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Preface  

This book aims to introduce you to data compression, a fascinating research area 
in computer science as well as in telecommunication and computer networks of 
electronic engineering. 

The book sets out a sequence for you to study the subject efficiently. It lays 
a good foundation for your professional work or advanced studies in the future. 
Topics include various useful compression techniques for text, audio, image, 
video data and international standards. I hope to show you the significance of 
some compression ideas and technologies, and, more importantly, to stimulate 
and encourage you to design your own compression algorithms. 

We shall, in this text, 

�9 discuss important issues in data compression 

�9 study a variety of data compression techniques for compression of binary, 
text, sound and image data in digital forms 

�9 learn how to design and implement compression algorithms. 

We shall study some existing compression standards and compression utilities 
available. You will not only broaden the knowledge of compression techniques 
but also appreciate the mathematical impact on the evolution of the technology. 
You will also benefit from the development of your own transferable skills such 
as problem analysis and problem solving. Your skills in algorithm design and 
programming can also be improved by attempting the exercises, laboratory work 
and assessment questions at the end of each chapter. 

I write this text book for students reading for their degrees as well as for 
anyone who is interested in data compression. Data compression is such a 
fruitful research area that the literature is extremely rich. However, I want to 
keep the contents of this book concise so the coverage and length of studies are 
suitable for a university single academic term (30 hours in 10 weeks) module. 
I want to give the reader many examples and illustrations to ease the learning 
process. I also want to include various exercises and implementation tasks to 
encourage readers' creative activities. 

This book, therefore, 

�9 looks at various topics in data compression from an algorithm designer's 
point of view 

xvii 
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�9 is focused on the algorithmic issues which were overlooked in the past 

�9 invites the reader to engage more in the teaching/learning process 

�9 provides opportunities for the reader to apply the skills and knowledge 
from other modules, such as data structures, algorithm design, program- 
ruing, software developments, internet computing, to name just a few. 

Other considerations and arrangements include: 

�9 following an order from simple to complex for sections and chapters 

�9 covering certain theoretical foundations for data compression 

�9 introducing not only the data compression techniques but also the ideas 
behind them 

�9 focusing on algorithms and stimulating new ideas 

�9 including exercises, laboratory problems, implementation hints, bibliogra- 
phy for further reading and assessment questions for each chapter. 

Each data compression technique is viewed as a solution to a certain algo- 
rithmic problem in the book. The learning process can be viewed as a process of 
learning how to derive algorithmic solutions to various compression problems. 

Bibl iography 

There are few textbooks on data compression for teaching purposes. However, 
a huge number of research papers and websites are dedicated to the subject. 

To focus on the fundamentals, only a selective list is provided in the book 
for further reading. However, it should not be difficult for interested readers 
to find more detailed information on the Internet. Otherwise, the following key 
words can be used to start your search for various topics: 

data compression 
compression algorithm 
information theory 
run-length 
Huf fman coding 
arithmetic coding 
LZT7, LZ78, LZW 
Burrows-Wheelers  t r a n s f o r m  

Web page for the book 
There will be an auxiliary website to the book (contact the publisher for details). 
It is a good idea to visit the page from time to time for updated information. 

In addition to the usual teaching materials such as the texts or news, you 
may find our demonstration and experiment pages interesting. You may also 
check your understanding on certain concepts or verify your exercise results. 
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Get involved 
The best way to learn a new subject is to get involved as much as possible. For 
example, you may like to share your own demonstration programme with others 
in the world. Check the book web page on how to contribute. 

Prerequisites 
This book is fairly self-contained. Appendices provide you with further mathe- 
matics background. However, there are some prerequisites including knowledge 
of elementary mathematics and basic algorithmics. You may find the issues in 
this book easier if you have reviewed certain topics in mathematics at under- 
graduate level, such as sets, probability theory, basic computation on matrices 
and simple trigonometric functions (e.g. sin(x) and cos(x), where x E [0, 1]), and 
topics in algorithm design, such as data structures and computational complexity. 
It would be advantageous if you are fluent with one of computer programming 
languages. 

For those who have neither the background nor the time to prepare them- 
selves for the subject, we recommend that  you follow each chapter closely since 
necessary mathematics or algorithmic foundations are discussed anyway. 

Study methods 
The highlight of each university academic year is to share the joy of my students' 
success in their studies. While different methods work better for different people, 
some methods seem to work for most people. 

For example, one effective way to study compression algorithms is to trace 
the steps in each algorithm and at tempt  an example yourself. It is even better 
if you can follow the algorithmic ideas and try to invent your own. 

Another effective way to study compression algorithms is to implement them 
and run experiments. Exercise and laboratory questions at the end of each 
chapter may direct you to various starting points for your experiments. They 
all together provide good help to your understanding. 

Based on experience, we suggest and recommend the following practice: 

1. Spend two hours on revision or exercise for every hour of study on new 
material. 

2. Use examples to increase your understanding of new concepts, issues and 
problems. 

3. Ask the question: 'Is there a better solution to the current problem?' 

4. Use the Contents pages to comfort yourself with the scope of the subjects, 
and refer to the Learning Outcomes at the end of each chapter to clarify 
the learning tasks. 
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Experts have predicted that more and more people will be engaged in jobs 
involving certain multimedia application in the future. As more images and 
audio data are required to be processed, data compression techniques will con- 
tinue to grow and evolve. Like any technology, what you have learnt today can 
become outdated tomorrow. We therefore recommend that you focus on the 
important principles of the subject and gain a good understanding of the issues 
in the field of data compression. The experience could be very useful for your 
future career. 

Exercises ,  laboratory  and assessment  

The exercises, laboratory and assessment questions at the end of each chapter 
are set for you to check your understanding and to practise your programming 
skills. 

It is useful for you to have access to a computer so you can implement the 
algorithmic ideas learnt from the book. There is no restriction on the com- 
puter platform nor a requirement for a specific procedural computer language. 
Our internal students at the University of London have gained experience in 
implementing various compression algorithms in Java, C, C-/--/-, Python, Visual 
Basic, MatLab or even Pascal. 

Although implementation of an algorithm remains pretty much an art among 
university students today, you may like to follow a more systematic approach 
in your implementation in order to develop a 'good programming style': 

1. Analyse and understand the algorithm. 

2. Derive a general plan for the implementation. 

3. Develop the program blocks. 

4. Test or justify the correctness of the programs. 

5. Comment on the limitations of the programs. 

Your implementation details should be documented including a section on 
each of the above stages of work. 

How to use this book  

The book provides guidance for further development of your interests as well 
as further reading. However, you are not expected to read every item in the 
Bibliography section to enable individual topics to be studied in depth. 

This book is written to invite you to get involved. The learning process 
requires the input of your own experiments and experience. Therefore, you are 
encouraged to, if possible, ask questions, pursue articles in research journals, 
browse the relative websites, attend conferences or trade shows etc., and in 
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general pay attention to what is happening in the computing world. Best of all, 
try your own experiments and invent your own algorithms. 

The rest of this book is organised as follows: 
Chapter 1 discusses essentials, definitions and algorithmic concepts. 
Chapter 2 introduces the information theory and enhances the concepts and 

issues in data compression. 
Chapter 3 introduces an intuitive compression method: run-length coding. 

This simple algorithm serves as an example of how to design a compression 
algorithm in a systematic way. 

Chapter ~ discusses the preliminaries of data compression and reviews the 
main idea of Huffman coding and Shannon-Fano coding. This serves as an 
example to demonstrate how to apply the information theory to analyse the 
compression algorithm, and how to address the efficient implementation issues. 

Chapter 5 introduces adaptive Huffman coding. 
Chapter 6 studies issues of arithmetic coding. 
Chapter 7 covers dictionary-based compression techniques. 
Chapter 8 introduces prediction and transforms. This serves as a foundation 

for the next three chapters. 
Chapter 9 discusses one-dimensional wave signals. This serves as an appli- 

cation of prediction and transforms in the previous chapter. 
Chapter 10 discusses image data and still image compression. This serves as 

an application of the prediction and transform techniques on two-dimensional 
data. 

Chapter 11 introduces video compression methods. 
Appendix A highlights the milestones in the area of data compression. 
Appendix B reviews the basics on matrix operations. 
Appendix C covers briefly the necessary mathematics for Fourier transforms. 
Appendix D provides the guidance on the pseudocode in algorithm design. 
And finally, 
Appendix E gives a list of notations used in the book. 

Y o u r  c o m m e n t s  

If you have any comments about this book, either general or specific, favourable 
or unfavourable, you are very welcome to send them to i .  pu@gold, ac. uk. 

G o o d  luck! 

I.M. Pu 
London 

September 2005 
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Chapter 1 

I n t r o d u c t i o n  

Data compression is, in the context of computer science, the science (and art) 
of representing information in a compact form. It has been one of the critical 
enabling technologies for the ongoing digital multimedia revolution for decades. 

Most people frequently use data compression software such as zip,  gz ip  and 
WinZip (and many others) to reduce the file size before storing or transferring 
it in media. Compression techniques are embedded in more and more software 
and data are often compressed without people knowing it. 

Data compression has become a common requirement for most application 
software as well as an important and active research area in computer science. 
Without compression techniques, none of the ever-growing Internet, digital TV, 
mobile communication or increasing video communication techniques would 
have been practical developments. 

Typical examples of application areas that are relevant to and motivated by 
data compression include 

�9 personal communication systems such as facsimile, voice mail and tele- 
phony 

�9 computer systems such as memory structures, disks and tapes 

�9 mobile computing 

�9 distributed computer systems 

�9 computer networks, especially the Internet 

�9 multimedia evolution, imaging, signal processing 

�9 image archival and videoconferencing 

�9 digital and satellite TV. 

Practical problems have motivated various researches in data compression. 
Equally, research in data compression has also been based on or stimulated 
other new subject areas. Partly due to its broad application territory, data 
compression overlaps with many science branches and can be found in many 
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different subject areas. For example, you will see chapters or sections dedicated 
to data compression in books on 

�9 information theory 

�9 coding theory 

�9 computer networks and telecommunications 

�9 digital signal processing 

�9 image processing 

�9 multimedia 

�9 steganography 

�9 computer security. 

The language used in unrelated disciplines can be substantially different. In 
this book, the word data is in general used to mean the information in digital 
form on which computer programs operate, and compression means a process 
of removing redundancy in the data. By 'compressing data' ,  we actually mean 
deriving techniques or, more specifically, designing efficient algorithms to: 

�9 represent data in a less redundant fashion 

�9 remove the redundancy in data 

�9 implement compression algorithms, including both compression and de- 
compression. 

The interests and goals also tend to be diverse among people with different 
disciplinary backgrounds. This book focuses on the algorithmic aspects of data  
compression. We view data compression as a process of deriving algorithmic 
solutions to a compression problem. An algorithmic problem is a general ques- 
tion to be answered by an ordered sequence of instructions. The instruction 
sequence is regarded as a sequential algorithm for the problem as well as the 
solution to the problem. The algorithm allows a solution to any instance of the 
problem to be derived by execution of the algorithm. For example, a searching 
problem may be defined as follows: 

Given a set s of elements and a target x, is the target x in the set? 

This question is 'general' because it includes many instances. The set can 
contain any collection of elements and the target x can be any one of the same 
type. For instance, if s = (12, 34, 2, 9, 7, 5), is x = 7 in the list? The algorithmic 
solution to this problem is to find an algorithm which derives an answer to every 
instance of the problem. A native algorithm would be the so-called sequential 
search as in Algorithm 1.1. The string is stored in a one-dimensional array L[i]. 

The algorithm is written in pseudocode that  is close enough to most con- 
ventional high-level computer languages. The advantage of using pseudocode is 
to allow the algorithm design to concentrate on the algorithmic ideas instead 
of being distracted by syntax details of a certain computer language. We shall 
present most algorithms in the book in pseudocode (see Appendix D). 
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A l g o r i t h m  1.1 Sequential search 

INPUT:  element list L and Target 
O U T P U T :  index where Target is found or 'not found' 

1: read Target; set index i to 1 
2: while L[i] -r Target and not end of the list do 
3: i + - - i + 1  
4: end  while 
5. if L[i] - target t h e n  
6: return i 
7: else 
8: output 'not found' 
9: end  if 

1.1 Data compression problems 
A compression problem involves finding an efficient algorithm to remove various 
redundancy from a certain type of data. The general question to ask here would 
be, for example, given a string s, what is the alternative sequence of symbols 
which takes less storage space? The solutions to the compression problems would 
then be the compression algorithms that  will derive an alternative sequence of 
symbols which contains fewer number of bits in total, plus the decompression 
algorithms to recover the original string. 

How many fewer bits? It would depend on the algorithms but it would also 
depend on how much the redundancy can be extracted from the original data. 
Different data may require different techniques to identify the redundancy and 
to remove the redundancy in the data. Obviously, this makes the compres- 
sion problems 'hard' to solve because the general question is difficult to answer 
easily when it contains too many instances. Fortunately, we can take certain 
constraints and heuristics into consideration when designing algorithms. 

There is no 'one size fits all' solution for data compression problems. In data 
compression studies, we essentially need to analyse the characteristics of the 
data to be compressed and hope to deduce some patterns in order to achieve 
a compact representation. This gives rise to a variety of data modelling and 
representation techniques, which are at the heart of compression techniques. 

1 . 1 . 1  C o m p r e s s i o n  

Data compression can be viewed as a means for efficient representation of a 
digital source of data such as text, image, sound or any combination of all these 
types such as video. The goal of data compression is to represent a source in 
digital form with as few bits as possible while meeting the minimum requirement 
of reconstruction of the original. 

In the context of this book, we regard data compression (or compression 
in short) as algorithms to achieve the compression goals on the source data. 



4 CHAPTER1. INTRODUCTION 

Behind each algorithm there are ideas, mathematical models or implementation 
techniques to achieve the compression. 

When working on compression problems, we need to consider the efficiency 
aspect of the algorithms as well as the effectiveness of compression. Intuitively, 
the behaviour of a compression algorithm would depend on the data and their 
internal structure. The more redundancy the source data has, the more effective 
a compression algorithm may be. 

1 .1 .2  D e c o m p r e s s i o n  

Any compression algorithm will not work unless a means of decompression is also 
provided due to the nature of data compression. When compression algorithms 
are discussed in general, the word compression alone actually implies the context 
of both compression and decompression. 

In this book, we sometimes do not even discuss the decompression algorithms 
when the decompression process is obvious or can be easily derived from the 
compression process. However, as a reader, you should always make sure that 
you know the decompression solutions as well as the ones for compression. 

In many practical cases, the efficiency of the decompression algorithm is of 
more concern than that of the compression algorithm. For example, movies, 
photos, and audio data are often compressed once by the artist and then the 
same version of the compressed files is decompressed many times by millions of 
viewers or listeners. 

Alternatively, the efficiency of the compression algorithm is sometimes more 
important. For example, the recording audio or video data from some real-time 
programs may need to be recorded directly to a limited computer storage, or 
transmitted to a remote destination through a narrow signal channel. 

Depending on specific problems, we sometimes consider compression and 
decompression as two separate synchronous or asynchronous processes. 

Figure 1.1 shows a platform based on the relationship between compression 
and decompression algorithms. 

input ~ Compression ~ output 
source file algorithm compressed file 

input ~ (  Decompression ~ output 
compressed file algorithm decompressed file 

Figure 1.1: Compressor and decompressor 

A compression algorithm is often called compressor and the decompression 
algorithm is called decompressor. 
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The compressor and decompressor can be located at two ends of a commu- 
nication channel, at the source and at the destination respectively. In this case, 
the compressor at the source is often called the coder and the decompressor at 
the destination of the message is called the decoder. Figure 1.2 shows a plat- 
form based on the relationship between a coder and decoder connected by a 
transmission channel. 

source ~ ~  Coder "]___,~. ccoded message 
(original message) ~ .... f::v ..... /) 

:Z2727.12 .... " "  
..---"- _ ......... ~fi~s.-~-s.~x-~ g2~a-ane~[ 

~" ....... s'""" . - _ (  Decoder " ) ~  destination 
....... ~ ) - (decoded message) 

Figure 1.2: Coder and decoder 

There is no substantial difference between the platform in Figure 1.1 and 
that in Figure 1.2 in terms of the compression algorithms discussed in this book. 
However, certain concepts may be discussed and understood more conveniently 
at one platform than the other. For example, it might be easier to introduce the 
information theory in Chapter 2 based on the coder-decoder platform. Then 
again, it might be more convenient to discuss the symmetric properties of a 
compression algorithm and decompression algorithm based on the compressor- 
decompressor platform. 

1.2 Lossless and lossy compression 
There are two major families of compression techniques when considering the 
possibility of reconstructing exactly the original source. They are called lossless 
and lossy compression. 

L o s s l e s s  compression 
A compression approach is lossless only if it is possible to exactly reconstruct the 
original data from the compressed version. There is no loss of any information 
during the compression I process. 

For example, in Figure 1.3, the input string AABBBA is reconstructed after 
the execution of the compression algorithm followed by the decompression al- 
gorithm. 

Lossless compression is called reversible compression since the original data 
may be recovered perfectly by decompression. 

1This general term should be read as both compression and decompression. 
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Compression 
AABBBA algorithm 000001101101100 

000001101101100 
Decompression 

algorithm ~ -4~AABBBA 
Figure 1.3: Lossless compression algorithms 

Lossless compression techniques are used when the original data of a source 
are so important that we cannot afford to lose any details. Examples of such 
source data are medical images, text and images preserved for legal reason, some 
computer executable files, etc. 

Lossy compression 
A compression method is lossy if it is not possible to reconstruct the original 
exactly from the compressed version. There are some insignificant details that 
may get lost during the process of compression. The word insignificant here 
implies certain requirements to the quality of the reconstructed data. 

Figure 1.4 shows an example where a long decimal number becomes a shorter 
approximation after the compression-decompression process. 

 ~176 
0001100111001 

0001100111001 
Decompression 

algorithm 
3.14 

Figure 1.4: Lossy compression algorithms 

Lossy compression is called irreversible compression since it is impossible to 
recover the original data exactly by decompression. 

Approximate reconstruction may be desirable since it may lead to more 
effective compression. However, it often requires a good balance between the 
visual quality and the computation complexity. 

Data such as multimedia images, video and audio are more easily compressed 
by lossy compression techniques because of the way that human visual and 
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hearing systems work. 
One important motivation for data compression is to allow some efficient 

transmission of the data via a transmission channel. It is convenient, for the 
rest of this section, to consider the coder-decoder platform that we mentioned 
in the previous section. Obviously, the amount of data was restricted by the 
capacity of the transmission media, which is called bandwidth and measured in 
bits per second. 

Considering the effect of lossy compression, there are two kinds of classic 
compression problems of interest, namely 

�9 D i s t o r t i o n - r a t e  p r o b l e m  Given a constraint on transmitted data rate 
or storage capacity, the problem is to compress the source file at, or below, 
this rate but at the highest fidelity possible. 

Compression in areas of voicemail, digital cellular mobile radio and video- 
conferencing are examples of distortion-rate problems. 

�9 R a t e - d i s t o r t i o n  p r o b l e m  Given the requirement to achieve a certain 
pre-specified fidelity, the problem is to meet the requirements with as few 
bits per second as possible. Compression in areas of CD quality audio and 
motion picture quality video are examples of rate-distortion problems. 

1.3 Deriving algorithmic solutions 
There are many ways to design algorithms. A systematic approach including 
eight stages can be summarised as follows: 

1. Description of the problem 

2. Mathematical modelling 

3. Design of the algorithm 

4. Verification of the algorithm 

5. Estimation of the computational complexity 

6. Implementation 

7. Program testing 

8. Documentation. 

S t a g e  1: D e s c r i p t i o n  o f  t h e  p r o b l e m  

A compression problem, from the algorithmic point of view, is to find an effective 
and efficient algorithm to remove various redundancy from certain types of data. 

In this stage, we want to understand the problem precisely and ask the 
right questions. For example, we want to know what the format of the data is 
and what the restrictions to the output might be. We need to understand the 
problem well enough to be able to write a precise statement of the problem. 
If the problem is vague, we may use methods such as divide and conquer to 
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divide the problem into subproblems, and to divide the subproblems into their 
subproblems repeatedly until every subproblem is manageable. 

The deliverables of this stage are a specification of the problem which should 
include details about the input and output of the algorithm. For example, we 
would decide if the problem is lossless or lossy in nature. For lossy compression, 
we would consider whether the problem can be classified as a distortion-rate or 
rate-distortion problem. 

Stage 2: Mathematical modelling 
Modelling is a process of setting up an environment to allow the interested 
variables to be observed or certain behaviour of a system to be explored. It 
is a formalisation and extension to the description of a problem. Rules and 
relationships are often set in mathematical  formula. 

Modelling is a critical stage of algorithm design. A model can sometimes 
decide immediately the approaches of the algorithm. As we can see from later 
chapters, a good model can lead to efficient algorithmic solutions. Certain 
preconditions are usually assumed and the environment is described in mathe- 
matical terms. In data compression, models are used to describe a source data. 

For compression problems, modelling can be viewed as a process of identi- 
fying the redundant characteristics of the source data, and finding an effective 
way to describe them. The model is the embodiment of what the compression 
algorithm knows about the source. It is like a platform on which every com- 
pression algorithm has to make use of some knowledge in order to perform. For 
example, the Huffman algorithm is based on a probability distribution of the 
source alphabet. 

Some problems, however, are not easy and even sometimes impossible to 
model. Researchers have constantly been looking for better models for vari- 
ous compression problems. Mathematical  modelling is an important  branch in 
mathematics,  statistics and computer science as a popular research area in its 
own right. In data compression, as one of its application areas, commonly used 
mathematical  models have been developed over the years. Hence in this stage, 
priority may be given to finding a good model instead of actually building a 
new one from scratch. 

The commonly used models for data compression can be classified as follows: 

1. Physical model: using known physics of the source such as certain data  
generation processes or empirical observation 

2. Probability models: using probability theory to describe the source 

3. Markov model: using Markov chain theory to model the source 

4. Composite model: describing the source as a combination of several dif- 
ferent kinds and using a switch to activate one type at a time. 

The deliverables at the end of the modelling stage include a feasible model 
for the compression problem of interest, which accommodates the redundancy of 
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the data and from which the output constraints are met under some well-defined 
relationship between the input and output of the algorithm. 

We try to show you in this book why a specific model is good for certain 
compression problems and the difference a choice would make between two 
different models. You should note how a model is substantially influenced on 
the algorithmic solutions in later stages. 

Stage 3: Design of the algorithm 
In this stage, we may apply literally all the algorithm knowledge and techniques 
we have. 

Design of the algorithms is an interesting and challenging task. The tech- 
niques depend highly upon the choice of the mathematical models. We may 
add further details to the model, consider feedback to realise the model, using 
standard techniques in algorithm design. For example, we may decide to use 
certain data structures, abstract data types or various off-the-shelf tools to help 
us with algorithmic solutions. We may take top-down approaches, and identify 
existing efficient algorithms to achieve partial solutions to the problem. 

Most data compression problems are data oriented. There is unlikely to be 
an efficient algorithm to a general question about all sorts of data. We may 
then have to adjust the data range, or add more restrictions to the specific 
type of data. We may even return to the previous stage and experiment with 
alternative models if serious flaws are found in the approach. 

The deliverables of this stage are the correct algorithmic solutions to our 
problem. This includes algorithms in pseudocode and convincing consideration 
on data structures. 

In this book, we shall try to highlight some good practice of the algorithm 
design whenever possible and extend your experience on algorithm development. 

Stage 4" Verification of the algorithm 
This is sometimes the most difficult task. We may have seen or heard of a 
common practice in software development in which people t e n d t o  leave this 
until the program testing stage. The drawback in that approach is that we may 
have wasted an enormous amount of energy and time on programming before 
realising the algorithm has fundamental flaws. 

In this stage, we check the correctness of the algorithm, the compression 
quality, and efficiency of the coder. It is relatively easy to check the compression 
quality. For example, we can use compression ratio or saving percentage to see 
how effective the compression is achieved. The coder efficiency is defined as the 
difference between the average length of the codewords and the entropy (see 
Chapter 2). 

The deliverables at the end of this stage can be correctness proofs for the 
algorithmic solutions, or other correctness insurance such as reasoning or com- 
parisons. Despite being difficult, the verification work in this stage is frequently 
proven to be extremely valuable. 
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In this book, we shall, whenever possible, try to offer some justification for 
algorithm design and show how the algorithms would achieve their objective 
output on all the appropriate input data. 

Stage 5" Estimation of the computational c o m p l e x i t y  

Similar to algorithm verification, time and money have been regarded as well 
spent for analysing and estimating the efficiency of algorithms. A good analysis 
can save a lot of time and energy being wasted on faulty and disastrous software 
products. 

In this stage, it is possible to estimate and predict the behaviours of the 
software to be developed using a minimum amount of resources, for example 
using just a pen and a piece of paper. We should therefore try to compare 
at least two candidate algorithms in terms of efficiency, usually time efficiency. 
The more efficient algorithm should also be checked to ensure that  it has met 
certain theoretical bounds before being selected and implemented. 

Stage 6" Implementation 
Due to space limitations in this book, we leave all the implementation to the 
reader as laboratory exercises. However, guidance and hints are provided to 
encourage you to practise programming as much as you can. 

There is no restriction on what hight-level computer language you use and 
how you would like to implement procedures or functions. 

Stage 7" Program testing 
This is a huge topic in its own right. There are formal methods that  are dedi- 
cated to the work at this stage, but we shall not cover the details in this book. 

Stage 8" Documentation 
This is another important stage of work that  this book has to leave to the reader. 

However, you are encouraged to find an effective and consistent way to in- 
clude this stage into your study activities. If you are too pressed for time, please 
try to add sufficient comments at least in your source programs. 

From the discussion of the eight stages of the work above, it may have given us 
some ideas as to what we normally do in the whole process of algorithm design 
and software development. However, how would we evaluate what we do? How 
would we know that  our compression algorithms are better than others, or vice 
versa? 

We shall in the next section introduce the criteria and techniques commonly 
used to measure a compression algorithm. 
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1.4 Measure of compression quality 
The performance of a compression algorithm can be measured by various criteria 
depending on the nature of the application. When time efficiency is not an issue 
(though it is equally important!), our main concern would be space efficiency, 
i.e. how effectively a data compression algorithm can save storage space. For 
example, a measure of percentage of difference in size of the input file before 
compression and the size of the output after compression would give a good 
indication of the effectiveness of the compression. 

It is difficult to measure the performance of a compression algorithm in gen- 
eral because its compression behaviour depends greatly on whether data contain 
the redundancy that the algorithm looks for. The compression behaviour also 
depends on whether we allow the reconstructed data to be identical to the source 
data. We therefore shall discuss the measure in two situations, namely lossless 
compression and lossy compression. 

Lossless compression 

For lossless compression algorithms, we measure the compression effect by the 
amount of shrinkage of the source file in comparison to the size of the compressed 
version. Following this idea, several approaches can be easily understood by the 
definitions below: 

�9 Compression ratio This is simply the ratio of the output to the input 
file size of a compression algorithm, i.e. the compressed file size after the 
compression to the source file size before the compression. 

Compression ratio = 
size after compression 

size before compression 

�9 C o m p r e s s i o n  fac tor  This is the reverse of compression ratio. 

Compression factor = 
size before compression 

size after compression 

�9 Saving  p e r c e n t a g e  This shows the shrinkage as a percentage. 

Saving percentage = 
size before compress ion-  size after compression% 

size before compression 

Note: some books (e.g.[Say00]) define the compression ratio as the compres- 
sion factor defined here. The following example shows how the above measures 
can be used. 

E x a m p l e  1.1 A source image file (256 x 256 pixels) with 65 536 bytes is com- 
pressed into a file with 16 38~ bytes. 
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Applying the definition above, we can easily work out that in this case the 
compression ratio is 16384/65536 = 1/4, the compression factor is 4, and the 
saving percentage is 75%. 

Note the performance of a compression algorithm cannot of course be re- 
flected by one such instance. In practice, we may want to have a sequence of 
such tests to compute the average performance on a specific type of data, on 
text data only, for example. As we may see in later chapters, we discuss com- 
pression algorithms on certain types of data but hardly all types at the same 
time. 

In addition, the effectiveness of a compression algorithm is only one aspect 
of the measure of the algorithm. In fact, the following criteria should normally 
be of concern to the programmers: 

�9 C o m p u t a t i o n a l  c o m p l e x i t y  This can be adopted from well-established 
algorithm analysis techniques. We may, for example, use the O-notation 
[CLRS01] for the time efficiency and storage requirement. However, com- 
pression algorithms' behaviour can be very inconsistent. Nevertheless, it 
is possible to use past empirical results. 

�9 C o m p r e s s i o n  t i m e  We normally consider the time for encoding and de- 
coding separately. In some applications, decoding time is more important 
than encoding time. In other applications, they are equally important. 

�9 E n t r o p y  If the compression algorithm is based on statistical results, then 
entropy (Chapter 2) can be used as a theoretical bound to the source 
to help make a useful quantity judgement. It also provides a theoretical 
guidance as to how much compression can be achieved. 

�9 R e d u n d a n c y  In certain areas of compression, the difference between the 
average code length (Chapter 2) and the entropy of the source can be 
regarded as redundancy. In some other areas, the difference between a 
normal and uniform probability distribution is identified as redundancy. 
The larger the gap, the greater amount of the redundancy in the code. 
When the gap is zero, the code is said to be optimal. 

�9 K o l m o g o r o v  c o m p l e x i t y  This measurement works better for theoretical 
proof than for practical settings. The complexity of the source data in a 
file can be measured by the length of the shortest program for generating 
the data. 

�9 E m p i r i c a l  t e s t i n g  Measuring the performance of a compression scheme 
is difficult if not impossible. There is perhaps no better way than simply 
testing the performance of a compression algorithm by implementing the 
algorithm and running the programs with sufficiently rich test data. Can- 
terbury Corpus provides a good testbed for testing compression programs. 
See h t t p : / / c o r p u s ,  c a n t e r b u r y ,  ac .nz for details. 

�9 O v e r h e a d  This measure is used often by the information technology in- 
dustry. Overhead is the amount of extra data added to the compressed 
version of the data for decompression later. Overhead can sometimes be 
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large although it should be much smaller than the space saved by com- 
pression. 

Lossy compression 
For lossy compression, we need to measure the quality of the decompressed data 
as well as the compression effect. The word fidelity is often used to describe the 
closeness between the source and decompressed file. The difference between the 
two, i.e. the source before compression and the file after decompression, is called 
distortion. Often approximate distortion is used in practice. We shall look at 
lossy compression performance more closely later. 

1.5 L i m i t s  on loss less  c o m p r e s s i o n  

How far can we go with lossless compression? 
Can we hope to find a universal compression algorithm at all? By universal, 

we mean an algorithm that  can take any data file as an input and generate an 
output of smaller size, and that  the original file can be exactly reconstructed by 
a decompression algorithm. 

If not, what is the proportion of the files that  a weak lossless compression 
algorithm, no mat ter  how less effective, can achieve at best? 

If the compression is not effective for the first time, can we compress the 
compressed file the second time, or repeat the compression process a number of 
times to achieve a larger overall compression percentage? 

The following two statements may surprise you: 

1. There is no algorithm that  can compress all the files even by 1 byte. 

2. There are only less than 1% of all the files that  can be compressed losslessly 
by 1 byte. 

Both statements are true, unfortunately. An informal reasoning for these 
statements is as follows: 

If statement 1 were not true, i.e. suppose there were an algorithm that  
could compress any file given, we would have been able to use such a 
lossless compression algorithm to repeatedly compress a given file. 

Consider a large source file called big.file and a lossless compression 
program called cmpres, which is said to be able to compress any file. This 
includes the compressed file that  was compressed already once by cmpres. 
Now this compressed file should again be input to the program cmpres 
and be compressed effectively, and output another compressed file. This 
means that  we could then effectively repeat the compression process to a 
source file. 

By 'effectively', we mean that  the compression ratio is always less than 1 
everytime after running the program cmpres. In other words, the size of the 
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compressed file is reduced every time after running the program cmpres. 
Consequently, cmpres(cmpres(cmpres(.., cmpres(big, f i l e ) . . .  ))), the out- 
put file after compression repeatedly a sufficient number of times, would 
be of size 0. 

Now we have a contradiction because it would be impossible to losslessly 
reconstruct the original. Therefore, statement 1 is true. 

2. To prove statement 2 to be true, we only need to 

(a) compute the proportion of the number of files that can be compressed 
by 1 byte shorter over the total number of possible files, and 

(b) show this proportion is less than 1%. 

Compressing a source file can be viewed as mapping the file to a com- 
pressed version which is a different file. A file of n bytes long being com- 
pressed by 1 byte is therefore equivalent to mapping the file of n bytes to 
a file of n -  1 bytes. 

S C 

0 0 0 0 0  

0 0 0  0 0 0 0 0  
o o o o o o  

I o o o o o o o  o ~  
I o o o o o o o o ~  

DO o o,'o"~ g o  \. "7 O O O O O O O 0  O 0  
O O O O O O O O O  

o o  / g i g  ~ o o o  
o o o o o o o  / 

256 n files 256 n-  1 files 

Figure 1.5: Mapping source files to their compressed version 

In Figure 1.5, S on the left represents the set of all the files of n bytes long, 
and C on the right represents the set of all the files of n -  1 bytes long. 
Each black dot in the set represents a unique file. Each line represents a 
mapping from a file of n bytes long to a file of n -  1 bytes long. 

There are (28) n = 256 n files of n bytes and 256 n-1 of n -  1 bytes in 
total. At best, every n byte long file can be compressed to an n -  1 byte 
long file. Hence the number of the mappings is the number of files being 
compressed which is 256 n-1 at most. 

This means that the proportion of the successful one-to-one mappings 
is only 256 n-1/256 n = 1/256. Clearly, this is less then 1% since 1/256 < 
1/100 = 1%. 

Therefore, only less than 1% of all the files can be compressed losslessly 
by 1 byte. In other words, no algorithm can actually compress 1~ of all 
(possible) files even by 1 byte. 
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In fact, you can use a similar approach to find out more facts about how 
much a proportion of all files can or cannot be compressed. 

Summary 
Data compression is an interesting and active research area. There are many 
good reasons to study compression algorithms. Compression algorithms can be 
classified as two broad classes: lossless and lossy compressions. Our approaches 
are mainly algorithmic. Compression quality can be measured in various ways. 
The performance of lossless compression algorithms have limits. It can be shown 
that only a proportion of all the files can possibly be compressed losslessly. 

Learning outcomes 
On completion of your studies in this chapter, you should be able to: 

�9 explain how to distinguish lossless data compression from lossy data com- 
pression 

�9 outline the main compression approaches 

�9 be aware of the main stages in the process of developing a compression 
algorithm 

�9 estimate the effect and efficiency of a data compression algorithm 

�9 explain the limits of lossless compression. 

Exercises 
E1.1 Investigate what compression software is available on your computer sys- 

tem. For example, do you use winzip or gzip,  etc.? 

E1.2 Suppose that you have compressed a file myfile using a compression utility 
available on your computer. What  is the extension name of the compressed 
file? 

E1.3 Use a compression facility on your computer system to compress a text 
file called rnyfile containing the following text: 

This is a test. 

Suppose you get a compressed file called myfile.gz after compression. How 
would you measure the size of myfile and myfile.gz? 

El.4 Suppose the size of myfile.gz is 20 KB while the original file myfile is 40 KB. 
Compute the compression ratio, compression factor and saving percentage. 
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EI.5 What is the main difference between an algorithm and a computer pro- 
gram? 

El.6 A compression process is often said to be 'negative' if its compression ratio 
is greater than 1. 

Explain why negative compression is an inevitable consequence of a lossless 
compression. 

EI.7 Analyse the statements below and give reasons why you are for or against 
them- 

(a) Half of all files cannot be compressed by more than 1 bit. 

(b) Three quarters of all files cannot be compressed by more than 2 bits. 

(c) Seven-eighths of all files cannot be compressed by more than 3 bits. 

Laboratory 
L I.1 Design and implement a program that displays a set of English letters in 

a given string (upper case only). 

For example, if the user types in a string 'AAABBEECEDE', your program 
should display ' ( t ,  B, E, C, D)'. 

The user interface should be something like this: 

Please input a string" 

> AAABBEECEDE 
The letter set is" 

(A, B, E, C, D) 

LI.2 Write a method that takes a string (upper case only) as a parameter and 
returns a histogram of the letters in the string. The ith element of the 
histogram should contain the number of the ith character in the string 
alphabet. 

For example, if the user types in a string 'AAABBEECEDEDEDDDE', then the 
string alphabet is ' (A, B, E, C, D)'. The output could be something like 
this: 

Please input a string" 

> AAABBEECEDEDEDDDE 
The histogram is" 

A xxx 

B xx 
E xxxxxx 

Cx 

D xxxxx 
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L1.3 If you have access to a computer using the Unix or Linux operating system, 
can you use the compress or gz ip  command to compress a file? 

L1.4 If you have access to a PC with Windows, can you use WinZip to compress 
a file? 

L1.5 How would you recover your original file from a compressed file? 

L1.6 Can you use the uncompress or gunzip command to recover the original 
file? 

L1.7 Implement a program method compress ionRat io  which takes two integer 
arguments s i zeBeforeCompress ion  and s i zeAf t e rCompres s ion  and re- 
turns the compression ratio. 

L1.8 Implement a method savingPercentagewhich takes two integer argu- 
ments s i zeBeforeCompress ion  and s i z e t f t e r C o m p r e s s i o n  and returns 
the saving percentage. 

Assessment 
$1.1 Explain briefly the meanings of lossless compression and lossy compres- 

sion. For each type of compression, give an example of an application, 
explaining why it is appropriate. 

$1.2 Explain why the following statements are considered to be true in describ- 
ing the absolute limits on lossless compression. 

�9 No algorithm can compress all files, even by 1 byte. 

�9 No algorithm can compress even 1% of all files, by just 1 byte. 
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Chapter 2 

Coding symbolic data 

Data compression is the science (and art) of representing information in a com- 
pact form. However, what  is information? How would information be repre- 
sented in a 'normal '  form, i.e. the form before any compression? What  do we 
mean by source data? How would we know if there is any redundancy in a 
source? 

To answer these questions, we need first to clarify the meaning of terms 
such as information, data, codes and coding, and study the basics of information 
theory. Some conclusions and techniques learnt from this chapter will be very 
useful for later chapters. 

2.1 Information,  data and codes 

Information is something that  adds to people's knowledge. It is whatever con- 
tr ibutes to a reduction in uncertainty of the human mind or the state of a system. 
People feel the existence of information, see media that  carry information and 
react according to certain information all the time. 

Information is not visible without some medium being a carrier. Data  are 
the logical media often carried by some physical media such as a CD or a com- 
munication channel. Hence data  can be viewed as a basic form of some factual 
information. This should be distinguished from other contrasting forms of in- 
formation such as text, graphics, sound and image. A large amount of da ta  can 
then be organised and stored in short messages or long files. 

For example, da ta  ' - 3 0 ~  ' carry the factual information 'it is cold'. The 
same piece of information can be delivered by text 'minus thir ty centigrade' 
on paper or by a picture of a thermometer  on a computer  screen, or by oral 
warning. Without  these media, neither the da ta  nor the information would 
have been visible. 

The word data in the context of data  compression includes any digital form 
of factual information that  can be processed by a computer  program. The data  
before any compression process are called the source data, or the source for short. 

19 
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Examples of factual information may be classified broadly as text, audio, 
image and video. Many application programs adopt the information type as 
their data file type for convenience. Hence data may also be classified as text, 
audio, image and video while the real digital data format consists of 0s and ls 
in a binary format. 

�9 Tex t  data are usually represented by 8 bit extended ASCII code (or 
EBCDIC). They appear in files with the extension . t x t  or . t ex  (or other 
coding system readable files like .doc) using an editor. Examples of typ- 
ical text files are manuscripts, programs in various high-level languages 
(called source codes) and text emails. 

�9 B i n a r y  data include database files, spreadsheet data, executable files, and 
program codes. These files usually have the extension . bin.  

�9 I m a g e  data are represented often by a two-dimensional array of pizels 
in which each pixel is associated with its colour code. Extension .bmp 
represents a type of bitmap image file in Windows, and .psd for Adobe 
Photoshop's native file format. 

�9 G r a p h i c s  data are in the form of vectors or mathematical  equations. An 
example of the data format is .png which stands for Portable Network 
Graphics. 

�9 S o u n d  data are represented by a wave (periodic) function. A common 
example is sound files in . way format. 

Three basic types of source data in the computer are tezt, (digital) image and 
sound. In application domains, the source data to be compressed are likely to be 
so-called multimedia and can be a mixture of static media format such as text, 
image and graphics, and dynamic media such as sound and video. Figure 2.1 
demonstrates the stages involved for the source data in a file of a certain type 
to be encoded in a source binary file before compression. Figure 2.2 shows 
the reverse process in which the reconstructed binary data after decompression 
have to be decoded to data of a certain type before being recognised in any 
application. 

2.2 Symbolic data 
In this book, we often use the term symbol, or character, to mean a symbolic 
representation of input data to a compression algorithm. This is purely for the 
convenience of our algorithmic discussion. Under this notation, a symbol can 
be an audio sample, or an image pixel value as well as a letter, special character 
or a group of letters in a text. A text, image, audio or video file can then 
be considered as a one-dimensional, or multi-dimensional sequence of symbols. 
Figure 2.3 shows how the use of symbolic data would simplify the discussion of 
compression and decompression process. The simplified structure allows us to 
focus on the development of the compression algorithms. 
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Suppose the alphabet of a source is S = ( 8 1 ,  8 2 , . - .  , 8n). The digital rep- 
resentation of the symbol set is called the code C = (Cl, c2,- . .  ,cn) and the 
representation cj of each symbol is called the codeword for symbol sj, where 
j = 1, 2 , . - -  , n. The process of assigning codewords to each symbol in a source 
is called encoding. The reverse process, i.e. to reconstruct the sequence of sym- 
bols in the source, is called decoding. Clearly, compression can be viewed as 
encoding and decompression as decoding in this sense. 

The fundamental representation of data is ASCII code (pronounced 'ass- 
key') consisting of a set of fixed length (8 bit) codewords. It is possible to 
represent an alphabet by a set of variable length codewords and the code is then 
called a variable length code. 

E x a m p l e  2.1 Two different binary codes, C1 = (000,001,010,011,100)  and 
62 = (0 ,100 ,101 ,110 ,111) ,  can be used to represent the alphabet 
(A, , ,  C, D, E). 

Here ~1 i8 a f ixed length code, as all the codewords consist of 3 bits. C2 is a 
variable length code since not all the codewords are of the same length. 
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Figure 2.2: Data in decompression 

It is important to distinguish the concept of symbolic data, alphabet and code 
in the context of a discussion. By symbolic data, we mean a source file consists 
of symbols from an alphabet. A code containing a set of codewords is usually a 
representation of the set of the alphabet. 

For example, BAAAAAAAC are symbolic data from an alphabet such as (A, 
B, C, D, E). Suppose we define a fixed length binary code (000, 001,010, 011, 
100). Codewords 000, 001,010, 011,100 are the binary representation of A, B, 
C, D, E respectively. The binary representation of the symbolic data is 001 
000 000 000 000 000 000 000 010 (without spaces). It is the source data in 
binary representation that, as an instance, is to be input into a compression 
algorithm. It is the size of this binary source data file that is to be hopefully 
reduced by a compression algorithm. 

This can be seen clearly from Figure 2.4. 
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Figure 2.3: Symbolic data in compression 

2.3 Variable length codes 
Variable length codes are desirable for data compression because overall savings 
may be achieved by assigning short codewords to frequently occurring symbols 
and long codewords to rarely occurring ones. 

For example, consider a variable length code (0, 100, 101, 110, 111) with 
lengths of codewords (1, 3, 3, 3, 3) for alphabet (A, B, C, D, E), and a source 
string BAAAAAAAC with frequencies for each symbol (7, 1, 1, 0, 0). The average 
number of bits required is 

- 1 x 7 + 3 x 1 + 3 x 1  
l -  1.4 bits/symbol 

This is almost a saving of half the number of bits compared to 3 bits/symbol 
using a 3 bit fixed length code. 

The shorter the codewords, the shorter the total length of a source file. 
Hence the code would be a better one from the compression point of view. 

2.3.1 Modelling 
From the above example, we describe the problem of compression for symbolic 
data in a probability model below. 

The source can be modelled by an alphabet $ = (s l, s 2 , . . . ,  sn) and the 
probability distribution 7 ) = (PI, P2,"" , Pn) of the symbols. 

Suppose we derive a code C = (cl, c2,'-" , cn) with length of each codeword 
s = ( l ~ , 1 2 ,  . , l n )  
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Figure 2.4: Code and source data 

Our goal therefore is to minimise the average length of the code: 

n 

j = l  

2.3.2 Unique decodability 
Variable length codes are useful for data compression. However, a variable 
length code would be useless if the codewords could not be identified in a unique 
way from the encoded message. 

E x a m p l e  2.2 Consider the variable length code (0, 10, 010, 101) for alpha- 
bet (.4, B, C, D). A segment of encoded message such as '0100101010' can be 
decoded in more than one way. For example, '0100101010' can be interpreted in 
at least two ways, '0 10 010 101 O' as ABCDA or '010 0 101 010' as CADC. 

A code is uniquely decodable if there is only one possible way to decode 
encoded messages. The code (0, 10, 010, 101) in Example 2.2 is not uniquely 
decodable and therefore cannot be used for data compression. 

Of course, we can always introduce an extra punctuation symbol during the 
encoding stage. For example, if we use symbol ' / ' ,  we could then encode symbol 
sequence ABCDA as '0/10/010/101/0 ' .  At the decoding end, the sequence 
'0/10/010/101/0 '  can be easily decoded uniquely. Unfortunately, the method is 
too costly because the extra symbol ' / '  has to be inserted for every codeword. 

The ideal code in this situation would be a code not only of variable length 
but also with some self-punctuating property. For example, variable length code 
(0, 10, 110, 111) has such a self-punctuating property although the lengths for 
the codewords remain the same as those in (0, 10, 010, 101). 

The self-punctuating property can be seen more clearly if we associate the 
codewords with the nodes of a binary tree in Figure 2.5. Each left branch is 
marked as 0 and the right branch as 1 in the binary tree. During decoding, each 
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codeword can be obtained by collecting all the Os and ls from the root to each 
leaf. Every time a leaf is reached, we know that  is the end of a codeword. 

root 

0 1 

A 0 1 
0 

C D 
110 111 

Figure 2.5: A prefix code 

2.3.3 Prefix codes  and binary trees 
Codes with the self-punctuating property do exist. A type of so-called prefix code 
can be identified by checking its so-called prefix-free property or prefix property 
for short. 

A prefix is the first few consecutive bits of a codeword. When two codewords 
are of different lengths, it is possible that  the shorter codeword is identical to 
the first few bits of the longer codeword. In this case, the shorter codeword is 
said to be a prefix of the longer one. 

E x a m p l e  2.3 Consider two binary codewords of different length: cl = 010 (3 
bits) and c2 = 01011 (5 bits). 

The shorter codeword Cl is the prefix of the longer code c2 as c2 = 11. 
Codeword c2 can be obtained by appending two more bits 11 to Cl. 

The prefix property of a binary code is the fact that  no codeword is a prefix 
of another. 

E x a m p l e  2.4 Consider the codewords in two codes (0, 10, 010, 101) and 
(0, 10, 110, 111). 

No codeword is a prefix of another in the uniquely decodable code (0, 10, 110, 
111). In contrast, in code (0, 10, 010, 101), which is not uniquely decodable, 
codeword 0 is the prefix of codeword . Also codeword 10 is the prefix of 
codeword . 

The prefix property turns out to be a favourite characteristic when searching 
for a uniquely decodable code. A code with such a prefix property is called a 
prefix code. In other words, a prefix code is a code in which no codeword is a 
prefix of another codeword, neither can a codeword be derived from another by 
appending more bits to a shorter codeword. 

E x a m p l e  2.5 The code (1, 01, 001, 0000) is a prefix code since no codeword 
is a prefix of another codeword in the code. The code (0, 10, 110, 1011) is not 
a prefix code since 10 is a prefix of 1011. 
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It is easy to check whether a binary code is a prefix code by drawing an 
associated binary tree. Each binary code can correspond to one such binary 
tree, in which each codeword corresponds to a path from the root to a node with 
the codeword name marked at the end of the path. Each bit 0 in a codeword 
corresponds to a left edge and each 1 to a right edge. Recall that,  if a prefix 
code is represented in such an associate binary tree, all the codeword labels will 
be at its leaves (see Figure 2.5). 

Two steps are involved in this approach: 

1. C o n s t r u c t  t h e  b i n a r y  t r e e  

First, we create a node as the root of the binary tree. Next, we look at 
the codewords one by one. For each codeword, we read one bit at a time 
from the first to the last. Starting from the root, we either draw a new 
branch or move down an edge along a branch according to the value of 
the bit. 

When a bit 0 is read, we draw, if there is no branch yet, a left branch 
and a new node at the end of the branch. We move down one edge along 
the left branch otherwise, and arrive at the node at the end of the edge. 
Similarly, when a bit 0 is read, we draw if there no branch yet, a right 
branch, or move down an edge along the right branch otherwise. 

The process repeats from node to node while reading the bit by bit until 
the end of the codeword. We mark the codeword after finishing with the 
whole codeword. 

2. C h e c k i n g  c o d e w o r d  p o s i t i o n  

If all the codeword labels are only associated with the leaves, then the 
codeword is a prefix code. Otherwise, it is not. 

E x a m p l e  2.6 Decide whether the codes (1, 01, 001, 0000) and 
(0, 10, 110, 1011) for alphabet (A, B, C, D) are prefix codes. 

1. Draw a 0-1 tree as in Figure 2.6(a) and (b) for each code above. 

2. For a prefix code, the codewords are only associated with the leaves. Since 
all the codewords in (1, 01, 001, 0000) are at leaves (Figure 2.6(a)), we 
can easily conclude that  (1, 01,001, 0000) is a prefix code. 

Since codeword 10 (B) is associated with an internal node of the 0-1 tree 
(Figure 2.6(b)), we conclude that  (0, 10, 110, 1011) is not a prefix code. 

Of course, for shorter codewords, we can easily draw the conclusion according 
to the definition of the prefix code. For example, noticing the second codeword 
10 is the prefix of the last codeword 1011 in (0, 10, 110, 1011), we can easily 
decide that  (0, 10, 110, 1011) is not a prefix code without drawing the binary 
tree. 
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o / ,  c c 

D D 

(a) (b) 

Figure 2.6: Prefix property and binary trees 

2 . 3 . 4  P r e f i x  c o d e s  a n d  u n i q u e  d e c o d a b i l i t y  

Prefix codes are a subset of the uniquely decodable codes. This means that  all 
prefix codes are uniquely decodable. If a code is a prefix code, the code is then 
uniquely decodable. 

However, if a code is not a prefix code, we cannot conclude that  the code 
is not uniquely decodable. This is because other types of code may also be 
uniquely decodable. 

E x a m p l e  2.7 Consider code (0, 01, 011, 0111) for (,4, B, C, D). This is not a 
prefix code as the first codeword 0 is the prefix of the others, 

However, given an encoded message 01011010111, there is no ambiguity and 
only one way to decode it: 01 011 01 0111, i.e. BCBD. Each 0 offers a means of 
self-punctuating in this example. We only need to watch out the O, the beginning 
of each codeword and the bit 1 before any O, the last bit of the codeword. 

Some codes are uniquely decodable but require looking ahead during the 
decoding process. This makes them not as efficient as prefix codes. 

E x a m p l e  2.8 Consider code (0, 01, 11) for (A, B, C). This is not a prefix code 
as the first codeword 0 is the prefix of the second codeword 

Figure 2.7 shows a decoding process step by step to the encoded message 
011101. The first 0 is read and it can be decoded as A. The next two ls are 
decoded as C. However, an error occurs when the 0 is read after 1, because 
there is no codeword 10 in the code. This means the first choice was wrong: 
the first two bits 01 should have been decoded as B. Now the decoding process 
continue to decode the next two bits 11 as C. The following 0 can be decoded 
as A but only found an error again in the next step, because there is only one 
bit 1 left in the message which is not a codeword. Returning the last choice, 
the process reconsider 01 and decode them as B. Only by now, the decoding 
process is complete. 
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As we can see, the decoding process is not straightforward. It involves a 
'trial and error' learning process and requires 'backtracking'. Twice the wrong 
choices of a codeword cannot be identified until a later stage and the message 
to be decoded needs to be reviewed repeatedly. 

011101 
J ' . ,  

J . . .  

AlllO1, / BI~O1 

/ V . . 

error 
BCA1 ~ BCO 1 , / /  , 
error BCB 

Figure 2.7: Not a prefix code but uniquely decodable 

2.3.5 Kraft inequality 
Prefix codes have another interesting property. For any non-prefix code whose 
codeword lengths satisfy certain conditions, we can always find a prefix code 
with the same codeword lengths. 

E x a m p l e  2.9 Consider the uniquely decodable code (0, 01, 11) in Example 2.8. 
This is not a prefix code and the lengths of the codewords are 1, 2, 2 respectively. 

We can always find a prefix code, (0, 10, 11) for example, with the same 
codeword lengths. 

The prefix property of a code guarantees only the correctness and efficiency 
of decoding. To achieve a good compression, the length of the codewords are 
required to be as short as possible. 

E x a m p l e  2.10 Consider prefix code (0, 10, 110, 1111). The lengths of the 
codewords are 1, 2, 3 and ~. However, the length of the last codeword can be 
reduced from ~ to 3 as (0, 10, 110, 111) is also a prefix code with codeword 
lengths 1, 2, 3, 3. Figure 2.8(a) and (b) show the binary trees for code (0, 10, 
110, 1111) and (0, 10, 110, 111) respectively. As we can see, if lj is the length 
of the j th codeword, where j = 1 , . . .  , ~, then the level at which the leaf for the 
codeword is lj + 1 . 
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level 

1 

(0, 10, 110, 1111) - - - : ~ "  (0, 10, 110, 111) 

root root . . . . . . .  ~ . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . .  

.... ~ i i i i ~ i  ............ ~ i i i i ~ i  .... 

i iiiiiii  0 iiiiiiiiiiiiiii  
. . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  

D 

(a) (b) 

Figure 2.8: Two prefix codes 

Can we reduce the codeword lengths further, even just by I bit? For example, 
would it be possible to find a prefix code with codeword lengths 1, 2, 3, 2 for 
symbols A, B, C and D respectively? 

E x a m p l e  2.11 Discuss whether it is possible to find a prefix code with codeword 
lengths 1, 2, 3, 2. 

level 

1 

lengths: 1, 2, 3, 2 lengths: 1, 2, 3, 3 

root root ...... ~ ~  .................. ~ ~  ........ 
. . . .  A o ~  . . . . . . . . . . . . . .  x o / ~  . . . . . .  

i ii i i i i i IBII i I Z  lID' i i i i i i i i i i i i i ~ii i i ~ i  i 
C C D 

(a) (b) 

Figure 2.9: Impossible lengths (a) and possible lengths (b) for a prefix code 

So lu t i on  We construct a binary tree according to the lengths given. Since it 
does not matter  if a length 1 codeword is 0 or 1, we always build a branch for 0 
first. We now have a codeword of length 1 (0 labelled as A). Next we construct 
edges '1' and '0' and this gives a codeword of length 2 (10 labelled as B). Next 
we add another '1' edge to get a codeword of length 3 (110 labelled as C). Note 
in this approach constructing a codeword of length 1 means to find a path of 
length 1 from the root or to find a node at level 1 (1 = 2 in this example, see 
Figure 2.9). There are three available paths of length 2 left: path 00, 01 and 
11. Unfortunately, they are all contain an overlap with the paths corresponding 
to the codewords already constructed. 

Suppose we choose to construct codeword 11 (labelled as D) and eventually 
derive a binary tree for a code in which codewords A, B, C, D are of lengths 1, 
2, 3 and 2 respectively as in Figure 2.9(a). 
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As we can see from Figure 2.9(a), not all codewords are leaves. For example, 
symbol D is not at a leaf. This violates the fact that,  for a prefix code, codewords 
should all be at the leaves in the binary tree. We therefore conclude that  it is 
not possible to find a prefix code with codeword lengths 1, 2, 3, 2 for symbols 
A, B, C and D respectively. 

For comparison, we also draw a binary tree for a code in which codewords 
are of lengths 1, 2, 3 and 3 as in Figure 2.9(b), where all the codewords are 
leaves. 

Kraft 's theorem provides a useful guide on the minimum requirements to the 
codeword lengths of prefix codes. Knowing the limit, we can avoid looking for 
a prefix code when it in fact does not exist. 

T h e o r e m  2.1 There exists a prefix binary code C = ( c 1 , c 2 , ' "  ,On) with n 
codewords of lengths ll , 12,... , In respectively if and only if 

n 

K ( C ) -  E 2-zj <- 1 
j=l 

This inequality is known as the Kraft inequality. 
With Kraft inequality, the question in Example 2.11 can be easily answered. 

If the lengths do not satisfy the Kraft inequality, we can conclude that  it is not 
possible to find a prefix code consisting of these lengths. 

Since in Example 2.11 

n 
1 1 1 1 

K ( c )  - = ~+~+~+~-/ >I 
j=l 

it is impossible to find a prefix code with codeword lengths 1, 2, 3, 2. 

E x a m p l e  2.12 Discuss the possibility of finding a prefix code with codeword 
lengths 1, 2, 3, 3. 

So lu t ion  Since 

n I 1 1 1 
K(C) - Z 2-1j = -2 + -~ + ~-5 + -~5 - 1 

j = l  

the lengths of the codewords satisfy the Kraft inequality, it is possible to find a 
prefix code with these codeword lengths (Figure 2.9(b)). 

Observation 
Kraft inequality can be misused if its claims are not carefully studied. 
highlight here what the theorem can and cannot do. 

We 

1. The Kraft inequality sets requirements to the lengths of a prefix code. If 
the lengths do not satisfy the Kraft inequality, we know there is no chance 
of finding a prefix code with these lengths. 
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2. The Kraft inequality does not tell us how to construct a prefix code, nor 
the form of the code. Hence it is possible to find prefix codes in different 
forms and a prefix code can be transformed to another by swapping the 
position of 0s and ls. 

For example, lengths (1, 2, 3, 3) satisfy Kraft inequality since 

"~ 1 1 1 1 
K ( C ) - E 2-z5 : -~ + -~ + -~ + ~-g - 1 

j = l  

Any one of the prefix codes (0, 10, 110, 111), (10, 0, 110, 111), (10, 110, 
0, 111), (10, 110, 111, 0), (0, 110, 10, 111), (0, 110, 111, 10), (110, 0, 10, 
111), (0, 10, 111, 110), . . .  can be found. 

If (0, 10, 110, 111) is a prefix code, then (1, 01,001,000) is also a prefix 
code by just replacing 0s by ls and ls by 0s. 

3. The Kraft inequality can tell that a given code is not a prefix code but it 
cannot be used to decide if a given code is a prefix code. 

When certain lengths satisfy Kraft inequality, it is possible to construct 
a prefix code in which the codewords are of these lengths. This implies 
there exist non-prefix codes with these lengths. Non-prefix codes can also 
be constructed with these lengths. Thus the code does not necessarily have 
to be a prefix code if its codeword lengths satisfy the Kraft inequality. 

For example, code (0, 01,001,010) satisfies the Kraft inequality since 

n 

K(C) - E 2-I~ = 1 1 1 1 
j = l  

However, it is obviously not a prefix code because the first codeword 0 is 
the prefix of the others. 

4. The Kraft inequality can tell us whether the lengths of a prefix code can 
be shortened, but it cannot make any change to the lengths. 

For example, consider the two codes in Example 2.10, (0, 10, 110, 
1111) and (0, 10, 110, 111). The lengths of both codes satisfy the Kraft 
inequality. The lengths 1, 2, 3, 4 of the first code give 

1 1 1 1 
~ + ~ + ~ + ~ < 1  

The lengths 1, 2, 3, 3 of the second code give 

1 1 1 1 
~-F ~ + ~-g + ~-~ = 1 

The Kraft inequality becomes equality when the code cannot be shortened. 
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E x a m p l e  2.13 Given an alphabet of four symbols (A, B, C, D), would it be 
possible to find a prefix code in which a codeword of length 2 is assigned to A, 
length 1 to B and C, and length 3 to D? 

Solu t ion  Here we have 11 = 2, 12 = 13 = l, and 14 = 3. 

4 

E2 _l~ 1 1 1 1 
2- 5 + ~ + ~ + ~  > 1  

j = l  

Therefore, we cannot hope to find a prefix code in which the codewords are of 
these lengths. 

E x a m p l e  2.14 If  a code is a prefix code, what can we conclude about the lengths 
of the codewords ? 

So lu t ion  Since prefix codes are uniquely decodable, they must satisfy the Kraft 
inequality. 

Example 2.15 shows that,  given a code with codeword lengths that  satisfy 
the Kraft inequality, you cannot conclude that  the code is a prefix code. 

E x a m p l e  2.15 Consider code (0, 10, 110, 1011) for (A, B, C, D). This is not 
a prefix code as the second codeword 10 is the prefix of the last codeword ~i11, 
despite the lengths of the codewords being 1, 2, 3, ~ which satisfy the Kraft 
inequality 

1 1 1 1 
~ + ~-ff + ~5 + ~ < 1  

However, since the lengths satisfy the Kraft inequality, we can always find a 
prefix code with the same codeword lengths (1, 2, 3, 4 respectively), such as (0, 
10, 110, 1111). 

2.4 Elementary information theory 
Information theory is a study of information based on probability theory. It 
was proposed by Claude E. Shannon at Bell Laboratories in 1948 and based 
on people's intuition and reaction towards general information. It aims at a 
mathematical way of measuring the quantity of information. 

As we mentioned in Section 2.1, information is something that  adds to peo- 
ple's knowledge. The more a message conveys what is unknown (so it is new 
and surprising), the more informative the message is. In other words, the ele- 
ment of surprise, unexpectedness or unpredictability is relevant to the amount 
of information in the message. 

For example, to most final year university students, the message 'Two thirds 
of the students passed exams in all subjects' offers less information than 'Two 
thirds of the students got 100% marks for exams in all subjects' although the 
two messages contain a similar number of words. The reason is the first mes- 
sage merely conveys something that  happened frequently before and what one 
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would normally expect, but  the second message states something tha t  would 
not normally happen  and is totally unexpected.  

The expectat ion of the outcome of an event can be measured by the prob- 
ability of the event. The high expectat ion corresponds to a high probabili ty of 
the event. A rarely happened event means a low probabili ty event. Something 
tha t  never happens  has a zero probability. Hence the amount  of information in 
a message can also be measured quanti tat ively according to the unexpectedness 
or surprise evoked by the event. 

Suppose there are a set of n events 8 = (s l, s2 , . . . ,  Sn). $ is called an 
alphabet if each sj, where j = 1 , . - .  , n, is a symbol used in a source message. Let 
the probabili ty of occurrence of each event be pj for event sj. These probabilities 

n 
of the events 7 ) - (Pl, p2,"" , Pn) add up to 1, i.e. ~ j = l  PJ - 1. Suppose further 
tha t  the source is rnernoryless, i.e. each symbol occurs independently with no 
dependence between successive events. 

The amount  of one's surprise evoked by the event is called the self-information 
associated with event sj and is defined by a simple mathemat ica l  formula: 

or in negative logari thm 

1 
I(sj)  = log b - -  

Pj 

I (sj) = - log 6 pj 

where the logari thm base (i.e. b in the formula) may be in: 

�9 unit bits: called base two, b = 2 

�9 unit nats: base e, b = e 

�9 unit hartleys: base ten, b = 10. 

The most commonly used logari thm for self-information is the base-two log- 
ar i thm and hence its common unit is bits. 

In this book, we use base two for logarithms, i.e. we use 'log x' to mean 
'log 2 x' if not specified otherwise. So the self-information is 

I(sj)  = - log2p j 

The definition for self-information is convenient. It supports  our intuition 
from daily experience about  the information. 

As we can clearly see from Figure 2.10, the amount  of the self-information 
for event sj is inversely proport ional  to the changes of its probability. When  
the probabili ty of some event is 1, the self-information of the event is log(l) = 0 
since it offers no information. When  the probabili ty is close to 0, the amount  of 

1 (or - log pj) is high. The amount  of the self-information self-information, log p~ 

increases a s  pj decreases from 1 to 0. 

As we mentioned earlier, $ = (Sl, s2 , . . .  ,sn) can be considered as an alpha- 
bet where each sj is a symbol. The self-information can then be interpreted 
natural ly as the amount  of information each symbol sj conveys. 
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1 

Figure 2.10: Self-information 

, 1 the E x a m p l e  2.16 I f  the probability of symbol 'd occurring in a message is -~, 
self-information conveyed by the symbol is 

1 
- log ~- - - ( -  log 2 2) _ 2 log 2 - 2 bits 

This suggests that  it requires a binary codeword of minimum 2 bits for the 
information. 

2 . 4 . 1  E n t r o p y  

Self-information is useful for measuring individual events or symbols at a time. 
However, we are often more interested in the information of a source where 
the occurrences of all possible symbols have to be considered. In other words, 
the measure of the information of a source has to be considered over the entire 
alphabet.  

E x a m p l e  2.17 Consider a binary source $ = (a, b) with probabilities 
= I = - l o g  ( s / 4 )  = bit  

I (b) = - log ( 1 / 4 )  = 2 bits. 

Here the self-information of each symbol in the alphabet  cannot, on its indi- 
vidual basis, represent easily the whole picture of the source. One common way 
to consider a set of data  is to look at its average value of the self-information of 
all the symbols. For example, the average self-information for each symbol in 

Example 2.17 is 

- -  3 1 
I1 = pat(a) + pbI(b) = ~ • 0.415 + ~ X 2 -- (1.245 + 2)/4 ~ 0.81 bit 

This can then be used to compare with another source. 
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E x a m p l e  2 .18  Suppose we have another binary source $2 = (c, d) with proba- 
bilities (~,  ~ ) respectively. I (c) - I (d) -- - log 1 / 2  -- 1 bit and 
I2 = + p d I  (d) = 1  it. 

We now see clearly tha t  source 82 contains on average more informat ion 
than  source 81. 

The average amount  of the information,  or the amount  of the unexpected-  
hess on average caused by a set of independent  events , or over a set of in- 
dependent symbols $ = (Sl, s2 , - . .  , sn), with probabil i t ies of their  occurrences 
7 ) = ( p l , p 2 , " "  ,Pn) respectively, is called the first-order entropy of the source 
or the entropy for short.  It is defined as 

n 

H ( 7  ))  = Z p j I ( s j ) ,  or 
j = l  

n 

- - Z p j  logp  
j = l  

Entropy  1 is the self-information of a set of symbols on average. It is the 
mean (or expected)  amount  of the self-information on S, the event set or the 
a lphabet .  Note t ha t  the entropy of a source depends  on the probabil i ty set 

7 ) = (Pl, P c , " " ,  Pn) ins tead of the values or the na ture  of S = (s l, s 2 , . . . ,  sn). 
W h e n  S = (s l, s 2 , . . .  , sn) is an a lphabet ,  the entropy can be in terpre ted  as 

a measure  of, on average, the min imum number  of binary symbols in bits t ha t  
is required to encode the a lphabet  of the source. 

E x a m p l e  2 .19 Four symbols A, B, C and D occur with an equal probability in 
a source text file. 

_ _  1 Since n - 4 and ~J-~-J=l PJ - 1, the probabilities Pl = P2 = P3 = P4 - -~" 
Therefore, the entropy of the source is 

H ( ~ )  - H ( p l ,  P2, P3, p4 ) - - ~ ( -  l~ )) • ~ = 2 bits 

This can be in terpre ted  as, on average, the source informat ion requires a 
min imum of 2 bits to encode. 

E x a m p l e  2 .20  Suppose the same four  symbols occur with probabilities 0.5, 
0.25, 0.125 and 0.125 respectively in another  source file. 

The entropy of  the source is H ( P ) =  H ( 0 . 5 ,  0 .25,  0 .125,  0 . 1 2 5 ) =  
0 .5  x 1 + 0 .25  x 2 + 2 x 0 .125 x 3 = 1.75 bits. 

This suggests tha t  the average amount  of informat ion in the source is less 
t han  the source in the previous source. In other  words, on average, the  source 
informat ion requires a min imum of 1.75 bits to encode. 

1 The term entropy was adopted by Shannon from thermodynamics where 'entropy'  is used 
to indicate the amount of disorder in a physical system. 
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E x a m p l e  2.21 Suppose the probabilities are 1, O, O, O. The entropy is: 

H(P) - H(1, O, O, O) - 0 bit 

This suggests that  there is zero amount  of information conveyed in the 
source. In other words, there is simply no need to encode the message. 

Shannon showed that  the best a lossless symbolic compression scheme using 
binary prefix codes can do is to encode a source with an average number of bits 
equal to the entropy of the source. This can be seen from the theorem below. 

T h e o r e m  2.2 For any binary prefix code with the average codeword length 
n [ -  Ej=I  Pj lj, we have H(P) < [ < H(P)+ 1. 

P r o o f  To prove this is true, we only need to show that  

1. The average codeword length is at least as long as the entropy" H ( P )  <_ [. 

This is true if and only if H ( P )  - 1 _< 0. Following this idea, we write the 
difference 

n n 

H(P) - [ -  E p  j log--1 _ E p j l  j 
j = l  PJ j = l  

n 

-- ~ pj (log I _ lj log :2) 
j = l  PJ 

n 

= E PJ (log I _ log 2 zj ) 
j=l PJ 

n 

=  pj(log 1 
j=l pj2zJ ) 

log x Since in x -  1-og~, we have 

log 1 = ( l n  1 )loge 
pj2ZJ pj2Z~ 

Therefore, the right side of the equation can be writ ten 

n 

= E P / ( l n  1 j = l  pj21 j )log e 

n 

= l o g e ~ p j ( l n  1 
j = l  pj2z~ ) 
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Since In x _< x -  1, for x > 0 the right side of the equation can be written 

n 

_ < l o g e E p j ( ~ l  _ 1 )  
j=l pj21J 

n 1 n 
= log (Z Z p J )  

j = l  j = l  
n 

= log - 1) 
j = l  

According to the Kraft inequality, for a prefix code, we have 

n 

E 2-1j -< 1 
j = l  

Therefore, 
n 

E 2-1j - 1 < 0 
j = l  

Multiplying this negative item by a positive log e, the right side of the 
equation is again a negative, i.e. 

n 

H ( P )  - [ -  log e ( E  2 -z5 - 1) _< 0 
j = l  

This proves that  H ( P )  _< 1. 

2. There exists a prefix binary code for which 1 < H ( P )  + 1. 

This can be justified by the following. 

As we know, the length of any binary code has to be an integer. If the 
prefix binary code is the optimum, then all its codeword length, for j = 

1 when are negative powers of 2, otherwise, lj > 1, 2,-- .  ,n, 1 i - log ~ pj 

log ~.1 This can be written as l i - log ~1 + c, where 0 _< e < 1. 

Replacing c by its exclusive upper bound on the right side of the equation, 
we have 

1 1 
lj = log ~ + e < log ~ + 1 

Pj Pj 

Multiplying by pj > 0 on both sides of the inequality, we have 

1 
pj l j  < pj(log ~ + 1) 

Pj 
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Therefore, 

n 

[-- E p j l j  
j = l  

n 

< Z p j I l o g  1 - - + 1 )  
j=l PJ 

n 1 n 

= E lo - + E 
j=l PJ j=l 

= H(7 )) + 1 

2 . 4 . 2  O p t i m u m  c o d e s  

Information theory can effectively tell how successful a prefix code is from a 
compression point of view. Given a prefix code, we know the length of each 
codeword s = (ll ,12,. . .  ,ln). If we know the source, i.e. P = (p l ,p2 , ""  ,Pn), 

n we can compute the average length of the code [ -  ~-~j=l pjlj, and the entropy 
n 

of the source H(7 )) - - E j = I  Pj log pj. 
Since the entropy provides a theoretical bound of the minimum number of 

bits for the information, the difference between the average length of a code and 
the entropy represents the amount of the redundancy in the code. 

The ratio in percentage of the entropy of a source to the average code length 
is a useful measure of the code efficiency for the source. 

H(79) 
- lOO  

Information theory says that the best a lossless symbolic compression scheme 
can do is to encode a source with an average number of bits equal to the entropy 
of the source. This is when E(P ,  s - 100%. The bigger the gap between the 
entropy and the average length of the code, the lower the E(7 ), s 

A code is optimum (or optimal) if the code efficiency reaches 100%. In 
other words, a code is optimal if the average length of the codewords equals the 
entropy of the source. 

E x a m p l e  2.22 Consider a source alphabet S -  (A, B, C, D) with probability 
~ ~ 1). Suppose a prefix code C -  (0 10 110 111) is distribution 7 ) -  (2 ,  ~, s, s , , , 

recommended. Comment on the eLficiency of the code. 

Solu t ion  It is easy to check the code efficiency. We first write the lengths of 
the codewords s = (1, 2, 3, 3). The average length of the code is 

4 
- 1 1 1 
1 - E p j l j - ~  x l + ~  •  x 3 ) - 1 . 7 5 b i t s  

KJ 

j = l  
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The entropy of the source is 

4 
1 1 22 1 H - - E p  j logpj - ~ x log2 + ~ x log + 2(~ x log23) - 1.75 bits 

j=l  

Therefore, the prefix code is optimal as the code efficiency is 100%. 

2.5 Data  compress ion in t e l ecommunica t ion  
The concept of data compression in telecommunication can be easily understood 
from the diagram in Figure 2.11 on a message transformation system. 

Ann Bob 

source message 

( encoder ) Q 

compressed message ~~imun!ica[t:! ~ [ci~:a n n e_.~.. _ 

decoded message 

decoder 

I, 
compressed message 

Figure 2.11" Communication 

Suppose a piece of message is to be sent from one location by Ann and 
received at another location by Bob. The message is first encoded by an encoder 
before sending to the channel and the encoded message is decoded by a decoder 
on arrival at the other end and before being read by Bob. 

What  do the concepts such as variable length codes, average length of code- 
words and entropy mean in the telecommunication scenario? 

Suppose that  Ann and Bob are extremely good friends but they live far away 
from each other. They are both very poor students financially. Ann wants to 
send messages to Bob but has to save her money. Over the years, Ann and Bob 
have built their own secret alphabet. Suppose the next symbol that Ann wants 
to send to Bob is randomly chosen from an alphabet with a known probability 
distribution, and Bob knows the alphabet and the probability distribution. 

Ann comes to ask for your advice with the important questions in the fol- 
lowilLg example: 

Exa:mple 2.23 

1. To minimise the average number of bits Ann uses to communicate her 
symbol to Bob, should she assign a fixed length code or a variable length 
code to the symbols? 
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2. What is the average number of bits needed for Ann to communicate her 
symbol to Bob? 

3. What is meant by a 0 entropy? For example, what is meant if the proba- 
bilities associated with the alphabet are (0, O, 1 , . . . ,  0)? 

You give Ann the following solutions. 

S o l u t i o n s  

1. Ann should use a variable length code because she is likely to use some 
symbols more frequently than others. Using variable length codes can 
hopefully save bits. 

2. Ann needs at least the average number of bits that  are equal to the entropy 
n 

of the source. That  is - ~ i=1  Pi log2 Pi bits. 

3. A '0 entropy' means that  the minimum average number of bits that  Ann 
needs to send to Bob is zero. 

Probability distribution (0, 0, 1 , . - . ,  0) means that  Ann will definitely 
send the third symbol in the alphabet as the next symbol to Bob and Bob 
knows this. If Bob knows what Ann is going to say then she does not need 
to say anything, does she?! 

2.6 Redundancy 
The first task in data compression is to identify any redundancy presented in the 
source data. Here the term redundancy has a general meaning. It can be some 
overlapped information, some common base data, some identical characteristics 
or some equivalent structures in nature, but all from saving storage point of 
view. 

We shall try to identify various redundancies from the following simple ex- 
amples: 

E x a m p l e  2.24 BAAAAAAAC, a string that contains consecutive repeating char- 
acters. 

Here the redundancy is the 7 repeating symbols A which can be replaced by 
a shorter string such as rTA. 

E x a m p l e  2.25 ABACAA, a string that contains non-consecutive repeating char- 
acters. 

The redundancy in this example comes from the occurrence of symbol t 
under a fixed length code alphabet. There are more As than any other symbols. 
If we use a shorter codeword to represent those more frequent symbols and a 
longer one for the less frequent ones, we may represent the string in a hopefully 
shorter form. 
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E x a m p l e  2.26 Consider a text with repeated words as follows: 

The red, the green and the blue colour, and 

the paint in red, green or blue. 

Here the redundancy is the repeated words which are patterns of strings 
such as red, green and blue. 

E x a m p l e  2.27 Consider a vector of integers: (6, ~28, 32, 67, 125). 

The redundancy in this example is the fact that the data cross over a big 
range [6, 428]. Consequently, each datum d in the vector requires 9 bits to 
represent since 0 < d < 512 and 29 - 512. This redundancy may be reduced by 
a simple scaling method. For example, applying d div 32 to the data, we have 
(0, 13, 1, 2, 4) of a much smaller range [0, 13]. Now only 4 bits are needed to 
represent each scaled datum d' as 0 _< d' < 16 and 24 - 16. 

E x a m p l e  2.28 Consider a matrix of binary data. 

000 001 011 011 
001 001 001 010 
011 001 010 000 

Some binary patterns can be easily found as redundancy in this matrix. The 
two-dimensional data can be easily viewed as a sequence of string. For example, 
in000  001 011 011 001 001 001 010 011 001 010 000 if we read the data 
one row after another. 

However, hidden redundancy may become clearer if we divide the matrix 
into three l-bit entry matrices as below: 

1. Removing the last 2 bits of each entry: 

0000 
0000 

0000 

2. Keeping the middle bit of each entry: 

0 0 1 1  
0 0 0 1  
1 0 1 0  

3. Removing the first 2 bits of each entry: 

0111 

1110 

1100 
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Figure 2.12: Pixels with similar colours 

Now the first submatr ix  contains only consecutive 0s. The second one con- 
tains more consecutive 0s than Is, and the last one contains more consecutive 
ls than 0s. 

E x a m p l e  2.29 Spacial redundancy. 

An image usually contains millions of pixels. Each pixel tends to be in the 
same or similar colour as its neighbours. Such a correlated relationship among 
neighbours is called spatial redundancy. Figure 2.12 shows a simple way to 
reduce the redundancy. The pixels on the left can be approximated to the one 
on the right as long as it is acceptable by the human visual system. 

E x a m p l e  2.30 Quantisation. 

5000 
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X ~ X t 

1 2 3 4 5 6 

(b) 

Figure 2.13: A histogram within certain ranges 

In Figure 2.13(a), the shade area represents the redundancy. Let x - x ~ and 
y - 1000y ~ + 2500 and we have a much simpler representation as in (b). 

E x a m p l e  2.31 Transformation. 

In Figure 2.14, the redundancy can be seen from points on the left. The 
data  are much easier to handle if we transform the coordinates of the points by 

rotat ing 32 degrees clockwise. 
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Figure 2.14: Some matrix data gathered along a line 

Example 2.32 Temple redundancy. 
Figure 2.15 shows a sequence of cartoon pictures (called frames), which is 

to be displayed one after another a few seconds apart. Due to the reaction of 
the human visual system, what we see would be a funny face changing from a 
sleep to awake, and finally to a 'smile' state. 

Figure 2.15" A sequence of cartoon frames 

It is interesting to notice there is a large amount of redundancy here as the 
difference between one frame and the previous frame is tiny. For example, the 
first three faces are completely identical except the eyes. This kind of similarity 
is called temple redundancy and can be removed by simply storing the differences 
between frames. 

We have tried to identify certain redundancy from the previous examples. 
As we can see, each example above shows a different kind of redundancy. Some 
redundancy can be viewed in more than one way and this may lead to different 
compression methods. Of course, we have not yet shown how to measure the 
redundancy in different types of source, and how some redundancies may be 
more difficult than others to lead to a good compression algorithm. We shall 
see these from later chapters. 

2.7 Compression algorithms 
Compression algorithms, in general, aim to convert some source data at the 
compression end into a compressed message, and to convert it back from the 
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compressed message at the decompression end. This requires making certain 
assumptions about the source before the conversion takes place. For example, 
we may need to assume that the source contains symbols from an alphabet and 
the symbols occur following a specific probability distribution before any coding 
happens. 

Any compression methods involve essentially two types of work: modelling 
and coding. The model represents our knowledge about the source domain and 
the manipulation of the source redundancy. The device that is used to fulfil the 
task of coding is usually called coder meaning encoder. Based on the model and 
some calculations, the coder is used to derive a code and encode (compress) the 
input. A coder can be independent of the model. 

A similar structure applies to decoding algorithms. There is again a model 
and a decoder for any decoding algorithm. 

Such a model-coder structure at both the compression and decompression 
ends can be seen clearly in Figure 2.16. Here we use Model-C to represent 
the model for the coder and Model-D for the decoder. We use symbols ABe... 
to represent the source data and 010001100..- to represent the compressed 
message. 

ABC. �9 �9 

, � 9 1 7 6 1 7 6  . . . . . . . . .  . 

Model-C ") 

0 

Oodor 

compression 

h I 
ABC. �9 �9 

~ 1 7 6  . . . . . . . . .  . 
~ 

Model-D 
- .  . ~  

010001100..- - - ~ D e c o d e r ~  

decompression 

Figure 2.16: Static compression system 

Conceptually, we can distinguish two types of compression algorithms, namely, 
static, or adaptive compression, based on whether the models may be updated 
during the process of compression or decompression. 

S ta t ic  (non-adap t ive )  s y s t e m  (Figure 2.16): The model (Model-C or 
Model-D) remains unchanged during the compression or decompression 
process. 

A d a p t i v e  s y s t e m  (Figure 2.17): The model may be changed during the 
compression or decompression process according to the change of input 
(or feedback from the output). 

Some adaptive algorithms actually build the model based on the input 
starting from an empty model. 

In practice, a compression software or hardware system often contains a 
number of static and adaptive algorithms. 
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Figure 2.17: Adaptive compression system 

In some compression systems, the model for compression (Model-C in the 
figures) and that  for decompression (Model-D) are identical. If they are iden- 
tical, the compression system is called symmetric, otherwise, it is said to be 
non-symmetric. The compression using a symmetric system is called symmetric 
compression, and the compression using an asymmetric system is called asym- 
metric compression. 

In terms of the length of codewords used before or after compression, com- 
pression algorithms can be classified into the following categories: 

1. F ixed - to - f ixed :  each symbol before compression is represented by a fixed 
number of bits (for example, 8 bits in ASCII format) and is encoded as a 
sequence of bits of a fixed length after compression. 

Example 2.33 A:00, B:01, C:10, D:11 2 

2. F ixed - to -va r i ab l e "  each symbol before compression is represented by 
a fixed number of bits and is encoded as a sequence of bits of different 
length. 

Example 2.34 A:O; B:IO; C:101; D:0101. 

3. Var iab le - to - f ixed-  a sequence of symbols represented in a different num- 
ber of bits before compression is encoded as a fixed-length sequence of bits. 

E x a m p l e  2.35 ABCD:O0; ABCDE:01; BC:11. 

4. Var i ab l e - to -va r i ab l e"  a sequence of symbols represented in a different 
number of bits before compression is encoded as a variable-length sequence 
of bits. 

Example 2.36 ABCD:O; ABCDE:01; BC:I; BBB:O001. 

We will see various types of compression algorithms in the later chapters 
and a summary of the different types of coding methods in Section 7.6. 

2For ease of reading, the symbols themselves are used instead of their ASCII codewords. 
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Summary 
Information theory provides a good foundation for compression algorithms. By 
working on symbolic data, statistical models can be adopted for solving com- 
pression problems. Prefix codes, Kraft inequality, and entropy are useful tools in 
searching efficient codes and identifying the quality of compression algorithms. 
Symmetric and asymmetric compression models offer different performance and 
are useful for different types of source. A good compression algorithm often 
relies upon effective identification of redundancies in the interested source. 

Learning outcomes 
On completion of your studies in this chapter, you should be able to: 

�9 explain why modelling and coding are usually considered separately for 
compression algorithm design 

�9 identify the model and the coder in a compression algorithm 

�9 identify prefix codes 

�9 demonstrate the relationship between prefix codes, Kraft inequality and 
unique decodability 

�9 explain how entropy can be used to measure the code optimum. 

Exercises 
E2.1 What is a prefix code? What can we conclude about the lengths of a prefix 

code? Provide an example to support your argument. 

E2.2 If a code is not a prefix code, can we conclude that it will not be uniquely 
decodable? Give reasons. 

E2.3 Determine whether the following codes are uniquely decodable: 

(a) (0,01,11,111) 

(b) (0,01,110,111) 

(c) (0,10,110,111) 

(d) (1,10,110,111). 

E2.4 Decide the code efficiency. 

Suppose that a source alphabet 8 = (A, B, C, D) with probability distri- 
1 1 1 1 bution 7 ) = (2, 4 '  8 '  8) is known and a prefix code g - (0, 10,110, 1110) 

is recommended. 
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Laboratory 
L2.1 Design and implement a program method entropy which takes a proba- 

bility distribution (i.e. a set of probability values whose sum is 1) as the 
argument and returns the first-order entropy of the source. 

L2.2 Design and implement a program method averageLength which takes two 
arguments: (I) a set of lengths of a code; (2) the probability distribution 
of the codewords. It then returns the average length of the code. 

Assessment 
$2.1 Describe briefly how each of the two classes of lossless compression al- 

gorithms, namely the adaptive and the non-adaptive, works in its model. 
Illustrate each with an appropriate example. 

$2.2 Determine whether the following codes for (A, B, C, D) are uniquely de- 
codable. Give your reasons for each case. 

(a) (0, 10, 101, 0101) 

(b) (000, 001,010, 011) 

(c) (00, 010, 011, 1) 

(d) (0, 001, 10, 010). 

$2.3 Determine whether the code (0, 10, 011, 110, 1111) is a prefix code and 
explain why. 

$2.4 If a code is a prefix code, what can we conclude about the lengths of the 
codewords? 
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Chapter 3 

Run-length algorithms 

In this chapter, we consider a type of redundancy, as in Example 2.24, where 
a consecutive sequence of symbols can be identified, and introduce a class of 
simple but useful lossless compression algorithms called run-length algorithms 
or run-length encoding (RLE for short). 

We first introduce the ideas and approaches of the run-length compression 
techniques. We then move on to show how the algorithm design techniques 
learnt in Chapter 1 can be applied to solve the compression problem. 

3.1 Run-length 
The consecutive recurrent symbols are usually called runs in a sequence of sym- 
bols. Hence the source data of interest is a sequence of symbols from an alphabet. 
The goal of the run-length algorithm is to identify the runs and record the length 
of each run and the symbol in the run. 

E x a m p l e  3.1 Consider the following strings: 

1. KKKKKKKKK 

2. ABCDEFG 

3. ABABBBC 

~{. abc 123bbbbCDE. 

We highlight the runs in each instance by a small shade. 

49 
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A run-length algorithm assigns codewords to runs instead of coding individual 
symbols. The runs are replaced by a tuple (r, l, s) for (run-flag, run-length, run- 
symbol) respectively, where s is a member of the alphabet of the symbols and 
r and 1 are not. 

E x a m p l e  3.2 String KKKKKKKKK, containing a run containing 9 Ks, can be re- 
placed by triple ('r', 9, 'K'), or a short unit r9K consisting of the symbol r, 9 
and K, where r represents the case of 'repeating symbol', 9 means '9 times of oc- 
currence' and K indicates that this should be interpreted as 'symbol K' (repeating 
9 times). 

When there is no run, in ABCDEFG for example, the run-flag n is assigned 
to represent the non-repeating symbols and l, the length of the longest non- 
recurrent symbols are counted. Finally, the entire non-recurrent string is copied 
as the third element in the triple. This means that  non-repeating string/~BCDEFG 
is replaced by ('n', 7, '/~BCDEFG'), and nT/~BCDEFG for short. 

Run-length algorithms are very effective if the source contains many runs of 
consecutive symbols. In fact, the symbols can be characters in a text file, 0s 
and ls in a binary file, or any composite units such as colour pixels in an image, 
or even component blocks of larger sound files. 

Although simple, run-length algorithms have been used well in practice. 
The so-called HDC (hardware data compression) algorithm, used by tape drives 
connected to IBM computer systems, and a similar algorithm used in the IBM 
System Network Architecture (SNA) standard for data communications are still 
in use today. 

We briefly introduce the HDC algorithm below. 

3.2 Hardware data compression (HDC) 
For convenience, we will look at a simplified version of the HDC algorithm. 
In this form of run-length coding, we assume each run or the non-repeating 
symbol sequence contains no more than 64 symbols. There are two types of 
control characters. One is a flag for runs and the other is for non-run sequences. 

We define the repeating control characters as r3, r4 , . . -  , r63. The subscripts 
are numbers to indicate the length of the run. For example, r5 indicates the case 
of a run of length 5. The coder replaces each sequence of consecutive identical 
symbols with one of the repeating control characters r 3 , ' - ' ,  r63 and depends 
on the run-length followed by the repeating symbol. For example, VVVV can be 
replaced by r4V. For a run of spaces, the algorithm will use the control characters 
r2, r3 , . . .  , r63 only, but leave out the symbol part. For example, rTr4V can be 
decoded as 

uuuuuuuVVVV 

For the non-run parts, non-repeating control characters n l, n 2 , . . . ,  n63 are 
used which are followed by the length of the longest non-repeating characters 
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until the next run or the end of the entire file. For example, ABCDEFG will be 
replaced by nrABCDEFG. 

This simple version of the HDC algorithm essentially uses only ASCII codes 
for the single symbols, or a total of 123 control characters including a run- 
length count. Each ri, where i = 2,- . .  , 63, is followed by either another control 
character or a symbol. If the following symbol is another control character, ri 
(alone) signifies i repeating space characters (i.e. spaces or blanks). Otherwise, 
ri signifies that the symbol immediately after it repeats i times. Each hi, where 
i = 1, .- .  , 63, is followed by a sequence of i non-repeating symbols. 

Applying the following 'rules', it is easy to understand the outline of the 
encoding and decoding run-length algorithms below. 

3 . 2 . 1  E n c o d i n g  

Repeat the following until the end of input file: 

Read the source (e.g. the input text) symbols sequentially and 

. 

if a string I of i (i = 2, . . -  , 63) consecutive spaces is found, output a single 
control character ri 

if a string of i (i = 3 , . . . ,  63) consecutive symbols other than spaces is 
found, output two characters: ri followed by the repeating symbol 

otherwise, identify a longest string of i = 1 , . . .  , 63 non-repeating symbols, 
where there is no consecutive sequence of two spaces or of three other 
characters, and output the non-repeating control character ni followed by 
the string. 

E x a m p l e  3.3 GGGuuuuuuBCDEFGuu55GHJKuLM777777777777 

can be compressed to r3Gr6n6BCDEFGr2ng55GHJKuLMr12 7. 

S o l u t i o n  

1. The first three Gs are read and encoded by r3G. 

2. The next six spaces are found and encoded by r6. 

3. The non-repeating symbols BCDEFG are found and encoded by n6BCDEFG. 

4. The next two spaces are found and encoded by r2. 

5. The next nine non-repeating symbols are found and encoded by n955GHJKuLM. 

6. The next twelve '7's are found and encoded by r127. 

Therefore the encoded output is: r3Gr6n6BCDEFGr2n955GHJKuLMr127. 

1i.e. a sequence of symbols. 
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3.2.2 Decoding 
The decoding process is similar to that  for encoding and can be outlined as 
follows: 

Repeat the following until the end of input coded file: 

Read the codeword sequence sequentially and 

1. if an ri is found, then check the next codeword 

(a) if the codeword is a control character output  i spaces 
(b) otherwise output  i (ASCII codes of) repeating symbols 

2. otherwise, output  the next i non-repeating symbols. 

Observation 
It is not difficult to observe from a few examples that the performance of the 
HDC algorithm (as far as the compression ratio concerns) is: 

�9 excellent 2 when the source contains many runs of consecutive symbols 

�9 poor when there are many segments of non-repeating symbols. 

Therefore, run-length algorithms are often used as a subroutine in other more 
sophisticated coding. 

3.3 A l g o r i t h m  D e s i g n  

We have so far learnt the ideas behind the HDC algorithm as well as run-length 
algorithms in general. To learn how to design our own compression algorithms, 
we look at how to derive a simple version of HDC applying the algorithm design 
techniques introduced in Chapter i. 

Stage 1" Description of the problem 
A problem is a general question to be answered. However, a question may be 
too general to lead to an algorithmic solution or too vague to even understand 
the issues involved. To help us understand the HDC problem better, we look at 
Example 3.1 again. 

From the example, we study the input-output  to reflect the behaviour of 
the algorithm to be developed. It becomes clear to us soon that  a run can be 
described by two parts as a pair (c, s), where c represents the control charac- 
ter with a count, and s the repeating symbol or non-run string depending on 
whether c is ri or hi. 

2It can be even better than entropy coding such as Huffman coding. 
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Compression 
The output of each instance in the example can then be written: 

Decompression 
1. input: r9K output: KKKKKKKKK 

2. input: nTABCDEFG, output: ABCDEFG 

3. input: n3ABAr3BnlC, output: ABABBBC 

4. input: naabc123r4bn3CDE, output: abc123bbbbCDE. 

Since the compression process is reversible, the RLE scheme is lossless com- 
pression. 

We now write the description of the problem: 
Prob lem:  Find and replace each run by a hopefully shorter codeword to indi- 
cate run-flag, run-length and run-symbol respectively. 
I n p u t :  A sequence of symbols from an alphabet. 
O u t p u t :  Another hopefully shorter sequence of symbols. 

Stage 2- Mathematical modelling 
The mathematical model for run-length is the so-called Markov model. Named 
after the Russian mathematician Andrei Andrevich Markov (1856-1922), Markov 
models are popular in describing data with certain dependence. Models are use- 
ful for estimating the entropy and for comparison with other methods. However, 
we shall focus on the coder design in this chapter instead of discussing the de- 
tails about the model. We will look more closely at the data and decide how 
the consecutive recurrent symbols can be represented in a shorter string. 

Let us analyse four instances in Example 3.1 first. The symbols in each 
sequence are read one by one in order to identify runs and their lengths. For 
convenience, the current symbol is highlighted, and the control codewords ri or 
ni are used to mean a run or non-run of length i respectively. We will play with 
a few examples to gain better understanding of the problem. 

Compression 
1. In this instance, the whole input string is a run, which can be identified by 

reading the characters one at a time, and comparing it with the previous 
symbol. 
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2. This is an instance where there  is no run in the data .  

3. This is an ins tance consist ing of one run. 

4. This is again an instance consist ing of one run. However, the  process of 

identifying the run seems more complex t h an  the previous instance.  
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The complication in this instance is due to a slightly larger symbol alpha- 
bet and a mixture of both cases of characters and digits (a, b, c, C, D, 
E, 1, 2, 3). Note the count numbers are in bold in order to distinguish 
themselves from the symbol 1, 2, 3. 

Decompression 
This is the reverse process of compression. We therefore take the output of the 
compression as the input string. 

i. input: r9K 

2. input: ABCDEFG 
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3. input: ABAr3BC 

4. input: abc123r4bCDE 

We now summarise our model which consists of 

1. A finite alphabet of symbols S = ( 8 1 , 8 2 , ' " ,  8n), where n is the size of 
the alphabet. 

2. Two states: repeating and non-repeating. 
3. A control character c to indicate a run ri or not ni with the counter i to 

compute the length of the runs or non-runs. 

4. A run-length code C = (cl,c2,"" ,cn), where each codeword contains a 
control character followed by a symbol or a string. 

S t a g e  3: D e s i g n  o f  t h e  a l g o r i t h m  

We now consider the design of the HDC algorithm. 
The best way to develop an algorithm is to take a top-down approach. We 

usually write down the main idea of the algorithm before adding details. The 
advantage of this approach is to avoid wasting time on coding for a flawed 
algorithm. 
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Compression 
Suppose the string is read one symbol at a time. Let sp, sq and sr  be three 
consecutive symbols that  are read most recently. The values of three consecutive 
symbols can be used to detect runs and non-runs. 

If the string of symbols is stored in an array S, then each symbol can be 
accessed via an index. For example, reading sp from the array means an assign- 
ment sp ~ Sip] and results in sp = Sip], and similarly, reading the next symbol 
sq is equivalent to sq ~-  S[q], where q = p +  1 and r = q + 1 = p +  2 (Figure 3.1). 

Figure 3.1: Three consecutive variables Sip], S[q] and Sir] 

One way to concentrate on the top-level structure is to define procedures or 
functions that  can be extended later on. We use x x z ( )  to represent a procedure 
or function of name x x x .  

All the possibilities of runs and non-runs in three consecutive postions can 
be classified as four cases: they are XXX, XXY, XYY and XYZ, where X, Y and 
Z represent three different symbols. We look closely at each case and summarise 
the actions required for each case below: 

case space actions 
XXX begin_run(), find_longest_run() 
XXY uuY output_run(r2) 

else begin_nonrun(), find_longest_nonrun() 
XYY Xuu output_nonrun(ni,  X) 

else begin_nonrun(), find_longestmonrun() 
XYZ begin_nonrun(), find_longest_nonrun() 

We now define the procedures or functions required: 

procedure or function description 
(boolean) begin_run() 
longest_run() 
(boolean) begin_nonrun() 
longest_nonrun() 
output_run() 
output_nonrun() 
shift1() 
shift2() 

true if a run begins 
to find the run length 
not begin_run() 
to find the length of a non-run 
output a run 
output a non-run 
sp ~ sq, sq ~ s t ,  read sr  
sp ~ s t ,  read sq, read sr  
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We also define a string word to accumulate a non-run, and a counter length 
to record the current length of a repeating or non repeating string. 

We can now write the main algorithm as follows. Note: here the addition 
sign '+ '  means concatenation for string operants. 

A l g o r i t h m  3.1 myHDC encoding 

I N P U T :  symbol string in an array 
OUTPUT: codeword sequence 

1: read sp, sq, sr {i.e. S[p], S[q], S[r] in Figure 3.1} 
2: wh i l e  not EOF do  
3: if begin_run() t h e n  
4: find_longest_run() 
5: output_run(length, symbol) 
6: else  
7: f ind_longest_nonrun() 
8: output_nonrun(length, word) 
9: e n d  if 

10- e n d  wh i l e  

We now work on function begin_run(). 
A run has to satisfy the following conditions: 

1. two or more consecutive spaces, or 

2. three or more consecutive other symbols in the alphabet.  

A l g o r i t h m  3.2 (Function) begin_run() 

I N P U T :  

RETURN: true or false 

1: r e t u r n  (sp = sq = ' . , ' ) o r  (sp = sq = sr ) 

Similarly, a non-run needs to contain 

1. one space, or 

2. two consecutive identical symbols other than spaces, or 

3. two different consecutive symbols. 

However, since a string is a non-run if it is not a run, this function is actually 
not needed explicitly for our algorithm. 

The other procedures and functions are as follows: 
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A l g o r i t h m  3.3 (Procedure)shif t1()  

INPUT" 

O U T P U T :  

1: sp  ~ -  sq  
2. sq  ~ -  8r  
3: read s r  

A l g o r i t h m  3.4 (Procedure)shif t2()  

INPUT" 

O U T P U T :  

1. sp  ~-  s r  
2: read sq  
3: read s r  

We now move on to the two functions of computing the run length and 
non-run length. For non-run length, we also need to accumulate the non-run 
sequence in w o r d .  

A l g o r i t h m  3.5 (Procedure)find_longest_run() 

INPUT" 

OUTPUT: runLength,  symbol 

1. l e n g t h  ~ 2 {two spaces only} 
2. i f s p - s q - ' u '  a n d s q C s r t h e n  
3. s y m b o l -  ' u ' 
4: else  {three or more repeating symbols} 
5. wh i l e  not EOF and s p -  s q -  s r  do 
6: r u n L e n g t h  ~-  r u n L e n g t h  + 1 
7: read s r  
8: e n d  wh i l e  
9: s y m b o l  ~-  sp  

lO: e n d  if 
11: if not EOF t h e n  
12: s h i f t 2 ( )  
13. e n d  if 
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A l g o r i t h m  3.6 (Procedure)find_longest_nonrun() 

INPUT:  

O U T P U T :  nonrunLength, symbol 
1: word ~-- sp + sq 
2: length ~-- 2 
3: whi le  not EOF and [(sp r sq) or (sp = sq 7~ 'u '  and sq r st)] do 
4: length ~-- length + 1 
5: shi f t1( )  
6: word ~- word + sq 
7: end  whi le  
8: if not EOF t h e n  
9: length ~ l e n g t h -  2 

10: word ~- w o r d -  s p -  sq 
11: end  if 

A l g o r i t h m  3.7 (Procedure)output_run(length, symbol) 

INPUT:  runlength, symbol 
OUTPUT: codeword for a run 
1. if s y m b o l -  ' u '  t h e n  
2: output ?'length 
3: else 
4: output rlength -t- symbol 
5- end  if 

A l g o r i t h m  3.8 (Procedure)output_nonrun(length, word) 

INPUT:  runlength, word 
OUTPUT: codeword for a non-run 

1: output nlength ~-word 

Observat ion 

We have gained some useful insight of algorithm design from the above process. 

1. Identify smallest set of symbols to begin with; 

2. It is often easier to take a standard top-down design approach; 

3. It is useful to draw a diagram to help understand the problem. 

D e c o m p r e s s i o n  

Similarly, we collect the ideas and write them in pseudocode. 
myHDC decompression idea: 
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A l g o r i t h m  3.9 myHDC decoding 

I N P U T :  run-length codeword sequence 
OUTPUT: symbol sequence 

1: controlSyrnbol ~-- read_next_symbol() 
2. whi le  not EOF do 
3. if con t ro lSymbol -  'r 'k t h e n  
4: nextSyrnbol ~-- read_next_symbol() 
5. if nextSyrnbol is a control symbol t h e n  
6: output(k, ' u ' )  
7: else 
8: output_run(k, nextSyrnbol) 
9. end  if 

10: else 
11: output_nonrun(k) 
12: end  if 
13: if nextSyrnbol is not a control symbol t h e n  
14: nextSyrnbol ~ read_next_symbol() 
15: end  if 
16: controlSymbol ~ nextSymbol 
17: end  whi le  

A l g o r i t h m  3.10 (Procedure)output_run()  

I N P U T :  k, symbol 
OUTPUT: symbol sequence 
1. f o r i = l , i _ < k , i = i + l d o  
2: output symbol 
3. end  for 

A l g o r i t h m  3.11 (Procedure)output_nonrun()  

I N P U T :  k 
OUTPUT: symbol sequence 
1. f o r i = l , i _ < k , i = i + l d o  
2: symbol ~-- read_next_symbol() 
3: output symbol 
4: end  for 

Algorithm design is a complex process. The first version of any algorithm 
almost certainly contains flaws. As a student, you should not be disappointed 
or surprised to find errors in your (or anyone else's) algorithms. It is more 
important  to know what causes the problem and how to debug it. 
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Stage 4: Verification of the algorithm 
Correctness 

The first thing to verify at this stage is the correctness of the algorithm. We need 
to make sure that the algorithm produces the expected solutions in all cases. 
Unfortunately, it is not always easy to give mathematical proof in algorithm 
analysis. Existing testing methods can, strictly speaking, show only the presence 
of bugs, but not their absence. Nevertheless, testing is essential in maintaining 
the quality of software. It is an effective way to find the bugs in an algorithm. 

In this book, we take a simple approach that is similar to the so-called black- 
box method. The black-box approach means testing an algorithm or program 
based only on its interface, without knowing its internal structure. We first 
prepare a set of test data as inputs to the algorithm and work out the expected 
outputs from the algorithm for each instance of the inputs. Next we run the 
algorithm on the test data to get the actual output. Finally we compare the 
actual output to the expected output. 

It is important to design a good set of testing data. The general requirement 
to test data includes: being easy to check for correctness, being as representative 
as possible of the real input data to the algorithm, covering extreme and possible 
illegal values of the input data. 

For example, string n3GGRr3Kr2nsGHEEN is not bad for a quick check on 
Algorithm 3.1 and 3.9 because it covers most working cases in the algorithms. 

Saving percentage 

Next, we want to estimate the compression quality at this stage. 
Let the source file contain N symbols from an alphabet Sl, s2, .- .  , Sn. Sup- 

pose there are possible runs of length 11,12,.. . ,  lm. The number of runs of 
length li is ki, where i - 1,- . .  ,m, where m _< N. (In practice, m would be 
much smaller than N.) 

Hence the average length of the runs is 

m [_  ~-]i=1 kili ~n ki 
i=1 

m 
where the total number of runs is M = E i = I  k i .  

If we know the probability distribution of the run lengths in a source 
(Pl, P2 ,""  , P,~), we can estimate 7 by 

m 

[ -  E pili 
i----1 

Since each codeword is a tuple (r,l,s), the codewords are of fixed length. 
For example, if 0 _< 1 < 255, then the length for each codeword is 3 bytes. That  
is to say, each codeword is equivalent to three symbols long. 
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Therefore, the saving percentage is 

M ( 1 -  3) 

N 

As we can see, the performance of the run-length algorithm depends on the 
number and average length of the runs. Run-length algorithms are very effective 
if the data source contains many runs of consecutive symbol. The symbols can 
be characters in a text file, 0s or ls in a binary file or black-and-white pixels in 
an image. 

One easy way to verify an algorithm is to feed the algorithm data and verify 
expected outcomes. For example, the previous example of data can be the input 
to the algorithms. We leave this as an exercise to the reader. 

Stage 5" Estimation of the computational complexity 
T i m e  efficiency 

We next move on to the time complexity of the algorithms. 
From the encoding algorithms, we see it is of O(N) where N is the number 

of symbols in the source file. 
In theory, one would justify the algorithmic solutions before moving on to the 

implementation stage. Unfortunately, in modern practice, it is easy for people 
to start implementation early despite obvious disadvantages of the approach. 
We hope that we have in this section demonstrated a systematic approach to 
algorithm design. The reader is encouraged to apply this approach to all the 
exercises in the book. 

S u m m a r y  
Run-length algorithms are simple, fast and effective for a source that contains 
many long runs. The HDC algorithm is a good example of such an approach 
which is still used today. One good way of studying algorithms is to play with 
examples. 

Learn ing  o u t c o m e s  

On completion of your studies in this chapter, you should be able to: 

�9 describe a simple version of run-length algorithm 

�9 explain how a run-length algorithm works 

�9 explain under what conditions a run-length algorithm may work effectively 

�9 explain, with an example, how the HDC algorithm works 

�9 derive a new version of a run-length algorithm following the main steps of 
algorithm design process. 
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Exercises 
E3.1 Apply the HDC (hardware data compression) algorithm to the following 

sequence of symbols: 

kkkkuuuuuuuuuuuuguuhh 5522777666 ab b b b cmm j uu# # 

Show the compressed output and explain the meaning of each control 
symbol. 

E3.2 Explain how the compressed output from the above question can be re- 
constructed using the decompression algorithm. 

E3.3 Provide an example of a source file on which the HDC algorithm would 
perform very badly. 

E3.4 Outline the main stages of an algorithm design, using a simplified version 
of the run-length algorithm. 

Laboratory 
L3.1 Based on the outline of the simple HDC algorithm, derive your version of 

the HDC algorithm in pseudocode which allows an easy implementation 
in your favourite program language. 

L3.2 Implement your version of the HDC algorithm. Use MyHDC as the name of 
your main class/program. 

L3.3 Provide two source files good.source  and bad.source ,  on which HDC 
would perform very well and very badly respectively. Indicate your defi- 
nition of 'good' and 'bad' performance. 

Hint:  Define the input and output of your (compression and decompres- 
sion) algorithms first. 

Assessment 
$3.1 Describe with an example how a run-length coder works. 

$3.2 Apply the HDC (hardware data compression) algorithm to the sequence: 

uuuuuuuBCuuuAu1144330000uuEFGHHHH 

Demonstrate the compressed output and explain the meaning of each con- 
trol symbol. 
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Chapter 4 

Huffman coding 

In this chapter, we formally study the Huffman coding algorithms and apply 
the theory in Chapter 2. 

4.1 Static Huffman coding 
Huffman coding is a successful compression method used originally for text 
compression. In any text, some characters occur far more frequently than others. 
For example, in English text, the letters E, A, O, T are normally used much 
more frequently than J, Q, X. 

Huffman's idea is, instead of using a fixed-length code such as 8 bit extended 
ASCII or DBCDIC for each symbol, to represent a frequently occurring char- 
acter in a source with a shorter codeword and to represent a less frequently 
occurring one with a longer codeword. Hence the total number of bits of this 
representation is significantly reduced for a source of symbols with different 
frequencies. The number of bits required is reduced for each symbol on average. 

C o m p r e s s i o n  

In order to understand the problem, we first look at some examples of source 
texts. 

E x a m p l e  4.1 Consider the string BILL BEATS BEN. For convenience, we ig- 
nore the two spaces. 

The frequency of each symbol is: 

B I L E A T S N  
3 1 2 2 1 1 1 1  

Sort the list by frequency: 

BLEIATSN 
3 2 2 1 1 1 1 1  

67 
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This source consists of symbols from an alphabet (B, L, E, I, A, T, S, N) 
with the recurrent statistics (3, 2, 2, 1, 1, 1, 1, 1). We want to assign a variable 
length of prefix code to the alphabet, i.e. one codeword of some length for each 
symbol. 

The input of the compression algorithm is a string of text. The output of the 
algorithm is the string of binary bits to interpret the input string. The problem 
contains three subproblems: 

1. Read input string 

2. Interpret each input symbol 

3. Output the codeword for each input symbol. 

The first and the last subproblems are easy. For the first subproblem we 
only need a data structure to allow the access to each symbol one after another. 
Suppose the prefix code is C = (Cl, c2, . . .  , Cn), where n = 8 in this example. For 
the last subproblem, we only need a means to find the corresponding codeword 
for each symbol and output the codeword. 

So we focus on the second subproblem which is how to derive the code C. 
We write the description of the problem: 

M a i n  S u b p r o b l e m :  Derive an optimal or suboptimal prefix code. 
I n p u t :  An alphabet and a frequency table. 
O u t p u t :  A prefix code C such that the average length of the codewords is as 
short as possible. 

Modelling is fairly easy if we follow the statistical model in Chapter 2. The 
alphabet of a source is S = (81,82, ' '" , 8n) which associates with a probability 
distribution P = (Pl, P2, " " �9 , Pn). Note a frequency table can be easily converted 
to a probability table. For example, we use the previous example where a 
frequency table (3, 2, 2, 1, 1, 1, 1, 1) is given for alphabet (B, L, E, I, A, 
T, S, N). The total frequency is 3 + 2 + 2 + 1 + 1 + 1 +  1 +  1 = 12. The 
probability for each symbol is the ratio of its frequency over the total frequency. 
We then have the probability distribution for prediction of a source in the future 
( 3 2 2 1 1 2 1 1 2 1 )  

12~ ~ 12~ 12 ~ ~ 12 ~ ~ " 
We now consider how to construct a prefix code in which short codewords 

are assigned to frequent symbols and long codewords to rare symbols. Recall 
in Section 2.3.3 that any prefix code can be represented in a 0-1 tree where 
all the symbols are at leaves and the codeword for each symbol consists of the 
collection of the 0s and ls from the root to that leaf (Figure 2.5). The short 
codewords are at lower level leaves and the long codewords at higher level leaves 
(Figure 2.8). 1 If we have such a binary tree for the alphabet, we have the prefix 
code for the source. 

Suppose the prefix code is C = (Cl, c2," �9 �9 cn) with lengths/2 = (/1,12," �9 �9 , ln) 
respectively. 

Our problem of deriving a prefix code becomes a problem of how to construct 
a 0-1 tree so that 

1 N o t e  t h e  r o o t  is a t  t h e  l o w e s t  l e v e l  o f  t h e  t r e e .  
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1. All the symbols are leaves 

2. If pj > Pi, then lj < li, for all i , j  = 1 , . . .  , n  

3. Two longest codewords are identical except for the last bit. 

For example, symbol B has a higher frequency than L, therefore the codeword 
length for B should be no longer than L. 

The longest codewords should be assigned to the more rare symbols which 
are the last two symbols in our sorted list: 

If the codeword for S is 0000, then the codeword for N should be 0001. 
There are two approaches to construct a binary tree: one is starting from 

the leaves to build the tree from the bottom up to the root. This 'bottom-up'  
approach is used in Huffman encoding. The other is starting from the root 
down to the leaves. The 'top-down' approach is used in Shannon-Fano encoding 
(Section 4.2). 

4.1.1 Huffman approach 
We first look at Huffman's 'bottom-up'  approach. Here we begin with a list of 
symbols as the tree leaves. The symbols are repeatedly combined with other 
symbols or subtrees, two items at a time, to form new subtrees. The subtrees 
grow in size by combination on each iteration until the final combination before 
reaching the root. 

In order to easily find the two items with the smallest frequency, we maintain 
a sorted list of items in descending order. With minor changes, the method also 
works if an ascending order list is maintained. 

Figure 4.1 shows how the tree is built from the leaves to the root step by 
step. It carries out the following steps in each iteration: 

1. Combine the last two items which have the minimum frequencies or prob- 
abilities on the list and replace them by a combined item. 

2. The combined item, which represents a subtree, is placed accordingly to 
its combined frequency on the sorted list. 

For example, in Figure 4.1(1), the two symbols S and N (in shade) with the 
least frequencies are combined to form a new combined item SN with a frequency 
2. This is the frequency sum of two singleton symbols S and N. The combined 
item SN is then inserted to the second position in Figure 4.1(2) in order to 
maintain the sorted order of the list. 

Note there may be more than one possible place available. For example, in 
Figure 4.1(2), SN with a frequency of 2 can also be inserted immediately before 
symbol I, or before E. In this case, we always place the newly combined item to 
a highest possible position to avoid it getting combined again too soon. So SN 
is placed before L. 
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Figure 4.1: Building a Huffman tree 

Generalising from the example, we derive the following algorithm for building 
the tree: 

Bu i ld ing  the  b i n a r y  t r ee  

Sort alphabet in descending order S = (s l, s 2 , . . "  , sn) according to the associ- 
ated probability distribution. P = (p l ,p2 ,""  ,pn). Each si represents the root 
of a subtree. Repeat the following until there is only one composite symbol in 
S: 

1: If there is one symbol, the tree is the root and the leaf. Otherwise, take 
two symbols si and sj in the alphabet which have the lowest probabilities 
pi and pj .  

2: Remove si and sj from the alphabet and add a new combined symbol (si, sj) 
with probability pi + Pj. The new symbol represents the root of a subtree. 
Now the alphabet contains one fewer symbol than before. 

3: Insert the new symbol (si, sj)  to a highest possible position so the alphabet 
remains the descending order. 
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G e n e r a t i n g  the  prefix code 

Once we have the binary tree, it is easy to assign a 0 to the left branch and a 
1 to the right branch for each internal node of the tree as in Figure 4.2. The 
0-I values marked next to the edges are usually called the weights of the tree. 
A tree with these 0-i labels is called a weighted tree. The weighted binary tree 
derived in this way is called a Huffman tree. 

(((SN)L)EI) (B(AT)) 
12 

7 5 

4 3 B 2 

2LEI AT 
oN 
S N  

Figure 4.2: A Huffman tree 

We then, for each symbol at a leaf, collect the 0 or 1 bit while traversing 
each tree path from the root to the leaf. When we reach a leaf, the collection 
of the 0s and Is forms the prefix code for the symbol at that leaf. The codes 
derived in this way are called Huffman codes. 

For example, the collection of the 0s and Is from the root to leaf for symbol 
E is first a left branch 0, then right branch 1 and finally left branch 0. Therefore 
the codeword for symbol E is 010. Traversing in this way for all the leaves, we 
derive the prefix code (i0 001 010 011 II0 III 0000 0001) for the whole alphabet 
(B, L, E, I, A, T, S, N)respectively. A prefix code generated in this way 
is called Huffman code. 

4.1.2 Huffman compression algorithm 
We first outline the ideas of Huffman compression algorithm with missing de- 
tails. 

A l g o r i t h m  4.1 Huffman encoding ideas 

i: Build a binary tree where the leaves of the tree are the symbols in the 
alphabet. 

2: The edges of the tree are labelled by a 0 or I. 
3: Derive the Huffman code from the Huffman tree. 

This algorithm is easy to understand. In fact, the process of labelling the 0s 
and is does not have to be at the end of construction of the entire Huffman tree. 
An assignment of a 0 or 1 can be fulfilled as soon as two items are combined, 
beginning from the least significant bit of each codeword. 



72 C H A P T E R  4. H U F F M A N  C O D I N G  

We now add details and derive an algorithm as follows. 

A l g o r i t h m  4.2 Huffman encoding 

INPUT: a sorted list of one-node binary t r e e s  ( t l ,  t 2 , . . .  , tn)  for alphabet 
( S l , . - . ,  Sn) with frequencies ( W l , . . . ,  Wn) 

OUTPUT: a Huffman code with n codewords 

1: initialise a list of one-node binary trees ( t l , t 2 , . . .  , tn)  with weight 
(Wl, w2, " " , Wn) respectively 

2: f o r k = l ;  k < n ;  k = k + l d o  
3: take two trees ti and tj with minimal weights (wi <_ wj)  
4: t ~ merge( t i ,  t j)  with weight w . -  wi + Wj,  

where le f t_chi ld( t )  ~ ti and right_child(t)  ~ tj 
5: edge(t, ti) ~ 0; edge(t, t j )  ~ 1 
6: end  for 
7: output every path from the root of t to a leaf, where pathi  consists of 

consecutive edges from the root to leafi  for si 

Figure 4.3 shows an example of how this practical approach works step by 
step. 

C a n o n i c a l  a n d  m i n i m u m - v a r i a n c e  H u f f m a n  c o d i n g  

We have followed the two 'rules' below as standard practice during the derivation 
of a Huffman tree in this section: 

1. A newly created item is placed at the highest possible position in the 
alphabet list while keeping the list sorted. 

2. When combining two items, the one higher up on the list is assigned 0 
and the one lower down 1. 

The Huffman code derived from a process that  follows these rules is called 
a canonical and minimum-var iance  code. The code is regarded as standard and 
the length difference among the codewords is kept to the minimum. Huffman 
coding that  follows these rules is called canonical and minimum-var iance  Huff- 
man coding. 

Note the canonical and minimum-variance Huffman code is not necessarily 
unique for a given alphabet with associated probability distribution, because 
there may be more than one way to sort the alphabet list. For example, alphabet 
(B, L, E, I, A, T, S, N) with the probabilities (3, 2, 2, 1, 1, 1, 1) may be sorted 
in many ways. Figure 4.4 shows two different canonical and minimum-variance 
Huffman trees for the same source, one is based on and 
the other on with the only difference in the position of 
symbols T and S (see highlighted symbols in both lists). 
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Figure 4.4: Two canonical and minimum-variance trees 
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Figure 4.5: Huffman decompression process 

4.1.3 Huffman decompression algorithm 
The decompression algorithm involves the operations where the codeword for a 
symbol is obtained by 'walking' down from the root of the Huffman tree to the 
leaf for each symbol. 

E x a m p l e  4.2 Decode the sequence 00000100001 using the Huffman tree in 
Figure ~.2. 

Figure 4.5 shows the first seven steps of decoding the symbols S and E. The 
decoder reads the 0s or ls bit by bit. The 'current' bit is highlighted in shade 
in the sequence to be decompressed on each step. The edge chosen by the 
decompression algorithm is marked as a bold line. For example, in step (1), 
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start ing from the root of the Huffman tree, we move along the left branch one 
edge down to the left child since a bit 0 is read. In step (2), we move along the 
left branch again to the left child since a bit 0 is read, and so on. When we 
reach a leaf, for example, in step (4), the symbol (the bold 'S') at the leaf is 
output.  This process starts  from the root again (5) until step (7) when another 
leaf is reached and the symbol 'E' is output.  

The decoding process ends when E0F is reached for the entire string. 
We now outline the ideas of Huffman decoding. 

A l g o r i t h m  4.3 Huffman decoding ideas 

1: Read the coded message bit by bit. Start ing from the root, we traverse one 
edge down the tree to a child according to the bit value. If the current bit 
read is 0 we move to the left child, otherwise, to the right child. 

2: Repeat  this process until we reach a leaf. If we reach a leaf, we will decode 
one character and restart  the traversal from the root. 

3: Repeat  this read-and-move procedure until the end of the message. 

Adding more details, we have the following algorithm: 

A l g o r i t h m  4.4 Huffman decoding 

INPUT: 

OUTPUT: 
a Huffman tree and a 0-1 bit string of encoded message 
decoded string 

1: initilise p ~- root 
2: wh i l e  not EOF do  
3: read next bit b 
4: if b - 0 t h e n  
5: p ~- l e f t _ch i ld (p )  
6: else 
7: p ~-- l e f t _ch i ld (p )  
s: e n d  if 
9: if p is a leaf t h e n  

10: output  the symbol at the leaf 
11: p ~ root 
12: e n d  if 
13: e n d  wh i l e  

4.2 Shannon-Fano approach 
Shannon-Fano coding is similar to Huffman 2 coding and only differs in the way 
of constructing the binary tree. In the Shannon-Fano approach, a binary tree 

2The Shannon-Fano method was proposed before Huffman coding and is named after the 
inventors Claude Shannon (Bell Laboratories) and Robert Fano (MIT). 
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is constructed in a 'top-down' manner. 
Let us first review Figure 4.2 in Example 4.1. There the root is the whole 

alphabet of the symbols (((SN)L)EI)  (B(AT)). The brackets record how the 
symbols have been combined. They also provide a way to construct the binary 
tree according to the brackets from the root to the leaves. 

In each iteration, a node can be spilt into two halves, one corresponds to a 
left subtree, the other to the right subtree. 

(|) (((SN)L)EI) (B(AT)) 
/k 

( (SN)L)EI B(AT) 

(2) (((SN)L)EI) (B(AT)) 

( (SN)L)EI B(AT) 

(SN) L EI B AT 

(3) (((SN)L)EI) (B(AT)) 
/k 

( (SN)L)EI B(AT) 

(SN) L EI B AT 

SN L E I A T 

(4) (((SN)L)EI) (B(AT)) 

( (SN)L)EI B(AT) 

(SN) L EI B AT 

SN L E I A T 
/k 
s N 

Figure 4.6: A binary tree constructed from the root 

For example, from ( ((SN)L)EI) (B(AT)), we know the whole string can be 
divided into two halves: ((SN)L)EI and B(AT). Let the first half be the left child 
and the second the right child and we have a binary tree as in Figure 4.6(1). 
Next, each half can be divided into two halves again as in Figure 4.6(2). This 
division process continues until each half becomes a singleton symbol, as the 
whole binary tree in Figure 4.6(4). 

The example suggests that, given an alphabet 8 = (sl, s2 , . . .  , sn), a binary 
tree can be constructed easily by dividing a string into two halves recursively. A 
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'middle' split point is required for each division. Suppose we know the probabil- 
ity distribution of the source 7 ) = (p l ,p2 , ""  ,Pn). The values of the probabili- 
ties of the symbols can then be used to find the middle point for each division. 
For example, we can on each iteration divide the symbol list into two halves 
with as balanced a weight as possible. 

E x a m p l e  4.3 Consider a source 8 = (B, L, E, I ,  A, T, S, iV)with fre- 
quencies (3, 2, 2, 1, 1, 1, 1, 1). We can divided the symbol list into two halves 
with the minimum difference between the sum of probabilities of the two halves. 

Figure 4.7 gives the process of the division. The vertical dash lines mark the 
division point for each segment of symbols. As we can see, after the first division 
(Figure 4.7(2)) the alphabet is split into two segments, (B, L) and (E, I ,  A, 
T, S, N), with aminimum difference of frequency 1(2+3) - (2+1+1+1+1+1)1  = 
2. After the next division, (B, L) is divided into B and L, and (E, I ,  A, T, 
S, N) is divided into (F., I)  and ( t ,  T, S, N) with a minimum frequency 
difference of 13-  21 = 1 and 1(2 + 1 ) -  (1 + 1 + 1 + 1)1 = 1 respectively. This 
process continues until step (5) (Figure 4.7(5)) where all the leaves are a single 
symbol. 

This example shows the Shannon-Fano approach precisely. In fact, since our 
goal is to produce a prefix code instead of a binary tree, the process of labelling 
0-1s can be embedded into the division process. For example, each time after 
a division, we can simply add a 0 to the codeword for the first half and a 1 to 
the second half (or a 1 to the first half and 0 to the second half). The codes 
derived in this way are called Shannon-Fano codes. 

We now can derive the algorithm. 

4 . 2 . 1  S h a n n o n - F a n o  a l g o r i t h m  

Compression 

Given a list of symbols, the algorithm involves the following steps: 

1. Develop a frequency (or probability) table 

2. Sort the table according to frequency (the most frequent one at the top) 

3. Divide the table into two halves with similar frequency counts 

4. Assign the upper half of the list a 0 and the lower half a 1 

5. Recursively apply the step of division (3) and assignment (5) to the two 
halves, subdividing groups and adding bits to the codewords until each 
symbol has become a corresponding leaf on the tree. 
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(1) B L E I A T S N 
3 2 2 1 I 1 I 1 

! 
(2) B L, E I A T S N 

3 / ~ 1  1 1 1 1 

B L E I A T S N 
3 2 2 1 1 1 1 1 

I 
(3) B L , E I A T S N 

3 ~ 1  1 1 1 1 

I I 
BIL E I,A T S N 

/ ~  2 1 , 1  1 1 1 

B L E I A T S N 
3 2 2 1 1 1 1 1 

I (4) B L , E I A T S N 
3 / / ~ 1  1 1 1 1 

I I 
BtL E IrA T S N 
~ 2 1 , 1  1 1 1 

I I 
B L E,I A TiS N 

?< I 
E I A T S N 
2 1 1 1 1 1 

I 
(5) B L , E I A T S N 

3 / / ~ 1  1 1 1 1 

I I 
BIL E IiA T S N 

/ ~ x ~  x 2 l J l  1 1 1 

I i 
L Ell A TtS N 
2 2 , 1  1 1 , 1  1 

I I 
E I A I T  S i N  

A A S N 
1 1 1 1 

Figure 4.7: Building an equivalent Shannon-Fano tree 
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This can be further refined to Shannon-Fano(S) algorithm. 

A l g o r i t h m  4.5 Shannon-Fano encoding ideas 

1: if S consists of only two symbols t h e n  
2: add 0 to the codeword of the first symbol and 1 to the second 
3: else 
4. if S has more than three symbols t h e n  
5: divide S into 2 subsequence S1 and $2 with minimum probability dif- 

ference 
6: add a 0 to extend the codeword for each symbol in $1 and a 1 to those 

in $2 
7: Shannon-Fano (S1) 
8: Shannon-Fano(S2) 
9: end  if 

10: end  if 

E x a m p l e  4.4 Suppose the sorted frequency table below is drawn from a source. 
Derive the Shannon-Fano code. 

Symbol A B C D E 
Frequency 15 7 6 6 5 

Solut ion  

1. First division: 

(a) Divide the table into two halves so the sum of the frequencies of each 
half is as close as possible. 

Symbol A B I C D E 
Frequency 15 7 I 6 6 5 
sum(s) (22) 1 (17 )  

(b) Assign one bit of the symbol (e.g. upper group 0s and the lower ls). 

Symbol A B I C D E 
Frequency 15 7 I 6 6 5 
sum(s) (22) 1 (17 )  
codewords 0 I 1  

2. Second division: 
Repeat the above recursively to each group. 

Symbol A I B, C I D E 
Frequency 15 1 7, 6 1 6 5 
sum(s) (15) I (7) ,  (6) 1(11) 
codewords 00101, i01 11 
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3. Third division: 

Symbol A, B, C, D I E 
Frequency 15, 7, 6, 6 1 5 
codewords 00,01,I0, II0 I Iii 

4. So we have the following code (consisting of five codewords) when the 
recursive process ends: 

A B C D E 
O0 Ol I0 Ii0 III 

D e c o m p r e s s i o n  

Decompression takes the same approach as Huffman decoding. We leave it as 
an exercise. We have derived Huffman coding and Shannon-Fano coding algo- 
rithms. Before implementing the algorithms, we want to know the advantages 
and disadvantages of these algorithms. 

S a v i n g  p e r c e n t a g e  

Saving percentage is an instance-based measure. 
Consider Figure 4.3 in Example 4.1 again. Given the alphabet (B, L, E, 

I, A, T, S, N) with the frequency table (3, 2, 2, 1, I, I, I, I), the Huffman 
code (I0, 001, 010, 011, ii0, iii, 0000, 0001) is derived with lengths (2, 3, 
3, 3, 3, 3, 4, 4) respectively. The total number of bits required by the source 
B I L L B E A T S B E N i s 2 x 3 + 3 x 2 x 2 - t - 3 x  1 x 3 + 4 x l x 2 = 3 5 .  

Comparing this to the use of 8 bit ASCII or EBCDIC coding, the source 
BILLBEATSBEN requires a total of 8 x 12 = 96 bits. 

Huffman 
35 

ASCII/EBCDIC 
96 

Saving bits 
61 

96 35 = 61 

Percentage 
63.5% 

61/96 - 63.5% 

The saving percentage seems impressive. However, for small alphabets like 
the one in this example, other coding methods can also be very effective. For 
example, if we know the alphabet for a source is always as small as eight symbols, 
a 3 bit fixed length code can be used as three bits can represent 23 = 8 distinctive 
codewords. Comparing to a 3 bit fixed length code where the source requires 3 x 
12 = 36 bits, Huffman coding achieves approximately 2.7% saving percentage. 

Huffman 
35 

ASCII/EBCDIC 
36 

Saving bits 

36 
1 
3 5 =  1 

Percentage 
2.7% 

1/36--  2.7% 
. . . . .  

Is the Huffman code in this instance the best code? To answer this question, 
we only need to compute the entropy of the source. 



4.3. OPTIMAL HUFFMAN CODES 81 

Entropy 
We first convert the frequencies of the alphabet to probabilities (1/4, 1/6, 1/6, 
1/12, 1/12, 1/12, 1/12, 1/12). Then compute the entropy: 

1 1 1 
H - ~ log 2 4 + 2(~ log 2 6) + 5(-i- ~ log 2 12) ~ 2.855 bits 

We then compute the average length of the Huffman code with lengths (2, 
3, 3, 3, 3, 3, 4, 4): 

- 1 1 1 1 
- -  - -  ~ 4.416 bits / = 2 x  ~ + 2 x 3 x  ~ + 3 x 3 x  1 2 + 2 x 4 x  12 

The difference between the entropy and the average length of the code rep- 
resents, in this instance, the room for any further improvement on compression. 
This means Huffman codes are not always optimal. 

If the performance of a compression algorithm such as Huffman coding de- 
pends on the source, under what condition on the source does the Huffman 
compression algorithms perform the best? In other words, under what source 
condition are the Huffman codes optimal? 

4.3 Optimal Huffman codes 

Huffman codes are optimal when probabilities of the source symbols are all 
1 1 1 etc. negative powers of two. Examples of a negative power of two are 3, ~, g, 

The conclusion can be drawn from the following justification. 
Suppose that  the lengths of the Huffman code are s = (11,12,.-. , ln) for a 

source P = (px, p2, '" �9 , pn), where n is the size of the alphabet. 
Using a variable length code to the symbols, lj bits for sj, the average length 

of the codewords is (in bits): 

n 

[ -  E ljpj -- liP1 + 12P2 + ' "  + lnPn 
j=l  

The entropy of the source is: 

n 

H E PJ log 1 1 1 = - -  = Pl l o g -  + P2 l o g -  + . . -  + Pn log 1 
j=l  PJ Pl P2 Pn 

As we know from Section 2.4.2, a code is optimal if the average length of the 
codewords equals the entropy of the source. 

Let 
n n 1 

E ljpj -- E p  j log 2 - -  
j = l  j = l  PJ 
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and notice 
n n 

j = l  j = l  

This equation holds if and only if lj - - l o g 2 p  j for all j - 1 , 2 , - . . , n ,  
because lj has to be an integer (in bits). Since the length lj has to be an 
integer (in bits) for Huffman codes, - l o g 2 p  j has to be an integer, too. Of 
course, - l o g  2 pj cannot be an integer unless pj is a negative power of 2, for all 
j -  1 ,2 , . . .  ,n. 

In other words, this can only happen if all probabilities are negative powers 
of 2 in Huffman codes, for lj has to be an integer (in bits). For example, for a 

1 1 1 1 Huffman codes for the source can be optimal s o u r c e  7 ) - (2' 4 '  8 '  8 ) '  

4.4 Implementation efficiency 
The Huffman algorithms described earlier require a list of symbolic items to be 
maintained on each iteration in descending order of probabilities. The search 
for a right place for the newly combined item requires O(n 2) time overall in the 
worst case, where n is the number of symbols in the alphabet. 

One way to improve the time efficiency is to modify the encoding algorithm 
slightly as follows: 

1. Maintain two probability (or frequency) lists: one (L~) contains the orig- 
inal symbols in descending order of probability. The other (Lc), initially 
empty, is built to contain the 'combined items' only. 

2. A new combined item is always placed to the front of list Lc. This can 
be achieved in O(1) worst time, since there is no need for searching for a 
right place. 

The next two items to be combined are the smallest items, the same as 
the two if it were in a normal Hutfman encoding algorithm. However, both 
Ls and Lc have to be taken into consideration in the two-list approach. The 
two items for the next combination may be chosen among the two last symbols 
in L~, two combined symbol items in Lc, or one combined symbol item and 
one singleton symbol in Lc and L~ respectively, whichever items have the least 
weight (probability). 

The following example shows how this efficient approach works step by step. 

E x a m p l e  4.5 Consider the source alphabet (,4, B, C, D, E, F, G, H, I ,  J) 
and the probabilities (in ~)  19, 17, 15, 13, 11, 9, 7, 5, 3, 1. Show how to con- 
struct a Huffman tree efficiently by maintaining two lists. 

In what follows, Ls represents the singleton list Ls, P the probabilities of the 
symbols and Lc the list Lc for combined symbol items: 

l. Ls" A B C D E F G H I J 
P" 19 17 15 13 II 9 7 5 3 1 

Lc" Empty 
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2. Ls: A B C D E F G H 
P: 19 17 15 13 II 9 7 5 
Lc: (I J) 
P: 4 

3. Ls: A B C D E F G 
P: 19 17 15 13 Ii 9 7 
Lc: (H (I J)) 
P: 9 

4. Ls: A B C D E 
P: 19 17 15 13 11 
Lc: (FG) (H (I J))) 
P: 16 9 

5. Ls: A B C D 
P: 19 17 15 13 
nc: (E (H (I J))) (FG) 
P: 20 16 

6. Ls: A B 
P: 19 17 
nc: (CD) (E (H (I J))) (FG) 
P: 28 20 16 

7. Ls: A 
P: 19 
nc: (B (FG)) (CD) (E (H (I J))) 
P: 33 28 20 

8. Ls" Empty 
nc: (A (E (H (I J)))) (B (FG)) (CD) 
P: 39 33 28 
Li: Empty 

9. Lc: ((B (FG)) (CD)) (A (E (H (IJ)))) 
P: 61 39 
Ls: Empty 

lO. nc: (((B (FG)) (CD)) (A (E (H (I J))))) 
P: i00 
Ls" Empty 

Construct the binary tree recursively from the root" 

( (B (FG)) (CD))_(A (E (H (I J) ) ) ) 

(B (FG)) (CD) A (E (H (I J) ) ) 
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. 

. 

. 

( (B (FG)) (CD))_(A (E (H (I J) ) ) ) 

(B(FG)) (CD) A(E(H(IJ)))  
o ~  ~ 

B(FG) CD A E(H(IJ))  

( (B (FG)) (CD))_(A (E (H (I J) ) ) ) 

(B (FG)) (CD) 
of--. 1 

B(FG) o~ o~1 
B FG C D 

A(E(H(IJ))) 
o ~  
A E(H(IJ) ) 

o ~  
E H(IJ) 

( (B (FG)) (CD)) (A(E(H (I J) ) ) ) 

(B (FG)) (CD) 
o ~  

B(FG) o~~ o7~ 
B C D 

o7,1 
F G 

A(E(H(IJ))) 
o~~~,~ 
A E(H(IJ)) 

E H(!J) 
o ~  
H I J  

( (B (FG)) ( C ~ H  (I J) ) ) ) 

(B (FG)) (CD) 
oj---..~ 

B(FG) o ~  o7,1 
B C D 

& 
F G 

A(E(H(IJ))) 

A E(H(IJ)) 
o ~  
E H(IJ) 

o ~  
H 

o7,1 
I J 
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So the code is: 

B 000 F 0010 G 0011 C 010 D 011 A 10 

E 110 H 1110 I 11110 J 11111 

Observat ion 

1. Huffman or Shannon-Fano codes are prefix codes (Section 2.3.3) which are 
uniquely decodable. 

2. There may be a number of Huffman codes, for two reasons: 

(a) There are two ways to assign a 0 or 1 to an edge of the tree. In 
Figure 4.1, we have chosen to assign 0 to the left edge and 1 to the 
right. However, it is possible to assign 0 to the right and 1 to the 
left. This would make no difference to the compression ratio. 

(b) There are a number of different ways to insert a combined item into 
the frequency (or probability) table. This leads to different binary 
trees. We have chosen in the same example to: 

i. make the i tem at the higher position the left child 
ii. insert the combined item on the frequency table at the highest 

possible position. 

. 

. 

For a canonical minimum-variance code, the differences among the lengths 
of the codewords turn out to be the minimum possible. 

The frequency table can be replaced by a probability table. In fact, it can 
be replaced by any approximate statistical data  at the cost of losing some 
compression ratio. For example, we can apply a probability table derived 
from a typical text  file in English to any source data. 

When the alphabet  is small, a fixed length (less than 8 bits) code can also 
be used to save bits. 

E x a m p l e  4.6 I f  the size of the alphabet set is smaller than or equal to 
32, we can use 5 bits to encode each character. This would give a saving 
percentage of 

8 • 3 2 -  5 • 32 
= 37.5% 

8 •  

6. Huffman codes are fragile for decoding: the entire file could be corrupted 
even if there is a 1 bit error. 

7. The average codeword length of the Huffman code for a source is greater 
and equal to the entropy of the source and less than the entropy plus 1 
(Theorem 2.2). 
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4.5 E x t e n d e d  H u f f m a n  c o d i n g  

One problem with Huffman codes is that  they meet the entropy bound only 
when all probabilities are powers of 2. Wha t  would happen if the alphabet  is 
binary, e.g. S - (a ,b)? The only optimal case 3 is when 7 ) - (Pa,Pb), Pa - -  1/2 
and Pb -- 1/2. Hence, Huffman codes can be bad. 

E x a m p l e  4.7 Consider a situation when Pa - 0.8 and Pb - 0 .2.  

S o l u t i o n  Since Huffman coding needs to use I bit per symbol at least, to encode 
the input, the Huffman codewords are 1 bit per symbol on average: 

1 - 1 • 0.8 + 1 • 0.2 - 1 bit. 

However, the entropy of the distribution is 

H(7  )) - - (0 .8  log 2 0.8 + 0.2 log 2 0.2) - 0.72 bit. 

The efficiency of the code is 

H(P) 0.72 
= = 72% 

l 1 

This gives a gap of 1 -  0.72 - 0.28 bit. The performance of the Huffman 
encoding algorithm is, therefore, 0.28/1 - 28% worse than optimal in this case. 

The idea of extended Huffman coding is to encode a sequence of source sym- 
bols instead of individual symbols. The alphabet  size of the source is artificially 
increased in order to improve the code efficiency. For example, instead of as- 
signing a codeword to every individual symbol for a source alphabet,  we derive 
a codeword for every two symbols. 

The following example shows how to achieve this: 

E x a m p l e  4.8 Create a new alphabet S ~ =  (aa, ab, ba, bb) extended f rom 
S = (a, b). Let aa be A, ab be B, ba be C and bb be D. We now have an extended 
alphabet S '  = (A, B, C, i)).  Each symbol in the alphabet S ~ is a combination of 
two symbols f rom the original alphabet $ .  The size of the alphabet S ~ increases 
to 2 2 = 4 .  

Suppose symbol 'a' or 'b' occurs independently. The probability distribution 
for  S ~, the extended alphabet, can be calculated as below: 

PA -- Pa X pa = 0.64 

PB = P~ X Pb -- 0.16 

PC = Pb • P~ = 0.16 

PD = Pb X Pb = 0.04 

3Here we mean the  average number  of bits of a code equals the  entropy. 
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We then follow the normal static Huffman encoding algorithm (Section 4.1.2) 
to derive the Huffman code for 8. 

The canonical minimum-variance code for S' is (0, 11, 100, 101), for A, B, 
C, D respectively. The average length is 1.56 bits for two symbols. 

The original output became 1.56/2 = 0.78 bit per symbol. The efficiency 
of the code has been increased to 0.72//0.78 ~ 92%. This is only ( 0 . 7 8 -  
0.72)/0.78 ~ 8% worse than optimal. 

This method is supported by the following Shannon's fundamental theorem 
of discrete noiseless coding: 

T h e o r e m  4.1 For a source S with entropy H(S), it is possible to assign code- 
words to sequences of m letters of the source so that the prefix condition is 

_ 

satisfied and the average length l~n of the codewords per source symbol satisfies 

1 

Summary 
Statistical models and heuristic approach give rise to celebrating static Huffman 
and Shannon-Fano algorithms. Huffman algorithms take a bottom-up approach 
while Shannon-Fano top-down. Implementation issues make Huffman code more 
popular than Shannon-Fano's. Maintaining two tables may improve the effi- 
ciency of the Huffman encoding algorithm. However, Huffman codes can give 
bad compression performance when the alphabet is small and the probability 
distribution of a source is skewed. In this case, extending the small alphabet 
and encoding the source in small groups of symbols may improve the overall 
compression. 

Learning outcomes 
On completion of your studies in this chapter, you should be able to: 

�9 describe Huffman coding and ShannomFano coding 

�9 explain why it is not always easy to implement the Shannon-Fano algo- 
rithm 

�9 demonstrate the encoding and decoding process of Huffman and Shannon- 
Fano coding with examples 

�9 explain how to improve the implementation eFficiency of the static Huff- 
man encoding algorithm by maintaining two sorted probability lists 

�9 illustrate some obvious weaknesses of Huffman coding 

�9 describe how to narrow the gap between the minimum average number of 
binary bits of a code and the entropy using the extended Huffman encoding 
method. 
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Exercises  
E4.1 Derive a Huffman code for the string AAABEDBBTGGG. 

E4.2 Derive a Shannon-Fano code for the same string. 

E4.3 Provide an example to show step by step how the Huffman decoding al- 
gorithm works. 

E4.4 Provide a similar example for the Shannon-Fano decoding algorithm. 

E4.5 Given an alphabet S = (A, B, C, D, E, F, G, H) of symbols with the prob- 
abilities 0.25, 0.2, 0.2, 0.18, 0.09, 0.05, 0.02, 0.01 respectively in the input, 
construct a canonical minimum-variance Huffman code for the symbols. 

E4.6 Construct a canonical minimum-variance code for the alphabet A, B, C, 
D with probabilities 0.4, 0.3, 0.2 and 0.1 respectively. If the coded output 
is i 0100000101 i, what was the input? 

E4.7 Given an alphabet (a, b) with p~ = 1/5 and Pb = 4/5, derive a canonical 
minimum-variance Huffman code and compute: 

(a) the expected average length of the Huffman code 

(b) the entropy of the Huffman code. 

E4.8 Following the Shannon-Fano code in Example 4.4, decode 0010001110100 
step by step. 

E4.9 Given a binary alphabet (X, Y) with px = 0.8 and py = 0.2, derive a 
Huffman code and determine the average code length if we group three 
symbols at a time. 

Explain with an example how to improve the entropy of a code by grouping 
the alphabet. 

Derive step by step a canonical minimum-variance Huffman code for al- 
phabet (A, B, C, D, E, F), given the probabilities below: 

E4.10 

E4.11 

Symbol Probability 
A 
B 
C 
D 
E 
F 

0.3 
0.2 
0.2 
0.1 
0.1 
0.1 

Compare the average length of the Huffman code to the optimal length 
derived from the entropy distribution. Specify the unit of the codeword 
lengths used. 

Hint:  log10 2 ~ 0.3; log10 0.3 ~ -0.52; log10 0.2 ~ -0.7; loglo 0.1 - -1 .  
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Laboratory 
L4.1 

L4.2 

Derive and implement your own version of the Huffman algorithms in 
pseudocode. 

Construct two source files: the good and the bad. Explain what you mean 
by good and bad. 

L4.3 Implement the Shannon-Fano algorithm. 

L4.4 Comment on the difference between the Shannon-Fano and Huffman al- 
gorithms. 

L4.5 Derive and implement algorithms for canonical minimum-variance Huff- 
man codes. 

L4.6 Implement the Huffman encoding and decoding algorithms using the ex- 
tended coding method. 

L4.7 Develop a computer program to demonstrate how the extended Huffman 
codes may improve the quality of compression. 

Hint" The main idea here is to show the fact that the gap between the 
average length of a code and its entropy may be reduced using the extended 
Huffman coding method. If you have developed any programs in the 
previous laboratory sessions to compute the average length of a code and 
the entropy of a probability distribution, you may then simply integrate 
these into your program(s) in this section. 

Assessment 
$4.1 Explain how the implementation efficiency of a canonical minimum-variance 

Huffman coding algorithm can be improved by means of maintaining two 
frequency lists. 

$4.2 Derive step by step a canonical minimum-variance Huffman code for al- 
phabet (A, B, C, D, E, F) using the efficient implementation approach, 
given the probabilities that each character occurs in all messages are as 
follows: 

Symbol [ A B C D E F 
Probability [ 0.3 0.2 0.2 0.1 0.1 0.1 

$4.3 Compute the average length of the Huffman code derived from the above 
question. 

$4.4 Given S = (A, B, C, D, E, F, G, H) and the symbols' occurring proba- 
bilities 0.25, 0.2, 0.2, 0.18, 0.09, 0.05, 0.02, 0.01, construct a canonical 
minimum-variance Huffman code. 
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$4.5 Consider alphabet (A, B). Suppose the probability of A and B, PA and 
PB are 0.2 and 0.8 respectively. It has been claimed that even the best 
canonical minimum-variance Huffman coding is about 37% worse than its 
optimal binary code. Do you agree with this claim? If yes, demonstrate 
how this result can be derived step by step. If no, show your result with 
good reasons. 

H i n t :  log10 2 ~ 0.3; lOgl0 0.8 ~ - 0 . 1 ;  log10 0.2 ~ - 0 . 7 .  

$4.6 For the above question: 

(a) derive the alphabet that is expanded by grouping two symbols at a 
time 

(b) derive the canonical Huffman code for this expanded alphabet 

(c) compute the expected average length of the Huffman code. 
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Chapter 5 

Adaptive Huffman coding 

In static Huffman coding, the probability distribution remains unchanged during 
the process of encoding and decoding. A source file is likely to read only once 
for coding purposes to avoid expensive preprocessing such as reading the entire 
source. An alphabet and probability distribution is often applied based on the 
previous experience. Such an estimated model can compromise the compression 
quality substantially. The amount of the loss in compression quality depends 
very much on how much the probability distribution of the source differs from 
the estimated probability distribution. 

Adaptive Huffman coding algorithms improve the compression ratio by ap- 
plying to the model the statistics based on the source content seen from the 
immediate past. An alphabet and its frequency table are dynamically adjusted 
after reading each symbol during the process of compression or decompression. 
Compared to static Huffman coding, the adaptive model is much more close to 
the real situation of the source after initial steps. 

The adaptive Huffman coding technique was developed based on Huffman 
coding, first by Newton Faller and Robert G. Gallager and then improved by 
Donald Knuth and Jeffrey S. Vitter in 1985-87. In this chapter, we focus on 
the ideas behind the adaptive Huffman algorithms rather than specific versions 
by any authors. 

5.1 Adaptive approach 
In the adaptive Huffman coding, an alphabet and frequencies of its symbols 
are collected and maintained dynamically according to the source file on each 
iteration. The Huffman tree is also updated based on the alphabet and fre- 
quencies dynamically. When the encoder and decoder are at different locations, 
both maintain an identical Huffman tree for each step independently. Therefore, 
there is no need transferring the Huffman tree. 

During the compression process, the Huffman tree is updated each time after 
a symbol is read. The codeword(s) for the symbol is output immediately. For 

91 
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convenience of discussion, the frequency of each symbol is called the weight of 
the symbol to reflect the change of the frequency count at each stage. 

The output of the adaptive Huffman encoding consists of Huffman codewords 
as well as fixed length codewords. For each input symbol, the output can be a 
Huffman codeword based on the Huffman tree in the previous step or a codeword 
of a fixed length code such as ASCII. Using a fixed length codeword as the 
output is necessary when a new symbol is read for the first time. In this case, 
the Huffman tree does not include the symbol yet. It is therefore reasonable 
to output the uncompressed version of the symbol. If the source file consists 
of ASCII, then the fixed length codeword would simply be the uncompressed 
version of the symbol. 

In the encoding process, for example, the model outputs a codeword of a 
fixed length code such as ASCII code, if the input symbol has been seen for the 
first time. Otherwise, it outputs a Huffman codeword. 

However, a mixture of the fixed length and variable length codewords can 
cause problems in the decoding process. The decoder needs to know whether the 
codeword should be decoded according to a Huffman tree or by a fixed length 
codeword before taking a right approach. A special symbol as a flag, therefore, 
is used to signal a switch from one type of codeword to another. 

Let the current alphabet be the subset $ - (~ , s l , s2 , . . .  ,Sn) of some al- 
phabet and be a.y fi ed length codeword for ASCII code), 
i - 1, 2 , . . . .  To indicate whether the output codeword is a fixed length or a 
variable length codeword, one special symbol ~ (~ a) is defined as a flag or a 
shift key and to be placed before the fixed length codeword for communication 
between the compressor and decompressor. 

5 . 2  C o m p r e s s o r  

The compression algorithm maintains a subset S of symbols of some alphabet a 
(8 c a) that the system has seen so far. h Huffman code (i.e. the Huffman tree) 
for all the symbols in S is also maintained. Let the weight of ~ always be 0 and 
the weight of any other symbol in S be its frequency so far. For convenience, 
we represent the weight of each symbol by a number in round brackets. For 
example, A(1) means that symbol A has a weight of 1. 

Initially, S = {~} and the Huffman tree has the single node of symbol # 
(see Figure 5.1 step (0)). During the encoding process, the alphabet $ grows 
in number of symbols each time a new symbol is read. The weight of a new 
symbol is always 1 and the weight of an existing symbol in 8 is increased by 1 
when the symbol is read. The Huffman tree is used to assign codewords to the 
symbols in 8 and is updated after each output. 

Let h(si) be the current Huffman codeword for si and SHIFT for the special 
symbol ) in the algorithms next. 

The following example shows the idea of the adaptive Huffman coding. 

E x a m p l e  5.1 Suppose that the source file is a string hBBBhC. Figure 5.1 shows 
states of each step of the adaptive Huffman encoding algorithm. 
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Figure 5.1: An example of adaptive Huffman encoding 

As we can see from Figure 5.1, one symbol X is read from the source and 
is marked in the input string. Alphabet S contains initially a single element 

with a weight of zero. As each symbol X is read, the alphabet either grows 
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in number of symbols or in weight of an existing symbol, but ) remains a zero 
weight. The Huffman tree is updated on each step accordingly. The output on 
each step can be a Huffman codeword for # followed by a fixed length codeword 
g(X)  such as steps (1) and (2) if X is a new symbol, or a Huffman codeword 
for the input symbol such as steps (4) and (5) if X is an existing symbol in S 
already. 

5 . 2 . 1  E n c o d i n g  a l g o r i t h m  

From Example 5.1, we can derive the following main statements of the encoding 
algorithm for each iteration. 

1: s +- next_symbol_in_text 0 
2: if s has been seen before t h e n  
3: output h(s) 
4: else 
5. output h(SHIFT) followed by g(s) 
6: e n d  if 
7: T +-- update_tree(T) 

Adding the initial statement and a whi le  statement for repeating the interac- 
tion, the following encoding algorithm shows how the compressor works: Here 

A l g o r i t h m  5.1 Adaptive Huffman encoding 

1: initialise the Huffman tree T containing the only node SHIFT. 
2: whi le  more characters remain do 
3: s +- next_symbol_in_text 0 
4: if s has been seen before t h e n  
5: output h(s) 
6: else 
7: output h(SHIFT) followed by g(s) 
s: end  if 
9: T ~-- update_tree (T) 

10. end  whi le  

next_symbol_in_text() is a function that  reads one symbol from the input se- 
quence, update_tree 0 is another function which does the following: 

A l g o r i t h m  5.2 (Function)update_tree() 

1" if s is not in S t h e n  
2: add s to S; weight[s] +- 1 
3: else 
4: weight[8] +-- weight[8]-~- 1 
5: end  if 
6: recompute the Huffman tree for the new set of weights or symbols 
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5.3 Decompressor 

The decompression algorithm also maintains a set of symbols $ that  the system 
has seen so far. The weight of ) is always 0, and the weight of any other symbol 
is the frequency of occurrence so far in the decoded output. Initially, S = {)}. 

E x a m p l e  5.2 Suppose the input at the decoding end is 
Og('A')Og('B')OlOlOOg('C'). Figure 5.2 shows states of each step of the adaptive 
Huffman decoding algorithm. 

As we can see from Figure 5.2, the decoder reads the compressed file bit by 
bit. The alphabet $ grows in number of elements as in steps (1) and (2), or in 
weight of some existing symbols as in steps (3) and (4). The Huffman tree is 
identical to the Huffman tree for compression and updated on each step. The 
highlight path from the root to a leaf shows the corresponding input bits for 
each step. 

Let us look at how the decompressor works step by step. In step (1), 0 
is read. The decoder traces the only edge down from the root of the current 
Huffman tree (in step (0)) and finds the leaf is the special symbol ~. This 
indicates that  what follows is a fixed length codeword. The decoder then reads 
the fixed length codeword and outputs the original symbol 'A'. The first-time- 
seen symbol 'A' with weight 1 is added to the alphabet S which then becomes 
{A(1), ~}. The Huffman tree is updated accordingly (in step (1)). In step (2), a 
0 is read. The decoder traces the 0 edge in the current Huffman tree (in step (1)) 
and finds the leaf is the ) again. So the next fixed length codeword g('B') 1 is 
read and B is output. The new symbol B(1) is added into the alphabet S and 
the Huffman tree is updated. In step (3), a 0 is read. One 0 edge is traced and 
leaf 'B' is reached in the current Huffman tree (in step (2)). So symbol B is 
output. The weight of B is increased by 1 and the Huffman tree is updated. In 
step (4), a 1 is read. One 1-edge is traced and leaf 'B' is output. The weight 
of B is increased by 1 and the Huffman tree is updated again. In step (5), a 0 
and then a 1 are read before reaching a leaf A(1) in the current Huffman tree 
(in step (4)). So symbol A is output. The weight of A is increased by 1 in the 
alphabet and the Huffman tree is updated. In step (6), a 0 and then a 0 are 
read and a ) is reached. So the next fixed length codeword g( 'C') is read. C is 
output and the new symbol C(1) is added into the alphabet and the Huffman 
tree is updated. 

1For example, the decoder actually reads the next 8 bits if the g( 'B ' )  is an 8 bit extended 
ASCII  codeword for symbol B. 
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Figure 5.2: An example of adaptive Huffman decoding 
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5 . 3 . 1  D e c o d i n g  a l g o r i t h m  

The decoding algorithm can be summarised as below: 

A l g o r i t h m  5.3 Adaptive Huffman decoding 

1: 

2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 

initialise the Huffman tree T with single node SHIFT 
whi le  more bits remain do 

s ~-- huffman_next_sym 0 
if s -  SHIFT t h e n  

s ~-- read_unencoded_sym 0 
else 

output s 
end  if 
T +--- update_tree(T) 

end  whi le  

The function huffman_next_sym 0 reads bits from the input until it reaches 
a leaf node and returns the symbol with which that leaf is labelled. 

A l g o r i t h m  5.4 (Function) huffman_next_sym() 

1. start at root of Huffman tree 
2: while  not reach a leaf do 
3: read_next_bit 0 
4- traverse one edge down 
5. end  whi le  
6: return the symbol of leaf reached 

The function read_unencoded_sym 0 simply reads the next unencoded symbol 
from the input. For example, if the original encoding was an ASCII code, then 
it would read the next 8 bits (including the parity bit). 

As in Section 5.2, the function update_tree does the following: 

A l g o r i t h m  5.5 (Function) update_tree 

1: if s is not in $ t h e n  
2: add s to S 
3: else 
4:   ight[ ]   ight[ ] + 1 
5: end  if 
6: recompute the Huffman tree for the new set of weights and symbols. 
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5.4 Disadvantages of Huffman algorithms 
Adaptive Huffman coding has the advantage of requiring no preprocessing and 
the low overhead of using the uncompressed version of the symbols only at their 
first occurrence. 

The algorithms can be applied to other types of files in addition to text files. 
The symbols can be objects or bytes in executable files. 

Huffman coding, either static or adaptive, has two disadvantages that remain 
unsolved: 

�9 D i s a d v a n t a g e  1 It is not optimal unless all probabilities are negative 
powers of 2. This means that there is a gap between the average number 
of bits and the entropy in most cases. 

Recall the particularly bad situation for binary alphabets. Although by 
grouping symbols and extending the alphabet, one may come closer to the 
optimal, the blocking method requires a larger alphabet to be handled. 
Sometimes, extended Huffman coding is not that effective at all. 

�9 D i s a d v a n t a g e  2 Despite the availability of some clever methods for 
counting the frequency of each symbol reasonably quickly, it can be very 
slow when rebuilding the entire tree for each symbol. This is normally 
the case when the alphabet is big and the probability distributions change 
rapidly with each symbol. 

Summary 
Adaptive Huffman coding works on dynamic statistical models. The statistical 
models may be adopted to work more closely with the coders. The probability 
distribution is computed applying a frequency count and adjustment of alphabet 
after each new symbol being input into the coder. Two types of codes are used 
and a switch codeword is used to flag the alternative use of the codes. 

Learning outcomes 

On completion of your studies in this chapter, you should be able to: 

�9 distinguish a static compression system from an adaptive one 

�9 describe how adaptive Huffman coding algorithms work with examples 

�9 identify implementation issues of Huffman coding algorithms 

�9 explain the two problems (weaknesses) of the Huffman coding algorithms 
in general. 
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Exercises 
E5.1 Explain, with an example, how adaptive Huffman coding works. 

E5.2 Trace the adaptive Huffman coding algorithms to show how the following 
sequence of symbols is encoded and decoded: 

aaabbcddbbccc 

Laboratory 
L5.1 Design and implement a simple version of the adaptive Huffman encoding 

algorithm. 

L5.2 Design and implement a simple version of the adaptive Huffman decoding 
algorithm. 

Assessment 
$5.1 Describe briefly how each of the two classes of lossless compression al- 

gorithms, namely the adaptive and the non-adaptive, works in its model. 
Illustrate each with an appropriate example. 

$5.2 Show how to encode the sequence below step by step using the adaptive 
Huffman coding algorithm. 

abcbbdaaddd 
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Chapter 6 

Arithmetic coding 

Arithmetic coding is important historically because it was at the time the most 
successful alternative to Huffman coding after a gap of 25 years. It is superior in 
performance to the Huffman coding especially when the alphabet is fairly small. 
The arithmetic method extended the early coding work by Shannon, Fano and 
Elias and was developed largely by Pasco (1976), Rissanene (1976, 1984), and 
Langdon (1984). It bypasses the idea of replacing every single input symbol 
with a codeword. Instead, it encodes a stream of input symbols with a single 
fraction as the compressed output. 

6.1 P r o b a b i l i t i e s  and sub interva l s  

The idea comes first from Shannon's observation in 1948 that  messages N sym- 
bols long may be encoded by their cumulative probability. This can also be 
seen from the grouping of symbols in static Huffman coding where a sequence 
of symbols is assigned one Huffman codeword to achieve a better compression 
ratio. It is possible to accomplish the same task without explicitly extending 
the alphabet. The arithmetic method is based on the fact that  the cumulative 
probability of a symbol sequence corresponds to a unique subinterval of the ini- 
tial [0, 1], and an assumption that  the alphabet is small. However, it took a 
long time to solve the so-called precision problem before arithmetic algorithms 
became useful. 

We first look at the following example to show how the idea works. 

E x a m p l e  6.1 Consider a binary source alphabet (A, B) with a probability dis- 
tribution (0.2, 0.8). 

Figure 6.1 (a) shows the initial interval [0, 1]. 
Suppose that  an input string contains only 1 symbol. The current interval 

[0, 1) 1 can be divided into two subintervals according to the probability distri- 

1 [0, 1) means all real numbers > 0 and < 1. 

I01 
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bution (PA, PB), where a symbol A corresponds to the left subinterval and B 
to the right (Figure 6.1(b)). 

Suppose that  an input string contains only 2 symbols. The current interval 
can be divided into two subintervals further according to the probability distri- 
bution (PA, PB), where a symbol A corresponds to the left subinterval and B 
to the right. For instance, sequence BA corresponds to the highlighted interval 
in Figure 6.1(c). 

Figure 6.1: Encoding for two symbols 

This is similar to an extended binary alphabet, where each string of certain 
length has a one-to-one relationship to a unique cumulative probability interval: 

Sequence Probability Cumulative Probability Interval 

AA 
AB 
BA 
BB 

PA • PA -- 1/16 
PA • PB -- 3/16 
PB X PA = 3/16 
PB • PB -- 9/16 

1/16 
1/4 
~/4 

7/16 

[0, 1/16) 
[1/16, 1/4) 
[1/4, 7/16) 
[7/16, 1) 

However, there is no need to extend the alphabet and compute every com- 
bined probability. Suppose that  a string ABBBAABAAA of 10 symbols with 
probability distribution (0.2, 0.8) is to be encoded and the occurrence of each 
symbol is independent. Firstly, instead of extending the alphabet to one with 
21~ combined elements, the cumulative probability of ABBBAABAAA and the 
corresponding interval can be computed easily as p - 0.2 x 0.8 • 0.8 x 0.8 x 0.2 x 
0.2 z 0.8 x 0.2 x 0.2 x 0.2 - 2.6214 • 10 -5. The final result, 2.6214 z 10 -~, can be 
viewed as an adaptive and accumulate process of reading one symbol at a time 
and of including the probability of each symbol into its partial product at each 
iteration. Secondly, multiplying a real number at iteration i, say Pi E [0, 1), 
to a number x is equivalent to taking a proportion of the x value; the iteration 
process can be combined with the process of reading the input string. Once the 
ith symbol is read, the probability of the symbol pi is multiplied immediately 
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to update the current interval for the next round. A simple choice of the initial 
interval is [0, 1). 

The output of arithmetic coding is essentially a fraction in the interval [0, 1). 
This single number can be uniquely decoded to create the exact stream of sym- 
bols that went into its construction. 

The arithmetic coding algorithm overcomes the disadvantages of Huffman 
coding discussed in Section 5.4. It encodes a sequence of symbols at a time, 
instead of a single symbol. This may reduce the difference in value between the 
entropy and the average length. The algorithm does not output any codeword 
until only after seeing the entire input. This would be more efficient than the 
extended Huffman method by grouping symbols. The oversized alphabet is no 
longer an issue because only the probability of the input string is required. 

6.2 M o d e l  and coders  

The model for arithmetic coding is similar to the model for Huffman coding. It 
is based on an alphabet and the probability distribution of its symbols. Ideally, 
the probabilities are computed from the precise frequency counts of a source. 
This requires reading the entire source file before the encoding process. In 
practice, we can use an estimated or fixed approximate probability distribution 
with the cost of a slightly lower compression ratio. 

Similar to Huffman coding, the model can be a static or dynamic one depend- 
ing on whether the probability distribution is changed during a coding process. 
We discuss static arithmetic coding in this book unless otherwise stated. 

We first introduce a simple version of the arithmetic coder for binary sources. 

Suppose that both encoder and decoder know the length of the source se- 
quence of symbols. Consider a simple case with a binary alphabet (A, B), and 
the probability that the next input symbol 'A' is PA and 'B' is PB- 

Compression 
Our essential goal is to assign a unique interval to each potential symbol se- 
quence of a known length. After deriving a unique interval for a given symbol 
sequence, what we need to do within the interval is merely select a suitable 
decimal number as the arithmetic codeword. 

The arithmetic encoder reads a sequence of source symbols one symbol at 
a time. Each time a new subinterval is derived according to the probability of 
the input symbol. This process, starting with initial interval [0, 1), is iterated 
until the end of the input symbol sequence. Then the arithmetic coder outputs 
a chosen real number within the final subinterval for the entire input symbol 
sequence. 
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E x a m p l e  6.2 Suppose PA = 1/~,  and PB = 3/~ ; and the symbol generation is 
'memoryless'.2 Show the ideas of the simple version of arithmetic coding for an 
input sequence containing 1. a single symbol and 2. two symbols. 

Solut ion  

1. Since PA is 1/4, we first divide the interval [0, 1) into two subintervals of 
which the size is proportional to the probability of each symbol, as shown 
in Figure 6.2, using the convention that  a real number within [0, 1/4) 
represents A and a real number from [1/4, 1) represents B. Let A be 0.0 
and B as 0.5. 

Figure 6.2: Encoding for one symbol 

2. Extending this to two symbols, we can see that  PAA = PA X PA = 1/16, 
P A B  = PA •  = 3/16, P B A  = P B  X p A  = 3/16, and P B B  = P B  •  = 9/16. 
We divide each of the two subintervals further into two sub-subintervals 
of which the size is again proportional to the probability of each symbol, 
as shown in Figure 6.3. 

Figure 6.3: Encoding for two symbols 

For example, when a symbol 'A' is read, the new interval can be derived 
from the original interval ( 1 -  0) multiplied by PA, i.e. (1 --0) x 1//4. The 
new interval becomes [0, 1/4). 

2By memory less ,  we m e a n  t h a t  the  p robab i l i t y  of the  symbols  are i n d e p e n d e n t  to  each 

other .  
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If the next symbol is a 'B', the interval [0, 1/4) will be divided further 
according to the probability of PAA and PAB, which are PA • PA = 1/4 X 
1/4 = 1/16 and PA • = 1 / 4 X 3 / 4  = 3/16 respectively. The new interval 
is therefore [1/16, 1/4) for string 'AB'. 

We may then encode for the final iteration as follows: 

1. if the input so far is 'At', i.e. input an ' t '  followed by another ' t '  
then 

2: output  a number within [0, 1/16), i.e. [0,0.0625), (output 0, for 
example) 

3: else if the input is 'AB' then 
4: output  a number within [1/16, 1/4], i.e. [0.0625, 0.25), (output 0.1, 

for example) 
5: e lse  if the input is 'BA' then 
6: output  a number between 1/4 = 0.25 and 1/4 + 3/16 = 7/16 = 

0.4375, (output 0.3, for example) 
7: else 
8: output  a number between 7/16 = 0.4375 and 7/16 + 9/16 = 1, 

(output  0.5, for example). 
9. e n d  if 

D e c o m p r e s s i o n  

For convenience, the input of our decoding algorithm is a decimal fraction and 
the output  is a sequence of symbols. In the decoding process, the initial interval 
is also [0, 1). We then determine on each iteration the subinterval according to 
which segment the input fraction falls. The subinterval that  covers the fraction 
becomes the current interval for the following iteration and the corresponding 
symbol is output.  This process repeats until the required number of symbols 
have been output.  

Example 6.3 Suppose that the probability distribution of a binary source is 
(1/~, 3/~). Outline the decoding process for 0.1, the codeword for a string of 
two symbols. 

Solution 

Read 0.1. 

Since PA = 1//4 = 0.25 and PA = 3//4 = 0.75, the interval [0, 1) is divided 
into [0, 0.25) and [0.25, 1). The current interval is updated to [0, 0.25) 
for the next iteration, because 0 < 0.1 < 0.25 (Figure 6.4(b)). So the 
corresponding symbol A is output.  

Now the interval [0, 0.25) is divided according to the probabilities PA • 
PA = 1//4 • 1//4 = 1/16 and PA • PB = 1//4 • 3//4 = 3/16 and becomes 
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Figure 6.4: Decoding solution for two symbols 

[0, 1/16) and [1/16, (1+3)/16)=[1/16, 1/4). The current interval is up- 
dated to [1/16, 1/4) for the next iteration, because 1/16 < 0.1 < 1/4 
(Figure 6.4(c)). The corresponding symbol B is output. 

3. Since 2 is the length of the decoded string, we conclude that the decoded 
string is AB. 

We now summarise the decoding ideas below: 

1: current In terval  ~ [0, 1) 
2: whi le  the number of output symbols is insufficient do 
3: divide current In terval  into [0, PA) and [PA, PA + PB) according to PA 

and PB 
4: read the codeword x 
5: if x in [0, PA) t h e n  
6: output 'A' and current In terval  ~ [0, PA) 
7: else 
8: output 'B' and current In terval  ~-- ~gA, PA + PB) 
9: end  if 

10: update PA and PB 
11. end  whi le  

Observat ion 

From Example 6.2, you may have noticed the following facts: 

1. When outputting uniquely the decimal number in the final interval, we 
could choose, in theory, any decimal that  is in the range. However, various 
techniques are developed and applied to output a short codeword. 

For example, consider the final interval for string AA [0, 0.0625). We could 
have chosen, say, 0.05123456789 to encode AA but we do not, because 
0 allows a 1-bit code, instead of an l 1-bit one which would have been 
required for 0.05123456789. 
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2. It is possible to have variation in the arithmetic algorithms introduced 
here, because there are other equally good codewords. For example, AB 
0.2 ; BA 0.4;  BB 0.6 (or 0 .7 ,  0 .8 ,  0.9) would be fine if a unique 
final subinterval can be derived for every possible string from the initial 
interval [0, 1). 

3. The codeword for A may be the same as the one for AA because of the 
possible overlap between their final intervals. Consider Example 6.2 where 
the final intervals for A and AA are [0, 1/4), and [0, 1/16) respectively, and 
the codeword for both A and AA can be a 0. 

However, this is acceptable because the encoder and the decoder are both 
assumed to know the length of the source sequence. Of course, the encoder 
does not need to know the length of the entire string in order to process 
it. It can stop the encoding process when an end-of-string sign is reached. 

Similarly, we can extend this to a sequence with three symbols: we can easily 
work out the probability distribution (Paaa, PAaB, " " ,  PBBB) and therefore 
decide easily the corresponding subinterval for a given string. In theory, this 
subinterval division process can be repeated as many times as the number of 
input symbols required. 

The following table shows arithmetic encoding which can be applied to en- 
code all length-3 strings over the alphabet (A, B) with PA = 1/4 and PB = 3/4. 

Seq Prob Interval 
(fraction) 

AAA 1/64 [0, 1/64) 
AAB 3/64 [1/64, 4/64) 
ABA 3/64 [4/64, 7/64) 
ABB 9/64 [7/64, 16/64) 
BAA 3/64 [16/64, 19/64) 
BAB 9/64 [19/64, 28/64) 
BBA 9/64 [28/64, 37/64) 
BBB 27/64 [37/64, 1) 

Interval 
(decimal) 

Output loglo p 

0, 0.015625) 
0.015625, 0.0625) 
0.0625, 0.109375) 
0.109375, 0.25) 
0.25, 0.296875) 
0.296875, 0.4375) 
0.4375, 0.578125) 
0.578125, 1) 

0 
0.02 
0.1 
0.2 

0.25 
0.3 
0.5 
0.6 

1.81 
1.33 
1.33 
0.85 
1.33 
0.85 
0.85 
0.37 

6.3  S i m p l e  case  

From previous examples, we know that the encoding process is essentially a 
process to derive the final interval. This is achieved by the following main 
steps. 

Here the interval is represented by [L, L + d), where variable L stores lowest 
value of the interval range and d stores the distance between the highest and 
lowest value of the interval. 

1. Let the initial interval be [0, 1). 

2. Repeat the following until the end of the input sequence: 
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(a) read the next symbol s in the input sequence 

(b) divide the current interval into subintervals whose sizes are propor- 
tional to the symbols' probabilities 

(c) update  the subinterval for the sequence up to s the new current 
interval. 

3. (When the end of the input string is reached), output  a decimal number 
within the current interval. 

6 . 3 . 1  E n c o d i n g  

Let pl be the probability for s i and p2 be the probability for s2, where P2 = 
1 -  pl.  Let the current interval be [L, L + d) at each stage, and the output  
fraction x satisfy L _< x < L + d. 

Initially, L -  0 and d -  1, this gives [0, 1). If the next symbol could either 
be s i or s2 with probability pi and p2 respectively, then we assign the intervals 

[L, L + d x p l )  and [ L + d x p l ,  L + d x p l  + d X p 2 )  

and select the appropriate one. Note: L + d  xp i  +d xp2 - L + d  z (Pl+P2) - L+d.  

A l g o r i t h m  6.1 Encoding for binary source 

1: L ~- 0 and d ~-- 1 
2: read next symbol 
3: if  next symbol is s i t h e n  
4: leave L unchanged and d ~- d x Pl 
5. e lse  
6. L , -  L + d  x Pi; d ~- d x P2 
7: e n d  if 
8: if  no more symbols left t h e n  
9: output  a fraction from [L, L + d) 

10: e lse  
il. go to step 2 
12: e n d  if 

E x a m p l e  6.4 For the example earlier, let si - A and s2 - B with probabilities 
pi = 1/~ and p2 - 3 / ~ .  We encode A B A  as follows: 

�9 L = O a n d d - 1  

�9 read symbol A, leave L -  0 and set d -  1 /~  

�9 read symbol B, set L -  1 / 1 6  and d -  3 / 1 6  

�9 read symbol A, leave L = 1 / 1 6  and set d - 3 /6~  

�9 Done, so choose a decimal number >_ L -  1 / 1 6  - 0.0625 but 
< L + d - 0.109375, for  example, choose 0.1 and output 1. 
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6.3.2 Decoding 
The decoding process is the inverse of the encoding process. 

Let Pl be the probability for S l and p2 be the probability for s2, where 
P2 = 1 - P l .  Given a codeword x in [0, 1) and the length of the source string, 
the source can be decoded as below: 

A l g o r i t h m  6.2 Decoding for binary source 

1: L ~ -  0 a n d  d ~-- 1 

2: read x 
3: if  x is a member  of [L, L + d • pl)  t h e n  
4. output  s l; leave L unchanged; d ~ d x pl 
5: else  
6- output  s2; L ~-- L + d x pl; d ~-- d • p2 
7: e n d  if 
8: if  nurnberOfDecodedSymbols < requiredNumberOfSyrnbols t h e n  
9: go to step 2 

10: e n d  if 

Observation 
1. In the algorithm and examples that  we have discussed so far, a decimal 

system (base 10) is used for (description) convenience. The average length 
of the code is 

1/64 + 6/64 + 3/64 + 9/64 + 6/64 + 9/64 + 9/64 + 27/64 = 70/64 = 1.09 digits 

The information theoretic bound, i.e. the entropy, is 

0.244 x 3 = 0.73 digits 

As a contrast,  the average length of a static Huffman code would have 
required three digits in this case. This shows the s trength of the ari thmetic 
coding on small alphabets. 

2. It is not difficult to modify the algorithms in this section slightly to output  
a sequence of 0s and ls instead of a decimal. We leave this to the reader 
as an exercise. 

6 .4  G e n e r a l  c a s e  

Let S = ( 8 1 , 8 2 , . . .  , 8n) be the alphabet  of a source with an associated proba- 
bility distribution of occurrence P = ( p l , p 2 , " "  ,Pn). The subintervals for each 
iteration can be derived for every symbol according to these probabilities. For 



110 C H A P T E R  6. A R I T H M E T I C  CODING 

example, after the first iteration, the initial i teration [0, 1) can be divided into 
n intervals as below: 

[0, Pl) 
[/91, Pl +P2)  

[Pl + P2, Pl + P2 + P3) 

[Pl + p2 + "'" + p~-1, pl + p2 + ' "  + Pn-1 -~- Pn) 

where Pl + p 2  + " "  + p n  = 1 for the n symbols in the alphabet  s i , s 2 , . . . , s n  
respectively. If the first symbol read is the i th  symbol si in the alphabet,  
then the left boundary of the subinterval low is the cumulative probabili ty 
Pi = pl + p2 + "'" + pi-1 and the right boundary h igh  is low + Pi. 

The length of the interval h i g h -  low can then be used to compute one of 
the intervals in the next iteration: 

[~o~, lo~ + (high-  ~o~)P1) 
[~ow+(h~gh-lo~) P1, ~o~ + (high-  lo~)P2) 

[~o~ + (h~gh- ~o~)P~-l, ao~ + (h~gh- ~o~)P~) 

where the cumulative probability on the whole set is Pn - Pl +P2 + " "  +Pn  - 1. 
This looks complicated but there is no need to compute all the subintervals 

except one which depends on the independent probability of the symbol read at 
tha t  iteration. As we can see from the algorithm later, the variables low, high, 
and the cumulative probability Pi can be easily updated.  

Figure 6.5: Encoding for a 3-symbol alphabet 

E x a m p l e  6.5 Given three symbols A, B, C with probabilities 0.5, 0.3 and 0.2, 
the current allowed interval would be subdivided into three intervals according 
to the ratio 5:3:2. We would choose the new allowed interval among the three 
(Figure 6.5). 

Consider a source with an alphabet  (81,82,''", 8n) and probabili ty distri- 
bution (pl, p 2 , " "  , Pn). Suppose the length of the source is N. 
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Figure 6.6: General case 

The arithmetic algorithm for compression and decompression is given below: 
we use two variables low and high to define the arithmetic interval [low, high),  
where the interval can be easily changed by updating the values of low or h igh  
(Figure 6.6). 

6 . 4 . 1  C o m p r e s s i o n  a l g o r i t h m  

The algorithmic idea can be summarised as: 

1: c u r r e n t I n t e r v a l  ~ [0, 1) 
2: whi le  not EOF do 
3: read a symbol s 
4: divide c u r r e n t I n t e r v a l  into subintervals according to 

the probability distribution P 
5: c u r r e n t I n t e r v a l  ~- sub in terva l ( s )  
6: end  whi le  
7: output a decimal from c u r r e n t I n t e r v a l  
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Let low, high, and codeRange be a real. 

A l g o r i t h m  6.3 Arithmetic encoding 

1: low ~-- 0.0 
2: high ~-- 1.0 
3: whi le  there are still input symbols do 
4: get an input symbol s 
5: codeRange ~-- h i g h -  low 
6: high ~- low + range x high_range(s) 
7: low ~-- low + range x low_range(s) 
8. e n d  whi le  
9: output low 

6 . 4 . 2  D e c o m p r e s s i o n  a l g o r i t h m  

The decompression ideas are: 

1: currentInterval  ~-[0, 1); 
2: for i ~-- 1; i <_ SequenceLength; i ~-- i + 1 do 
3: divide currentInterval  into subintervals according to 

the probability distribution P 
4: currentInterval  ~-- subinterval(s) 
5: output symbol s corresponding to currentInterval  
6: end  for 

A l g o r i t h m  6.4 Arithmetic decoding 

1: get encoded number 
2: r e p e a t  
3: find symbol whose range covers the encoded number 
4: output the symbol 
5: range ~ symbol_high_value- symbol_low_value 
6: subtract symbol_low_value from encoded-number 
7: divide encoded_number by range 
8: un t i l  no more symbols 

6 . 4 . 3  U n i q u e  d e c o d a b i l i t y  

We have shown in the previous section how it is possible to divide an interval 
starting from [0, 1) according to the probability of an input symbol each time 
and how to assign the final interval to the entire given symbol sequence of a 
certain length. 



6.4. G E N E R A L  C A S E  113 

As we can see from the example and Figure 6.5, in theory, there is no overlap 
among these subintervals for all possible symbol sequences. It is this 'overlap- 
free' fact that  makes arithmetic codes uniquely decodable. 

6.4.4 Advantages of using fractions 
To show this, we first look at some statistical properties of blocking symbols 
which is called asympto t i c  equiparti t ion property.  The result can be proved 
mathematically but is beyond the scope of this book. Nevertheless, one of the 
results is of interest. It explains why, by using fractions, arithmetic coding can 
achieve better compression results than Huffman coding. 

Let ci = S l S 2 . . . s n  be a grouped sequence of symbols from an alphabet 
of a source S with a probability distribution P. As we have seen before, if 
the source is so-called 'memoryless', the probability of the sequence of symbols 
is the product of the probabilities of each symbol in the sequence. That  is, 

Pc = pip2 " " Pn. Hence, 

1 1 .2_ .  n 

log2 (P~) . . . . .  log2 (pi) 
~t n i - -1  

When n is big, 

n 1 IsI 
1 E l~ (Pi) ~ - - E l~ (Pi) - H ( S )  
n n 

i = 1  i - -1  

So, the logarithm of the probability of the typical n combined symbols can 
be derived approximately from the n times of the entropy of the source, 3 i.e. 

n 

log2 (Pi) ~ n i l ( S )  
i = 1  

The value n i l ( S )  is in general a fraction instead of an integer. That  is why 
a decimal number of bits codeword such as in arithmetic is better than only 
allowing an integer number of bits, e.g. as in Huffman code. 

6 . 4 . 5  R e n o r m a l i s a t i o n  

The number of x's digits in the decoding algorithm in Section 6.3.2 can be quite 
large. On most computers, the width of the current interval would become zero 
rapidly (say after a few hundred symbols or so). This is an example of the so- 
called precis ion problem for arithmetic coding, which is an interesting research 
subject in its own right. 

Renormalisation is a technique for dealing with an implementation problem. 
The idea is to stop d and L becoming zero rapidly by resetting the intervals. 

3For a more general situation where the symbols are not necessarily memoryless, the above 
equation can be used by just replacing the entropy by the entropy rate. 
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E x a m p l e  6.6 Consider the arithmetic encoding for BAABAA. 
After BAA the interval is [0.25, 0.296875), and we know that the first digit 

of the output must be 25. So the decoder outputs 25 and resets the interval to 
[0.5, 0.96875); both become two to three times as big. This stops d and L going 
to zero. 

Summary 
Arithmetic coding is a popular compression algorithm after Huffman coding 
and it is particularly useful for a relatively small and skewed alphabet. We only 
discuss the static approach here. In theory, an arithmetic coding algorithm en- 
codes an entire file as a sequence of symbols into a single decimal number. The 
input symbols are processed one at each iteration. The initial interval [0, 1) (or 
[0, 1]) is successively divided into subintervals on each iteration according to the 
probability distribution. The subinterval that corresponds to the input symbol 
is selected for next iteration. The interval derived at the end of this division 
process is used to decide the codeword for the entire sequence of symbols. Un- 
fortunately, implementation often encounters difficulties due to the constraints 
of computer precision. 

Learning outcomes 
On completion of your studies in this chapter, you should be able to: 

�9 explain the main ideas of arithmetic coding 

�9 describe, with an example of a small alphabet (A, B), how arithmetic 
encoding and decoding algorithms work 

�9 discuss the advantages of arithmetic coding compared with Huffman cod- 
ing 

�9 explain the main problems in the implementation of arithmetic coding. 

Exercises 
E6.1 What are the advantages of arithmetic coding compared with the disad- 

vantages of Huffman coding? You may use a simple version of the encoding 
algorithm such as Algorithm 6.1 in the discussion. 

E6.2 Demonstrate how to encode a sequence of five symbols, namely BABAB from 
the alphabet (A, B), using the arithmetic coding algorithm if PA = 1/5 
and PB = 4/5. 

E6.3 Using the coding in the previous question as an example, explain how the 
arithmetic decoding algorithm works, for example, how to get the original 
BABAB back from the compressed result. 
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E6.4 Show how to encode a sequence of five symbols from (A, B), namely ABABB 
using arithmetic coding if PA = 1//5 and PB = 4/5. Would it be possible 
to have a coded output derived from a decimal value 0.24? Describe how 
the decoding algorithm works. 

E6.5 A sequence of four symbols from (A, B) was encoded using arithmetic 
coding. Assume PA = 1//5 and PB = 4/5. If the coded output is 0.24, 
derive the decoded output step by step. 

Laboratory 
L6.1 Implement a simple version of the arithmetic encoding algorithm for a 

binary alphabet, e.g (A, B). 

L6.2 Implement a simple version of the arithmetic decoding algorithm for the 
same binary alphabet (A, B). 

L6.3 Implement a simple version of the arithmetic encoding and decoding al- 
gorithms for an alphabet of size n. 

Assessment 
$6.1 Describe briefly how arithmetic coding gets around the problems of Huff- 

man coding. You may use a simple version of the encoding algorithm such 
as Algorithm 6.1 for discussion. 

$6.2 Show how arithmetic coding can be applied to compress all length-4 strings 
over the alphabet (A, B). Suppose PA = 1//4 and PB = 3/4. You may like 
to summarise the code in the following table format: 

Sequence Probability Interval 
fraction 

Interval 
decimal 

Output 
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Chapter 7 

Dictionary-based 
compression 

Arithmetic algorithms as well as Huffman algorithms are all based on a statis- 
tical model, namely an alphabet and the probability distribution of a source. 
The compression efficiency for a given source depends on the alphabet size and 
how close its probability distribution of the statistics is to those of the source. 
The coding method also affects the compression efficiency. For a variable length 
code, the lengths of the codewords have to satisfy the Kraft inequality in order 
to be uniquely decodable. This, in one way, provides theoretically guidance on 
how far a compression algorithm can go; in another, it restricts the performance 
of these compression algorithms. 

In this chapter, we look at a set of algorithms based on a dictionary instead 
of a statistical model. The dictionary is used to store the string patterns seen 
before and the indexes are used to encode the repeated patterns. The dictionary 
appears in either an explicit or an implicit form as we shall see later. 

Dictionary compression approaches apply various techniques that  incorpo- 
rate the structure in the data in order to achieve a better compression. The 
goal is to eliminate the redundancy of storing repetitive strings for words and 
phrases repeated within the text stream. The coder keeps a record of the most 
common words or phrases in a document called a dictionary and uses their in- 
dices in the dictionary as output tokens. Ideally, the tokens are much shorter 
in comparison with the words or phrases themselves and the words and phrases 
are frequently repeated in the document. 

The encoder reads the input string, identifies those recurrent words, and out- 
puts their indices in the dictionary. A new word is output in the uncompressed 
form and added into the dictionary as an new entry. The main operations in- 
volve the comparison of strings, dictionary maintenance and an efficient way of 
encoding. 

Compressors and decompressors both maintain a dictionary by themselves. 
The dictionary-based algorithms are normally faster than entropy-based ones. 

117 
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They process the input as a sequence of characters rather than as streams of 
bits. 

The input to the compression algorithm is a stream of symbols and the 
output consists of a mixture of tokens and words in original form. When it 
outputs tokens, the coding system can be classified as working in variable-to- 
fixed fashion since, in the basic form, each string to be encoded is of different 
length but the codewords, i.e. the indices in the dictionary, are of the same 
length. 

Dictionary-based approaches are adaptive I in nature because the dictionary 
is updated during the process of compression and decompression. The con- 
tent of the dictionary varies according to the input sequence of the text to be 
compressed. 

Dictionary approaches do not use any statistical model but rely upon identi- 
fying the repeated patterns. Therefore, the compression effect does not depend 
on the quality of the statistical model, nor is it restricted by the entropy of 
a source. It can, therefore, often achieve a better compression ratio than the 
methods based on a statistical model. 

However, there are other issues to be considered. For example, how would 
certain string patterns be identified? What  are the good techniques that can 
be used to check whether a symbol is in the dictionary? Different choices of 
patterns can lead to different compression results. What should we do if the 
dictionary expands in size too quickly? Certain data structures may affect the 
efficiency of certain operations directly. For example, the bigger the dictionary, 
the longer it takes to check whether a word is in the dictionary. Some dedicated 
data structures are very useful, such as circular queues, heaps, hash tables, 
quadtrees and tries. Centred by the three representative algorithms, many 
algorithms have been redeveloped to achieve or improve individual aspects of 
them. 

Dictionary algorithms have many applications and have been used in a num- 
ber of commercial software programs. For example, in UNIX or Linux, com- 
mands compress, uncompress, gz ip  and gunzip have all used the dictionary 
compression methods at some stage. Since our interest lies in the approaches 
of dictionary algorithms, we shall look at three most popular algorithms in 
fundamental form, namely LZ77, LZ78 and LZW. 

The algorithms are named after the authors Abraham Lempel and Jakob Ziv 
who published the papers in 1977 and 1978. A popular variant of LZ78, known 
as (basic) LZW, was published by Terry Welch in 1984. There are numerous 
variants of LZ77 and LZ78/LZW. We focus on and discuss the ideas of each of 
these algorithms here. 

7.1 P a t t e r n s  in a s tr ing  

The main part of a dictionary compression algorithm is to identify repetition 
pattern from a string. To understand the issues, we first review some prelimi- 

1Note that there can be static dictionaries. 
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naries for string matching methods. 
We first look at a matching problem using an example below. 

E x a m p l e  7.1 Given a string ABBBAABAB.4, find the longest repeated pattern. 

Before solving this problem, we first need to make it more specific. For 
example, what is a repeated pattern? How do we define the length of a pattern? 

By repeated pattern, we mean a substring of the given string that  occurs 
at least twice in the given string. Since a pattern is a substring, we define the 
length of the pattern as the length of the substring. 

For example, substring BA is a repeated pattern because it occurs three 
times in the given string and is of length 2 since it consists of two symbols. We 
highlight the recurrence of BA: 

There may be other repeated patterns in a string such as AB: 
If a pattern is given as well as the string, the length of the pat tern is fixed. 

However, when the pattern is not specified, finding the longest pat tern can be 
computationally expensive. It may require searching patterns of all possible 
lengths, e.g. the repeated pattern of length 1, of length 2, and so on. 

Fortunately, the repeated patterns in dictionary compression algorithms are 
defined as a word in the dictionary. The longest patterns merely mean the 
longest words in the dictionary. If it is not a word, the current string will be 
defined as a new word, i.e. a new entry to be added to the dictionary. Therefore, 
the problem is easier than the all repeated pattern problem. 

We still need to find the longest pattern in a string though. One easy method 
to solve this problem is to maintain a variable for the substring seen so far. Let 
the variable be word, and the newly input symbol be x. Now word is a recurrent 
pattern if it is in the dictionary, and word is the longest pattern seen so far if 
word + x is not in the dictionary. 2 At the same time, word + x can be inserted 
into the dictionary as a new entry. 

Of course, word + x is not the longest pattern if word + x is in the dictionary. 
The search for the longest pattern should be continued by inputting the next 
symbol. 

For example, suppose word contains AB. The next symbol input x is B. Sup- 
pose AB is in the dictionary but ABB is not. We know then that AB is the longest 
string in the dictionary. 

7.2 LZW coding 
People often find that  LZW algorithms are easier to understand and are the 
most popular ones. We therefore study LZW coding first. 

7 . 2 . 1  E n c o d i n g  

In theory, the dictionary is built from scratch and is empty initially. However, 
if we know the alphabet of a source, the alphabet and other commonly used 

2The operator '+' means concatenation for string operants. 
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symbols are stored as the first 256 entries in the dictionary. In other words, the 
dictionary usually contains 256 entries (e.g. ASCII codes) of single characters 
initially. 

The main idea of the LZW encoding is to identify a longest pattern for each 
accumulated segment of the source text and encode them by the indices in the 
dictionary. If no match is found in the dictionary, the segment will become a 
new entry to the dictionary. There will be a match found in the dictionary if 
the same segment is seen next time. 

The encoding algorithm is: 3 

A l g o r i t h m  7.1 LZW encoding 

1: w o r d  ~ " 
2: whi le  not EOF do 
3: X ~ read_next_character  0 
4: if w o r d  + x is in the dictionary t h e n  
5: w o r d  ~ w o r d  + x 
6: else 
7: output the dictionary index for w o r d  
8: add w o r d  + x to the dictionary 
9: w o r d  ~-- x 

10: end  if 
11. end  whi le  
12: output the dictionary index for word 

The following 2 examples show how the algorithm works. 

E x a m p l e  7.2 Trace the operat ions o f  the L Z W  algor i thm on the inpu t  s tr ing 
A CBBAA C. 

Suppose the first 256 places in the dictionary have been filled initially with 
symbols as below: 

Dictionary: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

A B C D E F G H I  J K L M N 0 P Q R S T 

21 22 23 24 25 26 27 . . .  256 
U V W X Y Z space  . . .  9 

Solut ion  

1. Initial step: 

word: , , 

3Note: the addition sign + in the algorithm means concatenating, e.g. word + x means 
appending the character x to the string in word. 
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2. Symbols to be read: ACBBAAC 

read next_character x: A (in dictionary) 

word+x: A 

word :A 

3. Symbols to be read: CBBAAC 

read next_character x: C 

word+x: AC (not in dictionary) 

output: 1 

new entry of the dictionary: 25Z 

AC 

word : C 

4. Symbols to be read: BBAAC 

read next_character x: B 

word+x: CB (not in dictionary) 

output: 3 

new entry of the dictionary: 258 

CB 

word : B 

5. Symbols to be read: BAAC 

read next_character x: B 

word+x: BB (not in the dictionary) 

output : p. 
new entry of the dictionary: 9.59 

BB 
word : B 

6. Symbols to be read: AAC 

read next_character x: A 

word+x: BA (not in the dictionary) 

output: 2 

new entry of the dictionary: 260 

BA 

word : A 

7. Symbols to be read: AC 

read next_character x: A 

word+x: AA (not in the dictionary) 
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output: 1 

new entry of the dictionary: 

word : A 

261 

AA 

8. Symbols to be read: C 

read next_character x: C 

word+x: AC (in dictionary) 

word :AC 

9. Symbols to be read: none 

read next_character x: EOF (i.e. end of file) 

output: 257 

So the total output (the compressed file) is: 1 3 2 2 1 257. 

The new entries of the dictionary are: 

257 258 259 260 261 
AC CB BB BA AA 

E x a m p l e  7.3 Encode AAABAABBBB by tracing the L Z W  algorithm. 

Solu t ion  Suppose the first 256 places in the dictionary have been filled initially 
with symbols as below: 

Dictionary: 
1 2 3 4 5 6 7 8 9 i0 Ii 12 13 14 15 16 17 18 19 20 

ABCDEFGH I J K L M N 0 P Q R S T 

21 22 23 24 25 26 27 . . .  256 
U V W X Y Z space . . .  9 

1. Initial step: 

word: ,, 

We show the actions taken and the variable values updated by the encoding 
algorithm on completion of each iteration of step 2, as follows: 
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2. Symbols to be read: AAABAABBBB 

Input next_character (x): A 
word+x: A 
word :A 

3. Symbols to be read: AABAABBBB 

Input next_character (x): A 
word+x: AA 
Output: 1 
Dictionary (new entries): 257 

AA 
word : A 

4. Symbols to be read: ABAABBBB 

Input next_character (x): A 
word+x: AA 
word :AA 

5. Symbols to be read: BAABBBB 

Input next_character (x): B 
word+x: AAB 
Output: 257 
Dictionary (new entries): 9.5Z 9.58 

AA AAB 
word : B 

6. Symbols to be read: AABBBB 

Input next_character (x): A 
word+x: BA 
Output : 2 
Dictionary (new entries): 257 258 259 

AA AAB BA 
word : A 

7. Symbols to be read: ABBBB 

Input next_character (x): A 
word+x: AA 
word : AA 
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8. Symbols to be read: BBBB 

Input next_character (x)" B 
word+x" AAB 
word �9 AAB 

9. Symbols to be read: BBB 

Input next_character (x)" B 
word+x" AABB 

Output" 258 

Dictionary (new entries)" 257 258 259 260 
AA AAB BA AABB 

word �9 B 

10. Symbols to be read: BB 

Input next_character (x)" B 
word+x" BB 
Output" 2 
Dictionary (new entries)" 257 258 259 260 261 

AA AAA BA AABB BB 

word �9 B 

11. Symbols to be read: B 

Input next_character (x)" B 
word+x" BB 
word �9 BB 

12. Symbols to be read: (none) 

Input next_character (x)" EOF (i.e. end of file) 

/, goes to step 3. */ 

Output" 261 

So the compressed output for AAABAABBBB is 

I 257 2 258 2 261 

The new entries of the dictionary are: 

257 258 259 260 261 
AA AAB BA AABB BB 
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7.2.2 Decoding 
Similarly, the decoder builds its own dictionary as it reads the tokens, i.e. the 
encoded data,  one by one from the compressed file. 

The algori thm now is: 

A l g o r i t h m  7.2 LZW decoding 

7: 

8: 
9: 

10: 
11: 
12: 
13: 
14: 

1: read a token x from the compressed file 
2: look up dictionary for element at x 
3: output  element 
4: word ~ e lement  
5: w h i l e  not E0F do  
6: read x 

look up dictionary for element at x 
if there is no entry yet for index x t h e n  

element  ~ word + firstCharOfWord 
e n d  if 
ou tput  element 
add word + firstCharOfElement to the dictionary 
word ~-- e lement  

e n d  w h i l e  

E x a m p l e  7.4 Show the operations of the decompress algorithm on the input 
tokens 1 3 2 2 1 25Z which is the compressed result in Example %2. 

S o l u t i o n  

1. (Initial step) Tokens to be read" 1 3 2 2 1 257 

read token x" i 

element" A 

output" A 

word �9 A 

2. Tokens to be read: 3 2 2 1 257 

read token x: 3 

element: C 

output" C 

add new entry of dictionary" 257 

AC 
word : C 
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3. Tokens to be read: 2 2 1 257 

read token x: 2 

element: B 

output" B 

add new entry of dictionary" 258 

CB 
word : B 

4. Tokens to be read: 2 1 257 

read token x: 2 

element: B 

output" B 

add new entry of dictionary" 259 

BB 

word : B 

5. Tokens to be read: 1 257 

read token x: 1 

element: A 

output A 

add new entry of dictionary" 260 

BA 
word : A 

6. Tokens to be read: 257 

read token x: 257 

element: AC 

output AC 

add new entry of dictionary" 261 

AA 

word : AC 

7. Token to be read: (none) 

read token x" EOF (i.e. end of compressed file) 

(end) 

So the total output  is ACBBAAC. 
The new entries of the dictionary are: 

257 258 259 260 261 
AC CB BB BA AA 
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E x a m p l e  7.5 Decode I 257 2 258 2 261 obtained from Example 7.3 and trace 
the activities of the decoding algorithm. 

Suppose again the first 256 places in the dictionary have been filled initially 
with symbols as below: 

D i c t i o n a r y :  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
ABCDEFGH I J K L M N 0 P O R S T 

21 22 23 24 25 26 27 . . .  256 
U V W X Y Z space . . .  9 

Solu t ion  

1. Tokens to be read: 1 257 2 258 2 261 

Initial steps: 

Read next_token (x): i 
output: A 
word: A 

2. Tokens to be read: 257 2 258 2 261 

(Iterations begin): 

Read next token (x): 257 

Look up the dictionary and find there is no entry yet for 257 
element: AA /, element=word+first_char_of word ,/ 
output element : AA 
Dictionary (new entries so far): 257 

AA 
word: AA 

3. Tokens to be read: 2 258 2 261 

Read next_token (x): 2 

Look up the dictionary and output element: B 
Dictionary (new entries so far): 257 258 

AA AAB 
word: B 
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4. Tokens to be read: 258 2 261 

Read next_token (x): 258 
Look up the dictionary and output element: AAB 
Dictionary (new entries so far): 257 258 259 

AA AAB BA 
word: AAB 

5. Tokens to be read: 2 261 

Read nex t_ token  (x) :  2 
Look up the  d i c t i o n a r y  and output  e lement :  B 
D i c t i o n a r y  (new e n t r i e s  so f a r ) :  257 258 259 260 

AA AAB BA AABB 

word: B 

6. Tokens to be read: 261 

Read next_token (x): 261 
Look up the dictionary and find no entry for 261 
element: BB /, element=word+first_char_of_word */ 
output element: BB 
Dictionary (new entries so far): 257 258 259 260 261 

AA AAB BA AABB BB 

word: BB 

7. Tokens to be read: (none) 

Read next_token (x): EOF (i.e. end of compressed file) 
(end) 

So the decoded message is AAABAABBBB. 
Dictionary (new entries) is: 

257 258 259 260 261 
AA AAB BA AABB BB 

O b s e r v a t i o n  

1. The compression algorithm and the decompression algorithm build an 
identical dictionary independently. The advantage of this is that  the com- 
pression algorithm does not have to pass the dictionary to the decompres- 
SOt. 

2. The size of the dictionary may grow so quickly that  an effective method 
of maintaining the dictionary would be essential. 
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7.3 LZ77 family 
In this approach, the dictionary to use is a portion of the previously seen input 
file. The proportion of the input string is decided by an imagined sliding window 
which can be shifted from left to right. The window is maintained to define 
dynamically the dictionary part and to scan the input sequence of symbols. As 
the window sliding from the left to right, the content of the dictionary and the 
portion of the input text in which patterns are sought are updated. This imitates 
the situation when a compressor scans the source text segment by segment. 

The window is divided into two consecutive halves, the first half is called 
the History buffer (H for short) or the Search buffer which contains a portion of 
the recently seen symbol sequence. The second half of the window is called the 
Lookahead buffer (L for short) which contains the next portion of the sequence 
to be encoded. The term buffer is used to mean a storage for some temporary 
data. 

The size of each buffer is usually fixed in advance. In practical implemen- 
tation, the History buffer is some thousands of bytes long and the Lookahead 
buffer is only tens of bytes long. 

Let 1H and 1L be the size of H and L respectively. 
Figure 7.1 shows an example, where H = ' ryubaseducompres ' ,  a History 

buffer of size 1H = 16 bytes (1 byte for each symbol), and L = ' s ionucompress ' ,  
a Lookahead buffer of size lc = 12. The sequence of symbols in (and before) 
H has been seen and compressed but the sequence in (and after) L is to be 
compressed. You can imagine that  the window moves from left to right (or 
the entire text sequence moves from right to left) from time to time during the 
compression process. 

(or, ~ text moving) window moving ==> 

di ct io n~ryub  a s educ  omp r e sJ Isi o nuc omp r e s~esu d a t  auus  i n g u  a u d i  c t  i o n a r y  

H L 

Figure 7.1" History buffer and Lookahead buffer 

Similar to the LZW algorithm, the input of the compression algorithm is a 
sequence of the source symbols and the output of the compression is a triple 
codeword (f, l, c} called token. If the tokens are regarded as of fixed length, the 
LZ77 compression algorithms belong to the variable-to-fixed coding scheme. 

7 . 3 . 1  P r e f i x  m a t c h  

Before moving on to discuss the LZ77 algorithm, let us first clarify a few concepts 
related to the codeword (f, l, c>. 

An array of n symbols is called a string of length n. A substring is a number 
(< n) of consecutive symbols in the string. A prefix of a string is a substring of 
any length beginning with the first symbol of the string. 
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E x a m p l e  7.6 Consider stringBABC. Its substrings are B, A, B, C, BA, AB, 
BC, BAB, ABC, BABC. The possible prefixes are B, BA, BC, BAB, BABC. 

Now consider two strings: H = 'ABBBAABABA' and L = 'BABC'. A prefix of 
L may occur in the string H, i.e. being identical to a substring of H. Such an 
occurrence is called a prefix match (of L) in H by our definition. For instance, 
B, BA and BAB are three prefix matches found in H. 

We are often more interested in the longest prefix match, such as the BAB 
in H in the example. For convenience, we use the term prefix match to mean 
the longest substring (or substrings) in the History buffer H that  matches a 
prefix in L. We highlight the prefix match in H and L below. Index 7 is also 
highlighted since it indicates the match location in H. 

The longest prefix length is called the length of the match (mlength for 
short) which is 3 in this example. The start position of the match is the index 
7 in H. We indicate this position by the so-called offset which is the distance 
from the right edge of H. The offset is 4 in the example. The first mismatching 
symbol is C following the match in L (see the diagram below). 

H: L: 

These three values form the token (f, l, c} in the LZ77 algorithm below, where 
f is the offset, i.e. the location from the right edge of the H; 1 is the length 
of the match found in H and c is the immediate mismatching symbol after the 
prefix in the L. 

We shall need the concept of such a prefix match, the length of the match 
and offset in understanding the LZ77 algorithm below. 

7 . 3 . 2  A t y p i c a l  c o m p r e s s i o n  s t e p  

Suppose that  H, the History buffer, has lH bytes (characters) that  have been 
seen and encoded; L, the Lookahead buffer, has at most 1L characters, which 
have been seen but not yet encoded. There are many algorithms in the LZ77 
family but a typical encoding algorithm can be outlined below: 

1. Read from the input characters until L is full. 

2. Scan H from right to left searching H for a prefix match (as described in 
Section 7.3.1). 
If more than one match is found in the H, take the right most prefix 
match, i.e. the longest and the first one from the right in H. a 

4i.e. the one located furthest from the left in H. 
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window moving => 

Figure 7.2" A match is found with an offset length 12 and match length 9 

3. If a match of length 1 > 2 characters is found (see Figure 7.2) with an offset 
of f bytes, then output token {f, l, c}, where c is the first mismatching 
symbol following the match. 

Slide the window (H and L together) f characters to the right (i.e. shift 
to the left the first 1 characters out of H, and the first 1 characters in L 
into H.) 

4. If no match is found then output {0, 0, ASCII(c)}. 

Slide the window one character to the right. 

In some cases, the last element of the triple, c, may be unnecessary and can 
be saved. 

E x a m p l e  7.7 Starting with a H of size 16 bytes which contains the charac- 
ters laseducompressionl (where u represents a space) and an empty Looka- 
head buffer, show the output and the final state of the History buffer if the 
following characters are next in the input, for a Lookahead buffer of size 12: 
ucompressesudatauusingmamdictionary. 

So lu t i on  We refer to Figure 7.2 and trace what happens step by step following 
the LZ77 encoding algorithm. 

1. Load the input string into L, H (left) and L (right) now contain the 
following: 

A prefix match 'ucompress '  is found and we record the offset f = 12 
(bytes) and the match length l =  9 (bytes). 

Output: (12, 9}. 

Slide the window nine characters to the right. H (left) and L (right) now 
contain: 

2. A match 'es' is found, 5 so we record the offset 3 and the match length 2. 

Output: (3, 2}. 

Slide the window two characters to the right. H (left) and L (right) now 
contain: 

Is s i o nmC omp r e s s e s Iudat amus ingulaudi c t i o nary 

5In fact, 'es' is found in two places but we only consider the first (right most) match here. 
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3. Only a one-symbol match 'u' is found so: 

Output: the pointer (0, ASCII ( ' u '  ) ). 

Slide the window one character to the right. H (left) and L (right) now 
contain: 

Is i Onucompressesul dat auus ingua]udi ct i onary 

4. No match is found so: 

Output: the pointer (0, ASCII (' d' ) >. 

Slide the window one character to the right. H (left) and L (right) now 
contain: 

l i o nuc omp r e s s e s udlat auus ingu auld i c t i o nary 

5. No match is found so: 

Output: the pointer (0, ASCII (' a' ) l- 

Slide the window one character to the right. H (left) and L (right) now 
contain: 

Io nu c omp r e s s e sud alt auus i ngu audli c t i o n ary 

6. No match is found so: 

Output: the pointer (0, ASCII (c t' ) >. 

Slide the window one character to the right. H (left) and L (right) now 
contain: 

Inucompressesudatlauusinguaudilct ionary 

7. Only one symbol match Ca' is found so: 

Output: the pointer (0, ASCII (' a' ) >. 

Slide the window one character to the right. H (left) and L (right) now 
contain: 

luC omp r e s s e sudat aluuS ingu aud i c~ i o nary 

and so on. 

To write the algorithm, we need to define certain variables to find the offset, 
the match and shift of the contents dynamically. This can be summarised in 
the following diagram: 

Suppose the entire text of N bytes long is stored in an array S[1 . . .  N], 
the size of the sliding window is W. We define the following variables for 
implementation convenience: 

�9 S[m] is the first character in the match found in H 

�9 p is the first character in L 
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�9 The offset f = p -  m 

�9 1 is the match length 

�9 The first mismatching character is Sip + 1] 

This can be seen clearly in Figure 7.3. 

L = S~9... 1L] S[m] is the first character in the match 

Figure 7.3: S[1- . .  N] for LZ77 encoding 

We now can write the Algorithm 7.3. 

A l g o r i t h m  7.3 LZ77 encoding 

I N P U T :  symbol sequence, window size W 
OUTPUT: token sequence in ( f , l , c )  form 
1: set p ~-- 1 
2. wh i l e  not EOF do 
3.. find the longest match o f / b y t e s  for Sip . . .  l] in H = S [ p -  W - . .  ( p -  1)] 

and the first matching character is S[m] 
4: output  the triple token ( p -  m, l, Sip +/]} 
5- p ,--- p + 1 + 1 {prepare for the next shift} 
6: e n d  w h i l e  

O b s e r v a t i o n  

1. The History buffer is initialised to have no characters in it. Hence the first 
few characters are coded as raw ASCII codes (and the overhead) as the 
History buffer fills up. This may result in expansion of the compressed file 
rather than compression at the beginning. 

2. In common with the adaptive Huffman algorithm, LZ77 is an adaptive 
algorithm and may start  with an empty model. 
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3. The LZ77 encoding algorithm can only identify the patterns in the source 
file which are close enough to each other, because it can only compare the 
Lookahead buffer to the recently seen text in the History buffer, but not 
to the text that  was input a long time ago. 

7 . 3 . 3  D e c o m p r e s s i o n  a l g o r i t h m  

The decoder also maintains a buffer of the same size as the encoder's window. 
However, it is much simpler than the encoder because there is no matching 
problems to be dealt with. The decoder reads a token and decides whether the 
token represents a match. 

If it is a match, the decoder will use the offset and the match length in the 
token to reconstruct the match. Otherwise, it outputs the symbol in ASCII 
code in the token. 

We use an example to show how this works. 

E x a m p l e  7.8 Suppose the buffer contains the following decoded symbols: 
IDi at i onaryubas e du c ompre s s i on I. 

The decoder reads the following tokens one at each iteration: <12, 9><3, 2> 
<0, ASCII('u ')> (O, ASCII('d')> (O, ASCII('a ')> (0, ASCII('t ')> (0, ASCII('a ')} 

So lu t ion  

1. Read the next token (12, 9}, which is a match. The decoder uses the offset 
(the first number in the token f)  to find the first symbol of the match and 
uses the match length (the second number in the token l) to decide the 
number of symbols to copy. 

So we have the following process: 

(a) Count 12 from the end of the buffer and find the symbol 'u'. 

(b) Copy the next nine symbols one by one (see the shade characters) 
and update the buffer: 

2. Read (3, 2>, find the position with offset 3, copy the next 2 characters, and 
the buffer becomes: 
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3. Read (0, ASCII('u')>, which is not a match so output: 'u'. 
The buffer becomes: 
Is edmc ompre s s i onuc ompre s s e Sul 

4. Read (0, ASCII ('d')>, which is not a match so output: 'd' (i.e. add 'd' 
into the buffer). 
The buffer becomes: 
ledu c ompre s s i OnuC ompre s s e sud I 

5. Read (0, ASCII ( ' a ' ) > ,  which is not a match so output:  'a'. 
The buffer becomes: 
Iduc ompre s s i onuc ompr e s s e suda I 

6. Read (0, ASCII ( ' t ' ) > ,  which is not a match so output:  't ' . 
The buffer becomes: 
luC ompre s s i OnuC ompre s s e sudat ] 

7. Read (0, ASCII('a')}, which is not a match so output: 'a'. 
The buffer becomes: 
Icompre s s i onuc ompre s s e sudat a I 

and so on. 

Algorithm 7.4 summarises the decoding process. 

A l g o r i t h m  7.4 LZ77 decoding 

INPUT:  

O U T P U T :  

token sequence in (f, l, c> form, window size W 
symbol sequence 

1: set p ~-- 1 
2: wh i l e  not EOF do  
3: read next token (f, l, c} 
4: set S i p - - - ( p +  l -  1)] ~ S[(p-  f ) . . .  ( p -  f + l -  1)] 
5: 

6: p ~-- p + 1 + 1 {prepare for the next shift} 
7: e n d  wh i l e  

O b s e r v a t i o n  

1. The decompression algorithm builds up the same History buffer as the 
compression algorithm, and decodes tokens with reference to the History 
buffer. The decompression algorithm decides whether the next character 
is a 'real' index or a raw symbol, this depends on the first component of 
the token. If the first is a 0, the next character is a raw symbol. 
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2. The algorithm is asymmetric since compression is slower than decompres- 
sion. The compression algorithm involves searching for a match, which 
is computationally intensive, but decompression only involves reading out 
values from the History buffer. 

7 . 3 . 4  I m p l e m e n t a t i o n  i s s u e s  

Size of the  two buffers 

In LZ77, there is an important design decision to be made concerning the values 
of 1H and 1L: 

1. Choosing a large History buffer means it is likely that matches are found, 
but the offsets will be larger. A smaller buffer means smaller pointers but 
less chance of finding a match. 

2. Choosing a small Lookahead buffer means a quick search for a prefix, but 
the chance of the match found will be limited. 

The basic LZ77 method has been improved in many ways since the 1980s. 
For example, a variable-sized offset and length component, i.e. f and 1 in the 
token {f, l, c}, can be used to improve the compression performance. 

Another improvement is to increasing the size of buffers. As we know, in- 
creasing the size of the History buffer can have better chances of finding matches. 
The more matches found, the better compression ratio can be achieved. How- 
ever, a bigger History buffer may in general slow down the search. Useful work, 
therefore, has been focusing on use of more efficient data structures such as tries 
and hashing techniques. 

Ci rcu la r  queues  

A circular queue is a dynamic queue structure implemented by an array which is 
a static structure. The front and rear of the queue are pointed by the two vari- 
ables storing the indices of the position. This eases the operation of appending 
elements at the rear and removing elements at the front of the queue. 

Given a sequence of symbols in the source string, adding a few elements 
becomes the equivalent of updating the index value of a front variable. 

7.4 LZ78 family 
A big problem of LZ77 is that it cannot recognise the patterns occurring some 
time ago because they may have been shifted out from the History buffer. In 
this situation, the patterns are ignored and no matches are found. This leads to 
expansion instead of compression of this part of the source text by outputting 
a token triple for a single character. 

To extend the 'memory' of the patterns, LZ78 algorithms are developed 
to maintain a dictionary that allow patterns to remain as entries permanently 
during the whole encoding process. 
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LZ78 also requires one component less in triple tokens compared to that in 
LZ77 and only outputs pair tokens instead. A pair token is defined as If, c) 
where f represents the offset which indicates the starting position of a match, 
and c is the character of the next symbol to the match in the source text. The 
length of the match is included in the dictionary, so there is no need to include 
the information in the code. 

Typical LZ78 compression algorithms use a trie 6 to keep track of all the 
patterns seen so far. The dictionary D contains a set of pattern entries, which are 
indexed from 0 onwards using integers. Similar to LZ77, the index corresponding 
to a word in the dictionary is called the token. The output of the encoding 
algorithm is a sequence of tokens only. If a symbol is not found in the dictionary, 
the token {0, x} will be output which indicates a concatenation of the null string 
and x. Initially the dictionary D is normally loaded with all 256 single character 
strings. Each single character is represented simply by its ASCII code. All 
subsequent entries are given token numbers 256 or more. 

7.4.1 Encoding 
Let word be the currently matched string. Initially word is empty. 

The encoding algorithm is as follows. 

A l g o r i t h m  7.5 LZ78 encoding 

I N P U T :  string of symbols, dictionary with an empty entry at index 0 
OUTPUT: sequence of tokens {index(word),  c), updated dictionary 

1. whi le  not E0F do 
2: word ~-- empty 
3: c ~-- next_char() 
4: whi le  word + c is in the Dictionary do 
5: word ~-- word + c 
6: c ~ next_char() 
7: end  whi le  
s: output token ( index(word) ,  c} 

{where index(word)  is the index of word in the dictionary} 
9: add word + c into the dictionary at the next available location 

10. end  whi le  

E x a m p l e  7.9 Show step by step the encoding operation of LZ78 on the input 
string: 

audat euat uamdat e 

So lu t ion  We trace the values of word (w), c, output and the Dictionary (D) 
for each iteration (i). Initially, the dictionary is empty. 

6This is a commonly used data structure for strings and is similar to trees. 
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II ~ i w c w + c  o u t p u t  0 1 2 3 4 5 6 7 8 9 10 

1 a a 0 ,  a a 

2 u u 0 ,  u a u 

3 d d 0 ,  d a u d 

4 a a 

a t at i, t a u d at 

5 e e 0 ,  e a u d a t  e 

6 u u 

u a ua 2, a a u d at e ua 

7 t t O, t a u d at e ua t 

8 u u 

u a u a  

u a  u u a u  6 ,  u 

9 d d 

d a d a  3 ,  a 

I0 t t 

t e te T, e 

a u d at e u a  t u a u  

a u d at e ua t uau da 

a u d at e ua t uau da te 

7 . 4 . 2  D e c o d i n g  

The decoding algorithm reads an element of the tokens at a time from the 
compressed file and maintains the dictionary in a similar way as the encoder. 

Let (x, c) be a compressed token pair, where x is the next codeword and c 
the character after it. 

A l g o r i t h m  7.6 LZ78 decoding 

I N P U T "  

O U T P U T "  

sequence of tokens in (x, c) format, 
dictionary with an empty entry at index 0 
string of decoded symbols, updated dictionary 

1: whi le  not EOF do 
2: x ~-- next_codeword 0 
3: c ~-- next_char 0 
4: output dictionary_word(x) + c 
5: add dictionary_word(x) + c into dictionary at the next available location 

6. end  whi le  

E x a m p l e  7.10 Show step by step the decoding operation of LZ78 on the input 
tokens: Oa Ou Od it Oe 2a Ot 6., 3a 7e 

Solu t ion  We trace the values of x, c, output and the dictionary (D) for each 
iteration (i). Initially, the dictionary is empty. In the table below, we use 
dictionary_word(x) to mean the word at index x in the dictionary (w(x) for 

short) .  
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D 
i x c w ( x ) + c  output 0 1 2 3 4 5 6 7 8 9 10 

1 0 a a a a 
2 0 u u u a u 

3 0 d d d a u d 
4 I t at  at  a u d at 
5 0 e e e a ~, d at e 
6 2 a ua ua a u d at e ua 

7 0 t t t a u d at e ua t 

8 6 u uau uau a u d at e ua t uau 

9 3 a da da a u d at e ua t uau da 

i0 7 e te te a u d at e ua t uau da te 

We now have the original string audateuat~ ,audate back. 

O b s e r v a t i o n  

1. LZ78 has made some improvement over LZ77. For example, in theory the 
dictionary can keep the patterns forever after they have been seen once. 
In practice, however, the size of the dictionary cannot grow indefinitely. 
Some patterns may need to be reinstalled when the dictionary is full. 

2. The output  codewords contain one less component than those in LZ77. 
This improves the data  efficiency. 

3. LZ78 has many variants and LZW is the most popular variance to LZ78, 
where the dictionary begins with all the 256 initial symbols and the output  
pair is simplified to output  only a single element. 

7.5 Applications 
One of the Unix utilities compress is a widely used LZW variant. 

�9 The number of bits used for representing tokens is increased gradually as 
needed. For example, when the token number reaches 255, all the tokens 
are coded using 9 bits, until the token number 511 (29 - 1) is reached. 
After that ,  10 bits are used to encode tokens and so on. 

�9 When the dictionary is full (i.e. the token number reaches its limit), the al- 
gorithm stops adapting and only uses existing words in the dictionary. At 
this time, the compression performance is monitored, and the dictionary 
is rebuilt  from scratch if the performance deteriorates significantly. 

�9 The dictionary is represented using a trie data structure. 

GIF (Graphics Interchange Format) is a lossless image compression format 
introduced by CompuServe in 1987. 

�9 Each pixel of the images is an index into a table that  specifies a colour 
map. 
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�9 The colour table is allowed to be specified along with each image (or with 
a group of images sharing the map). 

�9 The table forms an uncompressed prefix to the image file, and may specify 
up to 256 colour table entries each of 24 bits. 

�9 The image is really a sequence of 256 different symbols and is compressed 
using the LZW algorithm. 

V.42bis is an ITU-T standard commmunication protocol for telephone-line 
modems that applies the LZW compression method. 

�9 Each modem has a pair of dictionaries, one for incoming data and one for 
outgoing data. 

�9 The maximum dictionary size is often negotiated between the sending 
and receiving modem as the connection is made. The minimum size is 512 
tokens with a maximum of six characters per token. 

�9 Those tokens to be used infrequently may be deleted from the dictionary. 

�9 The modem may switch to transmitting uncompressed data if it detects 
that compression is not happening (e.g. if the file to transmit has already 
been compressed). 

�9 The modem may also request the called modem to discard the dictionary, 
when a new file is to be transmitted. 

7.6 Comparison 
We have studied all the important lossless compression algorithms for com- 
pressing text. Some of them are static and others are adaptive. Some use fixed 
length codes, others use variable length codes. Some compression algorithms 
and decompression algorithms use the same model, others use different ones. 
We summarise these characteristics below: 

Algorithm Adaptive Symmetric Type 

Run-length 
Huffman 

Adaptive Huffman 
Arithmetic 

LZ77 
LZW 

variable to fixed 
fixed to variable 
fixed to variable 

variable to variable 
variable to fixed 
variable to fixed 

Summary 
Dictionary compression algorithms use no statistical models. They focus on the 
memory on the strings already seen. The memory may be an explicit dictionary 
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that can be extended infinitely, or an implicit limited dictionary as sliding win- 
dows. Each seen string is stored into a dictionary with an index. The indices of 
all the seen strings are used as codewords. The compression and decompression 
algorithm maintains individually its own dictionary but the two dictionaries are 
identical. Many variations are based on three representative families, namely 
LZ77, LZ78 and LZW. Implementation issues include the choice of the size of 
the buffers, the dictionary and indices. 

Learning outcomes 
On completion of your studies in this chapter, you should be able to: 

�9 explain the main ideas of dictionary-based compression 

�9 describe compression and decompression algorithms such as LZW, LZ77 
and LZ78 

�9 list and comment on the main implementation issues for dictionary-based 
compression algorithms. 

Exercises 
ET.1 Using string abbaacabbabbb# (where # represents the end of the string) 

as an example, trace the values of word, x and the dictionary in running 
the basic LZW encoding and decoding algorithms, where word is the accu- 
mulated string and x is the character read on each iteration. 

E7.2 Suppose the input for encoding is a string aabbaaaccdee. Demonstrate 
how the simplified version algorithms of LZ77, LZ78 and LZW work step 
by step. 

E7.3 Suppose the History buffer is seven characters long and the Lookahead 
buffer is four characters long. Illustrate how LZ77 compression and decom- 
pression algorithms work by analysing the buffer content on each iteration. 

E7.4 For LZ78 and LZW, show what the dictionaries look like at the completion 
of the input sequence in the following format. 

Dictionary 
address (in decimal) 

Dictionary 
entry 

? ? 
" 7  o 

? ? 
�9 ~ �9 

? ? 

? ? 
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E7.5 Describe a simplified version of the LZ77, LZ78 and LZW algorithms. 
Analyse the type of the simplified algorithms in terms of, for example, 
whether they are static or adaptive and fized-to-variable, variable-to-fized 
or variable-to-variable. 

E7.6 Analyse the so-called LZSS algorithm below and discuss the advantages 
and disadvantages. 

A l g o r i t h m  7.7 LZSS encoding 

INPUT:  symbol sequence 
OUTPUT: (f, l), or (0, f, l) 
1" whi le  not EOF do 
2: determine (f, l) corresponding to the match in L 
3: end  whi le  
4: if sizeO f ( ( f  , 1) ) > sizeO f (match) t h e n  
5: output the token (1, first_character(L)} 
6: shift the entire buffer content by one position 
7: else 
8: output (0,p, l} 
9: shift the entire buffer content by l positions 

10: end  if 

Laboratory 
L7.1 Implement a simple version of the LZW encoding and decoding algorithms. 

L7.2 Implement a simple version of the LZ77 encoding and decoding algorithm. 

L7.3 Investigate, experiment and comment on the performance of your programs. 

L7.4 Implement Algorithm 7.8, an alternative LZ78 decoding algorithm. Discuss 
the difference between this and Algorithm 7.6 in terms of the performance. 

Assessment 
$7.1 Explain why a dictionary-based coding method such as LZ77 is said to be 

adaptive and variable-to-fixed in its basic form. 

$7.2 One simplified version of the LZ78/LZW algorithm can be described as in 
Algorithm 7.9, where n is a pointer to another location in the dictionary, 
c is a symbol drawn from the source alphabet, and (n, c} can form a node 
of a linked list. Suppose that  the pointer variable n also serves as the 
transmitted codeword, which consists of 8 bits. Suppose also the 0 address 
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A l g o r i t h m  7.8 LZ78-1 decoding 

I N P U T :  

O U T P U T  �9 

sequence of tokens in (x, c) format, empty dictionary 
string of decoded symbols, updated dictionary 

1" while  not EOF do 
2 :  

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

x ~- next_codeword 0 
c ~ next_char  0 
i f  x - 0 t h e n  

output c 
else 

output d i c t i o n a r y _ w o r d ( z )  + c 
end  if 
add d i c t i o n a r y _ w o r d ( z )  + c into dictionary at the next available location 

end  whi le  

A l g o r i t h m  7.9 Another version of LZ78/LZW 

5 :  

6: 

7: 

8: 

9: 

10: 

I N P U T :  

O U T P U T :  

1. n ~-- 0; fetch next source symbol c 
2: if the ordered pair (n, c} is already in the dictionary t h e n  
3: n ~- dictionary address of entry (n, c) 
4: else 

transmit n {as a code word to decoder} 
create new dictionary entry (n, c} at dictionary address m 
rn ~--- rn + l 
n ~ dictionary address of entry (0, c} 

end  if 
return to step 1 

entry in the dictionary is a NULL symbol, and the first 256 places in the 
dictionary are filled with single characters�9 

Suppose that a binary information source emits the sequence of symbols 
II000101100101110001111 (that is II0 001 011 001 011 I00 011 II 
without spaces). Construct the encoding dictionary step by step and show, 
in the format below, the dictionary on completion of the above input 
sequence. 

Dictionary 
address (in decimal) 

Dictionary 
entry 

? ? 

? ? 
o ,  �9 

? ? 
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Chapter 8 

Predic t ion  and transforms 

We have seen several lossless compression algorithms. In practice, these al- 
gorithms are often used together with some other methods to achieve better 
overall compression efficiency. This can be done by lining up several different 
algorithms and using them one after another. Certain changes can be made 
on the source distribution before applying the lossless compression algorithms. 
The source data can also be transformed to another domain to achieve better 
overall compression performance. 

The preparation work before applying certain lossless compression algo- 
rithms is called preprocessing. Examples of typical preprocessing operations 
include sampling and quantisation as well as prediction and transforms, all of 
which depend on the source data. These techniques are mainly for lossy com- 
pression of audio, image and video data, although some approaches can be 
lossless. 

In this chapter, we shall introduce mainly two common approaches of ma- 
nipulating the source data in order to achieve a more favourable distribution for 
compression. One is the so-called prediction which changes the representation of 
the source data according to prediction rules based on the data already seen in 
the past. The other is called transform which changes the source data domain. 
We shall leave the sampling and quantisation to the next chapter, but introduce 
the concept of quantisation briefly. 

8.1 Predictive approach 
There are two issues in this approach. One is for the encoding process, the 
so-called prediction rules to map the original set of data to another for a skewed 
distribution. Data with a skewed distribution contain certain elements that  
occur much more frequently than others. The second is for the decoding process, 
an inverse formula to recover the original set of the data. It is easy to understand 
the predictive approach from the following example: for convenience, we use 
predictive encoding and predictive decoding to mean the forward process and the 

145 
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inverse process respectively. We may also use encoding and decoding for short 
respectively. 

E x a m p l e  8.1 Consider the predictive approach on an array of data 
A -  (1, 1, 2, 3, 3, ~, 5, 7, 8, 8) from alphabet ( 1 , . . . ,  8). 

We notice that  each da tum occurs a similar number of times. The frequency 
distribution can be found in the following table and its plot is seen relatively 
flat in Figure 8.1. 

x (data) 
f (frequency) 

2 

1 

O. O.  .O 
�9 �9 ~ 

�9 ~ 

"o" o---o,  o" 
�9 ~  

w 

1 2 3 4 5 6 7 8 

..~ x 
r 

Figure 8.1" Frequency distribution of A 

P r e d i c t i v e  e n c o d i n g  

Since the frequency distribution is flat, the compression methods we have learnt 
so far would not be very effective to the data. Now if, for each da tum from 
the second position, we add 1 to its previous datum, the sum can be used as 
its predicted value based on the previous item. We have the predicted values: 
A '  = ([!], 2, 2, 3, 4, 4, 5, 6, 8, 9), where the da tum marked in a small box remains 
unchanged. Subtract  A from A'  and we have for each datum, from the second 
position, the difference between the predicted value and the original value: B = 
A'  - A = ([]7, 1, 0, 0, 1, 0, 0 , - 1 ,  0, 1). Obviously, a bet ter  compression may be 
achieved on B than on the original A, because the distribut{on of da ta  in B 
is skewed compared to the original data  A. Figure 8.2 shows the range of the 
data  has been reduced from [1, 8] to [-1,  1], and there are more 0s now. 

Figure 8.3 shows the frequency distribution before (a) and after (b) the 
predictive operations. 

P r e d i c t i v e  d e c o d i n g  

Given B - ([il, 1, 0, 0, 1, 0, 0 , - 1 ,  0, 1), we can simply 'subtract  the current B 
value from the previous da tum in A and add 1' to get the original A. For each 
i, A[i] - A [ i -  1 ] -  B[i] + 1 where A[1] - B[1] initially. For example, since 
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X i  

. . . . . . . .  g o  

, 

-O �9 ' ~ 
~ ~ 

~ 

i 10 
v 

A - (1, 1, 2, 3, 3, 4, 5, 7, 8, 8) 

! 

x i 

1 o - o .  . . . . . .  . . _ � 9  . . . . . . . . . . .  . .  - � 9  .~ i 
* w w , . . r  y 

-1" . . . . . . . . . . . . . . . . . .  e 10 

B - (1, 1, 0, 0, 1, 0, 0, - 1 ,  0, 1) 

(a) (b) 

Figure 8.2" Plot  of arrays A and B 

f ! 

f 

1 

5 
0 �9 

0 �9 

3 ' * 
0 

Q . O  .0  '. 

�9 oo.  o 1 e ', 
�9 ~"  ~ x 0 - ~ ~  

1 2 3 4 5 6 7 8  - 1 0 1 2 3 4 5 6  

(a) (b) 

..._ X I 
y 

Figure 8.3: The frequency dis t r ibut ion for A (a) and B (b) 

BIl l  = 1, we know A[1] = 1. Then  A[21 = A [ 1 ] - B [ 2 ] + I  = 1 - 1 + 1  = 1, 
A[3] = A [ 2 ] -  B[3] + 1 = 1 - 0  + 1 = 2, and so on. 

As we can see from the example,  the encoding process must  be revers ib le .  
The predict ion rule 'adding 1 to the previous d a t u m '  in the approach can be 
wr i t ten  as A'[i] = A [ i -  1] + 1, for i = 2 , . . . , n ,  where n is the number  of 
elements  in the array, and A[1] = A'[1] = BIl l .  The difference array derives 
from B[i] = A'[i] - A[i].  Therefore A[i] = A'[i] - B[i] = ( A [ i -  1] + 1 ) -  B[i]). 

O b s e r v a t i o n  

1. In Example  8.1, we predict  tha t  the value of each da tum,  from the second 
position, is its previous d a t u m  plus 1. We then compute  the difference 
between the predicted A ~ and actual  A values, scale it, and store it in an 
array. This array B is called a r e s i d u a l  array .  

2. The  predict ion 'rules' allow us to change a set of da ta  to another  with, 
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hopefully, a better distribution (for example, from a flat distribution to 
a more skewed one as in Figure 8.3). This is a transform in the sense 
that  every datum in the original set has been changed. The transform is 
achieved by a simple mathematical  formula. 

3. Of course, this process has to be reversible in order to recover the original 
data during the decoding process. 

8 . 1 . 1  E n c o d i n g  

The prediction method we introduced in the previous section can be extended 
to a two-dimensional situation I in many applications. 

E x a m p l e  8.2 Suppose that the following matrix A represents the pizel values 
of part of a larger greyscale image, where row indices i = 1 , . . .  , 8 and column 
indices j = 1 , . . . ,  8: 

t 

2 ~ 2 3 1 1 1 1  
1 3 2 3 5 1 1 1  
3 ~ 5 5 5 5 5 5  
6 ~ 4  5 8  7 9 ~  5 
3 2  7 3 2  7 9  
3 3 ~  3 ~ ~ 2 2  
1 2 1 2 3 3 3 3  
1 1 1 2 2 3 3 3  

Let us predict that  from the second column each pixel is the same as the 
one to its left. So the residual matrix R[i, j] = A[i, j ] -  A[i, j - 1] is as below, 
where i = 1 , . . . , 8 ,  j = 2 , - . .  ,8: 

2 2 - 2  1 - 2  0 0 0 
1 2 - 1  1 2 - 4  0 0 
3 1 1 0 0 0 0 0 
6 - 2  1 3 - 1  2 - 5  1 
3 - 1  5 - 4  - 1  5 2 - 5  
3 0 1 - 1  1 0 - 2  0 
1 1 - 1  1 1 0 0 0 
1 0 0 1 0 1 0 0 

We can now apply any methods of prefix coding, i.e. those text compres- 
sion methods for generating a prefix code such as Huffman coding, to encode 
according to the frequency distribution of R. 

The frequency distribution for this part of the residual image is then as 
below: 

1Review Appendix B if necessary. 
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Entry 
5 2 

- 4  2 
2 4 
1 6 

0 21 
1 16 
2 6 
3 4 
5 2 
6 1 

Occurrence Probability 
2/64 
2/64 
4/64 
6/64 
2 /64 
16/64 
6/64 
4/64 
2/64 
1/64 

The entropy of the distribution is - ~ i  Pi log2 Pi bits. The entropy of the 
entire image can be predicted as the same as that  of this partial image. In 
other words, the entropy of a partial image can be used as an estimation for the 
entropy of the whole image. Of course, the compression quality of this approach 
depends very much on the difference between the real entropy and the estimated 
entropy of the entire image. Hopefully the overall compression would be a better 
one in comparison to the original 8 bits/pixel (e.g. ASCII) coding. 

8 . 1 . 2  D e c o d i n g  

The predictive transform process is reversible since the original matrix A[i, j] = 
A [ i , j -  1] +R[ i , j ] ,  where A[i,O] = R[i,O] and i =  1 , . . . , 8 ,  j = 2 , . . . , 8 .  Hence 
the whole predictive encoding process is lossless if the prefix encoding is lossless. 
The reader can easily justify this by completing Example 8.2 in the previous 
section. 

8.2 M o v e  to  Front  c o d i n g  

Some prediction and transform methods require little mathematics. Move to 
Front (MtF) coding is a good example. 

The idea of MtF is to encode a symbol with a '0' as long as it is a recently 
repeating symbol. In this way, if the source contains a long run of identical 
symbols, the run will be encoded as a long sequence of zeros. 

Initially, the alphabet of the source is stored in an array and the index of 
each symbol in the array is used to encode a corresponding symbol. On each 
iteration, a new character is read and the symbol that  has just been encoded 
is moved to the front of the array. This process can be seen easily from the 
example below. 

E x a m p l e  8.3 Suppose that the following sequence of symbols is to be com- 
pressed: DDCBEEEFGGAA from a source alphabet (A, B, C, I), E, F, a). Show 
how the MtF method works. 
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Encoding 

Initially, the alphabet is stored in an array: 

0123456 
ABCDEFG 

1. Read D, the first symbol of the input sequence. Encode D by index 3 of 
the array, and then move D to the front of the array: 

0123456 

DABCEFG 

2. Read D. Encode D by its index 0, and leave the array unchanged because 
D is already at the front position of the array. 

0123456 
DABCEFG 

3. Read C. Encode C by its index 3, and move C to the front" 

0123456 
CDABEFG 

4. Read B. Encode it by 3 and move B to the front" 

0123456 
BCDAEFG 

5. Read E. Encode it by 4 and move E to the front" 

0123456 

EBCDAFG 

and so on. 

This process continues until the entire string is processed. Hence the encod- 
ing is 3, 0, 3, 3, 4 , . - . .  

In this way, the more frequently occurring symbols are encoded by 0 or small 
decimal numbers. 
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Decoding 
Read the following codes: 3, 0, 3, 3, 4 , . - . .  

Initially, 

0123456 

ABCDEFG 

1. Read 3, decode it to D, and move it to the front of the array: 

0123456 

DABCEFG 

2. Read 0, decode it to D, and do nothing since D is already at the front. 

0123456 

DABCEFG 

3. Read 3, decode it to C, and move it to the front. 

0123456 

CDABEFG 

and so on. 

In this way, the original sequence of symbols will be recovered one by 
one. We decode the first three symbols DDC .. .  and decoding the entire 
sequence will be left to the reader as an exercise. 

8.3 Burrows-Wheeler Transform (BWT) 
The Burrows-Wheeler transform algorithm is the base of a recent powerful soft- 
ware program for conservative data compression bz ip  which is currently one of 
the best general purpose compression methods for text. The BWT algorithm 
was introduced by Burrows and Wheeler in 1994. The implementation of the 
method is simple and fast. 

The encoding algorithm manipulates the symbols of S, the entire source 
sequence by changing the order of the symbols. The decoding process transforms 
the original source sequence back. During the encoding process, the entire input 
sequence of symbols is permutated and the new sequence contains hopefully 
some favourable features for compression. 

In the example below, the encoding process produces a sequence L and an 
index s. The decoding algorithm reproduces the original source sequence back 
using L and an index s. 
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E x a m p l e  8.4 Consider a string S = 'ACCELERATE' of n = 10 characters, stored 
in a one-dimensional array. Show how B W T  can be realised for  encoding and 
decoding purposes. 

Encoding 

The purpose of this process is to shuffle the symbols of the source sequence S 
in order to derive L, a new sequence which allows a bet ter  compression. The 
length of the original array S and of the resulting array L are the same because 
L is actually a permutat ion of S. In other words, we only want to change the 
order of the symbols in the original array S to get a new array L which can 
hopefully be compressed more efficiently. 

Of course, the new array L cannot be just any array after a few random 
shuffles. There may be other ways to shuffle an array but the one used in B W T  
works well in practice. 

Deriving L 
In order to get L, we need to do the following steps: 

1. We first shift the string S one symbol to the left in a circular way. By 
circular, we mean that  the leftmost symbol in the array is shifted out of 
the array, and then added back from the right and becomes the rightmost 
element in the array. For example, 
'A C C E L E a A T E ' w i l l b e c o m e ' C  C E L E R A T E A ' a f t e r s u c h  
a circular-to-left shift. 

Figure 8.4: A circular shift to the left 

Repeating the circular shift n -  1 times, we can generate the n x n matr ix  
below where n is the number of symbols in the array, and each row and 
the column is a particular permutat ion of S. 



8.3. BURROWS-WHEELER TRANSFORM (BWT) 153 

0 1 2 3 4 5 6 7 8 9  
ACCELERATE 
CCELERATEA 

CELERATEAC 

ELERATEACC 

LERATEACEE 

ERATEACEEL 
RATEACEELE 

ATEACEELER 
TEACEELERA 
EACEELERAT 

2. We now sort the rows of the matr ix  in lexicographic order so the matr ix  

becomes: 

0 1 2 3 4 5 6 7 8 9  

ACCELERATE 

ATEACEELER 

CCELERATEA 
CELERATEAC 
EACEELERAT 

ELERATEACC 

ERATEACEEL 

LERATEACEE 
RATEACEELE 

TEACEELERA 

3. We name the last column L, which is what we need in the B W T  for 
encoding, where S l indicates the first symbol of the given array S. 

F L 

A CCELERAT E 
A TEACEELE R 
C CELERATE A ~ s l  
C ELERATEA C 

E ACEELERA T 

E LERATEAC C 

E RATEACEE L 

L ERATEACE E 

R ATEACEEL E 

T EACEELER A 

O b s e r v a t i o n  

1. L can be stored in a one-dimensional array, and can be wri t ten as 
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(2) 

81 (1) 

82 
81 

82 

~__ 83 

Figure 8.5: Finding the original string S = s l s 2 " " S n  from L 

0123456789 
ERACTCLEEA 

2. Similarly, if we name the first column of the matrix F, then F can be 
derived from L by just sorting L. In other words, we should get F if we 
sort L. 

This is the sorted L, or F: 

0 1 2 3 4 5 6 7 8 9  
A A C C E E E L R T  

3. As we will see later, the first symbol in S (i.e. 'A') is also transmitted in 
BWT to the decoder for decoding purposes. 

Decoding 
The goal of the reverse process of the transform is to recover the original string 
S from L. Since L is a permutation of S, what we need to find is the order 
relationship in which the symbols occurred in the original string S. Figure 8.5 
shows the order relationship among the first three symbols in the original string 
S - ~  8 1 8 2 8 3 " ' "  , where (1), (2) and (3) represent the order in which we shall 
find these symbols. An implicit chain relationship can be discovered among the 
elements in L. 

We shall demonstrate how this implied chain relationship can be found in L 
with the help of its sorted version F, given the first character in the original S. 

Note that both L and F are permutations of the original string S, and for 
each symbol in L, we know the next symbol in the original string S would be 
the one in F with the same index (because, during the encoding process, the 
leftmost element was shifted out and added to the right end to become the 
rightmost element). In other words, given any symbol in L, say the symbol si 
at k location, i.e. L[k] = si, we know that the next symbol in the original string 
S: Si+l = F[k]. If we know where the si+l is in L, we would know the si+2. In 
this way, we can retrieve every symbol in S. 
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F L F L 

. . . .  S l  (1)a 

F L 

Figure 8.6: Chain relationship 

(1)b 

(2) 

In Figure 8.6(1)a, for example, since we know the position (index) of the 
first symbol S l in L, we can find the next symbol s2 in F using the same index. 
This relationship is illustrated by a dashed arrow from S l in L to s2 at the same 
position in F. 

In Figure 8.6(1)b, s2 can be identified in L using an auxiliary array (see 
later). A solid arrow represents the position (index) link between the different 
locations of the same symbol in F and in L. 

Note that  two types of links exist between the items in F and those in L. The 
first type is, from L to F, to link two items si and its follower si+l by an identical 
index. If si = L[k], for some index k, then the next symbol si+l = F[k]. The 
second type is, from F to L, to link by the same symbol si+l from its location 
in F to its location in L. 

Figure 8.6(2) shows the two types of links F and L. The first type of link is 
represented as a dashed line with arrow from s2 in L to its follower s3 in F, and 
the second type as a solid line pointing from sa's position in F to its position in 
L. 

F 

sa s2 (2) 

82 81 (1) 

~ (3) 

Figure 8.7: Finding the original string S = 8 1 8 2 " " 8 n  from L via F 

Figure 8.7 shows how, by following the two links in Figure 8.6 on each step, 
we can retrieve the original sequence of symbols one after another, for example 
from S l to s2 and then from s2 to s3 and so on. 

The first type of link can be built up straight away using an identical index 
each time. The second type of link, however, requires knowing the location in 
L for each symbol in F. For example, as in Figure 8.6(1)b, before finding the 
follower of s2, we need to know the index k of s2 in L. 
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Fortunately, this information is easy to establish when we derive F from L. 
We only need to store the index of each of the symbols in L while sorting them. 

For example, we can define an auxiliary array T to store, for each element 
in F, its index in L. T is sometimes called transformation vector and is critical 
for deriving the original string S from L. Alternatively, we can define the items 
in F as an array of ob j ec t s  and store the symbols and their index information 
in L in different fields. 

E x a m p l e  8.5 Consider the L, F and auxiliary array T.  Suppose the first sym- 
bol sl is L[2] = A (shade in Figure 8.8). Show with the two types of links how 
the original string A C C E L E R A T E can be derived. 

0123456789 
L: ERACTCLEEA 

0 1 2 3 4 5 6 7 8 9  
F: A A C C E E E L R T  
T: 2 9 3 5 0 7 8 6 1 4  

Starting from the first symbol in L[2] = 81 - -  'A' which is known (transformed 
from the encoder). Following the links in Figure 8.8, we can easily derive the 
original string S. 

The process starts from sl = L[2], we then know the next symbol in S: 
s2 = F[2] = ' C ' =  LIT[2]] = L[3] (Figure 8.8(1)). From s~ = L[3], we know the 
next symbol is s3 = F[3] = 'C' = L[T[3]] = L[5] (Figure 8.8(2)). From s3 = L[5], 
w e  know the next symbol 84 • F [ 5 ]  = ' E '  ---- L [ T [ 5 ] ]  = L [ 7 ] .  This p r o c e s s  

continues until the entire string S = ACCELERATE is derived (Figure 8.8(10)). 

O b s e r v a t i o n  

1. The BWT algorithm can be fast using array implementation. 

2. The BWT algorithm can perform well in certain situations as a pre- 
processing compression algorithm and works best with other standard 
compression algorithms such as RLE, Huffman etc. 

3. The implementation of the algorithms is fairly simple. 

4. The BWT cannot be performed until the entire input file has been processed. 

5. There is a typical preprocess by RLE and post-process of Huffman coding. 

8.4 Transform approach 
Transform is a standard mathematical tool being used in many areas to solve 
sometimes difficult computation problems in the original form. The main idea 
is to change a group of quantity data such as a vector or a function to another 
form in which some useful features may occur. For example, the computation 
required in the new form may become more feasible in the new space. The 
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Figure 8.8: Finding the original string S from L 
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computation result in the new form is then converted back to the original form 
by the inverse transform. 

The transform approach changes source data domain. The process of chang- 
ing from the current domain to the new domain is called forward transform 
(transform for short) and the process of changing back to the original domain 
is called inverse transform. We first look at an example of a simple transform 
below: 

Y 
yl 

X ! 

X 

0 

Figure 8.9: From x-y domain to x~-y t domain 

E x a m p l e  8.6 Figure 8.9 shows a simple geometric rotation of angle O, from 
space x-y to space x~-y ~, which can be achieved by applying a transform matrix 
T below (see Appendix B for background information on matrices). 

Each geometric point in x-y space can be represented by a pair of v = (xi, Yi). 
The rotation transformation matrix can be defined as 

T= ( cos0 s i n 0 )  
- sin 0 cos 0 

Each new point v ' -  (x~, y~)in the new x'-y' space can then be derived by 
the following matrix computation: 

( cos0 s i n 0 )  ( x )  
v ~ - T v -  - s i n 0  cos0 y 

The inverse transformation matrix T -1 is 

T_I  _ ( cos0 - s i n 0  ) 
sin 0 cos 0 

The formula v' = Tv  is called a forward transform, or transform for short, 
and v = T - i v  ~ is called inverse transform, where T is called the transform 
matrix. 
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If the geometric object in the original x-y space turns out to be difficult, 
then a suitable transform may provide an easier way to look at the geographic 
object. Example 8.7 shows what happens with a set of data  after a rotation 
transform. 

E x a m p l e  8.7 Consider the original data pair: 
x = (7, 16, 37, 3~, 20, 27, 40, 10, 31,16, 22, 16, 43, 3, 39); 
y = ( 2 0 , 3 ~ , 6 9 , 5 9 , ~ 1 , 5 0 , 6 8 , 1 3 , 5 1 , 2 0 , 3 6 , 2 7 ,  76,12,66)  as in Figure 8.10. 
Show how the set of 30 data (15 x values and 15 y values) can be transformed 
after a 7r/3 degree clockwise rotation. 

Y 
80 

0 

0 

0 0 
0 

~ ~ ,'o ,'5 2'o ;~ 3'0 3'~ 4'o ~ x 

Figure 8.10: Before transform 

Since the data  concentrate along a line with an angle of 0 = 7r/3 degrees 
against the x axis, we define the transform function as follows: 

(cos(yr/3) sin(:r/3) ) ( 0.5000 0.8660) 
T - -sin(Tr/3) cos(Tr/3) - -0.8660 0.5000 

We obtain the following data which are rounded to integer for convenience 
(Figure 8.11): 
x' - (21, 37, 78, 68, 46, 57, 79, 16, 60, 25, 42, 31, 87, 12, 77); 
y'  = (4, 3, 2, 0, 3, 2 , - 1 , - 2 , - 1 ,  - 4 , - 1 ,  0, 1, 3 , - 1 ) .  

As we can see the data  points now concentrate along the x' axis after the 
transform. Now an entropy compression algorithm can be applied to the data  
in the x'-y' domain. 

In fact, the transform has a more interesting impact on the data. Fig- 
ure 8.12(1) shows the data  distribution in the x-y domain and Figure 8.12(2) 
shows the data  distribution in the x'-y' domain after the transformation. The 
small circle represents the value of an x and the small star the value of a y. As 
we can see, while some x's'  values increase, most y's' values in the x'-y' domain 
decrease and become very close to zero. If this is an application that  allows 
lossy compression, even higher compression may be achieved. 
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y! 
10 

- 1 0  = , I = , , , , , 
0 10 20 30 40 50 60 70 80 90 100 

X / 

Figure 8.11: After transform 

The reverse transform can be easily completed by applying 

T _ I  (cos(Tr/3) 
sin(Tr/3) 

-sin(Tr/3) ) _ ( 0 . 5 0 0 0  
cos(Tr/3) 0.8660 

--0.8660 ) 
0.5000 ' 

and setting y~ - 0, i - 1 , . . .  , 15, we can reconstruct a set of approximate data: 

Xe - (11, 19, 39, 34, 23, 29, 40, 8, 30, 13, 21, 16, 44, 6, 39); 
Ye -- (18, 32, 68, 59, 40, 49, 68, 14, 52, 22, 36, 27, 75, 10, 67). 

O b s e r v a t i o n  

1. Data compression can be achieved only by storing x~s ' values. 

2. The energy of the original data can be computed by 

n 

E -  ~--~(xi 2 + yi 2) - 45 069 
i = 1  

and the energy of the transformed data 

n 

E ' -  ~--~.(x~i 2 + y~2) _ 45069 
i --1 

This means that the energy remains the same before and after the trans- 
form. However, the energy is concentrated in the x~s only among the 
transformed data. 

3. The reconstructed set of data is slightly different from the original ones 
since we set y~ - 0. This means that the whole compression process is 

lossy. 
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100 , , ~ , ~ v 

O " •  
80 * Y . - 

6O 
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0 " x  I 0 
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0 
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(2 )  A f t e r  t r a n s f o r m  

Figure 8.12: Comparison of data distribution before and after transform 

4. The loss is caused by rounding the real data. Rounding the data is the 
simplest form of quantisation (Section 9.3). The difference between the 
reconstructed data and the original data is called distortion. We shall look 
at the issues in these lossy operations in the next chapter. 

8 . 4 . 1  O r t h o g o n a l  t r a n s f o r m  

We have observed from Example 8.7 that the transform can make data more 
skewed by increasing some of the values and decreasing others. By further 

n checking on the total of x2+  y2, we find the exact same amount of }-]i=1 (xi 2+  
yi 2) = 45 069 in both the x-y domain and the x'-y' domain. In other words, the 
transform does not change this total amount of energy in both domains. 

It turns out that this is not a coincidence. The amount }-]i~=l(xi 2 + yi 2) 
is called energy of the system. The transform we have used is a so-called or- 
thogonal transform, a favourable type for data compression, used also in many 
applications in other fields. 

A transform is orthogonal if the transform matrix is orthogonal (Appendix B.4). 
One immediate advantage of applying an orthogonal transform is that the in- 
verse transform can be easily found. If the transform matrix is T, then the 
reverse transform matrix is just T T, the transpose of T. 

However, the most important advantage of applying an orthogonal transform 
is that first, such a transform keeps the energy of the data (defined as the sum 
of the square of each datum) unchanged. Secondly, in the transformed vector, 
the first few elements often concentrate a large proportion of the system energy. 
Hence these few elements can be used to give a good approximation of the entire 
original set of data. In other words, these few elements only may be sufficient 
for reconstructing the original set of data and the rest of transformed values 
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can be dropped. Therefore, an orthogonal transform can be applied to achieve 
good data compression. 

We look at an example below. 
l Let x ~ and x be vectors and T be an n x n matrix. Suppose xi, xi and tij 

' ' isa are the elements in x', x and T respectively. Let x i - ~-~j tijxj, where x i 
weighted sum of xj and is multiplied by a weight tij, {,j - i,... , 3. 

This can be written in matrix form: ( 11  13) (Xl) 
x~ -- t21 t22 t23 x2 
x~ t31 t32 t33 x3 

We can write x ' =  Tx.  Each row of T is called the basis vector. 
In practice, the weights should be independent of the values of xis so the 

weights do not have to be included in the compressed file. 

E x a m p l e  8.8 Given a weight matrix 1(1 1 1) 
T - ~  1 - 1  - 1  

1 - 1  1 

and the transform vector 

we have 

(4) 
x - -  6 

5 

1(1 1 1(15)(75) 
- 1 - 1  - 1  6 - ~  - 7  - - 3 . 5  
2 1 - 1  1 5 3 1.5 

Let us calculate the energy after and before the transform. The energy of 
x '  = (7 .5 , -3 .5 ,  1.5) T and that  of (4, 6, 5) T are 7.52 + ( -3 .5)  2 + 1.52 = 70.75 and 
42 + 62 + 52 = 77 respectively. Comparing the two, we find that  most of the en- 
ergy is conserved during the transform. However, the energy in each individual 
element in the transformed vector is (7.52, ( -3 .5)  2, 1.52) = (56.25, 12.25, 2.25). 
Most energy is concentrated in 7.5, the first element of x'.  This suggests a pos- 
sible compression even in this small example, because we can store, instead of 
the entire x' ,  the first element (7.5) only, and remove the other elements ( -3 .5  
and 1.5). 

When reconstructing the original x, we first quantify the transformed vector 
x '  from (7 .5 , -3 .5 ,  1.5) T to integers ( 8 , - 4 ,  1) T and conduct an inverse trans- 
form: x = T - 1  . X ! (1 1 1)(8)(3)  

(1/2) 1 - 1  - 1  - 4  - 5 
1 - 1  1 2 7 
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If (8, 0, 0) T is used to reconstruct x, we have (111)(8) 
(1/2) 1 - 1  - 1  0 - 4 

1 - 1  1 0 4 

In practice, the T is much bigger so the reconstruction result would be 
better. More sophisticated transform techniques, such as DCT and DWT (see 
following sections), would produce better results. 

8.5 Discrete Cosine Transform (DCT) 
A periodic function can be represented as the sum of sines and cosines. This fact 
was discovered by the French mathematician and physicist Jean Baptiste Joseph 
Fourier (1768-1830) and the work was published in 1822. It has been regarded 
as one of the most revolutionary contributions of the nineteenth century. His 
theorem was later substantiated by Peter Gustav Lejeune Dirichlet (1805-59). 

The fact that  all periodic functions can be expressed as a sum of sinusoidal 
components suggests a useful approximation of the function because the first 
few terms of the infinite series are normally sufficient for many applications. It 
also provides an analysis tool for decomposition of a compound waveform. 

The Discrete Cosine Transform, similar to the Fourier transform (see Ap- 
pendix C), represents a signal by its elementary frequency components. DCT 
relates to the Discrete Fourier Transform (DFT) closely and this can be seen 
from the DFT formula. However, it performs much better than DFT for com- 
pression. DCT has a wide range of applications in data compression as well as 
in other subject areas. 

The commonly used Discrete Cosine Transform is two-dimensional and can 
be described by an n x n transform matrix C as below. Each entry of the matrix 
C[i, j] is obtained from a function of cosines: 

1 COS (2jW1)i~- 2n , 0; j 0 , 1 , . . .  , n -  i 1 

C[i , j ] -  ~ c o s  (2j+l)iTr 2n , i - - 1 , . . . , n ;  j - - 0 , 1 , . . - , n - 1  

The main advantages of DCT compared to other transforms are that  DCT 
does not introduce any sharp discontinuities at the edges, and it works sub- 
stantially better in energy compaction for most correlated sources. DCT was 
included in JPEG and MPEG in the years prior to JPEG 2000 where wavelet 
transform methods are included. 

There are other common transforms with similar approaches such as the 
Discrete Walsh-Hadamand Transform (DWHT) and the Discrete Karhunen- 
Loeve Transform (KLT). DWHT requires mostly additions and subtractions so 
it has good computational efficiency although it does not give a good effect on 
continuous data. KLT can achieve the optimal energy concentration but may 
require expensive computation because the transform matrix is required to be 
calculated for each individual set of data. 
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8.6 Subband coding 
The performance of the transform techniques that we have seen so far depends 
very much on certain well-defined characteristics of the source data. Hence 
none of these transforms would work very well on its own if the source contains 
a combination of two or more controversial characteristics. In this case, certain 
algorithms are needed to decompose the source data into different frequency 
components first to highlight individual characteristics. The components are 
then encoded separately. In the reconstruction process, the components are 
decoded before being assembled to recover the original signal. Such encoding 
and decoding processes are called subband coding. 

The algorithms that isolate certain frequency components in a signal are 
called filters. The signal is decomposed into several frequency components which 
are called subbands. Filters that allow certain subbands to pass are called band- 
pass filters. 

A low-pass filter allows the low frequency components to pass but blocks 
the high frequency components. The threshold frequency f0 is called the cutoff 
frequency. Similarly, a high-pass filter allows the subbands above the cutoff 
frequency to pass but blocks those below. 

f( t)  

/ ~  /% A 
) . . . .  t 

Figure 8.13: A rapidly changing source 

With proper filters, the combination characters may be decomposed and 
certain characteristics may be identified and selected. Figure 8.13 shows a source 
appears changing rapidly. However, it contains a low frequency component 
(Figure 8.14), which can be extracted using a low-pass filter. 

A general purpose filter can be modelled using the mathematical formula 
below: 

N M 

Yn -- E aiXn-i + E biYn-i, 
i - -0  i - 1  

where the sequence (Xn) is the input to the filter, the sequence (y~) is the output 
from the filter, and (a~) and (bi) are the filter coefficients. 
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t 
, / %  . 

f ( t )  

Figure 8.14: Showing a slow movement of sin(x) 

A number of filters may be used one after another or in parallel to achieve 
better decomposition. A collection of filters is often called filter banks. Filters 
used in the decoding process are usually called analysis banks and those used 
in the decoding process are synthesis banks. Various filter banks for subband 
coding can be found in the literature or in off-the-shelf programs. Topics on 
the selection, analysis or design of the filter banks are beyond the scope of this 
book. Interested readers are encouraged to consult the literature. 

8.7  W a v e l e t  t r a n s f o r m s  

A wave can be defined as a function of time, f( t ) ,  where ( - o c  < t < ec). Waves 
of specific characteristics with a limited duration are called wavelets. 

Wavelets are mathematical  functions that  satisfy certain conditions. Like 
sin(t) and cos(t) in Fourier transform, wavelets can be used to represent data 
or other functions. However, wavelets methods have advantages over Fourier 
methods in analysing signals containing spikes or discontinuities. Wavelets were 
developed independently in different scientific fields such as mathematics,  quan- 
tum physics, and electrical engineering. 

In the area of data compression, wavelet transforms allow a similar transform 
in the DFT, i.e. only storing the main coefficients of series of basis functions 
and the transform matrices. 

Wavelet transforms gained their popularity in recent years due to their good 
performance and being included in JPEG 2000. The two-dimensional wavelet 
transform technique can be used for image compression. 
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f(t) 

A;AA  

Figure 8.15: A signal whose frequency varies according to time 

8 . 7 . 1  S c a l e - v a r y i n g  b a s i s  f u n c t i o n s  

A scale-varying basis function is a basis function that  varies in scale. It is also 
called a step-function. The function or data space is divided using different 
scale size. For example, if we have a function f(t) with a range of [0, 1], we can 
divide the function into two step-functions: 

f l ( t )  0 < t _~ 1/2, 
f ( t )=  f2(t) 1 / 2 < t _ < 1 .  

We can then further divide the functions to four step-functions: 

f11(t) 0 < t _< 1/4, 

f12(t) 1/4 < t ~ 1/2, 
f ( t ) -  f21(t) 1/2 < t < 3/4, 

f22(t) 3/4 < t < 1. 

Let g~(t) be another set of functions known as the basis. Suppose a function 
f can be represented as the weighted sum of some set of gi(t): 

N 

f(t) ~ E aigi(t) 
i 

The values of ai are called the coefficients, which can be Boolean, integer or 
real numbers. The compression process aims to find a good set of coefficients 
( a l , a 2 , - - - , a N )  to represent signal f.  The decompression process aims to re- 
construct f from the set of coefficients. The compression and decompression 
algorithms share the same set of functions and the compressed file consists of 
the set of coefficients. 
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Like Fourier methods such as Fast Fourier Transform (FFT),  wavelet trans- 
form is also a linear orthogonal transform. Hence the inverse transform matrix 
for Discrete Wavelet Transform (DWT) is also the transpose of the original. 
It can also be viewed as a 'rotation' in function space to a different domain. 
For DFT, the new domain contains basis functions of sine and cosine waves. 
For DWT, the new domain contains more complicated basis functions called 
wavelets, mother wavelets, or analysing wavelets. Also, the energy of the orig- 
inal function or data set is conserved after the transformation. The energy is 
often concentrated in the first few elements in the transformed vector (if it is 
the one-dimensional case). Hence only the few coefficients need to be encoded 
and very effective compression may be achieved. 

The wavelet transforms work by choosing a set of representative patterns 
and finding a subset of these patterns that  add up to the signal. It is essentially 
a subband transform. Note that  wavelet transforms have an infinite set of 
possible basis functions. Unlike DFT, wavelet transforms do not have a single 
set of basis functions like the Fourier transform where only sine and cosine 
functions are involved. 

The main issues in a wavelet transform in practice are: 

�9 finding a good set of basis functions for a particular class of signal 

�9 finding an effective quantisation method for different frequencies. 

The wavelet approach has developed well in recent years. Research has been 
done in fast wavelet transform, on wavelet packets transform, and adaptive 
waveforms. The results offer many potential application areas. More well- 
defined and studied techniques are expected. 

Summary 
Prediction and transform approaches represent another generation of compres- 
sion technologies. In order to achieve better compression ratio, different com- 
pression methods are used one after another. Preprocessing prepares a better 
data source for specific compression algorithms at a later stage. MtF and BWT 
algorithms are examples of lossless approach and DFT, DOC and wavelets are 
those of lossy. JPEG and MPEG offer standards and frameworks. 

Learning outcomes 
On completion of your studies in this chapter, you should be able to: 

�9 explain the concept of prediction and transforms 

�9 describe the main approaches in prediction and transforms 

�9 outline some simple preprocessing algorithms such as MtF algorithms, 
BWT, DCT and DWT. 
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Exercises  

E8.1 

E8.2 

E8.3 

Derive a predictive rule, for example 'add 2 and store the difference', for 
A = (Ni :, 3, 5, 6, 7, 9, 9, 11, 14) so that  the residual array would have more 
skewed frequency distribution. 

Compute the entropies for A = (~ii, 3, 5, 6, 7, 9, 9, 11, 14) and its residual 
array in the above question. 

Suppose that  the matrix A below represents the pixel values of part of 
a l a r g e i m a g e ,  whe re i  = 0 , . . . , 7 ,  j = 0 , . . . , 7 ,  andA[0,0]  = 4 .  Let us 
predict that  each pixel is the same as the one to its right. 

(a) Derive the residual matrix R of A 
(b) Derive the frequency table for R 

(c) Derive a variable length code, e.g. Huffman code, for the partial 
image 

(d) Discuss under what conditions the code can be applied to the whole 
image with less distortion. 

t __ 

4 8 4 8 1 1 1 1 
1 2 4 6 5 1 1 1 
8 4 5 5 5 5 5 5 
2 4 8 5 7 9 5 5 
2 4 6 7 7 7 9 9 
2 2 2 3 4 9 7 3 
3 3 6 6 6 7 7 7 
7 7 7 7 6 7 8 8 

E8.4 Given the orthogonal matrix 

1 1 1 1 
W - 1 1 - 1  - 1  

1 - 1  - 1  1 
1 - 1  1 - 1  

and a data vector 
4 

D -  6 
5 
2 

conduct a similar experiment to the approach in this chapter. 

(a) Fulfil a linear transform on D 

(b) Perform a reverse transform to get D '  
(c) Compare D '  with the original D. 

E8.5 Implement the MtF algorithms and demonstrate how the encoding and 
decoding algorithms work on an example string AABBBABABADDCC. 
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Laboratory 
L8.1 Design and implement a method which takes a matrix of integers and 

returns its residual matrix, assuming that  each entry is the same as the 
one to its left plus 1. 

L8.2 Design and implement a method which takes a residual matrix derived 
from the above question, and returns its original matrix. 

L8.3 Design and implement the encoding and decoding algorithms for the MtF 
approach. 

L8.4 Implement Algorithms 8.1 and 8.2 ([WMB99]) below. 
Hint" you should work out the input, output and the meaning of each 
variable used first. 

A l g o r i t h m  8.1 BWT encoding 

INPUT" .7 

OUTPUT:  .7 

1. sort the N input characters using the preceding characters as the sort key, 
create permuted array P [ 1 . . .  N] 

2. output the position in P that  contains the first character from the com- 
pressed file 

3: output the permuted array P 

A l g o r i t h m  8.2 BWT decoding 

INPUT" ? 

OUTPUT:  ? 

1- p ~-- the position of the first input character (from the encoder) 
2: P [ 1 . . .  N] ~ the permuted symbols (from the encoder) 
3: K[s] ~-- the number of times symbol s occurs in P 
4: set the array M[s] to be the position of the first occurrence of s in the array 

that  would be obtained by sorting P 
(a) set the array M[first symbol in lexical order] ~ 1 
(b) for (each symbol s (in lexical order)) M[s] ~-- M [ s -  1 ] + K [ s -  1]; end for 

5: f o r i - 1 ; i _ < N ; i - i + l d o  
6: s ~-- P[i]; L[i] ~ M[s]; M[s] +--- M[s] + 1 
7: end  for 

{Array L now stores the links with which to traverse the permuted string} 
s: traverse the link array to reconstruct the original string 

(a) i ~ p (initial position) 
(b) for (k - 1; k _< N; k - k + 1) output P[i];i ~ L[i]; end for 

L8.5 Design and implement your own version of the encoding and decoding 
algorithms for the BWT approach. 
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Assessment 
$8.1 Describe the encoding and decoding algorithms in DCT and DWT. 

$8.2 Show step by step how the BWT algorithm works on the transform and 
inverse transform of string BBCADDBB. 
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Chapter 9 

Audio compression 

Audio compression has interested researchers from its early years but has be- 
come a hot topic since the 1990s due to the popular MP3 music, DVD, digital 
radio and digital TV technology. In this chapter, we discuss the fundamentals 
of compression techniques for audio data. 

9.1 Modell ing sound 

Sound is essentially a sensation of the human audio system. It is detected by 
the ears and interpreted by the brain in a certain way. 

Sound can be modelled as waves and described in two ways using mathe- 
matical functions. One is s(t) in the time domain and the other S( f )  in the 
frequency domain, where t represents time and f represents the frequency. 

The first sound wave was scribed by Leon Scott using a stiff bristle attached 
to a diaphragm actuated by a horn in 1857 [Tre78]. Koenig improved Scott's 
invention during 1858 to 1862 and presented his results in London in 1862 in 
'Phonograms'.  

In 1711, John Shore discovered the tuning fork, and in 1908, G. W. Pierce 
described in a paper, 'A simple method of measuring the intensity of sound' 
based on his work in measuring sound intensities in auditoriums and of train 
whistles; thus was born the first sound-level meter. 

Sound, in a way similar to colour, is understood as a mixture of physical 
and psychological factors. We know that  sound is a physical disturbance in a 
medium and it is propagated in the medium as a pressure wave by the movement 
of atoms or molecules. Hence sound is often described as a function s(t) (as for 
electronic signals), measuring the pressure of medium at a time t. If T is the 
period measured in hertz (Hz), a sine wave can be written as s(t) = s(t + T) 
and sin(21rt) - sin(2~Tt) since f -  T'I A periodic signal s(t) with period T can 
be represented by the sum of sine or cosine waves: 

171 
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a0 ~ 27r ~ 27r 
s(t) - -~ + E ai cos(i-~--t)+ E ai sin(i -~-t) 

i = 1  i = 1  

Figure 9.1 shows some sine waves with different frequencies. 

0.[ 

0 

o ,  

S :)-t) 1 2 3 4 5 6 j 
t 

0 2 4 6 8 10 12 14 16 18 20 

. . . .  

OiV/ 1 
0 5 10 15 20 25 30 35 40 45 50 

Figure 9.1: Three sine waves with different frequencies 

E x a m p l e  9.1 Most orchestras tune the A above middle C note to ~ 0  Hz. The 
sound pressure function for that note can be written therefore as 
s (t) - sin (8807r t) (Figure 9.2). 

We also know that  the human ear is normally able to detect frequencies 
in the range between 20 Hz and 20 kHz. The upper audible limit in terms of 
frequency tends to decrease as age increases. Children may hear sounds with 
frequencies as high as 20 kHz but few adults can. 

It is interesting to notice that  the timbre of different instruments is created 
by the transient behaviour of notes. In fact, if the attack portion is removed 
from recordings of an oboe, violin, and soprano creating the same note, the 
steady portions are indistinguishable. 

Like any other wave functions, we can plot any sound signal by plotting its 
amplitude (pressure on medium) against time (see Figure 9.3 for an example). 
The shape of the curve can demonstrate clearly the different properties of a 
specific sound. 

Alternatively, we can use a frequency spectrum diagram to represent the 
changes of frequencies over a period of time. In a frequency spectrum diagram, 
we plot the amplitude against the frequency. 
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t 

Figure 9.2: Plot s ( t )=  sin(8807rt) 

E x a m p l e  9.2 Figure 9.~ is a frequency spectrum diagram for 
s (t) = 0.1 sin (27ct) + 0.3 sin (87rt) - 0.25 sin (207rt) in Figure 9.3. 

The frequency spectrum can be easily measured and transformed. Any au- 
dio signal, in theory, can be reconstructed by the frequencies in the frequency 
spectrum. Hence the frequency spectrum instead of the signals themselves can 
be used to encode the audio signals. This technique was used first by Homer 
Dudley, an engineer at Bell Laboratories, in his invention of the first voice coder 
(called vocoder) in 1928. The speech signal with a bandwidth of over 3000 Hz 
was compressed into the 100 Hz bandwidth transatlantic telegraph cable. The 
vocoder is regarded as the grandfather of modern speech and audio compression. 

The wave model has been used as a principle by industry and manufacturers 
of gramophone sound systems over many years, where mechanical devices were 
used to store the wave functions and reproduce the pressure wave. The pressure 
wave signals are then converted to electronic voltage not only to the speakers but 
are also stored on various media and transferred via various types of channel. 
Without  the vocoder model, technologies such as Internet telephony and live 
broadcasts over the World Wide Web today would be impossible. 

9.2 Sampling 
Digitised audio data are the digital form representation of sounds. They are 
created by a process of sampling followed by quantisation (Section 9.3) on the 
analogue sound wave. 

Sampling is a process in which sample values of a continuous signal are taken 
at a sequence of certain time spans. In other words, sampling is a way of taking 
certain values at n discrete time t l , t2 , . . .  ,tn. The number of samples taken 
per time unit is called the sample rate. 
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~(t) 

Figure 9.3: Plot s(t) = 0.1 sin(27rt) + 0.3 sin(87rt) - 0.25 sin(207rt) 

Am ~litude 

0.3 

0.2 -- 

0.1 -- 
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- 0 1  t 
- 0 .2  

-0 .3  

I I I I I I I ~ Frequency (Hz) 
2 3 4 5 6 7 8 9 

Figure 9.4: Frequency spectrum diagram 

Samples may be taken with an equal time interval (ti - ti-1 is a constant 
for all i = 1 , - . .  , n) or different time intervals ( t i -  ti-1 is a variable for each i). 
Hence there are samples at a fixed rate, or samples at a variable rate respectively. 
We assume a fixed sample rate if not otherwise specified in this book. 

E x a m p l e  9.3 The sampling rate used for audio CDs is ~ . 1  kHz; ~8 kHz is 
used for DAT (digital audio tape). 22.05 kHz is commonly used for audio signal 
for delivery over the Internet, and 11.025 kHz may be used for speech. 

Figure 9.5 shows how a set of discrete data  (0.8415, 0.9093, 0.1411,-0.7568,  
-0 .9589 , -0 .2794 ,  0, 6570, 0.9894, 0.4121,-0.5440) can be obtained by sampling 
a s tandard sine signal at t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 

Note the choice of a right sample rate is critical to the reconstruction of 
the original signal. Figures 9.6 and 9.7 show the samples at rate 10 and 100 
respectively. As we can see, while it is easy to recognise the original signal from 
Figure 9.7, it is difficult to do so from Figure 9.6. This suggests that  the sample 
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Figure  9.5: Samples  at  t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

ra t e  mus t  not  be too  low. 

1 

0.8 .. 

0.6 

0.4 i 0 . 2  

0 

- 0 . 2  

- 0 . 4  

- 0 . 6  i 

- 0 . 8  

- 1 0  

Figure  9.6: Samples  at  t = 1 , . . .  , 10 

As far as d a t a  compress ion  is concerned,  we are in te res ted  in the  m i n i m u m  
n u m b e r  of samples  to take  in order  to r econs t ruc t  the  original  signal. The  
Nyquis t  t h e o r e m  tells exact ly  how often the  samples  have to be t aken  in order  
to r econs t ruc t  the  original  signal. 

9 . 2 . 1  N y q u i s t  f r e q u e n c y  

The  choice of sample  f requency ra te  can di rect ly  affect the  qual i ty  of the  recon- 
s t r uc t ed  digi tal  sound.  

Accord ing  to Nyquis t  theory ,  if a cont inuous  wave conta ins  a m a x i m u m  

frequency f t hen  the  wave mus t  be sampled  at  a f requency of at  least  2 f ,  twice 
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Figure 9.7: Samples at t = 1, . . .  , 100 

as much as the maximum frequency in order to be able to reproduce the original 
waveform. 

E x a m p l e  9.4 Since the human voice normally contains frequencies 0-~000 Hz, 
the sampling rate should not be lower than 2 x ~000 = 8000 samples/second. 

E x a m p l e  9.5 A communication channel allows signals of frequencies between 
1000 Hz to 11 000 Hz. Suppose a signal s(t) can use the channel without any 
problem. We then know it would be safe to sample the signal using the sample 
rate 2 x 11 000 = 22 000 samples/second. 

This example can also explain our daily experience to observe a turning 
wheel with a turning speed under your control. When the wheel starts to 
turn, say, clockwise slowly, we can tell that the wheel is indeed moving forward 
clockwise. However, as the wheel turns faster and faster, the wheel appears to 
turn backward in an anti-clockwise direction. This is because our observation 
frequency (sampling rate) becomes less than the Nyquist frequency (i.e. twice 
the frequency of the fast turning wheel in this case) when the wheel turns too 
fast. We can no longer reconstruct the signal correctly from the observation. 
Therefore, despite the wheel still turning forward, we get the impression that 
the wheel is turning backwards. 

9.3 Quantisation 
The amplitude values obtained after sampling may be long real numbers which 
are usually rounded to the nearest predefined discrete values. This process 
of converting the real numbers to the predefined discrete numbers is called 
quantisation. 

Figure 9.8 shows an example of the quantisation on the sample data from 
Figure 9.6 by simply taking round(t) of each sample. 
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Figure 9.8: Quantisation samples from Figure 9.6 

Quantisation does not have to apply to continuous real numbers. It is fre- 
quently used in daily life as a means of reducing the number of possible values 
of any quantity. 

Example  9.6 Students' average marks over all degree modules are usually real 
numbers. These average marks are usually rounded in order to work out degree 
classes such as (1st, 2a, 2b, 3rd, pass, fail). 

Figure 9.9: Average marks and degree classes 

m m 

1st if 70 <_ x <_ 100, 
2a if 6 0 < _ x <  70, 
2b if 5 0 < _ x <  60, 
3rd if 4 0 < _ z < 5 0 ,  
pass if 35 <_x < ~0, 
fai l  otherwise. 

Example  9.7 Given a sequence of the real numbers from some sampling (1.1, 
2, 3.3, 6.9'8, 5.~8, ~, 3.333, 2.2, 2, 3, 2.1) and predefined integers within a range 
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of [0, 10], these sampled real numbers can easily be rounded to (1, 2, 3, 7, 5, ~, 
3, 2, 2) by the following simple formula: 

x if trunc(x)=trunc(x+0.5), 
n - trunc(z)-/-1 otherwise, 

where x is a real number, n is the rounded number, and trunc(x) will return the 
integer part of x. 

2 3 5 6 7 8 10 

Figure 9.10: Quantisation on (1.1, 2, 3.3, 6.78, 5.48, 4, 3.333, 2.2, 2, 3, 2.1) 

As we can see from these examples, certain information is lost during the 
process of simple quantisation. Given the discrete sequence of data, the orig- 
inal continuous wave function can be reconstructed approximately. Therefore, 
quantisation is an effective preprocessing for lossy data compression. 

The samples can be quantised individually or as a group. A quantisation 
is called scalar quantisation if each of the samples is quantised separately. It 
is called vector quantisation if at least two samples are quantised at the same 
time. 

9.3.1 Scalar quantisation 

The amplitude values can be both positive and negative. The function used to 
map the input sequence of values to the output values is called quantiser. 

If we plot the output values against the input values of a quantiser, we 
normally get a staircase shape of curves as shown in Figure 9.11. 

There are two types of scalar quantisers. One is called midrise quantiser 
(Figure 9.11(a)) which does not have a zero output level. The other is the 
so-called midtread quantiser (Figure 9.11(b)) where zero is one of the output 
values. 
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Figure 9.11" Two types of scalar quantisers 

9 . 3 . 2  U n i f o r m  q u a n t i s e r s  

A scalar quantiser can be divided into uniform quantiser and non-uniform quan- 
tiser. 

Uniform quantisers are those for which the same size of an increment (called 
step size) is used for both its step values for the input x and output  q(x). In 
other words, if ki and ki-1 are two adjacent range values on the x axis, then 
q(ki)-q(ki-1) = k i -k i_ l  for a l l / =  1, 2 , . . .  (Figure 9.12(a)). The reconstructed 
values are usually the midpoint of the two adjacent step values (ki - ki-1)//2 
and (q(k i ) -  q(ki-1))/2 (Figure 9.12(b)). 

q(x) 

, 

0 

~ 

0 1 . ', . . . .  t ~ x  
�9 k i - -  1 ki  

q(x) 

. .  

0 

. . . . . . . . . .  

] , [: : '-- " ~ Z 

k i - 1  k i  

1 . . . .  I step size § reconstruction values 

(b) 

Figure 9.12: Uniform scalar quantiser 

Suppose the reconstruction values are ri, where i - 1, 2 , . . . .  The difference 
between quantised and unquantised values is called quantisation error, or round- 
off error. The error eq can be expressed as eq - :~ - z. 
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Figure 9.13: Quantisation error 

Figure 9.13 shows a quantisation error eq between the original sample value 
and the value produced by the quantiser. This indicates the distortion caused 
by the quantiser. The most common distortion measure is the squared error 
distortion for each error: 

_ - d(x, 3c) = eq 

The mean squared error distortion is used to measure the average distortion 
for the quantiser: 

1 N 

__ __~ E eq2 __ --N1 ~ ( x i  -- z i )  2 o .2 
i = 1  i = 1  

9 . 3 . 3  N o n - u n i f o r m  q u a n t i s e r s  

Non-uniform quantisers use variable step sizes. A non-uniform quantiser applies 
different step sizes to different amplitudes of an input signal. 

One way to achieve this is to use a look-up table for the step sizes. Another 
way is to use a non-linear monotonically increasing function to define the input 
and output of the quantiser. 

For example, two common functional types are used in non-uniform quantis- 
ers: power-law cornpanding and logarithmic cornpanding. The word companding 
is derived from the words compressing and expanding to reflect the two activities 
involved. The idea is to model the situation where a small change on the low 
input value and a large change on the high input value can lead to similar sized 
steps on the output of the quantiser. Companding techniques reduce the noise 
and crosstalk level at the sound receiver. 

In power-law companding, a power function is used as below: 

Cpow r(Ixl) - I x  p 

In logarithmic companding, a logarithmic function log(z) is used. 
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Figure 9.14: Power law companding functions when p = 0.2, 0.3, 0.4, 0.5, 0.7 

A common form of logarithmic companding is the so-called # law 

1Ogb(1 + #]Xl) 
c.(Ixl) - lOgb( 1 + #) 

and another common form is the so-called A law: 
l + l n ( A l x l )  

CAIX I --_~ I+ ln (A)  
A 

l+ln(A) IZl 

for Ixl > 1 /A ,  
for Ixl <_ 1/A .  

These last two laws, i.e. # law and A law companding, have many appli- 
cations in the area of telecommunication and are included in the CCITT (pre- 
viously Telephone and Telegraph Consultative Committee, now known as the 
ITU-T, International Telecommunication Union Telecommunications Sector). 
The particular values of # = 255 and A = 87.56 are used in the standard. 

As we see from the previous discussion, the audio compression process starts 
from sampling the analogue audio signal. Similarly, the decompression process 
does not complete until the audio analogue signal in wave form strikes the 
human ear. Every stage is important to the performance of compression and 
decompression but it is the first and last stages which are the most effective and 
important. 

Figure 9.15 shows a block diagram of a typical audio coding system. 
It is impossible to cover all these interesting techniques in this book. Nev- 

ertheless, we give a flavour of some of the basic approaches. 

9.4 Compression performance 
For lossless compression, all we need to measure the compression performance 
is the compression ratio. With lossy compression, we have to balance the com- 
pression ratio and the quality of the reconstructed sound. Since the sound is 
a function of time, we also have to take the time into account in addition to 
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Figure 9.15: Audio encoder (a) and decoder (b) 

the normal complexity consideration. Over the years, the most important fac- 
tors to be considered in audio compression include fidelity, data rate, complexity 
and delay. The balance among these factors normally varies depending on the 
application being supported. 

1. Fidelity measures how close perceptually the reconstructed audio signal 
sounds in comparison to the original signal. 

2. Data rate represents the speed of data transmission via a communication 
channel, usually measured in bits/second. This measure is required due 
to the restriction of various media such as the access speed to various 
storage, the capacity of a transmission channel and the playback speed of 
a certain mechanical device. 

Complexity means the amount of work required and consequently its cost 
in order to achieve a certain compression or decompression task. The cost 
is not always reflected in the amount of work because of the increasing 
computer power and the development of technology. In the real world, 
perhaps the implementation cost is more important than anything else. 

o Delay is critical in a real-time application such as telephony, or telecon- 
ferencing. 
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These measures may be quite subjective but this is due to the nature of audio 
systems. The audio compression methods rely a lot upon the perspectiveness of 
the human audio system. The research in this area relies on multidisciplinary 
knowledge and techniques much more heavily than any other areas. As in any 
other complex system design, any audio compression system design in general 
aims at high fidelity with low data rates, while keeping the complexity and delay 
as low as possible. 

Two types of sound with distinct characteristics are speech and music. They 
are the most commonly used types of sound in multimedia productions today. 
For example, if we plot the amplitude over a period of time for both the sound 
generated by speech and by a piece of music, we would find that the shape of 
the two waves is quite different. 

The requirements to media by the two types of audio data are also different. 
For example, the media for telephone speech needs to be able to handle signals 
with a frequency of 200-3400 Hz, and wideband audio with frequency 50-7000 
Hz, while the media for music corresponds to the CD-quality audio needed to 
be able to process the signals with frequency 20-20 000 Hz. 

Representations specific to speech and music have been developed to effec- 
tively suit their unique characteristics. For example, speech may be represented 
in a sound model that is based on the characteristics of the human vocal ap- 
paratus, but music can be represented as instructions for playing on virtual 
instruments. 

This leads to two big compression areas, namely speech compression and 
music compression. They have been developed independently for some time. 
Conventionally, voice compression aims at removing the silence and music com- 
pression at finding an efficient way to reconstruct music to play to the end user. 
Today, almost every stage between the source sound and the reconstructed sound 
involves a data compression process of one type or another. 

9.5 Speech compression 
This is also called voice compression. Research on speech compression started 
to produce amazing results as early as 1928 by Homer Dudley, an engineer at 
Bell Laboratories. His idea was to compress a speech signal with a bandwidth 
of over 3000 Hz into the 100 Hz bandwidth of a new transatlantic telegraph 
cable. Instead of sending the speech signal itself, he sent a specification of the 
signal to the receiver. 

We only briefly introduce a few commonly used compression methods here. 

9.5.1 Speech coders 
Here two major types of audio data are considered: 

�9 telephone speech 

�9 wideband speech. 
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The goal is to achieve a compression ratio of 2:1 or better for both types of 
data. More specifically, the aim is to compress telephone speech to the com- 
pressed bit rate of less than 32 kbps, and to 64 kbps for wideband speech. 

The following constraints make it possible to fulfill some of the tasks: 

�9 The human ear can only hear certain sounds in normal speech. 

�9 The sounds produced in normal human speech are limited. 

�9 Non-speech signals on telephone lines are noises. 

Two coders are used in practice, namely waveform coders and vocoders (voice 
coders). They both apply detailed models of the human voice tract to identify 
certain types of patterns in human speech. 

9 . 5 . 2  P r e d i c t i v e  a p p r o a c h e s  

The idea is to try to predict the next sample based on the previous sample and 
code the differences between the predicted and the actual sample values. 

A basic version of the implementation would simply apply entropy coding, 
such as Huffman or arithmetic, to the differences between successive samples. 

This approach is used in the so-called VOCPACK algorithm for compressing 
8 bit audio files (.way). 

E x a m p l e  9.8 Given a series of sample data, (27, 29, 28, 28, 26, 27, 28, 
28, 26, 25, 27), we can write the difference (2, - 1 ,  O , -2 ,  1,1,  O , - 2 , - 1 , 2 ) .  
We then derive the alphabet (2, 1 , 0 , - 1 , - 2 )  with the frequencies (2, 2, 2, 
2, 2) respectively. The entropy of the distribution of differences is, therefore, 
5 x 0.2 log 2 5 = 2.32 bits. Compared to a 8 bit coding scheme, this would give 
a compression ratio of 8:2.32, i.e. 3.~5:1 if applied to the entire file. 

Of course, sampling is also a critical step to achieving good compression and 
it is always worth considering. 

9 . 5 . 3  S i l e n c e  c o m p r e s s i o n  

This approach applies the run-length to compress the silence in sound files. 
However, the whole process is a lossy approach since quantisers or filters may 
be used to preprocess the relative silence and noise in the sound file. This 
includes finding a suitable 

1. threshold value for defining silence 

2. coder for silence 

3. coder for the start and end of the silence. 
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9 . 5 . 4  P u l s e  c o d e  m o d u l a t i o n  ( A D P C M )  

This technique is well known in other research areas such as telecommunication 
and networking. ADPCM stands for Adaptive Differential Pulse Code Modula- 
tion. It was formalised as a standard for speech compression in 1984 by ITU-T. 
The standard specifies compression of 8 bit sound (typical representation for 
speech) sampled at 8 kHz to achieve a compression ratio of 2:1. 

9.6 Music compression 
Compression algorithms for music data are less well developed than those for 
other types of data. 

The following facts contribute to this situation: 

�9 There are various formats for digital sounds on computer. 

�9 The development of digital audio has taken place in recording and broad- 
cast industries. 

�9 There are currently three major sound file formats: AIFF for MacOS, WAV 
or WAVE for Windows and AU (NeXT/Sun audio file format). Each of the 
three has evolved over the years and now provides similar capabilities in 
terms of sampling rates, sizes and CD and DAT standard value storage, 
while MP3 in its own file format cannot accommodate sound compression 
by any other method. 

We usually use a high bit rate and often attempt to capture a wider range 
of frequencies (20 to 20 kHz). It is usually difficult to decide what is a good 
compression system because this depends on each person's hearing ability. For 
example, to most people, lower frequencies add bass resonance and the result 
would sound more like the human voice. This, however, may not be the case at 
all for others. 

9 . 6 . 1  S t r e a m i n g  a u d i o  

The idea of streaming audio is to deliver sound over a network and play it as it 
arrives without having to be stored on the user's computer first. This approach 
is more successful in general for sound than it is for video due to the lower 
requirement for bandwidth. 

The available software includes: 

�9 Real Networks' RealAudio (companion to RealVideo) 

�9 Streaming QuickTime 

�9 'lo-fi' MP3. 

These are used already for broadcasting live concerts, for the Internet equiv- 
alent of radio stations, and for providing a way of playing music on the Internet. 
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9.6.2 M I D I  

The main idea of MIDI compression is, instead of sending a sound file, to send 
a set of instructions for producing the sound. Of course, we need to make 
sufficiently good assumptions about the abilities of the receiver to make sure 
the receiver can play back the sound following the instruction, otherwise the 
idea cannot work in practice. 

MIDI stands for Musical Instruments Digital Interface. It was originally 
a standard protocol for communicating between electronic instruments. It al- 
lowed instruments to be controlled automatically by sound devices that  could 
be programmed to send out MIDI instructions. 

MIDI can control many sorts of instruments, such as synthesisers and sam- 
plers, to produce various sounds of real musical instruments. 

Examples of available software include: 

�9 QuickTime 

�9 Cakewalk Metro 

�9 Cubase 

QuickTime incorporates MIDI-like functionality. It has a set of instrument 
samples and can incorporate a superset of the features of MIDI. It can also read 
standard MIDI files, so any computer with it installed can play MIDI music 
without any extra requirement. 

Note: one should realise that  sound tends to work together with pictures or 
animation. In future most audio work has to take any potential synchronisation 
into consideration. For example, sound divided into video frames by some time 
code would be a useful function for film editing. 

Summary 
Digital audio compression offers good motivation for lossy techniques such as 
sampling and quantisation. Sound can be viewed and modelled in a collection 
of sine and cosine waves. The compression techniques covered so far can be 
applied at various compression stages and specific situations. Techniques are 
centred at two application areas: speech compression and music compression. 

Learning outcomes 
On completion of your studies in this chapter, you should be able to: 

�9 explain how sound can be represented by a periodic function 

�9 illustrate sound by a frequency spectrum diagram as well as the normal 
plot for periodic functions 

�9 describe the concept or principle of terms in audio data compression 
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�9 outline the distinction between voice compression and music compression 
in terms of the issues concerned in audio compression 

�9 describe the main ideas of MIDI compression. 

Exercises  

E9.1 Given that singing has characteristics of both speech and music, which 
compression algorithms would you expect to be most successful on songs? 

E9.2 Given a frequency spectrum diagram as in Figure 9.16, write the signal 
s(t) in its analogue form, i.e. represented by the sum of sine and cosine 
waves. 

Amplitude 

0.3 

0.2 

0.1 I 

1 2 3 4 6 7 8 9 10 
Frequency (Hz) 

Figure 9.16: A frequency spectrum diagram 

E9.3 Sketch the following discrete signals: �9 

(a) x(n) = - 5 , - 4 , - 3 ,  -2 ,  -1 ,  1, 2, 3, 4, for n = O, 1 , . - - ,  7 

(b) y(n) = 0 , - 1 , - 2 , 0 ,  1 , 2 , 0 , - 1 , - 2 ,  for n = - 3 , - 2 . . .  ,0, 

(c) 2x(n), x ( n -  3), 2y(n), - 3 x ( n -  2 ) +  2y(n + 1) 

(d) x(t) = 3sin(27rt/8), - 8  < t < 8 
(e) 

l 1 if n _< -3 ,  

x(n) - 0 i f O < n < 3 ,  

- 3  otherwise 

" ' ' 4  

E9.4 A signal can be decomposed to three basic sine waves, sin(2~rt), sin(2.5t) 
and sin(57rt). What  sampling rate should be used according to the Nyquist 
theorem? 

E9.5 Explain what MIDI stands for. Write a short essay of about 500-1000 
words to introduce any application software which uses MIDI in one way 
or another. 
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Assessment 
$9.1 Explain briefly the following terms: 

(a) Sampling 

(b) ADPCM 
(c) MIDI. 

$9.2 Explain how a frequency spectrum diagram can be used to represent func- 
tion f(t) = 0.5 + sin(8807rt) + sin(17607rt). 
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Chapter 10 

Image compression 

In this chapter, we introduce compression methods for a different type of data, 
namely, digital images or images for short. General compression methods may 
be applied to images. However, certain characteristics of image data, if identi- 
fled, often lead to more effective data compression algorithms. We first consider 
the image data. 

10.1 Image data 
By image data we actually mean the representation of real-life graphics in digital 
form which can be processed by conventional computers. The word digital here 
means that  the data in this representation are discrete. For example, the display 
area of a conventional computer screen consists of a large number of small 
discrete units called pixels. The pixels are mapped onto a two-dimensional 
array of data entries of a certain type. Each entry is represented in the form of 
0s and ls. 

We often adopt the term pixels to mean these binary data. The two- 
dimensional arrays are also called 'colour maps', for they are usually used to 
control certain colour display systems such as computer screens or printers. Fig- 
ure 10.1 shows a tiny proportion of an image including 12 x 8 pixels of a circle 
image. 

Two characteristics of image data are of quantity and quality. The first 
characteristic of images is the massive amount of data involved in almost every 
application. Images are stored in files and they tend to be much bigger in size 
compared to text files. For text files in ASCII code, a book of a million words 
may occupy about 5 million bytes, that  is 5 MB. In contrast, one image file can 
easily be a thousand to a million times bigger. 

The second characteristic of images is that  the quality of an image depends 
not only on the image data but also on the display device and the sensation of 
the human visual system. 

Most people these days have the experience of using some painting programs. 

189 
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Figure 10.1: Image pixels 

For example, Figure 10.2 shows a small circle which was painted using the 
program KolourPaint. 1 Figure 10.3 shows the same paint but it was enlarged 
by 800% of the original. As we can see from the latter, the circle consists of 
many small squares of either white or grey coloured pixels. 

1 0 . 1 . 1  R e s o l u t i o n  

Every display device requires a certain number of pixels to be able to show 
something easily recognisable by the human visual system. On the other hand, 
each device is restricted by the number of pixels that  it can actually handle. 
The maximum number of pixels for a display is called the resolution of the 
display device. Often the higher the resolution for a display on a limited display 
area, the better the image display quality can be achieved. A digital image can 
also be measured in terms of the resolution, which measures how finely a device 
approximates continuous images using a finite number of pixels. 

Let us look at two common ways of describing resolution: one is so-called 
dpi and the other pixel. 

The term dpi stands for dots per inch. It represents the number of dots per 
unit length for data from devices such as printers or scanners. The term pixel 
dimension measures the number of pixels per frame for the video data from 
digital cameras. 

For TV systems, the PAL frame is 768 by 576 pixels and the NTSC frame 
is 640 by 480. The most common standard resolutions on a conventional PC 
monitor are 1024 x 768 (786432 pixels), 1024 x 960, 1280 x 1024, 1400 x 1050, 
and so on. Some old monitors can only support a resolution of 640 x 480 (pixels). 

IThe screen shot was done using a program called KSnapshot under Linux. 
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Figure 10.2: Using a paint program 

For each frame of image to display, the colour information related to each 
pixel is stored in a temporary memory storage area called a frame buffer. Each 
pixel on a display device is mapped to a memory cell. A control program takes 
care of the routine signals to the display device and the data in the frame 
buffer. The control information about the display device is also stored and can 
be accessed by an application program. Often the monitor and video adaptor 
restrict the number of pixels of a computer system. 

In the multimedia world today, two types of image are most commonly used: 
one is the so-called bitmap image and the other is vector graphics. 

10.2 Bitmap images 
These are also called photographic images for two-dimensional pictures. A 
bitmap image is an array of pixel values. The data are the values of the pixels. 
Many bitmap images are created from digital devices such as scanners or digital 
cameras, or from programs such as Painter which allows visual artists to paint 
images. 

1 0 . 2 . 1  D i s p l a y i n g  b i t m a p  i m a g e s  

Since a bi tmap image is in fact represented in a computer by an array of pixel 
values, there has to be a way of mapping each pixel value to the physical dots 
on a display screen. 
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Figure 10.3: An enlarged image 

In the simplest case, each pixel corresponds one-to-one to the dots on the 
screen. In the general case, the physical size of the display of an image will 
depend on the device resolution. The pixel values are stored at different resolu- 
tions from the displayed image. Computations for scaling and clipping usually 
need to be performed to display a bitmap image. 

In general, we have the following formula to decide the image size and scaling: 

imageDimension = pixelDimension/deviceResolution, 

where the deviceResolution is measured in dpi. 

10.3 Vector graphics 
The image in vector graphics is stored as a mathematical description of a col- 
lection of graphic components such as lines, curves, shapes and so on. 

Vector graphics are normally more compact, scalable, resolution independent 
and easy to edit. They are very good for three-dimensional models on the 
computer, usually built-up using shapes or geometric objects that can easily be 
described mathematically. 

10.3.1 Storing graphic components 
The graphic components are stored by their mathematical functions instead of 
pixels. For example, consider storing a line on the computer. 
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E x a m p l e  10.1 The mathematical funct ion for  a straight line is y = kx  + b, 
where k is the slope and b the intercept. The function, instead of all the pixels 
along the line, can be stored for the line. 

Since a geometric line is actually a finite segment of a line, we also need to 
store the two end points of the segment. In fact, it is sufficient only to store 
the coordinates of the two end points because we know the line function can be 
represented by two point coordinates. That is, given (Xl, Yl) and (x2, Y2), we 
can easily write the function for the line: y = (y2 - y l ) / ( x2  - x l ) x  + (x2yl - 
XlY2)/(X2 -- Xl). 

10.3.2 Displaying vector graphic images 
This would require some computation to be performed in order to interpret the 
data and generate an array of pixels to be displayed. The process of generating 
a pattern of pixels from a model is called rendering. 

If the image is a line, only two end points are stored. When the model is 
rendered for display, a pattern of pixels has to be generated to display the line 
with the two end points. 

10.4 Bitmap and vector graphics 

The differences between bitmap images and vector graphics can be very obvious 
in terms of visual characteristics, but we are concerned more about the following 
issues: 

1. The r e q u i r e m e n t s  of the computer system: a bitmap image must record 
the value of every pixel, but vector description may take much less space 
for an image with simple structure, so may be more economical. 

2. The size of a bitmap image file depends on the display resolution. It is 
independent of the complexity of the image. 

In contrast, the size of vector graphics depends on the number of objects 
of which the image consists. It is independent of any resolution. 

3. The approach of the so-called painting programs produces bitmap images 
while that of drawing programs produces vector graphics. 

4. The b e h a v i o u r  of both bitmap images and vector graphics is different 
when resized or scaled. 

Most graphic applications today require a combination of bitmap and vector 
graphics. A transformation between vector graphics and bitmap images may 
be necessary. The following two processes are usually implemented for the 
transformation: 
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Rasteris ing 
A raster is a predetermined pattern of scanning lines to provide substantially 
uniform coverage of a display area. Rasterising is the process of interpreting the 
vector description of graphics for a display area. A vector graphic loses all the 
vector properties during the process, e.g. the individual shapes can no longer 
be selected or moved because they become pixels. 

Vectorisat ion 
This is a more complicated process of transforming pixels to vectors. The diffi- 
culties arise from the need to identify the boundary of a pixel image using the 
available data of curves and lines and to colour them. The vector file tends to 
be much bigger than the pixels file before vectorisation. 

10.5 Colour 

As we know, colour is a subjective sensation experience of the human visual 
system and the brain. 

10.5.1 R G B  colour model  
This is a colour representation model for computing purposes�9 It comes from 
the idea of constructing a colour out of so-called additive primary colours (i.e. 
Red, Green and Blue or the RGB for short). Although there is no universally 
accepted standard for RGB, the television and video industries do have a start- 
dard version of RGB colour derived from Recommendation ITU-R BT.709 for 
High Definition TV (HDTV). Monitors have been built increasingly to follow 
the recommendation. 

In the RGB model, we assume that all colours can in principle be represented 
as combinations of certain amounts of the red, green and blue. Here the amount 
means the proportion of some standard of primary red, green and blue. 

E x a m p l e  10.2 Suppose that the proportion is represented as percentages. (100Yo, 
OYo, 0~o) then represents a colour of 'pure' red, and others 

�9 (50~, 0~, 0~) a 'darker' red 

�9 (0~o, OYo, l OOYo) a 'pure' blue 
�9 (OYo, 0~o, OYo) black 
�9 (100~, 100~o, 100~o) white 

and so on. 

In fact, there are two commonly used representations of digital colours: they 
are so-called RGB representation and LC representation. 
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10.5.2 RGB representation and colour depth 

Since it is only the relative values of R, G and B that  matter,  we can actually 
choose any convenient value range, as long as the range provided sufficiently 
distinguishable values. 

In a common RGB representation, we use 1 byte (8 bits) to represent the 
brightness of each of the three primary colours, which gives a range of [0, 255] 
(or [1,256]). Three bytes (8 x 3 = 24 bits) describe each pixel of a colour image. 
In this way, 2563 (i.e. 16 777 216) different colours can be represented. 

The number of bits used to hold a colour value is often called colour depth. 
For example, if we use 24 bits to represent one pixel, then the colour depth is 
24. We sometimes also say '24 bit colour' to refer to a colour with 24 bit colour 
depth. 

E x a m p l e  10.3 Some colours from the Linux colour database are 2~ bit colours: 

R G B colour R G B colour 
55 255 255 white 255 250 250 snow 
0 0 128 navy blue 2~8 2~8 255 ghost white 
0 0 255 blue1 255 239 213 papaya whip 
0 255 0 green 255 228 225 misty rose 
�9 . 

Colour depth determines the size of the bitmap image: each pixel requires 
24 bits for 24 bit colour, but just a single bit for 1 bit colour. Hence, if the 
colour depth is reduced from 24 to 8, the size of a bitmap image will decrease 
by a factor of 3 (ignoring any fixed-size housekeeping information). 

10.5.3 LC representation 
This is another common representation which is based on luminance (Y) and 
chrominance (C) values. Luminance Y reflects the brightness, and by itself gives 
a greyscale version of the image�9 

The approach is based on colour differences. The idea is to separate the 
brightness information of an image from its colour. By separating brightness and 
colour, it is possible to transmit a picture in a way that  the colour information is 
undetected by a black and white receiver, which can simply treat the brightness 
as a monochrome signal. 

A formula is used which has been empirically determined for the best greyscale 
likeness of a colour image. 

Y = 0.299R + 0.587G + 0.114B 

The chrominance (colour) components provide the additional information 
needed to convert the greyscale image to a colour image. These components are 
represented by two values Cb and Cr given by Cb = B -  Y and Cr = R -  Y. 
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This technique was initially used during the development from black-and- 
white to colour TV. However, it turns out to have some advantages. For ex- 
ample, since the human eye is much better at distinguishing subtle differences 
in brightness than subtle differences in colour, we can compress the Y compo- 
nent with greater accuracy (lower compression ratio), and make up for it by 
compressing the Cb and Cr components with less accuracy (higher compression 
ratio). 

10.6 Classifying images by colour 
For compression purposes, we can classify the images for compression by number 
of colours used. Three approaches are available, namely bi-level image, greyscale 
image, and colour image. 

Bi-level image 
This is actually the image with 1 bit colour. A single bit allows us to distinguish 
two-different colours. 

Images are captured by scanners using only two intensity levels, one is the 
'information' and the other the 'background'. Applications include: 

�9 Text, line drawings or illustrations 

�9 FAX documents for transmission 

�9 Sometimes photographs with shades of grey. 

Greyscale image 
This is actually the image with an 8 bit colour depth. The images are captured 
by scanners using multiple intensity levels to record shadings between black 
and white. We use 8 bits to represent one pixel, and hold one colour value 
to provide 256 different shades of grey. Greyscale images are appropriate for 
medical images as well as black-and-white photographs. 

Colour image 
Colour images are captured by (colour) scanners, using multiple intensity levels 
and filtering to capture the brightness levels for each of the primary colours, R, 
G and B (Red, Green, Blue). 

Some computer systems use 16 bits to hold colour values. In this case, either 
1 bit is left unused or different numbers of bits are assigned to R, G and B. If 
it is the latter, then we usually assign 5 bits for R and B, but 6 bits for G. This 
allocation is due to the fact that the human eye is more sensitive to green light 
than to red and blue. 

Most common colour images are of a 24 bit colour depth. Although 24 bits 
are sufficient to represent more colours than the eye can distinguish, higher 
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colour depths such as 36 or even 48 bits are increasingly used, especially by 
scanners. 

10.7 Classifying images by appearance 
Images can be classified by their appearances which are caused by the way 
in which colours distribute, namely continuous-tone image, discrete-tone image 
and cartoon-like image. 

Continuous-tone image 
This type of image is a relatively natural image which may contain areas with 
colours. The colours seem to vary continuously as the eye moves along the 
picture area. This is because the image usually has many similar colours or 
greyscales and the eye cannot easily distinguish the tiny changes of colour when 
the adjacent pixels differ, say, by one unit. 

Examples of this type of image are the photographs taken by digital cameras 
or the photographs or paintings scanned in by scanners. 

Discrete-tone image 
Alternative names are graphical image or synthetic image. This type of image 
is a relatively artificial image. There is usually no noise and blurring as there 
is in a natural image. Adjacent pixels in a discrete-tone image are often either 
identical or vary significantly in value. It is possible for a discrete-tone image 
to contain many repeated characters or patterns. 

Examples of this type of image are photographs of artificial objects, a page 
of text, a chart and the contents of a computer screen. 

Cartoon-like image 
This type of image may consist of uniform colour areas but adjacent areas may 
have very different colours. The uniform colour areas in cartoon-like images are 
regarded as good features for compression. 

Observation 
From the above discussion, we can see that: 

1. Image files are usually large because an image is two dimensional and can 
be displayed in so many colours. In a bi tmap image, each pixel requires 
typically 24 bits to represent its colour. 

2. The loss of some image features is totally acceptable as long as the human 
visual system can tolerate. After all, an image exists only for people to 
view. It is this fact that  makes lossy compression possible. 
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3. Each type of image contains a certain amount of redundancy but the cause 
of the redundancy varies, and this leads to different compression methods. 
That is why so many different compression methods have been developed. 

10.8 Image compression 
Image compression can be lossless or lossy, although most existing image com- 
pression systems are lossy. A typical lossy image compression system consists 
of several components applying several compression approaches. 

Source image compressed image 

( transform 1 ( entropy decoding ~ 

(quant iser  ~ ( dequantiser ~ 

( entropy coding ~ I inverse transform 

compressed image Reconstructed image 

(a) (b) 

Figure 10.4: A typical image compression system 

Figure 10.4(a) shows a typical encoding process and Figure 10.4(b) a typical 
decoding process. During encoding, the image data are first divided into man- 
ageable small units called blocks, say 8 x 8. The transform techniques (Chapter 8) 
are then applied to the source image blocks. For DCT or DWT, coefficients are 
actually transformed. This is followed by scalar or vector quantisation to reduce 
the number of bits required. Finally, an entropy encoder such as run-length, 
Huffman or arithmetic encoder is applied to achieve an even better overall com- 
pression effect. 

Two facts determine the main issues in image compression. First, the images 
in many applications do not need to be reproduced exactly the same as the 
original due to the tolerance of the human visual system. The information that 
cannot be perceived or noticed is regarded as irrelevant information to the image 
viewer. Secondly, the neighbouring pixels in images are highly correlated and 
redundant. The correlation between neighbouring pixel values is called spatial 
redundancy, and the correlation between different colour planes is called spectral 
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redundancy. Hence, the fundamental tasks in image compression are to reduce 
the irrelevancy and correlation in the images. 

We shall introduce the general approaches in both classes to the image data 
discussed in the previous section. 

First, we look at lossless image compression. 

10.8.1 Lossless image compression 
Many techniques for text data can be extended and applied to image data. 
These lead to many lossless approaches for image compression. 

We first look at image compression for a binary source, i.e. bi-level images. 
Bi-level images are efficient for certain applications where the visual satisfaction 
is not a priority. For example, data transmission speed may be more important 
than anything else in telecommunication. The fax standards such as the ITU-T 
T.4 and T.6 recommendations are still in use today. 

For bi-level image data, two popular approaches, run-length coding and ex- 
tended approach, are frequently used. 

10.8.1.1 R u n - l e n g t h  coding  

The run-length approach can be applied to bi-level images due to the fact that: 
each pixel in a bi-level image is represented by 1 bit with two states, say black 
(B) and white (W), and the immediate neighbours of a pixel tend to be in an 
identical colour. 

Therefore, the image can be scanned row by row and the length of runs 
of black or white pixels can be computed. The lengths are then encoded by 
variable-size codes and are written into the compressed file. 

E x a m p l e  10.4 A character A represented by black-and-white pixels: 

1234567890123456789012345 
1BBBBBBBBBBBBBBBBBBBBBBBBB 
2 BBBBBBBBBBBwwwBBBBBBBBBBB 
3 BBBBBBBBBBwwBwwBBBBBBBBBB 
4 BBBBBBBBBwwBBBwwBBBBBBBBB 
5 BBBBBBBBwwBBBBBwwBBBBBBBB 
6 BBBBBBBwwBBBBBBBwwBBBBBBB 
7 BBBBBBwwwwwwwwwwwwwBBBBBB 
8 BBBBBwwBBBBBBBBBBBwwBBBBB 
9 BBBBwwBBBBBBBBBBBBBwwBBBB 
0 BBBBBBBBBBBBBBBBBBBBBBBBB 

Solu t ion  We notice that line 4 consists of several runs of pixels: 9B, 2w, 3B, 
2w, 9B, i.e. 9 'B's followed by 2 'w's, followed by 3 'B's, then 2 'w's and then 9 
'B's. Similarly, line 5 consists of 8B, 2w, 5B, 2w, 8B, and so on. 
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A better compression may be achieved by taking into consideration the cor- 
relation of adjacent pairs of lines. 

For example, a simple idea is to code line 5 with respect to line 4 by the 
differences in number of pixels: -1 ,  0, 2, 0 , -  1. 

Imagine if we send, via a telecommunication channel, the data - 1 ,  0, 2, 0, - 1  
for line 5 after the data for line 4. There would be no confusion nor need to 
send 7B, 2w, 5B, 2w, 7B which includes more characters. 

Of course, an image can also be scanned column by column, or by a zig-zag 
scan (Figure 10.5). 

( l / / Y  
v/l/  
( 1 / 1 r  

Figure 10.5: A zig-zag scan 

Note: the algorithm assumes that successive lines have the same number of 
runs. The actual ITU-T T.4 algorithm is much more complicated than this. 

In practice, to avoid preprocessing, a statistical estimation is applied. The 
compression model used here is the so-called Capon model (Figure 10.6) which 
was proposed by J. Capon in 1959. A two-state Markov model with states W and 
B is used. The transmission probabilities p(WIB ) and p(BIW ) are considered 
as well as the p(W) and p(B), where p(WIB) is the probability of switching 
from state B to W, and p(BIW ) from W to B; p(W) is the probability of being 
in state W and p(B) in state B. For facsimile images, p(WIW ) and p(WIB) are 
significantly higher than p(BIB ) and p(BIW ). 

p(B W) 

w ] 

p(w B) 

p(BIB) 

Figure 10.6: The Capon model for binary images 

Note: the model is of second order so it expects a better estimation than 
the first-order model. 
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10.8.1.2 E x t e n d e d  a p p r o a c h  

The idea of this approach extends the image compression principles and con- 
eludes that if the current pixel has eolour B (or W) then black (or white) pixels 
seen in the past (or those that will be found in future) tend to have the same 
immediate neighbours. 

The approach checks n of the near neighbours of the current pixel and assigns 
the neighbours an n bit number. This number is called the context of the pixel. 
In principle there can be 2 n contexts, but the expected distribution is non- 
uniform because of the image's redundancy. 

We then derive a probability distribution of the contexts by counting the 
occurrence of each context. For each pixel, the eneoder can then use adaptive 
arithmetic coding to encode the pixel with the probabilities. This approach is 
actually used by JPEG. 

1 0 . 8 . 2  G r e y s c a l e  a n d  c o l o u r  i m a g e s  

The Graphics Interchange Format (GIF) was introduced by CompuServe in 
1987. 

In GIF, each pixel of the image is an index to a table that specifies a eolour 
map for the entire image. There are only 256 different eolours in the whole 
image. Of course, the eolours may also be chosen from a predefined and much 
larger palette. GIF allows the eolour table to be specified for each image, or for 
a group of images sharing the use of a map or without a map at all. 

10.8.2.1 Ref lec ted  G r a y  codes ( R G C )  

The Reflected Gray codes (RGC) are a good representation for coding the 
colours of greyscale images. In this system, we assign codewords in such a 
way that any two consecutive numbers have codewords differing by 1 bit only. 

E x a m p l e  10.5 We show below the decimal numbers that are represented by 1 
bit, 2 bit and 3 bit RGC accordingly: 

decimal value 0 1 
1 bit RGC 0 1 
2 bit RGC O0 0 1  11 10 
3 bit RGC 000 001 011 010 110 111 101 100 

An RGC codeword can be derived from a normal binary codeword as follows: 

Given a decimal number m, its RGC codeword is 
rn2 XOR shift-l-bit-to-right(m2), 

where rn2 represents the binary eodeword of m. 

E x a m p l e  10.6 Derive a 3 bit reflected Gray codeword for decimal 3. 
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Solu t ion  The 3-bit binary code of 3 is" 01i 

Shift 011 one bit to the right (and add 0 in front): 001 

011 X0R 001 = 010 

So the 3-bit RGC codeword for 3 is 010. 

10.8.2.2 D iv id ing  a g reysca le  image  

Using the RGC, this approach separates a greyscale image into a number (say 
n) of bi-level images and applies to each bi-level image a different compression 
algorithm depending on the characteristics of each bi-level image. 

The idea is to assume intuitively that two similar adjacent pixels in the 
greyscale image are likely to be identical in most of the n bi-level images. By 
'similar' in the examples below, we mean that the number of different bits 
between two codewords, i.e. the Hamming distance of two binary codewords, is 
small as well as the difference in value. For example, 0000 and 0001 are similar 
because their value difference is 1 and the number of different bit(s) is also 1. 
The two codewords are identical in the first three bits. 

Now we look at an example of separating a greyscale image into n bi-level 
images. 

E x a m p l e  10.7 Given a greyscale image with eight shades of grey, we can rep- 
resent each shade by 3 bits. Let each of the 3 bits, from left to right, be identified 
as the high, middle and low (bit). 

Suppose that part of a greyscale image is described by matrix A below, where 
each RGC codeword represents a pixel with the shade of that value: 

010 010 011 II0 

A = 001 011 010 111 

000 001 011 101 

Then the image can be separated into three bi-level images (also called bit- 
planes) as follows: 

1. Bitplane A.high below consists of all the high bits of A. A.high can be 
obtained from A by removing, for each entry of A, the two bits other than 
the high bit. 

0 0 0 1 

A.high = 0 0 0 1 

0 0 0 I 

2. A.middle below consists of all the middle bits of A. A.middle can be ob- 
tained from A by removing, for each entry of A, the two bits other than the 
middle bit. 

I i I I 

A.middle = 0 I I i 

0 0 1 0 
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3. A.low below consists of all the low bits of A. A.low can be obtained from 
A by removing, for each entry of A, the two bits other than the low bit. 

0 0 1 0 

A.low = i 1 0 I 

0 i I 1 

As we can see, from bitplane A.high to bitplane A.low, there is more and 
more alteration between 0 and 1. The bitplane A. low in this example features 
more random distribution of 0s and ls, meaning less correlation among the 
pixels. 

To achieve an effective compression, different compression methods should 
be applied to the bitplanes. For example, we could apply the run-length method 
to A.high, and A.middle, and the Huffman coding to A.low. 

10.8.2.3 J P E G  lossless coding 

The predictive encoding (Section 8.1.1) is sometimes called JPEG lossless cod- 
ing because the JPEG standard (codified as the ITU-T T.2 Recommendation) 
specifies a similar predictive lossless algorithm. 

The algorithm works with seven possible predictors, i.e. the prediction 
schemes. The compression algorithm chooses a predictor which maximises the 
compression ratio. Given a pixel pattern (see below), the algorithm predicts the 
pixel 'z' in one of eight ways: 

T S 

1. No prediction 

2. z = Q  

3. x = S  
4. x = T  
5. x = Q + S - T  

6. x = Q + ( s -  T ) / 2  

7. �9 = s + (Q  - T ) / 2  

S. x = (Q + S)I2.  

The lossless JPEG 2 algorithm gives approximately 2:1 compression ratios 
on typical greyscale and colour images, which is well superior to GIF (although 
GIF may be competitive on icons or the like). 

2It is generally for lossy s tandard  but does have the lossless version and is an extensive 
and complicated s tandard  for common use. 
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1 0 . 8 . 3  L o s s y  c o m p r e s s i o n  

Lossy compression aims at achieving a good compression ratio, but the cost 
for it is the loss of some original information. How much source information 
can be lost depends very much on the nature of applications. Nevertheless, 
the measure of a lossy compression algorithm or a lossy compression system 
normally includes a measure of the quality of reconstructed images compared 
with the original ones. 

1 0 . 8 . 3 . 1  D i s t o r t i o n  m e a s u r e  

Although the best measure of the closeness or fidelity of a reconstructed image 
is to ask a person familiar with the work to look at the image and provide an 
opinion; this is not always practical because it is not useful in mathematical  
design approaches. 

Here we introduce the more usual approach in which we try to measure the 
difference between the reconstructed image and the original one. 

There are mathematical  tools that  measure the distortion in value of two 
variables, also called difference distortion measure. Considering an image to be 
a matrix of values; the measure of lossy compression algorithm normally uses 
a s tandard matrix to measure the difference between reconstructed images and 
the original ones. 

Let Pi be the pixels of reconstructed image and Qi be the ones of the original, 
where i = 1 , . . .  , N. We have the following commonly used measures: 

�9 Squared error measure matrix (this is a measure of the difference): 

Di = (Pi - Qi) 2 

�9 Absolute difference measure matrix: 

Di = ]Pi - @1 

�9 Mean squared error measure (MSE) matr ix (this is an average measure): 

N 

(72 1 
- - 

i = l  

�9 Signal-to-noise-ratio (SNR) matrix (this is the ratio of the average squared 
2 and the MSE a~)" value of the source output ~x 

2 
S N R -  a~ 

This is often in logarithmic scale (dB): 

2 
O" x 

SNR - 10 log10 a--~ 
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�9 Peak-signal-to-noise-ratio (PSNR) matrix (this measures the error relative 
to the average squared value of the signal, again normally in logarithmic 
scale (dB)): 

maxi IPil 
SNR - 20 lOgl0 o~ 

�9 Average of the absolute difference matrix: 

N 
1 

D~ - ~ ~ [P~ - Q~I 
i 

�9 Maximum value of the error magnitude matrix: 

D i ~  - m a x D i  - ]Pi - Qil 
n 

1 0 . 8 . 3 . 2  P r o g r e s s i v e  i m a g e  c o m p r e s s i o n  

The main idea of progressive image compression is to gradually compress an 
image following a underlined order of priority. For example, compress the most 
important image information first, then compress the next most important in- 
formation and append it to the compressed file, and so on. 

This is an attractive choice when the compressed images are transmitted 
over a communication channel, and are decompressed and viewed in real time. 
The receiver would be able to view a development process of the image on the 
screen from a low to a high quality. The person can usually recognise most of 
the image features on completion of only 5-10% of the decompression. 

The main advantages of progressive image compression are that: 

1. The user can control the amount of loss by means of telling the encoder 
when to stop the encoding process. 

2. The viewer can stop the decoding process early since she or he can recog- 
nise the image's feature at an early stage. 

3. As the compressed file has to be decompressed several times and displayed 
with different resolution, the decoder can, in each case, stop the decom- 
pression process once the device resolution has been reached. 

There are several ways to implement the idea of progressive image compres- 
sion: 

�9 Using so-called SNR progressive or quality progressive compression (i.e. 
encode spatial frequency data progressively). 

�9 Compress the grey image first and then add the colour. Such a method 
normally features slow encoding and fast decoding. 

�9 Encode the image in layers. Early layers are large low-resolution pixels 
followed by smaller high-resolution pixels. The progressive compression 
done in this way is also called p y r a m i d  coding or hierarchical  coding. 
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E x a m p l e  10.8 The following methods are often used in JPEG: 

�9 Sequential coding (baseline encoding): this is a way to send data units 
following a left-to-right, top-to-bottom fashion. 

�9 Progressive encoding: this transmits every nth line before filling the data 
in the middle. 

�9 Hierarchical encoding: this is a way to compress the image at several dif- 
ferent resolutions. 

1 0 . 8 . 4  J P E G  ( s t i l l )  i m a g e  c o m p r e s s i o n  s t a n d a r d  

This is one of the most widely recognised standards in existence today. It 
provides a good example of how various techniques can be combined to produce 
fairly dramatic compression results. The baseline JPEG compression method 
has a wide variety of hardware and software implementations available for many 
applications. 

JPEG has several lossy encoding modes, from so-called baseline sequential 
mode to lossless encoding mode. 

The basic steps of lossy JPEG algorithm include processing 24 (or 32) bit 
colour images and offering a trade-off between compression ratio and quality. 

10.8.4.1 T r a n s f o r m s  

An image can be compressed if its correlated pixels are transformed to a new 
representation where the pixels become less correlated, i.e. are decorrelated. 
Compression is successful if the new values are smaller than the original ones 
on average. Lossy compression can be achieved by quantisation of the trans- 
formed values. The decoder normally reconstructs the original data from the 
compressed file applying the opposite transform. 

There are a lot of techniques and algorithms for image data compression. 
You may consult various sources in literature. Due to the limitations of space, 
we have only provided a sample of the techniques here. 

10.8.5 Image file formats 
There is lot of image software available these days. They have been developed 
on various platforms and used different formats or standards. Today's most 
widely used image formats include: 

�9 GIF (Graphics Interchange Format) 

�9 JPEG (Joint Photographic Experts Group standard for compressing still 
images) .3 

�9 Animated GIF (Animated Graphics Interchange Format) 

3We often use JPEG to mean the standard by this expert group, rather than the organi- 
zation itself. 
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�9 BMP (Windows Bitmap format) 

�9 XBM (X window Bitmap format) 

�9 EPS (Encapsulated PostScript file format) 

�9 PNG (Portable Network Graphics) 

�9 PSD (Adobe Photoshop's native file format) 

�9 PSD Layered (Adobe Photoshop's native file format) 

�9 STN (MediaBin's proprietary STING file format) 

�9 TIFF (Tagged Image File Format) 

�9 TGA (TARGA bitmap graphics file format). 

Most of these image file formats are in fact compressed, for example, JPEG, 
PNG, BMP and GIF. 

J P E G  offers great mainly lossy compression and is widely used for bitmap im- 
ages. It supports progression and hierarchical mode, and Huffman coding. 

P N G  supports up to 48 bits per pixel for colour images. It applies LZW 
compression algorithms and is widely used for the Internet application. 

B M P  is the native image format in the Microsoft Windows operating systems. 
Colour depth can be 1, 4, 8, 16, 24 or 32 bits. BMP supports simple 
run-length compression for 4 and 8 bits per pixel. 

GIF  was the first universally accepted image format but ended due to legal 
problems. LZW compression methods support GIF. 

Summary 
Digital images can be classified as two types: bitmaps and vector graphics. Two 
commonly used colour representation systems are based on the RGB model and 
LC representation. Commonly used image files are in formats such as GIF, 
JPEG, EPS, PNG, PSD, PSD layered, STN, TIFF and TGA. Using simple bit 
planes to represent digital images, we can apply different compression algorithms 
that we have learnt so far to get a flavour of image compression systems. 

Learning outcomes 
On completion of your studies in this chapter, you should be able to: 

�9 illustrate how a picture can be represented by either a bitmap image or a 
vector image 

�9 explain the main differences between bitmap and vector graphics in terms 
of visual characteristics 
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�9 illustrate RGB colour model and LC representation 

�9 describe a few of the commonly used image formats 

�9 provide examples of lossless and lossy image compression techniques 

�9 illustrate how to represent a greyscale image by several bi-level images 

�9 describe the main ideas of predictive encoding 

�9 be familiar with various distortion measurements 

�9 explain the general approaches of various popular lossy image compression 
techniques such as progressive image compression and transforms. 

Exercises  

E10.1 If you consider the three components of an RGB colour to be Cartesian co- 
ordinates in a three-dimensional space, and normalise them to lie between 
0 and 1, you visualise RGB colour space as a unit cube, see Figure 10.7. 

(a) What  colours correspond to the eight corners of this cube? 

(b) What  does the straight line running from the origin to (1, 1, 1) shown 
in the figure represent? 

(c) Comment on the usefulness of this representation as a means of vi- 
sualising colour. 

G 

(1, ~ R 

/ 
B 

Figure 10.7: The RGB colour space 

El0.2 Classify and identify the following images for a continuous-tone image, 
discrete-tone image and cartoon-like image: 

�9 a reproduction of your national flag 

�9 a photograph of the surface of Mars 

�9 a photograph of yourself on the beach 

�9 a still from an old black-and-white movie. 
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E10.3 Explain how RGB colour values, when R = G = B, can be used to 
represent shades of grey. 

E10.4 Construct a reflected Gray code (RGC) for decimal numbers 0, 1,- . .  , 15. 

E10.5 Following the above question, provide an example to show how a greyscale 
image with 16 shades of grey can be separated into four bi-level images. 

El0.6 Suppose that the matrix A below represents the pixel values of part of a 
large greyscale image, where i = 0 , . . . , 7 ,  j = 0 , - . - , 7 ,  and A[0,0] = 4. 
Apply any three of the predictive rules of JPEG (below) to matrix A. 

(a) no prediction4 

(b) x = Q  

(c) x = s 

(d) x = T 

(e) x - Q + S - T  

(f) x = Q + ( S - T ) / 2  

(g) x = S + ( q - T ) / 2  

(h) x = (Q + S)/2. 

t 

4 8 4 8 1 1 1 1 
1 2 4 6 5 1 1 1 
8 4 5 5 5 5 5 5 
2 4 8 5 7 9 5 5 
2 4 6 7 7 7 9 9 
2 2 2 3 4 9 7 3 
3 3 6 6 6 7 7 7 
7 7 7 7 6 7 8 8 

ElO.7 Implement the ideas above using a higher level programming language. 

Laboratory 
L10.1 Investigate the colour utilities (or system, package, software) on your com- 

puter. 

For example, if you have access to Linux, you can go to Start -~ Graphics 
-~ More Graphics -+ KColorChooser and play with the colour display. 

LI0.2 Experiment on how the values of (R, G, B) (or (H, S, V)) affect the colour 
displayed. 

L I0.3 Design and implement a program method which takes a binary codeword 
and returns its RGC codeword. 

4i.e. using the original pixel value matrix (A in Example 8.2). 
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L10.4 Design and implement a program method which takes a matrix of integers 
and returns its residual matrix, assuming that each entry follows JPEG 
rule (3). 

L10.5 Investigate what image formats are supported by a painting or drawing 
software on your computer. Do they offer any compression? 

Assessment 
$10.1 Illustrate the RGB colour space using Cartesian coordinates in a three- 

dimensional space. 

$10.2 Consider a square image to be displayed on screen. Suppose the image 
dimension is 20 x 20 square inches. The device resolution is 800 dpi. What 
would be the pixel dimension required? 

S10.3 Derive the RGC codeword for a decimal 5. 

S10.4 Explain, with an example, how to represent part of the greyscale image 
below by three bitplanes: 

000 001 011 011 
001 001 001 010 
011 001 010 000 
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Chapter 11 

Video compression 

Video is continuous media in which information is presented to give an illusion 
of continuity. Sound, movies and computer animation are common examples 
of continuous media. Temporal characteristics are the focus of the compression 
potential for continuous media. 

Video can be viewed as a sequence of moving pictures played with its audio 
accompaniment. The moving pictures and audio signals, as two components, 
may be dealt with separately. Moving pictures consist of a time series of still 
images called frames. To feel alive, each frame of image can be perceived only 
in the existence of its previous and succeeding frames. 

Video files contain a mixture of almost everything: text, graphics, audio, 
images and animation data. Video systems change the images 20 to 30 times 
per second. So the amount of data involved is enormous. Video compression 
algorithms are lossy, making use of human visual and audio perception systems' 
forgiving nature. 

Video systems can be classified broadly into two types: old analogue video 
and modern digital video. 

11.1 Analogue video 
The essential function of analogue video is to display still pictures on a television 
receiver or a monitor screen one frame after another. The pictures are converted 
into an electronic signal by a raster scanning process. Conceptually, a screen 
is divided into horizontal lines. The picture we see is built up as a sequence of 
horizontal lines from top to bottom. Here the human persistence of vision plays 
an important part and makes the series of lines appear as a (frame of) picture. 

The following parameters determine the quality of pictures: 

�9 number of scanning lines 

�9 number of pixels per scan line 

211 
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�9 number of displayed frames per second (in fps): this is called the frame 
rate 

�9 scanning techniques. 

For example, the screen has to be refreshed about 40 times a second, other- 
wise, it will flicker. Popular standards include Phase Alternating Line (PAL), 
Sequential Couleur Avec Memoire (SECAM) and National Television Systems 
Committee (NTSC). PAL is mainly used in most of Western Europe and Aus- 
tralia, China and New Zealand. SECAM is used in France, in the former Soviet 
Union and in Eastern Europe. NTSC is used in North America, Japan, Taiwan, 
part of the Caribbean, and in South America. 

A PAL or SECAM frame contains 625 lines, of which 576 are for pictures. 
An NTSC frame contains 525 lines, of which 480 are pictures. PAL or SECAM 
uses a frame rate of 25 fps and NTSC 30 fps. 

11.2 Digital video 

Although the idea of digital video is simply to sample the analogue signal and 
convert it into a digital form, the standard situation is inevitably quite complex 
due to the need to compromise the existing equipment in old as well as new 
standards such as HDTV. 

The sample standard is ITU-R BT.601 (more commonly known as CCIR 
601), which defines sampling of digital video. It specifies a horizontal sampling 
picture format consisting of 720 luminance samples and two sets of 360 colour 
difference samples per line. The size of PAL screen frames is 768 x 576 and 
NTSC 640 x 480. 

Apart from the digital data from analogue video sampling, digital video 
data to be compressed also include the data streams produced by various video 
equipment such as digital video cameras and VTRs. Once the data are input 
into the computer there are many ways to process them. 

11.3 Moving pictures 
Video data can be considered as a sequence of still images changing with time. 
Owing to the forgiving nature of the human eye, video signals change the image 
20 to 30 times per second. Video compression algorithms all tend to be lossy. 

One minute of modern video may consist of 1500-1800 still images. This 
explains the need and motivation for video compression. 

Among the many different video compression standards, there are two im- 
portant ones, namely ITU-T  H.261 and MPEG. ITU-T  H.261 is intended for 
use mainly for videoconferencing and videotelephony, and MPEG is mainly for 
computer applications. 
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11.4 MPEG 
�9 This is the standard designed by the Motion Picture Expert Group, in- 

cluding the updated versions MPEG-1, MPEG-2, MPEG-4, and MPEG-7. 

�9 Most popular standards include the ISO's MPEG-1 and the ITU's H.261. 

�9 It is built upon the three basic common analogue television standards: 
NTSC, PAL and SECAM. 

�9 There are two sizes of SIF (Source Input Format): SIF-525 (with NTSC 
video) and SIF-625 (for PAL video). 

�9 The H.261 standard uses CIF (Common Intermediate Format) and QCIF 
(Quarter Common Intermediate Format). 

As we can see, MPEG is greatly influenced by ITU-T standards and even 
includes some of its standards. This may be the reason why ITU-T H.261 is the 
more fully developed of the two. 

11.5 Basic principles 
Video compression is based on two types of redundancies among the video data, 
namely spatial redundancy and temporal redundancy. 

1. Spatial redundancy means the correlation among neighbouring pixels in 
each frame of image. This can be dealt with by the techniques for com- 
pressing still images (Chapter 10). 

2. Temporal redundancy means the similarity among neighbouring frames, 
since a video frame tends to be similar to its immediate neighbours. 

Techniques for removing spatial redundancy are called spatial compression 
or intra-frame compression. Techniques for removing temporal redundancy are 
called temporal compression or inter-frame compression. We focus on temporal 
compression here, since for spatial compression many techniques for still images 
in Chapter 10 can be applied. 

11.6 Temporal compression algorithms 
In these algorithms, certain frames in a sequence are identified as key frames. 
These key frames are often specified to occur at regular intervals. The key frames 
are either left uncompressed or are more likely to be spatially compressed. Each 
of the frames between the key frames is replaced by a so-called difference frame 
which records the differences between the original frames and the most recent 
key frame. Alternatively, the differences between the original frames and the 
preceding frame can also be stored in the difference frame depending on the 
sophistication of the decompressor. 
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Figure 11.1: A sequence of original frames 

E x a m p l e  11.1 Figure 11.1 shows a sequence of frames to be displayed during 
a time duration 0, 1 , . . . ,  11. 

Following the MPEG regulation, the frames marked 'I' (as in Figure 11.2) are 
encoded as the key frames. These are called I-pictures, meaning intra, and have 
been compressed purely by spatial compression. Difference frames compared 
with previous frames are called P-pictures or predictive pictures. The frames 
marked B are so-called B-pictures which are predicted from later frames. 

E x a m p l e  11.2 The encoded frames are as in Figure 11.2. 

Figure 11.2: Encode frames as I-, P- and B-pictures 

The decoding process now becomes a question of dealing with a sequence of 
compressed frames with I, P, B types of pictures. 

I-pictures are decoded independently. P-pictures are decoded using the pre- 
ceding I or P frames. B-pictures are decoded according to both preceding 
and following I- or P-pictures. The encoded frames can then be decoded as 
IBBBPBBBP and are displayed in that order (see Figure 11.4). 

E x a m p l e  11.3 Note that the order of the encoded and displayed frames in Fig- 
ure 11.3 is altered slightly from that in Figure 11.2. 
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Figure 11.3: Decoded and displayed from I-, P- and B-pictures 

11.7 Group of pictures 
Now a video clip can be encoded as a sequence of I-, P- and B-pictures. Group 
of pictures (GOP) is a repeating sequence beginning with an I-picture and is 
used by encoders. 

E x a m p l e  11.4 Figure 11.~ shows a GOP sequence IBBPBB containing two 
groups. 

Figure 11.4: GOPs (1)IBBPBB, (2)IBBPBBPBB, (3)IBBPBBPBBPBB 
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Other common sequences in use are IBBPBBPBB with three groups and 
IBBPBBPBBPBB with four groups. 

1 1 . 8  M o t i o n  e s t i m a t i o n  

The main idea is to represent each block of pixels by a vector showing the amount 
of block that  has moved between images. The approach is most successful for 
compressing a background of images where the fixed scenery can be represented 
by a fixed vector of (0, 0). 

It uses the following methods: 

�9 Forward prediction: computing the difference only from a previous frame 
that  was already decoded. 

�9 Backward prediction: computing the difference only from the next frame 
that  is about to be decoded. 

�9 Bidirectional prediction: the pixels' information in a frame depends on 
both the last frame just decoded and the frame about to follow. 

The following factors can be used to estimate motion: 

�9 Basic difference 

�9 L1 norm: mean absolute error 

I ] A -  BIll = ~ ~ ] A i , j  - Bi , j l  
i j 

�9 L2 norm: mean squared error 

IIA- BII  - E ( A i , j  - B~,j) 2 
i j 

1 1 . 9  W o r k  in d i f f e r e n t  v i d e o  f o r m a t s  

To allow systems to use different video formats, the following process is needed: 

�9 Standardise the format 

�9 Break the data into 8 x 8 blocks of pixels 

�9 Compare with other blocks 

�9 Choose important  coefficients 

�9 Scale the coefficients for quantisation 

�9 Pack the coefficients. 
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Summary 
Video data is a good example of digital multimedia today. The massive amount 
of data demonstrates clearly the potential of data compression. For continuous 
media, the compression techniques introduced in the previous chapters can be 
used to conduct various kinds of spatial compression. 

Learning outcomes 
On completion of your studies in this chapter, you should be able to: 

�9 identify and list the parameters that determine the quality of pictures 

�9 explain the popular standards for analogue and digital videos 

�9 describe, with an example, how temporal compression algorithms work in 
principle 

�9 explain the common measures for motion estimation. 

Exercises 
El1.1 Explain briefly the concepts of spatial redundancy and temporal redundancy. 

Ell .2 Implement the basic temporal compression algorithm introduced in the 
chapter. 

Assessment 
S 11.1 Explain the two characters of video data. 

$11.2 Illustrate how a temporal compression algorithm works. 
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Appendix A 

Brief history 

Data compression 
Data compression can be viewed as the art of creating shorthand representations 
for the data, but this process started as early as 1000 BC. The short list below 
gives a brief survey of the historical milestones: 

�9 1000 

�9 1829 

�9 1838 

�9 1843 

�9 1930 

�9 1948 

�9 1949 

�9 1951 

�9 1966 

BC shorthand 

Braille code 

Morse code was invented for use in telegraphy 

variable-length codes for telegraph 

analog compression 

information theory 

coding blocks based on their probabilities 

Huffman codes 

Run-length coding 

�9 1976 arithmetic coding 

�9 1970s dynamic Huffman coding 

�9 1977 dictionary-based compression 

�9 1982 LZSS (by Storer and Szymanski) 

�9 1984 LZW (LZ was improved by Terry Welch); pulse position modulation 
(PPM) 

�9 1987 dynamic Markov compression (DMC) 

�9 1992 gzip 

�9 1994 Burrows and Wheeler transform (BWT) 

�9 1996 bzip2 

219 
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�9 1997 PPM2 

�9 1980s 

- early 1980s FAX 

- mid-1980s video conferencing, still images (JPEG), improved FAX 
standard (JBIG) 

- late 1980s onward motion video compression (MPEG) 

�9 1990s 

- early 1990s disk compression (stacker) 

- mid-1990s satellite TV 

- late 1990s digital TV (HDTV), DVD, MP3 

�9 2000s digital TV (HDTV), DVD, MP3. 

Audio compression 
MP3 is more popular than 'audio compression'. Everyone knows MP3 but not 
everyone knows that MP3 stands for MPEG layer III. 

�9 1977 idea of creating a method of transferring music over a standard phone 
line 

�9 1987 Digital Audio Broadcasting (DAB) in Fraunhofer Institute 

�9 1988 MPEG was established as a subcommittee of ISO/IEC 

�9 1989 Fraunhofer received a German patent for MP3 

�9 1992 Fraunhofer's and Dieter Seitzer's audio coding algorithm was inte- 
grated into MPEG1 

�9 1991 MP3 codec 

�9 1993 MP2, MPEG1 audio layer II 

�9 1993 Maplay by Tobias Bading 

�9 1995 MPEG2 was published 

�9 1996 US patent issued for MP3 

�9 1997 AMP the first MP3 playback engine 

�9 1998 Fraunhofer enforced their patent rights 

�9 1998, Winamp, a free MP3 music player (by students Justin Frankel and 
Dmitry Boldyrev at the time) 

�9 1999 SubPop, a record company, first started to distribute music tracks in 
the MP3 format 

�9 1999 portable MP3 players available 

�9 2001 ID3. 
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Image compression 
�9 1990 the first derivatives of many signals exhibited lower information con- 

tent than the source signal 

�9 1980 delta modulation and differential pulse code modulation (DPCMs) 

�9 1977 recursive and adaptive quantisation techniques 

�9 1995 Block Encoding (BE), Vector Quantisation (VQ) codebook 

�9 1986, 1993 singular Value Decomposition (SVD) (Karhunen-Loeve trans- 
form (KLT)) 

�9 1987, 1994, transform coding such as Fourier Transform (FT) or Cosine 
Transform (CT) 

Video compression 
The brief history of computer applications below shows the dramatic progress 
made in recent years due to the availability of the techniques for computer 
images and sounds. 

�9 1940s electronic computers performing numerical applications 

�9 1950s first non-numerical applications: texts 

�9 1960s analogue videophone system, still images 

�9 1970s computer animations 

�9 1980s digital sound 

�9 1990s television broadcasters started using MPEG2 coded digital forms 

�9 present multimedia applications, communications and entertainment. 

Wavelets 
�9 1807 Fourier series 

�9 1909 Haar wavelet 

�9 1930 Haar basis function and a function that  can vary in scale and conserve 
energy 

�9 1980 an effective algorithm for numerical image processing using wavelets 

�9 1960-80 atoms and assembly rules by various researchers 

�9 1980 Meyer wavelets 

�9 1982 Ingrid Daubechies's set of wavelet orthonormal basis functions, Marr 
wavelet. 
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Appendix B 

Matr ices  

An m • n ma t r ix  (or m by n matr ix)  is a rec tangular  ar ray  of da t a  consist ing 

of m rows and n columns and can be represented  as follows: 

A = (aij)mxn 
a l l  "'" aln I 

�9 

aml �9 �9 " amn 
The m • n is called the dimension or order of the matr ix .  Each d a t u m  aij 

in the  ma t r ix  (aij)m• is called an entry of the  matr ix .  Each en t ry  has a row 
index i and column index j ,  toge ther  represent ing the  posi t ion of the  en t ry  in 

the  matrix�9 

E x a m p l e  B . 1  A matrix of 4 • 3 

5 2 4 
1 - 3  - 1  

A -  1 - 1  1 
3 2.5 2 

B.1 Special matrices 
1. Square matr ix:  

A square mat r ix  is a ma t r ix  of order  m = n (short  for n • n). 

E x a m p l e  B . 2  A square matrix of order 3 

t 
5 2 
1 - 3  
1 - 1  

4) 
- 1  

1 

2. Vector: 

A vector is a ma t r ix  of m • 1 or 1 • n. 

223 
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3. Null matr ix  (or zero matrix):  

A matr ix  is called a null matrix if all the entries are zero, and can be 
denoted by 0,~xn, or 0 for short. 

Example  B.3 

0 --- 0 3 X 4  - -  

0 0 0 
0 0 0 
0 0 0 
0 0 0 

4. Scalar: 

If m = n = 1, the matr ix  becomes a single entry and is called scalar. In 
this case, the a l l  is used without the bracket. 

5. Identity matrix: 

A matr ix  is an identity matr ix  if it is square, and all the da ta  on the 
diagonal of the matr ix  are 1, and all the other entries are zero. 

Example  B.4 

I = I a =  
1 0 0 )  
0 1 0 
0 0 1 

o Inverse: 

Let A be a square matr ix  of order n. If there exists another square matr ix  
B of order n, such that  the matr ix  product A B  = B A = I, then A is said 
to be invertible with inverse B. Matrix B can be shown to be unique, and 
is called the inverse of A and is denoted as A -1.  

Transpose: 

Let A be a square matr ix  (aij) of order m • n. 

5 2 4 
1 - 3  - 1  

A -  1 - 1  1 
3 2.5 2 

The transpose A T is of order n x m and becomes (aji). 

5 1 1 3 )  
A T - 2 - 3  - 1  2.5 

4 - 1  1 2 

8. Symmetric matrix: 

A square matr ix  is symmetric if A T = A. In a symmetric  matrix,  the 
elements on one side of the diagonal are mirror images of those on the 

other side. 
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Example B.5 The following matrix (A3) is symmetric: 

1 3 2 )  
A 3 -  3 5 0 

2 0 6 

B.2 Matrix operations 
1. Addition and subtraction: 

Addition and subtraction can only performed on two matrices of the same 
dimension (or order). 

(aij),~ x n  n t- ( b i j ) m  x n --- (aij + bij)m x n 

(aij )m x n - -  ( b i j  ) m  x n = (aij - bij )m x n 

2. Multiplication: 

(a) Multiplication by a scalar k. 

k A  : ~ ( a i j ) m x n  : ( k a i j ) m x n  

(b) Matrix product: 

A matrix Am xn of order m x n can only by multiplied by another 
matrix Bnxp of order n x p in that  order. The matrix product 
AmxnBnxp is a matrix of order m x p, and each product entry is 

n 

~-~aikbky, 1 , . . - , m , j  1 , . . .  ,p. where i 
k--1  

The two matrices A and B are said to be c o n f o r m a b l e  for mul t i -  
p l i ca t ion  if the number of columns of A equals the number of rows 
of B. 

Note, matrix multiplication is not commutative in general, i.e. the 
product A B  is not equal to BA.  

In a product A B  of the two matrices, B is said to be premultiplied 
by A. A is said to be postmultiplied by B. 

Example B.6 

A2x3 - 3 5 0 

B3• - 1 

2 
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Here A and B are conformable  fo r  mul t ipl icat ion.  

1 x 4 + 3 x l + 2 x 2  ) 
A2x3B3xl  - 3 x 4 + 5 x 1 + 0 x 2 

3. Commuta t ive ,  dis t r ibut ive and associative rules: 

(a) A + B = B + A  

(b) A ( B + C ) = A B + A C  

(c) A ( B C ) =  ( A B ) C  

(d) i i = I i = i  

(e) A 0 = 0 A = 0  
(f) A r e A  n = A m +  n 
(g) A m ~  = A  ran. 

11 (17) 

B.3  D e t e r m i n a n t s  

Let A be a square mat r ix  of order n. The de te rminan t  of A is a value of the  

sums and products  of the entries in A following specific rules. It  is denoted  as 

an array of order n as below: 

a l l  �9 �9 �9 aln  

det A - " �9 . . 
�9 

an1 �9 �9 �9 ann 
The calculation rules t ransform the pa t t e rns  of numbers  into a single number .  

The de te rminan t  can be of a complex value as well as a real one and depends  
on the entries of A. The value of a de te rminan t  of order n is the algebraic sum 
of n! terms,  each being the product  of n different entries taken one each from 

every row and column of the de terminant .  

1. det a - a 

2. d e t A  - a / l ( - 1 ) / + l M / / +  a i 2 ( - 1 ) i + 2 M i 2  + " "  + a i n ( - 1 ) i + n M i n ,  where 

Mij  is a so-called principal  minor ,  and is a subde te rminan t  obta ined  by 

deleting row i and column j from det  A. 

E x a m p l e  B.  7 

det A 

2 

- 3 

1 

= 2 x  

0 1 
1 1 
2 1 

1 1 
2 1 

- O x  
3 1 
1 1 

+ l x  3 1 
1 2 

= 2 • 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5  

= 3 
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A determinant  value remains unchanged if 

1. all rows and all columns are transposed without changing the entry order. 

Example  B.8 
2 0 1 
3 1 1 
1 2 1 

2 3 1 
0 1 2 
1 1 1 

- 3  

2. the entries of any one row, column, or a multiple of them are added to (or 
subtracted from) another row, column, or multiple, then the value of the 

determinant  remains the same. 

Example  B.9  We multiply the first row by 2 and add it to the second 
row. The determinant value remains the same. 

2 0 1 
3 1 1 
1 2 1 

2 0 1 
3 + 2 x 2  1 + 0 x 2  1 + 2 x l  

1 2 1 
- 3  

3. de t (AB)  - de t (A) (B) .  

Eigenvalues and eigenvectors 
The number s complex or real, is an eigenvalue of the square matr ix  A if there 
is a vector x ~: 0, such that  

A x  = ~x 

The vector x is called an eigenvector and corresponds to the eigenvalue A. 
A is an eigenvalue of A if and only if 

de t (A - AI) - 0 

d e t ( A -  AI) - 0 is called the characteristic equation for the square matr ix  A 
and the eigenvalues are the roots of the polynomial of degree n. The polynomial 
is called characteristic polynomial of A. 

B.4  O r t h o g o n a l  m a t r i x  

A matr ix A that  is equal to the inverse of its transpose matrix,  (AT) -1, is an 
orthogonal matrix. 

Example  B.10 

1 

A -  
v~ 

1) 
~/2 is orthogonal, and 

v~ 
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(1 
A A T -  ~ ~ V~l --~ - 0 1 is orthogonal 

v~ v~ v~ v~ 

If two mat r ices  A and  B are o r thogona l  and  conformable  for mul t ip l ica t ion ,  

the i r  p r o d u c t  A B  is also an o r thogona l  mat r ix .  Let  A be an o r thogona l  mat r ix .  

T h e n  

1. A T A  - A A  T - I 

2. A T - A  -1 

3. A I  = I A  - I 

4. A T - A  -1 

5. ( A B )  T - B T A  T 

6. ( A B )  -1 - B - 1 A  -1 

7. ( A - l )  T -  (AT)  -1 

8. det  I = 1 

9. det  A B  - det  A det  B 

10. det  A T - det  A.  

B . 4 . 1  I n n e r  p r o d u c t  

Let x and  y be two vectors  of order  n. An  inner  p roduc t ,  also called the  dot 
product, be tween  x and  y is defined as 

x . y  - x l y l  + x2y2 + ' "  , XnYn 

B . 4 . 1 . 1  O r t h o g o n a l  v e c t o r  

x and  y are said to be orthogonal to each o ther  if the i r  inner  p r o d u c t  is zero. 

B.4.1 .2  Orthogonal  set 

A set of vectors  Xl ,X2,  �9 �9 �9 ,Xm of order  m is said to  be o r thogona l  if each vector  

is o r thogona l  to every o ther  vector  in the  set. 

T h e  coefficient of a vector  v cor respond ing  to a uni t  vector  u from an or- 
thogonal basis set can be ob ta ined  by c o m p u t i n g  the  inner  p roduc t  be tween  the  

vector  and  the  uni t  vector.  For example ,  given an o r thogona l  Ux - (1, 0) T and  

Uy - -  ( 0 ,  1) T, v "  Ux -- Vl x 1 + v2 • 0 -- vl ,  and  v .  Uy - -  V l  • 0 n a V 2  X 1 -- V2. 
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B . 4 . 2  V e c t o r  space  

A vector  space consists of a set of vectors with the  opera t ions  of vector  addi t ion  
and scalar mul t ip l ica t ion defined on them.  The  results of these opera t ions  are 
also e lements  of the  vector  space. 

Inner  p roduc t  x .  x > 0 with x .  x = 0 if and only if x - 0. Then  the  quan t i ty  
v/X �9 x denoted  by xll is called the norm of x and agrees with our usual  concept  
of Eucl idean dis tance in two- or three-d imensional  s i tuat ions.  
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Appendix C 

Fourier series and harmonic 
analysis 

An important advantage of the Fourier series representation of a function is that 
it can represent a periodic function containing a number of finite discontinuities 
with no requisite of the use of successive differential coefficients as in Taylor 
series. 

C.1 Fourier series 

In mathematical expression, we have 

a0 ~ 2rr ~ 2rr 
f ( t )  - -~  + E ai cos(/-~- t) + E ai sin(/ ~- t ) ,  

i - - 1  i - - 1  

(C.1) 

where f ( t )  - f ( t  + n T )  and n is an integer. 
Using Euler's identity e jx - cos x + j sin x, the formula in C.1 can be 

represented in exponential form. 

(x) 
E �9 2rent 

f ( t )  -- Cnea T 
-- CX:) 

DFT may be useful for data compression because a few coefficients of the 
Fourier expansion may be sufficient to make the reconstructed wave close enough 
to the original function. For example, Figure C.1 shows how only a few terms 
of the Fourier expression can give quite a good approximation of the original 
signal. (1) is the original function 

1, O _ < t < r r  

f (t) -- O, -7r <_ t < O 
f ( t + 2 k r r ) ,  k -  1 ,2 , . . .  
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232 A P P E N D I X  C. F O U R I E R  S E R I E S  A N D  H A R M O N I C  A N A L Y S I S  

0.5 
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Figure C.1" (1) f(t), (2)-(5) a few Fourier terms 

1 2 s i n  t (2) is the approximation with the first harmonic f ( t )  ~ ~ + --4--" (3) is the ap- 
1 2 s i n t  s i n 3 t  proximation with the first two harmonic terms, f ( t )  ~ ~ + - (  + ) (4)is  --7- - - 5 - "  

1 2 s i n t  s i n  3t  s i n  5t  the approximation f (t) ~ ~ + - (  + + ) (5) is the approximation --i- - -5 -  - - 7 - "  
1 2 s i n  t s i n  3 t  s i n  5t  s i n  7t  f ( t )  ~ -~ + - (  + + + ---T- --5-- ----g- 7 J" 

Of course, reconstructing precisely the exact original function requires an 
infinite number of terms (or coefficients) which is impossible in practice anyway. 

C.2 Convergent series 
X X 2 X 3 

e x - 1 +  ~ + ~ + ~ + . . .  (C.2) 

X 2 X 4 

cos x - 1 2~ + 4! . . . .  (C.3) 



c . 2 .  C O N V E R G E N T  S E R I E S  233 

C . 2 . 1  

o r  

X X 3 X 5 

s i n x - ~ + - ~ .  + 5! 

E u l e r ' s  i d e n t i t y  

e a x  _ cos x + j sin x 

e - j x  - cos x - j sin x 

COS X 
eJ  x -Jr- e-Jx 

sin x - 
e3 x _ e - - 3 x  

(c.4) 

(c.5) 

(c.6) 

(c.7) 

(c.8) 
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Appendix D 

P s e u d o c o d e  notat ion  

Pseudocode is merely a convenient way to describe and convey algorithmic ideas. 
It would not be a big problem if you just use any ad hoc language as long as the 
algorithmic idea is clear. However, one useful function of pseudocode is that  it 
can serve as a bridge or a translator to convert an algorithm to a source code of 
a computer program. So an ideal pseudocode would be close enough in syntax 
to a conventional computer language. 

In this book, we use a hybrid of adopted keywords and syntax from several 
commonly used high-level sequential computer languages. Of course, the user 
can extend the pseudocode vocabulary by adding more useful terms, function 
names etc. 

D.1  Values  

�9 0, 1 , - . . , 9  

�9 fraction, rational numbers 

�9 true, false. 

D.2  T y p e s  

boolean, int, real, char, string, object. 

D . 3  O p e r a t i o n s  

�9 ~ (assignment) 

�9 (), [], {} 
�9 +, - ,  x ,  / 

�9 and (&&), or (11), xor (X0R) 

�9 <, >,_<,  >_, =,  r  

235 



236 APPENDIX D. PSEUDOCODE NOTATION 

D.4 Priority 

In some cases, there  are nes ted  s t ructures ,  or a long expression consists of m a n y  

items. 

�9 nested brackets: from inside out  

�9 an expression with equal priority: from left to right 

�9 a lgor i thm wi thout  line numbers:  from the  top line down. 

D.5 Data structures 

�9 array, list, queue, stack, set 

�9 tree, graph,  ma t r ix  

�9 hash-table .  

D.6 Other reserved words 

�9 funct ion 

�9 procedure  

�9 m e t h o d  

�9 ( typed)  method .  

Note: the  te rms p r o c e d u r e  and f u n c t i o n  are used in language such as C, 
C + +  and method  is the  concept  in Java. In our pseudocode,  keywords f u n c t i o n  
and t y p e d  method,  and p r o c e d u r e  and ( v o i d )  method  are interchangeable .  

D.7 Control keywords 

These are the keywords to indicate  a block of s t a t emen t s  of an algori thm.  

�9 i f -  e n d  if  

�9 for  - e n d  for  

�9 r e p e a t  - u n t i l  

�9 w h i l e  - e n d  w h i l e  

�9 r e t u r n .  
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D.8 Examples of sequential structures 
1. A method,  function or procedure 

method xxx (type a, b, c) 
input"  type a, b, c 
o u t p u t :  a + b + c 
other s ta tements  

type m e t h o d  xxx (type a, b, c) 
r e t u r n  a + b + c 

type f u n c t i o n  xxx (type a, b, c) 
r e t u r n  a + b + c 

p r o c e d u r e  xxx (type a, b, c) 
r e t u r n  a + b + c 

2. If-then-else 

if condition t h e n  
other s ta tements  

e n d  if 

if condition t h e n  
other s ta tements  

else 
other s ta tements  

e n d  if 

if condition t h e n  
other s ta tements  

else  if condition t h e n  
other s ta tements  

e lse  
other s ta tements  

e n d  if 

3. A Boolean function (or method) 

boolean function xxx (int a, b) 
r e t u r n  a > b 
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4. A loop (iteration) structure 

for i = 1 to n do  
other s ta tements  

e n d  for 

wh i l e  condition do 
other s ta tements  

e n d  wh i l e  

r e p e a t  
other s ta tements  

un t i l  condition 



Appendix E 

N o t a t i o n  

The  following nota t ion  is used in the book: 

s y m b o l i c  d a t a  a ,  b,  �9 �9 �9 z ,  A, B, �9 �9 �9 , Z, ' a '  , ' b '  , �9 �9 . ,  ' z '  , ' A ' ,  'B '  
c Z ,  a ,  b . - .  z ,  A B ,  �9 Z ,  c ~ c c ~ c A �9 . - ,  , , , , ' '  , a , b ~ - ' '  z 

' B ' ,  . . . ,  ' Z ' ,  a , b , . . .  , z , A , B , . . .  , Z ,  'a', ' b ' , . . . ,  'z', 'A' ,  ' B ' , . . . ,  'Z '  

b i n a r y  d a t a  O, 1, O, 1, a, b, a, b, b, w, b, w 

l i s t s  o r  s e t s  A, B , - . - ,  Z, A,  B,  - - - ,  Z, A , B , . - - ,  Z 

f u n c t i o n s  I(), K(),  H(), I 0 ,  K 0 ,  H 0  

v a r i a b l e s  s j ,  p j ,  cj,  j - 1 , . . .  , n,  i - 1 , . . .  , n,  x , y ,  s j ,  p j ,  cj ,  j - 1 , . . .  , n,  
i - 1 , . . .  , n ,  x , y ,  a , b , . . .  , z , A , B , . . .  , Z 

m a t r i c e s  x, y, A,  B, C, (ai j ) ,  (bij) ,  (cij)  

a v e r a g e  l e n g t h s  l, L 

m a t h e m a t i c a l  s y m b o l s  log x, log 2 x, sin x, cos x 

s p e c i a l  s y m b o l  Self-information: I(), I();  Entropy:  H(), H( )  

m e t h o d s  procedures  or function: next_symbol_in_text ( ) ,  update_tree(T) ,  nex t_symbol_ in_ tex t ( )  
update_ tree(T) ,  etc. 
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A 
adaptive, 44, 118 

Huffman, 99 
adaptive Huffman coding, 91 
ADPCM, 185 
advantages, 205 
AIFF, 185 
algorithm, 2 
algorithmic 

problem, 2 
solution, 2 

alphabet, 32, 33, 103 
source, 142 

amplitude, 172, 183 
Animated GIF, 206 
approximate distortion, 13 
approximate statistical data, 85 
arithmetic 

codes, 113 
coding, 103 

arithmetic coding, 101 
ASCII, 92 
ASCII code, 21 
asymptotic equipartition property, 113 
AU, 185 
audio compression, 171 
average, 35, 36, 85 
average length, 24, 62 

B 
B-pictures, 214 
band-pass filters, 164 
bandwidth, 7 
basis, 166 
basis vector, 162 
behaviour, 193 
bi-level image, 196 

binary, 20 
bitmap images, 191 
black-box 

approach, 62 
method, 62 

BMP, 207 
brightness, 195 
buffer 

History buffer, 129 
Lookahead buffer, 129 

BWT, 151 

C 
Canonical and minimum-variance, 72 
cartoon-like image, 197 
changed, 103 
characteristic polynomial, 227 
chrominance, 195 
circular queue, 136 
code efficiency, 38 
coder, 5, 44, 103, 117 
coder efficiency, 9 
codeword, 21, 25 
codeword length, 28 
codewords, 80 
coefficients, 166, 216 
colour 

database, 195 
depth, 195 

colour image, 196 
communication 

channel, 205 
companding, 180 
compression, 2, 3 

adaptive, 44 
asymmetric, 45 
lossy, 204 
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music, 183 
ratio, 11, 184 
speech, 183 
static, 44 
symmetric, 45 

compression factor, 11 
compression ratio, 85 
compressor, 92, 94 
compressors, 117 
context, 201 
continuous-tone image, 197 
convergent series, 232 
correlated 

pixels, 206 
curves, 192 

D 
DAT, 174 
data, 2, 19 
Data compression, 1, 3 
data structures, 118, 236 
DCT, 163 
decimal 

number, 103, 108 
value, 115 

decimal system, 109 
decoder, 5, 44, 103, 107, 125 
decoding, 21 
decompressor, 92, 95 
decompressors, 117 
decorrelated, 206 
detect, 172 
determinant, 226 
device 

resolution, 192 
DFT, 163, 231 
dictionary, 117, 118, 120, 129 
dictionary compression, 117 
dictionary-based 

algorithms, 117 
approaches, 117 

digital, 173, 189 
audio, 185 
cameras, 191 
devices, 191 

digital images, 189 

dimension, 223 
discrete-tone image, 197 
distortion, 13, 204 
disturbance, 171 
division, 79, 80, 107 
domain, 158 
dpi, 190 
drawing, 193 
dynamic, 103 
dynamic media, 20 

E 
efficiency, 15 
eigenvalue, 227 
eigenvector, 227 
encoder, 44, 103, 107 
encoding, 21 
energy, 161 
entire 

input, 103 
entropy, 35, 36, 149 
entropy of the source, 35 
entropy-based, 117 
entry, 223 
EPS, 207 
estimation, 149 
Euler's identity, 233 
extending 

alphabet, 98 

F 
FFT, 167 
filter, 164 
fixed, 45 

probability 
distribution, 103 

fixed length codewords, 92 
fixed rate, 174 
fixed-to-fixed, 45 
fixed-to-variable, 45 
forward transform, 158 
Fourier series, 231 
frame, 211 

difference, 213 
rate, 212 

frame buffer, 191 
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frames, 43, 211,213 
frequency 

spectrum, 172 
frequency spectrum diagram, 172 

G 
GIF, 201,206 
goal, 24, 103 
graphics, 20 
greyscale, 201 
greyscale image, 196 
grouping 

symbols, 98 

H 
HDC, 50 
HDTV, 194, 212 
hierarchical 

coding, 205 
high-pass filter, 164 
Huffman, 67, 92 
Huffman codes, 71 
Huffman tree, 92 

I 
I-picture, 214 
identity matrix, 224 
image, 20 

bi-level, 196 
cartoon-like, 197 
colour, 196 
compression, 198 
continuous-tone, 197 
discrete-tone, 197 
graphical, 197 
greyscale, 196 
progressive, 205 
reconstructed, 204 
synthetic, 197 

image data, 189 
images 

bi-level, 202 
implement, 205 
implementation problem, 113 
independent 

events, 35 

indices, 117 
information, 19, 32 
information theory, 32 
instructions, 183 
interval, 103, 104, 114 
intervals, 213 
intra, 214 
inverse, 224 
inverse transform, 158 
ITU-R BT.709, 194 
ITU-T, 185 
ITU-T H.261,212 

J 
JPEG, 203, 206 

still image, 206 

K 
Kraft inequality, 30 
Kraft's theorem, 30 

L 
LC, 194 
LC representation, 195 
leaf, 75 
lines, 192 
logarithmic companding, 180 
lossless, 5, 38, 198 
lossless compression, 11 
lossy, 6, 198, 206 
lossy compression, 11, 145 
low-pass filter, 164 
luminance, 195 
LZ77, 118 
LZ78, 118 
LZW, 118 

M 
match, 130, 131, 134 
matrix, 41,204, 223 

identity, 224 
square, 223 

mean, 35 
measure, 204 

difference distortion, 204 
medium, 171 
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memoryless, 33, 104 
middle C, 172 
MIDI, 186 
midrise quantiser, 178 
midtread quantiser, 178 
mode 

baseline sequential, 206 
lossless, 206 

model, 8, 44, 103 
Model-C, 44 
Model-D, 44 
Move-to-Front, 149 
MP3, 185 

lo-fi MP3, 185 
MPEG, 212, 213 
MtF, 149 
multimedia, 20, 183 

N 
noises, 184 
non-adaptive, 44 
non-prefix, 28 
non-recurrent, 50 
non-symmetric, 45 
non-uniform quantiser, 179 
non-uniform quantisers, 180 
Notation, 239 
notes, 172 
NTSC, 212 
Nyquist 

frequency, 175 
theorem, 175 
theory, 175 

O 
offset, 131, 134 
optimal, 38 
optimum, 38 
original, 114 
orthogonal, 168 
orthogonal matrix, 227 
orthogonal transform, 161, 167 
output, 103 

P 
P-pictures, 214 

painting, 193 
PAL, 212 
parameters, 211 
patterns, 167 
photographic 

image, 191 
phrases, 117 
pixel, 20 

context, 201 
dimension, 190 

pixels, 189 
PNG, 207 
portion 

attack, 172 
steady, 172 

power-law companding, 180 
precision problem, 113 
predict, 184 
prediction, 145 

backward, 216 
bidirectional, 216 
forward, 216 

prediction rules, 145 
predictive pictures, 214 
predictors, 203 
prefix code, 25 
prefix property, 25 
prefix-free property, 25 
preprocessing, 145 
primary colours, 194 
priority, 205 
probability, 33 

distribution, 103 
probability distribution, 40 
probability table, 85 
probability theory, 32 
progressive, 205 
PSD, 207 

Layered, 207 
pseudocode, 2, 235 
pyramid 

coding, 205 

q 
quality, 211 
Quantisation, 42 
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quantisation, 173, 176 
quantisation error, 179 
quantiser, 178 
QuickTime, 185 

R 
range, 106 
rasterising, 194 
rate 

bit rate, 184 
RealAudio, 185 
RealVideo, 185 
reconstructed image, 204 
redundancy, 12, 40, 117, 198 

spacial, 42 
spatial, 213 
temple, 43 
temporal, 213 

rendering, 193 
renormalisation, 113 
repeating 

characters, 40 
residual, 147 
resolution, 190 
reversible, 147 
RGB, 194 
RGC, 201 
root, 75 
round-off error, 179 
run-flag, 50 
run-length, 49, 50 
runs, 49 

S 
sample frequency, 175 
sample rate, 173 
samples, !74 
sampling, 173, 184 
saving percentage, 11, 63, 80 
scalar 224 
scalar quantisation, 178 
SEC .-~M, 212 
self-information, 33 
self-punctuating, 24 
sequ?nce, 212 
Shannon, 36 

Shannon-Fano codes, 77 
shapes, 192 
signal, 167, 211 

periodic, 171 
signals, 171 
simple 

version, 104 
sliding 

window, 129 
sound, 20, 171 
source, 19, 85, 103 

data, 19 
spacial redundancy, 42 
spatial redundancy, 198 
spectral redundancy, 199 
speech 

telephone, 183 
wideband, 183 

speech compression, 183 
square matrix, 223 
standards, 206 
static, 44, 103 
static Huffman coding, 67 
static media, 20 
step-function, 166 
still 

picture, 211 
STN, 207 
stream, 101, 103 
subband coding, 164 
symbolic data, 22 
symmetric, 45 
symmetric matrix, 224 

T 
Taylor series, 231 
temple redundancy, 43 
text, 20, 41 
text stream, 117 
TGA, 207 
TIFF, 207 
timbre, 172 
time interval, 174 
tokens, 117 
trade-off, 206 
transform, 145, 156, 158 
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two-dimensional, 165 
wavelet, 165 

Transformation, 42 
transient, 172 
transpose, 224 
tree, 26 
two-dimensional, 191 

U 
uniform quantiser, 179 
unique 

interval, 103 
uniquely decodable, 24 

V 
variable, 45 
variable length, 81 
variable length code, 21 
variable rate, 174 
variable-to-fixed, 45, 118 
variable-to-variable, 45 
vector, 41,223 
vector graphics, 191 
vector quantisation, 178 
vectorisation, 194 
video 

analogue, 211 
digital, 211 

virtual, 183 
vocoder, 173 
VOCPACK, 184 
voice compression, 183 

W 
WAV, 185 
wave 

continuous wave, 175 
Wavelet transforms, 165 
wavelets, 165 
waves, 183 

cosine, 171 
weight, 92, 94 
weighted, 162 
weighted tree, 71 
weights, 71 
words, 117 

XBM, 207 
X 




