4
For Example 4.2.

Solution:
Iflo=1A,thenV; = (3 + 5)l, =8V andl; =V,/4 = 2 A. Applying
KCL at node 1 gives

|2: |1 + IO: 3A
V2:V1+2|2:8+6:14V, |3:—:2A
Applying KCL at node 2 gives

|4:|3+|2:5A

Therefore, I = 5 A. This shows that assuming I, = 1 gives Ig = 5 A,
the actual source current of 15 A will give I, = 3 A asthe actua value.

Practice Problem 4.2

12Q

Io<+

30V 5Q 8Q

Figure 4.5
For Practice Prob. 4.2.

Superposition is not limited to circuit
analysis but is applicable in many
fields where cause and effect bear a
linear relationship to one another.

Assume that V, = 1V and use linearity to calculate the actual value
of V, in the circuit of Fig. 4.5.

Answer: 12 V.

4.3 Superposition

If acircuit has two or more independent sources, one way to determine
the value of a specific variable (voltage or current) is to use nodal or
mesh analysis as in Chapter 3. Another way is to determine the con-
tribution of each independent source to the variable and then add them
up. The latter approach is known as the superposition.

The idea of superposition rests on the linearity property.

The superposition principle states that the voltage across (or current
through) an element in a linear circuit is the algebraic sum of the volt-
ages across (or currents through) that element due to each independ-
ent source acting alone.



4.3 Superposition

The principle of superposition helps us to analyze a linear circuit with
more than one independent source by calculating the contribution of
each independent source separately. However, to apply the superposi-
tion principle, we must keep two things in mind:

1. We consider one independent source at atime while al other inde-
pendent sources are turned off. This implies that we replace every
voltage source by 0V (or a short circuit), and every current source
by O A (or an open circuit). This way we obtain a simpler and more
manageable circuit.

2. Dependent sources are left intact because they are controlled by
circuit variables.

With these in mind, we apply the superposition principle in three
steps:

Steps to Apply Superposition Principle:

1. Turn off all independent sources except one source. Find the
output (voltage or current) due to that active source using
the techniques covered in Chapters 2 and 3.

2. Repeat step 1 for each of the other independent sources.

3. Find the total contribution by adding algebraically all the
contributions due to the independent sources.

Analyzing a circuit using superposition has one major disadvan-
tage: it may very likely involve more work. If the circuit has three inde-
pendent sources, we may have to analyze three simpler circuits each
providing the contribution due to the respective individual source.
However, superposition does help reduce a complex circuit to simpler
circuits through replacement of voltage sources by short circuits and
of current sources by open circuits.

Keep in mind that superposition is based on linearity. For this
reason, it is not applicable to the effect on power due to each source,
because the power absorbed by a resistor depends on the square of
the voltage or current. If the power value is needed, the current
through (or voltage across) the element must be calculated first using
superposition.
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Other terms such as killed, made inac-
tive, deadened, or set equal to zero
are often used to convey the same

idea.

Use the superposition theorem to find v in the circuit of Fig. 4.6.

Solution:
Since there are two sources, let

V=101t Uy

where v, and v, are the contributions due to the 6-V voltage source
and the 3-A current source, respectively. To obtain v4, we set the current
source to zero, as shown in Fig. 4.7(a). Applying KVL to the loop in
Fig. 4.7(a) gives

6V

Figure 4.6
For Example 4.3.

Example 4.3
AW
+
4Q v 3A
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8Q
AN
@

8Q i,

i3

403w OFL

(b)
Figure 4.7

For Example 4.3: (a) calculating v,

(b) calculating vo.

Chapter 4  Circuit Theorems

Thus,
U, = 4|1 =2V
We may also use voltage division to get v, by writing

4
4+ 8

U1 6) =2V
To get v,, we set the voltage source to zero, as in Fig. 4.7(b). Using
current division,

8

i3 = 3) =2A
's 4+8()

Hence,
vy, = 4i; =8V
And we find
v=uv,tv,=2+8=10V

Practice Problem 4.3

3Q 5Q
n
h < 2Q 4A
Figure 4.8

For Practice Prob. 4.3.

Using the superposition theorem, find v, in the circuit of Fig. 4.8.

Answer: 6 V.

Example 4.4

3Q

5Q

Figure 4.9
For Example 4.4.

Find i, in the circuit of Fig. 4.9 using superposition.

Solution:
The circuit in Fig. 4.9 involves a dependent source, which must be left
intact. We let

io=ib+i% (4.4.1)

where iy and iy are due to the 4-A current source and 20-V voltage
source respectively. To obtain iy, we turn off the 20-V source so that
we have the circuit in Fig. 4.10(a). We apply mesh analysis in order to
obtain iy,. For loop 1,

ip=4A (4.4.2)
For loop 2,
—3i; + 6i, — li;—5i,=0 (44.3)



4.3 Superposition

20 20
AW o AV
q §3Q @ 30 N
iy , 57
5i 0
4ACD AW 42 ”
: 50 @
50 i 4Q
i i
L il ° O
0 20V

@
Figure 4.10
For Example 4.4: Applying superposition to (a) obtain iy, (b) obtainiy.

For loop 3,
—5i; — li, + 10i3 + 5i, = 0 (4.4.4)
But at node O,
=iy —ip=4—1ip (4.4.5)

Substituting Egs. (4.4.2) and (4.4.5) into Egs. (4.4.3) and (4.4.4) gives
two simultaneous equations

3i, —2i,=8 (4.4.6)
i, + 55, =20 (4.4.7)
which can be solved to get
L, 52
iy = 17 (4.4.8)

To obtain iy, we turn off the 4-A current source so that the circuit
becomes that shown in Fig. 4.10(b). For loop 4, KVL gives

6i, —is — 5i, =0 (4.4.9)
and for loop 5,
—i4 + 10ig — 20 + 51, = 0 (4.4.10)
But i5 = —ig. Substituting this in Egs. (4.4.9) and (4.4.10) gives
6i, — 4i, =0 (4.4.12)
iy + 5= —20 (4.4.12)
which we solve to get
il = —%A (4.4.13)

Now substituting Egs. (4.4.8) and (4.4.13) into Eq. (4.4.1) gives

8
o= = = —0.4706 A

133
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Practice Problem 4.4

200 4

20V #‘;«/\:/:\&P 4Q
<

Figure 4.11
For Practice Prob. 4.4.

0.1y,

Use superposition to find v, in the circuit of Fig. 4.11.

Answer: v, = 25 V.

Example 4.5
24V 80
Er—ww
4Q 4Q
AW MWV

12v C:)

§3§2

Figure 4.12
For Example 4.5.

For the circuit in Fig. 4.12, use the superposition theorem to find i.

Solution:
In this case, we have three sources. Let

|:|1+|2+|3

where iy, i, and i3 are due to the 12-V, 24-V, and 3-A sources respec-
tively. To get i,, consider the circuit in Fig. 4.13(a). Combining 4 Q)
(on the right-hand side) in series with 8 ) gives 12 (). The 12 () in
parallel with 4 Q) gives 12 X 4/16 = 3 (). Thus,

_12_

=" =2A

To get i,, consider the circuit in Fig. 4.13(b). Applying mesh analysis
gives

16i, — 4i, + 24 =0 = di, —ip=—6 (45.1)
Tip —4i,=0 = ia = —p (45.2)
Substituting Eg. (4.5.2) into Eq. (4.5.1) gives
i2 = ib =-1
To get i3, consider the circuit in Fig. 4.13(c). Using nodal analysis gives

U2 Up — Uy

3= N + 2 = 24 = 3v, — 2v, (45.3)
vp=vy U1 0 _10
i "4 3 = v, = 3 v, (4.5.4)

Substituting EqQ. (4.5.4) into Eq. (4.5.3) leads to v, = 3 and

Thus,



4.4 Source Transformation

8Q
ANV
40 4Q 30
- i
i E
12V t) §3Q — 12V 30
@
24V 8Q 80
@ A w

3

4Q 4 4Q |
MWW —VWy ‘ v
yiz ) yia
@ 30 30 OFL
T L

(b) (©
Figure 4.13
For Example 4.5.
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Find | in the circuit of Fig. 4.14 using the superposition principle.

v () 4A (&) 12v

Figure 4.14
For Practice Prob. 4.5.

Answer: 0.75 A.

4.4 Source Transformation

We have noticed that series-parallel combination and wye-delta trans-
formation help simplify circuits. Source transformation is another tool
for simplifying circuits. Basic to these tools is the concept of equiva-
lence. We recall that an equivalent circuit is one whose v-i character-
istics are identical with the original circuit.

In Section 3.6, we saw that node-voltage (or mesh-current) equa-
tions can be obtained by mere inspection of a circuit when the sources
are al independent current (or al independent voltage) sources. It is
therefore expedient in circuit analysis to be able to substitute a voltage
source in series with a resistor for a current source in parallel with a

Practice Problem 4.5
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resistor, or vice versa, as shown in Fig. 4.15. Either substitution is
known as a source transformation.

R
a a

s -~ g R

b b

Figure 4.15
Transformation of independent sources.

A source transformation is the process of replacing a voltage source
V, in series with a resistor R by a current source i in parallel with a resis-
tor R or vice versa.

The two circuits in Fig. 4.15 are equivalent—provided they have the
same voltage-current relation at terminals a-b. It is easy to show that
they are indeed equivalent. If the sources are turned off, the equivalent
resistance at terminals a-b in both circuits is R. Also, when terminals
a-b are short-circuited, the short-circuit current flowing from ato b is
i< = vs/Rin the circuit on the left-hand side and iy, = i for the circuit
on the right-hand side. Thus, vs/R = i in order for the two circuits to
be equivalent. Hence, source transformation requires that

Us

- (4.5)

vs = IR or is =

Source transformation also applies to dependent sources, provided

we carefully handle the dependent variable. As shown in Fig. 4.16, a

dependent voltage source in series with a resistor can be transformed

to a dependent current source in parallel with the resistor or vice versa
where we make sure that Eq. (4.5) is satisfied.

R

b b

Figure 4.16
Transformation of dependent sources.

Like the wye-delta transformation we studied in Chapter 2, a
source transformation does not affect the remaining part of the circuit.
When applicable, source transformation is a powerful tool that allows
circuit manipulations to ease circuit analysis. However, we should keep
the following points in mind when dealing with source transformation.

1. Notefrom Fig. 4.15 (or Fig. 4.16) that the arrow of the current source
is directed toward the positive terminal of the voltage source.

2. Note from Eq. (4.5) that source transformation is not possible when
R = 0, which is the case with an ideal voltage source. However, for
a practical, nonided voltage source, R # 0. Similarly, an idedl cur-
rent source with R = oo cannot be replaced by afinite voltage source.
More will be said on ideal and nonideal sources in Section 4.10.1.
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Use source transformation to find v, in the circuit of Fig. 4.17. Example 4.6
Solution: 5& 34
We first transform the current and voltage sources to obtain the circuit
in Fig. 4._18(a). Combining the 4-Q an_d 2-Q re;sistors in seriesand 4, o 3A 80 +vo 12V
transforming the 12-V voltage source gives us Fig. 4.18(b). We now -
combine the 3-Q) and 6-Q) resistors in paralel to get 2-Q). We also
combine the 2-A and 4-A current sources to get a 2-A source. Thus, Figure 4.17
by repeatedly applying source transformations, we obtain the circuit in ~ For Example 4.6.
Fig. 4.18(c).

40 20

+
12V 8Q < n 3Q 4A
@
+ ! # +
2A 6Q 8Q < % 30 4A 8Q =< % 20 2A

(b)
Figure 4.18
For Example 4.6.

We use current division in Fig. 4.18(c) to get

= 2) = 0.4A

2+ 8
and
v, = 8 = 8(04) =32V
Alternatively, since the 8-Q) and 2-() resistors in Fig. 4.18(c) are
in paralel, they have the same voltage v, across them. Hence,

vo= (8] 2)(2A) = %(2) — 32V

©

Find i, in the circuit of Fig. 4.19 using source transformation.

5V 10
o
ST R

6Q 5A 3Q 7Q 3A 4Q

Figure 4.19
For Practice Prob. 4.6.

Answer: 1.78 A.

Practice Problem 4.6
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Example 4.7

6V 2Q = % 18V

Figure 4.20
For Example 4.7.

4Q

3A CD 20 20 2 o,

Find vy in Fig. 4.20 using source transformation.

Solution:

The circuit in Fig. 4.20 involves a voltage-controlled dependent current
source. We transform this dependent current source as well as the 6-V
independent voltage source as shown in Fig. 4.21(a). The 18-V voltage
source is not transformed because it is not connected in series with any
resistor. The two 2-Q resistors in paralel combine to give a 1-Q)
resistor, which is in paralel with the 3-A current source. The current
source is transformed to a voltage source as shown in Fig. 4.21(b).
Notice that the terminals for v, are intact. Applying KVL around the
loop in Fig. 4.21(b) gives

—3+5 +u,+18=0 (4.7.1)

x

e 18V

€)
Figure 4.21

(©)

For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.

Applying KVL to the loop containing only the 3-V voltage source, the
1-Q resistor, and v, yields

-3+litu,=0 = Uy =3 —i (4.7.2)
Substituting this into Eq. (4.7.1), we obtain
5+5+3-i=0 = i=—-45A

Alternatively, we may apply KVL to the loop containing vy, the 4-0)
resistor, the voltage-controlled dependent voltage source, and the 18-V
voltage source in Fig. 4.21(b). We obtain

—vy+4i+v,+18=0 = i =—45A
Thus, vy =3—-i=75V.

Practice Problem 4.7

5Q
“ MW\
X

24 mA 100 2,

Figure 4.22
For Practice Prob. 4.7.

Use source transformation to find i, in the circuit shown in Fig. 4.22.

Answer: 7.056 mA.
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4.5 Thevenin’s Theorem

It often occurs in practice that a particular element in a circuit is vari-
able (usually called the load) while other elements are fixed. As a typ-
ical example, a household outlet terminal may be connected to different
appliances constituting a variable load. Each time the variable element
is changed, the entire circuit has to be analyzed all over again. To avoid
this problem, Thevenin's theorem provides a technique by which the
fixed part of the circuit is replaced by an equivalent circuit.

According to Thevenin’'s theorem, the linear circuit in Fig. 4.23(a)
can be replaced by that in Fig. 4.23(b). (The load in Fig. 4.23 may be
a single resistor or another circuit.) The circuit to the left of the ter-
minals a-b in Fig. 4.23(b) is known as the Thevenin equivalent circuit;
it was developed in 1883 by M. Leon Thevenin (1857-1926), a French
telegraph engineer.

Thevenin’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a voltage source V4, in
series with a resistor Ry, Where V4, is the open-circuit voltage at the
terminals and Ry, is the input or equivalent resistance at the terminals
when the independent sources are turned off.

The proof of the theorem will be given later, in Section 4.7. Our
major concern right now is how to find the Thevenin equivalent volt-
age Vq, and resistance Ry, To do so, suppose the two circuits in
Fig. 4.23 are equivalent. Two circuits are said to be equivalent if they
have the same voltage-current relation at their terminals. Let us find
out what will make the two circuits in Fig. 4.23 equivalent. If the ter-
minals a-b are made open-circuited (by removing the load), no current
flows, so that the open-circuit voltage across the terminals a-b in
Fig. 4.23(a) must be equal to the voltage source V1, in Fig. 4.23(b),
since the two circuits are equivalent. Thus V1, is the open-circuit volt-
age across the terminals as shown in Fig. 4.24(a); that is,

Vi = Voc (4.6)
Linear 42 a Linear circuitwith [ © &
inal all independent 0
two-termin e e
circuit -
- oD to zero L oy
V1 = the Rrh = Rin
@ (b)

Figure 4.24
Finding V1, and Ryp.

Again, with the load disconnected and terminals a-b open-
circuited, we turn off all independent sources. The input resistance
(or equivalent resistance) of the dead circuit at the terminals a-b in
Fig. 4.23(a) must be equal to Ry, in Fig. 4.23(b) because the two circuits
are equivaent. Thus, Ry, is the input resistance at the terminals when the
independent sources are turned off, as shown in Fig. 4.24(b); that is,

Rrh = Ri (4-7)

139
|
e
L —
Linear
two-terminal Load
circuit
N
@
Rrn o
Vin Load

Figure 4.23

(b

Replacing alinear two-terminal circuit
by its Thevenin equivalent: (a) original
circuit, (b) the Thevenin equivalent

circuit.
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io
- L
Circuit with
all independent
sources set equal %
to zero
b
2
Rrp = TO
o
@
a
Circuit with +
all independent
sources set equal % o
to zero -
b
R = l

lo

(b)

Figure 4.25

Finding Ry, when circuit has dependent

Sources.

| Later we will see that an alternative way

of finding Ry, is Ry, = Voo lse

Linear
circuit

i
R
b

@

Figure 4.26

A circuit with aload: (a) original circuit,

R a
fh
V1h CD R
b
(b)

(b) Thevenin equivalent.
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To apply this idea in finding the Thevenin resistance Ry, we need
to consider two cases.

B CASE 1 If the network has no dependent sources, we turn off all
independent sources. Ry, is the input resistance of the network |ook-
ing between terminals a and b, as shown in Fig. 4.24(b).

B CASE 2 If the network has dependent sources, we turn off all
independent sources. As with superposition, dependent sources are not
to be turned off because they are controlled by circuit variables. We
apply avoltage source v, a terminals a and b and determine the result-
ing current iy. Then Ry, = vo/io, as shown in Fig. 4.25(a). Alterna-
tively, we may insert a current source i, at terminals a-b as shown in
Fig. 4.25(b) and find the terminal voltage v,. Again Ry, = v,/i,. Either
of the two approaches will give the same result. In either approach we
may assume any value of v, and i,. For example, we may usev, = 1V
orip = 1 A, or even use unspecified values of v, or i,.

It often occurs that Ry, takes a negative value. In this case, the
negative resistance (v = —iR) implies that the circuit is supplying
power. Thisis possible in acircuit with dependent sources, Example 4.10
will illustrate this.

Thevenin’s theorem is very important in circuit analysis. It helps
simplify a circuit. A large circuit may be replaced by a single indepen-
dent voltage source and a single resistor. This replacement technique
is a powerful tool in circuit design.

As mentioned earlier, a linear circuit with a variable load can be
replaced by the Thevenin equivalent, exclusive of the load. The equiv-
alent network behaves the same way externally as the original circuit.
Consider alinear circuit terminated by aload R, as shown in Fig. 4.26(a).
The current 1_ through the load and the voltage V, across the load are
easily determined once the Thevenin equivalent of the circuit at the
load’'sterminalsis obtained, as shown in Fig. 4.26(b). From Fig. 4.26(b),
we obtain

Vi
| =—Mm 4.83
"Ry + R (4.82)
R
Vi =Rl = ———Vq, (4.8b)
R + R

Note from Fig. 4.26(b) that the Thevenin equivalent is a simple volt-
age divider, yielding V_ by mere inspection.

Example 4.8

4Q 10 ,
32v(# 129% ﬁ)zA %RL
b

Figure 4.27
For Example 4.8.

Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to
the left of the terminals a-b. Then find the current through R_ = 6, 16,
and 36 ().

Solution:
We find Ry, by turning off the 32-V voltage source (replacing it
with a short circuit) and the 2-A current source (replacing it with an
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open circuit). The circuit becomes what is shown in Fig. 4.28(a).
Thus,

X
4x12 140

Rn=4[12+ 1=

Vh

@ 2A Vin,

40 10 40
a AWV
129% <Rl‘ 32v<’% @ 120
ob
@

ob
Figure 4.28
For Example 4.8: (a) finding Ry, (b) finding V1.
To find Vy,, consider the circuit in Fig. 4.28(b). Applying mesh
analysis to the two loops, we obtain
Solving for i,, we get i, = 0.5A. Thus,
Vo = 12(i, — iy) = 12(0.5 + 2.0) = 30V
Alternatively, it is even easier to use nodal analysis. We ignore the
1-Q resistor since no current flows through it. At the top node, KCL
gives
32 — _ V1
4 12
or
96 - 3VTh + 24 = VTh = VTh = 30V
as obtained before. We could also use source transformation to find Vy, ,\i& a
The Thevenin equivalent circuit is shown in Fig. 4.29. The current # L
through R, is 0V CD R
| = Vo, 30
" Rm+R 4+R :
When R, = 6, Figure 4.29
The Thevenin equivaent circuit for
30 Example 4.8.
I, =-—==3A
TR
When R = 16,
30
I, = —==15A
L= 50 " 1O
When R_ = 36,
30
I, =-—==075A

40
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Practice Problem 4.8 Using Thevenin's theorem, find the equivalent circuit to the left of the
terminals in the circuit of Fig. 4.30. Then find I.
6Q 6Q a
Y Answer: Vo, = 9V, Ry, = 3Q, | = 225A.
18V 3A 40 21Q
b

Figure 4.30
For Practice Prob. 4.8.

Example 4.9 Find the Thevenin equivalent of the circuit in Fig. 4.31 at terminals a-b.

20y Solution:
This circuit contains a dependent source, unlike the circuit in the
previous example. To find Ry, we set the independent source equal to

2Q 2Q zero but leave the dependent source alone. Because of the presence of
MWWy VW02  the dependent source, however, we excite the network with a voltage
5A 10 +v 60 source v, connected to the terminals as indicated in Fig. 4.32(a). We

may set v, = 1V to ease calculation, since the circuit is linear. Our
goal is to find the current i, through the terminals, and then obtain

b . . . :
Figure 4.31 : Rrn =1/ lo- (Alternatively, we may insert a 1-A current source, find the
For Example 4.9. corresponding voltage v, and obtain Ry, = v,/1)
2uy 20y
S Sh
(i) 3
20 20 a 20 20
MW ANWW—0
T i ) 4'A%%% ° a
+
49%& @ %GQ @ %=1V 5A @ 49%1& i %m oo
ob
b
@ (b)
Figure 4.32

Finding Ry, and Vi, for Example 4.9.

Applying mesh analysis to loop 1 in the circuit of Fig. 4.32(a)
results in

20, +2(i1 — i) =0 or  v,=iy— s
But —4i, = v, = i; — i, hence,
ip = —3i, (4.9.1)
For loops 2 and 3, applying KVL produces
di, + 2(i, —iq) + 6(i, —iz) =0 (4.9.2)
6(iz — i) +2;+1=0 (4.9.3)
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Solving these equations gives
iz =

But i, = —ig = 1/6 A. Hence,
R = 1.V =60

o

To get V, we find v, in the circuit of Fig. 4.32(b). Applying
mesh analysis, we get

i1 =5 (4.9.4)
—20,+ 23— i) =0 = vy=i3—i, (495
A, — iq) + 2(i, —ig) + 6i, =0
or
12i, — 4i, — 2i3=0 (4.9.6)

But 4(i; — i) = vy. Solving these equations leads to i, = 10/3.
Hence,

VTh = Uoc — 6|2 =20V
The Thevenin equivalent is as shown in Fig. 4.33.
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6Q

20V

b

Figure 4.33
The Thevenin equivalent of the circuit in
Fig. 4.31.

Find the Thevenin equivalent circuit of the circuit in Fig. 4.34 to the
left of the terminals.

Answer: Vo, = 533V, Ry, = 0.44 Q.

Practice Problem 4.9

5 ! 30
MY oa
6V CEMM <$1.5|X 40
o b

Figure 4.34
For Practice Prob. 4.9.

Determine the Thevenin equivalent of the circuit in Fig. 4.35(a) at
terminals a-b.

Solution:

1. Define. The problem is clearly defined; we are to determine the
Thevenin equivalent of the circuit shown in Fig. 4.35(a).

2. Present. The circuit contains a 2-() resistor in parallel with a
4-Q) resistor. These are, in turn, in paralel with a dependent
current source. It is important to note that there are no
independent sources.

3. Alternative. The first thing to consider is that, since we have no
independent sources in this circuit, we must excite the circuit
externaly. In addition, when you have no independent
sources you will not have a value for V1, you will only have
to find Ryp.

Example 4.10
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T — o The simplest approach is to excite the circuit with either a

Ix 1-V voltage source or a 1-A current source. Since we will end

2, {y 4Q § 20 § up with an equivalent resistance (either positive or negative), |
prefer to use the current source and nodal analysis which will

yield a voltage at the output terminals equal to the resistance

(with 1 A flowing in, v, is equal to 1 times the equivalent

resistance).

% a As an alternative, the circuit could aso be excited by a 1-V

T _ voltage source and mesh analysis could be used to find the

'x equivalent resistance.
2i, {y) 4Q § 2Q § io 4. Attempt. We start by writing the nodal equation at a in Fig. 4.35(b)
assuming i, = 1 A.

2+ (o —0)/4+ (vo—0)/2+(-1) =0 (410])

ob

(b) Since we have two unknowns and only one equation, we will

40 4 90 need a constraint equation.

f, i, = (0= 0)/2 = —vy/2 (4.10.2)
8i, @ § 20 @ C 10V Substituting Eq. (4.10.2) into Eq. (4.10.1) yields

2(—vo/2) + (Vo — 0)/4 + (o — 0)/2+ (1) =0

b =(-14+i+Po —1 o v,=-—-4V

(0) Since Vo =1 X Ry, then R, = Uo/l = —4Q.
The negative value of the resistance tells us that, according
Vs m to the passive sign convention, the circuit in Fig. 4.35(a) is
supplying power. Of course, the resistors in Fig. 4.35(a) cannot
. - supply power (they absorb power); it is the dependent source
Q (— 1ov that supplies the power. This is an example of how a
dependent source and resistors could be used to simulate
negative resistance.
5. Evaluate. First of al, we note that the answer has a negative
(@ value. We know this is not possible in a passive circuit, but in
Figure 4.35 this circuit we do have an active device (the dependent current
For Example 4.10. source). Thus, the equivalent circuit is essentially an active
circuit that can supply power.

Now we must evaluate the solution. The best way to do this
is to perform a check, using a different approach, and see if we
obtain the same solution. Let us try connecting a 9-() resistor in
series with a 10-V voltage source across the output terminals of
the original circuit and then the Thevenin equivalent. To make
the circuit easier to solve, we can take and change the parallel
current source and 4-() resistor to a series voltage source and
4-Q) resistor by using source transformation. This, with the new
load, gives us the circuit shown in Fig. 4.35(c).

We can now write two mesh equations.

20, — i) + 9, +10=10

Note, we only have two equations but have 3 unknowns, so we
need a constraint equation. We can use
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This leads to a new equation for loop 1. Simplifying leads to

4+2-8i,+(—2+8)i, =0
or

_2|1 + 6|2 =0 or il = 3|2
Substituting the first equation into the second gives

—6i, + 1li, = =10  or i, = —10/5= —2A

Using the Thevenin equivalent is quite easy since we have only
one loop, as shown in Fig. 4.35(d).

—4i +9 +10=0 or i=-10/5=-2A

6. Satisfactory? Clearly we have found the value of the equivalent
circuit as required by the problem statement. Checking does
validate that solution (we compared the answer we obtained by
using the equivalent circuit with one obtained by using the load
with the original circuit). We can present all this as a solution to
the problem.
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Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

Answer: Vo, = 0V, Ry, = —7.50.

4.6 Norton’s Theorem

In 1926, about 43 years after Thevenin published his theorem, E. L.
Norton, an American engineer at Bell Telephone Laboratories, pro-
posed a similar theorem.

Norton’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a current source /y in
parallel with a resistor Ry, where [y is the short-circuit current through
the terminals and Ry is the input or equivalent resistance at the termi-
nals when the independent sources are turned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the onein Fig. 4.37(b).

The proof of Norton's theorem will be given in the next section.
For now, we are mainly concerned with how to get Ry and . We find
Ry in the same way we find Ry, In fact, from what we know about
source transformation, the Thevenin and Norton resistances are equal;
that is,

Ry = R (4.9

To find the Norton current 1, we determine the short-circuit current
flowing from terminal a to b in both circuits in Fig. 4.37. It is evident

Practice Problem 4.10

4
100 x
+ — O a
+
5w 25Q 150
o b
Figure 4.36

For Practice Prob. 4.10.

Linear ©a
two-terminal
circuit o b
@
o a
Ry
o b

Figure 4.37
(a) Original circuit, (b) Norton equivalent

circuit.

(b)
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Linear
two-terminal
circuit

b

Figure 4.38
Finding Norton current | .

The Thevenin and Norton equivalent
circuits are related by a source
transformation.
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that the short-circuit current in Fig. 4.37(b) is ly. This must be the same
short-circuit current from terminal a to b in Fig. 4.37(a), since the two
circuits are equivalent. Thus,

In = i (4.10)
shown in Fig. 4.38. Dependent and independent sources are treated the
same way as in Thevenin's theorem.

Observe the close relationship between Norton’s and Thevenin's

theorems: Ry = Ry, asin Eq. (4.9), and

_Vm

= Ry (4.11)

In

Thisis essentially source transformation. For this reason, source trans-
formation is often called Thevenin-Norton transformation.

Since V1, In, ad Ry, are related according to Eq. (4.11), to deter-
mine the Thevenin or Norton equivalent circuit requires that we find:

» The open-circuit voltage v, across terminals a and b.

e The short-circuit current i at terminals a and b.

* The equivalent or input resistance R, at terminals a and b when
all independent sources are turned off.

We can calculate any two of the three using the method that takes the
least effort and use them to get the third using Ohm'’s law. Example 4.11
will illustrate this. Also, since

V1h = Uoc (4.12a)

In = s (4.12b)

Ry, = % - Ry (4.120)
sC

the open-circuit and short-circuit tests are sufficient to find any Thevenin
or Norton equivalent, of a circuit which contains at least one inde-
pendent source.

Example 4.11

8Q
NMWY

4Q

2a (1)

12v

8Q

Figure 4.39
For Example 4.11.

Find the Norton equivalent circuit of the circuit in Fig. 4.39 at
terminals a-b.

Solution:
We find Ry in the same way we find Ry, in the Thevenin equivalent
circuit. Set the independent sources equal to zero. This leads to the
circuit in Fig. 4.40(a), from which we find Ry. Thus,
20 X 5
25

To find I, we short-circuit terminals a and b, as shown in Fig. 4.40(b).
We ignore the 5-Q) resistor because it has been short-circuited.
Applying mesh analysis, we obtain

i1 =2A, 20i, — 4i; —12=0
From these equations, we obtain

i2 =1A = |g: = IN

Ry=5](@8+4+8=5]20= =40
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80 8Q
o AN O a A%
/-.
@ 40 2
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4Q§ 59§ -~ 2n (b)
12v §5Q
8Q 8Q
o AN o b MW
@
(b)
8Q
AWV o a
- +
@ 40 @
2A CD 5Q § V1h = 2o
12V
8Q _
MWV o b

(0
Figure 4.40
For Example 4.11; finding: () Ry, (b) In = i (C) Vrn = Uge

Alternatively, we may determine Iy from Vy,/Ry,. We obtain Vi,
as the open-circuit voltage across terminals a and b in Fig. 4.40(c).
Using mesh analysis, we obtain

|3:2A

and
UOC:VTh:5i4:4V
Hence,
Vi, 4
In=—=—-=1A
" Rm 4

as obtained previously. This also serves to confirm Eq. (4.12c) that
Rrh = voe/ise = 4/1 = 4 Q. Thus, the Norton equivalent circuit is as
shown in Fig. 4.41.

Figure 4.41

1A
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4Q
b

Norton equivalent of the circuit in Fig. 4.39.

Find the Norton equivalent circuit for the circuit in Fig. 4.42, at
terminals a-b.

Answer: Ry = 3Q, Iy = 45A.

Practice Problem 4.11

3Q 3Q
MV O a
15V 4A¢ 6Q
O b

Figure 4.42

For Practice Prob. 4.11.



Chapter 4  Circuit Theorems
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Example 4.12
2iy
) 5Q
|xl ANV O a

4Q gi)lov
o b

Figure 4.43

Using Norton's theorem, find Ry and I of the circuit in Fig. 4.43 at
terminals a-b.

Solution:

To find Ry, we set the independent voltage source equal to zero and
connect a voltage source of v, = 1V (or any unspecified voltage v,)
to the terminals. We obtain the circuit in Fig. 4.44(a). We ignore the
4-Q) resistor because it is short-circuited. Also due to the short circuit,
the 5-Q) resistor, the voltage source, and the dependent current source

are al in parallel. Hence, iy = 0. At node a, i, = a5 = 0.2 A, and

For Example 4.12. Ry = @ = 0712 =50
io )
To find Iy, we short-circuit terminals a and b and find the current
is, & indicated in Fig. 4.44(b). Note from this figure that the 4-Q
resistor, the 10-V voltage source, the 5-Q) resistor, and the dependent
current source are al in parallel. Hence,
. 10
Iy = Z =25A
At node a, KCL gives
10 .
i$=g+2lx=2+2(2.5)=7A
Thus,
In=T7A
2iy 2iy
5Q a _ 5Q a
i l AV b, i l AV -
40 K=1V  4Q gi)lov ' = I
b b
@ (b)

Figure 4.44

For Example 4.12: (a) finding Ry, (b) finding I

Practice Problem 4.12

G- 0 a

O b

Figure 4.45
For Practice Prob. 4.12.

Find the Norton equivalent circuit of the circuit in Fig. 4.45 at
terminals a-b.

Answer: Ry =1Q, 1y = 10A.
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4.7 TDerivations of Thevenin’s and
Norton’s Theorems

In this section, we will prove Thevenin's and Norton's theorems using
the superposition principle.

Consider the linear circuit in Fig. 4.46(a). It is assumed that the
circuit contains resistors, and dependent and independent sources. We
have access to the circuit via terminals a and b, through which current
from an external source is applied. Our objective is to ensure that the
voltage-current relation at terminals a and b is identical to that of the
Thevenin equivalent in Fig. 4.46(b). For the sake of simplicity, sup-
pose the linear circuit in Fig. 4.46(a) contains two independent voltage
sources vy and v, and two independent current sources is; and ig. We
may obtain any circuit variable, such as the termina voltage v, by
applying superposition. That is, we consider the contribution due to
each independent source including the external source i. By superpo-
sition, the terminal voltage v is

[ A0| + AlUSl + A2U52 + A3iSl + A4i52 (413)

where Ag, Aq, Ay, As, and A, are constants. Each term on the right-hand
side of Eq. (4.13) is the contribution of the related independent source;
that is, Agi is the contribution to v due to the external current sourceii,
Aqvg is the contribution due to the voltage source vy, and so on. We
may collect terms for the internal independent sources together as By,
so that Eq. (4.13) becomes

Whel’e BO = Alvsl + A2U32 + A3isl + A4i52. We now want to a/aIU'
ate the values of constants Ag and B,. When the terminals a and b are

open-circuited, i = 0 and v = By. Thus, By is the open-circuit voltage
Uoer Which is the same as V1, SO
BO - VTh (415)

When all the internal sources are turned off, By = 0. The circuit can
then be replaced by an equivalent resistance Ry, which is the same as
Ry, and Eq. (4.14) becomes

v = A0| = RThi = AO = RTh (416)
Substituting the values of Aq and By in Eq. (4.14) gives
[ RThi + VTh (417)

which expresses the voltage-current relation at terminals a and b of the
circuit in Fig. 4.46(b). Thus, the two circuitsin Fig. 4.46(a) and 4.46(b)
are equivalent.

When the same linear circuit is driven by a voltage source v as
shown in Fig. 4.47(a), the current flowing into the circuit can be
obtained by superposition as

i = Cov + Do (4.18)

where Cyu is the contribution to i due to the external voltage source v
and Dy contains the contributions to i due to all internal independent
sources. When the terminals a-b are short-circuited, v = 0 so that
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i * Linear
v circuit
b
@
a Rrn
+
[ v Vh
b

(b)
Figure 4.46
Derivation of Thevenin equivalent: (a) a
current-driven circuit, (b) its Thevenin
equivalent.

— s a
Linear
v circuit
b
(€)
i, a
v Ry In
b
(b)
Figure 4.47

Derivation of Norton equivalent: (a) a
voltage-driven circuit, (b) its Norton
equivalent.
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RTh a

Vin CD R

b

Figure 4.48
The circuit used for maximum power
transfer.

R

Figure 4.49
Power delivered to the load as a function

of R.
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i = Dg = —ig, Whereig is the short-circuit current flowing out of ter-
minal a, which is the same as the Norton current I, i.e.,

When all the internal independent sources are turned off, Do = 0 and
the circuit can be replaced by an equivalent resistance Ry, (or an equiv-
aent conductance Geq = 1/Re), which is the same as Ryy, or Ry. Thus
Eq. (4.19) becomes
1%

i=———1 4.20

I Rer N ( )
This expresses the voltage-current relation at terminals a-b of the cir-
cuit in Fig. 4.47(b), confirming that the two circuitsin Fig. 4.47(a) and
4.47(b) are equivalent.

4.8 Maximum Power Transfer

In many practical situations, a circuit is designed to provide power to
aload. There are applications in areas such as communications where
it is desirable to maximize the power delivered to a load. We now
address the problem of delivering the maximum power to a load when
given a system with known internal losses. It should be noted that this
will result in significant internal losses greater than or equal to the
power delivered to the load.

The Thevenin equivalent is useful in finding the maximum power
alinear circuit can deliver to aload. We assume that we can adjust the
load resistance R_. If the entire circuit is replaced by its Thevenin
equivalent except for the load, as shown in Fig. 4.48, the power deliv-
ered to the load is

=i%R, = (VT“ )2 (4.21)

PR = Rrn + R R '
For a given circuit, V1, and Ry, are fixed. By varying the load resist-
ance R, the power delivered to the load varies as sketched in Fig. 4.49.
We natice from Fig. 4.49 that the power is small for small or large val-
ues of R_ but maximum for some value of R_ between 0 and «. We
now want to show that this maximum power occurs when R, is equal
to Ry This is known as the maximum power theorem.

Maximum power is transferred to the load when the load resistance
equals the Thevenin resistance as seen from the load (R, = Ryp).

To prove the maximum power transfer theorem, we differentiate p
in Eq. (4.21) with respect to R_ and set the result equal to zero. We
obtain

dp V2 |:(RTh + R)? — 2R (Rrn + RL):|
R, " (R + R)*
Rry + R~ 2R)
Y {( Th } L,
"™ Rm+R)?
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This implies that
0=Rm+R —2R)=Rm—-R) (4.22)

which yields

R. = R (4.23)

showing that the maximum power transfer takes place when the load
resistance R, equals the Thevenin resistance Ryy,. We can readily confirm
that Eq. (4.23) gives the maximum power by showing that d?p /dR? < 0.

The maximum power transferred is obtained by substituting
Eqg. (4.23) into Eq. (4.21), for

Vi,
pmax - 4RTh

(4.24)

Equation (4.24) applies only when R. = Ry,. When R_ # Ry, we
compute the power delivered to the load using Eq. (4.21).
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I The source and load are said to be
matchedwhen R, = Ry,.

Find the value of R_ for maximum power transfer in the circuit of
Fig. 4.50. Find the maximum power.

6

Q 3Q 2Q  a
MW
12V 12Q &PZA R
b

Figure 4.50
For Example 4.13.

Solution:
We need to find the Thevenin resistance Ry, and the Thevenin voltage
V1, across the terminals a-b. To get Ry, we use the circuit in Fig. 4.51(a)
and obtain

6x12
18

Rin=2+3+6[12=5+ 90

6Q 3Q 2Q 6Q
MW AMWW—O0

Example 4.13

3Q 2Q

12Q

O

O

@
Figure 4.51
For Example 4.13: (a) finding Ry, (b) finding V..

AW AMM—0

+

120 @ éezA Vi
(b)
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To get V44, we consider the circuit in Fig. 4.51(b). Applying mesh
analysis gives

12 + 18, — 12i, =0, iy= —2A

Solving for i, we geti; = —2/3. Applying KVL around the outer loop
to get Vy, across terminals a-b, we obtain

—12 4 6i1 + 3i,+20) + Vin=0 =  Vip =22V

For maximum power transfer,

R.=Rm=90Q
and the maximum power is
Vb _ 22

= YT = 1344W
Pmac = 4n T4 x 9

Practice Problem 4.13

2Q 4Q
MW
+ oy -
1Q
v ©®
3y
Figure 4.52

For Practice Prob. 4.13.

Determine the value of R_ that will draw the maximum power from
the rest of the circuit in Fig. 4.52. Calculate the maximum power.

Answer: 4.22 (), 2.901 W.

4.9 Verifying Circuit Theorems with PSpice

In this section, we learn how to use PSpice to verify the theorems cov-
ered in this chapter. Specifically, we will consider using DC Sweep analy-
sis to find the Thevenin or Norton equivalent at any pair of nodes in a
circuit and the maximum power transfer to a load. The reader is advised
to read Section D.3 of Appendix D in preparation for this section.

To find the Thevenin equivalent of a circuit at a pair of open ter-
minals using PSpice, we use the schematic editor to draw the circuit
and insert an independent probing current source, say, Ip, at the termi-
nals. The probing current source must have a part name |SRC. We then
perform a DC Sweep on Ip, as discussed in Section D.3. Typically, we
may let the current through Ip vary from 0 to 1 A in 0.1-A increments.
After saving and simulating the circuit, we use Probe to display a plot
of the voltage across Ip versus the current through Ip. The zero inter-
cept of the plot gives us the Thevenin equivaent voltage, while the
slope of the plot is equal to the Thevenin resistance.

To find the Norton equivalent involves similar steps except that we
insert a probing independent voltage source (with a part name VSRC),
say, Vp, at the terminals. We perform a DC Sweep on Vp and let Vp
vary from 0 to 1V in 0.1-V increments. A plot of the current through
Vp versus the voltage across Vp is obtained using the Probe menu after
simulation. The zero intercept is equal to the Norton current, while the
slope of the plot is equal to the Norton conductance.

To find the maximum power transfer to a load using PSpice
involves performing a DC parametric Sweep on the component value
of R_in Fig. 4.48 and plotting the power delivered to the load as a
function of R_. According to Fig. 4.49, the maximum power occurs
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when R_ = Ry, This is best illustrated with an example, and Ex-
ample 4.15 provides one.

We use VSRC and ISRC as part names for the independent volt-
age and current sources, respectively.
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Consider the circuit in Fig. 4.31 (see Example 4.9). Use PSpice to find
the Thevenin and Norton equivalent circuits.

Solution:

(8 To find the Thevenin resistance Ry, and Thevenin voltage Vy, at
the terminals a-b in the circuit in Fig. 4.31, we first use Schematics to
draw the circuit as shown in Fig. 4.53(a). Notice that a probing current
source 12 isinserted at the terminals. Under Analysis/Setput, we select
DC Sweep. In the DC Sweep dialog box, we select Linear for the
Sweep Type and Current Source for the Sweep Var. Type. We enter 12
under the Name box, 0 as Start Value, 1 as End Value, and 0.1 as
Increment. After simulation, we add trace V (12:-) from the PSpice A/D
window and obtain the plot shown in Fig. 4.53(b). From the plot, we
obtain

. 26 — 20
Vrn = Zerointercept = 20V, Rr, = Slope = T - 6Q
These agree with what we got analytically in Example 4.9.
26 V

20 V!

Figure 4.53
For Example 4.14: (a) schematic and (b) plot for finding Ry, and V..

(b) To find the Norton equivalent, we modify the schematic in Fig. 4.53(a)
by replaying the probing current source with a probing voltage source
V1. The result is the schematic in Fig. 4.54(a). Again, in the DC Sweep
dialog box, we select Linear for the Sweep Type and Voltage Source
for the Sweep Var. Type. We enter V1 under Name box, 0 as Start Value,
1 as End Value, and 0.1 as Increment. Under the PSpice A/D Window,
we add trace | (V1) and obtain the plot in Fig. 4.54(b). From the plot,
we obtain

In = Zerointercept = 3.335 A
~3.335 — 3165

Gn = Slope 1

=017S

0A 0.2A
= V(12:0)

0.4 A

(b)

Example 4.14

0.6 A
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A !
OV 02V 04V 06V 08V 1.0V
o (V1) V. Vi

@ (0)

Figure 4.54
For Example 4.14: (a) schematic and (b) plot for finding Gy and Iy

Practice Problem 4.14 Rework Practice Prob. 4.9 using PSpice.

Answer: V1, = 533V, Ry, = 044 Q.

Example 4.15 Refer to the circuit in Fig. 4.55. Use PSpice to find the maximum
power transfer to R,.
1kQ
Solution:

v R We need to perform a DC Sweep on R, to determine when the power
across it is maximum. We first draw the circuit using Schematics as
shown in Fig. 4.56. Once the circuit is drawn, we take the following

Figure 4.55 three steps to further prepare the circuit for a DC Sweep.
For Example 4.15. The first step involves defining the value of R as a parameter,

since we want to vary it. To do this:

1. DCLICKL the value 1k of R2 (representing R_) to open up the
PARAVETERS: Set Attribute Value dialog box.

R - 2 2. Replace 1k with {RL} and click OK to accept the change.
x Note that the curly brackets are necessary.
V1 The second step is to define parameter. To achieve this:
DC=1 V R2 = {RL}

. Select Draw/Get New Part/Libraries ---/special.db.

. Type PARAM in the PartName box and click OK.

DRAG the box to any position near the circuit.

. CLICKL to end placement mode.

. DCLICKL to open up the PartName: PARAM dialog box.

. CLICKL on NAME1 = and enter RL (with no curly brackets)
in the Value box, and CLICKL Save Attr to accept change.

7. CLICKL on VALUEL = and enter 2k in the Value box, and

CLICKL Save Attr to accept change.
8. Click OK.

%
Figure 4.56
Schematic for the circuit in Fig. 4.55.

oUhwWNE
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The value 2k in item 7 is necessary for a bias point calculation; it
cannot be left blank.

The third step is to set up the DC Sweep to sweep the parameter.
To do this:

1. Select Analysis/Setput to bring up the DC Sweep dialog box.

2. For the Sweep Type, select Linear (or Octave for a wide range
of R).

. For the Sweep Var. Type, select Global Parameter.

. Under the Name box, enter RL.

. In the Start Value box, enter 100.

. In the End Value box, enter 5k.

. In the Increment box, enter 100.

. Click OK and Close to accept the parameters.

0O~NO Ol W

After taking these steps and saving the circuit, we are ready to
simulate. Select AnalysisSimulate. If there are no errors, we select
Add Trace in the PSpice A/D window and type —V(R2:2)*I(R2) in
the Trace Command box. [The negative sign is needed since I1(R2) is
negative.] This gives the plot of the power delivered to R_ as R_ varies
from 100 () to 5 k(). We can also obtain the power absorbed by R, by
typing V(R2:2)*V(R2:2)/RL in the Trace Command box. Either way,
we obtain the plot in Fig. 4.57. It is evident from the plot that the
maximum power is 250 uW. Notice that the maximum occurs when
R = 1kQ, as expected analytically.

250 uW,
200 uWw:

150 uW:!

100 uw:

50 UWL- oo

O -V(R2: 2) *I (R2)
RL
Figure 4.57

For Example 4.15: the plot of power
across R,

Find the maximum power transferred to R_ if the 1-kQ) resistor in
Fig. 4.55 is replaced by a 2-k() resistor.

Answer: 125 u\W.

4.10 TApplications

In this section we will discuss two important practical applications of
the concepts covered in this chapter: source modeling and resistance
measurement.

4.10.1 Source Modeling

Source modeling provides an example of the usefulness of the
Thevenin or the Norton equivalent. An active source such as a battery
is often characterized by its Thevenin or Norton equivalent circuit. An
ideal voltage source provides a constant voltage irrespective of the cur-
rent drawn by the load, while an ideal current source supplies a con-
stant current regardless of the load voltage. As Fig. 4.58 shows,
practical voltage and current sources are not ideal, due to their inter-
nal resistances or source resistances R and R,. They become ideal as
Rs — 0 and R, — . To show that this is the case, consider the effect

Practice Problem 4.15

Figure 4.58
(a) Practical voltage source, (b) practical
current source.
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@

Ideal source

Practical source

0 R
(b)
Figure 4.60
(a) Practical current source connected to a

load R, (b) load current decreases as R,
increases.
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of the load on voltage sources, as shown in Fig. 4.59(a). By the volt-
age division principle, the load voltage is

v = RL v
L R5+RLS

(4.25)

As R, increases, the load voltage approaches a source voltage v, as
illustrated in Fig. 4.59(b). From Eq. (4.25), we should note that:

1. The load voltage will be constant if the internal resistance Rg of
the source is zero or, at least, Ry << R_. In other words, the
smaller Ry is compared with R, the closer the voltage source is to
being ideal.

u
Ry
MV

%CD u R

Ideal source

Practical source

>

@ ®) R
Figure 4.59
(a) Practical voltage source connected to aload R, (b) load volt-
age decreases as R, decreases.

2. When the load is disconnected (i.e., the source is open-circuited so
that R, — ), v, = vs Thus, vg may be regarded as the unloaded
source voltage. The connection of the load causes the terminal volt-
age to drop in magnitude; this is known as the loading effect.

The same argument can be made for a practical current source when
connected to a load as shown in Fig. 4.60(a). By the current division
principle,

Ro
Ry + R

Figure 4.60(b) shows the variation in the load current as the load resist-
ance increases. Again, we notice adrop in current due to the load (load-
ing effect), and load current is constant (ideal current source) when the
internal resistance is very large (i.e., R, — « or, at least, R,>>R)).

Sometimes, we need to know the unloaded source voltage v and
the internal resistance Rs of a voltage source. To find vg and Rg, we fol-
low the procedure illustrated in Fig. 4.61. First, we measure the open-
circuit voltage v asin Fig. 4.61(a) and set

i (4.26)

i

(4.27)

Then, we connect a variable load R, across the terminals as in
Fig. 4.61(b). We adjust the resistance R, until we measure a load volt-
age of exactly one-half of the open-circuit voltage, v, = voc/2,
because now R, = Ry, = Rs. At that point, we disconnect R and
measure it. We set

Us = Uoc

Re=R (4.28)
For example, a car battery may have vg = 12V and R; = 0.05 Q).
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Signal Signal
source source i R

@ (b)
Figure 4.61
(a) Measuring v, (b) measuring v, .
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The terminal voltage of a voltage source is 12 V when connected to a
2-W load. When the load is disconnected, the terminal voltage rises to
12.4 V. (a) Calculate the source voltage vg and internal resistance Rs.
(b) Determine the voltage when an 8-() load is connected to the source.

Solution:

(@) We replace the source by its Thevenin equivalent. The terminal
voltage when the load is disconnected is the open-circuit voltage,

Us = Uoe = 124V

When the load is connected, as shown in Fig. 4.62(a), v, = 12V and
p. = 2W. Hence,
2 2
12
= R-Zx--mn0

vt
R pL 2

The load current is

P =

UL 12 1

= = — A
R 72 6
The voltage across R is the difference between the source voltage vg
and the load voltage v, , or

I =

0.4
124 — 12 = 0.4 = Rdi,, Rs = = 240
L
(b) Now that we have the Thevenin equivalent of the source, we
connect the 8-Q) load across the Thevenin equivalent as shown in
Fig. 4.62(b). Using voltage division, we obtain
8

v =5 54124 = 9538V

Example 4.16

|
|
g i y R

Figure 4.62
For Example 4.16.

The measured open-circuit voltage across a certain amplifier is 9 V.
The voltage drops to 8 V when a 20-() loudspeaker is connected to the
amplifier. Calculate the voltage when a 10-Q) loudspeaker is used
instead.

Answer: 7.2 V.

Practice Problem 4.16
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Historical note: The bridge was
invented by Charles Wheatstone
(1802-1875), a British professor who
also invented the telegraph, as Samuel
Morse did independently in the
United States.

Ry Rs
Galvanometer
)

d @—
+
Rz%' ”n 2 R,

Figure 4.63
The Wheatstone bridge; R, isthe
resistance to be measured.
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4.10.2 Resistance Measurement

Although the ohmmeter method provides the simplest way to measure
resistance, more accurate measurement may be obtained using the
Wheatstone bridge. While ohmmeters are designed to measure resist-
ance in low, mid, or high range, a Wheatstone bridge is used to mea-
sure resistance in the mid range, say, between 1 ) and 1 MQ). Very low
values of resistances are measured with a milliohmmeter, while very
high values are measured with a Megger tester.

The Wheatstone bridge (or resistance bridge) circuit is used in a
number of applications. Here we will use it to measure an unknown
resistance. The unknown resistance R, is connected to the bridge as
shown in Fig. 4.63. The variable resistance is adjusted until no current
flows through the galvanometer, which is essentially a d Arsonval
movement operating as a sensitive current-indicating device like an
ammeter in the microamp range. Under this condition v; = v,, and the
bridge is said to be balanced. Since no current flows through the gal-
vanometer, R, and R, behave as though they were in series; so do R;
and R,. The fact that no current flows through the galvanometer also
implies that v, = v,. Applying the voltage division principle,

RZ R><
= =v, = 4.2
“TR+R. ? R +RS (4.29)
Hence, no current flows through the galvanometer when
R, R
= = R2R3 = Rle
Ri+R Rs+ R
or
Rs
Ri= =R (4.30)
Ry

If Ry = Rg, and R, is adjusted until no current flows through the gal-
vanometer, then R, = Ry.

How do we find the current through the galvanometer when the
Wheatstone bridge is unbalanced? We find the Thevenin equivalent
(Vn and Ryp) with respect to the galvanometer terminals. If Ry, is the
resistance of the galvanometer, the current through it under the unbal-
anced condition is

| = &
Rrh + Rm
Example 4.18 will illustrate this.

(4.31)

Example 4.17

InFig. 4.63, R; = 500 () and R; = 200 (). The bridge is balanced when
R, is adjusted to be 125 (). Determine the unknown resistance R,.

Solution:
Using Eq. (4.30) gives
_Rs 200

R, = —R, = —125 = 50 ()
TR, 2 500
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A Wheatstone bridge has R; = R; = 1 k). R, is adjusted until no cur-
rent flows through the galvanometer. At that point, R, = 3.2 k(). What
is the value of the unknown resistance?

Answer: 3.2 k().

Practice Problem 4.17

The circuit in Fig. 4.64 represents an unbalanced bridge. If the gal-
vanometer has a resistance of 40(), find the current through the
galvanometer.

3KkQ 400 Q
a 40Q b
220V Ct)
1kQ 600 Q

Figure 4.64
Unbalanced bridge of Example 4.18.

Solution:

We first need to replace the circuit by its Thevenin equivalent at
terminals a and b. The Thevenin resistance is found using the circuit
in Fig. 4.65(a). Notice that the 3-kQ) and 1-k() resistors are in parallel;
so are the 400-Q) and 600-Q) resistors. The two parallel combinations
form a series combination with respect to terminals a and b. Hence,

R, = 3000 || 1000 + 400 || 600
_ 3000 X 1000 , 400 X 600
3000 + 1000 ~ 400 + 600

= 750 + 240 = 990 ()
To find the Thevenin voltage, we consider the circuit in Fig. 4.65(b).
Using the voltage division principle gives

1000 600

= (220)=55V, -
Y1 7000 + 3000220 Y27 500 + 400

(220) = 132V

Applying KVL around loop ab gives
_U1+VTh+U2:0 or VTh:U1_02:55_132:_77V

Having determined the Thevenin equivalent, we find the current
through the galvanometer using Fig. 4.65(c).

Vin 77
= = — —7476 MA
R + Ry, 990 + 40

The negative sign indicates that the current flows in the direction
opposite to the one assumed, that is, from terminal b to terminal a.

I

Example 4.18
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3kQ 400 Q 3kQ 400 Q
+ —
O Ry, O 220V (* O Vg O
a i b CD + a ™ b +
1kQ 600 Q 1kQ v v2 600 Q
@ (b)
RTh a
%%
Pl
40 Q
Vh C)
b
(0
Figure 4.65

For Example 4.18: (a) Finding Ry, (b) finding V-, (€) determining the current through the galvanometer.

Practice Problem 4.18

200 300Q
©
§ 140
60Q 40Q
I
16V
Figure 4.66

For Practice Prob. 4.18.

Obtain the current through the galvanometer, having a resistance of
14 Q, in the Wheatstone bridge shown in Fig. 4.66.

Answer: 64 mA.

4.11 Summary

1.

2.

3.

A linear network consists of linear elements, linear dependent
sources, and linear independent sources.

Network theorems are used to reduce a complex circuit to a sim-
pler one, thereby making circuit analysis much simpler.

The superposition principle states that for a circuit having multi-
ple independent sources, the voltage across (or current through) an
element is equal to the algebraic sum of al the individual voltages
(or currents) due to each independent source acting one at a time.

. Source transformation is a procedure for transforming a voltage

source in series with a resistor to a current source in parallel with
aresistor, or vice versa

. Thevenin's and Norton's theorems alow us to isolate a portion of

a network while the remaining portion of the network is replaced
by an equivalent network. The Thevenin equivalent consists of a
voltage source Vyy, in series with a resistor Ry, while the Norton
equivalent consists of a current source Iy in parallel with a resis-
tor Ry. The two theorems are related by source transformation.

Vrh
Ry = Rrh In = R
Th
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6. For a given Thevenin equivalent circuit, maximum power transfer
occurs when R. = Ryy,; that is, when the load resistance is equal
to the Thevenin resistance.
7. The maximum power transfer theorem states that the maximum
power is delivered by a source to the load R_ when R, is equal to
Rrh, the Thevenin resistance at the terminals of the load.
8. PSpice can be used to verify the circuit theorems covered in this
chapter.
9. Source modeling and resistance measurement using the Wheat-
stone bridge provide applications for Thevenin's theorem.
Review Questions
4.1 The current through abranch in alinear network is 4.7 The Norton resistance Ry, is exactly equal to the
2 A when the input source voltageis 10 V. If the Thevenin resistance Ry
voltageisreduced to 1V and the polarity is reversed, (a) True (b) False
the current through the branch is:
4.8 Which pair of circuitsin Fig. 4.68 are equivalent?
@ —-2A (b)) —02A (c)0.2A
(d) 2A (©) 20A (@ aandb (b) band d
e . (c)aandc (d)ycandd
4.2 For superposition, it is not required that only one
independent source be considered at atime; any
number of independent sources may be considered 50 50
simultaneously.
(a) True (b) False 20V 4A
4.3 The superposition principle applies to power
calculation.
b
(3 True (b) False @ (&)
4.4 Refer to Fig. 4.67. The Thevenin resistance at
terminalsaandbis: AN 50 20V 50
@250 (b) 20
(©50Q (d)y40Q
(©) (d)
o Figure 4.68
(L For Review Question 4.8.
a
sov () ) § 200
T 4.9 Aloadisconnected to a network. At the terminals to

Figure 4.67
For Review Questions 4.4 t0 4.6.

4.5

4.6

The Thevenin voltage across terminals a and b of the
circuitin Fig. 4.67is:

(@) 50V (b) 40V
(9 20V (d) 10V

The Norton current at terminals a and b of the circuit
inFig. 4.67is.

(@) 10A
() 2A

(b) 2.5A
(d) 0A

4.10

which the load is connected, Ry, = 10 ) and
V1 = 40 V. The maximum possible power supplied
to theload is:

(a) 160 W (b) 8OW
(c)40W (dy1w
The source is supplying the maximum power to the

load when the load resistance equal s the source
resistance.

(&) True (b) False

Answers: 4.1b, 4.2a, 4.3b, 4.4d, 4.5b, 4.6a, 4.7a, 4.8c,
4.9c, 4.10a.
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1 Problems

Chapter 4  Circuit Theorems

Section 4.2 Linearity Property

4.1 Cadculatethe current i, in the current of

Fig. 4.69.
What does this current become when the input

voltageisraisedto 10 V?

1Q 5Q

o

3Q

1V 8Q

Figure 4.69
For Prob. 4.1.

4.2 Using Fig. 4.70, design a problem to help other

efJd students better understand linearity.

Ry Ry
AWV
+
| R, Ry R <

Figure 4.70
For Prob. 4.2.

4.3 (a) Inthecircuit of Fig. 4.71, calculate v, and i,
whenvg = 1V.

(b) Find v, and i, when vs = 10 V.

(c) What are v, and i, when each of the 1-()
resistorsis replaced by a 10-() resistor and

ve=10V?
1Q
AN
1Q 1Q
ML
v 10 %

1Q

Figure 4.71
For Prob. 4.3.

4.4 Uselinearity to determinei, in the circuit of Fig. 4.72.

30 20
AV

{io
60 40

Figure 4.72
For Prob. 4.4.

4.5 Forthecircuitin Fig. 4.73, assumev, = 1V, and
use linearity to find the actual value of v,

2Q 3Q 2Q

%
15V 6Q

6 Q 4Q

Figure 4.73
For Prob. 4.5.

4.6 For thelinear circuit shown in Fig. 4.74, use linearity
to complete the following table.

Experiment Vs Vo
1 12V 4V
2 6V
3 1V
4 -2V

36

Linear
circuit

Figure 4.74
For Prob. 4.6.

4.7 Uselinearity and the assumption that V, = 1V to
find the actual value of V, in Fig. 4.75.

1Q

4Q
AW

AN

av (%)

+
§3Q 2§2§v0

Figure 4.75
For Prob. 4.7.

Section 4.3 Superposition

4.8 Using superposition, find V,, in the circuit of Fig. 4.76.
4‘; »  Check with PSpice.
PS

4Q

Figure 4.76
For Prob. 4.8.



4.9 Usesuperposition to find v, in the circuit of Fig. 4.77.
A“)
)

4Q

on

18V

Figure 4.77
For Prob. 4.9.

4.10 Using Fig. 4.78, design a problem to help other
efd students better understand superposition. Note, the
letter kisagain you can specify to make the
problem easier to solve but must not be zero.

Figure 4.78
For Prob. 4.10.

4.11 Usethe superposition principleto find i, and v, in
«  thecircuit of Fig. 4.79.

ps

i, 10Q

200
AN
t oy —
6A 400 4, 30V

Figure 4.79
For Prob. 4.11.

4.12 Determineuv, in the circuit of Fig. 4.80 using the
superposition principle.

4A

4Q

%

24V 3Q % 12Q 38V

Figure 4.80
For Probs. 4.12 and 4.35.

Problems 163

4.13 Use superposition to find v, in the circuit of Fig. 4.81.

.
‘l
)))

pPS 4A

2A 10!2%

Figure 4.81
For Prob. 4.13.

4.14 Apply the superposition principle to find v, in the
% circuit of Fig. 4.82.
PSS

40Q 20
AN AV
+
4ov<‘i> 2A ”0%39

Figure 4.82
For Prob. 4.14.

4.15 For thecircuit in Fig. 4.83, use superposition to find i.
4“5) Calculate the power delivered to the 3-() resistor.

ps
1Q 2A
20V 40
¢ i
20

30 16V

Figure 4.83

For Probs. 4.15 and 4.56.

4.16 Giventhecircuitin Fig. 4.84, use superposition to
4‘;) getio.

PS

Figure 4.84
For Prob. 4.16.
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4.17 Use superposition to obtain v, in the circuit of
*‘;) 1} Fig. 4.85. Check your result using PSpice.

PS ML
300 100 200
we
+ oy -
0V 60 Q D 6A 300 40V

Figure 4.85
For Prob. 4.17.

4.18 Usesuperposition to find V, in the circuit of Fig. 4.86.

(‘i)
)
pSs
1Q
A
0.5V
20 °
A —
+

10V

Figure 4.86
For Prob. 4.18.

4.19 Use superposition to solve for v, in the circuit of
(‘;) Fig. 4.87.
PSS

ix .
20 Mea aa(d) sazwn

~

4i
Figure 4.87
For Prob. 4.19.

Section 4.4 Source Transformation

4.20 Use source transformations to reduce the circuit in
Fig. 4.88 to asingle voltage source in series with a
singleresistor.

3A C* 10Q 20Q 40 Q
12v 6V

Figure 4.88
For Prob. 4.20.

Circuit Theorems

4.21 Using Fig. 4.89, design a problem to help other
efd students better understand source transformation.

Figure 4.89
For Prob. 4.21.

[ Ry
—

A

4.22 For thecircuit in Fig. 4.90, use source

transformation to find i.

5Q

10Q

N0

AW

250

¢i
§4Q

20V

Figure 4.90
For Prob. 4.22.

4.23 Referring to Fig. 4.91, use source transformation to
determine the current and power in the 8-} resistor.

8Q
AW

9a (D) 2100

Figure 4.91
For Prob. 4.23.

4.24 Use source transformation to find the voltage V, in
the circuit of Fig. 4.92.

3A
8Q 10Q
MW AN
+ Y -
a0V 10Q 2V,

Figure 4.92
For Prob. 4.24.
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4.25 Obtain v, inthecircuit of Fig. 4.93 using source 4.29 Use source transformation to find v, in the circuit of
transformation. Check your result using PSpice. Fig. 4.97.
2A 4kQ
R S W
3y,
90 2kQ
AW VW U

.
ama () 1k9%v0

Figure 4.97
2Q 30V For Prob. 4.29.
Figure 4.93
For Prob. 4.25. 4.30 Use source transformation on the circuit shown in
Fig 4.98tofindiy.
4.26 Use source transformation to find i, in the circuit of
Fig. 4.94.
240 60Q
50 MV MW\
22v () § 300 § 100 0.7,
&=
Figure 4.98
6A 2Q 20V For Prob. 4.30.

Figure 4.94

4.31 Determine vy inthe circuit of Fig. 4.99 using source
For Prob. 4.26.

transformation.

4.27 Apply source transformation to find vy in the circuit
of Fig. 4.95.

10Q a 12Q p 200

50V

40V Figure 4.99

For Prob. 4.31.

Figure 4.95 . o o
For Probs. 4.27 and 4.40. 4.32 Use source transformation to find iy in the circuit of
Fig. 4.100.
4.28 Use source transformation to find I, in Fig. 4.96.

10Q
AN
1Q E} 4Q 05
H el
MWWy +'v$0/»_ iy 150 x
AN -
gv (* §3Q iy,
C) 3 60V % 50Q % 00
Figure 4.96 Figure 4.100
For Prob. 4.28.

For Prob. 4.32.
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Sections 4.5 and 4.6 Thevenin’s and Norton’s
Theorems

4.33 Determine Ry, and V1, at terminals 1-2 of each of
the circuitsin Fig. 4.101.

10Q
AV o1
20V 40Q
o 2
@
60 Q
1
2A § 30Q 30V
2

(b)
Figure 4.101
For Probs. 4.33 and 4.46.

4.34 Using Fig. 4.102, design a problem that will help
efd other students better understand Thevenin equivalent
circuits.

O a

o b

Figure 4.102
For Probs. 4.34 and 4.49.

4.35 Use Thevenin's theorem to find v, in Prob. 4.12.

4.36 Solvefor the current i in the circuit of Fig. 4.103
using Thevenin's theorem. (Hint: Find the Thevenin
equivalent seen by the 12-() resistor.)

¢ [

10Q 12Q

MY
S
S}

50V 30V

Figure 4.103
For Prob. 4.36.

Circuit Theorems

4.37 Find the Norton equivalent with respect to terminals
a-bin the circuit shown in Fig. 4.104.

180v ()

3A
200Q
o a
400 §129
ob

Figure 4.104
For Prob. 4.37.

4.38 Apply Thevenin'stheorem to find V, in the circuit of

Fig. 4.105.
4Q 1Q
AWV AN
5Q +
3A §169 10Q §VO
12V

Figure 4.105
For Prob. 4.38.

4.39 Obtain the Thevenin equivalent at terminals a-b of
the circuit in Fig. 4.106.

1A

Figure 4.106
For Prob. 4.39.

4.40 Find the Thevenin equivalent at terminals a-b of the
circuit in Fig. 4.107.

v @

+V —
o]
AW AW
10kQ 20 kQ
oa
5 av,
ob

Figure 4.107
For Prob. 4.40.



4.41 Find the Thevenin and Norton equivalents at
terminals a-b of the circuit shown in Fig. 4.108.

14V 140
E—ww oa

ob
Figure 4.108
For Prob. 4.41.
*4.42 For thecircuit in Fig. 4.109, find the Thevenin
equivaent between terminals a and b.
20Q
é 7 ) 40V
10Q 20Q
ao AN ANV o b
10Q
10A 10Q § 10Q
60V

Figure 4.109
For Prob. 4.42.

4.43 Find the Thevenin equivalent looking into terminals
a-b of the circuit in Fig. 4.110 and solve for iy.

10Q a 6Q p

—-—
IX

20V 10Q

s (})2a

Figure 4.110
For Prob. 4.43.

4.44 For thecircuit in Fig. 4.111, obtain the Thevenin
equivalent as seen from terminals:

(@ a-b (b) b-c
30 1Q
a
24V 4Q
b
2Q 5Q 2A
O C

Figure 4.111
For Prob. 4.44.

* An asterisk indicates a chalenging problem.
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4.45 Find the Norton equivalent of the circuit in

Fig. 4.112.
6Q
A\A%Y O a
6A 6Q 4Q

Figure 4.112
For Prob. 4.45.

4.46 Using Fig. 4.113, design a problem to help other
efdd students better understand Norton equivalent circuits.

RZ
AW oa

! CD Ry Ry

ob

Figure 4.113
For Prob. 4.46.

4.47 Obtain the Thevenin and Norton equivalent circuits
of the circuit in Fig. 4.114 with respect to terminals a
and b.

12Q

sov (0) Vx+§ 60Q 12y,

ob

Figure 4.114
For Prob. 4.47.

4.48 Determine the Norton equivalent at terminals a-b for
thecircuit in Fig. 4.115.

10i,
40
<G >—WW—o0 a
li

an (}) §89

Figure 4.115
For Prob. 4.48.

4.49 Find the Norton equivalent looking into terminals
a-b of the circuit in Fig. 4.102.
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4.50 Obtain the Norton equivalent of the circuit in
Fig. 4.116 to the left of terminals a-b. Use the
result to find current i.

6o 12V

+: ﬁ ali
2A §4Q §59 @) aa

- P

Figure 4.116
For Prob. 4.50.

4.51 Giventhecircuit in Fig. 4.117, obtain the Norton
equivaent as viewed from terminals:

(@ ab (b) cd

a b
0 1 a8t
oc

120V 3Q 6A 2Q

Figure 4.117
For Prob. 4.51.

4.52 For the transistor model in Fig. 4.118, obtain the
Thevenin equivalent at terminals a-b.

3kQ
a
o
12V 201, 2kQ
o b

Figure 4.118
For Prob. 4.52.

4.53 Find the Norton equivalent at terminals a-b of the
circuit in Fig. 4.119.

0.25¢,
6Q 2Q
MW AV o a
+
18V 305 %

Figure 4.119
For Prob. 4.53.

Circuit Theorems

4.54 Find the Thevenin equivalent between terminals a-b
of the circuit in Fig. 4.120.

3v C

ob

Figure 4.120
For Prob. 4.54.

*4.55 Obtain the Norton equivalent at terminals a-b of the
circuitin Fig. 4.121.

8kQ |

—
O a
+
2v 0.001V, é 80l 50k < Vg
o b

Figure 4.121
For Prob. 4.55.

4.56 Use Norton’stheorem to find V, in the circuit of
Fig. 4.122.

12 kQ 2kQ 10kQ
4%%%% MW 4'4%%%

+
(1) omatkes

360V CD 24kQ

Figure 4.122
For Prob. 4.56.

4.57 Obtain the Thevenin and Norton equivalent circuits
at terminals a-b for the circuit in Fig. 4.123.

3Q 2Q
% o a
+
50V 6Q < % 0.5y 10Q

o b

Figure 4.123
For Probs. 4.57 and 4.79.



4.58 The network in Fig. 4.124 models a bipolar transistor
common-emitter amplifier connected to aload. Find
the Thevenin resistance seen by the load.

b R biy,

—_—

Us Ry R

Figure 4.124
For Prob. 4.58.

4.59 Determine the Thevenin and Norton equivalents at
terminals a-b of the circuit in Fig. 4.125.

10Q 200
8a (}) a b
50Q 00

Figure 4.125
For Probs. 4.59 and 4.80.

*4.60 For thecircuit in Fig. 4.126, find the Thevenin and
Norton equivalent circuits at terminals a-b.

2A

Figure 4.126
For Probs. 4.60 and 4.81.

*4.61 Obtain the Thevenin and Norton equivalent circuits
1 atterminasa-b of thecircuitin Fig. 4.127.

ML
20
AV o a
6Q 6Q
12v (&) () 12v
60Q
2Q§ §29
12V
o b

Figure 4.127
For Prob. 4.61.

Problems 169

*4.62 Find the Thevenin equivalent of the circuit in

H Fig. 4128,
ML
0.1i,
— O a
+
10Q %
tio
40Q % 20Q
+ = o b
2y,

Figure 4.128
For Prob. 4.62.

4.63 Find the Norton equivalent for the circuit in

Fig. 4.129.
10Q
ANV 0
+
b= 20Q 0.5z,

Figure 4.129
For Prob. 4.63.

4.64 Obtain the Thevenin equivalent seen at terminals a-b
of the circuit in Fig. 4.130.

4Q 1Q
—VVW—O0 a

i
§2§2

10i,

Figure 4.130
For Prob. 4.64.

4.65 For the circuit shown in Fig. 4.131, determine the
relationship between V, and | ,.

[
4Q 2Q o
A AW

64V 120 A

Figure 4.131
For Prob. 4.65.
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Section 4.8 Maximum Power Transfer

4.66 Find the maximum power that can be delivered to
the resistor Rin the circuit of Fig. 4.132.

20 10V

3Q R
MW
20V 5Q 6A

Figure 4.132
For Prob. 4.66.

4.67 Thevariableresistor Rin Fig. 4.133 is adjusted until
it absorbs the maximum power from the circuit.
(a) Cdlculate the value of R for maximum power.
(b) Determine the maximum power absorbed by R.

80 Q 200
40V
JAR § R
N

10Q 00

Figure 4.133
For Prob. 4.67.

*4.68 Compute the value of R that resultsin maximum
power transfer to the 10-() resistor in Fig. 4.134.
Find the maximum power.

R

10Q

e §ZOQ
8V

12v (1)

Figure 4.134
For Prob. 4.68.

4.69 Find the maximum power transferred to resistor Rin
thecircuit of Fig. 4.135.

10kQ 22 kQ
AA%%Y%
+
100V % < 40KQ g 003, 30kQ R

Figure 4.135
For Prob. 4.69.

Circuit Theorems

4.70 Determine the maximum power delivered to the
variable resistor R shown in the circuit of Fig. 4.136.

w®

Figure 4.136
For Prob. 4.70.

4.71 For thecircuit in Fig. 4.137, what resistor connected
across terminals a-b will absorb maximum power
from the circuit? What is that power?

3kQ 10 kQ

1kQ 120y, 40 kQ

o b

Figure 4.137
For Prob. 4.71.

4,72 (a) For thecircuit in Fig. 4.138, obtain the Thevenin
equivalent at terminals a-b.

(b) Calculatethe currentin R = 8 ).
(c) Find R_for maximum power deliverableto R, .
(d) Determine that maximum power.

2A
4Q 6Q a
A% A
4A 2Q R,
GO
N b
20V

Figure 4.138
For Prob. 4.72.



4.73 Determine the maximum power that can be delivered
to the variable resistor Rin the circuit of Fig. 4.139.

M
R

60V C,) ANA
Figure 4.139

For Prob. 4.73.

4.74 For the bridge circuit shown in Fig. 4.140, find the
load R_ for maximum power transfer and the
maximum power absorbed by the load.

Figure 4.140
For Prob. 4.74.

*4.75 Looking into terminals of the circuit shown in
Fig. 4.141, from the right (the R_ side), determine
the Thevenin equivalent circuit. What value of R
produces maximum power to R, ?

201
10Q |

10V Cj) R,

Ob

Figure 4.141
For Prob. 4.75.

Section 4.9 Verifying Circuit Theorems
S with PSpice
PS
4.76 Solve Prob. 4.34 using PSpice.

4.77 Use PSpiceto solve Prob. 4.44.
4.78 Use PSpice to solve Prob. 4.52.

4.79 Obtain the Thevenin equivaent of the circuit in
Fig. 4.123 using PSpice.
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4.80 Use PSpiceto find the Thevenin equivalent circuit at
terminals a-b of the circuit in Fig. 4.125.

4.81 Forthecircuitin Fig. 4.126, use PSpice to find the
Thevenin equivalent at terminals a-b.

Section 4.10 Applications

4.82 A battery has a short-circuit current of 20 A and an
open-circuit voltage of 12 V. If the battery is
connected to an electric bulb of resistance 2 (),
calculate the power dissipated by the bulb.

4.83 The following results were obtained from
measurements taken between the two terminals of a
resistive network.

Terminal Voltage 12V ov
Terminal Current 0A 15A

Find the Thevenin equivalent of the network.

4.84 When connected to a4-() resistor, abattery has a
terminal voltage of 10.8 V but produces 12V on an
open circuit. Determine the Thevenin equivalent
circuit for the battery.

4.85 The Thevenin equivalent at terminals a-b of the
linear network shown in Fig. 4.142 isto be
determined by measurement. When a 10-k() resistor
is connected to terminals a-b, the voltage Vg, is
measured as 6 V. When a 30-k() resistor is connected
to theterminals, V,, is measured as 12 V. Determine:
(a) the Thevenin equivalent at terminas a-b, (b) Vap
when a 20-k() resistor is connected to terminals a-b.

————o0a
Linear

network

Figure 4.142
For Prob. 4.85.

4.86 A black box with acircuitin it is connected to a
variable resistor. An ideal ammeter (with zero
resistance) and an ideal voltmeter (with infinite
resistance) are used to measure current and voltage
as shown in Fig. 4.143. The results are shown in the
table on the next page.

i
A
&
Black
box R

Figure 4.143
For Prob. 4.86.




172 Chapter 4

(& Findi whenR = 4 Q.
(b) Determine the maximum power from the box.

RQ)  V(V)  i(A)
2 3 1.5
8 8 1.0
14 10.5 0.75

4.87 A transducer is modeled with a current source | and

efd apardlel resistance R.. The current at the terminals
of the source is measured to be 9.975 mA when an

ammeter with an internal resistance of 20 () is used.

(a) If adding a 2-k() resistor across the source
terminals causes the ammeter reading to fall to
9.876 mA, calculate | and Rs.

(b) What will the ammeter reading beif the
resistance between the source terminalsis
changed to 4 kQ)?

4.88 Consider the circuit in Fig. 4.144. An ammeter with
internal resistance R, isinserted between A and B to

measure | ,. Determine the reading of the ammeter if:

(& R =500Q, (b) R = 0Q. (Hint: Find the
Thevenin equivalent circuit at terminals a-b.)

a 2kQ b 5kQ
—
IO
30kQ 4mA 20kQ Ci 60V
A
10kQ

Figure 4.144
For Prob. 4.88.

4.89 Consider the circuit in Fig. 4.145. (a) Replace the
resistor R, by a zero resistance anmeter and
determine the ammeter reading. (b) To verify the
reciprocity theorem, interchange the anmeter and
the 12-V source and determine the ammeter reading

again.

20 kQ

12v (5)

15kQ

Figure 4.145
For Prob. 4.89.

Circuit Theorems

4.90 TheWheatstone bridge circuit shown in Fig. 4.146 is
efJd used to measure the resistance of a strain gauge. The
adjustable resistor has alinear taper with a maximum
value of 100 Q. If the resistance of the strain gauge
isfound to be 42.6 ), what fraction of the full slider
travel isthe slider when the bridge is balanced?

Rs
AW

2kQ

36 %{m ©

Figure 4.146
For Prob. 4.90.

4kQ

4.91 (a) In the Wheatstone bridge circuit of Fig. 4.147,
eqd select the values of R, and R such that the bridge
can measure R, in the range of 010 ().

R Rs

vO

Figure 4.147
For Prob. 4.91.

(b) Repeat for the range of 0—100 ().

*4.92 Consider the bridge circuit of Fig. 4.148. Isthe
ef)d bridge balanced? If the 10-k() resistor isreplaced by
an 18-k} resistor, what resistor connected between
terminals a-b absorbs the maximum power? What is
this power?

2kQ

220V C)

10 kQ

Figure 4.148
For Prob. 4.92.
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Comprehensive Problems

4.93 Thecircuit in Fig. 4.149 models a common-emitter
transistor amplifier. Find i, using source
transformation.

Figure 4.149
For Prob. 4.93.

4.94 An attenuator is an interface circuit that reduces the
eqd voltage level without changing the output resistance.

(@) By specifying Ry and R, of the interface circuit in
Fig. 4.150, design an attenuator that will meet the
following requirements:

Vo

— = 0.125,

Vg

Req = Rrn = Ry = 1000

(b) Using the interface designed in part (a), calculate
the current through aload of R_ = 50 ) when

Vg =12V.
Ry Rs |
AWV :
L+
\G Ro 1\ R
s
,,,,,,,,,,,,,,,, | Load
Attenuator Req

Figure 4.150
For Prob. 4.94.

*4.95 A dc voltmeter with a sensitivity of 20 kQ)/V is used
eJd tofind the Thevenin equivalent of alinear network.
Readings on two scales are as follows:

(@) 010V scale 4V (b) 050V scae 5V

Obtain the Thevenin voltage and the Thevenin
resistance of the network.

*4.96 A resistance array is connected to aload resistor R
efd and a9-V battery asshownin Fig. 4.151.

(a) Find the value of Rsuch that V, = 1.8 V.

(b) Calculate the value of R that will draw the
maximum current. What is the maximum current?

Figure 4.151
For Prob. 4.96.

4,97 A common-emitter amplifier circuit is shownin
efd Fig. 4.152. Obtain the Thevenin equivalent to the
left of points B and E.

6 kQ

= 12V

4kQ

w\k«»inwv\f
L

Figure 4.152
For Prob. 4.97.

*4.98 For Practice Prob. 4.18, determine the current
through the 40-() resistor and the power dissipated
by the resistor.






Operational
Amplifiers

He who will not reason is a bigot; he who cannot is a fool; and he
who dares not is a slave
—Lord Byron

Enhancing Your Career

Career in Electronic Instrumentation
Engineering involves applying physical principles to design devices for
the benefit of humanity. But physical principles cannot be understood
without measurement. In fact, physicists often say that physics is the
science that measures reality. Just as measurements are atool for under-
standing the physical world, instruments are tools for measurement.
The operational amplifier introduced in this chapter is a building block
of modern electronic instrumentation. Therefore, mastery of operational
amplifier fundamentals is paramount to any practical application of
electronic circuits.

Electronic instruments are used in all fields of science and engi-
neering. They have proliferated in science and technology to the extent ~ medical research.
that it would be ridiculous to have a scientific or technical education ~ © Royalty-Free/Corbis
without exposure to electronic instruments. For example, physicists,
physiologists, chemists, and biologists must learn to use electronic
instruments. For electrical engineering students in particular, the skill
in operating digital and analog electronic instruments is crucial. Such
instruments include ammeters, voltmeters, ohmmeters, oscilloscopes,
spectrum analyzers, and signal generators.

Beyond developing the skill for operating the instruments, some
electrical engineers specialize in designing and constructing electronic
instruments. These engineers derive pleasure in building their own
instruments. Most of them invent and patent their inventions. Special-
ists in electronic instruments find employment in medical schools, hos-
pitals, research laboratories, aircraft industries, and thousands of other
industries where electronic instruments are routinely used.
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The term operational amplifier was in-
troduced in 1947 by John Ragazzini
and his colleagues, in their work on
analog computers for the National
Defense Research Council after World
War Il. The first op amps used vacuum
tubes rather than transistors.

I An op amp may also be regarded as a
voltage amplifier with very high gain.

Figure 5.1
A typical operational amplifier.
Courtesy of Tech America.

The pin diagram in Fig. 5.2(a)
corresponds to the 741 general-
purpose op amp made by Fairchild
Semiconductor.

Chapter5  Operational Amplifiers

53 Introduction

Having learned the basic laws and theorems for circuit analysis, we are
now ready to study an active circuit element of paramount importance:
the operational amplifier, or op amp for short. The op amp is a versa-
tile circuit building block.

The op amp is an electronic unit that behaves like a voltage-controlled
voltage source.

It can aso be used in making a voltage- or current-controlled current
source. An op amp can sum signals, amplify a signal, integrate it, or
differentiate it. The ability of the op amp to perform these mathemat-
ical operations is the reason it is called an operational amplifier. It is
also the reason for the widespread use of op amps in analog design.
Op amps are popular in practical circuit designs because they are ver-
satile, inexpensive, easy to use, and fun to work with.

We begin by discussing the ideal op amp and later consider the
nonideal op amp. Using nodal analysis as a tool, we consider ideal op
amp circuits such as the inverter, voltage follower, summer, and dif-
ference amplifier. We will also analyze op amp circuits with PSpice.
Finally, we learn how an op amp is used in digital-to-analog convert-
ers and instrumentation amplifiers.

5.2 Operational Amplifiers

An operational amplifier is designed so that it performs some mathe-
matical operations when external components, such as resistors and
capacitors, are connected to its terminals. Thus,

An op amp is an active circuit element designed to perform mathe-
matical operations of addition, subtraction, multiplication, division, dif-
ferentiation, and integration.

The op amp is an electronic device consisting of a complex
arrangement of resistors, transistors, capacitors, and diodes. A full dis-
cussion of what is inside the op amp is beyond the scope of this book.
It will suffice to treat the op amp as a circuit building block and sim-
ply study what takes place at its terminals.

Op amps are commercially available in integrated circuit packages
in several forms. Figure 5.1 shows a typical op amp package. A typical
one is the eight-pin dua in-line package (or DIP), shown in Fig. 5.2(a).
Pin or terminal 8 is unused, and terminals 1 and 5 are of little concern
to us. The five important terminals are:

1. The inverting input, pin 2.

2. The noninverting input, pin 3.

3. The output, pin 6.

4. The positive power supply V™, pin 7.
5. The negative power supply V™, pin 4.

The circuit symbol for the op amp is the triangle in Fig. 5.2(b); as
shown, the op amp has two inputs and one output. The inputs are
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V+

Balance ] 1 8 b No connection Inverting input 2

Inverting input o 2 7p Vvt
Noninverting input | 3 6 o Output

VvV 4 5 b Baance

@
Figure 5.2
A typical op amp: (@) pin configuration, (b) circuit symbol.

marked with minus (=) and plus (+) to specify inverting and nonin-
verting inputs, respectively. An input applied to the noninverting ter-
minal will appear with the same polarity at the output, while an input
applied to the inverting terminal will appear inverted at the output.

As an active element, the op amp must be powered by a voltage
supply as typically shown in Fig. 5.3. Although the power supplies are
often ignored in op amp circuit diagrams for the sake of simplicity, the
power supply currents must not be overlooked. By KCL,

o=y +ip i, +i (5.1)

The equivalent circuit model of an op amp is shown in Fig. 5.4.
The output section consists of a voltage-controlled source in series with
the output resistance R,. It is evident from Fig. 5.4 that the input resis-
tance R is the Thevenin equivalent resistance seen at the input termi-
nals, while the output resistance R, is the Thevenin equivalent resistance
seen at the output. The differential input voltage vq is given by

Ug = U — Uq (5.2)

where v, is the voltage between the inverting terminal and ground and
v, is the voltage between the noninverting terminal and ground. The
op amp senses the difference between the two inputs, multiplies it by
the gain A, and causes the resulting voltage to appear at the output.
Thus, the output v, is given by

Vo = Avg = A(vs — vq) (5.3

A is called the open-loop voltage gain because it is the gain of the op
amp without any external feedback from output to input. Table 5.1

TABLE 5.1

Typical ranges for op amp parameters.

Parameter Typical range Ideal values
Open-loop gain, A 10°to 10° o

Input resistance, R, 10°t0 10 Q) ()
Output resistance, R, 10to 100 Q) 0Q)

Supply voltage, Vec 5t024V

6 Output

Noninverting input 3 o———

415
V-
Offset Null

(b)

Figure 5.3
Powering the op amp.

vy O

vy O

Figure 5.4
The equivalent circuit of the nonideal
op amp.

Sometimes, voltage gain is expressed
in decibels (dB), as discussed in
Chapter 14.

AdB = 20log,0A

%
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Yo

Positive saturation
VCC B

q —Mec
Negative saturation

Figure 5.5
Op amp output voltage v, as a function of
the differential input voltage vg.

Throughout this book, we assume that
an op amp operates in the linear range.
Keep in mind the voltage constraint on
the op amp in this mode.
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shows typical values of voltage gain A, input resistance R, output
resistance R,, and supply voltage Vcc.

The concept of feedback is crucial to our understanding of op amp
circuits. A negative feedback is achieved when the output is fed back
to the inverting terminal of the op amp. As Example 5.1 shows, when
there is a feedback path from output to input, the ratio of the output
voltage to the input voltage is called the closed-loop gain. As a result
of the negative feedback, it can be shown that the closed-loop gain is
almost insensitive to the open-loop gain A of the op amp. For this rea-
son, op amps are used in circuits with feedback paths.

A practical limitation of the op amp is that the magnitude of its
output voltage cannot exceed [Vc|. In other words, the output voltage
is dependent on and is limited by the power supply voltage. Figure 5.5
illustrates that the op amp can operate in three modes, depending on
the differential input voltage vq:

1. Positive saturation, vy = Vce.
2. Linear region, —Vee = vy = Avg = Ve
3. Negative saturation, v, = —Vcc.

If we attempt to increase vy beyond the linear range, the op amp
becomes saturated and yields v, = Ve OF v, = —Vee. Throughout
this book, we will assume that our op amps operate in the linear mode.
This means that the output voltage is restricted by

_VCC = Uo = VCC (54)

Although we shall always operate the op amp in the linear region, the
possibility of saturation must be borne in mind when one designs with
op amps, to avoid designing op amp circuits that will not work in the
laboratory.

Example 5.1 A 741 op amp has an open-loop voltage gain of 2 X 10° input resis-
tance of 2 M), and output resistance of 50 (). The op amp is used in
the circuit of Fig. 5.6(a). Find the closed-loop gain v,/vs. Determine
current i when vg = 2 V.

20kQ
MW
20 kQ {i
10ke |4 AW b 10kQ _, |, R,=50Q |
= 1 ; -— 0
741 —5° - |
s ;; u vi R=2MQ Azg
in ° T °
@ (b)
Figure 5.6

For Example 5.1: (a) origina circuit, (b) the equivalent circuit.
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Solution:

Using the op amp model in Fig. 5.4, we obtain the equivalent circuit
of Fig. 5.6(a) as shown in Fig. 5.6(b). We now solve the circuit in
Fig. 5.6(b) by using nodal analysis. At node 1, KCL gives

Us — Vs U1 U1 — Vo

+
10 X 10° 2000 x 10° 20 x 10°
Multiplying through by 2000 X 10° we obtain
200vs = 301v, — 100v,

or
2vg +
=By — vy = b= % (5.1.1)
At node O,
U1 — Vo _ Ug— Auy
20 X 10° 50
But vy = —v, and A = 200,000. Then
v, — U, = 400(v, + 200,000v,) (5.1.2)
Substituting v, from Eqg. (5.1.1) into Eq. (5.1.2) gives
0 = 26,667,067v, + 53,333,333vs; = % = —1.9999699
S

This is closed-loop gain, because the 20-k() feedback resistor closes
the loop between the output and input terminals. When vg = 2V, v, =
—3.9999398 V. From Eq. (5.1.1), we obtain v; = 20.066667 wV. Thus,
i = —2 Yo _ 019999 mA
20 X 10
It is evident that working with a nonideal op amp is tedious, as we are
dealing with very large numbers.
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If the same 741 op amp in Example 5.1 is used in the circuit of Fig. 5.7,
calculate the closed-loop gain v./vs. Find i, when vg = 1 V.

Answer: 9.00041, 0.657 mA.

5.3 Ideal Op Amp

To facilitate the understanding of op amp circuits, we will assume ideal
op amps. An op amp isided if it has the following characteristics:

1. Infinite open-loop gain, A = oo,
2. Infinite input resistance, R, = <.
3. Zero output resistance, R, = 0.

Practice Problem 5.1

MW
s C) 40 kQ +
§ 5kQ 20kQ = 4
Figure 5.7 7

For Practice Prob. 5.1.
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%

O

Figure 5.8
Ideal op amp

model.

I

The two characteristics can be ex-
ploited by noting that for voltage cal-
culations the input port behaves as a
short circuit, while for current calcula-
tions the input port behaves as an

it.
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An ideal op amp is an amplifier with infinite open-loop gain, infinite
input resistance, and zero output resistance.

Although assuming an ideal op amp provides only an approxi-
mate analysis, most modern amplifiers have such large gains and
input impedances that the approximate analysis is a good one. Unless
stated otherwise, we will assume from now on that every op amp is
ideal.

For circuit analysis, the ideal op amp is illustrated in Fig. 5.8,
which is derived from the nonideal model in Fig. 5.4. Two important
characteristics of the ideal op amp are:

1. The currents into both input terminals are zero:

il = 0, i2 =0 (55)

This is due to infinite input resistance. An infinite resistance
between the input terminals implies that an open circuit exists there
and current cannot enter the op amp. But the output current is not
necessarily zero according to Eq. (5.1).

2. The voltage across the input terminals is equal to zero; i.e,,

Vg=v,—0, =0 (5.6)

or

U1 = Uy (5.7)

Thus, an ideal op amp has zero current into its two input ter-
minals and the voltage between the two input terminals is equal
to zero. Equations (5.5) and (5.7) are extremely important
and should be regarded as the key handles to analyzing op amp

open circu circuits.
Example 5.2 Rework Practice Prob. 5.1 using the ideal op amp model.
— Solution:
v L > We may replace the op amp in Fig. 5.7 by its equivalent model in
” — Fig. 5.9 as we did in Example 5.1. But we do not really need to do
i,=0 = * o this. We just need to keep Egs. (5.5) and (5.7) in mind as we analyze
- - the circuit in Fig. 5.7. Thus, the Fig. 5.7 circuit is presented as in
AN Fig. 5.9. Notice that
36 wk2 Oy g
5kQ + Uy = Ug (521)
% 20 kQ . ) . . .
- Since i; = 0, the 40-k() and 5-k() resistors are in series, the same
T current flows through them. v, is the voltage across the 5-k() resistor.
Figure 5.9 - Hence, using the voltage division principle,
For Example 5.2. 5 Uo

Vo= 2 (5.2.2)
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According to Eq. (5.7),
Uy = Uq (523)

Substituting Egs. (5.2.1) and (5.2.2) into Eq. (5.2.3) yields the closed-
loop gain,

Uo Uo

=9 5.24
9 o (5.2.4)

Vg =
which is very close to the value of 9.00041 obtained with the nonideal
model in Practice Prob. 5.1. This shows that negligibly small error
results from assuming ideal op amp characteristics.

At node O,

: Vo Vo
i = + —mA 525
° 40+5 20 ( )

From Eq. (5.2.4), when vs = 1V, v, = 9 V. Substituting for v, = 9V
in Eq. (5.2.5) produces

io = 0.2 + 0.45 = 0.65mA

This, again, is close to the value of 0.657 mA obtained in Practice
Prob. 5.1 with the nonideal model.
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Repeat Example 5.1 using the ideal op amp model.

Answer: —2, 0.2 mA.

5.4 Inverting Amplifier

In this and the following sections, we consider some useful op amp
circuits that often serve as modules for designing more complex cir-
cuits. The first of such op amp circuits is the inverting amplifier shown
in Fig. 5.10. In this circuit, the noninverting input is grounded, v; is
connected to the inverting input through R, and the feedback resistor
Ry is connected between the inverting input and output. Our goa is to
obtain the relationship between the input voltage v; and the output volt-
age vo. Applying KCL at node 1,
Ui — U1 U1 — Ug

i =10, = = 5.8
1 =12 R, R (5.8)

But v, = v, = 0 for an ideal op amp, since the noninverting terminal
is grounded. Hence,

Practice Problem 5.2

v

Figure 5.10
The inverting amplifier.

I A key feature of the inverting amplifier

is that both the input signal and the
feedback are applied at the inverting
terminal of the op amp.
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Note there are two types of gains: the
one here is the closed-loop voltage
gain A,, while the op amp itself has an
open-loop voltage gain A.

Figure 5.11
An equivalent circuit for the inverter in
Fig. 5.10.

Chapter5  Operational Amplifiers

or

(5.9)

The voltage gain is A, = vo/v; = —Ry/R;. The designation of the cir-
cuit in Fig. 5.10 as an inverter arises from the negative sign. Thus,

An inverting amplifier reverses the polarity of the input signal while
amplifying it.

Notice that the gain is the feedback resistance divided by the
input resistance which means that the gain depends only on the
external elements connected to the op amp. In view of Eqg. (5.9), an
equivalent circuit for the inverting amplifier is shown in Fig. 5.11.
The inverting amplifier is used, for example, in a current-to-voltage
converter.

Example 5.3
25kQ
A
10kQ
ANA iy S
+

Figure 5.12
For Example 5.3.

Refer to the op amp in Fig. 5.12. If v; = 0.5V, calculate: (a) the output
voltage v, and (b) the current in the 10-k() resistor.

Solution:

(a) Using Eq. (5.9),
vo_ R 25
Uj Rl 10
Vo = —2.5v; = —25(05) = =125V

—-25

(b) The current through the 10-k() resistor is

vi-0 05-0
Ry 10 x 10°

50 wA

Practice Problem 5.3

120 kQ
A%

3kQ

RS

l o
+

30 mv %
o

Figure 5.13
For Practice Prob. 5.3.

Find the output of the op amp circuit shown in Fig. 5.13. Calculate the
current through the feedback resistor.

Answer: —1.2V, 10 uA.
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Determine v, in the op amp circuit shown in Fig. 5.14. Example 5.4

40 kQ

Solution:
Applying KCL at node a,

Va—Uo 6 —v4
40kQ  20kQ
Vg~ Uo=12—-2v0, = Vo = v, — 12

6V

But v, = v, = 2V for an idea op amp, because of the zero voltage ©

drop across the input terminals of the op amp. Hence, .
Figure 5.14

Vo=6—-12= -6V For Example 5.4.
Notice that if v, = 0 = v,, then v, = —12, as expected from Eq. (5.9).

Two kinds of current-to-voltage converters (also known as transresis- Practice Problem 5.4
tance amplifiers) are shown in Fig. 5.15.

(a) Show that for the converter in Fig. 5.15(a),
Yo_ _p

Is

(b) Show that for the converter in Fig. 5.15(b),

Uo Rs Rs)
2= -Rl1+=+=
1( R R

Is

Answer: Proof.

R
L%
IS 1)0
5
@ (b
Figure 5.15
For Practice Prob. 5.4. _Iz> R
AWV
Ry _Il> 21
AN > 1,
vy +
55 Noninverting Amplifier _
i O

Another important application of the op amp is the noninverting ampli-
fier shown in Fig. 5.16. In this case, the input voltage v; is applied  Figure 5.16
directly at the noninverting input terminal, and resistor R, is connected  The noninverting amplifier.
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Figure 5.17
The voltage follower.

o
First +

stage i

Second
stage

Figure 5.18

A voltage follower used to isolate two

cascaded stages of acircuit.
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between the ground and the inverting terminal. We are interested in the
output voltage and the voltage gain. Application of KCL at the invert-
ing terminal gives

0—-—vy v1— U

ip =1 1
i1 =1, = R, R (5.10)
But v, = v, = v;. Equation (5.10) becomes
—Ui Uy — Vg
RR R
or
Ry
Vo = (1 + )vi (5.11)
R

The voltage gain is A, = vo/v; = 1 + R;/Ry, which does not have a
negative sign. Thus, the output has the same polarity as the input.

A noninverting amplifier is an op amp circuit designed to provide a
positive voltage gain.

Again we notice that the gain depends only on the external resistors.

Notice that if feedback resistor Ry = 0 (short circuit) or R; = «©
(open circuit) or both, the gain becomes 1. Under these conditions
(Rr = 0 and R; = ), the circuit in Fig. 5.16 becomes that shown
in Fig. 5.17, which is called a voltage follower (or unity gain
amplifier) because the output follows the input. Thus, for a voltage
follower

Ve = U, (5.12)

Such a circuit has a very high input impedance and is therefore use-
ful as an intermediate-stage (or buffer) amplifier to isolate one circuit
from another, as portrayed in Fig. 5.18. The voltage follower mini-
mizes interaction between the two stages and eliminates interstage
loading.

Example 5.5

For the op amp circuit in Fig. 5.19, calculate the output voltage v,.

Solution:

We may solve this in two ways: using superposition and using nodal
analysis.

B METHOD 1 Using superposition, we let

Uo = Vo1 T Vg2
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where v, is due to the 6-V voltage source, and v, is due to the 4-V
input. To get vy, We set the 4-V source equal to zero. Under this
condition, the circuit becomes an inverter. Hence Eq. (5.9) gives

10
Vop = —1(6) =-15V
To get vy, We set the 6-V source egual to zero. The circuit becomes

a noninverting amplifier so that Eq. (5.11) applies.

10
Voz = (1 + 4)4 =14V

Thus,
Vo ="Ug T+ Up=—-15+14= -1V

M METHOD 2 Applying KCL at node a,
6 — vy vy~ Vg

4 10

But v, = v, = 4, and so

6-4 44—,
4 10

= 5=4-v,

or v, = —1V, as before.
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10kQ

4kQ

a
b aF
4v 5
L O
Figure 5.19 -

For Example 5.5.

6V

Calculate v, in the circuit of Fig. 5.20.

Answer: 7 V.

5.6 Summing Amplifier

Besides amplification, the op amp can perform addition and subtrac-
tion. The addition is performed by the summing amplifier covered in
this section; the subtraction is performed by the difference amplifier
covered in the next section.

A summing amplifier is an op amp circuit that combines several inputs
and produces an output that is the weighted sum of the inputs.

The summing amplifier, shown in Fig. 5.21, is a variation of the
inverting amplifier. It takes advantage of the fact that the inverting con-
figuration can handle many inputs at the same time. We keep in mind

Practice Problem 5.5

§8kQ

Figure 5.20
For Practice Prob. 5.5.

i
Ry —1> A J—
7/1 O——NVWV ’\N\/\I
| [
R 2| L] 9%
v O— MWV a =
i3 + +
— —
v3 O—WW—— 0 %
o o

Figure 5.21
The summing amplifier.



186 Chapter5  Operational Amplifiers
that the current entering each op amp input is zero. Applying KCL at
node a gives
=iy +i,+ g (5.13)
But
i U1 — Uy P Uy — Uy
1~ ’ 2
R R
t 8 (5.14)
. U3 — Ua . Ua — Uo
i3 = , =
Rs Re
We note that v, = 0 and substitute Eq. (5.14) into Eq. (5.13). We get
Ry R Ry >
= ——v; + —v, + — 5.15
Uo (Rl U1 R2U2 Rs U3 ( )
indicating that the output voltage is a weighted sum of the inputs. For
this reason, the circuit in Fig. 5.21 is called a summer. Needless to say,
the summer can have more than three inputs.
Example 5.6 Calculate v, and i, in the op amp circuit in Fig. 5.22.

5kQ 10kQ

Figure 5.22
For Example 5.6.

Solution:
This is a summer with two inputs. Using Eqg. (5.15) gives

v = —[150(2) + ;%(1)} = —(4+4)=-8V

The current i, is the sum of the currents through the 10-kQ) and 2-kQ)
resistors. Both of these resistors have voltage v, = —8 V across them,
since v, = v, = 0. Hence,

vVo—0 v,—0

io = 10 + 2 mA = —08 - 4= -48mA
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Find v, and iy, in the op amp circuit shown in Fig. 5.23.

20kQ 8kQ
AW AW
10kQ i
M SN —
6 kQ *
ae
15V C_) - G) .
: 4KQ §
12V o

Figure 5.23
For Practice Prob. 5.6.

Answer: —3.8V, —1.425 mA.

5.7 Difference Amplifier

Difference (or differential) amplifiers are used in various applications
where there is need to amplify the difference between two input sig-
nals. They are first cousins of the instrumentation amplifier, the most
useful and popular amplifier, which we will discuss in Section 5.10.

A difference amplifier is a device that amplifies the difference between
two inputs but rejects any signals common to the two inputs.

Consider the op amp circuit shown in Fig. 5.24. Keep in mind that
zero currents enter the op amp terminals. Applying KCL to node a,

U1 — Va _ Ua — Vo
Ry Ry
or
R R
Vo = (F\’i + 1)1}a — Ejvl (5.16)
R2
AW
R n| O
AW =
| AV +
NG y
vp Ry °
T °

Figure 5.24
Difference amplifier.

Practice Problem 5.6

The difference amplifier is also known
as the subtractor, for reasons to be
shown later.
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Applying KCL to node b,

Up—Up Up—0

Rs R4
or
R4
vp = Ry + R4UZ (5.17)
But v, = vy, Substituting Eq. (5.17) into Eq. (5.16) yields
v =<R2 1) Re v *&v
°T\R, Re+ R, 2 Ry ©
or
Ry(1 + Ri/Ry) R,
=ZF- 12, 2 5.18
TR+ Ry/RYZ T R 519

Since a difference amplifier must reject a signal common to the two
inputs, the amplifier must have the property that v, = 0 when v, = v,.
This property exists when
Ri_Rs
R Ry
Thus, when the op amp circuit is a difference amplifier, Eq. (5.18)
becomes

(5.19)

R
vo = & (U2 = v2) (5.20)
1
If R, = R, and Ry = Ry, the difference amplifier becomes a subtractor,
with the output
Vo = Up — U1 (5.21)

Example 5.7

Design an op amp circuit with inputs v; and v, such that
Vo = —5vq + 3v,.

Solution:
The circuit requires that
Uo = v, — 5vq (5.7.1)
This circuit can be realized in two ways.
Design 1 If we desire to use only one op amp, we can use the op
amp circuit of Fig. 5.24. Comparing Eq. (5.7.1) with Eq. (5.18), we see
R>

5 = R,=5R (5.7.2)
Ry
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Also,
1+ R/Ry) § 3
Q+Ry/R) > —  1+RJR; 5
or
2-1+78 o R -R (5.7.3)
R4 3 .

If we choose R; = 10 k) and R; = 20 k(}, then R, = 50 k() and
R, = 20 kQ.

Design 2 If we desire to use more than one op amp, we may cascade
an inverting amplifier and a two-input inverting summer, as shown in
Fig. 5.25. For the summer,

Vo = —Uy — 504 (5.7.9)
and for the inverter,
UVa = —3U» (5.7.5)
Combining Egs. (5.7.4) and (5.7.5) gives
Vo = v, — 5vq

which is the desired result. In Fig. 5.25, we may select R; = 10 kQ)
andR3= 20kQOI’R1= R3= 10 kQ.
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Figure 5.25
For Example 5.7.

Design a difference amplifier with gain 5.

Answer: Typica: R; = Rz = 10k}, R, = R, = 50 k().

Practice Problem 5.7

An instrumentation amplifier shown in Fig. 5.26 is an amplifier of low-
level signals used in process control or measurement applications and
commercialy available in single-package units. Show that

R ( 2R,

vo—El 1+R4>(v2—v1)

Solution:
We recognize that the amplifier Az in Fig. 5.26 is a difference amplifier.
Thus, from Eq. (5.20),
R
Uo = Ez(voz — Vo) (58.1)
1
Since the op amps A; and A, draw no current, current i flows through
the three resistors as though they were in series. Hence,

Vo1 — U2 — |(R3 + R4 + Rg) = |(2R3 + R4) (582)

Example 5.8
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Figure 5.26
Instrumentation amplifier; for Example 5.8.

But
i — Ua — Up
Ry
and v, = v4, Up = U, Therefore,
L
i=——" 5.8.3
R, (583)
Inserting Egs. (5.8.2) and (5.8.3) into Eq. (5.8.1) gives
R 2R
Vo = Rlz(l + R43>(U2 —vq)

as required. We will discuss the instrumentation amplifier in detail in
Section 5.10.

Practice Problem 5.8

Obtain iy, in the instrumentation amplifier circuit of Fig. 5.27.

8.00v 40kQ

20 kQ
— VWV >

ke fo

801V 40kQ % 1kQ

Figure 5.27
Instrumentation amplifier; for Practice Prob. 5.8.

Answer: 20 uA.
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5.8 Cascaded Op Amp Circuits

As we know, op amp circuits are modules or building blocks for
designing complex circuits. It is often necessary in practical applica
tions to connect op amp circuits in cascade (i.e., head to tail) to achieve
a large overal gain. In general, two circuits are cascaded when they
are connected in tandem, one behind another in a single file.

A cascade connection is a head-to-tail arrangement of two or more op
amp circuits such that the output of one is the input of the next.

When op amp circuits are cascaded, each circuit in the string is
called a stage; the origina input signa is increased by the gain of the
individual stage. Op amp circuits have the advantage that they can be
cascaded without changing their input-output relationships. Thisis due to
the fact that each (ideal) op amp circuit has infinite input resistance and
zero output resistance. Figure 5.28 displays a block diagram represen-
tation of three op amp circuits in cascade. Since the output of one stage
is the input to the next stage, the overall gain of the cascade connection
is the product of the gains of the individual op amp circuits, or

A=A A A (5.22)

Although the cascade connection does not affect the op amp input-
output relationships, care must be exercised in the design of an actual
op amp circuit to ensure that the load due to the next stage in the cas-
cade does not saturate the op amp.

o— —o
+ + + +

Stage 1 _ Stage 2 _ Stage 3 _
vy A v2= Ay A, v3= Agvp As %= Agus
- _ - _
Figure 5.28

A three-stage cascaded connection.

191

Find v, and i, in the circuit in Fig. 5.29.
Solution:

This circuit consists of two noninverting amplifiers cascaded. At the
output of the first op amp,

12
Vg = (1 + 3) (20) = 100 mVv
At the output of the second op amp,
10
Vo = (1 + 4>va = (1 + 2.5)100 = 350 mV
The required current i, is the current through the 10-kQ) resistor.
Uog — Up

o = 10 mA

Example 5.9

o C_D §3k£2

Figure 5.29
For Example 5.9.
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But v, = vy = 100 mV. Hence,
. _ (350 — 100) % 107° o5 WA
° 10 X 10° a

Practice Problem 5.9 Determine v, and i, in the op amp circtit in Fig. 5.30.

F‘> Answer: 24V, 2 mA.
+

8V @) 8kQ %
4KkQ §

th 5
Figure 5.30
For Practice Prob. 5.9.
Example 5.10 Ifvy;=1Vandv, = 2V, find v, in the op amp circuit of Fig. 5.31.
77777777777777777 R
,,,,,,,,,,,,,,,,,,, ey
10kQ

Figure 5.31
For Example 5.10.

Solution:

1. Define. The problem is clearly defined.
2. Present. With an input of v, of 1V and of v, of 2V, determine

the output voltage of the circuit shown in Figure 5.31. The op
amp circuit is actually composed of three circuits. The first
circuit acts as an amplifier of gain —3(—6 k{/2 k) for v, and
the second functions as an amplifier of gain —2(—8 k/4 k(})
for v,. The last circuit serves as a summer of two different gains
for the output of the other two circuits.
3. Alternative. There are different ways of working with this circuit.
Since it involves ideal op amps, then a purely mathematical



approach will work quite easily. A second approach would be to

5.8

Cascaded Op Amp Circuits

use PSpice as a confirmation of the math.

4. Attempt. Let the output of the first op amp circuit be designated
as vy, and the output of the second op amp circuit be designated

as v,,. Then we get

U171 = _31)1 =-3X1= _3V,
Uop = _21)2: —2X2=-4V

In the third circuit we have

Vo = —(10kQ/5kQ) 11 + [—(10kQ/15 k) 5]

= —2(-3) — (2/3(-9)
= 6 + 2.667 = 8.667 V

5. Evaluate. In order to properly evaluate our solution, we need to
identify a reasonable check. Here we can easily use PSpice to

provide that check.

Now we can simulate this in PSpice. We see the results are

shown in Fig. 5.32.

R4

—-3.000

R2

R5

—4.000

5kQ

667V
R1 8.66

10kQ
OPAMP

R3

15kQ

u3

Figure 5.32
For Example 5.10.

We note that we obtain the same results using two entirely

different techniques (the first is to treat the op amp circuits as
just gains and a summer and the second is to use circuit analysis
with PSpice). This is a very good method of assuring that we

have the correct answer.

. Satisfactory? We are satisfied we have obtained the asked for

results. We can now present our work as a solution to the

problem.

193
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Practice Problem 5.10

LF411

(a) JFET—input op
amp subcircuit

Figure 5.34

If v, = 4V and v, = 3V, find v, in the op amp circuit of
Fig. 5.33.

60 kQ

20kQ

%

a5

U1 —

= 50 kQ § 30kQ

-

2O =

Figure 5.33
For Practice Praob. 5.10.

Answer: 18 V.

5.9 Op Amp Circuit Analysis with PSpice

PSpice for Windows does not have a model for an ideal op amp, athough
one may create one as a subcircuit using the Create Subcircuit line in
the Tools menu. Rather than creating an ideal op amp, we will use one
of the four nonideal, commercially available op amps supplied in the
PSpice library eval.slb. The op amp models have the part names LF411,
LM111, LM324, and uA741, as shown in Fig. 5.34. Each of them can
be obtained from Draw/Get New Part/libraries - - - /eval.lib or by sm-
ply selecting Draw/Get New Part and typing the part name in the
PartName dialog box, as usual. Note that each of them requires dc sup-
plies, without which the op amp will not work. The dc supplies should
be connected as shown in Fig. 5.3.

3 4|U1A
1
2
11
LM324 UA741
(b) Op amp (c) Five— (d) Five—connection
subcircuit connection op amp subcircuit

op amp subcircuit

Nonideal op amp model available in PSpice.
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Use PSpice to solve the op amp circuit for Example 5.1.

Solution:

Using Schematics, we draw the circuit in Fig. 5.6(a) as shown in
Fig. 5.35. Notice that the positive terminal of the voltage source vg is
connected to the inverting terminal (pin 2) viathe 10-k() resistor, while
the noninverting terminal (pin 3) is grounded as required in Fig. 5.6(a).
Also, notice how the op amp is powered; the positive power supply
terminal V+ (pin 7) is connected to a 15-V dc voltage source, while
the negative power supply terminal V — (pin 4) is connected to —15 V.
Pins 1 and 5 are left floating because they are used for offset null
adjustment, which does not concern us in this chapter. Besides adding
the dc power supplies to the original circuit in Fig. 5.6(a), we have also
added pseudocomponents VIEWPOINT and IPROBE to respectively
measure the output voltage v, at pin 6 and the required current i
through the 20-k() resistor.

0
V2
Ul o +
VS 2V 37 — = 15V
s -39983 -
B 6,
Rl V— 051
2 0 +]
\ 4 & = 4 — 15V 0
10K ! -
UAT741 v3
/) 1.999E-04
R2
MM
20K
Figure 5.35

Schematic for Example 5.11.

After saving the schematic, we simulate the circuit by selecting
Analysig’'Simulate and have the results displayed on VIEWPOINT and
IPROBE. From the results, the closed-loop gain is

Vo _ ~39983 _ ) 99015

Ug 2
and i = 0.1999 mA, in agreement with the results obtained analytically
in Example 5.1.

Example 5.11

Rework Practice Prob. 5.1 using PSpice.

Answer: 9.0027, 0.6502 mA.

Practice Problem 5.11
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Digi
,:gltjl o——| Four-bit Analog
(0000—1111) O0—— DAC output

(CY

RR SR SR SR
MSB LSB E&‘@%

Figure 5.36
Four-bit DAC: (a) block diagram, (b)
binary weighted ladder type.

I In practice, the voltage levels may be
typically Oand £ 5 V.

Chapter5  Operational Amplifiers

5.10 TAppIications

The op amp is a fundamental building block in modern electronic
instrumentation. It is used extensively in many devices, along with
resistors and other passive elements. Its numerous practical applications
include instrumentation amplifiers, digital-to-analog converters, analog
computers, level shifters, filters, calibration circuits, inverters, sum-
mers, integrators, differentiators, subtractors, logarithmic amplifiers,
comparators, gyrators, oscillators, rectifiers, regulators, voltage-to-
current converters, current-to-voltage converters, and clippers. Some of
these we have aready considered. We will consider two more applica-
tions here: the digital-to-analog converter and the instrumentation
amplifier.

5.10.1 Digital-to-Analog Converter

The digital-to-analog converter (DAC) transforms digital signals into
analog form. A typical example of a four-bit DAC is illustrated in
Fig. 5.36(a). The four-bit DAC can be realized in many ways. A sim-
ple realization is the binary weighted ladder, shown in Fig. 5.36(b).
The bits are weights according to the magnitude of their place value,
by descending value of R;/R, so that each lesser bit has half the
weight of the next higher. This is obviously an inverting summing
amplifier. The output is related to the inputs as shown in Eq. (5.15).
Thus,
Re Re Re Re

Vo R1V1 + RZV2 + RSV3 + R4V4 (5.23)
Input V, is called the most significant bit (MSB), while input V, is the
least significant bit (LSB). Each of the four binary inputs V4, ..., V4
can assume only two voltage levels: 0 or 1 V. By using the proper input
and feedback resistor values, the DAC provides a single output that is
proportional to the inputs.

Example 5.12

In the op amp circuit of Fig. 5.36(b), let R = 10 kQ), R; = 10 kQ,
R, = 20 k), R; = 40 k(), and R, = 80 k(). Obtain the analog output
for binary inputs [0000Q], [0001], [0010],..., [1111].

Solution:
Substituting the given values of the input and feedback resistors in
Eq. (5.23) gives
Ry Ry Ry Ry
“Vo==V;+ Vo + —V3+ —V,
o Rl 1 R2 2 R3 3 R4 4

Using this equation, adigital input [V;,V,V3V,] = [0000] produces an ana
log output of —V, = 0V; [V1V,V3V,] = [0001] gives —V, = 0.125 V.
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Similarly,
[V1V,V3V,] = [0010] = -V, =025V
[V1V2V3V,] = [0011] = -V, =025+ 0.125 = 0.375V
[V1V,V3V,] = [0100] = -V,=05V
[V1V,oV3V,] = [1111] = -Vo=1+ 05+ 025+ 0.125

1875V

Table 5.2 summarizes the result of the digital-to-analog conversion.
Note that we have assumed that each bit has a value of 0.125 V. Thus,
in this system, we cannot represent a voltage between 1.000 and 1.125,
for example. This lack of resolution is a major limitation of digital-to-
analog conversions. For greater accuracy, a word representation with a
greater number of bits is required. Even then a digital representation
of an analog voltage is never exact. In spite of this inexact represen-
tation, digital representation has been used to accomplish remarkable
things such as audio CDs and digital photography.

TABLE 5.2 : : : & el

Input and output values of te four-bit DAC.

Binary input Output
[ViVoV3V,] Decimal value -V,
0000 0 0
0001 1 0.125
0010 2 0.25
0011 3 0375
0100 4 05
0101 5 0.625
0110 6 0.75
0111 7 0.875
1000 8 1.0
1001 9 1.125
1010 10 125
1011 11 1.375
1100 12 15
1101 13 1.625
1110 14 1.75
1111 15 1.875
A three-hit DAC is shown in Fig. 5.37. Practice Problem 5.12
(a) Determine |V| for [V,V,V3] = [010]. 10K 10K
(b) Find |V, if [V41VaV3] = [110]. o ANA——
(c) If Vo] = 1.25 V is desired, what should be [V;V,V3]? ok
(d) To get [Vo| = 1.75 V, what should be [V;V,V;]? B2 O AAAAY > .
as o
Answer: 05V, 1.5V, [101], [111]. A0ke =

v3 0——AMN——

Figure 5.37
Three-bit DAC; for Practice Prob. 5.12.
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5.10.2 Instrumentation Amplifiers

One of the most useful and versatile op amp circuits for precision
measurement and process control is the instrumentation amplifier (1A),
so called because of its widespread use in measurement systems. Typ-
ical applications of IAs include isolation amplifiers, thermocouple
amplifiers, and data acquisition systems.

The instrumentation amplifier is an extension of the difference
amplifier in that it amplifies the difference between its input signals.
As shown in Fig. 5.26 (see Example 5.8), an instrumentation amplifier
typically consists of three op amps and seven resistors. For conven-
ience, the amplifier is shown again in Fig. 5.38(a), where the resistors are
made equal except for the external gain-setting resistor Rg, connected
between the gain set terminals. Figure 5.38(b) shows its schematic
symbol. Example 5.8 showed that

Vo = Ay(v2 — v1) (5.24)
Inverting input R
_ no A
Gain set
; R
A AA %, Output
Re 2’ : R
L —MWW—
Gain set : > R
Noninverting input 72 o2
‘ oD
R
— 0
””””””””””” i o—+

Figure 5.38

@

(b)

(a) The instrumentation amplifier with an external resistance to adjust the gain, (b) schematic diagram.

where the voltage gain is

2R
A =1+ — 5.25
Re (5.25)
As shown in Fig. 5.39, the instrumentation amplifier amplifies small
differential signal voltages superimposed on larger common-mode

STl

Small differential signalsriding on larger Instrumentation amplifier Amplified differential signd,

common-mode signals

Figure 5.39

No common-mode signal

The |A rgjects common voltages but amplifies small signal voltages.
T. L. Floyd, Electronic Devices, 2nd ed., Englewood Cliffs, NJ: Prentice Hall, 1996, p. 795.
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voltages. Since the common-mode voltages are equal, they cancel each
other.
The IA has three major characteristics:

=

. The voltage gain is adjusted by one external resistor Rg.

2. The input impedance of both inputsis very high and does not vary
as the gain is adjusted.

3. The output v, depends on the difference between the inputs v,

and v,, not on the voltage common to them (common-mode

voltage).

Due to the widespread use of 1As, manufacturers have developed
these amplifiers on single-package units. A typical example is the
LHO0036, developed by National Semiconductor. The gain can be var-
ied from 1 to 1,000 by an external resistor whose value may vary from
100 € to 10 k.

199

In Fig. 5.38, let R = 10 k), v, = 2.011V, and v, = 2.017 V. If Rg
is adjusted to 500 (), determine: (a) the voltage gain, (b) the output
voltage v,.

Solution:
(a) The voltage gain is
2R 2 X 10,000
_l’_ _— =

A=1+=1

41
Rs 500

(b) The output voltage is
Vo = A,(vs — vq) = 41(2.017 — 2.011) = 41(6) mV = 246 mV

Example 5.13

Determine the value of the external gain-setting resistor R required
for the IA in Fig. 5.38 to produce a gain of 142 when R = 25 k().

Answer: 354.6 ().

5.11 Summary

1. The op amp is a high-gain amplifier that has high input resistance
and low output resistance.

2. Table 5.3 summarizes the op amp circuits considered in this chap-
ter. The expression for the gain of each amplifier circuit holds
whether the inputs are dc, ac, or time-varying in general.

Practice Problem 5.13
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TABLE 5.3 : - ; ,

Summary of basic op amp circuits.

Op amp circuit Name/output-input relationship
R, Inverting amplifier
Ry
R - -
.y 1 Vo R, Ui

Noninverting amplifier

R
Vo = l+E vj
1

\oltage follower
Uo = U
v —O 1

Ry R Summer
1 o= VW (Rf +Rf +Rf )
R Uo= 7| 5 V1T 5 V2T 5U3
V2 O AAM— . Ry R Rs
(o]
Rs
3 0—MWW— =
R R, Difference amplifier
1 O—AM— 3
Uo= - W2 — 0V
o Rl( 2 l)
%
Rl R2
72 O—AWV——WW—

10.

11
12.

. An ideal op amp has an infinite input resistance, a zero output

resistance, and an infinite gain.

. For an ideal op amp, the current into each of its two input termi-

nals is zero, and the voltage across its input terminals is negligi-
bly small.

. In an inverting amplifier, the output voltage is a negative multiple
of the input.

. In anoninverting amplifier, the output is a positive multiple of the
input.

. In a voltage follower, the output follows the input.

. In a summing amplifier, the output is the weighted sum of the
inputs.

. In a difference amplifier, the output is proportiona to the differ-

ence of the two inputs.

Op amp circuits may be cascaded without changing their input-
output relationships.

PSpice can be used to analyze an op amp circuit.

Typical applications of the op amp considered in this chapter include
the digital-to-analog converter and the instrumentation amplifier.
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51

5.2

Review Questions

Thetwo input terminals of an op amp are labeled as: 5.6
(a) high and low.

(b) positive and negative.

(c) inverting and noninverting.

(d) differential and nondifferential.

For anideal op amp, which of the following statements
are not true?

(a) The differential voltage across the input terminals
is zero.

(b) The current into the input terminalsis zero.
(c) The current from the output terminal is zero.
(d) Theinput resistanceis zero.

(e) The output resistance is zero.

5.3 Forthecircuitin Fig. 5.40, voltage v, is:

@ -6V (b) -5V
(© -12V (d) —02V
10k %
—/\N\/\Ii

2kQ

v 3kg§ %

Figure 5.40
For Review Questions 5.3 and 5.4.

5.4  For thecircuitin Fig. 5.40, current iy is:

(8) 0.6 MA (b) 0.5 mA
() 0.2mA (d) 1/12 mA

55 If vg= Ointhecircuit of Fig. 5.41, current i, is:

(8 —10mA (b) —2.5mA
(c) 10/12 mA (d) 10/14 mA
8kQ

2 + +i0
o @ 5 %
L

Figure 5.41
For Review Questions 5.5, 5.6, and 5.7.

4kQ
AWV =
Vs

If vs=8mV in the circuit of Fig. 5.41, the output
voltageis:
(@ —44mv (b) —8mV
(©)4mv (d) 7mV
57 RefertoFig. 5.41. If vs= 8mV voltage v, is:
(@ —-8mv () Omv
(c) 10/3mVv (d) 8mv
5.8 The power absorbed by the 4-k() resistor in
Fig.5.42is:
(@ 9mw (b) 4 mw
(©)2mw (d) 1 mw
4kQ

>

sv ()

Figure 5.42
For Review Questions 5.8.

5.9 Which of these amplifiersisused in adigital-to-anal og
converter?
(a) noninverter
(b) voltage follower
(c) summer
(d) difference amplifier

5.10 Difference amplifiersareusedin:

(8) instrumentation amplifiers
(b) voltage followers

(c) voltage regulators

(d) buffers

(e) summing amplifiers

(f) subtracting amplifiers

Answers. 5.1c, 5.2¢,d, 5.3b, 5.4b, 5.5a, 5.6¢, 5.7d, 5.8b,
5.9¢, 5.10a,f.
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1

Section 5.2 Operational Amplifiers

Problems

5.1 Theequivaent model of acertain op amp is shown
in Fig. 5.43. Determine:

(a) the input resistance
(b) the output resistance
(c) the voltage gain in dB.

60 Q
. 15 MQ %Avd
+

Figure 5.43
For Prob. 5.1.

5.2 Theopen-loop gain of an op amp is 100,000. Calculate
the output voltage when there are inputs of +10 uV
on the inverting termina and +20 ©V onthe
noninverting terminal.

5.3 Determine the output voltage when —20 wV is
applied to the inverting terminal of an op amp and
+30 wV toits noninverting terminal. Assume that
the op amp has an open-loop gain of 200,000.

5.4 The output voltage of an op ampis —4V when the
noninverting input is 1 mV. If the open-loop gain
of theop amp is2 X 10° what istheinverting
input?

5.5 For the op amp circuit of Fig. 5.44, the op amp has
an open-loop gain of 100,000, an input resistance of
10 kQ, and an output resistance of 100 (). Find the
voltage gain v,/v; using the nonideal model of the
op amp.

Figure 5.44
For Prob. 5.5.

5.6 Using the same parameters for the 741 op amp in
Example 5.1, find v, in the op amp circuit of
Fig. 5.45.

Figure 5.45
For Prob. 5.6.

5.7 TheopampinFig. 5.46 hasR, = 100 k(},
R, = 100 (), A = 100,000. Find the differential
voltage vy and the output voltage v,.

10kQ 100 kQ
AWA%Y% o]
+
1mv %
T o
Figure 5.46
For Prob. 5.7.
Section 5.3 Ideal Op Amp

5.8 Obtain v, for the op amp circuit in Fig. 5.47.

10kQ
5kQ
e
} —O
+ +
1mA 2 7V e 2kQ _Vo
T o
@ (b)

Figure 5.47
For Prob. 5.8.

5.9 Determineuv, for each of the op amp circuitsin
Fig. 5.48.



2kQ

s
S
2mA eV %
o

+

- +
sv () 2V 2k 2 %

Figure 5.48
For Prob. 5.9.

5.10 Find the gainv,/v of the circuit in Fig. 5.49.

37kQ
NV

Figure 5.49
For Prob. 5.10.

5.11 Using Fig. 5.50, design a problem to help other
efJd students better understand how ideal op amps work.

Ry

Ry

I

Figure 5.50
For Prob. 5.11.

5.12 Cadlculate the voltage ratio v,/vs for the op amp
circuit of Fig. 5.51. Assume that the op amp is
ideal.

Problems 203

M

5K 30kQ
AMAN o S I
°

v
° %30 kQ %
O
L

Figure 5.51
For Prob. 5.12.

5.13 Find v, and i, inthe circuit of Fig. 5.52.

Figure 5.52

For Prob. 5.13.
5.14 Determine the output voltage v, in the circuit of
Fig. 5.53.
10kQ
10kQ

20 kQ

M > 5
+

5mA 5kQ

Figure 5.53
For Prob. 5.14.

Section 5.4 Inverting Amplifier

5.15 (a) Determine the ratio v,/isin the op amp circuit of
Fig. 5.54.

(b) Evaluate theratio for Ry = 20 kQ), R, = 25 k(},

Figure 5.54
For Prob. 5.15.



204 Chapter5  Operational Amplifiers

5.16 Using Fig. 5.55, design a problem to help students 5.19 Determinei, inthecircuit of Fig. 5.58.
efJd better understand inverting op amps.
2kQ 4kQ 10 kQ
Rs .
AN o
R, x i 1v 4kQ
AN—— >N —~ 5kQ
+
CD Vé” Figure 5.58
Ve For Prob. 5.19.
5.20 Inthecircuit of Fig. 5.59, calculate v, of v = 0.
£ 8kQ
Figure 5.55
For Prob. 5.16. 2kQ
4kQ 4kQ
MW -~ |
5.17 Calculate the gain v,/v; when the switch in Fig. 5.56 v "
Isin: 9V o %
(a) position 1 (b) position 2 (c) position 3 -
i O

12 kQ

Figure 5.59
For Prob. 5.20.

5.21 Calculate v, in the op amp circuit of Fig. 5.60.

10 kQ

10 kQ

3V
Figure 5.56 L
For Prob. 5.17. Figure 5.60
For Prob. 5.21.
*5.18 For the circuit shown in Figure 5.57, solve for the
Thevenin equivalent circuit looking into terminals A 5.22 Design an inverting amplifier with again of —15.
and B.
10kQ 5.23 For the op amp circuit in Fig. 5.61, find the voltage
ganv,/vs.
10 kQ R
a AW
5V 10Q Rl
AW
Lo
o b +
= Vs R v
Figure 5.57 _
For Prob. 5.18. - 0

_— Figure 5.61
* An asterisk indicates a challenging problem. For Prob. 5.23.



5.24 Inthecircuit shown in Fig. 5.62, find k in the voltage
transfer function v, = kv

Figure 5.62
For Prob. 5.24.

Section 5.5 Noninverting Amplifier

5.25 Calculate v, in the op amp circuit of Fig. 5.63.

< 12kQ

"
+
oV 20kQ 2 %
L

Figure 5.63
For Prob. 5.25.

5.26 Using Fig. 5.64, design a problem to help other
efJd students better understand noninverting op amps.

v® R, § Rs

Figure 5.64
For Prob. 5.26.

5.27 Find v, in the op amp circuit of Fig. 5.65.

8Q
169 v } v

SV 9 240 1203 %

+

Figure 5.65
For Prob. 5.27.

b

Problems

5.28 Findi, in the op amp circuit of Fig. 5.66.

10kQ

Figure 5.66
For Prob. 5.28.

5.29 Determine the voltage gain v,/v; of the op amp

50kQ
A
ar l io
10V 20kQ
L

circuitin Fig. 5.67.

Ry

“ CD

Figure 5.67
For Prob. 5.29.

5.30 Inthecircuit shownin Fig. 5.68, find i, and the

power absorbed by the 20-k() resistor.

60 kQ

Figure 5.68
For Prob. 5.30.

aF * ix
24V 30kQ 20kQ
L

5.31 For thecircuit in Fig. 5.69, find i.

12 kQ

ama (}) §3kg §6k9

Figure 5.69
For Prob. 5.31.

205
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5.32 Cdlculatei, and v, in the circuit of Fig. 5.70. Find
the power dissipated by the 30-k() resistor.

i
% _48kQ
ANV

:‘ *
w N
amv (5) SOk ke 5 30k £ %

§ 10 kQ -

Figure 5.70
For Prob. 5.32.

5.33 Refer to the op amp circuit in Fig. 5.71. Calculateiy
and the power dissipated by the 3-k(} resistor.

1kQ
i
+
3mA 4 kQ 2kQ 3kQ

‘\}_

Figure 5.71
For Prob. 5.33.

5.34 Given the op amp circuit shown in Fig. 5.72, express
v, interms of v, and v,.

Figure 5.72
For Prob. 5.34.

5.35 Design anoninverting amplifier with again of 10.

5.36 For thecircuit shown in Fig. 5.73, find the Thevenin
equivalent at terminals a-b. (Hint: To find Ry, apply
acurrent source i, and calculate v,.)

Operational Amplifiers

“® ﬁ

Figure 5.73
For Prob. 5.36.

Section 5.6 Summing Amplifier

5.37 Determine the output of the summing amplifier in

Fig. 5.74.
% 10kQ
W 30kQ
2V oke
J; +
3V z0ka - %

Lo 1

Figure 5.74
For Prob. 5.37.

5.38 Using Fig. 5.75, design a problem to help other
efd students better understand summing amplifiers.

O
L

Figure 5.75
For Prob. 5.38.

5.39 For the op amp circuit in Fig. 5.76, determine the
value of v, in order to makev, = —16.5V.

10kQ 50kQ
2V O AWA—— W
20 kQ
7 oMM, .,
(o}
50kQ
-1V o—AWA——

Figure 5.76
For Prob. 5.39.



5.40 Find v, intermsof v4, v,, and vsin the circuit of
Fig. 5.77.

R R R

=

Figure 5.77
For Prob. 5.40.

5.41 An averaging amplifier is a summer that provides
erJdd an output equal to the average of the inputs. By
using proper input and feedback resistor values,
one can get

—Vout = (V1 + U2 + U3 + V)

Using a feedback resistor of 10 k() design an
averaging amplifier with four inputs.

5.42 A three-input summing amplifier has input resistors
with R, = R, = Ry = 30 k(). To produce an
averaging amplifier, what value of feedback resistor
is needed?

5.43 A four-input summing amplifier hasR; = R, =
Rz = Ry = 12 k(). What value of feedback resistor
is needed to make it an averaging amplifier?

5.44 Show that the output voltage v,, of the circuit in
Fig. 5.78is

_ (Re+ Ry

= Ruv; + R
Uo R(Ry + Rz)( 2U1 102)

Ry
AN
Rs
é AN =
= R, ——0 U
v O—— MWWV +
Ry

Figure 5.78
For Prob. 5.44.

5.45 Design an op amp circuit to perform the following

efdd operation:

Vo = v, — 20,

All resistances must be = 100 k().

Problems 207

5.46 Using only two op amps, design acircuit to solve

v _01_02+U3
“VYout —
3 2

Section 5.7 Difference Amplifier

5.47 Thecircuitin Fig. 5.79 isfor adifference amplifier.
Findv, giventhatv, = 1V andv, = 2 V.

30kQ

AN

2kQ

AN -
2kQ —o
A + +

V1
v2 20kQ *o
+ o
Figure 5.79

For Prob. 5.47.

5.48 Thecircuit in Fig. 5.80 isadifferential amplifier
driven by abrige. Find v,

80 kQ

+5mV

%

20 kQ
% 80 kQ

Figure 5.80
For Prob. 5.48.

5.49 Design adifference amplifier to have again of 2 and
a common-mode input resistance of 10 k() at each
input.

5.50 Design acircuit to amplify the difference between
eqd twoinputsby 2.
(a) Use only one op amp.
(b) Use two op amps.
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5.51

*5.52

*5.53

Chapter5  Operational Amplifiers

Using two op amps, design a subtractor.

Design an op amp circuit such that

Vo = —21)1+4vz— 5U3_U4

Let al theresistors be in the range of 5 to 100 k().

The ordinary difference amplifier for fixed-gain
operation is shown in Fig. 5.81(a). It issimple and

O O
reliable unless gain is made variable. One way of L
providing gain adjustment without losing simplicity B
and accuracy isto use the circuit in Fig. 5.81(b). (©
Another way isto use the circuit in Fig. 5.81(c). Figure 5.81
Show that: For Prob. 5.53.
(8) for thecircuit in Fig. 5.81(a),
v R Section 5.8 Cascaded Op Amp Circuits
i R
vi * 5.54 Determine the voltage transfer ratio v,/vsin the op
(b) for the circuit in Fig. 5.81(b), amp circuit of Fig. 5.82, where R = 10 k().
E _ R2 1
Ui Rll + i
2Rs

(c) for thecircuit in Fig. 5.81(c),

R R
Yo _ —2(1 N 72)
vi Ry 2Rs

Ry
MY
Rl
o AN - -
N Figure 5.82
N 3 For Prob. 5.54.
+
R
' R, h 5.55 In acertain electronic device, athree-stage amplifier
- isdesired, whose overall voltage gainis 42 dB. The
© T © individual voltage gains of the first two stages are to
- be equal, while the gain of the third is to be one-
@ fourth of each of thefirst two. Calculate the voltage
gain of each.

5.56 Using Fig. 5.83, design a problem to help other
efd students better understand cascaded op amps.

Figure 5.83
(b) For Prob. 5.56.



5.57 Find v, inthe op amp circuit of Fig. 5.84.

25 kQ 50kQ 100kQ 100 kQ >
v AW N
S0KO 100 kQ
= N 50 kQ
U2

Figure 5.84
For Prob. 5.57.

5.58 Cdculatei, inthe op amp circuit of Fig. 5.85.

10 kQ

Figure 5.85
For Prob. 5.58.

5.59 Inthe op amp circuit of Fig. 5.86, determine the
voltage gain v,/vs. Take R = 20 kQ).

4R

Figure 5.86
For Prob. 5.59.

5.60 Caculate v,/v; in the op amp circuit of Fig. 5.87.

4kQ

A

10kQ
5kQ
o—AMW\ = >
+ + Y
P +
i
S ) 2kQ v
10kQ

Figure 5.87
For Prob. 5.60.
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5.61 Determineuv, inthecircuit of Fig. 5.88.

20kQ 04V 10kQ
oO—MWW—

20kQ

40 kQ

—08v 10kQ

Figure 5.88
For Prob. 5.61.

5.62 Obtain the closed-loop voltage gain v,/v; of the
circuit in Fig. 5.89.

Figure 5.89
For Prob. 5.62.

5.63 Determinethe gain v,/v; of the circuit in Fig. 5.90.

Rs
ANV
R2 R4
Ry
—AMA Rs

% Rs -
T\ A %

o

Figure 5.90

For Prob. 5.63.
5.64 For the op amp circuit shown in Fig. 5.91, find
Vo/Vs
Gy
P 'A%
Gz
—MWM—
G, G
A% =
+ L—o
G, +
' AW %

|||—

Figure 5.91
For Prob. 5.64.



210 Chapter5  Operational Amplifiers

5.65 Find v, inthe op amp circuit of Fig. 5.92. 5.68 Finduv, in the circuit of Fig. 5.95, assuming that
Ry = oo (open circuit).

R
ANV
15kQ
5kQ
>
.
Figure 5.92 omv 6kQ 4 § 1kQ
For Prob. 5.65. 2kQ -
L

5.66 For thecircuit in Fig. 5.93, find v,

Figure 5.95
For Prob. 5.68 and 5.69.

100 kQ
5.69 Repeat the previous problem if Ry = 10 k().
-
5.70 Determine v, inthe op amp circuit of Fig. 5.96.
%
o
Figure 5.93 30kQ 40kQ
For Prob. 5.66. —WW—
10 kQ A
b 20kQ c
: . L . AW =
5.67 Obtain the output v, in the circuit of Fig. 5.94. v + . %
= 60 kQ
= 10kQ 10kQ
2V 20 kQ =
—MWMW—|
= 10kQ
B
3V
= 10kQ .

o2v (%) 4v

Figure 5.94 Figure 5.96
For Prob. 5.67. For Prob. 5.70.



5.71 Determineuv, inthe op amp circuit of Fig. 5.97.

Figure 5.97
For Prob. 5.71.

5.72 Find the load voltage v, inthe circuit of Fig. 5.98.

100 kQ
ANV

20kQ
+

2kQ 9

250 kQ

0av ()

Figure 5.98
For Prob. 5.72.

5.73 Determinetheload voltage v, in the circuit of
Fig. 5.99.

Figure 5.99
For Prob. 5.73.
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5.74 Findi, inthe op amp circuit of Fig. 5.100.

10 kQ

0.6V

Figure 5.100
For Prob. 5.74.

Section 5.9 Op Amp Circuit Analysis with
S PSpi
3 pice

5.75 Rework Example 5.11 using the nonideal op amp
LM324 instead of uA741.

5.76 Solve Prob. 5.19 using PSpice and op amp uA741.

5.77 Solve Prob. 5.48 using PSpice and op amp LM324.

5.78 Use PSpiceto obtain v, in the circuit of Fig. 5.101.

40 kQ

10kQ  20kQ 30kQ

Figure 5.101
For Prob. 5.78.

5.79 Determine v, in the op amp circuit of Fig. 5.102,

using PSpice.
20 kQ 10kQ
5V ( ) =
+
O
— :‘_ +
100kQ ©
20 kQ 10 kQ 40 kQ i
1V

Figure 5.102
For Prob. 5.79.
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5.80 Use PSpiceto solve Prob. 5.70.

5.81 UsePSpiceto verify theresultsin Example 5.9.
Assume nonideal op amps LM324.

Section 5.10 Applications

5.82 A five-hit DAC covers avoltage range of 0to 7.75 V.
efd Calculate how much voltage each bit is worth.
5.83 Design asix-hit digital-to-analog converter.

(@) If V| = 1.1875V isdesired, what should
[V1VaV3V,4VeVe] be?

(b) Calculate |V, if [V1VaVaV4VsVe] = [011011].
(c) What is the maximum value |V,| can assume?
*5.84 A four-bit R-2Rladder DAC is presented in Fig. 5.103.

(a) Show that the output voltage is given by
V.
L, Ve Vs ﬁ)
16R

— = — 4+
Vo Rf(zR 4R 8R
(b) If R = 12kQ and R = 10k, find |V, for

Ry
2R
Vi v
o
R
2R =
Vo o—AMA—]
§ R
2R
Vz o—AMA—]
R
2R
V; o— MWWW—]

Figure 5.103
For Prob. 5.84.

5.85 Inthe op amp circuit of Fig. 5.104, find the value of
R so that the power absorbed by the 10-k() resistor is
10 mW. Takevg = 2 V.

10kQ

O= R

?mm
<

Figure 5.104
For Prob. 5.85.

Operational Amplifiers

5.86 Design avoltage controlled ideal current source
efd (within the operating limits of the op amp) where the
output current is equal to 200 vg(t) wA.,

5.87 Figure 5.105 displays a two-op-amp instrumentation
amplifier. Derive an expression for v, in terms of v,
and v,. How can this amplifier be used asa
subtractor?

Figure 5.105
For Prob. 5.87.

*5.88 Figure 5.106 shows an instrumentation amplifier
driven by abridge. Obtain the gain v,/v; of the
amplifier.

25kQ 500 kQ

%

Figure 5.106
For Prob. 5.88.



Comprehensive Problems

1

5.89 Design acircuit that provides arelationship between
e7d output voltage v, and input voltage v such that
v, = 12vs — 10. Two op amps, a6-V battery, and
severa resistors are available.

Comprehensive Problems

5.90 The op amp circuit in Fig. 5.107 isacurrent
amplifier. Find the current gain i, /is of the amplifier.

20kQ
—AWW—

§4k9
flo
§2k§2

is (D) § 5kQ

Figure 5.107
For Prob. 5.90.

5.91 A noninverting current amplifier is portrayed in
Fig. 5.108. Caculate the gaini,/is. Take R, = 8 k()
and R, = 1kQ.

R, §R2
tho

is § R

Figure 5.108
For Prob. 5.91.

5.92 Refer to the bridge amplifier shown in Fig. 5.109.

Determine the voltage gain v,/ v;.

¢

Figure 5.109
For Prob. 5.92.

*5.93 A voltage-to-current converter is shown in Fig. 5.110,
which meansthat i, = Av; if RiR, = R3R,. Find the

constant term A.

R

Rs

60 kQ

Figure 5.110
For Prob. 5.93.
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But in science the credit goes to the man who convinces the world, not
to the man whom the idea first occurs.
—Francis Darwin

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.c), “an ability to design a system,
component, or process to meet desired needs.”

The “ability to design a system, component, or process to meet
desired needs’ is why engineers are hired. That is why this is the
most important technical skill that an engineer has. Interestingly, your
success as an engineer is directly proportional to your ability to com-
municate but your being able to design is why you will be hired in
the first place.

Design takes place when you have what is termed an open-ended
problem that eventually is defined by the solution. Within the context
of this course or textbook, we can only explore some of the elements
of design. Pursuing all of the steps of our problem-solving technique Photo by Charles Alexander
teaches you several of the most important elements of the design
process.

Probably the most important part of design is clearly defining what
the system, component, process, or, in our case, problem is. Rarely is
an engineer given a perfectly clear assignment. Therefore, as a student,
you can develop and enhance this skill by asking yourself, your col-
leagues, or your professors questions designed to clarify the problem
Statement.

Exploring alternative solutions is another important part of the
design process. Again, as a student, you can practice this part of the
design process on amost every problem you work.

Evaluating your solutionsis critical to any engineering assignment.

Again, thisis a skill that you as a student can practice on every prob-
lem you work.
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In contrast to a resistor, which spends
or dissipates energy irreversioly, an
inductor or capacitor stores or releases
energy (i.e., has a memory).

Dielectric with permittivity e

g

Metal plates,
< each with area A
o —F——eo
d
Figure 6.1

A typical capacitor.

Figure 6.2
A capacitor with applied voltage v.

I Alternatively, capacitance is the amount
of charge stored per plate for a unit
voltage difference in a capacitor.

Chapter 6 Capacitors and Inductors

6.1 Introduction

So far we have limited our study to resistive circuits. In this chapter,
we shall introduce two new and important passive linear circuit ele-
ments: the capacitor and the inductor. Unlike resistors, which dissipate
energy, capacitors and inductors do not dissipate but store energy,
which can be retrieved at a later time. For this reason, capacitors and
inductors are called storage elements.

The application of resistive circuits is quite limited. With the intro-
duction of capacitors and inductors in this chapter, we will be able to
analyze more important and practical circuits. Be assured that the cir-
cuit analysis techniques covered in Chapters 3 and 4 are equally appli-
cable to circuits with capacitors and inductors.

We begin by introducing capacitors and describing how to com-
bine them in series or in parallel. Later, we do the same for inductors.
As typical applications, we explore how capacitors are combined with
op amps to form integrators, differentiators, and analog computers.

6.2 Capacitors

A capacitor is a passive element designed to store energy in its elec-
tric field. Besides resistors, capacitors are the most common electrical
components. Capacitors are used extensively in electronics, communi-
cations, computers, and power systems. For example, they are used in
the tuning circuits of radio receivers and as dynamic memory elements
in computer systems.

A capacitor is typically constructed as depicted in Fig. 6.1.

A capacitor consists of two conducting plates separated by an insu-
lator (or dielectric).

In many practical applications, the plates may be aluminum foil while
the dielectric may be air, ceramic, paper, or mica.

When a voltage source v is connected to the capacitor, as in
Fig. 6.2, the source deposits a positive charge g on one plate and a neg-
ative charge —q on the other. The capacitor is said to store the electric
charge. The amount of charge stored, represented by q, is directly pro-
portional to the applied voltage v so that

q=Cuv (6.1)

where C, the constant of proportionality, is known as the capacitance
of the capacitor. The unit of capacitance is the farad (F), in honor of
the English physicist Michael Faraday (1791-1867). From Eq. (6.1),
we may derive the following definition.

Capacitance is the ratio of the charge on one plate of a capacitor to
the voltage difference between the two plates, measured in farads (F).

Note from Eqg. (6.1) that 1 farad = 1 coulomb/volt.
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Historical

Michael Faraday (1791-1867), an English chemist and physicist,
was probably the greatest experimentalist who ever lived.

Born near London, Faraday realized his boyhood dream by work-
ing with the great chemist Sir Humphry Davy at the Royal Institu-
tion, where he worked for 54 years. He made several contributions
in al areas of physical science and coined such words as electroly-
sis, anode, and cathode. His discovery of electromagnetic induction
in 1831 was a major breakthrough in engineering because it provided
away of generating electricity. The electric motor and generator oper-
ate on this principle. The unit of capacitance, the farad, was named
in his honor.

The Burndy Library Collection
at The Huntington Library,
San Marino, California

Although the capacitance C of a capacitor is the ratio of the charge

g per plate to the applied voltage v, it does not depend on g or v. It

depends on the physical dimensions of the capacitor. For example, for

the parallel-plate capacitor shown in Fig. 6.1, the capacitance is given by

€A

C r (6.2

where A is the surface area of each plate, d is the distance between

the plates, and e is the permittivity of the dielectric material between

the plates. Although Eq. (6.2) applies to only parallel-plate capacitors,

we may infer from it that, in general, three factors determine the value
of the capacitance:

1. The surface area of the plates—the larger the area, the greater the
capacitance.

2. The spacing between the plates—the smaller the spacing, the greater
the capacitance.

3. The permittivity of the material—the higher the permittivity, the
greater the capacitance.

Capacitors are commercidly available in different values and types.
Typically, capacitors have values in the picofarad (pF) to microfarad (wF)
range. They are described by the dielectric material they are made of and
by whether they are of fixed or variable type. Figure 6.3 shows the cir-
cuit symbols for fixed and variable capacitors. Note that according to the
passive sign convention, if v > O0andi > Oorifv < 0andi < O, the
capacitor is being charged, and if v - i < 0, the capacitor is discharging.

Figure 6.4 shows common types of fixed-value capacitors. Poly-
ester capacitors are light in weight, stable, and their change with tem-
perature is predictable. Instead of polyester, other dielectric materials
such as mica and polystyrene may be used. Film capacitors are rolled
and housed in metal or plastic films. Electrolytic capacitors produce
very high capacitance. Figure 6.5 shows the most common types of
variable capacitors. The capacitance of a trimmer (or padder) capacitor

Capacitor voltage rating and capaci-
tance are typically inversely rated due
to the relationships in Egs. (6.1) and
(6.2). Arcing occurs if d'is small and V/
is high.

i C i C
o— |} 0o o— /H/ 0
+ v - + v —
@ (b)
Figure 6.3

Circuit symbols for capacitors: (a) fixed
capacitor, (b) variable capacitor.



218

Chapter 6 Capacitors and Inductors

@

(b) ©

Figure 6.4

Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor.

Courtesy of Tech America

(b)

Figure 6.5

Variable capacitors: (a) trimmer capacitor,
(b) filmtrim capacitor.

Courtesy of Johanson.

According to Eq. (6.4), for a capacitor
to carry current, its voltage must vary
with time. Hence, for constant voltage,
i=0.

~“— Slope=C

0 do/dt

Figure 6.6
Current-voltage relationship of a capacitor.

is often placed in parallel with another capacitor so that the equivalent
capacitance can be varied dlightly. The capacitance of the variable air
capacitor (meshed plates) is varied by turning the shaft. Variable capac-
itors are used in radio receivers alowing one to tune to various sta-
tions. In addition, capacitors are used to block dc, pass ac, shift phase,
store energy, start motors, and suppress noise.

To obtain the current-voltage relationship of the capacitor, we take
the derivative of both sides of Eq. (6.1). Since

-

i = o (6.3)
differentiating both sides of Eq. (6.1) gives

. dv

i=C o (6.4)

This is the current-voltage relationship for a capacitor, assuming the
passive sign convention. The relationship is illustrated in Fig. 6.6 for
a capacitor whose capacitance is independent of voltage. Capacitors
that satisfy EqQ. (6.4) are said to be linear. For a nonlinear capacitor,
the plot of the current-voltage relationship is not a straight line.
Although some capacitors are nonlinear, most are linear. We will
assume linear capacitors in this book.

The voltage-current relation of the capacitor can be obtained by
integrating both sides of Eq. (6.4). We get

t
u:éjxidt 6.5)
or
1 t
b= f i dt + o(to) 6.6)
to

where v(tp) = q(tp)/C is the voltage across the capacitor at time tg
Equation (6.6) shows that capacitor voltage depends on the past history
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of the capacitor current. Hence, the capacitor has memory—a property
that is often exploited.
The instantaneous power delivered to the capacitor is

dv
=vi = Co— 6.7
p=vi=Co (6.7)
The energy stored in the capacitor is therefore
t t v(t) v(t)
d 1
w—J' pdt—CJ' vvdt—CJ vdv = =Cv? (6.8)
. o b(~=) 2 loee

We note that v(—«) = 0, because the capacitor was uncharged at
t = —oo, Thus,

1
w=§@2 (6.9)

Using Eqg. (6.1), we may rewrite Eq. (6.9) as
2

-9
2C

Equation (6.9) or (6.10) represents the energy stored in the electric field
that exists between the plates of the capacitor. This energy can be
retrieved, since an ideal capacitor cannot dissipate energy. In fact, the
word capacitor is derived from this element’s capacity to store energy
in an electric field.

We should note the following important properties of a capacitor:

w (6.10)

1. Note from Eq. (6.4) that when the voltage across a capacitor is not
changing with time (i.e., dc voltage), the current through the capac-
itor is zero. Thus,

A capacitor is an open circuit to dc.

However, if a battery (dc voltage) is connected across a capacitor,
the capacitor charges.
2. The voltage on the capacitor must be continuous.

The voltage on a capacitor cannot change abruptly.

The capacitor resists an abrupt change in the voltage across it.
According to Eq. (6.4), a discontinuous change in voltage requires
an infinite current, which is physically impossible. For example,
the voltage across a capacitor may take the form shown in
Fig. 6.7(a), whereas it is not physically possible for the capacitor
voltage to take the form shown in Fig. 6.7(b) because of the abrupt
changes. Conversely, the current through a capacitor can change
instantaneously.

3. The ideal capacitor does not dissipate energy. It takes power from
the circuit when storing energy in its field and returns previously
stored energy when delivering power to the circuit.

4. A real, nonideal capacitor has a parallel-model |eakage resistance,
as shown in Fig. 6.8. The leakage resistance may be as high as

219

Yy
—_

@ (b)
Figure 6.7
Voltage across a capacitor: (a) allowed,
(b) not allowable; an abrupt change is not
possible.

An alternative way of looking at this is
using Eq. (6.9), which indicates that
energy is proportional to voltage
squared. Since injecting or extracting
energy can only be done over some
finite time, voltage cannot change
instantaneously across a capacitor.

s L eakage resistance

||
O 11 O

Capacitance

Figure 6.8
Circuit model of anonideal capacitor.
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100 MQ) and can be neglected for most practical applications. For
this reason, we will assume ideal capacitors in this book.
Example 6.1 (a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.

(b) Find the energy stored in the capacitor.

Solution:
(@) Since g = Cuv,

q=3X10 *x 20 =60pC
(b) The energy stored is

1 1
w=ECvz=5><3><10*12><4oo=600pJ

Practice Problem 6.1

What is the voltage across a 3-wF capacitor if the charge on one plate
is 0.12 mC? How much energy is stored?

Answer: 40 V, 2.4 mJ.

Example 6.2

The voltage across a 5-uF capacitor is
v(t) = 10 cos 6000t V
Cdculate the current through it.

Solution:
By definition, the current is
dv d
i(t) = C— = 5 X 10— (10 cos 6000t
0 =Cq gt (10 €0s60009

—5 X 107° x 6000 X 10sin 6000t = —0.3 sin 6000t A

Practice Problem 6.2

If a 10-uF capacitor is connected to a voltage source with
v(t) = 50 sin 2000t V

determine the current through the capacitor.

Answer: cos 2000t A.

Example 6.3

Determine the voltage across a 2-uF capacitor if the current through it is
i(t) = 6e 0% mA

Assume that the initial capacitor voltage is zero.
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Solution:
1 t
Sincev = CJ i dt + v(0) and v(0) = 0,
0
1 t
V= j 6e 3% dt - 1073
2% 107° )
_ 3x10° —3000t ' -1- efsoom)v
—3000 0
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The current through a 100-uF capacitor is i(t) = 50 sin 12077t mA.
Calculate the voltage acrossitatt = 1 msandt = 5 ms. Takev(0) = 0.

Answer: 93.14mV, 1.736 V.

Practice Problem 6.3

Determine the current through a 200-uF capacitor whose voltage is
shown in Fig. 6.9.

Solution:
The voltage waveform can be described mathematically as

50t V o<t<1
100 — 50t V 1<t<3
—200 + 50tV 3I<t<4
0 otherwise

Sincei = Cdv/dt and C = 200 uF, we take the derivative of v to obtain

50 o<t<1
—50 1<t<3
50 I<t< 4
0 otherwise
10 mA o<t<1
—10mA 1<t<3
10 mA I<t<4
0 otherwise

v(t) =

i(t) =200 X 10°° x

Thus the current waveform is as shown in Fig. 6.10.

Example 6.4
(1)
50
O | | |
1 2\3/1 t
_50 -
Figure 6.9
For Example 6.4.
i (MA) 4
10
0 : >
1 2 3 4t
_10 -
Figure 6.10
For Example 6.4.

An initialy uncharged 1-mF capacitor has the current shown in
Fig. 6.11 across it. Calculate the voltage across it at t = 2ms and
t=5ms

Answer: 100 mV, 400 mV.

Practice Problem 6.4
i (MA)

100

0 1 1 >
2 4 6 t(ms

Figure 6.11
For Practice Prob. 6.4.
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Example 6.5

2mF
Il

I

2kQ
MWV

Obtain the energy stored in each capacitor in Fig. 6.12(a) under dc

conditions.
—O+ 1z
mj .

4 mF

sma (1) %3k9 Skgi %4kQ em %3kg iy

T 7

v2

@
Figure 6.12
For Example 6.5.

(b)

Solution:
Under dc conditions, we replace each capacitor with an open circuit,
as shown in Fig. 6.12(b). The current through the series combination
of the 2-kQ) and 4-k() resistors is obtained by current division as

3

| Zm(GmA) =2mA

Hence, the voltages v, and v, across the capacitors are
v, = 2000i = 4V v, = 4000i = 8V

and the energies stored in them are
1
—Cpi = —(2 X 1073)(4)? = 16 mJ

2
1 1 —3 2

Practice Problem 6.5

3kQ
1kQ
30 uF
10V 20 uF == 6kQ
Figure 6.13

For Practice Prob. 6.5.

Under dc conditions, find the energy stored in the capacitorsin Fig. 6.13.

Answer: 810 nJ, 135 uJ.

6.3 Series and Parallel Capacitors

We know from resistive circuits that the series-parallel combination is a
powerful tool for reducing circuits. This technique can be extended to
series-parallel connections of capacitors, which are sometimes encoun-
tered. We desire to replace these capacitors by a single equivalent
capacitor Ceq.

In order to obtain the equivalent capacitor Co, of N capacitors in
parallel, consider the circuit in Fig. 6.14(a). The equivalent circuit is
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in Fig. 6.14(b). Note that the capacitors have the same voltage v across
them. Applying KCL to Fig. 6.14(a),

But iy = C, dv/dt. Hence,
d d d d
i = Ci— + Co— + Cy— + -+ + Cy—
dt dt dt dt
N g g (6.12)
U U
(Se)E o
<k21 K)dt Tt
where

The equivalent capacitance of N parallel-connected capacitors is the
sum of the individual capacitances.

We observe that capacitors in parallel combine in the same manner as
resistors in series.

We now obtain Cg, of N capacitors connected in series by com-
paring the circuit in Fig. 6.15(a) with the equivalent circuit in
Fig. 6.15(b). Note that the same current i flows (and consequently
the same charge) through the capacitors. Applying KVL to the loop
in Fig. 6.15(a),

U:Ul+U2+U3+"'+UN (614)
1 t
But v, = c J i(t) dt + vi(to). Therefore,
ki
1 (" 1 ("
v = j i(t) dt + vy(to) + j i(t) dt + v,(to)
C . C, .
1 t
+---+J i(t) dt + vn(to)
Cn .
. (6.15)
(l+l+ --+1)j i(t) dt + v4(tg) + va(to)
Cl CZ CN 5 1\'0, 2\'0.
+ -+ + on(to)
l t
—J i(t) dt + v(tp)
Ceq .
where
1 1 1 1 1
— =+ — 4+ — F -+ — 6.16
Cq C GC GCg Cn (6.16)
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(b)
Figure 6.14
(a) Parallel-connected N capacitors,
(b) equivalent circuit for the parallel
capacitors.

i c, Cs Cy
—
|| Il |
I I | 4
+v1—- +vp—- +v3— + UN —
@
i
 —_—
+
v Ceq::V

(b)
Figure 6.15
(a) Series-connected N capacitors,
(b) equivalent circuit for the series
capacitor.
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The initial voltage v(ty) across Cg is required by KVL to be the sum
of the capacitor voltages at ty. Or according to Eqg. (6.15),
U(to) = vato) + valte) + -+ + vn(to)
Thus, according to Eg. (6.16),
The equivalent capacitance of series-connected capacitors is the
reciprocal of the sum of the reciprocals of the individual capacitances.
Note that capacitors in series combine in the same manner as resistors
in parallel. For N = 2 (i.e., two capacitors in series), Eq. (6.16)
becomes
1 1 1
_— — 4 —
Cq C G
or
CiCo
Coqg= == 6.17
4 C+ G (617)
Example 6.6 Find the equivalent capacitance seen between terminals a and b of the

circuit in Fig. 6.16.

5uF 60 uF
| [—oa
Ceq
20 uF == 6 uF = 20 uF == -
o b

Figure 6.16
For Example 6.6.

Solution:
The 20-uF and 5-uF capacitors are in series; their equivalent capaci-
tance is

This 4-uF capacitor is in parallel with the 6-uF and 20-uF capacitors,
their combined capacitance is

4+ 6+20=30uF

This 30-wF capacitor is in series with the 60-wF capacitor. Hence, the
equivalent capacitance for the entire circuit is

30 X 60

=2 0uF
® " 30 + 60 ®
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Find the equivalent capacitance seen at the terminals of the circuit in
Fig. 6.17.

Answer: 40 uF.

Practice Problem 6.6

50 uF

60 uF
[l

1,

C
A 0uF 4=

O

Il

20uF == 120uF

Figure 6.17

For Practice Prob. 6.6.

For the circuit in Fig. 6.18, find the voltage across each capacitor.

Solution:

We first find the equivalent capacitance Cqg, shown in Fig. 6.19. The two
parallel capacitorsin Fig. 6.18 can be combined to get 40 + 20 = 60 mF.
This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors.
Thus,

Ceq = mF = 10 mF

+ 5+

Bl =

8l
gl

The total charge is
q = Ceu = 10 X 107*%x30=03C
Thisisthe charge on the 20-mF and 30-mF capacitors, because they are

in series with the 30-V source. (A crude way to see this is to imagine
that charge acts like current, since i = dg/dt.) Therefore,

0.3 0.3
:C%: 0ox10° VY UZZC%Z 30 x 102
Having determined v, and v,, we now use KVL to determine vz by
v3=30—v; —v,=5V
Alternatively, since the 40-mF and 20-mF capacitors are in parallé,
they have the same voltage v; and their combined capacitance is 40 +

20 = 60 mF. This combined capacitance is in series with the 20-mF and
30-mF capacitors and consequently has the same charge on it. Hence,

4 _ 03 _
60mF 60 x 1073

v, =10V

5V

Example 6.7
20 mF 30 mF
| |

+ U1 — + vy — "
30V 40 mF = v3 = 20mF
Figure 6.18
For Example 6.7.

30V - Ceq
Figure 6.19

Equivalent circuit for Fig. 6.18.

Find the voltage across each of the capacitors in Fig. 6.20.

Answer: v, = 30V, v, =30V, v3=10V, v, = 20V.

Practice Problem 6.7

40 uF 60 uF
| |
il il
+ v — + V3 —
+ +
60V V2 == 20 uF vy = 30 uF

Figure 6.20
For Practice Prob. 6.7.
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[—Length, ¢—|

Cross-sectiona area, A

Core material

Number of turns, N

Figure 6.21
Typica form of an inductor.

In view of Eq. (6.18), for an inductor
I to have voltage across its terminals, its

current must vary with time. Hence,

v = 0 for constant current through

the inductor.

(b)

©

Figure 6.22

Various types of inductors: (&) solenoidal
wound inductor, (b) toroidal inductor,
(c) chip inductor.

Courtesy of Tech America.
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6.4 Inductors

An inductor is a passive element designed to store energy in its mag-
netic field. Inductors find numerous applications in electronic and
power systems. They are used in power supplies, transformers, radios,
TVs, radars, and electric motors.

Any conductor of electric current has inductive properties and may
be regarded as an inductor. But in order to enhance the inductive effect,
a practical inductor is usually formed into a cylindrical coil with many
turns of conducting wire, as shown in Fig. 6.21.

An inductor consists of a coil of conducting wire.
If current is allowed to pass through an inductor, it is found that the

voltage across the inductor is directly proportional to the time rate of
change of the current. Using the passive sign convention,

=L A
v ot (6.18)

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is the henry (H), named in honor of
the American inventor Joseph Henry (1797-1878). It is clear from
Eq. (6.18) that 1 henry equals 1 volt-second per ampere.

Inductance is the property whereby an inductor exhibits opposition
to the change of current flowing through it, measured in henrys (H).

The inductance of an inductor depends on its physical dimension
and construction. Formulas for calculating the inductance of inductors
of different shapes are derived from electromagnetic theory and can be
found in standard electrical engineering handbooks. For example, for
the inductor, (solenoid) shown in Fig. 6.21,

N2 A
L=—"
¢

where N is the number of turns, € isthe length, A is the cross-sectional
area, and w is the permeability of the core. We can see from Eq. (6.19)
that inductance can be increased by increasing the number of turns of
coil, using material with higher permeability as the core, increasing the
cross-sectional area, or reducing the length of the coil.

Like capacitors, commercialy available inductors come in differ-
ent values and types. Typical practical inductors have inductance values
ranging from a few microhenrys (wH), as in communication systems,
to tens of henrys (H) as in power systems. Inductors may be fixed or
variable. The core may be made of iron, steel, plastic, or air. The terms
coil and choke are also used for inductors. Common inductors are
shown in Fig. 6.22. The circuit symbols for inductors are shown in
Fig. 6.23, following the passive sign convention.

Equation (6.18) is the voltage-current relationship for an inductor.
Figure 6.24 shows this relationship graphically for an inductor whose

(6.19)
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Historical

Joseph Henry (1797-1878), an American physicist, discovered induc-
tance and constructed an electric motor.

Born in Albany, New York, Henry graduated from Albany Acad-
emy and taught philosophy at Princeton University from 1832 to 1846.
He was the first secretary of the Smithsonian Institution. He conducted
several experiments on electromagnetism and devel oped powerful elec-
tromagnets that could lift objects weighing thousands of pounds. Inter-
estingly, Joseph Henry discovered electromagnetic induction before
Faraday but failed to publish his findings. The unit of inductance, the
henry, was named after him.

inductance is independent of current. Such an inductor is known as a
linear inductor. For a nonlinear inductor, the plot of Eqg. (6.18) will
not be a straight line because its inductance varies with current. We
will assume linear inductors in this textbook unless stated otherwise.
The current-voltage relationship is obtained from Eq. (6.18) as

1
di = LY dt
Integrating gives
1 t
i = L J v(t) dt (6.20)
or
1 t
i = T J v(t) dt + i(to) (6.21)
o

where i(tg) is the total current for —o <t < ty and i(—>) = 0. The
idea of making i(—) = 0 is practical and reasonable, because there
must be a time in the past when there was no current in the inductor.

The inductor is designed to store energy in its magnetic field. The
energy stored can be obtained from Eqg. (6.18). The power delivered to
the inductor is

p=vi= <Lgit>i (6.22)

! todi
J pdt = jw<Ldt)l dt

—oo

The energy stored is

w
(6.23)

L J idi = %Liz(t) - %Liz(—m)

—o0o

Figure 6.23
Circuit symbolsfor inductors: (a) air-core,
(b) iron-core, (c) variable iron-core.

v A

~— Slope=L

0 di/dt
Figure 6.24
Voltage-current relationship of an inductor.
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Since i(—=) = 0,

1.
w = Ele (6.24)

We should note the following important properties of an inductor.

1. Note from Eg. (6.18) that the voltage across an inductor is zero
when the current is constant. Thus,

An inductor acts like a short circuit to dc.

2. An important property of the inductor is its opposition to the
change in current flowing through it.

i i The current through an inductor cannot change instantaneously.

According to Eq. (6.18), a discontinuous change in the current
through an inductor requires an infinite voltage, which is not phys-
icaly possible. Thus, an inductor opposes an abrupt change in the
current through it. For example, the current through an inductor
Figure 6.25 may take the form shown in Fig. 6_.25(531), whereas.theindgctor.cur—
Current through an inductor: (a) allowed, rent cannot take the form shown in Fig. 6.25(b) in real-life situa-
(b) not allowable; an abrupt change is not tions due to the discontinuities. However, the voltage across an
possible. inductor can change abruptly.
3. Like the ideal capacitor, the ideal inductor does not dissipate
energy. The energy stored in it can be retrieved at a later time. The
inductor takes power from the circuit when storing energy and

—
—

@ (b)

Since an inductor is often made of a delivers power to the circuit when returning previously stored
highly conducting wire, it has a very energy.
small resistance. 4. A practical, nonideal inductor has a significant resistive component,

as shown in Fig. 6.26. This is due to the fact that the inductor is

made of a conducting material such as copper, which has some

L R, resistance. This resistance is called the winding resistance R,,,, and

o——WIN—WW——0 it appears in series with the inductance of the inductor. The pres-

| 1 ence of R, makes it both an energy storage device and an energy

dissipation device. Since R, is usually very small, it is ignored in

most cases. The nonideal inductor also has a winding capacitance

C,, due to the capacitive coupling between the conducting coails. C,,

is very small and can be ignored in most cases, except at high fre-
quencies. We will assume ideal inductors in this book.

Figure 6.26
Circuit model for a practical inductor.

Example 6.8 The current through a 0.1-H inductor isi(t) = 10te > A. Find the volt-
age across the inductor and the energy stored in it.

Solution:
Sincev = Ldi/dt and L = 0.1 H,

d
v = O.la(lote_S‘) =et+t(-5eF=eM1-5)V
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1 1
w = E|_i2 = 5(0.1)100t2e’1°‘ = 5t%e 1%
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If the current through a 1-mH inductor is i(t) = 20 cos 100t mA, find
the terminal voltage and the energy stored.

Answer: —2 sin 100t mV, 0.2 cos® 100t uJ.

Practice Problem 6.8

Find the current through a 5-H inductor if the voltage across it is

0 = 302, t>0
v 0, t<0

Also, find the energy stored at t = 5s. Assume i(v) > O.

Solution:

=

t
Sincei = J v(t)dt +i(tg) and L = 5H,

to

1 (! t3
i=J 30t2dt+ 0=6x — = 2t3A
5, 3

The power p = vi = 60t>, and the energy stored is then

5
= 156.25kJ

5 t6
w = det=J 60t° dt = 60—
6] 60

Alternatively, we can obtain the energy stored using Eq. (6.24), by
writing

1 1 1
w|g = SLi5) — SLi(0) = S(5)(2 X 59 ~ 0 = 156.25kJ

as obtained before.

Example 6.9

The terminal voltage of a 2-H inductor is v = 10(1 — t) V. Find the
current flowing through it at t = 4 sand the energy stored initatt = 4-s.
Assume i(0) = 2 A.

Answer: —18 A, 320 J.

Practice Problem 6.9
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Example 6.10 Consider the circuit in Fig. 6.27(a). Under dc conditions, find: (a) i, vc,
and i, (b) the energy stored in the capacitor and inductor.
10 50
WV VW lIL Solution:
4Q (a) Under dc conditions, we replace the capacitor with an open circuit

12V Ci) . 2H§

v 1F
T
@
i 10 5Q
A A l'
L
40
w®
c
-7

(b)
Figure 6.27
For Example 6.10.

and the inductor with a short circuit, as in Fig. 6.27(b). It is evident
from Fig. 6.27(b) that
12

=2A
1+5

i - | L=
The voltage v is the same as the voltage across the 5-() resistor. Hence,

ve =5 =10V
(b) The energy in the capacitor is

1 1
we = 5cvé = 5(1)(102) =50J

and that in the inductor is

1
w, = —LiZ = 5(2)(22) =4]

N

Practice Problem 6.10

i 6H

—

Figure 6.28
For Practice Prob. 6.10.

iy L, Ls Ly
—
o— NN TN —------
T S T
* e} 2 v3 N
v
o
(€Y
i
—_—
+
v Leq

(b)
Figure 6.29
(a) A series connection of N inductors,
(b) equivalent circuit for the series
inductors.

Determine v, i, and the energy stored in the capacitor and inductor
in the circuit of Fig. 6.28 under dc conditions.

Answer: 6V, 3A, 72 J, 27 J.

6.5 Series and Parallel Inductors

Now that the inductor has been added to our list of passive elements, it is
necessary to extend the powerful tool of series-parallel combination. We
need to know how to find the equivalent inductance of a series-connected
or paralel-connected set of inductors found in practical circuits.

Consider a series connection of N inductors, as shown in Fig. 6.29(a),
with the equivalent circuit shown in Fig. 6.29(b). The inductors have
the same current through them. Applying KVL to the loop,

V=01 tv,+v3+ "+ vN (625)
Substituting v, = L di/dt results in
di di di di
=L —+Lo—+Ly—+ -+ Ly—
0 =Ly +lag *lay LNt
N di di
= L = = Leq
(2‘1 k)dt o it
where
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Thus, _|>
+ '1* |2¢ |3¢ |N¢
The equivalent inductance of series-connected inductors is the sum ”
of the individual inductances. Ly Lo La Ln
o
. . . . . @
Inductors in series are combined in exactly the same way as resistors
in series. [
We now consider a parallel connection of N inductors, as shown
in Fig. 6.30(a), with the equivalent circuit in Fig. 6.30(b). The induc- *
tors have the same voltage across them. Using KCL, v Leq
. 1 (" . ] Figure 6.30
But iy = fk J v dt + ik(to); hence, (a) A parallel connection of N inductors,
to (b) equivalent circuit for the parallel
1 [t 1t inductors.
L), Lz ).
l t
+ o4+ — J v dt + in(to)
Ln .
1 1 1\ [
=l—+— 4+ +— dt + iy(tg) + io(t
(Ll L, LN) L v 1(to) 2(to)
o i)
N 1 t N 1 t
= (E ) J vdt+ ity = — J vdt+i(ty) (6.29)
i1 L to k=1 Leq to
where
1 1 1 1 1
— =t =+ =+t (6.30)
Lq Li L Ls Ln

The initia current i(ty) through Lo at t = to is expected by KCL to be
the sum of the inductor currents at to. Thus, according to Eq. (6.29),

i(to) = iato) + ia(to) + - + in(to)
According to Eq. (6.30),

The equivalent inductance of parallel inductors is the reciprocal of the
sum of the reciprocals of the individual inductances.

Note that the inductors in parallel are combined in the same way as
resistors in paralel.
For two inductors in parallel (N = 2), Eq. (6.30) becomes

1 1 1 LiLo
or =——"
e L

==+ = 6.31
lg L1 Ly (6:31)

As long as dl the elements are of the same type, the A-Y transforma
tions for resistors discussed in Section 2.7 can be extended to capacitors
and inductors.
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TABLE 6.1

Important characteristics of the basic elements.’

Relation Resistor (R) Capacitor (C) Inductor (L)
1 t
v-i v=iR v:C[idt+v(to) v=La
. . . dv ! .
i-v: i =v/R i=C— i=—| vdt+i(t)
dt N
2

. _ip_ U _ 1.5 _ T2

por w: p=IiR R w 2Cv w Li
. C,C

&arles. Req:R1+R2 Ceq:C1+C2 Laq:Ll+L2
Parallel: R c.-—ci+c Ly = ik

: Req_Rl-i-Rz e 2 L+ L
Atdc: Same Open circuit Short circuit
Circuit variable
that cannot
change aruptly: Not applicable v i

T Passive sign convention is assumed.

It is appropriate at this point to summarize the most important
characteristics of the three basic circuit elements we have studied. The
summary is given in Table 6.1.

The wye-delta transformation discussed in Section 2.7 for resistors
can be extended to capacitors and inductors.

Example 6.11
4H 20H
o AN A1
e, 7H
o AN A1
8H 10H

Figure 6.31

For Example 6.11.

12H

Find the equivalent inductance of the circuit shown in Fig. 6.31.

Solution:
The 10-H, 12-H, and 20-H inductors are in series; thus, combining
them gives a 42-H inductance. This 42-H inductor is in paralel with
the 7-H inductor so that they are combined, to give
7X42
7+ 42

This 6-H inductor is in series with the 4-H and 8-H inductors. Hence,
Leg=4+6+8=18H

6H

Practice Problem 6.11

Calculate the equivalent inductance for the inductive ladder network in
Fig. 6.32.

20 mH 100 mH 40 mH
o £11R 211
Leq
- 50 mH 40 mH 30mH 20 mH

O

Figure 6.32
For Practice Prob. 6.11.

Answer: 25 mH.
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For the circuit in Fig. 6.33,i(t) = 42 — e ™ mA. If i,(0) = —1mA,
find: (a) i1(0); (D) v(t), va(t), and vo(t); (C) ia(t) and ix(t).
Solution:
(@) Fromi(t) = 42 — e ™ mA, i(0) = 42 — 1) = 4mA. Since i =
i1+ g,
i1(0) =i(0) —i(0) =4 — (-1) =5mA
(b) The equivaent inductance is
Leg=2+4[12=2+3=5H
Thus,
() = Leq% = 5(4)(—1)(—10)e ** mV = 200e ** mV
and

p
vy(t) = 2d—'t = 2(~4)(~10)e * mV = 80e 1* mv

Sincev = vy + vy,
vo(t) = v(t) — vq(t) = 120e " mv
(c) The current i, is obtained as
. 1 [ _ 120 (*
it == J vy dt + i,(0) = —— J e %dt + 5mA
4 ] 4 ]

= —3e’1°‘g +5mA=-31"+3+5=8-31%"mA
Similarly,
1 (" 120 ('
io(t) = 12J vy dt + in(0) = 12J e 1%t — 1mA
0 0

= e —1mA=-e+1-1=-e"mA

Note that i5(t) + i»(t) = i(t).

Example 6.12
i 2H
O_> . .
+ + o - + Iy . + Iy
v 4H vz 12H
o
Figure 6.33
For Example 6.12.

In the circuit of Fig. 6.34, i,(t) = 0.6e"?A. If i(0) = 1.4 A, find:
(@) i2(0); (b) ix(t) and i(t); (c) va(t), va(t), and v(t).

Answer: (a) 0.8 A, (b) (-04 + 1.2 *) A, (-04 + 18 %) A,
(c) —36e 2V, —7.2e 2V, —288e 2 V.

6.6 T Applications

Circuit elements such as resistors and capacitors are commercially
available in either discrete form or integrated-circuit (IC) form. Unlike
capacitors and resistors, inductors with appreciable inductance are dif-
ficult to produce on IC substrates. Therefore, inductors (coils) usually

Practice Problem 6.12

2 3H
2

o— + v -

T

—™ 6H
v I

O

+

Z/2§8H

Figure 6.34

For Practice Prob. 6.12.
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iy R
——AMA————
i1 R]- IZ% 0A
O NNW——
+ 1 -
ov Lo
+ +
2 vp
)
o + o
(@
C
ﬁ_ﬁi
ir R
O—AMN—
+ a
L—o
+
Y
Vo
o T °
(b)
Figure 6.35

Replacing the feedback resistor in the
inverting amplifier in (a) produces an
integrator in (b).
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come in discrete form and tend to be more bulky and expensive. For
this reason, inductors are not as versatile as capacitors and resistors,
and they are more limited in applications. However, there are severa
applications in which inductors have no practical substitute. They are
routinely used in relays, delays, sensing devices, pick-up heads, tele-
phone circuits, radio and TV receivers, power supplies, electric motors,
microphones, and loudspeakers, to mention a few.

Capacitors and inductors possess the following three specia prop-
erties that make them very useful in electric circuits:

1. The capacity to store energy makes them useful as temporary volt-
age or current sources. Thus, they can be used for generating alarge
amount of current or voltage for a short period of time.

2. Capacitors oppose any abrupt change in voltage, while inductors
oppose any abrupt change in current. This property makes induc-
tors useful for spark or arc suppression and for converting pul sat-
ing dc voltage into relatively smooth dc voltage.

3. Capacitors and inductors are frequency sensitive. This property
makes them useful for frequency discrimination.

The first two properties are put to use in dc circuits, while the third
one is taken advantage of in ac circuits. We will see how useful these
properties are in later chapters. For now, consider three applications
involving capacitors and op amps: integrator, differentiator, and analog
computer.

6.6.1

Important op amp circuits that use energy-storage elements include
integrators and differentiators. These op amp circuits often involve
resistors and capacitors; inductors (coils) tend to be more bulky and
expensive.

The op amp integrator is used in numerous applications, especially
in analog computers, to be discussed in Section 6.6.3.

Integrator

An integrator is an op amp circuit whose output is proportional to the
integral of the input signal.

If the feedback resistor Ry in the familiar inverting amplifier of
Fig. 6.35(a) is replaced by a capacitor, we obtain an idea integrator,
as shown in Fig. 6.35(h). It is interesting that we can obtain a mathe-
matical representation of integration thisway. At node a in Fig. 6.35(b),

iR =ic (6.32)
But
S L
IR = R’ Ilc = ot
Substituting these in Eq. (6.32), we obtain
Ui _ %o
R C pm (6.33a)
1
dv, = —Rfcvi dt (6.33b)
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Integrating both sides gives

0olt) = vo(0) = o J 0 (1) (6.3
0

To ensure that v,(0) = O, it is dways necessary to discharge the integra-
tor’s capacitor prior to the application of a signal. Assuming v,(0) = O,

1 t
Vo = “Re L v; (t) dt (6.35)

which shows that the circuit in Fig. 6.35(b) provides an output voltage
proportiona to the integral of the input. In practice, the op amp inte-
grator requires a feedback resistor to reduce dc gain and prevent satu-
ration. Care must be taken that the op amp operates within the linear
range so that it does not saturate.
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If v, = 10cos2t mV and v, = 0.5t mV, find v, in the op amp circuit
in Fig. 6.36. Assume that the voltage across the capacitor isinitialy zero.

Solution:
This is a summing integrator, and

1 1
Vo = —RlCJl)ldt—RZCJvzdt

1
3X 108 x 2 x 107

1
100 X 103 x 2 x 10°©

t
J 10 cos 2t dt
[0}

t
J 0.5t dt
0

= —0.833sin2t — 1.25t>mV

Example 6.13

3MQ 2 1k
" |
j%ﬂ o
v
100k L
Figure 6.36

For Example 6.13.

The integrator in Fig. 6.35(b) has R = 100 k(}, C = 20 wF. Determine
the output voltage when a dc voltage of 10 mV is applied at t = 0.
Assume that the op amp is initially nulled.

Answer: —5tmV.

6.6.2 Differentiator

A differentiator is an op amp circuit whose output is proportional to
the rate of change of the input signal.

In Fig. 6.35(a), if the input resistor is replaced by a capacitor, the
resulting circuit is a differentiator, shown in Fig. 6.37. Applying KCL
at node a,

iR =lIc (6.36)

Practice Problem 6.13
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But
. Uo ) dUi
= —— = Ci
'R R dt
Substituting these in Eq. (6.36) yields
ir R
——AAM——
ic © by = —RC (6.37)
o .
o D 0 dt
5 F 50 showing that the output is the derivative of the input. Differentiator cir-
% cuits are electronically unstable because any electrical noise within the
Figure 6.37 circuit is exaggerated by the differentiator. For this reason, the differ-
An op amp differentiator. entiator circuit in Fig. 6.37 is not as useful and popular as the inte-
grator. It is seldom used in practice.
Example 6.14 Sketch the output voltage for the circuit in Fig. 6.38(a), given the input
voltage in Fig. 6.38(b). Takev, =0 at t = 0.
5kQ
0.2 uF A Solution:
This is a differentiator with
. * RC=5x10°X 02X 10 °®=10"3s
i Vo
% For 0 <t < 4 ms, we can express the input voltage in Fig. 6.38(b) as
L _{2000t 0<t<2ms
@ ' 8 — 2000t 2<t<4ms
V) This is repeated for 4 <t < 8 ms. Using Eq. (6.37), the output is
4 obtained as

Figure 6.38
For Example 6.14.

__Rcdvi_{—zv 0<t<2ms
Yo dt 2V 2<t<4ms
Thus, the output is as sketched in Fig. 6.39.
”o(V) 5
2 -
0 >
2 4 6 g8 t(my
-2
Figure 6.39

Output of the circuit in Fig. 6.38(a).

Practice Problem 6.14

The differentiator in Fig. 6.37 has R = 100 kQ) and C = 0.1 uF. Given
that v; = 3t V, determine the output v,

Answer: —30mV.
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6.6.3 Analog Computer

Op amps were initially developed for electronic analog computers.
Analog computers can be programmed to solve mathematical models of
mechanical or electrical systems. These models are usually expressed in
terms of differential equations.

To solve simple differential equations using the analog computer
requires cascading three types of op amp circuits: integrator circuits,
summing amplifiers, and inverting/noninverting amplifiers for negative/
positive scaling. The best way to illustrate how an analog computer solves
a differential equation is with an example.

Suppose we desire the solution x(t) of the equation

2
a% + b% + cx = (), t>0 (6.38)

where a, b, and ¢ are constants, and f(t) is an arbitrary forcing func-
tion. The solution is obtained by first solving the highest-order deriv-
ative term. Solving for d®x/dt? yields

d> f(t) bdx c

2 a ad 2 (6.39)
To obtain dx/dt, the dx/dt? term is integrated and inverted. Finally,
to obtain x, the dx/dt term is integrated and inverted. The forcing func-
tion isinjected at the proper point. Thus, the analog computer for solv-
ing Eq. (6.38) is implemented by connecting the necessary summers,
inverters, and integrators. A plotter or oscilloscope may be used to view
the output x, or dx/dt, or d?x/dt?, depending on where it is connected
in the system.

Although the above example is on a second-order differential equa-
tion, any differential equation can be simulated by an analog computer
comprising integrators, inverters, and inverting summers. But care must
be exercised in selecting the values of the resistors and capacitors, to
ensure that the op amps do not saturate during the solution time interval.

The analog computers with vacuum tubes were built in the 1950s and
1960s. Recently their use has declined. They have been superseded by
modern digital computers. However, we till study analog computers for
two reasons. First, the availability of integrated op amps has made it pos-
sible to build andog computers easily and cheaply. Second, understand-
ing analog computers helps with the appreciation of the digital computers.

237

Design an analog computer circuit to solve the differential equation:

%o | %o L osnar  t>0

az  “dt P !
subject to v,(0) = —4, v5(0) = 1, where the prime refers to the time
derivative.
Solution:

1. Define. We have a clearly defined problem and expected solution.
I might remind the student that many times the problem is not so
well defined and this portion of the problem-solving process could

Example 6.15
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require much more effort. If this is so, then you should aways
keep in mind that time spent here will result in much less effort
later and most likely save you a lot of frustration in the process.

2. Present. Clearly, using the devices developed in Section 6.6.3
will allow us to create the desired analog computer circuit. We
will need the integrator circuits (possibly combined with a
summing capability) and one or more inverter circuits.

3. Alternative. The approach for solving this problem is straight-
forward. We will need to pick the correct values of resistances
and capacitors to allow us to redlize the equation we are repre-
senting. The final output of the circuit will give the desired
result.

4. Attempt. There are an infinite number of possibilities for
picking the resistors and capacitors, many of which will result
in correct solutions. Extreme values of resistors and capacitors
will result in incorrect outputs. For example, low values of
resistors will overload the electronics. Picking values of
resistors that are too large will cause the op amps to stop
functioning as ideal devices. The limits can be determined from
the characteristics of the real op amp.

We first solve for the second derivative as

d®v ) dv
dt;’ = 10sin4t — 2d—t° - v, (6.15.1)

Solving this requires some mathematical operations, including
summing, scaling, and integration. Integrating both sides of
Eq. (6.15.1) gives

oo
dt

dvo

t
=—J<—10sin4t+2
A dt

+ vo)dt + v5(0) (6.15.2)
where v;(0) = 1. We implement Eq. (6.15.2) using the summing
integrator shown in Fig. 6.40(a). The values of the resistors and
capacitors have been chosen so that RC = 1 for the term

1 J‘
—— | vodt
RC )

Other terms in the summing integrator of Eq. (6.15.2) are
implemented accordingly. The initial condition dvy(0)/dt = 1 is
implemented by connecting a 1-V battery with a switch across the
capacitor as shown in Fig. 6.40(a).

The next step is to obtain v, by integrating dv,/dt and
inverting the result,

t
vg = — J (—dvo)dt + v(0) (6.15.3)
o dt

This is implemented with the circuit in Fig. 6.40(b) with the
battery giving the initial condition of —4 V. We now combine the
two circuits in Fig. 6.40(a) and (b) to obtain the complete circuit
shown in Fig. 6.40(c). When the input signal 10 sin 4t is applied,
we open the switches at t = 0 to obtain the output waveform v,,
which may be viewed on an oscilloscope.
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- 1V +

1MQ

t=0
1 °7 -4V + .
1MQ 1 uF =
_ n H}—t)
~105sin (41 t 7
1l 1uF
1MQ t
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E‘> dt d 1MQ 1MQ
iy osmQ | [ d_:o > LM
dt

(b)

1MQ

- 4V
tO:_O
10 sin (4t)
1uF
Il
1MQ I
A [~ e
o A
d,
dt

Figure 6.40
For Example 6.15.

5. Evaluate. The answer looks correct, but is it? If an actual
solution for v, is desired, then a good check would be to first
find the solution by realizing the circuit in PSpice. This result
could then be compared with a solution using the differential
solution capability of MATLAB.

Since al we need to do is check the circuit and confirm that

it represents the equation, we have an easier technique to use.

We just go through the circuit and see if it generates the desired

equation.

However, we still have choices to make. We could go through
the circuit from left to right but that would involve differentiating

the result to abtain the original egquation. An easier approach
would be to go from right to left. This is the approach we will
use to check the answer.

Starting with the output, v,, we see that the right-hand op
amp is nothing more than an inverter with a gain of one. This

means that the output of the middle circuit is —v,. The following

represents the action of the middle circuit.

' dv, _
—<JO Edt + UO(O)) = —<UO
—(o(t) — vo(0) + v6(0))

where v,(0) = —4V is the initia voltage across the capacitor.
We check the circuit on the left the same way.

du, v d%, ) < du,
= — — — ! = —( — + ’ !
ot ( L a2 dt — v5(0) dt vo(0) — vo(0)

t

—Ug

+ vO(O))

0

239
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Now all we need to verify is that the input to the first op amp is
—d%,/dt2

Looking at the input we see that it is equal to
1/107° dv,
0.5MQ dt
which does produce —d?v,/dt* from the original equation.

6. Satisfactory? The solution we have obtained is satisfactory. We
can now present this work as a solution to the problem.

d
= —10sin(4t) + v, + 22

—10sin(4t) + +
(4t) + v, dt

Practice Problem 6.15 Design an analog computer circuit to solve the differential equation:
d? d
v2°+3&+2vo:4coslot, t>0
dt dt

subject to vy(0) = 2, v,(0) = O.

Answer: See Fig. 6.41, where RC = 1s.

cos (10t)

Figure 6.41
For Practice Prob. 6.15.

6.7 Summary

1. The current through a capacitor is directly proportional to the time
rate of change of the voltage across it.
dv
i=C—
dt
The current through a capacitor is zero unless the voltage is chang-
ing. Thus, a capacitor acts like an open circuit to a dc source.
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2. The voltage across a capacitor is directly proportional to the time
integral of the current through it.

1 [t 1t
U=J idt=CJidt+v(tO)

o

The voltage across a capacitor cannot change instantly.
3. Capacitors in series and in parallel are combined in the same way
as conductances.
4. The voltage across an inductor is directly proportional to the time
rate of change of the current through it.
di
v=1L_L at
The voltage across the inductor is zero unless the current is chang-
ing. Thus, an inductor acts like a short circuit to a dc source.
5. The current through an inductor is directly proportional to the time
integral of the voltage across it.

t 1 t

i L Jwvdt 3 Jtovdt + i(to)
The current through an inductor cannot change instantly.

6. Inductors in series and in parallel are combined in the same way
resistors in series and in parallel are combined.

7. At any given time't, the energy stored in a capacitor is 3Cv?, while
the energy stored in an inductor is 5Li%.

8. Three application circuits, the integrator, the differentiator, and the
analog computer, can be realized using resistors, capacitors, and
op amps.

Review Questions

6.1 What chargeison a5-F capacitor wheniitis u(t) 4
connected across a 120-V source? 10l
(a) 600 C (b) 300 C
(c)24cC (dy12C 0 R
6.2 Capacitanceis measured in: 1 2 t
(a) coulombs (b) joules 0k
(c) henrys (d) farads
6.3 When thetotal chargein acapacitor isdoubled, the ~ Figure 6.42
energy stored: For Review Question 6.4.
(a) remains the same (b) ishaved
(c) is doubled (d) is quadrupled 6.5 Thetotal capacitance of two 40-mF series-connected
6.4 Can the voltage waveform in Fig. 6.42 be associated capecitorsin parallel with a4-mF capacitor is:
with areal capacitor? (@) 3.8 mF (b) 5mF (c) 24 mF

(& Yes (b) No (d) 44 mF (e) 84 mF
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6.6 InFig.6.43,ifi = cos4tandv = sin 4t, the
eementis:

(a) aresistor (b) a capacitor

{i

Element

(c) an inductor

@

Figure 6.43
For Review Question 6.6.

6.7 A 5-Hinductor changesitscurrent by 3Ain0.2s. The
voltage produced at the terminals of the inductor is:

@75V (b) 8.888V
(©)3V (d) 1.2V

6.8 If the current through a 10-mH inductor increases
from zero to 2 A, how much energy is stored in the

Capacitors and Inductors

6.9 Inductorsin parallel can be combined just like

resistorsin parallel.
(@) True (b) False

6.10 For thecircuit in Fig. 6.44, the voltage divider
formulais:
Ly + Ly
Lo

L, q _
L, + L2Us (d)vy =

L+ L,
L, Us

@uvy = ) vy =

Ly
L+ L

©uy =

«©

Figure 6.44

inductor? For Review Question 6.10.
(@) 40mJ (b) 20mJ Answers: 6.1a, 6.2d, 6.3d, 6.4b, 6.5¢, 6.6b, 6.7a, 6.8b,
(c)10mJ (d)5mJ 6.93, 6.10d.

4 Problems

Section 6.2 Capacitors

6.1 If thevoltage across a 5-F capacitor is 2te 2V, find
the current and the power.

6.2 A 20-uF capacitor has energy w(t) = 10 cos® 377t J.
Determine the current through the capacitor.

6.3 Design aproblem to help other students better
efdd understand how capacitors work.

6.4 A current of 6 sin 4t A flows through a 2-F capacitor.
Find the voltage v(t) across the capacitor given that
v(0) = 1V.

6.5 Thevoltage across a 4-uF capacitor is shown in
Fig. 6.45. Find the current waveform.

v(t) VA
10
|

0 1 1
2 z\e/s
_10 -

Figure 6.45
For Prob. 6.5.

t (ms)

6.6 Thevoltage waveformin Fig. 6.46 is applied across
a 30-uF capacitor. Draw the current waveform

through it.
v(t) V4
10
O 1 1 1 1 |
2 4 6\_1712 t(ms)
_10 -

Figure 6.46
For Prob. 6.6.

6.7 Att = 0, thevoltage across a 50-mF capacitor is10 V.
Calculate the voltage across the capacitor fort > 0
when current 4t mA flows through it.

6.8 A 4-mF capacitor has the terminal voltage

_ { 50V, t=0
Ag 1+ Be Y, t=0

If the capacitor has an initial current of 2 A, find:

(a) the constants A and B,

(b) the energy stored in the capacitor at t = 0,

(c) the capacitor current fort > 0.



6.9 The current through a 0.5-F capacitor is6(1 — € ') A.
Determine the voltage and power at t = 2 s. Assume
v(0) = 0.

6.10 The voltage across a 2-mF capacitor isshownin
Fig. 6.47. Determine the current through the capacitor.

v () (V)
16

0 1 2 3 4

Figure 6.47
For Prob. 6.10.

t(us)

6.11 A 4-mF capacitor has the current waveform shown in
Fig. 6.48. Assuming that v(0) = 10V, sketch the
voltage waveform v(t).

i(t) (MA) 4
15
10 F

8 ;(s)

-10 +

Figure 6.48
For Prob. 6.11.

6.12 A voltage of 6e 2%V appears across a parallel
combination of a 100-mF capacitor and a 12-()
resistor. Calculate the power absorbed by the parallel
combination.

6.13 Find the voltage across the capacitors in the circuit
of Fig. 6.49 under dc conditions.

10Q 50 Q
VWA VWA
+ 200 4
30Q % Ci=—mn Vp == C,
- 60V

Figure 6.49
For Prob. 6.13.

Section 6.3 Series and Parallel Capacitors

6.14 Series-connected 20-pF and 60-pF capacitors are
placed in parallel with series-connected 30-pF and
70-pF capacitors. Determine the equivalent
capacitance.

Problems 243

6.15 Two capacitors (20 wF and 30 wF) are connected
to a100-V source. Find the energy stored in each
capacitor if they are connected in:

(a) paralel

6.16 The equivalent capacitance at terminals a-b in the
circuit of Fig. 6.50 is 30 wF. Calculate the value of C.

(b) series

ao
== C
14 uF =
— 80 uF
b o
Figure 6.50
For Prob. 6.16.

6.17 Determine the equivalent capacitance for each of the
circuits of Fig. 6.51.

Figure 6.51
For Prob. 6.17.

6.18 Find Cq inthecircuit of Fig. 6.52 if all capacitors
ared uF.

Figure 6.52
For Prob. 6.18.
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6.19 Find the equivalent capacitance between terminals
aand b in thecircuit of Fig. 6.53. All capacitances

arein uF.

80

]

I

12 40
a0 H

50 20

|

bo il
60

Figure 6.53
For Prob. 6.19.

6.20 Find the equivalent capacitance at terminals a-b of
the circuit in Fig. 6.54.

T T"
1 1
+

2 uF

2 uF —|— 2 uF =

el seLoel Lo
L l 1

b

Figure 6.54
For Prob. 6.20.

6.21 Determine the equivalent capacitance at terminals
a-b of the circuit in Fig. 6.55.

5 uF 6 uF 4 uF

a o—| l I l I L
3ukF T

oL T

Figure 6.55
For Prob. 6.21.

12 uF

6.22 Obtain the equivalent capacitance of the circuit in
Fig. 6.56.

Capacitors and Inductors

40 uF

]
I

= 10uF 10 uF =
35 uF 5uF
[l | [l

|

\
I | I
20 uF
—=15uF 15uF =

Figure 6.56
For Prob. 6.22.

6.23 Using Fig. 6.57, design a problem that will help
efJd other students better understand how capacitors work
together when connected in seriesand in parallel.

Lo
- l C
VC,) L ¢, :I: Cs
*'_T )

Figure 6.57
For Prob. 6.23.

6.24 Repeat Prob. 6.23 for the circuit of Fig. 6.58.

60 uF 20 uF
fl

Figure 6.58
For Prob. 6.24.

6.25 (8) Show that the voltage-division rule for two
capacitorsin seriesasin Fig. 6.59(a) is
C, C;

U1 = 7T < Ug Upo = _— U
T+, 274G, 0

assuming that theinitial conditions are zero.

=G,

(b)

Figure 6.59
For Prob. 6.25.



(b) For two capacitorsin parallel asin Fig. 6.59(b),
show that the current-division ruleis
C, . G i
C,+GC,°

i is i
1 Cl + Cz s 2
assuming that the initial conditions are zero.
6.26 Three capacitors, C; = 5 uF, C, = 10 uF, and

C; = 20 uF, are connected in parallel across a
150-V source. Determine:

(a) thetotal capacitance,

(b) the charge on each capacitor,

(c) the total energy stored in the parallel
combination.

6.27 Given that four 4-uF capacitors can be connected in
efdd seriesandin paraléel, find the minimum and
maximum values that can be obtained by such
series/parallel combinations.

*6.28 Obtain the equivalent capacitance of the network
shown in Fig. 6.60.

oL g, L
1

40 pF 30 uF {

T

10 uF 20 uF

O
Figure 6.60
For Prob. 6.28.

6.29 Determine Cq, for each circuitin Fig. 6.61.

Figure 6.61
For Prob. 6.29.

* An asterisk indicates a challenging problem.
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6.30 Assuming that the capacitors areinitially uncharged,
find v(t) in the circuit of Fig. 6.62.

iy (mA)

60

3uF w(t)
O o e 43

Figure 6.62
For Prob. 6.30.

6.31 If v(0) = O, find v(t), i(t), and i,(t) in the circuit of
Fig. 6.63.

i (MA) A
20 F

-
e
——

=

4 uF =

il

| = +

il

is GMF:

Figure 6.63
For Prob. 6.31.

6.32 Inthecircuit of Fig. 6.64, letis = 30e”% mA and
v1(0) = 50V, v5(0) = 20 V. Determine: (a) v4(t)
and v,(t), (b) the energy in each capacitor at
t=05s.

12 uF

I
o |

U

is 20 uF == vy = 40 uF

Figure 6.64
For Prob. 6.32.
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6.33 Obtain the Thevenin equivalent at the terminals, a-b,
of the circuit shown in Fig. 6.65. Please note that
Thevenin equivalent circuits do not generally exist
for circuitsinvolving capacitors and resistors. Thisis
aspecial case where the Thevenin equivalent circuit
does exist.

QLT
1

Figure 6.65
For Prob. 6.33.

Section 6.4 Inductors

6.34 The current through a 10-mH inductor is 6e” V2 A.
Find the voltage and the power at t = 3s.

6.35 Aninductor has alinear changein current from
50 mA to 100 mA in 2 ms and induces a voltage of
160 mV. Calculate the value of the inductor.

6.36 Design aproblem to help other students better
understand how inductors work.

6.37 The current through a 12-mH inductor is4 sin 100t A.
Find the voltage, across the inductor for 0 < t <
/200 s, and the energy stored at t = 55 S.

6.38 The current through a 40-mH inductor is
. 0, t<o0
0= {teZIA, t>0

Find the voltage v(t).
6.39 The voltage across a 200-mH inductor is given by

() =32+ 2t+ 4V  fort > 0.

Determine the current i(t) through the inductor.
Assumethat i(0) = 1 A.

6.40 The current through a 10-mH inductor is shown in
Fig. 6.66. Determine the voltage across the inductor
at=1,3 and5ms.

i &)
20

0 1 1
2 4 6

{ (ms)

Figure 6.66
For Prob. 6.40.

Capacitors and Inductors

6.41 The voltage acrossa2-H inductor is20(1 — e ) V.
If theinitia current through the inductor is0.3 A,
find the current and the energy stored in the inductor
at=1s

6.42 If the voltage waveformin Fig. 6.67 is applied
across the terminals of a 10-H inductor, calculate the
current through the inductor. Assumei(0) = —1A.

v(t) (V)
30

0

Figure 6.67
For Prob. 6.42.

6.43 The current in an 80-mH inductor increases from 0
to 60 mA. How much energy is stored in the
inductor?

*6.44 A 100-mH inductor is connected in parallel with a
2-kQ) resistor. The current through the inductor is
i(t) = 50e *® mA. (a) Find the voltage v, across
the inductor. (b) Find the voltage vy across the
resistor. (c) Doesvg(t) + v, (t) = 0?(d) Calculate
the energy intheinductor at t = 0.

6.45 If the voltage waveform in Fig. 6.68 isapplied to a
50-mH inductor, find the inductor current i(t).
Assumei(0) = 0.

v(H) (V) A
10 -

-10 -

Figure 6.68
For Prob. 6.45.

6.46 Finduc, i, and the energy stored in the capacitor
and inductor in the circuit of Fig. 6.69 under dc
conditions.

NWJrizF *iL

6a (1) §O.SH

5Q

Figure 6.69
For Prob. 6.46.



6.47 For thecircuit in Fig. 6.70, caculate the value of R that
e d will make the energy stored in the capacitor the same
asthat stored in the inductor under dc conditions.

5A %ZQ

Figure 6.70
For Prob. 6.47.

6.48 Under steady-state dc conditions, find i and v in the
circuit of Fig. 6.71.

i 2mH
—_—

W+i

30kQ vTe,u: 20kQ

10 mA

Figure 6.71
For Prob. 6.48.

Section 6.5 Series and Parallel Inductors

6.49 Find the equivalent inductance of the circuit in
Fig. 6.72. Assume al inductors are 10 mH.

O

1

Figure 6.72
For Prob. 6.49.

6.50 An energy-storage network consists of series-
connected 16-mH and 14-mH inductorsin parallel
with series-connected 24-mH and 36-mH inductors.
Calculate the equivalent inductance.

6.51 Determine L, at terminals a-b of the circuit in

Fig. 6.73.
10 mH
AN
60 mH
25 mH 20 mH
ao AILN AN o b

30 mH

Figure 6.73
For Prob. 6.51.
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6.52 Using Fig. 6.74, design a problem to help other
efdd students better understand how inductors behave
when connected in series and when connected in

paralel.
Ly
211
L2 L3
o 211
lg 3L, Ls
Le

o AN

Figure 6.74
For Prob. 6.52.

6.53 Find L, at theterminals of the circuit in Fig. 6.75.

6 mH 8 mH
a o—yn 211
5mH
12 mH
8mH§
6 mH
4mH
b o—IN S11R
10 mH 8 mH

Figure 6.75
For Prob. 6.53.

6.54 Find the equivalent inductance looking into the
terminals of the circuit in Fig. 6.76.

9H

10H

4H§ geH

@ O
T O

Figure 6.76
For Prob. 6.54.
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6.55 Find L in each of thecircuitsin Fig. 6.77. 6.58 The current waveform in Fig. 6.80 flows through a
3-H inductor. Sketch the voltage across the inductor
over theinterval 0 <t < 6s.

L
o A11R
L i)
Leq
— L L 2
L
O 1 1 1
o 1 2 3 4 5 6 t
@ Figure 6.80
For Prob. 6.58.
L
L L
L L 6.59 (a) For two inductorsin seriesasin Fig. 6.81(a),
f Leg show that the voltage division principleis
Ly L2
(b) U1 = Us, Uox = Us
L, +L L, +L
Figure 6.77 t 2 t 2
For Prob. 6.55.

assuming that the initial conditions are zero.

(b) For two inductorsin paralel asin Fig. 6.81(b),

show that the current-division principleis
6.56 Find Le inthecircuit of Fig. 6.78.

T
L+ L,° 2T L+ L,

i1

assuming that the initial conditions are zero.

L
2112
L L
L
L L L 1
TN
T +y lil liz
+
L L 3 Ci) ”23 Lo is g Ly g Lo
TLeq

Figure 6.78
For Prob. 6.56.

@) (b)
Figure 6.81
For Prob. 6.59.

*6.57 Determine L, that may be used to represent the
inductive network of Fig. 6.79 at the terminals. 6.60 Inthecircuit of Fig. 6.82, i,(0) = 2 A. Determine
io(t) and v(t) fort > 0.

{ io®
Leq

3H 5H se2v (1) 3”3 5H§+”°

b o

Figure 6.79 Figure 6.82
For Prob. 6.57. For Prob. 6.60.




6.61 Consider thecircuitin Fig. 6.83. Find: (a) Leg, i1(t),
andi(t) if is = 3e " mA, (b) vy(t), () energy stored

inthe 20-mH inductor att = 1s.

via yi2
4 mH
is (1) ”o_g 20 mH
6 mH
|—>
Ly

Figure 6.83
For Prob. 6.61.

6.62 Consider the circuit in Fig. 6.84. Given that

o(t) = 12e ¥ mV fort > Oandiy(0) = —10 mA,

find: () i(0), (b) i+(t) andi(t).

25 mH
o A1 .
+ * i1(t) * io(t)
(1) % 20 mH % 60 mH
o
Figure 6.84
For Prob. 6.62.

6.63 Inthecircuit of Fig. 6.85, sketch v,,.

iy () i 21 (1) iz

w0 () 120 (A‘{I

0 3 6t(9 0 2 4 6t@
Figure 6.85
For Prob. 6.63.
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6.64 The switch in Fig. 6.86 has been in position A for a
long time. At t = 0, the switch moves from position
Ato B. The switch is a make-before-break type so
that there is no interruption in the inductor current.
Find: (a) i(t) fort < O, (b) v just after the switch has
been moved to position B, (c) v(t) long after the
switch isin position B.

4ovC

§SQ (}) 20A

Figure 6.86
For Prob. 6.64.

6.65 Theinductorsin Fig. 6.87 areinitially charged and are

connected totheblack box att = 0. 1f i,(0) = 4 A,
i,(0) = —2A, andv(t) = 506 " mV, t = 0, find:
(8) the energy initially stored in each inductor,

(b) the total energy delivered to the black box from
t=0tot = oo,

(©) i(t) and ix(t), t = O,
@ i), t= 0.

Black box | v

Figure 6.87
For Prob. 6.65.

6.66 The current i(t) through a40-mH inductor is equal,

in magnitude, to the voltage across it for all values of
time. Ifi(0) = 5A, findi(t).

Section 6.6 Applications

6.67 Anopamp integrator has R = 100 k() and C =

0.01 wF. If theinput voltageisv; = 10sin50t mV,
obtain the output voltage.



250 Chapter 6

6.68 A 10-V dc voltageis applied to an integrator with
R = 50k(, C = 100 uF att = 0. How long will it
take for the op amp to saturate if the saturation
voltagesare +12 V and —12 V? Assume that the
initial capacitor voltage was zero.

6.69 An op amp integrator with R = 4 M) and
C = 1 uF hasthe input waveform shown in
Fig. 6.88. Plot the output waveform.

4 (MV)
20 —|_
10
0 | | | >
12 3 45 6 t(m
-10 - ’—
-20 +
Figure 6.88
For Prob. 6.69.
6.70 Using asingle op amp, a capacitor, and resistors of

100 kQ or less, design a circuit to implement
t
Uo = —50 J v;(t) dt
0
Assumev, = Oatt = 0.
6.71 Show how you would use asingle op amp to generate

t
Vo = —J (vy + 4v, + 10v3)dt
o

If the integrating capacitor isC = 2 uF, obtain the
other component values.

6.72 Att = 1.5ms, calculate v, dueto the cascaded
integratorsin Fig. 6.89. Assume that the integrators
areresettoOV att = 0.

2 uF

10 kQ 20kQ

v (0) M

1

Figure 6.89
For Prob. 6.72.

Capacitors and Inductors

6.73 Show that the circuit in Fig. 6.90 is a noninverting
integrator.

Figure 6.90
For Prob. 6.73.

6.74 Thetriangular waveformin Fig. 6.91(a) is applied to
the input of the op amp differentiator in Fig. 6.91(b).

Plot the output.
4 (t)
2 -
0 Il L |
1 3 4 t(9)
-2+
@
100 kQ
0.01 uF
+
Y %
+ o

(b)
Figure 6.91
For Prob. 6.74.

6.75 Anop amp differentiator hasR = 250 k() and C =
10 uF. Theinput voltageisarampr(t) = 12t mV.
Find the output voltage.

6.76 A voltage waveform hasthe following characteristics:
apositive dope of 20 V/sfor 5 msfollowed by a
negative sope of 10 V/sfor 10 ms. If the waveform
isapplied to adifferentiator with R = 50 k{2,

C = 10 uF, sketch the output voltage waveform.
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*6.77 The output v, of the op amp circuit in Fig. 6.92(a) is

6.79

Design an analog computer circuit to solve the

showninFig. 6.92(b). Let R = Ry = 1 MQ and efJd following ordinary differential equation.
C = 1 uF. Determine the input voltage waveform ay(t)
and sketch it. o T =1
wherey(0) = 1V.
6.80 Figure 6.93 presents an analog computer designed
to solve a differential equation. Assuming f(t) is
R known, set up the equation for f(t).
—WW—
C
R I
j}—i 1uF "
Z W o [T 1MQ
- 1MQ
5 500 kQ
(@ N = o) L
100 kQ
% 4
al 100 kQ 200kO
= —f(t) o—
0 1 1 74
1 3 /Aty B
Figure 6.93
For Prob. 6.80.
4+
(b)
Figure 6.92
For Prob. 6.77. 6.81 Design an analog computer to simulate the following
e d equation:
d%
— + bv = —2f(t
e (®)
6.82 Design an op amp circuit such that
6.78 Design an analog computer to simulate ed
equd d%, dv, _ U, = 10vg + 2 J vedt
a2 + ZE + v, =10sin2t
where vs and v, are the input voltage and output
wherev(0) = 2 and vp(0) = 0. voltage, respectively.
Comprehensive Problems
6.83 Your laboratory has available alarge number of 6.84 An 8-mH inductor is used in afusion power

e d 10-uF capacitors rated at 300 V. To design a
capacitor bank of 40 uF rated at 600 V, how many
10-wF capacitors are needed and how would you
connect them?

experiment. If the current through the inductor is
i(t) = 5sin>7tmA, t > 0, find the power being
delivered to the inductor and the energy stored in it
at=05s



252 Chapter 6

6.85 A square-wave generator produces the voltage
waveform shown in Fig. 6.94(a). What kind of a
circuit component is needed to convert the voltage
waveform to the triangular current waveform shown
in Fig. 6.94(b)? Calculate the value of the
component, assuming that it isinitially uncharged.

v(V)A
5 —

t (ms)

@

Capacitors and Inductors

i (A)
4

0 1 2 3 4 t(m

Figure 6.94
For Prob. 6.85.

6.86 An electric motor can be modeled as a series
combination of a 12-() resistor and 200-mH inductor.
If acurrenti(t) = 2te” 1@ A flows through the series
combination, find the voltage across the combination.
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We live in deeds, not years; in thoughts, not breaths; in feelings, not in
figures on a dial. We should count time in heart-throbs. He most lives
who thinks most, feels the noblest, acts the best.

—F J. Bailey

Enhancing Your Career

Careers in Computer Engineering i : P
Electrical engineering education has gone through drastic changes in i
recent decades. Most departments have come to be known as Department
of Electrical and Computer Engineering, emphasizing the rapid changes gL
due to computers. Computers occupy a prominent place in modern soci- .o Sim
ety and education. They have become commonplace and are helping to ™ :
change the face of research, development, production, business, and enter- iR,
tainment. The scientist, engineer, doctor, attorney, teacher, arline pilot, F € g =~ M
businessperson—almost anyone benefits from a computer’s abilities to | p =g O i O “_ _ 4
store large amounts of information and to process that information in very Computer design of very large scale
short periods of time. The internet, a computer communication network,  jntegrated (VLSI) circits.
is essentid in business, education, and library science. Computer usage  Courtesy Brian Fast, Cleveland State
continues to grow by leaps and bounds. University
An education in computer engineering should provide breadth in soft-
ware, hardware design, and basic modeling techniques. It should include
courses in data structures, digital systems, computer architecture, micro-
processors, interfacing, software engineering, and operating systems.
Electrical engineers who specialize in computer engineering find
jobs in computer industries and in numerous fields where computers
are being used. Companies that produce software are growing rapidly
in number and size and providing employment for those who are skilled
in programming. An excellent way to advance one’'s knowledge of
computers is to join the IEEE Computer Society, which sponsors
diverse magazines, journals, and conferences.

253



254

Figure 7.1
A source-free RC circuit.

A circuit response is the manner in
which the circuit reacts to an
excitation.

Chapter 7 First-Order Circuits

7.1 Introduction

Now that we have considered the three passive elements (resistors,
capacitors, and inductors) and one active element (the op amp) indi-
vidually, we are prepared to consider circuits that contain various com-
binations of two or three of the passive elements. In this chapter, we
shall examine two types of simple circuits: a circuit comprising aresis-
tor and capacitor and a circuit comprising a resistor and an inductor.
These are called RC and RL circuits, respectively. As simple as these
circuits are, they find continual applications in electronics, communi-
cations, and control systems, as we shall see.

We carry out the analysis of RC and RL circuits by applying
Kirchhoff’s laws, as we did for resistive circuits. The only difference
is that applying Kirchhoff’s laws to purely resistive circuits results in
algebraic equations, while applying the laws to RC and RL circuits pro-
duces differential equations, which are more difficult to solve than
algebraic equations. The differential equations resulting from analyz-
ing RC and RL circuits are of the first order. Hence, the circuits are
collectively known as first-order circuits.

A first-order circuit is characterized by a first-order differential
equation.

In addition to there being two types of first-order circuits (RC and
RL), there are two ways to excite the circuits. The first way is by ini-
tial conditions of the storage elements in the circuits. In these so-called
source-free circuits, we assume that energy is initially stored in the
capacitive or inductive element. The energy causes current to flow in
the circuit and is gradually dissipated in the resistors. Although source-
free circuits are by definition free of independent sources, they may
have dependent sources. The second way of exciting first-order circuits
is by independent sources. In this chapter, the independent sources we
will consider are dc sources. (In later chapters, we shall consider sinu-
soidal and exponential sources.) The two types of first-order circuits
and the two ways of exciting them add up to the four possible situa-
tions we will study in this chapter.

Finally, we consider four typical applications of RC and RL cir-
cuits: delay and relay circuits, a photoflash unit, and an automobile
ignition circuit.

7.2 The Source-Free RC Circuit

A source-free RC circuit occurs when its dc source is suddenly dis-
connected. The energy aready stored in the capacitor is released to the
resistors.

Consider a series combination of aresistor and an initialy charged
capacitor, as shown in Fig. 7.1. (The resistor and capacitor may be the
equivalent resistance and equivalent capacitance of combinations of
resistors and capacitors.) Our objective is to determine the circuit
response, which, for pedagogic reasons, we assume to be the voltage
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v(t) across the capacitor. Since the capacitor is initialy charged, we
can assume that at time t = O, the initial voltage is
v(0) = Vo (7.2)
with the corresponding value of the energy stored as

w(0) = %CVS (7.2)
Applying KCL at the top node of the circuit in Fig. 7.1 yields
By definition, ic = Cdv/dt and ig = v/R. Thus,
dv v
— 4+ - = .
C i R 0 (7.4a)
or
dv v
—t == .
i RC 0 (7.4b)

Thisis afirst-order differential equation, since only the first derivative
of v isinvolved. To solve it, we rearrange the terms as

dv 1
— = ——dt 7.
v RC (7:9)

Integrating both sides, we get
t
Inv=—-———+1InA
RC

where In A is the integration constant. Thus,

- ! (7.6)

In -
RC

>|<

Taking powers of e produces
v(t) = Ae VRC
But from the initial conditions, v(0) = A = V,. Hence,
v(t) = Voe VR (7.7)

This shows that the voltage response of the RC circuit is an exponen-
tial decay of the initial voltage. Since the response is due to the initial
energy stored and the physical characteristics of the circuit and not due
to some external voltage or current source, it is called the natural
response of the circuit.

The natural response of a circuit refers to the behavior (in terms of
voltages and currents) of the circuit itself, with no external sources of
excitation.

The natural response is illustrated graphically in Fig. 7.2. Note that at
t = 0, we have the correct initial condition as in Eq. (7.1). As t
increases, the voltage decreases toward zero. The rapidity with which
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The natural response depends on the

nature of the circuit alone, with no ex-
ternal sources. In fact, the circuit has a
response only because of the energy

initially stored in the capacitor.
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Figure 7.2
The voltage response of the RC circuit.

TABLE 7.1 — : ¥

Values of v(t)/Vy = e ¥".

t v(t)/Vo
T 0.36788
27 0.13534
3r 0.04979
4t 0.01832
57 0.00674
v
VoA
1.0

050 Tangentatt=0

037 -~
0.25 -

5r t(9)

Figure 7.3
Graphical determination of the time
constant = from the response curve.

Chapter 7 First-Order Circuits

the voltage decreases is expressed in terms of the time constant,
denoted by 7, the lowercase Greek letter tau.

The time constant of a circuit is the time required for the response to
decay to a factor of 1/e or 36.8 percent of its initial value.”

This implies that at t = 7, Eq. (7.7) becomes
Voe 7/RC = Ve ! = 0.368V,

or
;= RC (7.8)
In terms of the time constant, Eq. (7.7) can be written as
v(t) = Ve V7 (7.9)

With a calculator it is easy to show that the value of v(t)/V, is as
shown in Table 7.1. It is evident from Table 7.1 that the voltage v(t)
is less than 1 percent of V, after 57 (five time constants). Thus, it is
customary to assume that the capacitor is fully discharged (or charged)
after five time constants. In other words, it takes 5r for the circuit to
reach its final state or steady state when no changes take place with
time. Notice that for every time interval of 7, the voltage is reduced
by 36.8 percent of its previous vaue, v(t + 7) = v(t)/e = 0.368v(t),
regardless of the value of t.

Observe from Eq. (7.8) that the smaller the time constant, the more
rapidly the voltage decreases, that is, the faster the response. This is
illustrated in Fig. 7.4. A circuit with a small time constant gives a fast
response in that it reaches the steady state (or final state) quickly due
to quick dissipation of energy stored, whereas a circuit with a large
time constant gives a slow response because it takes longer to reach
steady state. At any rate, whether the time constant is small or large,
the circuit reaches steady state in five time constants.

With the voltage v(t) in Eq. (7.9), we can find the current ig(t),
U(t) — be*t/'r

irt) = 5~

2 TR (7.10)

! The time constant may be viewed from another perspective. Evaluating the derivative
of v(t) in Eq. (7.7) at t = 0, we obtain

()
dt Vo t=0

Thus, the time constant is the initial rate of decay, or the time taken for v/V, to decay
from unity to zero, assuming a constant rate of decay. This initial slope interpretation of
the time constant is often used in the laboratory to find = graphically from the response
curve displayed on an oscilloscope. To find = from the response curve, draw the tangent
to the curve at t = 0, as shown in Fig. 7.3. The tangent intercepts with the time axis at
t=r.

1
=—"e
.

1

T

—t/7

t=0
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Figure 7.4
Plot of v/V, = e~ Y7 for various values of the time constant.

The power dissipated in the resistor is

Ve
p(t) = vig = Ee’z‘/ . (7.11)

The energy absorbed by the resistor up to timet is

t tV2
wg(t) = J pdt = J Eoe’Zt/Tdt
CoL Y (7.12)
_ o levia - e®7),  r=FRC
2R . 2 !

Notice that as t — %, wr(®) — 3CV3, which is the same as wc(0),
the energy initially stored in the capacitor. The energy that was initially
stored in the capacitor is eventually dissipated in the resistor.

In summary:

The Key to Working with a Source-free RC Circuit
Is Finding:

1. The initia voltage v(0) = V, across the capacitor.
2. The time constant 7.

With these two items, we obtain the response as the capacitor voltage
ve(t) = v(t) = v(0)e V™. Once the capacitor voltage is first obtained,
other variables (capacitor current ic, resistor voltage vg, and resistor cur-
rent ig) can be determined. In finding the time constant 7 = RC, R is
often the Thevenin equivalent resistance at the terminals of the capacitor;
that is, we take out the capacitor C and find R = Ry, at its terminals.
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The time constant is the same regard-
less of what the output is defined
to be.

When a circuit contains a single
capacitor and several resistors and
dependent sources, the Thevenin
equivalent can be found at the
terminals of the capacitor to form a
simple RC circuit. Also, one can use
Thevenin’s theorem when several
capacitors can be combined to form
a single equivalent capacitor.

In Fig. 7.5, let vc(0) = 15V. Find v¢, vy, and iy for t > 0.

Solution:
We first need to make the circuit in Fig. 7.5 conform with the standard
RC circuit in Fig. 7.1. We find the equivalent resistance or the Thevenin

Example 7.1
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8Q
MW * i
+ +
SQg 01F = 4 129?1/><
Figure 7.5
For Example 7.1.

— 01F

||

RS o

Figure 7.6
Equivalent circuit for the circuit in
Fig. 7.5.

Chapter 7 First-Order Circuits

resistance at the capacitor terminals. Our objective is aways to first
obtain capacitor voltage ve. From this, we can determine v, and i.

The 8-Q and 12-() resistors in series can be combined to give a
20-Q) resistor. This 20-Q) resistor in parallel with the 5-() resistor can
be combined so that the equivalent resistance is

20X 5
= =4Q
Req 20+5

Hence, the equivalent circuit is as shown in Fig. 7.6, which is analogous
to Fig. 7.1. The time constant is

7= ReC = 4(0.1) = 045

Thus,

v=v0)e V" =15e V0%V, = pc=0v=15e 2%V
From Fig. 7.5, we can use voltage division to get v,; so

12
12+ 8

Uy = v = 0.6(15e 2°") = 9 2%tV

Finally,

v
iy = E = 0.75e > A

Practice Problem 7.1

Refer to the circuit in Fig. 7.7. Let vc(0) = 45V. Determine vc, vy,
and i, fort = 0.

o 80
MW Answer: 45¢ %'V, 15 9%y, —3.75¢ O A,
+ +
12Q 6Q 2 4 TF=— 1
Figure 7.7
For Practice Prob. 7.1.
Example 7.2 The switch in the circuit in Fig. 7.8 has been closed for a long time,
and it is opened at t = 0. Find v(t) for t = 0. Calculate the initial
30 9 40 energy stored in the capacitor.
+ Solution:
20V 9Q v=F20mF  For t < 0, the switch is closed; the capacitor is an open circuit to dc,
T as represented in Fig. 7.9(a). Using voltage division
Figure 7.8 9
For Example 7.2. ve(t) = 97(20) =15V, t<O0

+ 3

Since the voltage across a capacitor cannot change instantaneously, the
voltage across the capacitor at t = 0 isthesameatt = O, or

Uc(o) = Vo =15V
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For t > 0, the switch is opened, and we have the RC circuit
shown in Fig. 7.9(b). [Notice that the RC circuit in Fig. 7.9(b) is
source free; the independent source in Fig. 7.8 is needed to provide
Vo or the initial energy in the capacitor.] The 1-Q and 9-Q) resistors
in series give

Rg=1+9=100Q
The time constant is
T =RgC =10X 20X 10 ° = 025

Thus, the voltage across the capacitor for t = 0 is

v(t) = ve(0)e V™ = 15e V02V
or

v(t) = 15e 'V

The initial energy stored in the capacitor is

1 1
wc(0) = Ecué(O) =5 X 20X 1073 x 1582 = 2.25]
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3Q 1Q
ANA ANA—0
+
20V 9Q 2c(0)
o
@
1Q
o AMAN
n
9Q \,=15V == 20mF
O
(b)
Figure 7.9

For Example7.2: (@t < 0, (b)t > 0.

If the switchin Fig. 7.10 opensat t = O, find v(t) for t = 0 and w(0).

Answer: 8e 2V, 533 J.

7.3 The Source-Free RL Circuit

Consider the series connection of a resistor and an inductor, as shown
in Fig. 7.11. Our goal is to determine the circuit response, which we
will assume to be the current i(t) through the inductor. We select the
inductor current as the response in order to take advantage of the idea
that the inductor current cannot change instantaneously. At t = 0, we
assume that the inductor has an initial current |, or

i(0) = lg (7.13)
with the corresponding energy stored in the inductor as

w(0) = %L F; (7.14)

Applying KVL around the loop in Fig. 7.11,
v +ovg=0 (7.15)
But [ L d|/dt and UR = iR Thus,

di
LY YR =0
a

Practice Problem 7.2

12Q

| = +

1L
24V sF—

Figure 7.10
For Practice Prob. 7.2.

Figure 7.11
A source-free RL circuit.

4Q
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it)

Tangentatt=0

0.3681¢ -~ iy

Yy

0 T

Figure 7.12
The current response of the RL circuit.

The smaller the time constant 7 of a
circuit, the faster the rate of decay of
the response. The larger the time con-
stant, the slower the rate of decay of
the response. At any rate, the response
decays to less than 1 percent of its
initial value (i.e., reaches steady state)
after 57.

| Figure 7.12 shows an initial slope inter-
pretation may be given to 7.

Chapter 7 First-Order Circuits

or
d R
—+ —i= 7.1
ot LI 0 (7.16)
Rearranging terms and integrating gives
i(t) 4 t
d R
J a4 J ot
I 0 L

lo

i(t) Rtt Rt
Ini| = —— = Init) —Inlg=—-——+20
L L
lo 0
or
it Rt
InQ= - (7.27)
lo L

Taking the powers of e, we have
i(t) = lge /L (7.18)

This shows that the natural response of the RL circuit is an exponen-
tial decay of the initial current. The current response is shown in
Fig. 7.12. It is evident from Eq. (7.18) that the time constant for the
RL circuit is

(7.19)

T =

L
R

with 7 again having the unit of seconds. Thus, Eqg. (7.18) may be
written as

i(t) = loe /" (7.20)

With the current in Eg. (7.20), we can find the voltage across the
resistor as

vr() = iR=1gRe V" (7.21)
The power dissipated in the resistor is
p=vgi = |3Re /" (7.22)
The energy absorbed by the resistor is
' ! 1 ! L
wr(t) = j pdt = J I5Re #/"dt = —Z715Re 27|, 1==2
2 R
0 0 0
or
1 2 —2t/T
wgr(t) = EL 161 — e /") (7.23)

Note that as t — o, wr() — 3L 13, which is the same as w, (0),
the initial energy stored in the inductor as in Eq. (7.14). Again, the
energy initially stored in the inductor is eventually dissipated in
the resistor.
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In summary:

The Key to Working with a Source-free RL Circuit
Is to Find:

1. Theinitia current i(0) = I, through the inductor.
2. The time constant 7 of the circuit.

With the two items, we obtain the response as the inductor current
iL(t) = i(t) = i(0)e V™. Once we determine the inductor current i,
other variables (inductor voltage v, resistor voltage vg, and resistor
current ig) can be obtained. Note that in general, Rin Eq. (7.19) is the
Thevenin resistance at the terminals of the inductor.
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When a circuit has a single inductor
and several resistors and dependent
sources, the Thevenin equivalent can
be found at the terminals of the induc-
tor to form a simple RL circuit. Also,
one can use Thevenin’s theorem when
several inductors can be combined to
form a single equivalent inductor.

Assuming that i(0) = 10 A, calculate i(t) and i,(t) in the circuit of
Fig. 7.13.

Solution:

There are two ways we can solve this problem. One way is to obtain
the equivalent resistance at the inductor terminals and then use
Eqg. (7.20). The other way is to start from scratch by using Kirchhoff’s
voltage law. Whichever approach is taken, it is aways better to first
obtain the inductor current.

B METHOD 1 The equivalent resistance is the same as the
Thevenin resistance at the inductor terminals. Because of the depend-
ent source, we insert a voltage source with v, = 1V at the inductor
terminals a-b, as in Fig. 7.14(a). (We could also insert a 1-A current
source at the terminals.) Applying KVL to the two loops results in

1
i;—ix))+1=0 = ip—ip= > (7.3.1)

. 5.
6i2 - 2|1 - 3|1 =0 = I = g|1 (732)

Substituting Eq. (7.3.2) into Eq. (7.3.1) gives
i1:_3A, IO:_Il:3A

by

Example 7.3

I
0.5H§ §ZQ 3i

Figure 7.13
For Example 7.3.

Qs () QD wl @ ¢

_ 3

(@
Figure 7.14
Solving thecircuit in Fig. 7.13.
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Hence,
1
i, 3
The time constant is
_ L 3.3,
" Rg § 2

Thus, the current through the inductor is

i(t) =i(0)e V" = 10e @A t>0

B METHOD 2 We may directly apply KVL to the circuit as in
Fig. 7.14(b). For loop 1,

%%JrZ(il—iQ:O
or
% + 4i; — 4i, =0 (7.33)
For loop 2,
6i, — 2, -3, =0 = i, = gil (7.3.9)

Substituting Eq. (7.3.4) into Eq. (7.3.3) gives

di, 2.
—+=ip=0
a 3"
Rearranging terms,
di, 2
— = ——dt
i 3
Since i, = i, we may replace i; with i and integrate:
i(t) 2 t
Ini = ——t
i(0) 0
or
it 2
In.(f) = ——t
i(0) 3

Taking the powers of e, we finaly obtain
i(t) =i(0e @3 =10e @A t>0

which is the same as by Method 1.
The voltage across the inductor is

di 2 10
=L— = 05(10)| - Je @I = ——e @Iy
v =Ly = 0 )( 3>e 3°
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Since the inductor and the 2-Q) resistor are in paralel,

i () = % = —16667¢ @A, t>0
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Find i and v, in the circuit of Fig. 7.15. Let i(0) = 5A.

Practice Problem 7.3

. En—dty\, _ona—4t 4Q
Answer: 5e "V, —20e " V. W,
| v
* 10
2HE Z40
20
Figure 7.15
For Practice Prob. 7.3.
The switch in the circuit of Fig. 7.16 has been closed for a long time. Example 7.4
At t = 0, the switch is opened. Calculate i(t) for t > 0.
20 20 40
Solution: _
When t < 0, the switch is closed, and the inductor acts as a short *'(t)
pi rcuit to .dc. The 16-Q) resistor _is_sho_rt—ci rcuited; the resullti ng circuit 40V 120 §16Q % 2H
isshown in Fig. 7.17(a). To get i, in Fig. 7.17(a), we combine the 4-Q
and 12-Q) resistors in parallel to get
4% 12 20 Figure 7.16
4+ 12 For Example 7.4.
Hence,
.40 i1 20 20
=53~ 8A AV AV 4o
|
W(_e _obtain i(t) from i, in Fig. 7.17(a) using current division, by ey 20
writing
. 12
|(t)—12+4|1—6A, t<o @
Since the current through an inductor cannot change instantaneously, m
i(0) = i(07) = 6A §o
When t > 0, the switch is open and the voltage source is 12Q 16Q 2H
disconnected. We now have the source-free RL circuit in Fig. 7.17(b).
Combining the resistors, we have ®)
Rq= (12 +4) (|16 =80 Figure 7.17

The time constant is

Thus,
i(t) =i(0)e V" = 6e *A

Solving the circuit of Fig. 7.16: (a) for
t <0, (b)fort > 0.
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Practice Problem 7.4

t=0

5

For the circuit in Fig. 7.18, find i(t) for t > 0.

Answer: 2 2 At > 0.

120Q é 8Q
§24Q CDBA i(t)l 5Q
2H
Figure 7.18
For Practice Prob. 7.4.
Example 7.5 In the circuit shown in Fig. 7.19, find i, v,, and i for al time, assum-
ing that the switch was open for a long time.
2Q 30
AN

T
§6Q gZH

0V

+
%
<>2t:o

Figure 7.19

For Example 7.5.
2Q 3Q
AN ——
* b 3*'0 *I
10V GQ§
@
3Q
MW

(b)
Figure 7.20
Thecircuitin Fig. 7.19for: (a) t < 0,
(b)t > 0.

Solution:
It is better to first find the inductor current i and then obtain other
quantities from it.

For t < 0, the switch is open. Since the inductor acts like a short
circuit to dc, the 6-Q) resistor is short-circuited, so that we have the
circuit shown in Fig. 7.20(a). Hence, i, = 0, and

. 10
I(t) B ZTS = 2A,

vo(t) = 3i(t) = 6V,

t<o0
t<o0

Thus, i(0) = 2.

For t > 0, the switch is closed, so that the voltage source is short-
circuited. We now have a source-free RL circuit as shown in
Fig. 7.20(b). At the inductor terminals,

Rm=3|6=2Q
so that the time constant is

L

=—=1s
Rrn

T

Hence,

i) =i(0)e V" =22"tA, t>0

Since the inductor is in paraléel with the 6-Q and 3-() resistors,

.
Vo) = —v, = —Ld—'t - (-2 Y =4etV, t>0

and
t>0

2
o) = 5 = —5e A
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Thus, for al time,

0A, t<o0

) = ) 0 = 6V, t<o0
° —ée’tA, t>0 ° 47V, t>0
© = 2A, t<o0

l2etA, t=0

We notice that the inductor current is continuous at t = 0, while the
current through the 6-() resistor drops from 0 to —2/3 at t = 0, and
the voltage across the 3-() resistor drops from6to 4 at t = 0. We also
notice that the time constant is the same regardless of what the output
is defined to be. Figure 7.21 plotsi and i,

265

i(t)

/

>

<
2
3 X0)

Figure 7.21
A plot of i and i,

Determine i, i, and v, for al t in the circuit shown in Fig. 7.22.
Assume that the switch was closed for a long time. It should be noted
that opening a switch in series with an ideal current source creates an
infinite voltage at the current source terminals. Clearly this is impossi-
ble. For the purposes of problem solving, we can place a shunt resis-
tor in paralel with the source (which now makes it a voltage source
in series with aresistor). In more practical circuits, devices that act like
current sources are, for the most part, electronic circuits. These circuits
will allow the source to act like an ideal current source over its oper-
ating range but voltage-limit it when the load resistor becomes too large
(as in an open circuit).

Answer:
(12, t<o0 . _[ 6A t<o0
12e 2 A, t=0’ © —4e 2 A, t>0
_f2av, t<o0
o lee 2y, t>0
7.4 Singularity Functions

Before going on with the second half of this chapter, we need to digress
and consider some mathematical concepts that will aid our under-
standing of transient analysis. A basic understanding of singularity
functions will help us make sense of the response of first-order circuits
to a sudden application of an independent dc voltage or current source.

Singularity functions (also called switching functions) are very use-
ful in circuit analysis. They serve as good approximations to the
switching signals that arise in circuits with switching operations. They
are helpful in the neat, compact description of some circuit phenom-
ena, especially the step response of RC or RL circuits to be discussed
in the next sections. By definition,

Singularity functions are functions that either are discontinuous or have
discontinuous derivatives.

Practice Problem 7.5

3Q

t=0 i
) >

o .

18ACD 49%

Figure 7.22
For Practice Prob. 7.5.
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u(t) 4

0

Figure 7.23
The unit step function.

—

U(t - to)

@

u(t +to) A

<, 0 t

(b)
Figure 7.24
(a) The unit step function delayed by t,,
(b) the unit step advanced by t.

Alternatively, we may derive

Eqgs. (7.25) and (7.26) from Eq. (7.24)
by writing u[f(t)] = 1, f(t) > 0,
where f(t) may be t — tyor t + t,.

Chapter 7 First-Order Circuits

The three most widely used singularity functions in circuit analy-
sis are the unit step, the unit impulse, and the unit ramp functions.

The unit step function u(t) is O for negative values of t and 1 for pos-
itive values of t.

In mathematical terms,

u() = {(1) : i 8 (7.24)

The unit step function is undefined at t = 0, where it changes abruptly
from O to 1. It is dimensionless, like other mathematical functions such
as sine and cosine. Figure 7.23 depicts the unit step function. If the
abrupt change occurs at t = ty (wherety > 0) instead of t = 0, the unit
step function becomes

0, t<t
t— 1ty = 7.2
u(t = to) {17 e (7.25)
which is the same as saying that u(t) is delayed by ty seconds, as shown
in Fig. 7.24(a). To get Eq. (7.25) from Eq. (7.24), we simply replace
every t by t — to. If the change is at t = —t,, the unit step function
becomes

0, t< —t

7.26
1,  t> —t, (7.26)

U(t + to) = {

meaning that u(t) is advanced by t; seconds, as shown in Fig. 7.24(b).

We use the step function to represent an abrupt change in voltage

or current, like the changes that occur in the circuits of control systems
and digital computers. For example, the voltage

0, t <t
t) = 7.27
v(t) {vo, . (7.27)
may be expressed in terms of the unit step function as

v(t) = Vou(t — to) (7.28)

If welet to = O, then v(t) is simply the step voltage Vou(t). A voltage
source of Vou(t) isshown in Fig. 7.25(a); its equivalent circuit is shown
in Fig. 7.25(b). It is evident in Fig. 7.25(b) that terminals a-b are short-
circuited (v = 0) for t < 0 and that v = V, appears at the terminas

t=0
o a —0 a
Vou(t) Ct) — Y Ct)
L——o0b b
@ (b)

Figure 7.25
(a) Voltage source of Vou(t), (b) its equivalent circuit.
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for t > 0. Similarly, a current source of l5u(t) is shown in Fig. 7.26(a),
while its equivalent circuit is in Fig. 7.26(b). Notice that for t < O,

there is an open circuit (i = 0), and that i = Iy flows for t > 0.
t=0 _I_
—————O a o——o0 a
|0U(t) D — IO CD
L ——ob b

@ (b)
Figure 7.26
(8 Current source of lou(t), (b) its equivalent circuit.

The derivative of the unit step function u(t) is the unit impulse
function (t), which we write as

g 0, t<0
8(t) = L, u(t) = | Undefined, ~ t=0 (7.29)
0, t>0

The unit impulse function—also known as the delta function—is
shown in Fig. 7.27.

The unit impulse function &(t) is zero everywhere except at t = 0,
where it is undefined.

Impulsive currents and voltages occur in electric circuits as a result of
switching operations or impulsive sources. Although the unit impulse
function is not physically realizable (just like ideal sources, ided
resistors, etc.), it is a very useful mathematical tool.

The unit impulse may be regarded as an applied or resulting shock.
It may be visualized as a very short duration pulse of unit area. This
may be expressed mathematically as

-
J o)ydt=1 (7.30)
.
wheret = 0~ denotes the time just beforet = Oandt = 0" isthetime
just after t = 0. For this reason, it is customary to write 1 (denoting
unit area) beside the arrow that is used to symbolize the unit impulse
function, as in Fig. 7.27. The unit area is known as the strength of the
impulse function. When an impulse function has a strength other than
unity, the area of the impulse is equal to its strength. For example, an
impulse function 105(t) has an area of 10. Figure 7.28 shows the
impulse functions 56 (t + 2), 105(t), and —45(t — 3).

To illustrate how the impulse function affects other functions, let
us evaluate the integral

b
Juma—@m (7.31)

a

267
8(t) A ()
0 t
Figure 7.27
The unit impulse function.
108(t)
58(t+ 2)
T Il Il Il Il
-2 -1 0 1 2 3 t
\J
—45(t - 3)

Figure 7.28
Three impulse functions.
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where a < to < b. Since (t — tg) = 0 except at t = t,, the integrand
is zero except at to. Thus,
b

b
Jum@@m=mewa@m

a a

b
= f(to) J a(t — to)dt = f(to)

a
or

b
fuma—@mzmd (7.32)

This shows that when a function is integrated with the impulse func-

tion, we obtain the value of the function at the point where the impulse

occurs. Thisis a highly useful property of the impulse function known

as the sampling or sifting property. The special case of Eq. (7.31) is
r() 4 for to = 0. Then Eq. (7.32) becomes

0+
J f(t)o(t)dt = f(0) (7.33)
o
Integrating the unit step function u(t) results in the unit ramp func-
tion r (t); we write

: t
0 1 t
rt=[ u(t)dt = tu(t 7.34
Figure 7.29 ® ® ® ( )
The unit ramp function.

—

or

0, t=0
r(t-to rt) = {t {=0 (7.35)

The unit ramp function is zero for negative values of t and has a unit
slope for positive values of t.

0ty o+ 1t

Figure 7.29 shows the unit ramp function. In general, aramp is a func-
@ tion that changes at a constant rate.
The unit ramp function may be delayed or advanced as shown in

r(t+1) 4 Fig. 7.30. For the delayed unit ramp function,

0, t<tg
t—tg) = 7.36
"t -t {t—to, t=t, (7:36)

and for the advanced unit ramp function,

0, t< —to
t+ty) = 7.37
rt+to) {t+t0, t= —t, (7:30)
t We should keep in mind that the three singularity functions

(b) (impulse, step, and ramp) are related by differentiation as
Figure 7.30

The unit ramp function: (a) delayed by t, 5(t) = M ut) = M (7.38)

(b) advanced by tq. dt ' dt
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or by integration as
t t
u(t) = J 5(t)dt, re) = J u(t)dt (7.39)
Although there are many more singularity functions, we are only inter-
ested in these three (the impulse function, the unit step function, and
the ramp function) at this point.
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Express the voltage pulse in Fig. 7.31 in terms of the unit step. Cal-
culate its derivative and sketch it.

Solution:
The type of pulse in Fig. 7.31 is caled the gate function. It may be
regarded as a step function that switches on at one value of t and
switches off at another value of t. The gate function shown in Fig. 7.31
switches on at t = 2's and switches off at t = 5s. It consists of the
sum of two unit step functions as shown in Fig. 7.32(a). From the
figure, it is evident that

v(t) = 10u(t — 2) — 10u(t — 5) = 10[u(t — 2) — u(t — 5)]
Taking the derivative of this gives

% = 10[6(t — 2) — &(t — 5)]

which is shown in Fig. 7.32(b). We can obtain Fig. 7.32(b) directly
from Fig. 7.31 by simply observing that there is a sudden increase by
10V a t =2sleading to 106(t — 2). At t = 55, there is a sudden
decrease by 10 V leading to —10V &(t — 5).

10u(t - 2) ~10u(t - 5) A

10 — 10

-1

Example 7.6
Gate functions are used along

with switches to pass or block
another signal.

(1)

10

| | | >

0 1 2 3 4 5 t

Figure 7.31
For Example 7.6.

R

@

-10

(b)
Figure 7.32

N
w
PN
)]
—

(a) Decomposition of the pulsein Fig. 7.31, (b) derivative of the pulsein Fig. 7.31.
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Practice Problem 7.6

Express the current pulse in Fig. 7.33 in terms of the unit step. Find
its integral and sketch it.

Answer: 10[u(t) — 2u(t — 2) + u(t — 4)], 10[r(t) — 2r(t — 2) +
r(t — 4)]. See Fig. 7.34.

it A
Jidt
10
20
0
2 4t
I >
-l 0 2 4t
Figure 7.33 Figure 7.34
For Practice Prob. 7.6. Integral of i(t) in Fig. 7.33.

Example 7.7

v(t)

10 -

0 2

Figure 7.35
For Example 7.7.

—

vy(t)
10

@
Figure 7.36

Express the sawtooth function shown in Fig. 7.35 in terms of singu-
larity functions.

Solution:

There are three ways of solving this problem. The first method is by
mere observation of the given function, while the other methods
involve some graphical manipulations of the function.

B METHOD 1 By looking at the sketch of v(t) in Fig. 7.35, it is
not hard to notice that the given function v(t) is a combination of sin-
gularity functions. So we let

v(t) = v4(t) + va(t) + - (7.7.2)

The function v4(t) is the ramp function of slope 5, shown in Fig. 7.36(a);
that is,

v4(t) = 5r(t) (7.7.2)
vt
10
vy(t)
0 . > _—
2 t 0 2 t
-10

(b) (©

Partial decomposition of v(t) in Fig. 7.35.
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Since v4(t) goesto infinity, we need another function at t = 2 sin order to
get v(t). We let this function be v,, which is aramp function of dope —5,
as shown in Fig. 7.36(b); that is,

vot) = —5r(t — 2) (7.7.3)

Adding v, and v, gives us the signal in Fig. 7.36(c). Obviously, thisis
not the same as v(t) in Fig. 7.35. But the difference is simply a constant
10 units for t > 2 s. By adding a third signal v, where

vy = —10u(t — 2) (7.7.4)

we get v(t), as shown in Fig. 7.37. Substituting Egs. (7.7.2) through
(7.7.4) into Eq. (7.7.1) gives

u(t) = 5r(t) — 5r(t — 2) — 10u(t — 2)

v toy y(t)
10 + w0 -
0 >
0 2 t 2 t 0 2 t
_]_O —
@ (b) (©
Figure 7.37

Complete decomposition of v(t) in Fig. 7.35.

B METHOD 2 A close observation of Fig. 7.35 reveals that v(t) is
a multiplication of two functions: a ramp function and a gate function.
Thus,
v(t) = 5t{u(t) — u(t — 2)]

= 5tu(t) — Stu(t — 2)

=5r(t) — 5t -2+ 2u(t — 2

=5r(t) — 5(t — 2u(t — 2) — 10u(t — 2)

=5r(t) — 5r(t—2) — 10u(t — 2)
the same as before.
B METHOD 3 This method is similar to Method 2. We observe

from Fig. 7.35 that v(t) is a multiplication of a ramp function and a
unit step function, as shown in Fig. 7.38. Thus,

v(t) = 5ru(—=t + 2)

If we replace u(—t) by 1 — u(t), then we can replace u(—t + 2) by
1 — u(t — 2). Hence,

v(t) = 5r(O[1 — u(t — 2)]

which can be simplified as in Method 2 to get the same resullt.
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5r (t) 4
0f------ ‘ u(-t +2)
X 1
0 2 t 0 2 t
Figure 7.38
Decomposition of v(t) in Fig. 7.35.
Practice Problem 7.7 Refer to Fig. 7.39. Express i(t) in terms of singularity functions.
i(t) (A) A Answer: 2u(t) — 2r(t) + 4r(t — 2) — 2r(t — 3).
2 \
0 1\2/3 o
-2+
Figure 7.39
For Practice Prob. 7.7.
Example 7.8 Given the signal
3, t<o0
gty =4 —2, o<t<1

2t — 4, t>1

express g(t) in terms of step and ramp functions.

Solution:
The signal g(t) may be regarded as the sum of three functions specified
within the three intervalst < 0,0 <t < 1,and t > 1.

For t < 0O, g(t) may be regarded as 3 multiplied by u(—t), where
u(—-t) =1 for t <0 and O for t > 0. Within the time interval
0 <t < 1, the function may be considered as —2 multiplied by a
gated function [u(t) — u(t — 1)]. For t > 1, the function may be
regarded as 2t — 4 multiplied by the unit step function u(t — 1). Thus,

g(t) = 3u(—t) — 2u(t) —ut — 1) + (2t — Hu(t — 1)
=3u(—t) —2u(t) + (2t — 4+ 2u(t — 1)
= 3u(—t) — 2u(t) + 2(t — Du(t — 1)
=3u(—-t)—2ut) + 2r(t — 1

One may avoid the trouble of using u(—t) by replacing it with
1 — u(t). Then

gt) =3[1—u@®] —2u(®) +2r(t—1) =3—-5u(t) +2rt—1)
Alternatively, we may plot g(t) and apply Method 1 from Example 7.7.
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If
0, t<o0
8 o<t<2
h(t) =4 ..
® 2t + 6, 2<t<6
0, t>6

express h(t) in terms of the singularity functions.

Answer: 8u(t) + 2u(t — 2) + 2r(t — 2) — 18u(t — 6) — 2r(t — 6).

Practice Problem 7.8

Evaluate the following integrals involving the impulse function:

10
J (> + 4t — 2)8(t — 2)dt
0

J [6(t — 1)e ‘cost + 8(t + 1)e 'sint]dt

—

Solution:
For the first integral, we apply the sifting property in Eq. (7.32).

10
J (P + 4t —2)8(t — dt = (* + 4t — 2)j_,=4+8-2=10
0
Similarly, for the second integral,
J [8(t — 1)e 'cost + 8(t + 1)e 'sint]dt

= e 'cost|,_, + e 'sint|__,
=e 'cosl + e'sin(—1) = 0.1988 — 2.2873 = —2.0885

Example 7.9

Evaluate the following integrals:

f (B + 5t2 + 10)5(t + 3)dt, J 8(t — ) cos 3t dt
— 0

Answer: 28, —1.

1.2 Step Response of an RC Circuit

When the dc source of an RC circuit is suddenly applied, the voltage
or current source can be modeled as a step function, and the response
is known as a step response.

The step response of a circuit is its behavior when the excitation is the
step function, which may be a voltage or a current source.

Practice Problem 7.9
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<
O}—‘
I = +

I = +

\Lu(t) CD c =

(b
Figure 7.40
An RC circuit with voltage step input.

Chapter 7 First-Order Circuits

The step response is the response of the circuit due to a sudden appli-
cation of a dc voltage or current source.

Consider the RC circuit in Fig. 7.40(a) which can be replaced by
the circuit in Fig. 7.40(b), where Vg is a constant dc voltage source.
Again, we select the capacitor voltage as the circuit response to be
determined. We assume an initia voltage V, on the capacitor, although
thisis not necessary for the step response. Since the voltage of a capac-
itor cannot change instantaneously,

v(07) =v(0") =V, (7.40)

where v(07) is the voltage across the capacitor just before switching and
v(0™) isits voltage immediately after switching. Applying KCL, we have

do v = Vault) _

C—+
dt R
or
dv v Vs
— = —=u(t 7.41
& T Re T RCU® (7.41)
where v isthe voltage across the capacitor. Fort > 0, Eq. (7.41) becomes
dv v Vs
— 4 —==— .
d RC RC (7:42)
Rearranging terms gives
dl _ v~ Vs
dt RC
or
dv dt
= —— 7.43
v — Vg RC (743)
Integrating both sides and introducing the initial conditions,
| ( s) v(t) t t
nw-Vy) =--—=
Vo RC 0
t
- - - = ——+
In(w(t) — Vg — In(Vp — Vo) =C 0
or
v — Vg t
| = —— 7.44
"Ne—V. RC (7:44)
Taking the exponential of both sides
v — Vg _t/
— = 7, =RC
Vo— Ve !
v—Vs=(Vo— Ve V"
or
o) =Vs+ (Vo— Ve, t>0 (7.45)
Thus,

Vo, t<o
0= 7.4
o(® {VS +(Vo—Voe’  t>0 (7.46)
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This is known as the complete response (or total response) of the RC
circuit to a sudden application of a dc voltage source, assuming the
capacitor is initially charged. The reason for the term “complete” will
become evident a little later. Assuming that Vg > V, a plot of v(t) is
shown in Fig. 7.41.

If we assume that the capacitor is uncharged initially, we set
Vo = 0in EQ. (7.46) so that

0, t<o0
v(® = {Vs(l —eVy, t>0 (7.47)
which can be written aternatively as
v() = V(1 — e Y7u(t) (7.48)

This is the complete step response of the RC circuit when the capaci-
tor isinitially uncharged. The current through the capacitor is obtained
from Eq. (7.47) using i(t) = Cdv/dt. We get

d C

i(t)=C— = —Ve ",

ot . 7 = RC,

t>0

or

i(t) = Vﬁse’[/fu(t) (7.49)
Figure 7.42 shows the plots of capacitor voltage v(t) and capacitor cur-
rent i(t).

Rather than going through the derivations above, there is a sys-
tematic approach—or rather, a short-cut method—for finding the step
response of an RC or RL circuit. Let us reexamine Eq. (7.45), which is
more genera than Eq. (7.48). It is evident that v(t) has two components.
Classically there are two ways of decomposing this into two compo-
nents. The first is to break it into a “natural response and a forced
response”’ and the second is to bresak it into a “transient response and
a steady-state response.”” Starting with the natural response and forced
response, we write the total or complete response as

Complete response = natural response + forced response

stored energy independent source
or
U= vyt vs (7.50)
where
Un = oeit/T
and

v =Vl —e ")

We are familiar with the natural response v,, of the circuit, as discussed
in Section 7.2. vs is known as the forced response because it is pro-
duced by the circuit when an external “force” (a voltage source in this
case) is applied. It represents what the circuit is forced to do by the
input excitation. The natural response eventually dies out along with
the transient component of the forced response, leaving only the steady-
state component of the forced response.
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v(t) 4

Vo

0
Figure 7.41
Response of an RC circuit with initially
charged capacitor.

—

(1)
\/S ,,,,,,,,,,,,,,,,,,,
0 t
@
i(t) 4
Vs L
R
0 t

(b)
Figure 7.42
Step response of an RC circuit with
initially uncharged capacitor: (a) voltage
response, (b) current response.
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This is the same as saying that the com-
plete response is the sum of the tran-
sient response and the steady-state
response.

almost all the circuit problems in this
chapter can be solved using the
formula

X(t) = () + [X(0) — x()]e” /"

I Once we know x(0), x(), and 7,

Chapter 7 First-Order Circuits

Another way of looking at the complete response is to break into
two components—one temporary and the other permanent, i.e.,

Complete response = transient response + steady-state response

temporary part permanent part

or
U= U+ Vg (7.51)
where
v = (Vo — Ve /" (7.52a)
and
ve = Vs (7.52b)

The transient response v, is temporary; it is the portion of the com-
plete response that decays to zero as time approaches infinity. Thus,

The transient response is the circuit’s temporary response that will die
out with time.

The steady-state response v is the portion of the complete response
that remains after the transient reponse has died out. Thus,

The steady-state response is the behavior of the circuit a long time
after an external excitation is applied.

The first decomposition of the complete response isin terms of the
source of the responses, while the second decomposition is in terms of
the permanency of the responses. Under certain conditions, the natural
response and transient response are the same. The same can be said
about the forced response and steady-state response.

Whichever way we look at it, the complete response in Eq. (7.45)
may be written as

v(t) = v() + [0(0) — v(=)]e”"” (7.53)

where v(0) istheinitia voltageatt = 0™ and v() isthefinal or steady-
state value. Thus, to find the step response of an RC circuit requires
three things:

1. The initial capacitor voltage v(0).
2. The final capacitor voltage v ().
3. The time constant 7.

We obtain item 1 from the given circuit for t < 0 and items 2 and 3
from the circuit for t > 0. Once these items are determined, we obtain
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the response using Eg. (7.53). This technique equally appliesto RL cir-
cuits, as we shall see in the next section.

Note that if the switch changes position at time t = t, instead of
at t =0, there is a time delay in the response so that Eq. (7.53)
becomes

v() = v(=) + [v(to) — v(x)]e” 7 (7.54)

where v(to) is the initial value at t = tg . Keep in mind that Eq. (7.53)
or (7.54) applies only to step responses, that is, when the input exci-
tation is constant.
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The switch in Fig. 7.43 has been in position A for along time. Att = 0,
the switch moves to B. Determine v(t) for t > 0 and calculate its value
at=1sand4s

3kQ A B 4kQ

24V 5kQ § 0.5mF 30V

Figure 7.43
For Example 7.10.

Solution:

For t < 0, the switch is at position A. The capacitor acts like an open
circuit to dc, but v is the same as the voltage across the 5-k() resistor.
Hence, the voltage across the capacitor just before t = 0 is obtained
by voltage division as

v(07) = 5T53(24) = 15V

Using the fact that the capacitor voltage cannot change instantaneously,
v(0) =v(0)=v(0") =15V

For t > 0, the switch is in position B. The Thevenin resistance
connected to the capacitor is Ry, = 4 k(), and the time constant is

=R C=4%X10>x 05x 10 %= 2s

Since the capacitor acts like an open circuit to dc at steady state,
v() = 30V. Thus,

v(t) = v(®) + [v(0) — v(=)]e "
=30 + (156 — 30)e Y2 = (30 — 15 °%) Vv
Att=1,
v(1) = 30 — 15e %° = 209V
Att =4,
v(4) = 30 — 15e 2 = 27.97V

Example 7.10
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Practice Problem 7.10

t=0

0oV

Figure 7.44
For Practice Prob. 7.10.

Find v(t) for t > 0 in the circuit of Fig. 7.44. Assume the switch has
been open for a long time and is closed at t = 0. Calculate v(t) at
t=05.

Answer: (6.25 + 3.75e )V foralt > 0, 7.63 V.

Example 7.11

100 _',

20Q v 10V

00

Il
ST
M

30V 20Q v =

(b)
Figure 7.46
Solution of Example 7.11: (a) fort < O,
(b) fort > 0.

In Fig. 7.45, the switch has been closed for along time and is opened
at=0.Findiand v for al time.

,_..
1
o

00 _\

-

30u(t) V 20Q

I = +
|
Il
INTS
m

Ct 10V

Figure 7.45
For Example 7.11.

Solution:
The resistor current i can be discontinuous at t = 0, while the capacitor
voltage v cannot. Hence, it is always better to find v and then obtain i
from v.

By definition of the unit step function,

0, t<o
30u(®) = {30 t>0

For t < 0, the switch is closed and 30u(t) = O, so that the 30u(t)
voltage source is replaced by a short circuit and should be regarded as
contributing nothing to v. Since the switch has been closed for a long
time, the capacitor voltage has reached steady state and the capacitor
acts like an open circuit. Hence, the circuit becomes that shown in
Fig. 7.46(a) for t < 0. From this circuit we obtain

v

=10V = 2 =
v oV, i 10

-1A

Since the capacitor voltage cannot change instantaneously,
v(0) =v(0) =10V

For t > 0, the switch is opened and the 10-V voltage source is
disconnected from the circuit. The 30u(t) voltage source is now operative,
so the circuit becomes that shown in Fig. 7.46(b). After a long time, the
circuit reaches steady state and the capacitor acts like an open circuit
again. We obtain v(«) by using voltage division, writing

20
20+ 10

v(e) = (30) = 20V
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The Thevenin resistance at the capacitor terminals is

10x 20 20
R = 10|20 = 0 _?Q
and the time constant is
20 1 5
TTRmCT Tt

Thus,

v(t) = v(*) + [v(0) — v(=)]e”""
20 + (10 — 20)e ©®/9t = (20 — 10e *%) v

To obtain i, we notice from Fig. 7.46(b) that i is the sum of the currents
through the 20-() resistor and the capacitor; that is,

=1-05e % + 0.25(—-06)(-10)e ** = (1 + e *) A

Notice from Fig. 7.46(b) that v + 10i = 30 is satisfied, as expected.
Hence,

10V, t<o
U =

(20 — 10e %YV, t=0
. [-1A, t<o

1+ e oA, t>0

Notice that the capacitor voltage is continuous while the resistor current
is not.
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The switchin Fig. 7.47 isclosed at t = 0. Find i(t) and v(t) for al time.
Note that u(—t) = 1fort < Oand O fort > 0. Also, u(—t) = 1 — u(t).

i t=0
s ' X
[

20u(-t) V —— 02F 10Q 3A

Figure 7.47
For Practice Prob. 7.11.

. 0, t<o0
Answer: i(t) = 21+ e YA t>0

20V, t<o0
v =
101+e ™V, t>0

Practice Problem 7.11



280

vLu(t) Cj) L % o(t)

(b)
Figure 7.48

An RL circuit with a step input voltage.

i(t)

lo

ol <

0 t
Figure 7.49
Total response of the RL circuit with
initial inductor current |,

Chapter 7 First-Order Circuits

7.6 Step Response of an RL Circuit

Consider the RL circuit in Fig. 7.48(a), which may be replaced by the
circuit in Fig. 7.48(b). Again, our god is to find the inductor current i
as the circuit response. Rather than apply Kirchhoff’s laws, we will use
the simple technique in Egs. (7.50) through (7.53). Let the response be
the sum of the transient response and the steady-state response,

=i+ g (7.55)
We know that the transient response is always a decaying exponential,
that is,

=AY, 1= (7.56)

ol

where A is a constant to be determined.

The steady-state response is the value of the current along time after
the switch in Fig. 7.48(a) is closed. We know that the transient response
essentialy dies out after five time constants. At that time, the inductor
becomes a short circuit, and the voltage across it is zero. The entire
source voltage Vg appears across R. Thus, the steady-state response is

s = — (7.57)
Substituting Egs. (7.56) and (7.57) into Eq. (7.55) gives
V,
i=Ae V" + ES (7.58)

We now determine the constant A from the initial value of i. Let Iy be
theinitial current through the inductor, which may come from a source
other than Vg Since the current through the inductor cannot change
instantaneously,

i(07) =i(07) =1 (7.59)
Thus, at t = 0, Eq. (7.58) becomes

From this, we obtain A as
Vs
A=ly——=
° R
Substituting for A in Eq. (7.58), we get

i(t) = % + <|O - E)et/f (7.60)

This is the complete response of the RL circuit. It is illustrated in
Fig. 7.49. The response in Eq. (7.60) may be written as

i) = () + [i(0) — i(=>)]e™" (7.61)
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where i(0) and i(«) are the initial and final values of i, respectively.
Thus, to find the step response of an RL circuit requires three things:

1. Theinitial inductor current i(0) at t = O.
2. The fina inductor current i().
3. The time constant 7.

We obtain item 1 from the given circuit for t < 0 and items 2 and 3
from the circuit for t > 0. Once these items are determined, we obtain
the response using Eq. (7.61). Keep in mind that this technique applies
only for step responses.

Again, if the switching takes place at time t = ty instead of t = 0,
Eq. (7.61) becomes

it) = i(2) + [ito) — i(=0)]e” 7" (7.62)
If |0 = O, then
0, t<O0
i(t) =9 Vs L-e)  t>0 (7.63a)
R
or
. Vs -
ih)=72@0-e YT)u(t) (7.63b)

This is the step response of the RL circuit with no initia inductor cur-

rent. The voltage across the inductor is obtained from Eq. (7.63) using

v = Ldi/dt. We get
di

U(t) = La = Vs

L evr
7R
or

o(t) = Ve Y7u(t) (7.64)
Figure 7.50 shows the step responses in Egs. (7.63) and (7.64).

it) o(t) A
Vo

R

0 t 0 t
@ (b)
Figure 7.50
Step responses of an RL circuit with no initia inductor
current: (a) current response, (b) voltage response.
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Example 7.12

t=0

Figure 7.51
For Example 7.12.

Find i(t) in the circuit of Fig. 7.51 for t > 0. Assume that the switch
has been closed for a long time.

Solution:
When t < 0, the 3-Q) resistor is short-circuited, and the inductor acts
like a short circuit. The current through the inductor at t = 0™ (i.e., just
beforet = 0) is
10
i(0)=—=5A
©) =7

Since the inductor current cannot change instantaneously,
i(0) =i(0") =i(0") =5A

Whent > 0, the switch is open. The 2-Q) and 3-() resistors are in series,
S0 that

10
2+3

i(o0) = 2A

The Thevenin resistance across the inductor terminals is
Rp=2+3=50
For the time constant,
L B
Ry 5 15

Thus,

i(20) + [i(0) — i(=2)]e™""
2+ (B5-2e P'=2+3A t>0

it)

Check: In Fig. 7.51, for t > 0, KVL must be satisfied; that is,

di
10=5 + L—
dt

5i + L% = [10 + 15e ] + [;(3)(—15)e15‘} =10

This confirms the result.

Practice Problem 7.12

b 1sH
2112
50 >zt:0 100
Figure 7.52

For Practice Prob. 7.12.

The switch in Fig. 7.52 has been closed for a long time. It opens at
t=0. Findi(t) fort > 0.

Answer: (6 + 3e 1M Aforal t > 0.
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Att = 0, switch 1in Fig. 7.53 is closed, and switch 2 is closed 4 s |ater.
Find i(t) fort > 0. Caculatei fort =2sandt =5s.

aov () 2Q §5H

Figure 7.53
For Example 7.13.

Solution:

We need to consider the three time intervalst = 0,0 =t = 4, and
t = 4 separately. For t < 0O, switches S; and S, are open so that i = 0.
Since the inductor current cannot change instantly,

i(07) =i0)=i(0")=0
For 0=t =4, S isclosed so that the 4-Q) and 6-() resistors are

in series. (Remember, at thistime, S; is still open.) Hence, assuming
for now that S is closed forever,

i(0) = =4A, Rp=4+6=100

4+ 6
_ L _5_1
TRy 10 2°
Thus,
i(t) = i() + [i(0) — i()]e V"

A+ 0-4e?=41-eP)A, 0=t=4

Fort = 4, S; is closed; the 10-V voltage source is connected, and
the circuit changes. This sudden change does not affect the inductor
current because the current cannot change abruptly. Thus, the initial
current is

i4)=i4d)=41—-e°=4A
To find i(«), let v be the voltage at node P in Fig. 7.53. Using KCL,

40—v+10—v_3 N _@
4 2 6 T

30
i() = % = = 2727A

The Thevenin resistance at the inductor terminals is

4 X2 22

and
5 15
72725275
3

22

Example 7.13
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Hence,
i(t) = i() + [i(4) —i()]e Y, t=4
We need (t — 4) in the exponential because of the time delay. Thus,

15
i(t) = 2.727 + (4 — 2.727)e = 9/7, =5
= 2727 + 1.273e 146670-4) =>4
Putting al this together,
0, t=0
i(t) =441 — e 9), 0=t=4
2727 + 1.273e 14579 =4
Att =2,
i(2) =41 - e ?% =393A
Att =5,

i(5) = 2.727 + 1.273e 4%%7 = 3.02 A

Practice Problem 7.13

St 100

t=0

6A CD §159

t=2

20Q li(t)

5H

Figure 7.54
For Practice Prob. 7.13.

Switch S; in Fig. 7.54 is closed at t = 0, and switch S, is closed at
t = 2s Cadculate i(t) for al t. Find i(1) and i(3).

Answer:
0, t <0
i) =¢2(1 — e, 0<t<2
36—16e %2t >2
i(1) = 1.9997 A, i(3) = 3.589 A.

7.7 TFirst-Order Op Amp Circuits

An op amp circuit containing a storage element will exhibit first-order
behavior. Differentiators and integrators treated in Section 6.6 are
examples of first-order op amp circuits. Again, for practical reasons,
inductors are hardly ever used in op amp circuits; therefore, the op amp
circuits we consider here are of the RC type.

As usual, we analyze op amp circuits using nodal analysis. Some-
times, the Thevenin equivalent circuit is used to reduce the op amp cir-
cuit to one that we can easily handle. The following three examples
illustrate the concepts. The first one deals with a source-free op amp
circuit, while the other two involve step responses. The three examples
have been carefully selected to cover al possible RC types of op amp
circuits, depending on the location of the capacitor with respect to the
op amp; that is, the capacitor can be located in the input, the output,
or the feedback loop.
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For the op amp circuit in Fig. 7.55(a), find v, for t > 0, given that
v(0) = 3V. Let R = 80k, R, = 20k(), and C = 5 uF.

Ry 80kQ
1 O 1 C 5
+ - 3 + + 3V - b +
Rl Y 20 kQ % (0+)
o °
(€) (b)
Figure 7.55
For Example 7.14.
Solution:

This problem can be solved in two ways:

B METHOD 1 Consider thecircuit in Fig. 7.55(a). Let us derive the
appropriate differential equation using nodal analysis. If v, is the volt-
age at node 1, at that node, KCL gives

0—v; _dv

=Cc— 7.14.1
R, dt ( )

Since nodes 2 and 3 must be at the same potential, the potential at node
2 is zero. Thus, v4 — 0 = v or v4 = v and Eq. (7.14.1) becomes

dv v

—+ = 7.14.2
d CR; 0 ( )

This is similar to Eq. (7.4b) so that the solution is obtained the same
way asin Section 7.2, i.e,,
M) = Ve V", 7=RC (7.14.3)

where V; is the initia voltage across the capacitor. But v(0) = 3 = V,
and 7 = 20 X 10°> X 5 X 10~ ® = 0.1. Hence,

v(t) = e 1@ (7.14.4)

Applying KCL at node 2 gives

dv 00—,
dt Ry
or
dv
Vo = —R;Ca (7.14.5)

Now we can find vq as

Vo = —80 X 10° X 5 X 10" %(—30e % = 12¢ *V, t>0

20 kQ

Example 7.14

80 kQ
1A
(<) >
N N
+—_
v +

%
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M METHOD 2 Let us apply the short-cut method from Eq. (7.53).
We need to find v,(0 "), ve(e), and 7. Sincev(0") = v(07) = 3V, we
apply KCL at node 2 in the circuit of Fig. 7.55(b) to obtain
3 N 0 — v,(0")
20,000 80,000

=0

or v,(0") = 12 V. Since the circuit is source free, v() = 0 V. To find
7, we need the equivalent resistance Ry, across the capacitor terminals.
If we remove the capacitor and replace it by a 1-A current source, we
have the circuit shown in Fig. 7.55(c). Applying KVL to the input loop
yields

20,000(1) —v =0 = v =20kV
Then

Req = % = 20kQ
and 7 = RC = 0.1. Thus,

volt) = V() + [0o(0) — vo()]e V"
=0+ (12-0e =122V, t>0

as before.

Practice Problem 7.14

Figure 7.56
For Practice Prob. 7.14.

For the op amp circuit in Fig. 7.56, find v, for t > 0 if v(0) = 4 V.
Assume that Ry = 50 k), R; = 10k(), and C = 10 uF.

Answer: —4e 2V t > 0.

Example 7.15

Determine v(t) and v,(t) in the circuit of Fig. 7.57.

Solution:

This problem can be solved in two ways, just like the previous example.
However, we will apply only the second method. Since what we are
looking for is the step response, we can apply Eq. (7.53) and write

o) = v(®) + [V(0) — v(=®)]e V", t>0 (7.15.1)
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where we need only find the time constant =, the initial value v(0), and
the final value v(«). Notice that this applies strictly to the capacitor
voltage due a step input. Since no current enters the input terminals of
the op amp, the elements on the feedback 1oop of the op amp constitute
an RC circuit, with

T=RC=50x 10° X 10°® = 0.05 (7.15.2)

For t < O, the switch is open and there is no voltage across the

capacitor. Hence, v(0) = 0. For t > 0, we obtain the voltage at node

1 by voltage division as

2
20 + 10

Uy 3=2V (7.15.3)
Since there is no storage element in the input loop, v, remains constant
for al t. At steady state, the capacitor acts like an open circuit so that

the op amp circuit is a noninverting amplifier. Thus,

V(%) = <1 + gg)vl =35%x2=7V (7.15.4)
But
U1 — Vo =10 (7.15.5)
so that
v(®)=2—-7= -5V
Substituting 7, v(0), and v() into Eq. (7.15.1) gives
o) = -5+[0— (-5le =5 -1V, t>0 (7.156)
From Egs. (7.15.3), (7.15.5), and (7.15.6), we obtain
vo() = vq(t) —v(®) =7 -5V, t>0 (7.157)

287
+ v -
1uF
10 kQ .
1
+
3V 20 kQ § % 20KQ %
O
L
Figure 7.57

For Example 7.15.

Find v(t) and v(t) in the op amp circuit of Fig. 7.58.

Answer: (Note, the voltage across the capacitor and the output voltage
must be both equal to zero, for t < 0, since the input was zero for all
t < 0.)40(1 — e Mu() mv, 40(e ™™ — 1) u(t) mV.

Practice Problem 7.15

100 kQ
—AVWA—
1uF
Il
Il
_ + v -
10kQ  ~,
y —L—0
+
4mV %
°
Figure 7.58

For Practice Prob. 7.15.
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Example 7.16

Figure 7.59
For Example 7.16.

5kQ

~2.5u(t) D Il 2 uF

Figure 7.61
Thevenin equivalent circuit of the circuit
inFig. 7.59.

Find the step response v,(t) for t > 0in the op amp circuit of Fig. 7.59.
Let v; = 2u(t) V, Ry = 20k, Ry =50k, R, = Ry = 10k, C =
2 uF.

Solution:
Notice that the capacitor in Example 7.14 is located in the input loop,
while the capacitor in Example 7.15 is located in the feedback loop. In
this example, the capacitor islocated in the output of the op amp. Again,
we can solve this problem directly using nodal analysis. However, using
the Thevenin equivalent circuit may simplify the problem.

We temporarily remove the capacitor and find the Thevenin
equivalent at its terminals. To obtain Vqy,, consider the circuit in
Fig. 7.60(a). Since the circuit is an inverting amplifier,

Ri
Vab = _Elvi
By voltage division,
RS R3 Rf
Vih=15 1 5 Vab= — B Ui
R, + Rs R+ Rs Ry
R R,
MWW o}
” R, Ry Ry
O

(b)
Figure 7.60
Obtaining V1, and Ry, across the capacitor in Fig. 7.59.

To obtain Ry, consider the circuit in Fig. 7.60(b), where R, is the
output resistance of the op amp. Since we are assuming an ideal op amp,
R, =0, and

RoRs
Rin=R||Rs =
= Rel|Ra= o
Substituting the given numerical values,
R, R 10 50
Vin= —————v; = ——-==2u(t) = —2.5u(t
™ TR TRRY 2020200 u(®
RoRs
R, = = 5kQ
™ R, + Rs

The Thevenin equivalent circuit is shown in Fig. 7.61, which is similar
to Fig. 7.40. Hence, the solution is similar to that in Eq. (7.48); that is,
vo(t) = —2.5(1 — e Y7)u(t)

where 7 = RyC = 5 X 10% X 2 X 10~ ® = 0.01. Thus, the step response
fort > 0is
vo(t) = 2.5(e %% — 1)u(t) vV
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Obtain the step response vo(t) for the circuit in Fig. 7.62. Let Practice Problem 7.16
v = 3U()V, Ry = 20k}, R = 40K, R, = R = 10k(, C = 2 uF.

Re
Answer: 9(1 — e *Mu(t) V.
R . R,
+
+
. . . . Yy C*D Ry C %
7.8 Transient Analysis with PSpice S T >
As we discussed in Section 7.5, the transient response is the temporary

response of the circuit that soon disappears. PSpice can be used to =

obtain the transient response of a circuit with storage elements. Sec- Figure 7.62

tion D.4 in Appendix D provides a review of transient analysis using  For Practice Prob. 7.16.
PSpice for Windows. It is recommended that you read Section D.4

before continuing with this section.

If necessary, dc PSpice analysisisfirst carried out to determine the PSpice uses “transient” to mean “func-
initial conditions. Then the initial conditions are used in the transient || tion of time.” Therefore, the transient
PSpice analysis to obtain the transient responses. It is recommended response in PSpice may not actually
but not necessary that during this dc analysis, all capacitors should e~ 91¢ ©ut as expected.
open-circuited while all inductors should be short-circuited.

Use PSpice to find the responsei(t) for t > 0 in the circuit of Fig. 7.63. Example 7.17
Solution: —~ 4Q
Solving this problem by hand gives i(0) = 0,i(®) = 2A, o Li(t)
Rrp = 6,7 =3/6 = 055, o that t=0
3
i(©) = i() + [i(0) — i(=)]e V" = 21 — &), t>0 sa(®) Z20 H
To use PSpice, we first draw the schematic as shown in Fig. 7.64.

We recall from Appendix D that the part name for a closed switch is  Figure 7.63
Sw_tclose. We do not need to specify the initial condition of the  For Example 7.17.
inductor because PSpice will determine that from the circuit. By
selecting Analysis/Setup/Transient, we set Print Step to 25 ms and
Final Step to 57 = 2.5s. After saving the circuit, we simulate by
selecting Analysis/Simulate. In the PSpice A/D window, we select
Trace/Add and display —I(L1) as the current through the inductor.
Figure 7.65 shows the plot of i(t), which agrees with that obtained by
hand calculation.

tClose=0

R2

Figure 7.65
Figure 7.64 For Example 7.17; the response of the
The schematic of the circuit in Fig. 7.63. circuitin Fig. 7.63.
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Note that the negative sign on I(L1) is needed because the current
enters through the upper terminal of the inductor, which happens to be
the negative terminal after one counterclockwise rotation. A way to avoid
the negative sign is to ensure that current enters pin 1 of the inductor.
To abtain this desired direction of positive current flow, the initially
horizontal inductor symbol should be rotated counterclockwise 270°
and placed in the desired location.

Practice Problem 7.17

3Q

12v

t=0

6 Q

05F = »(t)

Figure 7.66

For the circuit in Fig. 7.66, use Pspice to find v(t) for t > 0.

Answer: v(t) = 8(1 — e ") V, t > 0. The response is similar in shape
to that in Fig. 7.65.

For Practice Prob. 7.17.

Example 7.18

In the circuit of Fig. 7.67(a), determine the response v(t).

t=0 t=0
120 +oo(t) - =X
O} H Of

30V 69§ 69§ 3Q§ O

v (¥) §GQ

100 +oo(t) -

v ()

=

©
Figure 7.67
For Example 7.18. Original circuit (), circuit for t > 0 (b), and
reduced circuit fort > 0 (c).
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Solution:

1. Define. The problem is clearly stated and the circuit is clearly
labeled.

2. Present. Given the circuit shown in Fig. 7.67(a), determine the
response v(t).

3. Alternative. We can solve this circuit using circuit analysis
techniques, nodal analysis, mesh analysis, or PSpice. Let us
solve the problem using circuit analysis techniques (this time
Thevenin equivalent circuits) and then check the answer using
two methods of PSpice.

4. Attempt. For time <0, the switch on the left is open and the
switch on the right is closed. Assume that the switch on the right
has been closed long enough for the circuit to reach steady state;
then the capacitor acts like an open circuit and the current from
the 4-A source flows through the paralel combination of the 6-Q)
and 3-Q resistors (6 || 3 = 18/9 = 2), producing a voltage equal
to2X 4=8V = —v(0).

At t = 0O, the switch on the left closes and the switch on
the right opens, producing the circuit shown in Fig. 7.67(b).

The easiest way to complete the solution is to find the
Thevenin equivalent circuit as seen by the capacitor. The open-
circuit voltage (with the capacitor removed) is equa to the
voltage drop across the 6-() resistor on the left, or 10 V (the
voltage drops uniformly across the 12-() resistor, 20 V, and
across the 6-Q) resistor, 10 V). This is V4. The resistance
looking in where the capacitor was is equal to 126 + 6 =
72/18 + 6 = 10, which is Ry This produces the Thevenin
equivalent circuit shown in Fig. 7.67(c). Matching up the
boundary conditions (v(0) = —8V andv(») = 10V) and 7 =
RC = 1, we get

v(t) =10 — 18e 'V

5. Evaluate. There are two ways of solving the problem using
PSpice.

B METHOD 1 One way is to first do the dc PSpice analysis to
determine the initial capacitor voltage. The schematic of the revelant
circuit is in Fig. 7.68(a). Two pseudocomponent VIEWPOINTSs are
inserted to measure the voltages at nodes 1 and 2. When the circuit
is simulated, we obtain the displayed values in Fig. 7.68(a) as
V; =0V and V, = 8V. Thus, the initial capacitor voltage is v(0) =
V; — V, = —8V. The PSpice transient analysis uses this value along
with the schematic in Fig. 7.68(b). Once the circuit in Fig. 7.68(b)
is drawn, we insert the capacitor initial voltage as IC = —8. We
select Analysis/Setup/Transient and set Print Step to 0.1 s and
Final Step to 47 = 4 s. After saving the circuit, we select Analysis/
Simulate to simulate the circuit. In the PSpice A/D window, we
select Trace/Add and display V(R2:2) — V(R3:2) or V(C1:1) —
V(C1:2) as the capacitor voltage v(t). The plot of v(t) is shown in
Fig. 7.69. This agrees with the result obtained by hand calculation,
v(t) = 10 — 18¢e 'V.
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0.0000 C1 8.0000

3 |1CD4A

0
@
RL CL
-
12 0.1
o V(R2:2) - V(R3:2)
30 V V1 R2 § 6 R3Z6 Ti me
Figure 7.69
Response v(t) for the circuit in Fig. 7.67.
)
(b
Figure 7.68

(8) Schematic for dc analysisto get v(0), (b) schematic
for transient analysis used in getting the response v(t).

B METHOD 2 We can simulate the circuit in Fig. 7.67 directly,
since PSpice can handle the open and closed switches and determine
the initial conditions automatically. Using this approach, the schematic
is drawn as shown in Fig. 7.70. After drawing the circuit, we select
Analysig/Setup/Transient and set Print Step to 0.1 s and Final Step
to 4t = 4 s. We save the circuit, then select Analysis/Simulate to sim-
ulate the circuit. In the PSpice A/D window, we select Trace/Add and
display V(R2:2) — V(R3:2) as the capacitor voltage v(t). The plot of
v(t) is the same as that shown in Fig. 7.69.

g tClose =0 c1 tOpen = 0
12 X2
U1
12 01 w2
V1
30 V RR36 R3Z6 R4Z3 IlCD4A
0
Figure 7.70

For Example 7.18.

6. Satisfactory? Clearly, we have found the value of the output
response v(t), as required by the problem statement. Checking
does validate that solution. We can present al this as a complete
solution to the problem.
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The switch in Fig. 7.71 was open for a long time but closed at t = 0.
If i(0) = 10 A, find i(t) for t > 0 by hand and also by PSpice.

Answer: i(t) = 6 + 4e > A. The plot of i(t) obtained by PSpice analy-
sisis shown in Fig. 7.72.

10 A,

0s
o I(L1)
Ti me
Figure 7.72

For Practice Prob. 7.18.

7.9 T Applications

The various devices in which RC and RL circuits find applications
include filtering in dc power supplies, smoothing circuits in digital com-
munications, differentiators, integrators, delay circuits, and relay circuits.
Some of these applications take advantage of the short or long time con-
stants of the RC or RL circuits. We will consider four simple applica-
tions here. The first two are RC circuits, the last two are RL circuits.

7.9.1 Delay Circuits

An RC circuit can be used to provide various time delays. Figure 7.73
shows such acircuit. It basically consists of an RC circuit with the capac-
itor connected in parallel with a neon lamp. The voltage source can pro-
vide enough voltage to fire the lamp. When the switch is closed, the
capacitor voltage increases gradually toward 110 V at a rate determined
by the circuit’s time constant, (R; + R,)C. The lamp will act as an open

R, S Rz(
+ 70V
110V T C == 01uF Neon

lamp

Figure 7.73
An RC delay circuit.

Practice Problem 7.18

7¥ 5Q

t=0

2A (}) §309 geg

Figure 7.71
For Practice Prob. 7.18.

$ i(t)

2H
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circuit and not emit light until the voltage across it exceeds a particular
level, say 70 V. When the voltage level is reached, the lamp fires (goes
on), and the capacitor discharges through it. Due to the low resistance
of the lamp when on, the capacitor voltage drops fast and the lamp turns
off. The lamp acts again as an open circuit and the capacitor recharges.
By adjusting R,, we can introduce either short or long time delays into
the circuit and make the lamp fire, recharge, and fire repeatedly every
time constant 7 = (R, + Ry)C, because it takes a time period 7 to get
the capacitor voltage high enough to fire or low enough to turn off.

The warning blinkers commonly found on road construction sites
are one example of the usefulness of such an RC delay circuit.

Example 7.19

Consider the circuit in Fig. 7.73, and assume that R, = 1.5 M(),
0 < R, < 25MQ. (a) Calculate the extreme limits of the time con-
stant of the circuit. (b) How long does it take for the lamp to glow for
the first time after the switch is closed? Let R, assume its largest value.

Solution:

(a) The smallest value for R, is 0 (), and the corresponding time constant
for the circuit is

7=(R +R)C=(15X10°+0) X 0.1 X 10 ®=0.15s
The largest value for R, is 2.5 M(}, and the corresponding time constant
for the circuit is

=R+ R)C=(15+25) x10°xX01x10 °=04s

Thus, by proper circuit design, the time constant can be adjusted to
introduce a proper time delay in the circuit.

(b) Assuming that the capacitor isinitially uncharged, vc(0) = 0, while
Uc(oo) = 110. But

ve(®) = ve(®) + [ve(0) — ve(=)le™” = 110[1 — e

where 7 = 0.4, as calculated in part (). The lamp glows when
vc=T70V. If Uc(t) =70V at=t, then

;
70=110[1-e Y] = -1 e /"

or

4 11
—to/7 _— T fo/7 — ==
e = = e =
11

Taking the natural logarithm of both sides gives
11
to=1 an = 041n2.75 = 0.4046 s

A more general formula for finding ty is
—v(*)
v(to) — v(*)
The lamp will fire repeatedly every to secondsif and only if v (tg) < v ().

t0=7'|n
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The RC circuit in Fig. 7.74 is designed to operate an alarm which
activates when the current through it exceeds 120 uA. If 0 = R=
6 kQ, find the range of the time delay that the variable resistor can
create.

Answer: Between 47.23 ms and 124 ms.

7.9.2 Photoflash Unit

An electronic flash unit provides a common example of an RC circuit.
This application exploits the ability of the capacitor to oppose any
abrupt change in voltage. Figure 7.75 shows a simplified circuit. It con-
sists essentially of a high-voltage dc supply, a current-limiting large
resistor Ry, and a capacitor C in parallel with the flashlamp of low
resistance R,. When the switch is in position 1, the capacitor charges
dowly due to the large time constant (7, = R;C). As shown in
Fig. 7.76(a), the capacitor voltage rises gradually from zero to Vg, while
its current decreases gradually from I, = V¢/R; to zero. The charging
time is approximately five times the time constant,

teharge = SR1C (7.65)

With the switch in position 2, the capacitor voltage is discharged.
The low resistance R, of the photolamp permits a high discharge
current with peak |, = Vg/R, in a short duration, as depicted in
Fig. 7.76(b). Discharging takes place in approximately five times the
time constant,

tdischarge = SR,C (7.66)

: Il-\\
0

0 t -1, L
@ (b)

W

Figures 7.76

(a) Capacitor voltage showing slow charge and fast discharge, (b) capacitor
current showing low charging current 1, = Vs/R; and high discharge current
|2 = VS/R2

Thus, the simple RC circuit of Fig. 7.75 provides a short-duration, high-
current pulse. Such a circuit also finds applications in electric spot
welding and the radar transmitter tube.

Practice Problem 7.19

10k S R
o

+ |
4kQ

9V ‘( = !
 Alam
Figure 7.74
For Practice Prob. 7.19.
Ry 1

pare li

High 2 +
voltage vg C—=—v
dc supply Ry -

Figure 7.75

Circuit for aflash unit providing slow
chargein position 1 and fast discharge in
position 2.
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Example 7.20

An électronic flashgun has a current-limiting 6-k() resistor and 2000-u.F
electrolytic capacitor charged to 240 V. If the lamp resistance is 12 (),
find: (a) the peak charging current, (b) the time required for the capac-
itor to fully charge, (c) the peak discharging current, (d) the total energy
stored in the capacitor, and (€) the average power dissipated by the
lamp.

Solution:
(a) The peak charging current is

Vs 240
R, 6 x10°

I, =

40 mA

(b) From Eg. (7.65),
tenarge = SR1C = 5 X 6 X 10° X 2000 X 10" ° = 60 s = 1 minute
(c) The peak discharging current is

Vs 240
L=—"=""=20A
27 R, 12 0

(d) The energy stored is
1 1
W= Ecv§ = - % 2000 X 10® x 240> = 57.6J
(e) The energy stored in the capacitor is dissipated across the lamp
during the discharging period. From Eq. (7.66),
taischarge = SRoC = 5 X 12 X 2000 X 10°%=012s
Thus, the average power dissipated is

W 57.6
p= = —— = 480 watts
tdisn:harge 0.12

Practice Problem 7.20

The flash unit of a camera has a 2-mF capacitor charged to 80 V.

(@ How much charge is on the capacitor?

(b) What is the energy stored in the capacitor?

(c) If theflash firesin 0.8 ms, what is the average current through
the flashtube?

(d) How much power is delivered to the flashtube?

(e) After a picture has been taken, the capacitor needs to be
recharged by a power unit that supplies a maximum of 5 mA.
How much time does it take to charge the capacitor?

Answer: (@) 0.16 C, (b) 6.4 J, (c) 200 A, (d) 8 kW, (e) 32 s.

7.9.3 Relay Circuits

A magnetically controlled switch is called a relay. A relay is essen-
tially an electromagnetic device used to open or close a switch that
controls another circuit. Figure 7.77(a) shows a typical relay circuit.
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The cail circuit is an RL circuit like that in Fig. 7.77(b), where R and
L are the resistance and inductance of the coil. When switch S; in
Fig. 7.77(a) is closed, the coil circuit is energized. The coil current
gradually increases and produces a magnetic field. Eventually the mag-
netic field is sufficiently strong to pull the movable contact in the other
circuit and close switch S,. At this point, the relay is said to be pulled
in. The time interval ty between the closure of switches S, and S; is
called the relay delay time.

Relays were used in the earliest digital circuits and are still used
for switching high-power circuits.

S ~~~ Magnetic field
o— St
la
Vs h . Cail y R
A S
[ L
)
@ (b)
Figure 7.77
A relay circuit.
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The coil of a certain relay is operated by a 12-V battery. If the cail has
a resistance of 150 Q) and an inductance of 30 mH and the current
needed to pull in is 50 mA, calculate the relay delay time.

Solution:
The current through the coil is given by

i(®) = i) + [i(0) — i(=2)]e™"

where
. . 12
i(0) =0, i(0) = 150 80 mA
L 30x10°
T = R™ 150 =0.2ms
Thus,

i(t) = 80[1 — e V"] mA
If i(ty) = 50 MA, then

5
50=80[1-e Y] = g-1- e T

or

w| o

3
—ty/T _ ta/T
e v =— = eV’ =
8

Example 7.21
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By taking the natural logarithm of both sides, we get
8 8
tg=171 Ing =02 Ing ms = 0.1962 ms

Alternatively, we may find ty using

i(0) — (=)

7 M) — i)

Practice Problem 7.21

Spark
plug

~— Air gap

Figure 7.78
Circuit for an automobile ignition system.

A relay has a resistance of 200 ) and an inductance of 500 mH. The
relay contacts close when the current through the coil reaches 350 mA.
What time elapses between the application of 110 V to the coil and
contact closure?

Answer: 2.529 ms.

7.9.4 Automobile Ignition Circuit

The ability of inductors to oppose rapid change in current makes them
useful for arc or spark generation. An automobile ignition system takes
advantage of this feature.

The gasoline engine of an automobile requires that the fuel-air
mixture in each cylinder be ignited at proper times. This is achieved
by means of a spark plug (Fig. 7.78), which essentially consists of a
pair of electrodes separated by an air gap. By creating a large voltage
(thousands of volts) between the electrodes, a spark is formed across
the air gap, thereby igniting the fuel. But how can such a large volt-
age be obtained from the car battery, which supplies only 12 V? This
is achieved by means of an inductor (the spark coail) L. Since the volt-
age across the inductor isv = L di/dt, we can make di/dt large by cre-
ating a large change in current in a very short time. When the ignition
switch in Fig. 7.78 is closed, the current through the inductor increases
gradually and reaches the final value of i = V¢/R, where Vg = 12 V.
Again, the time taken for the inductor to charge is five times the time
constant of the circuit (r = L/R),

L
tcharge = 5E (767)

Since at steady state, i is constant, di/dt = 0 and the inductor voltage
v = 0. When the switch suddenly opens, a large voltage is developed
across the inductor (due to the rapidly collapsing field) causing a spark
or arc in the air gap. The spark continues until the energy stored in the
inductor is dissipated in the spark discharge. In laboratories, when one
is working with inductive circuits, this same effect causes a very nasty
shock, and one must exercise caution.
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A solenoid with resistance 4 () and inductance 6 mH is used in an auto-
mobile ignition circuit similar to that in Fig. 7.78. If the battery sup-
plies 12 V, determine: the final current through the solenoid when the
switch is closed, the energy stored in the coil, and the voltage across
the air gap, assuming that the switch takes 1 us to open.

Solution:
The final current through the coil is

Ve 12

l=—="=3A
R 4
The energy stored in the cail is
1 2_1 -3 2
WZELI =5><6><10 X 3 =27TmJ
The voltage across the gap is
Al 3
V=L—=6X10°xX ——— =18kV
At 1X 10

Example 7.22

The spark coil of an automobile ignition system has a 20-mH inductance
and a 5-() resistance. With a supply voltage of 12 V, caculate: the
time needed for the coil to fully charge, the energy stored in the coil,
and the voltage developed at the spark gap if the switch opensin 2 us.

Answer: 20 ms, 57.6 mJ, and 24 kV.

7.10 Summary
1. The analysis in this chapter is applicable to any circuit that can be

reduced to an equivalent circuit comprising a resistor and a single
energy-storage element (inductor or capacitor). Such a circuit is
first-order because its behavior is described by a first-order differ-
ential equation. When analyzing RC and RL circuits, one must
always keep in mind that the capacitor is an open circuit to steady-
state dc conditions while the inductor is a short circuit to steady-
state dc conditions.

. The natural response is obtained when no independent source is
present. It has the general form

x(t) = x(0)e V"

where x represents current through (or voltage across) a resistor, a
capacitor, or an inductor, and x(0) is the initial value of x. Because
most practical resistors, capacitors, and inductors always have |0sses,
the natural response is atransient response, i.e. it dies out with time.
. The time constant 7 is the time required for a response to decay
to I/e of itsinitial value. For RC circuits, 7 = RC and for RL cir-
cuits, 7 = L/R.

Practice Problem 7.22
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4. The singularity functions include the unit step, the unit ramp func-
tion, and the unit impulse functions. The unit step function u(t) is

The unit impulse function is

= {0 =0
1, t>0
0, t<o0

8(t) = {Undefined, t=0

0, t>0

The unit ramp function is

0, t=0
r(t)_{t, t=0

5. The steady-state response is the behavior of the circuit after an
independent source has been applied for along time. The transient
response is the component of the complete response that dies out

with time.

6. The total or complete response consists of the steady-state
response and the transient response.

7. The step response is the response of the circuit to a sudden appli-
cation of a dc current or voltage. Finding the step response of a
first-order circuit requires the initial value x(0™), the final value
X(%2), and the time constant 7. With these three items, we obtain
the step response as

X(t) = x(=) + [X(07) = x()]e”""
A more general form of this equation is
X(t) = X(=) + [x(tg) — x(=)]e” "

Or we may write it as

Instantaneous value = Final + [Initial — Fina]e ¢/~

©

. PSpiceis very useful for obtaining the transient response of a circuit.
. Four practical applications of RC and RL circuits are; adelay circuit,

a photoflash unit, a relay circuit, and an automobile ignition circuit.

Review Questions

7.1 AnRCcircuithassR=2Q and C = 4F. Thetime
constant is:

(@ 05s (b)2s (c4s
(d)8s (e 15s
7.2 Thetime constant for an RL circuit withR = 2 Q) 7.4
andL = 4His
(@ 05s (b)2s (c)4s
(d)8s (e)15s

7.3 A capacitor inan RC circuit withR = 2 Q) and
C = 4 Fisbeing charged. Thetime required for the

capacitor voltage to reach 63.2 percent of its steady-
state valueis:

@2s (b)4s (c)8s
(d)16s (e) none of the above

AnRL circuithasR=2Q andL = 4H. Thetime
needed for the inductor current to reach 40 percent
of its steady-state value is:

(@ 05s (b)1s (o 2s

(d)4s (e) none of the above



7.5 Inthecircuit of Fig. 7.79, the capacitor voltage just
beforet = Ois:

@10V ®7V  ()6V
@4V (e0oV

3Q
NV

+ 2Q

10V CD o) == 7F

Figure 7.79
For Review Questions 7.5 and 7.6.

7.6 InthecircuitinFig. 7.79, v(x) is:
(@ 10V (b)7Vv (c6V
(d)4v (e 0V

7.7 For thecircuit in Fig. 7.80, the inductor current just
beforet = Ois:

@8A  (b)B6A  (0)4A
@2A (6 0A

1
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}io

10a (1) §29 °H

Figure 7.80
For Review Questions 7.7 and 7.8.

7.8 Inthecircuit of Fig. 7.80, i(«) is:
(8 10A (b) 6A (c)4A
(d)2A (e) OA
7.9 |Ifuvschangesfrom2Vto4V at = 0, we may
EXPress vg as.
@ 8(t) Vv (b) 2u(t) V
(©) 2u(—t) + 4u(t) vV (d)2 + 2u(t) Vv
(e) 4u(t) — 2V

7.10 ThepulseinFig. 7.116(a) can be expressed in terms
of singularity functions as:

@2u() + 2ut — )V (b) 2u(t) — 2u(t — 1)V
©2u(t) — 4uit — )V (d)2u(t) + dut — 1)V

Answers: 7.1d, 7.2b, 7.3c, 7.4b, 7.5d, 7.6a, 7.7c, 7.8e,
7.9c,d, 7.10Db.

Problems

Section 7.2 The Source-Free RC Circuit

7.1 Inthecircuit shownin Fig. 7.81
u(t) = 56e %V, t>0
ity =8 2mA, t>0
(a) Find the values of Rand C.

(b) Calculate the time constant 7.

(c) Determine the time required for the voltage to
decay haf itsinitial valueatt = 0.

Figure 7.81
For Prob. 7.1.

7.2 Find the time constant for the RC circuit in Fig. 7.82.

120 Q 12Q

0.5mF

i

Figure 7.82
For Prob. 7.2.

7.3 Determine the time constant for the circuit in Fig. 7.83.

10 kQ 20 kQ

100 pF T 40 kQ 30 kQ

Figure 7.83
For Prob. 7.3.
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7.4 Theswitchin Fig. 7.84 has been in position A for a 7.8 Forthecircuit in Fig. 7.88, if
long time. Assume the switch moves instantaneously a4t . 4t
= =0. >
fromAtoBatt = 0.Findv fort > 0. v =102V and 1 =02e A, t=0
(8) Find Rand C.
5kQ A (b) Determine the time constant.
% N (c) Cdlculate theinitia energy in the capacitor.
B 10 uF v (d) Obtain the time it takes to dissipate 50 percent of
40V 2kQ T - theinitial energy.
i
Figure 7.84 -
For Prob. 7.4. .
R C—=/—v

7.5 Using Fig. 7.85, design a problem to help other
efd students better understand source-free RC circuits.

Figure 7.88
t=0 For Prob. 7.8.
Ry

‘ i 7.9 TheswitchinFig. 7.89 opensatt = 0. Find v, for
R t>0.
v § R;

c 2kQ Kt=0
T

Figure 7.85 +
For Prob. 7.5. 6V % §4 kQ ==50puF

7.6 Theswitchin Fig. 7.86 has been closed for along

_ ' A Figure 7.89
time, and it opensatt = 0. Find v(t) fort = 0.

For Prob. 7.9.

7.10 For thecircuitin Fig. 7.90, find v(t) for t > 0.
Determine the time necessary for the capacitor

m voltage to decay to one-third of itsvalueat t = 0.

903 9kQ
24V C_) 2kQ § y(t)}: 40 uF —WW
sov (%) 3kQ § 20 uF == 1

Figure 7.86
For Prob. 7.6.

Figure 7.90
For Prob. 7.10.
7.7 Assuming that the switch in Fig. 7.87 hasbeenin . L
position A for along time and is moved to position B~ S¢ction 7.3 The Source-Free RL Circuit
at =0, finduvg(t) fort = 0. 7.11 For thecircuit in Fig. 7.91, find i, fort > 0.

t=0
30 4H
'
24V 40 8Q

Figure 7.87 Figure 7.91
For Prob. 7.7. For Prob. 7.11.

20kQ

12V




7.12 Using Fig. 7.92, design a problem to help other
eqd students better understand source-free RL circuits.

t=0
R

}io

v R, L

Figure 7.92
For Prob. 7.12.

7.13 Inthecircuit of Fig. 7.93,
u(t) = 206 9%V, t>0
i) =4 "mA, t>0
(@ FindR, L, and 7.

(b) Calculate the energy dissipated in the resistance
for0 <t < 05ms

Figure 7.93
For Prob. 7.13.

7.14 Cdculate the time constant of the circuit in Fig. 7.94.

20 k2
NV

10 kQ
AV

§5mH

40ng

Figure 7.94

§ 30 kQ

For Prob. 7.14.
7.15 Find the time constant for each of the circuitsin
Fig. 7.95.
10Q
40 Q
8Q
00 160 Q
12Q
% SH 20 mH

@ (b)
Figure 7.95
For Prob. 7.15.
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7.16 Determine the time constant for each of the circuits

inFig. 7.96.
Ly Ly
R,
L Ry Ry

(@ (b)
Figure 7.96
For Prob. 7.16.

7.17 Consider the circuit of Fig. 7.97. Find v,(t) if
i(0) =2Aandu(t) = 0.

1Q

3Q +

PO w0

o0 (&)

Figure 7.97
For Prob. 7.17.

7.18 For thecircuit in Fig. 7.98, determine v,(t) when
i(0) = 1A andou(t) = 0.

2Q

40
000

i0

0 ©

Figure 7.98
For Prob. 7.18.

7.19 Inthecircuit of Fig. 7.99, find i(t) for t > 0Oif
i(0) = 2A.

I 6H

10Q 0.5i

Figure 7.99
For Prob. 7.19.
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7.20 For thecircuit in Fig. 7.100, Section 7.4 Singularity Functions

— — 50t
v = 15067V 7.24 Expressthe following signalsin terms of singularity

and functions.

i =30e ™A, t>0 [ 0 t<oO
@v=1_5 (sp
(& Find L and R. '
(b) Determine the time constant. 0, t<1
() Calculate the initial energy in the inductor. ®)if) = ‘1°~ 1 i t z 3
(d) What fraction of theinitial energy is dissipated 0 3<t<5
in 10 ms? 0, t>5
t—1, 1<t<2
i )L 2<t<3
= ©XO=1,4_1 3<t<4
+ 0, Otherwise
R L v

_ 2, t<o0
(dyt)=¢-5 o0<t<1
Figure 7.100

0, t>1
For Prob. 7.20.
7.25 Design aproblem to help other students better
7.21 Inthecircuit of Fig. 7.101, find the value of R for efJd understand singularity functions.
edd which the steady-state energy stored in the inductor
will be0.25 J. 7.26 Expressthesignalsin Fig. 7.104 in terms of
singularity functions.
40Q R
30V 80Q 2H
(t)
1
Figure 7.101 vy(t)
For Prob. 7.21. 1 5
-1
7.22 Findi(t) and v(t) for t > 0in the circuit of Fig. 7.102 0 ! I\‘
ifi(0) = 20A. 1
0 2 4 t
b)
1o @ (b)
2H + V3(t)
5Q % 20Q § (1) 4 -
1Q -
2r v4(t)
Figure 7.102
For Prob. 7.22. 1 0
0 2 4 6 t 1 2t
7.23 Consider thecircuit in Fig. 7.103. Given that (©
vo(0) = 2V, findv, and vy for t > 0. -1r
3Q 2L
+ + (d)
w210 IH 203 4 Figure 7.104

For Prob. 7.26.

Figure 7.103
For Prob. 7.23. 7.27 Expressu(t) in Fig. 7.105 in terms of step functions.



v(t) A
30

Figure 7.105
For Prob. 7.27.

7.28 Sketch the waveform represented by
iW=r@®—-rt-—-ut—-2—rt—-2)
+rt—3) +ult-4
7.29 Sketch the following functions:
(&) x(t) = 5" tu(t — 1)
(b) y(t) = 20~ Du(t)
(c) z(t) = 5cos4to(t — 1)

7.30 Evaluate the following integrals involving the
impulse functions:

o

(@ J 4625(t — 1)dt

(b) J 4t2 cos 27rt5(t — 0.5)dt
7.31 Evaluatethe following integrals:

@ | e*st— 2t

(b) | [58(t) + e '8(t) + cos 2arts(t)]dt

7.32 Evaluatethe following integrals:
t

@ | uyda

»-‘%

4

®) | r(t— Dt

o

5
(© J (t — 6)%5(t — 2)dt

1
7.33 The voltage across a 10-mH inductor is

2058(t — 2) mV. Find the inductor current, assuming

that the inductor isinitially uncharged.
7.34 Evaluate the following derivatives:

d

(@ g lut = Du(t + 1)
d

(0) Lt = Bju(t = 2)]

© %[sin 4u(t — 3)]

Problems

7.35 Find the solution to the following differential
equations:

(a)%-l—Zv:O, v(0) = -1V

di o ——
(b) 2& -3i =0, i(0)=2

305

7.36 Solvefor v inthefollowing differential equations,

subject to the stated initial condition.

(@ dv/dt + v = u(t), v(0) =0
(b) 2dv/dt — v = 3u(t), v(0) = -6
7.37 A circuit is described by
4d—v +v =10

dt

(a) What is the time constant of the circuit?
(b) What isv(), the final value of v?
() If v(0) = 2, find v(t) fort = 0.

7.38 A circuit is described by

% + 3i = 2u(t)

Findi(t) fort > Ogiventhati(0) = 0.

Section 7.5 Step Response of an RC Circuit

7.39 Calculate the capacitor voltagefort < Oandt > 0

for each of the circuitsin Fig. 7.106.

4Q

20V

| =~ +
=
)

12V =0 §4Q @) 2a

30
(b)
Figure 7.106
For Prob. 7.39.

7.40 Find the capacitor voltagefort < Oandt > Ofor

each of thecircuitsin Fig. 7.107.
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30 20
t=0
+
12V av 3FT,,
@
t=0
AN
40

6A (4 2Q§

(b)

I = +

Figure 7.107
For Prob. 7.40.

7.41 Using Fig. 7.108, design aproblem to help other
efJd students better understand the step response of an RC
circuit.

Figure 7.108
For Prob. 7.41.

7.42 (@) If the switch in Fig. 7.109 has been open for a
longtimeandisclosed at t = 0, find v(t).

(b) Suppose that the switch has been closed for a
long timeandisopened at t = 0. Find v(t).

t=0

18V 4Q3 3F= 4

Figure 7.109
For Prob. 7.42.

7.43 Consider thecircuit in Fig. 7.110. Find i(t) fort < 0
andt > 0.

t=0

40 Q 30Q

) l i

3F = * 0.5i 50 Q

80V

Figure 7.110
For Prob. 7.43.

First-Order Circuits

7.44 The switch in Fig. 7.111 has been in position a for a
long time. Att = 0, it moves to position b. Calculate
i(t) foralt > 0.

30V C‘_‘ 12V

§3§2 - 2F

Figure 7.111
For Prob. 7.44.

7.45 Find v, inthecircuit of Fig. 7.112 when vg = 6u(t).
Assumethat v,(0) = 1V.

20kQ 10kQ
AV AV
+
s (D 400Q % 3uF == %

Figure 7.112
For Prob. 7.45.

7.46 For thecircuit in Fig. 7.113, ig(t) = 5u(t). Find v(t).

-®

— 0.25F

Figure 7.113
For Prob. 7.46.

7.47 Determineu(t) fort > Ointhecircuit of Fig. 7.114
ifv(0) = 0.

]
I

0.1F

sut-nA (1) § so (1) eunA

Figure 7.114
For Prob. 7.47.
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7.48 Findu(t) andi(t) in the circuit of Fig. 7.115.

200
i i
+
sL-un)A (1) 100 § 01F T .
Figure 7.118
For Prob. 7.52.

Figure 7.115

For Prob. 7.48. 7.53 Determine the inductor current i(t) for botht < 0

7.49 If thewaveform in Fig. 7.116(a) is applied to the andt > Ofor each of the circuitsin Fig. 7.119.

circuit of Fig. 7.116(b), find v(t). Assume v(0) = 0.

30 20
is(A) 4 )
l|
2 25V t=0 4H
0 1 R0 @
(@ t=0
)t

6Q 7

Li
W@ a0 05E } 6A §4Q §29 §3H
T

(b) ,
Figure 7.116 Figure 7.119

For Prob. 7.49 and Review Question 7.10. For Prob. 7.53.

*7.50 Inthecircuit of Fig. 7.117, find i, fort > 0. Let

7.54 Obtain the induct t for botht < Oandt > 0
R, = R, = 1kQ, Ry = 2k, and C = 0.25 mF. am the Inductor current forbo an

in each of the circuitsin Fig. 7.120.

t=0 R, ‘
W * |
|
¢ X 12Q 4Q
30mA §R1 —=c § R, 3A 4Q§
t=0 35H
Figure 7.117 @
For Prob. 7.50. *
i
. Lo 8V
Section 7.6 Step Response of an RL Circuit 20V 2H
7.51 Rather than applying the short-cut technique used in t=0
Section 7.6, use KVL to obtain Eq. (7.60). o .
Q
7.52 Using Fig. 7.118, design a problem to help other 6Q
efdd students better understand the step response of an RL
circuit. ()

_— Figure 7.120
* An asterisk indicates a challenging problem. For Prob. 7.54.
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7.60 Findu(t) fort > Ointhecircuit of Fig. 7.125if the

7.55 Findu(t) fort < Oandt > Oin thecircuit of
initial current in the inductor is zero.

Fig. 7.121.
05H
— N *
4u(t) A 5Q 8H 20Q= v
3Q
+
zg§ v Figure 7.125
- For Prob. 7.60.
24V
7.61 Inthecircuit of Fig. 7.126, ischangesfrom5A to 10A
att = 0;thatis, is = (5 + 5u(t)) A. Findv andi.
Figure 7.121
For Prob. 7.55. ‘ i
- ) +
7.56 For the network shown in Fig. 7.122, find v(t) for i CD 10 § 50 mH g
t>0. _
5Q
AN Figure 7.126
t=0 For Prob. 7.61.
=X o
! C' 7.62 For thecircuit in Fig. 7.127, calculatei(t) if i(0) = O.
)aov
2n () 120 ZOQ§ 05H S » 30 60
_ * i
Figure 7.122 10u(t - 1) V g 2H 10u(t) V
For Prob. 7.56.
7.57 E:nd;litz)sand io(t) fort > Ointhecircuit of Figure 7.127
g 7.1 For Prob. 7.62.
‘ i ‘ iy 7.63 Obtain v(t) and i(t) in the circuit of Fig. 7.128.
10A (4 69§ t=o_p\ °¢ 200 50 L
25H 4H .
20u(-t) vV 200 05H S »
Figure 7.123 -
For Prob. 7.57.
Figure 7.128
7.58 Rework Prob. 7.17 if i(0) = 10 A and For Prob. 7.63.
v(t) = 20u(t) V.
7.64 Fi f > Ointhecircuit of Fig. 7.129.
7.59 Determine the step response v(t) tovs = 9u(t) Vin 64 Findu,(®) fort > Oin thecircuit of Fig o
the circuit of Fig. 7.124. 60
6Q
ov (*)
4Q 3 aH
vg 3Q § N
15H 3 4
- t=0
Figure 7.124 Figure 7.129
For Prob. 7.64.

For Prob. 7.59.
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7.65 If theinput pulsein Fig. 7.130(a) is applied to the t=0
circuit in Fig. 7.130(b), determine the response i(t).

+
lls(V) 5Q 6V 10 kO 25,U,F =y

20 i 10kQ§ -
" §2OQ ng ]

Figure 7.133

0 1t For Prob. 7.68.
@ (b) 7.69 For the op amp circuit in Fig. 7.134, find v(t) for
Figure 7.130 t>0.
For Prob. 7.65. 25 mE
Il
Il
t=0
10kQ 20 kQ 100 kQ
Section 7.7 First-order Op Amp Circuits y VW
7.66 Using Fig. 7.131, design a problem to help other av - —0
efd students better understand first-order op amp *
circuits. fo
O
R =
Figure 7.134
|<|3 For Prob. 7.69.
tl 7.70 Determinev, fort > 0whenvs = 20 mV inthe op
Ry amp circuit of Fig. 7.135.
MW =
+ >~ © t=0
+
Vs Ct) U J§7i — T O %
° n
= 5 (@) 5uF
Figure 7.131
For Prob. 7.66. § 20k
7.67 1f v(0) = 10V, find vy(t) for t > 0inthe op amp =
circuit of Fig. 7.132. Lt R = 10kQandC = 1 uF.  Figure 7.135
For Prob. 7.70.
7.71 For the op amp circuit in Fig. 7.136, suppose vy = 0
R andvs = 3V.Findou(t) fort > 0.
10 kQ
} L 0%
+ 10kQ 20kQ
R v C -

|
+

+

= v CD 10uF == v
Figure 7.132 T
For Prob. 7.67.

Figure 7.136
7.68 Obtainv, fort > 0inthecircuit of Fig. 7.133. For Prob. 7.71.



310 Chapter 7

7.72 Findi,inthe op amp circuit in Fig. 7.137. Assume
that v(0) = =2V, R = 10kQ, and C = 10 uF.

au) (5) R

Figure 7.137
For Prob. 7.72.

7.73 For the circuit shown in Fig. 7.138, solve for i(t).

100 uF

10 kQ io(t)

=

10mF 4~ %(t)

+

su v ()

Figure 7.138
For Prob. 7.73.
7.74 Determinevy(t) fort > 0inthecircuit of Fig. 7.139.
Letig = 10u(t) A and assume that the capacitor is
initially uncharged.

2 uF 10 kQ

}7

s+

50 kQ2

Is

O |

Figure 7.139
For Prob. 7.74.

7.75 Inthecircuit of Fig. 7.140, find v, and i, given that
vs = 4u(t) Vandv(0) = 1V.

N, o

10 kQ

N Ct) 2 uF —

Figure 7.140
For Prob. 7.75.

First-Order Circuits

Section 7.8 Transient Analysis with PSpice

&,

(« )))

PSS

7.76 Repeat Prob. 7.49 using PSpice.

7.77 TheswitchinFig. 7.141 opensatt = 0. Use PSpice
to determinev(t) fort > 0.

t=0

=
]

+ v -
‘\

100 mF

6Q§ ZOQ§

5Q

30V

sa () 4Q§

Figure 7.141
For Prob. 7.77.

7.78 Theswitchin Fig. 7.142 moves from position ato b
att = 0. Use PSpicetofindi(t) fort > 0.

¢ i)

108 V 2H

Figure 7.142
For Prob. 7.78.

7.79 Inthecircuit of Fig. 7.143, the switch has been in
position a for along time but moves instantaneously
topositionb at t = 0. Determinei(t).

a t=0 39
b; Lo
5Q §4Q
12V (_) go.lH
4v

Figure 7.143
For Prob. 7.79.

7.80 Inthecircuit of Fig. 7.144, assume that the switch
has been in position a for along time, find:
(@ 11(0), 12 (0), and v4(0)
(b)ic(t)

(©) i1(), i2(=), and vo(2).
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'1¢ b; *iz *iL
30V 5Q§ %?& §69 v{%w

Figure 7.144
For Prob. 7.80.

7.81 Repeat Prob. 7.65 using PSpice.

Section 7.9 Applications

7.82 Indesigning asignal-switching circuit, it was found
that a 100-wF capacitor was needed for atime
constant of 3 ms. What value resistor is necessary for
the circuit?

7.83 An RC circuit consists of a series connection of a
efJd 120-V source, aswitch, a34-MQ resistor, and a

15-uF capacitor. The circuit is used in estimating the
speed of a horse running a 4-km racetrack. The
switch closes when the horse begins and opens when
the horse crosses the finish line. Assuming that the
capacitor chargesto 85.6 V, calculate the speed of
the horse.

7.84 The resistance of a160-mH coil is 8 (). Find the
time required for the current to build up to 60
percent of itsfinal value when voltageis applied to
the coil.

7.85 A simplerelaxation oscillator circuit is shown in
efd Fig. 7.145. The neon lamp fires when its voltage
reaches 75 V and turns off when its voltage drops to
30 V. Itsresistanceis 120 () when on and infinitely
high when off.

(a) For how long is the lamp on each time the
capacitor discharges?
(b) What isthe time interval between light flashes?

3

uF = Neon lamp

Figure 7.145
For Prob. 7.85.

7.86 Figure 7.146 shows acircuit for setting the length of
efd time voltage is applied to the electrodes of awelding
machine. Thetimeis taken as how long it takes the
capacitor to charge from 0 to 8 V. What isthe time
range covered by the variable resistor?

100 kQ to 1 MQ

Welding —l

control

12VJ'—A95LF = e
T unit J‘

Electrode

Il

Figure 7.146
For Prob. 7.86.

7.87 A 120-V dc generator energizes amotor whose coil
eJd has an inductance of 50 H and a resistance of 100 Q).
A field discharge resistor of 400 () is connected in
parallel with the motor to avoid damage to the
motor, as shown in Fig. 7.147. The system is at
steady state. Find the current through the discharge
resistor 100 ms after the breaker is tripped.

Circuit breaker
N

120V Motor 400 Q

Figure 7.147
For Prob. 7.87.

Comprehensive Problems

7.88 Thecircuitin Fig. 7.148(a) can be designed as

ed an approximate differentiator or an integrator,
depending on whether the output is taken across
the resistor or the capacitor, and also on the time
constant 7 = RC of the circuit and the width T of
theinput pulsein Fig. 7.148(b). Thecircuitisa
differentiator if r << T, say 7 < 0.1T, or an
integrator if  >>> T, say 7 > 10T.

(8) What is the minimum pulse width that will allow
adifferentiator output to appear across the
capacitor?

(b) If the output is to be an integrated form of the
input, what is the maximum value the pulse
width can assume?
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300 kQ v,

" 200 pF

(€Y (b)
Figure 7.148
For Prob. 7.88.

7.89 AnRL circuit may be used as a differentiator if the
eqdd output istaken acrosstheinductor and 7 << T (say
7 < 0.1T), where T is the width of the input pulse.
If Risfixed at 200 k(), determine the maximum
value of L required to differentiate a pulse with
T =10 us.

7.90 An attenuator probe employed with oscilloscopes
efd was designed to reduce the magnitude of the input
voltage v; by afactor of 10. As shown in Fig. 7.149,
the oscilloscope has internal resistance Rs and
capacitance Cg, while the probe has an internal
resistance R, If R, isfixed at 6 M), find Rsand Cq
for the circuit to have atime constant of 15 us.

Probe Scope
o— MWV O
+ Rp +
] Rs % Cs = %
o o

Figure 7.149
For Prob. 7.90.

First-Order Circuits

7.91 Thecircuitin Fig. 7.150 is used by a biology student
eqJd to study “frog kick.” She noticed that the frog kicked
alittle when the switch was closed but kicked
violently for 5 s when the switch was opened. Model

the frog as aresistor and calculate its resistance.
Assume that it takes 10 mA for the frog to kick
violently.

Switch
Frog

+
12v 2H

Figure 7.150
For Prob. 7.91.

7.92 To move aspot of acathode-ray tube across the
screen requires alinear increase in the voltage across
the deflection plates, as shown in Fig. 7.151. Given
that the capacitance of the platesis 4 nF, sketch the
current flowing through the plates.

v (V)

10

t

Risetime= 2 ms\ Drop time=5 us
(not to scale)

Figure 7.151
For Prob. 7.92.
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(d)
Figure 8.1

Typical examples of second-order circuits:
(a) series RLC circuit, (b) paralel RLC
circuit, (c) RL circuit, (d) RC circuit.

Chapter 8  Second-Order Circuits

8.1 Introduction

In the previous chapter we considered circuits with a single storage ele-
ment (a capacitor or an inductor). Such circuits are first-order because
the differential equations describing them are first-order. In this chap-
ter we will consider circuits containing two storage elements. These are
known as second-order circuits because their responses are described
by differential eguations that contain second derivatives.

Typical examples of second-order circuits are RLC circuits, in
which the three kinds of passive elements are present. Examples of
such circuits are shown in Fig. 8.1(a) and (b). Other examples are RL
and RC circuits, as shown in Fig. 8.1(c) and (d). It is apparent from
Fig. 8.1 that a second-order circuit may have two storage elements of
different type or the same type (provided elements of the same type
cannot be represented by an equivalent single element). An op amp cir-
cuit with two storage elements may also be a second-order circuit. As
with first-order circuits, a second-order circuit may contain several
resistors and dependent and independent sources.

A second-order circuit is characterized by a second-order differen-
tial equation. It consists of resistors and the equivalent of two energy
storage elements.

Our analysis of second-order circuits will be similar to that used for
first-order. We will first consider circuits that are excited by the ini-
tial conditions of the storage elements. Although these circuits may
contain dependent sources, they are free of independent sources.
These source-free circuits will give natural responses as expected.
Later we will consider circuits that are excited by independent
sources. These circuits will give both the transient response and the
steady-state response. We consider only dc independent sources in
this chapter. The case of sinusoidal and exponential sources is deferred
to later chapters.

We begin by learning how to obtain the initial conditions for the
circuit variables and their derivatives, as this is crucial to analyzing
second-order circuits. Then we consider series and parallel RLC cir-
cuits such as shown in Fig. 8.1 for the two cases of excitation: by
initial conditions of the energy storage elements and by step inputs.
Later we examine other types of second-order circuits, including op
amp circuits. We will consider PSpice analysis of second-order cir-
cuits. Finally, we will consider the automobile ignition system and
smoothing circuits as typical applications of the circuits treated in this
chapter. Other applications such as resonant circuits and filters will
be covered in Chapter 14.

8.2 Finding Initial and Final Values

Perhaps the major problem students face in handling second-order cir-
cuits is finding the initial and final conditions on circuit variables.
Students are usualy comfortable getting the initial and final values
of v and i but often have difficulty finding the initial values of their
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derivatives: dv/dt and di/dt. For this reason, this section is explicitly
devoted to the subtleties of getting v(0), i(0), dv(0)/dkt, di(0)/dt, i(°),
and v(«). Unless otherwise stated in this chapter, v denotes capacitor
voltage, while i is the inductor current.

There are two key points to keep in mind in determining the ini-
tial conditions.

First—as always in circuit analysis—we must carefully handle the
polarity of voltage v(t) across the capacitor and the direction of the cur-
rent i(t) through the inductor. Keep in mind that v and i are defined
strictly according to the passive sign convention (see Figs. 6.3 and 6.23).
One should carefully observe how these are defined and apply them

accordingly.
Second, keep in mind that the capacitor voltage is always contin-
uous so that
v(0") = v(0") (8.1a)
and the inductor current is always continuous so that
i(0") =i(0") (8.1b)

where t = 0~ denotes the time just before a switching event and
t = 0" is the time just after the switching event, assuming that the
switching event takes place at t = 0.

Thus, in finding initial conditions, we first focus on those vari-
ables that cannot change abruptly, capacitor voltage and inductor cur-
rent, by applying Eg. (8.1). The following examples illustrate these

ideas.
The switch in Fig. 8.2 has been closed for a long time. It is open at Example 8.1
t = 0. Find: (@) i(0"), v(0"), (b) di(0")/dt, dv(0")/dt, (C) i(), v(°). _
4Q ' 025H
Solution: A
(a) If the switch is closed a long time before t = 0, it means that the 15y 2Q3% g1 :
circuit has reached dc steady state at t = 0. At dc steady state, the o -
inductor acts like a short circuit, while the capacitor acts like an open =
circuit, so we have the circuit in Fig. 8.3(@) att = 0™. Thus, Figure 8.2
12 For Example 8.1.
|(O)=4+2:2A, v(0)=2(0") =4V
4 1 4Q 1
Oo—=C O
+
+ +
12V 20 § v 12V v 12V v

@ (b) (©
Figure 8.3
Equivalent circuit of that in Fig. 8.2for: (@t =0, ()t =07, (c) t — =.
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As the inductor current and the capacitor voltage cannot change
abruptly,

i(07) =i(07) = 2A, v(0") =v(07) =4V

(b) Att = 0", the switch is open; the equivalent circuit is as shown in
Fig. 8.3(b). The same current flows through both the inductor and
capacitor. Hence,

ic(0") =i(0") =2A
Since Cdv/dt = i, dv/dt = ic/C, and

wO") 0 2
&~ c o1 2Vis

Similarly, since L di/dt = v, di/dt = v /L. We now obtain v_ by
applying KVL to the loop in Fig. 8.3(b). The result is

—12 + 4i(0") + v, (07) + v(0") =0
or
v (0H=12-8-4=0
Thus,

di0") w09 0
d ~ L oz OAIs

(c) For t > 0, the circuit undergoes transience. But as t — «, the
circuit reaches steady state again. The inductor acts like a short circuit
and the capacitor like an open circuit, so that the circuit in Fig. 8.3(b)
becomes that shown in Fig. 8.3(c), from which we have

i(©) = 0A, v(®) =12V

Practice Problem 8.1

The switch in Fig. 8.4 was open for a long time but closed at t = 0.
Determine: (a) i(0"), v(0"), (b) di(0")/dt, dv(0")/dt, (c) i(x), v().

100 04H |
AW U
+
2Q v = xF 12V

Figure 8.4
For Practice Prob. 8.1.

Answer: () 1A, 2V, (b) 25A/s, 0V/s, (c) 6 A, 12 V.
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In the circuit of Fig. 8.5, calculate: (a) i (0"), vc(0"), vg(0™),
(b) di (0")/dt, duc(0")/dt, dvg(0")/dt, () iL(), ve(*), VR(*).

4Q
AW

3u() A CD 20 §}R

NI=

;

+

c
B g 0.6H
20V

Figure 8.5
For Example 8.2.

Solution:

(@ For t < 0,3u(t) = 0. At t = 0", since the circuit has reached
steady state, the inductor can be replaced by a short circuit, while the
capacitor is replaced by an open circuit as shown in Fig. 8.6(a). From

this figure we obtain

iL(07) =0, vr(07)

state and nothing changes.

=0,

ve(07) = —20V

Although the derivatives of these quantitiesat t = 0~ are not required,
it is evident that they are all zero, since the circuit has reached steady

R ZQ§

Figure 8.6

4Q
AW
[
vc
C% 20V
@

i

Thecircuitin Fig. 8.5for: (8t =0, (b)t = 0.

For t > 0, 3u(t) = 3, so that the circuit is now equivalent to that
in Fig. 8.6(b). Since the inductor current and capacitor voltage cannot

change abruptly,
iL(0") =i (0) =0,

node a in Fig. 8.6(b) gives

3=
2

UR(0+) n

Uo(o+)

4

Uc(0+) = Uc(oi) = -20V

Although the voltage across the 4-() resistor is not required, we will
use it to apply KVL and KCL; let it be called v, Applying KCL at

Applying KVL to the middle mesh in Fig. 8.6(b) yields
—vR(07) + vo(07) + vc(07) + 20=10

Example 8.2

(b
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Since vc(0") = —20 V from Eq. (8.2.2), Eq. (8.2.4) implies that

vRr(0") = vo(01) (8.2.5)
From Egs. (8.2.3) and (8.2.5), we obtain
vr(07) = v,(07) = 4V (8.2.6)

(b) Since L di /dt = v,
di(0") . (0")

dt L

But applying KVL to the right mesh in Fig. 8.6(b) gives
v (0") =ve(0") +20=0
Hence,
di (0%)
dt

Similarly, since C dvg/dt = i, then dve/dt = ic/C. We apply KCL at
node b in Fig. 8.6(b) to get ic:
UO(O+)
4
Since v,(0") = 4 and i, (07) = 0,ic(07) = 4/4 = 1A. Then
dvc(0")  ic(07) 1

& " c o5 2Vs (8.2.9)

=0 (8.2.7)

=ic(07) +i (0") (8.2.8)

To get dvg(0™)/dt, we apply KCL to node a and obtain

Ur |, Uo

3757
Taking the derivative of each term and setting t = 0" gives

dor(07) dvo(0”)
dt dt

We also apply KVL to the middle mesh in Fig. 8.6(b) and obtain

0=2

(8.2.10)

—Vr+vc+20+0v,=0
Again, taking the derivative of each term and setting t = 0" yields

B dvg(0") N dvc(07) N dvo(07)
dt dt dt

=0

Substituting for dvc(0")/dt = 2 gives

dvg(07) dvy(0™)
— =2+ —— 211
dt dt @® )

From Egs. (8.2.10) and (8.2.11), we get

dg(0) 2
—fy
dt 3Vl
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We can find dig(0")/dt although it is not required. Since vg = 5ig,

dig0) _ 1dog(0") _12 _ 2
dt 5 dt 53 15

(c) Ast — oo, the circuit reaches steady state. We have the equivalent

circuit in Fig. 8.6(a) except that the 3-A current source is now

operative. By current division principle,

2
i(*) = ——3A=1A
2+4
(8.2.12)

4
0R(®) = 5 ;3AX2=4V,  ug(®) = ~20V

319

For the circuit in Fig. 8.7, find: (a) i.(0"),vc(0%), vr(01),
(b) di(0")/dt, dvc(07)/dt, dvg(0™)/dt, () iL(), ve(*), vR(*).

i v
R + “R —
MY

*ic 50 liL
:*vc U|_§2H (1) 6A

o
m
Il

4u(t) A CD

Figure 8.7
For Practice Prob. 8.2.

Answer: (a) —6A, 0,0, (b) 0, 20 V/s, 0, (c) —2A, 20V, 20 V.

8.3 The Source-Free Series RLC Circuit

An understanding of the natural response of the series RLC circuit is
a necessary background for future studies in filter design and commu-
nications networks.

Consider the series RLC circuit shown in Fig. 8.8. The circuit is
being excited by the energy initialy stored in the capacitor and induc-
tor. The energy is represented by the initial capacitor voltage V, and
initial inductor current 1. Thus, at t = 0,

(0]
v(0) = é J i dt = Vo (8.2a)

i(0) =g (8.2b)
Applying KVL around the loop in Fig. 8.8,

. d 1 ("
— .
R|+Ldt+ Jxldt 0 (8.3)

Practice Problem 8.2

Figure 8.8
A source-free series RLC circuit.
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I See Appendix C.1 for the formula to
find the roots of a quadratic equation.
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To eliminate the integral, we differentiate with respect to t and
rearrange terms. We get

di Rdi i

a2 Ldt  LC 0 84
This is a second-order differential equation and is the reason for call-
ing the RLC circuits in this chapter second-order circuits. Our goal is
to solve Eq. (8.4). To solve such a second-order differential equation
requires that we have two initial conditions, such as the initial value
of i and its first derivative or initial values of some i and v. The ini-
tial value of i is given in Eq. (8.2b). We get the initial value of the
derivative of i from Egs. (8.2a) and (8.3); that is,

di(0)

Ri(0) + L— > + Vo =
i(0) it 0o=0
or

di(0 1

With the two initial conditionsin Egs. (8.2b) and (8.5), we can now
solve Eq. (8.4). Our experience in the preceding chapter on first-order
circuits suggests that the solution is of exponential form. So we let

i = Ae® (8.6)

where A and s are constants to be determined. Substituting Eq. (8.6)
into Eq. (8.4) and carrying out the necessary differentiations, we obtain
AR A

A52e5‘+Tses‘+EeS‘= 0

or

R 1
M+ s+ — | = :
Ae (52 S LC) 0 (8.7)
Since i = Ae¥ is the assumed solution we are trying to find, only the
expression in parentheses can be zero:
R 1
+—s+ —= .
s LSt e 0 (8.8)
This quadratic equation is known as the characteristic equation of the
differential Eq. (8.4), since the roots of the equation dictate the char-
acter of i. The two roots of Eq. (8.8) are

R RV 1
ST <2L) LC (8.9)
R RV 1
= —— - — — 8.9b
2= 7oL <2L) LC (8.9b)
A more compact way of expressing the roots is
s = —a+ Va® — wj s =—a— Va®— wj (8.10)
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where

a=_, wy = —F— (8.11)

The roots s; and s, are called natural frequencies, measured in
nepers per second (Np/s), because they are associated with the natural
response of the circuit; wg is known as the resonant frequency or
strictly as the undamped natural frequency, expressed in radians per
second (rad/s); and « is the neper frequency or the damping factor,
expressed in nepers per second. In terms of @ and wq, Eq. (8.8) can be
written as

€+ 2as+ w5=0 (8.8a)

The variables s and wg are important quantities we will be discussing
throughout the rest of the text.

The two values of sin Eqg. (8.10) indicate that there are two pos-
sible solutions for i, each of which is of the form of the assumed solu-
tion in Eq. (8.6); that is,

il = Aleslt, i2 = Azeszt (812)

Since Eq. (8.4) is a linear equation, any linear combination of the
two distinct solutionsi; and i, is also a solution of Eqg. (8.4). A com-
plete or total solution of Eq. (8.4) would therefore require a linear
combination of i; and i,. Thus, the natural response of the series RLC
circuit is

i(t) = Ale™ + Ae™ (8.13)

where the constants A; and A, are determined from the initial values
i(0) and di(0)/dt in Egs. (8.2b) and (8.5).
From Eq. (8.10), we can infer that there are three types of solutions:

1. If a > wg, we have the overdamped case.
2. If @ = wp, we have the critically damped case.
3. If @ < wg, we have the underdamped case.

We will consider each of these cases separately.
Overdamped Case (o > w,)

From Egs. (8.9) and (8.10), @ > wq implies C > 4L/R?. When this
happens, both roots s, and s, are negative and real. The response is

i(t) = Aje™ + Ae™ (8.14)

which decays and approaches zero as t increases. Figure 8.9(a) illus-
trates a typical overdamped response.

Critically Damped Case (o = w,)
When a = wg, C = 4L/R? and

SEI=%=—a=—- (8.15)
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I The neper (Np) is a dimensionless unit
named after John Napier (1550-1617),
a Scottish mathematician.

| The ratio a/wq is known as the damp-
ing ratio .

The response is overdamped when

the roots of the circuit’s characteristic
equation are unequal and real, critically
damped when the roots are equal and
real, and underdamped when the
roots are complex.
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i

i

@

i(t)

(0)

—

Figure 8.9

(a) Overdamped response, (b) critically

(©

damped response, (c) underdamped

response.
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For this case, Eq. (8.13) yields
|(t) — Alefat + Azefat — A3e7(1t

where Az = A; + A, . This cannot be the solution, because the two ini-
tial conditions cannot be satisfied with the single constant A;. What
then could be wrong? Our assumption of an exponential solution is
incorrect for the special case of critical damping. Let us go back to
Eg. (8.4). When « = wg = R/2L, Eq. (8.4) becomes

d? d 5
e Zadt a =0
or
d/di di
—\—+a|tal - +al= I
dt(dt al) a(dt al) 0 (8.16)
If we let
di .
==+ .
f il (8.17)
then Eq. (8.16) becomes
& at=0
d T

—at

which is a first-order differential equation with solution f = Ae™
where A; is a constant. Equation (8.17) then becomes

di . .
— + al = Ale ot

dt
or
e‘”tg + eai = A (8.18)
dt (64 1 .
This can be written as
E efi) = A (8.19)
dt * '

Integrating both sides yields
eli=At+ A
or
i = (At + A)e ™ (8.20)

where A, is another constant. Hence, the natural response of the criti-
cally damped circuit is a sum of two terms: a negative exponential and
a negative exponential multiplied by a linear term, or

it) = (A, + A)e ™ (8.21)

A typical critically damped response is shown in Fig. 8.9(b). In fact,
Fig. 8.9(b) is a sketch of i(t) = te~*", which reaches a maximum value of
e Yaat = 1/a, onetime constant, and then decays al the way to zero.
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Underdamped Case (o < w)
For a < wg, C < 4L/R2. The roots may be written as

s;=—a+ V—(05— 0% =—a+jog (8.22a)
S=-a—V—(05— 0% =—a— jog (8.22b)

where j = V-1 and wy = Vwj — o, which is caled the damping
frequency. Both wy and wy are natura frequencies because they help
determine the natura response; while w, is often called the undamped
natural frequency, wy is caled the damped natural frequency. The natural
response is

i(t) = Aje (@ 10t 4 p e (@tiwat

_ . 8.23
— e—at(Alejwdt + Aze—jwd’[) ( )
Using Euler’s identities,
e = cosh +jsing, e =cosh —jsing  (8.24)
we get
i(t) = e *[A(coswgt + | SiNwgt) + Ay(CoSwyt — | SiNwgt)]

= e “(A; + Ap) coswgt + j(A; — Ap) Sinwgt] (8.25)
Replacing constants (A; + Ay) and j(A; — Ay) with constants B, and By,
we write

i(t) = e *Y(B; coswgt + BySinwgt) (8.26)

With the presence of sine and cosine functions, it is clear that the nat-
ural response for this case is exponentially damped and oscillatory in
nature. The response has a time constant of 1/a and a period of
T = 27/wy. Figure 8.9(c) depicts a typical underdamped response.
[Figure 8.9 assumes for each case that i(0) = 0.]

Once the inductor current i(t) is found for the RLC series circuit
as shown above, other circuit quantities such as individual element
voltages can easily be found. For example, the resistor voltage is
vr = Ri, and the inductor voltage is v, = L di/dt. The inductor cur-
rent i(t) is selected as the key variable to be determined first in order
to take advantage of Eq. (8.1b).

We conclude this section by noting the following interesting, pecu-
liar properties of an RLC network:

1. The behavior of such a network is captured by the idea of damping,
which is the gradual loss of the initial stored energy, as evidenced by
the continuous decrease in the amplitude of the response. The damp-
ing effect is due to the presence of resistance R. The damping factor
« determines the rate at which the response is damped. If R = 0,
then @ = 0, and we have an LC circuit with 1/VLC as the
undamped natural frequency. Since @ < wyq in this case, the response
is not only undamped but also oscillatory. The circuit is said to be
loss-less, because the dissipating or damping element (R) is absent.
By adjusting the value of R, the response may be made undamped,
overdamped, critically damped, or underdamped.

2. Oscillatory response is possible due to the presence of the two
types of storage elements. Having both L and C alows the flow of
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R = 0 produces a perfectly sinusoidal
response. This response cannot be
practically accomplished with L and C
because of the inherent losses in them.
See Figs 6.8 and 6.26. An electronic
device called an oscillator can pro-
duce a perfectly sinusoidal response.

Examples 8.5 and 8.7 demonstrate the
effect of varying R.

The response of a second-order circuit
with two storage elements of the same
type, as in Fig. 8.1(c) and (d), cannot
be oscillatory.
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What this means in most practical cir-
cuits is that we seek an overdamped
circuit that is as close as possible to a
critically damped circuit.
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energy back and forth between the two. The damped oscillation
exhibited by the underdamped response is known as ringing. It
stems from the ability of the storage elements L and C to transfer
energy back and forth between them.

3. Observe from Fig. 8.9 that the waveforms of the responses differ.
In general, it is difficult to tell from the waveforms the difference
between the overdamped and critically damped responses. The crit-
ically damped case is the borderline between the underdamped and
overdamped cases and it decays the fastest. With the same initial
conditions, the overdamped case has the longest settling time,
because it takes the longest time to dissipate the initial stored
energy. If we desire the response that approaches the final value
most rapidly without oscillation or ringing, the critically damped
circuit is the right choice.

Example 8.3

InFig. 88, R=40Q,L = 4H, and C = 1/4 F. Cdculate the charac-
teristic roots of the circuit. Is the natural response overdamped, under-
damped, or critically damped?

Solution:
We first calculate
R 40 5 1 1 1
a=_"—="—"=-=9, wgo = = =
2L 24) ° Vic Vax!

The roots are

S10= —a = Va? —wsg=-5=* V25 -1

or
s, = —0.101, s, = —9.899

Since a@ > wq, we conclude that the response is overdamped. This is
also evident from the fact that the roots are real and negative.

Practice Problem 8.3

IfR=10Q,L=5H,andC = 2mFin Fig. 8.8, find «, wg, S;, and s,.
What type of natural response will the circuit have?

Answer: 1, 10, —1 + j9.95, underdamped.

Example 8.4

Find i(t) in the circuit of Fig. 8.10. Assume that the circuit has reached
steady stateatt = 0.

Solution:

For t < 0, the switch is closed. The capacitor acts like an open circuit
while the inductor acts like a shunted circuit. The equivalent circuit is
shown in Fig. 8.11(a). Thus, at t = O,

10
4+6

i(0) = —1A, v(0) =6i(0) = 6V
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. 40 '
+
0.02F == v 6Q + : o
10V 10V léﬁg 02FT !
3Q 05H - oon
Figure 8.10 @ (b)
For Example 8.4. Figure 8.11

Thecircuitin Fig. 8.10: (a) fort < 0, (b) fort > 0.

where i(0) is the initial current through the inductor and v(0) is the
initial voltage across the capacitor.

For t > 0, the switch is opened and the voltage source is discon-
nected. The equivalent circuit is shown in Fig. 8.11(b), which is a source-
free series RLC circuit. Notice that the 3-() and 6-() resistors, which are
in series in Fig. 8.10 when the switch is opened, have been combined to
give R = 9Q in Fig. 8.11(b). The roots are calculated as follows:

R_ 9 1 1

azi_z(%)zg’ wo=m=%=m
Si2=—a* Va®—w§=-9* V8l 100
or
Sip=—9 * j4.359
Hence, the response is underdamped (o« < w); that is,
i(t) = e (A, cos4.359% + A, sin 4.359t) (8.4.1)

We now obtain A; and A, using the initial conditions. At t = 0,
i0=1=A (8.4.2)
From Eq. (8.5),
di 1
P —E[RI(O) +v(0)] = —2[9(1) — 6] = —6A/s (843

t=0
Note that v(0) = Vo = —6V is used, because the polarity of v in
Fig. 8.11(b) is opposite that in Fig. 8.8. Taking the derivative of i(t) in
Eg. (8.4.1),
di

@ —9e %(A; cos4.359t + A, sin4.359t)

+ e 9%(4.359)(— A, sin4.350t + A, cos4.350t)
Imposing the condition in Eq. (8.4.3) at t = 0 gives
—6 = —9(A; + 0) + 4.359(—0 + A,)
But A; = 1 from Eq. (8.4.2). Then
—6 = —9 + 4.359A, = A, = 0.6882

Substituting the values of A; and A, in Eq. (8.4.1) yields the
complete solution as

i(t) = e %(cos4.359t + 0.6882 sin4.350t) A
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Practice Problem 8.4

5Q

1
10Q 4 b sF
t=0
ii(t)
50V
1H
Figure 8.12

For Practice Prob. 8.4.

bl
R§ yLllo,,c:

Figure 8.13
A source-free parallel RLC circuit.

Thecircuit in Fig. 8.12 hasreached steady stateat t = 0. If the make-
before-break switch moves to position b at t = 0, calculate i(t) for
t >0.

Answer: e >*(5c0s1.6583t — 7.5378 sin1.6583t) A.

8.4 The Source-Free Parallel RLC Circuit

Parallel RLC circuits find many practical applications, notably in com-
munications networks and filter designs.

Consider the parallel RLC circuit shown in Fig. 8.13. Assume ini-
tial inductor current 1o and initial capacitor voltage Vo,

0
i0) = I = H v(t)dt (8.272a)

v(0) = Vo (8.27h)

Since the three elements are in parallel, they have the same voltage v
across them. According to passive sign convention, the current is enter-
ing each element; that is, the current through each element is leaving
the top node. Thus, applying KCL at the top node gives

v dv

1 t
—+ = +C— = :
= Jxvdt Cy = O (8.28)

Taking the derivative with respect to t and dividing by C results in

d% 1 dv 1

— =+ —v = 2

oz "rReat Tct 0 (8:29)
We obtain the characteristic equation by replacing the first derivative
by s and the second derivative by s%. By following the same reasoning
used in establishing Egs. (8.4) through (8.8), the characteristic equa
tion is obtained as

1 1

+—s+—== .
& St e 0 (8.30)

The roots of the characteristic equation are

_ 1 <1)2 _ 1
%2~ "5pc ~\V\2rc) T LC

or
Sio=—a 'V o? — wj (8.31)
where
1 1
a=——=, Wy = —F— (8.32
2RC 0 VLC
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The names of these terms remain the same as in the preceding section,
as they play the same role in the solution. Again, there are three pos-
sible solutions, depending on whether o > wg, @ = wq, Or @ < w,.
Let us consider these cases separately.

Overdamped Case (@ > w)
From Eq. (8.32), @ > wo when L > 4R?C. The roots of the charac-
teristic equation are real and negative. The response is

v(t) = Ae™ + Ae™ (8.33)

Critically Damped Case (@ = w,)
For @ = wo, L = 4R®C. The roots are real and equal so that the
response is

v(t) = (A + At)e (8.34)

Underdamped Case (o < w)
When a < wg, L < 4R2C. In this case the roots are complex and may
be expressed as

Si2= —a * juq (8.35)
where
wqg= Vi — a® (8.36)
The response is
v(t) = e “Y(A; coswgt + Ay Sinwgt) (8.37)

The constants A; and A, in each case can be determined from the
initial conditions. We need v(0) and dv(0)/dt. The first term is known
from Eq. (8.27b). We find the second term by combining Egs. (8.27)
and (8.28), as

Vo dv(0)

24+ C—2=0
R °© dt

or

dv(0) (Vo + Rl
dat RC

(8.38)

The voltage waveforms are similar to those shown in Fig. 8.9 and will
depend on whether the circuit is overdamped, underdamped, or criti-
cally damped.

Having found the capacitor voltage v(t) for the paralel RLC cir-
cuit as shown above, we can readily obtain other circuit quantities such
as individual element currents. For example, the resistor current is
ir = v/R and the capacitor voltage is ve = C dv/dt. We have selected
the capacitor voltage v(t) as the key variable to be determined first in
order to take advantage of Eq. (8.1a). Notice that we first found the
inductor current i(t) for the RLC series circuit, whereas we first found
the capacitor voltage v(t) for the parallel RLC circuit.
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Example 8.5

In the parallel circuit of Fig. 8.13, find v(t) for t > 0, assuming
v(0) =5V,i(0) =0,L = 1H, and C = 10 mF. Consider these cases:
R=19230,R=50Q,and R = 6.25().

Solution:
B CASE 1 If R= 19230,
1 1
“T2RCT 2x 1923 % 10 x 103
1 1
° VIC V1x10x 103

Since @ > wq in this case, the response is overdamped. The roots of
the characteristic equation are

S12=—a * Va? — w3 = —2,-50

and the corresponding response is

o(t) = Aje 2 + Ae @ (8.5.1)
We now apply the initial conditions to get A; and A,.
v =5=A+A (8.5.2)
dv(0) _ _v(0) + Ri(0) _ 5+0 — 260
dt RC 1.923 x 10 x 1073
But differentiating Eq. (8.5.1),
dv

a = _2A:|_872t - 50A28750t

Att =0,
—260 = —2A; — 50A, (8.5.3)

From Egs. (8.5.2) and (8.5.3), we obtain A; = —0.2083 and A, = 5.208.
Substituting A, and A, in Eq. (8.5.1) yields

u(t) = —0.2083e # + 5.208¢ >* (8.5.4)
B CASE 2 WhenR=5(,

1 1
“TORC 2x5x10x103

while wg = 10 remains the same. Since @ = wg = 10, the response is
critically damped. Hence, s, = s, = —10, and

10

v(t) = (A + At)e 1™ (8.5.5)
To get A; and A,, we apply the initial conditions
v(0)=5=A; (8.5.6)
dv(0) _ ~v(0) + Ri(0) _ 5+0 _ _100
dt RC 5X 10 X 1073
But differentiating Eq. (8.5.5),

d
dil: = (_10Al - lOAzt + IA\Z)eilot
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Att =0,
—100 = —10A; + A, (85.7)

From Egs. (8.5.6) and (8.5.7), A; = 5and A, = —50. Thus,
v(t) = (5 — 50t)e 'V (8.5.8)

B CASE 3 WhenR=6.25Q,

1 1
= = = 8
“T2RC T 2x625% 10X 102

while wy = 10 remains the same. As a < wg in this case, the response
is underdamped. The roots of the characteristic equation are

Sio=—a * Vaz—w8=—8ij6

Hence,
v(t) = (A, cos6t + A, sinét)e ™ (85.9)
We now obtain A; and A, as
v(0)=5=A; (8.5.10)
dv(0) _  v(0) + Ri(0) _ 5+0 _ g0
dt RC 6.25 X 10 X 1073
But differentiating Eq. (8.5.9),
% = (—8A; cos6t — 8A, sin6t — 6A; sin6t + 6A, cos6bt)e &
Att =0,
—80 = —8A;, + 6A, (8.5.11)
From Egs. (8.5.10) and (8.5.11), A; = 5 and A, = —6.667. Thus,
v(t) = (5cos6t — 6.667 sin 6t)e & (8.5.12)

Notice that by increasing the value of R, the degree of damping
decreases and the responses differ. Figure 8.14 plots the three cases.

() V A

5_

Overdamped
/ Critically damped

4
%derdamped . .

0 05 1 15 t(9)

Figure 8.14
For Example 8.5: responses for three degrees of damping.

0+

-1
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Practice Problem 8.5

InFig.8.13,letR=2Q,L=04H,C=25mF, v(0) =0, i(0)=10 mA.
Find v(t) for t > 0.

Answer: —400te” % u(t) mVv.

Example 8.6

Find v(t) for t > 0 in the RLC circuit of Fig. 8.15.

300 0.4H i
N

| = +

40V t=0 3/ 50Q 20 uF =

il

Figure 8.15
For Example 8.6.

Solution:

When t < 0, the switch is open; the inductor acts like a short circuit
while the capacitor behaves like an open circuit. Theinitial voltage across
the capacitor is the same as the voltage across the 50-() resistor; thet is,

50 5

0(0) = 55, 550 = g X 40 =25V (8.6.1)

The initial current through the inductor is

i(0) = — — —05A

30 + 50

The direction of i is as indicated in Fig. 8.15 to conform with the
direction of 1 in Fig. 8.13, which is in agreement with the convention
that current flows into the positive terminal of an inductor (see Fig. 6.23).
We need to express this in terms of dv/dt, since we are looking for v.
dv(@ v +Ri(0Q  25-50x05
dt RC 50 X 20 X 107°
When't > 0, the switch is closed. The voltage source along with the
30-Q) resistor is separated from the rest of the circuit. The parallel RLC
circuit acts independently of the voltage source, asillustrated in Fig. 8.16.

Next, we determine that the roots of the characteristic equation are

1 1
a = = =
2RC  2x50x 20X 10°°
1 1

wgo = =

VLIC V04x20x10°
S12= —a * Va? — w%

—500 + \/250,000 — 124,997.6 = —500 + 354

-0 (862

500

354

or

s, = —854, s, = —146
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30Q 04H

11

0V 500 20 puF =

Figure 8.16
Thecircuit in Fig. 8.15whent > 0. The parallel
RLC circuit on the right-hand side acts independently
of the circuit on the | eft-hand side of the junction.
Since a > wq, we have the overdamped response
v(t) = Aje 8% + Ae 1O (8.6.3)
At t = 0, we impose the condition in Eq. (8.6.1),
v(0)=25=A; + A, = A, =25-A; (8.6.4)
Taking the derivative of v(t) in Eq. (8.6.3),

d
d—’: — —854Ae 85 — 146A,6 148
Imposing the condition in Eq. (8.6.2),
dv(0
% — 0= —854A, — 146A,

or
0 = 854A, + 146A, (8.6.5)
Solving Egs. (8.6.4) and (8.6.5) gives
A, = —5156, A, = 30.16
Thus, the complete solution in Eq. (8.6.3) becomes
v(t) = —5.156e %* + 30.16e ¢V
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Refer to the circuit in Fig. 8.17. Find v(t) fort > 0.

Answer: 100(e X — e 2% v,

8.5 Step Response of a Series RLC Circuit

As we learned in the preceding chapter, the step response is obtained
by the sudden application of a dc source. Consider the series RLC cir-
cuit shown in Fig. 8.18. Applying KVL around the loop for t > 0O,
gi
Ld—'t +R o=V, (8.39)
But

dv
dt

Practice Problem 8.6

t=0
T
+
3A 20Q 10H 4mF == v
Figure 8.17
For Practice Prob. 8.6.
t=0 R Lot
+
Vs Ct) C=—/v
Figure 8.18

Step voltage applied to aseries RLC circuit.
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Substituting for i in Eq. (8.39) and rearranging terms,

d Rdv v Vs

— == :
dt> Ld LC LC (8.40)

which has the same form as Eq. (8.4). More specificaly, the coeffi-
cients are the same (and that is important in determining the frequency
parameters) but the variable is different. (Likewise, see Eq. (8.47).)
Hence, the characteristic equation for the series RLC circuit is not
affected by the presence of the dc source.

The solution to Eq. (8.40) has two components: the transient
response vy(t) and the steady-state response v(t); that is,

v(t) = vi(t) + vss(t) (8.41)

The transient response vy(t) is the component of the total response that
dies out with time. The form of the transient response is the same as the
form of the solution obtained in Section 8.3 for the source-free circuit,
given by Egs. (8.14), (8.21), and (8.26). Therefore, the transient repsonse
v¢(t) for the overdamped, underdamped, and critically damped cases are:

v(t) = Aje™ + Ae®  (Overdamped) (8.42a)
v(t) = (A + At)e ™ (Critically damped) (8.42b)
v(t) = (A COSwyt + ArSinwgt)e ™ (Underdamped)  (8.42¢)

The steady-state response is the final value of v(t). In the circuit in
Fig. 8.18, the fina value of the capacitor voltage is the same as the
source voltage V. Hence,

Vss(t) = v(°) = Vg (8.43)

Thus, the complete solutions for the overdamped, underdamped, and
critically damped cases are:

v(t) = Vs + Aje™ + Ae™  (Overdamped) (8.44a)
v(t) = Vs + (A + At)e ™" (Critically damped) (8.44b)
v(t) = Vs + (A coswgt + Ay sinwgt)e ™ (Underdamped) | (8.44c)

The values of the constants A; and A, are obtained from the initial con-
ditions: v(0) and dv(0)/dt. Keep in mind that v and i are, respectively,
the voltage across the capacitor and the current through the inductor.
Therefore, Eq. (8.44) only applies for finding v. But once the capaci-
tor voltage ve = v is known, we can determine i = C dv/dt, which is
the same current through the capacitor, inductor, and resistor. Hence,
the voltage across the resistor is vg = iR, while the inductor voltage is
v, = Ldi/dt

Alternatively, the complete response for any variable x(t) can be
found directly, because it has the general form

X(t) = Xs(t) + x(t) (8.45)

where the X5 = X(°) isthefinal value and x(t) is the transient response.
The final value is found as in Section 8.2. The transient response has
the same form as in Eq. (8.42), and the associated constants are deter-
mined from Eq. (8.44) based on the values of x(0) and dx(0)/dkt.
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For the circuit in Fig. 8.19, find v(t) and i(t) for t > 0. Consider these
cases R=50,R=4Q0,and R=1Q.

Solution:

M CASE 1 When R= 5. For t < 0, the switch is closed for a
long time. The capacitor behaves like an open circuit while the
inductor acts like a short circuit. The initial current through the
inductor is

24
5+1

i(0) = 4A

and the initial voltage across the capacitor is the same as the voltage
across the 1-() resistor; that is,
v(0) = 1i(0) = 4V
For t > 0, the switch is opened, so that we have the 1-Q) resistor

disconnected. What remains is the series RLC circuit with the voltage
source. The characteristic roots are determined as follows:

R 5 1 1
2L 2x1 % @T -

o =

=2
VLC V1X025
Si2= —a* Va? — 0§ = -1, -4

Since a > wo, we have the overdamped natural response. The total
response is therefore

v(t) = v + (At + A ¥

where vy is the steady-state response. It is the final value of the
capacitor voltage. In Fig. 8.19, v = 24 V. Thus,

v(t) = 24 + (Ae '+ Ae ) (8.7.1)
We now need to find A; and A, using the initial conditions.
v(0) =4=24+ A+ A,
or
-20=A, + A, (8.7.2)

The current through the inductor cannot change abruptly and is the
same current through the capacitor at t = 0" because the inductor and
capacitor are now in series. Hence,

dv(0) 4 4

dw(©0) 4 4
« - F 7 & Cc o025 16

Before we use this condition, we need to take the derivative of v in
Eq. (8.7.1).

i(0)=C

d
d—lt’ = At 4ne (8.7.3)

Att=0,

dv(0) _

G = 16= AL 4A, (8.7.4)

Example 8.7

Figure 8.19
For Example 8.7.
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From Egs. (8.7.2) and (8.7.4), A, = —64/3 and A, = 4/3. Substituting
A, and A, in Eq. (8.7.1), we get

4
v(t) = 24 + 5(—16e“ +e MV (8.7.5)
Since the inductor and capecitor arein seriesfort > 0, theinductor

current is the same as the capacitor current. Hence,

dv

dt

Multiplying Eqg. (8.7.3) by C = 0.25 and substituting the values of A,
and A, gives

i() = C

4
i) = §(4e" —e M)A (8.7.6)

Note that i(0) = 4 A, as expected.
Bl CASE 2 When R= 4. Again, the initial current through the

inductor is

24

and the initial capacitor voltage is
v(0) = 1i(0) = 4.8V

For the characteristic roots,

_R__4 _,
“Toa T 2x1
while wg = 2 remainsthe same. Inthiscase, s, = s, = —a = —2, and

we have the critically damped natural response. The total response is
therefore

v(t) = v + (AL + At)e 2
and, as before v = 24V,
o(t) = 24 + (A, + A)e ® (8.7.7)
To find A; and A,, we use the initial conditions. We write
v0)=48=24+A, = A =-192 (8798
Since i(0) = C dv(0)/dt = 4.8 or

dw(0) 48
T _ 2% 192
¢ C
From Eq. (8.7.7),
dv o
o = (A2t + AYe (8.7.9)
Att =0,
dv(0
YO _ 195 - —oa, + A, (8.7.10)

dt
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From Egs. (8.7.8) and (8.7.10), A; = —19.2 and A, = —19.2. Thus,
Eq. (8.7.7) becomes

o(t) = 24 — 19.2(1 + t)e *V (8.7.11)

The inductor current is the same as the capacitor current; that is,
dv
i(t) = C—

Multiplying Eqg. (8.7.9) by C = 0.25 and substituting the values of A,
and A, gives

i(t) = (4.8 + 9.6t)e 2 A (8.7.12)
Note that i(0) = 4.8 A, as expected.

B CASE 3 When R=1Q. Theinitia inductor current is

24
(0 =177 = 12A

and the initial voltage across the capacitor is the same as the voltage
across the 1-() resistor,

v(0) = 1i(0) = 12V
R 1
2L 2x1

=05

o =

Since a = 0.5 < wg = 2, we have the underdamped response
sio=—a*+Va® - wi=-05 * j1936
The total response is therefore
v(t) = 24 + (A, cos 1.936t + A, sin 1.936t)e > (8.7.13)
We now determine A; and A,. We write
v =12=24+A, = A =-12 (8714
Since i(0) = C dv(0)/dt = 12,

@O _ 12

= =48 8.7.15
dt C ( )

But
d .
2 _ e 054(_1.936A, sin 1.936t + 1.936A, cos 1.936t)

dt (8.7.16)
— 0.5 %%Y(A; cos 1.936t + A, sin 1.936t)

Att=0,
dv(0)
dt

v(t) = 24 + (21.694 sin 1.936t — 12 cos 1.936t)e >V (8.7.17)

The inductor current is

— 48 = (-0 + 1.936A,) — 0.5(A; + 0)

i(t) = Cf

335
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Multiplying Eg. (8.7.16) by C = 0.25 and substituting the values of A,
and A, gives

i(f) = (3.1 sin1.936t + 12 cos1.936t)e ** A

Note that i(0) = 12 A, as expected.

Figure 8.20 plots the responses for the three cases. From this
figure, we observe that the critically damped response approaches the
step input of 24 V the fastest.

(8.7.18)

() V
40 -
35 L /Underdamped
30
Critically damped
35 /

20

15

10

0 1 2 3 4 5 6 7

Figure 8.20
For Example 8.7: response for three degrees of damping.

Practice Problem 8.7

ii
(D) t=0\>2 R§ Lg c

I = +

Figure 8.22
Parallel RLC circuit with an applied
current.

Having been in position a for a long time, the switch in Fig. 8.21 is
moved to position b at t = 0. Find v(t) and vg(t) fort > 0.

25H

10Q

1Q a b

12V

Figure 8.21
For Practice Prob. 8.7.

Answer: 10 — (1.1547 sin 3.464t + 2 cos 3.464t)e 2V,
2.31e #sin3.464t V.

8.6 Step Response of a Parallel RLC Circuit

Consider the parallel RLC circuit shown in Fig. 8.22. We want to find
i due to a sudden application of a dc current. Applying KCL at the top
node for t > 0,

dv

[
~4+i+C—=1
' da

5 (8.46)
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But

= L—
T

Substituting for v in Eq. (8.46) and dividing by LC, we get
d? 1 di i Is
St =—= A7
d? RCdt LC LC (847)
which has the same characteristic equation as Eq. (8.29).
The complete solution to Eq. (8.47) consists of the transient
response i(t) and the steady-state response ig; that is,

i(t) = i(t) + iss(t) (8.48)

The transient response is the same as what we had in Section 8.4. The
steady-state response is the final value of i. In the circuit in Fig. 8.22,
the final value of the current through the inductor is the same as the
source current ls. Thus,

i(t) = ls+ Ae™ + Ae™  (Overdamped)
i(t) =ls+ (A + At)e “'  (Critically damped) (8.49)
i(t) = ls + (AL coswgt + A, sinwgt)e *t  (Underdamped)

The constants A; and A, in each case can be determined from the initial
conditions for i and di/dt. Again, we should keep in mind that Eq. (8.49)
only applies for finding the inductor current i. But once the inductor
current i, = i is known, we can find v = L di/dt, which is the same
voltage across inductor, capacitor, and resistor. Hence, the current
through the resistor is ir = v/R, while the capacitor current is
ic = Cdv/dt Alternatively, the complete response for any variable x(t)
may be found directly, using

X(t) = Xs(t) + x(t) (8.50)
where xg and x; are its final value and transient response, respectively.
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In the circuit of Fig. 8.23, find i(t) and ig(t) for t > 0.
t=0< 200

bt
an (})  20H % 209§ 8mF ==

30u(-t) V

| = +

Figure 8.23
For Example 8.8.

Solution:
For t < 0, the switch is open, and the circuit is partitioned into two inde-
pendent subcircuits. The 4-A current flows through the inductor, so that

i(0) = 4A

Example 8.8



338

Chapter 8  Second-Order Circuits

Since 30u(—t) = 30 whent < 0 and O whent > O, the voltage source
is operative for t < 0. The capacitor acts like an open circuit and the
voltage across it is the same as the voltage across the 20-() resistor
connected in paralel with it. By voltage division, the initial capacitor
voltage is

v(0) = (30) = 15V

20 + 20

For t > 0, the switch is closed, and we have a parallel RLC circuit
with a current source. The voltage source is zero which means it acts
like a short-circuit. The two 20-) resistors are now in parallel. They
are combined to give R = 20| 20 = 10 Q). The characteristic roots are
determined as follows:

1 1
_ _ = 6.25
“T2RCT 2x10x8x10 3
1 1
- = =25
° VIC V20x8x10°3

S12=—a* Va® — 0= —6.25* \V/39.0625 — 6.25

= —6.25 £ 5.7282

or
s = —11978, s, = —0.5218

Since a > wg, we have the overdamped case. Hence,
i(t) = Is + Aje 7% 4 A 00 (8.8.1)

where | = 4 isthe final value of i(t). We now use the initial conditions
to determine A; and A,. Att =0,

Taking the derivative of i(t) in Eq. (8.8.1),

% = —11.978Ae "% — 0.5218A,e ¥
sothat a t = 0,
di(0)
g = LL978A; — 0.5218A, (8.8.3)
But
di(0) di0) 15 15
——= =p(0) =15 ——="====075
a 'O = dt L 20

Substituting this into Eq. (8.8.3) and incorporating Eqg. (8.8.2), we get
0.75 = (11.978 — 0.5218)A, = A, = 0.0655

Thus, A; = —0.0655 and A, = 0.0655. Inserting A; and A, in Eq. (8.8.1)
gives the complete solution as

i(t) = 4 + 0.0655(e 5218 — g 11978y A
From i(t), we obtain v(t) = L di/dt and
H _ ﬂ _ Lﬂ _ —11.978t —0.5218t
ig(t) = 0 0% 0.785e 0.0342e A
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Find i(t) and v(t) for t > 0 in the circuit of Fig. 8.24.

Answer: 12(1 — cost) A,60sint V.

8.7 General Second-Order Circuits

Now that we have mastered series and parallel RLC circuits, we are
prepared to apply the ideas to any second-order circuit having one or
more independent sources with constant values. Although the series and
parallel RLC circuits are the second-order circuits of greatest interest,
other second-order circuits including op amps are also useful. Given a
second-order circuit, we determine its step response x(t) (which may
be voltage or current) by taking the following four steps:

1. We first determine the initial conditions x(0) and dx(0)/dt and the
final value x(e°), as discussed in Section 8.2.

2. We turn off the independent sources and find the form of the tran-
sient response X(t) by applying KCL and KVL. Once a second-order
differential equation is obtained, we determine its characteristic
roots. Depending on whether the response is overdamped, critically
damped, or underdamped, we obtain x,(t) with two unknown con-
stants as we did in the previous sections.

3. We obtain the steady-state response as

Xss(t) = X()
where x(«) is the final value of x, obtained in step 1.

4. The total response is now found as the sum of the transient
response and steady-state response

X(t) = x(t) + X(b) (8.52)
We finally determine the constants associated with the transient

response by imposing the initial conditions x(0) and dx(0)/dt,
determined in step 1.

(8.51)

We can apply this general procedure to find the step response of
any second-order circuit, including those with op amps. The following
examples illustrate the four steps.

Practice Problem 8.8

¢ i

—0.2F 5H

12u(t) A (D

Figure 8.24
For Practice Prob. 8.8.

||

A circuit may look complicated at first.
But once the sources are turned off in
an attempt to find the form of the tran-
sient response, it may be reducible to
a first-order circuit, when the storage
elements can be combined, or to a
parallel/series RLC circuit. If it is re-
ducible to a first-order circuit, the solu-
tion becomes simply what we had in
Chapter 7. If it is reducible to a parallel
or series RLC circuit, we apply the tech-
niques of previous sections in this
chapter.

I Problems in this chapter can also be
solved by using Laplace transforms,
which are covered in Chapters 15

and 16.

Find the complete response v and then i for t > 0 in the circuit of
Fig. 8.25.

Solution:
We first find the initial and final values. Att = 0, the circuit is at steady
state. The switch is open; the equivalent circuit is shown in Fig. 8.26(a).
It is evident from the figure that

v(07) =12V, i(0)=0
Att = 07, the switch is closed; the equivaent circuit is in Fig. 8.26(b).
By the continuity of capacitor voltage and inductor current, we know that

p(0") =0v(0) =12V, i(0")=i0)=0 (89.1)

1
12v !

Example 8.9

40 T 1H

i
I
1

| = +

Figure 8.25
For Example 8.9.
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40 i

12v v

4Q 1H _|

12V

(b)
Figure 8.26
Equivaent circuit of the circuitin Fig. 8.25
for: (@t < 0,(b)t > 0.

NI
M

Figure 8.27
Obtaining the form of the transient
response for Example 8.9.

Chapter 8  Second-Order Circuits

To get dv(0")/dt, we use Cdv/dt = ic or dv/dt = ic/C. Applying
KCL at node a in Fig. 8.26(b),

0+
09 =ic) + °52
0=ic(0%) + 1—22 =  ic(0") = —6A
Hence,
w(0") -6
=—=-12V 9.2
dt 05 /s (892)

The final values are obtained when the inductor is replaced by a short
circuit and the capacitor by an open circuit in Fig. 8.26(b), giving

i(o0) = =2A,  u(®)=2(x)=4V  (89.3)

Next, we obtain the form of the transient response for t > 0. By
turning off the 12-V voltage source, we have the circuit in Fig. 8.27.
Applying KCL at node a in Fig. 8.27 gives

v 1ldv
| = E + EE (894)

Applying KVL to the left mesh results in
4i + 1% +v=0 (8.9.5)

Since we are interested in v for the moment, we substitute i from
Eqg. (8.9.4) into Eq. (8.9.5). We obtain

dv 1 dv 1d%
WH2+ S+ +v=0
T T2 2

or

d% dv
=~ +5_ +6v=0
dt? dt v

From this, we obtain the characteristic equation as
f+55+6=0
with roots s = —2 and s = —3. Thus, the natural response is
vn(t) = Ae? + Be ™ (8.9.6)

where A and B are unknown constants to be determined later. The
steady-state response is

Vss(t) = v(®) = 4 (8.9.7)
The complete response is
v(t) = v+ v =4+ Ae % + Be ™ (8.9.8)

We now determine A and B using the initial values. From Eg. (8.9.1),
v(0) = 12. Substituting this into Eq. (8.9.8) at t = 0 gives

12=4+A+B = A+B=8 (8.9.9)
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Taking the derivative of v in Eq. (8.9.8),
W _
dt

Substituting Eq. (8.9.2) into Eq. (8.9.10) at t = O gives

—12=—-2A—- 3B = 2A + 3B =12 (8.9.11)

From Egs. (8.9.9) and (8.9.11), we obtain

A= 12, B= -4
so that EqQ. (8.9.8) becomes
vty =4+ 1262 —4e7*V, t>0 (8.9.12)

—2Ae * — 3Be™ (8.9.10)

From v, we can obtain other quantities of interest by referring to
Fig. 8.26(b). To obtain i, for example,

v 1dv
i=_+>—-=2+6e -2 - 12" +6e "
T2 T o © © © " (8913

=2-6e*+4e A, t>0
Notice that i(0) = 0, in agreement with Eq. (8.9.1).

Determine v and i for t > 0in the circuit of Fig. 8.28. (See comments Practice Problem 8.9
about current sources in Practice Prob. 7.5.)
Answer: 12(1 — e ™)V, 3(1 — e M) A. 10Q 3A 4Q
[
. ’
1
%0 F T v t=0 2H

Figure 8.28
For Practice Prob. 8.9.

Find v(t) for t > 0 in the circuit of Fig. 8.29. Example 8.10
Solution: 3o :H
This is an example of a second-order circuit with two inductors. We
first obtain the mesh currents i, and i, which happen to be the currents . @
th i : i initi i
rough the inductors. We need to obtain the initial and final values of UtV 10 § v % H
these currents. i -
For t <O, 7u(t) =0, so that i1(07) = 0=ix0"). For t > 0O,

7u(t) = 7, o that the equivaent circuit is as shown in Fig. 8.30(a). Due .
to the continuity of inductor current, Figure 8.29

For Example 8.10.
i2(07) =i,(07) =0, i,(0") =ix07)=0 (8.10.2)
v,(07) = ve(07) = 1[(i1(07) —i(07)] =0 (8102
Applying KVL to the left loop in Fig. 8.30(a) at t = 0",
7 = 3i1(07) + v, ,(07) + vy(07)
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30 L=3H 3Q
O0——C
— oy, - l iy — L i
11 . 11
1aY, 1Q§Vo ”L2§L2=%H 7V 1Q§ I
@ (b)
Figure 8.30
Equivalent circuit of that in Fig. 8.29 for: (@)t > 0, (b) t — .
or
v,(0) =7V
Since Ll d|1/dt = UL,
di,(0") v, 7
= =-=14VI/s 8.10.3
dt Ly 3 ( )
Similarly, since L, di,/dt = v,
di(07) v,
———=—=0 8.104
dt L, ( )
Ast — o, the circuit reaches steady state, and the inductors can be
replaced by short circuits, as shown in Fig. 8.30(b). From this figure,
. . 7
() = iz(®) = 3 A (8.10.5)
1 Next, we obtain the form of the transient responses by removing
3Q 2

@ 1Q§ @ %%H

Figure 8.31
Obtaining the form of the transient
response for Example 8.10.

the voltage source, as shown in Fig. 8.31. Applying KVL to the two
meshes yields

. . 1di;
4i, —i,+=—=0 8.10.6
11— I2 2 dt ( )
and
) 1di, .
+=—=—i; = .10.
is 5 dt ip=0 (8.10.7)
From Eg. (8.10.6),
. . 1di;
=4, + —— 8.10.8
12 11 2 dt ( )

Substituting Eq. (8.10.8) into Eq. (8.10.7) gives
1di; | 4diy | 1d%;

gi, + =% NI T
DTS d Tsd 1092 ¢*
RN RN
dt? ot !

From this we obtain the characteristic equation as
£+ 13s+30=0

which hasrootss = —3 and s = —10. Hence, the form of the transient
response is

i, = Ae 3 + Be 1™ (8.10.9)
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where A and B are constants. The steady-state response is
i1ss = ig() = gA (8.10.10)
From Egs. (8.10.9) and (8.10.10), we obtain the complete response as
i) = g + Ae 3 + Be (8.10.11)

We finally obtain A and B from the initial values. From Egs. (8.10.1)
and (8.10.11),

0= % +A+B (8.10.12)

Taking the derivative of Eq. (8.10.11), setting t = 0 in the derivative,
and enforcing Eqg. (8.10.3), we obtain

14 = —3A — 10B (8.10.13)
From Egs. (8.10.12) and (8.10.13), A = —4/3 and B = —1. Thus,

H 7 4 —3t — 10t
=———e¥- 10.14
i1(t) 3 3e e (8.10.14)

We now obtain i, from i;. Applying KVL to the left loop in
Fig. 8.30(a) gives

7=4il—i2+1% = i2=—7+4i1+1%
2 dt 2 dt
Substituting for i, in Eq. (8.10.14) gives
it) = =7 + 2—38 — %Ge’a — 4 1% 4+ 2¢7% 4+ 5g 1
S (8.10.15)
=3 3¢ +e
From Fig. 8.29,
Uo(t) = 1[ig(t) — ix(t)] (8.10.16)
Substituting Egs. (8.10.14) and (8.10.15) into Eg. (8.10.16) yields
vo(t) = 2(e 3 — e 1% (8.10.17)

Note that v,(0) = 0, as expected from Eq. (8.10.2).

For t > 0, obtain v,(t) in the circuit of Fig. 8.32. (Hint: First find v, ~ Practice Problem 8.10
and U2.)

Answer: 8e ' — e ®)V, t > 0.

20u(t) V

Figure 8.32
For Practice Prob. 8.10.
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The use of op amps in second-order
circuits avoids the use of inductors,
which are undesirable in some
applications.

Chapter 8  Second-Order Circuits

8.8 Second-Order Op Amp Circuits

An op amp circuit with two storage elements that cannot be combined
into a single equivalent element is second-order. Because inductors are
bulky and heavy, they are rarely used in practical op amp circuits. For
this reason, we will only consider RC second-order op amp circuits
here. Such circuits find a wide range of applications in devices such as
filters and oscillators.

The analysis of a second-order op amp circuit follows the same
four steps given and demonstrated in the previous section.

Example 8.11

In the op amp circuit of Fig. 8.33, find vy(t) for t > 0 when vg =
10u(t) mV. Let R, = R, = 10k}, C; = 20 uF, and C, = 100 uF.

v ClT o
-4

Figure 8.33
For Example 8.11.

Solution:

Although we could follow the same four steps given in the previous
section to solve this problem, we will solve it a little differently. Due
to the voltage follower configuration, the voltage across C, is v,.
Applying KCL at node 1,

Us — U1 dv, v — v,

=C,— + 8.11.1
R, 2 dt R, ( )

At node 2, KCL gives

U1 — Ug dvo
=C— 8.11.2
R, gt ( )
But

U2 = V1 = Vo (8.11.3)

We now try to eliminate v; and v, in Egs. (8.11.1) to (8.11.3).
Substituting Egs. (8.11.2) and (8.11.3) into Eq. (8.11.1) yields

Us — U1 dvy dv, duv,
=C,b——-C,—+C 8114
R, 2 dt 2 dt Lt ( )
From Eg. (8.11.2),
d
Dy = g + RCy2 (8.11.5)

dt
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Substituting Eq. (8.11.5) into Eq. (8.11.4), we obtain

Vs Uy RCy dv0 dvg d?v, dv, dvg
— = —+ + Co—2 + RC,C - C +C
RR R R, dt 2 gt 212d2 2dt Tt

or

d?v, . ( 1 1 )dv0 Vo _ Vs (8.116)

+ + =
dtz RlCZ chz dt R1R2C1C2 R1R2C1C2
With the given values of Ry, R,, C;, and C,, Eq. (8.11.6) becomes

d?v, dv,
e + ZE + 5v, = Sug (8.11.7)

To obtain the form of the transient response, set vs = 0 in Eq. (8.11.7),
which is the same as turning off the source. The characteristic equation is

L+25+5=0

which has complex roots s;, = —1 * j2. Hence, the form of the
transient response is

o = € (A cos2t + B sin2t) (8.11.8)

where A and B are unknown constants to be determined.

Ast — o, the circuit reaches the steady-state condition, and the
capacitors can be replaced by open circuits. Since no current flows through
C, and C, under steady-state conditions and no current can enter the input
terminals of the ideal op amp, current does not flow through R; and R,.

Thus,

Vo(%©) = vy() = vs
The steady-state response is then
Uoss = Uo(®) = vg = 10mV, t>0 (8.11.9)
The complete response is
Uo(t) = Vgt + Voss = 10 + € (Acos2t + Bsin2t) mV (8.11.10)

To determine A and B, we need the initial conditions. Fort < 0,vs = 0,
so that

vo(07) =v2(07) =0

For t > 0, the source is operative. However, due to capacitor voltage
continuity,

vo(07) = v,(07) =0 (8.11.11)
From Eg. (8.11.3),
v1(07) = v5(0") + ve(0) = 0
and hence, from Eg. (8.11.2),

dvo(o+) _ U1~ Vo
dt R2C1

=0 (8.11.12)

We now impose Eqg. (8.11.11) on the complete response in Eq. (8.11.10)
at=0,for

0=10+A = A=-10 (8.11.13)

345
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Taking the derivative of Eq. (8.11.10),

d
% — e (~Acos2t — Bsin2t — 2A sin2t + 2B cos2t)
Setting t = 0 and incorporating Eq. (8.11.12), we obtain

0=—-A+2B (8.11.14)

From Egs. (8.11.13) and (8.11.14), A = —10 and B = —5. Thus, the
step response becomes

vo() =10 — e (10 cos2t + 5sn2)mvV, t>0

Practice Problem 8.11

In the op amp circuit shown in Fig. 8.34, vs = 10u(t) V, find v(t) for
t > 0.Assumethat R, = R, = 10k}, C; = 20 uF, and C, = 100 uF.

Ry R
Wﬁ Answer: (10 — 125 ' + 25e ) V,t > 0.
.
yS Cl pu— C2 pu— 1'0
o
Figure 8.34 8.9 PSpice Analysis of RLC Circuits

For Practice Prob. 8.11.

RLC circuits can be analyzed with great ease using PSpice, just like
the RC or RL circuits of Chapter 7. The following two examples will
illustrate this. The reader may review Section D.4 in Appendix D on
PSpice for transient analysis.

Example 8.12
vg A
12
0 2 t(9
@
60 Q 3H
+
vg 60 Q L v

(b)
Figure 8.35
For Example 8.12.

The input voltage in Fig. 8.35(a) is applied to the circuit in Fig. 8.35(b).
Use PSpice to plot v(t) for 0 < t < 4s.

Solution:

1. Define. As true with most textbook problems, the problem is
clearly defined.

2. Present. The input is equal to a single square wave of
amplitude 12 V with a period of 2 s. We are asked to plot the
output, using PSpice.

3. Alternative. Since we are required to use PSpice, that is the
only alternative for a solution. However, we can check it using
the technique illustrated in Section 8.5 (a step response for a
series RLC circuit).

4. Attempt. The given circuit is drawn using Schematics as in
Fig. 8.36. The pulse is specified using VPWL voltage source,
but VPULSE could be used instead. Using the piecewise linear
function, we set the attributes of VPWL as T1 = 0, V1 = 0,
T2 = 0.001, V2 = 12, and so forth, as shown in Fig. 8.36.
Two voltage markers are inserted to plot the input and output
voltages. Once the circuit is drawn and the attributes are set,
we select Analysig/Setup/Transient to open up the Transient
Analysis dialog box. As a parallel RLC circuit, the roots of the
characteristic equation are —1 and —9. Thus, we may set Final
Time as 4 s (four times the magnitude of the lower root). When
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the schematic is saved, we select Analysis’'Simulate and obtain
the plots for the input and output voltages under the PSpice A/D
window as shown in Fig. 8.37.

T1=0 V1=0

T2=0. 0001 V2=12 0. 03703
T3=2 V3=12 '
T4=2.0001 V4=0
Os 1.0s 2.0s 3.0s 4.0s
OV(L1:2)¢ V(RL: 1
T ( ) &V )
= Ti me
Figure 8.36 Figure 8.37
Schematic for the circuit in Fig. 8.35(b). For Example 8.12: input and outpui.

Now we check using the technique from Section 8.5. We
can start by realizing the Thevenin equivalent for the resistor-
source combination is Vi, = 12/2 (the open circuit voltage
divides equally across both resistors) = 6 V. The equivalent
resistance is 30 (2 (60 || 60). Thus, we can now solve for the
response using R =300, L = 3H,andC = (1/27) F.

We first need to solve for @ and wg:

a=R/(2L)=30/6=5 and wo=i=3

1
o

Since 5 is greater than 3, we have the overdamped case
S2=-5* V5 -9=-1-9  v0) =0,
v(0) =6V, i(0)=0
do(t)

i) =C "

where
v(t) = Ale '+ Ae T+ 6
v0)=0=A +A, +6
i(0) = 0= C(—A; — 9A)
which yields A; = —9A,. Substituting this into the above, we get
0=9A, — A, +6,0r A, = 0.75and A, = —6.75.

v(t) = (—=6.75e™ 4+ 0.75e™* + 6)u(t) Vforal 0 < t < 2s.

Att=1sv(l) = —6.75¢ 1 + 0.75e ° = —2.483 + 0.0001 +
6= —3552V.Att=2s v(2) = —6.75¢ >+ 0+ 6=5.086V.

Note that from 2 <t < 45, V1, = 0, which implies that
v(®) = 0. Therefore, v(t) = (Ase 2 + Ae * )t — 2) V.
Att=2s, A; + A, = 5.086.

(_A3e*(t*2) _ 9A4e*9(t*2))
27

i(t) =
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and

_ (6.75e 2 — 6.75¢ %)
i(2) = 57 = 33.83mA

Therefore, —Az — 9A, = 0.9135.

Combining the two equations, we get —Az — 9(5.086 — Az) =
0.9135, which leads to Az = 5.835 and A, = —0.749.

v(t) = (5.835e~ 2 — 0.749% ) u(t — 2) V

Att=3s v(3) = (2147 — 0) = 2147V. Att = 4s,v(4) =
0.7897 V.

5. Evaluate. A check between the values calculated above and the
plot shown in Figure 8.37 shows good agreement within the
obvious level of accuracy.

6. Satisfactory? Yes, we have agreement and the results can be
presented as a solution to the problem.

Practice Problem 8.12

5Q

g = 1mF 2H

Figure 8.38
For Practice Prob. 8.12.

Find i(t) using PSpicefor 0 < t < 4 sif the pulse voltage in Fig. 8.35(a)
is applied to the circuit in Fig. 8.38.

Answer: See Fig. 8.39.

1.0OA!

ol (L1)

Ti ne
Figure 8.39
Plot of i(t) for Practice Prob. 8.12.

Example 8.13

For the circuit in Fig. 8.40, use PSpice to obtain i(t) for 0 <t < 3s,

t=0
b { i)
an (4) 5Q§ 60 Lp=— 7H
Figure 8.40
For Example 8.13.

Solution:
When the switch is in position a, the 6-() resistor is redundant. The
schematic for this case is shown in Fig. 8.41(a). To ensure that current
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0.0000 4. 000E+00
° % . 1~
4A CDmc RIS S 2381mj{701 7H 3 L1 R
%
@
Figure 8.41

For Example 8.13: (a) for dc analysis, (b) for transient analysis.

i(t) enters pin 1, the inductor is rotated three times before it is placed in
the circuit. The same applies for the capacitor. We insert pseudo-
components VIEWPOINT and |PROBE to determine the initial capacitor
voltage and initial inductor current. We carry out a dc PSpice analysis
by selecting AnalysigSimulate. As shown in Fig. 8.41(a), we obtain
the initial capacitor voltage as 0 V and the initial inductor current i(0)
as 4 A from the dc analysis. These initial values will be used in the
transient analysis.

When the switch is moved to position b, the circuit becomes a source-
free pardlel RLC circuit with the schematic in Fig. 8.41(b). We set the
initial condition IC = O for the capacitor and IC = 4 A for the inductor.
A current marker is inserted at pin 1 of the inductor. We select Analysis/
Setup/Transient to open up the Transient Analysis dialog box and set
Final Time to 3 s. After saving the schematic, we select Analysis/
Transient. Figure 8.42 shows the plot of i(t). The plot agrees with
i(t) = 4.8¢ ' — 0.8e ® A, which is the solution by hand calculation.
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| Cc=0 I C=4A

23.81m Cc1 7H L1

-

ol (L)

Ti me
Figure 8.42
Plot of i(t) for Example 8.13.

Refer to the circuit in Fig. 8.21 (see Practice Prob. 8.7). Use PSpice to
obtain v(t) for 0 <t < 2.

Answer: See Fig. 8.43.

o V(Cl: 1)

Ti me
Figure 8.43
Plot of v(t) for Practice Prob. 8.13.

Practice Problem 8.13
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TABLE 8.1 e

Dual pairs.

Resistance R Conductance G
Inductance L Capacitance C
Voltage v Current i
Voltage source Current source
Node Mesh

Series path Parallel path
Open circuit Short circuit
KVL KCL
Thevenin Norton

Even when the principle of linearity
applies, a circuit element or variable
may not have a dual. For example,
mutual inductance (to be covered in
Chapter 13) has no dual.
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8.10 T Duality

The concept of duality is a time-saving, effort-effective measure of
solving circuit problems. Consider the similarity between Eq. (8.4) and
Eqg. (8.29). The two equations are the same, except that we must inter-
change the following quantities: (1) voltage and current, (2) resistance
and conductance, (3) capacitance and inductance. Thus, it sometimes
occursin circuit analysis that two different circuits have the same equa-
tions and solutions, except that the roles of certain complementary ele-
ments are interchanged. This interchangeability is known as the
principle of duality.

The duality principle asserts a parallelism between pairs of characteriz-
ing equations and theorems of electric circuits.

Dual pairs are shown in Table 8.1. Note that power does not appear in
Table 8.1, because power has no dual. The reason for this is the prin-
ciple of linearity; since power is not linear, duality does not apply. Also
notice from Table 8.1 that the principle of duality extends to circuit
elements, configurations, and theorems.

Two circuits that are described by equations of the same form, but
in which the variables are interchanged, are said to be dua to each
other.

Two circuits are said to be duals of one another if they are described
by the same characterizing equations with dual quantities interchanged.

The usefulness of the duality principle is self-evident. Once we
know the solution to one circuit, we automatically have the solution
for the dual circuit. It is obvious that the circuits in Figs. 8.8 and 8.13
are dual. Consequently, the result in Eq. (8.32) is the dua of that in
Eg. (8.11). We must keep in mind that the principle of duality is lim-
ited to planar circuits. Nonplanar circuits have no duals, as they can-
not be described by a system of mesh equations.

To find the dua of a given circuit, we do not need to write down
the mesh or node equations. We can use a graphical technique. Given
a planar circuit, we construct the dual circuit by taking the following
three steps:

1. Place a node at the center of each mesh of the given circuit. Place
the reference node (the ground) of the dual circuit outside the
given circuit.

2. Draw lines between the nodes such that each line crosses an ele-
ment. Replace that element by its dual (see Table 8.1).

3. To determine the polarity of voltage sources and direction of cur-
rent sources, follow this rule: A voltage source that produces a pos-
itive (clockwise) mesh current has asits dua a current source whose
reference direction is from the ground to the nonreference node.

In case of doubt, one may verify the dual circuit by writing the nodal
or mesh equations. The mesh (or nodal) equations of the original circuit
are similar to the nodal (or mesh) equations of the dual circuit. The
duality principle is illustrated with the following two examples.
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Construct the dual of the circuit in Fig. 8.44.

Solution:

As shown in Fig. 8.45(a), we first locate nodes 1 and 2 in the two
meshes and also the ground node 0O for the dual circuit. We draw a line
between one node and another crossing an element. We replace the line
joining the nodes by the duals of the elements which it crosses. For
example, a line between nodes 1 and 2 crosses a 2-H inductor, and we
place a 2-F capacitor (an inductor’s dual) on the line. A line between
nodes 1 and O crossing the 6-V voltage source will contain a 6-A
current source. By drawing lines crossing all the elements, we construct
the dual circuit on the given circuit as in Fig. 8.45(a). The dual circuit
is redrawn in Fig. 8.45(b) for clarity.

05Q

6V

Example 8.14

2Q t=0

2H =—/—10mF

Figure 8.44
For Example 8.14.

t=0\>z % 10 mH

@

Figure 8.45
(a) Construction of the dual circuit of Fig. 8.44, (b) dual circuit redrawn.

(b)

Draw the dual circuit of the one in Fig. 8.46.

Answer: See Fig. 8.47.

Practice Problem 8.14

3H
Lar
soma (1) 100 §4H 50mv 01Q L4
Figure 8.46 Figure 8.47
For Practice Prob. 8.14. Dual of thecircuit in Fig. 8.46.
Obtain the dual of the circuit in Fig. 8.48. Example 8.15

Solution:

The dual circuit is constructed on the original circuit asin Fig. 8.49(a).
We first locate nodes 1 to 3 and the reference node 0. Joining nodes
1 and 2, we cross the 2-F capacitor, which is replaced by a 2-H
inductor.
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5H
AI1R

1ov# @ == 2F @ 200

Figure 8.48
For Example 8.15.

3A

@

Joining nodes 2 and 3, we cross the 20-() resistor, which is replaced
by a - resistor. We keep doing this until all the elements are crossed.
Theresultisin Fig. 8.49(a). The dual circuit isredrawn in Fig. 8.49(b).

10A — 5F 3V

@

Figure 8.49

(b)

For Example 8.15: (a) construction of the dual circuit of Fig. 8.48, (b) dual circuit redrawn.

To verify the polarity of the voltage source and the direction of
the current source, we may apply mesh currentsi,, i, and i3 (al in the
clockwise direction) in the original circuit in Fig. 8.48. The 10-V
voltage source produces positive mesh current i,, so that its dual is a
10-A current source directed from O to 1. Also, i3 3AinFig. 848
has as its dual vz = —3V in Fig. 8.49(b).

Practice Problem 8.15

5Q

For the circuit in Fig. 8.50, obtain the dual circuit.

Answer: See Fig. 8.51.

AW

02F AH

]
ZAC? 30 20V

Figure 8.50
For Practice Prob. 8.15.

Figure 8.51
Dual of thecircuit in Fig. 8.50.
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8.11 T Applications

Practical applications of RLC circuits are found in control and com-
munications circuits such as ringing circuits, peaking circuits, resonant
circuits, smoothing circuits, and filters. Most of these circuits cannot
be covered until we treat ac sources. For now, we will limit ourselves
to two simple applications: automobile ignition and smoothing circuits.

8.11.1 Automobile Ignition System

In Section 7.9.4, we considered the automobile ignition system as a
charging system. That was only a part of the system. Here, we con-
sider another part—the voltage generating system. The system is mod-
eled by the circuit shown in Fig. 8.52. The 12-V source is due to the
battery and alternator. The 4-() resistor represents the resistance of the
wiring. The ignition coil is modeled by the 8-mH inductor. The 1-uF
capacitor (known as the condenser to automechanics) isin parallel with
the switch (known as the breaking points or electronic ignition). In the
following example, we determine how the RLC circuit in Fig. 8.52 is
used in generating high voltage.

Ignition coail

Figure 8.52
Automobile ignition circuit.
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Assuming that the switch in Fig. 8.52 is closed prior tot = 0, find
the inductor voltage v, fort > 0.

Solution:
If the switch is closed prior tot = 0~ and the circuit is in steady state,
then

i(07) = %2 =3A, 0vc(0)=0

Att = 0", the switch is opened. The continuity conditions require that
i(0") =3A, wvc(0Y) =0 (8.16.1)
We obtain di(0")/dt from v, (0"). Applying KVL tothemesh att = 0"
yields
—12 + 4i(0") + v (0") + ve(0") =0
-12+4X3+p(0)+0=0 = v (0H=0

Example 8.16



354

Chapter 8  Second-Order Circuits

Hence,

di(0") v (0)
—=—"=0 8.16.2
dt L ( )
Ast — o, the system reaches steady state, so that the capacitor acts
like an open circuit. Then

i(@) =0 (8.16.3)
If we apply KVL to the mesh for t > 0, we obtain
d 1 ("
2=R+L_+=| id+
P L i dt + vc(0)

Taking the derivative of each term yields
di  Rdi i

+ =+ —= .16.
dt? Ldt LC 0 (8164)

We obtain the form of the transient response by following the procedure
in Section 8.3. SubstitutingR = 4, L = 8 mH, and C = 1 uF, we get

R 1
a=—=25, wy=——=1118 x 10*

2L VLC

Since @ < wq, the response is underdamped. The damped natural
frequency is

wg = Vi — o= w = 1.118 x 10*
The form of the transient response is
i(t) = e “(Acoswgt + B Sinwgt) (8.16.5)
where A and B are constants. The steady-state response is
i (t) = i() =0 (8.16.6)
so that the complete response is
i) = it) + i () = e (A cos 11,180t + Bsin11,180t) (8.16.7)
We now determine A and B.
i0)=3=A+0 = A=3
Taking the derivative of Eq. (8.16.7),
% = —250e **(A cos 11,180t + B sin 11,180t)
+ e %5%%(—11,180A sin 11,180t + 11,180B cos 11,180t)
Setting t = 0 and incorporating Eq. (8.16.2),
0 = —250A + 11,180B = B = 0.0671
Thus,
i(t) = e ®%(3cos11,180t + 0.0671sin11,180t) (8.16.8)
The voltage across the inductor is then
di

UL(t) = Ldt

= —268e > sin 11,180t (8.16.9)
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This has a maximum value when sine is unity, that is, at 11,180ty =
/2 or tg = 140.5 us. At time = t,, the inductor voltage reaches its
peak, which is

vL(to) = —268e 2% = —259V (8.16.10)

Although this is far less than the voltage range of 6000 to 10,000 V
required to fire the spark plug in a typical automobile, a device known
as a transformer (to be discussed in Chapter 13) is used to step up the
inductor voltage to the required level.
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In Fig. 8.52, find the capacitor voltage v for t > 0.

Answer: 12 — 12e” 2 c0s 11,180t + 267.7e 2> sin 11,180t V.

8.11.2 Smoothing Circuits

In atypical digital communication system, the signal to be transmitted
is first sampled. Sampling refers to the procedure of selecting samples
of a signa for processing, as opposed to processing the entire signal.
Each sample is converted into a binary number represented by a series
of pulses. The pulses are transmitted by a transmission line such as a
coaxial cable, twisted pair, or optical fiber. At the receiving end, the
signal is applied to a digital-to-analog (D/A) converter whose output is
a “staircase” function, that is, constant at each time interval. In order
to recover the transmitted analog signal, the output is smoothed by |et-
ting it pass through a “smoothing” circuit, as illustrated in Fig. 8.53.
An RLC circuit may be used as the smoothing circuit.

Practice Problem 8.16

p(t) vg(t) ! ()
— = | DA | > | Smoothing | _ 7
circuit

Figure 8.53

A series of pulsesis applied to the digital-
to-analog (D/A) converter, whose output
is applied to the smoothing circuit.

The output of a D/A converter is shown in Fig. 8.54(a). If the RLC
circuit in Fig. 8.54(b) is used as the smoothing circuit, determine the
output voltage v(t).

vs A
10 -
1 1Q 1H 3
AV 1IN
4 2 +
Us 1F= "%
0 _
2 t(s)
0 0
@ (b)

Figure 8.54
For Example 8.17: (a) output of a D/A converter, (b) an RLC
smoothing circuit.

Solution:
This problem is best solved using PSpice. The schematic is shown in
Fig. 8.55(a). The pulse in Fig. 8.54(a) is specified using the piecewise

Example 8.17
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T1=0

T2=0.

T3=1

T4=1.

T5=2

T6=2.

T7=3

T8=3.

001

001

001

001

V1=0
V2=4
V3=4

V5=10
V6=-2
V7=-2
V8=0

Figure 8.55
For Example 8.17: (a) schematic, (b) input and output voltages.

Chapter 8  Second-Order Circuits

0s 2.0s 4.0s 6.0s
O V(V1:+) o V(Cl:1)
Ti me

@ (b)

linear function. The attributes of V1 are set as T1 =0, V1 =0,
T2 =0.001,V2 = 4,T3 = 1,V3 = 4, and soon. To be able to plot both
input and output voltages, we insert two voltage markers as shown. We
select Analysis/Setup/Transient to open up the Transient Analysis dialog
box and set Final Time as 6 s. Once the schematic is saved, we select
Analysis/'Simulate to run and obtain the plots shown in Fig. 8.55(b).

Practice Problem 8.17

Rework Example 8.17 if the output of the D/A converter is as shown
in Fig. 8.56.

Answer: See Fig. 8.57.

Vs

T

1 » . ‘ ‘
0 1 (2 3 |4 t'(s) : : -Us
-1r O V(VL1:+) o V(CL:1)
_3 -

Ti ne

Figure 8.56 Figure 8.57
For Practice Prob. 8.17. Result of Practice Prob. 8.17.

8.12 Summary

1. The determination of the initial values x(0) and dx(0)/dt and final
value x(«) is crucia to analyzing second-order circuits.

2. The RLC circuit is second-order because it is described by a
second-order differential equation. Its characteristic equation is
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& + 2as + w5 = 0, where « is the damping factor and wy is the
undamped natural frequency. For a series circuit, « = R/2L, for a
parallel circuit « = 1/2RC, and for both cases wy = 1/0VLC.

3. If there are no independent sources in the circuit after switching
(or sudden change), we regard the circuit as source-free. The com-
plete solution is the natural response.

4. The natural response of an RLC circuit is overdamped, under-
damped, or critically damped, depending on the roots of the char-
acteristic equation. The response is critically damped when the
roots are equal (s, = S, Or @ = wg), overdamped when the roots
are real and unequal (s; # S, Or a > wg), or underdamped when
the roots are complex conjugate (s, = S5 of a < wy).

5. If independent sources are present in the circuit after switching,
the complete response is the sum of the transient response and the
steady-state response.

6. PSpice is used to analyze RLC circuits in the same way as for RC
or RL circuits.

7. Two circuits are dua if the mesh equations that describe one circuit
have the same form as the nodal equations that describe the other.
The analysis of one circuit gives the analysis of its dual circuit.

8. The automobile ignition circuit and the smoothing circuit are typ-
ical applications of the material covered in this chapter.

Review Questions

8.1 For thecircuit in Fig. 8.58, the capacitor voltage at 8.4 If theroots of the characteristic equation of an RLC
t = 0~ (just before the switch is closed) is: circuit are —2 and —3, the response is:
@ov (by4av (co8V (d)y12v (@) (Acos2t + Bsin2t)e
(b) (A + 2Bt)e™™
X _t=0 (c) Ae® + Bte ™
' (d)Ae® + Be ™
2Q 4Q
—VWW—] where A and B are constants.
12V 1H L 5E 8.5 InaseriesRLC circuit, setting R = 0 will produce:
(a) an overdamped response

iticall
Figure 8.58 (b) acritically damped response

For Review Questions 8.1 and 8.2. (c) an underdamped response
(d) an undamped response
8.2 For thecircuit in Fig. 8.58, theinitia inductor (€) none of the above

current (att = 0) is. o
8.6 A pardle RLC circuit hasL = 2H and C = 0.25F.

@0A (B)2A (6A (d)12A Thevalueof Rthat will produce unity damping factor is:
8.3 When astep input is applied to a second-order @050 H1Q (©2Q (d)4Q
circuit, the final values of the circuit variables are ) o
found by: 8.7 RefertotheseriesRLC circuit in Fig. 8.59. What
) ) ) o kind of response will it produce?

(a) Replacing capacitors with closed circuits and

inductors with open circuits. (8) overdamped
(b) Replacing capacitors with open circuits and (b) underdamped

inductors with closed circuits. (c) critically damped

(c) Daing neither of the above. (d) none of the above
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1Q 1H

Figure 8.59
For Review Question 8.7.

8.8 Consider the parallel RLC circuit in Fig. 8.60. What

type of response will it produce?
(a) overdamped

(b) underdamped

(c) criticaly damped

(d) none of the above

1Q 1H = 1F

Figure 8.60
For Review Question 8.8.

8.9 Matchthecircuitsin Fig. 8.61 with the following

items:

(i) first-order circuit

(ii) second-order series circuit
(iii) second-order parallel circuit
(iv) none of the above

Second-Order Circuits

R L
A1
v c=— L RS g ==
(€Y (b)
R
Ry _ Rz%
Is Vs
C, T C, T
(0) (d)
Ry Ry
v ok
iS C*) g C == L
L R,

(e )
Figure 8.61
For Review Question 8.9.

8.10 Inan electric circuit, the dual of resistanceis:
(a) conductance (b) inductance
(c) capacitance (d) open circuit
(e) short circuit

Answers; 8.1a, 8.2c, 8.3b, 8.4d, 8.5d, 8.6¢, 8.7b, 8.8b,
8.9 (i)-c, (ii)-b, €, (iii)-a, (iv)-d, f, 8.10a.

1 Problems

Section 8.2 Finding Initial and Final Values
8.1 For thecircuit in Fig. 8.62, find:
(@i(0") and v(0"),
(b) di(0™)/dt and dv(0 ") /ct,
(€) i(%) and v(=).

“Xt=0

7

6 Q 4Q

v® [

2H

| = +

04F
T

Figure 8.62
For Prob. 8.1.

8.2 Using Fig. 8.63, design a problem to help other
efJdd students better understand finding initial and final

values.
E, Ry R,
A —— A —— |
R "c ¢ -
3
16) —=c gl_
t=0

Figure 8.63
For Prob. 8.2.



8.3 Refer to the circuit shownin Fig. 8.64. Calculate:
@iL(0"), vc(07), and vR(0™),
(b) di (07)/dt, dvc(0™)/dt, and dvg(0™)/dt,
(©) iL(*), ve(), and vr().

Problems

i ’\/5\/\/
+ [P +
Vsu(t) C = y 9L

Figure 8.67
For Prob. 8.6.

Section 8.3 Source-Free Series RLC Circuit

40 Q
AWA%
. 1, "
+ c aF
0R§10(2 CD M)A T ggH
- 10V 8.7
Figure 8.64
For Prob. 8.3. 8.8
ed
o ) . 8.9
8.4 Inthecircuit of Fig. 8.65, find:
@v(0%) andi(0"),
(b) dv(0™")/dt and di(0™)/dt,
(©) v(e) and i(=).
8.10
3Q 0.25H
A1k
—.>
! +
10u(-t) V 01F == v §5Q G M A
8.11
Figure 8.65
For Prob. 8.4.
8.5 Refer tothecircuit in Fig. 8.66. Determine:
(@i(0") and v(0"),
(b) di(0™)/dt and dv(0™)/dt, 8.12
(€) i(%) and v(=).
1H
* i
+ 8.13
4u(t) A CD 40 IF== 6Q%v

Figure 8.66
For Prob. 8.5.

8.6 Inthecircuit of Fig. 8.67, find:
(@ vr(0") and v (0),

(b) dvg(0™)/dt and dv, (07)/dt,
(©) vr(®) and v\ ().

A seriesRLC circuit hasR = 10 kQ), L = 0.1 mH,
and C = 10 uF. What type of damping is exhibited
by the circuit?

Design a problem to help other students better
understand source-free RLC circuits.

The current in an RLC circuit is described by

d3i di .
—— 4+ 10— + 25| =
el R

If i(0) = 2 A and di(0)/dt = O, findi(t) fort > 0.

The differential equation that describes the voltage
inan RLC network is

d? d
S5 +a=0
d? | Cdt

Given that v(0) = 0, dv(0)/dt = 5V/s, obtain v(t).

The natural response of an RLC circuit is described
by the differential equation

for which theinitial conditions arev(0) = 20V and
dv(0)/dt = 0. Solvefor v(t).

If R=20€,L = 0.6 H, what value of C will make
an RLC series circuit:

(a) overdamped,
(b) critically damped,
(¢) underdamped?

For the circuit in Fig. 8.68, calculate the value of R
needed to have acritically damped response.

60 Q2
i AN 1 fm\jl

Figure 8.68
For Prob. 8.13.
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8.14 The switch in Fig. 8.69 moves from position A to
position Bat t = O (please note that the switch must
connect to point B before it breaks the connection at
A, amake-before-break switch). Find v(t) fort > 0.

20v () § 100

0.25F % o(t)

Figure 8.69
For Prob. 8.14.

8.15 The responses of aseries RLC circuit are
ve(t) = 30 — 10e 2 + 30e v
i(t) = 40e” %" — 60e 1 mA

wherevc and i are the capacitor voltage and
inductor current, respectively. Determine the values
of R L,andC.

8.16 Findi(t) fort > 0in the circuit of Fig. 8.70.

t=0
0o ¢ 60Q
MW 1 V\/\/\']i(t)
1mF
20V C) 4OQ§
25H

Figure 8.70
For Prob. 8.16.

8.17 Inthecircuit of Fig. 8.71, the switch instantaneously
moves from position AtoBatt = 0. Find v(t) for all
t=0.

15A
10Q

Figure 8.71
For Prob. 8.17.

8.18 Find the voltage across the capacitor as a function of
timefort > Ofor thecircuit in Fig. 8.72. Assume
steady-state conditionsexistatt = 0.

Second-Order Circuits

20V C)

Figure 8.72
For Prob. 8.18.

8.19 Obtainv(t) fort > 0inthecircuit of Fig. 8.73.

+

vJ:lF
( |

t=0

10Q
MY

NV 4H

Figure 8.73
For Prob. 8.19.

8.20 The switch in the circuit of Fig. 8.74 has been closed
for along time but isopened at t = 0. Determinei(t)

fort > 0.
it 1
® 3H 2Q
IR AMAN
12V
U t=0
iF
4

Figure 8.74
For Prob. 8.20.

*8.21 Cadculatev(t) fort > 0in the circuit of Fig. 8.75.

4“;)
ps
15Q
A
2o = 6Q
A
t=0" §259
3H
24V 60 Q +
1
A

Figure 8.75
For Prob. 8.21.

* An asterisk indicates a chalenging problem.



Section 8.4 Source-Free Parallel RLC Circuit

8.22 Assuming R = 2 k(), design aparallel RLC circuit
that has the characteristic equation

& + 100s + 10° = 0.

8.23 For the network in Fig. 8.76, what value of Cis
needed to make the response underdamped with
unity damping factor (« = 1)?

05H C = 10mF —

Figure 8.76
For Prob. 8.23.

8.24 The switch in Fig. 8.77 moves from position A to
position Batt = O (please note that the switch must
connect to point B before it breaks the connection at
A, amake-before-break switch). Determinei(t) for
t>0.

A

t=0

124 (})

5 ‘i(t)
§209 i10m|: §10§2 go.st
Figure 8.77

For Prob. 8.24.

8.25 Using Fig. 8.78, design a problem to help other
efd students better understand source-free RLC circuits.

ioft)

v RE  co )

Figure 8.78
For Prob. 8.25.

Section 8.5 Step Response of a Series RLC Circuit

8.26 The step response of an RLC circuit is described by

ZTZIZ + 2% +5 =10
Giventhati(0) = 6 A and di(0)/dt = 12 A/s, solve
fori(t).
8.27 A branch voltage in an RLC circuit is described by
d% dv

?4‘4&4‘81}:48

Problems 361

If theinitial conditionsarev(0) = 0 = dv(0)/dt,

find v(t).
8.28 A series RLC circuit is described by
d?i di i
L +R+—==2
dt? d C

Find the responsewhen L = 0.5 H, R = 4 (),
andC = 0.2F. Leti(0) = 1,di(0)/dt = O.

8.29 Solvethefollowing differential equations subject to
the specified initial conditions
(a) d%v/dt? + 4v = 12, v(0) = 0, dv(0)/dt = 2
(b) d%i/dt? + 5di/dt + 4i = 8,i(0) = —1,

di(0)/dt = 0

(0) d®v/dt? + 2dv/dt + v = 3,v(0) = 5,
dv(0)/dt = 1

(d) d%i/dt? + 2di/dt + 5i = 10,i(0) = 4,
di(0)/dt = —2

8.30 The step responses of a series RLC circuit are
ve = 40 — 10209 — 1040yt >0
iL() = 37200 4 gt mA t>0

(a) Find C. (b) Determine what type of damping is
exhibited by the circuit.

8.31 Consider the circuit in Fig. 8.79. Find v, (0") and
A‘t)) Uc(0+).

ps
00 100
A
+ +
2u(t) 05H Ry 1F== % 50V

Figure 8.79
For Prob. 8.31.

8.32 For thecircuit in Fig. 8.80, find v(t) fort > 0.
A“)
)

ps

4u(-t) A

G
N

1H 0.04F
i ]

+ v -
%29
Q)

N\
100u(t) V

49%

Figure 8.80
For Prob. 8.32.
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8.33 Findu(t) fort > Ointhecircuit of Fig. 8.81.
POS )
))

ps

t=0<>l< ,tln;"\
sa (1) 1OQ§

I = +

— 4F 59§ G 4u(t) A

Figure 8.81
For Prob. 8.33.

8.34 Cadculatei(t) fort > 0inthecircuit of Fig. 8.82.

INTN
T

200V (F) g

5Q

Figure 8.82
For Prob. 8.34.

8.35 Using Fig. 8.83, design a problem to help other
eqd students better understand the step response of series

RLC circuits.
R
o) K AN
t=0
4
Vi Ct) Vs, c=v
IR
L

Figure 8.83
For Prob. 8.35.

8.36 Obtain v(t) andi(t) for t > 0in the circuit of
Fig. 8.84.

3u(t) A = »(H

2Q

20V

Figure 8.84
For Prob. 8.36.

Second-Order Circuits

*8.37 For the network in Fig. 8.85, solvefori(t) fort > 0.

6Q

[
@i
T

Figure 8.85
For Prob. 8.37.

8.38 Refer to thecircuit in Fig. 8.86. Calculatei(t) for
t>0.

6(1— u(t)) A

ii(t) S

NI
Slw
I

[
m

Figure 8.86
For Prob. 8.38.

8.39 Determineu(t) fort > Ointhecircuit of Fig. 8.87.

05F

+ v -
§20£2

30Q 0.25H

60u(t) V 30u(t) V

Figure 8.87
For Prob. 8.39.

8.40 The switch in the circuit of Fig. 8.88 is moved from

A‘)‘)) positionatobatt = 0. Determinei(t) fort > 0.
002F 140
12v
I(t)
a
t=0

6Q

A%%Y

4A

4@7

Figure 8.88
For Prob. 8.40.



*8.41 For the network in Fig. 8.89, find i(t) fort > 0.
5Q

20Q 1H

50V

Figure 8.89
For Prob. 8.41.

*8.42 Given the network in Fig. 8.90, find v(t) fort > 0.

Figure 8.90
For Prob. 8.42.

8.43 Theswitchin Fig. 8.91 isopened at t = O after the
circuit has reached steady state. Choose Rand C
such that « = 8 Np/sand wq = 30 rad/s.

R
g 05H
T
Figure 8.91
For Prob. 8.43.

8.44 A series RLC circuit has the following parameters:
R=1kQ,L = 1H,and C = 10 nF. What type of
damping does this circuit exhibit?

Section 8.6 Step Response of a Parallel
RLC Circuit

8.45 Inthecircuit of Fig. 8.92, find v(t) and i(t) fort > 0.
Assumev(0) = 0V andi(0) = 1 A.

i i

— 05F ng

I = +

4u(t) A Q) ZQ§

Figure 8.92
For Prob. 8.45.

Problems 363

8.46 Using Fig. 8.93, design a problem to help other
efJd students better understand the step response of a
paralel RLC circuit.

0_

Figure 8.93
For Prob. 8.46.

8.47 Find the output voltage v(t) in the circuit of
Fig. 8.94.

D

t=0"

ANV

100 l,,
3A 59% lH? IOmFTvU

Figure 8.94
For Prob. 8.47.

8.48 Giventhecircuit in Fig. 8.95, find i(t) and v(t) for
t>0.

1Q

AN
FNT
m
||

= o(t)

12v

Figure 8.95
For Prob. 8.48.

8.49 Determinei(t) fort > 0inthecircuit of Fig. 8.96.

12v

Figure 8.96
For Prob. 8.49.
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8.50 For thecircuit in Fig. 8.97, find i(t) fort > 0.

10Q
AWV

l it

30V CD 6u(t) A CD 10mF = g 4H

w0

Figure 8.97
For Prob. 8.50.

8.51 Findu(t) fort > 0inthecircuit of Fig. 8.98.

Figure 8.98
For Prob. 8.51.
8.52 The step response of aparallel RLC circuit is
v = 10 + 20e **(cos 400t — 2 sin 400t) V,
when the inductor is 50 mH. Find Rand C.

t=0

Section 8.7 General Second-Order Circuits

8.53 After being open for aday, the switch in the circuit
of Fig. 8.99isclosed at t = 0. Find the differential
equation describing i(t), t > 0.

S

0.25H

80Q

120V =10 mF

Figure 8.99
For Prob. 8.53.

8.54 Using Fig. 8.100, design a problem to help other
efd students better understand general second-order
circuits.

'®

ZR :
1 R, v=C L

Figure 8.100
For Prob. 8.54.

Second-Order Circuits

8.55 For thecircuitin Fig. 8.101, find v(t) fort > 0.
Assumethat v(0*) = 4V andi(07) = 2 A.

0.1F =

Figure 8.101
For Prob. 8.55.

8.56 Inthecircuit of Fig. 8.102, find i(t) fort > 0.

50V

Figure 8.102
For Prob. 8.56.

8.57 If the switch in Fig. 8.103 has been closed for along
time beforet = 0 but isopened at t = O, determine:

(@) the characteristic equation of the circuit,
(b) iyandvgfort > 0.

16V @)

Figure 8.103
For Prob. 8.57.

8.58 Inthecircuit of Fig. 8.104, the switch has been in
position 1 for along time but moved to position 2 at
t = 0. Find:
(@ v(0"), dv(0™)/dt
(b)v(t) fort = 0.

O
t=0

E 0.25H § 050t
v

Figure 8.104
For Prob. 8.58.




8.59 The make before break switch in Fig. 8.105 has been
inposition1fort < 0.Att = 0, itismoved
instantaneously to position 2. Determine v(t).

1 §16Q

Figure 8.105
For Prob. 8.59.

8.60 Obtaini, andi,fort > 0in the circuit of Fig. 8.106.

4u(t) A () ZQ§

Figure 8.106
For Prob. 8.60.

8.61 For thecircuit in Prob. 8.5, find i and v fort > 0.
8.62 Find the response vg(t) for t > 0in the circuit of

Fig.8.107.LetR=30Q,L = 2H,andC = 1/18F.

10u(t) V

Figure 8.107
For Prob. 8.62.

Section 8.8 Second-Order Op Amp Circuits

8.63 For the op amp circuit in Fig. 8.108, find the
differential equation for i(t).

C

I
]

Vg L

‘\}_

Figure 8.108
For Prob. 8.63.

Problems 365

8.64 Using Fig. 8.109, design a problem to help other
efdd students better understand second-order op amp

circuits.
C
||
11
Rl R2
AN 3 L 5
- +

1)5 CZ fr— VO
O

Figure 8.109
For Prob. 8.64.

8.65 Determine the differential equation for the op amp
circuit in Fig. 8.110. If v,(07) = 2V and
v,(0") =0V, findv,fort > 0.Let R = 100 kQ
andC = 1 uF.

Figure 8.110
For Prob. 8.65.

8.66 Obtain the differential equationsfor vy(t) in the op
amp circuit of Fig. 8.111.

L

10 pF
60 kQ T 60 kQ =

MW +
+
vg ——20pF %
O

Figure 8.111
For Prob. 8.66.
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*8.67 Inthe op amp circuit of Fig. 8.112, determine v(t)
fort > 0. Let Uinh — U(t) V, Rl = R2 =10 kQ,
Cl = C2 = 100 MF

%in O—’\/\/\/\f;g{

Figure 8.112
For Prob. 8.67.

Section 8.9 PSpice Analysis of RLC Circuit
4‘;)
PS
8.68 For the step function vg = u(t), use PSpiceto find
the response v(t) for 0 < t < 6 sinthecircuit of
Fig. 8.113.

2Q 1H
AW A11R

+
vs 1F == »(H

Figure 8.113
For Prob. 8.68.

8.69 Given the source-free circuit in Fig. 8.114, use PSpice
togeti(t)for0 <t < 20s. Takev(0) = 30V and
i(0) = 2A.

li
1Q§ 10H§ 25F = v

Figure 8.114
For Prob. 8.69.

8.70 For thecircuit in Fig. 8.115, use PSpice to obtain
v(t) for 0 < t < 4s. Assume that the capacitor
voltage and inductor current at t = O are both zero.

6Q 2H
MW 7oy

04F =

s

s

2av ()

Figure 8.115
For Prob. 8.70.

Second-Order Circuits

8.71 Obtainu(t) for 0 < t < 4 sinthecircuit of Fig. 8.116
using PSpice.

04F 1H 60
|
I

13u(t) A 60 o(t) 220Q 30u(t) V

Figure 8.116
For Prob. 8.71.

8.72 The switchin Fig. 8.117 has been in position 1 for a
longtime. Att = 0, it isswitched to position 2. Use
PSpicetofindi(t) for0 <t < 0.2s.

4kQ 1 o 1kQ 100 mH
2110
otzowww
0V 2kQ

100 uF T

Figure 8.117
For Prob. 8.72.

8.73 Design aproblem, to be solved using PSpice, to help
efd other students better understand source-free RLC
circuits.

Section 8.10 Duality

8.74 Draw the dual of the circuit shownin Fig. 8.118.

2Q 4Q
MW AW

A% 6Q 1Q 3A

Figure 8.118
For Prob. 8.74.

8.75 Obtain the dual of the circuit in Fig. 8.119.

2V 100
05F
CD 24V
40 2H

Figure 8.119
For Prob. 8.75.




Comprehensive Problems

8.76 Find the dual of the circuit in Fig. 8.120.

1OQ§

30Q

4H§ —1F CDzA

Figure 8.120
For Prob. 8.76.

8.77 Draw the dual of the circuit in Fig. 8.121.

5A

2Q 3Q
1F %O.ZSH 1Q
L 12V

Figure 8.121
For Prob. 8.77.

3
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Section 8.11 Applications

8.78 An automobile airbag igniter is modeled by the
circuit in Fig. 8.122. Determine the time it takes the
voltage across the igniter to reach itsfirst peak after
switching fromAtoB.LetR=3,C = 1/30F,
andL = 60 mH.

12V%>

Figure 8.122
For Prob. 8.78.

>
oW

R

8.79 A load is modeled as a 250-mH inductor in parallel
with a 12-() resistor. A capacitor is needed to be
connected to the load so that the network is
critically damped at 60 Hz. Calculate the size of
the capacitor.

Comprehensive Problems

8.80 A mechanical systemismodeled by aseriesRLC
eqd circuit. It isdesired to produce an overdamped response

with time constants 0.1 msand 0.5 ms. If aseries

50-k€) resistor is used, find the values of L and C.

8.81 An oscillogram can be adequately modeled by a
ed second-order system in the form of aparallel RLC
circuit. It is desired to give an underdamped voltage
across a 200-() resistor. If the damping frequency is
4 kHz and the time constant of the envelopeis0.25 s,
find the necessary values of L and C.

8.82 Thecircuit in Fig. 8.123 is the electrical analog of
body functions used in medical schools to study
convulsions. The analog is as follows:

C, = Volume of fluid in adrug
C, = Volume of blood stream in a specified region

R, = Resistance in the passage of the drug from
the input to the blood stream

R, = Resistance of the excretion mechanism,
such as kidney, etc.

vo = Initial concentration of the drug dosage
v(t) = Percentage of the drug in the blood stream

Findu(t) fort > Ogiventhat C; = 0.5 uF, C, =
5uF, R, = 5MQ, R, = 25MQ, and v, = 60u(t) V.

C, == v(®

Figure 8.123
For Prab. 8.82.

8.83 Figure 8.124 shows atypical tunnel-diode oscillator
eJd circuit. The diode is modeled as a nonlinear
resistor withip = f(vp), i.e., the diode currentisa
nonlinear function of the voltage across the diode.
Derive the differential equation for the circuit in
termsof v and ip.

R L

1
_—

%

I = +

f
l
(@]
AP
U
<
]

Figure 8.124
For Prob. 8.83.
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Sinusolids and
Phasors

He who knows not, and knows not that he knows not, is a fool—
shun him. He who knows not, and knows that he knows not, is a child—
teach him. He who knows, and knows not that he knows, is asleep—wake
him up. He who knows, and knows that he knows, is wise—follow him.

—Persian Proverb

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.d), “an ability to function on
multi-disciplinary teams.”

The “ability to function on multidisciplinary teams’ is inherently crit-
ical for the working engineer. Engineers rarely, if ever, work by them-
selves. Engineers will aways be part of some team. One of the things
| like to remind students is that you do not have to like everyone on a
team; you just have to be a successful part of that team.

Most frequently, these teams include individuals from of a variety
of engineering disciplines, as well as individuals from nonengineering
disciplines such as marketing and finance.

Students can easily develop and enhance this skill by working in
study groups in every course they take. Clearly, working in study
groups in nonengineering courses as well as engineering courses out-
side your discipline will aso give you experience with multidiscipli-
nary teams.

Photo by Charles Alexander
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Chapter 9 Sinusoids and Phasors

George Westinghouse. Photo
© Bettmann/Corbis

Historical

Nikola Tesla (1856-1943) and George Westinghouse (1846-1914)
helped establish alternating current as the primary mode of electricity
transmission and distribution.

Today it is obvious that ac generation is well established as the form
of electric power that makes widespread distribution of electric power
efficient and economical. However, at the end of the 19th century, which
was the better—ac or dc—was hotly debated and had extremely out-
spoken supporters on both sides. The dc side was lead by Thomas
Edison, who had earned a lot of respect for his many contributions.
Power generation using ac really began to build after the successful con-
tributions of Teda. The real commercial success in ac came from George
Westinghouse and the outstanding team, including Tesla, he assembl ed.
In addition, two other big names were C. F. Scott and B. G. Lamme.

The most significant contribution to the early success of ac was
the patenting of the polyphase ac motor by Tesla in 1888. The induc-
tion motor and polyphase generation and distribution systems doomed
the use of dc as the prime energy source.

9.1 Introduction

Thus far our analysis has been limited for the most part to dc circuits:
those circuits excited by constant or time-invariant sources. We have
restricted the forcing function to dc sources for the sake of simplicity,
for pedagogic reasons, and also for historic reasons. Historically, dc
sources were the main means of providing electric power up until the
late 1800s. At the end of that century, the battle of direct current ver-
sus alternating current began. Both had their advocates among the elec-
trical engineers of the time. Because ac is more efficient and economical
to transmit over long distances, ac systems ended up the winner. Thus,
it is in keeping with the historical sequence of events that we consid-
ered dc sources first.

We now begin the analysis of circuits in which the source voltage or
current is time-varying. In this chapter, we are particularly interested in
sinusoidally time-varying excitation, or simply, excitation by a sinusoid.

A sinusoid is a signal that has the form of the sine or cosine function.

A sinusoidal current is usually referred to as alternating current (ac).
Such a current reverses at regular time intervals and has alternately pos-
itive and negative values. Circuits driven by sinusoidal current or volt-
age sources are called ac circuits.

We are interested in sinusoids for a number of reasons. First, nature
itself is characteristically sinusoidal. We experience sinusoidal varia-
tion in the motion of a pendulum, the vibration of a string, the ripples
on the ocean surface, and the natural response of underdamped second-
order systems, to mention but a few. Second, a sinusoidal signal is easy
to generate and transmit. It is the form of voltage generated throughout



9.2  Sinusoids

the world and supplied to homes, factories, laboratories, and so on. It
is the dominant form of signal in the communications and electric
power industries. Third, through Fourier analysis, any practical peri-
odic signal can be represented by a sum of sinusoids. Sinusoids,
therefore, play an important role in the analysis of periodic signals.
Lastly, a sinusoid is easy to handle mathematically. The derivative
and integral of a sinusoid are themselves sinusoids. For these and
other reasons, the sinusoid is an extremely important function in
circuit analysis.

A sinusoidal forcing function produces both a transient response
and a steady-state response, much like the step function, which we stud-
ied in Chapters 7 and 8. The transient response dies out with time so
that only the steady-state response remains. When the transient response
has become negligibly small compared with the steady-state response,
we say that the circuit is operating at sinusoidal steady state. It is this
sinusoidal steady-state response that is of main interest to us in this
chapter.

We begin with a basic discussion of sinusoids and phasors. We
then introduce the concepts of impedance and admittance. The basic
circuit laws, Kirchhoff’s and Ohm'’s, introduced for dc circuits, will be
applied to ac circuits. Finally, we consider applications of ac circuits
in phase-shifters and bridges.

9.2 Sinusoids
Consider the sinusoidal voltage

v(t) = V, Sinot (9.1)
where

V,, = the amplitude of the sinusoid
o = theangular frequency in radiansg/s
wt = the argument of the sinusoid

The sinusoid is shown in Fig. 9.1(a) as a function of its argument and
in Fig. 9.1(b) as a function of time. It is evident that the sinusoid
repeats itself every T seconds; thus, T is called the period of the sinu-
soid. From the two plots in Fig. 9.1, we observe that oT = 27,

T=2 (9.2)

/
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Figure 9.1
A sketch of V,, sinwt: (8) asafunction of wt, (b) asafunction of t.

(b)
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The Burndy Library Collection
at The Huntington Library,
San Marino, California.

Historical

Heinrich Rudorf Hertz (1857-1894), a German experimental physi-
cist, demonstrated that electromagnetic waves obey the same funda-
mental laws as light. His work confirmed James Clerk Maxwell’s
celebrated 1864 theory and prediction that such waves existed.

Hertz was born into a prosperous family in Hamburg, Germany.
He attended the University of Berlin and did his doctorate under the
prominent physicist Hermann von Helmholtz. He became a professor
at Karlsruhe, where he began his quest for electromagnetic waves.
Hertz successfully generated and detected electromagnetic waves, he
was the first to show that light is electromagnetic energy. In 1887, Hertz
noted for the first time the photoelectric effect of electrons in a molec-
ular structure. Although Hertz only lived to the age of 37, his discov-
ery of electromagnetic waves paved the way for the practical use of
such waves in radio, television, and other communication systems. The
unit of frequency, the hertz, bears his name.

| The unit of f is named after the German
physicist Heinrich R. Hertz (1857-1894).

The fact that v(t) repeats itself every T seconds is shown by replacing
tbyt+ Tin Eq. (9.1). We get

. . 2
vt + T) =VyusSnot+T) = Vmsmw<t + 77)

: . (9.3)
= Vp sin(wt + 27) = VSinet = v(t)

Hence,

vt + T) = o) (9.9)

that is, v hasthe samevalueatt + T asit does at t and v(t) is said to
be periodic. In general,

A periodic function is one that satisfies f(t) = f(t + nT), for all tand
for all integers n.

As mentioned, the period T of the periodic function is the time of one
complete cycle or the number of seconds per cycle. The reciprocal of
this quantity is the number of cycles per second, known as the cyclic
frequency f of the sinusoid. Thus,

f= (9.5)

[~

From Egs. (9.2) and (9.5), it is clear that
w = 2xf (9.6)

While w isin radians per second (rad/s), f is in hertz (Hz).
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Let us now consider a more general expression for the sinusoid,
v(t) = Vpsin(wt + ¢) (9.7)

where (wt + ¢) isthe argument and ¢ is the phase. Both argument and
phase can be in radians or degrees.
Let us examine the two sinusoids

vat) = Vmsinwt  and  vy(t) = Vimsin(ot + ¢)  (9.8)

shown in Fig. 9.2. The starting point of v, in Fig. 9.2 occurs first in
time. Therefore, we say that v, leads v, by ¢ or that v, lags v, by ¢.
If ¢ # 0, we aso say that v, and v, are out of phase. If ¢ = 0, then
v, and v, are said to be in phase; they reach their minima and max-
ima at exactly the same time. We can compare v, and v, in this man-
ner because they operate at the same frequency; they do not need to
have the same amplitude.

v1 = Vfp Sin wt

wt

v, F

vy =Vl sin(wt + &)

Figure 9.2
Two sinusoids with different phases.

A sinusoid can be expressed in either sine or cosine form. When
comparing two sinusoids, it is expedient to express both as either sine
or cosine with positive amplitudes. This is achieved by using the fol-
lowing trigonometric identities:

sin(A £ B) = sin AcosB £ cosAsinB

9.9
cos(A = B) = cos AcosB F sin AsnB (©9)
With these identities, it is easy to show that
sin(wt = 180°) = —sinwt
cos(wt = 180°) = —coswt
(9.10)

sin(wt = 90°) = *coswt
cos(wt = 90°) = Fsinwt

Using these relationships, we can transform a sinusoid from sine form
to cosine form or vice versa.
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+ Ccos wt
/—90"

+sin wt

@

\180"
: > + COS wt

+sin wt

(b)
Figure 9.3
A graphical means of relating cosine
and sine: (@) cos(wt — 90°) = sinwt,
(b) sin(wt + 180°) = —sinwt.

Chapter 9 Sinusoids and Phasors

A graphical approach may be used to relate or compare sinusoids
as an aternative to using the trigonometric identities in Egs. (9.9) and
(9.10). Consider the set of axes shown in Fig. 9.3(a). The horizontal axis
represents the magnitude of cosine, while the vertical axis (pointing
down) denotes the magnitude of sine. Angles are measured positively
counterclockwise from the horizontal, as usual in polar coordinates.
This graphical technique can be used to relate two sinusoids. For exam-
ple, we see in Fig. 9.3(a) that subtracting 90° from the argument of
coswt gives sinwt, or cos(wt — 90°) = sinwt. Similarly, adding 180° to
the argument of sinwt gives —sinwt, or sin(wt + 180°) = —sinwt, as
shown in Fig. 9.3(b).

The graphical technique can also be used to add two sinusoids of
the same frequency when one is in sine form and the other is in cosine
form. To add A coswt and B sinwt, we note that A is the magnitude of
coswt while B is the magnitude of sinwt, as shown in Fig. 9.4(a). The
magnitude and argument of the resultant sinusoid in cosine form is
readily obtained from the triangle. Thus,

Acoswt + B sinwt = C cos(wt — 6) (9.11)
where
B
C=VA?+B? ¢= tan*lK (9.12)

For example, we may add 3 cos wt and —4 sin wt as shown in Fig. 9.4(b)
and obtain

3 coswt — 4sinwt = 5 cos(wt + 53.1°) (9.13)

Compared with the trigonometric identities in Egs. (9.9) and
(9.10), the graphical approach eliminates memorization. However, we
must not confuse the sine and cosine axes with the axes for complex
numbers to be discussed in the next section. Something else to note in
Figs. 9.3 and 9.4 is that athough the natural tendency is to have the
vertical axis point up, the positive direction of the sine function is down
in the present case.

A
cos wt 5
/—0
A 53.1° |
Bl----------* ! 0 ) COoS wt
+3
sin wt sin ot

@ (b)
Figure 9.4
(a) Adding A coswt and B sinwt, (b) adding 3 coswt and —4 sinwt.
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Find the amplitude, phase, period, and frequency of the sinusoid
v(t) = 12 cos(50t + 10°)

Solution:

The amplitude is V,, = 12 V.

The phase is ¢ = 10°.

The angular frequency is w = 50 rad/s.
27 2w

The period T = — = —— = 0.1257 s.
P 0} 50

. 1
The frequency is f = T 7.958 Hz.

Example 9.1

Given the sinusoid 5sin(4=t — 60°), calculate its amplitude, phase,
angular frequency, period, and freguency.

Answer: 5, —60°, 12.57 rad/s, 0.5 s, 2 Hz.

Practice Problem 9.1

Calculate the phase angle between v, = —10 cos(wt + 50°) and v, =
12 sin(wt — 10°). State which sinusoid is leading.

Solution:
Let us calculate the phase in three ways. The first two methods use
trigonometric identities, while the third method uses the graphical
approach.

Il METHOD 1 In order to compare v, and v,, we must express
them in the same form. If we express them in cosine form with pos-
itive amplitudes,

v, = —10 cos(wt + 50°) = 10 cos(wt + 50° — 180°)
v, = 10cos(wt — 130°) or v, = 10cos(wt + 230°) (9.2.1)
and
v, = 12 sin(wt — 10°) = 12 cos(wt — 10° — 90°)
v, = 12 cos(wt — 100°) (9.2.2)

It can be deduced from Egs. (9.2.1) and (9.2.2) that the phase differ-
ence between v, and v, is 30°. We can write v, as

v, = 12cos(wt — 130° + 30°) or v, = 12cos(wt + 260°) (9.2.3)
Comparing Egs. (9.2.1) and (9.2.3) shows clearly that v, leads v, by 30°.

B METHOD 2 Alternatively, we may express v, in sine form:
v, = —10 cos(wt + 50°) = 10 sin(wt + 50° — 90°)
= 10 sin(wt — 40°) = 10 sin(wt — 10° — 30°)

Example 9.2



376

> COS wt

50°

! 10°

v

Y
sin wt

Figure 9.5

For Example 9.2.
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But v, = 12 sin(wt — 10°). Comparing the two shows that v, lags v,
by 30°. This is the same as saying that v, leads v, by 30°.

B METHOD 3 We may regard v, as simply —10 coswt with a
phase shift of +50°. Hence, v is as shown in Fig. 9.5. Similarly, v,
is 12 sinwt with a phase shift of —10°, as shown in Fig. 9.5. It is easy
to see from Fig. 9.5 that v, leads v, by 30°, that is, 90° — 50° — 10°.

Practice Problem 9.2

Charles Proteus Steinmetz (1865-1923)
was a German-Austrian mathematician
and electrical engineer.

I Appendix B presents a short tutorial on
complex numbers.

Find the phase angle between
ip = —48n(377t + 25°) and i, = 5cos(377t — 40°)
Does i, lead or lag i,?

Answer: 155° i, leads is.

9.3 Phasors

Sinusoids are easily expressed in terms of phasors, which are more con-
venient to work with than sine and cosine functions.

A phasor is a complex number that represents the amplitude and
phase of a sinusoid.

Phasors provide a simple means of analyzing linear circuits excited by
sinusoidal sources; solutions of such circuits would be intractable oth-
erwise. The notion of solving ac circuits using phasors was first intro-
duced by Charles Steinmetz in 1893. Before we completely define
phasors and apply them to circuit analysis, we need to be thoroughly
familiar with complex numbers.

A complex number z can be written in rectangular form as

Z=X+jy (9.14a)

where j = V—1; x is the rea part of z y is the imaginary part of z
In this context, the variables x and y do not represent a location as in
two-dimensional vector analysis but rather the real and imaginary parts
of z in the complex plane. Nevertheless, we note that there are some
resemblances between manipulating complex numbers and manipul at-
ing two-dimensional vectors.

The complex number z can aso be written in polar or exponential
form as

z=r1/¢ =re’ (9.14b)
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Historical

Charles Proteus Steinmetz (1865-1923), a German-Austrian
mathematician and engineer, introduced the phasor method (covered in
this chapter) in ac circuit analysis. He is also noted for his work on the
theory of hysteresis.

Steinmetz was born in Breslau, Germany, and lost his mother at the
age of one. As a youth, he was forced to leave Germany because of
his political activities just as he was about to complete his doctoral dis-
sertation in mathematics at the University of Breslau. He migrated to
Switzerland and later to the United States, where he was employed by
General Electric in 1893. That same year, he published a paper in
which complex numbers were used to analyze ac circuits for the first
time. This led to one of his many textbooks, Theory and Calculation
of ac Phenomena, published by McGraw-Hill in 1897. In 1901, he
became the president of the American Institute of Electrical Engineers,
which later became the IEEE.

where r is the magnitude of z, and ¢ is the phase of z. We notice that
z can be represented in three ways:

Z=X+]y Rectangular form
z=r/¢ Polar form (9.15)
z=rel? Exponential form

The relationship between the rectangular form and the polar form
is shown in Fig. 9.6, where the x axis represents the real part and the
y axis represents the imaginary part of a complex number. Given x and
y, we can get r and ¢ as

r=Vx*+y% ¢=tan l)% (9.16a)

On the other hand, if we know r and ¢, we can obtain x and y as
X = I COS¢, y =rsng¢ (9.16b)

Thus, z may be written as

z=Xx+]jy=r/¢ =r(cosp + jsing) (9.17)

Addition and subtraction of complex numbers are better performed
in rectangular form; multiplication and division are better done in polar
form. Given the complex numbers

z=x+jy=r/d, zm=xtjy1=ri/$s
=Xt iY2=T12/P2
the following operations are important.
Addition:

7+ 2= (X %) Ty + Y2 (9.189)

Imaginary axis

2

—2]

Figure 9.6

\

Real axis

Representation of a complex number z =

x+jy=r&.
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Subtraction:
3 — 2= (% — X)) +j(y1 — ¥2) (9.18b)

Multiplication:

2125 = I'ql> f ¢1 + ¢2 (918C)

Division:
2T /g, - ¢ (9.18d)
2 2
Reciprocal:
1 1
E = ? f—d) (9189)
Square Root:
Vz=1\r/$/2 (9.18f)

Complex Conjugate:
z=x—jy=r/—¢=ret? (9.18g)
Note that from Eq. (9.18€),
Jf = —j (9.18h)

These are the basic properties of complex numbers we need. Other
properties of complex numbers can be found in Appendix B.

The idea of phasor representation is based on Euler’s identity. In
general,

e'? = cos¢p * jsing (9.19)

which shows that we may regard cos¢ and sin¢ as the real and imag-
inary parts of e®; we may write
cos¢p = Re(e!?) (9.20a)
sing = Im(e'?) (9.20b)
where Re and Im stand for the real part of and the imaginary part of.

Given asinusoid v(t) = V,, cos(wt + ¢), we use Eq. (9.20a) to express
v(t) as

v(t) = Vi cos(wt + ¢) = Re(V,e/@™#) (9.21)
or
v(t) = Re(Ve'%e/ (9.22)
Thus,
v(t) = Re(Vel®Y (9.23)
where

V= Ve =V, /¢ (9.24)
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V isthus the phasor representation of the sinusoid v(t), as we said ear-
lier. In other words, a phasor is a complex representation of the mag-
nitude and phase of a sinusoid. Either Eq. (9.20a) or Eq. (9.20b) can
be used to develop the phasor, but the standard convention is to use
Eq. (9.20a).

One way of looking at Egs. (9.23) and (9.24) is to consider the plot
of thesinor Vel = V,,e!“"%) on the complex plane. Astime increases,
the sinor rotates on a circle of radius V,, a an angular velocity w in the
counterclockwise direction, as shown in Fig. 9.7(a). We may regard v(t)
as the projection of the sinor Ve!“' on the rea axis, as shown in
Fig. 9.7(b). The value of the sinor at timet = 0 is the phasor V of the
sinusoid v(t). The sinor may be regarded as arotating phasor. Thus, when-
ever a sinusoid is expressed as a phasor, the term /! is implicitly pres-
ent. It is therefore important, when dealing with phasors, to keep in mind
the frequency w of the phasor; otherwise we can make serious mistakes.

Rotation at w rad/s
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A phasor may be regarded as a mathe-
matical equivalent of a sinusoid with
the time dependence dropped.

If we use sine for the phasor instead of
cosine, then v(t) = V,,sin(fwt + ¢) =
Im( Ve’ and the corresponding
phasor is the same as that in Eq. (9.24).

o(t) = Re(Vel®t)

@

Figure 9.7

—

(b)

Representation of Vel“!: (a) sinor rotating counterclockwise, (b) its projection

on thereal axis, as afunction of time.

Equation (9.23) states that to obtain the sinusoid corresponding to
a given phasor V, multiply the phasor by the time factor e/ and take
the real part. As a complex quantity, a phasor may be expressed in rec-
tangular form, polar form, or exponential form. Since a phasor has
magnitude and phase (“ direction”), it behaves as a vector and is printed
in boldface. For example, phasors V = Vm@ and | =1,/—0 are
graphically represented in Fig. 9.8. Such a graphical representation of
phasors is known as a phasor diagram.

Equations (9.21) through (9.23) reveal that to get the phasor cor-
responding to a sinusoid, we first express the sinusoid in the cosine
form so that the sinusoid can be written as the real part of a complex
number. Then we take out the time factor /!, and whatever is left is
the phasor corresponding to the sinusoid. By suppressing the time fac-
tor, we transform the sinusoid from the time domain to the phasor
domain. This transformation is summarized as follows:

() = Vmcoswt + ¢) & V=V /¢ (9.25)

(Time-domain (Phasor-domain
representation) representation)

We use lightface italic letters such as

z to represent complex numbers but
boldface letters such as V to represent
phasors, because phasors are vector-
like quantities.
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Imaginary axis
\Y \Y)
VI’TI
\Leading direction
-0
/Lagging direction
Im

|/
Figure 9.8

A phasor diagram showing V = Vm@and I=1n/=6.

Real axis

Given a sinusoid v(t) = V,,cos(wt + ¢), we obtain the corre-
sponding phasor as V = V,, & Equation (9.25) is also demonstrated
in Table 9.1, where the sine function is considered in addition to the
cosine function. From Eqg. (9.25), we see that to get the phasor repre-
sentation of a sinusoid, we express it in cosine form and take the
magnitude and phase. Given a phasor, we obtain the time domain
representation as the cosine function with the same magnitude as the
phasor and the argument as wt plus the phase of the phasor. The idea
of expressing information in alternate domains is fundamental to all
areas of engineering.

TABLE 9.1

Sinusoid-phasor transformation.

Time domain representation Phasor domain representation
Vp, cos(wt + ¢) Vi /¢

Vo sin(wt + ¢) Vi /b — 90°

I m COS(wt + 6) Im/0

I sin(wt + 6) I /6 — 90°

Note that in Eq. (9.25) the frequency (or time) factor €' is sup-
pressed, and the frequency is not explicitly shown in the phasor domain
representation because w is constant. However, the response depends
on w. For this reason, the phasor domain is also known as the frequency
domain. _

From Egs. (9.23) and (9.24), v(t) = Re(Ve!*') = V,, cos(wt + ¢),
so that

d
Elt} = —wVpysin(ot + ¢) = vV, cos(wt + ¢ + 90°)

o _ (9.26)
= Re(wV,e'e?e %) = Re(joVe™")
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This shows that the derivative v(t) is transformed to the phasor domain
as joV

d .
d—lt’ = joV (9.27)
(Time domain) (Phasor domain)

Similarly, the integral of v(t) is transformed to the phasor domain
asV/jow

V
= — 9.28
v dt jw ( )
(Time domain) (Phasor domain)

Equation (9.27) allows the replacement of a derivative with respect
to time with multiplication of jw in the phasor domain, whereas
Eq. (9.28) alows the replacement of an integral with respect to time
with division by jw in the phasor domain. Equations (9.27) and (9.28)
are useful in finding the steady-state solution, which does not require
knowing the initial values of the variable involved. This is one of the
important applications of phasors.

Besides time differentiation and integration, another important
use of phasors is found in summing sinusoids of the same fre-
guency. This is best illustrated with an example, and Example 9.6
provides one.

The differences between v(t) and V should be emphasized:

1. v(t) is the instantaneous or time domain representation, while V is
the frequency or phasor domain representation.

2. v(t) is time dependent, while V is not. (This fact is often forgot-
ten by students.)

3. v(t) is always real with no complex term, while V is generally
complex.

Finally, we should bear in mind that phasor analysis applies only when
frequency is constant; it applies in manipulating two or more sinusoidal
signals only if they are of the same frequency.
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Differentiating a sinusoid is equivalent
to multiplying its corresponding phasor
by jw.

Integrating a sinusoid is equivalent to
dividing its corresponding phasor
by jw.

Adding sinusoids of the same fre-
guency is equivalent to adding their
corresponding phasors.

Evaluate these complex numbers:

(a) (40/50° + 20/—30°)"/?

; 10/-30° + (3 — j4)
O e iaE =

Solution:
(a) Using polar to rectangular transformation,
40/50° = 40(cos50° + j sin50°) = 25.71 + j30.64
20/—30° = 20[cos(—30°) + j sin(—30°)] = 17.32 — j10
Adding them up gives

40/50° + 20/—30° = 43.03 + 20.64 = 47.72/25.63°

Example 9.3



382 Chapter 9 Sinusoids and Phasors

Taking the sguare root of this,
(40/50° + 20/—30°) 12 = 6.91/12.81°

(b) Using polar-rectangular transformation, addition, multiplication,

and division,
10/-30°+ (3 —j4) 866 —j5+ (3—j4)
(2 +j4@B —j9)* 2+ 8B+ 5
1166 — j9  14.73/-37.66°
14+ j22 a 26.08{122.47°
= 0.565/—160.13°
Practice Problem 9.3 Evaluate the following complex numbers:

@ [(5+i2)(—1 + j4) — 5/607*
10 + j5 + 3/40°
—-3+j4

(b) +10/30° + j5

Answer: (a) —15.5 — j13.67, (b) 8.293 + j7.2.

Example 9.4 Transform these sinusoids to phasors:
(@) i = 6 cos(50t — 40°) A
(b) v = —4sin(30t + 50°) V
Solution:
(@) i = 6.cos(50t — 40°) has the phasor
| =6/—40°A
(b) Since —sin A = cos(A + 90°),
v = —4sin(30t + 50°) = 4 cos(30t + 50° + 90°)
= 4 cos(30t + 140°) V

The phasor form of v is

V = 4{ 140°V
Practice Problem 9.4 Express these sinusoids as phasors:
(@ v = 7 cos(2t + 40°) V
(b) i = —4sin(10t + 10°) A

Answer: (a) V = 7/40°V, (b) | = 4/100° A.
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Find the sinusoids represented by these phasors:

@1 =-3+j4A
(b) V = jge v

Solution:
(@1 = -3+ j4=5/126.87°. Transforming this to the time domain
gives

i(t) = 5cos(wt + 126.87°) A
(b) Since j = 1/90°,
V = j8/-20° = (1/90°)(8/—20°)
=8/90° — 20° = 8/70°V
Converting this to the time domain gives
v(t) = 8 cos(wt + 70°) V

Example 9.5

Find the sinusoids corresponding to these phasors:
(@ V =-10/30°V
(b) I =j5-j12) A

Answer: (a) v(t) = 10 cos(wt + 210°) V or 10 cos(wt — 150°) V,
(b) i(t) = 13 cos(wt + 22.62°) A.

Practice Problem 9.5

Given i4(t) = 4 cos(wt + 30°) A and i,(t) = 5sin(wt — 20°) A, find
their sum.

Solution:
Here is an important use of phasors—for summing sinusoids of the
same frequency. Current i,(t) is in the standard form. Its phasor is

|1:4 300

We need to express i»(t) in cosine form. The rule for converting sine
to cosine is to subtract 90°. Hence,

i> = 5cos(wt — 20° — 90°) = 5 cos(wt — 110°)
and its phasor is
1> = 5/-110
If weleti =i; + i, then
| =1+ 1,=4/30° + 5/-110°
= 3464 + j2 — 1.71 — j4.698 = 1.754 — j2.698
= 3.218/-56.97° A

Example 9.6
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Transforming this to the time domain, we get
i(t) = 3.218 cos(wt — 56.97°) A
Of course, we can find i; + i, using Eq. (9.9), but that is the hard way.

Practice Problem 9.6

If vy = —10sin(wt — 30°) V and v, = 20 cos(wt + 45°) V, find v =
U1 Tt Vs

Answer: v(t) = 12.158 cos(wt + 55.95°) V.

Example 9.7

Using the phasor approach, determine the current i(t) in a circuit
described by the integrodifferential equation

4i +8jidt—3glt=50003(2t+75°)

Solution:

We transform each term in the equation from time domain to phasor
domain. Keeping Egs. (9.27) and (9.28) in mind, we obtain the phasor
form of the given equation as

8l
4 + — — 3jwl =50/75°
Jw

But w = 2, 0
I(4 — j4 — j6) = 50/75°
| 50/75° SOE
4 —j10 10.77&
Converting this to the time domain,
i(t) = 4.642 cos(2t + 143.2°) A

= 4.642/143.2° A

Keep in mind that this is only the steady-state solution, and it does not
require knowing the initial values.

Practice Problem 9.7

Find the voltage v(t) in a circuit described by the integrodifferential
equation

dv

dt
using the phasor approach.

2— + 5v + 10Jvdt= 50 cos(5t — 30°)

Answer: v(t) = 5.3 cos(5t — 88°) V.
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9.4 Phasor Relationships

for Circuit Elements

Now that we know how to represent a voltage or current in the pha-
sor or frequency domain, one may legitimately ask how we apply this
to circuits involving the passive elements R, L, and C. What we need
to do is to transform the voltage-current relationship from the time
domain to the frequency domain for each element. Again, we will
assume the passive sign convention.

We begin with the resistor. If the current through a resistor R is
i = Imcos(wt + ¢), the voltage across it is given by Ohm’s law as

v = IR = R, cos(wt + ¢) (9.29)
The phasor form of this voltage is
V =Ripn/¢ (9.30)

But the phasor representation of the current is | = |, @ Hence,
V =Rl (9.31)

showing that the voltage-current relation for the resistor in the phasor
domain continues to be Ohm's law, as in the time domain. Figure 9.9
illustrates the voltage-current relations of a resistor. We should note
from Eqg. (9.31) that voltage and current are in phase, as illustrated in
the phasor diagram in Fig. 9.10.

For the inductor L, assume the current through it is i =
I cos(wt + ¢). The voltage across the inductor is

di :
v = L& = —wLl,sin(wt + ¢)

Recall from Eq. (9.10) that —sin A = cos(A + 90°). We can write the
voltage as

(9.32)

v = wlLl,cos(wt + ¢ + 90°) (9.33)
which transforms to the phasor
V = oLl @@ = gLl 4% = wLl, /¢ + 90° (9.34)
But I, /¢ = 1, and from Eq. (9.19), &'°” = j. Thus,
V = joll (9.35)

showing that the voltage has a magnitude of wLl,, and a phase of
¢ + 90°. The voltage and current are 90° out of phase. Specifically, the
current lags the voltage by 90°. Figure 9.11 shows the voltage-current
relations for the inductor. Figure 9.12 shows the phasor diagram.

For the capacitor C, assume the voltage across it is v =
V cos(wt + ¢). The current through the capacitor is

IZCE

By following the same steps as we took for the inductor or by apply-
ing Eg. (9.27) on Eqg. (9.36), we obtain

(9.36)

| = joCV = (9.37)
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o— o—
+ +
v § R \Y § R
S pa—
»=iR V=IR
@ (b
Figure 9.9

\oltage-current relations for aresistor in
the: (a) time domain, (b) frequency domain.

Im 4

0 Re

Figure 9.10
Phasor diagram for the resistor.

o— o—
+ +

- T
o— o—
=L d V =joll

dt
@ (b)
Figure 9.11

\oltage-current relations for an inductor in
the: (a) time domain, (b) frequency domain.

Im A

V N

0 Re
Figure 9.12

Phasor diagram for the inductor;
I lagsV.

Althoush it is equally correct to say
that the inductor voltage leads the cur-
rent by 90°, convention gives the current
phase relative to the voltage.
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i I Im 4
— R
o— oO—
+ + ‘Y
|
v - C \Vi G \VJ
o o ¢ R
i=cd I =jwCV 0 Re
(a) (b) Figure 9.14
Figure 9.13 Phasor diagram for the capacitor; |

\oltage-current relations for leads V.

a capacitor in the: (a) time
domain, (b) frequency
domain.

showing that the current and voltage are 90° out of phase. To be spe-
cific, the current leads the voltage by 90°. Figure 9.13 shows the voltage-
current relations for the capacitor; Fig. 9.14 gives the phasor diagram.
Table 9.2 summarizes the time domain and phasor domain representa-
tions of the circuit elements.

TABLE 9.2

Summary of voltage-current relationships.

Element Timedomain Frequency domain
R v=Ri V =Rl
di
L =L— V = jolLl
v ot Jw
. dv |
c ' V' =ac

Example 9.8

The voltage v = 12 cos(60t + 45°) is applied to a 0.1-H inductor. Find
the steady-state current through the inductor.

Solution:
For the inductor, V = jwLIl, where w = 60rad/s and V = 12/45° V.
Hence,

\V; 12 /45° 12 /45°
" jeL 60 X 01 6/90°

Converting this to the time domain,
i(t) = 2 cos(60t — 45°) A

=2/-45° A

Practice Problem 9.8

If voltage v = 10 cos(100t + 30°) is applied to a 50 wF capacitor, cal-
culate the current through the capacitor.

Answer: 50 cos(100t + 120°) mA.
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In the preceding section, we obtained the voltage-current relations for
the three passive elements as
. I
V=R, V=joll, V=—— (9.38)
joC
These equations may be written in terms of the ratio of the phasor volt-
age to the phasor current as
\Y V V 1
— =R — = jol, —=— 9.39
| T |~ joC (9:39)
From these three expressions, we obtain Ohm’s law in phasor form for
any type of element as

oo V=1zI (9.40)

where Z is a frequency-dependent quantity known as impedance, mea-
sured in ohms.

The impedance Z of a circuit is the ratio of the phasor voltage V to the
phasor current I, measured in ohms (€)).

The impedance represents the opposition that the circuit exhibits to
the flow of sinusoidal current. Although the impedance is the ratio of
two phasors, it is not a phasor, because it does not correspond to a sinu-
soidally varying quantity.

The impedances of resistors, inductors, and capacitors can be
readily obtained from Eq. (9.39). Table 9.3 summarizes their imped-
ances. From the table we notice that Z, = joL and Z¢c = —j/wC.
Consider two extreme cases of angular frequency. When « = 0 (i.e.,
for dc sources), Z, = 0 and Zs — <, confirming what we already
know—that the inductor acts like a short circuit, while the capacitor
acts like an open circuit. When o — oo (i.e., for high frequencies),
Z, — o and Zc = 0, indicating that the inductor is an open circuit
to high frequencies, while the capacitor is a short circuit. Figure 9.15
illustrates this.

As a complex quantity, the impedence may be expressed in rec-
tangular form as

Z =R+ jX (9.41)

where R = Re Z is the resistance and X = Im Z is the reactance. The
reactance X may be positive or negative. We say that the impedance is
inductive when X is positive or capacitive when X is negative. Thus,
impedance Z = R + jX is said to be inductive or lagging since current
lags voltage, while impedance Z = R — jX is capacitive or leading
because current leads voltage. The impedance, resistance, and reactance
are all measured in ohms. The impedance may also be expressed in
polar form as

Z=1z| /8 (9.42)
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TABLE 9.3 ~———

Impedances and admittances
of passive elements.

Element Impedance Admittance

1
R Z=R Y ==
R
1
L Z = joL =
joL
C = i Y = jwC
joC Jo
—O0——0—
L Short circuit at dc

-6 o—
Open circuit at
high frequencies

(@)

_O O—

c Open circuit at dc
—— —

—_—O0—O0—

Short circuit at

high frequencies

(b)

Figure 9.15
Equivalent circuits at dc and high
frequencies: (a) inductor, (b) capacitor.
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Comparing Egs. (9.41) and (9.42), we infer that

Z=R+jX=|Z|/6 (9.43)
where
X
[zl = VR + X% o=t o (9.44)
and
R = |Z|cos#, X =|Z|sin6 (9.45)

It is sometimes convenient to work with the reciprocal of imped-
ance, known as admittance.

The admittance Y is the reciprocal of impedance, measured in
siemens (S).

The admittance Y of an element (or a circuit) is the ratio of the pha
sor current through it to the phasor voltage across it, or

_ (9.46)

1
Y="=o
z Vv

The admittances of resistors, inductors, and capacitors can be obtained
from Eq. (9.39). They are aso summarized in Table 9.3.
As a complex quantity, we may write Y as

Y=G+|B (9.47)

where G = ReY is called the conductance and B = ImY is called
the susceptance. Admittance, conductance, and susceptance are
al expressed in the unit of siemens (or mhos). From Egs. (9.41)
and (9.47),

G+jB=—— (9.48)

By rationalization,
1 R—jX R-jX

G+ |B= . = 9.49
PRI X R-jXx R+ X2 (949
Equating the real and imaginary parts gives
R X
=———3, B=—-——5—= 9.50
RZ _|_ x2 R2 + x2 ( )

showing that G # 1/Rasit isin resistive circuits. Of course, if X = 0,
then G = 1/R.
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Find v(t) and i(t) in the circuit shown in Fig. 9.16. Example 9.9
Solution: . 50
From the voltage source 10 cos4t, w = 4,
"
Vge=10/0°V 4= 10 cos 4t 01F = v
The impedance is
1 1 Figure 9.16
Z=5+-—"—"—=5+- =5-j250 For Example 9.9.
Jo j4 X 0.1

Hence the current
Vs 10/0° 10(5 + j2.5)
Z 5-j25 524282 (99.1)
=16 +j0.8 = 1.789/26.57° A

The voltage across the capacitor is

| 1789/2657°
V=lZc=r=—"""—
€7 jwC j4x 01
1.789/26.57°
= =—— = 447/-6343V
0.4/90°

Converting | and V in Egs. (9.9.1) and (9.9.2) to the time domain, we get

i(t) = 1.789 cos(4t + 26.57°) A
v(t) = 4.47 cos(4t — 63.43°) V
Notice that i(t) leads v(t) by 90° as expected.

(9.9.2)

Refer to Fig. 9.17. Determine v(t) and i(t).

Answer: 8.944 sin(10t + 93.43°) V, 4.472 sin(10t + 3.43°) A.

9.6 TKirchhoff’s Laws in the
Frequency Domain

We cannot do circuit analysis in the frequency domain without Kirch-
hoff’s current and voltage laws. Therefore, we need to express them in
the frequency domain.

For KVL, let vy, vs, ... , v, be the voltages around a closed loop.
Then

U1+U2+"'+Un:0 (951)

In the sinusoidal steady state, each voltage may be written in cosine
form, so that Eq. (9.51) becomes
Vi cos(wt + 607) + Vip coS(wt + 65)

(9.52)
+ -+ Vi cos(wt + 6,) =0

Practice Problem 9.9

w=20sin(10t+309) v () 02H R v

Figure 9.17
For Practice Prob. 9.9.
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This can be written as
Re(Vime'el") + Re(Vipe!2e1) + -+ + Re(Vpe™el®!) = 0
or
Re[(Vin€” + Vil + -+ + Viel™el“] =0 (9.53)
If we let Vi = V€%, then
Re[(V, + V, + - + V,)e] =0 (9.54)
Since "' # 0,
Vi+Vo+ o+ V,=0 (9.55)

indicating that Kirchhoff's voltage law holds for phasors.
By following a similar procedure, we can show that Kirchhoff’s

current law holds for phasors. If weletiq, i, ..., i, be the current leav-
ing or entering a closed surface in a network at time t, then
i+ + iy = (9.56)
If 14, 1, ..., |, are the phasor forms of the sinusoidsiy, i, ..., i, then
I+l +-+1,=0 (9.57)

which is Kirchhoff’s current law in the frequency domain.

Once we have shown that both KVL and KCL hold in the frequency
domain, it is easy to do many things, such as impedance combination,
noda and mesh analyses, superposition, and source transformation.

9.7 Impedance Combinations

Consider the N series-connected impedances shown in Fig. 9.18. The
same current | flows through the impedances. Applying KVL around
the loop gives

I Zl ZZ ZN
—
+ Vl - + V2 - + VN -
+
v
|—>

I
Zeq
Figure 9.18
N impedancesin series.

The equivalent impedance at the input terminals is

Vv
Zg= =21+ 2+ + 2y

or
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showing that the total or equivalent impedance of series-connected
impedances is the sum of the individual impedances. This is similar to
the series connection of resistances.

If N =2, as shown in Fig. 9.19, the current through the imped-
ances is

v
| = —— (9.60)
Z,+ Z,
Since Vl = le and V2 = Zzl, then
Z, Z>
Vi=—2F—V, V,=—2_V 9.61
YUz, + 2, 27 7,4+ 7, (9.61)

which is the voltage-division relationship.

In the same manner, we can obtain the equivalent impedance or
admittance of the N parallel-connected impedances shown in Fig. 9.20.
The voltage across each impedance is the same. Applying KCL at the
top node,

1 1

1
Zl 2 ZN

+ ¢|1 ¢|2 ¢|N
© v [ [

I_,_

Zeg
Figure 9.20
N impedancesin parallel.

The equivalent impedance is
1 I 1 1 1
- = 4= (9.63)
Zey V  Z. Z, Zn

and the equivalent admittance is

This indicates that the equivalent admittance of a parallel connection
of admittances is the sum of the individual admittances.
When N = 2, as shown in Fig. 9.21, the equivalent impedance
becomes
1 1 1 ZZ,

Zeg=— = = = 9.65
N Yeoq Yot Ys 1YZy+1/Z, Z,+2Z, (969

391

+V1

Ve

Figure 9.19
Voltage division.

+

(DV[

I+ [Js

Figure 9.21
Current division.
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Also, since
V = |Zeq = |121 = |222

the currents in the impedances are

Z, Z,

=2 l,=——% | .
Z,+2Z, ' 27 7,+ 27, (9.66)

1

which is the current-division principle.

The delta-to-wye and wye-to-delta transformations that we applied
to resistive circuits are also valid for impedances. With reference to
Fig. 9.22, the conversion formulas are as follows.

Figure 9.22
Superimposed Y and A networks.

Y-A Conversion:

2 _ ZiZs+ 2525+ ZsZy
a=
Z,
21725+ 7224+ Z3Z
Zb _ 142 243 341 (967)
Z;
2125+ 223+ Z3Z4
.=
Zs3
A-Y Conversion:
ZuZ
Z, = _ “b%fc
Zat 2y + Ze
7. = Z.Z,
2T 7 1 70+ Z, (9.68)
Z.Z
Z3= _ “afb
Zat 2y + Ze
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A delta or wye circuit is said to be balanced if it has equal imped-
ances in all three branches.

When a A-Y circuit is balanced, Egs. (9.67) and (9.68) become

ZA = 3ZY or ZY = ZA (969)

WhereZY: 21: 22: Z3andZA = Za: Zb: ZC'

As you see in this section, the principles of voltage division, cur-
rent division, circuit reduction, impedance equivalence, and Y-A trans-
formation all apply to ac circuits. Chapter 10 will show that other
circuit techniques—such as superposition, nodal analysis, mesh analysis,
source transformation, the Thevenin theorem, and the Norton theorem—
are all applied to ac circuits in a manner similar to their application in
dc circuits.
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Find the input impedance of the circuit in Fig. 9.23. Assume that the
circuit operates at w = 50 rad/s.

Solution:
Let

Z, = Impedance of the 2-mF capacitor

Z, = Impedance of the 3-() resistor in series with thel0-mF
capacitor

Z5 = Impedance of the 0.2-H inductor in series with the 8-Q
resistor

Then
1 1
Zy=—=———"——==-j10Q
' joC  j50 x 2 x 1073 :
1 1
Z, =3+ —— =B3-j2Q

=3+
joC j50 X 10 X 1073
Z3; =8+ joL =8+ j50 X 0.2 = (8 + j10) Q

The input impedance is

B—j2)(8 +j10)
11+ j8

Zin = Zl + Zz” Z3 = _]10 +

N (44 + j14)(11 - j8)

- —j10 T — —j10 + 3.22 — j1.07Q

Thus,

Zin = 322 — j11.07 Q

Example 9.10

2mF 02H
o—| Al
Zin 3Q
e
T 10mF
O

Figure 9.23
For Example 9.10.

8Q
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Practice Problem 9.10 Determine the input impedance of the circuit in Fig. 9.24 at w =

10 rad/s.
05mF gy 8H
Answer: (129.52 — j295)
Z
L —= 1mF 200 Q
Figure 9.24

For Practice Prob. 9.10.

Example 9.11 Determine v, (t) in the circuit of Fig. 9.25.
60 Solution:
. To do the analysis in the frequency domain, we must first transform
20 cos(4t — 15%) 10mF —= 54 34, thetimedomain circuit in Fig. 9.25 to the phasor domain equivalent in

- Fig. 9.26. The transformation produces
vs = 20 cos(4t — 15°) = Vg =20/-15"V, w=14

Figure 9.25
For Example 9.11. 10mF = 1 1
joC  j4x10x 103
= —j25Q
5H = joL =j4 X 5=j20Q
* o Let
20,415° —BQ = j20Q33V\,
- Z, = Impedance of the 60-() resistor
Figure 9.26 Z, = Impedance of the parallel combination of the
The frequency domain equivalent of the 10-mF capacitor and the 5-H inductor
circuitin Fig. 9.25. Then Z; = 60 Q) and
Z,=—j25|j20 = 25X _ 00
2= SIS = s 20 T
By the voltage-division principle,
Z, j100
Vo=—0——""2V 2 15°
°T Zz vz, 60 + j 100( 0/=15)

= (O.8575/30.96°)(20/ —15°) = 17.15/15.96° V
We convert this to the time domain and obtain
Uo(t) = 17.15 cos(4t + 15.96°) V

Practice Problem 9.11 Calculate v, in the circuit of Fig. 9.27.

05H Answer: v.(t) = 14.142 cos(10t — 35°) V.

20 cos(10t + 100°)

Figure 9.27
For Practice Prob. 9.11.
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Find current | in the circuit of Fig. 9.28.

20 -j4Q
AW I}
| .
1o j4Q , 8Q
A 2112 c
i6Q
50,0° (*) 30 ==
8Q
Figure 9.28

For Example 9.12.

Solution:

The delta network connected to nodes a, b, and ¢ can be converted to
the Y network of Fig. 9.29. We obtain the Y impedances as follows
using Eq. (9.68):

R ) —4(4+j2)—(16+'08)9
" j4+2-ja+s 10 oo ®
Zy =@=j3.29 z =M=(1.6—13.2)Q
n 10 1 cn 10

The total impedance at the source terminals is
Z=12+ 2y + (an_j3)“(zcn+j6+ 8)

=12+ 16+ j0.8+ (j0.2)] (9.6 + j2.8)

j0.2(9.6 + j2.8)
9.6 +j3

= 136 + j1 = 13.64/4.204° O

The desired current is
v_ 5o

| =—=-——"—"-=23666/-4204"A
Z 13.64/4.204°

— 136 + jO.8 +

s ©)

Figure 9.29
Thecircuit in Fig. 9.28 after delta-to-wye transformation.

Example 9.12
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Practice Problem 9.12

—
j4Q -j3Q

8Q i5Q

30,/0°V CD ANAA—TTT

Figure 9.30
For Practice Prob. 9.12.

R
o——AW—
+
+
V; C=—=V,
o |
(b)
Figure 9.31

Series RC shift circuits: (a) leading
output, (b) lagging output.

Find | in the circuit of Fig. 9.30.

Answer: 6.364/3.8° A.

9.8 T Applications

In Chapters 7 and 8, we saw certain uses of RC, RL, and RLC circuits
in dc applications. These circuits a'so have ac applications; among them
are coupling circuits, phase-shifting circuits, filters, resonant circuits, ac
bridge circuits, and transformers. This list of applications is inexhaus-
tive. We will consider some of them later. It will suffice here to observe
two simple ones: RC phase-shifting circuits, and ac bridge circuits.

9.8.1 Phase-Shifters

A phase-shifting circuit is often employed to correct an undesirable
phase shift aready present in a circuit or to produce special desired
effects. An RC circuit is suitable for this purpose because its capacitor
causes the circuit current to lead the applied voltage. Two commonly
used RC circuits are shown in Fig. 9.31. (RL circuits or any reactive
circuits could also serve the same purpose.)

In Fig. 9.31(a), the circuit current | leads the applied voltage V;
by some phase angle 6, where 0 < 6 < 90°, depending on the values
of Rand C. If X = —1/wC, then the total impedanceisZ = R + jXc,
and the phase shift is given by

X
o = tan*lﬁC (9.70)

This shows that the amount of phase shift depends on the values of R,
C, and the operating frequency. Since the output voltage V, across the
resistor is in phase with the current, V, leads (positive phase shift) V;
as shown in Fig. 9.32(a).

In Fig. 9.31(b), the output is taken across the capacitor. The cur-
rent | leads the input voltage V; by 6, but the output voltage v(t) across
the capacitor lags (negative phase shift) the input voltage v;(t) asillus-
trated in Fig. 9.32(b).

Figure 9.32

Phase shift in RC circuits: (a) leading output, (b) lagging output.
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We should keep in mind that the simple RC circuits in Fig. 9.31
also act as voltage dividers. Therefore, as the phase shift 6 approaches
90°, the output voltage V, approaches zero. For this reason, these
simple RC circuits are used only when small amounts of phase shift
are required. If it is desired to have phase shifts greater than 60°,
simple RC networks are cascaded, thereby providing a total phase
shift equal to the sum of the individual phase shifts. In practice, the
phase shifts due to the stages are not equal, because the succeeding
stages load down the earlier stages unless op amps are used to sep-
arate the stages.

Design an RC circuit to provide a phase of 90° leading. Example 9.13
Solution: - 2}(\) @ oy 2}(\) Q
If we select circuit components of equal ohmic value, say R= [X¢| = 9 I Il N

20 Q), at a particular frequency, according to Eqg. (9.70), the phase shift
is exactly 45°. By cascading two similar RC circuitsin Fig. 9.31(a), we
obtain the circuit in Fig. 9.33, providing a positive or leading phase
shift of 90°, as we shall soon show. Using the series-parallel combination I

v, 200 200 A

!

technique, Z in Fig. 9.33 is obtained as z
20(20 — j20) Figure 9.33
_ s _ - _ . An RC phase shift circuit with 90° leading
Z = 20[|(20 - j20) = 40 —j20 12-ja0 (913.1) phase shift; for Example 9.13.

Using voltage division,
z 12 - j4 V2

V, = i = "V, = ——/45°V;  (9.13.2
7z —-j20 12 — j24 3 ( )
and
20 V2,
Vo = mvl = 7{45 Vl (9133)

Substituting Eq. (9.13.2) into Eq. (9.13.3) yields

(V2 N(V2 o Y2 L o
vo—<2£)<3 45vi)—3 90° V;

Thus, the output leads the input by 90° but its magnitude is only about
33 percent of the input.

Design an RC circuit to provide a 90° lagging phase shift of the out- Practice Problem 9.13
put voltage relative to the input voltage. If an ac voltage of 10 V rms

is applied, what is the output voltage? . m m
+ +
Answer: Figure 9.34 shows atypical design; 3.33 V rms. v 4100 i 100 i v,
-]
Figure 9.34

For Practice Prob. 9.13.
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Example 9.14 For the RL circuit shown in Fig. 9.35(a), calculate the amount of phase
shift produced at 2 kHz.
150 Q 100 Q
o—AMWA- AW O .
Solution:
10 mH 5mH At 2 kHz, we transform the 10-mH and 5-mH inductances to the
corresponding impedances.
O O
@ 10mH = X =wL=27x2x10°X10x 103
=407 = 1257 Q)
150Q v, 100 Q 5 s
o—— AW L o 5mH = X =wL=27X2X10°X5Xx10
’ _ _ ’ = 207 = 62.830Q
v/ j125.7Q j62.83Q v,
- ™ —  Consider the circuit in Fig. 9.35(b). The impedance Z is the parallel
© | ©  combination of j125.7 ) and 100 + j62.83 (). Hence,
z
) Z =j125.7 || (100 + j62.83)
Figure 9.35 _j125.7(100 + j62.83) .
For Example 9.14. = 100 + 1885 = 69.56/60.1° () (9.14.2)
Using voltage division,
7 69.56 /60.1°
Vl - Vi = . Vi
Z + 150 184.7 + j60.3 (9.14.2)

0.3582 /42.02° V;
and

§62.832
V=029 _ 0532/57.86°V 14,
° = 100 1 jozgan V1 T 05%/5TEF VL (9143)

Combining Egs. (9.14.2) and (9.14.3),
V, = (0.532/57.86°)(0.3582 /42.02°) V; = 0.1906,/100° V;
showing that the output is about 19 percent of the input in magnitude

but leading the input by 100°. If the circuit is terminated by a load, the
load will affect the phase shift.

Practice Problem 9.14

1mH 2mH
o 11D A o
+ +
v 10Q 50 Q v,
o o
Figure 9.36

For Practice Prob. 9.14.

Refer to the RL circuit in Fig. 9.36. If 1V is applied, find the magni-
tude and the phase shift produced at 5 kHz. Specify whether the phase
shift is leading or lagging.

Answer: 0.172, 120.4°, lagging.

9.8.2 AC Bridges

An ac bridge circuit is used in measuring the inductance L of an
inductor or the capacitance C of a capacitor. It is similar in form to
the Wheatstone bridge for measuring an unknown resistance (dis-
cussed in Section 4.10) and follows the same principle. To measure
L and C, however, an ac source is needed as well as an ac meter
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instead of the galvanometer. The ac meter may be a sensitive ac
ammeter or voltmeter.

Consider the general ac bridge circuit displayed in Fig. 9.37. The
bridge is balanced when no current flows through the meter. This
means that V, = V,. Applying the voltage division principle,

ZZ Zx
V, = Vo=V, = Vs (9.71)
Z,+ Z, Zs+ Z,
Thus,
Z Z
2 _ =X =  Z,Z3= 27,7, (9.72)
Zi+ 2y Zs+Zy,
or
Z
zZ, =37, (9.73)
Zy

Thisisthe balanced equation for the ac bridge and is similar to Eq. (4.30)
for the resistance bridge except that the R's are replaced by Z's.

Specific ac bridges for measuring L and C are shown in Fig. 9.38,
where L, and C, are the unknown inductance and capacitance to be
measured while Lg and Cg are a standard inductance and capacitance
(the values of which are known to great precision). In each case, two
resistors, R; and R,, are varied until the ac meter reads zero. Then the
bridge is balanced. From Eq. (9.73), we obtain

R
L = EjLS (9.74)
and
R
C,= —Cs (9.75)
Ry

Notice that the balancing of the ac bridges in Fig. 9.38 does not depend
on the frequency f of the ac source, since f does not appear in the rela-
tionships in Egs. (9.74) and (9.75).

@
Figure 9.38
Specific ac bridges: (a) for measuring L, (b) for measuring C.

“Q

i

meter

Figure 9.37

A general ac bridge.
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Example 9.15 The ac bridge circuit of Fig. 9.37 balances when Z, is a 1-k) resistor,
Z, is a 4.2-kQ) resistor, Z5 is a paralel combination of a 1.5-M()
resistor and a 12-pF capacitor, and f = 2 kHz. Find: (a) the series com-
ponents that make up Z,, and (b) the paralel components that make
up Zy.

Solution:

1
2.

Z3

Define. The problem is clearly stated.

Present. We are to determine the unknown components subject
to the fact that they balance the given quantities. Since a paralléel
and series equivalent exists for this circuit, we need to find both.

. Alternative. Although there are alternative techniques that can

be used to find the unknown values, a straightforward equality
works best. Once we have answers, we can check them by using
hand techniques such as nodal analysis or just using PSpice.

. Attempt. From Eq. (9.73),

Z3
Zy=—12» (9.15.1)
Zy
where Z, = R + jX,,
Z, = 1000 Q, Z, = 4200 Q (9.15.2)
and
Rs
1 ](,()C3 _ R3

Z3=Rs||—= = = = :
s 3”ch3 R; + 1/joCs 1+ joRsCs

Since Rz = 1.5MQ and C; = 12 pF,

1.5 x 10° ~ 15x10°
1+j2mr X2x10°X 1.5 X 10° X 12X 107 % 1+ j0.2262

or
Z3 = 1427 — j0.3228 MQ) (9.15.3)
(a) Assuming that Z, is made up of series components, we
substitute Egs. (9.15.2) and (9.15.3) in Eq. (9.15.1) and obtain
4200
R + jX« = ——=(1.427 — j0.3228) x 10°
x 1% = J000¢ j0.3228) X 10

— (5.993 — j1.356) MQ (9.15.4)

Equating the real and imaginary parts yields R, = 5.993 M) and
a capacitive reactance

1
X, = —— = 1.356 X 10°
X C

w
or

1 1

C = =
wXy, 27 X 2 X 10% X 1.356 X 10°

— 58,69 pF



9.8  Applications

(b) Z, remains the same as in Eq. (9.15.4) but R, and X, are in
parallel. Assuming an RC parallel combination,

Z, = (5.993 — j1.356) MQ

. 1+ jwRCy

1

= Rl joC

By equating the real and imaginary parts, we obtain
_ Real(Z,)? + Imag(Z,)>  5.993% + 1.356

x Real(Z,) 5903 oM
Imag(Z,)
Ci=— 2 2
w[Redl (Z,)% + Imag(Z,)3]
= —1.3%6 — 2.852 uF

 277(2000)(5.917% + 1.356?)

We have assumed a parallel RC combination which works in

this case.

. Evaluate. Let us now use PSpice to see if we indeed have the
correct equalities. Running PSpice with the equivalent circuits,
an open circuit between the “bridge” portion of the circuit,

and a 10-volt input voltage yields the following voltages at the
ends of the “bridge” relative to a reference at the bottom of
the circuit:

FREQ VM $N_0002) VP($N_0002)

2. 000E+03 9. 993E+00 -8.634E-03
2. 000E+03 9. 993E+00 -8.637E-03

Since the voltages are essentially the same, then no measurable
current can flow through the “bridge” portion of the circuit for
any element that connects the two points together and we have a
balanced bridge, which is to be expected. This indicates we have
properly determined the unknowns.

There is a very important problem with what we have done!
Do you know what that is? We have what can be called an
ideal, “theoretical” answer, but one that really is not very good
in the real world. The difference between the magnitudes of the
upper impedances and the lower impedances is much too large
and would never be accepted in areal bridge circuit. For
greatest accuracy, the overall magnitude of the impedances must
at least be within the same relative order. To increase the
accuracy of the solution of this problem, | would recommend
increasing the magnitude of the top impedances to be in the
range of 500 k(2 to 1.5 M{). One additional real-world comment:
the size of these impedances also creates serious problems in
making actual measurements, so the appropriate instruments
must be used in order to minimize their loading (which would
change the actual voltage readings) on the circuit.
. Satisfactory? Since we solved for the unknown terms and then
tested to see if they woked, we validated the results. They can
now be presented as a solution to the problem.
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Practice Problem 9.15

In the ac bridge circuit of Fig. 9.37, suppose that balance is achieved
when Z, is a 4.8-k{) resistor, Z, is a 10-() resistor in series with a
0.25-pH inductor, Z3 is a 12-kQ) resistor, and f = 6 MHz. Determine
the series components that make up Z,.

Answer: A 25-(Q) resistor in series with a 0.625-pH inductor.

9.9 Summary

1. A sinusoid is a signa in the form of the sine or cosine function.
It has the general form

v(t) = Vi cos(wt + ¢)

where V,, is the amplitude, o = 27 f is the angular frequency,
(wt + @) is the argument, and ¢ is the phase.

2. A phasor is a complex quantity that represents both the magni-
tude and the phase of a sinusoid. Given the sinusoid v(t) =
Vmco(wt + ¢), its phasor V is

V = Vy/¢

3. In ac circuits, voltage and current phasors always have a fixed
relation to one another at any moment of time. If v(t) =
Vincos(wt + ¢,) represents the voltage through an element and
i(t) = Imcos(wt + ¢;) represents the current through the element,
then ¢; = ¢, if the element is a resistor, ¢; leads ¢, by 90° if the
element is a capacitor, and ¢; lags ¢, by 90° if the element is an
inductor.

4. The impedance Z of a circuit is the ratio of the phasor voltage
across it to the phasor current through it:

Z= IX = R(w) + jX(w)
The admittance Y is the reciprocal of impedance:

Y = % = G(w) + jB(w)
Impedances are combined in series or in parallel the same way as
resistances in series or parallel; that is, impedances in series add
while admittances in parallel add.

5. For aresistor Z = R, for an inductor Z = jX = jwL, and for a
capacitor Z = —jX = 1/jwC.

6. Basic circuit laws (Ohm's and Kirchhoff’s) apply to ac circuits in
the same manner as they do for dc circuits; that is,

V =ZI

Sl,=0 (KCL)
SVe=0 (KVL)
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7. The techniques of voltage/current division, series/parallel combi-
nation of impedance/admittance, circuit reduction, and Y-A trans-
formation all apply to ac circuit analysis.

8. AC circuits are applied in phase-shifters and bridges.

Review Questions

3

9.1 Which of thefollowing is not aright way to express 9.8 At what frequency will the output voltage vy(t) in
the sinusoid A coswt ? Fig. 9.39 be equal to theinput voltage v(t) ?
(&) Acos2ft (b) A cos(27t/T) (a) Orad/s (b) 1 rad/s (c) 4rad/s
(c) Acosw(t — T) (d) Asin(wt — 90°) (d) o« rad/s (e) none of the above
9.2 Afunction that repeats itself after fixed intervalsis
said to be:
(a) aphasor (b) harmonic 1Q
(c) periodic (d) reactive Wwy
9.3  Which of these frequencies has the shorter period? 0 CD 711 ! % +%(t)
(a) 1 krad/s (b) 1 kHz -
9.4 If vy = 30sin(wt + 10°) and v, = 20 sin(wt + 50°),
which of these statements are true? Figure 9.39
For Review Question 9.8.
() vy leadsv, (b) vy leads vy
(9 v2lagsvy (d) vy lagsvz
(e) vy and v, arein phase
9.5 The voltage across an inductor leads the current 9.9 AseriesRCircuit has |V| = 12V and V| = SV.
through it by 90°. The magnitude of the supply voltageis:
(a) True (b) False @ -7V (b) 7V (c) 13V (d)17Vv
96 Thelmaglnary part Of impedanceisca”ed: 910 AseneSRCL CII’(?UIt haSR = 30 Q, .XC :50 Q, and
X, = 90 Q). Theimpedance of thecircuit is:
(@) resistance (b) admittance ) .
(a) 30 + j140 O (b) 30 + j40 Q
(c) susceptance (d) conductance i )
()30 - j40Q (d) —30 — j40Q
(e) reactance )
(e) =30 + j40Q
9.7 Theimpedance of acapacitor increases with
increasing frequency. Answers: 9.1d, 9.2¢, 9.3b, 9.4b,d, 9.5a, 9.6e, 9.7, 9.8d,
(@) True (b) False 9.9¢, 9.10b.
Problems

Section 9.2 Sinusoids

9.1

9.2

Given the sinusoidal voltage v(t) =

50 cos(30t + 10°) V, find: (a) the amplitude
Vm, (b) the period T, (c) the frequency f, and
(d)v(t)att = 10 ms.

A current source in alinear circuit has
is = 8cos(5007t — 25°) A

9.3

(a) What is the amplitude of the current?

(b) What is the angular frequency?

(c) Find the frequency of the current.

(d) Caculateisatt = 2ms.

Express the following functions in cosine form:
(a) 4 sin(wt — 30°) (b) —2sin 6t

(c) —10sin(wt + 20°)
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9.4

eud

9.5

9.6

Chapter 9

Design a problem to help other students better
understand sinusoids.

Givenv, = 20 sin(wt + 60°) and v, =

60 cos(wt — 10°), determine the phase angle
between the two sinusoids and which one lags
the other.

For the following pairs of sinusoids, determine
which one leads and by how much.

(a) v(t) = 10 cos(4t — 60°) and
i(t) = 4sin(4t + 50°)

(b) v4(t) = 4 cos(377t + 10°) and
vo(t) = —20 cos 377t

(c) x(t) = 13 cos2t + 5sin 2t and
y(t) = 15 cos(2t — 11.8°)

Section 9.3 Phasors

9.7
9.8

9.9

9.10

9.11

9.12

If f(¢) = cos¢ + j sing, show that f(¢) = e®.

Calculate these complex numbers and express your
results in rectangular form:

15 /45°
3-j4
8/—20° L 10
C+)B-j4 -5+j12

() 10 + (8/50°)(5 - j12)

Evaluate the following complex numbers and leave
your resultsin polar form:

Y

(a)5@(6—18+ 2+j>

" (10,/60°)(35/—50°)
2+i6)-(5B+1)

Design a problem to help other students better
understand phasors.

@

+j2

(b)

Find the phasors corresponding to the following
signals:

(@) v(t) = 21 cos(4t — 15°) V

(b) i(t) = —8sin(10t + 70°) mA

() v(t) = 120 sin(10t — 50°) V

(d)i(t) = —60 cos(30t + 10°) mA

LetX = 8/40°and Y = 10/—30°. Evaluatethe

following quantities and express your resultsin
polar form:

@ (X + Y)X*
(b) (X = Y)*
© (X +Y)/X

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

Sinusoids and Phasors

Evaluate the following complex numbers:
2+j3 7-8

(a) — + -
-6 -5+ j11
(5@)(10ﬂ)
Y (a/=s0(-6/50)
© 2+j3 —j2 ’
—j2 8 — |5

Simplify the following expressions:
(6-i6 - (2+]8
(=3 +j4H5B )+ (4-j6)

@

(240/75° + 160/—30°)(60 — j80)
(b) . .
(67 + j84)(20/32°)
10
c )( 3114 ) V(10 + j5)(16 — j20)

Evaluate these determinants:

10+j6 2—j3
@ 5 —1+j‘
20/-30° —4/-10°
(b) -
16/0° 3/45
1-j - O
© ] 1 —j
1 1+]

Transform the following sinusoids to phasors:
(a) —10 cos(4t + 75°) (b) 5sin(20t — 10°)
(c) 4cos2t + 3sin2t

Two voltages v, and v, appear in series so that their
sumisv = vy + v, If v = 10 cos(50t — 7/3) V
and v, = 12 cos(50t + 30°) V, find v.

Obtain the sinusoids corresponding to each of the
following phasors:

(@ V,=60/15V,w =1

(b)V, =6+ 8V, w =40
(©1,=28e1"°A w =377
(d)l,=-05-j1.2A, w = 10°

Using phasors, find:

(a) 3 cos(20t + 10°) — 5cos(20t — 30°)

(b) 40 sin 50t + 30 cos(50t — 45°)

(c) 20 sin 400t + 10 cos(400t + 60°)
—5sin(400t — 20°)

A linear network has a current input

4 cos(wt + 20°) A and avoltage output

10 cos(wt + 110°) V. Determine the associated
impedance.



9.21 Simplify the following:
(a f(t) = 5cos(2t + 15°) — 4sin(2t — 30°)
(b) g(t) = 8sint + 4 cos(t + 50°)

t
(©) h(t) = J (10 cos 40t + 50 sin 40t) dt
(0]

9.22 An aternating voltage is given by uv(t) =
20 cos(5t — 30°) V. Use phasorsto find

d t
100(t) + 4— — 2J v(t)dt
dt .
Assume that the value of the integral is zero at
t= —co.
9.23 Apply phasor analysisto evaluate the following.
(@) v = 50 cos(wt + 30°) + 30 cos(wt — 90°) V
(b) i = 15 cos(wt + 45°) — 10sin(wt + 45°) A
9.24 Find v(t) in the following integrodifferential
equations using the phasor approach:
@ () + J vdt =5cos(t + 45°) V
d
(b)d—lt’ + 5u(t) + 4 J vdt = 20sin(4t + 10°) V

9.25 Using phasors, determinei(t) in the following
equations:

@ % + 3i(t) = 4cos(2t — 45°)

(b) 10J i dt + % + 6i(t) = 5cos(5t + 22°) A

9.26 Theloop equation for a series RLC circuit gives
d ("
—+ 2 + idt = cos2t A
dt .

Assuming that the value of theintegral att = —o is
zero, find i(t) using the phasor method.

9.27 A parallel RLC circuit has the node equation
d
d—z + 500 + 100 J v dt = 110 cos(377t — 10°) V

Determine v(t) using the phasor method. You may
assumethat the value of theintegral att = — o iszero.

Section 9.4 Phasor Relationships for Circuit
Elements

9.28 Determine the current that flows through an 8-Q)
resistor connected to a voltage source
vs = 110 cos 377t V.

9.29 What is the instantaneous voltage across a 2-uF
capacitor when the current through it is
i = 4sn(10% + 25°) A?

Problems 405

9.30 A voltagev(t) = 100 cos(60t + 20°) V is applied to
aparalel combination of a40-k() resistor and a
50-uF capacitor. Find the steady-state currents
through the resistor and the capacitor.

9.31 AsariesRLCcircuithasR = 80 (), L = 240 mH,
and C = 5 mF. If theinput voltageisv(t) =
10 cos 2t, find the currrent flowing through the circuit.

9.32 Using Fig. 9.40, design a problem to help other
students better understand phasor relationships for
circuit elements.

i

v CD ( RL+0jaSL)

Figure 9.40
For Prob. 9.32.

9.33 A seriesRL circuit is connected to a 110-V ac
source. If the voltage across the resistor is 85V, find
the voltage across the inductor.

9.34 What value of w will cause the forced response v, in
Fig. 9.41 to be zero?

2Q

5mF

100 cos(wt + 45°) vV () %
20 mH

Figure 9.41
For Prob. 9.34.

Section 9.5 Impedance and Admittance

9.35 Find currenti inthe circuit of Fig. 9.42, when
vg(t) = 50 cos200t V.

i 100 5mF

% 20 mH

Figure 9.42
For Prob. 9.35.
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9.36 Using Fig. 9.43, design a problem to help other
efd students better understand impedance.

[ R, L
—
AN

«O

Figure 9.43
For Prob. 9.36.

9.37 Determine the admittance Y for the circuit in Fig. 9.44.

O

2Q

j4Q == -j50Q

O

Figure 9.44
For Prob. 9.37.

9.38 Using Fig. 9.45, design a problem to help other
efd students better understand admittance.

+ i
0 R C=o
@
i ",
w0 () R
c gt
T

Figure 9.45
For Prob. 9.38.

9.39 For thecircuit shown in Fig. 9.46, find Ze, and use

that to find current |. Let o = 10 rad/s.

I a0

o 200 jm
= AMW— TN —
12/00v () §16Q 250

Figure 9.46
For Prob. 9.39.

3

Sinusoids and Phasors

9.40 Inthecircuit of Fig. 9.47, find i, when:

@w=1rad/ls (b)w = 5rad/s
() w = 10rad/s
Jo_ 1H
SR
10 cos wt V 2Q — 0.05F

Figure 9.47
For Prob. 9.40.

9.41 Findu(t) inthe RLC circuit of Fig. 9.48.

1Q

1Q +
25 costV 1F =F o

1H

Figure 9.48
For Prob. 9.41.

9.42 Cdlculate v, (t) in the circuit of Fig. 9.49.

50 Q
30Q

50 uF +

100 sin 200t VV 01H g %(t)

Figure 9.49
For Prob. 9.42.

9.43 Find current |, in the circuit shown in Fig. 9.50.

lo 500

—

100 Q
MWV

60,0°V J%E%O:vwlT -j40Q

9.44 Cdlculatei(t) inthecircuit of Fig. 9.51.

Figure 9.50
For Prob. 9.43.

5mF
Il
]

i
50

50 cos 200t V 4Q 10 mH 3Q

Figure 9.51
For prob. 9.44.



9.45 Find current |, in the network of Fig. 9.52.

<> H |
ps ML 20 j4Q
A11h
plo
S&A _jZQ _— _jZQ f— 2Q

Figure 9.52
For Prob. 9.45.

9.46 If ig = 20 cos(10t + 15°) A inthe circuit of
4“;) Fig. 9.53, find i,

4Q 3Q

Figure 9.53
For Prob. 9.46.

9.47 Inthecircuit of Fig. 9.54, determine the value
of ig(t).

i 2Q 2mH

20 cos 2000t V B0 uF S 20Q

Figure 9.54
For Prob. 9.47.

9.48 Giventhat vt) = 20 sin(100t — 40°) in Fig. 9.55,
“;) determine i (t).

ps

10Q 30Q

vs(t)

Figure 9.55
For Prob. 9.48.

9.49 Find v4t) in the circuit of Fig. 9.56 if the current iy
through the 1-Q) resistor is 0.5 sin 200t A.

i
20 % 10

U 2Q

T_jm

Figure 9.56
For Prob. 9.49.
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9.50 Determine vy in the circuit of Fig. 9.57. Letig(t) =
5 cos(100t + 40°) A.

0.1H
£11R

+
—1mF 200 < g

is(t)

Figure 9.57
For Prob. 9.50.

9.51 If the voltage v, across the 2-Q) resistor in the circuit
of Fig. 9.58is —5cos2t V, obtain is.

01F o05H

+
i 1Q %20

Figure 9.58
For Prob. 9.51.

9.52 If V, = 20/45° V inthe circuit of Fig. 9.59, find I s.

—i5Q
Il
1f
+
I 10Q 5Q BQ IV,
Figure 9.59
For Prob. 9.52.
9.53 Find |, inthecircuit of Fig. 9.60.
o H
PS ML 4Q
AA%%Y%
i 20 H42Q 6Q
AW i} A11)
60./=30° V CD 8Q 10Q

Figure 9.60

For Prob. 9.53.
9.54 Inthecircuit of Fig. 9.61, find V¢if I, = 2/0° A.
o H
PS ML -j2Q Vs —1Q
Il 40 |
10 I\ \ llo
20 j4Q j2Q 1Q

Figure 9.61
For Prob. 9.54.
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*9.55 Find Z in the network of Fig. 9.62, given that
3 V.=8/0Vv.
ML

12Q

40,-90° V

Figure 9.62
For Prob. 9.55.

Section 9.7 Impedance Combinations

9.56 Atw = 377 rad/s, find the input impedance of the
circuit shown in Fig. 9.63.

12Q 50 uF

o—AMWW—

60 mH 40 Q

O

Figure 9.63
For Prob. 9.56.

9.57 At w = 1rad/s, obtain the input admittance in the
circuit of Fig. 9.64.

1Q 2Q
o AA%%Y% MWV
Yin 1
— 2H == 1F

Figure 9.64
For Prob. 9.57.

9.58 Using Fig. 9.65, design a problem to help other
efd students better understand impedance combinations.

O

c R,

Figure 9.65
For Prob. 9.58.

* An asterisk indicates a challenging problem.

Sinusoids and Phasors

9.59 For the network in Fig. 9.66, find Z;,. Let =
10rad/s.

05H 5Q

Figure 9.66
For Prob. 9.59.

9.60 Obtain Z;, for the circuit in Fig. 9.67.

50Q j30Q
—100 Q 60Q
Zin
e
40Q
j20Q

Figure 9.67
For Prob. 9.60.

9.61 Find Z inthecircuit of Fig. 9.68.

Figure 9.68
For Prob. 9.61.

9.62 For thecircuit in Fig. 9.69, find the input impedance
Z;,at 10 krad/s.

50 Q 2mH
o MV AI1R
+ —

v

1uF
o I
Zin

Figure 9.69
For Prob. 9.62.

2v




9.63 For thecircuit in Fig. 9.70, find the value of Z+.

ML ) )
8Q —12Q 16 Q
o—AWWW—{| I
7 200 10Q
T 10Q
j15Q 4160 100
o 1
Figure 9.70
For Prob. 9.63.

9.64 Find Z+ and | inthecircuit of Fig. 9.71.

50,60° vV

Figure 9.71
For Prob. 9.64.

9.65 Determine Z+ and | for the circuitin Fig. 9.72.

4Q  -i6Q

30 j40
120,/10° V

Z7

Figure 9.72
For Prob. 9.65.

9.66 For thecircuit in Fig. 9.73, calculate Z+ and V 4.

-j5Q 40 Q

—0
200 j100
60,90V (1) oa bo
Vap

Zr
Figure 9.73
For Prob. 9.66.
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9.67 Atw = 10°rad/s, find the input admittance of each
of the circuitsin Fig. 9.74.

60 Q 60 Q
Yin 20 mH T 125 uF
O
@
20 uF 00
o—
YL, 300 = 10 mH

(b)
Figure 9.74
For Prob. 9.67.
9.68 DetermineY ¢ for thecircuit in Fig. 9.75.

O

|

= 40

T 20
O
Figure 9.75
For Prob. 9.68.

9.69 Find the equivalent admittance Y o of the circuit in
Fig. 9.76.

2S 1s -3s +j2s

4S

O

Figure 9.76

For Prob. 9.69.
9.70 Find the equivalent impedance of the circuit in
3 Fig.9.77.
ML
O
10Q
= —j10Q
j15Q 50
AA%%Y%

- %89
= 50
O I )
z

eq
Figure 9.77
For Prob. 9.70.
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9.71 Obtain the equivalent impedance of the circuit in

H Fig.978.
ML

Figure 9.78
For Prob. 9.71.

9.72 Calculate the value of Z 4, in the network of

3 Fig. 979
ML
6Q -j9Q
ao SLIR il
6Q -j9Q
i6Q —j9Q
AN
20Q
20Q 10Q
b o
Figure 9.79
For Prob. 9.72.

9.73 Determine the equivalent impedance of the circuit in

1+  Fig. 9.80.
ML

2Q -j6Q 40

ao AN i}
%jGQ %jsg
bo

Figure 9.80
For Prob. 9.73.

Section 9.8 Applications

9.74 Design an RL circuit to provide a 90° leading phase
eqdd shift.

9.75 Design acircuit that will transform a sinusoidal
ed voltage input to a cosinusoidal voltage output.

9.76 For the following pairs of signals, determineif v,
leads or lags v, and by how much.

(@) v4 = 10 cos(5t — 20°), v, = 8sinb5t
(b) v4 = 19 cos(2t + 90°), v, = 6sin2t
(¢) vy = —4 cos10t, v, = 15sin10t

Sinusoids and Phasors

9.77 Refer to the RC circuit in Fig. 9.81.

(a) Cdlculate the phase shift at 2 MHz.
(b) Find the frequency where the phase shift is 45°.

5Q
4'A%%%

+ O

20nF = Y

<

1

[oN|

Figure 9.81
For Prob. 9.77.

9.78 A coil with impedance 8 + j6 () is connected in
series with a capacitive reactance X. The series
combination is connected in parallel with aresistor
R. Given that the equivalent impedance of the
resulting circuit is 5& Q, find the value of Rand X.

9.79 (@) Cdculate the phase shift of the circuit in Fig. 9.82.
(b) State whether the phase shift isleading or
lagging (output with respect to input).

(c) Determine the magnitude of the output when the

input is 120 V.
200 40Q 30Q
O—AWW, AW
* +
Y j10Q j30Q 60Q 3V,

O

Figure 9.82
For Prob. 9.79.

9.80 Consider the phase-shifting circuit in Fig. 9.83. Let
V; = 120V operating at 60 Hz. Find:

(8 V, when Ris maximum
(b) Vo when Ris minimum
(c) the value of Rthat will produce a phase shift of 45°

0<R<100Q

50 Q

Figure 9.83
For Prob. 9.80.

9.81 Theac bridgein Fig. 9.37 isbalanced when R; =
4000, R, = 600 ), R; = 1.2k}, and C, = 0.3 uF.
Find R, and C,. Assume R, and C, are in series.

9.82 A capacitance bridge balanceswhen R, = 100 (),

R, = 2kQ, and Cs = 40 uF. What is C,, the
capacitance of the capacitor under test?

9.83 Aninductive bridge balanceswhen R; = 1.2 k(),
R, = 500 (), and Lg = 250 mH. What is the value of
L,, the inductance of the inductor under test?
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9.84 The ac bridge shown in Fig. 9.84 isknown asa 9.85 The ac bridge circuit of Fig. 9.85 iscalled a\Wen
Maxwell bridge and is used for accurate measurement bridge. It is used for measuring the frequency of a
of inductance and resistance of acoil intermsof a source. Show that when the bridge is balanced,
standard capacitance Cs. Show that when the bridge 1
is balanced, f=——

R 2 R2R4C2C4
Ly=RRCs ad R.= Ry
Ry

Find L, and R for R; = 40k, R, = 1.6 k(},
Rs; = 4 k(), and Cg = 0.45 uF.

R Rs
(A0
R2
Ry
C2
Cy
Figure 9.84 Figure 9.85
Maxwell bridge; For Prob. 9.84. Wein bridge; For Prob. 9.85.
Comprehensive Problems
9.86 Thecircuit shownin Fig. 9.86 isused in atelevision —-j20Q j30Q 1200
receiver. What is the total impedance of this circuit?
(L 250 Hz T -j20Q
240 Q josQ — -j84Q
T Figure 9.88
For Prob. 9.88.

Figure 9.86

For Prob. 9.86.

9.89 Anindustria load is modeled as a series combination
of a capacitance and aresistance as shown in Fig. 9.89.
Calculate the value of an inductance L across the
series combination so that the net impedanceis
resistive at afrequency of 50 kHz.

9.87 The network in Fig. 9.87 is part of the schematic
describing an industria electronic sensing device.
What is the total impedance of the circuit at 2 kHz?

S 50 Q 10 mH
§ 100 Q 200 Q
7 2 uF 80 Q L
T 200 nF
Figure 9.87
For Prob. 9.87. Figure 9.89
For Prob. 9.89.

9.88 A seriesaudio circuit isshown in Fig. 9.88. ) ) o ) o
) ] o 9.90 Anindustria coil is modeled as a series combination
(a) What is the impedance of the circuit? of an inductance L and resistance R, as shown in
(b) If the frequency were halved, what would be the Fig. 9.90. Since an ac voltmeter measures only
impedance of the circuit? the magnitude of a sinusoid, the following
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measurements are taken at 60 Hz when the circuit
operatesin the steady state:

IV{l =145V,  |V4| =50V, |V, =110V
Use these measurements to determine the values of L
and R.

80Q .. ___ .
AN ; : Cail
+ V1 - 3 3 .
RE
Vs C) Vo
oL !

Figure 9.90
For Prob. 9.90.

9.91 Figure 9.91 shows a parallel combination of an
inductance and aresistance. If it is desired to connect
a capacitor in series with the parallel combination
such that the net impedance isresistive at 10 MHz,
what is the required value of C?

c

o—

300 Q 20 juH

O

Figure 9.91
For Prob. 9.91.

Sinusoids and Phasors

9.92 A transmission line has a series impedance of
Z = 100/75° ) and a shunt admittance of Y =
450@ uS. Find: (@) the characteristic impedance
Zo, = VZ/Y , (b) the propagation constant y =
VZY.

9.93 A power transmission system is modeled as shown in
Fig. 9.92. Given the following;

Source voltage Vg = 115/0°V,
Sourceimpedance Zg = (2 + j) (),

Line impedance Z, = (0.8 + j0.6) O,
Load impedance Z, = (46.4 + j37.8) ),
Find theload current 1.

Zs Z(Z
o—
i
% Zy
Zy
Source Transmissionline Load
Figure 9.92
For Prob. 9.93.
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Three men are my friends—he that loves me, he that hates me, he that
is indifferent to me. Who loves me, teaches me tenderness; who hates
me, teaches me caution; who is indifferent to me, teaches me self-
reliance.

—J. E. Dinger

Enhancing Your Career

Career in Software Engineering

Software engineering is that aspect of engineering that deas with the
practical application of scientific knowledge in the design, construction,
and validation of computer programs and the associated documentation
required to develop, operate, and maintain them. It is a branch of elec-
trical engineering that is becoming increasingly important as more and
more disciplines require one form of software package or another to per-
form routine tasks and as programmable microelectronic systems are
used in more and more applications.

The role of a software engineer should not be confused with
that of a computer scientist; the software engineer is a practitioner,
not a theoretician. A software engineer should have good computer-
programming skills and be familiar with programming languages, in
particular C*™, which is becoming increasingly popular. Because hard-
ware and software are closely interlinked, it is essential that a software
engineer have a thorough understanding of hardware design. Most
important, the software engineer should have some specialized knowl-
edge of the area in which the software development skill is to be
applied.

All in all, the field of software engineering offers a great career to  Output of a modeling software.
those who enjoy programming and developing software packages. The  Courtesy Ansoft
higher rewards will go to those having the best preparation, with the
most interesting and challenging opportunities going to those with
graduate education.

413



414

Frequency domain analysis of an ac
circuit via phasors is much easier
than analysis of the circuit in the
time domain.

Chapter 10 Sinusoidal Steady-State Analysis

10.1 Introduction

In Chapter 9, we learned that the forced or steady-state response of cir-
cuits to sinusoidal inputs can be obtained by using phasors. We also
know that Ohm’s and Kirchhoff’s laws are applicable to ac circuits. In
this chapter, we want to see how nodal analysis, mesh analysis,
Thevenin’s theorem, Norton’s theorem, superposition, and source trans-
formations are applied in analyzing ac circuits. Since these techniques
were aready introduced for dc circuits, our major effort here will be
to illustrate with examples.
Analyzing ac circuits usualy requires three steps.

Steps to Analyze AC Circuits:

1. Transform the circuit to the phasor or frequency domain.

2. Solve the problem using circuit techniques (nodal analysis,
mesh analysis, superposition, €tc.).

3. Transform the resulting phasor to the time domain.

Step 1 is not necessary if the problem is specified in the frequency
domain. In step 2, the analysis is performed in the same manner as dc
circuit analysis except that complex numbers are involved. Having read
Chapter 9, we are adept at handling step 3.

Toward the end of the chapter, we learn how to apply PSpice in
solving ac circuit problems. We finally apply ac circuit analysis to two
practical ac circuits. oscillators and ac transistor circuits.

10.2 Nodal Analysis

The basis of nodal analysis is Kirchhoff’s current law. Since KCL is
valid for phasors, as demonstrated in Section 9.6, we can analyze ac
circuits by nodal analysis. The following examples illustrate this.

Example 10.1

Find iy in the circuit of Fig. 10.1 using nodal analysis.

10Q

1H
I
fix
20 cos 4tV L 01F 2i, 05H
L

Figure 10.1
For Example 10.1.

|




10.2  Nodal Analysis

Solution:
We first convert the circuit to the frequency domain:

20 cos 4t = 20/0°, w = 4rad/s

1H = joL = j4
05H = joL = j2
1
0.1F = — = —j25
joC J

Thus, the frequency domain equivalent circuit is as shown in Fig. 10.2.

10Q v j4Q A

20,/0°V j2Q

Figure 10.2
Frequency domain equivalent of the circuit in Fig. 10.1.

Applying KCL at node 1,
20—V, V, +V1—V2

10  -j25 j4
or
(1 +j1LE)V, +j25V, = 20 (10.1.2)

At node 2,
V.-V \%
A+ ———2=22
4 j2
But I, = V1/—j2.5. Substituting this gives
2V, Vi-V_ Vs
—j2.5 j4 i2

By smplifying, we get
11V, + 15V, =0 (10.1.2)

Equations (10.1.1) and (10.1.2) can be put in matrix form as

1+j15 j25][Vvy] [20
11 15||Vv,| |0
We obtain the determinants as

1+j15 j25

A:’ 11 15

‘=15—j5

20 j25

= —-220
0 15

Al:‘

+jl.
‘:300’ Azz‘l i15 20‘

11 0

A, 300
Vizy 5o i5
A, =220

Vo=-2= ~— =1391/198.3°V
27 A 15-j5

= 18.97/18.43°V

415
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416
The current 1, is given by
V, 18.97/18.43°
= = 7.59/108.4° A

I: B =
¥ —j25 25/—90°

Transforming this to the time domain,
iy = 7.59 cos(4t + 108.4°) A

Using nodal analysis, find v, and v, in the circuit of Fig. 10.3.

Practice Problem 10.1

0.2F
n ; vy 4Q
I

+
w
R

30sin2tA 2Q v 2H

Figure 10.3
For Practice Prob. 10.1.

Answer: v,(t) = 33.96 sin(2t + 60.01°) V,
vo(t) = 99.06 sin(2t + 57.12°) V.

Compute V, and V5 in the circuit of Fig. 10.4.

Example 10.2
10,/45° V

1 49 5 v,

Vl
AW

3/0°A

Figure 10.4
For Example 10.2.

Solution:
Nodes 1 and 2 form a supernode as shown in Fig. 10.5. Applying KCL

at the supernode gives
Vi Vo Vo

3=—F+-
-j3 j6 12

or
(10.2.1)
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/ Supernode
Vi oot . ‘Yz

‘\}—

Figure 10.5
A supernode in the circuit of Fig. 10.4.

But a voltage source is connected between nodes 1 and 2, so that
Vi =V, +10/45° (10.2.2)
Substituting Eq. (10.2.2) in Eqg. (10.2.1) resultsin
36 —40/135° = (1 +j2)V, =  V,=3141/-87.18V
From Eg. (10.2.2),
Vi =V, + 10/45° = 25.78/-7048° V

417

Calculate V4 and V5, in the circuit shown in Fig. 10.6.

40 v 40,60° V

1o Ve
(%
30,/0°V 40 = j10 20
L

Figure 10.6
For Practice Prob. 10.2.

Answer: V; = 38.72/69.67° V, V, = 6.752/165.7° V.

10.3 Mesh Analysis

Kirchhoff’s voltage law (KVL) forms the basis of mesh analysis. The
validity of KVL for ac circuits was shown in Section 9.6 and is illus-
trated in the following examples. Keep in mind that the very nature of
using mesh analysis is that it is to be applied to planar circuits.

Practice Problem 10.2

Determine current |, in the circuit of Fig. 10.7 using mesh analysis.

Solution:
Applying KVL to mesh 1, we obtain

(8 +j10 — j2)l; — (—j2)l, — j10I3 = 0 (10.3.1)

Example 10.3
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40
WWWA T
I
5/0° A L _j20 °
@ Cj) 20/90° V
8Q L _j2Q
Figure 10.7

For Example 10.3.

For mesh 2,
4-j2—-j2l, — (—=j2)l1 — (—j2)l3 + 20/90° = 0 (10.3.2)
For mesh 3, 1; = 5. Substituting thisin Egs. (10.3.1) and (10.3.2), we get

(8 + i), +j2l, = j50 (10.3.3)
j2l, + (4 — j4)l, = —j20 — j10 (10.3.4)

Equations (10.3.3) and (10.3.4) can be put in matrix form as

8+j8 j2 [1i]_[is0
i2  4-ijal|) —i30

from which we obtain the determinants

8+i8 2 o
A= L+ ])L—j)+4=68
Y R R
8+i8 50 .
A, = = 340 — j240 = 416.17/—35.22°
27 j2 —j30‘ : (73527
A 416.17/ —-35.22°
== e = 612/-3522A

The desired current is

lo = —l, = 6.12/144.78° A

Practice Problem 10.3

6/0°A

Figure 10.8
For Practice Prob. 10.3.

30/30°V

Find 1, in Fig. 10.8 using mesh anaysis.

Answer: 3.582/65.45° A.
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Solve for V, in the circuit of Fig. 10.9 using mesh anaysis.

—H4Q = 4/0° A 6Q
8Q j5Q

WWW i A1
+
10&\/(? ﬂmT Vo 3/0° A

Figure 10.9
For Example 10.4.

Solution:
As shown in Fig. 10.10, meshes 3 and 4 form a supermesh due to the
current source between the meshes. For mesh 1, KVL gives

10+ (8 —j2)l, — (—j2)l, — 8l3=0
or
(8 —j2)l, +j2l, — 8l3=10 (10.4.1)
For mesh 2,
l,=-3 (10.4.2)
For the supermesh,
8—j4)l;— 8+ (6+j5l,—j51,=0 (10.4.3)
Due to the current source between meshes 3 and 4, at node A,
la=13+ 4 (10.4.4)
B METHOD 1 |Instead of solving the above four equations, we

reduce them to two by elimination.
Combining Egs. (10.4.1) and (10.4.2),

(8—j2)I, —8l3=10+j6 (10.4.5)
Combining Egs. (10.4.2) to (10.4.4),
-8l + (14 +j)lzg=—-24—-j3b (10.4.6)

Iz A 14 Supermesh

H4Q == 60

sl

Figure 10.10
Analysis of the circuit in Fig. 10.9.

Example 10.4
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From Egs. (10.4.5) and (10.4.6), we obtain the matrix equation

[s—jz —S]Il_ 10 + j6
-8 14+jl|ls] |-24-j35

We obtain the following determinants

8-j2 -8 o .
A= =112 + (8 — j28 + 2 — 64 = 50 — |2

‘—8 14+j‘ j8 —j28 64 =50 — j20

10+j6 -8 . . .
A= =140 + j10 + j84 — 6 — 192 — j2
1 ‘—24—1'35 l4+j’ 110 + 84 — 6 — 192 — ]280

—58 — 186
Current 1, is obtained as
I, = ﬁ = M = 3.618/274.5° A
A 50 — j20
The required voltage V, is
Vo= —j2(ly — I5) = —j2(3.618/274.5° + 3)
= —7.2134 — |6.568 = 9.756/222.32° V

B METHOD 2 We can use MATLAB to solve Egs. (10.4.1) to
(10.4.4). We first cast the equations as

8—j2 j2 -8 o 1, 10

0 1 0 0 I, -3
. . . = 10.4.7
8 —j5 8-j4 6+5/ 15 (104.72)
0 0o -1 1 s 4
or
Al =B
By inverting A, we can obtain | as
l=A"'B (10.4.7b)
We now apply MATLAB as follows:
> A=[(8-]*2) j*2 -8 0;
0 1 0 0;
-8 “j*5 (8-]*4) (6+*5);
0 0 -1 1];
> B=[10-3 0 4]";
>> | =inv(A)*B

0.2828 - 3. 60609
-3.0000
-1.8690 - 4. 4276i
2.1310 - 4.4276i

>> Vo = -2%j*(1(1) - 1(2))

Vo =
-7.2138 - 6.5655i

as obtained previously.
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Calculate current 1, in the circuit of Fig. 10.11.

Answer: 2.538/5.943° A.

10.4 Superposition Theorem

Since ac circuits are linear, the superposition theorem applies to ac
circuits the same way it applies to dc circuits. The theorem becomes
important if the circuit has sources operating at different frequencies.
In this case, since the impedances depend on frequency, we must have
a different frequency domain circuit for each frequency. The total
response must be obtained by adding the individual responses in the
time domain. It is incorrect to try to add the responses in the phasor
or frequency domain. Why? Because the exponential factor ! is
implicit in sinusoidal analysis, and that factor would change for every
angular frequency w. It would therefore not make sense to add responses
at different frequencies in the phasor domain. Thus, when a circuit has
sources operating at different frequencies, one must add the responses
due to the individual frequencies in the time domain.

Practice Problem 10.4

100 o,
—4Q jsQ
K
e S
5Q -i6Q

Figure 10.11
For Practice Prob. 10.4.

Use the superposition theorem to find 1, in the circuit in Fig. 10.7.

Solution:
Let

. "
lo=15+1%

(10.5.1)

where |, and | j are due to the voltage and current sources, respectively.
To find I, consider the circuit in Fig. 10.12(a). If we let Z be the
paralel combination of —j2 and 8 + j10, then

= M =025 -j2.25
-2/ +8+j10
and current |5 is
., j20j20
° 4—-j2+Z 425-ij425
or
Iy = —2.353 + j2.353 (10.5.2)
To get | 5, consider the circuit in Fig. 10.12(b). For mesh 1,
(8 +j8)l,—jl0l3+j21, =0 (10.5.3)
For mesh 2,
(4—idl,+j2, +j203=0 (10.5.4)
For mesh 3,

;=5 (10.5.5)

Example 10.5

||
il
A
N
)

j10Q

8Q — —j2Q

(b)
Figure 10.12
Solution of Example 10.5.
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From Egs. (10.5.4) and (10.5.5),

4—-jdHl,+j20; +j10=0
Expressing 1, in terms of I, gives

l,=C2+j)l,—-5 (10.5.6)
Substituting Egs. (10.5.5) and (10.5.6) into Eg. (10.5.3), we get
(8 +j8)[(2 +j2)I, — 5 —j50 + j21, =0
or
I, = M = 2.647 — j1.176
34

Current 1 is obtained as

1= —l, = —2647 + j1.176 (10.5.7)
From Egs. (10.5.2) and (10.5.7), we write

lo =15+ 14 = —5+ (3529 = 6.12/144.78° A

which agrees with what we got in Example 10.3. It should be noted
that applying the superposition theorem is not the best way to solve
this problem. It seems that we have made the problem twice as hard
as the original one by using superposition. However, in Example 10.6,
superposition is clearly the easiest approach.

Practice Problem 10.5

Find current 1, in the circuit of Fig. 10.8 using the superposition
theorem.

Answer: 3.582/65.45° A.

Example 10.6

Find v, of the circuit of Fig. 10.13 using the superposition theorem.

4Q

2H 1Q
MW=
Yo
10(:052tvﬁng C%mnsm —— 01F 5V

Figure 10.13
For Example 10.6.

Solution:

Since the circuit operates at three different frequencies (w = 0 for the
dc voltage source), one way to obtain a solution is to use superposition,
which breaks the problem into single-frequency problems. So we let

Uog = Uq + (%) + U3 (1061)
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where v, isdueto the 5-V dc voltage source, v, isdueto the 10 cos2t V
voltage source, and v is due to the 2 sin 5t A current source.

To find v, we set to zero all sources except the 5-V dc source.

We recall that at steady state, a capacitor is an open circuit to

dc while an inductor is a short circuit to dc. There is an alternative

way of looking at this. Since w = 0, jwuL = 0, 1/jwC = . Either

way, the equivalent circuit is as shown in Fig. 10.14(a). By voltage

division,
-1 5 =1V 10.6.2
v1=77,0 (10.6.2)

To find v,, we set to zero both the 5-V source and the 2 sin 5t current
source and transform the circuit to the frequency domain.

10 cos 2t = 10/0°, w = 2rad/s
2H = joL = j4Q
1
0.1F = —=—-j5Q
joC J

The equivalent circuit is now as shown in Fig. 10.14(b). Let

Z= '5||4—M—2439 j1.951
J 4—j5 ° -
10 4Q i 10
VW ———YVV
U1 + Vs~
SV 10/0°V j10Q 2/-90°A == -2Q 40
T
@ (b (c)

Figure 10.14
Solution of Example 10.6: (a) setting all sources to zero except the 5-V dc source, (b) setting all sources to zero except the ac
voltage source, (c) setting all sources to zero except the ac current source.

By voltage division,

1 10
Vo =—F7—(10/0°) = ————————— = 2.498/—-30.79°
2T 1+ja+ 7 /%) 3.439 + j2.049
In the time domain,
v, = 2.498 cos(2t — 30.79°) (10.6.3)

To obtain v, we set the voltage sources to zero and transform what
is left to the frequency domain.

2sin5t = 2/—90° o = 5radls
2H = joL =j10Q

1
0.1F = —==—j2Q
joC :
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The equivalent circuit is in Fig. 10.14(c). Let
—j2 X 4

Z, = —]2”4:Tj2= 08—-j16Q

By current division,

= 110+ 1+ 2, 0+ 1+ z, A

j10

= X [ S
Va=lo x 1=757 8.4

(—j2) = 2.328/-80°V

In the time domain,
vs = 2.33 cos(5t — 80°) = 2.33sin(5t + 10°) V  (10.6.4)
Substituting Egs. (10.6.2) to (10.6.4) into Eg. (10.6.1), we have

vo(t) = —1 + 2.498 cos(2t — 30.79°) + 2.33sin(5t + 10°) V

Practice Problem 10.6

Calculate v, in the circuit of Fig. 10.15 using the superposition
theorem.

50sin5tV Yo— 02F 1H 4cos10tA

Figure 10.15
For Practice Prob. 10.6.

Answer: 7.718 sin(5t — 81.12°) + 2.102 cos(10t — 86.24%) V.

10.5 Source Transformation

As Fig. 10.16 shows, source transformation in the frequency domain
involves transforming a voltage source in series with an impedance to
a current source in parallel with an impedance, or vice versa. As we
go from one source type to another, we must keep the following rela-
tionship in mind:

Vi=Zds &  lg==12 (10.1)




10.5  Source Transformation 425

ZS
a a
; T @j
b b
V= Zdl g

S |.= is
S ZS
Figure 10.16
Source transformation.
Calculate V, in the circuit of Fig. 10.17 using the method of source Example 10.7
transformation.
5Q 40 -1BQ
3Q +
20/-90°V 10Q = Vi

Figure 10.17
For Example 10.7.

Solution:
We transform the voltage source to a current source and obtain the
circuit in Fig. 10.18(a), where

|S:20¥=4ﬂ= —j4A
The paralel combination of 5-Q) resistance and (3 + j4) impedance gives
53 +j4) .
1= et ia - 25+ j1.250Q

Converting the current source to a voltage source yields the circuit in
Fig. 10.18(b), where

Ve=1Z, = —j4(25 + j1.25) = 5 — j10V

40 -I18Q 25Q j125Q 40 18Q
|
WW—]
30 . +
ls=—j4A 5Q 10Q 2 Vi Vs=5-j10V 10Q < Vi
4Q - -

@) (b)
Figure 10.18
Solution of the circuit in Fig. 10.17.

By voltage division,

10
V, = .
10 + 25 + j1.25 + 4 —

e (5 — j10) = 5519/-28° V
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Practice Problem 10.7

Linear

circuit > Vn

—O b

Figure 10.20
Thevenin equivalent.

—oO a

Linear

circuit In

—oO b

Figure 10.21
Norton equivalent.

Find I, in the circuit of Fig. 10.19 using the concept of source
transformation.

20 j10

8,/90° ACD e 1593 10
T_j3g T—jZQ
Figure 10.19

For Practice Prob. 10.7.

Answer: 6.576/99.46° A.

10.6 Thevenin and Norton
Equivalent Circuits

Thevenin's and Norton's theorems are applied to ac circuits in the same
way as they are to dc circuits. The only additional effort arises from
the need to manipulate complex numbers. The frequency domain ver-
sion of a Thevenin equivalent circuit is depicted in Fig. 10.20, where
alinear circuit is replaced by a voltage source in series with an imped-
ance. The Norton equivalent circuit is illustrated in Fig. 10.21, where
alinear circuit is replaced by a current source in parallel with an imped-
ance. Keep in mind that the two equivalent circuits are related as

Vi = Znlne Zn = Ly (10.2)

just as in source transformation. V1, is the open-circuit voltage while I
is the short-circuit current.

If the circuit has sources operating at different frequencies (see
Example 10.6, for example), the Thevenin or Norton equivalent circuit
must be determined at each frequency. This leads to entirely different
equivalent circuits, one for each frequency, not one equivalent circuit
with equivalent sources and equivalent impedances.

Example 10.8

Obtain the Thevenin equivalent at terminals a-b of the circuit in Fig. 10.22.

120/75° V Ci)

Figure 10.22
For Example 10.8.
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Solution:

We find Zqy, by setting the voltage source to zero. As shown in
Fig. 10.23(a), the 8-Q resistance is now in paralel with the —j6
reactance, so that their combination gives

—j6 X 8

—— =288 j3.840

Z,= 6|8 = ———
1 6| 8- 6

Similarly, the 4-Q) resistance is in parallel with the j12 reactance, and
their combination gives

7, =4 j12=2X2%_ 560120
2= A= T T
d
fd fd .
-j6Q ——
120/75° V C) e
89% —j6Q == %49 gjlzg
8Q
a b
O O
e T c f
Z1y,
(b)
@

Figure 10.23
Solution of the circuit in Fig. 10.22: (@) finding Z1y, (b) finding V.

The Thevenin impedance is the series combination of Z; and Zy;
that is,

ZTh = Zl + ZZ = 6.48 — J264-Q

To find V1, consider the circuit in Fig. 10.23(b). Currents |, and
|, are obtained as

120/75° 120/75°

L= ;
8 — j6 27 4+j12

I, =

A

Applying KVL around loop becdeab in Fig. 10.23(b) gives

Vo — 4l + (—j6)l1 =0

or
480/75°  720/75° + 90°
VTh:4I2+j6|1: . + .
4+ j12 8—6

37.95/3.43° + 72/201.87°
—28.936 — j24.55 = 37.95/220.31° V

j120
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Practice Problem 10.8 Find the Thevenin eguivalent at terminals a-b of the circuit in Fig. 10.24.

6Q  j2Q a b
—O
75/20°V L _jag 10Q

Figure 10.24
For Practice Prob. 10.8.

Answer: Z, = 12.4 — j3.2Q, V1, = 47.42/—5157° V.

Example 10.9 Find the Thevenin equivalent of the circuit in Fig. 10.25 as seen from
terminals a-b.
4Q  j3Q
——oa
I"l
15.0A () 20 ¥ 05,
40
1 ob

Figure 10.25
For Example 10.9.

Solution:
To find V1, we apply KCL at node 1 in Fig. 10.26(a).
15=1,+05, = I,=10A

Applying KVL to the loop on the right-hand side in Fig. 10.26(a), we
obtain

—1o(2 = j4) + 05144 +j3) + Vi, =0
or
Vi, = 102 — j4) — 5(4 + j3) = —j55
Thus, the Thevenin voltage is
Vi, = 55/-90°V

L o051, 4*i3Q 5 4+j30 a
|0L — +
2-j40 Vo5, Vs G Is=3/0°A
7; b
@ (b)

Figure 10.26
Solution of the problem in Fig. 10.25: (&) finding V1, (b) finding Z .
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To obtain Z+,, we remove the independent source. Due to the
presence of the dependent current source, we connect a 3-A current
source (3 is an arbitrary value chosen for convenience here, a number
divisible by the sum of currents leaving the node) to terminals a-b as
shown in Fig. 10.26(b). At the node, KCL gives

3=1,+05, = Il,=2A
Applying KVL to the outer loop in Fig. 10.26(b) gives
Ve=1o4+j3+2—j4) =26—]j)
The Thevenin impedance is
Ve 26-1) _

7o = —° =
™= 3

4 — j0.6667 Q)
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Determine the Thevenin equivalent of the circuit in Fig. 10.27 as seen
from the terminals a-b.

Answer: Zqy, = 4.473/—7.64° O,V = 29.4/72.9° V.

Practice Problem 10.9

80 40
+ v, -
P
Lj2q - Ny o
49% 20/0° A 0.2V,
ob

Figure 10.27
For Practice Prob. 10.9.

Obtain current |, in Fig. 10.28 using Norton's theorem.

a
(o] ‘Io
50 50 3/0°A
8 200
100 _
40,/90° V j15Q
j40
b

Figure 10.28

For Example 10.10.
Solution:
Our first objective is to find the Norton equivalent at terminals a-b. Zy
is found in the same way as Zt,. We set the sources to zero as shown
in Fig. 10.29(a). As evident from the figure, the (8 — j2) and (10 + j4)
impedances are short-circuited, so that

ZNZSQ

To get |, we short-circuit terminals a-b as in Fig. 10.29(b) and
apply mesh analysis. Notice that meshes 2 and 3 form a supermesh
because of the current source linking them. For mesh 1,

—j40 + (18 + j2)l, — (8 — 2, — (10 + j4)l3 =0 (10.10.1)

Example 10.10
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a
° !
_i |
8 j2 o
2
-~ 20
10 § 5
ia j15
o)

o

@ (b) ©
Figure 10.29
Solution of the circuit in Fig. 10.28: (a) finding Zy, (b) finding V, (c) calculating | .
For the supermesh,
(13—-j2)l, + (10 + jAl;— (18 +j2)1, =0 (10.10.2)
At node a, due to the current source between meshes 2 and 3,
lz3=1,+ 3 (10.10.3)
Adding Egs. (10.10.1) and (10.10.2) gives
-j40+5,=0 = 1,=j8
From Eqg. (10.10.3),
l3=1,+3=3+j8
The Norton current is
In=13=(3+]j8A

Figure 10.29(c) shows the Norton equivalent circuit along with the
impedance at terminals a-b. By current division,

5 3+j8
lo = — |y = ——— = 1.465/38.48 A
° 5+20+j15 " 5+j3 /3848

Practice Problem 10.10 Determine the Norton equivalent of the circuit in Fig. 10.30 as seen
from terminals a-b. Use the equivalent to find I,

40 i20
AW T
8Q 10 —I3Q| 4
—_—
lo 100
T
b

Figure 10.30
For Practice Prob. 10.10.

Answer: Zy = 3.176 + j0.706 Q, | = 4.198/—32.68° A,
lo = 985.5/—2.101° mA.
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10.7 Op Amp AC Circuits
The three steps stated in Section 10.1 also apply to op amp circuits, as
long as the op amp is operating in the linear region. As usual, we will
assume ideal op amps. (See Section 5.2.) As discussed in Chapter 5,
the key to analyzing op amp circuits is to keep two important proper-
ties of an ideal op amp in mind:

1. No current enters either of its input terminals.

2. The voltage across its input terminals is zero.
The following examples will illustrate these ideas.
Determine v(t) for the op amp circuit in Fig. 10.31(a) if ve = Example 10.11
3 cos 1000t V.

20kQ v,
AN
— —j10kQ
10 kQ 0k v, 10k 4{ov
— — MW — -
1 * 2 + oV
' 34V L _jska
O

(b) )
Figure 10.31
For Example 10.11: (a) the original circuit in the time domain, (b) its frequency domain equivalent.

Solution:
We first transform the circuit to the frequency domain, as shown in
Fig. 10.31(b), where Vs = 3/0°, » = 1000rad/s. Applying KCL at
node 1, we obtain

3@"—V1_£+v1—o Vi -V,

- +
10 -5 10 20

or
6=(5+jdV, -V, (10.11.1)
At node 2, KCL gives
V,-0 0-V,
10  —j10

which leads to
Vi=—jV, (10.11.2)
Substituting Eg. (10.11.2) into Eq. (10.11.1) yields
6=—j(5+j4Vo — Vo= (B~ ]9V,

6 o
Vo=~ j5 = 1029/5004

Hence,
vo(t) = 1.029 cos(1000t + 59.04°) V
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Practice Problem 10.11

Find v, and i, in the op amp circuit of Fig. 10.32. Let vg =
4 cos 5000t V.

10KO L10nF
L A o
20kgl _ —© %
Vs
20n|:T
L

Figure 10.32
For Practice Prob. 10.11.

Answer: 1.3333 sin 5000t V, 133.33 sin 5000t wA.

Example 10.12

%:Dgo

Figure 10.33
For Example 10.12.

Compute the closed-loop gain and phase shift for the circuit in Fig. 10.33.
Assume that R, =R, =10kQ,C, =2uF, C, = 1uF, andw =
200 rad/s.

Solution:
The feedback and input impedances are calculated as
2 - R 1 R,
f 2 ij2 1+ ij2C2
1 1+ jwR,C
Z =Ry + - _ .lw 1C1
ijl J(l)Cl

Since the circuit in Fig. 10.33 is an inverting amplifier, the closed-loop
gain is given by
G = ﬁ N Zy . —joCiR,
Vs Zi (14 joRC)A + jwR,Cy)
Substituting the given values of Ry, R,, C4, C,, and w, we obtain
—j4
G=——"""—"7-=0434/1306°
1+iH1+j2 /1308

Thus, the closed-loop gain is 0.434 and the phase shift is 130.6°.

Practice Problem 10.12

L)

©

R R

Figure 10.34
For Practice Prob. 10.12.

Obtain the closed-loop gain and phase shift for the circuit in Fig. 10.34.
Let R= 10k, C = 1 uF, and = 1000 rad/s.

Answer: 1.015, —5.6°.
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10.8 AC Analysis Using PSpice

PSpice affords a big relief from the tedious task of manipulating com-
plex numbers in ac circuit analysis. The procedure for using PSpice for
ac analysis is quite similar to that required for dc analysis. The reader
should read Section D.5 in Appendix D for a review of PSpice con-
cepts for ac analysis. AC circuit analysis is done in the phasor or fre-
guency domain, and all sources must have the same freguency.
Although ac analysis with PSpice involves using AC Sweep, our
analysisin this chapter requires a single frequency f = w/27. The out-
put file of PSpice contains voltage and current phasors. If necessary,
the impedances can be calculated using the voltages and currentsin the
output file.

433

Obtain v, and i, in the circuit of Fig. 10.35 using PSpice.

4kQ 50 mH
/70
io .
8 sin(1000t + 50°) V 2uF ==  05i, 2kQ S %

Figure 10.35
For Example 10.13.

Solution:
We first convert the sine function to cosine.

8sin(1000t + 50°) = 8 cos(1000t + 50° — 90°)
= 8 cos(1000t — 40°)

The frequency f is obtained from w as

o 1000
= —="—"—=159.155H

o o 59.155 Hz
The schematic for the circuit is shown in Fig. 10.36. Notice that the
current-controlled current source F1 is connected such that its current
flows from node O to node 3 in conformity with the original circuit in
Fig. 10.35. Since we only want the magnitude and phase of v, and iy, we
set the attributes of IPRINT and VPRINT1 each to AC = yes, MAG = yes,
PHASE = yes. As a single-frequency analysis, we select Analysis/
Setup/AC Sweep and enter Total Pts = 1, Start Freq = 159.155, and
Final Freq = 159.155. After saving the schematic, we simulate it by
selecting AnalysigSimulate. The output file includes the source
frequency in addition to the attributes checked for the pseudocomponents
IPRINT and VPRINTL,

f

FREQ | M V_PRI NT3) | P(V_PRI NT3)
1.592E+02 3. 264E-03 —3. 743E+01
FREQ VM 3) VP(3)

1. 592E+02 1. 550E+00 -9. 518E+01

Example 10.13
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J=L

R1 , L1 3 T pc=ok
© MAG=0k
50mH PHASE=0k
F1
MAG=yes ‘ * @‘
PHASE=0k i
L GAI N=0. 5 R2 § 2k
Cl T 2u

Figure 10.36

The schematic of the circuit in Fig. 10.35.

From this output file, we obtain
V,=155/-9518"V, lo = 3.264/—37.43 mA
which are the phasors for
v, = 1.55¢05(1000t — 95.18°) = 1.55 sin(1000t — 5.18°) V
and
io = 3.264 cos(1000t — 37.43°) mA

Practice Problem 10.13

Use PSpice to obtain v, and i, in the circuit of Fig. 10.37.

io 3kQ

2kQ

20 cos 3000t A 1uF =

Figure 10.37
For Practice Prob. 10.13.

Answer: 536.4 cos(3000t — 154.6°) mV, 1.088 cos(3000t —55.12°) mA.

Example 10.14

Find V4, and V,, in the circuit of Fig. 10.38.

Solution:

1. Define. In its present form, the problem is clearly stated. Again,
we must emphasize that time spent here will save lots of time
and expense later on! One thing that might have created a
problem for you is that, if the reference was missing for this
problem, you would then need to ask the individual assigning



10.8  AC Analysis Using PSpice 435

v,| 20 22 |y, 20 20

3/0°A 1Q 18/30° V

Figure 10.38
For Example 10.14.

the problem where it is to be located. If you could not do that,
then you would need to assume where it should be and then
clearly state what you did and why you did it.

2. Present. The given circuit is a frequency domain circuit and the
unknown node voltages V, and V. are also frequency domain
values. Clearly, we need a process to solve for these unknowns
in the frequency domain.

3. Alternative. We have two direct alternative solution techniques
that we can easily use. We can do a straightforward nodal
analysis approach or use PSpice. Since this example isin a
section dedicated to using PSpice to solve problems, we will
use PSpice to find V, and V,. We can then use nodal analysis
to check the answer.

4. Attempt. The circuit in Fig. 10.35 is in the time domain, whereas
the one in Fig. 10.38 is in the frequency domain. Since we are not
given a particular frequency and PSpice requires one, we select any
frequency consistent with the given impedances. For example, if
we select w = 1 rad/s, the corresponding frequency is f = /27 =
0.15916 Hz. We obtain the values of the capacitance (C =
1/wXc) and inductances (L = X, /w). Making these changes
results in the schematic in Fig. 10.39. To ease wiring, we have

=] J=]  AC=ok
c1 ==® MAG=ok
AC=0k —— PHASE=yes
MAG=ok 0.5C
. PHASE=yes R L1 L2 R3

ACNAG=3A© 11 R = 1Caqvne1gy () V1

ACPHASE=0 ACPHASE=30

Figure 10.39
Schematic for circuit in the Fig. 10.38.
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exchanged the positions of the voltage-controlled current source G1
and the 2 + j2 Q) impedance. Notice that the current of G1 flows
from node 1 to node 3, while the controlling voltage is across the
capacitor C2, as required in Fig. 10.38. The attributes of pseudo-
components VPRINTL are set as shown. As a single-frequency
analysis, we select Analysis/Setup/AC Sweep and enter

Total Pts = 1, Sart Freq = 0.15916, and Final Freq = 0.15916.
After saving the schematic, we select Analysis/'Simulate

to simulate the circuit. When this is done, the output file
includes

FREQ VM 1) VP(1)
1. 592E-01 2. 708E+00 5. 673E+01

FREQ VM 3) VP( 3)
1.592E-01 4. 468E+00 —1. 026E+02

from which we obtain,

Vy = 2708/-56.74°V and V, =6.911/-80.72° V

5. Evaluate. One of the most important lessons to be learned is
that when using programs such as PSpice you still need to
validate the answer. There are many opportunities for making a
mistake, including coming across an unknown “bug” in PSpice
that yields incorrect results.

So, how can we validate this solution? Obviously, we can
rework the entire problem with nodal analysis, and perhaps
using MATLAB, to see if we obtain the same results. There is
another way we will use here: write the nodal equations and
substitute the answers obtained in the PSpice solution, and see
if the nodal equations are satisfied.

The nodal equations for this circuit are given below. Note
we have substituted V, = V, into the dependent source.

Vi-0 V;—-0 V;—V, Vi —V,
-3+ + — + — + 02V, + ———
1 —j1 2+j2 . -j2
(1+j+02—-j025+ 02+ jo5V,
- (025 -j0.25 + jo5)V, =3
(245 + j1.25)V; — (0.25 + jO.25)V, = 3
1.9144/40.76° V, — 0.3536/45°V, = 3

Now, to check the answer, we substitute the PSpice answers into
this.

1.9144/40.76° X 2.708/—56.74° — O.SSSGE X 6.911/—-80.72°

=5184/-1598° — 2444/-35.72
=4.984 — j1.4272 — 1.9842 + j1.4269
= 3 —j0.0003 [Answer checks]

=0

6. Satisfactory? Although we used only the equation from node 1
to check the answer, this is more than satisfactory to validate the
answer from the PSpice solution. We can now present our work
as a solution to the problem.
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Obtain V, and 1, in the circuit depicted in Fig. 10.40.

12/0°V
o
N\ L
. . = -j0.25
10 j20 y, j20 10
- AM— TN ——— T —AW—
—_—
IX
4/60° A %29 — —j1Q S oan,

Figure 10.40
For Practice Prob. 10.14.

Answer: 9.842{44.78" V, 2.584{1580 A.

10.9 T Applications

The concepts learned in this chapter will be applied in later chapters
to calculate electric power and determine frequency response. The con-
cepts are also used in analyzing coupled circuits, three-phase circuits,
ac transistor circuits, filters, oscillators, and other ac circuits. In this
section, we apply the concepts to develop two practical ac circuits: the
capacitance multiplier and the sine wave oscillators.

10.9.1 Capacitance Multiplier

The op amp circuit in Fig. 10.41 is known as a capacitance multiplier,
for reasons that will become obvious. Such a circuit is used in integrated-
circuit technology to produce a multiple of a small physical capaci-
tance C when a large capacitance is needed. The circuit in Fig. 10.41
can be used to multiply capacitance values by a factor up to 1000.
For example, a 10-pF capacitor can be made to behave like a 100-nF
capacitor.

Figure 10.41
Capacitance multiplier.

Practice Problem 10.14



438

Chapter 10 Sinusoidal Steady-State Analysis

In Fig. 10.41, the first op amp operates as a voltage follower, while
the second one is an inverting amplifier. The voltage follower isolates
the capacitance formed by the circuit from the loading imposed by the
inverting amplifier. Since no current enters the input terminals of the
op amp, the input current I; flows through the feedback capacitor.
Hence, at node 1,

Vi B Vo

= iec = joC(V;i — Vo) (10.3)

Applying KCL at node 2 gives
Vi-0 0-V,

or
Vo= —2V, (10.4)

Substituting Eq. (10.4) into (10.3) gives

. R
||:](1)C 1+El V|

o R
— = + = :
v jw(l Rl) C (10.5)

or

The input impedance is

Zi=—=—"— 10.6
i JoCq (10.6
where
R
Ceq = (1 + 2) C (10.7)
Ry

Thus, by a proper selection of the values of R, and Ry, the op amp cir-
cuit in Fig. 10.41 can be made to produce an effective capacitance
between the input terminal and ground, which is a multiple of the phys-
ical capacitance C. The size of the effective capacitance is practically
limited by the inverted output voltage limitation. Thus, the larger the
capacitance multiplication, the smaller is the alowable input voltage to
prevent the op amps from reaching saturation.

A similar op amp circuit can be designed to simulate inductance.
(See Prob. 10.89.) There is also an op amp circuit configuration to cre-
ate a resistance multiplier.

Example 10.15

Caculate Coq inFig. 1041 when R, = 10k, R, = 1 M, and C = 1nF.

Solution:
From Eg. (10.7)

R2> ( 1><106)
Cu=(1+2)Cc=(1+—-"")1nF=101nF
eq ( R 10 X 10°
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Determine the equivalent capacitance of the op amp circuit in Fig. 10.41
if Rg = 10kQ, R, = 10 M, and C = 10 nF.

Answer: 10 uF.

10.9.2 Oscillators

We know that dc is produced by batteries. But how do we produce ac?
One way is using oscillators, which are circuits that convert dc to ac.

An oscillator is a circuit that produces an ac waveform as output when
powered by a dc input.

The only external source an oscillator needs is the dc power sup-
ply. lronicaly, the dc power supply is usually obtained by converting
the ac supplied by the electric utility company to dc. Having gone
through the trouble of conversion, one may wonder why we need to
use the oscillator to convert the dc to ac again. The problem is that the
ac supplied by the utility company operates at a preset frequency of
60 Hz in the United States (50 Hz in some other nations), whereas
many applications such as electronic circuits, communication systems,
and microwave devices require internally generated frequencies that
range from O to 10 GHz or higher. Oscillators are used for generating
these frequencies.

In order for sine wave oscillators to sustain oscillations, they must
meet the Barkhausen criteria:

1. The overal gain of the oscillator must be unity or greater. There-
fore, losses must be compensated for by an amplifying device.

2. The overall phase shift (from input to output and back to the input)
must be zero.

Three common types of sine wave oscillators are phase-shift, twin T, and
Wien-bridge oscillators. Here we consider only the Wien-bridge oscillator.

The Wen-bridge oscillator is widely used for generating sinusoids
in the frequency range below 1 MHz. It is an RC op amp circuit with
only a few components, easily tunable and easy to design. As shown
in Fig. 10.42, the oscillator essentially consists of a noninverting ampli-
fier with two feedback paths: the positive feedback path to the nonin-
verting input creates oscillations, while the negative feedback path to
the inverting input controls the gain. If we define the impedances of
the RC series and parallel combinations as Zg and Z, then

1 j
Zs=R +—=R, — — 10.8
=R jwcl oo (108)
Ry
Z,=R . 10.9
The feedback ratio is

vV Z

2 . (10.10)

Practice Problem 10.15

| This corresponds to w = 27 f =
377 rad/s.

Negative feedback
path to control gain

: /

%%

+ ?
vy Ry —
a Positive feedback path

L to create oscillations

Figure 10.42
Wien-bridge oscillator.
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Substituting Egs. (10.8) and (10.9) into Eg. (10.10) gives
Vs R,
Vo j .
R2 + Rl I (1 + JLL)R2C2)
(,()C]_
wR2C1

o(RC; + RiC; + R,Cy) + j(w’RCiRC, — 1)

To satisfy the second Barkhausen criterion, V, must be in phase with
Vo, Which implies that the ratio in Eqg. (10.11) must be purely real.
Hence, the imaginary part must be zero. Setting the imaginary part
equal to zero gives the oscillation frequency w, as

0’RCRC, —1=0

(10.11)

or
1
= 10.12
“°” VRIRC,C, (1012
In most practical applications, R; = R, = Rand C; = C, = C, so that
1
we = RC = 2, (10.13)
or
P (10.14)
° " 2mRC '

Substituting Eq. (10.13) and R, = R, = R, C; = C, = Cinto Eq. (10.11)
yields

V, 1

— = 10.15
Vo 3 ( )
Thus, in order to satisfy the first Barkhausen criterion, the op amp must
compensate by providing a gain of 3 or greater so that the overall gain
is at least 1 or unity. We recall that for a noninverting amplifier,

Vo Ry (10.16)
Vs Ry
or
R = 2R, (10.17)

Due to the inherent delay caused by the op amp, Wien-bridge oscil-
lators are limited to operating in the frequency range of 1 MHz or less.

Example 10.16

Design a Wien-bridge circuit to oscillate at 100 kHz.

Solution:

Using Eg. (10.14), we obtain the time constant of the circuit as
1 1

27ty 27 x 100 X 10°

If we select R = 10k(}, then we can select C = 159 pF to satisfy

Eq. (10.16.1). Since the gain must be 3, R/R; = 2. We could select
Re = 20 k) while Ry = 10 k().

RC = =159 X 10 ¢ (10.16.1)
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In the Wien-bridge oscillator circuit in Fig. 10.42, let R, = R, = Practice Problem 10.16
25k, C; = C, = 1nF. Determine the frequency f, of the oscillator.

Answer: 63.66 kHz.

10.10 Summary

1. We apply nodal and mesh analysis to ac circuits by applying KCL
and KVL to the phasor form of the circuits.

2. In solving for the steady-state response of a circuit that has inde-
pendent sources with different frequencies, each independent
source must be considered separately. The most natural approach
to analyzing such circuits is to apply the superposition theorem. A
separate phasor circuit for each frequency must be solved inde-
pendently, and the corresponding response should be obtained in
the time domain. The overall response is the sum of the time
domain responses of all the individual phasor circuits.

3. The concept of source transformation is also applicable in the fre-
guency domain.

4. The Thevenin equivalent of an ac circuit consists of a voltage
source V1, in series with the Thevenin impedance Zy,.

5. The Norton equivalent of an ac circuit consists of a current source
Iy in paralel with the Norton impedance Zy (=Z+)-

6. PSpice is a simple and powerful tool for solving ac circuit prob-
lems. It relieves us of the tedious task of working with the com-
plex numbers involved in steady-state analysis.

7. The capacitance multiplier and the ac oscillator provide two typi-
cal applications for the concepts presented in this chapter. A capac-
itance multiplier is an op amp circuit used in producing a multiple
of a physical capacitance. An oscillator is a device that uses a dc
input to generate an ac output.

Review Questions

10.1 Thevoltage V, across the capacitor in Fig. 10.43is: 10.2 Thevaueof thecurrent | ,inthecircuit of Fig. 10.44 s

(@ 5/0°V (b) 7.071/45° v (@ 4/0° A (b) 2.4/-90° A
(c)7.071/-45°V  (d)5/—45°V (<) 0.6/0° A (d-1A
1Q
WA
. .
10/0° V -1 =—Vo 3/0°A j8Q = —j2Q
Figure 10.43 Figure 10.44

For Review Question 10.1. For Review Question 10.2.
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10.3 Using nodal analysis, the value of V, in the circuit of

Fig. 1045is:
(8 —24Vv (b) -8V
(o 8Vv (d) 24V

||

L _j3Q

VO
i6Q 4/90° A C%
L

Figure 10.45
For Review Question 10.3.

10.4 Inthecircuit of Fig. 10.46, currenti(t) is:
(@) 10 cost A (b) 10sint A (c)5cost A
(d)5sintA (e) 4.472 cos(t — 63.43°) A
1H 1F
10 cost V @ 1Q

Figure 10.46
For Review Question 10.4.

10.5 Refer to thecircuit in Fig. 10.47 and observe that the
two sources do not have the same frequency. The
current i,(t) can be obtained by:

(a) source transformation
(b) the superposition theorem

(c) PSpice

1H

sn2t VvV sin 10t V

Figure 10.47
For Review Question 10.5.

Sinusoidal Steady-State Analysis

10.6 For thecircuit in Fig. 10.48, the Thevenin
impedance at terminalsa-bis:

@10 () 05 - j0.5Q
(©)0.5 +jo50Q (d1+j20
@1-j20Q

1Q 1H

5cost V %U:
ob

Figure 10.48
For Review Questions 10.6 and 10.7.

10.7 Inthecircuit of Fig. 10.48, the Thevenin voltage at
terminalsa-bis:
(8) 3.535/—-45° V (b) 3.535/45° V
(c) 7.071/-45° V (d) 7.071/45° V
10.8 Refer to thecircuit in Fig. 10.49. The Norton
equivalent impedance at terminalsa-b is:
(@ —j4Q (b) —j2Q
(©j2Q (d) j4Q
-j2Q
u oa
6/0°V j4Q
ob

Figure 10.49
For Review Questions 10.8 and 10.9.

10.9 The Norton current at terminals a-b in the circuit of

Fig. 10.49is:
@1/0°A (b) 1.5 /—90° A
(c) 1.5/90° A (d) 3/90° A

10.10 PSpice can handle a circuit with two independent
sources of different frequencies.

(@) True (b) False

Answers; 10.1c, 10.2a, 10.3d, 10.4a, 10.5b, 10.6c,
10.7a, 10.8a, 10.9d, 10.10b.
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Problems

4 Problems

Section 10.2 Nodal Analysis
10.1 Determinei in the circuit of Fig. 10.50.

i 1Q
=AW

1Q

2cos 10tV 1F =

Figure 10.50

For Prob. 10.1.
10.2 Using Fig. 10.51, design a problem to help other

efJd students better understand nodal analysis.
2Q

N
4/0°V —-j5Q = j4Q§Vo

Figure 10.51

For Prob. 10.2.
10.3 Determine v, in the circuit of Fig. 10.52.

1
BF 2H

40
' s

10.6 DetermineV,in Fig. 10.55.

j10Q

200
2110
+
4V, &W ¢4.5&A 20Q 2 v,

Figure 10.55
For Prob