
www.dbebooks.com - Free Books & magazines

Fundamental Data Compression

To my students, family and friends

Fundamental Data
Compression

Ida Mengyi Pu

ELSEVIER

AMSTERDAM �9 BOSTON �9 HEIDELBERG �9 LONDON �9 NEW YORK �9 OXFORD ~ ' ~
PARIS �9 SAN DIEGO �9 SAN FRANCISCO �9 SINGAPORE �9 SYDNEY �9 TOKYO m B u t t e r w o r t h - H e i n e m a n n is a n i m p r i n t of E l s e v i e r

Butterworth-Heinemann is an imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Suite 400, Burlington, MA 01803

First published 2006

Copyright Q 2006, Ida M. Pu. All rights reserved

The right of Ida M. Pu to be identified as the author of this work has been asserted in
accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether or not
transiently or incidentally to some other use of this publication) without the written
permission of the copyright holder except in accordance with the provisions of the
Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England WIT 4LP.
Applications for the copyright holder's written permission to reproduce any part of this
publication should be addressed to the publisher

Permissions may be sought directly from Elsevier's Science and Technology Rights
Department in Oxford, UK: phone: (+44) (0) 1865 843830; fax: (+44) (0) 1865 853333;
e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the
Elsevier homepage (http://www.elsevier.com), by selecting 'Customer Support' and then
'Obtaining Permissions'

Bri t i sh L ib ra ry Ca ta logu ing in Pub l i ca t i on D a t a
A catalogue record for this book is available from the British Library

L ib ra ry of Congress Ca ta logu ing in Pub l i ca t i on D a t a
A catalogue record for this book is available from the Library of Congress

ISBN-13:978-0-7506-6310-6
ISBN-10:0-7506-6310-3

For information on all Butterworth-Heinemann publications visit our
web site at http://books.elsevier.com

Printed and bound in Great Britain

06 07 0809 10 1 0 9 8 7 6 5 4 3 2 1

C o n t e n t s

P r e f a c e x v i i

1 I n t r o d u c t i o n 1
1.1 D a t a compres s ion p rob l ems . 3

1.1.1 C o m p r e s s i o n . 3

1.1.2 D e c o m p r e s s i o n . 4

1.2 Lossless and lossy compress ion 5

1.3 Der iv ing a lgo r i t hmic so lu t ions . 7

1.4 Measu re of compres s ion qua l i ty 11

1.5 L imi t s on lossless compress ion . 13

S u m m a r y . 15

L e a r n i n g o u t c o m e s . 15

Exerc ises . 15

L a b o r a t o r y . 16

Asses smen t . 17

B ib l i og raphy . 17

2 C o d i n g s y m b o l i c d a t a 19

2.1 In fo rma t ion , d a t a and codes . 19

2.2 Symbol i c d a t a . 20

2.3 Var iab le l eng th codes . 23

2.3.1 Mode l l i ng . 23

2.3.2 Un ique decodab i l i t y . 24

2.3.3 Pref ix codes and b i n a r y t rees 25

2.3.4 Pref ix codes and un ique decodab i l i t y 27

2.3.5 Kra f t i nequa l i ty . 28

2.4 E l e m e n t a r y i n f o r m a t i o n t h e o r y 32

2.4.1 E n t r o p y . 34

2.4.2 O p t i m u m codes . 38

2.5 D a t a compres s ion in t e l e c o m m u n i c a t i o n 39

2.6 R e d u n d a n c y . 40

2.7 C o m p r e s s i o n a l g o r i t h m s . 43

S u m m a r y . 46

Lea rn ing o u t c o m e s . 46

vi CONTENTS

Exerc ises . 46

L a b o r a t o r y . 47

A s s e s s m e n t . 47

B i b l i o g r a p h y . 47

3 R u n - l e n g t h a l g o r i t h m s 49

3.1 R u n - l e n g t h . 49

3.2 H a r d w a r e d a t a c o m p r e s s i o n (H D C) 50

3.2.1 E n c o d i n g . 51

3.2.2 D e c o d i n g . 52

3.3 A l g o r i t h m Des ign . 52

S u m m a r y . 63

L e a r n i n g o u t c o m e s . 63

Exerc ises . 64

L a b o r a t o r y . 64

A s s e s s m e n t . 64

B i b l i o g r a p h y . 65

4 Huffman coding 67
4.1 S ta t i c H u f f m a n cod ing . 67

4.1.1 H u f f m a n a p p r o a c h . 69

4.1.2 H u f f m a n c o m p r e s s i o n a l g o r i t h m 71

4.1.3 H u f f m a n d e c o m p r e s s i o n a l g o r i t h m 74

4.2 S h a n n o n - F a n o a p p r o a c h . 75

4.2.1 S h a n n o n - F a n o a l g o r i t h m 77

4.3 O p t i m a l H u f f m a n codes . 81

4.4 I m p l e m e n t a t i o n efficiency . 82

4.5 E x t e n d e d H u f f m a n cod ing . 86

S u m m a r y . 87

L e a r n i n g o u t c o m e s . 87

Exerc ises . 88

L a b o r a t o r y . 89

A s s e s s m e n t . 89

B i b l i o g r a p h y . 90

5 A d a p t i v e Huffman coding 91

5.1 A d a p t i v e a p p r o a c h . 91

5.2 C o m p r e s s o r . 92

5.2.1 E n c o d i n g a l g o r i t h m . 94

5.3 D e c o m p r e s s o r . 95

5.3.1 D e c o d i n g a l g o r i t h m . 97

5.4 D i s a d v a n t a g e s of H u f f m a n a l g o r i t h m s 98

S u m m a r y . 98

L e a r n i n g o u t c o m e s . 98

Exerc ises . 99

L a b o r a t o r y . 99

CONTENTS vii

A s s e s s m e n t . 99

B i b l i o g r a p h y . 99

6 A r i t h m e t i c c o d i n g 1 0 1

6.1 P r o b a b i l i t i e s a n d s u b i n t e r v a l s . 101

6.2 M o d e l a n d c o d e r s . 103

6.3 S i m p l e case . 107

6.3.1 E n c o d i n g . 108

6.3.2 D e c o d i n g . 109

6.4 General case 109

6.4.1 Compression algorithm Iii

6.4.2 Decompression algorithm 112

6.4.3 Unique decodability 112

6.4.4 Advantages of using fractions 113

6.4.5 R e n o r m a l i s a t i o n . 113

S u m m a r y . 114

L e a r n i n g o u t c o m e s . 114

E x e r c i s e s . 114

L a b o r a t o r y . 115

A s s e s s m e n t . 115

B i b l i o g r a p h y . 115

7 D i c t i o n a r y - b a s e d c o m p r e s s i o n 1 1 7

7.1 P a t t e r n s in a s t r i n g . 118

7.2 L Z W c o d i n g . 119

7.2.1 E n c o d i n g . 119

7.2.2 D e c o d i n g . 125

7.3 L Z 7 7 f ami ly . 129

7.3.1 P r e f i x m a t c h . 129

7.3.2 A t y p i c a l c o m p r e s s i o n s t e p 130

7.3.3 D e c o m p r e s s i o n a l g o r i t h m 134

7.3.4 I m p l e m e n t a t i o n issues . 136

7.4 L Z 7 8 f ami ly . 136

7.4.1 E n c o d i n g . 137

7.4.2 D e c o d i n g . 138

7.5 A p p l i c a t i o n s . 139

7.6 C o m p a r i s o n . 140

S u m m a r y . 140

L e a r n i n g o u t c o m e s . 141

E x e r c i s e s . 141

L a b o r a t o r y . 142

A s s e s s m e n t . 142

B i b l i o g r a p h y . 144

viii CONTENTS

8 P r e d i c t i o n a n d t r a n s f o r m s 145

8.1 P red i c t i ve a p p r o a c h . 145

8.1.1 E n c o d i n g . 148

8.1.2 Decod ing . 149

8.2 Move to F ron t cod ing . 149

8.3 Bur rows -Whee l e r T r a n s f o r m (B W T) 151

8.4 T r a n s f o r m a p p r o a c h . 156

8.4.1 O r t h o g o n a l t r a n s f o r m . 161

8.5 Disc re te Cosine T r a n s f o r m (D C T) 163

8.6 S u b b a n d coding . 164

8.7 Wave le t t r a n s f o r m s . 165

8.7.1 Sca le -vary ing basis func t ions 166

S u m m a r y . 167

L e a r n i n g o u t c o m e s . 167

Exerc ises . 168

L a b o r a t o r y . 169

Asse s smen t . 170

B ib l i og raphy . 170

9 A u d i o c o m p r e s s i o n 171

9.1 Mode l l ing sound . 171

9.2 S a m p l i n g : 173

9.2.1 Nyqu i s t f r equency . 175

9.3 Q u a n t i s a t i o n . 176

9.3.1 Scalar q u a n t i s a t i o n . 178

9.3.2 U n i f o r m quan t i s e r s . 179

9.3.3 N o n - u n i f o r m quan t i s e r s 180

9.4 C o m p r e s s i o n p e r f o r m a n c e . 181

9.5 Speech compres s ion . 183

9.5.1 Speech coders . 183

9.5.2 P red i c t i ve a p p r o a c h e s . 184

9.5.3 Silence compres s ion . 184

9.5.4 Pu l se code m o d u l a t i o n (A D P C M) 185

9.6 Music compres s ion . 185

9.6.1 S t r e a m i n g audio . 185

9.6.2 M I D I . 186

S u m m a r y 186

L e a r n i n g o u t c o m e s . 186

Exerc ises . 187

A s s e s s m e n t . 188

B i b l i o g r a p h y . 188

CONTENTS ix

10 I m a g e c o m p r e s s i o n 189

10.1 I m a g e d a t a . 189

10.1.1 Reso lu t i on . 190

10.2 B i t m a p images . 191

10.2.1 Disp lay ing b i t m a p images 191

10.3 Vector g raph ics . 192

10.3.1 S to r ing g raph ic c o m p o n e n t s 192

10.3.2 Di sp lay ing vec tor g raph ic images 193

10.4 B i t m a p and vec tor g raph ics . 193

10.5 Colour . 194

10.5.1 R G B colour mode l . 194

10.5.2 R G B r e p r e s e n t a t i o n and colour d e p t h 195

10.5.3 LC r e p r e s e n t a t i o n . 195

10.6 Class i fying images by colour . 196

10.7 Class i fy ing images by a p p e a r a n c e 197

10.8 I m a g e compres s ion . 198

10.8.1 Lossless image compress ion 199

10.8.2 Greysca l e and colour images 201

10.8.3 Lossy compress ion . 204

10.8.4 J P E G (still) image compres s ion s t a n d a r d 206

10.8.5 I m a g e file fo rma t s . 206

S u m m a r y . 207

L e a r n i n g o u t c o m e s . 207

Exerc ises . 208

L a b o r a t o r y 209

Asses smen t . 210

B i b l i o g r a p h y . 210

11 V i d e o c o m p r e s s i o n 211

11.1 A n a l o g u e v ideo . 211

11.2 Dig i ta l v ideo . 212

11.3 Mov ing p ic tu res . 212

11.4 M P E G . 213

11.5 Basic pr inc ip les . 213

11.6 T e m p o r a l compress ion a lgo r i t hms 213

11.7 G r o u p of p ic tu res . 215

11.8 M o t i o n e s t i m a t i o n . 216

11.9 W o r k in different v ideo fo rma t s 216

S u m m a r y . 217

L e a r n i n g o u t c o m e s . 217

Exerc ises . 217

Asses smen t . 217

B i b l i o g r a p h y . 217

A p p e n d i c e s 2 1 9

x C O N T E N T S

A Brie f history 219

B Matr ices 223
B.1 Spec ia l m a t r i c e s . 223

B.2 M a t r i x o p e r a t i o n s . 225

B.3 D e t e r m i n a n t s . 226

B.4 O r t h o g o n a l m a t r i x . 227

B.4.1 I n n e r p r o d u c t . 228

B.4.2 Vec to r space . 229

C Fourier series and harmonic analysis 231
C.1 Four i e r series 231

C.2 C o n v e r g e n t series . 232

C.2.1 E u l e r ' s i d e n t i t y . 233

D P s e u d o c o d e nota t ion 235
D.1 Values . 235

D.2 T y p e s . 235

D.3 O p e r a t i o n s . 235

D.4 P r i o r i t y . 236

D.5 D a t a s t r u c t u r e s . 236

D.6 O t h e r r e se rved words . 236

D.7 C o n t r o l k e y w o r d s . 236

D.8 E x a m p l e s of s e q u e n t i a l s t r u c t u r e s 237

E N o t a t i o n 239

Index 2 4 1

List of Figures

1.1

1.2

1.3

1.4

1.5

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Compressor and decompressor . 4

Coder and decoder . 5

Lossless compression algori thms 6

Lossy compression algori thms . 6

Mapping source files to their compressed version 14

Da ta in compression . 21

Da ta in decompression . 22

Symbolic da ta in compression . 23

Code and source da ta . 24

A prefix code . 25

Prefix proper ty and binary trees 27

Not a prefix code but uniquely decodable 28

Two prefix codes . 29

Impossible lengths (a) and possible lengths (b) for a prefix c o d e . 29

Self-information . 34

Communica t ion . 39

Pixels with similar colours . 42

A his togram within certain ranges 42

Some mat r ix da ta gathered along a line 43

A sequence of car toon frames . 43

Static compression system . 44

Adapt ive compression system . 45

Three consecutive variables Sip], S[q] and Sir] 57

Building a Huffman tree . 70

A Huffman tree . 71

Deriving a Huffman code . 73

Two canonical and minimum-var iance trees 73

Huffman decompression process 74

A binary tree const ructed from the root 76

Building an equivalent Shannon-Fano tree 78

xi

xii L I S T OF F I G U R E S

5.1

5.2

An example of adapt ive Huffman encoding 93

An example of adapt ive Huffman decoding 96

6.1

6.2

6.3

6.4

6.5

6.6

Encoding for two symbols . 102

Encoding for one symbol . 104

Encoding for two symbols . 104

Decoding solut ion for two symbols 106

Encoding for a 3-symbol a lphabe t 110

General case . 111

7.1

7.2

7.3

His tory buffer and Lookahead buffer 129

A ma tch is found with an offset length 12 and ma tch length 9 . . 131

S [1 - . . N] for LZ77 encoding . 133

8.1

8.2

8.3
8.4

8.5

8.6

8.7

8.8

8.9

Frequency d is t r ibut ion of A . 146

Plot of arrays A and B . 147

The frequency d is t r ibut ion for A (a) and B (b) 147

A circular shift to the left . 152

Finding the original s t r ing S = sl s 2 . " s n from L 154

Chain relat ionship . 155

Finding the original s t r ing S = s l s 2 . . . s n from L via F 155

Finding the original s t r ing S from L 157

From x -y domain to x~-y I domain 158

8.10 Before t r ans fo rm . 159

8.11 After t r ans fo rm . 160
8.12 Compar i son of da t a d is t r ibut ion before and after t r ans fo rm . . . 161

8.13 A rapidly changing source . 164
8.14 Showing a slow movement of sin(x) 165
8.15 A signal whose frequency varies according to t ime 166

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

Three sine waves wi th different frequencies 172

Plot s(t) = sin(880rrt) . 173
Plot s(t) = 0.1 sin(2rrt) + 0.3 sin(87rt) - 0.25 sin(20r~t) 174

Frequency spec t rum d iagram . 174

Samples at t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 175

Samples at t = 1 , . . . , 10 . 175

Samples at t = 1 , . . - , 100 . 176

Quan t i sa t ion samples from Figure 9.6 177

Average marks and degree classes 177

9.10 Quan t i sa t ion on (1.1, 2, 3.3, 6.78, 5.48, 4, 3.333, 2.2, 2, 3, 2.1) . . 178

9.11 Two types of scalar quant isers . 179

9.12 Uniform scalar quant iser . 179

9.13 Quan t i sa t ion error . 180
9.14 Power law compand ing functions when p = 0.2, 0.3, 0.4, 0.5, 0.7 . 181

9.15 Audio encoder (a) and decoder (b) 182

9.16 A frequency spec t rum d iagram 187

LIST OF FIGURES xiii

10.1 Image pixels . 190
10.2 Using a paint p rogram . 191
10.3 An enlarged image . 192
10.4 A typical image compression sys tem 198
10.5 A zig-zag scan . 200

10.6 The Capon model for binary images 200
10.7 The RGB colour space . 208

11.1 A sequence of original frames . 214
11.2 Encode frames as I-, P- and B-pictures 214
11.3 Decoded and displayed from I-, P- and B-pictures 215
11.4 G O P s (1) I B B P B B , (2) I B B P B B P B B , (3) I B B P B B P B B P B B . . . 215

C.1 (1) f(t), (2)-(5) a few Fourier te rms 232

This Page Intentionally Left Blank

List of Algorithms

1.1 Sequential search . 3

3.1 m y H D C encoding . 58

3.2 (Func t ion)beg in_ run () . 58

3.3 (Procedure ' shift1() . 59

3.4 (Procedure ' shift2() . 59
3.5 (Procedure ' find_longest_run() . 59

3.6 (Procedure ' f ind_longest_nonrun() 60
3.7 (Procedure ' ou tpu t_run(leng th , symbol) 60
3.8 (Procedure ' ou tpu t_nonrun(leng th , word) 60
3.9 m y H D C decoding . 61
3.10 (P r o c e d u r e) o u t p u t _ r u n () . 61
3.11 (P r o c e d u r e) o u t p u t _ n o n r u n () . 61

4.1 Huffman encoding ideas . 71
4.2 Huffman encoding . 72

4.3 Huffman decoding ideas . 75

4.4 Huffman decoding . 75

4.5 Shannon-Fano encoding ideas . 79
5.1 Adapt ive Huffman encoding . 94
5.2 (F u n c t i o n) u p d a t e _ t r e e () . 94
5.3 Adapt ive Huffman decoding . 97
5.4 (Func t ion)huf fman_nex t_sym() 97
5.5 (Funct ion) update_t ree . 97
6.1 Encod ing for b inary source . 108
6.2 Decoding for b inary source . 109
6.3 Ar i thmet ic encoding . 112

6.4 Ar i thmet ic decoding . 112

7.1 LZW encoding . 120

7.2 LZW decoding . 125

7.3 LZ77 encoding . 133

7.4 LZ77 decoding . 135

7.5 LZ78 encoding . 137

7.6 LZ78 decoding . 138
7.7 LZSS encoding . 142
7.8 LZ78-1 decoding . 143
7.9 Ano the r version of L Z 7 8 / L Z W 143

XV

xvi LIST OF ALGORITHMS

8.1 B W T encoding . 169

8.2 B W T decoding . 169

Preface

This book aims to introduce you to data compression, a fascinating research area
in computer science as well as in telecommunication and computer networks of
electronic engineering.

The book sets out a sequence for you to study the subject efficiently. It lays
a good foundation for your professional work or advanced studies in the future.
Topics include various useful compression techniques for text, audio, image,
video data and international standards. I hope to show you the significance of
some compression ideas and technologies, and, more importantly, to stimulate
and encourage you to design your own compression algorithms.

We shall, in this text,

�9 discuss important issues in data compression

�9 study a variety of data compression techniques for compression of binary,
text, sound and image data in digital forms

�9 learn how to design and implement compression algorithms.

We shall study some existing compression standards and compression utilities
available. You will not only broaden the knowledge of compression techniques
but also appreciate the mathematical impact on the evolution of the technology.
You will also benefit from the development of your own transferable skills such
as problem analysis and problem solving. Your skills in algorithm design and
programming can also be improved by attempting the exercises, laboratory work
and assessment questions at the end of each chapter.

I write this text book for students reading for their degrees as well as for
anyone who is interested in data compression. Data compression is such a
fruitful research area that the literature is extremely rich. However, I want to
keep the contents of this book concise so the coverage and length of studies are
suitable for a university single academic term (30 hours in 10 weeks) module.
I want to give the reader many examples and illustrations to ease the learning
process. I also want to include various exercises and implementation tasks to
encourage readers' creative activities.

This book, therefore,

�9 looks at various topics in data compression from an algorithm designer's
point of view

xvii

xviii PREFACE

�9 is focused on the algorithmic issues which were overlooked in the past

�9 invites the reader to engage more in the teaching/learning process

�9 provides opportunities for the reader to apply the skills and knowledge
from other modules, such as data structures, algorithm design, program-
ruing, software developments, internet computing, to name just a few.

Other considerations and arrangements include:

�9 following an order from simple to complex for sections and chapters

�9 covering certain theoretical foundations for data compression

�9 introducing not only the data compression techniques but also the ideas
behind them

�9 focusing on algorithms and stimulating new ideas

�9 including exercises, laboratory problems, implementation hints, bibliogra-
phy for further reading and assessment questions for each chapter.

Each data compression technique is viewed as a solution to a certain algo-
rithmic problem in the book. The learning process can be viewed as a process of
learning how to derive algorithmic solutions to various compression problems.

Bibl iography

There are few textbooks on data compression for teaching purposes. However,
a huge number of research papers and websites are dedicated to the subject.

To focus on the fundamentals, only a selective list is provided in the book
for further reading. However, it should not be difficult for interested readers
to find more detailed information on the Internet. Otherwise, the following key
words can be used to start your search for various topics:

data compression
compression algorithm
information theory
run-length
Huf fman coding
arithmetic coding
LZT7, LZ78, LZW
Burrows-Wheelers t r a n s f o r m

Web page for the book
There will be an auxiliary website to the book (contact the publisher for details).
It is a good idea to visit the page from time to time for updated information.

In addition to the usual teaching materials such as the texts or news, you
may find our demonstration and experiment pages interesting. You may also
check your understanding on certain concepts or verify your exercise results.

PREFACE xix

Get involved
The best way to learn a new subject is to get involved as much as possible. For
example, you may like to share your own demonstration programme with others
in the world. Check the book web page on how to contribute.

Prerequisites
This book is fairly self-contained. Appendices provide you with further mathe-
matics background. However, there are some prerequisites including knowledge
of elementary mathematics and basic algorithmics. You may find the issues in
this book easier if you have reviewed certain topics in mathematics at under-
graduate level, such as sets, probability theory, basic computation on matrices
and simple trigonometric functions (e.g. sin(x) and cos(x), where x E [0, 1]), and
topics in algorithm design, such as data structures and computational complexity.
It would be advantageous if you are fluent with one of computer programming
languages.

For those who have neither the background nor the time to prepare them-
selves for the subject, we recommend that you follow each chapter closely since
necessary mathematics or algorithmic foundations are discussed anyway.

Study methods
The highlight of each university academic year is to share the joy of my students'
success in their studies. While different methods work better for different people,
some methods seem to work for most people.

For example, one effective way to study compression algorithms is to trace
the steps in each algorithm and at tempt an example yourself. It is even better
if you can follow the algorithmic ideas and try to invent your own.

Another effective way to study compression algorithms is to implement them
and run experiments. Exercise and laboratory questions at the end of each
chapter may direct you to various starting points for your experiments. They
all together provide good help to your understanding.

Based on experience, we suggest and recommend the following practice:

1. Spend two hours on revision or exercise for every hour of study on new
material.

2. Use examples to increase your understanding of new concepts, issues and
problems.

3. Ask the question: 'Is there a better solution to the current problem?'

4. Use the Contents pages to comfort yourself with the scope of the subjects,
and refer to the Learning Outcomes at the end of each chapter to clarify
the learning tasks.

xx PREFACE

Experts have predicted that more and more people will be engaged in jobs
involving certain multimedia application in the future. As more images and
audio data are required to be processed, data compression techniques will con-
tinue to grow and evolve. Like any technology, what you have learnt today can
become outdated tomorrow. We therefore recommend that you focus on the
important principles of the subject and gain a good understanding of the issues
in the field of data compression. The experience could be very useful for your
future career.

Exercises , laboratory and assessment

The exercises, laboratory and assessment questions at the end of each chapter
are set for you to check your understanding and to practise your programming
skills.

It is useful for you to have access to a computer so you can implement the
algorithmic ideas learnt from the book. There is no restriction on the com-
puter platform nor a requirement for a specific procedural computer language.
Our internal students at the University of London have gained experience in
implementing various compression algorithms in Java, C, C-/--/-, Python, Visual
Basic, MatLab or even Pascal.

Although implementation of an algorithm remains pretty much an art among
university students today, you may like to follow a more systematic approach
in your implementation in order to develop a 'good programming style':

1. Analyse and understand the algorithm.

2. Derive a general plan for the implementation.

3. Develop the program blocks.

4. Test or justify the correctness of the programs.

5. Comment on the limitations of the programs.

Your implementation details should be documented including a section on
each of the above stages of work.

How to use this book

The book provides guidance for further development of your interests as well
as further reading. However, you are not expected to read every item in the
Bibliography section to enable individual topics to be studied in depth.

This book is written to invite you to get involved. The learning process
requires the input of your own experiments and experience. Therefore, you are
encouraged to, if possible, ask questions, pursue articles in research journals,
browse the relative websites, attend conferences or trade shows etc., and in

PREFACE xxi

general pay attention to what is happening in the computing world. Best of all,
try your own experiments and invent your own algorithms.

The rest of this book is organised as follows:
Chapter 1 discusses essentials, definitions and algorithmic concepts.
Chapter 2 introduces the information theory and enhances the concepts and

issues in data compression.
Chapter 3 introduces an intuitive compression method: run-length coding.

This simple algorithm serves as an example of how to design a compression
algorithm in a systematic way.

Chapter ~ discusses the preliminaries of data compression and reviews the
main idea of Huffman coding and Shannon-Fano coding. This serves as an
example to demonstrate how to apply the information theory to analyse the
compression algorithm, and how to address the efficient implementation issues.

Chapter 5 introduces adaptive Huffman coding.
Chapter 6 studies issues of arithmetic coding.
Chapter 7 covers dictionary-based compression techniques.
Chapter 8 introduces prediction and transforms. This serves as a foundation

for the next three chapters.
Chapter 9 discusses one-dimensional wave signals. This serves as an appli-

cation of prediction and transforms in the previous chapter.
Chapter 10 discusses image data and still image compression. This serves as

an application of the prediction and transform techniques on two-dimensional
data.

Chapter 11 introduces video compression methods.
Appendix A highlights the milestones in the area of data compression.
Appendix B reviews the basics on matrix operations.
Appendix C covers briefly the necessary mathematics for Fourier transforms.
Appendix D provides the guidance on the pseudocode in algorithm design.
And finally,
Appendix E gives a list of notations used in the book.

Y o u r c o m m e n t s

If you have any comments about this book, either general or specific, favourable
or unfavourable, you are very welcome to send them to i . pu@gold, ac. uk.

G o o d luck!

I.M. Pu
London

September 2005

Acknowledgements
I would like to take the opportunity to thank the many people who helped
me in preparation of the book: David Hatter for initialising this project and
encouragement; the reviewers Professors Maxime Crochemore, Bill Smyth, and
an anonymous professional for valuable comments; the proof reader Dr Yuji
Shen for helpful comments and suggestions; the editors and publishing team
Alfred Waller, Melissa Read, Hayley Salter, Deb Puleston, and Jodi Cusack, for
constant support.

I would also like to thank all the researchers working on original ideas of data
compression for making this research area extremely interesting and challenging.

Chapter 1

I n t r o d u c t i o n

Data compression is, in the context of computer science, the science (and art)
of representing information in a compact form. It has been one of the critical
enabling technologies for the ongoing digital multimedia revolution for decades.

Most people frequently use data compression software such as zip, gz ip and
WinZip (and many others) to reduce the file size before storing or transferring
it in media. Compression techniques are embedded in more and more software
and data are often compressed without people knowing it.

Data compression has become a common requirement for most application
software as well as an important and active research area in computer science.
Without compression techniques, none of the ever-growing Internet, digital TV,
mobile communication or increasing video communication techniques would
have been practical developments.

Typical examples of application areas that are relevant to and motivated by
data compression include

�9 personal communication systems such as facsimile, voice mail and tele-
phony

�9 computer systems such as memory structures, disks and tapes

�9 mobile computing

�9 distributed computer systems

�9 computer networks, especially the Internet

�9 multimedia evolution, imaging, signal processing

�9 image archival and videoconferencing

�9 digital and satellite TV.

Practical problems have motivated various researches in data compression.
Equally, research in data compression has also been based on or stimulated
other new subject areas. Partly due to its broad application territory, data
compression overlaps with many science branches and can be found in many

2 CHAPTER 1. INTRODUCTION

different subject areas. For example, you will see chapters or sections dedicated
to data compression in books on

�9 information theory

�9 coding theory

�9 computer networks and telecommunications

�9 digital signal processing

�9 image processing

�9 multimedia

�9 steganography

�9 computer security.

The language used in unrelated disciplines can be substantially different. In
this book, the word data is in general used to mean the information in digital
form on which computer programs operate, and compression means a process
of removing redundancy in the data. By 'compressing data' , we actually mean
deriving techniques or, more specifically, designing efficient algorithms to:

�9 represent data in a less redundant fashion

�9 remove the redundancy in data

�9 implement compression algorithms, including both compression and de-
compression.

The interests and goals also tend to be diverse among people with different
disciplinary backgrounds. This book focuses on the algorithmic aspects of data
compression. We view data compression as a process of deriving algorithmic
solutions to a compression problem. An algorithmic problem is a general ques-
tion to be answered by an ordered sequence of instructions. The instruction
sequence is regarded as a sequential algorithm for the problem as well as the
solution to the problem. The algorithm allows a solution to any instance of the
problem to be derived by execution of the algorithm. For example, a searching
problem may be defined as follows:

Given a set s of elements and a target x, is the target x in the set?

This question is 'general' because it includes many instances. The set can
contain any collection of elements and the target x can be any one of the same
type. For instance, if s = (12, 34, 2, 9, 7, 5), is x = 7 in the list? The algorithmic
solution to this problem is to find an algorithm which derives an answer to every
instance of the problem. A native algorithm would be the so-called sequential
search as in Algorithm 1.1. The string is stored in a one-dimensional array L[i].

The algorithm is written in pseudocode that is close enough to most con-
ventional high-level computer languages. The advantage of using pseudocode is
to allow the algorithm design to concentrate on the algorithmic ideas instead
of being distracted by syntax details of a certain computer language. We shall
present most algorithms in the book in pseudocode (see Appendix D).

1.1. DATA C O M P R E S S I O N P R O B L E M S 3

A l g o r i t h m 1.1 Sequential search

INPUT: element list L and Target
O U T P U T : index where Target is found or 'not found'

1: read Target; set index i to 1
2: while L[i] -r Target and not end of the list do
3: i + - - i + 1
4: end while
5. if L[i] - target t h e n
6: return i
7: else
8: output 'not found'
9: end if

1.1 Data compression problems
A compression problem involves finding an efficient algorithm to remove various
redundancy from a certain type of data. The general question to ask here would
be, for example, given a string s, what is the alternative sequence of symbols
which takes less storage space? The solutions to the compression problems would
then be the compression algorithms that will derive an alternative sequence of
symbols which contains fewer number of bits in total, plus the decompression
algorithms to recover the original string.

How many fewer bits? It would depend on the algorithms but it would also
depend on how much the redundancy can be extracted from the original data.
Different data may require different techniques to identify the redundancy and
to remove the redundancy in the data. Obviously, this makes the compres-
sion problems 'hard' to solve because the general question is difficult to answer
easily when it contains too many instances. Fortunately, we can take certain
constraints and heuristics into consideration when designing algorithms.

There is no 'one size fits all' solution for data compression problems. In data
compression studies, we essentially need to analyse the characteristics of the
data to be compressed and hope to deduce some patterns in order to achieve
a compact representation. This gives rise to a variety of data modelling and
representation techniques, which are at the heart of compression techniques.

1 . 1 . 1 C o m p r e s s i o n

Data compression can be viewed as a means for efficient representation of a
digital source of data such as text, image, sound or any combination of all these
types such as video. The goal of data compression is to represent a source in
digital form with as few bits as possible while meeting the minimum requirement
of reconstruction of the original.

In the context of this book, we regard data compression (or compression
in short) as algorithms to achieve the compression goals on the source data.

4 CHAPTER1. INTRODUCTION

Behind each algorithm there are ideas, mathematical models or implementation
techniques to achieve the compression.

When working on compression problems, we need to consider the efficiency
aspect of the algorithms as well as the effectiveness of compression. Intuitively,
the behaviour of a compression algorithm would depend on the data and their
internal structure. The more redundancy the source data has, the more effective
a compression algorithm may be.

1 .1 .2 D e c o m p r e s s i o n

Any compression algorithm will not work unless a means of decompression is also
provided due to the nature of data compression. When compression algorithms
are discussed in general, the word compression alone actually implies the context
of both compression and decompression.

In this book, we sometimes do not even discuss the decompression algorithms
when the decompression process is obvious or can be easily derived from the
compression process. However, as a reader, you should always make sure that
you know the decompression solutions as well as the ones for compression.

In many practical cases, the efficiency of the decompression algorithm is of
more concern than that of the compression algorithm. For example, movies,
photos, and audio data are often compressed once by the artist and then the
same version of the compressed files is decompressed many times by millions of
viewers or listeners.

Alternatively, the efficiency of the compression algorithm is sometimes more
important. For example, the recording audio or video data from some real-time
programs may need to be recorded directly to a limited computer storage, or
transmitted to a remote destination through a narrow signal channel.

Depending on specific problems, we sometimes consider compression and
decompression as two separate synchronous or asynchronous processes.

Figure 1.1 shows a platform based on the relationship between compression
and decompression algorithms.

input ~ Compression ~ output
source file algorithm compressed file

input ~ (Decompression ~ output
compressed file algorithm decompressed file

Figure 1.1: Compressor and decompressor

A compression algorithm is often called compressor and the decompression
algorithm is called decompressor.

1.2. L O S S L E S S A N D L O S S Y C O M P R E S S I O N 5

The compressor and decompressor can be located at two ends of a commu-
nication channel, at the source and at the destination respectively. In this case,
the compressor at the source is often called the coder and the decompressor at
the destination of the message is called the decoder. Figure 1.2 shows a plat-
form based on the relationship between a coder and decoder connected by a
transmission channel.

source ~ ~ Coder "]___,~. ccoded message
(original message) ~ f::v /)

:Z2727.12 " "
..---"- _ ~fi~s.-~-s.~x-~ g2~a-ane~[

~" s'""" . - _ (Decoder ") ~ destination
....... ~) - (decoded message)

Figure 1.2: Coder and decoder

There is no substantial difference between the platform in Figure 1.1 and
that in Figure 1.2 in terms of the compression algorithms discussed in this book.
However, certain concepts may be discussed and understood more conveniently
at one platform than the other. For example, it might be easier to introduce the
information theory in Chapter 2 based on the coder-decoder platform. Then
again, it might be more convenient to discuss the symmetric properties of a
compression algorithm and decompression algorithm based on the compressor-
decompressor platform.

1.2 Lossless and lossy compression
There are two major families of compression techniques when considering the
possibility of reconstructing exactly the original source. They are called lossless
and lossy compression.

L o s s l e s s compression
A compression approach is lossless only if it is possible to exactly reconstruct the
original data from the compressed version. There is no loss of any information
during the compression I process.

For example, in Figure 1.3, the input string AABBBA is reconstructed after
the execution of the compression algorithm followed by the decompression al-
gorithm.

Lossless compression is called reversible compression since the original data
may be recovered perfectly by decompression.

1This general term should be read as both compression and decompression.

6 C H A P T E R 1. I N T R O D U C T I O N

Compression
AABBBA algorithm 000001101101100

000001101101100
Decompression

algorithm ~ -4~AABBBA
Figure 1.3: Lossless compression algorithms

Lossless compression techniques are used when the original data of a source
are so important that we cannot afford to lose any details. Examples of such
source data are medical images, text and images preserved for legal reason, some
computer executable files, etc.

Lossy compression
A compression method is lossy if it is not possible to reconstruct the original
exactly from the compressed version. There are some insignificant details that
may get lost during the process of compression. The word insignificant here
implies certain requirements to the quality of the reconstructed data.

Figure 1.4 shows an example where a long decimal number becomes a shorter
approximation after the compression-decompression process.

 ~176
0001100111001

0001100111001
Decompression

algorithm
3.14

Figure 1.4: Lossy compression algorithms

Lossy compression is called irreversible compression since it is impossible to
recover the original data exactly by decompression.

Approximate reconstruction may be desirable since it may lead to more
effective compression. However, it often requires a good balance between the
visual quality and the computation complexity.

Data such as multimedia images, video and audio are more easily compressed
by lossy compression techniques because of the way that human visual and

1.3. D E R I V I N G A L G O R I T H M I C S O L U T I O N S 7

hearing systems work.
One important motivation for data compression is to allow some efficient

transmission of the data via a transmission channel. It is convenient, for the
rest of this section, to consider the coder-decoder platform that we mentioned
in the previous section. Obviously, the amount of data was restricted by the
capacity of the transmission media, which is called bandwidth and measured in
bits per second.

Considering the effect of lossy compression, there are two kinds of classic
compression problems of interest, namely

�9 D i s t o r t i o n - r a t e p r o b l e m Given a constraint on transmitted data rate
or storage capacity, the problem is to compress the source file at, or below,
this rate but at the highest fidelity possible.

Compression in areas of voicemail, digital cellular mobile radio and video-
conferencing are examples of distortion-rate problems.

�9 R a t e - d i s t o r t i o n p r o b l e m Given the requirement to achieve a certain
pre-specified fidelity, the problem is to meet the requirements with as few
bits per second as possible. Compression in areas of CD quality audio and
motion picture quality video are examples of rate-distortion problems.

1.3 Deriving algorithmic solutions
There are many ways to design algorithms. A systematic approach including
eight stages can be summarised as follows:

1. Description of the problem

2. Mathematical modelling

3. Design of the algorithm

4. Verification of the algorithm

5. Estimation of the computational complexity

6. Implementation

7. Program testing

8. Documentation.

S t a g e 1: D e s c r i p t i o n o f t h e p r o b l e m

A compression problem, from the algorithmic point of view, is to find an effective
and efficient algorithm to remove various redundancy from certain types of data.

In this stage, we want to understand the problem precisely and ask the
right questions. For example, we want to know what the format of the data is
and what the restrictions to the output might be. We need to understand the
problem well enough to be able to write a precise statement of the problem.
If the problem is vague, we may use methods such as divide and conquer to

8 C H A P T E R 1. I N T R O D U C T I O N

divide the problem into subproblems, and to divide the subproblems into their
subproblems repeatedly until every subproblem is manageable.

The deliverables of this stage are a specification of the problem which should
include details about the input and output of the algorithm. For example, we
would decide if the problem is lossless or lossy in nature. For lossy compression,
we would consider whether the problem can be classified as a distortion-rate or
rate-distortion problem.

Stage 2: Mathematical modelling
Modelling is a process of setting up an environment to allow the interested
variables to be observed or certain behaviour of a system to be explored. It
is a formalisation and extension to the description of a problem. Rules and
relationships are often set in mathematical formula.

Modelling is a critical stage of algorithm design. A model can sometimes
decide immediately the approaches of the algorithm. As we can see from later
chapters, a good model can lead to efficient algorithmic solutions. Certain
preconditions are usually assumed and the environment is described in mathe-
matical terms. In data compression, models are used to describe a source data.

For compression problems, modelling can be viewed as a process of identi-
fying the redundant characteristics of the source data, and finding an effective
way to describe them. The model is the embodiment of what the compression
algorithm knows about the source. It is like a platform on which every com-
pression algorithm has to make use of some knowledge in order to perform. For
example, the Huffman algorithm is based on a probability distribution of the
source alphabet.

Some problems, however, are not easy and even sometimes impossible to
model. Researchers have constantly been looking for better models for vari-
ous compression problems. Mathematical modelling is an important branch in
mathematics, statistics and computer science as a popular research area in its
own right. In data compression, as one of its application areas, commonly used
mathematical models have been developed over the years. Hence in this stage,
priority may be given to finding a good model instead of actually building a
new one from scratch.

The commonly used models for data compression can be classified as follows:

1. Physical model: using known physics of the source such as certain data
generation processes or empirical observation

2. Probability models: using probability theory to describe the source

3. Markov model: using Markov chain theory to model the source

4. Composite model: describing the source as a combination of several dif-
ferent kinds and using a switch to activate one type at a time.

The deliverables at the end of the modelling stage include a feasible model
for the compression problem of interest, which accommodates the redundancy of

1.3. DERIVING ALGORITHMIC SOLUTIONS 9

the data and from which the output constraints are met under some well-defined
relationship between the input and output of the algorithm.

We try to show you in this book why a specific model is good for certain
compression problems and the difference a choice would make between two
different models. You should note how a model is substantially influenced on
the algorithmic solutions in later stages.

Stage 3: Design of the algorithm
In this stage, we may apply literally all the algorithm knowledge and techniques
we have.

Design of the algorithms is an interesting and challenging task. The tech-
niques depend highly upon the choice of the mathematical models. We may
add further details to the model, consider feedback to realise the model, using
standard techniques in algorithm design. For example, we may decide to use
certain data structures, abstract data types or various off-the-shelf tools to help
us with algorithmic solutions. We may take top-down approaches, and identify
existing efficient algorithms to achieve partial solutions to the problem.

Most data compression problems are data oriented. There is unlikely to be
an efficient algorithm to a general question about all sorts of data. We may
then have to adjust the data range, or add more restrictions to the specific
type of data. We may even return to the previous stage and experiment with
alternative models if serious flaws are found in the approach.

The deliverables of this stage are the correct algorithmic solutions to our
problem. This includes algorithms in pseudocode and convincing consideration
on data structures.

In this book, we shall try to highlight some good practice of the algorithm
design whenever possible and extend your experience on algorithm development.

Stage 4" Verification of the algorithm
This is sometimes the most difficult task. We may have seen or heard of a
common practice in software development in which people t e n d t o leave this
until the program testing stage. The drawback in that approach is that we may
have wasted an enormous amount of energy and time on programming before
realising the algorithm has fundamental flaws.

In this stage, we check the correctness of the algorithm, the compression
quality, and efficiency of the coder. It is relatively easy to check the compression
quality. For example, we can use compression ratio or saving percentage to see
how effective the compression is achieved. The coder efficiency is defined as the
difference between the average length of the codewords and the entropy (see
Chapter 2).

The deliverables at the end of this stage can be correctness proofs for the
algorithmic solutions, or other correctness insurance such as reasoning or com-
parisons. Despite being difficult, the verification work in this stage is frequently
proven to be extremely valuable.

10 C H A P T E R 1. I N T R O D U C T I O N

In this book, we shall, whenever possible, try to offer some justification for
algorithm design and show how the algorithms would achieve their objective
output on all the appropriate input data.

Stage 5" Estimation of the computational c o m p l e x i t y

Similar to algorithm verification, time and money have been regarded as well
spent for analysing and estimating the efficiency of algorithms. A good analysis
can save a lot of time and energy being wasted on faulty and disastrous software
products.

In this stage, it is possible to estimate and predict the behaviours of the
software to be developed using a minimum amount of resources, for example
using just a pen and a piece of paper. We should therefore try to compare
at least two candidate algorithms in terms of efficiency, usually time efficiency.
The more efficient algorithm should also be checked to ensure that it has met
certain theoretical bounds before being selected and implemented.

Stage 6" Implementation
Due to space limitations in this book, we leave all the implementation to the
reader as laboratory exercises. However, guidance and hints are provided to
encourage you to practise programming as much as you can.

There is no restriction on what hight-level computer language you use and
how you would like to implement procedures or functions.

Stage 7" Program testing
This is a huge topic in its own right. There are formal methods that are dedi-
cated to the work at this stage, but we shall not cover the details in this book.

Stage 8" Documentation
This is another important stage of work that this book has to leave to the reader.

However, you are encouraged to find an effective and consistent way to in-
clude this stage into your study activities. If you are too pressed for time, please
try to add sufficient comments at least in your source programs.

From the discussion of the eight stages of the work above, it may have given us
some ideas as to what we normally do in the whole process of algorithm design
and software development. However, how would we evaluate what we do? How
would we know that our compression algorithms are better than others, or vice
versa?

We shall in the next section introduce the criteria and techniques commonly
used to measure a compression algorithm.

1.4. M E A S U R E OF C O M P R E S S I O N Q U A L I T Y 11

1.4 Measure of compression quality
The performance of a compression algorithm can be measured by various criteria
depending on the nature of the application. When time efficiency is not an issue
(though it is equally important!), our main concern would be space efficiency,
i.e. how effectively a data compression algorithm can save storage space. For
example, a measure of percentage of difference in size of the input file before
compression and the size of the output after compression would give a good
indication of the effectiveness of the compression.

It is difficult to measure the performance of a compression algorithm in gen-
eral because its compression behaviour depends greatly on whether data contain
the redundancy that the algorithm looks for. The compression behaviour also
depends on whether we allow the reconstructed data to be identical to the source
data. We therefore shall discuss the measure in two situations, namely lossless
compression and lossy compression.

Lossless compression

For lossless compression algorithms, we measure the compression effect by the
amount of shrinkage of the source file in comparison to the size of the compressed
version. Following this idea, several approaches can be easily understood by the
definitions below:

�9 Compression ratio This is simply the ratio of the output to the input
file size of a compression algorithm, i.e. the compressed file size after the
compression to the source file size before the compression.

Compression ratio =
size after compression

size before compression

�9 C o m p r e s s i o n fac tor This is the reverse of compression ratio.

Compression factor =
size before compression

size after compression

�9 Saving p e r c e n t a g e This shows the shrinkage as a percentage.

Saving percentage =
size before compress ion- size after compression%

size before compression

Note: some books (e.g.[Say00]) define the compression ratio as the compres-
sion factor defined here. The following example shows how the above measures
can be used.

E x a m p l e 1.1 A source image file (256 x 256 pixels) with 65 536 bytes is com-
pressed into a file with 16 38~ bytes.

12 CHAPTER 1. INTRODUCTION

Applying the definition above, we can easily work out that in this case the
compression ratio is 16384/65536 = 1/4, the compression factor is 4, and the
saving percentage is 75%.

Note the performance of a compression algorithm cannot of course be re-
flected by one such instance. In practice, we may want to have a sequence of
such tests to compute the average performance on a specific type of data, on
text data only, for example. As we may see in later chapters, we discuss com-
pression algorithms on certain types of data but hardly all types at the same
time.

In addition, the effectiveness of a compression algorithm is only one aspect
of the measure of the algorithm. In fact, the following criteria should normally
be of concern to the programmers:

�9 C o m p u t a t i o n a l c o m p l e x i t y This can be adopted from well-established
algorithm analysis techniques. We may, for example, use the O-notation
[CLRS01] for the time efficiency and storage requirement. However, com-
pression algorithms' behaviour can be very inconsistent. Nevertheless, it
is possible to use past empirical results.

�9 C o m p r e s s i o n t i m e We normally consider the time for encoding and de-
coding separately. In some applications, decoding time is more important
than encoding time. In other applications, they are equally important.

�9 E n t r o p y If the compression algorithm is based on statistical results, then
entropy (Chapter 2) can be used as a theoretical bound to the source
to help make a useful quantity judgement. It also provides a theoretical
guidance as to how much compression can be achieved.

�9 R e d u n d a n c y In certain areas of compression, the difference between the
average code length (Chapter 2) and the entropy of the source can be
regarded as redundancy. In some other areas, the difference between a
normal and uniform probability distribution is identified as redundancy.
The larger the gap, the greater amount of the redundancy in the code.
When the gap is zero, the code is said to be optimal.

�9 K o l m o g o r o v c o m p l e x i t y This measurement works better for theoretical
proof than for practical settings. The complexity of the source data in a
file can be measured by the length of the shortest program for generating
the data.

�9 E m p i r i c a l t e s t i n g Measuring the performance of a compression scheme
is difficult if not impossible. There is perhaps no better way than simply
testing the performance of a compression algorithm by implementing the
algorithm and running the programs with sufficiently rich test data. Can-
terbury Corpus provides a good testbed for testing compression programs.
See h t t p : / / c o r p u s , c a n t e r b u r y , ac .nz for details.

�9 O v e r h e a d This measure is used often by the information technology in-
dustry. Overhead is the amount of extra data added to the compressed
version of the data for decompression later. Overhead can sometimes be

1.5. LIMITS ON LOSSLESS COMPRESSION 13

large although it should be much smaller than the space saved by com-
pression.

Lossy compression
For lossy compression, we need to measure the quality of the decompressed data
as well as the compression effect. The word fidelity is often used to describe the
closeness between the source and decompressed file. The difference between the
two, i.e. the source before compression and the file after decompression, is called
distortion. Often approximate distortion is used in practice. We shall look at
lossy compression performance more closely later.

1.5 L i m i t s on loss less c o m p r e s s i o n

How far can we go with lossless compression?
Can we hope to find a universal compression algorithm at all? By universal,

we mean an algorithm that can take any data file as an input and generate an
output of smaller size, and that the original file can be exactly reconstructed by
a decompression algorithm.

If not, what is the proportion of the files that a weak lossless compression
algorithm, no mat ter how less effective, can achieve at best?

If the compression is not effective for the first time, can we compress the
compressed file the second time, or repeat the compression process a number of
times to achieve a larger overall compression percentage?

The following two statements may surprise you:

1. There is no algorithm that can compress all the files even by 1 byte.

2. There are only less than 1% of all the files that can be compressed losslessly
by 1 byte.

Both statements are true, unfortunately. An informal reasoning for these
statements is as follows:

If statement 1 were not true, i.e. suppose there were an algorithm that
could compress any file given, we would have been able to use such a
lossless compression algorithm to repeatedly compress a given file.

Consider a large source file called big.file and a lossless compression
program called cmpres, which is said to be able to compress any file. This
includes the compressed file that was compressed already once by cmpres.
Now this compressed file should again be input to the program cmpres
and be compressed effectively, and output another compressed file. This
means that we could then effectively repeat the compression process to a
source file.

By 'effectively', we mean that the compression ratio is always less than 1
everytime after running the program cmpres. In other words, the size of the

14 C H A P T E R 1. I N T R O D U C T I O N

compressed file is reduced every time after running the program cmpres.
Consequently, cmpres(cmpres(cmpres(.., cmpres(big, f i l e) . . .))), the out-
put file after compression repeatedly a sufficient number of times, would
be of size 0.

Now we have a contradiction because it would be impossible to losslessly
reconstruct the original. Therefore, statement 1 is true.

2. To prove statement 2 to be true, we only need to

(a) compute the proportion of the number of files that can be compressed
by 1 byte shorter over the total number of possible files, and

(b) show this proportion is less than 1%.

Compressing a source file can be viewed as mapping the file to a com-
pressed version which is a different file. A file of n bytes long being com-
pressed by 1 byte is therefore equivalent to mapping the file of n bytes to
a file of n - 1 bytes.

S C

0 0 0 0 0

0 0 0 0 0 0 0 0
o o o o o o

I o o o o o o o o ~
I o o o o o o o o ~

DO o o,'o"~ g o \. "7 O O O O O O O 0 O 0
O O O O O O O O O

o o / g i g ~ o o o
o o o o o o o /

256 n files 256 n- 1 files

Figure 1.5: Mapping source files to their compressed version

In Figure 1.5, S on the left represents the set of all the files of n bytes long,
and C on the right represents the set of all the files of n - 1 bytes long.
Each black dot in the set represents a unique file. Each line represents a
mapping from a file of n bytes long to a file of n - 1 bytes long.

There are (28) n = 256 n files of n bytes and 256 n-1 of n - 1 bytes in
total. At best, every n byte long file can be compressed to an n - 1 byte
long file. Hence the number of the mappings is the number of files being
compressed which is 256 n-1 at most.

This means that the proportion of the successful one-to-one mappings
is only 256 n-1/256 n = 1/256. Clearly, this is less then 1% since 1/256 <
1/100 = 1%.

Therefore, only less than 1% of all the files can be compressed losslessly
by 1 byte. In other words, no algorithm can actually compress 1~ of all
(possible) files even by 1 byte.

EXERCISES 15

In fact, you can use a similar approach to find out more facts about how
much a proportion of all files can or cannot be compressed.

Summary
Data compression is an interesting and active research area. There are many
good reasons to study compression algorithms. Compression algorithms can be
classified as two broad classes: lossless and lossy compressions. Our approaches
are mainly algorithmic. Compression quality can be measured in various ways.
The performance of lossless compression algorithms have limits. It can be shown
that only a proportion of all the files can possibly be compressed losslessly.

Learning outcomes
On completion of your studies in this chapter, you should be able to:

�9 explain how to distinguish lossless data compression from lossy data com-
pression

�9 outline the main compression approaches

�9 be aware of the main stages in the process of developing a compression
algorithm

�9 estimate the effect and efficiency of a data compression algorithm

�9 explain the limits of lossless compression.

Exercises
E1.1 Investigate what compression software is available on your computer sys-

tem. For example, do you use winzip or gzip, etc.?

E1.2 Suppose that you have compressed a file myfile using a compression utility
available on your computer. What is the extension name of the compressed
file?

E1.3 Use a compression facility on your computer system to compress a text
file called rnyfile containing the following text:

This is a test.

Suppose you get a compressed file called myfile.gz after compression. How
would you measure the size of myfile and myfile.gz?

El.4 Suppose the size of myfile.gz is 20 KB while the original file myfile is 40 KB.
Compute the compression ratio, compression factor and saving percentage.

16 C H A P T E R 1. I N T R O D U C T I O N

EI.5 What is the main difference between an algorithm and a computer pro-
gram?

El.6 A compression process is often said to be 'negative' if its compression ratio
is greater than 1.

Explain why negative compression is an inevitable consequence of a lossless
compression.

EI.7 Analyse the statements below and give reasons why you are for or against
them-

(a) Half of all files cannot be compressed by more than 1 bit.

(b) Three quarters of all files cannot be compressed by more than 2 bits.

(c) Seven-eighths of all files cannot be compressed by more than 3 bits.

Laboratory
L I.1 Design and implement a program that displays a set of English letters in

a given string (upper case only).

For example, if the user types in a string 'AAABBEECEDE', your program
should display ' (t , B, E, C, D)'.

The user interface should be something like this:

Please input a string"

> AAABBEECEDE
The letter set is"

(A, B, E, C, D)

LI.2 Write a method that takes a string (upper case only) as a parameter and
returns a histogram of the letters in the string. The ith element of the
histogram should contain the number of the ith character in the string
alphabet.

For example, if the user types in a string 'AAABBEECEDEDEDDDE', then the
string alphabet is ' (A, B, E, C, D)'. The output could be something like
this:

Please input a string"

> AAABBEECEDEDEDDDE
The histogram is"

A xxx

B xx
E xxxxxx

Cx

D xxxxx

BIBLIOGRAPHY 17

L1.3 If you have access to a computer using the Unix or Linux operating system,
can you use the compress or gz ip command to compress a file?

L1.4 If you have access to a PC with Windows, can you use WinZip to compress
a file?

L1.5 How would you recover your original file from a compressed file?

L1.6 Can you use the uncompress or gunzip command to recover the original
file?

L1.7 Implement a program method compress ionRat io which takes two integer
arguments s i zeBeforeCompress ion and s i zeAf t e rCompres s ion and re-
turns the compression ratio.

L1.8 Implement a method savingPercentagewhich takes two integer argu-
ments s i zeBeforeCompress ion and s i z e t f t e r C o m p r e s s i o n and returns
the saving percentage.

Assessment
$1.1 Explain briefly the meanings of lossless compression and lossy compres-

sion. For each type of compression, give an example of an application,
explaining why it is appropriate.

$1.2 Explain why the following statements are considered to be true in describ-
ing the absolute limits on lossless compression.

�9 No algorithm can compress all files, even by 1 byte.

�9 No algorithm can compress even 1% of all files, by just 1 byte.

Bibliography
[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction

to Algorithms. The MIT Press, 2nd edition, 2001.

[NG96] M. Nelson and J. Gailly. The Data Compression Book. M&T Books,
New York, 2nd edition, 1996.

[Say00] K. Sayood. Introduction to Data Compression. Morgan Kaufmann,
2000.

This Page Intentionally Left Blank

Chapter 2

Coding symbolic data

Data compression is the science (and art) of representing information in a com-
pact form. However, what is information? How would information be repre-
sented in a 'normal ' form, i.e. the form before any compression? What do we
mean by source data? How would we know if there is any redundancy in a
source?

To answer these questions, we need first to clarify the meaning of terms
such as information, data, codes and coding, and study the basics of information
theory. Some conclusions and techniques learnt from this chapter will be very
useful for later chapters.

2.1 Information, data and codes

Information is something that adds to people's knowledge. It is whatever con-
tr ibutes to a reduction in uncertainty of the human mind or the state of a system.
People feel the existence of information, see media that carry information and
react according to certain information all the time.

Information is not visible without some medium being a carrier. Data are
the logical media often carried by some physical media such as a CD or a com-
munication channel. Hence data can be viewed as a basic form of some factual
information. This should be distinguished from other contrasting forms of in-
formation such as text, graphics, sound and image. A large amount of da ta can
then be organised and stored in short messages or long files.

For example, da ta ' - 3 0 ~ ' carry the factual information 'it is cold'. The
same piece of information can be delivered by text 'minus thir ty centigrade'
on paper or by a picture of a thermometer on a computer screen, or by oral
warning. Without these media, neither the da ta nor the information would
have been visible.

The word data in the context of data compression includes any digital form
of factual information that can be processed by a computer program. The data
before any compression process are called the source data, or the source for short.

19

20 CHAPTER 2. CODING SYMBOLIC DATA

Examples of factual information may be classified broadly as text, audio,
image and video. Many application programs adopt the information type as
their data file type for convenience. Hence data may also be classified as text,
audio, image and video while the real digital data format consists of 0s and ls
in a binary format.

�9 Tex t data are usually represented by 8 bit extended ASCII code (or
EBCDIC). They appear in files with the extension . t x t or . t ex (or other
coding system readable files like .doc) using an editor. Examples of typ-
ical text files are manuscripts, programs in various high-level languages
(called source codes) and text emails.

�9 B i n a r y data include database files, spreadsheet data, executable files, and
program codes. These files usually have the extension . bin.

�9 I m a g e data are represented often by a two-dimensional array of pizels
in which each pixel is associated with its colour code. Extension .bmp
represents a type of bitmap image file in Windows, and .psd for Adobe
Photoshop's native file format.

�9 G r a p h i c s data are in the form of vectors or mathematical equations. An
example of the data format is .png which stands for Portable Network
Graphics.

�9 S o u n d data are represented by a wave (periodic) function. A common
example is sound files in . way format.

Three basic types of source data in the computer are tezt, (digital) image and
sound. In application domains, the source data to be compressed are likely to be
so-called multimedia and can be a mixture of static media format such as text,
image and graphics, and dynamic media such as sound and video. Figure 2.1
demonstrates the stages involved for the source data in a file of a certain type
to be encoded in a source binary file before compression. Figure 2.2 shows
the reverse process in which the reconstructed binary data after decompression
have to be decoded to data of a certain type before being recognised in any
application.

2.2 Symbolic data
In this book, we often use the term symbol, or character, to mean a symbolic
representation of input data to a compression algorithm. This is purely for the
convenience of our algorithmic discussion. Under this notation, a symbol can
be an audio sample, or an image pixel value as well as a letter, special character
or a group of letters in a text. A text, image, audio or video file can then
be considered as a one-dimensional, or multi-dimensional sequence of symbols.
Figure 2.3 shows how the use of symbolic data would simplify the discussion of
compression and decompression process. The simplified structure allows us to
focus on the development of the compression algorithms.

2.2. SYMBOLIC DATA 21

- 1

I I
, text
I I

I source data in file 1

/ x

_ m m . ~ _ - - - i m m _ N _ - i

I I I I
, image , , graphic ,
I I I !
k . m m] _ L _ _ _ . ~ _ _ _

I x
1 I

I I

, , . b m p , .xbm, .jpg, .gif, .png, . .-' , .fig, . . .

[s o u r c e b i n a r y f i l e)

(compressed binary file I

I
, . t x t , . t e x , . d o e , �9 �9 �9

s

Figure 2.1" Data in compression

, s o u n d
I
I._ m

\

m m ~k._
I I
I I . w a v ,

Suppose the alphabet of a source is S = (8 1 , 8 2 , . - . , 8n). The digital rep-
resentation of the symbol set is called the code C = (Cl, c2,- . . ,cn) and the
representation cj of each symbol is called the codeword for symbol sj, where
j = 1, 2 , . - - , n. The process of assigning codewords to each symbol in a source
is called encoding. The reverse process, i.e. to reconstruct the sequence of sym-
bols in the source, is called decoding. Clearly, compression can be viewed as
encoding and decompression as decoding in this sense.

The fundamental representation of data is ASCII code (pronounced 'ass-
key') consisting of a set of fixed length (8 bit) codewords. It is possible to
represent an alphabet by a set of variable length codewords and the code is then
called a variable length code.

E x a m p l e 2.1 Two different binary codes, C1 = (000,001,010,011,100) and
62 = (0 ,100 ,101 ,110 ,111) , can be used to represent the alphabet
(A, , , C, D, E).

Here ~1 i8 a f ixed length code, as all the codewords consist of 3 bits. C2 is a
variable length code since not all the codewords are of the same length.

22 CHAPTER 2. CODING SYMBOLIC DATA

I
I .txt, .tex, .doe, �9 �9 �9

compressed binary file

I reconstructed binary file 1

1
I decoded data in file)

. - - / % . -
r r r - - - - r

I I I I I I I I
I t e x t I I i m a g e I i g r a p h i c l I s o u n d I

I I I I I I I I

I x \
r 1

i ~ .bmp,.xbm,.jpg, .gif , png, ~ ~ .f ig, .- . ~ ~ .way, . . .
I I " ' ' ' 1 L l I

Figure 2.2: Data in decompression

It is important to distinguish the concept of symbolic data, alphabet and code
in the context of a discussion. By symbolic data, we mean a source file consists
of symbols from an alphabet. A code containing a set of codewords is usually a
representation of the set of the alphabet.

For example, BAAAAAAAC are symbolic data from an alphabet such as (A,
B, C, D, E). Suppose we define a fixed length binary code (000, 001,010, 011,
100). Codewords 000, 001,010, 011,100 are the binary representation of A, B,
C, D, E respectively. The binary representation of the symbolic data is 001
000 000 000 000 000 000 000 010 (without spaces). It is the source data in
binary representation that, as an instance, is to be input into a compression
algorithm. It is the size of this binary source data file that is to be hopefully
reduced by a compression algorithm.

This can be seen clearly from Figure 2.4.

2.3. VARIABLE LENGTH CODES 23

source symbolic data 1

............ ,
source file in ASCII
.

1

I compressed binary file I

I compressed binary file I

reconstructed file in ASCII

. i
I decoded symbolic dat~

(~) (b)

Figure 2.3: Symbolic data in compression

2.3 Variable length codes
Variable length codes are desirable for data compression because overall savings
may be achieved by assigning short codewords to frequently occurring symbols
and long codewords to rarely occurring ones.

For example, consider a variable length code (0, 100, 101, 110, 111) with
lengths of codewords (1, 3, 3, 3, 3) for alphabet (A, B, C, D, E), and a source
string BAAAAAAAC with frequencies for each symbol (7, 1, 1, 0, 0). The average
number of bits required is

- 1 x 7 + 3 x 1 + 3 x 1
l - 1.4 bits/symbol

This is almost a saving of half the number of bits compared to 3 bits/symbol
using a 3 bit fixed length code.

The shorter the codewords, the shorter the total length of a source file.
Hence the code would be a better one from the compression point of view.

2.3.1 Modelling
From the above example, we describe the problem of compression for symbolic
data in a probability model below.

The source can be modelled by an alphabet $ = (s l, s 2 , . . . , sn) and the
probability distribution 7) = (PI, P2,"" , Pn) of the symbols.

Suppose we derive a code C = (cl, c2,'-" , cn) with length of each codeword
s = (l ~ , 1 2 , . , l n)

24 C H A P T E R 2. CODING S Y M B O L I C DATA

B A A A A A A A C

.

' s o u r c e file in A S C I I

0 0 1 0 0 0 - . . 0 0 0 0 1 0

(A, B, C, D, E)]
(000, 001, 010, 011, 100)

0 0 1 0 0 0 . . . 0 0 0 0 1 0

l
' r e c o n s t r u c t e d file in A S C I I '

1
BAAAAAAAC

Figure 2.4: Code and source data

Our goal therefore is to minimise the average length of the code:

n

j = l

2.3.2 Unique decodability
Variable length codes are useful for data compression. However, a variable
length code would be useless if the codewords could not be identified in a unique
way from the encoded message.

E x a m p l e 2.2 Consider the variable length code (0, 10, 010, 101) for alpha-
bet (.4, B, C, D). A segment of encoded message such as '0100101010' can be
decoded in more than one way. For example, '0100101010' can be interpreted in
at least two ways, '0 10 010 101 O' as ABCDA or '010 0 101 010' as CADC.

A code is uniquely decodable if there is only one possible way to decode
encoded messages. The code (0, 10, 010, 101) in Example 2.2 is not uniquely
decodable and therefore cannot be used for data compression.

Of course, we can always introduce an extra punctuation symbol during the
encoding stage. For example, if we use symbol ' / ' , we could then encode symbol
sequence ABCDA as '0/10/010/101/0 ' . At the decoding end, the sequence
'0/10/010/101/0 ' can be easily decoded uniquely. Unfortunately, the method is
too costly because the extra symbol ' / ' has to be inserted for every codeword.

The ideal code in this situation would be a code not only of variable length
but also with some self-punctuating property. For example, variable length code
(0, 10, 110, 111) has such a self-punctuating property although the lengths for
the codewords remain the same as those in (0, 10, 010, 101).

The self-punctuating property can be seen more clearly if we associate the
codewords with the nodes of a binary tree in Figure 2.5. Each left branch is
marked as 0 and the right branch as 1 in the binary tree. During decoding, each

2.3. VARIABLE L E N G T H CODES 25

codeword can be obtained by collecting all the Os and ls from the root to each
leaf. Every time a leaf is reached, we know that is the end of a codeword.

root

0 1

A 0 1
0

C D
110 111

Figure 2.5: A prefix code

2.3.3 Prefix codes and binary trees
Codes with the self-punctuating property do exist. A type of so-called prefix code
can be identified by checking its so-called prefix-free property or prefix property
for short.

A prefix is the first few consecutive bits of a codeword. When two codewords
are of different lengths, it is possible that the shorter codeword is identical to
the first few bits of the longer codeword. In this case, the shorter codeword is
said to be a prefix of the longer one.

E x a m p l e 2.3 Consider two binary codewords of different length: cl = 010 (3
bits) and c2 = 01011 (5 bits).

The shorter codeword Cl is the prefix of the longer code c2 as c2 = 11.
Codeword c2 can be obtained by appending two more bits 11 to Cl.

The prefix property of a binary code is the fact that no codeword is a prefix
of another.

E x a m p l e 2.4 Consider the codewords in two codes (0, 10, 010, 101) and
(0, 10, 110, 111).

No codeword is a prefix of another in the uniquely decodable code (0, 10, 110,
111). In contrast, in code (0, 10, 010, 101), which is not uniquely decodable,
codeword 0 is the prefix of codeword . Also codeword 10 is the prefix of
codeword .

The prefix property turns out to be a favourite characteristic when searching
for a uniquely decodable code. A code with such a prefix property is called a
prefix code. In other words, a prefix code is a code in which no codeword is a
prefix of another codeword, neither can a codeword be derived from another by
appending more bits to a shorter codeword.

E x a m p l e 2.5 The code (1, 01, 001, 0000) is a prefix code since no codeword
is a prefix of another codeword in the code. The code (0, 10, 110, 1011) is not
a prefix code since 10 is a prefix of 1011.

26 CHAPTER 2. CODING SYMBOLIC DATA

It is easy to check whether a binary code is a prefix code by drawing an
associated binary tree. Each binary code can correspond to one such binary
tree, in which each codeword corresponds to a path from the root to a node with
the codeword name marked at the end of the path. Each bit 0 in a codeword
corresponds to a left edge and each 1 to a right edge. Recall that, if a prefix
code is represented in such an associate binary tree, all the codeword labels will
be at its leaves (see Figure 2.5).

Two steps are involved in this approach:

1. C o n s t r u c t t h e b i n a r y t r e e

First, we create a node as the root of the binary tree. Next, we look at
the codewords one by one. For each codeword, we read one bit at a time
from the first to the last. Starting from the root, we either draw a new
branch or move down an edge along a branch according to the value of
the bit.

When a bit 0 is read, we draw, if there is no branch yet, a left branch
and a new node at the end of the branch. We move down one edge along
the left branch otherwise, and arrive at the node at the end of the edge.
Similarly, when a bit 0 is read, we draw if there no branch yet, a right
branch, or move down an edge along the right branch otherwise.

The process repeats from node to node while reading the bit by bit until
the end of the codeword. We mark the codeword after finishing with the
whole codeword.

2. C h e c k i n g c o d e w o r d p o s i t i o n

If all the codeword labels are only associated with the leaves, then the
codeword is a prefix code. Otherwise, it is not.

E x a m p l e 2.6 Decide whether the codes (1, 01, 001, 0000) and
(0, 10, 110, 1011) for alphabet (A, B, C, D) are prefix codes.

1. Draw a 0-1 tree as in Figure 2.6(a) and (b) for each code above.

2. For a prefix code, the codewords are only associated with the leaves. Since
all the codewords in (1, 01, 001, 0000) are at leaves (Figure 2.6(a)), we
can easily conclude that (1, 01,001, 0000) is a prefix code.

Since codeword 10 (B) is associated with an internal node of the 0-1 tree
(Figure 2.6(b)), we conclude that (0, 10, 110, 1011) is not a prefix code.

Of course, for shorter codewords, we can easily draw the conclusion according
to the definition of the prefix code. For example, noticing the second codeword
10 is the prefix of the last codeword 1011 in (0, 10, 110, 1011), we can easily
decide that (0, 10, 110, 1011) is not a prefix code without drawing the binary
tree.

2.3. V A R I A B L E L E N G T H CODES 27

(1, 01, O01, 0000) (0, 10, 110, 1011)

root root

o l

0 1 A A (B) ~ 1

o / , c c

D D

(a) (b)

Figure 2.6: Prefix property and binary trees

2 . 3 . 4 P r e f i x c o d e s a n d u n i q u e d e c o d a b i l i t y

Prefix codes are a subset of the uniquely decodable codes. This means that all
prefix codes are uniquely decodable. If a code is a prefix code, the code is then
uniquely decodable.

However, if a code is not a prefix code, we cannot conclude that the code
is not uniquely decodable. This is because other types of code may also be
uniquely decodable.

E x a m p l e 2.7 Consider code (0, 01, 011, 0111) for (,4, B, C, D). This is not a
prefix code as the first codeword 0 is the prefix of the others,

However, given an encoded message 01011010111, there is no ambiguity and
only one way to decode it: 01 011 01 0111, i.e. BCBD. Each 0 offers a means of
self-punctuating in this example. We only need to watch out the O, the beginning
of each codeword and the bit 1 before any O, the last bit of the codeword.

Some codes are uniquely decodable but require looking ahead during the
decoding process. This makes them not as efficient as prefix codes.

E x a m p l e 2.8 Consider code (0, 01, 11) for (A, B, C). This is not a prefix code
as the first codeword 0 is the prefix of the second codeword

Figure 2.7 shows a decoding process step by step to the encoded message
011101. The first 0 is read and it can be decoded as A. The next two ls are
decoded as C. However, an error occurs when the 0 is read after 1, because
there is no codeword 10 in the code. This means the first choice was wrong:
the first two bits 01 should have been decoded as B. Now the decoding process
continue to decode the next two bits 11 as C. The following 0 can be decoded
as A but only found an error again in the next step, because there is only one
bit 1 left in the message which is not a codeword. Returning the last choice,
the process reconsider 01 and decode them as B. Only by now, the decoding
process is complete.

28 CHAPTER 2. CODING SYMBOLIC DATA

As we can see, the decoding process is not straightforward. It involves a
'trial and error' learning process and requires 'backtracking'. Twice the wrong
choices of a codeword cannot be identified until a later stage and the message
to be decoded needs to be reviewed repeatedly.

011101
J ' . ,

J . . .

AlllO1, / BI~O1

/ V . .

error
BCA1 ~ BCO 1 , / / ,
error BCB

Figure 2.7: Not a prefix code but uniquely decodable

2.3.5 Kraft inequality
Prefix codes have another interesting property. For any non-prefix code whose
codeword lengths satisfy certain conditions, we can always find a prefix code
with the same codeword lengths.

E x a m p l e 2.9 Consider the uniquely decodable code (0, 01, 11) in Example 2.8.
This is not a prefix code and the lengths of the codewords are 1, 2, 2 respectively.

We can always find a prefix code, (0, 10, 11) for example, with the same
codeword lengths.

The prefix property of a code guarantees only the correctness and efficiency
of decoding. To achieve a good compression, the length of the codewords are
required to be as short as possible.

E x a m p l e 2.10 Consider prefix code (0, 10, 110, 1111). The lengths of the
codewords are 1, 2, 3 and ~. However, the length of the last codeword can be
reduced from ~ to 3 as (0, 10, 110, 111) is also a prefix code with codeword
lengths 1, 2, 3, 3. Figure 2.8(a) and (b) show the binary trees for code (0, 10,
110, 1111) and (0, 10, 110, 111) respectively. As we can see, if lj is the length
of the j th codeword, where j = 1 , . . . , ~, then the level at which the leaf for the
codeword is lj + 1 .

2.3. V A R I A B L E L E N G T H CODES 29

level

1

(0, 10, 110, 1111) - - - : ~ " (0, 10, 110, 111)

root root ~ ~

.... ~ i i i i ~ i ~ i i i i ~ i

i iiiiiii 0 iiiiiiiiiiiiiii
.

D

(a) (b)

Figure 2.8: Two prefix codes

Can we reduce the codeword lengths further, even just by I bit? For example,
would it be possible to find a prefix code with codeword lengths 1, 2, 3, 2 for
symbols A, B, C and D respectively?

E x a m p l e 2.11 Discuss whether it is possible to find a prefix code with codeword
lengths 1, 2, 3, 2.

level

1

lengths: 1, 2, 3, 2 lengths: 1, 2, 3, 3

root root ~ ~ ~ ~
. . . . A o ~ x o / ~

i ii i i i i i IBII i I Z lID' i i i i i i i i i i i i i ~ii i i ~ i i
C C D

(a) (b)

Figure 2.9: Impossible lengths (a) and possible lengths (b) for a prefix code

So lu t i on We construct a binary tree according to the lengths given. Since it
does not matter if a length 1 codeword is 0 or 1, we always build a branch for 0
first. We now have a codeword of length 1 (0 labelled as A). Next we construct
edges '1' and '0' and this gives a codeword of length 2 (10 labelled as B). Next
we add another '1' edge to get a codeword of length 3 (110 labelled as C). Note
in this approach constructing a codeword of length 1 means to find a path of
length 1 from the root or to find a node at level 1 (1 = 2 in this example, see
Figure 2.9). There are three available paths of length 2 left: path 00, 01 and
11. Unfortunately, they are all contain an overlap with the paths corresponding
to the codewords already constructed.

Suppose we choose to construct codeword 11 (labelled as D) and eventually
derive a binary tree for a code in which codewords A, B, C, D are of lengths 1,
2, 3 and 2 respectively as in Figure 2.9(a).

30 C H A P T E R 2. CODING S Y M B O L I C DATA

As we can see from Figure 2.9(a), not all codewords are leaves. For example,
symbol D is not at a leaf. This violates the fact that, for a prefix code, codewords
should all be at the leaves in the binary tree. We therefore conclude that it is
not possible to find a prefix code with codeword lengths 1, 2, 3, 2 for symbols
A, B, C and D respectively.

For comparison, we also draw a binary tree for a code in which codewords
are of lengths 1, 2, 3 and 3 as in Figure 2.9(b), where all the codewords are
leaves.

Kraft 's theorem provides a useful guide on the minimum requirements to the
codeword lengths of prefix codes. Knowing the limit, we can avoid looking for
a prefix code when it in fact does not exist.

T h e o r e m 2.1 There exists a prefix binary code C = (c 1 , c 2 , ' " ,On) with n
codewords of lengths ll , 12,... , In respectively if and only if

n

K (C) - E 2-zj <- 1
j=l

This inequality is known as the Kraft inequality.
With Kraft inequality, the question in Example 2.11 can be easily answered.

If the lengths do not satisfy the Kraft inequality, we can conclude that it is not
possible to find a prefix code consisting of these lengths.

Since in Example 2.11

n
1 1 1 1

K (c) - = ~+~+~+~-/ >I
j=l

it is impossible to find a prefix code with codeword lengths 1, 2, 3, 2.

E x a m p l e 2.12 Discuss the possibility of finding a prefix code with codeword
lengths 1, 2, 3, 3.

So lu t ion Since

n I 1 1 1
K(C) - Z 2-1j = -2 + -~ + ~-5 + -~5 - 1

j = l

the lengths of the codewords satisfy the Kraft inequality, it is possible to find a
prefix code with these codeword lengths (Figure 2.9(b)).

Observation
Kraft inequality can be misused if its claims are not carefully studied.
highlight here what the theorem can and cannot do.

We

1. The Kraft inequality sets requirements to the lengths of a prefix code. If
the lengths do not satisfy the Kraft inequality, we know there is no chance
of finding a prefix code with these lengths.

2.3. V A R I A B L E L E N G T H C O D E S 31

2. The Kraft inequality does not tell us how to construct a prefix code, nor
the form of the code. Hence it is possible to find prefix codes in different
forms and a prefix code can be transformed to another by swapping the
position of 0s and ls.

For example, lengths (1, 2, 3, 3) satisfy Kraft inequality since

"~ 1 1 1 1
K (C) - E 2-z5 : -~ + -~ + -~ + ~-g - 1

j = l

Any one of the prefix codes (0, 10, 110, 111), (10, 0, 110, 111), (10, 110,
0, 111), (10, 110, 111, 0), (0, 110, 10, 111), (0, 110, 111, 10), (110, 0, 10,
111), (0, 10, 111, 110), . . . can be found.

If (0, 10, 110, 111) is a prefix code, then (1, 01,001,000) is also a prefix
code by just replacing 0s by ls and ls by 0s.

3. The Kraft inequality can tell that a given code is not a prefix code but it
cannot be used to decide if a given code is a prefix code.

When certain lengths satisfy Kraft inequality, it is possible to construct
a prefix code in which the codewords are of these lengths. This implies
there exist non-prefix codes with these lengths. Non-prefix codes can also
be constructed with these lengths. Thus the code does not necessarily have
to be a prefix code if its codeword lengths satisfy the Kraft inequality.

For example, code (0, 01,001,010) satisfies the Kraft inequality since

n

K(C) - E 2-I~ = 1 1 1 1
j = l

However, it is obviously not a prefix code because the first codeword 0 is
the prefix of the others.

4. The Kraft inequality can tell us whether the lengths of a prefix code can
be shortened, but it cannot make any change to the lengths.

For example, consider the two codes in Example 2.10, (0, 10, 110,
1111) and (0, 10, 110, 111). The lengths of both codes satisfy the Kraft
inequality. The lengths 1, 2, 3, 4 of the first code give

1 1 1 1
~ + ~ + ~ + ~ < 1

The lengths 1, 2, 3, 3 of the second code give

1 1 1 1
~-F ~ + ~-g + ~-~ = 1

The Kraft inequality becomes equality when the code cannot be shortened.

32 CHAPTER 2. CODING SYMBOLIC DATA

E x a m p l e 2.13 Given an alphabet of four symbols (A, B, C, D), would it be
possible to find a prefix code in which a codeword of length 2 is assigned to A,
length 1 to B and C, and length 3 to D?

Solu t ion Here we have 11 = 2, 12 = 13 = l, and 14 = 3.

4

E2 _l~ 1 1 1 1
2- 5 + ~ + ~ + ~ > 1

j = l

Therefore, we cannot hope to find a prefix code in which the codewords are of
these lengths.

E x a m p l e 2.14 If a code is a prefix code, what can we conclude about the lengths
of the codewords ?

So lu t ion Since prefix codes are uniquely decodable, they must satisfy the Kraft
inequality.

Example 2.15 shows that, given a code with codeword lengths that satisfy
the Kraft inequality, you cannot conclude that the code is a prefix code.

E x a m p l e 2.15 Consider code (0, 10, 110, 1011) for (A, B, C, D). This is not
a prefix code as the second codeword 10 is the prefix of the last codeword ~i11,
despite the lengths of the codewords being 1, 2, 3, ~ which satisfy the Kraft
inequality

1 1 1 1
~ + ~-ff + ~5 + ~ < 1

However, since the lengths satisfy the Kraft inequality, we can always find a
prefix code with the same codeword lengths (1, 2, 3, 4 respectively), such as (0,
10, 110, 1111).

2.4 Elementary information theory
Information theory is a study of information based on probability theory. It
was proposed by Claude E. Shannon at Bell Laboratories in 1948 and based
on people's intuition and reaction towards general information. It aims at a
mathematical way of measuring the quantity of information.

As we mentioned in Section 2.1, information is something that adds to peo-
ple's knowledge. The more a message conveys what is unknown (so it is new
and surprising), the more informative the message is. In other words, the ele-
ment of surprise, unexpectedness or unpredictability is relevant to the amount
of information in the message.

For example, to most final year university students, the message 'Two thirds
of the students passed exams in all subjects' offers less information than 'Two
thirds of the students got 100% marks for exams in all subjects' although the
two messages contain a similar number of words. The reason is the first mes-
sage merely conveys something that happened frequently before and what one

2.4. E L E M E N T A R Y INFORMATION THEORY 33

would normally expect, but the second message states something tha t would
not normally happen and is totally unexpected.

The expectat ion of the outcome of an event can be measured by the prob-
ability of the event. The high expectat ion corresponds to a high probabili ty of
the event. A rarely happened event means a low probabili ty event. Something
tha t never happens has a zero probability. Hence the amount of information in
a message can also be measured quanti tat ively according to the unexpectedness
or surprise evoked by the event.

Suppose there are a set of n events 8 = (s l, s2 , . . . , Sn). $ is called an
alphabet if each sj, where j = 1 , . - . , n, is a symbol used in a source message. Let
the probabili ty of occurrence of each event be pj for event sj. These probabilities

n
of the events 7) - (Pl, p2,"" , Pn) add up to 1, i.e. ~ j = l PJ - 1. Suppose further
tha t the source is rnernoryless, i.e. each symbol occurs independently with no
dependence between successive events.

The amount of one's surprise evoked by the event is called the self-information
associated with event sj and is defined by a simple mathemat ica l formula:

or in negative logari thm

1
I(sj) = log b - -

Pj

I (sj) = - log 6 pj

where the logari thm base (i.e. b in the formula) may be in:

�9 unit bits: called base two, b = 2

�9 unit nats: base e, b = e

�9 unit hartleys: base ten, b = 10.

The most commonly used logari thm for self-information is the base-two log-
ar i thm and hence its common unit is bits.

In this book, we use base two for logarithms, i.e. we use 'log x' to mean
'log 2 x' if not specified otherwise. So the self-information is

I(sj) = - log2p j

The definition for self-information is convenient. It supports our intuition
from daily experience about the information.

As we can clearly see from Figure 2.10, the amount of the self-information
for event sj is inversely proport ional to the changes of its probability. When
the probabili ty of some event is 1, the self-information of the event is log(l) = 0
since it offers no information. When the probabili ty is close to 0, the amount of

1 (or - log pj) is high. The amount of the self-information self-information, log p~

increases a s pj decreases from 1 to 0.

As we mentioned earlier, $ = (Sl, s2 , . . . ,sn) can be considered as an alpha-
bet where each sj is a symbol. The self-information can then be interpreted
natural ly as the amount of information each symbol sj conveys.

34 C H A P T E R 2. CODING S Y M B O L I C DATA

1

Figure 2.10: Self-information

, 1 the E x a m p l e 2.16 I f the probability of symbol 'd occurring in a message is -~,
self-information conveyed by the symbol is

1
- log ~- - - (- log 2 2) _ 2 log 2 - 2 bits

This suggests that it requires a binary codeword of minimum 2 bits for the
information.

2 . 4 . 1 E n t r o p y

Self-information is useful for measuring individual events or symbols at a time.
However, we are often more interested in the information of a source where
the occurrences of all possible symbols have to be considered. In other words,
the measure of the information of a source has to be considered over the entire
alphabet.

E x a m p l e 2.17 Consider a binary source $ = (a, b) with probabilities
= I = - l o g (s / 4) = bit

I (b) = - log (1 / 4) = 2 bits.

Here the self-information of each symbol in the alphabet cannot, on its indi-
vidual basis, represent easily the whole picture of the source. One common way
to consider a set of data is to look at its average value of the self-information of
all the symbols. For example, the average self-information for each symbol in

Example 2.17 is

- - 3 1
I1 = pat(a) + pbI(b) = ~ • 0.415 + ~ X 2 -- (1.245 + 2)/4 ~ 0.81 bit

This can then be used to compare with another source.

2.4. E L E M E N T A R Y I N F O R M A T I O N T H E O R Y 35

E x a m p l e 2 .18 Suppose we have another binary source $2 = (c, d) with proba-
bilities (~, ~) respectively. I (c) - I (d) -- - log 1 / 2 -- 1 bit and
I2 = + p d I (d) = 1 it.

We now see clearly tha t source 82 contains on average more informat ion
than source 81.

The average amount of the information, or the amount of the unexpected-
hess on average caused by a set of independent events , or over a set of in-
dependent symbols $ = (Sl, s2 , - . . , sn), with probabil i t ies of their occurrences
7) = (p l , p 2 , " " ,Pn) respectively, is called the first-order entropy of the source
or the entropy for short. It is defined as

n

H (7)) = Z p j I (s j) , or
j = l

n

- - Z p j logp
j = l

Entropy 1 is the self-information of a set of symbols on average. It is the
mean (or expected) amount of the self-information on S, the event set or the
a lphabet . Note t ha t the entropy of a source depends on the probabil i ty set

7) = (Pl, P c , " " , Pn) ins tead of the values or the na ture of S = (s l, s 2 , . . . , sn).
W h e n S = (s l, s 2 , . . . , sn) is an a lphabet , the entropy can be in terpre ted as

a measure of, on average, the min imum number of binary symbols in bits t ha t
is required to encode the a lphabet of the source.

E x a m p l e 2 .19 Four symbols A, B, C and D occur with an equal probability in
a source text file.

_ _ 1 Since n - 4 and ~J-~-J=l PJ - 1, the probabilities Pl = P2 = P3 = P4 - -~"
Therefore, the entropy of the source is

H (~) - H (p l , P2, P3, p4) - - ~ (- l~)) • ~ = 2 bits

This can be in terpre ted as, on average, the source informat ion requires a
min imum of 2 bits to encode.

E x a m p l e 2 .20 Suppose the same four symbols occur with probabilities 0.5,
0.25, 0.125 and 0.125 respectively in another source file.

The entropy of the source is H (P) = H (0 . 5 , 0 .25, 0 .125, 0 . 1 2 5) =
0 .5 x 1 + 0 .25 x 2 + 2 x 0 .125 x 3 = 1.75 bits.

This suggests tha t the average amount of informat ion in the source is less
t han the source in the previous source. In other words, on average, the source
informat ion requires a min imum of 1.75 bits to encode.

1 The term entropy was adopted by Shannon from thermodynamics where 'entropy' is used
to indicate the amount of disorder in a physical system.

36 CHAPTER 2. CODING SYMBOLIC DATA

E x a m p l e 2.21 Suppose the probabilities are 1, O, O, O. The entropy is:

H(P) - H(1, O, O, O) - 0 bit

This suggests that there is zero amount of information conveyed in the
source. In other words, there is simply no need to encode the message.

Shannon showed that the best a lossless symbolic compression scheme using
binary prefix codes can do is to encode a source with an average number of bits
equal to the entropy of the source. This can be seen from the theorem below.

T h e o r e m 2.2 For any binary prefix code with the average codeword length
n [- Ej=I Pj lj, we have H(P) < [< H(P)+ 1.

P r o o f To prove this is true, we only need to show that

1. The average codeword length is at least as long as the entropy" H (P) <_ [.

This is true if and only if H (P) - 1 _< 0. Following this idea, we write the
difference

n n

H(P) - [- E p j log--1 _ E p j l j
j = l PJ j = l

n

-- ~ pj (log I _ lj log :2)
j = l PJ

n

= E PJ (log I _ log 2 zj)
j=l PJ

n

= pj(log 1
j=l pj2zJ)

log x Since in x - 1-og~, we have

log 1 = (l n 1)loge
pj2ZJ pj2Z~

Therefore, the right side of the equation can be writ ten

n

= E P / (l n 1 j = l pj21 j)log e

n

= l o g e ~ p j (l n 1
j = l pj2z~)

2.4. E L E M E N T A R Y I N F O R M A T I O N T H E O R Y 37

Since In x _< x - 1, for x > 0 the right side of the equation can be written

n

_ < l o g e E p j (~ l _ 1)
j=l pj21J

n 1 n
= log (Z Z p J)

j = l j = l
n

= log - 1)
j = l

According to the Kraft inequality, for a prefix code, we have

n

E 2-1j -< 1
j = l

Therefore,
n

E 2-1j - 1 < 0
j = l

Multiplying this negative item by a positive log e, the right side of the
equation is again a negative, i.e.

n

H (P) - [- log e (E 2 -z5 - 1) _< 0
j = l

This proves that H (P) _< 1.

2. There exists a prefix binary code for which 1 < H (P) + 1.

This can be justified by the following.

As we know, the length of any binary code has to be an integer. If the
prefix binary code is the optimum, then all its codeword length, for j =

1 when are negative powers of 2, otherwise, lj > 1, 2,-- . ,n, 1 i - log ~ pj

log ~.1 This can be written as l i - log ~1 + c, where 0 _< e < 1.

Replacing c by its exclusive upper bound on the right side of the equation,
we have

1 1
lj = log ~ + e < log ~ + 1

Pj Pj

Multiplying by pj > 0 on both sides of the inequality, we have

1
pj l j < pj(log ~ + 1)

Pj

38 CHAPTER 2. CODING SYMBOLIC DATA

Therefore,

n

[-- E p j l j
j = l

n

< Z p j I l o g 1 - - + 1)
j=l PJ

n 1 n

= E lo - + E
j=l PJ j=l

= H(7)) + 1

2 . 4 . 2 O p t i m u m c o d e s

Information theory can effectively tell how successful a prefix code is from a
compression point of view. Given a prefix code, we know the length of each
codeword s = (ll ,12,. . . ,ln). If we know the source, i.e. P = (p l ,p2 , "" ,Pn),

n we can compute the average length of the code [- ~-~j=l pjlj, and the entropy
n

of the source H(7)) - - E j = I Pj log pj.
Since the entropy provides a theoretical bound of the minimum number of

bits for the information, the difference between the average length of a code and
the entropy represents the amount of the redundancy in the code.

The ratio in percentage of the entropy of a source to the average code length
is a useful measure of the code efficiency for the source.

H(79)
- lOO

Information theory says that the best a lossless symbolic compression scheme
can do is to encode a source with an average number of bits equal to the entropy
of the source. This is when E(P , s - 100%. The bigger the gap between the
entropy and the average length of the code, the lower the E(7), s

A code is optimum (or optimal) if the code efficiency reaches 100%. In
other words, a code is optimal if the average length of the codewords equals the
entropy of the source.

E x a m p l e 2.22 Consider a source alphabet S - (A, B, C, D) with probability
~ ~ 1). Suppose a prefix code C - (0 10 110 111) is distribution 7) - (2 , ~, s, s , , ,

recommended. Comment on the eLficiency of the code.

Solu t ion It is easy to check the code efficiency. We first write the lengths of
the codewords s = (1, 2, 3, 3). The average length of the code is

4
- 1 1 1
1 - E p j l j - ~ x l + ~ • x 3) - 1 . 7 5 b i t s

KJ

j = l

2.5. DATA COMPRESSION IN TELECOMMUNICATION 39

The entropy of the source is

4
1 1 22 1 H - - E p j logpj - ~ x log2 + ~ x log + 2(~ x log23) - 1.75 bits

j=l

Therefore, the prefix code is optimal as the code efficiency is 100%.

2.5 Data compress ion in t e l ecommunica t ion
The concept of data compression in telecommunication can be easily understood
from the diagram in Figure 2.11 on a message transformation system.

Ann Bob

source message

(encoder) Q

compressed message ~~imun!ica[t:! ~ [ci~:a n n e_.~.. _

decoded message

decoder

I,
compressed message

Figure 2.11" Communication

Suppose a piece of message is to be sent from one location by Ann and
received at another location by Bob. The message is first encoded by an encoder
before sending to the channel and the encoded message is decoded by a decoder
on arrival at the other end and before being read by Bob.

What do the concepts such as variable length codes, average length of code-
words and entropy mean in the telecommunication scenario?

Suppose that Ann and Bob are extremely good friends but they live far away
from each other. They are both very poor students financially. Ann wants to
send messages to Bob but has to save her money. Over the years, Ann and Bob
have built their own secret alphabet. Suppose the next symbol that Ann wants
to send to Bob is randomly chosen from an alphabet with a known probability
distribution, and Bob knows the alphabet and the probability distribution.

Ann comes to ask for your advice with the important questions in the fol-
lowilLg example:

Exa:mple 2.23

1. To minimise the average number of bits Ann uses to communicate her
symbol to Bob, should she assign a fixed length code or a variable length
code to the symbols?

40 C H A P T E R 2. CODING S Y M B O L I C DATA

2. What is the average number of bits needed for Ann to communicate her
symbol to Bob?

3. What is meant by a 0 entropy? For example, what is meant if the proba-
bilities associated with the alphabet are (0, O, 1 , . . . , 0)?

You give Ann the following solutions.

S o l u t i o n s

1. Ann should use a variable length code because she is likely to use some
symbols more frequently than others. Using variable length codes can
hopefully save bits.

2. Ann needs at least the average number of bits that are equal to the entropy
n

of the source. That is - ~ i=1 Pi log2 Pi bits.

3. A '0 entropy' means that the minimum average number of bits that Ann
needs to send to Bob is zero.

Probability distribution (0, 0, 1 , . - . , 0) means that Ann will definitely
send the third symbol in the alphabet as the next symbol to Bob and Bob
knows this. If Bob knows what Ann is going to say then she does not need
to say anything, does she?!

2.6 Redundancy
The first task in data compression is to identify any redundancy presented in the
source data. Here the term redundancy has a general meaning. It can be some
overlapped information, some common base data, some identical characteristics
or some equivalent structures in nature, but all from saving storage point of
view.

We shall try to identify various redundancies from the following simple ex-
amples:

E x a m p l e 2.24 BAAAAAAAC, a string that contains consecutive repeating char-
acters.

Here the redundancy is the 7 repeating symbols A which can be replaced by
a shorter string such as rTA.

E x a m p l e 2.25 ABACAA, a string that contains non-consecutive repeating char-
acters.

The redundancy in this example comes from the occurrence of symbol t
under a fixed length code alphabet. There are more As than any other symbols.
If we use a shorter codeword to represent those more frequent symbols and a
longer one for the less frequent ones, we may represent the string in a hopefully
shorter form.

2.6. R E D U N D A N C Y 41

E x a m p l e 2.26 Consider a text with repeated words as follows:

The red, the green and the blue colour, and

the paint in red, green or blue.

Here the redundancy is the repeated words which are patterns of strings
such as red, green and blue.

E x a m p l e 2.27 Consider a vector of integers: (6, ~28, 32, 67, 125).

The redundancy in this example is the fact that the data cross over a big
range [6, 428]. Consequently, each datum d in the vector requires 9 bits to
represent since 0 < d < 512 and 29 - 512. This redundancy may be reduced by
a simple scaling method. For example, applying d div 32 to the data, we have
(0, 13, 1, 2, 4) of a much smaller range [0, 13]. Now only 4 bits are needed to
represent each scaled datum d' as 0 _< d' < 16 and 24 - 16.

E x a m p l e 2.28 Consider a matrix of binary data.

000 001 011 011
001 001 001 010
011 001 010 000

Some binary patterns can be easily found as redundancy in this matrix. The
two-dimensional data can be easily viewed as a sequence of string. For example,
in000 001 011 011 001 001 001 010 011 001 010 000 if we read the data
one row after another.

However, hidden redundancy may become clearer if we divide the matrix
into three l-bit entry matrices as below:

1. Removing the last 2 bits of each entry:

0000
0000

0000

2. Keeping the middle bit of each entry:

0 0 1 1
0 0 0 1
1 0 1 0

3. Removing the first 2 bits of each entry:

0111

1110

1100

42 CHAPTER 2. CODING SYMBOLIC DATA

Figure 2.12: Pixels with similar colours

Now the first submatr ix contains only consecutive 0s. The second one con-
tains more consecutive 0s than Is, and the last one contains more consecutive
ls than 0s.

E x a m p l e 2.29 Spacial redundancy.

An image usually contains millions of pixels. Each pixel tends to be in the
same or similar colour as its neighbours. Such a correlated relationship among
neighbours is called spatial redundancy. Figure 2.12 shows a simple way to
reduce the redundancy. The pixels on the left can be approximated to the one
on the right as long as it is acceptable by the human visual system.

E x a m p l e 2.30 Quantisation.

5000

4000

3000

2000

1000

0 1 2 3 4 5 6 7
X ~ X t

1 2 3 4 5 6

(b)

Figure 2.13: A histogram within certain ranges

In Figure 2.13(a), the shade area represents the redundancy. Let x - x ~ and
y - 1000y ~ + 2500 and we have a much simpler representation as in (b).

E x a m p l e 2.31 Transformation.

In Figure 2.14, the redundancy can be seen from points on the left. The
data are much easier to handle if we transform the coordinates of the points by

rotat ing 32 degrees clockwise.

2. 7. COMPRESSION ALGORITHMS 43

50

40

30

20

10

0

yl

�9 O..

�9 .O
�9 O.O"

0 . " �9 , " �9 �9
. 'O

.O

�9 �9 . ' "
�9 " �9

o"

50

40

30

20

10

0

�9 �9 �9 � 9

" O ' ~ O" �9
�9 O �9

X !

1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) (b)

Figure 2.14: Some matrix data gathered along a line

Example 2.32 Temple redundancy.
Figure 2.15 shows a sequence of cartoon pictures (called frames), which is

to be displayed one after another a few seconds apart. Due to the reaction of
the human visual system, what we see would be a funny face changing from a
sleep to awake, and finally to a 'smile' state.

Figure 2.15" A sequence of cartoon frames

It is interesting to notice there is a large amount of redundancy here as the
difference between one frame and the previous frame is tiny. For example, the
first three faces are completely identical except the eyes. This kind of similarity
is called temple redundancy and can be removed by simply storing the differences
between frames.

We have tried to identify certain redundancy from the previous examples.
As we can see, each example above shows a different kind of redundancy. Some
redundancy can be viewed in more than one way and this may lead to different
compression methods. Of course, we have not yet shown how to measure the
redundancy in different types of source, and how some redundancies may be
more difficult than others to lead to a good compression algorithm. We shall
see these from later chapters.

2.7 Compression algorithms
Compression algorithms, in general, aim to convert some source data at the
compression end into a compressed message, and to convert it back from the

44 CHAPTER 2. CODING SYMBOLIC DATA

compressed message at the decompression end. This requires making certain
assumptions about the source before the conversion takes place. For example,
we may need to assume that the source contains symbols from an alphabet and
the symbols occur following a specific probability distribution before any coding
happens.

Any compression methods involve essentially two types of work: modelling
and coding. The model represents our knowledge about the source domain and
the manipulation of the source redundancy. The device that is used to fulfil the
task of coding is usually called coder meaning encoder. Based on the model and
some calculations, the coder is used to derive a code and encode (compress) the
input. A coder can be independent of the model.

A similar structure applies to decoding algorithms. There is again a model
and a decoder for any decoding algorithm.

Such a model-coder structure at both the compression and decompression
ends can be seen clearly in Figure 2.16. Here we use Model-C to represent
the model for the coder and Model-D for the decoder. We use symbols ABe...
to represent the source data and 010001100..- to represent the compressed
message.

ABC. �9 �9

, � 9 1 7 6 1 7 6

Model-C ")

0

Oodor

compression

h I
ABC. �9 �9

~ 1 7 6
~

Model-D
- . . ~

010001100..- - - ~ D e c o d e r ~

decompression

Figure 2.16: Static compression system

Conceptually, we can distinguish two types of compression algorithms, namely,
static, or adaptive compression, based on whether the models may be updated
during the process of compression or decompression.

S ta t ic (non-adap t ive) s y s t e m (Figure 2.16): The model (Model-C or
Model-D) remains unchanged during the compression or decompression
process.

A d a p t i v e s y s t e m (Figure 2.17): The model may be changed during the
compression or decompression process according to the change of input
(or feedback from the output).

Some adaptive algorithms actually build the model based on the input
starting from an empty model.

In practice, a compression software or hardware system often contains a
number of static and adaptive algorithms.

2. 7. COMPRESSION ALGORITHMS 45

 upa?te
: Model-C .~

V
Oodor) 010001100. -.

compression

~

~update
.

Model-D
. ~

< Decoder

decompression

ABC. �9 �9

Figure 2.17: Adaptive compression system

In some compression systems, the model for compression (Model-C in the
figures) and that for decompression (Model-D) are identical. If they are iden-
tical, the compression system is called symmetric, otherwise, it is said to be
non-symmetric. The compression using a symmetric system is called symmetric
compression, and the compression using an asymmetric system is called asym-
metric compression.

In terms of the length of codewords used before or after compression, com-
pression algorithms can be classified into the following categories:

1. F ixed - to - f ixed : each symbol before compression is represented by a fixed
number of bits (for example, 8 bits in ASCII format) and is encoded as a
sequence of bits of a fixed length after compression.

Example 2.33 A:00, B:01, C:10, D:11 2

2. F ixed - to -va r i ab l e " each symbol before compression is represented by
a fixed number of bits and is encoded as a sequence of bits of different
length.

Example 2.34 A:O; B:IO; C:101; D:0101.

3. Var iab le - to - f ixed- a sequence of symbols represented in a different num-
ber of bits before compression is encoded as a fixed-length sequence of bits.

E x a m p l e 2.35 ABCD:O0; ABCDE:01; BC:11.

4. Var i ab l e - to -va r i ab l e" a sequence of symbols represented in a different
number of bits before compression is encoded as a variable-length sequence
of bits.

Example 2.36 ABCD:O; ABCDE:01; BC:I; BBB:O001.

We will see various types of compression algorithms in the later chapters
and a summary of the different types of coding methods in Section 7.6.

2For ease of reading, the symbols themselves are used instead of their ASCII codewords.

46 C H A P T E R 2. CODING S Y M B O L I C DATA

Summary
Information theory provides a good foundation for compression algorithms. By
working on symbolic data, statistical models can be adopted for solving com-
pression problems. Prefix codes, Kraft inequality, and entropy are useful tools in
searching efficient codes and identifying the quality of compression algorithms.
Symmetric and asymmetric compression models offer different performance and
are useful for different types of source. A good compression algorithm often
relies upon effective identification of redundancies in the interested source.

Learning outcomes
On completion of your studies in this chapter, you should be able to:

�9 explain why modelling and coding are usually considered separately for
compression algorithm design

�9 identify the model and the coder in a compression algorithm

�9 identify prefix codes

�9 demonstrate the relationship between prefix codes, Kraft inequality and
unique decodability

�9 explain how entropy can be used to measure the code optimum.

Exercises
E2.1 What is a prefix code? What can we conclude about the lengths of a prefix

code? Provide an example to support your argument.

E2.2 If a code is not a prefix code, can we conclude that it will not be uniquely
decodable? Give reasons.

E2.3 Determine whether the following codes are uniquely decodable:

(a) (0,01,11,111)

(b) (0,01,110,111)

(c) (0,10,110,111)

(d) (1,10,110,111).

E2.4 Decide the code efficiency.

Suppose that a source alphabet 8 = (A, B, C, D) with probability distri-
1 1 1 1 bution 7) = (2, 4 ' 8 ' 8) is known and a prefix code g - (0, 10,110, 1110)

is recommended.

BIBLIOGRAPHY 47

Laboratory
L2.1 Design and implement a program method entropy which takes a proba-

bility distribution (i.e. a set of probability values whose sum is 1) as the
argument and returns the first-order entropy of the source.

L2.2 Design and implement a program method averageLength which takes two
arguments: (I) a set of lengths of a code; (2) the probability distribution
of the codewords. It then returns the average length of the code.

Assessment
$2.1 Describe briefly how each of the two classes of lossless compression al-

gorithms, namely the adaptive and the non-adaptive, works in its model.
Illustrate each with an appropriate example.

$2.2 Determine whether the following codes for (A, B, C, D) are uniquely de-
codable. Give your reasons for each case.

(a) (0, 10, 101, 0101)

(b) (000, 001,010, 011)

(c) (00, 010, 011, 1)

(d) (0, 001, 10, 010).

$2.3 Determine whether the code (0, 10, 011, 110, 1111) is a prefix code and
explain why.

$2.4 If a code is a prefix code, what can we conclude about the lengths of the
codewords?

Bibliography
[Bri63] L. Brillouin. Science and Information Theory. Academic Press, New

York, 1963.

[CT05] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley-
Interscience, 2005.

[Gra90] R.M. Gray. Entropy and Information Theory. Springer-Verlag, New
York, November 1990.

[Ham86] R.W. Hamming. Coding and Information Theory. Prentice Hall, En-
glewood Cliffs, New Jersey, second edition, 1986.

[Jon79] D.S. Jones. Elementary Information Theory. Clarendon Press, Oxford,
1979.

48 CHAPTER 2. CODING SYMBOLIC DATA

[McE77] R. McEliece. The Theory of Information and Coding. Addison-Wesley,
Reading, MA, 1977.

[Sha48] C.E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379-423, 623-656, 1948.

[Sha51] C.E. Shannon. Prediction and entropy of printed English. Bell System
Technical Journal, 30(1):50-64, January 1951.

[SW491 C.E. Shannon and W. Weaver. The Mathematical Theory of Commu-
nication. The University of Illinois Press, Urbana, Illinois, 1949.

Chapter 3

Run-length algorithms

In this chapter, we consider a type of redundancy, as in Example 2.24, where
a consecutive sequence of symbols can be identified, and introduce a class of
simple but useful lossless compression algorithms called run-length algorithms
or run-length encoding (RLE for short).

We first introduce the ideas and approaches of the run-length compression
techniques. We then move on to show how the algorithm design techniques
learnt in Chapter 1 can be applied to solve the compression problem.

3.1 Run-length
The consecutive recurrent symbols are usually called runs in a sequence of sym-
bols. Hence the source data of interest is a sequence of symbols from an alphabet.
The goal of the run-length algorithm is to identify the runs and record the length
of each run and the symbol in the run.

E x a m p l e 3.1 Consider the following strings:

1. KKKKKKKKK

2. ABCDEFG

3. ABABBBC

~{. abc 123bbbbCDE.

We highlight the runs in each instance by a small shade.

49

50 C H A P T E R 3. R U N - L E N G T H A L G O R I T H M S

A run-length algorithm assigns codewords to runs instead of coding individual
symbols. The runs are replaced by a tuple (r, l, s) for (run-flag, run-length, run-
symbol) respectively, where s is a member of the alphabet of the symbols and
r and 1 are not.

E x a m p l e 3.2 String KKKKKKKKK, containing a run containing 9 Ks, can be re-
placed by triple ('r', 9, 'K'), or a short unit r9K consisting of the symbol r, 9
and K, where r represents the case of 'repeating symbol', 9 means '9 times of oc-
currence' and K indicates that this should be interpreted as 'symbol K' (repeating
9 times).

When there is no run, in ABCDEFG for example, the run-flag n is assigned
to represent the non-repeating symbols and l, the length of the longest non-
recurrent symbols are counted. Finally, the entire non-recurrent string is copied
as the third element in the triple. This means that non-repeating string/~BCDEFG
is replaced by ('n', 7, '/~BCDEFG'), and nT/~BCDEFG for short.

Run-length algorithms are very effective if the source contains many runs of
consecutive symbols. In fact, the symbols can be characters in a text file, 0s
and ls in a binary file, or any composite units such as colour pixels in an image,
or even component blocks of larger sound files.

Although simple, run-length algorithms have been used well in practice.
The so-called HDC (hardware data compression) algorithm, used by tape drives
connected to IBM computer systems, and a similar algorithm used in the IBM
System Network Architecture (SNA) standard for data communications are still
in use today.

We briefly introduce the HDC algorithm below.

3.2 Hardware data compression (HDC)
For convenience, we will look at a simplified version of the HDC algorithm.
In this form of run-length coding, we assume each run or the non-repeating
symbol sequence contains no more than 64 symbols. There are two types of
control characters. One is a flag for runs and the other is for non-run sequences.

We define the repeating control characters as r3, r4 , . . - , r63. The subscripts
are numbers to indicate the length of the run. For example, r5 indicates the case
of a run of length 5. The coder replaces each sequence of consecutive identical
symbols with one of the repeating control characters r 3 , ' - ' , r63 and depends
on the run-length followed by the repeating symbol. For example, VVVV can be
replaced by r4V. For a run of spaces, the algorithm will use the control characters
r2, r3 , . . . , r63 only, but leave out the symbol part. For example, rTr4V can be
decoded as

uuuuuuuVVVV

For the non-run parts, non-repeating control characters n l, n 2 , . . . , n63 are
used which are followed by the length of the longest non-repeating characters

3.2. HARDWARE DATA COMPRESSION (HDC) 51

until the next run or the end of the entire file. For example, ABCDEFG will be
replaced by nrABCDEFG.

This simple version of the HDC algorithm essentially uses only ASCII codes
for the single symbols, or a total of 123 control characters including a run-
length count. Each ri, where i = 2,- . . , 63, is followed by either another control
character or a symbol. If the following symbol is another control character, ri
(alone) signifies i repeating space characters (i.e. spaces or blanks). Otherwise,
ri signifies that the symbol immediately after it repeats i times. Each hi, where
i = 1, .- . , 63, is followed by a sequence of i non-repeating symbols.

Applying the following 'rules', it is easy to understand the outline of the
encoding and decoding run-length algorithms below.

3 . 2 . 1 E n c o d i n g

Repeat the following until the end of input file:

Read the source (e.g. the input text) symbols sequentially and

.

if a string I of i (i = 2, . . - , 63) consecutive spaces is found, output a single
control character ri

if a string of i (i = 3 , . . . , 63) consecutive symbols other than spaces is
found, output two characters: ri followed by the repeating symbol

otherwise, identify a longest string of i = 1 , . . . , 63 non-repeating symbols,
where there is no consecutive sequence of two spaces or of three other
characters, and output the non-repeating control character ni followed by
the string.

E x a m p l e 3.3 GGGuuuuuuBCDEFGuu55GHJKuLM777777777777

can be compressed to r3Gr6n6BCDEFGr2ng55GHJKuLMr12 7.

S o l u t i o n

1. The first three Gs are read and encoded by r3G.

2. The next six spaces are found and encoded by r6.

3. The non-repeating symbols BCDEFG are found and encoded by n6BCDEFG.

4. The next two spaces are found and encoded by r2.

5. The next nine non-repeating symbols are found and encoded by n955GHJKuLM.

6. The next twelve '7's are found and encoded by r127.

Therefore the encoded output is: r3Gr6n6BCDEFGr2n955GHJKuLMr127.

1i.e. a sequence of symbols.

52 C H A P T E R 3. RUN-LENGTH A L G O R I T H M S

3.2.2 Decoding
The decoding process is similar to that for encoding and can be outlined as
follows:

Repeat the following until the end of input coded file:

Read the codeword sequence sequentially and

1. if an ri is found, then check the next codeword

(a) if the codeword is a control character output i spaces
(b) otherwise output i (ASCII codes of) repeating symbols

2. otherwise, output the next i non-repeating symbols.

Observation
It is not difficult to observe from a few examples that the performance of the
HDC algorithm (as far as the compression ratio concerns) is:

�9 excellent 2 when the source contains many runs of consecutive symbols

�9 poor when there are many segments of non-repeating symbols.

Therefore, run-length algorithms are often used as a subroutine in other more
sophisticated coding.

3.3 A l g o r i t h m D e s i g n

We have so far learnt the ideas behind the HDC algorithm as well as run-length
algorithms in general. To learn how to design our own compression algorithms,
we look at how to derive a simple version of HDC applying the algorithm design
techniques introduced in Chapter i.

Stage 1" Description of the problem
A problem is a general question to be answered. However, a question may be
too general to lead to an algorithmic solution or too vague to even understand
the issues involved. To help us understand the HDC problem better, we look at
Example 3.1 again.

From the example, we study the input-output to reflect the behaviour of
the algorithm to be developed. It becomes clear to us soon that a run can be
described by two parts as a pair (c, s), where c represents the control charac-
ter with a count, and s the repeating symbol or non-run string depending on
whether c is ri or hi.

2It can be even better than entropy coding such as Huffman coding.

3.3. ALGORITHM DESIGN 53

Compression
The output of each instance in the example can then be written:

Decompression
1. input: r9K output: KKKKKKKKK

2. input: nTABCDEFG, output: ABCDEFG

3. input: n3ABAr3BnlC, output: ABABBBC

4. input: naabc123r4bn3CDE, output: abc123bbbbCDE.

Since the compression process is reversible, the RLE scheme is lossless com-
pression.

We now write the description of the problem:
Prob lem: Find and replace each run by a hopefully shorter codeword to indi-
cate run-flag, run-length and run-symbol respectively.
I n p u t : A sequence of symbols from an alphabet.
O u t p u t : Another hopefully shorter sequence of symbols.

Stage 2- Mathematical modelling
The mathematical model for run-length is the so-called Markov model. Named
after the Russian mathematician Andrei Andrevich Markov (1856-1922), Markov
models are popular in describing data with certain dependence. Models are use-
ful for estimating the entropy and for comparison with other methods. However,
we shall focus on the coder design in this chapter instead of discussing the de-
tails about the model. We will look more closely at the data and decide how
the consecutive recurrent symbols can be represented in a shorter string.

Let us analyse four instances in Example 3.1 first. The symbols in each
sequence are read one by one in order to identify runs and their lengths. For
convenience, the current symbol is highlighted, and the control codewords ri or
ni are used to mean a run or non-run of length i respectively. We will play with
a few examples to gain better understanding of the problem.

Compression
1. In this instance, the whole input string is a run, which can be identified by

reading the characters one at a time, and comparing it with the previous
symbol.

54 CHAPTER 3. RUN-LENGTH ALGORITHMS

2. This is an instance where there is no run in the data .

3. This is an ins tance consist ing of one run.

4. This is again an instance consist ing of one run. However, the process of

identifying the run seems more complex t h an the previous instance.

3.3. ALGORITHM DESIGN 55

The complication in this instance is due to a slightly larger symbol alpha-
bet and a mixture of both cases of characters and digits (a, b, c, C, D,
E, 1, 2, 3). Note the count numbers are in bold in order to distinguish
themselves from the symbol 1, 2, 3.

Decompression
This is the reverse process of compression. We therefore take the output of the
compression as the input string.

i. input: r9K

2. input: ABCDEFG

56 CHAPTER 3. RUN-LENGTH ALGORITHMS

3. input: ABAr3BC

4. input: abc123r4bCDE

We now summarise our model which consists of

1. A finite alphabet of symbols S = (8 1 , 8 2 , ' " , 8n), where n is the size of
the alphabet.

2. Two states: repeating and non-repeating.
3. A control character c to indicate a run ri or not ni with the counter i to

compute the length of the runs or non-runs.

4. A run-length code C = (cl,c2,"" ,cn), where each codeword contains a
control character followed by a symbol or a string.

S t a g e 3: D e s i g n o f t h e a l g o r i t h m

We now consider the design of the HDC algorithm.
The best way to develop an algorithm is to take a top-down approach. We

usually write down the main idea of the algorithm before adding details. The
advantage of this approach is to avoid wasting time on coding for a flawed
algorithm.

3.3. A L G O R I T H M D E S I G N 57

Compression
Suppose the string is read one symbol at a time. Let sp, sq and sr be three
consecutive symbols that are read most recently. The values of three consecutive
symbols can be used to detect runs and non-runs.

If the string of symbols is stored in an array S, then each symbol can be
accessed via an index. For example, reading sp from the array means an assign-
ment sp ~ Sip] and results in sp = Sip], and similarly, reading the next symbol
sq is equivalent to sq ~- S[q], where q = p + 1 and r = q + 1 = p + 2 (Figure 3.1).

Figure 3.1: Three consecutive variables Sip], S[q] and Sir]

One way to concentrate on the top-level structure is to define procedures or
functions that can be extended later on. We use x x z () to represent a procedure
or function of name x x x .

All the possibilities of runs and non-runs in three consecutive postions can
be classified as four cases: they are XXX, XXY, XYY and XYZ, where X, Y and
Z represent three different symbols. We look closely at each case and summarise
the actions required for each case below:

case space actions
XXX begin_run(), find_longest_run()
XXY uuY output_run(r2)

else begin_nonrun(), find_longest_nonrun()
XYY Xuu output_nonrun(ni, X)

else begin_nonrun(), find_longestmonrun()
XYZ begin_nonrun(), find_longest_nonrun()

We now define the procedures or functions required:

procedure or function description
(boolean) begin_run()
longest_run()
(boolean) begin_nonrun()
longest_nonrun()
output_run()
output_nonrun()
shift1()
shift2()

true if a run begins
to find the run length
not begin_run()
to find the length of a non-run
output a run
output a non-run
sp ~ sq, sq ~ s t , read sr
sp ~ s t , read sq, read sr

58 CHAPTER 3. RUN-LENGTH A L G O R I T H M S

We also define a string word to accumulate a non-run, and a counter length
to record the current length of a repeating or non repeating string.

We can now write the main algorithm as follows. Note: here the addition
sign '+ ' means concatenation for string operants.

A l g o r i t h m 3.1 myHDC encoding

I N P U T : symbol string in an array
OUTPUT: codeword sequence

1: read sp, sq, sr {i.e. S[p], S[q], S[r] in Figure 3.1}
2: wh i l e not EOF do
3: if begin_run() t h e n
4: find_longest_run()
5: output_run(length, symbol)
6: else
7: f ind_longest_nonrun()
8: output_nonrun(length, word)
9: e n d if

10- e n d wh i l e

We now work on function begin_run().
A run has to satisfy the following conditions:

1. two or more consecutive spaces, or

2. three or more consecutive other symbols in the alphabet.

A l g o r i t h m 3.2 (Function) begin_run()

I N P U T :

RETURN: true or false

1: r e t u r n (sp = sq = ' . , ') o r (sp = sq = sr)

Similarly, a non-run needs to contain

1. one space, or

2. two consecutive identical symbols other than spaces, or

3. two different consecutive symbols.

However, since a string is a non-run if it is not a run, this function is actually
not needed explicitly for our algorithm.

The other procedures and functions are as follows:

3.3. A L G O R I T H M D E S I G N 59

A l g o r i t h m 3.3 (Procedure)shif t1()

INPUT"

O U T P U T :

1: sp ~ - sq
2. sq ~ - 8r
3: read s r

A l g o r i t h m 3.4 (Procedure)shif t2()

INPUT"

O U T P U T :

1. sp ~- s r
2: read sq
3: read s r

We now move on to the two functions of computing the run length and
non-run length. For non-run length, we also need to accumulate the non-run
sequence in w o r d .

A l g o r i t h m 3.5 (Procedure)find_longest_run()

INPUT"

OUTPUT: runLength, symbol

1. l e n g t h ~ 2 {two spaces only}
2. i f s p - s q - ' u ' a n d s q C s r t h e n
3. s y m b o l - ' u '
4: else {three or more repeating symbols}
5. wh i l e not EOF and s p - s q - s r do
6: r u n L e n g t h ~- r u n L e n g t h + 1
7: read s r
8: e n d wh i l e
9: s y m b o l ~- sp

lO: e n d if
11: if not EOF t h e n
12: s h i f t 2 ()
13. e n d if

60 C H A P T E R 3. R U N - L E N G T H A L G O R I T H M S

A l g o r i t h m 3.6 (Procedure)find_longest_nonrun()

INPUT:

O U T P U T : nonrunLength, symbol
1: word ~-- sp + sq
2: length ~-- 2
3: whi le not EOF and [(sp r sq) or (sp = sq 7~ 'u ' and sq r st)] do
4: length ~-- length + 1
5: shi f t1()
6: word ~- word + sq
7: end whi le
8: if not EOF t h e n
9: length ~ l e n g t h - 2

10: word ~- w o r d - s p - sq
11: end if

A l g o r i t h m 3.7 (Procedure)output_run(length, symbol)

INPUT: runlength, symbol
OUTPUT: codeword for a run
1. if s y m b o l - ' u ' t h e n
2: output ?'length
3: else
4: output rlength -t- symbol
5- end if

A l g o r i t h m 3.8 (Procedure)output_nonrun(length, word)

INPUT: runlength, word
OUTPUT: codeword for a non-run

1: output nlength ~-word

Observat ion

We have gained some useful insight of algorithm design from the above process.

1. Identify smallest set of symbols to begin with;

2. It is often easier to take a standard top-down design approach;

3. It is useful to draw a diagram to help understand the problem.

D e c o m p r e s s i o n

Similarly, we collect the ideas and write them in pseudocode.
myHDC decompression idea:

3.3. ALGORITHM DESIGN 61

A l g o r i t h m 3.9 myHDC decoding

I N P U T : run-length codeword sequence
OUTPUT: symbol sequence

1: controlSyrnbol ~-- read_next_symbol()
2. whi le not EOF do
3. if con t ro lSymbol - 'r 'k t h e n
4: nextSyrnbol ~-- read_next_symbol()
5. if nextSyrnbol is a control symbol t h e n
6: output(k, ' u ')
7: else
8: output_run(k, nextSyrnbol)
9. end if

10: else
11: output_nonrun(k)
12: end if
13: if nextSyrnbol is not a control symbol t h e n
14: nextSyrnbol ~ read_next_symbol()
15: end if
16: controlSymbol ~ nextSymbol
17: end whi le

A l g o r i t h m 3.10 (Procedure)output_run()

I N P U T : k, symbol
OUTPUT: symbol sequence
1. f o r i = l , i _ < k , i = i + l d o
2: output symbol
3. end for

A l g o r i t h m 3.11 (Procedure)output_nonrun()

I N P U T : k
OUTPUT: symbol sequence
1. f o r i = l , i _ < k , i = i + l d o
2: symbol ~-- read_next_symbol()
3: output symbol
4: end for

Algorithm design is a complex process. The first version of any algorithm
almost certainly contains flaws. As a student, you should not be disappointed
or surprised to find errors in your (or anyone else's) algorithms. It is more
important to know what causes the problem and how to debug it.

62 CHAPTER 3. RUN-LENGTH ALGORITHMS

Stage 4: Verification of the algorithm
Correctness

The first thing to verify at this stage is the correctness of the algorithm. We need
to make sure that the algorithm produces the expected solutions in all cases.
Unfortunately, it is not always easy to give mathematical proof in algorithm
analysis. Existing testing methods can, strictly speaking, show only the presence
of bugs, but not their absence. Nevertheless, testing is essential in maintaining
the quality of software. It is an effective way to find the bugs in an algorithm.

In this book, we take a simple approach that is similar to the so-called black-
box method. The black-box approach means testing an algorithm or program
based only on its interface, without knowing its internal structure. We first
prepare a set of test data as inputs to the algorithm and work out the expected
outputs from the algorithm for each instance of the inputs. Next we run the
algorithm on the test data to get the actual output. Finally we compare the
actual output to the expected output.

It is important to design a good set of testing data. The general requirement
to test data includes: being easy to check for correctness, being as representative
as possible of the real input data to the algorithm, covering extreme and possible
illegal values of the input data.

For example, string n3GGRr3Kr2nsGHEEN is not bad for a quick check on
Algorithm 3.1 and 3.9 because it covers most working cases in the algorithms.

Saving percentage

Next, we want to estimate the compression quality at this stage.
Let the source file contain N symbols from an alphabet Sl, s2, .- . , Sn. Sup-

pose there are possible runs of length 11,12,.. . , lm. The number of runs of
length li is ki, where i - 1,- . . ,m, where m _< N. (In practice, m would be
much smaller than N.)

Hence the average length of the runs is

m [_ ~-]i=1 kili ~n ki
i=1

m
where the total number of runs is M = E i = I k i .

If we know the probability distribution of the run lengths in a source
(Pl, P2 ,"" , P,~), we can estimate 7 by

m

[- E pili
i----1

Since each codeword is a tuple (r,l,s), the codewords are of fixed length.
For example, if 0 _< 1 < 255, then the length for each codeword is 3 bytes. That
is to say, each codeword is equivalent to three symbols long.

LEARNING OUTCOMES 63

Therefore, the saving percentage is

M (1 - 3)

N

As we can see, the performance of the run-length algorithm depends on the
number and average length of the runs. Run-length algorithms are very effective
if the data source contains many runs of consecutive symbol. The symbols can
be characters in a text file, 0s or ls in a binary file or black-and-white pixels in
an image.

One easy way to verify an algorithm is to feed the algorithm data and verify
expected outcomes. For example, the previous example of data can be the input
to the algorithms. We leave this as an exercise to the reader.

Stage 5" Estimation of the computational complexity
T i m e efficiency

We next move on to the time complexity of the algorithms.
From the encoding algorithms, we see it is of O(N) where N is the number

of symbols in the source file.
In theory, one would justify the algorithmic solutions before moving on to the

implementation stage. Unfortunately, in modern practice, it is easy for people
to start implementation early despite obvious disadvantages of the approach.
We hope that we have in this section demonstrated a systematic approach to
algorithm design. The reader is encouraged to apply this approach to all the
exercises in the book.

S u m m a r y
Run-length algorithms are simple, fast and effective for a source that contains
many long runs. The HDC algorithm is a good example of such an approach
which is still used today. One good way of studying algorithms is to play with
examples.

Learn ing o u t c o m e s

On completion of your studies in this chapter, you should be able to:

�9 describe a simple version of run-length algorithm

�9 explain how a run-length algorithm works

�9 explain under what conditions a run-length algorithm may work effectively

�9 explain, with an example, how the HDC algorithm works

�9 derive a new version of a run-length algorithm following the main steps of
algorithm design process.

64 C H A P T E R 3. RUN-LENGTH A L G O R I T H M S

Exercises
E3.1 Apply the HDC (hardware data compression) algorithm to the following

sequence of symbols:

kkkkuuuuuuuuuuuuguuhh 5522777666 ab b b b cmm j uu# #

Show the compressed output and explain the meaning of each control
symbol.

E3.2 Explain how the compressed output from the above question can be re-
constructed using the decompression algorithm.

E3.3 Provide an example of a source file on which the HDC algorithm would
perform very badly.

E3.4 Outline the main stages of an algorithm design, using a simplified version
of the run-length algorithm.

Laboratory
L3.1 Based on the outline of the simple HDC algorithm, derive your version of

the HDC algorithm in pseudocode which allows an easy implementation
in your favourite program language.

L3.2 Implement your version of the HDC algorithm. Use MyHDC as the name of
your main class/program.

L3.3 Provide two source files good.source and bad.source , on which HDC
would perform very well and very badly respectively. Indicate your defi-
nition of 'good' and 'bad' performance.

Hint: Define the input and output of your (compression and decompres-
sion) algorithms first.

Assessment
$3.1 Describe with an example how a run-length coder works.

$3.2 Apply the HDC (hardware data compression) algorithm to the sequence:

uuuuuuuBCuuuAu1144330000uuEFGHHHH

Demonstrate the compressed output and explain the meaning of each con-
trol symbol.

BIBLIOGRAPHY 65

Bibliography
[Cap59] J. Capon. A Probabilistic Model for Run-Length Coding of Pictures.

IRE Transactions on Information Theory, pages 157-163, 1959.

[Go166] S.W. Golomb. Run-length Encodings. IEEE Transactions on Informa-
tion Theory, IT-12(3):399-401, 1966.

[Sal04] D. Salomon. Data Compression: the Complete Reference. Springer,
2004.

[Say00] K. Sayood.
2000.

Introduction to Data Compression. Morgan Kaufmann,

This Page Intentionally Left Blank

Chapter 4

Huffman coding

In this chapter, we formally study the Huffman coding algorithms and apply
the theory in Chapter 2.

4.1 Static Huffman coding
Huffman coding is a successful compression method used originally for text
compression. In any text, some characters occur far more frequently than others.
For example, in English text, the letters E, A, O, T are normally used much
more frequently than J, Q, X.

Huffman's idea is, instead of using a fixed-length code such as 8 bit extended
ASCII or DBCDIC for each symbol, to represent a frequently occurring char-
acter in a source with a shorter codeword and to represent a less frequently
occurring one with a longer codeword. Hence the total number of bits of this
representation is significantly reduced for a source of symbols with different
frequencies. The number of bits required is reduced for each symbol on average.

C o m p r e s s i o n

In order to understand the problem, we first look at some examples of source
texts.

E x a m p l e 4.1 Consider the string BILL BEATS BEN. For convenience, we ig-
nore the two spaces.

The frequency of each symbol is:

B I L E A T S N
3 1 2 2 1 1 1 1

Sort the list by frequency:

BLEIATSN
3 2 2 1 1 1 1 1

67

68 C H A P T E R 4. HUFFMAN CODING

This source consists of symbols from an alphabet (B, L, E, I, A, T, S, N)
with the recurrent statistics (3, 2, 2, 1, 1, 1, 1, 1). We want to assign a variable
length of prefix code to the alphabet, i.e. one codeword of some length for each
symbol.

The input of the compression algorithm is a string of text. The output of the
algorithm is the string of binary bits to interpret the input string. The problem
contains three subproblems:

1. Read input string

2. Interpret each input symbol

3. Output the codeword for each input symbol.

The first and the last subproblems are easy. For the first subproblem we
only need a data structure to allow the access to each symbol one after another.
Suppose the prefix code is C = (Cl, c2, . . . , Cn), where n = 8 in this example. For
the last subproblem, we only need a means to find the corresponding codeword
for each symbol and output the codeword.

So we focus on the second subproblem which is how to derive the code C.
We write the description of the problem:

M a i n S u b p r o b l e m : Derive an optimal or suboptimal prefix code.
I n p u t : An alphabet and a frequency table.
O u t p u t : A prefix code C such that the average length of the codewords is as
short as possible.

Modelling is fairly easy if we follow the statistical model in Chapter 2. The
alphabet of a source is S = (81,82, ' '" , 8n) which associates with a probability
distribution P = (Pl, P2, " " �9 , Pn). Note a frequency table can be easily converted
to a probability table. For example, we use the previous example where a
frequency table (3, 2, 2, 1, 1, 1, 1, 1) is given for alphabet (B, L, E, I, A,
T, S, N). The total frequency is 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1 = 12. The
probability for each symbol is the ratio of its frequency over the total frequency.
We then have the probability distribution for prediction of a source in the future
(3 2 2 1 1 2 1 1 2 1)

12~ ~ 12~ 12 ~ ~ 12 ~ ~ "
We now consider how to construct a prefix code in which short codewords

are assigned to frequent symbols and long codewords to rare symbols. Recall
in Section 2.3.3 that any prefix code can be represented in a 0-1 tree where
all the symbols are at leaves and the codeword for each symbol consists of the
collection of the 0s and ls from the root to that leaf (Figure 2.5). The short
codewords are at lower level leaves and the long codewords at higher level leaves
(Figure 2.8). 1 If we have such a binary tree for the alphabet, we have the prefix
code for the source.

Suppose the prefix code is C = (Cl, c2," �9 �9 cn) with lengths/2 = (/1,12," �9 �9 , ln)
respectively.

Our problem of deriving a prefix code becomes a problem of how to construct
a 0-1 tree so that

1 N o t e t h e r o o t is a t t h e l o w e s t l e v e l o f t h e t r e e .

4.1. S T A T I C H U F F M A N C O D I N G 69

1. All the symbols are leaves

2. If pj > Pi, then lj < li, for all i , j = 1 , . . . , n

3. Two longest codewords are identical except for the last bit.

For example, symbol B has a higher frequency than L, therefore the codeword
length for B should be no longer than L.

The longest codewords should be assigned to the more rare symbols which
are the last two symbols in our sorted list:

If the codeword for S is 0000, then the codeword for N should be 0001.
There are two approaches to construct a binary tree: one is starting from

the leaves to build the tree from the bottom up to the root. This 'bottom-up'
approach is used in Huffman encoding. The other is starting from the root
down to the leaves. The 'top-down' approach is used in Shannon-Fano encoding
(Section 4.2).

4.1.1 Huffman approach
We first look at Huffman's 'bottom-up' approach. Here we begin with a list of
symbols as the tree leaves. The symbols are repeatedly combined with other
symbols or subtrees, two items at a time, to form new subtrees. The subtrees
grow in size by combination on each iteration until the final combination before
reaching the root.

In order to easily find the two items with the smallest frequency, we maintain
a sorted list of items in descending order. With minor changes, the method also
works if an ascending order list is maintained.

Figure 4.1 shows how the tree is built from the leaves to the root step by
step. It carries out the following steps in each iteration:

1. Combine the last two items which have the minimum frequencies or prob-
abilities on the list and replace them by a combined item.

2. The combined item, which represents a subtree, is placed accordingly to
its combined frequency on the sorted list.

For example, in Figure 4.1(1), the two symbols S and N (in shade) with the
least frequencies are combined to form a new combined item SN with a frequency
2. This is the frequency sum of two singleton symbols S and N. The combined
item SN is then inserted to the second position in Figure 4.1(2) in order to
maintain the sorted order of the list.

Note there may be more than one possible place available. For example, in
Figure 4.1(2), SN with a frequency of 2 can also be inserted immediately before
symbol I, or before E. In this case, we always place the newly combined item to
a highest possible position to avoid it getting combined again too soon. So SN
is placed before L.

70 C H A P T E R 4. H U F F M A N C O D I N G

Figure 4.1: Building a Huffman tree

Generalising from the example, we derive the following algorithm for building
the tree:

Bu i ld ing the b i n a r y t r ee

Sort alphabet in descending order S = (s l, s 2 , . . " , sn) according to the associ-
ated probability distribution. P = (p l ,p2 ,"" ,pn). Each si represents the root
of a subtree. Repeat the following until there is only one composite symbol in
S:

1: If there is one symbol, the tree is the root and the leaf. Otherwise, take
two symbols si and sj in the alphabet which have the lowest probabilities
pi and pj .

2: Remove si and sj from the alphabet and add a new combined symbol (si, sj)
with probability pi + Pj. The new symbol represents the root of a subtree.
Now the alphabet contains one fewer symbol than before.

3: Insert the new symbol (si, sj) to a highest possible position so the alphabet
remains the descending order.

4.1. STATIC HUFFMAN CODING 71

G e n e r a t i n g the prefix code

Once we have the binary tree, it is easy to assign a 0 to the left branch and a
1 to the right branch for each internal node of the tree as in Figure 4.2. The
0-I values marked next to the edges are usually called the weights of the tree.
A tree with these 0-i labels is called a weighted tree. The weighted binary tree
derived in this way is called a Huffman tree.

(((SN)L)EI) (B(AT))
12

7 5

4 3 B 2

2LEI AT
oN
S N

Figure 4.2: A Huffman tree

We then, for each symbol at a leaf, collect the 0 or 1 bit while traversing
each tree path from the root to the leaf. When we reach a leaf, the collection
of the 0s and Is forms the prefix code for the symbol at that leaf. The codes
derived in this way are called Huffman codes.

For example, the collection of the 0s and Is from the root to leaf for symbol
E is first a left branch 0, then right branch 1 and finally left branch 0. Therefore
the codeword for symbol E is 010. Traversing in this way for all the leaves, we
derive the prefix code (i0 001 010 011 II0 III 0000 0001) for the whole alphabet
(B, L, E, I, A, T, S, N)respectively. A prefix code generated in this way
is called Huffman code.

4.1.2 Huffman compression algorithm
We first outline the ideas of Huffman compression algorithm with missing de-
tails.

A l g o r i t h m 4.1 Huffman encoding ideas

i: Build a binary tree where the leaves of the tree are the symbols in the
alphabet.

2: The edges of the tree are labelled by a 0 or I.
3: Derive the Huffman code from the Huffman tree.

This algorithm is easy to understand. In fact, the process of labelling the 0s
and is does not have to be at the end of construction of the entire Huffman tree.
An assignment of a 0 or 1 can be fulfilled as soon as two items are combined,
beginning from the least significant bit of each codeword.

72 C H A P T E R 4. H U F F M A N C O D I N G

We now add details and derive an algorithm as follows.

A l g o r i t h m 4.2 Huffman encoding

INPUT: a sorted list of one-node binary t r e e s (t l , t 2 , . . . , tn) for alphabet
(S l , . - . , Sn) with frequencies (W l , . . . , Wn)

OUTPUT: a Huffman code with n codewords

1: initialise a list of one-node binary trees (t l , t 2 , . . . , tn) with weight
(Wl, w2, " " , Wn) respectively

2: f o r k = l ; k < n ; k = k + l d o
3: take two trees ti and tj with minimal weights (wi <_ wj)
4: t ~ merge(t i , t j) with weight w . - wi + Wj,

where le f t_chi ld(t) ~ ti and right_child(t) ~ tj
5: edge(t, ti) ~ 0; edge(t, t j) ~ 1
6: end for
7: output every path from the root of t to a leaf, where pathi consists of

consecutive edges from the root to leafi for si

Figure 4.3 shows an example of how this practical approach works step by
step.

C a n o n i c a l a n d m i n i m u m - v a r i a n c e H u f f m a n c o d i n g

We have followed the two 'rules' below as standard practice during the derivation
of a Huffman tree in this section:

1. A newly created item is placed at the highest possible position in the
alphabet list while keeping the list sorted.

2. When combining two items, the one higher up on the list is assigned 0
and the one lower down 1.

The Huffman code derived from a process that follows these rules is called
a canonical and minimum-var iance code. The code is regarded as standard and
the length difference among the codewords is kept to the minimum. Huffman
coding that follows these rules is called canonical and minimum-var iance Huff-
man coding.

Note the canonical and minimum-variance Huffman code is not necessarily
unique for a given alphabet with associated probability distribution, because
there may be more than one way to sort the alphabet list. For example, alphabet
(B, L, E, I, A, T, S, N) with the probabilities (3, 2, 2, 1, 1, 1, 1) may be sorted
in many ways. Figure 4.4 shows two different canonical and minimum-variance
Huffman trees for the same source, one is based on and
the other on with the only difference in the position of
symbols T and S (see highlighted symbols in both lists).

4.1. S T A T I C H U F F M A N C O D I N G 73

(1) B L E I A T S N
3 2 2 1 1 1 1 1

(2) B L E I A T S N
0 I

B SN L E I A T
3 2 2 2 1 1 1

A
SN

(3) B L E I A
0

L E
2 2

AT SN
2 2

A A
ATSN

(4) B L

E1 B
3 3

A
E 1

(5) B L
I

(SN)L
4

A
2L

A
SN

E I
0 i

AT SN
2 2

A A
A T S N

E I
0 1

EI B
3 3

A
E I

(6) B L E I
0 1 0 1
B(AT) (SN)L

5 4

A A
B2 2L

A A
AT SN

A
10

EI
3

A
EI

(7) B L E I A
0 01 I0 Ii i0 T S N

1 0 1 ((SN)L)EI B(AT)
I 7 5
1 A A

4 3 B2

AA A
2LEI AT

T S N A
1 0 1 SN

A
0

L (B L E I A
2 '8) 10 001 010 011 110

(((SN) L) EI) (B (AT))
12

A T S N /~
0 1 00 01 7 5

AT A A
2 4 3 B 2

A A A A
AT 2LEI AT

A
SN

T S N
11 00 01

T S N
11 000 001

T S
111 0000

Figure 4.3" Deriving a Huffman code

N
0001

Figure 4.4: Two canonical and minimum-variance trees

74 CHAPTER 4. HUFFMAN CODING

Figure 4.5: Huffman decompression process

4.1.3 Huffman decompression algorithm
The decompression algorithm involves the operations where the codeword for a
symbol is obtained by 'walking' down from the root of the Huffman tree to the
leaf for each symbol.

E x a m p l e 4.2 Decode the sequence 00000100001 using the Huffman tree in
Figure ~.2.

Figure 4.5 shows the first seven steps of decoding the symbols S and E. The
decoder reads the 0s or ls bit by bit. The 'current' bit is highlighted in shade
in the sequence to be decompressed on each step. The edge chosen by the
decompression algorithm is marked as a bold line. For example, in step (1),

4.2. S H A N N O N - F A N O A P P R O A C H 75

start ing from the root of the Huffman tree, we move along the left branch one
edge down to the left child since a bit 0 is read. In step (2), we move along the
left branch again to the left child since a bit 0 is read, and so on. When we
reach a leaf, for example, in step (4), the symbol (the bold 'S') at the leaf is
output. This process starts from the root again (5) until step (7) when another
leaf is reached and the symbol 'E' is output.

The decoding process ends when E0F is reached for the entire string.
We now outline the ideas of Huffman decoding.

A l g o r i t h m 4.3 Huffman decoding ideas

1: Read the coded message bit by bit. Start ing from the root, we traverse one
edge down the tree to a child according to the bit value. If the current bit
read is 0 we move to the left child, otherwise, to the right child.

2: Repeat this process until we reach a leaf. If we reach a leaf, we will decode
one character and restart the traversal from the root.

3: Repeat this read-and-move procedure until the end of the message.

Adding more details, we have the following algorithm:

A l g o r i t h m 4.4 Huffman decoding

INPUT:

OUTPUT:
a Huffman tree and a 0-1 bit string of encoded message
decoded string

1: initilise p ~- root
2: wh i l e not EOF do
3: read next bit b
4: if b - 0 t h e n
5: p ~- l e f t _ch i ld (p)
6: else
7: p ~-- l e f t _ch i ld (p)
s: e n d if
9: if p is a leaf t h e n

10: output the symbol at the leaf
11: p ~ root
12: e n d if
13: e n d wh i l e

4.2 Shannon-Fano approach
Shannon-Fano coding is similar to Huffman 2 coding and only differs in the way
of constructing the binary tree. In the Shannon-Fano approach, a binary tree

2The Shannon-Fano method was proposed before Huffman coding and is named after the
inventors Claude Shannon (Bell Laboratories) and Robert Fano (MIT).

76 CHAPTER 4. HUFFMAN CODING

is constructed in a 'top-down' manner.
Let us first review Figure 4.2 in Example 4.1. There the root is the whole

alphabet of the symbols (((SN)L)EI) (B(AT)). The brackets record how the
symbols have been combined. They also provide a way to construct the binary
tree according to the brackets from the root to the leaves.

In each iteration, a node can be spilt into two halves, one corresponds to a
left subtree, the other to the right subtree.

(|) (((SN)L)EI) (B(AT))
/k

((SN)L)EI B(AT)

(2) (((SN)L)EI) (B(AT))

((SN)L)EI B(AT)

(SN) L EI B AT

(3) (((SN)L)EI) (B(AT))
/k

((SN)L)EI B(AT)

(SN) L EI B AT

SN L E I A T

(4) (((SN)L)EI) (B(AT))

((SN)L)EI B(AT)

(SN) L EI B AT

SN L E I A T
/k
s N

Figure 4.6: A binary tree constructed from the root

For example, from (((SN)L)EI) (B(AT)), we know the whole string can be
divided into two halves: ((SN)L)EI and B(AT). Let the first half be the left child
and the second the right child and we have a binary tree as in Figure 4.6(1).
Next, each half can be divided into two halves again as in Figure 4.6(2). This
division process continues until each half becomes a singleton symbol, as the
whole binary tree in Figure 4.6(4).

The example suggests that, given an alphabet 8 = (sl, s2 , . . . , sn), a binary
tree can be constructed easily by dividing a string into two halves recursively. A

4.2. SHANNON-FANO A P P R O A C H 77

'middle' split point is required for each division. Suppose we know the probabil-
ity distribution of the source 7) = (p l ,p2 , "" ,Pn). The values of the probabili-
ties of the symbols can then be used to find the middle point for each division.
For example, we can on each iteration divide the symbol list into two halves
with as balanced a weight as possible.

E x a m p l e 4.3 Consider a source 8 = (B, L, E, I , A, T, S, iV)with fre-
quencies (3, 2, 2, 1, 1, 1, 1, 1). We can divided the symbol list into two halves
with the minimum difference between the sum of probabilities of the two halves.

Figure 4.7 gives the process of the division. The vertical dash lines mark the
division point for each segment of symbols. As we can see, after the first division
(Figure 4.7(2)) the alphabet is split into two segments, (B, L) and (E, I , A,
T, S, N), with aminimum difference of frequency 1(2+3) - (2+1+1+1+1+1)1 =
2. After the next division, (B, L) is divided into B and L, and (E, I , A, T,
S, N) is divided into (F., I) and (t , T, S, N) with a minimum frequency
difference of 13- 21 = 1 and 1(2 + 1) - (1 + 1 + 1 + 1)1 = 1 respectively. This
process continues until step (5) (Figure 4.7(5)) where all the leaves are a single
symbol.

This example shows the Shannon-Fano approach precisely. In fact, since our
goal is to produce a prefix code instead of a binary tree, the process of labelling
0-1s can be embedded into the division process. For example, each time after
a division, we can simply add a 0 to the codeword for the first half and a 1 to
the second half (or a 1 to the first half and 0 to the second half). The codes
derived in this way are called Shannon-Fano codes.

We now can derive the algorithm.

4 . 2 . 1 S h a n n o n - F a n o a l g o r i t h m

Compression

Given a list of symbols, the algorithm involves the following steps:

1. Develop a frequency (or probability) table

2. Sort the table according to frequency (the most frequent one at the top)

3. Divide the table into two halves with similar frequency counts

4. Assign the upper half of the list a 0 and the lower half a 1

5. Recursively apply the step of division (3) and assignment (5) to the two
halves, subdividing groups and adding bits to the codewords until each
symbol has become a corresponding leaf on the tree.

78 CHAPTER 4. HUFFMAN CODING

(1) B L E I A T S N
3 2 2 1 I 1 I 1

!
(2) B L, E I A T S N

3 / ~ 1 1 1 1 1

B L E I A T S N
3 2 2 1 1 1 1 1

I
(3) B L , E I A T S N

3 ~ 1 1 1 1 1

I I
BIL E I,A T S N

/ ~ 2 1 , 1 1 1 1

B L E I A T S N
3 2 2 1 1 1 1 1

I (4) B L , E I A T S N
3 / / ~ 1 1 1 1 1

I I
BtL E IrA T S N
~ 2 1 , 1 1 1 1

I I
B L E,I A TiS N

?< I
E I A T S N
2 1 1 1 1 1

I
(5) B L , E I A T S N

3 / / ~ 1 1 1 1 1

I I
BIL E IiA T S N

/ ~ x ~ x 2 l J l 1 1 1

I i
L Ell A TtS N
2 2 , 1 1 1 , 1 1

I I
E I A I T S i N

A A S N
1 1 1 1

Figure 4.7: Building an equivalent Shannon-Fano tree

4.2. SHANNON-FANO APPROACH 79

This can be further refined to Shannon-Fano(S) algorithm.

A l g o r i t h m 4.5 Shannon-Fano encoding ideas

1: if S consists of only two symbols t h e n
2: add 0 to the codeword of the first symbol and 1 to the second
3: else
4. if S has more than three symbols t h e n
5: divide S into 2 subsequence S1 and $2 with minimum probability dif-

ference
6: add a 0 to extend the codeword for each symbol in $1 and a 1 to those

in $2
7: Shannon-Fano (S1)
8: Shannon-Fano(S2)
9: end if

10: end if

E x a m p l e 4.4 Suppose the sorted frequency table below is drawn from a source.
Derive the Shannon-Fano code.

Symbol A B C D E
Frequency 15 7 6 6 5

Solut ion

1. First division:

(a) Divide the table into two halves so the sum of the frequencies of each
half is as close as possible.

Symbol A B I C D E
Frequency 15 7 I 6 6 5
sum(s) (22) 1 (17)

(b) Assign one bit of the symbol (e.g. upper group 0s and the lower ls).

Symbol A B I C D E
Frequency 15 7 I 6 6 5
sum(s) (22) 1 (17)
codewords 0 I 1

2. Second division:
Repeat the above recursively to each group.

Symbol A I B, C I D E
Frequency 15 1 7, 6 1 6 5
sum(s) (15) I (7) , (6) 1(11)
codewords 00101, i01 11

80 C H A P T E R 4. HUFFMAN CODING

3. Third division:

Symbol A, B, C, D I E
Frequency 15, 7, 6, 6 1 5
codewords 00,01,I0, II0 I Iii

4. So we have the following code (consisting of five codewords) when the
recursive process ends:

A B C D E
O0 Ol I0 Ii0 III

D e c o m p r e s s i o n

Decompression takes the same approach as Huffman decoding. We leave it as
an exercise. We have derived Huffman coding and Shannon-Fano coding algo-
rithms. Before implementing the algorithms, we want to know the advantages
and disadvantages of these algorithms.

S a v i n g p e r c e n t a g e

Saving percentage is an instance-based measure.
Consider Figure 4.3 in Example 4.1 again. Given the alphabet (B, L, E,

I, A, T, S, N) with the frequency table (3, 2, 2, 1, I, I, I, I), the Huffman
code (I0, 001, 010, 011, ii0, iii, 0000, 0001) is derived with lengths (2, 3,
3, 3, 3, 3, 4, 4) respectively. The total number of bits required by the source
B I L L B E A T S B E N i s 2 x 3 + 3 x 2 x 2 - t - 3 x 1 x 3 + 4 x l x 2 = 3 5 .

Comparing this to the use of 8 bit ASCII or EBCDIC coding, the source
BILLBEATSBEN requires a total of 8 x 12 = 96 bits.

Huffman
35

ASCII/EBCDIC
96

Saving bits
61

96 35 = 61

Percentage
63.5%

61/96 - 63.5%

The saving percentage seems impressive. However, for small alphabets like
the one in this example, other coding methods can also be very effective. For
example, if we know the alphabet for a source is always as small as eight symbols,
a 3 bit fixed length code can be used as three bits can represent 23 = 8 distinctive
codewords. Comparing to a 3 bit fixed length code where the source requires 3 x
12 = 36 bits, Huffman coding achieves approximately 2.7% saving percentage.

Huffman
35

ASCII/EBCDIC
36

Saving bits

36
1
3 5 = 1

Percentage
2.7%

1/36-- 2.7%
.

Is the Huffman code in this instance the best code? To answer this question,
we only need to compute the entropy of the source.

4.3. OPTIMAL HUFFMAN CODES 81

Entropy
We first convert the frequencies of the alphabet to probabilities (1/4, 1/6, 1/6,
1/12, 1/12, 1/12, 1/12, 1/12). Then compute the entropy:

1 1 1
H - ~ log 2 4 + 2(~ log 2 6) + 5(-i- ~ log 2 12) ~ 2.855 bits

We then compute the average length of the Huffman code with lengths (2,
3, 3, 3, 3, 3, 4, 4):

- 1 1 1 1
- - - - ~ 4.416 bits / = 2 x ~ + 2 x 3 x ~ + 3 x 3 x 1 2 + 2 x 4 x 12

The difference between the entropy and the average length of the code rep-
resents, in this instance, the room for any further improvement on compression.
This means Huffman codes are not always optimal.

If the performance of a compression algorithm such as Huffman coding de-
pends on the source, under what condition on the source does the Huffman
compression algorithms perform the best? In other words, under what source
condition are the Huffman codes optimal?

4.3 Optimal Huffman codes

Huffman codes are optimal when probabilities of the source symbols are all
1 1 1 etc. negative powers of two. Examples of a negative power of two are 3, ~, g,

The conclusion can be drawn from the following justification.
Suppose that the lengths of the Huffman code are s = (11,12,.-. , ln) for a

source P = (px, p2, '" �9 , pn), where n is the size of the alphabet.
Using a variable length code to the symbols, lj bits for sj, the average length

of the codewords is (in bits):

n

[- E ljpj -- liP1 + 12P2 + ' " + lnPn
j=l

The entropy of the source is:

n

H E PJ log 1 1 1 = - - = Pl l o g - + P2 l o g - + . . - + Pn log 1
j=l PJ Pl P2 Pn

As we know from Section 2.4.2, a code is optimal if the average length of the
codewords equals the entropy of the source.

Let
n n 1

E ljpj -- E p j log 2 - -
j = l j = l PJ

82 CHAPTER 4. HUFFMAN CODING

and notice
n n

j = l j = l

This equation holds if and only if lj - - l o g 2 p j for all j - 1 , 2 , - . . , n ,
because lj has to be an integer (in bits). Since the length lj has to be an
integer (in bits) for Huffman codes, - l o g 2 p j has to be an integer, too. Of
course, - l o g 2 pj cannot be an integer unless pj is a negative power of 2, for all
j - 1 ,2 , . . . ,n.

In other words, this can only happen if all probabilities are negative powers
of 2 in Huffman codes, for lj has to be an integer (in bits). For example, for a

1 1 1 1 Huffman codes for the source can be optimal s o u r c e 7) - (2' 4 ' 8 ' 8) '

4.4 Implementation efficiency
The Huffman algorithms described earlier require a list of symbolic items to be
maintained on each iteration in descending order of probabilities. The search
for a right place for the newly combined item requires O(n 2) time overall in the
worst case, where n is the number of symbols in the alphabet.

One way to improve the time efficiency is to modify the encoding algorithm
slightly as follows:

1. Maintain two probability (or frequency) lists: one (L~) contains the orig-
inal symbols in descending order of probability. The other (Lc), initially
empty, is built to contain the 'combined items' only.

2. A new combined item is always placed to the front of list Lc. This can
be achieved in O(1) worst time, since there is no need for searching for a
right place.

The next two items to be combined are the smallest items, the same as
the two if it were in a normal Hutfman encoding algorithm. However, both
Ls and Lc have to be taken into consideration in the two-list approach. The
two items for the next combination may be chosen among the two last symbols
in L~, two combined symbol items in Lc, or one combined symbol item and
one singleton symbol in Lc and L~ respectively, whichever items have the least
weight (probability).

The following example shows how this efficient approach works step by step.

E x a m p l e 4.5 Consider the source alphabet (,4, B, C, D, E, F, G, H, I , J)
and the probabilities (in ~) 19, 17, 15, 13, 11, 9, 7, 5, 3, 1. Show how to con-
struct a Huffman tree efficiently by maintaining two lists.

In what follows, Ls represents the singleton list Ls, P the probabilities of the
symbols and Lc the list Lc for combined symbol items:

l. Ls" A B C D E F G H I J
P" 19 17 15 13 II 9 7 5 3 1

Lc" Empty

4.4. IMPLEMENTATION EFFICIENCY 83

2. Ls: A B C D E F G H
P: 19 17 15 13 II 9 7 5
Lc: (I J)
P: 4

3. Ls: A B C D E F G
P: 19 17 15 13 Ii 9 7
Lc: (H (I J))
P: 9

4. Ls: A B C D E
P: 19 17 15 13 11
Lc: (FG) (H (I J)))
P: 16 9

5. Ls: A B C D
P: 19 17 15 13
nc: (E (H (I J))) (FG)
P: 20 16

6. Ls: A B
P: 19 17
nc: (CD) (E (H (I J))) (FG)
P: 28 20 16

7. Ls: A
P: 19
nc: (B (FG)) (CD) (E (H (I J)))
P: 33 28 20

8. Ls" Empty
nc: (A (E (H (I J)))) (B (FG)) (CD)
P: 39 33 28
Li: Empty

9. Lc: ((B (FG)) (CD)) (A (E (H (IJ))))
P: 61 39
Ls: Empty

lO. nc: (((B (FG)) (CD)) (A (E (H (I J)))))
P: i00
Ls" Empty

Construct the binary tree recursively from the root"

((B (FG)) (CD))_(A (E (H (I J))))

(B (FG)) (CD) A (E (H (I J)))

84 CHAPTER 4. HUFFMAN CODING

.

.

.

((B (FG)) (CD))_(A (E (H (I J))))

(B(FG)) (CD) A(E(H(IJ)))
o ~ ~

B(FG) CD A E(H(IJ))

((B (FG)) (CD))_(A (E (H (I J))))

(B (FG)) (CD)
of--. 1

B(FG) o~ o~1
B FG C D

A(E(H(IJ)))
o ~
A E(H(IJ))

o ~
E H(IJ)

((B (FG)) (CD)) (A(E(H (I J))))

(B (FG)) (CD)
o ~

B(FG) o~~ o7~
B C D

o7,1
F G

A(E(H(IJ)))
o~~~,~
A E(H(IJ))

E H(!J)
o ~
H I J

((B (FG)) (C ~ H (I J))))

(B (FG)) (CD)
oj---..~

B(FG) o ~ o7,1
B C D

&
F G

A(E(H(IJ)))

A E(H(IJ))
o ~
E H(IJ)

o ~
H

o7,1
I J

4.4. I M P L E M E N T A T I O N EFFICIENCY 85

So the code is:

B 000 F 0010 G 0011 C 010 D 011 A 10

E 110 H 1110 I 11110 J 11111

Observat ion

1. Huffman or Shannon-Fano codes are prefix codes (Section 2.3.3) which are
uniquely decodable.

2. There may be a number of Huffman codes, for two reasons:

(a) There are two ways to assign a 0 or 1 to an edge of the tree. In
Figure 4.1, we have chosen to assign 0 to the left edge and 1 to the
right. However, it is possible to assign 0 to the right and 1 to the
left. This would make no difference to the compression ratio.

(b) There are a number of different ways to insert a combined item into
the frequency (or probability) table. This leads to different binary
trees. We have chosen in the same example to:

i. make the i tem at the higher position the left child
ii. insert the combined item on the frequency table at the highest

possible position.

.

.

For a canonical minimum-variance code, the differences among the lengths
of the codewords turn out to be the minimum possible.

The frequency table can be replaced by a probability table. In fact, it can
be replaced by any approximate statistical data at the cost of losing some
compression ratio. For example, we can apply a probability table derived
from a typical text file in English to any source data.

When the alphabet is small, a fixed length (less than 8 bits) code can also
be used to save bits.

E x a m p l e 4.6 I f the size of the alphabet set is smaller than or equal to
32, we can use 5 bits to encode each character. This would give a saving
percentage of

8 • 3 2 - 5 • 32
= 37.5%

8 •

6. Huffman codes are fragile for decoding: the entire file could be corrupted
even if there is a 1 bit error.

7. The average codeword length of the Huffman code for a source is greater
and equal to the entropy of the source and less than the entropy plus 1
(Theorem 2.2).

86 C H A P T E R 4. H U F F M A N C O D I N G

4.5 E x t e n d e d H u f f m a n c o d i n g

One problem with Huffman codes is that they meet the entropy bound only
when all probabilities are powers of 2. Wha t would happen if the alphabet is
binary, e.g. S - (a ,b)? The only optimal case 3 is when 7) - (Pa,Pb), Pa - - 1/2
and Pb -- 1/2. Hence, Huffman codes can be bad.

E x a m p l e 4.7 Consider a situation when Pa - 0.8 and Pb - 0 .2.

S o l u t i o n Since Huffman coding needs to use I bit per symbol at least, to encode
the input, the Huffman codewords are 1 bit per symbol on average:

1 - 1 • 0.8 + 1 • 0.2 - 1 bit.

However, the entropy of the distribution is

H(7)) - - (0 .8 log 2 0.8 + 0.2 log 2 0.2) - 0.72 bit.

The efficiency of the code is

H(P) 0.72
= = 72%

l 1

This gives a gap of 1 - 0.72 - 0.28 bit. The performance of the Huffman
encoding algorithm is, therefore, 0.28/1 - 28% worse than optimal in this case.

The idea of extended Huffman coding is to encode a sequence of source sym-
bols instead of individual symbols. The alphabet size of the source is artificially
increased in order to improve the code efficiency. For example, instead of as-
signing a codeword to every individual symbol for a source alphabet, we derive
a codeword for every two symbols.

The following example shows how to achieve this:

E x a m p l e 4.8 Create a new alphabet S ~ = (aa, ab, ba, bb) extended f rom
S = (a, b). Let aa be A, ab be B, ba be C and bb be D. We now have an extended
alphabet S ' = (A, B, C, i)). Each symbol in the alphabet S ~ is a combination of
two symbols f rom the original alphabet $. The size of the alphabet S ~ increases
to 2 2 = 4 .

Suppose symbol 'a' or 'b' occurs independently. The probability distribution
for S ~, the extended alphabet, can be calculated as below:

PA -- Pa X pa = 0.64

PB = P~ X Pb -- 0.16

PC = Pb • P~ = 0.16

PD = Pb X Pb = 0.04

3Here we mean the average number of bits of a code equals the entropy.

L E A R N I N G O U T C O M E S 87

We then follow the normal static Huffman encoding algorithm (Section 4.1.2)
to derive the Huffman code for 8.

The canonical minimum-variance code for S' is (0, 11, 100, 101), for A, B,
C, D respectively. The average length is 1.56 bits for two symbols.

The original output became 1.56/2 = 0.78 bit per symbol. The efficiency
of the code has been increased to 0.72//0.78 ~ 92%. This is only (0 . 7 8 -
0.72)/0.78 ~ 8% worse than optimal.

This method is supported by the following Shannon's fundamental theorem
of discrete noiseless coding:

T h e o r e m 4.1 For a source S with entropy H(S), it is possible to assign code-
words to sequences of m letters of the source so that the prefix condition is

_

satisfied and the average length l~n of the codewords per source symbol satisfies

1

Summary
Statistical models and heuristic approach give rise to celebrating static Huffman
and Shannon-Fano algorithms. Huffman algorithms take a bottom-up approach
while Shannon-Fano top-down. Implementation issues make Huffman code more
popular than Shannon-Fano's. Maintaining two tables may improve the effi-
ciency of the Huffman encoding algorithm. However, Huffman codes can give
bad compression performance when the alphabet is small and the probability
distribution of a source is skewed. In this case, extending the small alphabet
and encoding the source in small groups of symbols may improve the overall
compression.

Learning outcomes
On completion of your studies in this chapter, you should be able to:

�9 describe Huffman coding and ShannomFano coding

�9 explain why it is not always easy to implement the Shannon-Fano algo-
rithm

�9 demonstrate the encoding and decoding process of Huffman and Shannon-
Fano coding with examples

�9 explain how to improve the implementation eFficiency of the static Huff-
man encoding algorithm by maintaining two sorted probability lists

�9 illustrate some obvious weaknesses of Huffman coding

�9 describe how to narrow the gap between the minimum average number of
binary bits of a code and the entropy using the extended Huffman encoding
method.

88 CHAPTER 4. HUFFMAN CODING

Exercises
E4.1 Derive a Huffman code for the string AAABEDBBTGGG.

E4.2 Derive a Shannon-Fano code for the same string.

E4.3 Provide an example to show step by step how the Huffman decoding al-
gorithm works.

E4.4 Provide a similar example for the Shannon-Fano decoding algorithm.

E4.5 Given an alphabet S = (A, B, C, D, E, F, G, H) of symbols with the prob-
abilities 0.25, 0.2, 0.2, 0.18, 0.09, 0.05, 0.02, 0.01 respectively in the input,
construct a canonical minimum-variance Huffman code for the symbols.

E4.6 Construct a canonical minimum-variance code for the alphabet A, B, C,
D with probabilities 0.4, 0.3, 0.2 and 0.1 respectively. If the coded output
is i 0100000101 i, what was the input?

E4.7 Given an alphabet (a, b) with p~ = 1/5 and Pb = 4/5, derive a canonical
minimum-variance Huffman code and compute:

(a) the expected average length of the Huffman code

(b) the entropy of the Huffman code.

E4.8 Following the Shannon-Fano code in Example 4.4, decode 0010001110100
step by step.

E4.9 Given a binary alphabet (X, Y) with px = 0.8 and py = 0.2, derive a
Huffman code and determine the average code length if we group three
symbols at a time.

Explain with an example how to improve the entropy of a code by grouping
the alphabet.

Derive step by step a canonical minimum-variance Huffman code for al-
phabet (A, B, C, D, E, F), given the probabilities below:

E4.10

E4.11

Symbol Probability
A
B
C
D
E
F

0.3
0.2
0.2
0.1
0.1
0.1

Compare the average length of the Huffman code to the optimal length
derived from the entropy distribution. Specify the unit of the codeword
lengths used.

Hint: log10 2 ~ 0.3; log10 0.3 ~ -0.52; log10 0.2 ~ -0.7; loglo 0.1 - -1 .

A S S E S S M E N T 89

Laboratory
L4.1

L4.2

Derive and implement your own version of the Huffman algorithms in
pseudocode.

Construct two source files: the good and the bad. Explain what you mean
by good and bad.

L4.3 Implement the Shannon-Fano algorithm.

L4.4 Comment on the difference between the Shannon-Fano and Huffman al-
gorithms.

L4.5 Derive and implement algorithms for canonical minimum-variance Huff-
man codes.

L4.6 Implement the Huffman encoding and decoding algorithms using the ex-
tended coding method.

L4.7 Develop a computer program to demonstrate how the extended Huffman
codes may improve the quality of compression.

Hint" The main idea here is to show the fact that the gap between the
average length of a code and its entropy may be reduced using the extended
Huffman coding method. If you have developed any programs in the
previous laboratory sessions to compute the average length of a code and
the entropy of a probability distribution, you may then simply integrate
these into your program(s) in this section.

Assessment
$4.1 Explain how the implementation efficiency of a canonical minimum-variance

Huffman coding algorithm can be improved by means of maintaining two
frequency lists.

$4.2 Derive step by step a canonical minimum-variance Huffman code for al-
phabet (A, B, C, D, E, F) using the efficient implementation approach,
given the probabilities that each character occurs in all messages are as
follows:

Symbol [A B C D E F
Probability [0.3 0.2 0.2 0.1 0.1 0.1

$4.3 Compute the average length of the Huffman code derived from the above
question.

$4.4 Given S = (A, B, C, D, E, F, G, H) and the symbols' occurring proba-
bilities 0.25, 0.2, 0.2, 0.18, 0.09, 0.05, 0.02, 0.01, construct a canonical
minimum-variance Huffman code.

90 CHAPTER 4. HUFFMAN CODING

$4.5 Consider alphabet (A, B). Suppose the probability of A and B, PA and
PB are 0.2 and 0.8 respectively. It has been claimed that even the best
canonical minimum-variance Huffman coding is about 37% worse than its
optimal binary code. Do you agree with this claim? If yes, demonstrate
how this result can be derived step by step. If no, show your result with
good reasons.

H i n t : log10 2 ~ 0.3; lOgl0 0.8 ~ - 0 . 1 ; log10 0.2 ~ - 0 . 7 .

$4.6 For the above question:

(a) derive the alphabet that is expanded by grouping two symbols at a
time

(b) derive the canonical Huffman code for this expanded alphabet

(c) compute the expected average length of the Huffman code.

Bibliography
[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction

to Algorithms. The MIT Press, 2nd edition, 2001.

[Huf52] D.A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the Institute of Radio Engineers,
40(9):1098-1101, September 1952.

[Rub76] F. Rubin. Experiments in text file compression. Communications of
the ACM, 19(11):617-623, November 1976.

Chapter 5

Adaptive Huffman coding

In static Huffman coding, the probability distribution remains unchanged during
the process of encoding and decoding. A source file is likely to read only once
for coding purposes to avoid expensive preprocessing such as reading the entire
source. An alphabet and probability distribution is often applied based on the
previous experience. Such an estimated model can compromise the compression
quality substantially. The amount of the loss in compression quality depends
very much on how much the probability distribution of the source differs from
the estimated probability distribution.

Adaptive Huffman coding algorithms improve the compression ratio by ap-
plying to the model the statistics based on the source content seen from the
immediate past. An alphabet and its frequency table are dynamically adjusted
after reading each symbol during the process of compression or decompression.
Compared to static Huffman coding, the adaptive model is much more close to
the real situation of the source after initial steps.

The adaptive Huffman coding technique was developed based on Huffman
coding, first by Newton Faller and Robert G. Gallager and then improved by
Donald Knuth and Jeffrey S. Vitter in 1985-87. In this chapter, we focus on
the ideas behind the adaptive Huffman algorithms rather than specific versions
by any authors.

5.1 Adaptive approach
In the adaptive Huffman coding, an alphabet and frequencies of its symbols
are collected and maintained dynamically according to the source file on each
iteration. The Huffman tree is also updated based on the alphabet and fre-
quencies dynamically. When the encoder and decoder are at different locations,
both maintain an identical Huffman tree for each step independently. Therefore,
there is no need transferring the Huffman tree.

During the compression process, the Huffman tree is updated each time after
a symbol is read. The codeword(s) for the symbol is output immediately. For

91

92 CHAPTER 5. ADAPTIVE HUFFMAN CODING

convenience of discussion, the frequency of each symbol is called the weight of
the symbol to reflect the change of the frequency count at each stage.

The output of the adaptive Huffman encoding consists of Huffman codewords
as well as fixed length codewords. For each input symbol, the output can be a
Huffman codeword based on the Huffman tree in the previous step or a codeword
of a fixed length code such as ASCII. Using a fixed length codeword as the
output is necessary when a new symbol is read for the first time. In this case,
the Huffman tree does not include the symbol yet. It is therefore reasonable
to output the uncompressed version of the symbol. If the source file consists
of ASCII, then the fixed length codeword would simply be the uncompressed
version of the symbol.

In the encoding process, for example, the model outputs a codeword of a
fixed length code such as ASCII code, if the input symbol has been seen for the
first time. Otherwise, it outputs a Huffman codeword.

However, a mixture of the fixed length and variable length codewords can
cause problems in the decoding process. The decoder needs to know whether the
codeword should be decoded according to a Huffman tree or by a fixed length
codeword before taking a right approach. A special symbol as a flag, therefore,
is used to signal a switch from one type of codeword to another.

Let the current alphabet be the subset $ - (~ , s l , s2 , . . . ,Sn) of some al-
phabet and be a.y fi ed length codeword for ASCII code),
i - 1, 2 , To indicate whether the output codeword is a fixed length or a
variable length codeword, one special symbol ~ (~ a) is defined as a flag or a
shift key and to be placed before the fixed length codeword for communication
between the compressor and decompressor.

5 . 2 C o m p r e s s o r

The compression algorithm maintains a subset S of symbols of some alphabet a
(8 c a) that the system has seen so far. h Huffman code (i.e. the Huffman tree)
for all the symbols in S is also maintained. Let the weight of ~ always be 0 and
the weight of any other symbol in S be its frequency so far. For convenience,
we represent the weight of each symbol by a number in round brackets. For
example, A(1) means that symbol A has a weight of 1.

Initially, S = {~} and the Huffman tree has the single node of symbol #
(see Figure 5.1 step (0)). During the encoding process, the alphabet $ grows
in number of symbols each time a new symbol is read. The weight of a new
symbol is always 1 and the weight of an existing symbol in 8 is increased by 1
when the symbol is read. The Huffman tree is used to assign codewords to the
symbols in 8 and is updated after each output.

Let h(si) be the current Huffman codeword for si and SHIFT for the special
symbol) in the algorithms next.

The following example shows the idea of the adaptive Huffman coding.

E x a m p l e 5.1 Suppose that the source file is a string hBBBhC. Figure 5.1 shows
states of each step of the adaptive Huffman encoding algorithm.

5.2. COMPRESSOR 93

Figure 5.1: An example of adaptive Huffman encoding

As we can see from Figure 5.1, one symbol X is read from the source and
is marked in the input string. Alphabet S contains initially a single element

with a weight of zero. As each symbol X is read, the alphabet either grows

94 CHAPTER 5. A D A P T I V E HUFFMAN CODING

in number of symbols or in weight of an existing symbol, but) remains a zero
weight. The Huffman tree is updated on each step accordingly. The output on
each step can be a Huffman codeword for # followed by a fixed length codeword
g(X) such as steps (1) and (2) if X is a new symbol, or a Huffman codeword
for the input symbol such as steps (4) and (5) if X is an existing symbol in S
already.

5 . 2 . 1 E n c o d i n g a l g o r i t h m

From Example 5.1, we can derive the following main statements of the encoding
algorithm for each iteration.

1: s +- next_symbol_in_text 0
2: if s has been seen before t h e n
3: output h(s)
4: else
5. output h(SHIFT) followed by g(s)
6: e n d if
7: T +-- update_tree(T)

Adding the initial statement and a whi le statement for repeating the interac-
tion, the following encoding algorithm shows how the compressor works: Here

A l g o r i t h m 5.1 Adaptive Huffman encoding

1: initialise the Huffman tree T containing the only node SHIFT.
2: whi le more characters remain do
3: s +- next_symbol_in_text 0
4: if s has been seen before t h e n
5: output h(s)
6: else
7: output h(SHIFT) followed by g(s)
s: end if
9: T ~-- update_tree (T)

10. end whi le

next_symbol_in_text() is a function that reads one symbol from the input se-
quence, update_tree 0 is another function which does the following:

A l g o r i t h m 5.2 (Function)update_tree()

1" if s is not in S t h e n
2: add s to S; weight[s] +- 1
3: else
4: weight[8] +-- weight[8]-~- 1
5: end if
6: recompute the Huffman tree for the new set of weights or symbols

5.3. DECOMPRESSOR 95

5.3 Decompressor

The decompression algorithm also maintains a set of symbols $ that the system
has seen so far. The weight of) is always 0, and the weight of any other symbol
is the frequency of occurrence so far in the decoded output. Initially, S = {)}.

E x a m p l e 5.2 Suppose the input at the decoding end is
Og('A')Og('B')OlOlOOg('C'). Figure 5.2 shows states of each step of the adaptive
Huffman decoding algorithm.

As we can see from Figure 5.2, the decoder reads the compressed file bit by
bit. The alphabet $ grows in number of elements as in steps (1) and (2), or in
weight of some existing symbols as in steps (3) and (4). The Huffman tree is
identical to the Huffman tree for compression and updated on each step. The
highlight path from the root to a leaf shows the corresponding input bits for
each step.

Let us look at how the decompressor works step by step. In step (1), 0
is read. The decoder traces the only edge down from the root of the current
Huffman tree (in step (0)) and finds the leaf is the special symbol ~. This
indicates that what follows is a fixed length codeword. The decoder then reads
the fixed length codeword and outputs the original symbol 'A'. The first-time-
seen symbol 'A' with weight 1 is added to the alphabet S which then becomes
{A(1), ~}. The Huffman tree is updated accordingly (in step (1)). In step (2), a
0 is read. The decoder traces the 0 edge in the current Huffman tree (in step (1))
and finds the leaf is the) again. So the next fixed length codeword g('B') 1 is
read and B is output. The new symbol B(1) is added into the alphabet S and
the Huffman tree is updated. In step (3), a 0 is read. One 0 edge is traced and
leaf 'B' is reached in the current Huffman tree (in step (2)). So symbol B is
output. The weight of B is increased by 1 and the Huffman tree is updated. In
step (4), a 1 is read. One 1-edge is traced and leaf 'B' is output. The weight
of B is increased by 1 and the Huffman tree is updated again. In step (5), a 0
and then a 1 are read before reaching a leaf A(1) in the current Huffman tree
(in step (4)). So symbol A is output. The weight of A is increased by 1 in the
alphabet and the Huffman tree is updated. In step (6), a 0 and then a 0 are
read and a) is reached. So the next fixed length codeword g('C') is read. C is
output and the new symbol C(1) is added into the alphabet and the Huffman
tree is updated.

1For example, the decoder actually reads the next 8 bits if the g('B ') is an 8 bit extended
ASCII codeword for symbol B.

96 CHAPTER 5. ADAPTIVE HUFFMAN CODING

Figure 5.2: An example of adaptive Huffman decoding

5.3. DECOMPRESSOR 97

5 . 3 . 1 D e c o d i n g a l g o r i t h m

The decoding algorithm can be summarised as below:

A l g o r i t h m 5.3 Adaptive Huffman decoding

1:

2:
3:
4:
5:
6:
7:
8:
9:

10:

initialise the Huffman tree T with single node SHIFT
whi le more bits remain do

s ~-- huffman_next_sym 0
if s - SHIFT t h e n

s ~-- read_unencoded_sym 0
else

output s
end if
T +--- update_tree(T)

end whi le

The function huffman_next_sym 0 reads bits from the input until it reaches
a leaf node and returns the symbol with which that leaf is labelled.

A l g o r i t h m 5.4 (Function) huffman_next_sym()

1. start at root of Huffman tree
2: while not reach a leaf do
3: read_next_bit 0
4- traverse one edge down
5. end whi le
6: return the symbol of leaf reached

The function read_unencoded_sym 0 simply reads the next unencoded symbol
from the input. For example, if the original encoding was an ASCII code, then
it would read the next 8 bits (including the parity bit).

As in Section 5.2, the function update_tree does the following:

A l g o r i t h m 5.5 (Function) update_tree

1: if s is not in $ t h e n
2: add s to S
3: else
4: ight[] ight[] + 1
5: end if
6: recompute the Huffman tree for the new set of weights and symbols.

98 C H A P T E R 5. A D A P T I V E H U FFMAN CODING

5.4 Disadvantages of Huffman algorithms
Adaptive Huffman coding has the advantage of requiring no preprocessing and
the low overhead of using the uncompressed version of the symbols only at their
first occurrence.

The algorithms can be applied to other types of files in addition to text files.
The symbols can be objects or bytes in executable files.

Huffman coding, either static or adaptive, has two disadvantages that remain
unsolved:

�9 D i s a d v a n t a g e 1 It is not optimal unless all probabilities are negative
powers of 2. This means that there is a gap between the average number
of bits and the entropy in most cases.

Recall the particularly bad situation for binary alphabets. Although by
grouping symbols and extending the alphabet, one may come closer to the
optimal, the blocking method requires a larger alphabet to be handled.
Sometimes, extended Huffman coding is not that effective at all.

�9 D i s a d v a n t a g e 2 Despite the availability of some clever methods for
counting the frequency of each symbol reasonably quickly, it can be very
slow when rebuilding the entire tree for each symbol. This is normally
the case when the alphabet is big and the probability distributions change
rapidly with each symbol.

Summary
Adaptive Huffman coding works on dynamic statistical models. The statistical
models may be adopted to work more closely with the coders. The probability
distribution is computed applying a frequency count and adjustment of alphabet
after each new symbol being input into the coder. Two types of codes are used
and a switch codeword is used to flag the alternative use of the codes.

Learning outcomes

On completion of your studies in this chapter, you should be able to:

�9 distinguish a static compression system from an adaptive one

�9 describe how adaptive Huffman coding algorithms work with examples

�9 identify implementation issues of Huffman coding algorithms

�9 explain the two problems (weaknesses) of the Huffman coding algorithms
in general.

BIBLIOGRAPHY 99

Exercises
E5.1 Explain, with an example, how adaptive Huffman coding works.

E5.2 Trace the adaptive Huffman coding algorithms to show how the following
sequence of symbols is encoded and decoded:

aaabbcddbbccc

Laboratory
L5.1 Design and implement a simple version of the adaptive Huffman encoding

algorithm.

L5.2 Design and implement a simple version of the adaptive Huffman decoding
algorithm.

Assessment
$5.1 Describe briefly how each of the two classes of lossless compression al-

gorithms, namely the adaptive and the non-adaptive, works in its model.
Illustrate each with an appropriate example.

$5.2 Show how to encode the sequence below step by step using the adaptive
Huffman coding algorithm.

abcbbdaaddd

Bibliography
[CHS4]

[0 17s]

[Knu85]

[Vit87]

[Vit89]

G.V. Cormack and R.N. Horspool. Algorithms for adaptive Huffman
codes. Information Processing Letters, 18(3):159-165, March 1984.

N. Faller. An adaptive system for data compression. In Record of the
7th Asilornar Conference on Circuits, Systems and Computers, pages
593-597, Piscataway, NJ, 1973. IEEE Press.

R.G. Gallager. Variations on a theme by Huffman. IEEE Transactions
on Information Theory, IT-24(6):668-674, November 1978.

D.E. Knuth. Dynamic Huffman coding.
6(2):163-180, June 1985.

Journal of Algorithms,

J.S. Vitter. Design and analysis of dynamic Huffman codes. Journal
of the A CM, 34(4):825-845, October 1987.

J.S. Vitter. Algorithm 673: Dynamic Huffman coding. ACM Transac-
tions on Mathematical Software, 15(2):158-167, June 1989.

This Page Intentionally Left Blank

Chapter 6

Arithmetic coding

Arithmetic coding is important historically because it was at the time the most
successful alternative to Huffman coding after a gap of 25 years. It is superior in
performance to the Huffman coding especially when the alphabet is fairly small.
The arithmetic method extended the early coding work by Shannon, Fano and
Elias and was developed largely by Pasco (1976), Rissanene (1976, 1984), and
Langdon (1984). It bypasses the idea of replacing every single input symbol
with a codeword. Instead, it encodes a stream of input symbols with a single
fraction as the compressed output.

6.1 P r o b a b i l i t i e s and sub interva l s

The idea comes first from Shannon's observation in 1948 that messages N sym-
bols long may be encoded by their cumulative probability. This can also be
seen from the grouping of symbols in static Huffman coding where a sequence
of symbols is assigned one Huffman codeword to achieve a better compression
ratio. It is possible to accomplish the same task without explicitly extending
the alphabet. The arithmetic method is based on the fact that the cumulative
probability of a symbol sequence corresponds to a unique subinterval of the ini-
tial [0, 1], and an assumption that the alphabet is small. However, it took a
long time to solve the so-called precision problem before arithmetic algorithms
became useful.

We first look at the following example to show how the idea works.

E x a m p l e 6.1 Consider a binary source alphabet (A, B) with a probability dis-
tribution (0.2, 0.8).

Figure 6.1 (a) shows the initial interval [0, 1].
Suppose that an input string contains only 1 symbol. The current interval

[0, 1) 1 can be divided into two subintervals according to the probability distri-

1 [0, 1) means all real numbers > 0 and < 1.

I01

102 C H A P T E R 6. A R I T H M E T I C C O D I N G

bution (PA, PB), where a symbol A corresponds to the left subinterval and B
to the right (Figure 6.1(b)).

Suppose that an input string contains only 2 symbols. The current interval
can be divided into two subintervals further according to the probability distri-
bution (PA, PB), where a symbol A corresponds to the left subinterval and B
to the right. For instance, sequence BA corresponds to the highlighted interval
in Figure 6.1(c).

Figure 6.1: Encoding for two symbols

This is similar to an extended binary alphabet, where each string of certain
length has a one-to-one relationship to a unique cumulative probability interval:

Sequence Probability Cumulative Probability Interval

AA
AB
BA
BB

PA • PA -- 1/16
PA • PB -- 3/16
PB X PA = 3/16
PB • PB -- 9/16

1/16
1/4
~/4

7/16

[0, 1/16)
[1/16, 1/4)
[1/4, 7/16)
[7/16, 1)

However, there is no need to extend the alphabet and compute every com-
bined probability. Suppose that a string ABBBAABAAA of 10 symbols with
probability distribution (0.2, 0.8) is to be encoded and the occurrence of each
symbol is independent. Firstly, instead of extending the alphabet to one with
21~ combined elements, the cumulative probability of ABBBAABAAA and the
corresponding interval can be computed easily as p - 0.2 x 0.8 • 0.8 x 0.8 x 0.2 x
0.2 z 0.8 x 0.2 x 0.2 x 0.2 - 2.6214 • 10 -5. The final result, 2.6214 z 10 -~, can be
viewed as an adaptive and accumulate process of reading one symbol at a time
and of including the probability of each symbol into its partial product at each
iteration. Secondly, multiplying a real number at iteration i, say Pi E [0, 1),
to a number x is equivalent to taking a proportion of the x value; the iteration
process can be combined with the process of reading the input string. Once the
ith symbol is read, the probability of the symbol pi is multiplied immediately

6.2. M O D E L A N D C O D E R S 103

to update the current interval for the next round. A simple choice of the initial
interval is [0, 1).

The output of arithmetic coding is essentially a fraction in the interval [0, 1).
This single number can be uniquely decoded to create the exact stream of sym-
bols that went into its construction.

The arithmetic coding algorithm overcomes the disadvantages of Huffman
coding discussed in Section 5.4. It encodes a sequence of symbols at a time,
instead of a single symbol. This may reduce the difference in value between the
entropy and the average length. The algorithm does not output any codeword
until only after seeing the entire input. This would be more efficient than the
extended Huffman method by grouping symbols. The oversized alphabet is no
longer an issue because only the probability of the input string is required.

6.2 M o d e l and coders

The model for arithmetic coding is similar to the model for Huffman coding. It
is based on an alphabet and the probability distribution of its symbols. Ideally,
the probabilities are computed from the precise frequency counts of a source.
This requires reading the entire source file before the encoding process. In
practice, we can use an estimated or fixed approximate probability distribution
with the cost of a slightly lower compression ratio.

Similar to Huffman coding, the model can be a static or dynamic one depend-
ing on whether the probability distribution is changed during a coding process.
We discuss static arithmetic coding in this book unless otherwise stated.

We first introduce a simple version of the arithmetic coder for binary sources.

Suppose that both encoder and decoder know the length of the source se-
quence of symbols. Consider a simple case with a binary alphabet (A, B), and
the probability that the next input symbol 'A' is PA and 'B' is PB-

Compression
Our essential goal is to assign a unique interval to each potential symbol se-
quence of a known length. After deriving a unique interval for a given symbol
sequence, what we need to do within the interval is merely select a suitable
decimal number as the arithmetic codeword.

The arithmetic encoder reads a sequence of source symbols one symbol at
a time. Each time a new subinterval is derived according to the probability of
the input symbol. This process, starting with initial interval [0, 1), is iterated
until the end of the input symbol sequence. Then the arithmetic coder outputs
a chosen real number within the final subinterval for the entire input symbol
sequence.

104 C H A P T E R 6. A R I T H M E T I C CODING

E x a m p l e 6.2 Suppose PA = 1/~, and PB = 3/~ ; and the symbol generation is
'memoryless'.2 Show the ideas of the simple version of arithmetic coding for an
input sequence containing 1. a single symbol and 2. two symbols.

Solut ion

1. Since PA is 1/4, we first divide the interval [0, 1) into two subintervals of
which the size is proportional to the probability of each symbol, as shown
in Figure 6.2, using the convention that a real number within [0, 1/4)
represents A and a real number from [1/4, 1) represents B. Let A be 0.0
and B as 0.5.

Figure 6.2: Encoding for one symbol

2. Extending this to two symbols, we can see that PAA = PA X PA = 1/16,
P A B = PA • = 3/16, P B A = P B X p A = 3/16, and P B B = P B • = 9/16.
We divide each of the two subintervals further into two sub-subintervals
of which the size is again proportional to the probability of each symbol,
as shown in Figure 6.3.

Figure 6.3: Encoding for two symbols

For example, when a symbol 'A' is read, the new interval can be derived
from the original interval (1 - 0) multiplied by PA, i.e. (1 --0) x 1//4. The
new interval becomes [0, 1/4).

2By memory less , we m e a n t h a t the p robab i l i t y of the symbols are i n d e p e n d e n t to each

other .

6.2. MODEL A N D CODERS 105

If the next symbol is a 'B', the interval [0, 1/4) will be divided further
according to the probability of PAA and PAB, which are PA • PA = 1/4 X
1/4 = 1/16 and PA • = 1 / 4 X 3 / 4 = 3/16 respectively. The new interval
is therefore [1/16, 1/4) for string 'AB'.

We may then encode for the final iteration as follows:

1. if the input so far is 'At', i.e. input an ' t ' followed by another ' t '
then

2: output a number within [0, 1/16), i.e. [0,0.0625), (output 0, for
example)

3: else if the input is 'AB' then
4: output a number within [1/16, 1/4], i.e. [0.0625, 0.25), (output 0.1,

for example)
5: e lse if the input is 'BA' then
6: output a number between 1/4 = 0.25 and 1/4 + 3/16 = 7/16 =

0.4375, (output 0.3, for example)
7: else
8: output a number between 7/16 = 0.4375 and 7/16 + 9/16 = 1,

(output 0.5, for example).
9. e n d if

D e c o m p r e s s i o n

For convenience, the input of our decoding algorithm is a decimal fraction and
the output is a sequence of symbols. In the decoding process, the initial interval
is also [0, 1). We then determine on each iteration the subinterval according to
which segment the input fraction falls. The subinterval that covers the fraction
becomes the current interval for the following iteration and the corresponding
symbol is output. This process repeats until the required number of symbols
have been output.

Example 6.3 Suppose that the probability distribution of a binary source is
(1/~, 3/~). Outline the decoding process for 0.1, the codeword for a string of
two symbols.

Solution

Read 0.1.

Since PA = 1//4 = 0.25 and PA = 3//4 = 0.75, the interval [0, 1) is divided
into [0, 0.25) and [0.25, 1). The current interval is updated to [0, 0.25)
for the next iteration, because 0 < 0.1 < 0.25 (Figure 6.4(b)). So the
corresponding symbol A is output.

Now the interval [0, 0.25) is divided according to the probabilities PA •
PA = 1//4 • 1//4 = 1/16 and PA • PB = 1//4 • 3//4 = 3/16 and becomes

106 C H A P T E R 6. A R I T H M E T I C CODING

Figure 6.4: Decoding solution for two symbols

[0, 1/16) and [1/16, (1+3)/16)=[1/16, 1/4). The current interval is up-
dated to [1/16, 1/4) for the next iteration, because 1/16 < 0.1 < 1/4
(Figure 6.4(c)). The corresponding symbol B is output.

3. Since 2 is the length of the decoded string, we conclude that the decoded
string is AB.

We now summarise the decoding ideas below:

1: current In terval ~ [0, 1)
2: whi le the number of output symbols is insufficient do
3: divide current In terval into [0, PA) and [PA, PA + PB) according to PA

and PB
4: read the codeword x
5: if x in [0, PA) t h e n
6: output 'A' and current In terval ~ [0, PA)
7: else
8: output 'B' and current In terval ~-- ~gA, PA + PB)
9: end if

10: update PA and PB
11. end whi le

Observat ion

From Example 6.2, you may have noticed the following facts:

1. When outputting uniquely the decimal number in the final interval, we
could choose, in theory, any decimal that is in the range. However, various
techniques are developed and applied to output a short codeword.

For example, consider the final interval for string AA [0, 0.0625). We could
have chosen, say, 0.05123456789 to encode AA but we do not, because
0 allows a 1-bit code, instead of an l 1-bit one which would have been
required for 0.05123456789.

6.3. SIMPLE CASE 107

2. It is possible to have variation in the arithmetic algorithms introduced
here, because there are other equally good codewords. For example, AB
0.2 ; BA 0.4; BB 0.6 (or 0 .7 , 0 .8 , 0.9) would be fine if a unique
final subinterval can be derived for every possible string from the initial
interval [0, 1).

3. The codeword for A may be the same as the one for AA because of the
possible overlap between their final intervals. Consider Example 6.2 where
the final intervals for A and AA are [0, 1/4), and [0, 1/16) respectively, and
the codeword for both A and AA can be a 0.

However, this is acceptable because the encoder and the decoder are both
assumed to know the length of the source sequence. Of course, the encoder
does not need to know the length of the entire string in order to process
it. It can stop the encoding process when an end-of-string sign is reached.

Similarly, we can extend this to a sequence with three symbols: we can easily
work out the probability distribution (Paaa, PAaB, " " , PBBB) and therefore
decide easily the corresponding subinterval for a given string. In theory, this
subinterval division process can be repeated as many times as the number of
input symbols required.

The following table shows arithmetic encoding which can be applied to en-
code all length-3 strings over the alphabet (A, B) with PA = 1/4 and PB = 3/4.

Seq Prob Interval
(fraction)

AAA 1/64 [0, 1/64)
AAB 3/64 [1/64, 4/64)
ABA 3/64 [4/64, 7/64)
ABB 9/64 [7/64, 16/64)
BAA 3/64 [16/64, 19/64)
BAB 9/64 [19/64, 28/64)
BBA 9/64 [28/64, 37/64)
BBB 27/64 [37/64, 1)

Interval
(decimal)

Output loglo p

0, 0.015625)
0.015625, 0.0625)
0.0625, 0.109375)
0.109375, 0.25)
0.25, 0.296875)
0.296875, 0.4375)
0.4375, 0.578125)
0.578125, 1)

0
0.02
0.1
0.2

0.25
0.3
0.5
0.6

1.81
1.33
1.33
0.85
1.33
0.85
0.85
0.37

6.3 S i m p l e case

From previous examples, we know that the encoding process is essentially a
process to derive the final interval. This is achieved by the following main
steps.

Here the interval is represented by [L, L + d), where variable L stores lowest
value of the interval range and d stores the distance between the highest and
lowest value of the interval.

1. Let the initial interval be [0, 1).

2. Repeat the following until the end of the input sequence:

108 C H A P T E R 6. A R I T H M E T I C C O D I N G

(a) read the next symbol s in the input sequence

(b) divide the current interval into subintervals whose sizes are propor-
tional to the symbols' probabilities

(c) update the subinterval for the sequence up to s the new current
interval.

3. (When the end of the input string is reached), output a decimal number
within the current interval.

6 . 3 . 1 E n c o d i n g

Let pl be the probability for s i and p2 be the probability for s2, where P2 =
1 - pl. Let the current interval be [L, L + d) at each stage, and the output
fraction x satisfy L _< x < L + d.

Initially, L - 0 and d - 1, this gives [0, 1). If the next symbol could either
be s i or s2 with probability pi and p2 respectively, then we assign the intervals

[L, L + d x p l) and [L + d x p l , L + d x p l + d X p 2)

and select the appropriate one. Note: L + d xp i +d xp2 - L + d z (Pl+P2) - L+d.

A l g o r i t h m 6.1 Encoding for binary source

1: L ~- 0 and d ~-- 1
2: read next symbol
3: if next symbol is s i t h e n
4: leave L unchanged and d ~- d x Pl
5. e lse
6. L , - L + d x Pi; d ~- d x P2
7: e n d if
8: if no more symbols left t h e n
9: output a fraction from [L, L + d)

10: e lse
il. go to step 2
12: e n d if

E x a m p l e 6.4 For the example earlier, let si - A and s2 - B with probabilities
pi = 1/~ and p2 - 3 / ~ . We encode A B A as follows:

�9 L = O a n d d - 1

�9 read symbol A, leave L - 0 and set d - 1 /~

�9 read symbol B, set L - 1 / 1 6 and d - 3 / 1 6

�9 read symbol A, leave L = 1 / 1 6 and set d - 3 /6~

�9 Done, so choose a decimal number >_ L - 1 / 1 6 - 0.0625 but
< L + d - 0.109375, for example, choose 0.1 and output 1.

6.4. GENERAL CASE 109

6.3.2 Decoding
The decoding process is the inverse of the encoding process.

Let Pl be the probability for S l and p2 be the probability for s2, where
P2 = 1 - P l . Given a codeword x in [0, 1) and the length of the source string,
the source can be decoded as below:

A l g o r i t h m 6.2 Decoding for binary source

1: L ~ - 0 a n d d ~-- 1

2: read x
3: if x is a member of [L, L + d • pl) t h e n
4. output s l; leave L unchanged; d ~ d x pl
5: else
6- output s2; L ~-- L + d x pl; d ~-- d • p2
7: e n d if
8: if nurnberOfDecodedSymbols < requiredNumberOfSyrnbols t h e n
9: go to step 2

10: e n d if

Observation
1. In the algorithm and examples that we have discussed so far, a decimal

system (base 10) is used for (description) convenience. The average length
of the code is

1/64 + 6/64 + 3/64 + 9/64 + 6/64 + 9/64 + 9/64 + 27/64 = 70/64 = 1.09 digits

The information theoretic bound, i.e. the entropy, is

0.244 x 3 = 0.73 digits

As a contrast, the average length of a static Huffman code would have
required three digits in this case. This shows the s trength of the ari thmetic
coding on small alphabets.

2. It is not difficult to modify the algorithms in this section slightly to output
a sequence of 0s and ls instead of a decimal. We leave this to the reader
as an exercise.

6 .4 G e n e r a l c a s e

Let S = (8 1 , 8 2 , . . . , 8n) be the alphabet of a source with an associated proba-
bility distribution of occurrence P = (p l , p 2 , " " ,Pn). The subintervals for each
iteration can be derived for every symbol according to these probabilities. For

110 C H A P T E R 6. A R I T H M E T I C CODING

example, after the first iteration, the initial i teration [0, 1) can be divided into
n intervals as below:

[0, Pl)
[/91, Pl +P2)

[Pl + P2, Pl + P2 + P3)

[Pl + p2 + "'" + p~-1, pl + p2 + ' " + Pn-1 -~- Pn)

where Pl + p 2 + " " + p n = 1 for the n symbols in the alphabet s i , s 2 , . . . , s n
respectively. If the first symbol read is the i th symbol si in the alphabet,
then the left boundary of the subinterval low is the cumulative probabili ty
Pi = pl + p2 + "'" + pi-1 and the right boundary h igh is low + Pi.

The length of the interval h i g h - low can then be used to compute one of
the intervals in the next iteration:

[~o~, lo~ + (high- ~o~)P1)
[~ow+(h~gh-lo~) P1, ~o~ + (high- lo~)P2)

[~o~ + (h~gh- ~o~)P~-l, ao~ + (h~gh- ~o~)P~)

where the cumulative probability on the whole set is Pn - Pl +P2 + " " +Pn - 1.
This looks complicated but there is no need to compute all the subintervals

except one which depends on the independent probability of the symbol read at
tha t iteration. As we can see from the algorithm later, the variables low, high,
and the cumulative probability Pi can be easily updated.

Figure 6.5: Encoding for a 3-symbol alphabet

E x a m p l e 6.5 Given three symbols A, B, C with probabilities 0.5, 0.3 and 0.2,
the current allowed interval would be subdivided into three intervals according
to the ratio 5:3:2. We would choose the new allowed interval among the three
(Figure 6.5).

Consider a source with an alphabet (81,82,''", 8n) and probabili ty distri-
bution (pl, p 2 , " " , Pn). Suppose the length of the source is N.

6.4. G E N E R A L C A S E 111

Figure 6.6: General case

The arithmetic algorithm for compression and decompression is given below:
we use two variables low and high to define the arithmetic interval [low, high),
where the interval can be easily changed by updating the values of low or h igh
(Figure 6.6).

6 . 4 . 1 C o m p r e s s i o n a l g o r i t h m

The algorithmic idea can be summarised as:

1: c u r r e n t I n t e r v a l ~ [0, 1)
2: whi le not EOF do
3: read a symbol s
4: divide c u r r e n t I n t e r v a l into subintervals according to

the probability distribution P
5: c u r r e n t I n t e r v a l ~- sub in terva l (s)
6: end whi le
7: output a decimal from c u r r e n t I n t e r v a l

112 C H A P T E R 6. A R I T H M E T I C CODING

Let low, high, and codeRange be a real.

A l g o r i t h m 6.3 Arithmetic encoding

1: low ~-- 0.0
2: high ~-- 1.0
3: whi le there are still input symbols do
4: get an input symbol s
5: codeRange ~-- h i g h - low
6: high ~- low + range x high_range(s)
7: low ~-- low + range x low_range(s)
8. e n d whi le
9: output low

6 . 4 . 2 D e c o m p r e s s i o n a l g o r i t h m

The decompression ideas are:

1: currentInterval ~-[0, 1);
2: for i ~-- 1; i <_ SequenceLength; i ~-- i + 1 do
3: divide currentInterval into subintervals according to

the probability distribution P
4: currentInterval ~-- subinterval(s)
5: output symbol s corresponding to currentInterval
6: end for

A l g o r i t h m 6.4 Arithmetic decoding

1: get encoded number
2: r e p e a t
3: find symbol whose range covers the encoded number
4: output the symbol
5: range ~ symbol_high_value- symbol_low_value
6: subtract symbol_low_value from encoded-number
7: divide encoded_number by range
8: un t i l no more symbols

6 . 4 . 3 U n i q u e d e c o d a b i l i t y

We have shown in the previous section how it is possible to divide an interval
starting from [0, 1) according to the probability of an input symbol each time
and how to assign the final interval to the entire given symbol sequence of a
certain length.

6.4. G E N E R A L C A S E 113

As we can see from the example and Figure 6.5, in theory, there is no overlap
among these subintervals for all possible symbol sequences. It is this 'overlap-
free' fact that makes arithmetic codes uniquely decodable.

6.4.4 Advantages of using fractions
To show this, we first look at some statistical properties of blocking symbols
which is called asympto t i c equiparti t ion property. The result can be proved
mathematically but is beyond the scope of this book. Nevertheless, one of the
results is of interest. It explains why, by using fractions, arithmetic coding can
achieve better compression results than Huffman coding.

Let ci = S l S 2 . . . s n be a grouped sequence of symbols from an alphabet
of a source S with a probability distribution P. As we have seen before, if
the source is so-called 'memoryless', the probability of the sequence of symbols
is the product of the probabilities of each symbol in the sequence. That is,

Pc = pip2 " " Pn. Hence,

1 1 .2_ . n

log2 (P~) log2 (pi)
~t n i - -1

When n is big,

n 1 IsI
1 E l~ (Pi) ~ - - E l~ (Pi) - H (S)
n n

i = 1 i - -1

So, the logarithm of the probability of the typical n combined symbols can
be derived approximately from the n times of the entropy of the source, 3 i.e.

n

log2 (Pi) ~ n i l (S)
i = 1

The value n i l (S) is in general a fraction instead of an integer. That is why
a decimal number of bits codeword such as in arithmetic is better than only
allowing an integer number of bits, e.g. as in Huffman code.

6 . 4 . 5 R e n o r m a l i s a t i o n

The number of x's digits in the decoding algorithm in Section 6.3.2 can be quite
large. On most computers, the width of the current interval would become zero
rapidly (say after a few hundred symbols or so). This is an example of the so-
called precis ion problem for arithmetic coding, which is an interesting research
subject in its own right.

Renormalisation is a technique for dealing with an implementation problem.
The idea is to stop d and L becoming zero rapidly by resetting the intervals.

3For a more general situation where the symbols are not necessarily memoryless, the above
equation can be used by just replacing the entropy by the entropy rate.

114 CHAPTER 6. ARITHMETIC CODING

E x a m p l e 6.6 Consider the arithmetic encoding for BAABAA.
After BAA the interval is [0.25, 0.296875), and we know that the first digit

of the output must be 25. So the decoder outputs 25 and resets the interval to
[0.5, 0.96875); both become two to three times as big. This stops d and L going
to zero.

Summary
Arithmetic coding is a popular compression algorithm after Huffman coding
and it is particularly useful for a relatively small and skewed alphabet. We only
discuss the static approach here. In theory, an arithmetic coding algorithm en-
codes an entire file as a sequence of symbols into a single decimal number. The
input symbols are processed one at each iteration. The initial interval [0, 1) (or
[0, 1]) is successively divided into subintervals on each iteration according to the
probability distribution. The subinterval that corresponds to the input symbol
is selected for next iteration. The interval derived at the end of this division
process is used to decide the codeword for the entire sequence of symbols. Un-
fortunately, implementation often encounters difficulties due to the constraints
of computer precision.

Learning outcomes
On completion of your studies in this chapter, you should be able to:

�9 explain the main ideas of arithmetic coding

�9 describe, with an example of a small alphabet (A, B), how arithmetic
encoding and decoding algorithms work

�9 discuss the advantages of arithmetic coding compared with Huffman cod-
ing

�9 explain the main problems in the implementation of arithmetic coding.

Exercises
E6.1 What are the advantages of arithmetic coding compared with the disad-

vantages of Huffman coding? You may use a simple version of the encoding
algorithm such as Algorithm 6.1 in the discussion.

E6.2 Demonstrate how to encode a sequence of five symbols, namely BABAB from
the alphabet (A, B), using the arithmetic coding algorithm if PA = 1/5
and PB = 4/5.

E6.3 Using the coding in the previous question as an example, explain how the
arithmetic decoding algorithm works, for example, how to get the original
BABAB back from the compressed result.

BIBLIOGRAPHY 115

E6.4 Show how to encode a sequence of five symbols from (A, B), namely ABABB
using arithmetic coding if PA = 1//5 and PB = 4/5. Would it be possible
to have a coded output derived from a decimal value 0.24? Describe how
the decoding algorithm works.

E6.5 A sequence of four symbols from (A, B) was encoded using arithmetic
coding. Assume PA = 1//5 and PB = 4/5. If the coded output is 0.24,
derive the decoded output step by step.

Laboratory
L6.1 Implement a simple version of the arithmetic encoding algorithm for a

binary alphabet, e.g (A, B).

L6.2 Implement a simple version of the arithmetic decoding algorithm for the
same binary alphabet (A, B).

L6.3 Implement a simple version of the arithmetic encoding and decoding al-
gorithms for an alphabet of size n.

Assessment
$6.1 Describe briefly how arithmetic coding gets around the problems of Huff-

man coding. You may use a simple version of the encoding algorithm such
as Algorithm 6.1 for discussion.

$6.2 Show how arithmetic coding can be applied to compress all length-4 strings
over the alphabet (A, B). Suppose PA = 1//4 and PB = 3/4. You may like
to summarise the code in the following table format:

Sequence Probability Interval
fraction

Interval
decimal

Output

Bibliography
[Gua80] M. Guauzzo. A general minimum-redundancy source-coding algo-

rithm. IEEE Transactions on Information Theory, IT-26:15-25, Jan-
uary 1980.

[HV4a] P.G. Howard and J.S. Vitter. Arithmetic coding for data compres-
sion. Proceedings of the IEEE, 82(6):857-865, June 1994a.

116 CHAPTER 6. ARITHMETIC CODING

[Lan84] G.G. Langdon. An introduction to arithmetic coding. IBM Journal
of Research and Development, 28(2):135-149, March 1984.

[MNW98] A. Moffat, R.M. Neal, and I.H. Witten. Arithmetic coding revisited.
A CM Transactions on Information Systems, 16(3):256-294, July
1998.

[Pas76] R. Pasco. Source coding algorithms for fast data compression. PhD
thesis, Department of Electrical Engineering, Stanford University,
1976.

[PM88] W.B. Pennebaker and J.L. Mitchell. Probability estimation for the
Q-Coder. IBM Journal of Research and Development, 32(6):737-752,
November 1988.

IRis76] J.J. Rissanen. Generalized Kraft inequality and arithmetic coding.
IBM Journal of Research and Development, 20:198-203, May 1976.

[RL79] J.J. Rissanen and G.G. Langdon. Arithmetic coding. IBM Journal
of Research and Development, 23(2):149-162, March 1979.

[Rub79] F. Rubin. Arithmetic stream coding using fixed precision
registers. IEEE Transactions on Information Theory, IT-25(6):672-
675, November 1979.

[WNC87] I.H. Witten, R.M. Neal, and J.G. Cleary. Arithmetic coding for
data compression. Communications of the Association for Computing
Machinery, 30(6):520-540, June 1987.

Chapter 7

Dictionary-based
compression

Arithmetic algorithms as well as Huffman algorithms are all based on a statis-
tical model, namely an alphabet and the probability distribution of a source.
The compression efficiency for a given source depends on the alphabet size and
how close its probability distribution of the statistics is to those of the source.
The coding method also affects the compression efficiency. For a variable length
code, the lengths of the codewords have to satisfy the Kraft inequality in order
to be uniquely decodable. This, in one way, provides theoretically guidance on
how far a compression algorithm can go; in another, it restricts the performance
of these compression algorithms.

In this chapter, we look at a set of algorithms based on a dictionary instead
of a statistical model. The dictionary is used to store the string patterns seen
before and the indexes are used to encode the repeated patterns. The dictionary
appears in either an explicit or an implicit form as we shall see later.

Dictionary compression approaches apply various techniques that incorpo-
rate the structure in the data in order to achieve a better compression. The
goal is to eliminate the redundancy of storing repetitive strings for words and
phrases repeated within the text stream. The coder keeps a record of the most
common words or phrases in a document called a dictionary and uses their in-
dices in the dictionary as output tokens. Ideally, the tokens are much shorter
in comparison with the words or phrases themselves and the words and phrases
are frequently repeated in the document.

The encoder reads the input string, identifies those recurrent words, and out-
puts their indices in the dictionary. A new word is output in the uncompressed
form and added into the dictionary as an new entry. The main operations in-
volve the comparison of strings, dictionary maintenance and an efficient way of
encoding.

Compressors and decompressors both maintain a dictionary by themselves.
The dictionary-based algorithms are normally faster than entropy-based ones.

117

118 C H A P T E R 7. DICTIONARY-BASED COMPRESSION

They process the input as a sequence of characters rather than as streams of
bits.

The input to the compression algorithm is a stream of symbols and the
output consists of a mixture of tokens and words in original form. When it
outputs tokens, the coding system can be classified as working in variable-to-
fixed fashion since, in the basic form, each string to be encoded is of different
length but the codewords, i.e. the indices in the dictionary, are of the same
length.

Dictionary-based approaches are adaptive I in nature because the dictionary
is updated during the process of compression and decompression. The con-
tent of the dictionary varies according to the input sequence of the text to be
compressed.

Dictionary approaches do not use any statistical model but rely upon identi-
fying the repeated patterns. Therefore, the compression effect does not depend
on the quality of the statistical model, nor is it restricted by the entropy of
a source. It can, therefore, often achieve a better compression ratio than the
methods based on a statistical model.

However, there are other issues to be considered. For example, how would
certain string patterns be identified? What are the good techniques that can
be used to check whether a symbol is in the dictionary? Different choices of
patterns can lead to different compression results. What should we do if the
dictionary expands in size too quickly? Certain data structures may affect the
efficiency of certain operations directly. For example, the bigger the dictionary,
the longer it takes to check whether a word is in the dictionary. Some dedicated
data structures are very useful, such as circular queues, heaps, hash tables,
quadtrees and tries. Centred by the three representative algorithms, many
algorithms have been redeveloped to achieve or improve individual aspects of
them.

Dictionary algorithms have many applications and have been used in a num-
ber of commercial software programs. For example, in UNIX or Linux, com-
mands compress, uncompress, gz ip and gunzip have all used the dictionary
compression methods at some stage. Since our interest lies in the approaches
of dictionary algorithms, we shall look at three most popular algorithms in
fundamental form, namely LZ77, LZ78 and LZW.

The algorithms are named after the authors Abraham Lempel and Jakob Ziv
who published the papers in 1977 and 1978. A popular variant of LZ78, known
as (basic) LZW, was published by Terry Welch in 1984. There are numerous
variants of LZ77 and LZ78/LZW. We focus on and discuss the ideas of each of
these algorithms here.

7.1 P a t t e r n s in a s tr ing

The main part of a dictionary compression algorithm is to identify repetition
pattern from a string. To understand the issues, we first review some prelimi-

1Note that there can be static dictionaries.

7.2. L Z W CODING 119

naries for string matching methods.
We first look at a matching problem using an example below.

E x a m p l e 7.1 Given a string ABBBAABAB.4, find the longest repeated pattern.

Before solving this problem, we first need to make it more specific. For
example, what is a repeated pattern? How do we define the length of a pattern?

By repeated pattern, we mean a substring of the given string that occurs
at least twice in the given string. Since a pattern is a substring, we define the
length of the pattern as the length of the substring.

For example, substring BA is a repeated pattern because it occurs three
times in the given string and is of length 2 since it consists of two symbols. We
highlight the recurrence of BA:

There may be other repeated patterns in a string such as AB:
If a pattern is given as well as the string, the length of the pat tern is fixed.

However, when the pattern is not specified, finding the longest pat tern can be
computationally expensive. It may require searching patterns of all possible
lengths, e.g. the repeated pattern of length 1, of length 2, and so on.

Fortunately, the repeated patterns in dictionary compression algorithms are
defined as a word in the dictionary. The longest patterns merely mean the
longest words in the dictionary. If it is not a word, the current string will be
defined as a new word, i.e. a new entry to be added to the dictionary. Therefore,
the problem is easier than the all repeated pattern problem.

We still need to find the longest pattern in a string though. One easy method
to solve this problem is to maintain a variable for the substring seen so far. Let
the variable be word, and the newly input symbol be x. Now word is a recurrent
pattern if it is in the dictionary, and word is the longest pattern seen so far if
word + x is not in the dictionary. 2 At the same time, word + x can be inserted
into the dictionary as a new entry.

Of course, word + x is not the longest pattern if word + x is in the dictionary.
The search for the longest pattern should be continued by inputting the next
symbol.

For example, suppose word contains AB. The next symbol input x is B. Sup-
pose AB is in the dictionary but ABB is not. We know then that AB is the longest
string in the dictionary.

7.2 LZW coding
People often find that LZW algorithms are easier to understand and are the
most popular ones. We therefore study LZW coding first.

7 . 2 . 1 E n c o d i n g

In theory, the dictionary is built from scratch and is empty initially. However,
if we know the alphabet of a source, the alphabet and other commonly used

2The operator '+' means concatenation for string operants.

120 C H A P T E R 7. D I C T I O N A R Y - B A S E D C O M P R E S S I O N

symbols are stored as the first 256 entries in the dictionary. In other words, the
dictionary usually contains 256 entries (e.g. ASCII codes) of single characters
initially.

The main idea of the LZW encoding is to identify a longest pattern for each
accumulated segment of the source text and encode them by the indices in the
dictionary. If no match is found in the dictionary, the segment will become a
new entry to the dictionary. There will be a match found in the dictionary if
the same segment is seen next time.

The encoding algorithm is: 3

A l g o r i t h m 7.1 LZW encoding

1: w o r d ~ "
2: whi le not EOF do
3: X ~ read_next_character 0
4: if w o r d + x is in the dictionary t h e n
5: w o r d ~ w o r d + x
6: else
7: output the dictionary index for w o r d
8: add w o r d + x to the dictionary
9: w o r d ~-- x

10: end if
11. end whi le
12: output the dictionary index for word

The following 2 examples show how the algorithm works.

E x a m p l e 7.2 Trace the operat ions o f the L Z W algor i thm on the inpu t s tr ing
A CBBAA C.

Suppose the first 256 places in the dictionary have been filled initially with
symbols as below:

Dictionary:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A B C D E F G H I J K L M N 0 P Q R S T

21 22 23 24 25 26 27 . . . 256
U V W X Y Z space . . . 9

Solut ion

1. Initial step:

word: , ,

3Note: the addition sign + in the algorithm means concatenating, e.g. word + x means
appending the character x to the string in word.

7.2. L Z W CODING 121

2. Symbols to be read: ACBBAAC

read next_character x: A (in dictionary)

word+x: A

word :A

3. Symbols to be read: CBBAAC

read next_character x: C

word+x: AC (not in dictionary)

output: 1

new entry of the dictionary: 25Z

AC

word : C

4. Symbols to be read: BBAAC

read next_character x: B

word+x: CB (not in dictionary)

output: 3

new entry of the dictionary: 258

CB

word : B

5. Symbols to be read: BAAC

read next_character x: B

word+x: BB (not in the dictionary)

output : p.
new entry of the dictionary: 9.59

BB
word : B

6. Symbols to be read: AAC

read next_character x: A

word+x: BA (not in the dictionary)

output: 2

new entry of the dictionary: 260

BA

word : A

7. Symbols to be read: AC

read next_character x: A

word+x: AA (not in the dictionary)

122 CHAPTER 7. DICTIONARY-BASED COMPRESSION

output: 1

new entry of the dictionary:

word : A

261

AA

8. Symbols to be read: C

read next_character x: C

word+x: AC (in dictionary)

word :AC

9. Symbols to be read: none

read next_character x: EOF (i.e. end of file)

output: 257

So the total output (the compressed file) is: 1 3 2 2 1 257.

The new entries of the dictionary are:

257 258 259 260 261
AC CB BB BA AA

E x a m p l e 7.3 Encode AAABAABBBB by tracing the L Z W algorithm.

Solu t ion Suppose the first 256 places in the dictionary have been filled initially
with symbols as below:

Dictionary:
1 2 3 4 5 6 7 8 9 i0 Ii 12 13 14 15 16 17 18 19 20

ABCDEFGH I J K L M N 0 P Q R S T

21 22 23 24 25 26 27 . . . 256
U V W X Y Z space . . . 9

1. Initial step:

word: ,,

We show the actions taken and the variable values updated by the encoding
algorithm on completion of each iteration of step 2, as follows:

7.2. L Z W CODING 123

2. Symbols to be read: AAABAABBBB

Input next_character (x): A
word+x: A
word :A

3. Symbols to be read: AABAABBBB

Input next_character (x): A
word+x: AA
Output: 1
Dictionary (new entries): 257

AA
word : A

4. Symbols to be read: ABAABBBB

Input next_character (x): A
word+x: AA
word :AA

5. Symbols to be read: BAABBBB

Input next_character (x): B
word+x: AAB
Output: 257
Dictionary (new entries): 9.5Z 9.58

AA AAB
word : B

6. Symbols to be read: AABBBB

Input next_character (x): A
word+x: BA
Output : 2
Dictionary (new entries): 257 258 259

AA AAB BA
word : A

7. Symbols to be read: ABBBB

Input next_character (x): A
word+x: AA
word : AA

124 C H A P T E R 7. D I C T I O N A R Y - B A S E D COMPRESSION

8. Symbols to be read: BBBB

Input next_character (x)" B
word+x" AAB
word �9 AAB

9. Symbols to be read: BBB

Input next_character (x)" B
word+x" AABB

Output" 258

Dictionary (new entries)" 257 258 259 260
AA AAB BA AABB

word �9 B

10. Symbols to be read: BB

Input next_character (x)" B
word+x" BB
Output" 2
Dictionary (new entries)" 257 258 259 260 261

AA AAA BA AABB BB

word �9 B

11. Symbols to be read: B

Input next_character (x)" B
word+x" BB
word �9 BB

12. Symbols to be read: (none)

Input next_character (x)" EOF (i.e. end of file)

/, goes to step 3. */

Output" 261

So the compressed output for AAABAABBBB is

I 257 2 258 2 261

The new entries of the dictionary are:

257 258 259 260 261
AA AAB BA AABB BB

7.2. L Z W CODING 125

7.2.2 Decoding
Similarly, the decoder builds its own dictionary as it reads the tokens, i.e. the
encoded data, one by one from the compressed file.

The algori thm now is:

A l g o r i t h m 7.2 LZW decoding

7:

8:
9:

10:
11:
12:
13:
14:

1: read a token x from the compressed file
2: look up dictionary for element at x
3: output element
4: word ~ e lement
5: w h i l e not E0F do
6: read x

look up dictionary for element at x
if there is no entry yet for index x t h e n

element ~ word + firstCharOfWord
e n d if
ou tput element
add word + firstCharOfElement to the dictionary
word ~-- e lement

e n d w h i l e

E x a m p l e 7.4 Show the operations of the decompress algorithm on the input
tokens 1 3 2 2 1 25Z which is the compressed result in Example %2.

S o l u t i o n

1. (Initial step) Tokens to be read" 1 3 2 2 1 257

read token x" i

element" A

output" A

word �9 A

2. Tokens to be read: 3 2 2 1 257

read token x: 3

element: C

output" C

add new entry of dictionary" 257

AC
word : C

126 C H A P T E R 7. D I C T I O N A R Y - B A S E D C O M P R E S S I O N

3. Tokens to be read: 2 2 1 257

read token x: 2

element: B

output" B

add new entry of dictionary" 258

CB
word : B

4. Tokens to be read: 2 1 257

read token x: 2

element: B

output" B

add new entry of dictionary" 259

BB

word : B

5. Tokens to be read: 1 257

read token x: 1

element: A

output A

add new entry of dictionary" 260

BA
word : A

6. Tokens to be read: 257

read token x: 257

element: AC

output AC

add new entry of dictionary" 261

AA

word : AC

7. Token to be read: (none)

read token x" EOF (i.e. end of compressed file)

(end)

So the total output is ACBBAAC.
The new entries of the dictionary are:

257 258 259 260 261
AC CB BB BA AA

7.2. L Z W CODING 127

E x a m p l e 7.5 Decode I 257 2 258 2 261 obtained from Example 7.3 and trace
the activities of the decoding algorithm.

Suppose again the first 256 places in the dictionary have been filled initially
with symbols as below:

D i c t i o n a r y :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ABCDEFGH I J K L M N 0 P O R S T

21 22 23 24 25 26 27 . . . 256
U V W X Y Z space . . . 9

Solu t ion

1. Tokens to be read: 1 257 2 258 2 261

Initial steps:

Read next_token (x): i
output: A
word: A

2. Tokens to be read: 257 2 258 2 261

(Iterations begin):

Read next token (x): 257

Look up the dictionary and find there is no entry yet for 257
element: AA /, element=word+first_char_of word ,/
output element : AA
Dictionary (new entries so far): 257

AA
word: AA

3. Tokens to be read: 2 258 2 261

Read next_token (x): 2

Look up the dictionary and output element: B
Dictionary (new entries so far): 257 258

AA AAB
word: B

128 C H A P T E R 7. D I C T I O N A R Y - B A S E D COMPRESSION

4. Tokens to be read: 258 2 261

Read next_token (x): 258
Look up the dictionary and output element: AAB
Dictionary (new entries so far): 257 258 259

AA AAB BA
word: AAB

5. Tokens to be read: 2 261

Read nex t_ token (x) : 2
Look up the d i c t i o n a r y and output e lement : B
D i c t i o n a r y (new e n t r i e s so f a r) : 257 258 259 260

AA AAB BA AABB

word: B

6. Tokens to be read: 261

Read next_token (x): 261
Look up the dictionary and find no entry for 261
element: BB /, element=word+first_char_of_word */
output element: BB
Dictionary (new entries so far): 257 258 259 260 261

AA AAB BA AABB BB

word: BB

7. Tokens to be read: (none)

Read next_token (x): EOF (i.e. end of compressed file)
(end)

So the decoded message is AAABAABBBB.
Dictionary (new entries) is:

257 258 259 260 261
AA AAB BA AABB BB

O b s e r v a t i o n

1. The compression algorithm and the decompression algorithm build an
identical dictionary independently. The advantage of this is that the com-
pression algorithm does not have to pass the dictionary to the decompres-
SOt.

2. The size of the dictionary may grow so quickly that an effective method
of maintaining the dictionary would be essential.

7.3. LZ77 FAMILY 129

7.3 LZ77 family
In this approach, the dictionary to use is a portion of the previously seen input
file. The proportion of the input string is decided by an imagined sliding window
which can be shifted from left to right. The window is maintained to define
dynamically the dictionary part and to scan the input sequence of symbols. As
the window sliding from the left to right, the content of the dictionary and the
portion of the input text in which patterns are sought are updated. This imitates
the situation when a compressor scans the source text segment by segment.

The window is divided into two consecutive halves, the first half is called
the History buffer (H for short) or the Search buffer which contains a portion of
the recently seen symbol sequence. The second half of the window is called the
Lookahead buffer (L for short) which contains the next portion of the sequence
to be encoded. The term buffer is used to mean a storage for some temporary
data.

The size of each buffer is usually fixed in advance. In practical implemen-
tation, the History buffer is some thousands of bytes long and the Lookahead
buffer is only tens of bytes long.

Let 1H and 1L be the size of H and L respectively.
Figure 7.1 shows an example, where H = ' ryubaseducompres ' , a History

buffer of size 1H = 16 bytes (1 byte for each symbol), and L = ' s ionucompress ' ,
a Lookahead buffer of size lc = 12. The sequence of symbols in (and before)
H has been seen and compressed but the sequence in (and after) L is to be
compressed. You can imagine that the window moves from left to right (or
the entire text sequence moves from right to left) from time to time during the
compression process.

(or, ~ text moving) window moving ==>

di ct io n~ryub a s educ omp r e sJ Isi o nuc omp r e s~esu d a t auus i n g u a u d i c t i o n a r y

H L

Figure 7.1" History buffer and Lookahead buffer

Similar to the LZW algorithm, the input of the compression algorithm is a
sequence of the source symbols and the output of the compression is a triple
codeword (f, l, c} called token. If the tokens are regarded as of fixed length, the
LZ77 compression algorithms belong to the variable-to-fixed coding scheme.

7 . 3 . 1 P r e f i x m a t c h

Before moving on to discuss the LZ77 algorithm, let us first clarify a few concepts
related to the codeword (f, l, c>.

An array of n symbols is called a string of length n. A substring is a number
(< n) of consecutive symbols in the string. A prefix of a string is a substring of
any length beginning with the first symbol of the string.

130 CHAPTER 7. DICTIONARY-BASEDCOMPRESSION

E x a m p l e 7.6 Consider stringBABC. Its substrings are B, A, B, C, BA, AB,
BC, BAB, ABC, BABC. The possible prefixes are B, BA, BC, BAB, BABC.

Now consider two strings: H = 'ABBBAABABA' and L = 'BABC'. A prefix of
L may occur in the string H, i.e. being identical to a substring of H. Such an
occurrence is called a prefix match (of L) in H by our definition. For instance,
B, BA and BAB are three prefix matches found in H.

We are often more interested in the longest prefix match, such as the BAB
in H in the example. For convenience, we use the term prefix match to mean
the longest substring (or substrings) in the History buffer H that matches a
prefix in L. We highlight the prefix match in H and L below. Index 7 is also
highlighted since it indicates the match location in H.

The longest prefix length is called the length of the match (mlength for
short) which is 3 in this example. The start position of the match is the index
7 in H. We indicate this position by the so-called offset which is the distance
from the right edge of H. The offset is 4 in the example. The first mismatching
symbol is C following the match in L (see the diagram below).

H: L:

These three values form the token (f, l, c} in the LZ77 algorithm below, where
f is the offset, i.e. the location from the right edge of the H; 1 is the length
of the match found in H and c is the immediate mismatching symbol after the
prefix in the L.

We shall need the concept of such a prefix match, the length of the match
and offset in understanding the LZ77 algorithm below.

7 . 3 . 2 A t y p i c a l c o m p r e s s i o n s t e p

Suppose that H, the History buffer, has lH bytes (characters) that have been
seen and encoded; L, the Lookahead buffer, has at most 1L characters, which
have been seen but not yet encoded. There are many algorithms in the LZ77
family but a typical encoding algorithm can be outlined below:

1. Read from the input characters until L is full.

2. Scan H from right to left searching H for a prefix match (as described in
Section 7.3.1).
If more than one match is found in the H, take the right most prefix
match, i.e. the longest and the first one from the right in H. a

4i.e. the one located furthest from the left in H.

7.3. LZ77 FAMILY 131

window moving =>

Figure 7.2" A match is found with an offset length 12 and match length 9

3. If a match of length 1 > 2 characters is found (see Figure 7.2) with an offset
of f bytes, then output token {f, l, c}, where c is the first mismatching
symbol following the match.

Slide the window (H and L together) f characters to the right (i.e. shift
to the left the first 1 characters out of H, and the first 1 characters in L
into H.)

4. If no match is found then output {0, 0, ASCII(c)}.

Slide the window one character to the right.

In some cases, the last element of the triple, c, may be unnecessary and can
be saved.

E x a m p l e 7.7 Starting with a H of size 16 bytes which contains the charac-
ters laseducompressionl (where u represents a space) and an empty Looka-
head buffer, show the output and the final state of the History buffer if the
following characters are next in the input, for a Lookahead buffer of size 12:
ucompressesudatauusingmamdictionary.

So lu t i on We refer to Figure 7.2 and trace what happens step by step following
the LZ77 encoding algorithm.

1. Load the input string into L, H (left) and L (right) now contain the
following:

A prefix match 'ucompress ' is found and we record the offset f = 12
(bytes) and the match length l = 9 (bytes).

Output: (12, 9}.

Slide the window nine characters to the right. H (left) and L (right) now
contain:

2. A match 'es' is found, 5 so we record the offset 3 and the match length 2.

Output: (3, 2}.

Slide the window two characters to the right. H (left) and L (right) now
contain:

Is s i o nmC omp r e s s e s Iudat amus ingulaudi c t i o nary

5In fact, 'es' is found in two places but we only consider the first (right most) match here.

132 C H A P T E R 7. D I C T I O N A R Y - B A S E D C O M P R E S S I O N

3. Only a one-symbol match 'u' is found so:

Output: the pointer (0, ASCII (' u ')).

Slide the window one character to the right. H (left) and L (right) now
contain:

Is i Onucompressesul dat auus ingua]udi ct i onary

4. No match is found so:

Output: the pointer (0, ASCII (' d') >.

Slide the window one character to the right. H (left) and L (right) now
contain:

l i o nuc omp r e s s e s udlat auus ingu auld i c t i o nary

5. No match is found so:

Output: the pointer (0, ASCII (' a') l-

Slide the window one character to the right. H (left) and L (right) now
contain:

Io nu c omp r e s s e sud alt auus i ngu audli c t i o n ary

6. No match is found so:

Output: the pointer (0, ASCII (c t') >.

Slide the window one character to the right. H (left) and L (right) now
contain:

Inucompressesudatlauusinguaudilct ionary

7. Only one symbol match Ca' is found so:

Output: the pointer (0, ASCII (' a') >.

Slide the window one character to the right. H (left) and L (right) now
contain:

luC omp r e s s e sudat aluuS ingu aud i c~ i o nary

and so on.

To write the algorithm, we need to define certain variables to find the offset,
the match and shift of the contents dynamically. This can be summarised in
the following diagram:

Suppose the entire text of N bytes long is stored in an array S[1 . . . N],
the size of the sliding window is W. We define the following variables for
implementation convenience:

�9 S[m] is the first character in the match found in H

�9 p is the first character in L

7.3. LZ77 FAMILY 133

�9 The offset f = p - m

�9 1 is the match length

�9 The first mismatching character is Sip + 1]

This can be seen clearly in Figure 7.3.

L = S~9... 1L] S[m] is the first character in the match

Figure 7.3: S[1- . . N] for LZ77 encoding

We now can write the Algorithm 7.3.

A l g o r i t h m 7.3 LZ77 encoding

I N P U T : symbol sequence, window size W
OUTPUT: token sequence in (f , l , c) form
1: set p ~-- 1
2. wh i l e not EOF do
3.. find the longest match o f / b y t e s for Sip . . . l] in H = S [p - W - . . (p - 1)]

and the first matching character is S[m]
4: output the triple token (p - m, l, Sip +/]}
5- p ,--- p + 1 + 1 {prepare for the next shift}
6: e n d w h i l e

O b s e r v a t i o n

1. The History buffer is initialised to have no characters in it. Hence the first
few characters are coded as raw ASCII codes (and the overhead) as the
History buffer fills up. This may result in expansion of the compressed file
rather than compression at the beginning.

2. In common with the adaptive Huffman algorithm, LZ77 is an adaptive
algorithm and may start with an empty model.

134 CHAPTER 7. DICTIONARY-BASED COMPRESSION

3. The LZ77 encoding algorithm can only identify the patterns in the source
file which are close enough to each other, because it can only compare the
Lookahead buffer to the recently seen text in the History buffer, but not
to the text that was input a long time ago.

7 . 3 . 3 D e c o m p r e s s i o n a l g o r i t h m

The decoder also maintains a buffer of the same size as the encoder's window.
However, it is much simpler than the encoder because there is no matching
problems to be dealt with. The decoder reads a token and decides whether the
token represents a match.

If it is a match, the decoder will use the offset and the match length in the
token to reconstruct the match. Otherwise, it outputs the symbol in ASCII
code in the token.

We use an example to show how this works.

E x a m p l e 7.8 Suppose the buffer contains the following decoded symbols:
IDi at i onaryubas e du c ompre s s i on I.

The decoder reads the following tokens one at each iteration: <12, 9><3, 2>
<0, ASCII('u ')> (O, ASCII('d')> (O, ASCII('a ')> (0, ASCII('t ')> (0, ASCII('a ')}

So lu t ion

1. Read the next token (12, 9}, which is a match. The decoder uses the offset
(the first number in the token f) to find the first symbol of the match and
uses the match length (the second number in the token l) to decide the
number of symbols to copy.

So we have the following process:

(a) Count 12 from the end of the buffer and find the symbol 'u'.

(b) Copy the next nine symbols one by one (see the shade characters)
and update the buffer:

2. Read (3, 2>, find the position with offset 3, copy the next 2 characters, and
the buffer becomes:

7.3. LZ77 FAMILY 135

3. Read (0, ASCII('u')>, which is not a match so output: 'u'.
The buffer becomes:
Is edmc ompre s s i onuc ompre s s e Sul

4. Read (0, ASCII ('d')>, which is not a match so output: 'd' (i.e. add 'd'
into the buffer).
The buffer becomes:
ledu c ompre s s i OnuC ompre s s e sud I

5. Read (0, ASCII (' a ') > , which is not a match so output: 'a'.
The buffer becomes:
Iduc ompre s s i onuc ompr e s s e suda I

6. Read (0, ASCII (' t ') > , which is not a match so output: 't ' .
The buffer becomes:
luC ompre s s i OnuC ompre s s e sudat]

7. Read (0, ASCII('a')}, which is not a match so output: 'a'.
The buffer becomes:
Icompre s s i onuc ompre s s e sudat a I

and so on.

Algorithm 7.4 summarises the decoding process.

A l g o r i t h m 7.4 LZ77 decoding

INPUT:

O U T P U T :

token sequence in (f, l, c> form, window size W
symbol sequence

1: set p ~-- 1
2: wh i l e not EOF do
3: read next token (f, l, c}
4: set S i p - - - (p + l - 1)] ~ S[(p- f) . . . (p - f + l - 1)]
5:

6: p ~-- p + 1 + 1 {prepare for the next shift}
7: e n d wh i l e

O b s e r v a t i o n

1. The decompression algorithm builds up the same History buffer as the
compression algorithm, and decodes tokens with reference to the History
buffer. The decompression algorithm decides whether the next character
is a 'real' index or a raw symbol, this depends on the first component of
the token. If the first is a 0, the next character is a raw symbol.

136 CHAPTER 7. DICTIONARY-BASEDCOMPRESSION

2. The algorithm is asymmetric since compression is slower than decompres-
sion. The compression algorithm involves searching for a match, which
is computationally intensive, but decompression only involves reading out
values from the History buffer.

7 . 3 . 4 I m p l e m e n t a t i o n i s s u e s

Size of the two buffers

In LZ77, there is an important design decision to be made concerning the values
of 1H and 1L:

1. Choosing a large History buffer means it is likely that matches are found,
but the offsets will be larger. A smaller buffer means smaller pointers but
less chance of finding a match.

2. Choosing a small Lookahead buffer means a quick search for a prefix, but
the chance of the match found will be limited.

The basic LZ77 method has been improved in many ways since the 1980s.
For example, a variable-sized offset and length component, i.e. f and 1 in the
token {f, l, c}, can be used to improve the compression performance.

Another improvement is to increasing the size of buffers. As we know, in-
creasing the size of the History buffer can have better chances of finding matches.
The more matches found, the better compression ratio can be achieved. How-
ever, a bigger History buffer may in general slow down the search. Useful work,
therefore, has been focusing on use of more efficient data structures such as tries
and hashing techniques.

Ci rcu la r queues

A circular queue is a dynamic queue structure implemented by an array which is
a static structure. The front and rear of the queue are pointed by the two vari-
ables storing the indices of the position. This eases the operation of appending
elements at the rear and removing elements at the front of the queue.

Given a sequence of symbols in the source string, adding a few elements
becomes the equivalent of updating the index value of a front variable.

7.4 LZ78 family
A big problem of LZ77 is that it cannot recognise the patterns occurring some
time ago because they may have been shifted out from the History buffer. In
this situation, the patterns are ignored and no matches are found. This leads to
expansion instead of compression of this part of the source text by outputting
a token triple for a single character.

To extend the 'memory' of the patterns, LZ78 algorithms are developed
to maintain a dictionary that allow patterns to remain as entries permanently
during the whole encoding process.

7.4. LZ78 F A M I L Y 137

LZ78 also requires one component less in triple tokens compared to that in
LZ77 and only outputs pair tokens instead. A pair token is defined as If, c)
where f represents the offset which indicates the starting position of a match,
and c is the character of the next symbol to the match in the source text. The
length of the match is included in the dictionary, so there is no need to include
the information in the code.

Typical LZ78 compression algorithms use a trie 6 to keep track of all the
patterns seen so far. The dictionary D contains a set of pattern entries, which are
indexed from 0 onwards using integers. Similar to LZ77, the index corresponding
to a word in the dictionary is called the token. The output of the encoding
algorithm is a sequence of tokens only. If a symbol is not found in the dictionary,
the token {0, x} will be output which indicates a concatenation of the null string
and x. Initially the dictionary D is normally loaded with all 256 single character
strings. Each single character is represented simply by its ASCII code. All
subsequent entries are given token numbers 256 or more.

7.4.1 Encoding
Let word be the currently matched string. Initially word is empty.

The encoding algorithm is as follows.

A l g o r i t h m 7.5 LZ78 encoding

I N P U T : string of symbols, dictionary with an empty entry at index 0
OUTPUT: sequence of tokens {index(word), c), updated dictionary

1. whi le not E0F do
2: word ~-- empty
3: c ~-- next_char()
4: whi le word + c is in the Dictionary do
5: word ~-- word + c
6: c ~ next_char()
7: end whi le
s: output token (index(word) , c}

{where index(word) is the index of word in the dictionary}
9: add word + c into the dictionary at the next available location

10. end whi le

E x a m p l e 7.9 Show step by step the encoding operation of LZ78 on the input
string:

audat euat uamdat e

So lu t ion We trace the values of word (w), c, output and the Dictionary (D)
for each iteration (i). Initially, the dictionary is empty.

6This is a commonly used data structure for strings and is similar to trees.

138 C H A P T E R 7. D I C T I O N A R Y - B A S E D C O M P R E S S I O N

II ~ i w c w + c o u t p u t 0 1 2 3 4 5 6 7 8 9 10

1 a a 0 , a a

2 u u 0 , u a u

3 d d 0 , d a u d

4 a a

a t at i, t a u d at

5 e e 0 , e a u d a t e

6 u u

u a ua 2, a a u d at e ua

7 t t O, t a u d at e ua t

8 u u

u a u a

u a u u a u 6 , u

9 d d

d a d a 3 , a

I0 t t

t e te T, e

a u d at e u a t u a u

a u d at e ua t uau da

a u d at e ua t uau da te

7 . 4 . 2 D e c o d i n g

The decoding algorithm reads an element of the tokens at a time from the
compressed file and maintains the dictionary in a similar way as the encoder.

Let (x, c) be a compressed token pair, where x is the next codeword and c
the character after it.

A l g o r i t h m 7.6 LZ78 decoding

I N P U T "

O U T P U T "

sequence of tokens in (x, c) format,
dictionary with an empty entry at index 0
string of decoded symbols, updated dictionary

1: whi le not EOF do
2: x ~-- next_codeword 0
3: c ~-- next_char 0
4: output dictionary_word(x) + c
5: add dictionary_word(x) + c into dictionary at the next available location

6. end whi le

E x a m p l e 7.10 Show step by step the decoding operation of LZ78 on the input
tokens: Oa Ou Od it Oe 2a Ot 6., 3a 7e

Solu t ion We trace the values of x, c, output and the dictionary (D) for each
iteration (i). Initially, the dictionary is empty. In the table below, we use
dictionary_word(x) to mean the word at index x in the dictionary (w(x) for

short) .

7.5. A P P L I C A T I O N S 139

D
i x c w (x) + c output 0 1 2 3 4 5 6 7 8 9 10

1 0 a a a a
2 0 u u u a u

3 0 d d d a u d
4 I t at at a u d at
5 0 e e e a ~, d at e
6 2 a ua ua a u d at e ua

7 0 t t t a u d at e ua t

8 6 u uau uau a u d at e ua t uau

9 3 a da da a u d at e ua t uau da

i0 7 e te te a u d at e ua t uau da te

We now have the original string audateuat~ ,audate back.

O b s e r v a t i o n

1. LZ78 has made some improvement over LZ77. For example, in theory the
dictionary can keep the patterns forever after they have been seen once.
In practice, however, the size of the dictionary cannot grow indefinitely.
Some patterns may need to be reinstalled when the dictionary is full.

2. The output codewords contain one less component than those in LZ77.
This improves the data efficiency.

3. LZ78 has many variants and LZW is the most popular variance to LZ78,
where the dictionary begins with all the 256 initial symbols and the output
pair is simplified to output only a single element.

7.5 Applications
One of the Unix utilities compress is a widely used LZW variant.

�9 The number of bits used for representing tokens is increased gradually as
needed. For example, when the token number reaches 255, all the tokens
are coded using 9 bits, until the token number 511 (29 - 1) is reached.
After that , 10 bits are used to encode tokens and so on.

�9 When the dictionary is full (i.e. the token number reaches its limit), the al-
gorithm stops adapting and only uses existing words in the dictionary. At
this time, the compression performance is monitored, and the dictionary
is rebuilt from scratch if the performance deteriorates significantly.

�9 The dictionary is represented using a trie data structure.

GIF (Graphics Interchange Format) is a lossless image compression format
introduced by CompuServe in 1987.

�9 Each pixel of the images is an index into a table that specifies a colour
map.

140 C H A P T E R 7. D I C T I O N A R Y - B A S E D C O M P R E S S I O N

�9 The colour table is allowed to be specified along with each image (or with
a group of images sharing the map).

�9 The table forms an uncompressed prefix to the image file, and may specify
up to 256 colour table entries each of 24 bits.

�9 The image is really a sequence of 256 different symbols and is compressed
using the LZW algorithm.

V.42bis is an ITU-T standard commmunication protocol for telephone-line
modems that applies the LZW compression method.

�9 Each modem has a pair of dictionaries, one for incoming data and one for
outgoing data.

�9 The maximum dictionary size is often negotiated between the sending
and receiving modem as the connection is made. The minimum size is 512
tokens with a maximum of six characters per token.

�9 Those tokens to be used infrequently may be deleted from the dictionary.

�9 The modem may switch to transmitting uncompressed data if it detects
that compression is not happening (e.g. if the file to transmit has already
been compressed).

�9 The modem may also request the called modem to discard the dictionary,
when a new file is to be transmitted.

7.6 Comparison
We have studied all the important lossless compression algorithms for com-
pressing text. Some of them are static and others are adaptive. Some use fixed
length codes, others use variable length codes. Some compression algorithms
and decompression algorithms use the same model, others use different ones.
We summarise these characteristics below:

Algorithm Adaptive Symmetric Type

Run-length
Huffman

Adaptive Huffman
Arithmetic

LZ77
LZW

variable to fixed
fixed to variable
fixed to variable

variable to variable
variable to fixed
variable to fixed

Summary
Dictionary compression algorithms use no statistical models. They focus on the
memory on the strings already seen. The memory may be an explicit dictionary

EXERCISES 141

that can be extended infinitely, or an implicit limited dictionary as sliding win-
dows. Each seen string is stored into a dictionary with an index. The indices of
all the seen strings are used as codewords. The compression and decompression
algorithm maintains individually its own dictionary but the two dictionaries are
identical. Many variations are based on three representative families, namely
LZ77, LZ78 and LZW. Implementation issues include the choice of the size of
the buffers, the dictionary and indices.

Learning outcomes
On completion of your studies in this chapter, you should be able to:

�9 explain the main ideas of dictionary-based compression

�9 describe compression and decompression algorithms such as LZW, LZ77
and LZ78

�9 list and comment on the main implementation issues for dictionary-based
compression algorithms.

Exercises
ET.1 Using string abbaacabbabbb# (where # represents the end of the string)

as an example, trace the values of word, x and the dictionary in running
the basic LZW encoding and decoding algorithms, where word is the accu-
mulated string and x is the character read on each iteration.

E7.2 Suppose the input for encoding is a string aabbaaaccdee. Demonstrate
how the simplified version algorithms of LZ77, LZ78 and LZW work step
by step.

E7.3 Suppose the History buffer is seven characters long and the Lookahead
buffer is four characters long. Illustrate how LZ77 compression and decom-
pression algorithms work by analysing the buffer content on each iteration.

E7.4 For LZ78 and LZW, show what the dictionaries look like at the completion
of the input sequence in the following format.

Dictionary
address (in decimal)

Dictionary
entry

? ?
" 7 o

? ?
�9 ~ �9

? ?

? ?

142 CHAPTER 7. D I C T I O N A R Y - B A S E D C O M P R E S S I O N

E7.5 Describe a simplified version of the LZ77, LZ78 and LZW algorithms.
Analyse the type of the simplified algorithms in terms of, for example,
whether they are static or adaptive and fized-to-variable, variable-to-fized
or variable-to-variable.

E7.6 Analyse the so-called LZSS algorithm below and discuss the advantages
and disadvantages.

A l g o r i t h m 7.7 LZSS encoding

INPUT: symbol sequence
OUTPUT: (f, l), or (0, f, l)
1" whi le not EOF do
2: determine (f, l) corresponding to the match in L
3: end whi le
4: if sizeO f ((f , 1)) > sizeO f (match) t h e n
5: output the token (1, first_character(L)}
6: shift the entire buffer content by one position
7: else
8: output (0,p, l}
9: shift the entire buffer content by l positions

10: end if

Laboratory
L7.1 Implement a simple version of the LZW encoding and decoding algorithms.

L7.2 Implement a simple version of the LZ77 encoding and decoding algorithm.

L7.3 Investigate, experiment and comment on the performance of your programs.

L7.4 Implement Algorithm 7.8, an alternative LZ78 decoding algorithm. Discuss
the difference between this and Algorithm 7.6 in terms of the performance.

Assessment
$7.1 Explain why a dictionary-based coding method such as LZ77 is said to be

adaptive and variable-to-fixed in its basic form.

$7.2 One simplified version of the LZ78/LZW algorithm can be described as in
Algorithm 7.9, where n is a pointer to another location in the dictionary,
c is a symbol drawn from the source alphabet, and (n, c} can form a node
of a linked list. Suppose that the pointer variable n also serves as the
transmitted codeword, which consists of 8 bits. Suppose also the 0 address

A S S E S S M E N T S 143

A l g o r i t h m 7.8 LZ78-1 decoding

I N P U T :

O U T P U T �9

sequence of tokens in (x, c) format, empty dictionary
string of decoded symbols, updated dictionary

1" while not EOF do
2 :

3:

4:

5:

6:

7:

8:

9:

10:

x ~- next_codeword 0
c ~ next_char 0
i f x - 0 t h e n

output c
else

output d i c t i o n a r y _ w o r d (z) + c
end if
add d i c t i o n a r y _ w o r d (z) + c into dictionary at the next available location

end whi le

A l g o r i t h m 7.9 Another version of LZ78/LZW

5 :

6:

7:

8:

9:

10:

I N P U T :

O U T P U T :

1. n ~-- 0; fetch next source symbol c
2: if the ordered pair (n, c} is already in the dictionary t h e n
3: n ~- dictionary address of entry (n, c)
4: else

transmit n {as a code word to decoder}
create new dictionary entry (n, c} at dictionary address m
rn ~--- rn + l
n ~ dictionary address of entry (0, c}

end if
return to step 1

entry in the dictionary is a NULL symbol, and the first 256 places in the
dictionary are filled with single characters�9

Suppose that a binary information source emits the sequence of symbols
II000101100101110001111 (that is II0 001 011 001 011 I00 011 II
without spaces). Construct the encoding dictionary step by step and show,
in the format below, the dictionary on completion of the above input
sequence.

Dictionary
address (in decimal)

Dictionary
entry

? ?

? ?
o , �9

? ?

144 CHAPTER 7. DICTIONARY-BASED COMPRESSION

Bibliography
[Ne189] M. Nelson. LZW data compression.

1989.
Dr. Dobb 's Journal, 14:29-37,

[SS82a] J.A. Storer and T.G. Szymanski. Data compression via textual substi-
tution. Journal of the ACM, 29:928-951, 1982.

[SS82b] J.A. Storer and T.G. Szymanski. Data Compression via Textual Sub-
stitution. Journal of the ACM, 29:928-951, 1982.

[Wel84] T.A. Welch. A technique for high performance data compression. IEEE
Computer, 17(6):8-19, June 1984.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, IT-23(3):337-343,
May 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable
rate coding. IEEE Transactions on Information Theory, IT-24(5):530-
536, September 1978.

Chapter 8

Predic t ion and transforms

We have seen several lossless compression algorithms. In practice, these al-
gorithms are often used together with some other methods to achieve better
overall compression efficiency. This can be done by lining up several different
algorithms and using them one after another. Certain changes can be made
on the source distribution before applying the lossless compression algorithms.
The source data can also be transformed to another domain to achieve better
overall compression performance.

The preparation work before applying certain lossless compression algo-
rithms is called preprocessing. Examples of typical preprocessing operations
include sampling and quantisation as well as prediction and transforms, all of
which depend on the source data. These techniques are mainly for lossy com-
pression of audio, image and video data, although some approaches can be
lossless.

In this chapter, we shall introduce mainly two common approaches of ma-
nipulating the source data in order to achieve a more favourable distribution for
compression. One is the so-called prediction which changes the representation of
the source data according to prediction rules based on the data already seen in
the past. The other is called transform which changes the source data domain.
We shall leave the sampling and quantisation to the next chapter, but introduce
the concept of quantisation briefly.

8.1 Predictive approach
There are two issues in this approach. One is for the encoding process, the
so-called prediction rules to map the original set of data to another for a skewed
distribution. Data with a skewed distribution contain certain elements that
occur much more frequently than others. The second is for the decoding process,
an inverse formula to recover the original set of the data. It is easy to understand
the predictive approach from the following example: for convenience, we use
predictive encoding and predictive decoding to mean the forward process and the

145

146 CHAPTER8 . P R E D I C T I O N A N D T R A N S F O R M S

inverse process respectively. We may also use encoding and decoding for short
respectively.

E x a m p l e 8.1 Consider the predictive approach on an array of data
A - (1, 1, 2, 3, 3, ~, 5, 7, 8, 8) from alphabet (1 , . . . , 8).

We notice that each da tum occurs a similar number of times. The frequency
distribution can be found in the following table and its plot is seen relatively
flat in Figure 8.1.

x (data)
f (frequency)

2

1

O. O. .O
�9 �9 ~

�9 ~

"o" o---o, o"
�9 ~

w

1 2 3 4 5 6 7 8

..~ x
r

Figure 8.1" Frequency distribution of A

P r e d i c t i v e e n c o d i n g

Since the frequency distribution is flat, the compression methods we have learnt
so far would not be very effective to the data. Now if, for each da tum from
the second position, we add 1 to its previous datum, the sum can be used as
its predicted value based on the previous item. We have the predicted values:
A ' = ([!], 2, 2, 3, 4, 4, 5, 6, 8, 9), where the da tum marked in a small box remains
unchanged. Subtract A from A' and we have for each datum, from the second
position, the difference between the predicted value and the original value: B =
A' - A = ([]7, 1, 0, 0, 1, 0, 0 , - 1 , 0, 1). Obviously, a bet ter compression may be
achieved on B than on the original A, because the distribut{on of da ta in B
is skewed compared to the original data A. Figure 8.2 shows the range of the
data has been reduced from [1, 8] to [-1, 1], and there are more 0s now.

Figure 8.3 shows the frequency distribution before (a) and after (b) the
predictive operations.

P r e d i c t i v e d e c o d i n g

Given B - ([il, 1, 0, 0, 1, 0, 0 , - 1 , 0, 1), we can simply 'subtract the current B
value from the previous da tum in A and add 1' to get the original A. For each
i, A[i] - A [i - 1] - B[i] + 1 where A[1] - B[1] initially. For example, since

8.1. P R E D I C T I V E A P P R O A C H 147

X i

. g o

,

-O �9 ' ~
~ ~

~

i 10
v

A - (1, 1, 2, 3, 3, 4, 5, 7, 8, 8)

!

x i

1 o - o _ � 9 - � 9 .~ i
* w w , . . r y

-1" e 10

B - (1, 1, 0, 0, 1, 0, 0, - 1 , 0, 1)

(a) (b)

Figure 8.2" Plot of arrays A and B

f !

f

1

5
0 �9

0 �9

3 ' *
0

Q . O .0 '.

�9 oo. o 1 e ',
�9 ~" ~ x 0 - ~ ~

1 2 3 4 5 6 7 8 - 1 0 1 2 3 4 5 6

(a) (b)

..._ X I
y

Figure 8.3: The frequency dis t r ibut ion for A (a) and B (b)

BIl l = 1, we know A[1] = 1. Then A[21 = A [1] - B [2] + I = 1 - 1 + 1 = 1,
A[3] = A [2] - B[3] + 1 = 1 - 0 + 1 = 2, and so on.

As we can see from the example, the encoding process must be revers ib le .
The predict ion rule 'adding 1 to the previous d a t u m ' in the approach can be
wr i t ten as A'[i] = A [i - 1] + 1, for i = 2 , . . . , n , where n is the number of
elements in the array, and A[1] = A'[1] = BIl l . The difference array derives
from B[i] = A'[i] - A[i]. Therefore A[i] = A'[i] - B[i] = (A [i - 1] + 1) - B[i]).

O b s e r v a t i o n

1. In Example 8.1, we predict tha t the value of each da tum, from the second
position, is its previous d a t u m plus 1. We then compute the difference
between the predicted A ~ and actual A values, scale it, and store it in an
array. This array B is called a r e s i d u a l array .

2. The predict ion 'rules' allow us to change a set of da ta to another with,

148 C H A P T E R 8 . P R E D I C T I O N A N D T R A N S F O R M S

hopefully, a better distribution (for example, from a flat distribution to
a more skewed one as in Figure 8.3). This is a transform in the sense
that every datum in the original set has been changed. The transform is
achieved by a simple mathematical formula.

3. Of course, this process has to be reversible in order to recover the original
data during the decoding process.

8 . 1 . 1 E n c o d i n g

The prediction method we introduced in the previous section can be extended
to a two-dimensional situation I in many applications.

E x a m p l e 8.2 Suppose that the following matrix A represents the pizel values
of part of a larger greyscale image, where row indices i = 1 , . . . , 8 and column
indices j = 1 , . . . , 8:

t

2 ~ 2 3 1 1 1 1
1 3 2 3 5 1 1 1
3 ~ 5 5 5 5 5 5
6 ~ 4 5 8 7 9 ~ 5
3 2 7 3 2 7 9
3 3 ~ 3 ~ ~ 2 2
1 2 1 2 3 3 3 3
1 1 1 2 2 3 3 3

Let us predict that from the second column each pixel is the same as the
one to its left. So the residual matrix R[i, j] = A[i, j] - A[i, j - 1] is as below,
where i = 1 , . . . , 8 , j = 2 , - . . ,8:

2 2 - 2 1 - 2 0 0 0
1 2 - 1 1 2 - 4 0 0
3 1 1 0 0 0 0 0
6 - 2 1 3 - 1 2 - 5 1
3 - 1 5 - 4 - 1 5 2 - 5
3 0 1 - 1 1 0 - 2 0
1 1 - 1 1 1 0 0 0
1 0 0 1 0 1 0 0

We can now apply any methods of prefix coding, i.e. those text compres-
sion methods for generating a prefix code such as Huffman coding, to encode
according to the frequency distribution of R.

The frequency distribution for this part of the residual image is then as
below:

1Review Appendix B if necessary.

8.2. M O V E TO F R O N T CODING 149

Entry
5 2

- 4 2
2 4
1 6

0 21
1 16
2 6
3 4
5 2
6 1

Occurrence Probability
2/64
2/64
4/64
6/64
2 /64
16/64
6/64
4/64
2/64
1/64

The entropy of the distribution is - ~ i Pi log2 Pi bits. The entropy of the
entire image can be predicted as the same as that of this partial image. In
other words, the entropy of a partial image can be used as an estimation for the
entropy of the whole image. Of course, the compression quality of this approach
depends very much on the difference between the real entropy and the estimated
entropy of the entire image. Hopefully the overall compression would be a better
one in comparison to the original 8 bits/pixel (e.g. ASCII) coding.

8 . 1 . 2 D e c o d i n g

The predictive transform process is reversible since the original matrix A[i, j] =
A [i , j - 1] +R[i , j] , where A[i,O] = R[i,O] and i = 1 , . . . , 8 , j = 2 , . . . , 8 . Hence
the whole predictive encoding process is lossless if the prefix encoding is lossless.
The reader can easily justify this by completing Example 8.2 in the previous
section.

8.2 M o v e to Front c o d i n g

Some prediction and transform methods require little mathematics. Move to
Front (MtF) coding is a good example.

The idea of MtF is to encode a symbol with a '0' as long as it is a recently
repeating symbol. In this way, if the source contains a long run of identical
symbols, the run will be encoded as a long sequence of zeros.

Initially, the alphabet of the source is stored in an array and the index of
each symbol in the array is used to encode a corresponding symbol. On each
iteration, a new character is read and the symbol that has just been encoded
is moved to the front of the array. This process can be seen easily from the
example below.

E x a m p l e 8.3 Suppose that the following sequence of symbols is to be com-
pressed: DDCBEEEFGGAA from a source alphabet (A, B, C, I), E, F, a). Show
how the MtF method works.

150 C H A P T E R & P R E D I C T I O N A N D T R A N S F O R M S

Encoding

Initially, the alphabet is stored in an array:

0123456
ABCDEFG

1. Read D, the first symbol of the input sequence. Encode D by index 3 of
the array, and then move D to the front of the array:

0123456

DABCEFG

2. Read D. Encode D by its index 0, and leave the array unchanged because
D is already at the front position of the array.

0123456
DABCEFG

3. Read C. Encode C by its index 3, and move C to the front"

0123456
CDABEFG

4. Read B. Encode it by 3 and move B to the front"

0123456
BCDAEFG

5. Read E. Encode it by 4 and move E to the front"

0123456

EBCDAFG

and so on.

This process continues until the entire string is processed. Hence the encod-
ing is 3, 0, 3, 3, 4 , . - . .

In this way, the more frequently occurring symbols are encoded by 0 or small
decimal numbers.

8.3. BURROWS-WHEELER TRANSFORM (BWT) 151

Decoding
Read the following codes: 3, 0, 3, 3, 4 , . - . .

Initially,

0123456

ABCDEFG

1. Read 3, decode it to D, and move it to the front of the array:

0123456

DABCEFG

2. Read 0, decode it to D, and do nothing since D is already at the front.

0123456

DABCEFG

3. Read 3, decode it to C, and move it to the front.

0123456

CDABEFG

and so on.

In this way, the original sequence of symbols will be recovered one by
one. We decode the first three symbols DDC .. . and decoding the entire
sequence will be left to the reader as an exercise.

8.3 Burrows-Wheeler Transform (BWT)
The Burrows-Wheeler transform algorithm is the base of a recent powerful soft-
ware program for conservative data compression bz ip which is currently one of
the best general purpose compression methods for text. The BWT algorithm
was introduced by Burrows and Wheeler in 1994. The implementation of the
method is simple and fast.

The encoding algorithm manipulates the symbols of S, the entire source
sequence by changing the order of the symbols. The decoding process transforms
the original source sequence back. During the encoding process, the entire input
sequence of symbols is permutated and the new sequence contains hopefully
some favourable features for compression.

In the example below, the encoding process produces a sequence L and an
index s. The decoding algorithm reproduces the original source sequence back
using L and an index s.

152 C H A P T E R 8. P R E D I C T I O N A N D T R A N S F O R M S

E x a m p l e 8.4 Consider a string S = 'ACCELERATE' of n = 10 characters, stored
in a one-dimensional array. Show how B W T can be realised for encoding and
decoding purposes.

Encoding

The purpose of this process is to shuffle the symbols of the source sequence S
in order to derive L, a new sequence which allows a bet ter compression. The
length of the original array S and of the resulting array L are the same because
L is actually a permutat ion of S. In other words, we only want to change the
order of the symbols in the original array S to get a new array L which can
hopefully be compressed more efficiently.

Of course, the new array L cannot be just any array after a few random
shuffles. There may be other ways to shuffle an array but the one used in B W T
works well in practice.

Deriving L
In order to get L, we need to do the following steps:

1. We first shift the string S one symbol to the left in a circular way. By
circular, we mean that the leftmost symbol in the array is shifted out of
the array, and then added back from the right and becomes the rightmost
element in the array. For example,
'A C C E L E a A T E ' w i l l b e c o m e ' C C E L E R A T E A ' a f t e r s u c h
a circular-to-left shift.

Figure 8.4: A circular shift to the left

Repeating the circular shift n - 1 times, we can generate the n x n matr ix
below where n is the number of symbols in the array, and each row and
the column is a particular permutat ion of S.

8.3. BURROWS-WHEELER TRANSFORM (BWT) 153

0 1 2 3 4 5 6 7 8 9
ACCELERATE
CCELERATEA

CELERATEAC

ELERATEACC

LERATEACEE

ERATEACEEL
RATEACEELE

ATEACEELER
TEACEELERA
EACEELERAT

2. We now sort the rows of the matr ix in lexicographic order so the matr ix

becomes:

0 1 2 3 4 5 6 7 8 9

ACCELERATE

ATEACEELER

CCELERATEA
CELERATEAC
EACEELERAT

ELERATEACC

ERATEACEEL

LERATEACEE
RATEACEELE

TEACEELERA

3. We name the last column L, which is what we need in the B W T for
encoding, where S l indicates the first symbol of the given array S.

F L

A CCELERAT E
A TEACEELE R
C CELERATE A ~ s l
C ELERATEA C

E ACEELERA T

E LERATEAC C

E RATEACEE L

L ERATEACE E

R ATEACEEL E

T EACEELER A

O b s e r v a t i o n

1. L can be stored in a one-dimensional array, and can be wri t ten as

154 C H A P T E R 8. P R E D I C T I O N A N D T R A N S F O R M S

(2)

81 (1)

82
81

82

~__ 83

Figure 8.5: Finding the original string S = s l s 2 " " S n from L

0123456789
ERACTCLEEA

2. Similarly, if we name the first column of the matrix F, then F can be
derived from L by just sorting L. In other words, we should get F if we
sort L.

This is the sorted L, or F:

0 1 2 3 4 5 6 7 8 9
A A C C E E E L R T

3. As we will see later, the first symbol in S (i.e. 'A') is also transmitted in
BWT to the decoder for decoding purposes.

Decoding
The goal of the reverse process of the transform is to recover the original string
S from L. Since L is a permutation of S, what we need to find is the order
relationship in which the symbols occurred in the original string S. Figure 8.5
shows the order relationship among the first three symbols in the original string
S - ~ 8 1 8 2 8 3 " ' " , where (1), (2) and (3) represent the order in which we shall
find these symbols. An implicit chain relationship can be discovered among the
elements in L.

We shall demonstrate how this implied chain relationship can be found in L
with the help of its sorted version F, given the first character in the original S.

Note that both L and F are permutations of the original string S, and for
each symbol in L, we know the next symbol in the original string S would be
the one in F with the same index (because, during the encoding process, the
leftmost element was shifted out and added to the right end to become the
rightmost element). In other words, given any symbol in L, say the symbol si
at k location, i.e. L[k] = si, we know that the next symbol in the original string
S: Si+l = F[k]. If we know where the si+l is in L, we would know the si+2. In
this way, we can retrieve every symbol in S.

8.3. 155 B URROWS-WHEELER TRANSFORM (B WT)

F L F L

. . . . S l (1)a

F L

Figure 8.6: Chain relationship

(1)b

(2)

In Figure 8.6(1)a, for example, since we know the position (index) of the
first symbol S l in L, we can find the next symbol s2 in F using the same index.
This relationship is illustrated by a dashed arrow from S l in L to s2 at the same
position in F.

In Figure 8.6(1)b, s2 can be identified in L using an auxiliary array (see
later). A solid arrow represents the position (index) link between the different
locations of the same symbol in F and in L.

Note that two types of links exist between the items in F and those in L. The
first type is, from L to F, to link two items si and its follower si+l by an identical
index. If si = L[k], for some index k, then the next symbol si+l = F[k]. The
second type is, from F to L, to link by the same symbol si+l from its location
in F to its location in L.

Figure 8.6(2) shows the two types of links F and L. The first type of link is
represented as a dashed line with arrow from s2 in L to its follower s3 in F, and
the second type as a solid line pointing from sa's position in F to its position in
L.

F

sa s2 (2)

82 81 (1)

~ (3)

Figure 8.7: Finding the original string S = 8 1 8 2 " " 8 n from L via F

Figure 8.7 shows how, by following the two links in Figure 8.6 on each step,
we can retrieve the original sequence of symbols one after another, for example
from S l to s2 and then from s2 to s3 and so on.

The first type of link can be built up straight away using an identical index
each time. The second type of link, however, requires knowing the location in
L for each symbol in F. For example, as in Figure 8.6(1)b, before finding the
follower of s2, we need to know the index k of s2 in L.

156 C H A P T E R 8. P R E D I C T I O N AND T R A N S F O R M S

Fortunately, this information is easy to establish when we derive F from L.
We only need to store the index of each of the symbols in L while sorting them.

For example, we can define an auxiliary array T to store, for each element
in F, its index in L. T is sometimes called transformation vector and is critical
for deriving the original string S from L. Alternatively, we can define the items
in F as an array of ob j ec t s and store the symbols and their index information
in L in different fields.

E x a m p l e 8.5 Consider the L, F and auxiliary array T. Suppose the first sym-
bol sl is L[2] = A (shade in Figure 8.8). Show with the two types of links how
the original string A C C E L E R A T E can be derived.

0123456789
L: ERACTCLEEA

0 1 2 3 4 5 6 7 8 9
F: A A C C E E E L R T
T: 2 9 3 5 0 7 8 6 1 4

Starting from the first symbol in L[2] = 81 - - 'A' which is known (transformed
from the encoder). Following the links in Figure 8.8, we can easily derive the
original string S.

The process starts from sl = L[2], we then know the next symbol in S:
s2 = F[2] = ' C ' = LIT[2]] = L[3] (Figure 8.8(1)). From s~ = L[3], we know the
next symbol is s3 = F[3] = 'C' = L[T[3]] = L[5] (Figure 8.8(2)). From s3 = L[5],
w e know the next symbol 84 • F [5] = ' E ' ---- L [T [5]] = L [7] . This p r o c e s s

continues until the entire string S = ACCELERATE is derived (Figure 8.8(10)).

O b s e r v a t i o n

1. The BWT algorithm can be fast using array implementation.

2. The BWT algorithm can perform well in certain situations as a pre-
processing compression algorithm and works best with other standard
compression algorithms such as RLE, Huffman etc.

3. The implementation of the algorithms is fairly simple.

4. The BWT cannot be performed until the entire input file has been processed.

5. There is a typical preprocess by RLE and post-process of Huffman coding.

8.4 Transform approach
Transform is a standard mathematical tool being used in many areas to solve
sometimes difficult computation problems in the original form. The main idea
is to change a group of quantity data such as a vector or a function to another
form in which some useful features may occur. For example, the computation
required in the new form may become more feasible in the new space. The

8.4. T R A N S F O R M APPROACH 157

Figure 8.8: Finding the original string S from L

158 CHAPTER 8. PREDICTION AND TRANSFORMS

computation result in the new form is then converted back to the original form
by the inverse transform.

The transform approach changes source data domain. The process of chang-
ing from the current domain to the new domain is called forward transform
(transform for short) and the process of changing back to the original domain
is called inverse transform. We first look at an example of a simple transform
below:

Y
yl

X !

X

0

Figure 8.9: From x-y domain to x~-y t domain

E x a m p l e 8.6 Figure 8.9 shows a simple geometric rotation of angle O, from
space x-y to space x~-y ~, which can be achieved by applying a transform matrix
T below (see Appendix B for background information on matrices).

Each geometric point in x-y space can be represented by a pair of v = (xi, Yi).
The rotation transformation matrix can be defined as

T= (cos0 s i n 0)
- sin 0 cos 0

Each new point v ' - (x~, y~)in the new x'-y' space can then be derived by
the following matrix computation:

(cos0 s i n 0) (x)
v ~ - T v - - s i n 0 cos0 y

The inverse transformation matrix T -1 is

T_I _ (cos0 - s i n 0)
sin 0 cos 0

The formula v' = Tv is called a forward transform, or transform for short,
and v = T - i v ~ is called inverse transform, where T is called the transform
matrix.

8.4. T R A N S F O R M APPROACH 159

If the geometric object in the original x-y space turns out to be difficult,
then a suitable transform may provide an easier way to look at the geographic
object. Example 8.7 shows what happens with a set of data after a rotation
transform.

E x a m p l e 8.7 Consider the original data pair:
x = (7, 16, 37, 3~, 20, 27, 40, 10, 31,16, 22, 16, 43, 3, 39);
y = (2 0 , 3 ~ , 6 9 , 5 9 , ~ 1 , 5 0 , 6 8 , 1 3 , 5 1 , 2 0 , 3 6 , 2 7 , 76,12,66) as in Figure 8.10.
Show how the set of 30 data (15 x values and 15 y values) can be transformed
after a 7r/3 degree clockwise rotation.

Y
80

0

0

0 0
0

~ ~ ,'o ,'5 2'o ;~ 3'0 3'~ 4'o ~ x

Figure 8.10: Before transform

Since the data concentrate along a line with an angle of 0 = 7r/3 degrees
against the x axis, we define the transform function as follows:

(cos(yr/3) sin(:r/3)) (0.5000 0.8660)
T - -sin(Tr/3) cos(Tr/3) - -0.8660 0.5000

We obtain the following data which are rounded to integer for convenience
(Figure 8.11):
x' - (21, 37, 78, 68, 46, 57, 79, 16, 60, 25, 42, 31, 87, 12, 77);
y' = (4, 3, 2, 0, 3, 2 , - 1 , - 2 , - 1 , - 4 , - 1 , 0, 1, 3 , - 1) .

As we can see the data points now concentrate along the x' axis after the
transform. Now an entropy compression algorithm can be applied to the data
in the x'-y' domain.

In fact, the transform has a more interesting impact on the data. Fig-
ure 8.12(1) shows the data distribution in the x-y domain and Figure 8.12(2)
shows the data distribution in the x'-y' domain after the transformation. The
small circle represents the value of an x and the small star the value of a y. As
we can see, while some x's' values increase, most y's' values in the x'-y' domain
decrease and become very close to zero. If this is an application that allows
lossy compression, even higher compression may be achieved.

160 CHAPTER 8. PREDICTION AND TRANSFORMS

y!
10

- 1 0 = , I = , , , , ,
0 10 20 30 40 50 60 70 80 90 100

X /

Figure 8.11: After transform

The reverse transform can be easily completed by applying

T _ I (cos(Tr/3)
sin(Tr/3)

-sin(Tr/3)) _ (0 . 5 0 0 0
cos(Tr/3) 0.8660

--0.8660)
0.5000 '

and setting y~ - 0, i - 1 , . . . , 15, we can reconstruct a set of approximate data:

Xe - (11, 19, 39, 34, 23, 29, 40, 8, 30, 13, 21, 16, 44, 6, 39);
Ye -- (18, 32, 68, 59, 40, 49, 68, 14, 52, 22, 36, 27, 75, 10, 67).

O b s e r v a t i o n

1. Data compression can be achieved only by storing x~s ' values.

2. The energy of the original data can be computed by

n

E - ~--~(xi 2 + yi 2) - 45 069
i = 1

and the energy of the transformed data

n

E ' - ~--~.(x~i 2 + y~2) _ 45069
i --1

This means that the energy remains the same before and after the trans-
form. However, the energy is concentrated in the x~s only among the
transformed data.

3. The reconstructed set of data is slightly different from the original ones
since we set y~ - 0. This means that the whole compression process is

lossy.

8.4. T R A N S F O R M A P P R O A C H 161

100 , , ~ , ~ v

O " •
80 * Y . -

6O

40 O ~ 0 �9 O O
O O

O
20 * 0 i 0

0 0 ~ o 0 .

0 0

i i i i i i i ,1"
b 0 2 4 6 8 10 12 14 16

,~1 (1) B e f o r e t r a n s f o r m

100 , , , , , , ,

0 " x I 0
80 ~ Y 0 0 0

0
60 O O

O O
40 O

O
O

20 O O O

, . . . -r , ,

0 2 4 6 8 10 12 14 16 b
(2) A f t e r t r a n s f o r m

Figure 8.12: Comparison of data distribution before and after transform

4. The loss is caused by rounding the real data. Rounding the data is the
simplest form of quantisation (Section 9.3). The difference between the
reconstructed data and the original data is called distortion. We shall look
at the issues in these lossy operations in the next chapter.

8 . 4 . 1 O r t h o g o n a l t r a n s f o r m

We have observed from Example 8.7 that the transform can make data more
skewed by increasing some of the values and decreasing others. By further

n checking on the total of x2+ y2, we find the exact same amount of }-]i=1 (xi 2+
yi 2) = 45 069 in both the x-y domain and the x'-y' domain. In other words, the
transform does not change this total amount of energy in both domains.

It turns out that this is not a coincidence. The amount }-]i~=l(xi 2 + yi 2)
is called energy of the system. The transform we have used is a so-called or-
thogonal transform, a favourable type for data compression, used also in many
applications in other fields.

A transform is orthogonal if the transform matrix is orthogonal (Appendix B.4).
One immediate advantage of applying an orthogonal transform is that the in-
verse transform can be easily found. If the transform matrix is T, then the
reverse transform matrix is just T T, the transpose of T.

However, the most important advantage of applying an orthogonal transform
is that first, such a transform keeps the energy of the data (defined as the sum
of the square of each datum) unchanged. Secondly, in the transformed vector,
the first few elements often concentrate a large proportion of the system energy.
Hence these few elements can be used to give a good approximation of the entire
original set of data. In other words, these few elements only may be sufficient
for reconstructing the original set of data and the rest of transformed values

162 C H A P T E R & P R E D I C T I O N AND T R A N S F O R M S

can be dropped. Therefore, an orthogonal transform can be applied to achieve
good data compression.

We look at an example below.
l Let x ~ and x be vectors and T be an n x n matrix. Suppose xi, xi and tij

' ' isa are the elements in x', x and T respectively. Let x i - ~-~j tijxj, where x i
weighted sum of xj and is multiplied by a weight tij, {,j - i,... , 3.

This can be written in matrix form: (11 13) (Xl)
x~ -- t21 t22 t23 x2
x~ t31 t32 t33 x3

We can write x ' = Tx. Each row of T is called the basis vector.
In practice, the weights should be independent of the values of xis so the

weights do not have to be included in the compressed file.

E x a m p l e 8.8 Given a weight matrix 1(1 1 1)
T - ~ 1 - 1 - 1

1 - 1 1

and the transform vector

we have

(4)
x - - 6

5

1(1 1 1(15)(75)
- 1 - 1 - 1 6 - ~ - 7 - - 3 . 5
2 1 - 1 1 5 3 1.5

Let us calculate the energy after and before the transform. The energy of
x ' = (7 .5 , -3 .5 , 1.5) T and that of (4, 6, 5) T are 7.52 + (-3 .5) 2 + 1.52 = 70.75 and
42 + 62 + 52 = 77 respectively. Comparing the two, we find that most of the en-
ergy is conserved during the transform. However, the energy in each individual
element in the transformed vector is (7.52, (-3 .5) 2, 1.52) = (56.25, 12.25, 2.25).
Most energy is concentrated in 7.5, the first element of x'. This suggests a pos-
sible compression even in this small example, because we can store, instead of
the entire x' , the first element (7.5) only, and remove the other elements (-3 .5
and 1.5).

When reconstructing the original x, we first quantify the transformed vector
x ' from (7 .5 , -3 .5 , 1.5) T to integers (8 , - 4 , 1) T and conduct an inverse trans-
form: x = T - 1 . X ! (1 1 1)(8)(3)

(1/2) 1 - 1 - 1 - 4 - 5
1 - 1 1 2 7

8.5. DISCRETE COSINE TRANSFORM (DCT) 163

If (8, 0, 0) T is used to reconstruct x, we have (111)(8)
(1/2) 1 - 1 - 1 0 - 4

1 - 1 1 0 4

In practice, the T is much bigger so the reconstruction result would be
better. More sophisticated transform techniques, such as DCT and DWT (see
following sections), would produce better results.

8.5 Discrete Cosine Transform (DCT)
A periodic function can be represented as the sum of sines and cosines. This fact
was discovered by the French mathematician and physicist Jean Baptiste Joseph
Fourier (1768-1830) and the work was published in 1822. It has been regarded
as one of the most revolutionary contributions of the nineteenth century. His
theorem was later substantiated by Peter Gustav Lejeune Dirichlet (1805-59).

The fact that all periodic functions can be expressed as a sum of sinusoidal
components suggests a useful approximation of the function because the first
few terms of the infinite series are normally sufficient for many applications. It
also provides an analysis tool for decomposition of a compound waveform.

The Discrete Cosine Transform, similar to the Fourier transform (see Ap-
pendix C), represents a signal by its elementary frequency components. DCT
relates to the Discrete Fourier Transform (DFT) closely and this can be seen
from the DFT formula. However, it performs much better than DFT for com-
pression. DCT has a wide range of applications in data compression as well as
in other subject areas.

The commonly used Discrete Cosine Transform is two-dimensional and can
be described by an n x n transform matrix C as below. Each entry of the matrix
C[i, j] is obtained from a function of cosines:

1 COS (2jW1)i~- 2n , 0; j 0 , 1 , . . . , n - i 1

C[i , j] - ~ c o s (2j+l)iTr 2n , i - - 1 , . . . , n ; j - - 0 , 1 , . . - , n - 1

The main advantages of DCT compared to other transforms are that DCT
does not introduce any sharp discontinuities at the edges, and it works sub-
stantially better in energy compaction for most correlated sources. DCT was
included in JPEG and MPEG in the years prior to JPEG 2000 where wavelet
transform methods are included.

There are other common transforms with similar approaches such as the
Discrete Walsh-Hadamand Transform (DWHT) and the Discrete Karhunen-
Loeve Transform (KLT). DWHT requires mostly additions and subtractions so
it has good computational efficiency although it does not give a good effect on
continuous data. KLT can achieve the optimal energy concentration but may
require expensive computation because the transform matrix is required to be
calculated for each individual set of data.

164 CHAPTER8. P R E D I C T I O N A N D T R A N S F O R M S

8.6 Subband coding
The performance of the transform techniques that we have seen so far depends
very much on certain well-defined characteristics of the source data. Hence
none of these transforms would work very well on its own if the source contains
a combination of two or more controversial characteristics. In this case, certain
algorithms are needed to decompose the source data into different frequency
components first to highlight individual characteristics. The components are
then encoded separately. In the reconstruction process, the components are
decoded before being assembled to recover the original signal. Such encoding
and decoding processes are called subband coding.

The algorithms that isolate certain frequency components in a signal are
called filters. The signal is decomposed into several frequency components which
are called subbands. Filters that allow certain subbands to pass are called band-
pass filters.

A low-pass filter allows the low frequency components to pass but blocks
the high frequency components. The threshold frequency f0 is called the cutoff
frequency. Similarly, a high-pass filter allows the subbands above the cutoff
frequency to pass but blocks those below.

f(t)

/ ~ /% A
) t

Figure 8.13: A rapidly changing source

With proper filters, the combination characters may be decomposed and
certain characteristics may be identified and selected. Figure 8.13 shows a source
appears changing rapidly. However, it contains a low frequency component
(Figure 8.14), which can be extracted using a low-pass filter.

A general purpose filter can be modelled using the mathematical formula
below:

N M

Yn -- E aiXn-i + E biYn-i,
i - -0 i - 1

where the sequence (Xn) is the input to the filter, the sequence (y~) is the output
from the filter, and (a~) and (bi) are the filter coefficients.

8.7. W A V E L E T T R A N S F O R M S 165

t
, / % .

f (t)

Figure 8.14: Showing a slow movement of sin(x)

A number of filters may be used one after another or in parallel to achieve
better decomposition. A collection of filters is often called filter banks. Filters
used in the decoding process are usually called analysis banks and those used
in the decoding process are synthesis banks. Various filter banks for subband
coding can be found in the literature or in off-the-shelf programs. Topics on
the selection, analysis or design of the filter banks are beyond the scope of this
book. Interested readers are encouraged to consult the literature.

8.7 W a v e l e t t r a n s f o r m s

A wave can be defined as a function of time, f(t) , where (- o c < t < ec). Waves
of specific characteristics with a limited duration are called wavelets.

Wavelets are mathematical functions that satisfy certain conditions. Like
sin(t) and cos(t) in Fourier transform, wavelets can be used to represent data
or other functions. However, wavelets methods have advantages over Fourier
methods in analysing signals containing spikes or discontinuities. Wavelets were
developed independently in different scientific fields such as mathematics, quan-
tum physics, and electrical engineering.

In the area of data compression, wavelet transforms allow a similar transform
in the DFT, i.e. only storing the main coefficients of series of basis functions
and the transform matrices.

Wavelet transforms gained their popularity in recent years due to their good
performance and being included in JPEG 2000. The two-dimensional wavelet
transform technique can be used for image compression.

166 CHAPTER& PREDICTIONAND TRANSFORMS

f(t)

A;AA

Figure 8.15: A signal whose frequency varies according to time

8 . 7 . 1 S c a l e - v a r y i n g b a s i s f u n c t i o n s

A scale-varying basis function is a basis function that varies in scale. It is also
called a step-function. The function or data space is divided using different
scale size. For example, if we have a function f(t) with a range of [0, 1], we can
divide the function into two step-functions:

f l (t) 0 < t _~ 1/2,
f (t)= f2(t) 1 / 2 < t _ < 1 .

We can then further divide the functions to four step-functions:

f11(t) 0 < t _< 1/4,

f12(t) 1/4 < t ~ 1/2,
f (t) - f21(t) 1/2 < t < 3/4,

f22(t) 3/4 < t < 1.

Let g~(t) be another set of functions known as the basis. Suppose a function
f can be represented as the weighted sum of some set of gi(t):

N

f(t) ~ E aigi(t)
i

The values of ai are called the coefficients, which can be Boolean, integer or
real numbers. The compression process aims to find a good set of coefficients
(a l , a 2 , - - - , a N) to represent signal f. The decompression process aims to re-
construct f from the set of coefficients. The compression and decompression
algorithms share the same set of functions and the compressed file consists of
the set of coefficients.

LEARNING 0 UTCOMES 167

Like Fourier methods such as Fast Fourier Transform (FFT), wavelet trans-
form is also a linear orthogonal transform. Hence the inverse transform matrix
for Discrete Wavelet Transform (DWT) is also the transpose of the original.
It can also be viewed as a 'rotation' in function space to a different domain.
For DFT, the new domain contains basis functions of sine and cosine waves.
For DWT, the new domain contains more complicated basis functions called
wavelets, mother wavelets, or analysing wavelets. Also, the energy of the orig-
inal function or data set is conserved after the transformation. The energy is
often concentrated in the first few elements in the transformed vector (if it is
the one-dimensional case). Hence only the few coefficients need to be encoded
and very effective compression may be achieved.

The wavelet transforms work by choosing a set of representative patterns
and finding a subset of these patterns that add up to the signal. It is essentially
a subband transform. Note that wavelet transforms have an infinite set of
possible basis functions. Unlike DFT, wavelet transforms do not have a single
set of basis functions like the Fourier transform where only sine and cosine
functions are involved.

The main issues in a wavelet transform in practice are:

�9 finding a good set of basis functions for a particular class of signal

�9 finding an effective quantisation method for different frequencies.

The wavelet approach has developed well in recent years. Research has been
done in fast wavelet transform, on wavelet packets transform, and adaptive
waveforms. The results offer many potential application areas. More well-
defined and studied techniques are expected.

Summary
Prediction and transform approaches represent another generation of compres-
sion technologies. In order to achieve better compression ratio, different com-
pression methods are used one after another. Preprocessing prepares a better
data source for specific compression algorithms at a later stage. MtF and BWT
algorithms are examples of lossless approach and DFT, DOC and wavelets are
those of lossy. JPEG and MPEG offer standards and frameworks.

Learning outcomes
On completion of your studies in this chapter, you should be able to:

�9 explain the concept of prediction and transforms

�9 describe the main approaches in prediction and transforms

�9 outline some simple preprocessing algorithms such as MtF algorithms,
BWT, DCT and DWT.

168 CHAPTER8. PREDICTIONANDTRANSFORMS

Exercises

E8.1

E8.2

E8.3

Derive a predictive rule, for example 'add 2 and store the difference', for
A = (Ni :, 3, 5, 6, 7, 9, 9, 11, 14) so that the residual array would have more
skewed frequency distribution.

Compute the entropies for A = (~ii, 3, 5, 6, 7, 9, 9, 11, 14) and its residual
array in the above question.

Suppose that the matrix A below represents the pixel values of part of
a l a r g e i m a g e , whe re i = 0 , . . . , 7 , j = 0 , . . . , 7 , andA[0,0] = 4 . Let us
predict that each pixel is the same as the one to its right.

(a) Derive the residual matrix R of A
(b) Derive the frequency table for R

(c) Derive a variable length code, e.g. Huffman code, for the partial
image

(d) Discuss under what conditions the code can be applied to the whole
image with less distortion.

t __

4 8 4 8 1 1 1 1
1 2 4 6 5 1 1 1
8 4 5 5 5 5 5 5
2 4 8 5 7 9 5 5
2 4 6 7 7 7 9 9
2 2 2 3 4 9 7 3
3 3 6 6 6 7 7 7
7 7 7 7 6 7 8 8

E8.4 Given the orthogonal matrix

1 1 1 1
W - 1 1 - 1 - 1

1 - 1 - 1 1
1 - 1 1 - 1

and a data vector
4

D - 6
5
2

conduct a similar experiment to the approach in this chapter.

(a) Fulfil a linear transform on D

(b) Perform a reverse transform to get D '
(c) Compare D ' with the original D.

E8.5 Implement the MtF algorithms and demonstrate how the encoding and
decoding algorithms work on an example string AABBBABABADDCC.

L A B O R A T O R Y 169

Laboratory
L8.1 Design and implement a method which takes a matrix of integers and

returns its residual matrix, assuming that each entry is the same as the
one to its left plus 1.

L8.2 Design and implement a method which takes a residual matrix derived
from the above question, and returns its original matrix.

L8.3 Design and implement the encoding and decoding algorithms for the MtF
approach.

L8.4 Implement Algorithms 8.1 and 8.2 ([WMB99]) below.
Hint" you should work out the input, output and the meaning of each
variable used first.

A l g o r i t h m 8.1 BWT encoding

INPUT" .7

OUTPUT: .7

1. sort the N input characters using the preceding characters as the sort key,
create permuted array P [1 . . . N]

2. output the position in P that contains the first character from the com-
pressed file

3: output the permuted array P

A l g o r i t h m 8.2 BWT decoding

INPUT" ?

OUTPUT: ?

1- p ~-- the position of the first input character (from the encoder)
2: P [1 . . . N] ~ the permuted symbols (from the encoder)
3: K[s] ~-- the number of times symbol s occurs in P
4: set the array M[s] to be the position of the first occurrence of s in the array

that would be obtained by sorting P
(a) set the array M[first symbol in lexical order] ~ 1
(b) for (each symbol s (in lexical order)) M[s] ~-- M [s - 1] + K [s - 1]; end for

5: f o r i - 1 ; i _ < N ; i - i + l d o
6: s ~-- P[i]; L[i] ~ M[s]; M[s] +--- M[s] + 1
7: end for

{Array L now stores the links with which to traverse the permuted string}
s: traverse the link array to reconstruct the original string

(a) i ~ p (initial position)
(b) for (k - 1; k _< N; k - k + 1) output P[i];i ~ L[i]; end for

L8.5 Design and implement your own version of the encoding and decoding
algorithms for the BWT approach.

170 CHAPTER 8. PREDICTION AND TRANSFORMS

Assessment
$8.1 Describe the encoding and decoding algorithms in DCT and DWT.

$8.2 Show step by step how the BWT algorithm works on the transform and
inverse transform of string BBCADDBB.

Bibliography
[BGG98] C.S. Burrus, R.A. Gopinath, and H. Guo. Introduction to Wavelets

and Wavelet Transforms. Prentice Hall, Englewood Cliffs, New Jer-
sey, 1998.

[BKS99] B. Balkenhol, S. Kurtz, and Y.M. Shtarkov. Modifications of the
Burrows and Wheeler data compression algorithm. In Storer and
Cohn, pages 188-197, 1999.

[BW94] M. Burrows and D.J. Wheeler. A block-sorting lossless data com-
pression algorithm. Technical Report SRC 124, Digital Equipment
Corporation, Palo Alto, California, May 1994.

[CT97] J.G. Cleary and W.J. Teahan. Unbounded length contexts for PPM.
The Computer Journal, 40(2/3):67-75, February 1997.

[CW84] J.G. Cleary and I.H. Witten. Data compression using adaptive cod-
ing and partial string matching. IEEE Transactions on Communi-
cations, COM-32(4):396-402, April 1984.

[Dau92] I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, PA,
1992.

[Deo00] S. Deorowicz. Improvements to Burrows-Wheeler compression algo-
rithm. Software-Practice and Experience, 30(13):1465-1483, Novem-
ber 2000.

[EVKV02] M. Effros, K. Visweswariah, S. Kulkarni, and S. Verdu. Universal
lossless source coding with the Burrows Wheeler transform. IEEE
Transactions on Information Theory, 48(5):1061-1081, May 2002.

[WM01] I. Wirth and A. Moffat. Can we do without ranks in Burrows
Wheeler transform compression? In IEEE Data Compression Con-
ference, pages 419-428, Snowbird, Utah, March 2001.

[WMB99] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann
Series in Multimedia Information and Systems. Morgan Kaufmann,
2nd edition, 1999.

Chapter 9

Audio compression

Audio compression has interested researchers from its early years but has be-
come a hot topic since the 1990s due to the popular MP3 music, DVD, digital
radio and digital TV technology. In this chapter, we discuss the fundamentals
of compression techniques for audio data.

9.1 Modell ing sound

Sound is essentially a sensation of the human audio system. It is detected by
the ears and interpreted by the brain in a certain way.

Sound can be modelled as waves and described in two ways using mathe-
matical functions. One is s(t) in the time domain and the other S(f) in the
frequency domain, where t represents time and f represents the frequency.

The first sound wave was scribed by Leon Scott using a stiff bristle attached
to a diaphragm actuated by a horn in 1857 [Tre78]. Koenig improved Scott's
invention during 1858 to 1862 and presented his results in London in 1862 in
'Phonograms'.

In 1711, John Shore discovered the tuning fork, and in 1908, G. W. Pierce
described in a paper, 'A simple method of measuring the intensity of sound'
based on his work in measuring sound intensities in auditoriums and of train
whistles; thus was born the first sound-level meter.

Sound, in a way similar to colour, is understood as a mixture of physical
and psychological factors. We know that sound is a physical disturbance in a
medium and it is propagated in the medium as a pressure wave by the movement
of atoms or molecules. Hence sound is often described as a function s(t) (as for
electronic signals), measuring the pressure of medium at a time t. If T is the
period measured in hertz (Hz), a sine wave can be written as s(t) = s(t + T)
and sin(21rt) - sin(2~Tt) since f - T'I A periodic signal s(t) with period T can
be represented by the sum of sine or cosine waves:

171

172 C H A P T E R 9. AUDIO COMPRESSION

a0 ~ 27r ~ 27r
s(t) - -~ + E ai cos(i-~--t)+ E ai sin(i -~-t)

i = 1 i = 1

Figure 9.1 shows some sine waves with different frequencies.

0.[

0

o ,

S :)-t) 1 2 3 4 5 6 j
t

0 2 4 6 8 10 12 14 16 18 20

. . . .

OiV/ 1
0 5 10 15 20 25 30 35 40 45 50

Figure 9.1: Three sine waves with different frequencies

E x a m p l e 9.1 Most orchestras tune the A above middle C note to ~ 0 Hz. The
sound pressure function for that note can be written therefore as
s (t) - sin (8807r t) (Figure 9.2).

We also know that the human ear is normally able to detect frequencies
in the range between 20 Hz and 20 kHz. The upper audible limit in terms of
frequency tends to decrease as age increases. Children may hear sounds with
frequencies as high as 20 kHz but few adults can.

It is interesting to notice that the timbre of different instruments is created
by the transient behaviour of notes. In fact, if the attack portion is removed
from recordings of an oboe, violin, and soprano creating the same note, the
steady portions are indistinguishable.

Like any other wave functions, we can plot any sound signal by plotting its
amplitude (pressure on medium) against time (see Figure 9.3 for an example).
The shape of the curve can demonstrate clearly the different properties of a
specific sound.

Alternatively, we can use a frequency spectrum diagram to represent the
changes of frequencies over a period of time. In a frequency spectrum diagram,
we plot the amplitude against the frequency.

9.2. SAMPLING 173

t

Figure 9.2: Plot s (t)= sin(8807rt)

E x a m p l e 9.2 Figure 9.~ is a frequency spectrum diagram for
s (t) = 0.1 sin (27ct) + 0.3 sin (87rt) - 0.25 sin (207rt) in Figure 9.3.

The frequency spectrum can be easily measured and transformed. Any au-
dio signal, in theory, can be reconstructed by the frequencies in the frequency
spectrum. Hence the frequency spectrum instead of the signals themselves can
be used to encode the audio signals. This technique was used first by Homer
Dudley, an engineer at Bell Laboratories, in his invention of the first voice coder
(called vocoder) in 1928. The speech signal with a bandwidth of over 3000 Hz
was compressed into the 100 Hz bandwidth transatlantic telegraph cable. The
vocoder is regarded as the grandfather of modern speech and audio compression.

The wave model has been used as a principle by industry and manufacturers
of gramophone sound systems over many years, where mechanical devices were
used to store the wave functions and reproduce the pressure wave. The pressure
wave signals are then converted to electronic voltage not only to the speakers but
are also stored on various media and transferred via various types of channel.
Without the vocoder model, technologies such as Internet telephony and live
broadcasts over the World Wide Web today would be impossible.

9.2 Sampling
Digitised audio data are the digital form representation of sounds. They are
created by a process of sampling followed by quantisation (Section 9.3) on the
analogue sound wave.

Sampling is a process in which sample values of a continuous signal are taken
at a sequence of certain time spans. In other words, sampling is a way of taking
certain values at n discrete time t l , t2 , . . . ,tn. The number of samples taken
per time unit is called the sample rate.

174 CHAPTER 9. AUDIO COMPRESSION

~(t)

Figure 9.3: Plot s(t) = 0.1 sin(27rt) + 0.3 sin(87rt) - 0.25 sin(207rt)

Am ~litude

0.3

0.2 --

0.1 --

0

- 0 1 t
- 0 .2

-0 .3

I I I I I I I ~ Frequency (Hz)
2 3 4 5 6 7 8 9

Figure 9.4: Frequency spectrum diagram

Samples may be taken with an equal time interval (ti - ti-1 is a constant
for all i = 1 , - . . , n) or different time intervals (t i - ti-1 is a variable for each i).
Hence there are samples at a fixed rate, or samples at a variable rate respectively.
We assume a fixed sample rate if not otherwise specified in this book.

E x a m p l e 9.3 The sampling rate used for audio CDs is ~ . 1 kHz; ~8 kHz is
used for DAT (digital audio tape). 22.05 kHz is commonly used for audio signal
for delivery over the Internet, and 11.025 kHz may be used for speech.

Figure 9.5 shows how a set of discrete data (0.8415, 0.9093, 0.1411,-0.7568,
-0 .9589 , -0 .2794 , 0, 6570, 0.9894, 0.4121,-0.5440) can be obtained by sampling
a s tandard sine signal at t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Note the choice of a right sample rate is critical to the reconstruction of
the original signal. Figures 9.6 and 9.7 show the samples at rate 10 and 100
respectively. As we can see, while it is easy to recognise the original signal from
Figure 9.7, it is difficult to do so from Figure 9.6. This suggests that the sample

9.2. S A M P L I N G 175

0 . 8 ; + . i ! . ! i +

o.+ + ~ + i i i i +

o i i [. i ! ! i ! !

i
0 1 2 3 4 5 6 7 8 9 10

Figure 9.5: Samples at t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

ra t e mus t not be too low.

1

0.8 ..

0.6

0.4 i 0 . 2

0

- 0 . 2

- 0 . 4

- 0 . 6 i

- 0 . 8

- 1 0

Figure 9.6: Samples at t = 1 , . . . , 10

As far as d a t a compress ion is concerned, we are in te res ted in the m i n i m u m
n u m b e r of samples to take in order to r econs t ruc t the original signal. The
Nyquis t t h e o r e m tells exact ly how often the samples have to be t aken in order
to r econs t ruc t the original signal.

9 . 2 . 1 N y q u i s t f r e q u e n c y

The choice of sample f requency ra te can di rect ly affect the qual i ty of the recon-
s t r uc t ed digi tal sound.

Accord ing to Nyquis t theory , if a cont inuous wave conta ins a m a x i m u m

frequency f t hen the wave mus t be sampled at a f requency of at least 2 f , twice

176 CHAPTER 9. AUDIO COMPRESSION

1 , ~ , , ~ ,

i : ! !

0 8 i i i :: i i

0 . 6 i ! i ! i

0 . 4 i i i ::

0 2 i :: ! i

- 0 . 2 ! ! i :: : i i i

- 0 . 4 ; i i i i i i i i

- 0 . 6 i. i. ! i i i i i i

- 0 . 8 i :: i Z ! :: ! ::

1
0 1 2 3 4 5 6 7 8 9 10

Figure 9.7: Samples at t = 1, . . . , 100

as much as the maximum frequency in order to be able to reproduce the original
waveform.

E x a m p l e 9.4 Since the human voice normally contains frequencies 0-~000 Hz,
the sampling rate should not be lower than 2 x ~000 = 8000 samples/second.

E x a m p l e 9.5 A communication channel allows signals of frequencies between
1000 Hz to 11 000 Hz. Suppose a signal s(t) can use the channel without any
problem. We then know it would be safe to sample the signal using the sample
rate 2 x 11 000 = 22 000 samples/second.

This example can also explain our daily experience to observe a turning
wheel with a turning speed under your control. When the wheel starts to
turn, say, clockwise slowly, we can tell that the wheel is indeed moving forward
clockwise. However, as the wheel turns faster and faster, the wheel appears to
turn backward in an anti-clockwise direction. This is because our observation
frequency (sampling rate) becomes less than the Nyquist frequency (i.e. twice
the frequency of the fast turning wheel in this case) when the wheel turns too
fast. We can no longer reconstruct the signal correctly from the observation.
Therefore, despite the wheel still turning forward, we get the impression that
the wheel is turning backwards.

9.3 Quantisation
The amplitude values obtained after sampling may be long real numbers which
are usually rounded to the nearest predefined discrete values. This process
of converting the real numbers to the predefined discrete numbers is called
quantisation.

Figure 9.8 shows an example of the quantisation on the sample data from
Figure 9.6 by simply taking round(t) of each sample.

9.3. Q UANTISATION 177

Figure 9.8: Quantisation samples from Figure 9.6

Quantisation does not have to apply to continuous real numbers. It is fre-
quently used in daily life as a means of reducing the number of possible values
of any quantity.

Example 9.6 Students' average marks over all degree modules are usually real
numbers. These average marks are usually rounded in order to work out degree
classes such as (1st, 2a, 2b, 3rd, pass, fail).

Figure 9.9: Average marks and degree classes

m m

1st if 70 <_ x <_ 100,
2a if 6 0 < _ x < 70,
2b if 5 0 < _ x < 60,
3rd if 4 0 < _ z < 5 0 ,
pass if 35 <_x < ~0,
fai l otherwise.

Example 9.7 Given a sequence of the real numbers from some sampling (1.1,
2, 3.3, 6.9'8, 5.~8, ~, 3.333, 2.2, 2, 3, 2.1) and predefined integers within a range

178 CHAPTER 9. AUDIO COMPRESSION

of [0, 10], these sampled real numbers can easily be rounded to (1, 2, 3, 7, 5, ~,
3, 2, 2) by the following simple formula:

x if trunc(x)=trunc(x+0.5),
n - trunc(z)-/-1 otherwise,

where x is a real number, n is the rounded number, and trunc(x) will return the
integer part of x.

2 3 5 6 7 8 10

Figure 9.10: Quantisation on (1.1, 2, 3.3, 6.78, 5.48, 4, 3.333, 2.2, 2, 3, 2.1)

As we can see from these examples, certain information is lost during the
process of simple quantisation. Given the discrete sequence of data, the orig-
inal continuous wave function can be reconstructed approximately. Therefore,
quantisation is an effective preprocessing for lossy data compression.

The samples can be quantised individually or as a group. A quantisation
is called scalar quantisation if each of the samples is quantised separately. It
is called vector quantisation if at least two samples are quantised at the same
time.

9.3.1 Scalar quantisation

The amplitude values can be both positive and negative. The function used to
map the input sequence of values to the output values is called quantiser.

If we plot the output values against the input values of a quantiser, we
normally get a staircase shape of curves as shown in Figure 9.11.

There are two types of scalar quantisers. One is called midrise quantiser
(Figure 9.11(a)) which does not have a zero output level. The other is the
so-called midtread quantiser (Figure 9.11(b)) where zero is one of the output
values.

9.3. Q UANTISATION 179

q(x)
l

r - - - - -

t - - - - - -

v x

q(x)

~

~

=__.:
~

. . . . _ _ 2 '

o

:___z
~

" - X

(a) Midrise (b) Midtread

Figure 9.11" Two types of scalar quantisers

9 . 3 . 2 U n i f o r m q u a n t i s e r s

A scalar quantiser can be divided into uniform quantiser and non-uniform quan-
tiser.

Uniform quantisers are those for which the same size of an increment (called
step size) is used for both its step values for the input x and output q(x). In
other words, if ki and ki-1 are two adjacent range values on the x axis, then
q(ki)-q(ki-1) = k i -k i_ l for a l l / = 1, 2 , . . . (Figure 9.12(a)). The reconstructed
values are usually the midpoint of the two adjacent step values (ki - ki-1)//2
and (q(k i) - q(ki-1))/2 (Figure 9.12(b)).

q(x)

,

0

~

0 1 . ', t ~ x
�9 k i - - 1 ki

q(x)

. .

0

.

] , [: : '-- " ~ Z

k i - 1 k i

1 I step size § reconstruction values

(b)

Figure 9.12: Uniform scalar quantiser

Suppose the reconstruction values are ri, where i - 1, 2 , The difference
between quantised and unquantised values is called quantisation error, or round-
off error. The error eq can be expressed as eq - :~ - z.

180 CHAPTER 9. AUDIO COMPRESSION

ri

q(x)

o .

0

. 0 . :

. ,

, ,
,

' : 0

w v I Y X

ki- 1 2 x ki

�9 original values

"1- reconstruction values

Figure 9.13: Quantisation error

Figure 9.13 shows a quantisation error eq between the original sample value
and the value produced by the quantiser. This indicates the distortion caused
by the quantiser. The most common distortion measure is the squared error
distortion for each error:

_ - d(x, 3c) = eq

The mean squared error distortion is used to measure the average distortion
for the quantiser:

1 N

__ __~ E eq2 __ --N1 ~ (x i -- z i) 2 o .2
i = 1 i = 1

9 . 3 . 3 N o n - u n i f o r m q u a n t i s e r s

Non-uniform quantisers use variable step sizes. A non-uniform quantiser applies
different step sizes to different amplitudes of an input signal.

One way to achieve this is to use a look-up table for the step sizes. Another
way is to use a non-linear monotonically increasing function to define the input
and output of the quantiser.

For example, two common functional types are used in non-uniform quantis-
ers: power-law cornpanding and logarithmic cornpanding. The word companding
is derived from the words compressing and expanding to reflect the two activities
involved. The idea is to model the situation where a small change on the low
input value and a large change on the high input value can lead to similar sized
steps on the output of the quantiser. Companding techniques reduce the noise
and crosstalk level at the sound receiver.

In power-law companding, a power function is used as below:

Cpow r(Ixl) - I x p

In logarithmic companding, a logarithmic function log(z) is used.

9.4. COMPRESSION PERFORMANCE 181

5
~ l / P = 0 . 7

0 . 1

0 ' 1 . ' ' ' ' ' ' ' : = ' O

Figure 9.14: Power law companding functions when p = 0.2, 0.3, 0.4, 0.5, 0.7

A common form of logarithmic companding is the so-called # law

1Ogb(1 + #]Xl)
c.(Ixl) - lOgb(1 + #)

and another common form is the so-called A law:
l + l n (A l x l)

CAIX I --_~ I+ ln (A)
A

l+ln(A) IZl

for Ixl > 1 /A ,
for Ixl <_ 1/A .

These last two laws, i.e. # law and A law companding, have many appli-
cations in the area of telecommunication and are included in the CCITT (pre-
viously Telephone and Telegraph Consultative Committee, now known as the
ITU-T, International Telecommunication Union Telecommunications Sector).
The particular values of # = 255 and A = 87.56 are used in the standard.

As we see from the previous discussion, the audio compression process starts
from sampling the analogue audio signal. Similarly, the decompression process
does not complete until the audio analogue signal in wave form strikes the
human ear. Every stage is important to the performance of compression and
decompression but it is the first and last stages which are the most effective and
important.

Figure 9.15 shows a block diagram of a typical audio coding system.
It is impossible to cover all these interesting techniques in this book. Nev-

ertheless, we give a flavour of some of the basic approaches.

9.4 Compression performance
For lossless compression, all we need to measure the compression performance
is the compression ratio. With lossy compression, we have to balance the com-
pression ratio and the quality of the reconstructed sound. Since the sound is
a function of time, we also have to take the time into account in addition to

182 CHAPTER9. AUDIOCOMPRESSION

Source audio input

transform to frequency domain

(b i t / n o i s e allocation

quantiser

(entropy coding ~

compressed file

I unpacking 1

dequantiser
k._

compressed file

frequency sample reconstruction

transform to time domain

decoded audio

(b)

Figure 9.15: Audio encoder (a) and decoder (b)

the normal complexity consideration. Over the years, the most important fac-
tors to be considered in audio compression include fidelity, data rate, complexity
and delay. The balance among these factors normally varies depending on the
application being supported.

1. Fidelity measures how close perceptually the reconstructed audio signal
sounds in comparison to the original signal.

2. Data rate represents the speed of data transmission via a communication
channel, usually measured in bits/second. This measure is required due
to the restriction of various media such as the access speed to various
storage, the capacity of a transmission channel and the playback speed of
a certain mechanical device.

Complexity means the amount of work required and consequently its cost
in order to achieve a certain compression or decompression task. The cost
is not always reflected in the amount of work because of the increasing
computer power and the development of technology. In the real world,
perhaps the implementation cost is more important than anything else.

o Delay is critical in a real-time application such as telephony, or telecon-
ferencing.

9.5. SPEECH COMPRESSION 183

These measures may be quite subjective but this is due to the nature of audio
systems. The audio compression methods rely a lot upon the perspectiveness of
the human audio system. The research in this area relies on multidisciplinary
knowledge and techniques much more heavily than any other areas. As in any
other complex system design, any audio compression system design in general
aims at high fidelity with low data rates, while keeping the complexity and delay
as low as possible.

Two types of sound with distinct characteristics are speech and music. They
are the most commonly used types of sound in multimedia productions today.
For example, if we plot the amplitude over a period of time for both the sound
generated by speech and by a piece of music, we would find that the shape of
the two waves is quite different.

The requirements to media by the two types of audio data are also different.
For example, the media for telephone speech needs to be able to handle signals
with a frequency of 200-3400 Hz, and wideband audio with frequency 50-7000
Hz, while the media for music corresponds to the CD-quality audio needed to
be able to process the signals with frequency 20-20 000 Hz.

Representations specific to speech and music have been developed to effec-
tively suit their unique characteristics. For example, speech may be represented
in a sound model that is based on the characteristics of the human vocal ap-
paratus, but music can be represented as instructions for playing on virtual
instruments.

This leads to two big compression areas, namely speech compression and
music compression. They have been developed independently for some time.
Conventionally, voice compression aims at removing the silence and music com-
pression at finding an efficient way to reconstruct music to play to the end user.
Today, almost every stage between the source sound and the reconstructed sound
involves a data compression process of one type or another.

9.5 Speech compression
This is also called voice compression. Research on speech compression started
to produce amazing results as early as 1928 by Homer Dudley, an engineer at
Bell Laboratories. His idea was to compress a speech signal with a bandwidth
of over 3000 Hz into the 100 Hz bandwidth of a new transatlantic telegraph
cable. Instead of sending the speech signal itself, he sent a specification of the
signal to the receiver.

We only briefly introduce a few commonly used compression methods here.

9.5.1 Speech coders
Here two major types of audio data are considered:

�9 telephone speech

�9 wideband speech.

184 C H A P T E R 9 . AUDIOCOMPRESSION

The goal is to achieve a compression ratio of 2:1 or better for both types of
data. More specifically, the aim is to compress telephone speech to the com-
pressed bit rate of less than 32 kbps, and to 64 kbps for wideband speech.

The following constraints make it possible to fulfill some of the tasks:

�9 The human ear can only hear certain sounds in normal speech.

�9 The sounds produced in normal human speech are limited.

�9 Non-speech signals on telephone lines are noises.

Two coders are used in practice, namely waveform coders and vocoders (voice
coders). They both apply detailed models of the human voice tract to identify
certain types of patterns in human speech.

9 . 5 . 2 P r e d i c t i v e a p p r o a c h e s

The idea is to try to predict the next sample based on the previous sample and
code the differences between the predicted and the actual sample values.

A basic version of the implementation would simply apply entropy coding,
such as Huffman or arithmetic, to the differences between successive samples.

This approach is used in the so-called VOCPACK algorithm for compressing
8 bit audio files (.way).

E x a m p l e 9.8 Given a series of sample data, (27, 29, 28, 28, 26, 27, 28,
28, 26, 25, 27), we can write the difference (2, - 1 , O , -2 , 1,1, O , - 2 , - 1 , 2) .
We then derive the alphabet (2, 1 , 0 , - 1 , - 2) with the frequencies (2, 2, 2,
2, 2) respectively. The entropy of the distribution of differences is, therefore,
5 x 0.2 log 2 5 = 2.32 bits. Compared to a 8 bit coding scheme, this would give
a compression ratio of 8:2.32, i.e. 3.~5:1 if applied to the entire file.

Of course, sampling is also a critical step to achieving good compression and
it is always worth considering.

9 . 5 . 3 S i l e n c e c o m p r e s s i o n

This approach applies the run-length to compress the silence in sound files.
However, the whole process is a lossy approach since quantisers or filters may
be used to preprocess the relative silence and noise in the sound file. This
includes finding a suitable

1. threshold value for defining silence

2. coder for silence

3. coder for the start and end of the silence.

9.6. MUSIC COMPRESSION 185

9 . 5 . 4 P u l s e c o d e m o d u l a t i o n (A D P C M)

This technique is well known in other research areas such as telecommunication
and networking. ADPCM stands for Adaptive Differential Pulse Code Modula-
tion. It was formalised as a standard for speech compression in 1984 by ITU-T.
The standard specifies compression of 8 bit sound (typical representation for
speech) sampled at 8 kHz to achieve a compression ratio of 2:1.

9.6 Music compression
Compression algorithms for music data are less well developed than those for
other types of data.

The following facts contribute to this situation:

�9 There are various formats for digital sounds on computer.

�9 The development of digital audio has taken place in recording and broad-
cast industries.

�9 There are currently three major sound file formats: AIFF for MacOS, WAV
or WAVE for Windows and AU (NeXT/Sun audio file format). Each of the
three has evolved over the years and now provides similar capabilities in
terms of sampling rates, sizes and CD and DAT standard value storage,
while MP3 in its own file format cannot accommodate sound compression
by any other method.

We usually use a high bit rate and often attempt to capture a wider range
of frequencies (20 to 20 kHz). It is usually difficult to decide what is a good
compression system because this depends on each person's hearing ability. For
example, to most people, lower frequencies add bass resonance and the result
would sound more like the human voice. This, however, may not be the case at
all for others.

9 . 6 . 1 S t r e a m i n g a u d i o

The idea of streaming audio is to deliver sound over a network and play it as it
arrives without having to be stored on the user's computer first. This approach
is more successful in general for sound than it is for video due to the lower
requirement for bandwidth.

The available software includes:

�9 Real Networks' RealAudio (companion to RealVideo)

�9 Streaming QuickTime

�9 'lo-fi' MP3.

These are used already for broadcasting live concerts, for the Internet equiv-
alent of radio stations, and for providing a way of playing music on the Internet.

186 CHAPTER 9. AUDIO COMPRESSION

9.6.2 M I D I

The main idea of MIDI compression is, instead of sending a sound file, to send
a set of instructions for producing the sound. Of course, we need to make
sufficiently good assumptions about the abilities of the receiver to make sure
the receiver can play back the sound following the instruction, otherwise the
idea cannot work in practice.

MIDI stands for Musical Instruments Digital Interface. It was originally
a standard protocol for communicating between electronic instruments. It al-
lowed instruments to be controlled automatically by sound devices that could
be programmed to send out MIDI instructions.

MIDI can control many sorts of instruments, such as synthesisers and sam-
plers, to produce various sounds of real musical instruments.

Examples of available software include:

�9 QuickTime

�9 Cakewalk Metro

�9 Cubase

QuickTime incorporates MIDI-like functionality. It has a set of instrument
samples and can incorporate a superset of the features of MIDI. It can also read
standard MIDI files, so any computer with it installed can play MIDI music
without any extra requirement.

Note: one should realise that sound tends to work together with pictures or
animation. In future most audio work has to take any potential synchronisation
into consideration. For example, sound divided into video frames by some time
code would be a useful function for film editing.

Summary
Digital audio compression offers good motivation for lossy techniques such as
sampling and quantisation. Sound can be viewed and modelled in a collection
of sine and cosine waves. The compression techniques covered so far can be
applied at various compression stages and specific situations. Techniques are
centred at two application areas: speech compression and music compression.

Learning outcomes
On completion of your studies in this chapter, you should be able to:

�9 explain how sound can be represented by a periodic function

�9 illustrate sound by a frequency spectrum diagram as well as the normal
plot for periodic functions

�9 describe the concept or principle of terms in audio data compression

E X E R C I S E S 187

�9 outline the distinction between voice compression and music compression
in terms of the issues concerned in audio compression

�9 describe the main ideas of MIDI compression.

Exercises

E9.1 Given that singing has characteristics of both speech and music, which
compression algorithms would you expect to be most successful on songs?

E9.2 Given a frequency spectrum diagram as in Figure 9.16, write the signal
s(t) in its analogue form, i.e. represented by the sum of sine and cosine
waves.

Amplitude

0.3

0.2

0.1 I

1 2 3 4 6 7 8 9 10
Frequency (Hz)

Figure 9.16: A frequency spectrum diagram

E9.3 Sketch the following discrete signals: �9

(a) x(n) = - 5 , - 4 , - 3 , -2 , -1 , 1, 2, 3, 4, for n = O, 1 , . - - , 7

(b) y(n) = 0 , - 1 , - 2 , 0 , 1 , 2 , 0 , - 1 , - 2 , for n = - 3 , - 2 . . . ,0,

(c) 2x(n), x (n - 3), 2y(n), - 3 x (n - 2) + 2y(n + 1)

(d) x(t) = 3sin(27rt/8), - 8 < t < 8
(e)

l 1 if n _< -3 ,

x(n) - 0 i f O < n < 3 ,

- 3 otherwise

" ' ' 4

E9.4 A signal can be decomposed to three basic sine waves, sin(2~rt), sin(2.5t)
and sin(57rt). What sampling rate should be used according to the Nyquist
theorem?

E9.5 Explain what MIDI stands for. Write a short essay of about 500-1000
words to introduce any application software which uses MIDI in one way
or another.

188 CHAPTER 9. AUDIO COMPRESSION

Assessment
$9.1 Explain briefly the following terms:

(a) Sampling

(b) ADPCM
(c) MIDI.

$9.2 Explain how a frequency spectrum diagram can be used to represent func-
tion f(t) = 0.5 + sin(8807rt) + sin(17607rt).

Bibliography
[BG02]

[Ger77]

[GG91]

[Gra84]

M. Bosi and R.E. Goldberg. Introduction to Digital Audio Coding
and Standards. Kluwer Academic Publisher, 2002.

A. Gersho. Quantization. IEEE Communications Magazine, 15:16-
29, September 1977.

A. Gersho and R.M. Gray. Vector Quantization and Signal Compres-
sion. Kluwer Academic Publishers, Norwell, MA, 1991.

R.M. Gray. Vector quantization. IEEE Transactions on Acoustics,
Speech and Signal Processing, 1:4-29, April 1984.

[Jay73] N.S. Jayant. Adaptive quantization with one word memory. Bell
System Technical Journal, 52:1119-1144, September 1973.

[Jay76]

[JN84]

[MatS5]

[Sch99]

[Swa]

[Try78]

N.S. Jayant. Waveform Quantization and Coding (ed). IEEE Press,
New York, 1976.

N.S. Jayant and P. Noll. Digital Coding of Waveforms: Principles and
Applications in Speech and Video. Prentice Hall, Englewood Cliffs,
New Jersey, 1984.

J. Makhoul, S. Roucos, and H. Gish. Vector quantization in speech
coding. Proceedings of the IEEE, 73:1551-1588, 1985.

M. R. Schroeder. Computer Speech: Recognition, Compression,
Synthesis. Springer, 1999.

P.F. Swaszek. Vector quantization. In LF. Blake and H. V. Poor (eds),
Communications and Networks: A Survey of Recent Advances, pages
362-389, Springer-Verlag, New York (1986).

H.M. Tremaine. Audio Cyclopedia. 7th edition, 1978.

Chapter 10

Image compression

In this chapter, we introduce compression methods for a different type of data,
namely, digital images or images for short. General compression methods may
be applied to images. However, certain characteristics of image data, if identi-
fled, often lead to more effective data compression algorithms. We first consider
the image data.

10.1 Image data
By image data we actually mean the representation of real-life graphics in digital
form which can be processed by conventional computers. The word digital here
means that the data in this representation are discrete. For example, the display
area of a conventional computer screen consists of a large number of small
discrete units called pixels. The pixels are mapped onto a two-dimensional
array of data entries of a certain type. Each entry is represented in the form of
0s and ls.

We often adopt the term pixels to mean these binary data. The two-
dimensional arrays are also called 'colour maps', for they are usually used to
control certain colour display systems such as computer screens or printers. Fig-
ure 10.1 shows a tiny proportion of an image including 12 x 8 pixels of a circle
image.

Two characteristics of image data are of quantity and quality. The first
characteristic of images is the massive amount of data involved in almost every
application. Images are stored in files and they tend to be much bigger in size
compared to text files. For text files in ASCII code, a book of a million words
may occupy about 5 million bytes, that is 5 MB. In contrast, one image file can
easily be a thousand to a million times bigger.

The second characteristic of images is that the quality of an image depends
not only on the image data but also on the display device and the sensation of
the human visual system.

Most people these days have the experience of using some painting programs.

189

190 CHAPTER 10. IMAGE COMPRESSION

Figure 10.1: Image pixels

For example, Figure 10.2 shows a small circle which was painted using the
program KolourPaint. 1 Figure 10.3 shows the same paint but it was enlarged
by 800% of the original. As we can see from the latter, the circle consists of
many small squares of either white or grey coloured pixels.

1 0 . 1 . 1 R e s o l u t i o n

Every display device requires a certain number of pixels to be able to show
something easily recognisable by the human visual system. On the other hand,
each device is restricted by the number of pixels that it can actually handle.
The maximum number of pixels for a display is called the resolution of the
display device. Often the higher the resolution for a display on a limited display
area, the better the image display quality can be achieved. A digital image can
also be measured in terms of the resolution, which measures how finely a device
approximates continuous images using a finite number of pixels.

Let us look at two common ways of describing resolution: one is so-called
dpi and the other pixel.

The term dpi stands for dots per inch. It represents the number of dots per
unit length for data from devices such as printers or scanners. The term pixel
dimension measures the number of pixels per frame for the video data from
digital cameras.

For TV systems, the PAL frame is 768 by 576 pixels and the NTSC frame
is 640 by 480. The most common standard resolutions on a conventional PC
monitor are 1024 x 768 (786432 pixels), 1024 x 960, 1280 x 1024, 1400 x 1050,
and so on. Some old monitors can only support a resolution of 640 x 480 (pixels).

IThe screen shot was done using a program called KSnapshot under Linux.

10.2. BITMAP IMAGES 191

Figure 10.2: Using a paint program

For each frame of image to display, the colour information related to each
pixel is stored in a temporary memory storage area called a frame buffer. Each
pixel on a display device is mapped to a memory cell. A control program takes
care of the routine signals to the display device and the data in the frame
buffer. The control information about the display device is also stored and can
be accessed by an application program. Often the monitor and video adaptor
restrict the number of pixels of a computer system.

In the multimedia world today, two types of image are most commonly used:
one is the so-called bitmap image and the other is vector graphics.

10.2 Bitmap images
These are also called photographic images for two-dimensional pictures. A
bitmap image is an array of pixel values. The data are the values of the pixels.
Many bitmap images are created from digital devices such as scanners or digital
cameras, or from programs such as Painter which allows visual artists to paint
images.

1 0 . 2 . 1 D i s p l a y i n g b i t m a p i m a g e s

Since a bi tmap image is in fact represented in a computer by an array of pixel
values, there has to be a way of mapping each pixel value to the physical dots
on a display screen.

192 CHAPTER 10. IMAGE COMPRESSION

Figure 10.3: An enlarged image

In the simplest case, each pixel corresponds one-to-one to the dots on the
screen. In the general case, the physical size of the display of an image will
depend on the device resolution. The pixel values are stored at different resolu-
tions from the displayed image. Computations for scaling and clipping usually
need to be performed to display a bitmap image.

In general, we have the following formula to decide the image size and scaling:

imageDimension = pixelDimension/deviceResolution,

where the deviceResolution is measured in dpi.

10.3 Vector graphics
The image in vector graphics is stored as a mathematical description of a col-
lection of graphic components such as lines, curves, shapes and so on.

Vector graphics are normally more compact, scalable, resolution independent
and easy to edit. They are very good for three-dimensional models on the
computer, usually built-up using shapes or geometric objects that can easily be
described mathematically.

10.3.1 Storing graphic components
The graphic components are stored by their mathematical functions instead of
pixels. For example, consider storing a line on the computer.

10.4. B I T M A P A N D V E C T O R G R A P H I C S 193

E x a m p l e 10.1 The mathematical funct ion for a straight line is y = kx + b,
where k is the slope and b the intercept. The function, instead of all the pixels
along the line, can be stored for the line.

Since a geometric line is actually a finite segment of a line, we also need to
store the two end points of the segment. In fact, it is sufficient only to store
the coordinates of the two end points because we know the line function can be
represented by two point coordinates. That is, given (Xl, Yl) and (x2, Y2), we
can easily write the function for the line: y = (y2 - y l) / (x2 - x l) x + (x2yl -
XlY2)/(X2 -- Xl).

10.3.2 Displaying vector graphic images
This would require some computation to be performed in order to interpret the
data and generate an array of pixels to be displayed. The process of generating
a pattern of pixels from a model is called rendering.

If the image is a line, only two end points are stored. When the model is
rendered for display, a pattern of pixels has to be generated to display the line
with the two end points.

10.4 Bitmap and vector graphics

The differences between bitmap images and vector graphics can be very obvious
in terms of visual characteristics, but we are concerned more about the following
issues:

1. The r e q u i r e m e n t s of the computer system: a bitmap image must record
the value of every pixel, but vector description may take much less space
for an image with simple structure, so may be more economical.

2. The size of a bitmap image file depends on the display resolution. It is
independent of the complexity of the image.

In contrast, the size of vector graphics depends on the number of objects
of which the image consists. It is independent of any resolution.

3. The approach of the so-called painting programs produces bitmap images
while that of drawing programs produces vector graphics.

4. The b e h a v i o u r of both bitmap images and vector graphics is different
when resized or scaled.

Most graphic applications today require a combination of bitmap and vector
graphics. A transformation between vector graphics and bitmap images may
be necessary. The following two processes are usually implemented for the
transformation:

194 CHAPTER 10. IMAGE COMPRESSION

Rasteris ing
A raster is a predetermined pattern of scanning lines to provide substantially
uniform coverage of a display area. Rasterising is the process of interpreting the
vector description of graphics for a display area. A vector graphic loses all the
vector properties during the process, e.g. the individual shapes can no longer
be selected or moved because they become pixels.

Vectorisat ion
This is a more complicated process of transforming pixels to vectors. The diffi-
culties arise from the need to identify the boundary of a pixel image using the
available data of curves and lines and to colour them. The vector file tends to
be much bigger than the pixels file before vectorisation.

10.5 Colour

As we know, colour is a subjective sensation experience of the human visual
system and the brain.

10.5.1 R G B colour model
This is a colour representation model for computing purposes�9 It comes from
the idea of constructing a colour out of so-called additive primary colours (i.e.
Red, Green and Blue or the RGB for short). Although there is no universally
accepted standard for RGB, the television and video industries do have a start-
dard version of RGB colour derived from Recommendation ITU-R BT.709 for
High Definition TV (HDTV). Monitors have been built increasingly to follow
the recommendation.

In the RGB model, we assume that all colours can in principle be represented
as combinations of certain amounts of the red, green and blue. Here the amount
means the proportion of some standard of primary red, green and blue.

E x a m p l e 10.2 Suppose that the proportion is represented as percentages. (100Yo,
OYo, 0~o) then represents a colour of 'pure' red, and others

�9 (50~, 0~, 0~) a 'darker' red

�9 (0~o, OYo, l OOYo) a 'pure' blue
�9 (OYo, 0~o, OYo) black
�9 (100~, 100~o, 100~o) white

and so on.

In fact, there are two commonly used representations of digital colours: they
are so-called RGB representation and LC representation.

10.5. COLOUR 195

10.5.2 RGB representation and colour depth

Since it is only the relative values of R, G and B that matter, we can actually
choose any convenient value range, as long as the range provided sufficiently
distinguishable values.

In a common RGB representation, we use 1 byte (8 bits) to represent the
brightness of each of the three primary colours, which gives a range of [0, 255]
(or [1,256]). Three bytes (8 x 3 = 24 bits) describe each pixel of a colour image.
In this way, 2563 (i.e. 16 777 216) different colours can be represented.

The number of bits used to hold a colour value is often called colour depth.
For example, if we use 24 bits to represent one pixel, then the colour depth is
24. We sometimes also say '24 bit colour' to refer to a colour with 24 bit colour
depth.

E x a m p l e 10.3 Some colours from the Linux colour database are 2~ bit colours:

R G B colour R G B colour
55 255 255 white 255 250 250 snow
0 0 128 navy blue 2~8 2~8 255 ghost white
0 0 255 blue1 255 239 213 papaya whip
0 255 0 green 255 228 225 misty rose
�9 .

Colour depth determines the size of the bitmap image: each pixel requires
24 bits for 24 bit colour, but just a single bit for 1 bit colour. Hence, if the
colour depth is reduced from 24 to 8, the size of a bitmap image will decrease
by a factor of 3 (ignoring any fixed-size housekeeping information).

10.5.3 LC representation
This is another common representation which is based on luminance (Y) and
chrominance (C) values. Luminance Y reflects the brightness, and by itself gives
a greyscale version of the image�9

The approach is based on colour differences. The idea is to separate the
brightness information of an image from its colour. By separating brightness and
colour, it is possible to transmit a picture in a way that the colour information is
undetected by a black and white receiver, which can simply treat the brightness
as a monochrome signal.

A formula is used which has been empirically determined for the best greyscale
likeness of a colour image.

Y = 0.299R + 0.587G + 0.114B

The chrominance (colour) components provide the additional information
needed to convert the greyscale image to a colour image. These components are
represented by two values Cb and Cr given by Cb = B - Y and Cr = R - Y.

196 CHAPTER 10. IMAGE COMPRESSION

This technique was initially used during the development from black-and-
white to colour TV. However, it turns out to have some advantages. For ex-
ample, since the human eye is much better at distinguishing subtle differences
in brightness than subtle differences in colour, we can compress the Y compo-
nent with greater accuracy (lower compression ratio), and make up for it by
compressing the Cb and Cr components with less accuracy (higher compression
ratio).

10.6 Classifying images by colour
For compression purposes, we can classify the images for compression by number
of colours used. Three approaches are available, namely bi-level image, greyscale
image, and colour image.

Bi-level image
This is actually the image with 1 bit colour. A single bit allows us to distinguish
two-different colours.

Images are captured by scanners using only two intensity levels, one is the
'information' and the other the 'background'. Applications include:

�9 Text, line drawings or illustrations

�9 FAX documents for transmission

�9 Sometimes photographs with shades of grey.

Greyscale image
This is actually the image with an 8 bit colour depth. The images are captured
by scanners using multiple intensity levels to record shadings between black
and white. We use 8 bits to represent one pixel, and hold one colour value
to provide 256 different shades of grey. Greyscale images are appropriate for
medical images as well as black-and-white photographs.

Colour image
Colour images are captured by (colour) scanners, using multiple intensity levels
and filtering to capture the brightness levels for each of the primary colours, R,
G and B (Red, Green, Blue).

Some computer systems use 16 bits to hold colour values. In this case, either
1 bit is left unused or different numbers of bits are assigned to R, G and B. If
it is the latter, then we usually assign 5 bits for R and B, but 6 bits for G. This
allocation is due to the fact that the human eye is more sensitive to green light
than to red and blue.

Most common colour images are of a 24 bit colour depth. Although 24 bits
are sufficient to represent more colours than the eye can distinguish, higher

10.7. CLASSIFYING IMAGES B Y APPEARANCE 197

colour depths such as 36 or even 48 bits are increasingly used, especially by
scanners.

10.7 Classifying images by appearance
Images can be classified by their appearances which are caused by the way
in which colours distribute, namely continuous-tone image, discrete-tone image
and cartoon-like image.

Continuous-tone image
This type of image is a relatively natural image which may contain areas with
colours. The colours seem to vary continuously as the eye moves along the
picture area. This is because the image usually has many similar colours or
greyscales and the eye cannot easily distinguish the tiny changes of colour when
the adjacent pixels differ, say, by one unit.

Examples of this type of image are the photographs taken by digital cameras
or the photographs or paintings scanned in by scanners.

Discrete-tone image
Alternative names are graphical image or synthetic image. This type of image
is a relatively artificial image. There is usually no noise and blurring as there
is in a natural image. Adjacent pixels in a discrete-tone image are often either
identical or vary significantly in value. It is possible for a discrete-tone image
to contain many repeated characters or patterns.

Examples of this type of image are photographs of artificial objects, a page
of text, a chart and the contents of a computer screen.

Cartoon-like image
This type of image may consist of uniform colour areas but adjacent areas may
have very different colours. The uniform colour areas in cartoon-like images are
regarded as good features for compression.

Observation
From the above discussion, we can see that:

1. Image files are usually large because an image is two dimensional and can
be displayed in so many colours. In a bi tmap image, each pixel requires
typically 24 bits to represent its colour.

2. The loss of some image features is totally acceptable as long as the human
visual system can tolerate. After all, an image exists only for people to
view. It is this fact that makes lossy compression possible.

198 CHAPTER 10. IMAGE COMPRESSION

3. Each type of image contains a certain amount of redundancy but the cause
of the redundancy varies, and this leads to different compression methods.
That is why so many different compression methods have been developed.

10.8 Image compression
Image compression can be lossless or lossy, although most existing image com-
pression systems are lossy. A typical lossy image compression system consists
of several components applying several compression approaches.

Source image compressed image

(transform 1 (entropy decoding ~

(quant iser ~ (dequantiser ~

(entropy coding ~ I inverse transform

compressed image Reconstructed image

(a) (b)

Figure 10.4: A typical image compression system

Figure 10.4(a) shows a typical encoding process and Figure 10.4(b) a typical
decoding process. During encoding, the image data are first divided into man-
ageable small units called blocks, say 8 x 8. The transform techniques (Chapter 8)
are then applied to the source image blocks. For DCT or DWT, coefficients are
actually transformed. This is followed by scalar or vector quantisation to reduce
the number of bits required. Finally, an entropy encoder such as run-length,
Huffman or arithmetic encoder is applied to achieve an even better overall com-
pression effect.

Two facts determine the main issues in image compression. First, the images
in many applications do not need to be reproduced exactly the same as the
original due to the tolerance of the human visual system. The information that
cannot be perceived or noticed is regarded as irrelevant information to the image
viewer. Secondly, the neighbouring pixels in images are highly correlated and
redundant. The correlation between neighbouring pixel values is called spatial
redundancy, and the correlation between different colour planes is called spectral

10.8. IMAGE COMPRESSION 199

redundancy. Hence, the fundamental tasks in image compression are to reduce
the irrelevancy and correlation in the images.

We shall introduce the general approaches in both classes to the image data
discussed in the previous section.

First, we look at lossless image compression.

10.8.1 Lossless image compression
Many techniques for text data can be extended and applied to image data.
These lead to many lossless approaches for image compression.

We first look at image compression for a binary source, i.e. bi-level images.
Bi-level images are efficient for certain applications where the visual satisfaction
is not a priority. For example, data transmission speed may be more important
than anything else in telecommunication. The fax standards such as the ITU-T
T.4 and T.6 recommendations are still in use today.

For bi-level image data, two popular approaches, run-length coding and ex-
tended approach, are frequently used.

10.8.1.1 R u n - l e n g t h coding

The run-length approach can be applied to bi-level images due to the fact that:
each pixel in a bi-level image is represented by 1 bit with two states, say black
(B) and white (W), and the immediate neighbours of a pixel tend to be in an
identical colour.

Therefore, the image can be scanned row by row and the length of runs
of black or white pixels can be computed. The lengths are then encoded by
variable-size codes and are written into the compressed file.

E x a m p l e 10.4 A character A represented by black-and-white pixels:

1234567890123456789012345
1BBBBBBBBBBBBBBBBBBBBBBBBB
2 BBBBBBBBBBBwwwBBBBBBBBBBB
3 BBBBBBBBBBwwBwwBBBBBBBBBB
4 BBBBBBBBBwwBBBwwBBBBBBBBB
5 BBBBBBBBwwBBBBBwwBBBBBBBB
6 BBBBBBBwwBBBBBBBwwBBBBBBB
7 BBBBBBwwwwwwwwwwwwwBBBBBB
8 BBBBBwwBBBBBBBBBBBwwBBBBB
9 BBBBwwBBBBBBBBBBBBBwwBBBB
0 BBBBBBBBBBBBBBBBBBBBBBBBB

Solu t ion We notice that line 4 consists of several runs of pixels: 9B, 2w, 3B,
2w, 9B, i.e. 9 'B's followed by 2 'w's, followed by 3 'B's, then 2 'w's and then 9
'B's. Similarly, line 5 consists of 8B, 2w, 5B, 2w, 8B, and so on.

200 CHAPTER 10. IMAGE COMPRESSION

A better compression may be achieved by taking into consideration the cor-
relation of adjacent pairs of lines.

For example, a simple idea is to code line 5 with respect to line 4 by the
differences in number of pixels: -1 , 0, 2, 0 , - 1.

Imagine if we send, via a telecommunication channel, the data - 1 , 0, 2, 0, - 1
for line 5 after the data for line 4. There would be no confusion nor need to
send 7B, 2w, 5B, 2w, 7B which includes more characters.

Of course, an image can also be scanned column by column, or by a zig-zag
scan (Figure 10.5).

(l / / Y
v/l/
(1 / 1 r

Figure 10.5: A zig-zag scan

Note: the algorithm assumes that successive lines have the same number of
runs. The actual ITU-T T.4 algorithm is much more complicated than this.

In practice, to avoid preprocessing, a statistical estimation is applied. The
compression model used here is the so-called Capon model (Figure 10.6) which
was proposed by J. Capon in 1959. A two-state Markov model with states W and
B is used. The transmission probabilities p(WIB) and p(BIW) are considered
as well as the p(W) and p(B), where p(WIB) is the probability of switching
from state B to W, and p(BIW) from W to B; p(W) is the probability of being
in state W and p(B) in state B. For facsimile images, p(WIW) and p(WIB) are
significantly higher than p(BIB) and p(BIW).

p(B W)

w]

p(w B)

p(BIB)

Figure 10.6: The Capon model for binary images

Note: the model is of second order so it expects a better estimation than
the first-order model.

10.8. I M A G E COMPRESSION 201

10.8.1.2 E x t e n d e d a p p r o a c h

The idea of this approach extends the image compression principles and con-
eludes that if the current pixel has eolour B (or W) then black (or white) pixels
seen in the past (or those that will be found in future) tend to have the same
immediate neighbours.

The approach checks n of the near neighbours of the current pixel and assigns
the neighbours an n bit number. This number is called the context of the pixel.
In principle there can be 2 n contexts, but the expected distribution is non-
uniform because of the image's redundancy.

We then derive a probability distribution of the contexts by counting the
occurrence of each context. For each pixel, the eneoder can then use adaptive
arithmetic coding to encode the pixel with the probabilities. This approach is
actually used by JPEG.

1 0 . 8 . 2 G r e y s c a l e a n d c o l o u r i m a g e s

The Graphics Interchange Format (GIF) was introduced by CompuServe in
1987.

In GIF, each pixel of the image is an index to a table that specifies a eolour
map for the entire image. There are only 256 different eolours in the whole
image. Of course, the eolours may also be chosen from a predefined and much
larger palette. GIF allows the eolour table to be specified for each image, or for
a group of images sharing the use of a map or without a map at all.

10.8.2.1 Ref lec ted G r a y codes (R G C)

The Reflected Gray codes (RGC) are a good representation for coding the
colours of greyscale images. In this system, we assign codewords in such a
way that any two consecutive numbers have codewords differing by 1 bit only.

E x a m p l e 10.5 We show below the decimal numbers that are represented by 1
bit, 2 bit and 3 bit RGC accordingly:

decimal value 0 1
1 bit RGC 0 1
2 bit RGC O0 0 1 11 10
3 bit RGC 000 001 011 010 110 111 101 100

An RGC codeword can be derived from a normal binary codeword as follows:

Given a decimal number m, its RGC codeword is
rn2 XOR shift-l-bit-to-right(m2),

where rn2 represents the binary eodeword of m.

E x a m p l e 10.6 Derive a 3 bit reflected Gray codeword for decimal 3.

202 C H A P T E R 10. IMAGE COMPRESSION

Solu t ion The 3-bit binary code of 3 is" 01i

Shift 011 one bit to the right (and add 0 in front): 001

011 X0R 001 = 010

So the 3-bit RGC codeword for 3 is 010.

10.8.2.2 D iv id ing a g reysca le image

Using the RGC, this approach separates a greyscale image into a number (say
n) of bi-level images and applies to each bi-level image a different compression
algorithm depending on the characteristics of each bi-level image.

The idea is to assume intuitively that two similar adjacent pixels in the
greyscale image are likely to be identical in most of the n bi-level images. By
'similar' in the examples below, we mean that the number of different bits
between two codewords, i.e. the Hamming distance of two binary codewords, is
small as well as the difference in value. For example, 0000 and 0001 are similar
because their value difference is 1 and the number of different bit(s) is also 1.
The two codewords are identical in the first three bits.

Now we look at an example of separating a greyscale image into n bi-level
images.

E x a m p l e 10.7 Given a greyscale image with eight shades of grey, we can rep-
resent each shade by 3 bits. Let each of the 3 bits, from left to right, be identified
as the high, middle and low (bit).

Suppose that part of a greyscale image is described by matrix A below, where
each RGC codeword represents a pixel with the shade of that value:

010 010 011 II0

A = 001 011 010 111

000 001 011 101

Then the image can be separated into three bi-level images (also called bit-
planes) as follows:

1. Bitplane A.high below consists of all the high bits of A. A.high can be
obtained from A by removing, for each entry of A, the two bits other than
the high bit.

0 0 0 1

A.high = 0 0 0 1

0 0 0 I

2. A.middle below consists of all the middle bits of A. A.middle can be ob-
tained from A by removing, for each entry of A, the two bits other than the
middle bit.

I i I I

A.middle = 0 I I i

0 0 1 0

10.8. IMAGE COMPRESSION 203

3. A.low below consists of all the low bits of A. A.low can be obtained from
A by removing, for each entry of A, the two bits other than the low bit.

0 0 1 0

A.low = i 1 0 I

0 i I 1

As we can see, from bitplane A.high to bitplane A.low, there is more and
more alteration between 0 and 1. The bitplane A. low in this example features
more random distribution of 0s and ls, meaning less correlation among the
pixels.

To achieve an effective compression, different compression methods should
be applied to the bitplanes. For example, we could apply the run-length method
to A.high, and A.middle, and the Huffman coding to A.low.

10.8.2.3 J P E G lossless coding

The predictive encoding (Section 8.1.1) is sometimes called JPEG lossless cod-
ing because the JPEG standard (codified as the ITU-T T.2 Recommendation)
specifies a similar predictive lossless algorithm.

The algorithm works with seven possible predictors, i.e. the prediction
schemes. The compression algorithm chooses a predictor which maximises the
compression ratio. Given a pixel pattern (see below), the algorithm predicts the
pixel 'z' in one of eight ways:

T S

1. No prediction

2. z = Q

3. x = S
4. x = T
5. x = Q + S - T

6. x = Q + (s - T) / 2

7. �9 = s + (Q - T) / 2

S. x = (Q + S)I2.

The lossless JPEG 2 algorithm gives approximately 2:1 compression ratios
on typical greyscale and colour images, which is well superior to GIF (although
GIF may be competitive on icons or the like).

2It is generally for lossy s tandard but does have the lossless version and is an extensive
and complicated s tandard for common use.

204 CHAPTER 10. IMAGE COMPRESSION

1 0 . 8 . 3 L o s s y c o m p r e s s i o n

Lossy compression aims at achieving a good compression ratio, but the cost
for it is the loss of some original information. How much source information
can be lost depends very much on the nature of applications. Nevertheless,
the measure of a lossy compression algorithm or a lossy compression system
normally includes a measure of the quality of reconstructed images compared
with the original ones.

1 0 . 8 . 3 . 1 D i s t o r t i o n m e a s u r e

Although the best measure of the closeness or fidelity of a reconstructed image
is to ask a person familiar with the work to look at the image and provide an
opinion; this is not always practical because it is not useful in mathematical
design approaches.

Here we introduce the more usual approach in which we try to measure the
difference between the reconstructed image and the original one.

There are mathematical tools that measure the distortion in value of two
variables, also called difference distortion measure. Considering an image to be
a matrix of values; the measure of lossy compression algorithm normally uses
a s tandard matrix to measure the difference between reconstructed images and
the original ones.

Let Pi be the pixels of reconstructed image and Qi be the ones of the original,
where i = 1 , . . . , N. We have the following commonly used measures:

�9 Squared error measure matrix (this is a measure of the difference):

Di = (Pi - Qi) 2

�9 Absolute difference measure matrix:

Di =]Pi - @1

�9 Mean squared error measure (MSE) matr ix (this is an average measure):

N

(72 1
- -

i = l

�9 Signal-to-noise-ratio (SNR) matrix (this is the ratio of the average squared
2 and the MSE a~)" value of the source output ~x

2
S N R - a~

This is often in logarithmic scale (dB):

2
O" x

SNR - 10 log10 a--~

10.8. I M A G E C O M P R E S S I O N 205

�9 Peak-signal-to-noise-ratio (PSNR) matrix (this measures the error relative
to the average squared value of the signal, again normally in logarithmic
scale (dB)):

maxi IPil
SNR - 20 lOgl0 o~

�9 Average of the absolute difference matrix:

N
1

D~ - ~ ~ [P~ - Q~I
i

�9 Maximum value of the error magnitude matrix:

D i ~ - m a x D i -]Pi - Qil
n

1 0 . 8 . 3 . 2 P r o g r e s s i v e i m a g e c o m p r e s s i o n

The main idea of progressive image compression is to gradually compress an
image following a underlined order of priority. For example, compress the most
important image information first, then compress the next most important in-
formation and append it to the compressed file, and so on.

This is an attractive choice when the compressed images are transmitted
over a communication channel, and are decompressed and viewed in real time.
The receiver would be able to view a development process of the image on the
screen from a low to a high quality. The person can usually recognise most of
the image features on completion of only 5-10% of the decompression.

The main advantages of progressive image compression are that:

1. The user can control the amount of loss by means of telling the encoder
when to stop the encoding process.

2. The viewer can stop the decoding process early since she or he can recog-
nise the image's feature at an early stage.

3. As the compressed file has to be decompressed several times and displayed
with different resolution, the decoder can, in each case, stop the decom-
pression process once the device resolution has been reached.

There are several ways to implement the idea of progressive image compres-
sion:

�9 Using so-called SNR progressive or quality progressive compression (i.e.
encode spatial frequency data progressively).

�9 Compress the grey image first and then add the colour. Such a method
normally features slow encoding and fast decoding.

�9 Encode the image in layers. Early layers are large low-resolution pixels
followed by smaller high-resolution pixels. The progressive compression
done in this way is also called p y r a m i d coding or hierarchical coding.

206 C H A P T E R 10. IMAGE COMPRESSION

E x a m p l e 10.8 The following methods are often used in JPEG:

�9 Sequential coding (baseline encoding): this is a way to send data units
following a left-to-right, top-to-bottom fashion.

�9 Progressive encoding: this transmits every nth line before filling the data
in the middle.

�9 Hierarchical encoding: this is a way to compress the image at several dif-
ferent resolutions.

1 0 . 8 . 4 J P E G (s t i l l) i m a g e c o m p r e s s i o n s t a n d a r d

This is one of the most widely recognised standards in existence today. It
provides a good example of how various techniques can be combined to produce
fairly dramatic compression results. The baseline JPEG compression method
has a wide variety of hardware and software implementations available for many
applications.

JPEG has several lossy encoding modes, from so-called baseline sequential
mode to lossless encoding mode.

The basic steps of lossy JPEG algorithm include processing 24 (or 32) bit
colour images and offering a trade-off between compression ratio and quality.

10.8.4.1 T r a n s f o r m s

An image can be compressed if its correlated pixels are transformed to a new
representation where the pixels become less correlated, i.e. are decorrelated.
Compression is successful if the new values are smaller than the original ones
on average. Lossy compression can be achieved by quantisation of the trans-
formed values. The decoder normally reconstructs the original data from the
compressed file applying the opposite transform.

There are a lot of techniques and algorithms for image data compression.
You may consult various sources in literature. Due to the limitations of space,
we have only provided a sample of the techniques here.

10.8.5 Image file formats
There is lot of image software available these days. They have been developed
on various platforms and used different formats or standards. Today's most
widely used image formats include:

�9 GIF (Graphics Interchange Format)

�9 JPEG (Joint Photographic Experts Group standard for compressing still
images) .3

�9 Animated GIF (Animated Graphics Interchange Format)

3We often use JPEG to mean the standard by this expert group, rather than the organi-
zation itself.

LEARNING OUTCOMES 207

�9 BMP (Windows Bitmap format)

�9 XBM (X window Bitmap format)

�9 EPS (Encapsulated PostScript file format)

�9 PNG (Portable Network Graphics)

�9 PSD (Adobe Photoshop's native file format)

�9 PSD Layered (Adobe Photoshop's native file format)

�9 STN (MediaBin's proprietary STING file format)

�9 TIFF (Tagged Image File Format)

�9 TGA (TARGA bitmap graphics file format).

Most of these image file formats are in fact compressed, for example, JPEG,
PNG, BMP and GIF.

J P E G offers great mainly lossy compression and is widely used for bitmap im-
ages. It supports progression and hierarchical mode, and Huffman coding.

P N G supports up to 48 bits per pixel for colour images. It applies LZW
compression algorithms and is widely used for the Internet application.

B M P is the native image format in the Microsoft Windows operating systems.
Colour depth can be 1, 4, 8, 16, 24 or 32 bits. BMP supports simple
run-length compression for 4 and 8 bits per pixel.

GIF was the first universally accepted image format but ended due to legal
problems. LZW compression methods support GIF.

Summary
Digital images can be classified as two types: bitmaps and vector graphics. Two
commonly used colour representation systems are based on the RGB model and
LC representation. Commonly used image files are in formats such as GIF,
JPEG, EPS, PNG, PSD, PSD layered, STN, TIFF and TGA. Using simple bit
planes to represent digital images, we can apply different compression algorithms
that we have learnt so far to get a flavour of image compression systems.

Learning outcomes
On completion of your studies in this chapter, you should be able to:

�9 illustrate how a picture can be represented by either a bitmap image or a
vector image

�9 explain the main differences between bitmap and vector graphics in terms
of visual characteristics

208 CHAPTER 10. IMAGE COMPRESSION

�9 illustrate RGB colour model and LC representation

�9 describe a few of the commonly used image formats

�9 provide examples of lossless and lossy image compression techniques

�9 illustrate how to represent a greyscale image by several bi-level images

�9 describe the main ideas of predictive encoding

�9 be familiar with various distortion measurements

�9 explain the general approaches of various popular lossy image compression
techniques such as progressive image compression and transforms.

Exercises

E10.1 If you consider the three components of an RGB colour to be Cartesian co-
ordinates in a three-dimensional space, and normalise them to lie between
0 and 1, you visualise RGB colour space as a unit cube, see Figure 10.7.

(a) What colours correspond to the eight corners of this cube?

(b) What does the straight line running from the origin to (1, 1, 1) shown
in the figure represent?

(c) Comment on the usefulness of this representation as a means of vi-
sualising colour.

G

(1, ~ R

/
B

Figure 10.7: The RGB colour space

El0.2 Classify and identify the following images for a continuous-tone image,
discrete-tone image and cartoon-like image:

�9 a reproduction of your national flag

�9 a photograph of the surface of Mars

�9 a photograph of yourself on the beach

�9 a still from an old black-and-white movie.

LABORATORY 209

E10.3 Explain how RGB colour values, when R = G = B, can be used to
represent shades of grey.

E10.4 Construct a reflected Gray code (RGC) for decimal numbers 0, 1,- . . , 15.

E10.5 Following the above question, provide an example to show how a greyscale
image with 16 shades of grey can be separated into four bi-level images.

El0.6 Suppose that the matrix A below represents the pixel values of part of a
large greyscale image, where i = 0 , . . . , 7 , j = 0 , - . - , 7 , and A[0,0] = 4.
Apply any three of the predictive rules of JPEG (below) to matrix A.

(a) no prediction4

(b) x = Q

(c) x = s

(d) x = T

(e) x - Q + S - T

(f) x = Q + (S - T) / 2

(g) x = S + (q - T) / 2

(h) x = (Q + S)/2.

t

4 8 4 8 1 1 1 1
1 2 4 6 5 1 1 1
8 4 5 5 5 5 5 5
2 4 8 5 7 9 5 5
2 4 6 7 7 7 9 9
2 2 2 3 4 9 7 3
3 3 6 6 6 7 7 7
7 7 7 7 6 7 8 8

ElO.7 Implement the ideas above using a higher level programming language.

Laboratory
L10.1 Investigate the colour utilities (or system, package, software) on your com-

puter.

For example, if you have access to Linux, you can go to Start -~ Graphics
-~ More Graphics -+ KColorChooser and play with the colour display.

LI0.2 Experiment on how the values of (R, G, B) (or (H, S, V)) affect the colour
displayed.

L I0.3 Design and implement a program method which takes a binary codeword
and returns its RGC codeword.

4i.e. using the original pixel value matrix (A in Example 8.2).

210 CHAPTER 10. IMAGE COMPRESSION

L10.4 Design and implement a program method which takes a matrix of integers
and returns its residual matrix, assuming that each entry follows JPEG
rule (3).

L10.5 Investigate what image formats are supported by a painting or drawing
software on your computer. Do they offer any compression?

Assessment
$10.1 Illustrate the RGB colour space using Cartesian coordinates in a three-

dimensional space.

$10.2 Consider a square image to be displayed on screen. Suppose the image
dimension is 20 x 20 square inches. The device resolution is 800 dpi. What
would be the pixel dimension required?

S10.3 Derive the RGC codeword for a decimal 5.

S10.4 Explain, with an example, how to represent part of the greyscale image
below by three bitplanes:

000 001 011 011
001 001 001 010
011 001 010 000

Bibliography
[Mia99] J. Miano. Compressed Image File Formats. Addison Wesley Longman

Inc., 1999.

[PM93] W.B. Pennebaker and J.L. Mitchell. JPEG Still Image Data Compres-
sion Standard. Van Nostrand Reinhold, New York, 1993.

[TM02] D.S. Taubman and M.W. Marcellin. JPEG2000: Image Compression
Fundamentals, Standards and Practice. Kluwer Academic Publishers,
2nd printing edition, 2002.

[TZ94] D. Taubman and A. Zakhor. Multirate 3D subband coding with motion
compensation. IEEE Transactions on Image Processing, IP-3:572-588,
September 1994.

Chapter 11

Video compression

Video is continuous media in which information is presented to give an illusion
of continuity. Sound, movies and computer animation are common examples
of continuous media. Temporal characteristics are the focus of the compression
potential for continuous media.

Video can be viewed as a sequence of moving pictures played with its audio
accompaniment. The moving pictures and audio signals, as two components,
may be dealt with separately. Moving pictures consist of a time series of still
images called frames. To feel alive, each frame of image can be perceived only
in the existence of its previous and succeeding frames.

Video files contain a mixture of almost everything: text, graphics, audio,
images and animation data. Video systems change the images 20 to 30 times
per second. So the amount of data involved is enormous. Video compression
algorithms are lossy, making use of human visual and audio perception systems'
forgiving nature.

Video systems can be classified broadly into two types: old analogue video
and modern digital video.

11.1 Analogue video
The essential function of analogue video is to display still pictures on a television
receiver or a monitor screen one frame after another. The pictures are converted
into an electronic signal by a raster scanning process. Conceptually, a screen
is divided into horizontal lines. The picture we see is built up as a sequence of
horizontal lines from top to bottom. Here the human persistence of vision plays
an important part and makes the series of lines appear as a (frame of) picture.

The following parameters determine the quality of pictures:

�9 number of scanning lines

�9 number of pixels per scan line

211

212 CHAPTER 11. VIDEO COMPRESSION

�9 number of displayed frames per second (in fps): this is called the frame
rate

�9 scanning techniques.

For example, the screen has to be refreshed about 40 times a second, other-
wise, it will flicker. Popular standards include Phase Alternating Line (PAL),
Sequential Couleur Avec Memoire (SECAM) and National Television Systems
Committee (NTSC). PAL is mainly used in most of Western Europe and Aus-
tralia, China and New Zealand. SECAM is used in France, in the former Soviet
Union and in Eastern Europe. NTSC is used in North America, Japan, Taiwan,
part of the Caribbean, and in South America.

A PAL or SECAM frame contains 625 lines, of which 576 are for pictures.
An NTSC frame contains 525 lines, of which 480 are pictures. PAL or SECAM
uses a frame rate of 25 fps and NTSC 30 fps.

11.2 Digital video

Although the idea of digital video is simply to sample the analogue signal and
convert it into a digital form, the standard situation is inevitably quite complex
due to the need to compromise the existing equipment in old as well as new
standards such as HDTV.

The sample standard is ITU-R BT.601 (more commonly known as CCIR
601), which defines sampling of digital video. It specifies a horizontal sampling
picture format consisting of 720 luminance samples and two sets of 360 colour
difference samples per line. The size of PAL screen frames is 768 x 576 and
NTSC 640 x 480.

Apart from the digital data from analogue video sampling, digital video
data to be compressed also include the data streams produced by various video
equipment such as digital video cameras and VTRs. Once the data are input
into the computer there are many ways to process them.

11.3 Moving pictures
Video data can be considered as a sequence of still images changing with time.
Owing to the forgiving nature of the human eye, video signals change the image
20 to 30 times per second. Video compression algorithms all tend to be lossy.

One minute of modern video may consist of 1500-1800 still images. This
explains the need and motivation for video compression.

Among the many different video compression standards, there are two im-
portant ones, namely ITU-T H.261 and MPEG. ITU-T H.261 is intended for
use mainly for videoconferencing and videotelephony, and MPEG is mainly for
computer applications.

11.4. MPEG 213

11.4 MPEG
�9 This is the standard designed by the Motion Picture Expert Group, in-

cluding the updated versions MPEG-1, MPEG-2, MPEG-4, and MPEG-7.

�9 Most popular standards include the ISO's MPEG-1 and the ITU's H.261.

�9 It is built upon the three basic common analogue television standards:
NTSC, PAL and SECAM.

�9 There are two sizes of SIF (Source Input Format): SIF-525 (with NTSC
video) and SIF-625 (for PAL video).

�9 The H.261 standard uses CIF (Common Intermediate Format) and QCIF
(Quarter Common Intermediate Format).

As we can see, MPEG is greatly influenced by ITU-T standards and even
includes some of its standards. This may be the reason why ITU-T H.261 is the
more fully developed of the two.

11.5 Basic principles
Video compression is based on two types of redundancies among the video data,
namely spatial redundancy and temporal redundancy.

1. Spatial redundancy means the correlation among neighbouring pixels in
each frame of image. This can be dealt with by the techniques for com-
pressing still images (Chapter 10).

2. Temporal redundancy means the similarity among neighbouring frames,
since a video frame tends to be similar to its immediate neighbours.

Techniques for removing spatial redundancy are called spatial compression
or intra-frame compression. Techniques for removing temporal redundancy are
called temporal compression or inter-frame compression. We focus on temporal
compression here, since for spatial compression many techniques for still images
in Chapter 10 can be applied.

11.6 Temporal compression algorithms
In these algorithms, certain frames in a sequence are identified as key frames.
These key frames are often specified to occur at regular intervals. The key frames
are either left uncompressed or are more likely to be spatially compressed. Each
of the frames between the key frames is replaced by a so-called difference frame
which records the differences between the original frames and the most recent
key frame. Alternatively, the differences between the original frames and the
preceding frame can also be stored in the difference frame depending on the
sophistication of the decompressor.

214 C H A P T E R 11. VIDEO COMPRESSION

I I I I I I I 7 - . - 8 l " ~ "-,.d ' '

I I I I I I , ~ k 6 ~ " " . . . I "" 10 11

~ 5 ~ 8 9
4 5 6 7

1 time: 0

Figure 11.1: A sequence of original frames

E x a m p l e 11.1 Figure 11.1 shows a sequence of frames to be displayed during
a time duration 0, 1 , . . . , 11.

Following the MPEG regulation, the frames marked 'I' (as in Figure 11.2) are
encoded as the key frames. These are called I-pictures, meaning intra, and have
been compressed purely by spatial compression. Difference frames compared
with previous frames are called P-pictures or predictive pictures. The frames
marked B are so-called B-pictures which are predicted from later frames.

E x a m p l e 11.2 The encoded frames are as in Figure 11.2.

Figure 11.2: Encode frames as I-, P- and B-pictures

The decoding process now becomes a question of dealing with a sequence of
compressed frames with I, P, B types of pictures.

I-pictures are decoded independently. P-pictures are decoded using the pre-
ceding I or P frames. B-pictures are decoded according to both preceding
and following I- or P-pictures. The encoded frames can then be decoded as
IBBBPBBBP and are displayed in that order (see Figure 11.4).

E x a m p l e 11.3 Note that the order of the encoded and displayed frames in Fig-
ure 11.3 is altered slightly from that in Figure 11.2.

11.7. GRO UP OF PICTURES 215

Figure 11.3: Decoded and displayed from I-, P- and B-pictures

11.7 Group of pictures
Now a video clip can be encoded as a sequence of I-, P- and B-pictures. Group
of pictures (GOP) is a repeating sequence beginning with an I-picture and is
used by encoders.

E x a m p l e 11.4 Figure 11.~ shows a GOP sequence IBBPBB containing two
groups.

Figure 11.4: GOPs (1)IBBPBB, (2)IBBPBBPBB, (3)IBBPBBPBBPBB

216 C H A P T E R 11. V I D E O C O M P R E S S I O N

Other common sequences in use are IBBPBBPBB with three groups and
IBBPBBPBBPBB with four groups.

1 1 . 8 M o t i o n e s t i m a t i o n

The main idea is to represent each block of pixels by a vector showing the amount
of block that has moved between images. The approach is most successful for
compressing a background of images where the fixed scenery can be represented
by a fixed vector of (0, 0).

It uses the following methods:

�9 Forward prediction: computing the difference only from a previous frame
that was already decoded.

�9 Backward prediction: computing the difference only from the next frame
that is about to be decoded.

�9 Bidirectional prediction: the pixels' information in a frame depends on
both the last frame just decoded and the frame about to follow.

The following factors can be used to estimate motion:

�9 Basic difference

�9 L1 norm: mean absolute error

I] A - BIll = ~ ~] A i , j - Bi , j l
i j

�9 L2 norm: mean squared error

IIA- BII - E (A i , j - B~,j) 2
i j

1 1 . 9 W o r k in d i f f e r e n t v i d e o f o r m a t s

To allow systems to use different video formats, the following process is needed:

�9 Standardise the format

�9 Break the data into 8 x 8 blocks of pixels

�9 Compare with other blocks

�9 Choose important coefficients

�9 Scale the coefficients for quantisation

�9 Pack the coefficients.

BIBLIOGRAPHY 217

Summary
Video data is a good example of digital multimedia today. The massive amount
of data demonstrates clearly the potential of data compression. For continuous
media, the compression techniques introduced in the previous chapters can be
used to conduct various kinds of spatial compression.

Learning outcomes
On completion of your studies in this chapter, you should be able to:

�9 identify and list the parameters that determine the quality of pictures

�9 explain the popular standards for analogue and digital videos

�9 describe, with an example, how temporal compression algorithms work in
principle

�9 explain the common measures for motion estimation.

Exercises
El1.1 Explain briefly the concepts of spatial redundancy and temporal redundancy.

Ell .2 Implement the basic temporal compression algorithm introduced in the
chapter.

Assessment
S 11.1 Explain the two characters of video data.

$11.2 Illustrate how a temporal compression algorithm works.

Bibliography
[HV02]

[So197]

D.T Hoang and J.S. Vitter. Efficient Algorithms for MPEG Video
Compression. John Wiley & Sons, New York, 2002.

S.J. Solari. Digital Video and Audio Compression. McGraw Hill Text,
1997.

[Sym98] P. Symes. Video Compression. McGraw-Hill Companies, 1998.

[Sym03] P.D. Symes. MPEG-~ Demystified. McGraw-Hill Professional Publish-
ing, January 2003.

This Page Intentionally Left Blank

Appendix A

Brief history

Data compression
Data compression can be viewed as the art of creating shorthand representations
for the data, but this process started as early as 1000 BC. The short list below
gives a brief survey of the historical milestones:

�9 1000

�9 1829

�9 1838

�9 1843

�9 1930

�9 1948

�9 1949

�9 1951

�9 1966

BC shorthand

Braille code

Morse code was invented for use in telegraphy

variable-length codes for telegraph

analog compression

information theory

coding blocks based on their probabilities

Huffman codes

Run-length coding

�9 1976 arithmetic coding

�9 1970s dynamic Huffman coding

�9 1977 dictionary-based compression

�9 1982 LZSS (by Storer and Szymanski)

�9 1984 LZW (LZ was improved by Terry Welch); pulse position modulation
(PPM)

�9 1987 dynamic Markov compression (DMC)

�9 1992 gzip

�9 1994 Burrows and Wheeler transform (BWT)

�9 1996 bzip2

219

220 A P P E N D I X A. B R I E F H I S T O R Y

�9 1997 PPM2

�9 1980s

- early 1980s FAX

- mid-1980s video conferencing, still images (JPEG), improved FAX
standard (JBIG)

- late 1980s onward motion video compression (MPEG)

�9 1990s

- early 1990s disk compression (stacker)

- mid-1990s satellite TV

- late 1990s digital TV (HDTV), DVD, MP3

�9 2000s digital TV (HDTV), DVD, MP3.

Audio compression
MP3 is more popular than 'audio compression'. Everyone knows MP3 but not
everyone knows that MP3 stands for MPEG layer III.

�9 1977 idea of creating a method of transferring music over a standard phone
line

�9 1987 Digital Audio Broadcasting (DAB) in Fraunhofer Institute

�9 1988 MPEG was established as a subcommittee of ISO/IEC

�9 1989 Fraunhofer received a German patent for MP3

�9 1992 Fraunhofer's and Dieter Seitzer's audio coding algorithm was inte-
grated into MPEG1

�9 1991 MP3 codec

�9 1993 MP2, MPEG1 audio layer II

�9 1993 Maplay by Tobias Bading

�9 1995 MPEG2 was published

�9 1996 US patent issued for MP3

�9 1997 AMP the first MP3 playback engine

�9 1998 Fraunhofer enforced their patent rights

�9 1998, Winamp, a free MP3 music player (by students Justin Frankel and
Dmitry Boldyrev at the time)

�9 1999 SubPop, a record company, first started to distribute music tracks in
the MP3 format

�9 1999 portable MP3 players available

�9 2001 ID3.

221

Image compression
�9 1990 the first derivatives of many signals exhibited lower information con-

tent than the source signal

�9 1980 delta modulation and differential pulse code modulation (DPCMs)

�9 1977 recursive and adaptive quantisation techniques

�9 1995 Block Encoding (BE), Vector Quantisation (VQ) codebook

�9 1986, 1993 singular Value Decomposition (SVD) (Karhunen-Loeve trans-
form (KLT))

�9 1987, 1994, transform coding such as Fourier Transform (FT) or Cosine
Transform (CT)

Video compression
The brief history of computer applications below shows the dramatic progress
made in recent years due to the availability of the techniques for computer
images and sounds.

�9 1940s electronic computers performing numerical applications

�9 1950s first non-numerical applications: texts

�9 1960s analogue videophone system, still images

�9 1970s computer animations

�9 1980s digital sound

�9 1990s television broadcasters started using MPEG2 coded digital forms

�9 present multimedia applications, communications and entertainment.

Wavelets
�9 1807 Fourier series

�9 1909 Haar wavelet

�9 1930 Haar basis function and a function that can vary in scale and conserve
energy

�9 1980 an effective algorithm for numerical image processing using wavelets

�9 1960-80 atoms and assembly rules by various researchers

�9 1980 Meyer wavelets

�9 1982 Ingrid Daubechies's set of wavelet orthonormal basis functions, Marr
wavelet.

This Page Intentionally Left Blank

Appendix B

Matr ices

An m • n ma t r ix (or m by n matr ix) is a rec tangular ar ray of da t a consist ing

of m rows and n columns and can be represented as follows:

A = (aij)mxn
a l l "'" aln I

�9

aml �9 �9 " amn
The m • n is called the dimension or order of the matr ix . Each d a t u m aij

in the ma t r ix (aij)m• is called an entry of the matr ix . Each en t ry has a row
index i and column index j , toge ther represent ing the posi t ion of the en t ry in

the matrix�9

E x a m p l e B . 1 A matrix of 4 • 3

5 2 4
1 - 3 - 1

A - 1 - 1 1
3 2.5 2

B.1 Special matrices
1. Square matr ix:

A square mat r ix is a ma t r ix of order m = n (short for n • n).

E x a m p l e B . 2 A square matrix of order 3

t
5 2
1 - 3
1 - 1

4)
- 1

1

2. Vector:

A vector is a ma t r ix of m • 1 or 1 • n.

223

224 APPENDIX B. MATRICES

3. Null matr ix (or zero matrix):

A matr ix is called a null matrix if all the entries are zero, and can be
denoted by 0,~xn, or 0 for short.

Example B.3

0 --- 0 3 X 4 - -

0 0 0
0 0 0
0 0 0
0 0 0

4. Scalar:

If m = n = 1, the matr ix becomes a single entry and is called scalar. In
this case, the a l l is used without the bracket.

5. Identity matrix:

A matr ix is an identity matr ix if it is square, and all the da ta on the
diagonal of the matr ix are 1, and all the other entries are zero.

Example B.4

I = I a =
1 0 0)
0 1 0
0 0 1

o Inverse:

Let A be a square matr ix of order n. If there exists another square matr ix
B of order n, such that the matr ix product A B = B A = I, then A is said
to be invertible with inverse B. Matrix B can be shown to be unique, and
is called the inverse of A and is denoted as A -1.

Transpose:

Let A be a square matr ix (aij) of order m • n.

5 2 4
1 - 3 - 1

A - 1 - 1 1
3 2.5 2

The transpose A T is of order n x m and becomes (aji).

5 1 1 3)
A T - 2 - 3 - 1 2.5

4 - 1 1 2

8. Symmetric matrix:

A square matr ix is symmetric if A T = A. In a symmetric matrix, the
elements on one side of the diagonal are mirror images of those on the

other side.

B.2. M A T R I X O P E R A T I O N S 225

Example B.5 The following matrix (A3) is symmetric:

1 3 2)
A 3 - 3 5 0

2 0 6

B.2 Matrix operations
1. Addition and subtraction:

Addition and subtraction can only performed on two matrices of the same
dimension (or order).

(aij),~ x n n t- (b i j) m x n --- (aij + bij)m x n

(aij)m x n - - (b i j) m x n = (aij - bij)m x n

2. Multiplication:

(a) Multiplication by a scalar k.

k A : ~ (a i j) m x n : (k a i j) m x n

(b) Matrix product:

A matrix Am xn of order m x n can only by multiplied by another
matrix Bnxp of order n x p in that order. The matrix product
AmxnBnxp is a matrix of order m x p, and each product entry is

n

~-~aikbky, 1 , . . - , m , j 1 , . . . ,p. where i
k--1

The two matrices A and B are said to be c o n f o r m a b l e for mul t i -
p l i ca t ion if the number of columns of A equals the number of rows
of B.

Note, matrix multiplication is not commutative in general, i.e. the
product A B is not equal to BA.

In a product A B of the two matrices, B is said to be premultiplied
by A. A is said to be postmultiplied by B.

Example B.6

A2x3 - 3 5 0

B3• - 1

2

226 A P P E N D I X B. M A T R I C E S

Here A and B are conformable fo r mul t ipl icat ion.

1 x 4 + 3 x l + 2 x 2)
A2x3B3xl - 3 x 4 + 5 x 1 + 0 x 2

3. Commuta t ive , dis t r ibut ive and associative rules:

(a) A + B = B + A

(b) A (B + C) = A B + A C

(c) A (B C) = (A B) C

(d) i i = I i = i

(e) A 0 = 0 A = 0
(f) A r e A n = A m + n
(g) A m ~ = A ran.

11 (17)

B.3 D e t e r m i n a n t s

Let A be a square mat r ix of order n. The de te rminan t of A is a value of the

sums and products of the entries in A following specific rules. It is denoted as

an array of order n as below:

a l l �9 �9 �9 aln

det A - " �9 . .
�9

an1 �9 �9 �9 ann
The calculation rules t ransform the pa t t e rns of numbers into a single number .

The de te rminan t can be of a complex value as well as a real one and depends
on the entries of A. The value of a de te rminan t of order n is the algebraic sum
of n! terms, each being the product of n different entries taken one each from

every row and column of the de terminant .

1. det a - a

2. d e t A - a / l (- 1) / + l M / / + a i 2 (- 1) i + 2 M i 2 + " " + a i n (- 1) i + n M i n , where

Mij is a so-called principal minor , and is a subde te rminan t obta ined by

deleting row i and column j from det A.

E x a m p l e B. 7

det A

2

- 3

1

= 2 x

0 1
1 1
2 1

1 1
2 1

- O x
3 1
1 1

+ l x 3 1
1 2

= 2 • 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5

= 3

B.4. O R T H O G O N A L M A T R I X 227

A determinant value remains unchanged if

1. all rows and all columns are transposed without changing the entry order.

Example B.8
2 0 1
3 1 1
1 2 1

2 3 1
0 1 2
1 1 1

- 3

2. the entries of any one row, column, or a multiple of them are added to (or
subtracted from) another row, column, or multiple, then the value of the

determinant remains the same.

Example B.9 We multiply the first row by 2 and add it to the second
row. The determinant value remains the same.

2 0 1
3 1 1
1 2 1

2 0 1
3 + 2 x 2 1 + 0 x 2 1 + 2 x l

1 2 1
- 3

3. de t (AB) - de t (A) (B) .

Eigenvalues and eigenvectors
The number s complex or real, is an eigenvalue of the square matr ix A if there
is a vector x ~: 0, such that

A x = ~x

The vector x is called an eigenvector and corresponds to the eigenvalue A.
A is an eigenvalue of A if and only if

de t (A - AI) - 0

d e t (A - AI) - 0 is called the characteristic equation for the square matr ix A
and the eigenvalues are the roots of the polynomial of degree n. The polynomial
is called characteristic polynomial of A.

B.4 O r t h o g o n a l m a t r i x

A matr ix A that is equal to the inverse of its transpose matrix, (AT) -1, is an
orthogonal matrix.

Example B.10

1

A -
v~

1)
~/2 is orthogonal, and

v~

228 A P P E N D I X B. M A T R I C E S

(1
A A T - ~ ~ V~l --~ - 0 1 is orthogonal

v~ v~ v~ v~

If two mat r ices A and B are o r thogona l and conformable for mul t ip l ica t ion ,

the i r p r o d u c t A B is also an o r thogona l mat r ix . Let A be an o r thogona l mat r ix .

T h e n

1. A T A - A A T - I

2. A T - A -1

3. A I = I A - I

4. A T - A -1

5. (A B) T - B T A T

6. (A B) -1 - B - 1 A -1

7. (A - l) T - (AT) -1

8. det I = 1

9. det A B - det A det B

10. det A T - det A.

B . 4 . 1 I n n e r p r o d u c t

Let x and y be two vectors of order n. An inner p roduc t , also called the dot
product, be tween x and y is defined as

x . y - x l y l + x2y2 + ' " , XnYn

B . 4 . 1 . 1 O r t h o g o n a l v e c t o r

x and y are said to be orthogonal to each o ther if the i r inner p r o d u c t is zero.

B.4.1 .2 Orthogonal set

A set of vectors Xl ,X2, �9 �9 �9 ,Xm of order m is said to be o r thogona l if each vector

is o r thogona l to every o ther vector in the set.

T h e coefficient of a vector v cor respond ing to a uni t vector u from an or-
thogonal basis set can be ob ta ined by c o m p u t i n g the inner p roduc t be tween the

vector and the uni t vector. For example , given an o r thogona l Ux - (1, 0) T and

Uy - - (0 , 1) T, v " Ux -- Vl x 1 + v2 • 0 -- vl , and v . Uy - - V l • 0 n a V 2 X 1 -- V2.

B.4. O R T H O G O N A L M A T R I X 229

B . 4 . 2 V e c t o r space

A vector space consists of a set of vectors with the opera t ions of vector addi t ion
and scalar mul t ip l ica t ion defined on them. The results of these opera t ions are
also e lements of the vector space.

Inner p roduc t x . x > 0 with x . x = 0 if and only if x - 0. Then the quan t i ty
v/X �9 x denoted by xll is called the norm of x and agrees with our usual concept
of Eucl idean dis tance in two- or three-d imensional s i tuat ions.

This Page Intentionally Left Blank

Appendix C

Fourier series and harmonic
analysis

An important advantage of the Fourier series representation of a function is that
it can represent a periodic function containing a number of finite discontinuities
with no requisite of the use of successive differential coefficients as in Taylor
series.

C.1 Fourier series

In mathematical expression, we have

a0 ~ 2rr ~ 2rr
f (t) - -~ + E ai cos(/-~- t) + E ai sin(/ ~- t) ,

i - - 1 i - - 1

(C.1)

where f (t) - f (t + n T) and n is an integer.
Using Euler's identity e jx - cos x + j sin x, the formula in C.1 can be

represented in exponential form.

(x)
E �9 2rent

f (t) -- Cnea T
-- CX:)

DFT may be useful for data compression because a few coefficients of the
Fourier expansion may be sufficient to make the reconstructed wave close enough
to the original function. For example, Figure C.1 shows how only a few terms
of the Fourier expression can give quite a good approximation of the original
signal. (1) is the original function

1, O _ < t < r r

f (t) -- O, -7r <_ t < O
f (t + 2 k r r) , k - 1 ,2 , . . .

231

232 A P P E N D I X C. F O U R I E R S E R I E S A N D H A R M O N I C A N A L Y S I S

0.5

-8

~
-8

~
-8

~
-8

~
-8

I I I I I I I i ~ t

-4 -pi -2 0 2 pi 4 6 8

t
-6 -4 -pi -2 0 2 pi 4 6 8

-4 -pi -2 0 2 pi 4 6 8
I I I

f

-6 -4 -pi -2 0
i I I |

I I I

2 pi 4 6
I I I

i i] " I v { , , " 1- - "1 "1

-6 -4 -pi -2 0 2 pi 4 6 8

Figure C.1" (1) f(t), (2)-(5) a few Fourier terms

1 2 s i n t (2) is the approximation with the first harmonic f (t) ~ ~ + --4--" (3) is the ap-
1 2 s i n t s i n 3 t proximation with the first two harmonic terms, f (t) ~ ~ + - (+) (4)is --7- - - 5 - "

1 2 s i n t s i n 3t s i n 5t the approximation f (t) ~ ~ + - (+ +) (5) is the approximation --i- - -5 - - - 7 - "
1 2 s i n t s i n 3 t s i n 5t s i n 7t f (t) ~ -~ + - (+ + + ---T- --5-- ----g- 7 J"

Of course, reconstructing precisely the exact original function requires an
infinite number of terms (or coefficients) which is impossible in practice anyway.

C.2 Convergent series
X X 2 X 3

e x - 1 + ~ + ~ + ~ + . . . (C.2)

X 2 X 4

cos x - 1 2~ + 4! (C.3)

c . 2 . C O N V E R G E N T S E R I E S 233

C . 2 . 1

o r

X X 3 X 5

s i n x - ~ + - ~ . + 5!

E u l e r ' s i d e n t i t y

e a x _ cos x + j sin x

e - j x - cos x - j sin x

COS X
eJ x -Jr- e-Jx

sin x -
e3 x _ e - - 3 x

(c.4)

(c.5)

(c.6)

(c.7)

(c.8)

This Page Intentionally Left Blank

Appendix D

P s e u d o c o d e notat ion

Pseudocode is merely a convenient way to describe and convey algorithmic ideas.
It would not be a big problem if you just use any ad hoc language as long as the
algorithmic idea is clear. However, one useful function of pseudocode is that it
can serve as a bridge or a translator to convert an algorithm to a source code of
a computer program. So an ideal pseudocode would be close enough in syntax
to a conventional computer language.

In this book, we use a hybrid of adopted keywords and syntax from several
commonly used high-level sequential computer languages. Of course, the user
can extend the pseudocode vocabulary by adding more useful terms, function
names etc.

D.1 Values

�9 0, 1 , - . . , 9

�9 fraction, rational numbers

�9 true, false.

D.2 T y p e s

boolean, int, real, char, string, object.

D . 3 O p e r a t i o n s

�9 ~ (assignment)

�9 (), [], {}
�9 +, - , x , /

�9 and (&&), or (11), xor (X0R)

�9 <, >,_<, >_, =, r

235

236 APPENDIX D. PSEUDOCODE NOTATION

D.4 Priority

In some cases, there are nes ted s t ructures , or a long expression consists of m a n y

items.

�9 nested brackets: from inside out

�9 an expression with equal priority: from left to right

�9 a lgor i thm wi thout line numbers: from the top line down.

D.5 Data structures

�9 array, list, queue, stack, set

�9 tree, graph, ma t r ix

�9 hash-table .

D.6 Other reserved words

�9 funct ion

�9 procedure

�9 m e t h o d

�9 (typed) method .

Note: the te rms p r o c e d u r e and f u n c t i o n are used in language such as C,
C + + and method is the concept in Java. In our pseudocode, keywords f u n c t i o n
and t y p e d method, and p r o c e d u r e and (v o i d) method are interchangeable .

D.7 Control keywords

These are the keywords to indicate a block of s t a t emen t s of an algori thm.

�9 i f - e n d if

�9 for - e n d for

�9 r e p e a t - u n t i l

�9 w h i l e - e n d w h i l e

�9 r e t u r n .

D.8. EXAMPLES OF SEQUENTIAL STRUCTURES 237

D.8 Examples of sequential structures
1. A method, function or procedure

method xxx (type a, b, c)
input" type a, b, c
o u t p u t : a + b + c
other s ta tements

type m e t h o d xxx (type a, b, c)
r e t u r n a + b + c

type f u n c t i o n xxx (type a, b, c)
r e t u r n a + b + c

p r o c e d u r e xxx (type a, b, c)
r e t u r n a + b + c

2. If-then-else

if condition t h e n
other s ta tements

e n d if

if condition t h e n
other s ta tements

else
other s ta tements

e n d if

if condition t h e n
other s ta tements

else if condition t h e n
other s ta tements

e lse
other s ta tements

e n d if

3. A Boolean function (or method)

boolean function xxx (int a, b)
r e t u r n a > b

238 APPENDIX D. PSEUDOCODE NOTATION

4. A loop (iteration) structure

for i = 1 to n do
other s ta tements

e n d for

wh i l e condition do
other s ta tements

e n d wh i l e

r e p e a t
other s ta tements

un t i l condition

Appendix E

N o t a t i o n

The following nota t ion is used in the book:

s y m b o l i c d a t a a , b, �9 �9 �9 z , A, B, �9 �9 �9 , Z, ' a ' , ' b ' , �9 �9 . , ' z ' , ' A ' , 'B '
c Z , a , b . - . z , A B , �9 Z , c ~ c c ~ c A �9 . - , , , , , ' ' , a , b ~ - ' ' z

' B ' , . . . , ' Z ' , a , b , . . . , z , A , B , . . . , Z , 'a', ' b ' , . . . , 'z', 'A' , ' B ' , . . . , 'Z '

b i n a r y d a t a O, 1, O, 1, a, b, a, b, b, w, b, w

l i s t s o r s e t s A, B , - . - , Z, A, B, - - - , Z, A , B , . - - , Z

f u n c t i o n s I(), K(), H(), I 0 , K 0 , H 0

v a r i a b l e s s j , p j , cj, j - 1 , . . . , n, i - 1 , . . . , n, x , y , s j , p j , cj , j - 1 , . . . , n,
i - 1 , . . . , n , x , y , a , b , . . . , z , A , B , . . . , Z

m a t r i c e s x, y, A, B, C, (ai j) , (bij) , (cij)

a v e r a g e l e n g t h s l, L

m a t h e m a t i c a l s y m b o l s log x, log 2 x, sin x, cos x

s p e c i a l s y m b o l Self-information: I(), I(); Entropy: H(), H()

m e t h o d s procedures or function: next_symbol_in_text () , update_tree(T) , nex t_symbol_ in_ tex t ()
update_ tree(T) , etc.

239

This Page Intentionally Left Blank

Index

A
adaptive, 44, 118

Huffman, 99
adaptive Huffman coding, 91
ADPCM, 185
advantages, 205
AIFF, 185
algorithm, 2
algorithmic

problem, 2
solution, 2

alphabet, 32, 33, 103
source, 142

amplitude, 172, 183
Animated GIF, 206
approximate distortion, 13
approximate statistical data, 85
arithmetic

codes, 113
coding, 103

arithmetic coding, 101
ASCII, 92
ASCII code, 21
asymptotic equipartition property, 113
AU, 185
audio compression, 171
average, 35, 36, 85
average length, 24, 62

B
B-pictures, 214
band-pass filters, 164
bandwidth, 7
basis, 166
basis vector, 162
behaviour, 193
bi-level image, 196

binary, 20
bitmap images, 191
black-box

approach, 62
method, 62

BMP, 207
brightness, 195
buffer

History buffer, 129
Lookahead buffer, 129

BWT, 151

C
Canonical and minimum-variance, 72
cartoon-like image, 197
changed, 103
characteristic polynomial, 227
chrominance, 195
circular queue, 136
code efficiency, 38
coder, 5, 44, 103, 117
coder efficiency, 9
codeword, 21, 25
codeword length, 28
codewords, 80
coefficients, 166, 216
colour

database, 195
depth, 195

colour image, 196
communication

channel, 205
companding, 180
compression, 2, 3

adaptive, 44
asymmetric, 45
lossy, 204

241

242 I N D E X

music, 183
ratio, 11, 184
speech, 183
static, 44
symmetric, 45

compression factor, 11
compression ratio, 85
compressor, 92, 94
compressors, 117
context, 201
continuous-tone image, 197
convergent series, 232
correlated

pixels, 206
curves, 192

D
DAT, 174
data, 2, 19
Data compression, 1, 3
data structures, 118, 236
DCT, 163
decimal

number, 103, 108
value, 115

decimal system, 109
decoder, 5, 44, 103, 107, 125
decoding, 21
decompressor, 92, 95
decompressors, 117
decorrelated, 206
detect, 172
determinant, 226
device

resolution, 192
DFT, 163, 231
dictionary, 117, 118, 120, 129
dictionary compression, 117
dictionary-based

algorithms, 117
approaches, 117

digital, 173, 189
audio, 185
cameras, 191
devices, 191

digital images, 189

dimension, 223
discrete-tone image, 197
distortion, 13, 204
disturbance, 171
division, 79, 80, 107
domain, 158
dpi, 190
drawing, 193
dynamic, 103
dynamic media, 20

E
efficiency, 15
eigenvalue, 227
eigenvector, 227
encoder, 44, 103, 107
encoding, 21
energy, 161
entire

input, 103
entropy, 35, 36, 149
entropy of the source, 35
entropy-based, 117
entry, 223
EPS, 207
estimation, 149
Euler's identity, 233
extending

alphabet, 98

F
FFT, 167
filter, 164
fixed, 45

probability
distribution, 103

fixed length codewords, 92
fixed rate, 174
fixed-to-fixed, 45
fixed-to-variable, 45
forward transform, 158
Fourier series, 231
frame, 211

difference, 213
rate, 212

frame buffer, 191

I N D E X 243

frames, 43, 211,213
frequency

spectrum, 172
frequency spectrum diagram, 172

G
GIF, 201,206
goal, 24, 103
graphics, 20
greyscale, 201
greyscale image, 196
grouping

symbols, 98

H
HDC, 50
HDTV, 194, 212
hierarchical

coding, 205
high-pass filter, 164
Huffman, 67, 92
Huffman codes, 71
Huffman tree, 92

I
I-picture, 214
identity matrix, 224
image, 20

bi-level, 196
cartoon-like, 197
colour, 196
compression, 198
continuous-tone, 197
discrete-tone, 197
graphical, 197
greyscale, 196
progressive, 205
reconstructed, 204
synthetic, 197

image data, 189
images

bi-level, 202
implement, 205
implementation problem, 113
independent

events, 35

indices, 117
information, 19, 32
information theory, 32
instructions, 183
interval, 103, 104, 114
intervals, 213
intra, 214
inverse, 224
inverse transform, 158
ITU-R BT.709, 194
ITU-T, 185
ITU-T H.261,212

J
JPEG, 203, 206

still image, 206

K
Kraft inequality, 30
Kraft's theorem, 30

L
LC, 194
LC representation, 195
leaf, 75
lines, 192
logarithmic companding, 180
lossless, 5, 38, 198
lossless compression, 11
lossy, 6, 198, 206
lossy compression, 11, 145
low-pass filter, 164
luminance, 195
LZ77, 118
LZ78, 118
LZW, 118

M
match, 130, 131, 134
matrix, 41,204, 223

identity, 224
square, 223

mean, 35
measure, 204

difference distortion, 204
medium, 171

244 I N D E X

memoryless, 33, 104
middle C, 172
MIDI, 186
midrise quantiser, 178
midtread quantiser, 178
mode

baseline sequential, 206
lossless, 206

model, 8, 44, 103
Model-C, 44
Model-D, 44
Move-to-Front, 149
MP3, 185

lo-fi MP3, 185
MPEG, 212, 213
MtF, 149
multimedia, 20, 183

N
noises, 184
non-adaptive, 44
non-prefix, 28
non-recurrent, 50
non-symmetric, 45
non-uniform quantiser, 179
non-uniform quantisers, 180
Notation, 239
notes, 172
NTSC, 212
Nyquist

frequency, 175
theorem, 175
theory, 175

O
offset, 131, 134
optimal, 38
optimum, 38
original, 114
orthogonal, 168
orthogonal matrix, 227
orthogonal transform, 161, 167
output, 103

P
P-pictures, 214

painting, 193
PAL, 212
parameters, 211
patterns, 167
photographic

image, 191
phrases, 117
pixel, 20

context, 201
dimension, 190

pixels, 189
PNG, 207
portion

attack, 172
steady, 172

power-law companding, 180
precision problem, 113
predict, 184
prediction, 145

backward, 216
bidirectional, 216
forward, 216

prediction rules, 145
predictive pictures, 214
predictors, 203
prefix code, 25
prefix property, 25
prefix-free property, 25
preprocessing, 145
primary colours, 194
priority, 205
probability, 33

distribution, 103
probability distribution, 40
probability table, 85
probability theory, 32
progressive, 205
PSD, 207

Layered, 207
pseudocode, 2, 235
pyramid

coding, 205

q
quality, 211
Quantisation, 42

INDEX 245

quantisation, 173, 176
quantisation error, 179
quantiser, 178
QuickTime, 185

R
range, 106
rasterising, 194
rate

bit rate, 184
RealAudio, 185
RealVideo, 185
reconstructed image, 204
redundancy, 12, 40, 117, 198

spacial, 42
spatial, 213
temple, 43
temporal, 213

rendering, 193
renormalisation, 113
repeating

characters, 40
residual, 147
resolution, 190
reversible, 147
RGB, 194
RGC, 201
root, 75
round-off error, 179
run-flag, 50
run-length, 49, 50
runs, 49

S
sample frequency, 175
sample rate, 173
samples, !74
sampling, 173, 184
saving percentage, 11, 63, 80
scalar 224
scalar quantisation, 178
SEC .-~M, 212
self-information, 33
self-punctuating, 24
sequ?nce, 212
Shannon, 36

Shannon-Fano codes, 77
shapes, 192
signal, 167, 211

periodic, 171
signals, 171
simple

version, 104
sliding

window, 129
sound, 20, 171
source, 19, 85, 103

data, 19
spacial redundancy, 42
spatial redundancy, 198
spectral redundancy, 199
speech

telephone, 183
wideband, 183

speech compression, 183
square matrix, 223
standards, 206
static, 44, 103
static Huffman coding, 67
static media, 20
step-function, 166
still

picture, 211
STN, 207
stream, 101, 103
subband coding, 164
symbolic data, 22
symmetric, 45
symmetric matrix, 224

T
Taylor series, 231
temple redundancy, 43
text, 20, 41
text stream, 117
TGA, 207
TIFF, 207
timbre, 172
time interval, 174
tokens, 117
trade-off, 206
transform, 145, 156, 158

246 I N D E X

two-dimensional, 165
wavelet, 165

Transformation, 42
transient, 172
transpose, 224
tree, 26
two-dimensional, 191

U
uniform quantiser, 179
unique

interval, 103
uniquely decodable, 24

V
variable, 45
variable length, 81
variable length code, 21
variable rate, 174
variable-to-fixed, 45, 118
variable-to-variable, 45
vector, 41,223
vector graphics, 191
vector quantisation, 178
vectorisation, 194
video

analogue, 211
digital, 211

virtual, 183
vocoder, 173
VOCPACK, 184
voice compression, 183

W
WAV, 185
wave

continuous wave, 175
Wavelet transforms, 165
wavelets, 165
waves, 183

cosine, 171
weight, 92, 94
weighted, 162
weighted tree, 71
weights, 71
words, 117

XBM, 207
X

